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PREFACE 

The interest of the applied mechanics community in chaotic dynamics of 
engineering systems has exploded in the last fifteen years, although research 
activity on nonlinear dynamical problems in mechanics started well before 
the end of the Eighties. It developed first within the general context of the 
classical theory of nonlinear oscillations, or nonlinear vibrations, and of the 
relevant engineering applications. This was an extremely fertile field in 
terms of formulation of mechanical and mathematical models, of 
development of powerful analytical techniques, and of understanding of a 
number of basic nonlinear phenomena. At about the same time, meaningful 
theoretical results highlighting new solution methods and new or complex 
phenomena in the dynamics of deterministic systems were obtained within 
dynamical systems theory by means of sophisticated geometrical and 
computational techniques. 

In recent years, careful experimental studies have been made to establish 
the actual occurrence and observability of the predicted dynamic 
phenomena, as it is vitally needed in all engineering fields. Complex 
dynamics have been shown to characterize the behaviour of a great number 
of nonlinear mechanical systems, ranging from aerospace engineering 
applications to naval applications, mechanical engineering, structural 
engineering, robotics and biomechanics, and other areas. 

The International Union of Theoretical and Applied Mechanics grasped 
the importance of such complex phenomena in the Eighties, when the first 
IUTAM Symposium devoted to the general topic of nonlinear and chaotic 
dynamics in applied mechanics and engineering was held in Stuttgart (1989). 
Starting with that meeting, mechanics people began thinking of nonlinear 
vibration problems within the more modern framework of Nonlinear 
Dynamics. Two successive IUTAM Symposia in the same fields were held 
in London (1993) and Ithaca, NY (1997). Though these three Symposia dealt 
with a variety of more and more intriguing problems in nonlinear and 
chaotic dynamics of mechanical systems, one could say, at the risk of being 

© 2005 Springer. Printed in Great Britain. 



xviii Preface

too schematic, that their respective focuses were on computational
techniques (Stuttgart), geometrical tools (London), and experimental
investigations (Ithaca), reflecting the interests and the specific expertise 
developed in the Schools of the symposium organizers.  

Today, it seems generally accepted that nonlinear vibration problems 
should be cooperatively addressed through the combined use of analytical, 
computational, geometrical and experimental approaches, each of them 
giving fundamental and complementary contributions to the overall 
understanding of the problem. 

Further important related issues have attracted the attention of the 
mechanics community in the last decade. First, the interaction between 
nonlinear dynamics and control, which plays an important role in advanced 
engineering systems in order to obtain desired dynamic behaviour and 
improved reliability during operation. It was the subject of a IUTAM 
Symposium held in Eindhoven (1996). Second, topics related to methods 
and applications of control of chaos, which primarily developed within the 
physics and dynamical systems communities but have recently received 
increasing attention by the nonlinear mechanics community. 

This volume evolves from a further international event in the field, 
namely the IUTAM Symposium on Chaotic Dynamics and Control of 
Systems and Processes in Mechanics, held in Rome, Italy, on  8–13 June 
2003. It was aimed at diving deep both into theory and recent applications to 
mechanics of nonlinear and chaotic dynamics, and into their control, by at 
the same time furthering the exchange of scientific ideas within the group of 
scholars – as well as friends – from various research teams, that had been 
established in the last fifteen years. 

By now, the new and revolutionary dynamic phenomena of some years 
ago have become increasingly popular in the scientific community, as 
witnessed even by the overabundance of chaos software and pictures 
available on books and websites; they are known to characterize many 
theoretical systems and engineering applications. So, what is the present 
research framework in the field?  

One can identify two main general issues: (i) the need to overcome the 
limitations inherent in the archetypal single- or few-degree-of-freedom 
systems mostly considered in the past, and (ii) the increased interest towards 
control of chaos – or more generally – of nonlinear dynamics in mechanical 
systems. The aim is to develop more reliable models for the analysis of high-
dimensional systems and processes encountered in most technical 
applications; to obtain further meaningful hints from experimental 
investigations; to generalize techniques for the analysis of new complex 
behaviours; to explore implications of chaos in design and operating 
conditions of advanced systems, as well as needs and features for their 
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control. It is important to remember how difficult and involved is the 
passage from simple models to actual engineering systems.  

For the Symposium, an International Scientific Committee was appointed 
by the Bureau of IUTAM with the following members: G. Rega (Italy, 
Chair), F. Vestroni (Italy, Co-Chair), F. L. Chernousko (Russia), E. Kreuzer 
(Germany), F. C. Moon (USA), G. Stepan (Hungary), J. M. T. Thompson 
(UK), H. Troger (Austria) and D. H. van Campen (The Netherlands) 

This Committee selected the papers to be presented at the Symposium 
and 51 papers were presented in lecture and poster-discussion sessions. 
There were 63 registered participants from engineering, physics and applied 
mathematics communities regularly attending the Technical Sessions; they 
came from 20 different countries according to the following geographical 
distribution: Austria (1), Brazil (1), Canada (1), Czech Republic (1), China 
(1), Denmark (1), Germany (6), Greece (3), Hungary (2), Israel (1), Italy 
(13), Japan (1), Morocco (1), Poland (1), Russia (5), Serbia-Montenegro (1), 
the Netherlands (2), Turkey (1), U.K. (8), U.S.A. (12). A number of Italian 
PhD students and University scientists also attended some scientific 
sessions. 

Papers derived from nearly all of the Symposium presentations are now 
published in the present volume, after undergoing review by members of the 
Scientific Committee, or other participants to the Symposium, aimed at 
achieving a standard of Proceedings comparable to that of refereed journals 
in the field.  

Though most papers are related to more than one topic, it seemed suitable 
to group them within 7 main areas: 

I. Bifurcation, Chaos and Control 
II. Mechanical Systems 
III. Structural Systems 
IV. Nonsmooth Dynamics 
V. Delay and Random Systems  
VI. Control of Systems and Processes 
VII. Chaos Control and Synchronization. 

Meaningful scientific achievements are highlighted mostly as regards the 
following topics:  

(i) Complex systems and processes for classical and innovative 
applications 

(ii) Features of nonlinear interactions in mechanical systems  
(iii) Patterns of novel bifurcations, with special emphasis on non-

smooth systems 
(iv) Dimensionality and reduced-order models of continuous systems 
(v) Exploitation of dynamical system properties for applications 
(vi) Implications of chaos for design and operating conditions  
(vii) Control of spatio-temporal dynamics. 



xx Preface

The four keynote lectures of the Symposium, and the relevant lectures 
and poster presentations, are indicated in the Table of Contents. 

We thank both the participants to the Symposium and the authors of the 
papers for their valuable contributions. 

The Symposium was held in the 15th-century cloister of the Faculty of 
Engineering of the University of Rome “La Sapienza”, in the very centre of 
the city. The opening remarks were given by G. Rega, F. Vestroni (Head, 
Structural Engineering Department), T. Bucciarelli (Faculty Dean), and W. 
Schiehlen (Vice President, IUTAM). Within a rich cultural and social 
programme, we also took the opportunity to recognize the contributions to 
the area of nonlinear dynamics and control of three world class scientists, 
Professors Felix Chernousko, Werner Schiehlen, and Michael Thompson, by 
celebrating their respective 65th birthdays during the Symposium banquet.  

The success of the Symposium would not have been possible without the 
work of the local Organizing Committee established at the Department of 
Structural and Geotechnical Engineering of the University of Rome “La 
Sapienza”, whose members were as follows: G. Rega (Chair), F. Vestroni 
(Co-Chair), F. Romeo (Secretary), D. Bernardini, P. Casini, W. Lacarbonara, 
R. Masiani, A. Paolone. 

A special acknowledgment has to be given to Dr. Francesco Romeo for 
his hard and valuable effort, and the continuous care spent for the success of 
both the Symposium and this Proceedings volume. 

The financial support of the University of Rome “La Sapienza”, of the 
IUTAM, and of a significant number of Italian companies from the area of 
civil engineering is most gratefully acknowledged.  

Finally, many thanks are due to Kluwer Academic Publishers, especially 
to Ms. Nathalie Jacobs, for their support and efficient cooperation with this 
Proceedings volume. 

Giuseppe Rega 
Fabrizio Vestroni 

University of Rome “La Sapienza”, Italy 
July 2004 
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WELCOME ADDRESS  
BY THE VICE-PRESIDENT OF IUTAM 

Professor Bucciarelli, Professor Vestroni 
Dear Professor Rega,  
Dear Colleagues from all over the world, 
Ladies and Gentlemen, 

It is my honor and pleasure to welcome all of you on behalf of the 
International Union of Theoretical and Applied Mechanics, here in Italy. As 
we have learnt, the University of Rome “La Sapienza” (which means 
“Wisdom”) is the oldest university in town, founded in 1303 by Pope 
Boniface the Eighth. Today, the university is well-known within the 
mechanics community due to its outstanding academic and scientific 
strength in nonlinear dynamics. Further, most of us know also the 
International Journal of the Italian Association of Theoretical and Applied 
Mechanics, published by Kluwer and called simply MECCANICA. This 
Journal is edited by Professor Giuseppe Rega here at the Department of 
Structural and Geotechnical Engineering.  

Let me use this Opening Ceremony for a short look on the past and 
present activities of IUTAM. Organized meetings between scientists in the 
field of mechanics were initiated 80 years ago, namely in 1922, when 
Professor Theodore von Kármán from Germany and Professor Tullio Levi-
Civita from Italy organized the world's first conference in hydro- and aero-
mechanics. Two years later, in 1924, the First International Congress was 
held in Delft, The Netherlands, encompassing all fields of mechanics, that 
means analytical, solid and fluid mechanics, including their applications. 
From then on, with exception of the year 1942, international congresses on 
mechanics have been held every four years. 

The disruption of international scientific cooperation caused by the 
Second World War was deeper than that caused by the First World War, and 
the need for re-knotting ties seemed stronger than ever before, when the 

© 2005 Springer. Printed in Great Britain. 
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mechanics community reassembled in Paris for the Sixth Congress in 1946. 
Under these circumstances, at the Sixth Congress in Paris, it seemed an 
obvious step to strengthen bonds by forming an international union, and as a 
result IUTAM was created and statutes were adopted. After one year, in 
1947, the Union was admitted to ICSU, the International Council for 
Science. This council coordinates activities among various other scientific 
unions to form a tie between them and the United Nations Educational, 
Scientific and Cultural Organization, well known as UNESCO. 

Today, IUTAM forms the international umbrella organization of more 
than 50 national Adhering Organizations representing mechanics in many 
nations around the globe. Each Adhering Organization of IUTAM, like the 
Italian Association of Theoretical and Applied Mechanics, is represented by 
a number of scientists in IUTAM's General Assembly. In particular, the 
Italian representatives are: 

Professor Carlo Cercignani and Professor Giulio Maier, from the 
Politecnico di Milano,  
Professor Paolo Podio-Guidugli, from the University of Rome “Tor 
Vergata”, and  
Professor Furio Vatta, from the Politecnico di Torino. 
Furthermore, a large number of international scientific organizations of 

general or more specialized branches of mechanics are connected with 
IUTAM as Affiliated Organizations. As a few examples, let me mention: the 
European Mechanics Society (EUROMECH), the International Association 
of Computational Mechanics (IACM), and the International Association for 
Vehicle System Dynamics (IAVSD).  

Within IUTAM, the only division used so far is related to solid and fluid 
mechanics as indicated by our two Symposia Panels. But last year the 
General Assembly of IUTAM approved and established Working Parties 
devoted to specific areas of mechanics. These areas are: 

– Non-Newtonian Fluid Mechanics and Rheology,  
– Dynamical Systems and Mechatronics, which is our topic, too, 
– Mechanics of Materials,  
– Material Processing, 
– Computational Fluid and Solid Mechanics. 

And in addition, with potential links to other International Unions the following 
subjects were chosen: 

– Biomechanics, 
– Nano- and Microscale Phenomena in Mechanics, 
– Geophysical and Environmental Mechanics, 
– Education in Mechanics and Capacity Building. 
These Working Parties may be developed into Standing Scientific 

Committees, too, in the future.  
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Since 1949 there have been held more than 260 IUTAM symposia world-
wide. Out of them, 6 symposia were organized in Italy, but our symposium 
is the first one to be held in Rome. It is worthwhile to mention that the 
second IUTAM Symposium ever held took place in Pallanza, Lago 
Maggiore back in 1950 with 27 participants from 11 countries. 

The present Symposium is exceptionally interesting because it deals with 
new developments in dynamics. IUTAM found that the proposal of 
Professors Rega and Vestroni for such a symposium was not only very 
timely, but also very well founded in the outstanding research carried out in 
this field at the University of Rome “La Sapienza”. Thus, the proposal for 
the Symposium was readily accepted and granted by the General Assembly 
of IUTAM in the year 2000. There is no doubt that IUTAM considers 
nonlinear dynamics as an important field of mechanics. Successful IUTAM 
symposia on chaos and control have been held since 1989 in Stuttgart, 
London, Eindhoven and at Cornell. Nevertheless, IUTAM does not offer 
series of symposia. Thus, the titles are always adapted to the latest 
developments.  

As I mentioned before, IUTAM organizes not only symposia but also 
international congresses in all part of the world. These quadrennial 
congresses are also considered as the Olympics of Mechanics. With 1500 
participants the Chicago Congress was the central millennium event in 
mechanics to celebrate the turn of the century, too. The Twenty-first 
International Congress of Theoretical and Applied Mechanics will be held in 
Warsaw, Poland, from 15 to 21 August 2004, which means in one year’s 
time. Announcements of this forthcoming congress will be widely dis-
tributed and published in many scientific journals. Please visit also 
IUTAM’s very informative website designed and maintained by the 
Secretary-General Dick van Campen, who is with us this week, too.  

On behalf of IUTAM, I wish to express my sincere thanks to the 
Department of Structural and Geotechnical Engineering, and in particular to 
Professor Giuseppe Rega, for the invitation to host this significant scientific 
event. I thank all participants for their readiness to come and to contribute to 
the Symposium with presentations, posters and scientific discussions. 

It is up to you now, Ladies and Gentlemen, to harvest the fruits of the 
Organizers' work. Contribute your share to make this IUTAM Symposium a 
meeting that will be long remembered. On behalf of IUTAM, I greet you all 
and wish you a symposium crowned by success!  

Werner Schiehlen 
Professor of Mechanics 

University of Stuttgart, Germany
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OBITUARY 

It is very sad to note that one of the contributors to this volume, Professor 
František PETERKA, died just three months after attending the IUTAM 
Symposium in Rome, due to an unexpected and incredible event.  

With his important and updated research activity in the field of nonlinear 
impacting dynamics, Professor Peterka was an assiduous protagonist of a 
great number of scientific events that occurred in the last decade in the 
general area of mechanical applications of nonlinear and chaotic dynamics.  

For his scientific work, as well as for being a man of great humanity, 
mildness, tolerance and generosity, Professor Peterka was credited with great 
esteem, appreciation and friendship within the overall group of scholars in 
nonlinear dynamics who interacted with him during the years.  

I believe I fully interpret the feelings of all of his scientific friends and 
colleagues from different countries by including in this volume, which is one 
of the very last volumes he contributed to, a short résumé of Professor 
Peterka’s scientific activity kindly prepared by his colleague Professor 
Ladislav Pust. 

Giuseppe Rega 

Ing. František PETERKA, Dr. Sc., was born on November 26, 1939 in 
Týn nad Vltavou in South Bohemia. From his mother, a teacher of 
mathematics, he inherited a talent for the natural and technical sciences. In 
1962, he graduated with honour in applied mechanics from the Faculty of 
Mechanical Engineering of the Czech Technical University, Prague. 
Thereafter he began his scientific activity at the Institute of 
Thermomechanics of the Czechoslovak Academy of Sciences. His research 
was focused on the dynamics of mechanical systems, particularly on the 
problems of dynamics of strongly nonlinear systems with impacts. In 1968, 
he defended his PhD thesis Theory of dynamical impact damper with two 
degrees of freedom.

© 2005 Springer. Printed in Great Britain. 
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He was the author and co-author of more then 150 papers and lectures, 
and five books. Using both theory and analogue computer simulation he 
studied the problems of periodic and chaotic impact motions, and the 
optimisation of parameters of impact systems with viscous and dry friction. 
He was one of the first researchers who discovered chaotic phenomena in 
nonlinear mechanical systems. He worked also on the experimental 
verification of theoretical results by means of physical models of mechanical 
impact-systems. His last larger contribution to the theory of vibration is the 
chapter Vibration Impact Systems in the Encyclopedia of Vibration,
published by Academic Press, London in 2001. With industrial enterprises 
he collaborated on the development of mechanical hammers for metal scrap 
compacting equipment, pneumatic drill hammers, and on the modelling of 
the oscillation of the nuclear reactor fuel rods under aeroelastic and seismic 
excitation. He elaborated a new principle of forming impact machines. 
However, the prototype of the patented forming machine remains unfinished. 

He was the Head of the Laboratory of Non-linear Systems Dynamics in 
the Institute of Thermomechanics, Academy of Sciences of the Czech 
Republic. His scientific work was supported from 1991 in five grant projects 
by Grant Agency of the AS CR, Grant Agency of the CR and by the 
Ministry of the Education, Youth and Sport of the CR within the European 
action COST P-4. He was the Chairman of the Czech National Committee of 
the IFToMM (International Federation for the Theory of Machines and 
Mechanisms) and the Secretary of the IFToMM Technical Committee Non-
linear Oscillations. He was the member of the permanent Euromech 
(European Society for Mechanics) Non-Linear Oscillations Conferences 
Committee. As a secretary of the 2nd European Nonlinear Oscillations 
Conference (ENOC ‘96) in Prague 1996, he contributed to a great degree to 
its success.  

His spare time he devoted mainly to his family, a daughter, two sons and 
four grandchildren, and to music; he played violin and sang in the church 
orchestra and choir. 

Ladislav Pust 
Institute of Thermomechanics 

Academy of Sciences of the Czech Republic, Prague 
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I.

BIFURCATION, CHAOS AND CONTROL 

Bifurcation and chaos are important nonlinear phenomena in many 
engineering systems and processes, which need to be controlled for several 
practical purposes. The focus of the first part of the Proceedings is on some 
relevant paradigmatic topics. The Key Lecture of the Symposium given by 
Francis Moon of Cornell University, Ithaca, USA, is the lead paper of this 
part, whereas the rest of the papers are compiled alphabetically, based on the 
last name of the first author. 

Francis Moon addresses two problems in the dynamics of machines: the 
nature of noise and the evolution of noisy dynamics over several generations 
of machine design. The dynamics of clock escapements are examined from 
experimental, historical and analytical points of view, by assuming them as a 
paradigm for the evolution of noise in machines, and by developing a 
theoretical model of chaotic clocks.  

Bajaj et al. investigate the nonlinear local and global dynamics of a 
resonantly excited linear oscillator coupled to an array of weakly coupled 
pendulums under 1:2 internal resonance with the primary system. The 
method of averaging is used, and local bifurcation analysis is performed. The 
global dynamics is formulated in action-angle variables, and the numerical 
simulations show the occurrence of complex dynamics even for the unforced 
system. 

Efimov and Fradkov deal with the design of adaptive nonlinear 
observers, and develop new applicability conditions which provide partial 
observation of uncertain nonlinear affine plant with estimation of unknown 
parameters. Applicability of results to time-varying chaotic systems is 
demonstrated. 

In the paper by Hedrih, some aspects of the nonlinear dynamics of a 
heavy material particle moving along a circle with coupled rotation are 
presented, together with the effect of a relevant optimal control. 



2 I. Bifurcation, Chaos And Control 

Lenci and Rega present a unified theoretical framework for controlling 
bifurcation and chaos in mechanical systems. Attention is paid to 
investigating how a generic dynamical property, i.e. the occurrence of 
homo/heteroclinic bifurcations, entails a system-independent approach to 
optimal control, as well as generic solutions. Numerical simulations 
highlight the effectiveness of the method in controlling a number of 
meaningful bifurcational events.  

Manevitch et al. present the results of analytical and numerical studies of 
random vibrations in nonlinear one-dimensional oscillatory chains which 
model significant mechanical and physical systems. The dependence of 
wave existence and propagation on the properties of nonlinear normal modes 
is investigated, and the occurrence of localized nonlinear vibrations 
(breathers) and chaotic thermal vibrations is shown.  

In the last paper of Part I, van der Heijden and Thompson examine the 
patterns of various bifurcations governing the 1:2 internal resonance of an 
archetypal two-degree-of-freedom forced oscillator, relevant to a large class 
of mechanical problems. A knowledge of these bifurcations allows the 
counter-intuitive suppression and control of escape by internal modal 
interactions. Attention is focused on the effect that a symmetry-breaking 
imperfection has on the suppression of escape.  
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CHAOTIC CLOCKS: 

A PARADIGM FOR THE EVOLUTION OF NOISE 

IN MACHINES 

Francis C. Moon  
Cornell University, Ithaca, New York, USA 

fcm3@cornell.edu 

Abstract: This paper addresses two problems in the dynamics of machines; the nature of 

noise in machines and the evolution of noisy dynamics over several 

generations of machine design. To present a concrete example we examine the 

dynamics of clock escapements from experimental, historical and analytical 

points of view. This model is shown to exhibit a strange attractor in the 

structural vibration of the clock. Finally we introduce a theory and 

mathematical model for the evolution of noise in machine dynamics over 

several generations of design.  

Key words:  

1. Introduction 

All machines exhibit a certain level of noise. The question arises as to 

whether a certain level of noise is natural or inevitable in a complex 

assembly of mechanical or electromechanical devices? In the early history of 

the steam turbine for example, Charles Parsons patented a mechanical 

oscillator in 1895 to break the friction in servo control valves (Conway [1]). 

Such designed noise in control systems is sometimes called ‘dither’. 

However here we examine the question of whether engineers unknowingly 

admit noise in successive generations of design of machines. After two 

decades of research in nonlinear dynamics of machine elements, there are 

well documented examples of chaotic vibrations in bearings, gears, ball 

bearings and linkages. (See e.g. Moon [2])  

Noise, machine dynamics, clocks, chaos 

© 2005 Springer. Printed in Great Britain. 
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I have chosen to examine noise in the mechanical clock for several 
reasons. First it has a long and documented history of about five centuries. 
Second, although there have been many books written on the clock, there are 
very few that describe the complete nonlinear dynamics. Finally, the clock is 
a machine in which most people would assume the absence of noise and that 
establishing the existence of deterministic noise in clocks might give 
credence to the broader claim of natural chaos in complex machines.  

2. Part I: Models for Chaotic Clocks 

Early mechanical clocks from the 13th to the 17th century had an 
escapement without an oscillator. Post Huygens clocks (1657) have either a 
pendulum or a balance wheel and spring as the basic oscillator. Energy is 
supplied each cycle from either a falling weight or a wound elastic spring, 
through an escapement mechanism. [Figure 1.] The energy in most 
escapements is transmitted from the escape wheel to one or two pallets 
through impact forces. These forces propagate vibrations through the 
supporting structure and we posit that these impulse forces play a role in 
unlocking static friction in the gear train. 

Figure 1. Reuleaux escapement model showing a cylinder escapement arm that drives the 
balance wheel in the background.(See Reuleaux (1893) [3]) 

The torque from the falling weight is delivered through a train of gears 
that acts in the opposite direction from most gear transmissions. The motion 
is driven from slow speed (falling weight) to the higher speeds of the clock 
hands. Thus it generally takes a large torque to deliver a small torque to the 
pendulum through the pallet arms of the escapement. In many theoretical 
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papers on clock dynamics, the gear train is not treated. However we will 
show that the static friction in the gear train is a key element in the existence 
of internal, chaotic noise in the clock. 

2.1 Historical Review 

The first pendulum clock is attributed to Huygens in 1657. The Huygens 
clock is a combination of the verge and the pendulum. Huygens [4] 
recognized that the period increased with the amplitude and designed a 
cycloidal shaped clamp for the pendulum that decreased the effective length 
of the swinging bob that led to a constant period independent of amplitude. 

The next major improvement was the invention of the anchor escapement
that replaced the verge with a two arm device in the shape of and anchor. 
This invention is often attributed to Robert Hooke but other sources give 
credit to a clockmaker William Clement in 1670. The anchor, like its 
predecessor the verge, served to regulate the amount of energy or torsional 
impulse imparted to the pendulum from the falling weight in each cycle. One 
fault of this device was the recoil that occurred when one of the two anchor 
pallets impacted the escape wheel teeth. This was corrected by the invention 
of the so-called deadbeat escapement invented by clock and instrument 
maker George Clement in 1715. This improvement redesigned the shape of 
the anchor pallet arms as well as the escape wheel so as to prevent recoil on 
impact.  

The English clockmaker John Harrison (1693-1776) on the design of 
accurate clocks for marine travel and the determination of longitude is 
discussed in the popular book by Sobel and Andrewes [5]. Without listing all 
the improvements that he made, clock accuracy went from seconds per day 
to seconds per month during the Harrison dynasty. Despite this progress, the 
historical record is replete with evidence and discussion in the literature of 
the irregularities, inaccuracies and unpredictabilities in the mechanical clock.  

Early works on the dynamics of clocks include George Biddell Airy 
(1826) [6], James Mackenzie Bloxam (1854) [7], and Edmond Beckett 
Denison (Lord Grimthorpe) (1868) [8]. Other important mathematical 
analyses in the 20th century were those of the Russians Andronov et al [9]. 
There have appeared a series of papers on the mathematical analysis of 
escapement dynamics such as, Kauderer in 1958 [10], Kesteven [11], 
Lepschy et al [12], Bernstein [13] and Roup and Bernstein et al [14]. 

2.2 Historical Evidence for Irregular Dynamics in Clocks 

The quotes below, while anecdotal, are not based on controlled 
experiments as regards irregularity in clocks. However they do represent 
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typical data and observations of actual complex machines, in this case 
mechanical clocks. Lacking controlled experiments, the historical record 
from respected clock designers contains data, that although is course, is 
better than no data at all.  

The following quotations are taken from a paper by Bloxam [7], 
published by the Royal Astronomical Society. This work was cited by 
another clock designer in a later paper by Lord Grimthorpe [8]. Bloxam 
combined both mathematical analysis with practical experience in 
addressing the sources of irregularities in clocks. The mathematics here is 
essentially sensitivity analysis of the clock period for various physical 
parameters in the clock. The paper starts on page 103 and quotations are in 
page order. 

Page 109 “It is usual with theorists to consider this force [of the impulse 
which the train transmits from the going weight to the pendulum], as 
constant during each impulse, but this assumption is too incorrect to be 
admitted, at least without examination, --” 

Page 121 “It is well known that the force transmitted by clock trains is far 
from constant. Small defects in the forms of the teeth of the wheels, and 
of the leaves of the pinions, and also in the depths to which they are set 
into each other, cause considerable irregularity in the force transmitted 
from each wheel to the next; and the accidental combinations of these 
irregularities in a train of four or five wheels makes the force transmitted 
from each to the last exceedingly variable.” 

Page 128 “the theory of this escapement [the dead beat escapement], 
however perfect it may be by itself, must be rendered practically 
imperfect by the mechanical imperfections which we cannot estimate.” 

Denison (1868) (Lord Grimthorpe) later, in a book about clocks, also 
wrote about the unpredictability in clocks especially the gravity escapement; 

Page 153 “there is one position of the lever in which it jams against the 
teeth and stops the clock for good, --. Sometimes too, the click sticks and 
it sometimes slips, even if made rightly.” 

2.3 Experiments on Clock Escapements 

To investigate the role of noise in clock escapements, dynamic 
experiments were made on several escapement models from the Reuleaux 
kinematic collection at Cornell University. This 19th century collection of 
220 iron and brass models contains 10 clock escapement models. [Moon 
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[15]] One model is shown in Figure 1. This model is of a cylinder 
escapement that drives a balance wheel and torsional spring oscillator. This 
escapement was used in pocket watches. The second escapement is a three 
tooth device that is very old and drives a pendulum oscillator. In order to 
measure the internal vibrations, an accelerometer was placed on the half 
cylindrical arm on the cylinder escapement and on the pendulum arm on the 
three-tooth escapement. 

In each model, the torque was generated by a falling weight acting 
through a single stage pinion and gear mechanism with the driving torque 
applied to the large diameter gear wheel. Thus torque flows from the falling 
weight through the pinion and is transferred to the oscillator by impact 
between the escapement arm that is connected to the pendulum or balance 
wheel. This impact generates vibration in the clock structure that is 
measured by the accelerometer. 

The models were designed for demonstration and the falling weights only 
operated for a limited time so that it was not possible to obtain long time 
data and Poincaré maps. 

Figure 2 [Top] Experimental acceleration measurements on a clock escapement from the 
Cornell Reuleaux collection of kinematic models. Three tooth gravity escapement, Model X3. 

Reuleaux.  
[Bottom] Experimental acceleration measurements on a clock cylinder escapement, Model 

X2. Reuleaux (1893). 

The experimental data on clock escapements show the existence of non-
periodic noise as shown in Figure 2. The vibrations clearly show the low 
frequency balance wheel or pendulum vibrations that are used to measure the 
time in seconds and minutes. However riding on top of these motions are 
non-periodic vibrations associated with the impact of the escapement wheel 
with the drive arm.  
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Friction in Gear Trains: Gear trains are used in clocks to change the very 
slow motion of the falling weight into motions associated with hours, 
minutes and seconds. A clock gear train is driven in the opposite direction 
than a speed reducer. Small friction torques in the pinion require large 
torques in the large gear. Thus it is possible for clock gear trains to lock up. 
Because of this friction large weights are sometimes required to maintain 
reliable running of a clock. For example an 8-day longcase clock might 
require 12-16 lbf weight. A month to three month clock required a weight of 
40 lbf. (Bruton [16]) 

It is known however that motion in the gears can reduce the friction loss 
by up to 80%. Evidence for this can be found in the classic book on gears by 
Buckingham [17] in which he reported on experiments by the ASME that 
showed a dramatic drop in friction loss with gear speed (Figure 3). 
Following Parsons (Conway [1]), we postulate that a similar phenomenon 
occurs due to vibration in the gear transmission system. In the clock this 
vibration is self-induced by the ‘tick tock’ impact of the escapement. 

Figure 3. Friction in pinion and spur gear pairs versus velocity based on ASME tests 1931 
[From Buckingham (1963) [17]]

2.4 Theoretical Model for Clock Chaos 

To avoid the difficulties in the detailed analysis of specific escapements, 
we construct a generic model or prototype model, which it is hoped captures 
the essential features that the author claims is responsible for chaos in 
complex machines such as clocks. The model will incorporate the following 
assumptions and features. 
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a) the pendulum will be modeled by a linear harmonic oscillator with 
light damping; 

b) the impact dynamics in the escapement and the propagation of 
structural dynamics through bearings with gaps will be modeled by a 
cubic oscillator of the Duffing type linearly coupled to the pendulum 
equation; 

c) the driving gear train torque and static friction lockup is modeled by 
a threshold condition of structural impact as measured by the 
Duffing oscillator; 

d) the driving torque from the weight driven gear train, when released 
by the Duffing oscillator, acts to add energy through the escapement 
pallet when the pendulum velocity is positive.  

The first assumption a) is based on the fact that pendula in clocks rotate 
through a very small amplitude such that the nonlinear effects are not 
important. The second assumption b) is based on research by groups such as 
Pao et al [19] on the propagation of stress waves in structures. Both 
experimental and theoretical research show that a single impact or a step 
input load on a structure leads to complex wave patterns through reflections 
and dispersion which excite many modes in the structure. Thus this energy 
redistribution can propagate into the gear train and break the friction and 
prevent lockup. These assumptions lead to the following equations of motion 
for the coupled pendulum, structural dynamics and driving train. This fourth 
order model employs a vibration sensitive torque to capture the escapement 
impact; 

2
1 1 1 1 1 1 3 3 1

2 3
3 2 3 2 3 3 2 1

2
3 0 3 1

3

( ) ( );    [Clock Escapement]

0;              [Clock Structure]
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Here x1(t), represents the motion of the pendulum or balance wheel 
oscillator; x3(t), represents the motion of the structural connection between 
the escapement and the driving train; the cubic term is a nonlinear surrogate 
for the gaps between bearings and gear teeth. The torque dependence on 
structural velocity is an attempt to capture the static friction in the drive train 
and its dependence on the structural vibration.  
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2.5 Simulation Results of Clock Proto-Model 

The coupled oscillator equations of motion were numerically integrated 
using MATLAB software. A few of the results are shown in Figures 4,5. 
Figure 4-left shows a near limit cycle oscillation in the primary clock 
variable while Figure 4-right shows a more chaotic-looking signal in the 
coupled structural state variable. A low dimensional model might neglect the 
structural ‘noise’, but an analysis of the problem shows that the noise is self 
generated and is essential to providing the trigger for the escapement torque 
in order to drive the nearly periodic oscillator. The trigger in this model is 
included as a mechanism for the friction-breaking ‘dither’ in real machines.  

Figure 4. Numerical simulation of dynamic model of a clock escapement. Right pair is the 
clock oscillator. Left pair shows the structure oscillator dynamics. 

A Poincaré map (Moon [2]) is used to show the existence of a fractal 
strange attractor as shown in Figure 5, and provides evidence for chaotic 
vibrations in the clock. In the simulation, the Poincaré map is generated 
when the clock variable x1(t) crosses a certain level. The map is plotted in 
the phase space variables of the structural oscillator. The resulting Poincaré 
map has a fractal-like structure. This is rather remarkable since the attractor 
lies in a four dimensional state space. However the 2D map shows the 
dynamical decoupling that occurs in this model between the near periodic 
clock oscillator and its structural linkage.  
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Figure 5. Poincaré map of the clock model; x�3 vs x3; when x1=0, x�1>0. 

3. Part II: A Proto-Model for Machine Evolution 

In our discussion of the history of clocks and their dynamic modeling 
several characteristics of clock evolution emerged. First, most clock designs 
evolved from earlier designs in which a small number of components are 
changed at each design generation. Second as precision in the clock 
increases, the number of parts and/or their complexity increases. Thirdly we 
learned in the dynamic model of the clock escapement that a small amount 
of noise may be desired to break friction in the drive train. We propose a 
mathematical model that incorporates these properties of clock design 
evolution. The idealized model cannot hope to predict actual part changes. 
Our goal however is to develop a model that will predict the evolutionary 
behavior of the clock dynamics over several design generations. We call this 
a prototype model or proto-model.  

This proto-model will have two time scales; the machine or clock time 
and the design generation time. In the machine time, the clock model must 
exhibit a near periodic solution over all design generations; otherwise it fails 
as a clock. Also the model must account for the existence of noise and 
maintain the near periodic behavior in the presence of noise and through 
successive design cycles.  

At each generation, the increase in parts or complexity is modeled by the 
addition of new state variables. At the same time, an optimization principle 
must be established to assign parameters to the new model so that some cost 
function or performance measure is minimized or maximized to improve 
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some aspect of the dynamical behavior. This optimization model differs 
from classical techniques that often are applied to a fixed dimensional state 
space. (Haug and Arora, [19]) In our problem however the dimension of the 
state space grows as the complexity of the machine evolves. For simplicity 
and to illustrate the methodology we chose a discrete time or iterated map 
for the clock. This map is not too far from the real clock machine if one 
imagines a mapping based on the escapement impact with the pendulum or 
balance wheel.  

For every proto-model of machine evolution we posit a ‘primitive 
machine dynamics’. In the case of the ideal clock, we chose as our primitive 
mapping the logistic equation. This map is autonomous, nonlinear and 
exhibits periodic solutions like the clock. It also exhibits near periodic 
solutions in the presence of small random noise. We denote the state of 
machine by the vector xa

n ; where the superscript indicates the design 
generation cycle and the subscript ‘n’ denotes the discrete clock time, not 
unlike the ‘tick-tock’ time. For the form of the logistic map we write; 

xn+1
o = λ1xn

o (1− xn
o ) + rn

where λ  is a control parameter and rn, represents a random or chaotic noise 
in the machine. [See e.g. Nayfeh and Balachandran [20] for properties of the 
logistic map.] As an example we choose the control parameter λ  equal to 
3.0 such that the map has a period-two cycle. Under a small amount of 
random noise, { rn}, a return map shows a distribution function about the two 
cyclic points of x.

To create a design iteration map, or the next generation machine, we add 
another state variable with linear coupling to the primary machine as 
illustrated below; 

x1
1

x2
1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n +1

=
λ1x1

1(1− x1
1)

0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n

+
rn

0

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ +

a11 a12

a21 a22

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

x1
1

x2
1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

n

where,

A = aij[ ]=
0 ε
ε λ2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ε <<1, and  0 < λ2 <1.

To simplify this model further and to insure that the new ‘clock’ remains 
ticking near a period two cycle, we chose the A matrix to have the special 
form given above. When there is no coupling between the primitive machine 
and the new state variable x2 , (ε = 0) , the system exhibits a linear map in 
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the additional state variable. Restricting the control parameter between zero 
and one guarantees an asymptotically stable fixed point with monotonic 
dynamics. We choose λ2  equal to 0.2 in our numerical example. [ A 
discussion of two and higher dimensional maps may be found in Devaney 
[21].] 

We chose ε to be small and to try to optimize a cost or performance 
function. The addition of the extra state variable and the coupling matrix A 
has two effects on the map dynamics; the first is to change the width of the 
PDF of the map around the cycle-two points. The second effect is to increase 
the separation between the two fixed points. A plot of these two measures of 
performance (Figure 6) shows that the complex ‘machine’ {A and ε} can 
produce a minimum in the noise induced PDF of the dynamics. Thus the 
added complexity of the ‘machine’ can optimize the dynamic performance.  

Figure 6. Three dynamic cost functions for the second generation logistic map ‘machine’; 
Line width of histogram, Separation of near periodic orbit points, Weighted sum of the first 

two cost functions. 

This process can be extended to a third generation machine as defined by 
the third order mapping; 
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x1
(2)

x2
(2)

x3
(2)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

n +1

=
λ1x1

(2)(1− x1
(2))

0

0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

n

+
rn

0

0

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
+ A[ ]

x1
(2)

x2
(2)

x3
(2)

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

n

A[ ]=
0 ε1 ε3

ε1 λ2 ε2

ε3 ε2 λ3

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

where ε1 and λ 2 are chosen from the second generation machine. The new 
parameter λ 3 {=0.1} is again restricted between zero and one for stability 
while the new coupling parameters ε2 and ε3 are chosen to optimize the cost 
function again, which is the sum of the widths of the noise broadened 
period-two motion. 

Such a process of machine dynamics evolution raises several interesting 
questions about both the mathematical model as well as the evolution of 
actual machines. For example, will such a process lead to a ‘limit machine’?
By a limit machine we mean one where the increase in the complexity of the 
machine dynamics does not result in further performance enhancement. This 
limit might be asymptotic or a finite limit. 

Another question is the possibility of the design iteration process leading 
to multiple solutions. For example in the third generation model above there 
exist two minima in the cost function leading to two fourth generation 
machines. This would constitute design branching or bifurcation in the 
design generation tree leading to different families of the same primitive 
machine.  

The evolution model for the development of machines differs 
substantially from that in biology that is based on the coexistence of many 
species competing for changing resources. It also differs from the genius-
inventor theory of technical progress popular in the nonacademic literature. 
Our theory is based on a primitive machine or kernel from which all other 
branches derive based on added complexity and performance optimization.  

These questions are clearly speculative, yet may be prescient about the 
future development of machines. There is already research on the use of 
computer models to ‘invent’ new mechatronic machines through 
optimization techniques. What this paper suggests is that if such a direction 
is inevitable then dynamic modeling of machines and their evolution may 
play a part in this new world of machines. 
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4. General Remarks and Conclusions 

We have presented a clock dynamics model with gear friction released by 
structural vibration as an example of ‘good chaos’ in machines. It is the 
author’s belief that an examination of real machine systems will reveal low 
levels of noise which in many cases may have beneficial effects on the 
dynamic machine performance.  

We have also used the clock paradigm to postulate an evolution model 
for the development of complexity as a way to optimize noise in the design 
of machines over several generations. Using optimization of a cost function 
for the dynamic performance we have shown how multiple solutions in the 
design solutions can naturally occur. This speculative model may provide a 
paradigm for the role of nonlinear dynamics and chaotic noise in the design 
evolution of machines. 
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EXPLORATIONS INTO THE NONLINEAR
DYNAMICS OF A SINGLE DOF SYSTEM
COUPLED TO A WIDEBAND AUTO-
PARAMETRIC VIBRATION ABSORBER

Anil K. Bajaj, Ashwin Vyas and Arvind Raman
School of Mechanical Engineering, Purdue University
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Abstract: The nonlinear dynamics of a resonantly excited linear oscillator coupled to an
array of weakly coupled nonlinear pendulums is investigated under 1:1:...:1:2
internal resonance between the pendulums and the linear oscillator. In the first
part of the work, periodic solutions and bifurcations under harmonic excitation
of the linear oscillator are investigated. In the second part of the work, nu-
merical simulations of the unperturbed Hamiltonian are presented to demon-
strate the complex dynamics of the system even in the absence of external
excitation.

Key words: Autoparametric system, vibration absorber, internal resonances, Hamiltonian.

1. Introduction

Autoparametric two degree-of-freedom nonlinear systems coupled by
quadratic nonlinearities exhibit saturation phenomenon under 1:2 internal res-
onance [1, 2]. This property of quadratically coupled systems has been utilized
in developing an autoparametric vibration absorber modelled as a secondary
system (pendulum) coupled to a resonantly excited primary system (linear os-
cillator). The secondary system is tuned to a frequency nearly half that of
the primary system for attenuating resonant response of the primary system
[3]. Recently, Vyas and Bajaj [4] introduced the concept and working prin-
ciple of a wideband autoparametric vibration absorber consisting of an array
of n slightly mistuned uncoupled pendulums that were attached to the pri-
mary system. It was shown that the effective bandwidth of absorber action can

17
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IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, 17–26.
© 2005 Springer. Printed in Great Britain. 
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be substantially increased by using pendulums with non-uniformly distributed
mistunings.

The present work investigates the nonlinear dynamics of a resonantly ex-
cited primary system coupled to an array of weakly coupled pendulums under
1:2 internal resonance with the primary system. The amplitude and phase
equations, obtained using the method of averaging [1], are studied for equilib-
rium solutions. Local bifurcation analysis is performed using AUTO [5] and
the effects of coupling the pendulums are explored. To investigate global be-
havior for amplitude and phase variables, a Hamiltonian formulation is intro-
duced. This analysis is restricted to the case of uncoupled pendulums. Some
equilibrium solutions are determined and their stability analysis is performed
to help guide numerical investigations. Numerical simulations of the Hamil-
tonian averaged system are performed to demonstrate the complex dynamics
of the system.

2. System Equations and Averaging

Figure 1 shows the primary system consisting of a linear spring-mass-
damper and the secondary system consisting of an array of n weakly cou-
pled ideal pendulums. The block is excited by a harmonic external force
P0 cos(ωt). The non-dimensional equations of motion for the system, as-
suming only linear coupling between the pendulums, are [4]:

η
′′ + 2ξ̂bαη

′ + α2η −
n�

i=1

riνi R

1+ R
(θi

′′
sin θi + θ ′i

2
cos θi ) = Fα2 cos τ, (1)

θ
′′
i + 2ξiαβ̂iθ

′
i + α2β2

3iθi + (α2β2
2i −

η
′′

νi
) sin θi =

+ κ(i−1)i

ri
(θi − ν(i−1)

νi
θ(i−1))+ κi(i+1)

ri
(θi − ν(i+1)

νi
θ(i+1)) = 0,

i = 1, . . . , n; κ01 = κn(n+1) = 0; ν0 = νn+1 = θ0 = θn+1 = 0, (2)

where

κ j ( j+1) =
K j ( j+1)

(1+ (l(ν j − ν( j+1))/L j ( j+1))2)
, j = 1, 2, . . . , (n − 1). (3)

Here, r j is the “mass fraction" of the j th pendulum, ν j is the “length frac-

tion" of the j th pendulum,
n�

i=1

ri = 1 and
n�

i=1

ν2
i = 1. Also, κi(i+1) is the

coupling stiffness between the i th and the (i + 1)th pendulum. All other
non-dimensional variables are as defined in [4].
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Figure 1. A linear SDOF system with n attached weakly coupled pendulums.

Formulation and the Averaged Equations: The dynamics of the system
under investigation is controlled by Equations (1) and (1). These equations
are transformed to a standard form for applying the method of averaging by
defining the following scale changes:

η = εη̂, θi = εθ̂i , θ i =
1

2

�
R

2(1+ R)
θ̂i , F = ε2 F̂,

ξ̂b = εξ b, ξi = εξ̂i , i = 1, 2, . . . , n,

K j ( j+1) = ε K̂ j ( j+1), κ j ( j+1) = εκ̂ j ( j+1) j = 1, 2, . . . , n − 1, (4)

where ε is some arbitrary scaling parameter such that 0 < ε << 1. Also, we
introduce external and internal mistunings:

α2 = 1+ 2εσb, p2
i =

1

4
+ εσi , di = σb − 2σi , i = 1, 2, . . . , n, (5)

where σb is the detuning between the excitation frequency and the locked-
pendulum natural frequency, σi , i = 1, 2, . . . , n, are the mistunings from per-
fect 1:2 resonance between the linear natural frequencies of the uncoupled
pendulums and the frequency of excitation, and di defines the detuning from
exact internal resonance between the linear natural frequency of the locked-
pendulum motion and the natural frequency of the i th uncoupled pendulum.

The averaged equations for the system are then [4]:

a
′
b = [−1

2
F̂ sin βb − abξ −

n�
i=1

riνi a
2
i sin (2βi − βb)],

abβ
′
b = [−1

2
F̂ cos βb + abσb +

n�
i=1

riνi a
2
i cos (2βi − βb)],
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a
′
i = [

1

2νi
abai sin (2βi − βb)− ai ξ̄i + Cp1i],

aiβ
′
i = [

1

2νi
abai cos (2βi − βb)+ aiσi + Cp2i],

i = 1, 2, . . . , n, (6)

where

Cp1 j =− κ̂( j−1) j

r j

ν( j−1)

ν j
a( j−1) sin(β j − β( j−1))

− κ̂ j ( j+1)

r j

ν( j+1)

ν j
a( j+1) sin(β j − β( j+1)),

Cp2 j =
κ̂( j−1) j

r j
(a j − ν( j−1)

ν j
a( j−1) cos(β j − β( j−1)))

+ κ̂ j ( j+1)

r j
(a j − ν( j+1)

ν j
a( j+1) cos(β j − β( j+1))),

j = 1, 2, . . . , n; κ01 = κn(n+1) = 0; ν0 = νn+1 = 0, (7)

and a prime now denotes derivative with respect to the slow time.
Here, (ab,βb) represent the amplitude and phase of the block motion with

locked pendulums, and (ai ,βi ) are the amplitudes and phases of pendulum
motions.

3. Steady-State Periodic Motions

It can be shown [4] that the averaged equations are exactly solvable for
equilibrium solutions in the absence of coupling springs. In the presence of
coupling springs [6], this can be achieved only for special parameter combina-
tions. In general, the equilibrium solutions have to be numerically determined.
The results presented here focus on the effect of coupling on the steady-state
solutions. These solutions are obtained numerically using the continuation and
bifurcation analysis software AUTO [5]. Figure 2 shows the response of a sys-
tem with two pendulums for different coupling stiffnesses K̂12 = 0, K̂12 = 0.05
and K̂12 = 0.1. The other parameters for this system are: the mass fractions
r1 = r2 = 0.5; the length fractions ν1 = ν2 = 1√

2
; the internal mistunings d1 = 1

and d2 =−1; and the scaled dampings ξ̄1 = ξ̄2 = 0.25. The forcing amplitude F̂
is set equal to 2.0.

For the case of uncoupled pendulums (K̂12 = 0), it is seen in the figure
that the locked-pendulums response of the system (a1 = a2 = 0) exists at all
frequencies. This response becomes unstable by pitchfork bifurcation [7] at
frequencies denoted by a ‘�’. For excitation frequencies between the two
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pitchfork points where the locked-pendulums response is unstable, stable mo-
tions only have one of the pendulums oscillating along with the block. There is
a degeneracy in the solutions at which the stable non-zero pendulum response
switches from one pendulum to the other and a manifold of equilibria exists
at the switching frequency, leading to a change in stability of the pendulum
motions [4]. This frequency is characterized by the point where the amplitude
of block motions in the two distinct solution branches with non-zero motion
of one or the other pendulum coincide.

For the coupled pendulums system (K̂12 � = 0), both the pendulums are
now in motion for frequencies between the pitchfork points; however, interest-
ingly one of the pendulums has much larger amplitude compared to the other.
This phenomenon of mode-localization has also been observed [8] in the re-
sponse of cyclic periodic systems. Hopf-bifurcation points [7] also appear for
K̂12 = 0.1, as shown by solid square in the figure. This is a result of coupling
in the pendulums leading to additional mistuning in the system. It is shown in
[6] that the manifolds of equilibria joining solution branches in the pendulum
motions persist even in the presence of coupling if the two pendulums have
equal length fractions and damping. Figure 3 shows the steady-state ampli-

tudes a1 and a2 for a system with unequal length fractions (ν1 =
�

1
5 , ν2 =

�
5
6 ),

demonstrating an unfolding of the degenerate manifold into distinct stable and
unstable branches. The mode-localization effect is still visible with one pen-
dulum oscillating at much larger amplitude compared to the other over a large
frequency interval. As the excitation frequency is varied, the response of the
pendulum then switches rapidly, though continuously, to a small amplitude in
the vicinity of a certain value of σb.

4. Global Dynamics of the Averaged System

The global dynamics of the averaged system (5) for general two DOF sys-
tems, including the present system with only one pendulum, was investigated
in [9]. A global perturbation analysis technique was used such that the forced
system was considered as a perturbation of a completely integrable Hamilto-
nian system. This was accomplished by assuming the external excitation to be
small compared to nonlinearities in the system. Due to the complete integra-
bility of the reduced Hamiltonian system, the phase plane behavior provided
the whole picture of dynamics, including the homoclinic and heteroclinic in-
variant manifolds. Melnikov analysis then showed that saddle connections
in the reduced phase space are most susceptible and lead to chaotic motions
under perturbation. Thus, Hamiltonian dynamics can form a basis for global
dynamic analysis.
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Figure 2. Effect of the coupling stiffness K̂12 on the response of the system with two pendu-
lums. ξ = ξ̄1 = ξ̄2 = 0.25; d1 = 1.0, d2 =−1.0; r1 = r2 = 0.5; ν1 = ν2 = 1√

2
. Amplitude of response

for (a) Primary system, ab; (b) First pendulum, a1; (c) Second pendulum, a2.

The approximate Hamiltonian (upto O(3)) of the system with n uncoupled
pendulums, simplified by Canonical transformations and averaged over time
[10, 11], results in the following averaged Hamiltonian equations:

P
′
E =−δ F̂

√
2Pb sin 2QE ,

Q
′
E = σb

2 +
n�

i=1

Pi
4νi
√

2Pb
cos 2Qi − δ F̂

4
√

2Pb
cos 2QE ,

P
′
j = Pj

√
2Pb

ν j
sin 2Q j ,

Q
′
j =− d j

2 +
√

2Pb cos 2Q j

2ν j
−

n�

i=1

Pi cos 2Qi
4νi
√

2Pb
+ δ F̂

4
√

2Pb
cos 2QE ,

j = 1, 2, . . . , n; Pb = 0.5(PE −
n�

i=1

Pi),

(8)
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Figure 3. Pendulum amplitudes as a function of σb showing the unfolding of manifolds of

equilibria. ξ = ξ̄1 = ξ̄2 = 0.25; d1 = 1.0, d2 =−1.0; r1 = r2 = 0.50; ν1 = 1√
5

, ν2 =
�

5
6 ; K̂12 = 0.05.

where (Pj , Q j ) represent the action and phase variables for the j th pendulum,
PE is an invariant of motion (total energy) for the unperturbed system (δ=0)
and the Hamiltonian is cyclic in phase QE . Further, for the unperturbed sys-
tem, dynamics in the (Pj , Q j ) space are independent of σb. The Hamiltonian
for the unperturbed (zero external excitation) system is:

H0(PE , QE , Pj , Q j ) =
σb PE

2
+

n�

j=1

Pj

2ν j
(−ν j d j +

�
2Pb cos 2Q j ). (9)

Consider the system with two pendulums. Then, (P1,Q1) and (P2,Q2) are
invariant planes. The orbits in the (P1,Q1) plane for the unperturbed system
(δ=0) with d1 = 0.18 and PE = 1 are shown in Figure 4. The value of PE is
set to 1.0 for all the results of unperturbed system. There exist centers and
saddles, periodic motions and heteroclinic orbits. When perturbed by external
excitation (δ = 0.17 and σb = 1.5), the system with one pendulum (P2 = 0)
exhibits complex dynamics, as is illustrated in Figure 5 (see also [9]).

For an unperturbed system with two pendulums that are in perfect inter-
nal resonance (d j =0) and equal length fractions, the equilibrium solutions in
(P1, Q1, P2, Q2) space (for PE = 1.0) are located at {(P1, 0, (2/3) − P1, 0) ,
(P1, π/2, (2/3)− P1, π/2)} (center and a pair of zero eigenvalues),
{(0, 0, 2/3, 0) , (0, π/2, 2/3, π/2)}, (a pair of zero eigenvalues and
center), {(2/3, 0, 0, 0) , (2/3, π/2, 0, π/2)}, (center and a pair of zero eigen-
values), and (0, π /4 or 3π /4, 0, π /4 or 3π /4 ) (saddle-saddle). This provides a
qualitative picture of the trajectories in the 4-D phase space. Numerical simu-
lations of the system with initial conditions in the vicinity of heteroclinic orbits
are then of interest in exploring complex (chaotic) dynamics arising from the
transverse intersections of stable and unstable manifolds [9].
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Figure 4. Orbits in the invariant (P1,Q1) plane for the unforced single pendulum system. d1 =
0.18, δ = 0.0, PE = 1.

Figure 6 shows the Poincare section in the (P1, Q1) plane, at cos(2Q2) =
−0.9. The system has unequal length fractions with ν1 =

√
5/6 and internal

mistunings d1 = 0.18 and d2 = 0. The equilibrium solutions of the system
(for PE =1.0) are {E1 = (0, 0.703, 0, π/4) , E2 = (0, 0.703, 0, 3π/4)} (saddle-
saddle) and {E3 = (0.597, 0, 0, 0.616), E4 = (0.724, π/2, 0, 1.099)} (center-
saddle). The initial conditions are chosen near the equilibrium points of the
system. For the initial condition near the saddle-saddles, the stochastic motion
occupies a larger region of the phase space as compared to the other two initial
conditions near center-saddles. Figures 7(a) and 7(b) show P2 as a function
of time τ when the initial conditions are chosen near the equilibrium point E4
(center-saddle) and E1 (saddle-saddle), respectively.
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Figure 5. Poincare sections at cos QE =0.75 for two orbits started with different initial condi-
tions for the externally excited system with a single pendulum: near a center (.) and near a
saddle (*). Solid curve shows the heteroclinic orbit. d1=0.18, σb = 1.5, δ = 0.17, F̂ = 2.0.
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Figure 6. (P1, Q1) plane projection of Poincare sections at cos 2Q2=-0.9 for solutions with
four different initial conditions: near two center-saddles (o and *), near two saddle-saddles

(+ and x). d1 = 0.18, d2 = 0; ν1 =
�

5
6 , ν2 =

�
1
6 ; PE =1.

5. Summary

In this work, the nonlinear local and global dynamics of a resonantly ex-
cited linear oscillator coupled to an array of nonlinear pendulums are investi-
gated. The pendulum frequencies are tuned so that the pendulums are coupled
to the linear oscillator through autoparametric 1:2 internal resonances. For the
forced nonlinear system, effect of linear coupling between the pendulums is
investigated. In particular, it is shown that for the uncoupled pendulums case,
only one stable periodic motion exists at each excitation frequency. At dis-
crete frequencies, stable motion switches from one pendulum to the other. A
manifold of solutions exists at such switching frequencies. In the presence of
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Figure 7. Trajectory of pendulum 2 action P2 as a function of time τ . d1 = 0.18, d2 = 0;

ν1 =
�

5
6 , ν2 =

�
1
6 ; PE =1. (a) Motion started near the center-saddle represented by * in Figure

6, (b) Motion started near the saddle-saddle represented by + in Figure 6.



26 A.K. Bajaj, A. Vyas and A. Raman

linear coupling among pendulums, this manifold and degenerate behavior is
destroyed. The global dynamics of the amplitude equations is then formulated
in action-angle variables, and numerical simulations show complex dynamics
even for the unforced system.
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Abstract: New applicability conditions for  adaptive nonlinear observer are developed, 
which provide partial observation of uncertain  nonlinear affine plant with 
estimation  of unknown parameters. Applicability of the proposed results to 

Duffing systems. Computer simulation results are presented. 

Key words: Adaptive observer, partial stability, synchronization, information transmission. 

1. Introduction 

Adaptive observers design for nonlinear systems was extensively studied 
during last decade. Such an interest was mainly motivated by possible 
application of adaptive observers to information encoding and transmission. 
Typically a chaotic dynamical system is used as a transmitter and its output 
signal is changed by modulating its parameters [1], [2], [3]. It was shown in 
[4] that it is possible to build a receiver based on adaptive observer, which 
can track output of transmitter and estimate transmitter parameters under 
some mild conditions. Potentialities of fast information transmission in the 
presence of noise in such systems were demonstrated in [5], [6], [7]. Several 
techniques were previously used to design receivers [8], [9], [4], [10], [11], 
[12], [13], most of them being based on passifiability property of transmitter 
under assumption that relative degree of transmitter is equal to zero or one. 
Other solutions can be found in [14], [15], where a state feedback was used 
for adaptive observer construction and robust properties of proposed 
schemes were not investigated. Recent paper [16] overcame the relative 
degree limitation for adaptive observer-based communication systems and 

time-varying chaotic systems is demonstrated by  examples of  Brusselator and 

© 2005 Springer. Printed in Great Britain. 
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extended them to a class of nonpassifiable systems. The result of [16] is 
based on a new canonical form of nonlinear adaptive observers [17], [18].  

In the present paper the result of [16] is extended to the case of partial 
observation when exact estimation of only a part of the transmitter state 
variables is needed. For such a case the applicability conditions are obtained, 
which allow to enlarge class of transmitter systems. Unlike previous results, 
our results allow to use time-varying systems for both transmitter and 
receiver. For example, the proposed results are applicable to chaos 
generators with external periodic excitation, nevertheless, it is worth to note, 
that the solution is applicable for not necessary chaotic dynamical systems. 
In the paper the obtained results are demonstrated by example of  practical 
importance: the Duffing system excited by harmonic signals. 

In Section 2 the problem and the Duffing system is introduced. In Section 
3 an adaptive observer scheme is designed under assumptions covering case 
of the systems from the previous section. Computer simulation results are 
presented in Section 4. Conclusion in Section 5 finishes the paper. 

2. Statement of the Problem 

In the literature on chaos and its applications  two main classes of chaotic 
systems are usually considered: autonomous (time-invariant) and non-
autonomous (time-varying) (see, e.g.[19]). However, in applications to 
information transmission in most cases only the former ones are used [1], 
[2], [3]. At the same time time-varying systems are sometimes easier to 
implement, or, they can be modeled by using other physical principles [20]. 
A typical example of nonlinear time-varying system where chaos is 
generated by means of applying a harmonic excitation signal is Duffing 
system, used in many studies in mechanics.  

We will use the equations of Duffing's system in the following form [19]: 

( )����

��
�

���

���

������

����

ω+θ+−=
==

�

�

 (1) 

where ��  and ��  are state variables; �  is measured output; [ ]�������=Ω∈θ θ

is "transmitted" parameter; model parameters �=ω==�� .
The problem is to design a dynamical system (adaptive observer), some 

variables of  which provide estimates of a specified part of variables and 
parameters of the transmitter (system (1)) using only measurements of 
output �  (if time derivative of output, variable �� , would be known this task 
can be solved in more simpler way).  Since the system is time-varying, it is 
not always possible to achieve zero estimation error. Therefore, we will be 
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interested in achieving bounded and sufficiently small asymptotic value of 
the estimation error. 

3. Design of Adaptive Observers 

As in [16] we will investigate the following model of transmitter system: 

( ) ( ) ( )�������� +ϕ+=� , ��� = , (2) 

where �
�∈�  is state space vector of transmitter; �

�∈�  is output vector; 
�

�⊂Ω∈ θ�  is vector of "unknown" parameters of transmitter, or, better to 
say, it is transmitted vector, which values belonged to some known compact 
set θΩ  should be estimated by receiver basing on current measurements of 
transmitter output � . Vector function ϕ  and columns of matrix functions �
and �  are locally Lipschitz continuous, �  is some constant matrix of 
appropriate dimension. Thus, for any initial condition �

� �⊂Ω∈��  and any 
θΩ∈�  (where �Ω  some known, probably compact, set), solution of (2) 

( )��� �� ��  is well defined at the least locally (further we will omit 
dependence of ��  and �  if it is clear from the context and will simply write 

( )�� ). For transmitter it is naturally to suppose [16], that its solution is 
bounded and defined for all �≥� .

A s s u m p t i o n  1 . For any initial conditions �Ω∈��  and any θΩ∈� ,
solution of (2) ( )��� �� ��  is an essentially bounded function of time: 

( ) ( )��� �� ���� σ≤� , �∈σ�  for almost all �≥� . �

As usually, it is said, that function ��� ≥≥ →ρ ��  belongs to class � , if it is 
strictly increasing and ( ) �� =ρ ; ∞∈ρ �  if �∈ρ  and ( ) ∞→ρ �  for ∞→�
(radially unbounded). Function �

�� →≥���  is essentially bounded, if  

( ){ } ∞+<≥= ����� ����� �� ,

where ⋅  denotes usual Euclidean norm. Such assumption is valid for class 
of system (2) with so-called chaotic dynamics. The next two assumptions  
deal with stabilizability property of linear part of transmitter system (2). 

A s s u m p t i o n  2 . There exists continuous matrix function 
���

��
×→�� , such, that there exists function �� ≥→ ���

� ,

( ) ( ) ( )����� �� α≤≤α � , ( )�� ρ≤∂∂� ;
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( ) ( ) ( ) ( )�������� �� α+α−≤∂∂� ,

for any �
�∈� and ��∈� , where �α , �α , �α  are some functions from class 

∞�  and ρα ��  are functions from class � , matrix ( ) ( ) ( )������� −= . �

A s s u m p t i o n  3 . For any initial conditions ��∈��  solution of system 

( ) ����� +=� , (3) 

is bounded for any essentially bounded inputs � and � :

( ) ( ) ( )����� ���� �� σ+σ≤� , �∈σ�  for almost all �≥� . �

By itself Assumption 2 means nothing, but with combination with 
Assumption 3 they provide for system (3) ultimate boundedness of signal 
�� . Indeed, Assumption 3 implies existence of finite norm �  for state 

vector of system (3), then inequality for time derivative of function �  from 
Assumption 2 takes form: 

( )( ) ( ) ( )( )��� ����

�

�� σ+σα+αα−≤ − �� �� .

Then the following output asymptotic gain can be obtained: 

( ) ( ) ( )���� ������ λ+λ≤
∞+→

�
�

, ( ) ( )( ) ( )( )����� ����� ��� σρ+σα=λ ,

( ) ( )( ) ( )( ) �����
�

���

�

� ����� σρ+σα+=λ .

Then the desired asymptotic bound for signal ��  can be assigned by 
appropriate choice of design matrix function �  in gain function �α .

It is worth to stress, that comparing with [16] Assumptions 2 and 3  
enlarge the class of models for transmitter systems, since they do not 
suppose global asymptotic stability property of system (3) uniformly with 
respect to input �  and �=� , as it was done in [16]. Before we prove our 
main result we should introduce a new useful property. 

D e f i n i t i o n  1 . Function ��� →≥��  is called ( )∆µ� –positive in 

average (PA), if for any �≥�  and any ∆≥δ , �>µ ,

( ) δµ≥ττ∫
δ+�

�

�� . �

In other words, time function ( )��  is ( )∆µ� –PA, if its average value ���

on any large enough time interval [ ]δ+��� , ∆≥δ ,
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( )∫
δ+

ττ
δ

=
�

�
�� ���

�

is not smaller than some positive constant µ . Note, that function 
( ) ( ) α+= ��� ���  admits this property for any strictly positive constant α ,

thus, function �  should not be positive for all �≥� . We will need the 
following lemma that can be easily proved by integration. 

L e m m a  1 . Let us consider time-varying linear dynamic system

( ) ( )������ +−=� , �� ≥� , (4) 

where ��∈ , ( ) ��� ∈� and functions ��� →≥�� , ��� →≥�� are Lebesgue 

measurable and essentially bounded. Then:
A. Solution of system (4) is defined for all ��� ≥ :

( ) ( )[ ] ( )�
�

����� ������� −+≤ .

B. If function �  is ( )∆µ� –PA for some �>µ , �>∆ , then this solution is 

bounded and the following upper estimate holds:

( )
( ) ( )[ ]

( ) ( ) ( )

( )⎪⎩

⎪
⎨
⎧

∆+≥+
+µ+

∆+≤+
≤

∆−−−

+∆µ−−−µ−

∆∆+

�

�

�

�

���
�

�
�

�

�������

�����

���������

��
��

���

���

additionally, if ( ) �→�� for ∞+→� , then also ( ) �→�� asymptotically. �

In this work we will use the same adaptive observer equations as in [16]: 

( ) ( ) ( ) ( )( )������������
��

� −++ϕ+= , ��� =� ; (5) 

( ) ������
��

� −= ; (6) 

( ) ( )������ +=� ; (7) 

( )������� +−γ= ��� �� , (8) 

where ��∈�  is vector of estimates of nonmeasurable state space vector of 
system (2); ��∈��  is vector of on-line measurable output �  estimates; vector 

��∈�  and matrix ��� ×∈�  are auxiliary variables, which help to overcome 
high relative degree obstruction; ��∈�

�
 is vector of estimates of 

"transmitted" vector � ; �>γ  is a design parameter.  
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T h e o r e m  1 . If Assumptions 1, 2 and 3 hold and function ( ) �
���

satisfies ( )∆µ� –PA condition for some �>µ , �>∆ , then closed-loop system 

consisting of transmitter (2), adjustable receiver (5), scheme of 
augmentation (6), (7) and adaptation algorithm (8) provides boundedness 
property of the system solution for any initial conditions and any �>γ ,

additionally

( ) ( )�
���� ��� λµ≤− ∆µγ−−

∞+→
��

�

�
.

P r o o f . We will denote ��� −=  as state estimation error of proposed 
observer (5). Let ���

�−=  be corresponding measurable output error. The 
behavior of error �  can be rewritten as follows: 

( ) ( )( )��������
�

� −+= , ��� = . (9) 

Let us introduce the auxiliary error signal ( )������
�

−−+= , which 
dynamics coincides with auxiliary system (3) with zero input � :

( )����=� . (10) 

Hence, according to previous discussion, signal �  is bounded and signal ��
is ultimately bounded. Let us analyze the following Lyapunov function 

candidate with respect to part of variables [21] ( ) ( ) ( )�����
���

−−γ= − �
�

� , its 
time derivative for system (8) takes form: 

( ) ( )( )
�

�
�����

����������

���������

+γ−=+−−≤
≤−+−−=
�

�
��

�

�

��
�

According to Lemma 1 solution of the last linear time-varying inequality is 
bounded, if functions ( ) �

���γ  and ( ) �
���  are. But these two conditions 

are satisfied, due to form of systems (7), (10) (they are in class of system (3)) 
and Assumptions 1 and 3, signals �  and �  are bounded and: 

( ) ( ) ( )( )( ) ∞+<σ+σγ≤γ �

�������

��
����� �� ,

( ) ( ) ∞+<σ≤ �

��

��
���� � ,

where ( ) ( ) ( ){ }������ ���	 ������ σ≤=�  and expression �  for some 
matrix { }��� �=� , �� �
= , �� ��=  ( ��� �  are corresponding elements of matrix 
� ) should be understood in the following sense: 
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∑∑
= =

=
�

�

�

�
���

� �

�
�� .

From Lemma 1, the following estimate asymptotically holds with �� =� :

( ) ( ) ∆µγ−−−
∞+→

λµγ≤ ���
�

�

�
����� � ,

and parameter error  boundedness ( )���
�

−  is also obtained. Note, that system 

(9) has form of system (3) too with input ( )( )����
�

− . Therefore, the 
boundedness of signal �  follows from Assumption 3. Finally, signal �  is 
bounded because it forms bounded signal � , and all other signals, which 
also form signal � , are bounded. Therefore, boundedness of the system 
solution is established. �

Note, that the result of the last theorem does not guarantee attractivity 
property of output estimation error �  for an adaptive observer. In general 
only asymptotic convergence of �  and parameter error ( )���

�
−  to some 

compact set is provided. In fact, for information transmitting purposes only 
parameter error convergence is necessary, and output error estimation is not 
needed. 

It is worth noticing that asymptotic estimate for parameter error ( )���
�

− ,
presented in the Theorem, can be evaluated with some difficulties, since the 
initial condition ��  itself depends on unmeasured discrepancy ( )���

�
− , but 

this estimate helps to understand mechanisms for parameter error decreasing 
(for example, increasing coefficient γ  or decreasing gain function λ ).

4. Applications 

To exclude explicit time dependence and to generate needed sinusoidal 
signal we should introduce auxiliary variables ��  and ��  in model (1): 

�

�

�

��

��

��

�
�
���

���

��

��

������

����

ω−=
ω=

+θ+−=
==

�

�

�

�

 (11) 

For some bounded set of initial conditions ( ) ��� ≤�  and ( ) ��� ≤�  this 
system produces bounded solution (initial conditions for auxiliary variables 

( )���  and ( )���  are chosen to guarantee desired sinusoidal signal on the 
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input of Duffing's model). Model (11) for such initial conditions satisfies all 
Assumptions 1 – 3. 

The result of computer simulation of proposed observer system is shown 
in Fig. 1. All initial conditions for simulations were taken zero except 

( ) ��� =� , ( ) ��� =� , ( ) ( ) ( ) ���� ��� =η=Ω=�  and parameters �=γ=� . In Fig. 
1,a state space trajectories are presented for transmitter model and observer, 
in Fig. 1,b output and parameter estimation errors time graphics are shown. 

����
��� ��

���

��

�

� �� �� �

�

�

�� � ��

( )�θ−θ
�

( )�ε

�� 	�

Figure 1. Simulation result for Duffing’s model 

5. Conclusion 

Set of applicability conditions for a scheme of adaptive observer, 
proposed in  [16], is introduced and substantiated. These new conditions 
weaken requirements imposed on adaptive observer scheme in [16]. Such a 
weakening allows to enlarge class of admissible transmitter systems. The 
main advantage of these conditions consists in specializing of "estimation" 
goals for adaptive observer system, i.e. proposed in paper [16] requirement 
of output estimation error asymptotic convergence was replaced to simple 
boundedness.  
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BIFURCATION AND CHAOS IN
MECHANICAL APPLICATIONS:
A DYNAMICAL SYSTEMS APPROACH
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Abstract: This work reviews in an unified context some previous independently devel-
oped works by the authors related to a method for controlling nonlinear dy-
namics and chaos in mechanical oscillators based on optimal elimination of
homo/heteroclinic bifurcations.

Key words: Homo/heteroclinic bifurcations, chaos, optimal control, mechanical oscillators.

1. Introduction

Control of nonlinear dynamics and chaos has increasingly attracted the atten-
tion of researchers in various fields of science and engineering. This interest
relies on the need to eliminate the chaotic features of systems dynamics or,
more recently, on the wish to exploit the peculiarities of chaos for practical
purposes (so-called anti-control of chaos).

After the pioneering work of Ott, Grebogi & Yorke [7], several different
methods have been proposed. Some are based on the dynamical character-
istics of the systems, and are usually theoretically well founded [6]; others
are more or less empirical, though with various degree of skillfulness [8], all
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of them have been shown to be able to eliminate chaotic characteristics to a
certain extent. However, while most are simply aimed at suppressing chaos,
irrespective of the employed tools and of the system characteristics, others are
indeed aimed at exploiting chaos for its control, even if, incidentally, they may
not succeed in eliminating the chaotic attractor. A control method recently
proposed by the authors [1] [2] [3] [4] [5] belongs to this latter class, and its
investigation is the subject of this work.

The method consists in eliminating homo/heteroclinic intersections em-
bedded in system dynamics and responsible for unwanted events, such as frac-
tal basin boundaries, transient and (possibly) steady chaos, safe basin erosion,
escape, overturning, single-well to cross-well chaos transition, scattered im-
pacting dynamics, and so on. These goals can be achieved in various ways,
and to date they have been obtained by varying the shape of the excitation in
an optimal way.

Recent works by the authors [1] [2] [3] [4] [5] aimed at applying control
separately to different models, are reconsidered in a unified context with the
aim of better understanding the control procedure. Indeed, it is expected that
some characteristics are shared by all systems, due to the application of the
same control method, whereas other characteristics are different, due to the
different nature of the oscillators. More precisely, attention is paid to investi-
gating how a generic dynamical property, namely the structure of the distance
of the invariant manifolds governing homo/heteroclinic bifurcations, entails a
generic approach to control consisting in the system independence of the rele-
vant optimization problems and their solutions. This reveals the generic nature
of the method.

The work consists in a theoretical part devoted to the design of controlled
excitations, and a numerical part devoted to verifying theoretical predictions
and checking practical performances of the method.

2. The Considered Single-d.o.f. Oscillators

In this paper the following four different single-degree-of-freedom mechanical
systems are considered in a unified context:

ẍ + εδẋ − x + x2 = εγ1

N�

j=1

γ j

γ1
sin( jωt +� j ), (1)

ẍ + εδẋ − x
2 + x3

2 = εγ1
�N

j=1
γ j

γ1
sin( jωt +� j ),

ẍ + 0.164ẋ − 0.2x + x3 = A[sin(t) + c1sin(nt + c2),
(2)
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�
ẍ + 2εδẋ − x = εγ1

�N
j=1

γ j

γ1
sin( jωt +� j ), |x| < 1,

ẋ(t+) =−r ẋ(t−), |x| = 1,
(3)

�
ẍ + εδẋ − x ± α = εγ1

�N
j=1

γ j

γ1
sin( jωt +� j − π/2), x

<
> 0,

ẋ(t+) = r ẋ(t−), x = 0.
(4)

Systems (1) and (2) are the Helmholtz [2] and the Duffing [3] [4] oscilla-
tors, respectively. The two versions (2a) and (2b) differ by a rescaling, and are
used in the analytical and numerical approach to control. Equations (3) and
(4), on the other hand, describe the dynamics of an inverted pendulum between
lateral walls [1], and of a slender rigid block on an oscillating foundation [5].

All considered systems are Hamiltonian (the unperturbed phase portraits
are depicted in Fig. 1) plus perturbations caused by damping εδ and generic
periodic external excitation of amplitude εγ1. Furthermore, as emphasized by
Fig. 1, all have at least one homo or heteroclinic loop in the unperturbed dy-
namics. The strong nonlinearities and smoothness of (1) & (2) vs the

Figure 1. The phase portraits of the four considered oscillators. In clockwise sense from the
upper left: Helmholtz, Duffing, Inverted pendulum and Rigid block.
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piece-wise linearities and non-smoothness of (3) & (4) constitute meaning-
ful dynamical and mechanical differences; they further entail a difference in
the computation of the distances between perturbed manifolds, as the former
are computed by the perturbative Melnikov method while the latter exactly.

A different comparison can be made in terms of hardening (eqs. (2) &
(3)) vs softening (eqs. (1) & (4)) behaviour, which is another key mechani-
cal property. The asymmetric vs symmetric dichotomy is also considered by
comparing (1) with (2), (3) & (4), as well as the fact that (1) & (4) have only
one potential well, while (2) & (3) have two wells.

From a dynamical system point of view we note that in (1), (2) & (3) there
are homoclinic loops, while in (4) there are heteroclinic solutions. Moreover,
while (1) has only one loop, (2), (3) & (4) have two homo/heteroclinic orbits.
This entails a difference from a control point of view, as in the first case we
have only one-side control (see Sect. 4), while in the latter we have one-side
and global controls.

Another considered point is the comparison of theoretically (numerically)
detected homoclinic bifurcations of the hilltop (non-hilltop) saddles through
eq. (2a) (eq. (2b)).

The previous considerations, which are summarized in Fig. 1, show that the
selected oscillators are a limited but comprehensive series of sample cases per-
mitting the discussion of the main mechanical, dynamical systems and control
points, and highlighting the generality of the control method. Other single-
d.o.f. oscillators (e.g., the Helmholtz-Duffing), and infinite-dimensional sys-
tems have also been considered by the authors; they involve further theoretical
work, and are not addressed in this paper.

3. Detecting Homo/Heteroclinic Bifurcations

Central for the development of control is the detection of the distance between
perturbed stable and unstable manifolds. The detailed computations are re-
ported in the quoted works, and here we just note that it consists of a constant
part, due to the damping, plus an oscillating part due to the excitation:

d(τ )=εδa0+εγ1a1(ω)h(τ ), h(τ )=
N�

j=1

γ j a1( jω)

γ1a1(ω)
cos( jτ+χ j (� j )). (5)

The structure of the distance is always the same, so that it is system-
independent and universal. The coefficients a0, χ j and a1(ω) are instead
system-dependent, and take into account the differences between the various
cases. The function h(τ ) depends only on the shape of the excitation, and
reduces to cos(τ + χ1) for harmonic excitation.



A dynamical systems approach to control of bifurcation and chaos 51

As long as the minimum d = minτd(τ ) is positive, the manifolds remain
disjoint; when d < 0 there is intersection in some points. Thus, the condition
for homo/heteroclinic bifurcation is d = 0, which yields

εγ1,cr =
εδa0

a1(ω)M
, M = M(γ j ,� j ) =−minτh(τ ). (6)

Equation (6) is sufficient for the Helmholtz oscillator, which has only one
homoclinic loop. For the other systems we have one critical threshold for
each homo/heteroclinic loop. They have the same structure of (6a), the only
difference being in the definition of the various numbers M . Thanks to the
symmetry, we have

Mright =−minτh(τ ), Mle f t = maxτh(τ ), (Duffing+Inverted pend.) (7)

Mup =−minτh(τ ), Mlow = maxτh(τ ), (Rigid block) (8)

For the harmonic excitation all Ms are equal to 1. For generic excitations,
on the other hand, we can have M < 1, i.e., εγ gen.

1,cr > εγ harm.
1,cr , and we are

able to increase the excitation amplitude critical threshold for the occurence
of the global bifurcation. The region between εγ harm.

1,cr and εγ gen.
1,cr , which has

homo/heteroclinic intersections with harmonic excitation and no intersections
with generic excitation, is the zone of parameters space where the control is
theoretically effective. It is called the saved region and is depicted in Fig. 2
for the four considered cases.

4. The Optimization Problem

To measure the improvement of generic excitation with respect to harmonic
excitation, the gain is defined as follows [1] [2] [4] [5]:

G =
εγ

generic
1,cr

εγ harmonic
1,cr

=
1

M
, (9)

so that the saved region can also be defined as εγ harm.
1,cr < εγ1 < Gεγ harm.

1,cr .
It is now clear that if we want to optimize the excitation shape, a point

which is the second keystone of the control method, we have to solve the
following optimization problem:

Maximize G by varying the excitation shape. (10)

The previous problem is sufficient for the Helmholtz oscillator. In the
presence of more homo/heteroclinic loops, two alternative strategies can be



52 S. Lenci and G. Rega

Figure 2. The critical thresholds and the saved regions. In clockwise sense from the upper left:
Helmholtz, Duffing, Inverted pendulum and Rigid block.

followed: (i) we can control only one homo/heteroclinic bifurcation, irrespec-
tive of what happens to the other, or (ii) we can control simultaneously both
homo/heteroclinic bifurcations. The former choice (called one-side control)
is aimed at obtaining a topologically localized control, and reduces to solv-
ing problem (10) for a specific loop, whereas the latter (called global con-
trol) is aimed at controlling, on average, the whole phase space, and requires
solving, e.g.,

Maximize min {Gright ,Gle f t} by varying the excitation shape. (11)

In has been shown [1] [2] [3] [4] [5] that: (i) problem (11) is actually a con-
strained version of problem (10), so that the global control gain is less than the
one-side; (ii) the maximum gains, which are obtained with an infinite number
of superharmonics, are 2 and 1.2732, respectively; (iii) the solution of prob-
lem (11) has only even superharmonics, a property shared by theoretical [4]
and numerical [3] controls; (iv) both problems (10) and (11), and their solu-
tions, are system-independent, thus further emphasing the generic nature of
the control method.

Problems (10) and (11) have been solved in various forms: reduced, con-
strained, reduced and contrained solutions have been obtained [2]. Among
these, of particular interest are the reduced solutions, obtained with a finite
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number of superharmonics, which provide sufficiently high theoretical gains
and are relatively easy to reproduce in practice. Their expressions are reported
in the original works, and they will be used in the remaining part of this work,
where systematic numerical simulations are addressed (i) to confirm theoreti-
cal predictions and (ii) to check the feasibility and the actual performances of
the technique.

5. Reducing Fractal Basin Erosion

In this section we focus on the safe basin erosion, which is known to occur
through incursion of fractal fingers [10] and is the triggering phenomenon for
escape from potential wells. Being able to eliminate the fractal basin bound-
aries, the controls are a fortiori able to eliminate basin erosions.

An isolated example of reduction of basin erosion is reported in Fig. 3,
which clearly shows how for fixed parameters and excitation amplitude, the
optimal excitation significatively enlarges the safe basin. This is also quantita-
tively confirmed by the Safe Integrity Factor (S.I.F.) [2] [9] which passes from
26.3% to 95.3% by adding control superharmonics.

A more systematic investigation is summarized in Fig. 4, which reports
the S.I.F. versus the excitation amplitude for both Helmholtz and Duffing os-
cillators. In both cases, the excitation frequency is close to the vertex of the
relevant V-shaped regions of unwanted phenomena (escape for Helmholtz [2],
cross-well chaos for Duffing [4]).

Figure 4 shows how the optimal excitations are able to shift toward larger
amplitudes the so-called Dover Cliff erosion profiles [2] [4] [9]. In turn, the
starting points of erosion are just ahead of the homoclinic bifurcations thresh-
olds (marked by vertical segments), thus showing good agreement between
theoretical prediction and practical performances.

Figure 3. Basins of attraction of the Helmholtz oscillator. Left: harmonic excitation. Right:
optimal excitation with two superharmonics.
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Figure 4. The basin erosion profiles for the Helmholtz (left) and Duffing (right) oscillator. The
vertical segments denote the respective homoclinic bifurcations.

For the rigid block and the inverted pendulum it is found that the erosion
profiles are not sharp (Dover Cliff-like), so its shifting is less important from
a practical point of view and is not investigated; we conjecture that this is due
to the absence of a resonance frequency.

6. Effects of Control on Out-of-well Phenomena

Other practical performances discussed in this work are the control induced
modifications on the out-of-well phenomena. For the Helmholtz oscillator,
this is the sudden approach to infinity of the trajectories, a feature commonly
known as escape [2] [9]. The systematic effectiveness of control in increasing
the escape threshold around the most dangerous excitation frequency is shown
in Fig. 5le f t .

For the other softening system, the rigid block, the out-of-well phenomenon
is the overturning of the rest position, which is a very important aspect of the
dynamics especially in conjunction with earthquakes. The sample response in
Fig. 5right illustrates how the control may eliminate the toppling of the block.

The counterpart of escape for hardening oscillators is the onset of cross-
well chaos, or, more generally, of scattered dynamics. This question is in-
vestigated in Fig. 6, which reports both theoretical and numerical controls.
We remark that there are very different expectations for the two cases. In
fact, the theoretical control is not expected to be able to shift the appearance
of scattered chaotic attractors, because the homoclinic bifurcation of the hill-
top saddle does not directly influence the attractors’ scenario. The numerical
control, on the other hand, has been designed just to shift the occurrence of
cross-well chaos, which is thus expected not to occur with optimal excitations.
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Figure 5. Left: The escape regions of the Helmholtz oscillator. Right: Time histories of the
rigid block starting from the rest position.

The latter prediction is actually confirmed by numerical simulations, both
for one-side (see Fig. 6low) and global (non reported) controls: the theoretical
one-side control is unexpectedly able to shift cross-well chaos (see Fig. 6up).

Finally, bifurcation diagrams for the optimal control of hilltop saddles
have been constructed for the inverted pendulum also. They show an overall

Figure 6. Bifurcation diagram for the Duffing oscillator. Up: Theoretical control of the hilltop
saddle. Low: numerical control of a non-hilltop saddle. Left: Harmonic excitations. Right:
one-side control excitations with one superharmonic.
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resemblance to the previous ones, accompanied by some phenomenological
differences, and are not reported in this paper.

7. Conclusions

A method based on exploiting nonlinear dynamics for control of mechanical
systems has been reconsidered with the double aim of placing previous works
in a unified context and illustrating the similarities and differences between
controls for different systems.

In the first part, the theoretical aspects of control were discussed, by com-
puting the system-independent distances between stable and unstable mani-
folds, and the homo/heteroclinic bifurcation thresholds, and then by formulat-
ing and solving the system-independent optimization problems which provide
the best excitations.

In the second part, extended numerical simulations aimed at checking the
theoretical predictions and the practical performances of control, were sum-
marized. It was shown that it is effective in reducing safe basin erosion, and
has a meaningful influence also on the out-of-well phenomena. The optimal
excitations have been shown to be effective, where required, in increasing the
excitation critical threshold for escape, and to be extremely efficient in shifting
cross-well chaos in parameters space when properly designed. Surprisingly
enough, they are possibly effective also when designed for different purposes.
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Abstract: We present the results of analytical and numerical study of the random vi-
brations in several nonlinear one-dimensional oscillatory chains which model
significant mechanical and physical systems. It is shown that existence and
propagation of the random excitations in the considered models is strongly de-
pendent on the properties of nonlinear normal modes. In particular, nonlinear
vibrations in attenuation zone of linearized system initiated by global random
excitations, correspond to localized nonlinear normal modes – breathers. In the
localization region periodic contraction-extension of interparticle bonds occurs
which is accompanied by decrease-increase of angles between the bonds. It
is shown that the breathers present in thermalized chain and their contribution
dependent on temperature has been revealed.

Process of heat conduction in the chain with periodic potential of nearest-
neighbor interaction is investigated by means of computer simulation. It is
demonstrated that the periodic potential of nearest-neighbor interaction allows
to obtain normal heat conductivity in isolated one-dimensional chain with con-
served momentum. The system exhibits transition from infinite to normal heat
conductivity with growth of its temperature. The physical reason for normal
heat conductivity is excitation of high-frequency stationary localized rotational
modes. These modes absorb the momentum and facilitate locking of the heat
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flux. Concentration and lifetime of the localized modes grow with the growth
of the temperature and the heat conductivity monotonically decreases.

The process of heat conduction in one-dimensional lattice with on-site po-
tential is also studied by means of numerical simulation. Using the discrete
Frenkel-Kontorova, φ4 and sinh-Gordon models we demonstrate that contrary
to previously expressed opinions the sole anharmonicity of the on-site poten-
tial is insufficient to ensure the normal heat conductivity in these systems. The
character of the energy transfer is determined by the spectrum of nonlinear ex-
citations peculiar for every given model and therefore depends on the concrete
potential shape and a temperature of the lattice. The reason is that the pecu-
liarities of the nonlinear excitations and their interactions prescribe the energy
scattering mechanism in each model. For sine-Gordon and φ4 models, linear
waves (phonons) are scattered at a dynamical lattice of topological solitons;
for sinh-Gordon and for φ4 in a different parameter regime the phonons are
scattered at localized high-frequency breathers (in the case of φ4 the scattering
mechanism switches with the growth of the temperature).

Key words: Nonlinear normal modes, breathers, heat transfer.

1. Introduction

Existence and manifestation of the random excitations in nonlinear oscil-
latory chains is of major practical significance in many mechanical problems,
but is scantily known. When using the notion “random” or “chaotic” excitation
we mean elementary (preserving their form) excitations in fully thermalized
system. Within context of this problem a deep difference exists between lin-
ear and nonlinear models of mechanical systems. While in the former case
characteristics of the excitations action and spreading are similar to those for
harmonic linear waves (and of course can be examined by common spectral
methods), in the latter case the significant peculiarities arise. They can be
qualitatively described if translating the problem to the language of thermo-
dynamics and statistical mechanics. From such alternative point of view, e.g.
random vibrations and localized random excitations of the chain correspond
to global thermal action, and local heating of the chain respectively. Then
random excitations spreading (mechanical energy transfer) along the chain
can be associated with a heat conduction process. Historically this problem is
closely related to famous Fermi-Pasta-Ulan numerical experiment [1] which
has been undertaken in order to substantiate Pierls model of heat conduc-
tion in dielectrics [2]. The model states that the heat conduction is related
to so called Umklapp processes of weakly nonlinear waves (phonons) interac-
tion insuring partial transfer of momentum to the lattice. Still, the numerical
experiment failed to verify this mechanism (but lead to discovery of solitons).
The problem of finite heat conductivity in dielectrics in many extents remains
to be unresolved issue.
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It is easy to understand why a linear model of the chain does not allow sim-
ulating well-known experimental features of this process, such as the presence
of vibration modes in the attenuation zone. And above all the rate of spread-
ing in linear chains will be related to sound velocity rather than to substantially
less value corresponding to thermal diffusion process. Even in nonlinear mod-
els the special conditions have to be satisfied to provide a similarity of dynamic
process to thermal conductivity. Normally the processes of random vibrations
and heat conduction involve various agents of energy transfer (periodic waves,
solitons etc.) as well as a scattering mechanism of these agents insuring the
equipartition of the energy over all degrees of freedom.

Accordingly the clue for constructing the relevant model of the nonlin-
ear oscillatory chain is that two types of random excitations should be distin-
guished. The excitations of the first type are qualitatively similar to those in
linear case and may be named as the fast ones (they are abnormal from thermo-
dynamic viewpoint). Second type of behavior (slow excitations) is rather com-
mon in thermodynamic and statistical mechanics. To provide understanding
of the regularities of chaotic excitation manifestation in nonlinear oscillatory
chains two key problems have to be solved:

1 characterization of specific nonlinear normal modes in the attenuation
and propagation zones of the oscillatory chain and study of their possi-
ble roles in the random vibration and scattering of elastic waves;

2 clarifying the conditions of slow and fast propagation of random excita-
tions via dynamical (nonlinear normal modes) and statistical autocorre-
lation function characteristics of the oscillatory chain.

Both these problems are described in application to several modes of one di-
mensional oscillatory chains including the chains with translational invariants
(zigzag chains with asymmetric nonlinearity, rotator chain with symmetric
nonlinearity) as well as the chains with on-site potential (oscillatory chain on
symmetric nonlinear substrate).

2. Short Wavelength Normal Modes (Breathers) in
Zigzag Oscillatory Chain

The structure of planar zigzag oscillatory chain is schematically plotted at
figure 1.

Let us introduce the local coordinate system presented on this figure. Then
the Hamiltonian function of the chain in the case of planar dynamics can be
written as follows.

H =
�

n

1

2
M

�
u̇2

n + v̇2
n

�+ V (ρn)+U (θn) (1)
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Figure 1.
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(c) flat mechanical
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where the first term describes the kinetic energy of the n-th particle (M is the
mass of every particle), the second – the deformation energy of the n-th bond
between n-th and (n + 1)-th particles, and the last term – the deformation
energy of the n-th angle between (n − 1) and n-th bonds.

The length of the n-th bond is

ρn =
�
a2

n,1 + a2
n,2

�1/2
, (2)

where an,1 = un+1 − un + lx , an,2 = vn + vn+1 − ly , (lx = ρ0 sin(θ0/2) and
ly = ρ0 cos(θ0/2) are the transversal and longitudinal steps of the zigzag chain
respectively).

The cosine of the n-th angle is

cos θn = (an−1,1an,1 − an−1,2an,2)/ρn−1ρn. (3)

Potentials of the bonds and angles are accepted in the form

V (ρn) =
1

2
K1(ρn − ρ0)

2, U (θn) =
1

2
γ (cos θn − cos θ0)

2, (4)

where force constant K1 = 405.5 N/m, γ = 130.1 kJ/mol.
Small-amplitude vibrations of isolated transzigzag were considered in [3–

5] and vibrations with account of interaction with immobile surrounding chains
– in [6].
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Small-amplitude vibrations can be divided to planar (in the zigzag plane)
and transversal ones. In turn, the plane motions are divided to low- frequency
acoustic and high-frequency optic vibrations. Accordingly, one can separate
three dispersion curves corresponding to 1) plane acoustic phonons ω=ωa(q),
2) transversal phonons ω = ωt(q), 3) plane optic phonons ω = ωo(q). These
curves with account of interchain interaction are presented at Fig. 2 (a).

Let us consider the long wavelength modulation waves in weakly nonlin-
ear limiting case when one can find the following main nonlinear continuum
approximations for �ρn and �θn with respect to small ratio of interparticle
space and characteristic wavelength of the process (the smallness of this ratio
is supposed to be similar to ratio of cubic and quadratic (as well as quarter and
cubic terms) in Hamiltonian

�ρ = ρn − ρ0 = cos
θ0

2

�
2u + lz

∂v

∂z
+ 1

2
l2
x

∂2v

∂z2

�

+ sin
θ0

2
lx
∂u

∂z
+ 2

ρ0
sin2 θ0

2
v2, (5)

�θ = θn − θ0 =
4

ρ0
sin2 θ0

2
v + 2

ρ0
cos

θ0

2
lx
∂u

∂z
+ 8

ρ2
0

v2. (6)

Besides, it is taken into account that linear analysis reveals smallness of lon-
gitudinal displacement with respect the transversal one for considered type of
motion. In this approximation the equations of motion after certain transfor-
mations can be reduced to nonlinear partial equation:

∂2U

∂τ 2
− ε2c2 ∂

2U

∂ζ 2
+U − 4αεU 2 + 8βε2U 3 = 0, (7)

where

εU =
u

ρ0
; τ =

2√
m

�
K1 cos2

θ0

2
+ 4

K2

ρ2
0

sin2 θ0

2
t ;

ζ =
εz

lz
; c2 =− K1ρ

2
0 sin2 θ0

16
�

K1 cos2 θ0
2 + 4 K2

ρ2
0

sin2 θ0
2

� × ;

×
�
�� cos θ0 + 2 K2

K1ρ
2
0

sin2 θ0
2

1+ 2 K2
K1ρ

2
0
+
�

1− 2 K2
K1ρ

2
0

�
cos θ0

�
	
 ;

4α =
sin θ0 sin θ0

2

�
3K1 + 8K2

ρ2
0

�
2
�

K1 cos2 θ0
2 + 4K2

ρ2
0

sin2 θ0
2

� ;
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Dispersion curves ω =
ωa(q), ω = ωt (q), ω =
ωo(q) (curves 1, 2,
3) for trans-zigzag in-
teracting with immo-
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(a). Density of energy
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to frequencies region
in which the discrete
breathers occur.

8β =
8

ρ2
0

�
K1 sin4 θ0

2
+ 2

K2

ρ2
0

sin2 θ0

�
.

Let us introduce the complex functions [7, 8]:

ψ (ζ, τ) = V + iU, ψ∗ (ζ, τ ) = V − iU (8)

where V =∂U/∂τ . Partial equation is equivalent to the system of two equations

∂V

∂τ
= ε2c2 ∂

2U

∂ζ 2
−U + 4αεU 2 − 8βε2U 3 , (9)

∂U

∂τ
= V .
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After substitution of (8) into (8) and certain transformation one can obtain

∂ψ

∂τ
=−iψ + iε2c2 ∂

2 (ψ − ψ∗)
∂ζ 2

+ αε �ψ − ψ∗�2

−iβε2 �ψ − ψ∗�3
= 0 .

The change of variables ψ = eiτ ϕ (ζ, τ ) leads to equation

∂ϕ

∂τ
+ iε2c2 ∂

2
�
ϕ − ϕ∗e−iτ

�
∂ζ 2

+ αε �ϕeiτ − ϕ∗e−iτ
�2

e−iτ

−iβε2
�
ϕeiτ − ϕ∗e−iτ

�3
e−iτ = 0 . (10)

Then we introduce, alongside with fast time τ = τ0, the slow times

τ1 = ετ0, τ2 = ε2τ0 . . . (11)

and power expansion

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · (12)

After substitution of the expansion (12) into (9) with taking into account
(11) and selecting the terms of similar order with respect to small parameter
one can find

∂ϕ0

∂τ0
= 0,

∂ϕ1

∂τ0
+ ∂ϕ0

∂τ1
+ ϕ2

0eiτ0 − 2α |ϕ0|2 e−iτ0 + α �ϕ∗o�2
e−3iτ0 = 0

∂ϕ2

∂τ0
+ ∂ϕ1

∂τ1
+ ∂ϕ0

∂τ2
+ ic2 ∂

2ϕ0

∂ξ 2
+ 2αϕ0ϕ1eiτ0

−2αϕ∗0ϕ
∗
1 e−3iτ0 − 2αϕ0ϕ

∗
1e−iτ0 − 2αϕ∗0ϕ1e−iτ0

+iβ
�
ϕ3

0e2iτ0 − 3 |ϕ0|2 ϕ0

+3 |ϕ0|2 ϕ∗0e−2iτ0 + �
ϕ∗0

�3
e−4iτ0

�
= 0

The condition of absence of secular terms in first two equations of this
system leads to relations ϕ0 = ϕ0 (τ1, τ2, . . .),

∂ϕ0
∂τ1

= 0, consequently ϕ0 = ϕ0

(τ2, τ3, . . .). Then the solution of the second equation can be written as follows

ϕ1 = iαϕ2
0eiτ0 + 2iα |ϕ0|2 e−iτ0 − 1

3
α
�
ϕ∗o

�2
e−3iτ0

The condition of absence of secular terms in third equation may be presented
in the form

∂ϕ0

∂τ2
+ ic2 ∂

2ϕ0

∂ζ 2
+ i

�
16

3
α2 − 3β

�
|ϕ0|2 ϕ0 = 0 (13)
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Localized planar periodic
vibrations of trans-zigzag.
Vibrations are schemati-
cally shown, the thickness
of line corresponds to am-
plitude (a). The magni-
tudes of valence bonds ρn
(b) and angles θn (c) are
presented for ten different
instants. The frequency of
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energy E = 26.4 kJ/mol,
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So we come to well known exactly integrable nonlinear Schrodinger equation
(NSE). If

ν =

�
16

3
α2 − 3β

�
> 0, (14)

this equation possess localized soliton-like solution (envelope soliton)

ϕ0 (ζ, τ2) =

�
2S

ν

�2

exp

�
i
ζv

2c
+ iωτ2

�
×

×sech
�

S1/2

�
ζ

c
+ vτ2

��
(15)

where

ω =
v2

4
− S, (16)



Nonlinear normal modes and chaotic motions in oscillatory chains 67

0 0.2 0.4 0.6 0.8 1
0

5

10

15

g

T~

(a) (b)

3

1

2

Figure 4.
The zone in the space of pa-
rameters (g, T̃ ), where for
finite chains of length N ≤
640 with periodic on-site
potential he heat conductiv-
ity converges (a, grey zone)
and may be diverges (b,
white zone) [10]. Curve 1
divides these two zones. In-
terval 2 corresponds to the
parameters used in [11]. For
finite chains (N ≤ 640)
with on-site potential φ4 fi-
nite heat conductivity is de-
tected above line 3.

To check the assumptions accepted for derivation of the equation (14) a
numerical study of the problem has been performed.

3. Numerical Study of Localized Nonlinear Vibrations
and Chaotic Motion of the Chain

The results of numerical simulation of the chaotic thermal vibrations in
zigzag chain consisting of 200 particles lead to conclusion that oscillations in
attenuation zone are observed (Fig. 2) and they can be identified with discrete
breathers, plotted at Fig. 3. So, at Fig. 3 we present spatial characteristics of
localized excitations (breather), while at Fig. 2 the densities of energy distri-
bution corresponding, in particular, breathers are shown. We have shown also
that localized normal modes play a significant role in the process of chaotic ex-
citations propagation (thermal conductivity), being simultaneously scattering
agents for periodic waves.

The performed investigation demonstrates that the conductivity of any con-
crete model of chains without and with on-site potentials depends on pecu-
liar nonlinear excitations, which determine the process of the heat transfer
and phonon scattering. Three typical agents of the phonon scattering were
revealed: localized modes (chain without one-site potential [9]) in the pa-
per – thermalized soliton superlattice (discrete sine-Gordon and φ4 models
[10]) and discrete high-frequency breathers (φ4 and sinh-Gordon models [10]).
Phonon scattering mechanism may switch with the change of the temperature
(φ4 model).
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For the discrete Frenkel-Kontorova model the zone of the converging heat
conductivity for given chain length is limited by low and high temperatures
and by high cooperativeness. The numerical possibilities available up to date
does not allow us to establish unambiguously the character of the heat conduc-
tivity outside the zone designated at Fig. 4. Still there is a reason to suggest
that an infinite chain has diverging heat conductivity for certain parameters,
although the zone corresponding to finite heat conductivity will be larger than
computed above. The same is relevant for two other models considered. Still,
the transition from exponential to power-like decrease rate of the autocorre-
lation function is observed in every case. This observation supports the sug-
gestions related to the switches of physical mechanisms responsible for the
character of the heat transport.

4. Conclusion

Stable localized nonlinear vibrations, which are discrete breathers, can ex-
ist in attention zone of the zigzag oscillatory chain. They are planar vibrations
of zigzag with periodic deformation of the longitudinal and angular springs.
The breathers present in thermalized chain and their contribution to general
vibration energy may be essential.

The investigation presented above demonstrates that energy transfer in any
concrete model of chain without or with on-site potentials depends on pecu-
liar nonlinear localized excitations which determine the process of the their
propagation and scattering.
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PATTERNS OF BIFURCATION SUPPRESSING
ESCAPE AT INTERNAL RESONANCE

G.H.M. van der Heijden and J.M.T. Thompson
Centre for Nonlinear Dynamics
University College London
London WC1E 6BT, UK
g.heijden@ucl.ac.uk

Abstract: For an archetypal two-degree-of-freedom forced oscillator, relevant to a large
class of mechanical problems, we examine the patterns of bifurcation that gov-
ern the internal 1:2 resonance of the system. A knowledge of these bifurcations
allows the counter-intuitive suppression and control of escape by internal modal
interactions. The bifurcations examined include symmetry-breaking pitchforks,
Neimark bifurcations (secondary Hopf bifurcations) to a toroidal attractor, and
chaotic crises which trigger dangerous large-amplitude excursions. We partic-
ularly focus on the effect that a symmetry-breaking imperfection has on the
suppression of escape.

Key words: Suppression of escape, 2 DOF forced oscillator, symmetry breaking, 1:2 reso-
nance, Neimark bifurcation, unfolding.

1. Introduction

Engineering failures are often triggered when an underlying dynamical
system escapes from a potential well. Electrical systems, for example, can
slip out of synchronisation. With power generators this can result in a black-
out in the supply grid to an entire city; in the electronic phase-locked loop of
a receiver, a slip from the locked configuration can result in loss of commu-
nication; while if a synchronous motor slips under excessive load, time keep-
ing will be lost. In civil and aerospace engineering slender and thin-walled
structures can buckle elastically under compressive loading, resulting in col-
lapse. In naval architecture recent activity is directed towards an improved
understanding of the capsize of vessels, including off-shore oil production fa-
cilities and roll-on-roll-off ferries. Escape from a potential well is likewise a
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universal problem in the natural sciences, from activation energies of molecu-
lar dynamics to the gravitational collapse of massive starts.

Useful information about the escape process can be gained from mathe-
matical models with periodic excitation. In man-made technological systems
such forcing is in fact not uncommon. Sinusoidal electric currents and out-of-
balance forces from rotating machinery supply quite precise periodic excita-
tion. Even if the real-world excitation is not expected to be periodic, it is often
valid to represent it as periodic in a model or simulation. This is the case in
capsize studies, where periodic excitation from ocean waves can be visualised
as a worst-case scenario and one that might form the basis of a standardised
and repeatable test of the capsizability of a hull [1, 2].

Since most real problems have more than one degree of freedom, we con-
sider here escape from a two-dimensional well using the archetypal model
derived in [3]. The model consists of a pair of coupled nonlinear oscillators,
whose potential well allows escape to infinity over a pair of symmetrically dis-
posed saddles. Under direct excitation of one of the degrees of freedom, we
study the nonlinear coupling with the other. An internal tuning parameter al-
lows us to induce internal resonance where an interesting and counterintuitive
suppression of escape is uncovered. Applied to the resonant rolling of ships in
beam seas, our results suggest that when the heave frequency is twice the fre-
quency of wave encounter, capsize is significantly suppressed. We particularly
concentrate on the effect on this suppression of a bias in the forced degree of
freedom.

2. The System

We consider the following coupled system of nonlinear oscillators derived
in [3]:

ẍ + 2ζ ẋ + x − 2xy − b = F sinωt,
(2/R2)( ÿ + 2ζ Rẏ)+ 2y − x2 = 0.

(1)

Note that b is a symmetry-breaking imperfection. For b = 0 the system is
invariant under the following transformation

ωt → ωt + π, x →−x, y → y. (2)

This symmetry is an example of what the authors in [4] call spatio-temporal
symmetry since it involves both the phase space variables and time. Period-1
solutions of (1) (i.e., periodic solutions of frequency equal to the frequency
of forcing) that are invariant under (2) are examples of what they call dis-
crete rotating waves: they have discrete spatial symmetry (D2 symmetry),
while this (reflection) symmetry is equivalent to a time shift by T/2, where
T = 2π/ω is the period of the forcing. The authors of [4] consider bifurcations
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in systems with spatio-temporal symmetry. In particular, for Hopf bifurcation
they classify the types of motion on the bifurcating invariant torus. They treat
several cases in detail, but our case ((D2, D2) in their classification) is not one
of them.

The underlying conservative system is obtained by setting ζ = F = 0:

ẍ + x = 2xy + b,
(2/R2) ÿ + 2y = x2.

(3)

It is described by the potential energy function

V (x, y) =
1

2
x2 + y2 − x2 y − bx, (4)

which is illustrated graphically in Fig 1 for both the symmetric and non-
symmetric case.

In ship capsize, x is a measure for the roll angle, while y represents the
amplitude of heave motion.

The equations (3) with b = 0 also describe the free lateral vibrations in a
two-mode Rayleigh-Ritz discretisation of the cylindrical Von Kármán-Donnell
shell near 1:2 resonance [5, 6]. The two degrees of freedom are then the che-
querboard mode with 2n panels circumferentially (some integer n) and 2 pan-
els axially (x) and the concertina mode (y). These two modes are known to
have a significant static nonlinear interaction in the post-buckling of axially
compressed cylinders, leading to a breaking of the in-out symmetry exhibited
by each of the modes individually [7]. In the dynamical setting this leads
to preferred vibration patterns with larger deflections inwards than outwards
(cf. Fig. 2). The parameter b corresponds to an initial imperfection in the
chequerboard mode.

A further system whose dynamics near 1:2 resonance is described by (3) is
the planar spring pendulum. The autoparametric resonance phenomena in this
sytem have been widely studied (see, e.g., [8, 9] and references therein). The
swinging mode of the pendulum is analogous to the chequerboard mode of the
shell, while the bouncing mode of the pendulum is analogous to the concertina
mode of the shell; so at resonance the spring motion has twice the frequency
of the swing motion.

We should emphasise that in both the shell and the pendulum the condi-
tion of resonance is important. It is only sufficiently close to resonance that
the dynamics is described (to leading order in a perturbation analysis) by the
cubic energy function V (x, y) above. The full two-mode model leads to a
quartic energy function that does not feature the saddle points present in the
contour plots of V (x, y) in Figs 1(b,c). Motions of (3) involving deflections
approaching those of the saddle solutions are therefore of limited relevance to
the unloaded shell or pendulum. Note, though, that at high axial compression
the potential energy of the shell will have the form of (3), with the possibility
of the shell buckling dynamically over the saddles [3].
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In studying the dynamics of (1) we shall take R = 1.6, ζ = 0.05 through-
out this paper. In ship stability this corresponds to the situation in which
the natural frequency in heave is roughly twice the natural frequency in roll.
Such a frequency ratio was considered by Froude [10] to have undesirable
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Figure 1. (a,b) Energy surface and contour plot for the symmetric well V (x, y) with b = 0.
(c) Contour plot for the non-symmetric well with b = 0.1. (Figure in (a) provided by Atanas
Popov.)
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Figure 2. (a) Stable resonant solutions for b = 0.02 (solid) and b = 0 (dashed) at ω = 0.87.
(b) Symmetric and symmetry-broken resonant solutions for b = 0.02 (solid) and b = 0 (dashed)
at ω = 1. The solutions sloping up towards the right are located on the upper branches in Fig. 3.
(R = 1.6, ζ = 0.05, F = 0.25.)

sea-keeping characteristics. The reason for this has been explored, for the case
b = 0, in [11] using perturbation analysis for weakly nonlinear motions, con-
centrating on internal autoparametric coupling between pitch and roll. Here
we are interested in the case b �= 0. Standard perturbation approaches fail in
this case as the constant term b would not survive any reduction based on av-
eraging. Therefore, in order to study the strongly nonlinear motions of the
system, we resort to numerical techniques informed by advanced results from
bifurcation theory describing the generic underlying dynamics.

Typical stable symmetric and non-symmetric period-1 solutions for F =
0.25 and ω = 0.87 are shown in Fig. 2(a). A bifurcation diagram for these
solutions under variation of ω is depicted in Fig. 3. The phase space function
plotted along the vertical axis has been carefully chosen to obtain a symmetric
picture and to give the value zero for solutions which themselves are invariant
under (2). The b = 0 solution loses stability in a torus (or Neimark) bifurcation
under decreasing ω and a subcritical pitchfork bifurcation under increasing ω.
At the latter, two branches of non-symmetric solutions bifurcate which rejoin
later in a supercritical pitchfork at ω = 1.12. Solutions along these branches
are shown in Fig. 2(b). Meanwhile, the b = 0.02 solution loses stability in a
torus bifurcation under decreasing ω and a period-doubling bifurcation under
increasing ω. This period-doubling bifurcation is already present on the bi-
furcating unstable branch for b = 0 and it passes around the limit point as b is
increased (see the triangles in Fig. 3).

Curves of the bifurcations through which the resonant periodic solution
loses stability are shown in Fig. 4. In the symmetric case (a) the stable period-1
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solution eventually disappears in a codimension-two combined torus-pitchfork
bifurcation at F ≈ 2. In the non-symmetric case (b), stability is finally lost in
a combined torus-period doubling bifurcation (denoted by N in the diagram).
In this event two eigenvalues pass through −1, making it an instance of the
strong 1:2 resonance of the Neimark bifurcation [12]. The dotted curves in
Fig. 4 are curves of crises where a chaotic attractor suddenly disappears.

Notice how sensitive the suppression of escape is to b: for a b as small
as 0.001 the maximum F with stable solutions (reachable from low F along
a connected path), Fmax, drops to 1.042, about half its value at b = 0. This
behaviour is further explored in Fig. 5 which gives Fmax as a function of b.

An analytical study of (1) in the neighbourhood of the torus-period dou-
bling bifurcation (provided it were feasible), would proceed along the follow-
ing four steps.

1 Take a Poincaré section to obtain a fixed point of a 4D map.

2 At the codimension-2 point the linearisation of this map at the fixed
point will have two eigenvalues equal to −1. Do a centre manifold re-
duction to a 2D map corresponding to these non-hyperbolic eigenvalues.
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Figure 3. Bifurcation diagram for b = 0.02 (solid) and b = 0 (dashed), showing the unfolding
of the sub- and supercritical pitchforks (PF, indicated by diamonds). Circles indicate torus
bifurcations (TR); triangles indicate period-doubling bifurcations (PD). Stable solutions occur
between TR and PD for b=0.02, and between TR and the nearest PF for b=0. (R =1.6, ζ =0.05,
F = 0.25.)
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(a)

(b)

Figure 4. Bifurcation curves for the (a) symmetric (b = 0) and (b) non-symmetric (b = 0.001)
case (ζ = 0.05, R = 1.6).

3 Consider the square of the resulting map and approximate it by an inter-
polating flow, i.e., view this square map as the time-one map of a flow.
This can be done up to all finite orders.

4 Study the bifurcations of this 2D flow and interpret the results back to
the original driven oscillator system.
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Figure 5. Sensitivity to symmetry breaking: plot against ω of the maximum forcing Fmax at
which a stable period-1 solution survives (reachable along a connected path). In Fig. 4(b) this
maximum corresponds to the local maximum of the PD/flip curve. (ζ = 0.05, R = 1.6.)

For the present 1:2 resonance the final 2D flow obtained from the above
programme can be written (possibly after time reversal) as:

u̇ = v,
v̇ = µ1u + µ2v + σu3 − u2v,

(5)

where σ =±1 [12]. The parameters µ1 and µ2 are unfolding parameters which
parametrise our ω-F control space. The two cases σ = 1 and σ = −1 have
clearly distinct phase portraits. It is impossible to carry out the above pro-
gramme explicitly (especially step 1) and thereby determine the parameters
σ , µ1 and µ2 in terms of the parameters in (1), but numerical analysis close
to the codimension-2 event reveals (through the sole existence of subcritical
period-doubling bifurcations) that we are dealing with the σ = 1 case. We il-
lustrate this case in Fig. 6, from which it is seen that the invariant torus in the
dynamics of (1) is destroyed in a heteroclinic tangle.
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Figure 6. Unfolding of the codimension-2 Neimark bifurcation at 1:2 resonance for the case
σ = 1.

3. Conclusion

We have shown that the codimension-2 bifurcation governing suppression
of escape in the non-symmetric case is a 1:2 resonant Neimark bifurcation. The
symmetry-breaking imperfection is found to reduce the suppression of escape,
but there is still a considerable effect left, as shown by the plateau in Fig. 5.
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II.

MECHANICAL SYSTEMS 

Bifurcation and chaos in mechanical systems are the focus of the second 
part of the Proceedings, which opens with the Key Lecture of the 
Symposium given by Friedrich Pfeiffer of the Technische Universität 
Munchen, Germany. The rest of the papers are compiled alphabetically, 
based on the last name of the first author. 

Friedrich Pfeiffer deals with chains of continuous variable transmissions 
in automotive systems, and presents mechanical and mathematical models 
together with some applications. The need for a 3D-theory for chain design 
is highlighted. Proper modelling accounts for a large number of rigid and 
elastic degrees-of-freedom, as well as of unilateral contacts, to be addressed 
within the context of the dynamics of multibody systems and the numerical 
treatment of nonsmooth systems of high dimension.  

A group of papers in this part deals with nonlinear dynamic phenomena 
in somehow classical mechanical applications. Giagopulos et al. investigate 
the dynamics of a simple but representative gear-pair model supported by 
bearings with rolling elements. Both regular and chaotic response of the 
system is examined through computer simulations. Attention is also focused 
on issues related to parametric identification and fault detection of geared 
systems. 

Schweizer and Wauer investigate the vibrations of a rigid rotor supported 
in short MHD journal bearings with time-dependent electric fields, and 
examine the oscillations of slider bearings. The equations for the fluid film 
are solved analytically, whereas those for the shaft and the slider are solved 
numerically. Applications are envisaged in several fields, in micro devices 
amongst others. 

Stépán et al. investigate dynamic phenomena in high-speed milling, 
which nowadays is one of the most efficient cutting processes. The nonlinear 
vibrations occurring in highly interrupted low immersion milling in the case 
of period doubling are investigated and compared to the well-known 
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subcritical nature of Hopf bifurcations in turning processes. Global period-
two and chaotic oscillations are determined through analytical predictions, 
and confirmed by numerical simulations.   

Nonlinear dynamics and chaos in a simple model of a railway freight 
wagon wheelset with dry friction damping are investigated in the paper by 
True and Trzepacz. A realistic modelling of the rail-wheel geometry is 
pursued, which entails interesting nonperiodic oscillations ensuing also  
from the nonlinear stick-slip of the dry friction forces, and the impacts 
between the axleboxes and the side bearings. 

Nonlinear dynamic phenomena arising in definitely innovative
applications such as microelectromechanical systems (MEMS) are dealt with 
in the last three papers. Balachandran and Li study the nonlinear oscillations 
of clamped-clamped microelectromechanical filters which are important 
components in mobile communication systems, signal processing, and flow 
control applications. The considered resonators are based on the 
piezoelectric effect. Experimental observations and analytical investigation 
are presented. In turn, Shaw et al. describe the dynamics of MEMS 
oscillators to be used as frequency filters based on parametric resonance for 
frequency selection, as opposed to the usual linear resonance. MEMS 
oscillators that overcome some of the undesirable features arising in 
parametric resonance from the standpoint of filter performance are 
described. Their design is made possible by the highly tunable nature of 
MEMS devices, which allows one to build in system features to achieve 
desired performance. Finally, Gottlieb and Champneys formulate a nonlinear 
boundary-value problem describing the thermoelastic dynamics of a 
microbeam that is subject to a localized electrodynamic actuation, and is 
operating in an ultra-vacuum environment. The focus of the investigation is 
on the possible existence of global bifurcations and chaotic transients in a 
projected low-order modal dynamical system which reveals a homoclinic 
structure. 



SPATIAL MOTION OF CVT-CHAINS
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Abstract: Mainly due to geometric incompatibilities all CVT-chains do not perfectly move
in a plane but show also out-of-plane effects, which cannot be neglected. In
addition the elastic behaviour of all components play a crucial role concerning
three-dimensional motion. With respect to modeling this increases the number
of degrees of freedom considerably leading to growing simulation times. On the
other hand design or design improvements of chains are only possible applying
a 3D-theory. Paper presents mechanical and mathematical models together with
some applications.

Key words: CVT-Chains, friction, force reduction, multibody system.

1. Introduction

Power transmission in automotive systems is classically carried out by
gear trains, which transmit power by form-closure. In recent times an increas-
ing number of continuous variable transmissions (CVT) are applied. They
transmit power by friction, and at the time being they try to establish some
competition with respect to gear trains. The advantage of gear trains con-
sists in a better efficiency, the disadvantage in an only stepwise approximation
of the drag-velocity hyperbola. The advantage of CVT consists in a perfect
adaptation to this hyperbola, the disadvantage in a lower efficiency due to the
friction transmission. Moreover, CVT-gears can be shifted without any un-
steady effects, which avoids jerk.
For both types of transmission systems intensive research and development is
being performed generating six- and seven-stage automated gears on the gear
train side and leading to significant improvements of the design performance
on the CVT-chain side. This paper gives a contribution to the improvements
of CVT-chains, where already very small geometrical modifications result in
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remarkable large changes in performance. For optimising the chain layout
a threedimensional theory is needed, which will be presented in the follow-
ing. Figure 1 depicts a typical configuration of a CVT-chain V-belt drive.
According to [1] the vibrational behavior of a V-belt CVT is dominated by
the dynamics of its force transmitting belt. The dynamics of the chain belt is
characterized by its discrete structure, causing a polygonal excitation and en-
trance impacts. Hence, the mechanical model of the CVT chain represents a
multibody system, taking into consideration each link, containing one pair of
rocker pins and plenty of plates. In [2, 3] only the in-plane motion of the chain
was modeled. But even a small pulley misalignment, mainly kinematically
induced by the variation of the transmission ratio, leads to significant tensile
forces. Therefore, we propose a chain model which takes spatial effects of the
chain V-belt CVT into consideration.

2. Components of the CVT

A complete CVT gear consists of the force transmitting belt and two pairs
of discs with hydraulically shifted sheaves. Rocker pin chains represent one
typical belt design. Figure 2 shows the main parts and their assemblage. In
the following we shall focus on a chain of the PIV-type, system Reimers (Fig-
ure 2). This chain consists of rocker pins connected by plates. The rocker
pin design coming out with two parts rolling on each other within the joint
motion results in lower friction losses due to rolling instead of sliding friction,
suitable contours anticipated. The plate arrangement and the plate number
influence the tensile forces and their distribution. Clasp plates stabilize the di-
rection of the rocker pins. We have chains with and without clasp plates. For
a 3D-theory all chain elements must be modelled elastically. The same is true
for the sheaves of the two discs, the elastic deformations of which influence

Figure 1. CVT Chain Drive System
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Figure 2. CVT Chain Drive Components

considerably the forces between disc and rocker pins. The axially movable
sheaves slide on an elastic shaft. In addition we have some backlash between
sheave and shaft, which allows some angular motion in form of a sheave incli-
nation.
For the sensor and control system based on hydraulics suitable models are
established, which will not be discussed here.

3. Mechanical Model

The multibody system of the above described gear consists of two movable
and two fixed sheaves and nL = 63 chain link bodies. The sheaves as well as
the links are elastic. The bodies are interconnected by force elements.

Pulley Set

The contact forces between the chain and the pulleys cause a consider-
able deformation of the pulley’s sheaves. The eigenfrequency of the sheaves
is much higher than the operating frequencies. According to [2, 3] the mass
forces of the elastic deformations can be neglected in this case. Using the de-
grees of freedom (�ϑF/M , γ0,F/M ) the lateral buckling of the movable sheaves
may be approximated by a sine function �ϑF/M sin(γc,F/M − γ0,F/M). The
magnitude �ϑ is the angle of inclination of the sheaves including rigid and
elastic parts. The gliding angle γ describes the difference of the pin’s mo-
tion along the disc and the exact circumferential direction. The indices F
and M denote the fixed and the movable sheave, respectively and γc,F/M the
contact location. The amplitude �ϑF/M consists of a backlash sskew and an
elastic deformation between the movable sheave and the shaft, Figure 3. With
a FEM-analysis the sheave deformation can be calculated with the Reciprocal
Theorem of Elasticity (Betti/Maxwell). Together with Hooke’s law applied at
the pin this results in a Linear Complementary Problem (LCP) in a standard
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Figure 3. Lateral Buckling and Pulley Deformation

form (1). The meaning is clear: If the pins get into contact, we have constraint
forces, otherwise not (Fig. 3). Both pulley sets have one rotational (ϕ), two
translational in-plane (x, y) and one axial out-of-plane (zM ) degree of free-
dom. The pulley misalignment �z mainly depends on the transmission ratio
i and the length of the chain ([4] and Figure 4). In order to limit the contact
pressure between pins and sheaves the disc curvature radius R must have a
lower bound, which in our example is 1.7m. All degrees of freedom can be
collocated in qP = (x, y, zM , ϕ,�ϑF , γ0,F ,�ϑM , γ0,M )

T .

gi = grig,i + gel,i = g+i − g−i (1)
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j
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Chain Link

Each link represents an elastic body, having three translational rigid body
and in addition the elastic degrees of freedom. The angles βL and γL , shown in
Figure 5, kinematically depend on the translational position of the successor
link. In order to describe the orientation and elastic deformation of a pin some
more degrees of freedom qel = (qT

el,x qT
el,y)

T have to be introduced. We discern
the radial (y) and azimuthal (x) directions. Thus the set of generalized coor-
dinates can be written as qL = (xL yL zL qT

el)
T . The links are kinematically

interconnected between pairs of rocker pins. The elasticity and the transla-
tional damping of the joint is taken into account by the link force element
whereas the rotational damping and the axial friction between the pair of pins
is considered in the joint force element. In the link force element each plate is
taken into account as a spring. The effect of moving contact points relative to
the plate spring reference points between a rocker pin and an adjoining plate
are modeled as a contact torque. In order to improve the performance of the
software the axial high-frequency vibration in the V-groove can be neglected
by a structure variant model regarding only the axial chain oscillations in the
strands. Even if only one side of the pin gets in contact with a sheave the
transition conditions to stick are complied with.

Chain Pulley Contact

In the experimental results of [5] it is shown that an edge bearing between
the ends of the pins and the sheaves occurs. This is not only because of
the shear and torsional deformation of the chain belt but also because of the

Figure 5. Chain Link Model
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bending of the rocker pins. Therefore the elasto-hydrodynamic oil film is
quickly squeezed out of the contact zone and mixed friction appears. Alto-
gether it turned out that Coulomb’s friction law represents a good approxima-
tion. In order to take into account Hertzian deformation a nonlinear spring law
in the chain pulley contact will be introduced.

4. Mathematical Description

Applying the principle of virtual power (Jourdain) the following equations
of motion for a rigid body as well as for an elastic body can be derived:

M q̈ = h(q, q̇, t) . (2)

The matrix M represents the positive definite mass matrix with respect to the
minimal coordinates q. The vector h of the right hand side contains active
forces from all adjoining force elements as well as the external torque in the
case of the sheaves.

Rigid Bodies

In order to derive the equations of motion for a rigid body in the form
of (2) we start with the equations of momentum and the equations of moment
of momentum.

JT
�

mE mr̃BS

mr̃BS IB

�
Jq̈ + JT

�
m�̃�̃r̃BS

�̃IB�

�
= JT

�
F

T + r̃B FF

�
(3)

JT =
�
JT

T JT
R

�
=

��
∂vB

∂q̇

�T �
∂�

∂q̇

�T
�

(4)

These equations of motion refer to a point B of the rigid body. The point S
marks the center of mass. The vector rBS points from B to S. IB denotes
the matrix of moments of inertia, m the mass, � the rotational speed, vB the
velocity, F the active forces and T the active torques. The Jacobian J trans-
forms the equations of motion from the space of rigid body motion to the
hyper-spaces orientated tangential to the constraint surface called configura-
tion space. The rigid body degrees of freedom of the pulleys are determined
by equations (3). The rigid body motion is superposed by elastic deformations.

Elastic Bodies

Starting from an inertial reference the vector to a mass point of a deformed
body is composed by rigid parts (rI L + x0) and by the elastic deformation
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parts rel . The vector rI L denotes the distance from the inertially fixed point I
to the origin of the reference system of coordinates L , x0 denotes the vector
from this origin to a mass element dm in the undeformed configuration and rel
the elastic displacement vector. Assuming small displacements one can intro-
duce a Ritz approach for the elastic deformation in a time and space separated
formulation.

r = rI L + x0 + rel , rI L = (xL yL zL )
T
i AI Ri =

�
cos γL − sin γL

sin γL cos γL

�
i
(5)

rel =

��
AI R

�
wT

x (x0)qel,x (t) wT
y (x0)qel,y(t)

�T
�T

0

�T

i

(6)

The equations of motion for an elastic body may be derived from d’Alemberts
principle in the version of Lagrange (Jourdain). a absolute acceleration, f
applied forces:� �

∂v

∂q̇

�T
(a − f ) dm =

� �
JT

T + JT
R (x̃0 − r̃el )+

�
∂ṙel

∂q̇

��
(a − f ) dm = 0 (7)

After some tedious calculations equation (6) can be formulated in the form of
equation (2).
The equations of motion can be simplified and to a certain extend decoupled
by the fact, that the out-of-plane motion is very small compared to the nominal
motion. Nevertheless it should be noted, that this refers to kinematics not to
forces. Very small geometric changes produce very large changes in the forces,
especially contact forces. Details of these equations may be found in [10].

Contact Forces

The contact forces between the sheaves and the front faces of the rocker
pins are determined by the geometrical gap function g(q) which is defined in
the axial direction of the undeformed rocker pin. A system of coordinates C is
introduced on the cone surface in the middle of the rocker pin end, defined by
the triple of circumferential, radial and normal direction (t, r, n), their forces
(Ft , Fr , Fn):

Frp,i =−crp (g
−
i ) g−i

RFF/M,i =

	

 ∗

∗
Frp

�
�

F/M,i

= ARi CF/M,i Fn,F/M,i

	

 µvt

v
µvr
v

1

�
�

F/M,i

(8)

where crp denotes the nonlinear axial stiffness of a rocker pin pair, ARCF/M

is the transformation matrix from the CF/M- to the reference R-system of a
link and µ is the friction coefficient.

Thus the forces in the direction of the generalized coordinates qel+,i are:

QF/M =

w+,x (ξ =±1)RFF/M (1) w+,y(ξ =±1)RFF/M (2)

�T (9)
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Contact Torques

Considering the motion of the contact points, we introduce contact torques
in an exponential approximation as a function ”con” of the normal force Fc,
the distance le of the edge of a contact body to the reference point, the radius
rc of the contact surface, the rotational contact stiffness cc and the relative
rotational displacement ϕc. By increasing the contact forces Fc over the limit
cc,max/rc the contact area reaches the cross section area, see Figure 6. Then the
stiffness is independent from the contact radius rc and becomes the constant
value of cc,max . Thus the projected torques TF/M,i and Tpl,i between a rocker
pin pair i and a sheave (F/M) and between the plates (pl) and the pin i are

TF/M,i = −2

�
��

w
′
xAI CF/M · con(Fn/2, lh/2, ch , ϑc)

w
′
yAI CF/M · con(Fn/2, lw/2, cw, ϑc)

0

�
��

i

, (11)

ϑc ≈ ϑ0 + (�ϑ sin(γc − γ0))F/M ∓ αL , ψc ≈ ± (�ϑ cos(γc − γ0))F/M ± ψL , (12)

Tpl,i =
� +1

−1
w
′
x (ξ)(con( fi ,

bpl

2
,

cpl

lrp
, βL ,i − ψi )− con( fi−1,

bpl

2
,

cpl

lrp
, βL ,i−1 − ψi ))dξ (13)

respectively, where (lh, lw) denote the height and width of a single pin and
(ch, cw) the contact stiffness in their rotational direction. In equation (12) the

con(Fc, le, cc, ϕc) = Fclesign(ϕc)

�
1− exp

�
−|ϕc|cc

Fcle

��
; (10)

cc =

�
cc,max ∀Fc : cc,max < Fcrc

Fcrc ∀Fc : cc,max ≥ Fcrc

Figure 6. Torque Contact Caused by Relative Angle Displacement
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Figure 7. Contact Reactions acting on the Rocker Pin Pair

elastic pin deformations are neglected. To take into account the friction forces
between the pair of rocker pins i we calculate the torque

Trp,i =−µlw

� +1

−1
w
′
x (ξ) fi (ξ)sign(w

′T
x q̇el,x,i )dξ wi th fi (ξ) =

cL

lrp
(ael,i (ξ)− ai ) (14)

as the line load of the pin. The parameter ai is the kinematically unstressed
and ael,i is the kinematically stressed length of a link. The forces and torques
are visualized in Figure 7. In order to take into account the position of the
contact line between a pin pair, we have to add an in-plane bending torque Tγ .
Regarding the clasp plate stiffness cclasp, we have to project the shear torque
Tclasp into the configuration space of a link containing a clasp plate. Figure 8
shows the joint kinematics and their parameters.

Distinguishing between the reference point and the contact point the link
length and contact torque are determined. The rocker pin radius rrp can change
according to equation (15) with regard to the angle �γ .

Tγ = cL (ael − a)�y = FChain�y ; Tclasp,β =−Tclasp,ψ = cclasp(ψL − βL ) (15)

rrp = rrp,0 +
∂rrp

∂�γ
�γ (16)

Figure 8. Joint Kinematics
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5. Results

Due to the lateral buckling of the sheaves and the elastic deformation of
sheaves and pins we get in addition to belt creep and azimuthal belt slip a
radial movement between the chain and the sheaves. Introducing the sliding
angle γ we can define the direction of the relative velocity between pins and
sheaves. The sliding angle determines the equilibrium between the two pulley
clamping forces and also the chain forces. Thus a comparison of the sliding
angle is suitable for the veri-
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fication of chain models. Fig-
ure 9 depicts the sliding angle
of the discrete dynamic model
and the continous steady state
model of Sattler [2]. In the
dynamic model the contact arcs
are longer than by the model
of Sattler where they are 180
Grad. In the continuous model
the polygonal excitation is
missing. Only for low rota-
tional speeds the comparison
is good. For high speeds the
continuous model does not describe all effects. The results of the dynamic
model presented in the following are computed for an uniform motion with
constant driving speed n1 and an external output torque T2. Figures 11 and 12
show the tensile force of an outer plate of a chain with clasp plates for two dif-
ferent pulley misalignments (T =150Nm, n =600rpm, i =1). The comparison
of simulation and measurement [7] confirms the mechanical model. Due to the
bending forces the misalignment induces a large gradient of the tensile forces
in the spans. Entering a pulley the shape of a pin changes abruptly because of
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the sudden growing contact forces. Thus especially at the beginnings and the
ends of the pulling spans great force peaks appear.

In the following we consider some parameterstudies with the goal to show
the possibility of influencing the chain performance significantly by even small
changes of chain component geometry. For this purpose we concentrate only
on the forces of the outer plates, which are the most stressed plates on one side,
but represent also a good measure of the chain performance on the other side.
With longer rocker pins and more plates the tensile forces of a plate can be re-
duced because of a load splitting on more plates. But with the same cross sec-
tion of the pins due to the pin bending the load splitting on the plates becomes
worse. Thus the gain connected with more plates is not large (Figure 12). By
changing the design of a plate without altering the tensile strength we influence
the stiffness cL(±20%) and the mass mL(±10%) of a link. The resistance to
the pin bending with low stiffness cL is dominated by the bending stiffness of
the pin. As a result the static components of the tensile forces of both outer

Figure 12. Variation of the Number of Plates of Each Link

(ired = 1, iC V T = 2.3, n1 = 4000r pm)
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Figure 13. Variation of the Chain Link Stiffness cL

(ired = 1, iC V T = 2.3, n1 = 4000r pm)

plates become smaller with softer plates, see Figure 13. Additionally the dy-
namic and centrifugal force components get smaller because of the lower link
mass mL . The previous calculation in the figures above are executed with no
specification of the assemblage of the plates and thus with a continuously ap-
proximation. In Figure 14 we have three chains with different assemblages of
the plates. But in each chain the link configuration is repeated after the third
following link. In Figure 14 the brightest, middle and darkest link is link num-
ber 1, 2 and 3, respectively. In both cases examined with a symmetric link
configuration pattern the load on all outer plates are nearly equal, whereas the
maximum tensile force of the right outer plate of link 2 is larger in the case
of the asymmetric traditional arrangement than the highest plate forces of the
links with symmetric configuration patterns. There are even more design pa-
rameters than discussed above. For example for a greater axle-base the tensile
forces of the chain are smaller [8]. By enlarging the curvature of the pin ends

Figure 14. Variation of the Assemblage of the Plates

(ired = 1, iC V T = 2.3, n1 = 4000r pm)
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Figure 15. Influence of the Rocker Pin Kinematics

and lowering the contact stiffness between pins and plates the outer plate ten-
sile forces can be reduced [9].
The polygonal excitation causes some resonance of the chain drive. Altering
the kinematics of the excitation we influence the resonance. On the right hand
side of Figure 15 we see the excitation at the entrance and the exit areas of
the sheaves assuming the contact arc as an ideal circle. On the left hand side
the dynamic response of the excitation with all details of the model is illus-
trated. The oscillation of the transmission induces rotational vibration in the
drive train whereas the vibrating bearing forces impair the gear acoustic. With
low torques the ratio of the axial clamping forces is near one, because there
is nearly no difference between the driving and driven pulley. At adequate
torques the ratio is high due to different direction of the lateral buckling of the
sheaves. Near the slipping border the radial friction forces vanish and there-
fore the ratio decreases. At high torques before the slippage of the chain the
losses of the gear including the bearing and excluding the hydraulics are low
in comparison with the gear power. The pulley thrust ratio in Figure 17 is
changing with the pulley misalignment because of axial components of the
chain tensile forces, whereas the efficiency shows no influence. At transient
operating state the global behavior of the gear, the forces, thrust ratio and the

Figure 16. Global Parameters Influenced by Pulley Misalignment
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Figure 17. Global Parameters Influenced by a Transient Transmission Ratio

(iC V T = 1, n1 = 2000r pm)

efficiency change. In Figure 17 the effects are illustrated for a transient trans-
mission ratio i of the CVT. It is obvious that the pulley forces have to differ
to induce a large gradient of the transmission ratio. At a positive gradient the
great losses due to the clamping effect at the chain exit of the driving pulley
becomes significantly smaller. As a result the CVT-efficiency increases. Due
to this clamping effect the slip at the driving pulley is smaller than at the driven
pulley.

6. Summary

Chains and belts of continuous variable transmissions (CVT) define at the
time being a limit of modeling in dynamics. The extremely large number of
rigid and elastic degrees of freedom in connection with just as well a large
number of unilateral contacts resulting in additional problems of complemen-
tarity character end up with two questions of considerable complexity. One
concerns the question of modeling itself, the transmission of reality into a
reasonable mechanical model without neglecting important physical features.
The other one concerns the numerical treatment of a non-smooth system of
high dimensions. It is not only the large number of degrees of freedom and
problems like order-n-algorithms and similar methods, it is also the solution
of high-order linear and nonlinear complementary problems, where a variety
of methods exist, but all involving questions of numerical stability and com-
puting time. Paper can only indicate, what has been done in the last ten years
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comprising several dissertations, many diploma-thesis and continuous cooper-
ation with industry.
The presented model of a continuously variable chain drive provides detailed
insight into the influence of construction parameters on the dynamics of the
gear. It was shown that with an adequate transmission ratio of the gear reducer
unit, with more plates in a link, with lower stiffness of a plate and with a sym-
metric assemblage of the plates the maximal tensile force of the outer plates
can be significantly reduced. The quality of the developed mechanical model
is verified by measurements. Influences on the polygonal excitation, the pulley
thrust ratio and the efficiency were investigated.
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Abstract:  Nonlinear oscillations of clamped-clamped microelectromechanical filters are 
studied in this effort.  Piezoelectric actuation is used to excite these structures 
on the input side and piezoelectric sensing is carried out on the output side.  
Experimental observations of nonlinear phenomena are presented and 
nonlinear analysis being carried out to explain the experimental observations is 
briefly discussed.  

Key words: Clamped-clamped structures, piezo actuation, MEMS resonators,  buckling. 

1. Introduction 

Oscillations of microelectromechanical resonators fabricated as clamped-
clamped composite structures are studied here. These resonators, which are 
used as micromechanical filters, are important for mobile communication 
systems, signal processing applications (e.g., Fourier transform 
computations) and microjets for flow control applications.  The considered 
resonators are based on the piezoelectric effect, as shown in Figure 1. The 
elastic substrate is a SiO2 layer, on the top of which a platinum electrode 
layer is deposited throughout the length of the structure. There is a thin layer 
of sol-gel piezoelectric film on the top of this electrode layer.  To complete 
the structure, another platinum layer on the top of this piezoelectric film 
extends over one quarter of the length from each anchor and the mid-section 
of the resonator structure is free from this platinum electrode layer [1], [2].  

© 2005 Springer. Printed in Great Britain. 
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Figure  1.   Piezoelectric resonator structure  [1]. 

Due to the asymmetry of the cross-section, the position of the piezoelectric 
layer is offset from the neutral axis, and in addition, (tensional) residual 
stress may also be introduced in each layer during the manufacturing 
process.  The resonators considered here typically range in lengths from 100 
µm to 400 µm, and the thickness of each platinum electrode is in the range 
of 90 nm to 180 nm. In some typical uses of this resonator, the structure is 
driven close to its first resonance frequency with the input at the drive 
electrode having a DC bias in addition to the harmonic excitation. 

2. Experimental Observations 

In this section, different experimental observations that are illustrative of 
the nonlinear behavior of the microresonator structures are presented.  A 
sketch of the experimental arrangement is shown in Figure 2. 

Figure 2. Experimental arrangement showing the  positioning of a laser vibrometer for 
measuring the transverse vibrations of a resonator.  The resonator is excited by electrical 
signals provided to the drive electrode located at the left-end of the structure.  
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observed in the experiments is shown [2]. This spatial distribution was 
measured by using a scanning laser vibrometer.  The scanning was carried 
out along the longitudinal axis of the considered resonator.  The excitation 
signal into the drive electrode of the resonator was a combination of a 
sinusoidal signal at the first resonance frequency and a DC bias input.  In 
other experiments conducted with similar microresonator structures, similar 
spatial patterns, which are different from the spatial pattern of the first mode 
of a clamped-clamped structure, have been observed.   

Figure 3. Laser vibrometer measurement of a spatial pattern observed in a forced oscillation 
experiment. The presence of spatial harmonics distorts the spatial pattern from the typical 
mode shape associated with the fundamental mode of vibration of a clamped-clamped 
structure [2].  Typical values of the AC component of the drive signal used in this and other 
experiments is in the mV range and the DC component of the signal is of the order of 10 
Volts. 

In Figure 4, the nonlinear response observed in experiments conducted at 
a fixed sinusoidal excitation amplitude is shown. The excitation frequency is 
used as a control parameter in the neighborhood of the first natural 
frequency of the resonator, and the velocity-amplitude data recorded during 
the forward and backward sweeps of this control parameter are shown.  The 
presence of a hardening type of response and a jump is clear from this data.  
Only single point measurements where carried out during these experiments. 
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frequency. The drive signal consisted of an AC component and a zero voltage DC component. 

In Figure 5, the response spectrum of another resonator is shown.  The 
response shows components at the excitation frequency and second and third 
harmonics of this frequency.  To explain the nonlinear responses observed in 
the experiments, the analysis being undertaken is briefly discussed following 
the nomenclature provided below. 
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3. Nomenclature 

nφ  nth static buckling mode shape 

Φ  Mode shape of dynamic deflection 
A Area of the cross section
b  Normalized buckling level 
E  Young’s modulus 
EI  Bending stiffness of the beam 
I Area moment of inertia of the beam cross section  
l Length of the beam
m  Mass per unit length of the beam 

P̂  Axial force 
P  Nondimensional form of the axial force 
p̂  Amplitude of the external excitation force 
p  Nondimensional form of the amplitude of the external excitation 

force 
Ω̂  External excitation frequency 
Ω  Nondimensional form of the external excitation frequency 
µ̂  Damping coefficient 
µ  Nondimensional form of the damping coefficient 

Ŵ   Beam displacement 
W  Nondimensional form of displacement 

4. Analytical Development, Results, and Discussion 

One possible hypothesis is that the experimentally observed data shown 
in Figure 3 is due to oscillations about a non-flat equilibrium position. Based 
on studies that have been conducted with large-scale structures [3]—[5], it is 
conjectured that this non-flat equilibrium position occurs due to buckling 
caused by axial loads that arise due to residual stresses and the DC voltage 
input into the drive electrode.  The rest of this section is based on material 
borrowed from the earlier work of the authors [7]—[9], and it is aimed at 
explaining some of the qualitative aspects of the forced response.  

4.1 Analytical Development 

In Figures 6 and 7, a sketch map of the resonator on the  input side, and 
the buckled beam configuration that will be used for developing the model 
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are shown, respectively. With external actuation and damping terms, the 
governing system can be written as 

( ) ( )
2 2 2

2 2 2

2
2 2

1
2 2 2

0

ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) ( , )
ˆ ˆ ˆ2

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ( , ) ( , ) [ ( ) ( )]ˆ ˆ ˆ( )
ˆ ˆ ˆ2

ˆ ˆˆ( , )ˆ ˆˆ ˆ ˆ( , ) 0 and 0 at  0 and .
ˆ

l

W x t W x t W x t
m x EI x

t t x x

EA W x t W x t P t h x
P t dx

l x x x

W x t
W x t x x l

x

µ
⎡ ⎤∂ ∂ ∂ ∂+ + ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

⎡ ⎤⎡ ⎤∂ ∂ ∂⎢ ⎥+ − =∫ ⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦⎣ ⎦

∂= = = =
∂

(1)

In Eqs. (1),  1̂
ˆ ˆˆ ˆˆ( ) cosdcP t P p t= + Ω  is the dynamic actuation force in the 

piezoelectric layer, d̂cP  is the force due to the DC offset, 2 0 1
ˆ ˆ ˆˆ ˆ( ) ( )P t P P t= + ,

0̂P  is the force due to the residual stress in the beam, ĥ   is the height above 
the neutral axis at which the actuation force 1̂

ˆ( )P t is applied as shown in 
Figure 6, 0

ˆ ˆˆ ˆ ˆ ˆ( ) [ ( ) ( )]h x h u x u x x= − − , ˆ( )u x  is the Heaviside step function, m
is the mass per unit length, µ̂  is the damping factor, and l  is the length of 
the beam.  The microresonator is modeled as a composite beam with step-
wise characteristics and appropriate boundary conditions [6]—[9].   

Figure 6.  A sketch map of the microresonator at   the input port. 
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Figure 7. Buckled  beam configuration. 

After using the nondimensional quantities 
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where ( )avg
EI and avgm are spatially averaged values.  Eqs. (1) can be 

rewritten in the following form: 
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 (3) 

In Eqs. (3), the overdot indicates the derivative with respect to the 
nondimensional time t , the prime indicates the derivative with respect to x ,
and

( ) ( ) ( ) ( )
2 2 2 2

0
0

ˆ ˆ ˆ ˆ
, , , and  dc

dc

avg avg avg avg avg

P l P l p l l
P P p

EI EI EI m EI

µµ= = = =

 (4) 

During undamped free oscillations, a solution of the following form is 
sought 
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( , ) ( ) ( , )w x t b x x tφ υ= +  (5) 

where  b is the normalized buckling level factor, ( , )x tυ is the dynamic 
deflection,  and ( )b xφ is the static post-buckling position [7]—[9].  Further 
details regarding the analysis can be found in these references.  

4.2 Free Oscillation Results for a Buckled 
Microresonator and Discussion 

As a representative case, a resonator with the following dimensions is 
chosen: 200 µm in length, 20 µm in width, and 2 µm in thickness. The 
thickness of the piezoelectric layer is 0.53 µm and the dimensions of the top 
electrode over the beam are 50 µm in length, 20 µm in width and about 170 
nm in thickness.   The predicted pattern for this 200µm resonator in the 5th

static buckling mode is shown in Figure 8. This spatial pattern obtained 
during the undamped free oscillations is in good agreement with the spatial 
pattern obtained during forced oscillations close to the first natural frequency 
of the system, suggesting that the spatial pattern observed in Figure 3 may be 
explained as a “buckling” induced nonlinear behavior. As representative 
results, in Figures 9 and 10, the spatial patterns corresponding to different 
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Figure 8. Predicted spatial pattern of a  200mm beam through the free vibration model [7]. 

buckling modes are shown. The different spatial patterns observed are a 
function of the buckling level b  as in other studies carried with “large-scale” 
structures [3]. Experiments have not been carried out to examine if this type 
of behavior is possible in the considered microresonators.  The agreement 
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between the analysis and experimental data indicates that for clamped-
clamped piezoelectric resonators, buckling effects can be important to 
consider. As discussed in earlier work [7], the authors’ work   provides the 
first evidence of such phenomenon in microscale structures.  Forced 
oscillation analysis [8],[9] has been initiated and the predicted responses are 
in qualitative agreement with the results shown in this article. 

Figure 9. Mode shapes when 0.5b =

Figure 10. Mode shapes when 1.2b =
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GLOBAL BIFURCATIONS OF NONLINEAR 
THERMOELASTIC MICROBEAMS SUBJECT 
TO ELECTRODYNAMIC ACTUATION 

O. Gottlieb1 and A.R. Champneys2

1Department of Mechanical Engineering, Technion – Israel Institute of Technology, Israel; 
2Department of Engineering Mathematics, University of Bristol, UK. 
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Abstract: In this paper we formulate a nonlinear boundary-value problem describing the 
thermoelastic dynamics of a microbeam that is subject to a localized 
electrodynamic actuation and is operating in an ultra-high vacuum 
environment. A modal Galerkin projection reveals a planar homoclinic 
structure describing escape from a potential well that is perturbed by both 
thermoelastic damping and modulated periodic actuation. This structure is 
investigated via Melnikov analysis to shed light on possible existence of global 
bifurcations and chaotic transients. 

Key words: Thermoelastic microbeams, electrodynamic actuation, global bifurcation. 

1. Introduction 

 Microbeams are the fundamental structural elements employed in the 
growing domain of micro- and nano- electromechanical systems 
(MEMS/NEMS). These slender elements (with length, breadth, and height 
on the order of 100*10*1 microns, respectively) serve as components in 
resonant sensors and actuators governed by attractive forces proportional to 
an inverse power of the displacement. The forces acting on the various 
elements differ in their amplitudes in accordance with their operating range. 
Electrostatic/electrodynamic attraction in MEMS devices appears in the 
form of a distributed force controlling displacements on the order of 
microns, whereas atomic interactions govern localized forces of dynamic 
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sensors that resolve nanometric scales via sharp tips in scanning probe 
microscopy (SPM),or nanoresonator response in NEMS devices. 
 Examples include constrained microbeams with immovable boundaries 
(resulting in mid-plane stretching) designed as rate sensors and strain gauges 
and microcantilevers (with negligible mid-plane stretching) that are the key 
elements in SPM systems. The generalized forces acting on these elements 
also include distributed loads such as squeeze-film damping in air [1] and 
coupled thermoelastic damping in ultra-high vacuum [2]. These damping 
loads are typically quantified by a linear equivalent damping parameter or 
quality factor (Q). Thermoelastic damping in Silicon microbeams decreases 

sharply with decreasing temperature ( 4 910 Q 10< <  between 300 K� and 

20 K� [2]). The exciting mechanisms may also differ for each application. 
An immovable electrodynamic sensor is excited by combined external and 
parametric excitation proportional to the square of the input voltage [1], 
whereas a SPM microcantilever can resonate by direct base excitation [3] or 
an applied moment induced via a piezoelectric layer [4]. 
 While microbeams can be very different in their shape, form and material 
properties, they share a common phenomenological structural instability 
when placed in an attractive field, where for a small enough gap, the beam 
will be pulled into the substrate. This instability is due to the nonlinear force 
balance between the elastic restoring force of the microbeam and the 
attractive force where the threshold (i.e. 'pull-in' in MEMS and 'jump-to-
contact' in SPMs) denotes the upper limit where the elastic restoring force 
cannot resist the attractive force. The bifurcation point separates two distinct 
domains of operation: i) below a critical distance there exists a unique 
equilibrium where the microbeam collapses onto the substrate, and ii) above 
a certain distance (also corresponding to below a critical voltage in 
electrostatic resonators) there exist an additional stable equilibrium that is 
separated from its counterpart on the substrate by an unstable saddle. The 
latter domain is governed by a global homoclinic connection that is an 
typical of an asymmetric configuration describing escape from a unique 
potential well [5]. 
 The dynamic model that will be considered here is that of a MEMS 
sensor subject to an asymmetric and localized nonlinear electrodynamic 
actuation. We extend the boundary-value problem to include nonlinear 
membrane stiffness and a thermoelastic field corresponding to operation in 
an ultra-high vacuum environment. The model structure is that of a 
perturbed nonlinear Hamiltonian microbeam that is governed by elastic 
nonlinearities and the autonomous part of a generalized electrodynamic 
force. The perturbation originates from the time dependent electrodynamic 
force and from both viscoelastic structural damping and thermoelastic 
dissipation. The focus of our investigation is on possible descriptions of the 
global unperturbed homoclinic connections in the projected low-order modal 
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dynamical system. The perturbation of the fundamental homoclinic structure 
is demonstrated via Melnikov's method and complemented by numerical 
simulation of the dynamical system. 

2. The Dynamical System 

 We consider a boundary-value problem for a fixed thermoelastic 
microbeam (with length L, width B, height H) which incorporates possible 
residual stresses modeled as an axial load [1], and a geometric nonlinearity 
due to membrane stiffness [6]. The electrodynamic interaction is modeled as 
a concentrated load at mid span which is proportional to the inverse second 
power of the relative displacement [1], and the elastic field is augmented by 
the heat equation [2]. 

 The nondimensional 2 4
s s(s x / L, t, EI /( AL ))= τ = ω ω = ρ equation for the 

elastic field V(s,τ), is accurate to cubic order and incorporates 
electrodynamic excitation Q(V,τ), an elastic restoring force R(V), and a 
structural damping force S(U,V). The latter includes a linear viscoelastic 
term and a thermal moment of inertia that is a function of the 
nondimensional (r=y/B) relative temperature field U(r,s,τ), which represents 
the difference between current temperature and that of the unstrained and 
unstressed beam: 

V Q(V, ) R(V) S(U,V)ττ = τ − − (1)
where 

2 2ˆˆ ˆQ (s 1/ 2) (1 sin ) ( V)−= δ − Γ + η Ωτ γ −� ,
1

2
ssss ss 1 3 s

0

ˆ ˆR V V V ds
⎛ ⎞
⎜ ⎟= + κ − κ
⎜ ⎟⎝ ⎠

∫ ,

1/ 2

1 ssss 2
1/ 2 ss

ˆ ˆS V rUdrτ
−

⎛ ⎞
⎜ ⎟= µ + µ
⎜ ⎟⎝ ⎠

∫ and subscripts denote partial 

differentiation with respect to nondimensional space (s) and time (τ).
 The parameters governing the elastic field in Eq. (1) are 

2 2
1 3ˆ ˆGL /(EI), 6(L / H)κ = κ = , which correspond to residual stress induced 

in the manufacturing process and nonlinear stiffness respectively. The 
nondimensional parameters governing the electrodynamic excitation 
incorporate the gap height ˆ g / Lγ = , and magnitude of interaction defined 

by a bias (DC) input voltage 2 3
0 D C

ˆ 6 v /(EH )Γ = ε . The latter is perturbed 
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by an oscillating harmonic (AC) voltage that consists of an amplitude and 

frequency of excitation AC D C AC s
ˆˆ v / v , /η = Ω = Ω ω respectively. 

 The equation for the relative nondimensional temperature field is: 

rr ssˆ ˆU U rVτ τ= χ + σ  (2) 

where the relative dimensional temperature has been normalized by the 
unstrained and unstressed equilibrium temperature 0(T ).  The 
nondimensional parameters governing the temperature field in Eq. (2) 

include thermal diffusivity, 2
sˆ /(H )χ = χ ω , and a function of relaxation 

strength E( )∆  of the elastic Young's modulus, E 2ˆ ˆ12 /σ = ∆ µ . The latter is 
inversely proportional to the material thermal expansion coefficient 
( ),α and the equilibrium temperature 2 0ˆ 12 T L / Hµ = α . We note that the 

linear form of Eq. (2), which is valid to order 2
E∆ , is based on two 

simplifications [7]: i) small differences between equilibrium and response 
temperature, and ii) thermal gradients in the plane of the cross-section along 
the vertical direction are much larger than the gradients along the beam.   
 We employ an assumed mode Galerkin procedure which enables 
reduction of the boundary value problem described Eq. (1) and Eq. (2) to 
two coupled ordinary differential equations describing dynamics near 
primary resonance of the thermoelastic microbeam. The spatial mode shape 
selected for the elastic field corresponds to that of a linear undamped 
microbeam with fixed boundary conditions at both ends: 

n n n n n n[cosh z s cos z s C (sinh z s sin z s)],φ = − − −  where the modal 

frequencies, 2
n nzω = , are determined from n ncos hz cos z 1= . The spatial 

mode shape of the temperature field is obtained by solving the non 
homogeneous Eq. (2) with no flow of heat across the boundaries (e.g. 

rU ( 1/ 2) 0± = ), to yield nss n n nˆ [r sin(k r) / k cos(k / 2)]ψ = σφ − , where the 
wavelength is a function of the nondimensional diffusivity: 

1/ 2
n n ˆk ( / )= ω χ [8]. We note that comparison of this modal approximation 

to the exact result obtained by [2] is excellent for 1k 7< (e.g. Figure 2 in [2] 
for 5ξ < ). We focus here on the lowest (bending) mode primary resonance 
(e.g. n=1: q=q1, p=p1) so the resulting equations of motion for the modal 
amplitudes are: 

�

3
1 4 1 2 3 3

2
1 1 1 4 2 5

ˆ ˆJ q (J J )q J q
ˆˆ ˆ ˆ(1/ 2)(1 sin /( (1/ 2)q) J q J p

ττ
−

τ

+ + κ − κ =
= Γφ + η Ωτ γ − φ − µ − µ�

  (3) 

6 7 8ˆ ˆJ p J p J qτ τ= χ + σ  (4) 
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where Ji  (i=1,8) are constants determined by integration over the domain [8]. 
We note that J1,4,6>0, J2,3,7<0 and J5,8 can change sign as a function of wave 
number (e.g. 1k < π : J5>0, J8<0 and vice versa for 1k 7π < < ). 
Consequently, the beam natural frequency for pure bending is 

1/ 2
1 4 1(J / J )ω = , and that possible residual stress reduce the natural 

frequency (J2<0). Furthermore, while the elastic membrane stiffness is 

hardening (J3<0), the contribution of the electrostatic force (e.g.  � 0η = ) is 
softening.  
 Finally, we rescale the modal amplitudes and time (x=q 1 ˆ(1/ 2) /φ γ ,

z=p 1 ˆ(1/ 2) /φ γ , 1t = ω τ ) to yield the dynamical system: 

2 2 3
1 2

x ' y
y ' (1 sin t) (1 x) x x y z
z ' z y

−
=
= γ + η Ω − − α − β − µ − µ
= −ν + σ

 (5) 

where (') denotes the derivative with respect to the rescaled time. The 
parameters that govern Eq. (5) include: i) linear and cubic elastic stiffness 

terms 2 2 2 2
1 2 1 1 3 3 1 1 1ˆ ˆ ˆ1 J /(J ), J /(J (1/ 2))α = − κ ω β = κ γ ω φ , ii) viscoelastic 

damping 1 1 4 1J /µ = µ ω�

, iii) electrostatic magnitude 2 2 3
1 1 1

ˆ ˆ(1/ 2) /(J )γ = Γφ ω γ ,

iv) electrodynamic amplitude and frequency 1
ˆˆ , /( )η = η Ω = Ω ω , and v) 

thermoelastic damping parameter defined by 2
2 2 5 1 1ˆ J /(J )µ = µ ω augmented 

by 7 6 1 8 6ˆ ˆJ /(J ), J / Jν = χ ω σ = σ . We note that the hardening nonlinear cubic 

stiffness is proportional to 2(g / H) , where g/H is the ratio between the gap 
and the microbeam height. 
 The third order dynamical system in Eq. (5) consists of a time 
independent Hamiltonian subsystem (α, β, γ), that is perturbed by visco and 
thermoelastic damping (µ,σ ,ν), and by combined external and parametric 
excitation (η,Ω). We note that the thermoelastic damping is proportional to 

2 Eˆ ˆ 12µ σ = ∆ . Consequently, as the relaxation strengths E∆ are typically very 

small [2], we focus on two limiting configurations: i) 2 ~ O(1)µ  and σ , ν
small, and ii) 2 ~ O( )µ ε where σ  and ν are large. The latter enables freezing 
the z velocity component in Eq. (5c) to yield a second order system.  
 The corresponding third order system is: 

1

2 2

3

x ' f (y)

y ' f (x, z) g (x, t)

z ' g (y, z)

=
= + ε
= ε

 (6) 
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where 2 3
1 2 2f y,f (1 x) x x z−= = γ − − α − β − µ , and the perturbation is 

2
2 1 3g sin t(2 sin t)(1 x) y, g y z−ε = γη Ω + η Ω − − µ ε = σ − ν .

 The limiting second order system is: 

1

2 2

x ' f (y)

y ' f (x) g (x, y, t)

=
= + ε

 (7) 

where 2 3
1 2f y,f (1 x) x x−= = γ − − α − β , and the perturbation is 

2
2 1 2g sin t(2 sin t)(1 x) ( / )y−ε = γη Ω + η Ω − − µ + µ σ ν .

 We focus here on total damping governed by 1 2( ) 0µ ν + µ σ > , which 
ensures that both limiting cases are indeed dissipative. Note that the third 
order system in Eq. (6) corresponds to the form described by [9] where 
perturbed homoclinic orbits in three dimensional flow may exhibit transverse 
intersections that are portrayed via length transients and possible strange 
attractors. Examples of the latter include a periodically forced Duffing 
equation with weak feed back [9] and a slender beam rotating about is 
longitudinal axis [10]. Both examples are of slowly varying oscillators with 
a pair of homoclinic orbits corresponding to a quartic double well potential. 
However, this dynamical system incorporates a single well that portrays 
stable periodic dynamics when the response is confined within its bounds 
and escape when a certain threshold is exceeded. Furthermore, we note that 
the second order system in Eq. (7) is similar to that analyzed for lumped 
mass [3] and continuous [4] microbeam models for noncontacting atomic 
force microscopy. 

3. The Hamiltonian System

 We consider the planar, undamped, and unforced subset of Eq. (5) which 
is Hamiltonian with: 

2 2 4 1H y / 2 x / 2 x / 4 (1 x)−= + α + β − γ −  (8) 

and note that below a critical threshold (e.g. pull-in) it has two physical fixed 
points corresponding to an elliptic center and a hyperbolic saddle. Beyond 
this threshold there are no fixed points and all solutions escape to the 
substrate (e.g. x=1). The homoclinic orbit that separates periodic and 
escaping orbits is deduced from Eq. (8): 

1/ 22 2 4 4 1 1
s S S Sy (x) (x x ) (x x ) / 2 2 ((1 x ) (1 x) )− −⎡ ⎤= ± α − + β − − γ − − −⎣ ⎦  (9) 
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where xS is the value of the saddle fixed point. The separatrix in Eq. (9) can 
be reduced to the following form by matching coefficients of like powers: 

1/ 21/ 2
E

s S
(x x )(x A)(x B)

y (x) (x x )
2 1 x

− − −β ⎡ ⎤⎛ ⎞= ± −⎜ ⎟ ⎢ ⎥−⎝ ⎠ ⎣ ⎦
 (10) 

where xE is the intersection of the separatrix with the horizontal axis and that 
A and B are the complex conjugate roots of the quadratic equation: 

2 2
1 2 1 S E 2 S S S Ex b x b 0,b (2x x 1),b (2 (1 2x ) x (3 4x )) / x .

α+ + = = − − = − + −
β

Integration of Eq. (10) enables an implicit form for the homoclinic orbit: 

E

1/ 2
x1/ 2

0 22Sx E

1 1 x
(t t ) dx

2 (x x ) (x x )(x 2Re[A] A )

⎡ ⎤β −⎛ ⎞ ⎢ ⎥− =⎜ ⎟ − ⎢ ⎥⎝ ⎠ − − +⎣ ⎦
∫  (11) 

 We note that for negligible membrane stiffness ( 0,g H)β → � �� ���

integral form in Eq. (11) reduces to an implicit al form where E Sx 1 2x= − :

1/ 2 S
0

S

1/ 2 1/ 2
S S S E E S S

S E S S

x x 1
(t t ) arcsin

x 2

1 x ((1 x )(x x )(1 x)(x x )) (2x 1)(x x 1)
ln

x x x (x x)

⎛ ⎞+ − πα − = − −⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞− − − − − − − + −
+ ⎢ ⎥⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎣ ⎦

(12)
A similar form to Eq. (12) was obtained for an interaction potential of a 
lumped mass model of an atomic force microscope [3]. 
 Finally, we estimate the homoclinic orbit in Eq. (9) by construction of an 
equivalent cubic potential which exactly reproduces the saddle (xS) and 
phase plane intersection (xE):

2 2 3
0 2H y / 2 x x / 2 x / 3= + α + − α  (13) 

where S S E
0 2

S E S E

x (x 2x ) 3
,

2(2x x ) 2(2x x )

+
α = − α =

+ +
. In this case the 

homoclinic orbit can be integrated in closed form to yield an explicit 
expression: 

2 1/ 2
S S E S Ex(t) x (x x )sec h ((x x ) t / 2)= − − −  (14) 

 A comparison of the quadratic estimate and the original homoclinic orbit 
(corresponding to a microbeam with a gap equal to the beam height [1] and 
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no residual stress 1, 0.05248α = β = γ = ), reveals in Figure 1, that the former 
slightly reduces the domain of periodic solutions and as anticipated, does not 
portray the physical limit of the substrate at x=1. 

Figure 1. Hamiltonian system phase plane [Eq.(8) - solid line] and its quadratic 
estimate [Eq. (13) – dashed line]: 1, 0.05248α = β = γ = .

4. A Global Bifurcation

 We consider the limiting case proposed by Eq. (6) and augment the 
planar Hamiltonian in Eq. (8) with 2xzµ . Following [9], we formulate the 
Melnikov integral: 

0 1 2 3 0 0 3 0 0
H H

M(t ) f g g (q , z, t t )dt g (q , z, t t )dt
z z

∞ ∞

−∞ −∞

∂ ∂⎛ ⎞= + + − +⎜ ⎟∂ ∂⎝ ⎠∫ ∫  (15) 

where the bracketed terms are to be evaluated along the unperturbed 
homoclinic orbit (q 0 =(x(t),y(t) on the z level corresponding to Sx of the 

averaged field) which can be computed numerically from Eq. (11) or Eq. 
(12). The limiting case proposed by Eq. (7) yields a similar integral for small 
modulation amplitude: 

2
0 0M(t ) 2 ysin (t t ) y dt

∞

−∞

⎛ ⎞µσ⎛ ⎞= γη Ω + −⎜ ⎟⎜ ⎟ν⎝ ⎠⎝ ⎠∫
�

�  (16) 
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The integral in Eq. (16) has been computed numerically (along the 
homoclinic orbit in Eq. (12)) [3], to reveal a standard form which includes 
both bias (I1) and modulation (I2) that depend on damping and modulation 
amplitude respectively [11]: 

0 1 2 0M(t ) I I sin t= + Ω  (17) 

Consequently, for a given small equivalent damping level, zeros of Eq. (17) 
describe a curve in parameter space defined by forcing amplitude versus 
frequency ( ( ))η = η Ω  . Solutions below the curve are stable periodic orbits 
whereas above the curve, solutions are anticipated to exhibit chaotic 
transients corresponding to transverse intersections of the stable and unstable 
manifolds of the perturbed homoclinic orbit. Furthermore, we note that the 
quadratic approximation of the homoclinic orbit in Eq. (14) enables 
derivation of an explicit form for the components of the Melnikov integral. 
This yields a simple closed form estimate of the Melnikov stability curve [5]. 

Figure 2. Escape boundaries for the dynamical system [Eq. (5) - solid line] and 
approximate Melnikov stability curve [Eq. (17) - dashed line] with parameters of 

Figure 1 and 3
1 2( / ) 10−µ + µ σ ν = .

 Numerical simulations of the dynamical system in Eq. (7) with maximal 

thermoelastic damping ( 3Q 10= corresponding to 2/ν µ σ for 1k π� ), reveal 
a complex wedge like structure in the amplitude-frequency parameter space 
describing the escape boundary to the confining substrate at x=1. While a 
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dense grid of initial conditions is required to accurately map the escape 
boundary, we employed several combinations of initial displacement 
beginning with the stable equilibrium until escape and repeated the process 
for several initial velocities. The corresponding approximate Melnikov 
stability curve consists of a lower bound as its validity is limited to small 

excitation ( 1 2~ Q / 2 10− −η γ = ). A similar structure has been recorded for a 
damped, forced single cubic potential well [5] where the minimas of the 
wedge correspond to ultra-sub-harmonic resonance frequencies (e.g.  

0~ n / mΩ ω , where 0ω  is the system natural frequency, m,n=1,2,3,...) and 
where chaotic transitions were found only near the period-doubling flip 
boundaries. We note that for smaller thermoelastic damping, the wedge like 
structure becomes dense and the Melnikov analysis is then valid for 

comparably very low exciting amplitudes (e.g. 4~ 10−η for 5Q ~ 10 ).
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NONLINEAR INTERACTION
IN MHD BEARINGS UNDER
OSCILLATING ELECTRIC FIELDS
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D–76126 Karlsruhe, Germany
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Abstract: Nonlinear oscillations in connection with magnetohydrodynamic journal and
slider bearings are discussed. It is assumed that the externally applied magnetic
field is constant and uniform, the applied electric field is uniform but harmoni-
cally oscillating. Using electrically conducting fluids as lubricant and applying
electric and magnetic fields, it is possible to produce pressure even if the shaft
does not rotate and the bearing is fixed. The equations of motion for a rigid shaft
supported in short MHD journal bearings are derived and solved numerically.
By a similar analysis the slider bearing is examined.

Key words: Nonlinear oscillations, MHD journal bearings, slider bearings, electric field.

1. Introduction

The load capacity of bearings using electrically conducting fluids as lubri-
cant can be influenced by applying electric and magnetic fields. There exist
a great deal of investigations on MHD journal and slider bearings (see e.g.
[1,2,3].

In some recent work of the authors [4,5], infinitely short journal bearings
were considered the first time to obtain analytical solutions of the magnetohy-
drodynamic form of Reynolds’ bearing equation. Based on this, the stiffness
and damping properties of such bearings can be computed to examine their
stability.

Referring to that, in the present study it will be shown that it is possible to
produce pressure even if the shaft does not rotate and the bearing is fixed where
two general cases concerning the orientation of the applied electromagnetic
fields are investigated. The key idea is to apply oscillating electric fields giving
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rise to nonlinear self-excited vibrations of the movable part in journal or slider
bearings.

In order to calculate the oscillations of the shaft and the slider, respectively,
it is on the one side necessary to calculate the pressure distribution in the
lubrication gap. Knowing the pressure field and hence by integration the total
force, one has on the other side in the case of the journal bearing to solve
the equations of motion for the shaft and in the case of the slider bearing the
equation of motion for the slider.

To determine the pressure field, one has to solve the magnetohydrodynamic
basic equations, namely the Navier-Stokes equations, the continuity equation,
Maxwell’s equations, the conservation of charge and Ohm’s generalized law.
Approximate analytical solutions for the pressure distribution can be derived
by applying the short bearing hypothesis [6,7]. To simplify the problem, in
addition to the short bearing hypothesis the ordinary assumptions of lubrica-
tion theory are applied. Moreover, the flow is assumed to be isothermal. To
reduce Maxwell’s equations, induction effects are neglected, i. e., the mag-
netic Reynolds number is assumed to be zero. Both, the journal and the
slider are considered as rigid bodies. With these assumptions, the pressure
field and therefore the total load can be calculated analytically. Hence, the
equations of motion for the shaft and the slider can be derived and solved
numerically.

2. Journal Bearing

A sketch of the assembly is shown in Figure 1. The radius of the journal
is denoted by r and the inner radius of the bearing by R. The eccentricity
is termed as e, the breadth of the journal in z-direction is b = 2a. The film

y

R

r

h

x e

�

� �

�eer

�

Figure 1. Bearing geometry
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thickness h(ϕ) is due to the eccentricity a function of ϕ = x/R. It is assumed
that the bearing is fixed and that in contrast to the conventional case the shaft
does not rotate, i.e., ω = 0.

As a first case, an externally applied constant magnetic field is oriented in
radial direction. The electric field is applied in z-direction and is harmonically
oscillating: Ez = Êz cos(�t). Both, the journal and the bearing are assumed to
be ideal conductors. Due to the electric field, a periodic current is generated in
the lubrication film. Because of the magnetic field, a Lorentz force is induced
and generates a flow in the gap. Therefore the journal starts to move. Due to
this motion, two hydrodynamic damping forces are produced. The tangential
motion, defined by the angular velocity δ̇, creates the hydrodynamic force Sδ̇.
The radial motion with ε̇ generates the hydrodynamic squeezing force SV . The
rotation of the shaft due to shear forces will be neglected.

Under the assumptions mentioned in the introductory chapter, the balance
of momentum in tangential and axial direction are reduced to (see [2-5,6])

ϕ : 0 =− 1

R

∂p

∂ϕ
+ η ∂

2u

∂y2
− jz By, z : 0 =−∂p

∂z
+ η ∂

2w

∂y2
. (1)

Ohm’s law in z-direction is given by

jz = σ
�
Ez + u By

�
. (2)

p is the pressure, u and w are the tangential and axial velocities, jz is the
current density in axial direction, η is the viscosity and σ the conductivity of
the fluid.

We introduce dimensionless variables (denoted by an overbar) and param-
eters [4] where My is the well–known Hartmann number and ψ, ε correspond
to R − r, e. Integration of the balance of momentum in ϕ-direction leads
in connection with Eq. (2) and the boundary conditions ū( ȳ = 0) = 1 and
ū( ȳ = h̄) = 1 (h̄ = 1+ ε cos(ϕ) describes the dimensionless film thickness) to
the velocity component

ū(ϕ, ȳ) =

�
1

M2
y

∂ p̄

∂ϕ
+ Ēz

My

��
cosh (My ȳ)− sinh(My ȳ) coth(Myh̄)

+ sinh(My ȳ)

sinh(Myh̄)
− 1

�
+ cosh (My ȳ)

− sinh(My ȳ) coth(Myh̄)+ sinh(My ȳ)

sinh(Myh̄)
. (3)
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Integrating ū in y-direction, yields the flow rate q̄ϕ =
h̄�

0
ū d ȳ. Differentiating

q̄ϕ with respect to ϕ and expanding the result into a Taylor series with respect
to My yields an approximation

∂ q̄ϕ
∂ϕ̄

≈ My Ēz

�
−1

4
h̄2 + 1

24
M2

y h̄4

�
h̄ ′ +

�
1− 1

12
M2

y h̄2

�
h̄ ′. (4)

for small Hartmann numbers My . With the boundary conditions w̄( ȳ = 0) = 0
and w̄( ȳ = h̄) = 0, the integration of the balance of momentum in z-direction
leads to

w̄(ϕ, ȳ) =
1

2

�
R

a

∂ p̄

∂ z̄
+ M j̄y

� �
ȳ2 − h̄ ȳ

�
. (5)

The dimensionless flow rate q̄z is found to be

q̄z =

h̄�
0

w̄ d ȳ =− h̄3

12

�
R

a

∂ p̄

∂ z̄
+ M j̄y

�
. (6)

The continuity equation requires

a

R

∂ q̄ϕ
∂ϕ

+ ∂ q̄z

∂ z̄
= 0. (7)

Making use of the short bearing approximation ∂ p̄
∂ϕ
 ∂ p̄

∂z (see e.g. [6]), an inte-
gration in z-direction of the continuity equation with the boundary conditions
p̄(z̄ = 1) = p̄(z̄ =−1) = 0 results in the pressure field

p̄ =
� a

R

�2 6

h̄3

∂ q̄ϕ,1
∂ϕ̄

(z̄2 − 1)+
� a

R

�2 6

h̄3

∂ q̄ϕ,2
∂ϕ̄

(z̄2 − 1). (8)

The first summand p̄1 is the pressure generated by the electric field and the
second one, p̄2, is the pressure created by the tangential motion with δ̇. By
integrating p̄1 over the bearing surface, one gets the tangential and radial com-
ponent of the dimensionless load

SE,δ =
1

4

π�
0

1�
−1

p̄1 sin(ϕ) dz̄ dϕ

=
π

2

� a

R

�2 My Ēz(t̄)

ε
�
1− ε2

� 3
2

��
1− ε2

�2 − �
1− ε2

� 3
2

	
, (9)
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Similarly, the tangential and radial component of the dimensionless load due
to p̄2 are derived:

Sδ̇,δ =
1
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π�
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1�
−1

p̄2 sin(ϕ) dz̄ dϕ =
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�
, (11)
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The pressure distribution due to the radial motion of the shaft with ε̇ is in the
case of the short bearing not affected by the electric and magnetic field. As
shown in [4,5], the dimensionless load SV is given by

S+V =− 4(a/R)2�
1− ε2

� 5
2

�
3ε

2

�
1− ε2 + (1+ 2ε2)

�
π

2
− arctan

	
1− ε
1+ ε


�
(13)

for ε̇ > 0 and

S−V =− 4(a/R)2�
1− ε2

� 5
2

�
−3ε

2

�
1− ε2 + (1+ 2ε2) arctan

	
1− ε
1+ ε

�
(14)

for ε̇ < 0. Now, the equations of motion for the shaft can be derived. Note
that the radial components SE,r and Sδ̇,r are always oriented in negative �er -
direction. The direction of SE,δ oscillates according to the external elec-
tric field. The tangential load Sδ̇,δ acts like a damping force and therefore
against the tangential motion. We assume that gravitation acts in negative
y-direction. The equations of motion in radial and tangential direction are
then given by [4]

r : ε ′′ − ε · δ′2 =−ν �|SE,r | + |S±V | · ε ′ + |Sδ̇,r | · |δ′|
�− ḡ · sin δ, (15)

δ : ε · δ′′ + 2ε ′ · δ′ =−ν �SE,δ + |Sδ̇,δ| · δ′
�− ḡ · cos δ (16)
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with ν = 4aRη
ψ2m�e

and ḡ = g
�2e

, where m is the mass of the shaft and g the

constant of gravitation.
The equations (14) and (15) are coupled, nonlinear ordinary differential

equations with time-dependent coefficients. There exists no rest position ε =
δ = 0. A linearization and a classical stability analysis is therefore impossi-
ble. Hence, the system has been solved numerically using the Runge-Kutta-
Fehlberg-4(5)-method. Figure 2 shows the results of the simulation. As can
be seen, the trajectory reaches a stable limit cycle which shape resembles the
horizontal number 8. Simulations have been carried out for various parameter
data. For realistic system parameters, the trajectories always reached stable
limit cycles. Instabilities or chaotic vibrations have only been detected for
unrealistic data.

As a second case, the externally applied magnetic field is now oriented in
axial direction. The journal and the bearing are assumed to be ideal conduc-
tors, Vy(t)= V̂y cos(�t) is the externally applied terminal voltage between the
journal and the bearing. As shown in [5], the balance of momentum in ϕ- and
z-direction are now given by

ϕ : 0 =− 1

R

∂p

∂ϕ
+ η ∂

2u

∂y2
+ jy Bz, z : 0 =−∂p

∂z
+ η ∂

2w

∂y2
, (17)
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 δ

Figure 2. Shaft motion under axial oscillating electric field; trajectory of the center of the shaft;

parameters: ˆ̄Ez = 2, My = 0.5, a
R = 1

8 , ν = 0.775, ḡ = 0.013.
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and Ohm’s law in y-direction reads

jy = σ
�
Ey − u Bz

�
. (18)

A similar analysis as in the previous section leads to the components of the
dimensionless load

SE,δ = −
� a

R

�2 πMz V̄y(t̄)

3ε
�
1− ε2

� 3
2

��
1− ε2�+ �

1− ε2� 3
2

�
, (19)
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R
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1− ε2� �, (20)
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Sδ̇,r = −
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R

�2 1
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�
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ln
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z ε

�
1− ε2

�2

�
. (22)

The equations of motion are given by (14) and (15). As in the case of the axial
electric field, the trajectory reaches a stable limit cycle. Compared with the
result for the first case, the amplitude is smaller.

3. Slider Bearing

In this section, we consider the slider bearing shown in Figure 3. The bear-
ing is fixed and the slider can only move in y-direction.

In a first case, slider and bearing are assumed to be perfect insulators. The
magnetic field is applied in y-direction, the harmonically oscillating electric
field Ez = Êz cos(�t) is oriented in z-direction. According to the journal
bearing, the film thickness is assumed to be h=�r+e cos ϕ, so that results from
the chapter before (case 1) can be used. The slider has the length L = 2πR and
the breadth b = 2a. Again, appropriate dimensionless variables and parameters
are introduced. The balance of momentum in ϕ- and z-direction and Ohm’s
law in z-direction are given by Eq. (1) and Eq. (2). Integration with respect
to the boundary conditions ū( ȳ = 0) = 0 and ū( ȳ = h̄) = 0 yields the velocity
component ū. Integration of ū over ȳ leads to the dimensionless flow rate in
ϕ-direction

q̄ϕ =
1

M3
y

�
∂ p̄

∂ϕ
+ My Ēz(t)

��
2

�
cosh(Myh̄)− 1

�
sinh(Myh̄)

− (Myh̄)

�
. (23)
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Figure 3. Slider bearing

A Taylor series expansion with respect to My leads for small Hartmann num-
bers My the approximation

∂ q̄ϕ
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�
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The dimensionless flow rate in z-direction is given by Eq. (6). With the conti-
nuity equation (7) and the boundary conditions p̄(z̄ = −1) = p̄(z̄ = 1) = 0, the
pressure distribution is found to be

p̄ =
� a

R

�2 6

h̄3

∂ q̄ϕ
∂ϕ
(z̄2 − 1). (25)

The dimensionless load is then determined by

Sy =

π�
0

1�
−1

p̄ d z̄ dϕ = 2
� a

R

�2
My Ēz(t)

�
ln
(�̄r − 1)

(�̄r + 1)
+ 1

3
M2

y �̄r

�
. (26)

Since the fluid is assumed to be incompressible, negative pressure is physically
impossible. Hence, we integrate only over the possitive part of p̄, i.e., from
0 to π . Sy is the load due to the oscillating electric field. Next, we consider
the load due to the motion of the slider in y-direction, i.e., the load due to
squeezing. The calculation for the slider bearing is similar to that for the
journal bearing. Details can be found in [4]. The result is given by

Sy,V = 16
� a

R

�2
�̄r ′

π(2�̄r2 + 1)

(�̄r2 − 1)5/2
with �̄r ′ =

∂�̄r

∂ t̄
. (27)

Formula (27) is only valid for �̄r ′ < 0, i.e., for the motion of the slider in
negative y-direction. For �̄r ′ > 0, Sy,V is assumed to be zero. With these
results, the equation of motion for the slider reads

�̄r ′′ − κ
�
|Sy(�̄r ′, t̄)| + |Sy,V |(|�̄r ′| − �̄r ′)

2�̄r ′

�
− Ḡ = 0 (28)
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with the dimensionless parameters κ = ηRa
ψ2me�

and Ḡ = g
e�2 , where m is the

mass of the slider.
An analytical solution of the ordinary differential equation (27) cannot be
found. Since the coefficients of this differential equation are time-dependent,
there exists no rest position �r = const . As in the case of the journal bearing,
a numerical integration is necessary. The numerical integration shows a stable
limit cycle. Simulations with other parameters also lead to a periodic limit
cycle. Instabilities have not been detected.

The magnetic field is now applied in z-direction. Journal and bearing are
assumed to be ideal conductors. Vy(t) = V̂y cos(�t) is the terminal voltage
between the journal and the bearing. The balance of momentum in ϕ- and
z-direction and Ohm’s law in z-direction are given by the equations (17) and
(18). The calculation of the dimensionless load resembles the calculation for
the first case in this section and leads to the same equation of motion for the
slider. The dimensionless load due to the oscillating terminal potential is now
found to be

Sy =

π�

0

1�

−1

p̄ d z̄ dϕ =
4

9

� a

R

�2 Mz V̄y(t)

(�̄r2 − 1)

�−6+ M2
z (�̄r2 − 1)

�
. (29)

Sy,V is again given by (27). As in the case of the applied axial electric field, the
trajectory reaches a stable limit cycle, no instabilities occur. Figure 4 shows a
numerical result for case 2.

4. Conclusions

Vibrations of a rigid rotor supported in short MHD journal bearings with
time-dependent electric fields were investigated. Furthermore, the oscillations
of slider bearings have been examined. The equations for the fluid film were
solved analytically. The oscillations of the shaft and the slider, respectively,
were reduced to a system of nonlinear inhomogeneous ordinary differential
equations with time-dependent coefficients. There exist no equilibrium po-
sitions so that a linearization and a classical stability analysis is impossible.
The system is solved numerically. Basically, the dynamic system is capable to
exhibit chaotic vibrations but for realistic system data, there exist stable oscil-
lations with periodic limit cycles.
The analysis shows the possibility of a hydrodynamic levitation without a ro-
tating shaft or tangentially moving slider, which is in the framework of the
ordinary bearing theory not possible. Due to the simple controlling of the
assembly, applications can be seen in several fields, among others in micro
devices.
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Abstract: In this paper we describe the dynamics of MEMS oscillators that can be used 
as frequency filters.  The unique feature of these devices is that they use 
parametric resonance, as opposed to the usual linear resonance, for frequency 
selection.  However, their response in the parametric resonance zone has some 
undesirable features from the standpoint of filter performance, most notably 
that their bandwidth depends on the amplitude of the input and the nonlinear 
nature of the response.  Here we provide a brief background on filters, a 
MEMS oscillator that overcomes some of the deficiencies, and we offer a 
description of how one might utilize a pair of these MEMS oscillators to build 
a band-pass filter with nearly ideal stopband rejection.  These designs are 
made possible by the fact that MEMS devices are highly tunable, which allows 
one to build in system features to achieve desired performance. 

Key words: MEMS, parametric resonance, filters. 

1. Introduction 

As the demand for wireless communications technology continues to 
increase, so too does the demand for effective and efficient band-pass filters, 
as these devices, which pass signals with frequency components inside a 
specific bandwidth while attenuating those outside of it, are often integral 
components of such technology.  While much research has been done on the 
design and performance of conventional electrical band-pass filters (for 
example, [1]), and their mechanical analogs (for example, [2]), the 
aforementioned demand for increased performance has led to a search for 
other alternatives.  One that has shown early promise is to create 
microelectromechanical systems (MEMS) filters [3].  These micro-scale 

© 2005 Springer. Printed in Great Britain. 
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components are more desirable than their more conventional counterparts 
primarily due to their size, low power consumption, and ease of integration 
with electrical systems.  Equally important is the fact that MEMS filters have 
been shown to exhibit quality (Q) factors as high as 80,000 (as reported in 
[4]).  More relevant to the present work are the inherent parametric 
resonances that occur in certain types of MEMS, which are shown here to be 
potentially advantageous in filtering applications. 

Figure 1. Key features of the transmission frequency response of a band-pass filter.  (Adapted 
from [4]) 

2. Filter Basics 

Here we highlight the key features to consider when designing a band-
pass filter.  Ideally, one would like a device that transmits a harmonic signal 
essentially intact if its frequency is in a prescribed bandwidth, and 
completely attenuates the signal if it is outside of the bandwidth.  Virtually 
all filter designs make use of a chain of linear resonators, either electrical [1] 
or mechanical [2].  Figure 1 depicts a sample frequency response 
transmission function for such a filter, where the following features are 
noted: 
– The center frequency of the passband. 
– The bandwidth of the passband – the range of frequencies to be passed 

through the filter. 
– The stopband attenuation – the amount by which the signal is reduced 

outside of the passband. 
– The insertion loss – the drop-off in signal amplitude as it passes through 

the filter. 
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– The sharpness of the roll-off – the width of the frequency range between 
the edges of the passband and the stopband. 

– The flatness of the passband response, which typically has ripples. 

3. Parametric Resonance for Filtering 

As previously mentioned, one of the interesting features of MEMS 
oscillators is that, when driven by non-interdigitated comb drives, such as 
those shown in Figure 2, they exhibit parametric resonances [5].  The 
existence of such resonances can be traced to the fact that the electrostatic 
driving and restoring forces acting on such a device result in a fluctuating 
effective stiffness.  While the parametric instability caused by such 
fluctuations may be undesirable in many applications, the nearly 
instantaneous jumps that occur in the response amplitude when the 
parametric resonance is activated may prove to be highly beneficial for 
filtering, since they result in nearly ideal stopband rejection as well as an 
extremely sharp response roll-off outside of the resonance zone.  Of course, 
the use of parametric instability for filtering is not without difficulties.  
Among the most obvious drawbacks are: 
– The bandwidth depends on the excitation amplitude. 
– There can exist non-trivial responses outside of the passband. 
– There is a nonlinear input/output relationship. 
– Higher order resonances may occur. 

Fortunately, by employing a novel tuning scheme in conjunction with a 
specific logic implementation, the effects of most of these drawbacks can be 
largely overcome.  We begin by describing the tuning for a single MEMS 
oscillator, and then turn to a design that makes use of two such devices. 

4. Analysis of a Single MEMS Oscillator 

In an attempt to gain a better understanding of the benefits and 
drawbacks of a parametrically excited MEMS band-pass filter, as well as 
how the drawbacks can be overcome, consider the response of a single DOF 
MEMS oscillator, such as the one depicted in Figure 2.  This device consists 
of a backbone (essentially, the mass) suspended by folded beam springs 
which is activated by a pair of non-interdigitated comb drives, very similar 
to the devices considered in [6], [7] and [8].    
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Figure 2. CAD drawing of a parametrically excited MEMS filter device. 

The equation of motion for this device can be expressed as [7]:

0),()( =+++ txFxFxcxm esr��� .

The elastic restoring force can be accurately modeled by a cubic function 
Fr(x) = k1 x + k3 x

3, where typically the system is mechanically hardening (k3

> 0).  The electrostatic driving and restoring forces are assumed to be 
generated by two separate, essentially frictionless, non-interdigitated comb 
drives, one providing a DC input voltage V0 and the other driven by a 
square-rooted AC signal of amplitude VA.  Again, cubic functions in 
displacement, proportional to the square of the applied voltage, provide an 
accurate model [7]: 

( ) ( ) ( ))cos(1),( 23
31

2
0

3
3010 tVxrxrVxrxrtxF AAAes ω++++= .

Note that one can design combs such that any combination of signs on the r
coefficients is possible (although their magnitudes are limited).  Time is 
rescaled according to τ = ω0t, where ω0 = (k1/m)1/2, and the displacement is 
rescaled by a characteristic displacement, x0, (for example, the length of the 
oscillator backbone), such that ε1/2z = x/x0, where ε is a scaling parameter 
introduced for the analysis.  The result is a non-dimensional equation of 
motion for the oscillator of the form 

( ) ( ) 0)cos()cos(12 33
3

11 =Ω+++Ω+++′+′′ τλνχετελενεζ zzzz

where (•)′ denotes d(•)/dτ and the nondimensional parameters are defined in 
a manner consistent with the above scaling.  With this non-dimensional 
equation, the oscillator’s response can be examined as system parameters 
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and inputs are varied.  For example, the parametric resonance instability 
zone that exists in the VA versus Ω parameter space is shown in Figure 3 (it 
is the boundary designated by ρ = 0) as created using both perturbation 
analysis (described below) and simulations. 

As Figure 3 shows, the instability zone that exists for this particular 
oscillator is a ‘wedge of instability’ with its apex centered at a non-
dimensional frequency of 2.  In this case, the zero response is stable 
‘outside’ of the wedge, while ‘inside’ of the wedge the trivial response is 
unstable, thereby leading to a non-zero response amplitude that is 
determined by the system nonlinearity.  Of course, the response outside of 
the wedge may be zero or non-zero, depending on the damping, whether the 
system is hardening or softening, and on initial conditions.  Another 
important feature to note here is that the frequency at which the filtering 
takes place is at twice the natural frequency of the device, and therefore one 
gets double the filter frequency as compared with using the same device as a 
filter using direct excitation.  We now turn to addressing the amplitude 
dependent nature of the bandwidth. 

5. Tuning for Constant Frequency Instability 

As shown, the frequency at which the oscillator is activated depends on 
the amplitude of the alternating voltage.  However, this can be overcome by 
employing the following tuning scheme, wherein the natural frequency of 
the oscillator is made to depend on the amplitude of the excitation, by 
varying the linear electrostatic stiffness.  To begin, a proportionality 
constant, α, is defined that relates the DC voltage input to the AC voltage 
amplitude, such that V0 = αVA, which results in a linear electrostatic stiffness 
that depends on α, the r1’s, k1, and the input voltage VA.  Substituting this, as 
well as the other redefined coefficients, back into the non-dimensional 
equation of motion results in a modified equation of motion for the 
oscillator, 

( ) ( )( ))cos()cos(2 33
3 τλνχρςε Ω+++Ω++′−=+′′ ztzAzzz

where the linear excitation amplitude is redefined such that A = λ1 and a new 
tuning parameter ρ is introduced which relates the effective electrostatic 
linear stiffness to the amplitude of excitation.  It is related to the designer-
selected parameters via, 
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This parameter allows for the distortion of the instability zone, by changing 
the linear natural frequency ωn = (1+ερA)1/2  in a manner that depends on A.
The result of this tuning is a rotation of the wedge of instability; see Figure 
3.  In particular, for ρ > 0 the wedge rotates clockwise and for ρ < 0 it 
rotates counterclockwise.  Also, perturbation theory and simulations, created 
using design parameters similar to those in [6-8], have verified that by 
selecting ρ = 1/2 the left stability boundary becomes essentially vertical, as 
shown in Figure 3, and, similarly, by selecting ρ = -1/2 the right stability 
boundary becomes essentially vertical. 

The ρ = 1/2 case makes the oscillator behave like a high pass switch, 
while the ρ = -1/2 case constitutes a low pass switch.  However, one must 
take into account the nonlinear nature of the response, and the fact that there 
may exist nontrivial responses outside of the instability zone.  Also, the 
response, once activated, may not exist for all frequencies above or below 
the desired switch frequency.  These issues, which depend on the system 
nonlinearities, are considered subsequently.  Also note that the presence of 
damping creates a threshold voltage level above which the device will 
function, due to the parametric instability.  This is not a major concern here, 
though, since the damping levels of these devices are anticipated to be very 
low (with Q’s in the thousands).  The main point here is that this tuning 
capability makes it theoretically possible to create amplitude independent 
switches over a reasonable range of input voltages. 
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6. Tuning the Nonlinearity 

Another desirable feature of MEMS devices is that one can tune the 
system nonlinearity using the nonlinear nature of the electrostatic forces 
exerted by the comb drives [6, 7].  This is crucial for achieving the desired 
behavior of non-trivial solutions outside of the passband.  Specifically, the 
cubic nonlinearity of each oscillator can be specified, and it is desired that 
the high pass oscillator (with ρ = 1/2) have a hardening behavior, so that no 
nontrivial responses exist below the switch frequency.  Similarly, the low 
pass oscillator (with ρ = -1/2) should have softening behavior.  In order to 
consider these responses, we turn to the equations of motion and examine the 
response using a perturbation method.  

The system’s averaged equations are given by 

( ) ( )[ ]ψλςε 2sin28
8
1

3
2aAaa ++−=′

( ) ( ) ( )[ ]ψλσρνχεψ 2cos2443
8
1

3
2

3
2 aAAa ++−++=′

where a is the response amplitude of the averaged solution, ψ is the phase of 
the averaged solution, and σ is a detuning parameter defined such that Ω0 = 
2+εσ.  Note that the form of these equations is not the typical nonlinear 
Mathieu equation, due to the presence of the parametric excitation that acts 
on the nonlinearity, which affects the nature of the nonlinear responses.  
Using these equations the theoretical instability curves shown in Figure 3 
were generated.  Likewise, these equations can be solved to produce 
approximate analytical response curves, examples of which are shown in 
Figure 4 for a ρ = 1/2 oscillator with a hardening nonlinearity.  Simulation 
data is also shown, verifying the accuracy of the response predictions, which 
is especially good at low input voltages.  The key feature here is that the 
system behaves like a high pass filter with a very sharp transition at a 
frequency that is independent of the input voltage amplitude.  Note that no 
secondary instabilities that would lead to more complicated dynamics, such 
as chaos, are predicted by analysis or seen in simulations.  If this occurred, 
an upper bound on the input voltage may need to be imposed.  In addition, it 
should be noted that any difficulties that may arise due to the overlapping of 
the nontrivial response branch and a stable trivial solution are negated 
through the logic implementation described below.    
 As shown in previous works [6-8] the aforementioned nonlinear tuning 
can be accomplished by varying the oscillator’s cubic electrostatic stiffness.  
In the proposed design this may be done in a couple of ways:  by altering the 
AC/DC voltage relationship (although the parameter α is used here to set the 
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value of ρ, and thus another set of combs may be required), or by selective 
design of the combs to achieve the desired values for the nonlinear 
electrostatic coefficients (r3O and r3A).  These are current research topics 
under consideration. 

Response Amplitude vs. Nondimensional Frequency
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Figure 4. Sample response curves – amplitude vs. frequency. 

7. Combining Two Oscillators into a Band-Pass Filter 

A possible implementation scheme for a band-pass filter is represented in 
Figure 5.  In this system, the idea is to generate a band-pass filter with a 
center frequency of Ω0 and a bandwidth of ∆Ω0, where ∆ represents a small 
number that prescribes the bandwidth to a percentage of the center 
frequency.  To accomplish this, two oscillators, which are ideally isolated to 
avoid internal resonances, are employed, one with ρ = 1/2 and a hardening 
nonlinearity, which will be designated as ‘H’, for high pass, and another with 
ρ = -1/2 and a softening nonlinearity, which will be designated as ‘L’, for 
low pass.  To develop the specified bandwidth in the final system, these 
oscillators must be specially tuned so that the apexes of each of the 
respective wedges are slightly shifted.  Specifically, the zero-voltage linear 
frequencies are designed such that the H oscillator’s frequency is ∆Ω0/2
below the center frequency and L’s is ∆Ω0/2 above it. 

We now take the two oscillators, tuned using the electrostatic linear and 
nonlinear tunings described previously, and also tune their zero-voltage 
frequencies as described immediately above, so that the desired ‘H’ and ‘L’ 
characteristics are achieved.  These are then incorporated into a MEMS with 
the logic indicated in Figure 5 below. 
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Figure 5. Hardware implementation scheme. 

This filter system is designed to work as follows.  A harmonic signal R is 
input into the system.  This input is used to drive the two oscillators, and, in 
addition, its amplitude A is determined using block F (an AC to DC 
converter).  A is used as an input to tune the oscillators through the 
parameters ρ = ±1/2.  The oscillators are designated by blocks H and L, each 
of which shows a simple logic diagram in A - Ω space, showing 0 where the 
response must be trivial, 1 where it must be nontrivial, and ? where it may be 
either, depending on parameters and initial conditions.  After each oscillator 
does its respective filtering, its output is sent to another block F which 
converts the output signal into a constant voltage, say unity or zero, 
depending on the results of the filtering.  The two resulting voltages are then 
fed into an AND block which produces a zero voltage unless the frequency 
is in the desired passband.  The output of the AND block provides a signal to 
an enabling device P which allows the signal to pass only if it sees a nonzero 
enabling signal.  The amplitude dependent linear tuning makes the edges of 
the stopbands independent of the voltage amplitude (above a certain small 
threshold), and the nonlinear tuning and the logic ensure that the output of 
the AND gate is as desired.  This produces a MEMS filter with ideal 
stopband rejection and essentially infinitely sharp roll-off characteristics. 

8. Conclusion 

This paper outlines a means of achieving a band-pass filter using 
parametric resonance in MEMS.  The main features of the system are 
achieved through the highly tunable nature of these devices.  However, 
several topics remain to be resolved for the final realization of such a filter.  
First, the input/output relationship for parametric resonance is nonlinear; 
while the logic shown in Figure 5 may overcome this obstacle, simpler logic 
may be possible if one can somehow ‘linearize’ this relationship.  Also, the 
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existence of higher order parametric resonances remains an issue [5], 
although this issue may be addressed by specifying the damping level such 
that they do not occur over operational ranges of voltage.  In addition, the 
insertion loss of such a device must be considered to ensure that the overall 
signal drop-off is acceptable.  Finally, since the input considered here is 
idealized, future works will need to consider more realistic inputs, including 
those which feature noise.  The implementation of the linear and nonlinear 
tuning described herein in an actual device is currently underway.  The 
ultimate goal is, of course, the integration of the two MEMS oscillators, with 
the described tuning features, and the logic of Figure 5 onto a single filter 
chip.
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Abstract: In case of highly interrupted machining, the ratio of time spent cutting to not 
cutting can be considered as a small parameter. In these cases, the classical 
regenerative vibration model playing an essential role in machine tool 
vibrations breaks down to a simplified discrete mathematical model. The linear 
analysis of this discrete model leads to the recognition of the doubling of the 
so-called instability lobes in the stability charts of the machining parameters. 
This kind of lobe doubling is related to the appearance of period doubling 
vibration or flip bifurcation. This is a new phenomenon occurring primarily in 
low-immersion high-speed milling along with the classical self-excited 
vibrations or secondary Hopf bifurcations. The present work investigates the 
nonlinear vibrations in case of period doubling and compares this to the well-
known subcritical nature of the Hopf bifurcations in turning processes. Also, 
the appearance of chaotic oscillation ‘outside’ the unstable period-two 
oscillation is proved for low-immersion high-speed milling processes. 
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1. Introduction 

High-speed milling is one of the most efficient cutting processes 
nowadays. In the process of optimizing this technology, it is a challenging 
task to explore its special dynamical properties, including the stability 
conditions of the cutting process, and the nonlinear vibrations that may occur 
near to the stability boundaries. These dynamical properties are mainly 
related to the underlying regenerative effect in the same way as it is in case 
of the classical turning process having complicated but well-studied and 
understood stability properties. Still, some new phenomena appear for low-
immersion milling as predicted by Davies et al. (2000, 2002) and Bayly et al. 
(2001). Insperger and Stépán (1999, 2000a,b) also described these 
phenomena in case of milling independently from the immersion or speed 
characteristic of the milling processes. 

High-speed milling has specific properties like small tool diameter, low 
number of milling teeth (2, 3 or 4), and high cutting speed. Together, all 
these lead to the so-called highly interrupted cutting. This means that, most 
of the time, none of the tool cutting edges is in contact with the work-piece, 
while cutting occurs during those short time-intervals only when one of the 
teeth hits the workpiece. Actually, the time spent cutting to not cutting may 
be less than 10%, so it can often be considered as a small parameter. 

For the case of highly interrupted cutting, the short contact periods 
between the tool and the workpiece can be described as kind of impacts, 
where the linear impulse coming from the cutting force contains, again, a 
past-effect, i.e., the regenerative effect still has a central role, even in high-
speed milling. The corresponding mathematical model is similar to that of an 
impact oscillator, but it also involves time delay. The governing equations of 
the tool free-flights and the subsequent impacts can be solved analytically, 
and a closed form nonlinear Poincare mapping can be constructed. 

In the subsequent sections, the simplest possible, but still nonlinear 
highly interrupted cutting model is described. The resulting discrete 
mathematical model is two-dimensional and nonlinear. The linear stability 
analysis is presented in the same form as it appears in the specialist 
literature. The bifurcation analysis is carried out along the stability limit 
related to period doubling bifurcation. This requires center manifold 
reduction and normal form transformation. The tedious algebraic work can 
be carried out in closed form and it leads to a phenomenon similar to the one 
experienced in the case of the Hopf bifurcation in the turning process.  

It is suspected that chaotic oscillations may occur for those technological 
parameters of turning where the stationary cutting is unstable, or unstable 
periodic orbits arise ‘around’ stable stationary cutting (Stépán, 2000). In a 
similar way, chaotic oscillations are experienced also for high-speed milling. 
The existence and the structure of these chaotic oscillations are proved and 
explained for the introduced nonlinear discrete model of high-speed milling 
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in those parameter domains where the stationary cutting loses its stability via 
period doubling bifurcation. 

2. Mechanical Model 

The simplest possible one degree-of-freedom (DOF) model of highly 
interrupted cutting is presented in Figure 1 (for a 2 DOF model see Altintas 
and Budak, 1995). Here, the number of the cutting edges is one only, and it 
is in contact with the workpiece material periodically with time period �� The 
time it spends in contact is �� where �<<1 is the ratio of time spent cutting to 
not cutting. Clearly, the time delay � is the time period of the tool revolution 
over the number z of cutting edges for cases of more edges than one. If Ω
denotes the tool angular velocity then �=2π/(zΩ).

Figure 1. Mechanical model of highly interrupted cutting, and nonlinear cutting force 

The elastic tool is characterized by the angular natural 

frequency mkn /=ω , the relative damping factor )2/( nmb ως = , and the 

frequency 21 ζωω −= nd  of the damped oscillation. 

The theoretical chip thickness is 0h . The actual chip thickness is either 
zero for no contact, or 

)()()( 0 jjj txtxhth −−+= τ , (1) 

where ρτ−jt  is the initial time instant of the jth contact period between the 

tool and the workpiece (j=1,2,…). We consider that the contact time �� is so 
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short that the position of the tool, and also the chip thickness, does not 
change during this time. This approximation is analyzed and justified by 
Davies et al. (2001), and confirmed experimentally by Bayly et al. (2001). 

Thus, the equations of motion can be constructed for the two parts of the 
tool motion in the following way. For the free flight of the tool, we have 

),[,0)()(2)( 2 ρττωζω −−∈=++ jjnn ttttxtxtx ���  (2) 

with initial conditions  

)(),()( 11111 −−−−− =−≈= jjjjj txvtxtxx �ρτ , (3) 

where, again, we consider that the position of the tool does not change much 
during the short contact period. For the contact period, we have 
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τ
τ
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, ),[ jj ttt ρτ−∈  (4) 

where the usual condition of the classical impact theory is applied: all the 
forces except the contact ones (actually, except the cutting force) are 
negligible. The initial conditions are as follows 

)(),()( ρτρτ −=≈−= −
jjjjj txvtxtxx � . (5) 

The nonlinear cutting force can be calculated in accordance with the 
experimentally verified ¾ rule: 
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where w is the chip width and K is an experimentally identified parameter. 
The Taylor series of this cutting force with respect to the chip thickness 
deviation jj xx −−1  assumes the form 
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where the stationary cutting force 0F  and the so-called cutting coefficient 

1k  assume the form 

4/1
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1
4/3

00 4
3

,
h

Kw
kKwhF == . (7) 

In addition, the nonlinear cutting force characteristics shown in Fig. 1 have 
an important non-smooth property for large oscillations: the cutting force 
becomes zero at negative chip thickness values. This means, that the delay-
effect is switched off when the tool actually leaves the workpiece. 

3. Nonlinear Discrete Map 

The solution of the impact equation (4) for the time interval ρτ assumes 

the form Fvvm jj ρτ=− − )( , that is 
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where jx  and −
jv  can be calculated as a linear function of 1−jx  and 1−jv

by means of the well-known solution of the equation of motion (2) of the 
free damped oscillation of the tool with the initial conditions (3). 

With the above-determined coefficients we can construct the nonlinear 
discrete model 
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where the coefficients bhk are determined from Eqns. (2), (3) and (8), and 
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In the above formula, the phase angle satisfies 21tan ζε −= �� .

4. Stability Chart 

The linear stability analysis of stationary cutting is based on the 
characteristic equation of the linear part of the difference equation (9): 

0)det( =− AIλ . (10) 

In stable cases, the characteristic multipliers 2,1λ  are located in the open unit 

disc of the complex plane. The stability boundaries in the stability chart of 
Fig. 2 are calculated from the condition 

12,1 =λ . (11) 

The analysis of (10) with (11) shows that there are two kinds of loss of 
stability. The stability conditions are constructed with respect to the 
dimensionless parameters 
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Period doubling (or flip) bifurcation occurs when 11 −=λ  at 
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The bifurcations along the stability limits can be distinguished with the help 
of the dimensionless vibration frequencies of the self-excited vibrations 
above the stability chart of Fig. 2. The full structure of these frequencies is 
presented in Insperger et al. (2003) experimentally, too.  
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Figure 2. Stability chart of high-speed milling 

5. Subcritical Bifurcations 

At the stability boundary of period doubling vibrations, the eigenvalues of 

the coefficient matrix A are ( ))cos()(e,1 21 τωτζωλλ τζω
dnshn +=−= − .

With the help of the corresponding critical eigenvectors s1 and s2 of the 
matrix A, and the 2nd degree approximation of the center manifold, the 
perturbed 3rd degree normal form of the iteration restricted to the 1-
dimensional center manifold can be determined in the scalar form 
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The implicit differentiation of the characteristic equation (10) with respect to 
the chip width w results 
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which means that the characteristic root crosses the unit circle at –1 with 
negative speed as the chip width increases. This corresponds well to the 
stability chart in Fig. 2 that shows instability for increasing chip width. 

The result of a long algebraic calculation gives 
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Since the sign of δ  is always negative, the flip bifurcation is subcritical.
This means that unstable period-2 motion exists locally around the stable 
period-1 motion (which is the stable fix point of the iteration). This 
bifurcation can also be found in the numerically constructed bifurcation 
diagram of Fig. 3 at the dimensionless chip width about 0.06. 

The numerical solutions present, however, stable period two oscillations, 
too, and their further bifurcations into chaotic oscillations. These stable 2-
period oscillations cannot be found with the local bifurcation analysis. Still, 
these oscillations can be given in closed form as explained in the subsequent 
section. 

Figure 3. Bifurcation diagrams at =Ω~z 2.2 and 2.4, see section a) and b) in chart Fig. 2 

6. Global Period-Two Oscillation 

It is likely, that ‘outside’ this unstable limit cycle, there is a region where 
the tool leaves the workpiece, more exactly, it does not enter the workpiece 
at each revolution. The recognition of this kind of structure of the oscillation 
is quite obvious from the structure of the global attractor of the turning 
process (see Stépán, 2001). The new period two motion can be found by 
analyzing another discrete map obtained from the chaining of 2-period-long 
free-flights and one impact. This discrete map will have a very similar 
structure to that of the one in (9), but its linear part assumes the form: 
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This formula clearly shows the change in the linear part of the mapping (9): 
all the time periods are doubled to 2τ, and one impact period is added as 
before. The fixed point of this mapping does not reflect necessarily the 
existence of the corresponding period two oscillation: it has to be checked 
whether the amplitude of the oscillation is really greater than h0 at every 
second round, that is it really misses the workpiece. The detailed algebraic 
analysis of this condition can be found in Szalai (2002), and the result agrees 
with that of the simulation in Fig. 3. For example, it exists for ≥w~ 0.053 
where one branch of the dimensionless vibration amplitudes is at 

1/~
0 >= hrr (the cutting edge misses the workpiece), indeed, while the 

other branch of the same period two motion runs much below 1. 
Szalai (2002) also investigated analytically the stability of these period 

two solutions as the fix points of the linear map given by A(2). For example, 
this ‘global’ period two oscillation loses stability at about ≥w~ 0.09 via a 
subcritical Neimark-Sacker bifurcation. As the simulation results show, 
further bifurcations lead to chaotic oscillations. This cascade of bifurcations 
could not be followed further analytically, but still, the existence of the 
chaotic oscillation can be proved at section b) of the stability chart in Fig. 2. 
Again, numerical simulation helped to construct the 2nd bifurcation diagram 
of Fig. 3 at the given parameter point. This is analyzed in the next section. 

7. The Chaotic Oscillation 

Numerical simulations presented in Fig. 3 clearly confirm the analytical 
predictions about the existence and stability of stationary cutting and period 
doubling vibrations. For example, there is a parameter region at about 

≈w~ 0.107 where both existing period one and two oscillations are unstable. 
The simulation shows that the actual motion is quite random ‘around’ them. 
We will prove in this section, that the present dynamics is isomorphic to a 
subshift of finite type on the space of two-symbol bi-infinite sequences.  

The construction is as follows. The map in Fig. 4 is constructed from 
every 2nd iterate of the dynamics, and the so-called switching line separates 
two domains of the phase space of displacement and velocity. Above the 
switching line the tool actually misses the contact with the workpiece at 
every 2nd round, while below this line, the tool hits the workpiece at each 
period. Clearly, the inner unstable period one oscillation is then represented 
by the fixed point P1, while the outer unstable period two oscillation having 
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two free-flights and one impact is represented by the fixed point P2. They are 
both saddle like. 

So we take the second iterate of the general map, and we call it f. This 
means that the originally orientation reversing fixed point P1 will become 
orientation preserving. The ‘outer’ period two point P2 remains orientation 

reversing for its unstable manifold u
PW

2
, because it is originally defined for 

every contact, which is in every second period while we remain above the 
switching line. This property is responsible for the attractive feature of the 
invariant Cantor set, because points above the switching line sooner or later 
will be mapped below this line.  

The unstable manifolds 
{ }

u
PW

2,1
 and the stable ones 

{ }
s
PW

2,1
 of the two 

periodic points are presented in Fig. 4, whose orientation is essential. For 
regularity, we need the contracting direction to be somewhat parallel to the 
switching line, and the expanding direction needs to be perpendicular to that. 
In addition, we fit rectangles along the stable manifolds in a way that there is 
enough space around them. The intersection points of the unstable manifolds 
with the switching line are denoted by A and D. So the condition, which 
guarantees the regularity, is that the first intersection of stable manifolds 
with the switching line should not be between the points A and D.

Figure 4. The chaotic iteration between two saddle points of two unstable oscillations

The map takes A into B, B into C, i.e., B=f(A) and C=f(f(A)). We put a 

rectangle H0 along u
PW

2
 between A and C with width sufficiently small to 

have its lower horizontal boundary mapped below s
PW

2
. Since we choose a 
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sufficiently thin rectangle it suffices that f(C) is below s
PW

2
. From regularity 

and the orientation reversing property of 2P , it follows that the image of the 
corresponding rectangle V0 transversally intersects the stable manifold of the 

period two point. The other rectangle H1 is placed along s
PW

2
, which should 

be thin and long enough to be mapped into V1 after a finite number of 
iteration. V1 must intersect both horizontal rectangles (H{0,1}) transversally. 

Check also that the map is homeomorphism on each ji VH ∩ , { }1,0, ∈ji .

This can be shown by a straightforward application of the inverse function 
theorem. Clearly, there is an invariant Cantor set  
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such that the dynamics on I is isomorphic to the left shift on the symbol 
space restricted by the transition matrix  

⎟⎟⎠

⎞
⎜⎜⎝

⎛
11

10

.

This matrix is irreducible. Consequently (see Wiggins, 1988), the periodic 
points in I are dense, there is also a dense orbit in I, and the dynamics is 
topologically transitive, ergodic and mixing in I. This may complete the 
proof of the existence of the chaotic oscillation. 

8. Conclusion 

The non-linear analysis of the highly interrupted low immersion milling 
showed that the period doubling bifurcation is subcritical, similar to the 
Hopf bifurcation results of Stépán and Kalmár Nagy (1997) or Kalmár-Nagy 
et al. (2001) obtained for regenerative machine tool vibrations in case of 
turning. The approximate amplitude of the unstable period two vibration was 
also determined in closed form. This gives a useful estimation for the 
domain of attraction of stable stationary cutting in case of high-speed 
milling. 

Also, the existence and the stability of another, global period two 
oscillation was shown and determined. In those parameter domains of 
cutting speed and chip width, where both the local and the global period two 
oscillations as well as the stationary cutting are unstable, the existence of 
chaotic oscillations were proved. The analytical predictions were supported 
and also confirmed by numerical simulation. 
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Abstract: We consider a simple model of a wheelset that supports one end of a railway
freight wagon by springs with linear characteristics and dry friction dampers.

We extend our earlier results to more realistic models, so in this presenta-
tion the linear kinematic contact relation in an earlier paper [True and Asmund,
2002] is replaced by the nonlinear rail/wheel contact geometry between a UIC60
rail and an S 1002 wheel profile. In addition we add a linear restoring force to
control the yaw motion and finally add the axle side bearings to limit the max-
imum amplitude of the yaw oscillations. Stick-slip and hysteresis are included
in our model of the dry friction.

The resulting dynamics is nonperiodic and most likely chaotic. A bifurca-
tion diagram and some interesting types of apparently chaotic motion are pre-
sented and discussed.

Key words: Chaos, nonlinear dynamics, railway vehicle dynamics.

1. Introduction

True and Asmund [True and Asmund, 2002] investigated the dynamics
of a simplified model of a wheelset of a freight wagon. The wagon runs on
an ideal, straight and level track with constant speed. They investigated the
lateral dynamics of the wheelset in dependence on the speed, which is the
bifurcation parameter in the problem. The wheels had a conical profile, no
flanges and ran on a rail profile which was shaped as an arc of a circle. The
wagon is supported horizontally by linear springs and dry friction dampers. It
turned out that the wheelset derailed in large speed intervals. In this article the
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dynamical model will be improved in steps until the wheelset stops derail-
ing. In this way we shall gain insight into the functions of each of the single
components in the suspension and their dynamical interactions. At the same
time we shall explore some interesting nonperiodic oscillations that are cre-
ated by the interactions between the nonlinear contact geometry, the nonlinear
rail/wheel contact forces, the nonlinear stick-slip of the dry friction forces and
the impacts between the axleboxes and the side bearings.

2. The Vehicle Model

The original dynamical multibody system was formulated by True and As-
mund [True and Asmund, 2002] see figure 1. It is assumed that all elements
with exception of the suspension elements are ideally rigid and that the springs
have linear characteristics. A new model for the dry friction dampers was for-
mulated in the article by True and Asmund [True and Asmund, 2002]. The
bogie frame can turn horizontally in a frictionless pivot in the bottom of the
car body.

In this article the rails are UIC60 rails with a cant of 1/40 and the wheels
have DSB 97-1 wear profiles. The contact is assumed to be Hertzian. Since we
only investigate the horizontal dynamics it is assumed that the normal forces
are equally distributed. The equations of motion are formulated in a coordinate
system, that moves along the centre axis of the track with the constant speed of
the wagon. Since we are interested in the lateral and yaw motions we assume
that the normal forces are constant and the wheels and the rails remain in

Figure 1. A diagram of the single-axle bogie model.
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contact. We use the approximation by Shen, Hedrick and Elkins [Shen et
al., 1984] for the calculation of the creep forces. The creep forces depend
nonlinearly with a decreasing gradient on the creepage and for high creepage
they reach a saturation value, which corresponds to pure Coulomb friction.
The wheel-rail contact points are calculated by W. Kik’s routine RSGEO.

We have included stick-slip and hysteresis in our model of the dry friction
and assume that Coulomb’s friction law holds during the slip phase. We focus
on the lateral dynamics so we neglect vertical springs and dampers. We thus
have three important nonlinearities in our problem: The nonlinear creep-creep
force relation, the nonlinear kinematic contact condition and the hysteresis
with stick-slip of the dry friction dampers.

The model system has three degrees of freedom: Lateral (x-) translation
of the car body and the wheelset and yaw of the bogie around the frictionless
pivot in the bottom of the car body.

The nonlinear dynamical system becomes a system of a six first order dif-
ferential equations with time t as the independent variable. The dependent
variables in our problems are:

x1 The lateral translation of the wheelset

x2 The lateral speed of the wheelset

x3 The yaw angle of the wheelset

x4 The speed of the yaw rotation

x5 The lateral translation of the car body

x6 The lateral speed of the car body

As an example of the calculation of the forces we show the calculation of
the lateral forces that act upon a wheelset.

Fwheel = Fwheel,l · sech[(x2 − x6)α]+ Fwheel,h · (1− sech[(x2 − x6)α]);
Fwheel,l = Fin − νN · signFin + Finmwheel/(mK + mwheel) for |Fin | > νN ;
Fwheel,l = Fin/(mb + mwheel) for |Fin | < νN ;
Fwheel,h = Fin − µN · sign(x2 − x6);
Fin =−2 · Fx − FF ;
FF = kF (x1 − x5).
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Here are
FF The spring force

kF The spring constant 106 m/N

Fx The lateral creep force

N The normal force (constant)

ν The static adhesion coefficient of the lateral damper (νN = 923 N)

µ The dynamical coefficient of friction of the lateral damper (µN = 773 N)

Fwheel,l The resulting force when the damper sticks

Fwheel,h The resulting force when the damper slips

mwheel The mass of the wheelset 1022 kg

mb The active mass of the car body 10000 kg

α A constant in the dry friction law - here equal to 50

The dynamical system is solved numerically with appropriate initial
conditions. We use a Runge/Kutta/Cash/Karp 5/6 order solver with adaptive
steplength and error control. The program is implemented in C++. The speed
of the calculations is then 1000 times higher than a MATLAB program. How-
ever MATLAB was used for the post processing.

3. Some Results

In the work by True and Asmund [True and Asmund, 2002] we found that
the dynamics is very sensitive to infinitesimal disturbances in the initial condi-
tions or the parameters. As an example we show on Figure 2 two curves of the
lateral oscillations with the same initial conditions but with an infinitesimal
speed difference. At the speed 10.00 m/s the wheelset stays in the track but at
10.05 m/s the wheelset derails within 38 seconds.

We now introduce the realistic wheel-rail geometry into the model. On
figure 3 we plot the time until derailment versus the vehicle speed. If the
time is longer than 200 s we assume that the wheelset will not derail. We have
plotted the results for the realistic wheel-rail geometry together with the results
from True and Asmund [True and Asmund, 2002] in the same diagram. The
black curves and points correspond to the realistic wheel-rail geometry and
the gray points and curves illustrate for comparison the results from True and
Asmund. The realistic wheel-rail geometry does stabilize the motion in two
large speed intervals, but between 20 m/s (72 km/h) and 40 m/s (144 km/h)
the wheelset will derail within a few seconds.

In a realistic axlebox side bearing the lateral motions will be limited. We
now introduce a lateral play of 20 mm as it is described in the standards for
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Figure 2. The sensitivity to changes in the vehicle speed. The lateral oscillations versus time
for V = 10.00 m/s (full line) and at V = 10.05 m/s (broken line).

the UIC suspension or in the book by Hanneforth and Fischer p.36 [Han-
neforth and Fischer, 1986]. Through the impact of the axlebox the side bearing
will deform. The restoring force is modelled as a linearly elastic spring with a
spring constant of 1500 kN/m. The calculations show that the lateral guidance
has no effect on the lateral oscillations.

Figure 3. Comparison of the times until derailment versus the vehicle speed for realistic wheel-
rail geometry (black) and conical profile without flanges (gray).
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Figure 4. The longitudinal play and the maximum yaw angle of the wheelset.

We finally fix the bogie frame in the car body and give the axlebox a lon-
gitudinal play of 22.5 mm. Again the value is taken from Hanneforth and
Fischer p.36 [Hanneforth and Fischer, 1986]. With the distance 1 = 1000 mm
(see figure 4) it is easy to calculate the maximum yaw angle of the wheelset.
The restoring force is very big in this case and the assumption of an elastic im-
pact with E=2.1· 1011 makes the dynamical system so stiff that the calculation
time becomes unacceptably high. We therefore approximate the impact by an
ideally elastic one where the yaw speed of the wheelset is the same before and
after impact but the direction of the motion changes. We have compared some
results of computations under each of the two assumptions and they agree very
well.

As seen on figure 5 we have now finally achieved what we wanted: The
wheelset derails no more.

Figure 5 shows the maximum amplitudes of the lateral oscillations versus
the speed of the vehicle when as well lateral as longitudinal plays are present.
The limit on the yaw motion stabilizes the motion of the wheelset but due to
the impacts with the side bearings the motion is apparently chaotic in the entire
speed range.

On figure 5 the different forms of motion are clearly seen. After the big
oscillations at 0 m/s < V < 5 m/s follow small oscillations at 5 m/s < V <
10 m/s. Then a range 10 m/s < V < 19 m/s follows with big chaotic oscilla-
tions followed by an interval 19 m/s< V < 25 m/s where we must investigate
the motion more carefully. The motion is not clearly chaotic. In the speed
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Figure 5. Bifurcation diagram showing the maximum amplitudes of the lateral oscillation ver-
sus the speed of the vehicle.

interval 25 m/s< V < 40 m/s the scatter of the chaotic amplitudes is small but
the amplitudes are all close to the maximum value. Obviously the limitation
of the yaw motion is very important in this speed interval. In the interval 40
m/s < V < 64 m/s the motion is strongly chaotic, but above V = 64 m/s the
amplitudes of the chaos decrease.

We finally introduce a linear spring acting longitudinally between the axle
box and the car body. We calculate its stiffness on the basis of the known
data from the wellknown UIC standard link suspension (see Hanneforth and
Fischer p.37 [Hanneforth and Fischer, 1986]). Our investigations show that
the longitudinal spring has a very small stabilizing effect at low speeds. At
higher speeds it has no effect at all. The longitudinal springs however always
help guiding the wheelset through curves.

We shall now summarize the resulting dynamic behaviour in a single plot.
We show the lateral displacement of the wheelset versus time, but the speed
of the vehicle is increased instantaneously every twenty minutes. We display
four basically different kinds of dynamic behaviour indicated by the letters
A-D. Type ‘A’ is the motion that is controlled by the longitudinal springs. Type
‘B’ is the crawling motion at low speeds with impacts on the side bearings due
to the yaw motion of the wheelset. Type ‘C’ is also a crawling motion but with
an increase in the number of impacts. Type ‘D’ is the aperiodic (chaotic?)
motion, which is dominated by the impacts in the longitudinal direction with
the side bearings. This type of motion can be subdivided into four groups
D1-D4 distinguished by the number of impacts per minute.
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Figure 6. A simulation with a change of the speed every twenty minutes.

Time interval (minutes) Speed (m/s) Type of motion

0-20 5 A
20-40 9.5 B
40-60 15 D1
60-80 22 C
80-100 30 D2
100-120 55 D3
120-140 80 D4

The resulting dynamics is presented on figure 6. The different kinds of
behaviour are seen clearly. It may look like the transitions happen instanta-
neously, when the speed jumps, but it is not the case. There is a small tran-
sition interval, when the motion changes type. The longest interval is found
when we jump from the ‘B’ or ‘C’ type motion. The wheelset may get caught
in a yaw oscillation until the series of impacts with the side bearings become
so intense that the wheelset ‘is knocked free’. This effect is better observed
on a plot of the yaw oscillations verse time. On figure 7 we therefore show
the lateral oscillations of the wheelset next to figure 8 showing the yaw versus
time in the case of a type ‘C’ motion.
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Figure 7. Lateral displacement at
V = 20 m/s

Figure 8. Yaw angle at V = 20 m/s

4. Conclusion

This work is a contribution to the analysis of the dynamics that may arise in
railway vehicles due to dry friction in the suspensions. Without dry friction the
model was investigated by Knudsen, Feldberg and True [Knudsen et al., 1992]
and Knudsen, Slivsgaard, Rose, True and Feldberg [Knudsen et al., 1994]. Dry
friction was introduced in the model by True and Asmund [True and Asmund,
2002], and it was found that the dynamics was so fundamentally altered that
no features in common with the earlier results could be found. The danger of
derailment existed at almost any speed, and it was concluded that this was due
to the strong simplifications introduced in that model.

In this article we demonstrate that the realistic rail-wheel geometry im-
proves the dynamics, but a large speed interval between 20 m/s and 40 m/s
still exists in which the wheelset derails. Only a limitation of the maximum
yaw angle of the wheelset will guarantee the safe run of the vehicle.

The dynamics is apparently chaotic in large speed intervals. The dry fric-
tion introduces a sensitive dependence of the motion on infinitesimal changes
in the initial conditions. At speeds below 5 m/s the wheelset oscillates period-
ically around a neutral position with an offset that is determined by the initial
conditions. At higher speeds (motion ‘B’) the motion alternates between sta-
tionary offset positions and apparently chaotic motion. At still higher speeds
the motion becomes violently erratic (chaotic?) except in the speed interval 20
m/s< V <24 m/s, where the lateral oscillations look like intervals of damped
chaotic motion with decreasing amplitude divided by large amplitude jumps
caused by the impacts of the axle boxes with the side bearings (type ‘C’).

Speed intervals exist where the oscillations are connected with violent im-
pacts between the axle boxes and the side bearings. These oscillations may
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create high stresses and large track forces that lead to fatigue and high wear of
the rails.

The crawling motion we have found, has been observed in other mechan-
ical systems where the motion is controlled by dry friction forces with stick-
slip. The combination of dry friction damping with the nonlinear wheel-rail
contact forces and the longitudinal linear spring in our model is the reason for
the dynamics at very low speeds, where we observe a small amplitude oscil-
lation around a neutral ‘stick position’. That position depends on the initial
conditions, and it can assume any arbitrary value in a large interval. At higher
speeds the motion is in addition influenced by the impacts with the side bear-
ings. Repeated impacts are known to create chaotic motion, and our results
show some similarity with earlier investigations of a bouncing ball between
a fixed and an oscillating wall. In our case, however, the energy necessary
to maintain the motion comes from the nonlinear stress-strain relations in the
wheel-rail contact surface.
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III.

STRUCTURAL SYSTEMS 

Bifurcation and chaos in structural systems are the focus of the second 
part of the Proceedings; these papers are compiled alphabetically, based on 
the last name of the first author. A number of papers deals with theoretical 
and/or experimental characterization of dynamic complexity in the response 
of infinite-dimensional systems, some of them also specifically addressing 
the formulation of proper reduced-order models, which is an issue of 
considerable interest also from the application viewpoint. 

Benedettini and Alaggio show how experimental analysis allows one to 
characterize different classes of motion, transitions to nonregular motions, 
and the main characteristics of spatial flow, in the post-critical finite planar 
dynamics of a circular arch. They also give useful hints for the development 
of reliable minimal analytical models able to reproduce the experimental 
dynamics.  

Georgiou directly addresses the construction of reduced order models for 
the dynamics of an exact nonlinear elastic rod by projecting its full order 
coupled equations of motion onto a set of proper orthogonal modes derived 
from a finite element analysis. Numerical study of the reduced models 
suggests that the subspace spanned by the POD modes represents an 
invariant subspace of the dynamics inside which a normal mode of vibration, 
whose shape is close to that of the dominant POD mode, resides.  

Gonçalves and del Prado discuss the nonlinear oscillations and dynamic 
instabilities of thin-walled shells subjected to harmonic loads. A number of 
relevant issues are dealt with, including shell discretization processes, 
influence of modal coupling on nonlinear vibration modes, modal interaction 
between different nonlinear vibration modes, imperfection sensitivity, and 
fractal basin boundaries.  

Lakrad and Belhaq present quasiperiodic and periodic bursters solutions 
of a two-mode model of a shallow arch subjected to a resonant external 
excitation and a very slow parametric excitation due to support motion. 
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Behaviour charts and analytical approximations are obtained and comparison 
with numerical simulations are provided. 

In a different context, Cusumano and Chelidze use the phase space 
warping concept from dynamical systems theory to develop a general 
framework for damage evolution tracking, diagnosis and prognosis. After 
summarizing the theory and its algorithmic implementation, they apply the 
method to a vibrating experimental beam with evolving material damage. 
Real-time estimates of the current damage state and accurate predictions in 
advance of the time to failure are obtained. 

In the background of the increasing complexity of modern structures, 
which strongly reduces the possibility to use analytical methods in the study 
of structural dynamics, Galvanetto and Bornemann address the investigation 
of long-term behaviour and complex dynamics of realistic structures with the 
finite element method and suitable time integration schemes, discussing the 
performances of both fixed and adaptive time step techniques. 

 Two further papers deal with somehow specific nonlinear dynamic 
problems in structural mechanics. Ibrahim et al. study the nonlinear panel 
flutter with relaxation in the boundary conditions, based on a 
phenomenological model of joint preload relaxation. The analysis is 
restricted to two-mode interaction and includes the influence of boundary 
conditions relaxation on the panel modal frequencies and limit cycle 
amplitudes in time and frequency domains. Plaut et al. investigate the 
application of a buckled mechanism as a vibration isolator in structural and 
mechanical systems. They show the occurrence of nonlinear periodic and 
chaotic responses under the action of both parametric and external 
excitations. 
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PHASE SPACE WARPING

A Dynamical Systems Approach to Diagnostics and
Prognostics

J. P. Cusumano
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D. Chelidze
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Abstract: The concept of phase space warping is used to develop a general method for
damage evolution tracking and failure prediction. After outlining the basic the-
ory and describing its algorithmic implementation, a nonlinear vibrating beam
experiment is described in which a crack propagates to complete fracture. Our
method is shown to give real-time estimates of the current damage state, and
remaining useful life is accurately predicted well in advance of actual failure.

Key words: Dynamical systems, diagnostics, prognostics, failure prediction, condition mon-
itoring, phase space reconstruction.

1. Introduction

Most previous work done in the field of machinery condition monitoring
has focused on the development of robust discriminators of impending failures.
The work described here, however, aims to move past alarm-based diagnos-
tics to the actual tracking of incipient damage, which is required for a true
prognostic capability that gives continuously updated estimates of remaining
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life. We describe a new, general framework for damage evolution tracking,
diagnosis, and prognosis, and apply the resulting method experimentally.

From the point of view taken here, damage evolution takes place in hierar-
chical dynamical system (Cusumano and Chatterjee, 2000) of the form:

ẋ = f (x,µ(φ), t) , (1a)

φ̇ = ε g(x,φ) , (1b)

where: x ∈ U ⊂ R
m is the fast dynamic variable (the directly observable

state); φ ∈ V⊂ R
n is the slow dynamic variable (the “hidden” damage state);

the parameter vector µ ∈ R
k is a function of φ; t is time; and the rate constant

0 < ε  1 defines the time scale separation between the fast dynamics and
slow “drift”.

To study systems of the form of Eqs. (1) experimentally, the concept of
phase space warping is introduced, which refers to the small distortions that
occur in the fast subsystem’s vector field as a result of the underlying slowly
evolving damage process. After summarizing the basic theory and describing
its implementation in an algorithm, we show the results of applying the method
to a system with evolving material damage.

In (Chelidze et al., 2002; Cusumano et al., 2002), the method has been
applied to the study of a system in which the potential energy is perturbed by
a battery-powered electromagnet: “failure” of the system in that case corre-
sponded to complete discharge of the battery. It was shown that the tracking
metric output by the algorithm was related in a 1-1, approximately linear fash-
ion to the scalar generalized damage variable, which in that case was the open
circuit battery voltage. Here, we apply the method to a vibrating beam non-
linear oscillator in which a crack propagates to complete fracture. Again, the
tracking metric is shown to provide a 1-1 relationship with an independent
measurement of the damage.

Using empirical damage evolution models and recursive filtering, the track-
ing metric can be used to predict remaining useful life. This approach has
been applied to the battery experiment in a forthcoming paper (Chelidze and
Cusumano, 2003), and here we apply it to the fracture experiment. In both
cases, one finds that accurate, real-time estimates of current damage state and
time to failure can be made well in advance of actual failures.

2. Phase Space Warping

In Eqs. (1), we assume that U and V are compact subsets. The phase space
of the entire system of Eqs. (1) is the Cartesian product S = U×V×T , where
T is the manifold of which t is an element. We also assume that T is itself a
compact manifold such as, for example, a p-torus corresponding to the vector
field f in Eq. (1a) being p-quasiperiodic in time. The key issue is that the
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dynamics of Eq. (1) must take place in a region of the extended fast phase
space F = U×T that is diffeomorphic (via delay coordinate embedding) with
a compact subset W ⊂ R

d where d is the embedding dimension.
Our goal is to use only experimental measurements of the fast variable

x to track, and ultimately predict, the slow variable φ, which is not directly
measurable. Letting the constant φR represent the “reference” or initial value
of the damage variable (which occurred at time tR), and defining the prediction
time tp = t − t0, we refer to the solution x = X(tp, t0, x0,µ(φR); ε) as the
reference model. We then define the time tp ahead short-time reference model
prediction error (STRMP) starting at time t0 as

eR(φ0; tp, t0, x0) = X(tp, t0, x0,µ(φ0); ε)− X(tp, t0, x0,µ(φR); ε) , (2)

in which the arguments for eR indicate that we consider it to be a map eR:V →
R

m with parameters tp, t0, and x0. We would like to understand conditions
under which eR will provide a tracking function, that is, a smooth, injective
mapping (preferably linear) from V into R

m .1

Equation (2) can be related to the fast vector field f, since taking the deriva-
tive with respect tp gives

ėR = f(t0, x0,µ(φ0))− f(t0, x0,µ(φR)) . (3)

Thus, ėR measures the rate at which distortions are occurring in the vector
field f due to changes in the slow variable. We refer to such distortions as
phase space warping. However, since it is difficult to measure vector fields
directly in experiments, we use the flow form, Eq. (2), which gives the total
amount of phase space warping at any given point (x0, t0) ∈ F .

For a fixed prediction time, we expect the solutions to be smooth both
with respect to initial conditions and with respect to parameters. In addition,
we require that the prediction time be “short”, that is tp  1/ε. Then for
any given initial time t0, the short prediction time allows the fast subsystem
of Eq. (1a) to be treated as “quasistatic”, i.e. as having an approximately
constant damage variable φ0. Thus, using regular perturbations we expand
the terms in Eq. (2) in a power series about ε = 0, as X = X0 + εX1 + . . . ≡
X(tp, t0, x0,µ(φi); 0) + O(εtp) where φi = φ0 or φR . Substitution into Eq.
(2) gives

eR = X(tp, t0, x0,µ(φ0); 0)− X(tp, t0, x0,µ(φR); 0)+ O(εtp) . (4)

We further expand the leading term in Eq. (4) in a Taylor series about
φ = φR , which upon substitution into Eq. (2) gives the STRMP error as

eR =
∂X
∂µ

∂µ

∂φ

�
φ0 − φR

�+ O
�||φ0 − φR||2

�+ O(εtp) , (5)

1In other words, eR is a tracking function if every point in its range corresponds to a unique point φ0 ∈ V .
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in which we have suppressed the fact that the derivative matrices are evaluated
at (ε,φ) = (0,φR).

Equation (5) shows that eR is to leading order an affine transformation of
the slowly drifting variable,

eR ≈ C(tp, t0, x0,φR)φ+ c(tp, t0, x0,φR) , (6)

where C = ∂X
∂µ
∂µ
∂φ

is m×n, and c = −C φR is m×1. We have dropped the zero
subscript from φ0 since the above discussion is true for any future value of the
slow variable. However, the zero subscript is still required on t and x since
the matrices of Eq. (6) will depend on the selected initial point in the extended
fast-time phase space, (x0, t0) ∈ F , used to compute the STRMP error.

A necessary condition for the transformation of Eq. (6) to be a tracking
function is that the matrix C : R

n→ R
m have maximal rank. We refer to this

requirement on C as the condition for linear observability for the slow vari-
able.2 Thus, when C has maximal rank, for ε and ||φ0−φR|| both sufficiently
small, we can conclude that the STRMP error allows us to unambiguously
track the changes in the slow variable φ using only measurements of the fast
variable x. Furthermore, we see that under ideal circumstances this tracking
function can be expected to be approximately linear.

Given that the values of tp, t0, x0 and φR are fixed, we can take the time
derivative of Eq. (6) to find that ėR ≈ C φ̇ = εC g(x,φ). In other words,
the rate of change of the tracking function, which is the rate at which phase
space warping is occurring, is to leading order determined by the slow vector
field.

3. Algorithmic Implementation

In this brief paper it is only possible to outline the key ideas used in the
current implementation of the algorithm: the reader is referred to previous
work (Cusumano et al., 2002; Chelidze et al., 2002; Chelidze and Cusumano,
2003) for further details.

In experiments the tracking function provided by the STRMP error, Eq. (6),
is difficult to apply directly because C and c depend on x0, t0, and tp, which can
be thought of as parameters. Unfortunately, for most applications it is difficult
or impossible to repeatedly start the fast subsystem Eq. (1a) from the same
initial conditions (x0, t0). Thus one should use many values of (x0, t0)∈ E⊂F
from some ensemble E to deal with initial state repeatability problem as well as
to increase the robustness of the method. Then for every fixed φ, the STRMP
tracking function eR can be thought of as a random variable determined by

2We remark in passing that even when linear observability fails, higher order observability may be possible.
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random maps of the form of Eq. (6), with each map corresponding to a single
element of E .

Given such an ensemble of tracking functions, one can examine the mul-
tivariate statistics of the random vector eR in order obtain information about
the structure of the slow phase space. This general approach is the subject of
current research by the authors. For example, in its simplest form this might
mean replacing the map of Eq. (6) by 〈eR〉 = 〈C〉φ + 〈c〉, where the angled
brackets indicate the (possibly weighted) average over E .

If it is reasonable to assume, given the physics of the problem, that the slow
variable is both monotonic in time and scalar, then an even simpler approach
is to consider only the magnitude of eR , which gives to leading order

〈 ||eR || 〉 ≡ eR = Cφ + c , (7)

where C = 〈 ||C|| 〉 and c = −CφR . This is the approach taken in the work
presented here.

3.1 Damage Tracking

In practice, the existence of a tracking function is used experimentally as
a hypothesis, since it is generally the case that measurements of the damage
variable are unavailable (indeed, that is the entire motivation for the method).
In general, then, under the assumptions presented above, the output of the
tracking function will identify the damage state to within an unknown, ap-
proximately affine transformation. However, in cases where independent mea-
surements of the damage variable are available the tracking function can, in
effect, be calibrated, so that the exact transformation can be determined.

Some form of phase space reconstruction, for example using delay coordi-
nate embedding (Takens, 1981; Sauer et al., 1991) for initially chaotic systems
or stochastic interrogation (Cusumano and Kimble, 1995) for nonchaotic sys-
tems, can be used to generate E . In the current implementation, we prepare
our system to be chaotic in its reference condition, and data is collected in a
sequence of time intervals of length tD  O(1/ε). The required ensemble E
is then obtained by using all of the data in a given interval, with a fixed pre-
diction time tp < tD  O(1/ε). The delay time τ and embedding dimension
d are determined using the first minimum of the average mutual information
(Fraser and Swinney, 1986) and the method of false nearest neighbors (Kennel
et al., 1992), respectively.

Since the form of the governing differential equations is assumed to be
unknown, we instead consider a map

y(r + 1) = P (y(r),φ) , (8)
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where y(r) is the reconstructed fast state at time step r . Then, the tracking
function of Eq. (2) is

eR(φ; k, r) = Pk (y(r),φ)− Pk
�
y(r),φR

�
, (9)

where Pk is the k th iterate of the map defined in Eq. (8).
The leading term on the right hand side of Eq. (9) is simply y(r + k), and

is available from the data. There are various ways that one might estimate the
reference model P( · ,φR): in this work, we use locally linear models

y(r + k) = A(r)y(r) + a(r) , (10)

where A(r) is a d × d matrix and a(r) is a d × 1 vector. The parameters of the
local linear models are determined using regression on the N nearest neighbors
of y(r) and their future states for data taken in the reference condition. Then
the damage tracking function Eq. (9) can be written as

eR = y(r + k)− Aky(r)− ak + EM(r) = Ek(r,φ)+ EM(r) , (11)

where, for simplicity, we have suppressed the dependency of A and a on r . In
the above equation, EM(r) represents the model error and

Ek(r,φ) = y(r + k)− Aky(r)− ak (12)

is the estimated tracking function that can be determined experimentally.
We wish to use the ensemble-averaged scalar tracking function Eq. (7),

which can be experimentally estimated as eR = 〈 ||eR || 〉 ≈ 〈 F (||Ek||) 〉, where
F is a suitable filter. The filter is needed because now there are two spurious
fluctuations in eR that occur as one moves from point to point in the recon-
structed fast phase space, both of which occur because we must estimate eR

with Ek . The first is due to changes in the accuracy of the linear map Eq.
(10), even in the absence of noise. The second is caused by experimental
noise.3 The effect of both fluctuations can be significantly reduced (Chelidze
and Cusumano, 2003) by taking F to be a simple Kalman filter. In the lan-
guage of recursive filtering, the first of the above fluctuations can be treated as
“process noise”, whereas the second is “measurement noise”.

3.2 Estimation of Remaining Life

Application of the ideas outlined in the previous section results in a dam-
age tracking time series over the slow time scale. Given the form of the hi-
erarchical system Eqs. (1), the dynamics of the slow variable will be closely

3Note that the “model fit error” EM in Eq. (11) includes both of these sources of error.
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approximated by the solution to the slow flow equation obtained by replacing
the slow vector field g by its long time average (Cusumano and Chatterjee,
2000).4 This means that one can consider candidate damage models of the
form

φ̇ = ε ḡ (φ) , (13)

where ḡ is the long-time average of g(x, φ).5 Note that we are not assuming
that averaging can be applied analytically: rather, we use the concept of av-
eraging only to justify the autonomous form of Eq. (13). A suitable model
structure must be found from first principles or empirically from prior appli-
cations of the tracking algorithm.

Given the damage model Eq. (13), the time to failure can be estimated from
the tracking function output. Again, recursive estimation is used, but in this
case the “process” is typically nonlinear, and so a nonlinear method, such as
an extended Kalman filter, or unscented filtering (Julier and Uhlmann, 1997),
must be used. The difference equations used to define the estimator treat the
damage tracking time series as a series of observations from which one wishes
to estimate the actual damage state using the “sensor model” of Eq. (7). Thus,
a side benefit of using the recursive filter with a specific damage model is that
one is able to obtain an estimate of the actual damage state consistent with the
model.

4. Experimental Application

For the experiments described here, we used a two-well magneto-elastic
oscillator, modified as described in (Chelidze et al., 2002). In the system,
a clamped-free beam is restricted to a single degree of freedom by stiffen-
ers. Two rare-earth magnets near its free end provide a two-well potential.
The beam displacement is measured by a strain gauge mounted close to the
clamped end. A shallow notch is machined in the beam below the strain gauge
and just above the stiffeners. The system is mounted on a shaker and is forced
at 8 Hz. The damage in the beam accumulates slowly and the experiment is
run until complete fracture of the beam. Strain gauge output is sampled at 160
Hz sampling frequency, digitized (16 bit A/D), and stored on a computer.

The experiment was stopped after approximately every 10 minutes of data
acquisition to take a digital image of the beam profile near the notch. During
the image acquisition, the beam was always positioned in the same potential
well, so that the surface of the notch was in tension. After taking the image,

4Since φ is considered to be a scalar, so is g.
5It is worth noting that the effect of “load”, i.e. the amplitude of x, enters through its average effect on g.
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Figure 1. Damage tracking and failure prediction for a beam with growing crack: (left) plot
of unscaled tracking metric vs. time showing simple power law behavior despite the complex
dynamics of the beam; (right) estimated time to failure vs. time. Each black dot is the average
one-step-prediction-error in a 4000 point record of fast time (160 Hz) strain gauge data. The
gray line in the right figure is the actual time to failure, known a posteriori. The convergence
to the actual time to failure occurs well before the actual failure.

forcing was restarted and collection resumed after letting initial transients die
out. As the experiment progressed, there was a decrease in the beam stiffness
at the notch caused by fatigue damage accumulation. As a measure of this
damage, we estimated the change in the slope of the beam across the notch
using the acquired digital images.

Delay time and embedding dimension were estimated to be 6ts and 5, re-
spectively. The first 214 data points were used for the reference data set, and
N = 16 nearest neighbors were used for the local linear model parameter es-
timation. After going through the embedding and modeling process, we split
data into 456 non-overlapping records of tD = 4 × 103ts size. The tracking
function eR was estimated by calculating the single sample step short-time
prediction error E1 of the reference model for each record. The resulting dam-
age tracking time series, in Fig. 1(left) shows smooth power law behavior,
even though the actual load history at the notch is quite complex, consisting
of many chaotic/periodic transitions.

For time-to-failure estimation we used a power law model, g =φα , with the
final (failure) value of φ taken to be φF = 0.645. Based on an examination of
the tracking data, the values ε = 0.0061 and α = 2 were used in the recursive
time-to-failure estimation procedure. The results for this process are show in
Fig. 1.

Figure 1(right) demonstrates that the time-to-failure estimate converges to
the true value (known a posteriori) over one hour before the total failure of
the beam. The time required for convergence may be related to the difficulty
of carrying out the required estimation when the tracking data is almost flat.
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Figure 2. Calibration of tracking metric with independent measurement of damage state: (left,
top) photos of the notch taken at 0, 3 and 3.17 hours, showing the first visible crack only 0.17
hours before the experiment’s end. (left, bottom) Plot of angular deflection across notch during
experiment, calculated from image; (right) plot of tracking metric vs. angular deflection. The
approximately linear, 1-1 relationship is consistent with the assumptions of the phase space
warping approach described in the text.

However, we also hypothesize that it indicates the difference between the crack
nucleation phase, for which the simple power law model does not work, and
the actual crack propagation phase, for which it does. The fact that the α = 2
model, which is consistent with Paris’ Law, works at all is remarkable given
that the crack loading is decidedly not periodic.

In this case, we also have the independent measurement related to the beam
damage, which is shown in Fig. 2. In Fig. 2(left, top) we sample images taken
during the experiment at (from left to right) 0, 3 and 3.17 hours. The first vis-
ible crack occurred at the 3 hour mark, but actual prediction of time to failure
converges about 1 hour before that point, and tracking even earlier, indicat-
ing the sensitivity of the tracking method. Figure 2(left, bottom) shows the
static angular deflection across the notch computed from the images. It is seen
to increase in a way that is qualitatively similar to the tracking function out-
put. Finally, Fig. 2(right) presents a plot of the angular deflection data vs. the
tracking metric. We see an approximately linear, 1-1 relationship: although
this measurement is not a direct measurement of the damage variable, the
result is consistent with the phase space warping theory presented in
Section 1.
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Abstract: The dynamics of a beam subjected to quasi-periodic excitation is simulated 
with a finite element model and an energy-conserving based time integration 
scheme. The numerical methods are capable of reproducing the dynamics of 
the system if a fixed time step size is applied, whereas the application of 
adaptive time step seems more problematic. 

Key words: Numerical integration, structural dynamics, time-step adaptivity. 

1. Introduction 

Modern structures are making an increasing use of light flexible 
components; clear examples of such a tendency are given by light bridges, 
helicopter and windmill blades, telecom towers, satellite components, 
vibrating mechanical tools, pipes suspended on the sea bed ... In general 
non-linear effects cannot be neglected when studying the dynamics of such 
structures and they can constitute an insidious risk for the structural 
engineer, as the problems with the Millennium bridge in London have 
recently shown. Moreover the growing demand to reduce the maintenance 
costs, and the need not to diminish safety, require the capability to predict 

© 2005 Springer. Printed in Great Britain. 
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the behaviour of structural components subjected to variable loads for long 
periods of time.  

The complexity of a large variety of modern structures reduces 
considerably the possibility of using analytical methods in the study of the 
structural dynamics. Therefore computational techniques seem to be the 
most appropriate tool to predict the long-term dynamic behaviour of 
complex structures. In the structural engineering research community the 
finite element method is the most popular technique to discretise the 
structure in space and it is usually coupled with finite difference techniques 
for the time integration. 

The time integration algorithms to be applied must possess two important 
features: they must be robust and accurate in a global sense. Robustness 
refers to an algorithm that can handle problems with many degrees of 
freedom for a long time without incurring computational instabilities. With 
the words ‘global accuracy’ we mean that the time integration scheme 
(applied to a spatially discretised model) should be able to reproduce the 
‘global dynamic behaviour’ of the system: steady states and bifurcations, 
chaotic dynamics. 

Experimental results are necessary in order to assess the performance of 
different time integration schemes. In the last 25 years several experiments 
have been carried out and described in the scientific literature: 

1) cantilever beam in a two-well magnetic field [1],  
2) cantilever beam impacting a rigid stop [2, 3], 
3) cantilever beam under frictional excitation [4, 5, 6], 
4) clamped beam with quasi-periodic excitation [7, 8], 
5) cantilever beam with elastic band [9]. 

All the above listed experiments present characteristics typical of non-linear 
systems: coexisting stable steady states, chaotic motions and bifurcations. 

Study of those beam systems are often based on Global Galerkin methods 
with the eigenmodes as shape functions, which decompose the spatial-
temporal differential equations. 

More recently, finite element discretisations have been applied, based on 
a local Galerkin method, allowing potentially a more flexible representation. 
In particular, if the beam undergoes large deflections, a geometrically non-
linear beam model is required and an accurate description of the dynamics 
by its eigenmodes associated to its linearisation may be questionable. 
Nonetheless a sophisticated beam model is not sufficient for an accurate 
quantitative prediction. Realistic simulations require a precise knowledge of 
the mechanical phenomena affecting the beam dynamics. A precise 
description of the forces due to magnetic fields (experiment 1), impacts 
(experiment 2), friction (experiment 3) and nonlinear response of the elastic 
band (experiment 4) would introduce too many uncertainties in the 
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numerical model; for that reason the experiment number 4 was selected as 
the most suitable to be simulated. 

Yagasaki investigated in [7, 8] a simple clamped beam subjected to 
quasi-periodical excitation. The problem is modeled easily with planar 
Reissner beam elements and the numerical simulations presented in the 
remainder detected a non-linear behaviour similar to that found 
experimentally. The FEM discretisation presented in section 3 introduces 60 
(or 30) degrees of freedom. Such a system has to be integrated for a long 
time (order of 103 seconds) and, therefore, an adaptive time step would seem 
an appropriate choice to reduce the computing time without reducing the 
accuracy of the computed solution. The application of different methods to 
adapt the time step length to the varying solution will be presented in the 
paper which is organized as follows: section 2 briefly describes the 
experiment, section 3 describes the beam element and the fixed time step 
integration method initially adopted, section 4 presents the different time 
step adaptivity techniques and section 5 contains results and conclusions.

2. Quasi-Periodically Excited Beam 

The structure investigated in [7, 8] consists of a slightly pre-tensioned 
beam, clamped at both ends and subjected to a quasi-periodical excitation 
(Fig. 1): 

)tsin(a)tsin(a)t(ye 2211 ωω +=                (1)

The beam is excited with frequencies ω1≅ω2≅Ω1, where Ω1 is the lowest 
eigenfrequency. Without pre-tension a frequency Ω0<Ω1 would characterize 
the first eigenmode. The forcing amplitudes a1, a2 are very small, of the 
same order of magnitude as the thickness h. The beam is homogeneous, 
slender and of constant cross section.  

ye(t)

g

L = 0.27 m

x

y

h

E, ρ, A, I = const

Figure 1 

Yagasaki discretised the differential equation of motion with a modal 
decomposition, essentially a global Galerkin method, and then applied to the 
discretised system an averaging procedure. Yagasaki concluded that an 
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approximation for this weakly non-linear system is reasonable with only the 
first eigenform. Co-existing steady states, period-doubling and chaos could 
be anticipated analytically, found numerically and verified experimentally. 
As the reference [8] provides very accurate information about all important 
parameters involved in the experiment, the system seems a reliable basis for 
the evaluation of numerical results obtained with a finite element approach.  

3. FEM and Time Integration 

The beam is modeled with planar 2-noded Reissner beam elements, the 
model incorporates large translations and rotations with finite strains, see 
Figure (2). The energy-conserving based method (ECB) is applied as time 
marching integration method, [10, 9]. The algorithm consists of two parts, 
namely:  
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Figure 2 

The vectors xn+j, j=0,1, contain the approximations for the six nodal 
degrees of freedom of one beam element at time tn+j, for instance xn= [x1, y1,
ϑ1, x2, y2, ϑ2]n, and vn+j is the vector of the relevant velocities. The consistent 
mass matrix M and the damping matrix D=cM, c>0, are symmetric and 
positive definite. The external force vector is constant, containing only the 
load due to gravity. Although Equation (2) resembles the trapezoidal rule, 
the second part of the ECB method, Equation (3), is different. The difference 
stems from the discretisation of the internal force vector qi,m which is 
designed to recover exactly the change of internal energy Vi. The internal 
force vector is given as  

n,in,im,i
T

nn VV)( −=− ++ 11 qxx                 (4) 

Details can be found in [10]. The exact fulfillment of Equation (4) provides 
an inherently total energy-conserving algorithm, if applied to the beam 
problem without damping and external excitation. An interesting 
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consequence of the application of this energy-conserving algorithm to 
dissipative dynamics is the establishment of a ‘discrete Lyapunov function’. 
Consider the change of total energy, H, consisting of kinetic energy, K,
internal and external potential energies, Vi and Ve, in one time step: 
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as D is positive definite. A global Lyapunov function guarantees stability of 
almost all trajectories: all motions converge to a static equilibrium position, 
e.g. [11, 12]. The above property makes the application of the ECB method 
desirable even in dissipative systems. However the introduction of an 
external force might introduce some additional difficulties.  

4. Time-Step Adaptivity 

Standard time-step adaptivity relies on a local error estimator, e.g. Hairer 
et al. [13]. The estimated error determines whether the step has to be 
repeated with a reduced size, if the error is too large, or accepted, and in this 
case the step size, ∆tn+1 for the next step is also proposed. In essence the step 
size is changed to satisfy the following equation: 

toldn ≤+1                       (6) 

where dn+1 is the local discretisation error [13] and tol is a user-supplied 
tolerance. Inequality (6) can be used to express the ‘optimal’ step size ratio 
r* and the new step size ∆tnew:
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     (7) 

where p is the order of the scheme, 2 for the ECB method; moreover the new 
step size, ∆tnew is restricted by maximum and minimum values of the ratio r,
rmax and rmin, and decreased by a scalar 0<s<1. These modifications reflect 
the limited reliability of the ‘optimal value’ r*.

Local error estimators can be defined by comparison between the time 
marching scheme and an auxiliary scheme. Here two auxiliary schemes are 
presented: a linear multi-step method and single-step method. The marching 
scheme results are used to evaluate the auxiliary vectors to minimize the 
additional computational cost. 

The linear multi-step method is the second order accurate member of the 
Adams-Bashforth methods (AB2) [13, chap. III]. It uses the positions and 
the velocities from the last converged step, xn and vn, and the velocities from 
the penultimate converged step, vn-1, to extrapolate xn+1 with a parabola: 
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In Equation (8) and in the next Equations (9)-(13), the vectors x, v, a, with 
no superscript indicate the values of the relevant quantities computed with 
the ECB method. The local error estimator is defined as: 
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The constant KECB is only provided approximately, as the ECB method is 

not a linear integrator; the used value corresponds to its linearised form. 
The single step method is the third order accurate member of Newmark’s 

family (NM3) and was suggested by Zienkiewicz and Xie [14]: 
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In [14] an and an+1 are known, but for the ECB method only ‘mid-point’ 
accelerations are needed in Equations (2). The acceleration could be 
obtained by inverting Equation (2):  

)(
2

11 nn
n

nn t
vvaa +

∆
+−= ++                (11) 

A different determination was preferred: 
))(( 1,11

1
1 +++

−
+ −+−= neninn qxqDvMa             (12) 

The application of Equation (12) has a higher computational cost, but it 
reduces incremental error accumulation. The inverse of the mass matrix M is 
computed only once and then stored. Finally, the local error estimator is 
given by the following equation: 

ZX: 3
111

NM
nn

ZX
n +++ −≈ xxd                (13) 

5. Results and Conclusions 

In all numerical simulations one component of the external excitation (1) 
was kept fixed as: a1/h=0.05 and ω1=1.167 Ω1 with the relevant period 
T1=2π/ ω1. Amplitude and frequency of the second component were varied.  
Figure 3 shows a reasonably good agreement between the results obtained 
with the current finite element approach and those presented in [9]. The 
FEM numerical procedure correctly locates two bifurcations also presented 
in [9]: a subcritical period doubling bifurcation and a fold bifurcation of the 
period-2 orbit born at the period doubling point, see Figure 4. Figure 4 
shows that a small number of elements is sufficient to capture the dynamics 
of the system since no appreciable difference can be noticed between the 
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results produced by two different models, with ten or twenty elements. Other 
bifurcations can be more sensitive to a change in the number of elements, 
such as the period doubling cascade shown in Figure 5 where two 
bifurcation diagrams are superimposed, one obtained with a 10 element 
mesh and the other with a 20 element mesh. A similar sensitivity can be 
noticed in Figure 6 with respect to the time step size.  
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The production of simple bifurcation diagrams for a system with a large 
number of degrees of freedom (20 elements have 60 dof) may require a long 
time. Moreover, non-linear problems can be thought of as characterised by 
several frequencies. For these reasons it would seem reasonable to adapt the 
time step size to the current dynamics of the system in order to increase 
accuracy and reduce the computer time. Figures 7 and 8 show the bifurcation 
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diagrams obtained respectively with the adaptive time step strategies AB2 
and ZX, previously defined. Even if both adaptive strategies use an average 
step size of ∆t=T1/160, they produce results that are worse than those 
obtained with a constant step size of ∆t=T1/80, as it is apparent from the 
comparison with Figure 5 or 6.

The paper shows that it is possible to investigate the complex dynamics 
of realistic structures with the finite element method and suitable time 
integration schemes. Intuition suggests that the investigation of the steady 
states of complex systems under the variation of one or more parameters 
would be an ideal field of application for time step adaptive techniques. 
Nonetheless the preliminary computations described in this paper seem to 
suggest a more prudent approach [15, chapter VIII]. 
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REDUCED ORDER MODELS FOR INFINITE-
DIMENSIONAL SYSTEMS IN NONLINEAR 
ELASTODYNAMICS  
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Abstract: Reduced order models for the dynamics of an exact nonlinear elastic rod are 
derived by projecting its full order coupled equations of motion onto a set of 
Proper Orthogonal Modes. These optimal modes are identified by POD 
analysis of the finite element dynamics. Numerical study of the reduced 
models suggests that the subspace spanned by the POD modes represents an 
invariant subspace of the dynamics inside which a normal mode of vibration 
resides and whose shape is close to that of the dominant POD mode.  

Key words: Infinite dynamical systems, proper orthogonal decomposition, reduced order 
models, nonlinear normal modes, invariant manifolds.  

1. Introduction  

One of the current important research issues concerning the dynamics of 
infinite-dimensional systems in nonlinear elasticity is to characterize the 
spatio-temporal complexity of dynamics, especially coupled vibrations. The 
dynamic response of these systems is expected to be quite complicated 
because the involved strongly and nonlinearly various coupled fields force 
the infinite-degrees-of-freedom to interact in various known and unknown 
ways. To capture the essentials of interactions among the various involved 
fields it is necessary to use models with high level of predictability. Such 
models are the so-called geometrically exact models for rods and shells. 
These models capture accurately the dynamics by taking into account 

© 2005 Springer. Printed in Great Britain. 
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exactly the nonlinear geometric coupling of the displacement of the middle 
curve (surface) and the rotation of the cross-section.  

Long time dynamical processes of dissipative systems in elastodynamics 
usually involve only a small number of degrees-of-freedom, indicating 
indirectly the presence of an invariant subspace of low dimension [1]. Thus a 
way to characterize spatio-temporal complexity is to derive reduced order 
models by restricting such a system onto an invariant subspace. However, 
invariant subspaces for such dynamical systems (exact rods and shells) are 
not known a priory. In this work we extract (identify) information on the 
spatial structure of-not known a priory-invariant subspaces (manifolds) by 
processing high-resolution information on the trajectories of motions of an 
exact planar rod by the method of Proper Orthogonal Decomposition (POD) 
for coupled fields [2]. Reduced order models are derived by restricting the 
fully coupled nonlinear equations of motion onto the subspaces identified by 
the POD process. POD-based reduced order models provided effective 
means to characterize the spatio-temporal complexity of the dynamics of 
infinite coupled systems.  

2. Pod Identification of Optimum Modes 

We consider the equations of motion of a geometrically exact rod as a 
representative dynamical system for infinite nonlinear systems involving 
coupled multi-fields. In particular, the equations of motion of a planar exact 
rod are described by the following three coupled nonlinear PDEs:  
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  (1) 

The independent variables �� � denote space and time, respectively. The 
variables � ��

�� � � and � ��
�� � �  denote respectively the longitudinal and 

transverse displacements of the neutral axis; whereas the variable � ��
�� ��

denotes rotational displacement of the cross-section. The constants� ,� , �
denote respectively the length, uniform rectangular cross-section, and second 
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moment of inertia � of the rod. The constants � ,� ,� ,� denote respectively 
mass density, modulus of elasticity in extension and shearing, and 
coefficient of linear viscous damping. The material composing the rod is 
assumed to be linear elastic. The terms � and �  denote respectively 
amplitude and frequency of the uniformly distributed transverse harmonic 
forcing. Moreover, the functions � � � � � �� �

� � �
� � � � � � ���� �

�
� � � � � � � � � 	� �

denote nonlinearities, being very complicated mathematical expressions 
containing trigonometric terms, reflecting the fact that the geometric 
nonlinearity is modeled exactly. 
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Figure 1. Typical frequency sweeps attractor diagrams for a harmonically excited planar rod. 
The vertical axis represents the Poincare map iterates for the transverse displacement of the 
middle point. All attractors are periodic motions (periodic coupled vibrations).   

The equations of motion (1) constitute a dynamical system of infinite 
degrees-of-freedom which involves three strongly and exactly coupled 
fields. Depending on the level of excitation, we anticipate weak and strong 
interactions among these coupled fields. An analytic treatment of the 
equations of motion without simplifying the exact nonlinearity is not 
possible given the current state-of-art of nonlinear methods. However, the 
system can be solved as accurately as desired by an efficient algorithm based 
on the method of finite elements [3,4]. The finite element model keeps intact 
the geometric nonlinearity, thus producing high-resolution information on 
the dynamics.  Figure 1 shows a picture of qualitative dynamics computed 
systematically by combining the methods of finite elements and Poincare 
sections.  

 Instead of following a classical way of analysis, which lowers the level 
of predictability of the model due to unavoidable approximations to the 
nonlinearies, we use the finite element dynamics as an information database 
on the dynamics to compute the Proper Orthogonal Decomposition [2,3] of 
the trajectory of a motion, that is,  
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The amplitudes � �
�

� �  form a set of orthonormal functions over a specified 

time interval � �
� �
�� � . The companion vector-valued shape functions � �

�
�

�

�

form a set of orthonormal functions over the space interval � ���� occupied by 
the rod. Such amplitude and its compaction shape form a Proper Orthogonal 
Decomposition (POD) mode. The constant 

�
� determines the fraction of 

autocorrelation energy contained in this mode. We exploit the fact that the 
trajectory of a motion functions as a probe regarding the spatial structure of 
an invariant manifold possibly carrying it. The POD modes characterize 
(identify) optimally the spatial structure of invariant subspace (manifolds). 
Therefore, they can be used for optimal model reduction. We have the 
following result: For values of the excitation frequency in an interval 
containing only the first linear bending frequency and excitation amplitude 
ranging from very small to moderate levels, all attractors (periodic and 
chaotic) are characterized by three to five POD modes. In particular, almost 
all the autocorrelation energy, or signal energy, of the trajectory of a motion 
is contained in a single POD mode. 
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Figure 2. The identified normalized shapes of the axial (m=1), transverse (m=2), and rotatory 
(m=3) components of the dominant POD mode.  The POD analysis of a motion furnishes the 
norms and the normalized shapes of the components of all POD modes.  

Figure 2 shows the shapes of the components of the first (dominant) POD 
mode. The shapes and energy contents as well as the relative norms of the 
POD modes remain almost the same for a wide range of forcing amplitudes 
combined with low frequency harmonic excitation. The POD method 
furnishes a complete characterization of the POD modes that support a 
motion. Thus, if the motion resides on an invariant subspace, the POD 
modes characterize it uniquely and optimally. Clearly the POD process is a 
very effective tool to characterize the spatial structure of the coupling among 
the various fields, see Figure 2, of infinite coupled systems. 
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3. Model Reduction 

Here we use the identified POD modes to derive low order reduced 
models for the dynamics of the exact planer rod, the representative infinite 
coupled system. Galerkin projection of the coupled equations of motion (1) 
onto the function space spanned by the first two POD modes yields the 
following 2-DOF system (amplitude equations), 

� � � � � � � � � � � �� � � �
�� � � �

�

� � � �

�

� � � � � � �� ���
� � � �� � � �

�� �� �� � � � �� � . (3) 

The��� constant matrices �� ��� denote respectively mass, dissipation, 
and stiffness. The ���vector  

� � � � � �� �� �

�

�

�

� � � ���
�� � �

� � �� �

denotes a nonlinearity of integral type, reflecting the mathematical 
complexity of the geometric nonlinearities modeled exactly. Vector 

� � � � � �� �
� �

�
�

� � � � ��

�

� denotes the amplitudes of the two POD modes. Since 

the motion is dominated by a single POD mode, we also derive a 1-DOF 
reduced system by restricting the full order system onto the dominant POD 
mode. The reduced order systems are integrated numerically to be compared 
to the full order system and predict its dynamics at low frequency excitation.  
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Figure 3. Comparison for the reduced (3) and full order (1) systems: 1-DOF system (dashed 
curve), 2-DOF system (solid line), equations of motion of the rod (solid line). 

Figures 3, 4 reveal that the 2-DOF reduced system predicts exceptionally 
well the quantitative dynamics of the full order system (1). It was expected 
that the 1-DOF system would predict accurately the dynamics of the full 
order system since it is the restriction onto the single dominant POD mode.  
Figure 5, however, reveals that the 1-DOF and 2-DOF systems predict 
different qualitative dynamics for small amplitude motions. The reader is 
reminded that the second POD mode contains a tiny fraction of the 
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autocorrelation energy.  It seems that the POD modes with small energy play 
an important role in determining the qualitative dynamics. Extensive 
numerical studies with the reduced and full order systems reveal that the 
discrepancy between the reduced systems is due to the interaction of 
nonlinearity and dissipation. This interaction is pronounced greatly at small 
levels of dissipation.  

Figure 4. Comparison of attractor diagrams for the 1-DOD and 2-DOF reduced systems and 
the full order system (FE). The vertical axis records the Poincare map iterates of the 
transverse displacement at the middle of the rod. For frequency sweeps at low amplitude 
level, the reduced order systems predict exceptional well the dynamics of the full order 
system. 

Figure 5. Typical frequency sweep bifurcation diagrams predicted by the 1-DOF and 2-DOF 
reduced systems at very small forcing amplitude (P=0.25).  Notice a large difference in the 
value of the frequency at which a jump occurs.  
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4. Prediction of the Reduced Dynamics at Low 
Frequency Excitation  

In this section we employ the 2-DOF reduced model to predict the 
dynamics of the full order system in the form of attractor and bifurcation 
diagrams. The system parameters are different than those used to identify the 
shapes of the POD modes used to derive the reduced order systems. Figure 6 
compares the attractor diagrams predicted of the full order system (1) and 
the 2-DOF reduced system (2). Clearly the reduced system predicts very 
well the dynamics of the full-order system. We notice the excellent 
prediction of the frequencies at which jumps occur. We find that if the 
dissipation is increased the jumps become smooth. This indicates that these 
frequencies are characterized by amplitude amplification and phase shift. 
Thus, they must be resonant (sub-harmonic) frequencies.  

Ω(fo rcing frequency)

Figure 6. Attractor diagram for frequency response at amplitude P=15. The dissipation is 
about five times smaller than that used to derive the reduced order model. The 2-DOF system 
predicts exceptionally well the dynamics of the full order system (FE). 

Figure 7. Frequency response at amplitude P=0.25 and four different dissipation levels. At 
large dissipation we detect a smooth resonant frequency zone. As the dissipation is decreased, 
the   resonance zone shrinks and develops a jump. 
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The reduced order system is used to explore the interaction of 
nonlinearity and dissipation. Figure 7 shows several attractor diagrams for 
frequency sweeps at various levels of dissipation. The interaction of 
nonlinearity and dissipation is manifested in the form of discontinuities 
(jumps) in bifurcation diagrams. For large dissipation and sufficient small 
forcing amplitude nonlinearity effects are almost no existing. Figure 8 
reveals a strong hyteresis effect in bifurcation diagrams for a frequency 
sweep at very low forcing amplitude. Bifurcation diagrams for amplitude 
sweep reveal the coexistence of multiple period and chaotic attractors and 
hysteresis. This is shown clearly in Figure 9.  

Figure 8. A typical frequency sweep bifurcation diagram at the small amplitude level 
(P=0.25) reveals hysteresis. Quasi-static sweep form left to right (abcde) and sweep from 
right to left (edfgha). 

Figure 9. Frequency sweep bifurcation diagram predicted by the 2-DOF reduced system at a 
forcing frequency close to the first linear natural frequency of bending motion. We observe 
chaotic attractors, hysteresis, and multiple coexisting periodic attractors 

The 2-DOF reduced system can be further analyzed as a Singular 
Perturbation Problem [2,5].  Indeed, this reduced system possesses a two-
dimensional slow invariant manifold. The POD mode with smallest amount 
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of autocorrelation energy is slaved to the dominant one. As we have seen 
above, the POD mode with small energy content affects considerably not 
only the quantitative but also the qualitative dynamics predicted by the 
reduced model stemming from the dominant POD mode.  

5. Conclusion 

First and second order reduced models were derived for the dynamics of 
a nonlinear rod forced harmonically at low frequencies. We accomplished 
this by identifying the set of Proper Orthogonal Decomposition modes 
underlining the trajectory of a motion, computed numerically. The low 
frequency response is underlined by a single POD mode. The other 
participating POD modes contain tiny amounts of autocorrelation energy. 
The 1-DOF reduced model, the restriction of the full order system onto the 
dominant POD mode, does not predict satisfactorily the dynamics of the full 
order system at low dissipation levels, indicating the need to include more 
POD modes to refine it. Indeed, the 2-DOD system predicts exceptionally 
well the dynamics of the full order system. Therefore, we claim that the 
reduced order system describes the dynamics in an invariant subspace in the 
phase space of the full order system.  Moreover, the 2-DOF reduced system 
possesses a slow invariant manifold, a fact implying that the dominant POD 
mode is close or identical to a two-dimensional invariant manifold 
representing a normal mode of oscillation.  
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Abstract: This paper discusses the non-linear oscillations and dynamic instabilities of 
thin walled shells subjected to harmonic loads. Due to the presence of strong 
non-linearities and high sensitivity to small variations in control parameters, 
thin shells may display a complex dynamic behavior and, despite the recent 
advances in this field, there is still a lack of satisfactory solutions to this class 
of problems. There are several complicated issues relating to the dynamics of 
such structures. In this work some of these topics are addressed, namely shell 
discretization processes, influence of modal coupling on non-linear vibration 
modes, modal interaction between different non-linear vibration modes, 
imperfection sensitivity and fractal basin boundaries. To this end, the theory 
for quasi-shallow shells is used to study the non-linear vibrations and 
instabilities of thin cylindrical shells under axial load. 

Key words: Thin walled shells, non-linear vibrations, dynamic buckling, modal 
interaction, modal coupling, imperfection sensitivity. 

1. Introduction 

1.1 Shell Structures 

Man-made constructions and natural things exist in a great variety of 
forms. Shells stand out sharply against other structures built by man or 
nature and are found in a large variety of forms. Being essentially a thin 
walled curved structure, shells usually stand up well to various loads, in 
particular surface and edge loads, and look extremely attractive from a 
structural engineering point of view because of their relatively low weight. 
However, thin walled shells when subjected to distributed compressive 
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loads often exhibit a highly non-linear response and may be subjected to 
several types of instabilities which are a key feature to be considered in their 
structural analysis. Moreover, many of these structures will typically 
experience these loads in a dynamic environment. In order to be able to 
exploit the efficiency of these shell structures, their non-linear oscillations 
and buckling behavior need to be elucidated. In most practical shell 
problems instabilities or large amplitude vibrations may lead to permanent 
damage or even a catastrophic failure of the system, but there are some 
system where the non-linear shell behavior is a desirable feature [1]. In both 
cases the knowledge of shell non-linear behavior is essential for the 
establishment of proper design criteria. 

However there are several difficulties in assessing this problem. The first 
problem is how to model correctly the continuous system as a low 
dimensional discrete system so that we can use most of the numerical tools 
of modern non-linear dynamics. This issue is closely related to other two 
key topics in non-linear shell analysis: modal coupling and modal 
interaction. These terms have been used in different ways in the literature. 
Here, the term modal coupling is related to the essential linear modes 
necessary to describe the non-linear behavior of the shell while modal 
interaction describes the interaction between different non-linear modes. 
Previous studies conducted by the authors on cylindrical and spherical shells 
[2,3] showed that the complex dynamics of thin walled shells is mainly due 
to the presence of strong quadratic and cubic non-linearities emerging, 
respectively, from the curved surface initial shape and from stretching of the 
middle plane and are responsible for a strong modal coupling and modal 
interaction. This coupling is responsible, for example, for the well known 
softening behavior exhibited by shells and a wealth of non-linear 
phenomena, some of them still coming to light. These topics are addressed 
in this paper and their importance on shell dynamics is clarified. 

Among recent investigations on the dynamic instability of thin shell one 
should mention the works of Baumgarten et al. [4], Popov et al. [5,6], 
McRobie et al. [7], Teixeira et. al. [1], Gonçalves and Del Prado [2] and 
Soliman and Gonçalves [3]. These investigations using new numerical and 
analytical techniques related to low-dimensional models of complex 
dynamical systems have shed some light on the complex dynamics of thin 
shells.

The understanding of the instability phenomena is enhanced by the 
knowledge obtained from previous studies on the free and forced non-linear 
vibrations of thin shells. The pioneering studies on this subject were mainly 
concerned with the proper modal solution to obtaining meaningful low 
dimensional models and with the character (hardening or softening) and 
degree of non-linearity exhibited by thin shells. A discussion of these earlier 
studies was published by Amabili et. al. [8]. 
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2. Theoretical Background 

2.1 Shell Equations 

By definition shell is a body bounded by two curved surfaces, the 
distance h between them being small in comparison with the other 
dimensions. This assumption has been used to reduce the three-dimensional 
problem to a two-dimensional one. The essence of shell theory is that the 
displacements of any point within the shell can be expressed in terms of the 
displacement components of a reference surface. This procedure is not 
unique and several shell theories are found in literature. But in the literature 
on buckling and large amplitude vibrations of shells, the theory for quasi-
shallow shells is the most commonly used. Here this formulation is selected 
on the basis that it is the simplest approach that retains the essential non-
linear features of the problem. 

Z

Y

X y

x

z

 (u)

(v)

(w)

Figure 1. Shell co-ordinate system 

Consider a thin walled shell of arbitrary shape made of an isotropic, 
homogeneous and elastic material. A general point P on the shell median 
surface is specified by two orthogonal curvilinear co-ordinates x and y, as 
shown in Figure 1. These directions are made to coincide with the directions 
of the principal curvatures, 1/Rx and 1/Ry. Distances dsx and dsy along the co-
ordinate lines are given by dsx = A dx and dsy = B dy where A and B are the 
Lamé coefficients (see, for example, Brush and Almroth, [9]). 

Points outside the median surface are located by an additional co-
ordinate z. The strains at a point x, y, z can be written in terms of the six 
median surface deformational quantities 

xyxyxyyyxxx KzKzKz 2*** −=−=−= γγεεεε        (1)

where the median surface strains are given in terms of the displacement 
components u, v and w and the rotations xβ and yβ as
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The changes of curvature are given by 
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Using these expressions, one arrives at the following equations of motion 
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where Nx, Ny and Nxy are normal and shearing force intensities and Mx, My

and Mxy are bending and twisting moment intensities. These non-linear 
equations have quadratic and cubic terms in the displacements and their 
derivatives. Applications of these equations to particular geometries show 
that the type and degree of non-linearity are very sensitive to the shell 
principal curvatures 1/Rx and 1/Ry.

2.2 Shell Spatial Discretization 

The usual approach when studying shells is to reduce the partial 
differential equations of the continuum system into an approximate system 
of finite dimension. Methods such as the FEM are useful for practical 
structural design, but it is certainly a time demanding and cumbersome 
approach to understand some fundamental problems of shell non-linear 
dynamics, where detailed parametric analyses must be performed to unveil 
the rich dynamics of the structure. In the non-linear dynamic analysis of 
shells Ritz or Galerkin methods have been traditionally used. For this the 
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displacement field must be described by a sum of approximate functions 
satisfying the necessary boundary conditions. Using separation of variables, 
these functions can be described as 
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A key point is this process is to know the minimum number of terms in 
each series, which must be used to capture the real system dynamics, at least 
qualitatively. From previous investigations on modal solutions for the non-
linear analysis of shells it is observed that, in order to obtain a consistent 
modeling with a limited number of modes, the sum of shape functions for 
the displacements must express the non-linear coupling between the modes 
and describe consistently the type of non-linearity (hardening of softening) 
of the shell. Traditional perturbation methods may be used to identify these 
essential modes [10]. 

3. Numerical Results 

3.1 Modal Coupling 

Consider a perfect thin walled circular cylindrical shell of radius R ,
length L and thickness h . The shell is assumed to be made of an elastic, 
homogeneous and isotropic material with Young’s modulus E, Poisson ratio 
ν and mass per unit area M. (A=1, B=Ry=R and 1/Rx=0 in equations (1) to 
(5)). The shell has: h = 0,002 m, R = 0,2 m, L = 0,4 m, E = 2,1x108 kN/m2, ν
= 0,3 and M = 78,5 kg/m2, C1=1,6% of the critical damping and C2 = ηD
with η = 0,0001. For such a shell, the transversal displacement can be 
written as [10] 
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where n is the number of circumferential waves and Lmq /π= , in which m
is the number of axial half-waves in the linear problem and Wij  are time 
dependent generalized co-ordinates. 

These modes represent both the symmetric and asymmetric components 
of the non-linear shell deflection pattern. Previous studies on buckling and 
non-linear oscillations of cylindrical shells have shown that the most 
important modes are [2] 
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( ) ( ) ( ) ( )xqRnyqxyxw 2cos/cossin, 0211 ξξ +=                     (8) 

where hWijij /=ξ . Figure 2 illustrates the influence of modal coupling on 

the (a) post-buckling behavior and (b) frequency-amplitude relation of the 
shell. Equation (8) is the lowest order model capable to express, at least 
qualitatively, the correct non-linearity of this shell geometry. 
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Figure 2. Influence of modal coupling on the (a) post-buckling behavior of cylindrical shells 

under axial force and (b) its amplitude-frequency relation. 

3.2 Modal Interaction 
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Figure 3. Bifurcation diagrams. Influence of modal interaction. 
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To illustrate the influence of modal interaction in shell dynamics, Figure 
3 shows the bifurcation diagram for a parametrically loaded cylindrical shell 
subjected to a dynamic axial load of the type 

( ) ( ) cro PPtt /;cos1 =ΓΓ+Γ=Γ ω                                      (9) 
considering two modes with two nearly equal natural frequencies; modes 
(n.m)= (5,1) and (6,1) (the two lowest natural frequencies). 
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(a)– Parametric Instability. No escape. Both modes excited. 
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(b) – Energy exchange between modes. Long term behavior dominated by mode (5,1) 
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(c) - Energy exchange between modes. Long term behavior dominated by mode (6,1) 

Figure 4. Influence of modal interaction on the long-term response of the shell. Ω=1.80,
Γ0=0.50 and (a) Γ1=0.50, (b) Γ1=0.58, (c) Γ1=0.64.
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For the uncoupled vibration modes the multi-degree of freedom model 
associated with each non-linear mode gives a stable post-critical response 
(super-critical parametric bifurcation), while the response for the coupled 
model, (5,1)+(6,1), is unstable (sub-critical parametric bifurcation). It is 
interesting to notice that the dynamic behavior of the shell illustrated here is 
similar to the static behavior of the famous Augusti model, where the 
coupling of two stable responses leads to an unstable solution. 

Figure 4 shows the influence of modal interaction on the transient and 
long-term behavior of the shell in a parameter region where modal 
interaction is dominant. As observed here, there is a noticeable energy 
transfer between the modes during the transient response and the long-term 
response is very sensitive to system parameters and may be controlled by 
one or two modes. 

3.3 Imperfection Sensitivity and Fractal Basins 
Boundaries

Predicting the real non-linear static and dynamic responses of thin shells 
in numerical simulations is, despite the advent in recent year of extremely 
powerful computers and softwares, a difficult task because most models do 
not include some essential characteristics of the problem that initiate 
instabilities such as nonuniformities or imperfections in either the structure 
or loading. The influence of geometric imperfections on the non-linear 
response and load carrying capacity of thin shells has been one of the main 
issues of the theory of static stability [9]. However, this topic has been 
rarely treated in non-linear dynamics. In the present work, the influence of 
imperfections on bifurcations and basins of attraction are analyzed and their 
importance on shell design is evaluated. 
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Figure 5. Influence of imperfections on shell dynamic bifurcations. (a) Decreasing critical 

load; (b) increasing critical load for increasing imperfection amplitude. 
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Consider a cylindrical shell with the following transversal imperfection 
field, based on the modal expansion (7) 

( ) ( ) ( ) ( )xqRnyqxyxw 2cos/cossin, 0211 Ξ+Ξ=                        (10) 

where ijΞ are the normalized imperfection amplitudes. 

Figure 5 illustrates the influence of geometric imperfections on the 
bifurcation diagrams of the cylindrical shell under axial force. Depending on 
the relation between the excitation frequency ω and the lowest natural 
frequency ωn, the critical load may increase or decrease with the 
imperfection, depending on the type of bifurcation of the perfect system. 

Figure 6 shows cross-sections of the n-dimensional basin of attraction 
onto the ξ11.vs. ξ02 plane for 0Γ  = 0.5 and two imperfection levels. The 

basin cross-section for the perfect system is symmetric with respect ξ11 and
non-symmetric with respect ξ02 . This is explained by the symmetry breaking 
effect of the axi-symmetric term on the non-linear displacement field. As the 
imperfections increase the whole basin topology is distorted with a clear 
predominance of certain solutions. Also, the results show that the 
imperfections increase the velocity of the basin erosion and consequently 
the sensitivity of the system to initial conditions. 

Figure 6. Influence of imperfections on the basin of attraction 

Previous investigations on the non-linear dynamics of spherical and 
cylindrical shells [2,3] have also shown that stability boundaries in 
parameter space can become fractal. As in all dynamical systems there is 
uncertainty in the specification of the parameters values, the combined 
effects of imperfection sensitivity, sensitivity to initial conditions and 
system parameters makes it rather difficult to determine the response of a 
shell in the more sensitive parameter regions. This points out to the 
difficulties in obtaining reliable experimental results that can be used to 
check the accuracy and consistency of current mathematical models. Also, 
this leads to a difficulty in determine safe but non-conservative parameter 
values in design and this, together with the limited number of publications 
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on this subject, explains the lack of proper specifications for the design of 
thin shells under dynamic loads and the large knock-down factors still used 
in all engineering fields. 

4. Final Remarks and Conclusions 

The results of this research on shell dynamics highlight the influence of 
modal coupling and interaction and geometric imperfections on the non-
linear oscillations and instabilities of shell structures. They also point out to 
the difficulties in modeling this class of problems and the steps still needed 
to arrive at conclusions that may help in the safe and yet non-conservative 
design of thin walled buckling sensitive shells under dynamic loads. 
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INFLUENCE OF BOUNDARY CONDITIONS
RELAXATION ON PANEL FLUTTER
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Abstract: The problem of nonlinear panel flutter with relaxation in the boundary condi-
tions is studied based on a phenomenological model of joint preload relaxation.
The conventional boundary value problem of the panel involves time-dependent
boundary conditions that will be converted into autonomous ones using a special
coordinate transformation. The resulting boundary conditions will be combined
with the governing non-homogeneous, partial differential equation that will in-
clude the influence of the boundary conditions relaxation. The analysis will be
restricted to two-mode interaction and includes the influence of boundary con-
ditions relaxation on the panel modal frequencies and limit cycle amplitudes in
the time and frequency domains. The relaxation and system nonlinearities are
found to have opposite effects on the frequency evolution of the panel.

Key words: Panel flutter, boundary condition, nonlinear interaction.

1. Introduction

There are several factors affecting joint relaxation, which are well doc-
umented in references [1,3]. A fastener subjected to vibration will not lose
all pre-loads immediately. First there will be a slow loss of pre-load caused
by some of the relaxation mechanisms. Vibration will increase relaxation be-
cause wear and hammering will take place during vibration. Vibration-induced
loosening and relaxation effects cause time-dependent boundary conditions
and depend on the level of structural vibration. Under a stationary random
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excitation, the response of a nonlinear beam was analyzed by Qiao, et al. [8]
and exhibited nonstationary behavior.

Panel flutter has been extensively studied under deterministic and stochas-
tic air flow [6]. However, a limited number of studies considered the influence
of uncertainties in aeroelastic structures. For example, Poiron [7] introduced
uncertainties in analyzing the flutter characteristics of aircraft models and used
a first-order perturbation method and Monte Carlo simulation to determine the
flutter probability for different values of flow speeds and mass parameters. He
found that the mean values of the mass parameter yield instability for a flow
speed of 310 m/s, which is slightly greater than the critical speed. The effect of
uncertainty in the boundary conditions combined with the variability of mate-
rial properties on nonlinear panel aeroelastic response was studied by Lindsley,
et al. [4,5]. Parametric uncertainty was examined by modeling variability in
Young’s modulus and the boundary conditions. The variability in the bound-
ary conditions was restricted to a single value along the plate boundary edges
for each realization. It was reported that for values of dynamic pressure in the
deterministic limit cycle oscillation range, the variability in the boundary con-
ditions affects the panel deflection in an essentially linear manner. However, for
values in the neighborhood of a bifurcation point, the relationship is nonlinear.
Variation in the boundary conditions results in a softening effect of the clamped
panel, and thus induces an increase in the amplitude of plate oscillations.

These studies did not include the influence of boundary conditions relax-
ation on the flutter characteristics of aeroelastic structures. The present work
is an extension of the work of Ibrahim, et al. [2] and Qiao, et al. [8] to ex-
amine the influence of relaxation of boundary conditions on the panel flutter
characteristics such as modal natural frequencies and limit cycle amplitudes.

2. Analysis

Based on the quasi-steady state, supersonic theory, the deflection of a two-
dimensional panel undergoing cylindrical bending is caused by the interaction
of inertia, elastic, and aerodynamic forces. The governing equation of motion
may be developed using Hamilton’s principle. In order to estimate the work
done by aerodynamic loading, the dynamic pressure is estimated using pis-
ton theory including quadratic nonlinearity. With reference to Figure 1, the
governing equation of motion is
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Figure 1. Schematic diagram of a panel in supersonic flow

where w(x, t) is the panel deflection, m p is the panel mass per unit area, a is

the panel length, E is Young’s modulus, h is the plate thickness, D = Eh3

12(1−ν2)
,

ν is Poisson’s ratio, p0 is the static pressure across the panel, a∞ =
�
γ p∞
ρ∞ is

the speed of sound; p∞ is the gas stream pressure, M = U∞/a∞ is the Mach
number; γ =Cp/Cv is the ratio of specific heat at constant pressure and volume,
Nx0 is the external in-plane load per unit span-wise length, and c is a linear
viscous damping coefficient. Equation (1) is subject to the boundary conditions

D
∂2w(0, t)

∂x2
− α1(t)

∂w(0, t)

∂x
= 0, w(0, t) = 0 (2a,b)

D
∂2w(a, t)

∂x2
+ α2(t)

∂w(a, t)

∂x
= 0, w(a, t) = 0 (2c,d)

where α1 and α2(t) measure the end slopes and represent torsional stiffness
parameters such that for α1(t) = α2(t) = ∞ we have the case of a purely
clamped-clamped panel. On the other hand, if we have simple supports, then
α1(t) = α2(t) = 0. In real situations, both α1(t) and α2(t) do not assume these
extreme cases and their values are very large for clamped supports, or very
small for simple supports. In the dynamic case the boundary conditions (2a,c)
are non-autonomous. In order to convert these conditions into an autonomous
form, we introduce the following transformation of the response coordinate:

w(x, t) =

��x

a

�2 + 2g1(z1, z2)
x

a
+ g2(z1, z2)

�
u(x, t)

= ϕ(x ; z1, z2)u(x, t) (3)

Boundary conditions relaxation 
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where the dimensionless parameters zi(t) = D/(aαi(t)), i = 1, 2, represent
the ratio of the bending rigidity to the torsional stiffness of the joints. The
functions g1(z1, z2) and g2(z1, z2) are chosen to render the boundary condi-
tions autonomous for the new coordinate u(x, t). Possible expressions of these
functions are [8]

g1(z1, z2) =− 1+ 4z2

2(1+ 2z1 + 2z2)
; g2(z1, z2) =− 2z1(1+ 4z2)

1+ 2z1 + 2z2
(4)

In this case, the boundary conditions (2) become

∂2u(0, t)

∂x2
=
∂2u(a, t)

∂x2
= 0 and u(0, t) = u(a, t) = 0. (5)

Introducing the following nondimensional parameters

τ = t

�
D

m pa4
; w̄ =

w

h
; x̄ =

x

a
; λ =

ρ∞U 2∞a3

M D
; µ =

ρ∞a

m p
;

ζ =
c

a2

�
D

m p
; N̄x0 = Nx0

a2

D
; p̄0 = p0

a4

Dh
; B1 = 6(1− ν2);

B2 =
γ + 1

4

ρh

m p
; B3 =

γ + 1

2
�

m p D
ρ∞U∞ah; B3 =

γ + 1

2
ρ∞U 2

∞
a2h

D

ū =
u

h
; ϕ̄ =

�
x̄2 + 2g1(z1, z2)x̄ + g2(z1, z2)

� ; ζ̂ =

�
µ

M

equation (1) becomes

∂2(ϕ̄ū)

∂τ 2
+
�

1+ ζ ∂
∂τ

�
∂4(ϕ̄ū)

∂ x̄4
−
�
�N̄x0 + B1

1	
0

�
∂(ϕ̄ū)

∂ x̄

�2

dx̄



� ∂2(ϕ̄ū)

∂ x̄2

+λ∂(ϕ̄ū)

∂ x̄
+ ζ̂√λ∂(ϕ̄ū)

∂τ
+ B2

�
∂(ϕ̄ū)

∂τ

�2

+ B3
∂(ϕ̄ū)

∂τ

∂(ϕ̄ū)

∂ x̄
+

B4

�
∂(ϕ̄ū)

∂ x̄

�2

= p̄0 (6)

Galerkin’s method is applied to discretize equation (6) by assuming the
general solution in the form:

ū(x̄, τ ) =
N�

n=1

qn(τ ) sin nπ x̄ (7)
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where N is the total number of modes, qn(τ ) are the generalized coor-
dinates. For the present study, we consider two-mode interaction, i.e., N = 2.
Furthermore, it is assumed that z1 = z2 = z/2. The following two nonlinear
ordinary differential equations are obtained:

q ′′1 (τ )+ (ζa11 + ζ̂
√
λ)q ′1(τ )+ (a12 N̄x0 + a13)q1(τ )+

(a14λ+ a15)q2(τ )+ B2b11q ′1(τ )
2 + B2b12q ′2(τ )

2 +
B3b13q ′1(τ )q2(τ )+ B3b14q1(τ )q

′
2(τ )+ B1b15q1(τ )

3 +
B1b16q1(τ )q2(τ )

2 + B4b17q1(τ )
2 + B4b18q2

2 =
2 p̄0

π
(8a)

q ′′2 (τ )+ (ζa21 + ζ̂
√
λ)q ′2(τ )+ (a22 N̄x0 + a23)q2(τ )+ (a24λ+

a25)q1(τ )+ B2b21q ′1(τ )q
′
2(τ )+ B3b22q ′1(τ )q1(τ )+ B4b42q1q2 +

B3b23q2(τ )q
′
2(τ )+ B1b24q2(τ )

3 + B1b25q1(τ )
2q2(τ ) = 0 (8b)

where the coefficients ai j and bi j are functions of the relaxation parameter z
and are not listed here.

3. Modeling of the Relaxation Process

The preload relaxation process is phenomenologically modeled based on
experimental results [1]. First, it is assumed that the torsional stiffness param-
eters are functions of the number of vibration cycles n = n(t):

ᾱi (n) =
aαi(n)

D
=

1

zi(n)
(9)

where the over-bar denotes a dimensionless parameter. An explicit analytical
expression for the parameters ᾱi(n) can be obtained from experimental records
[1]. These experimental measurements revealed the trend of the relaxation
process as a slow drop between an original and an asymptotic value of the
joint stiffness. An appropriate elementary function that emulates this behavior
may be selected in the form

ᾱ(n) = A + B tanh[−k(n − nc)] (10)

where the subscript i has been dropped, and nc is a critical number of cycles,
indicating the center location of the steepness with respect to the origin, n = 0.
The parameter k is associated with the slope of the curve at point n = nc.

Boundary conditions relaxation 
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Figure 2(a) Real part Figure 2(b) Imaginary part

The constants A and B are determined from the initial and final values of the
stiffness parameter and evaluated by solving the two algebraic equations

ᾱ(0) = A + B tanh[knc], ᾱ(∞) = A + B (11a,b)

Solving for A and B and substituting in relation (10) gives

ᾱ(n) = ᾱ(∞)+ [ᾱ(0)− ᾱ(∞)]
�

1+ tanh[−k(n − nc)]

1+ tanh[knc]

�
(12)

The parameters ᾱ(0) and ᾱ(∞) are obtained from the experimental curve.
The slope parameter k can be found by taking the derivative of equation (12)
with respect to n, i.e.,

k =
∂ᾱ(n)/∂n|nc

[ᾱ(∞)− ᾱ(0)] [1+ tanh[knc]] (13)

One can write an expression for z(t) by using relations (9) and (12) in the
form

z(τ) = Z0 Z∞
�

Z0 − (Z0 − Z∞)
1+ tanh(−χ(τ − τ c))

1+ tanh(χτ c)

�−1

(14)

where Z0 = z(0); Z∞= z(∞); χ = <�>
2πk ,where< ω̄ > is the mean value of the

response frequency and can be taken as the center frequency. The phenomeno-
logical representation given by equation (14) can be used for any initial preload
and will cause the panel to experience non-stationary behavior.

4. Discussion of the Results

The influence of boundary conditions relaxation on the panel eigenvalues
can be examined by dropping the nonlinear terms and the non-homogeneous
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term from the modal equations (8). The dependence of the real and imagi-
nary parts of the modal eigenvalues on the dynamic pressure λ and relaxation
parameter z is shown in Figures 2(a) and (b) by three-dimensional diagrams
for damping parameter ζ = 0.01, mass parameter ζ̂ = 0.1, and static axial load
parameter N̄xo =10. It is seen that the real parts are always negative up to a crit-
ical value of the dynamic pressure, depending on the value of the relaxation
parameter z, above which one real part crosses to the positive zone indicat-
ing the occurrence of panel flutter. Note that the value z = 0 corresponds to
a clamped-clamped panel and the corresponding critical dynamic pressure is
greater than any case with z �= 0. For equal modal viscous damping coeffi-
cients, the damping is known to stabilize the panel. However, as shown in
[3], and cited references in [3], unequal modal damping coefficients result in
a paradoxical effect.

The panel experiences flutter above those critical values of dynamic pres-
sure and relaxation parameter. The inclusion of nonlinearities in equations (8)
causes the flutter to achieve a limit cycle. However due to relaxation, shown
in Figure 3(a), the panel response experiences nonstationary limit cycle oscil-
lations as shown in Figures 3(b,c). The FFT shown in Figure 3(d) reveals that
the frequency content of the first mode includes one spike at zero frequency,
due to the static in-plane load, and another band limited response covering
a frequency band ranging from mearly 5.8·2π to 6.8·2π (dimensionless fre-
quency). This frequency band reflects the time variation of the panel frequency
with time. This is demonstrated by using the spectrogram technique. The time
evolution of the frequency content represented by the spectrogram in Figure
3(e) demonstrates the correlation between the variation of the frequency with
the relaxation process given in Figure 3(a). It is seen that the response fre-
quency increases as the joint passes through relaxation. On the one hand, the
relaxation causes a decrease in the frequency. On the other hand, the non-
linearity of the panel is of a hard spring characteristic. It appears that the
nonlinearity overcomes the softening effect of relaxation.

Figures 4(a) and (b) show the dependence of the limit cycle amplitudes on
the dynamic pressure for different discrete values of the relaxation parameter z
in the form of supercritical bifurcation. The two ideal cases of purely simple-
simple and clamped-clamped boundary conditions are plotted by solid curves.
Note that the relaxation results in moving the bifurcation point to lower val-
ues of dynamic pressure. Currently, the authors are studying the influence
of boundary conditions relaxation on panel flutter under random aerodynamic
loading.

Boundary conditions relaxation 
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(a) Relaxation parameter z

(b) First mode response

(c) Second mode response

(d) First mode FFT

Figure 3. Relaxation, time history responses and FFT of the first mode
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Figure 3(e) Spectrogram of the first mode
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Figure 4(a) 1st mode bifurcation for different relaxation parameters
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Figure 4(b) 2nd mode bifurcation for different relaxation parameters
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SOLUTIONS OF A SHALLOW ARCH UNDER
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Abstract: Quasi-Periodic (QP) and periodic burster solutions of a two degree of freedom
shallow arch model, subjected to a very slow parametric excitation and a reso-
nant external excitation, are investigated. A multiple-scales method is applied to
have slowly modulated amplitudes and phases equations. Behavior charts and
explicit analytical approximations to QP solutions are obtained and comparisons
to numerical integration are provided.

Key words: Shallow arch, quasi-periodic solutions, slow manifold, bursters.

1. Introduction

Quasi-periodic (QP) excitations consisting of slow and fast periodic func-
tions are very important sources of multiple scales phenomena. A wide range
of these latter can be written as singularly perturbed systems or ODEs with
slowly varying parameters. Several methods are available to analyze solutions
of such systems. For instance, Bogoliubov and Mitropolskii [1] developed an
averaging method considering the slowly varying parameters as constants dur-
ing the averaging process. Belhaq and co-workers [2; 3] used the so-called
double perturbation method to investigated non-linear QP Mathieu equations.
For other techniques and applications see [4].
The main goal of the present work is to approximate analytically QP solutions
and periodic bursters of a two mode double hinged shallow arch model. It is
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excited by two forcings, in the vicinity of a buckled symmetric state, under 1:2
internal resonance and the principal external resonance. The two excitations
consist of a resonant external periodic excitation of the symmetric mode, and
a very slow parametric periodic excitation of the two modes. This parametric
excitation is due to the imposed motion of the arch support. Hence three time
scales rule our system; the fast scale which is induced by the external excita-
tion, the slow scale that is induced by the modulated amplitudes and phases,
and the very slow scale caused by the parametric excitation.

This paper is organized as follows: in the first section we discuss the shal-
low arch model. Then, a Multiple scales Method (MSM) is applied to deter-
mine the slowly modulated amplitudes and phases equations. Finally, explicit
conditions on the existence and stability of different dynamics are obtained.
Analytical approximations of QP solutions are computed and comparisons to
numerical simulations are provided.

2. Shallow Arch Model

A double-hinged shallow arch is assumed to be subjected to a lateral load-
ing consisting on a static loading and a periodic excitation. It is also subject to
an imposed slow periodic motion of its support. The non-dimensional equa-
tions of motion describing the evolution of the straightened amplitudes, of two
sine functions taken as approximations of the two first modes of the shallow
arch, can be written as

Q̈1 + β1Q̇1 + (1+ h cos (�τ))Q1 + Q1(Q
2
1 − q2

0 + 4Q2
2)+ q0 − λ0

+ρ cos (νt) = 0 (1)

Q̈2 + β2Q̇2 + 4(4+ h cos (�τ))Q2 + 4Q2(Q
2
1 − q2

0 + 4Q2
2) = 0.

Here t is time and τ is a very slow time scale defined as τ =εnt with the integer
n ≥ 2. The variables Q1 and Q2 are the amplitudes of the symmetric and the
asymmetric modes respectively. The parametric excitation h cos (�τ) is due
to the periodic motion of the end point of the arch. The parameters q0 and λ0

represents the non-dimensional initial rise and the static loading respectively.
The details of this derivation and the definition of non-dimensional variables
and parameters can be found in [5], in which the externally excited version of
equations (0) was studied.
Under the action of the static loading λ0 alone, increasing the initial rise q0, a
stable symmetric static solution bifurcates to three symmetric solutions. Two
among them are stable. In what follows we will deal only with the two stable
symmetric solutions. In all the numerical applications, q0 = 2.5, λ0 = 6.95 and
the damping coefficients βi = 0.03 (i = 1, 2).
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3. Perturbation Analysis

We perturb the variables (Q1, Q2) in equations (0) around one of the two
stable buckled symmetric solutions (η0, 0)

Q1 = η0 + εq1 Q2 = εq2 (2)

where ε is a small positive parameter. Let

ρ = ε2ρ̃, h = εh̃, and βi = εβ̃i , i = 1, 2. (3)

Inserting (1) and (2) into equations (0) leads to the following nonlinear varia-
tional equations up to O(ε2)

q̈1 + ω2
1q1 = −h̃η0 cos (�τ)+ ε(−β̃1q̇1 − 3η0q2

1 − 4η0q2
2 − ρ̃ cos (νt)

− h̃ cos (�τ)q1), (4)

q̈2 + ω2
2q2 = ε(−β̃2q̇2 − 8η0q1q2 − 4h̃ cos (�τ)q2),

where ω2
1 =3η2

0+1−q2
0 and ω2

2 =16−4q2
0 +4η2

0 are the linearized frequencies
corresponding to the first and second modes, respectively. We will restrict our
analysis to 1 : 2 internal resonance and to the principal external resonance

ω1 = 2ω2 + εσ1, ν = 2ω2 + εσ2, (5)

where σ1 and σ2 are the detuning parameters. For an exhaustive review of the
recent works on two-degree-of-freedom quadratic systems, under external or
parametric excitations, we refer the reader to [6].

Reduced System

The MSM (see [7]) is applied to (3) to eliminate the fast time scale depen-
dence. This process ultimately results in the following modulation equations
of amplitudes a1, a2 and phases of the first and second modes respectively

a′1 = − β̃1

2
a1 − ρ̃

2ω1
sin (γ1)− η0

ω1
a2

2 sin (γ1 − 2γ2)

a1γ
′
1 = (σ2 − σ1)a1 − η0

ω1
a2

2 cos (γ1 − 2γ2)− ρ̃

2ω1
cos (γ1)

− h̃ X

2ω1
a1 cos (�τ)

a′2 = − β̃2

2
a2 + 2η0

ω2
a1a2 sin (γ1 − 2γ2) (6)

γ ′2 =
σ2

2
− 2η0

ω2
a1 cos (γ1 − 2γ2)− 2h̃Y

ω2
cos (�τ),

Solutions of a shallow arch under fast and slow excitations
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where X =1−(6η2
0/ω

2
1) and Y =1−(2η2

0/ω
2
1). The prime denotes the derivative

with respect to εt . Here we have considered the slowly varying parametric
excitation as constant during the averaging process.
The solutions of equations (3) are approximated up to O(ε) as follows

q1(t) = a1(τ ) cos (νt − γ1(τ ))− h̃η0

ω2
1

cos (�τ)+O(ε), (7)

q2(t) = a2(τ ) cos (
ν

2
t − γ2(τ ))+O(ε). (8)
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Figure 1. Boundaries of dy-
namic instability of the mod-
ulation equations (5) in the
external excitation parameters
plane (ν, ρ) for h = 0. Re-
gion A, only single symmet-
ric mode exists and is stable.
Region B, coexistence of cou-
pled and single modes. Re-
gion C, only coupled mode is
stable. Region D both modes
are unstable.

In figure 1., we show the stability chart of system (5) in the absence of
the parametric excitation i.e., h = 0. In region A, only the symmetric mode
(a1, a2 = 0) is excited and is stable. In region B, coexistence of the stable
symmetric mode (a1, 0) and two coupled modes (a1, a2 �= 0), one of them is
stable. In region C , coexistence of the destabilized single mode and the stable
coupled mode. In region D, destabilization of the coupled mode through a
Hopf bifurcation. For more results about this case see Tien et. all [8].

In figure 2, we consider a point in the region A with a static displacement
of the support of the arch i.e., � = 0 and h �= 0. For low and high values of h
only the stable semi-trivial solution exists and for h ∈ [0.00118, 0.005] there
is coupling between the existing modes.
One interesting contribution of the slow parametric excitation i.e., h �= 0 and
� �= 0 is that it enables the crossing of the borders between the different re-
gions in figure 1 during one period of τ . This effect is the main cause for the
occurrence of periodic bursters. See figure 3 for a burster solution Q2(t) of the
original system (0). It consists of a heteroclinic cycle between a fixed point
and a QP solution.
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Figure 2. Stationary responses of (5) for
ρ = 0.0007, ν = 1.29, � = 0. Continuous
lines refer to stable solutions and dashed
lines to unstable ones.
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Figure 3. Periodic burster solution Q2(t)
of the original equation (0) for ρ =
0.002, ν = 1.25, � = 0.001 and h = 0.01.

QP solutions and bursters

Equations of modulations (5) can be writen as a slow-fast system

εż = f (z, τ ), τ̇ = 1, (9)

where the vector z = (a1, γ1, a2, γ2) and the dot means the derivatives with
respect to the very slow scale of time τ . In the limit ε → 0 one can compute
the slow manifold given by M = {(z, τ ) : f (z, τ ) = 0}. It is composed of two
types of solutions

The semi-trivial solution

a1(τ ) =
ρ̃

2ω1

�
[( β̃1

2 )
2 + (σ1 − σ2 + h̃ X

2ω1
cos (�τ))2]

, (10)

a2(τ ) = 0. (11)

The non-trivial solutions

a1(τ ) = | ω2

2η0
|
�
(
β̃2

2
)2 + (σ2

2
− 2h̃Y

ω2
cos (�τ))2. (12)

The two nontrivial amplitudes of the anti-symmetric mode a2(τ ) are obtained
by solving a fourth order algebraic equation.

Solutions of a shallow arch under fast and slow excitations
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It is known through the singular perturbation theory that when the slow man-
ifold M is stable, there exists a solution of the frozen system (8) tracking M
at a distance of order ε and admitting asymptotic series in ε. Near bifurcating
equilibrium branches the center manifold theorem can be applied to reduce
the dimension of the system to the number of bifurcating eigenvalues, see for
instance Bajaj and co-workers [9] and Berglund [10]. In figure 4., we show
the stability chart of system (5) for h = 0.001 in the plane of external excita-
tion parameters. The stability behaviors of the solutions in the zones A, B,C
and D are the same as in figure 1. However, instead of fixed points we deal
now with periodic solutions. In the grey zones these periodic solutions are
changing their nature or stability during one period of τ . These zones are the
zones of existence of periodic bursters solutions.
Using equations (1), (6) and (7) we conclude that away from the boundaries
of dynamic instability, i.e., in regions A, B and C , the stable solutions of the
initial system (0) are mainly QP. The amplitude of the symmetric mode Q1(t)
is a QP solution with basic frequencies ν and �. The amplitude of asymmetric
mode Q2(t) is a trivial solution in the zones A and B. It is a QP solution in
the zones B and C with basic frequencies ν/2 and �. In region D, 3-period
QP solution and non regular behaviors can be observed. In the grey zones,
periodic bursters solutions exist and they alternate between the dynamics of
zones delimiting them. As an example see figure 3.

In figure 5, we show for different values of parameters of the excitations,
the comparisons between the results of MSM and the numerical simulations of
equation (0). In every case, excellent agreements are shown. For the behavior
of the solutions near the resonances boundaries (grey zones in figure 4.) and
in the zone D, a more detailed investigation is in progress, and results will be
reported elsewhere.

Figure 4. Behavior chart of
equations (5) for h = 0.001.
The grey areas correspond to
zones of existence of bursters.
The qualitative behaviors of
the lettered zones are the same
as in figure 1.
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Figure 5. Comparisons of the approximated solutions and numerics of equation (0), for ν=1.25
and � = 0.06. The right figures refer to the computer generated solutions and the left ones to
the analytical solutions. The plots (a) (resp. (a’)) and (c) (resp. (c’)) correspond to a point in
the zone A with ρ = 0.00065 and h = 0 and h = 0.001 respectively. The plots (b) (resp. (b’))
and (d) (resp. (d’)) correspond to a point in region C for ρ = 0.0015 and h = 0 and h = 0.001
respectively.

excitation. The dynamic on the slow manifold is studied after a reduction
through the MSM. Behavior charts and explicit analytical approximations of
solutions are computed and comparisons to numerical integration are pro-
vided.
It is worth noting that for high amplitudes of the parametric excitation h the
dynamics of the arch leaves the neighbourhood of the considered symmetric
buckled position to oscillate around the other one. A global analysis is re-
quired to understand this jump.

4. Summary

In this paper, we have investigated QP solutions and periodic bursters of a
shallow arch subject to a very slow parametric excitation and a fast external

Solutions of a shallow arch under fast and slow excitations
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NONLINEAR OSCILLATIONS OF A
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Abstract: Various devices have been used to reduce the dynamic response of mechanical
and structural systems connected to moving sources. A vibration isolator can be
inserted between a system and source to absorb energy and reduce the system’s
motion. The application of a buckled mechanism as a vibration isolator is in-
vestigated here. Harmonic motion is applied to the base, and the response of the
supported weight is examined. Both parametric and external (forcing) excita-
tions are present. Small applied motions and responses are considered first, and
the steady-state harmonic motion of the weight is plotted as a function of the
applied frequency. Then large responses are investigated. The buckled mecha-
nism may snap from one side to the other. After some initial transient response,
period-one, period-two, period-four, and chaotic responses are observed for var-
ious applied frequencies and given values of the applied amplitude, supported
weight, damping coefficient, and stiffness parameter.

Key words: Vibration isolation, buckling, nonlinear oscillations.

1. Introduction

A slightly-buckled structure, such as a mechanism, may have advantages
over other types of isolators. It may exhibit less axial deformation than a
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helical spring, for example, and hence may be able to support a heavy system
without large static deformation. Just beyond initial buckling, such a buckled
isolator has a low fundamental frequency. If the basic frequency of the moving
source is above this fundamental frequency, the transmissibility may be low,
so that the amplitude of the system’s motion may be significantly less than that
of the source. [1–3] discussed isolators comprised of buckled struts with fixed
ends. In this paper, a pinned mechanism containing two rigid bars, a rotational
spring, and a rotational dashpot is analyzed.

Resonances are important in the effectiveness of an isolator [4–6]. The
static postbuckling behavior of the isolator considered here is nonlinear. The
equation of equilibrium and the equation of motion for vibrations about the
equilibrium state are nonlinear. The latter equation contains both paramet-
ric and external (forcing) excitations. The transmissibility is computed un-
der the assumption of small vibrations about the equilibrium state. For large
responses, the equilibrium equation for the one-degree-of-freedom system is
integrated numerically. Time histories, phase portraits, Poincaré plots, and bi-
furcation diagrams are presented for given parameter values, and various types
of responses are demonstrated.

2. Formulation

Consider the single-degree-of-freedom mechanism shown in Fig. 1.

(a)

K

L L

φφφφe φφφφe

C

W

(b) K

L L

Z(T)

W d2Z
dT2g (T)+W

U(T)

φφφφ(T) φφφφ(T)

C

Figure 1. (a) Geometry of mechanism in equilibrium configuration, (b) geometry of mecha-
nism in motion.

It is envisaged as a vertical structure supporting the weight W, but is drawn
horizontally with the base at the left. The two bars have length L and are
hinged together. Acting at the connecting hinge are a rotational spring with
stiffness K and a rotational dashpot with damping coefficient C . The base
(i.e., the left support) is subjected to an axial displacement U (T ), where T is
time. The weight W is assumed to be greater than the critical load, so that the
model attains a buckled configuration as depicted in Fig. 1(a). The coordinate
φ(T ) is shown in Fig. 1(b), along with the inertia force added to the weight
at the top of the model (i.e., the right support), where Z(T ) = U (T ) + 2L
cosφ(T ). The spring is unstrained when φ = 0, and the equilibrium rotation is
φ = φe. The objective is for the motion of the supported weight to be small.
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The mass of each bar is M and the potential energy due to the weight of
each bar is neglected. The axial coordinates of the centers of mass of the bars
are X1 = U + (L/2) cosφ and X2 = U + (3L/2) cos φ, respectively, and the
transverse coordinates are Y1 = Y2 = (L/2) sinφ, while the moment of inertia
of each bar about its center of mass is I = M L2/12. The kinetic energy K E ,
potential energy P E , and dissipation function DF are given by

K E =
1

2
M(Ẋ2

1 + Ẏ 2
1 )+

1

2
I φ̇2 + 1

2
M(Ẋ2

2 + Ẏ 2
2 )+

1

2
I φ̇2 + 1

2

W

g
Ż2,

P E =
1

2
K (2φ)2 + W Z , (1)

DF =
1

2
C(2φ̇)2

Using Lagrange’s equations, one obtains the following equation of motion:�
1
3 M + (M + 2 W

g ) sin2 φ
�

L2φ̈ + (M + 2 W
g )L

2φ̇2 sinφ cosφ

−(M + W
g )LÜ sin φ + 2Cφ̇ + 2Kφ − W L sin φ = 0

(2)

The analysis will be carried out in terms of the following nondimensional
quantities:

u = U
L z = Z

L p = W L
K

r = K
MgL c = C

L
√

K M
t = T

L

�
K
M ,

(3)

where p will be called the load and r will be called the stiffness parameter.
Then the equation of motion in φ(t) is

�
1
3 + (1+ 2rp) sin2 φ

�
φ̈ + (1+ 2rp)φ̇2 sin φ cosφ

−(1+ rp)ü sinφ + 2cφ̇ + 2φ − p sinφ = 0
(4)

If there is no base excitation u(t), Eq. 4 provides the equilibrium equation

2φe − p sinφe = 0 (5)

for the equilibrium value φe of the rotation. The critical load is pcr = 2, and it
is assumed that p > 2. In the numerical examples to be considered, p = 2.01
and φe = 0.1729. The system is assumed to be in its equilibrium state prior to
base excitation, so that φ = φe and dφe/dt = 0 at t = 0. The base excitation is
assumed to be harmonic with amplitude u0 and frequency ω.

3. Transmissibility for Small Excitation and Motion

In this section, the base excitation is assumed to be small and the equation
of motion is linearized. Let

u(t) = u0eiωt , φ(t) = φe + φdeiωt (6)
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Using Eq. 6 in Eq. 4, linearizing the result in the dynamic amplitude φd and
excitation amplitude u0, and making use of Eq. 5, one obtains

� �
1
3 + (1+ 2rp) sin2 φe

�
ω2 − 2icω − 2+ p cos φe

�
φd

=
�
(1+ rp)ω2 sinφe

�
u0

(7)

The axial motion xd(t) of the supported weight about its equilibrium posi-
tion is

xd(t) = u(t)+ 2 cos φ(t)− 2 cos φe (8)

With the use of Eq. 6, and assuming small motion, one can write

xd(t) = (u0 − 2φd sinφe)e
iωt (9)

The transmissibility TR is defined as the ratio of the amplitudes of the axial
motions of the supported weight and the base excitation, i.e.,

TR = |xd |/u0 (10)

where u0 > 0.
The resonant frequency ωn, defined here as the frequency at which TR

approaches infinity when there is no damping (c = 0), based on Eqs. 7, 9, and
10, is computed from

ω2
n =

3(2− p cosφe)

1+ 3(1+ 2rp) sin2 φe
(11)

It has the values 0.204, 0.144, and 0.113, respectively, for r =1, 5, and 10. The
transmissibility is plotted versus the excitation frequency ω in Figs. 2(a-c) for
stiffness parameter values of r = 1, 5, and 10, respectively.

Curves are plotted for damping coefficients c = 0, 0.001, 0.01, and 0.1.
The peak values of the transmissibility for r = 1 and c = 0.001, 0.01, and 0.1,
respectively, are 18.2, 2.20, and 1.05. For r = 5, the corresponding values are
47.2, 4.87, and 1.16, and for r = 10 they are 70.8, 7.18, and 1.29.

For small excitation and response, the model would be an effective isolator
if the excitation frequency is sufficiently high so that the transmissibility would
be low.

4. Nonlinear Response

The equation of motion (4) is now put into the form of two first-order differ-
ential equations and integrated numerically for base excitation u(t)=u0 sinωt .
The excitation involves both parametric and external (forcing) components
acting on the motion about the equilibrium configuration [7–9]. The equation
would have a trivial solution φ(t) = 0 if the initial conditions on φ and dφ/dt
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Figure 2. Transmissibility versus excitation frequency ω, (a) r = 1, (b) r = 5, (c) r = 10.

were trivial, but here the load is assumed to be greater than the critical load,
i.e., p = 2.01, and the model has an initial buckled configuration with rotation
φ(0) = 0.1729 (and no initial velocity). Hence motion will occur.

Attention will be focused on long-term response following initial transient
motion. Most results will involve the rotation φ(t), obtained by numerically
solving Eq. 4, and the dynamic axial response xd(t) of the supported weight,
computed from Eq. 8.

Consider the case of damping coefficient c = 0.02, stiffness parameter
r = 1, and excitation amplitude u0 = 0.05. The resonant frequency is ωn =
0.204.

For an excitation frequency of ω=0.1, the transient motion dies out quickly
and the response is shown in Figs. 3(a) and (b) in terms of φ(t) and xd(t),
respectively. After transient motion has died out, the phase plane projec-
tion, showing dxd/dt versus xd , is the closed loop plotted in Fig. 4, and the
corresponding Poincaré plot is superimposed using data taken at time inter-
vals 2π/ω: it consists of a single dot. Next, the excitation frequency ω = 0.2
is considered, which is slightly below the resonant frequency. The rotational
and axial responses are shown in Figs. 5(a) and (b), respectively.

The model exhibits a few cycles above the horizontal in Fig. 1 and then
snaps below the horizontal and remains there. The response settles into a
subharmonic period-two motion, i.e., its period is twice the period of the exci-
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Figure 3. Time histories for the response when ω = 0.1. (a) rotational, (b) axial.

tation. For the steady-state response, the (period-two) phase portrait is shown
in Fig. 6. A period-four response occurs for ω = 0.39.

Chaotic motions are exhibited at most of the frequency values that were
considered between ω = 0.206 and 0.39 (i.e., in the range between ωn and
2ωn). Phase projections for the axial motion xd(t) of the supported weight and
the transverse motion y(t) of the hinge are presented in Figs. 7(a) and (b),
respectively, using data from the response for excitation frequency ω = 0.32 in
the range of time 4, 700 < t < 5, 000. At equilibrium, xd = 0 and y = 0.1720.
The model moves erratically and snaps back and forth across the horizontal in
Fig. 1(b).

Figure 8 presents Poincaré plots for chaotic motion. The case of ω = 0.32
is shown in parts (a) and (b), corresponding to the phase portraits in Fig. 7,
whereas ω = 0.209 for part (c), just for the transverse motion.

-0.04 -0.02 0 0.02 0.04

-0.004
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0

0.002

0.004

x (t)d

.

x (t)
d

Figure 4. Phase projection and Poincaré section for axial response when ω = 0.1.
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Figure 5. Time histories for the response when ω = 0.2. (a) rotational, (b) axial.

Finally, Fig. 9 depicts bifurcation diagrams [10]. Data from Poincaré plots
for the axial response xd are plotted as dots at the given frequency. The di-
agram in Fig. 9(b) gives a more detailed picture of the results for the range
0.20 < ω < 0.21 than in Fig. 9(a). As ω is increased, period-one motion splits
into period-two motion at ω ≈ 0.19, and chaotic motion begins at ω ≈ 0.206.
A window with period-four response is seen at ω ≈ 0.208. With further
increase in ω, the system returns to period-two motion at ω ≈ 0.40 and then
returns to period-one motion at ω ≈ 0.42.
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Figure 6. Phase projection when ω = 0.2.
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Figure 7. Phase projection when ω = 0.32. (a) axial motion, (b) transverse motion.

Figure 8. Chaotic Poincaré sections. (a) axial motion for ω = 0.32, (b) transverse motion for
ω = 0.32, (c) transverse motion for ω = 0.209.

5. Concluding Remarks

The equation of motion (4) for φ(t), or for the motion about the equilibrium
rotation φe, does not have a stable trivial solution if the static load p is greater
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Figure 9. (a) Bifurcation diagram for the axial response, (b) magnification of the bifurcation
diagram near the resonant frequency.

than the critical load pcr = 2. Also, there is no rigid body motion in which
the mechanism moves axially with the base motion u(t) and with φ(t) = φe.
The largest responses tend to occur when the excitation frequency is near the
resonant frequency of the system, where the transmissibility would be infinite
if no damping were present. In the bifurcation diagrams shown, chaotic mo-
tions occur for most of the frequencies considered in the range ωn < ω < 2ωn

where ωn is the resonant frequency and ω is the excitation frequency.
Experimental results were presented in [11] using two pinned struts in par-

allel as an isolator instead of the mechanism analyzed here. The weight sup-
ported by the struts was just enough to buckle them, and the base was subjected
to vertical harmonic excitation. The variation of the transmissibility with ap-
plied frequency was qualitatively similar to the variation obtained here. For
sufficiently high applied frequencies, the supported weight exhibited a very
small response and then the pair of buckled struts was very effective as an
isolator.
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NONSMOOTH DYNAMICS OF A DOUBLE-BELT
FRICTION OSCILLATOR 
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00184 Roma, Italia 
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Abstract: The model of a double-belt friction oscillator is proposed, which exhibits 
multiple discontinuity boundaries in the phase space. The system consists of a 
visco-elastic oscillator dragged by two different rough supports moving with 
constant driving velocities. The evolution of steady-state attractors as the 
discontinuity parameters are varied is described. The presence of multiple 
discontinuity boundaries leads to nonsmooth responses which are studied here 
by means of analytical and numerical tools.  

Key words: Stick-slip motions, nonstandard bifurcations, piecewise-smooth dynamical 
systems. 

1. Introduction 

Nonsmooth characteristics arise in many mechanical applications due to 
dry friction, impacts, clearances or a combination of these phenomena [1-
13].  Smoothness in regions of phase space is lost as trajectories cross the 
boundaries between adjacent regions, where the vector field and its Jacobian 
can be discontinuous, or even discontinuous can be the vector state [6]. 
Depending on the properties of the discontinuity boundaries, piecewise 
smooth dynamical systems (PSS) can be divided into three classes: 
continuous PSS [8,13], Filippov PSS [1,3-5,7,12] and hybrid PSS [6,11]. In 
the first class the system vector field is the same in the adjacent regions 

© 2005 Springer. Printed in Great Britain. 
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separated by the boundary, whereas its Jacobian changes; in the second class 
the system vector field changes passing from a region to the adjacent; 
finally, in the third class the system vector state is discontinuous across a 
boundary.  

To investigate the dynamics of these systems, a model of a visco-elastic 
oscillator (DBO) dragged by two different rough belts moving with constant 
velocities v0 and v1 is proposed. Two types of external excitation have been 
considered: i) energy is uniquely transferred from the moving supports to the 
mass via a velocity-dependent friction force discontinuous at zero relative 
velocity (autonomous PSS); ii) a harmonic driving force is also applied to 
the mass (non-autonomous PSS). The interactions between the mass and the 
belts lead to multiple discontinuity boundaries in the phase plane: aim of this 
study is to investigate how the number and positions of the discontinuity 
boundaries affect the dynamics of the system and the associated bifurcation 
scenarios.   

With regard to belt locations, three particular configurations can be 
derived from the general model: i) the mass is always in contact only with 
belt 0 (friction oscillator); ii) the mass is always in contact with both belts 
(uninterrupted double contact); iii) the mass can only contact sequentially 
one belt at a time (sequential contact). Respectively one, two and three 
discontinuity boundaries characterizing a Filippov PSS arise in the phase 
plane. The first configuration has been extensively studied in the literature 
[1,5,7,8,12], the last two configurations, which still offer undisclosed 
aspects, are the subject of the present investigation.  

2. Uninterrupted Double Contact  

2.1 Equations of Motion 

In this configuration, Fig. 1a, the mass is continuously in contact with 
both belts which are pushed onto the mass with a constant force Fn and 
possess the same friction characteristics. In the phase plane two discontinuity 
boundaries, governed by v0 and v1, are present: ΣF0 is defined by a zero 
relative velocity between mass and belt 0; ΣF1 is defined by a zero relative 
velocity between mass and belt 1. The discontinuity boundaries divide the 
phase plane into three smoothness regions, Fig. 1b: in region D1 the kinetic 
friction forces on belt 0 and belt 1 are both positive, in region D2 they are 
discordant, and in region D3 they are both negative. No harmonic force is 
applied to the mass; regular motions are then governed by: 
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Figure 1. Double contact configuration (a); discontinuity boundaries in the phase plane (b) 
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Equations (2) have been derived by normalizing the equations of motion 
with respect to the stiffness and by introducing a non-dimensional time τ:
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The friction force, relevant to belt i, reads as follows [2,8]: 
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where vRi is the relative velocity between the mass and belt i, µsi is the static 
friction coefficient and p2i is usually taken equal to zero: under this 
assumption, the friction coefficient hyperbolically decays to a residual value 

a) b) 
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of friction p1i<µsi whereas the coefficient p3i>1 quantifies the descent 
steepness (negative slope) of the friction force. 

Sliding motions on ΣF0 and ΣF1 are governed by the following equations: 
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Solutions have been constructed by ‘gluing’ standard motions on 
smoothness regions and sliding motions along the discontinuity boundaries. 
Switch methods and standard numerical tools have been adopted. 

Figure 2. Regions of qualitatively different behaviours in the parameter plane 

2.2 Dynamic Response 

The influence of the discontinuity parameters v0 and v1 on the system 
dynamics has been investigated. Figure 2 shows a significant portion of the 
parameter plane (v0, v1) where regions of qualitatively different dynamic 
responses have been revealed. Due to the structure of the equations of 
motion and to the fact that the belts possess the same friction parameters, the 
domain evinces a polar symmetry. With the exception of regions 1, where 
only a stable fixed point exists, stable limit cycles exhibiting at least one 
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stick phase are present in all other regions: in the case of concordant belt 
velocities (first and third quadrants) the mass always sticks on the slower 
belt whereas stable motions with two distinct stick phases on both belts are 
possible in the case of discordant belt velocities (regions 4c and 5c).   

Figure 3. Phase portraits around the sliding-exchange bifurcation 

Across the boundaries separating two adjacent regions in the parameter 
domain transitions in the system dynamics occur. In Fig. 3 a nonstandard 
transition is illustrated by decreasing v0 with fixed v1. The sliding motions in 
the stable cycle change: in fact, for values of v0 larger than v1 the stable cycle 
shows a sliding solution only in ΣF1, i.e. the mass sticks on belt 1 (Fig. 3a); 
for values of v0 smaller than v1 the stable cycle shows a sliding solution only 
in ΣF0, i.e. the mass sticks on belt 0 (Fig. 3c). Thus  a transition occurs for 
v0=v1=v0

β since a sliding solution disappears in ΣF1 and appears in ΣF0 (Fig. 
3b). This transition, strictly related to the presence of two different 
discontinuity boundaries, it will be called ‘sliding-exchange’ bifurcation. 
Another example of nonstandard transitions is illustrated in Fig. 4. At v0=0 
the fixed points of the system are located in ΣF0: a segment of fixed points 
exist (thick line in Fig. 4b) which is an attracting set. The sliding motions in 
the stable cycle change: in fact, for positive values of v0 the stable cycle 
shows a sliding solution only in ΣF0, i.e. the mass sticks on belt 0 (Fig. 4a); 
for negative values of v0 the stable cycle shows two different sliding motions 
in ΣF0 and ΣF1, i.e. the mass sticks on both belts, Fig. 4c. Thus, at v0=v0

δ=0 a 
transition occurs called ‘sudden sliding appearance’ bifurcation (Fig. 4b).  

Figure 4. Phase portraits around the sudden sliding appearance bifurcation 

a) b) c)

a) b) c) 
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3. Sequential Contact Configuration 

3.1 Equations of Motion 

In this configuration, the mass is in contact with one belt at a time, Fig. 
5a. In the phase plane three discontinuity boundaries (ΣF0, ΣF1, Σσ) governed 
by v0, v1 and σ, are present, Fig. 5b. They divide the phase plane into four 
smoothness regions where the vector fields have the following expression: 
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Sliding motions on ΣF0 and ΣF1 are governed by the following equations: 
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Figure 5. Sequential contact configuration (a); discontinuity boundaries in the phase plane (b) 

3.2 Dynamic Response 

The autonomous case, γ=0, has been first investigated. Figure 6 shows a 
section of the parameter space (v0, v1, σ) where regions characterized by a 
different number and/or type of cycles are reported. Unlike the case analysed 
in the previous subsection (Fig. 2) polar symmetry is no longer exhibited; 
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furthermore the path along the line v0=v1 reproduces the behaviour of the 
classical friction oscillator.   

Figure 6. Regions of qualitatively different behaviours in the parameter space 

In the sequential contact configuration, stable motions with two stick 
phases on both belts are possible in the case of concordant belt velocities; 
stable motions without stick phases are also possible for discordant belt 
velocities. An example of nonstandard transition occurring across a 
boundary is illustrated in Fig. 7 by increasing v0 with fixed v1. The sliding 
motions in the stable cycle changes: in fact, for values of v0 smaller than 
v0

γ  the stable cycle shows one stick phase only on belt 0 (Fig. 7a); for values 
of v0 larger than v0

γ  a sliding solution on ΣF1 is present and the mass sticks 
on both belts (Fig. 7c). Thus a transition occurs for v0=v0

γ since, in the stable 
cycle, a sliding solution appears on ΣF1 (sequential sliding bifurcation, Fig. 
7b).

Figure 7. Phase portraits around the sequential sliding bifurcation 

In the non-autonomous case, for a driving force with given amplitude and 
frequency and for given initial conditions, the location of the discontinuity 
boundaries has been found to modify the dynamic response leading to one- 
and higher-periodic as well as quasi-periodic and chaotic solutions.  

a) b) c)
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Figure 8. Influence of belt velocities on the forced responses (σ=0.68) 

The diagram of Fig. 8, relevant to natural initial conditions and to a 
driving force with amplitude γ=1.0 and normalized frequency η=5.0, 
illustrates the occurrence of one-periodic, higher-periodic and chaotic steady 
state motions for varying v0>0 and v1>0.
 An example of chaotic motion for discordant belt velocities is reported in 
Fig. 9 where the phase portrait (Fig. 9a) with the relevant Poincaré section 
(Fig. 9b) are illustrated. Figure 9c, which magnifies the region enclosed by 
the dotted rectangle in Fig. 9b, highlights the fractal structure of the attractor. 
The attractor has been reached through an intermittency route to chaos 
characterized by intervals of periodic motions interrupted by non-periodic 
bursts. 

Figure 9. Chaotic attractor at σ=0.68, v0=0.3495 and v1=-0.60 

a) b) c)
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4. Conclusions 

The model of a double-belt friction oscillator has been proposed and 
investigated for two particular configurations: uninterrupted double contact 
with both belts and sequential contact. The dynamics of this system are of 
interest because it is a simple representation of mechanical systems with 
multiple nonsmooth characteristics and in the same time its response exhibits 
non-classical bifurcation scenarios as a consequence of the occurrence of 
multiple discontinuity boundaries caused by the belts.  

In absence of driving forces, several regions in which the system exhibits 
qualitatively different responses have been detected and represented in the 
control parameter domain: the characteristic transitions exhibited by the 
system across the boundaries separating these regions have been 
subsequently analyzed for both configurations. Some novel transitions have 
been detected: in particular, sliding-exchange and sudden sliding appearance 
bifurcations have been found for the double contact oscillator. In the former 
case, a sliding solution disappears in the discontinuity boundary related to a 
belt and appears in the one related to the other belt; in the latter case, a 
sliding solution related to a belt abruptly occurs in addition to other sliding 
motions. For the sequential contact oscillator, sequential sliding bifurcations 
have been observed; they are characterized by the fact that a stick phase on a 
belt appears in sequence to a stick phase on the other belt. 

The non-autonomous case is finally considered. For a driving force with 
given amplitude and frequency and for given initial conditions, the location 
of the discontinuity boundaries in the phase plane has been found to modify 
the dynamic response leading to one- and higher-periodic as well as  quasi-
periodic and chaotic solutions. A rich dynamic scenario has been disclosed: 
the evolution through stable closed orbits and period-doubling routes to 
chaos are studied in the parameter domains; strange attractors are revealed 
and their evolution illustrated. 

Finally, a test set-up of the DBO model has been built in order to 
investigate whether the rich variety of the nonlinear phenomena predicted by 
the analytical model is observed in the physical prototype. 

The analytical and experimental results obtained for these particular case 
studies could help to refine the bifurcation theory in nonsmooth systems 
which is still an open matter.  

Acknowledgments 

The work is partially supported by the Grant COFIN01 (2001/02) on 
“Dynamics of Flexible Structures” (www.disg.uniroma1.it/fendis) 



262 P. Casini and F. Vestroni 

References 

[1] A.F. Filippov, Differential Equations with Discontinuous Righthand Sides. Kluwer 
Academic Publishers, 1988. 

[2] S.J. Hogan, “Heteroclinic bifurcations in damped rigid block motions,” Proc. Roy. 
Soc. London A, 439, pp. 155-162, 1992. 

[3] K. Popp, N. Hinrichs, and M. Oestreich, “Analysis of a self-excited friction 
oscillator with external excitation,” in Dynamics with Friction, Guran A., Pfeiffer  
F., Popp K. (eds.), World Scientific, London, 1996. 

[4] J. Awrejcewicz and M.M. Holicke, “Melnikov’s method and stick-slip chaotic 
oscillations in very weakly forced mechanical systems,” International Journal of 
Bifurcations and Chaos, 9, pp. 505-518, 1999. 

[5] R.I. Leine, D.H. van Campen, A. De Kraker, and L. van Den Steen, “Stick-slip 
vibration induced by alternate friction models,” Nonlinear Dynamics, 16, pp. 41-54, 
1998. 

[6] B. Brogliato, Nonsmooth Impact Mechanics. Springer-Verlag, London, 1999. 
[7] U. Galvanetto, S.R. Bishop, “Dynamics of a simple damped oscillator undergoing 

stick-slip vibrations,” Meccanica, 34, pp. 337-347, 1999. 
[8] R.I. Leine, Bifurcations in Discontinuous Mechanical Systems of Filippov-type.

PhD Thesis, Technische Universiteit Eindhoven, 2000. 
[9] M. Di Bernardo, C.J. Budd, and A.R. Champneys, “Unified framework for the 

analysis of grazing and border-collisions in piecewise-smooth systems,” Physical 
Review Letters, 86(12), pp. 2554-2556, 2001. 

[10] F. Pfeiffer and C. Glocker, “Contacts in multibody systems”, Journal of Applied 
Mathematics and Mechanics, 64, pp. 773-782, 2001.  

[11] P. Casini and F. Vestroni, Bifurcations in hybrid mechanical systems with 
discontinuity boundaries,” Int. Journal of Bifurcation and Chaos, 2003, in press. 

[12] P. Casini and F. Vestroni, “Nonstandard bifurcations in oscillators with multiple 
discontinuity boundaries,” Nonlinear Dynamics, 2003, in press. 

[13] F. Peterka, “Behaviour of impact oscillator with soft and preloaded stop,” Chaos, 
Solitons & Fractals, 18, pp. 79-88, 2003. 



CORNER-COLLISION AND GRAZING-SLIDING

Practical examples of border-collision bifurcations
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Abstract: This chapter gives an overview of the main types of nonsmooth transitions
which can be observed in piecewise smooth dynamical systems. Particular
attention is given to those events involving interactions with the discontinu-
ity boundary of fixed points of piecewise-smooth maps and limit cycles of
piecewise-smooth flows. Strategies to classify these phenomena are discussed.
It is shown that only few cases lead to maps which are locally piecewise lin-
ear to leading order. A nonlinear friction oscillator is used as a representative
example to illustrate the main ideas introduced in the chapter.

Key words: Bifurcations, piecewise-smooth systems, friction oscillators

1. Introduction

Vibro-impacting systems can exhibit a multitude of different nonsmooth
bifurcation phenomena [1]. Recently, for example, self-excited vibrating sys-
tems with dry-friction were studied by [2]. A route to chaos is reported where
a period-doubling cascade is abruptly terminated by an outburst of chaotic be-
haviour due to the transition from slip to stick-slip motion, that cannot be
explained by smooth bifurcation theory. Often it is conjectured that these
and similar observations in the literature can be explained by the theory of
so-called border collision bifurcation, which applies to discrete-time maps
which are to lowest-order piecewise linear [3]. In a few examples, border
collisions have indeed been shown to organise the dynamics, e.g. in DC/DC
converters in Power Electronics [4], but in general it is hard to analytically de-
rive the border-collision maps direct from the nonsmooth ordinary differential
equations.
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In fact, analytically there is a fundamental problem recently outlined in
[5], [6]. Here, the theory of discontinuity mappings shows that periodic orbits
hitting tangentially (“grazing”) a discontinuity set in a nonsmooth continuous
time system do not generically lead to maps which are locally piecewise linear.
Instead the maps have either square-root or O(3/2) singularities. It is now
becoming clear that border-collision of piecewise linear maps therefore is not
the whole story.

Nevertheless, in this chapter, we will present an overview of our recent
work, showing two cases where border-collisions of piecewise linear maps
can rigorously be derived and shown to organise the occurance of chaotic dy-
namics. These are so-called the corner-collision bifurcation and the grazing-
sliding bifurcation, the former of which occurs when a switching boundary is
itself nonsmooth, and the latter is one of the ways in which pure slip motion
can transfrom into stick-slip. As a representative example, we will discuss in
detail the latter bifurcation occuring in the friction oscillator studied in [2].

2. Bifurcations of Nonsmooth Systems

Piecewise smooth (PWS) dynamical systems can exhibit most of the
standard bifurcations found in smooth systems, for instance fold or period-
doublings. In addition to these, there are also some novel transitions which
are unique to PWS systems, which were given the name C-bifurcations in the
Russian literature [7]. A C-bifurcation in this sense is any transition which
can be explained in terms of interactions between invariant sets and switching
surfaces in phase space. Note that according to this definition a C-bifurcation
does not necessarily imply the onset of a topologically non-equivalent phase
portrait at the bifurcation point.

We focus on two types of C-bifurcations: (i) Border-Collisions of fixed
points in maps; (ii) Grazing Bifurcations of limit cycles in flows. Both cases
are characterised by the same phase space topology close to the bifurcation
point. Namely, the map or flow exhibiting the bifurcation is defined over a re-
gion D ⊂ Rn of phase space which is chosen so that, by an appropriate choice
of local coordinates, the map or flow under investigation can be described as:

� [x] =

�
g1(x, µ) if H (x) < 0
g2(x, µ) if H (x) > 0

(2.1)

where� is a differential or finite difference operator, H (x)=0 defines a smooth
boundary � which separates D into two regions denoted by G1 and G2, i.e.
� := {x ∈ D | H (x) = 0},G1 := {x ∈ D | H (x) > 0},G2 := {x ∈
D | H (x) < 0}. We assume that g1(x, µ) ∈ Ck if x ∈ G1, g2(x, µ) ∈ Ck

if x ∈ G2 and g1(x, µ) = g2(x, µ) when x ∈ �, i.e. the map or flow is
smooth to order k in each of the subregion G1 and G2 while is continuous but
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nonsmooth on �. As discussed below particular care must be taken to define
the system behaviour when H (x) = 0.

2.1 Border-Collision of Fixed Points

Let x̂ be a fixed point of a g1(x, µ) which we assume depends continuously
on the parameter µ ∈ (−ε, ε). We say that x̂ is a border-crossing fixed point
if it approaches �, as µ is varied between −ε and ε such that, if the dynamics
in region G2 close to the boundary were still generated by the map g1(x, µ)
then the crossing would be transversal. In other words (1) x̂ ∈ � for µ= 0; (2)
x̂ ∈ G1 for −ε < µ < 0; (3) x̂ ∈ G2 for 0 < µ < ε.

We say that a fixed point x̂ undergoes a border-collision bifurcation for
µ = 0 if x̂∗ is a border-crossing point.

Border-collisions can organise several types of transitions in a PWS sys-
tem. Understanding the relationship between the properties of the map and
the scenario observed is presented in Sec. 1.3.1 below. First, we continue our
overview of the main types of bifurcations in nonsmooth systems.

2.2 Grazings of Limit Cycles

We now move to the case of C-bifurcations of limit cycles in flows. In
this case, experiments, numerics and theoretical developments have clearly
shown that complex transitions in PWS systems are often associated to tan-
gential intersections (grazings) of a system periodic orbit (or parts of it) with
the switching manifold.

We say that a periodic orbit x̂=x̂(t) of 2.1 is a grazing orbit if for some time
t=t∗, x(t) hits tangentially the switching manifold� (defined by H (x(t))=0) at
the point x∗ = x(t∗) which is termed the grazing point. We assume that no slid-
ing motion can take place on� [8]. Such a solution can be seen heuristically as
a motion taking place along the discontinuity surface in the limit of infinitely
many switchings. A necessary condition to avoid sliding is that, under the flow
of system (2.1) sufficiently close to the grazing point, the boundary {H = 0}
should never be simultaneously attracting (or repelling) from both sides G1

and G2; that is 〈∇H, f1〉〈∇H, f2〉 > 0 This assumption will be removed in
Sec. 1.4 where grazings in systems with sliding are considered.
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3. Classification of Nonsmooth Bifurcations

In applications it is important to possess a tool to predict and control the
scenarios following a C-bifurcation event. In smooth systems normal forms al-
low the characterisation of bifurcations such as saddle-nodes, Hopf and period-
doublings [9]. In the case of nonsmooth systems there is no such general strat-
egy available. One methodology for border-collisions in maps, due to Feigin
[7], [10], is to classify what happens to the simplest fixed points generated in
the bifurcation, for general n-dimensional systems.

3.1 Feigin’s Strategy for Border-Collisions

Feigin’s strategy is based on a local analysis of the map under investigation
in a sufficiently small neighborhood of the border-collision event. Classifica-
tion is achieved by studying the eigenvalues of the map obtained by linearising
the nonsmooth map about the border-collision point on both sides of the dis-
continuity boundary. Generically, this map will be obtained as the composition
of the two submappings:

�1 : =x �→ A1x+ Bµ, (3.2)

�2 : =x �→ A2x+ Bµ, (3.3)

where A1 and A2 are the Jacobians of the nonsmooth map on both sides of the
boundary.

To classify the possible scenarios following a border-collision, we look at
the quantities σ+1 , σ

+
2 defined as the number of real eigenvalues greater than 1

of A1 and A2 respectively together with the quantities σ−1 , σ
−
2 , i.e. the num-

ber of real eigenvalues less than -1. Similar quantities σ±11 and σ±12 are defined
for fixed points of period two. These represent respectively the number of
eigenvalues greater than 1 or less than -1 of the matrices A1 A1 and A1 A2

(see schematic representation of possible bifurcation scenarios depicted in
Fig. 3.1).

Note that even when two-periodic point can be shown to exist, there are
scenarios such as A → b, ab where no stable asymptotic solution is present
after the border-collision. In these cases, other tools from nonlinear dynamics
must be used to investigate the presence of other attractors, e.g. strange attrac-
tors or higher periodic points. A complete classification for border-collisions
which include the proof of existence of higher-order periodic motion or chaos
after a border-collision can be given only in one and two-dimensional PWS
maps [10], [11].
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3.2 Classification of Grazing Bifurcations

We now look at the problem of classifying grazing and sliding bifurcations
of limit cycles in nonsmooth continuous-time systems. The starting point is
to note that if we choose a Poincaré hyperplane � transversal to the system
flow, the grazing orbit is associated to a fixed point on �. Under parameter
variations, such fixed point can be shown to undergo a border-collision [12].

In order to carry out the classification we need therefore (1) a tool to derive
analytically the PWS map associated to the grazing event; (2) a strategy to
classify the bifurcations of the border-crossing fixed point of such a map. A
solution to the former problem was recently presented by the authors in [5].

Using the concept of discontinuity mappings, due to Nordmark [13], it was
shown that grazings are not associated, in general, to PWL maps but maps
with a nonlinear power term whose exponent, γ , is either 1/2, if the states are
discontinuous at the bifurcation point, or 3/2 if they are continuous but have
discontinuos derivatives.

4. Corner-Collision and Grazing-Sliding

It was found that the nature of the local map associated to a grazing bi-
furcation can be changed by the presence of additional local properties of the
system vector field or discontinuity set. We recently identified two cases where
the presence of such extra properties renders the local map piecewise linear:
(i) the switching manifold is discontinuous at the bifurcation point (corner-
collision); (ii) the switching manifold is simultaneously attracting from both
of its sides (grazing-sliding).

In both of these cases the presence of extra properties of the switching
manifold at the bifurcation point causes the normal form map to change its
order and exhibit a PWL structure.

4.1 Corner-Collision

We start with the bifurcation which was termed corner-collision in [14]. As
shown in Fig. 2, we label corner-collision the interaction of a limit cycle with a
nonsmooth switching manifold, i.e. a corner. It is assumed that sliding cannot
occur. Such bifurcations were found to be associated to several nonsmooth
transitions in electronic DC/DC power converters [4]. Local analysis of the
vector field about the bifurcation point was carried out. It was found that the
Poincaré map describing a corner-colliding orbit is piecewise linear and hence
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(b)
(c)

(a) C1

2

G

G
Σ 1

2Σ

Figure 2. Three examples of corner-collision with a corner C in the switching manifold which
is divided into two smooth regions �1 and �2. The unfolding of cases (a) and (b) lead to
bifurcations governed by PWL maps to leading order. Case (c) is more complicated, becase
sliding must result in the unfolding, and is not covered by PWL theory.

corner-collisions imply border-collisions that can lead to sharp corners in the
bifurcation diagram [4] or the sudden onset of chaotic dynamics [15].

4.2 Grazing-Sliding

As shown in Fig. 3, in the grazing-sliding case the system trajectory is
tangential to the switching manifold right on the boundary of the region where
the system vector field is such that it points towards � from both subspaces
G1 and G2. For this to be through, we assume that throughout this region the
following condition holds: 〈∇H, F2〉 − 〈∇H, F1〉 > 0, where ∇H denotes
a vector which is normal to � and 〈∇H, Fi 〉 denotes the component of the
vector field Fi along the normal to �. In the case presented in Fig. 3, a section
of trajectory lying in region G1 or G2 grazes the boundary of the sliding region
from below. Under parameter variations, this causes the formation of a section
of sliding motion. To describe the system dynamics locally to the bifurcation
point a normal form map of grazing-sliding can be derived as shown in [16].

Σ Σ

grazing trajectory

Figure 3. Schematic representation of a trajectory hitting tangentially the boundary of the slid-
ing region (which is denoted by �̂ in the figure)
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It is worth mentioning here that grazing-sliding is one of four possible ways
in which an orbit can interact with the sliding region in a nonsmooth system.
The others, which are described in detail in [16] are termed as sliding-adding,
sliding-crossing and sliding-switching bifurcations.

5. A Nonlinear Dry-Friction Oscillator

The stick phase of the dynamics of friction oscillators can be analysed as
a segment of sliding motion [17]. This can be heuristically understood if we
consider that the discontinuity in the dry-friction oscillators are encountered
due to the transition from slip to stick mode of motion. The discontinuity set
itself is defined by the system states such that no kinematic friction is exhibited
in the system – stick phase. Therefore, as long as the system remains in the
stick phase it evolves within the discontinuity set which in turn is the definition
for sliding motion. Thus, the sliding bifurcation scenarios and in particular the
grazing sliding scenario presented in the previous section are likely to occur
in this important class of dynamical systems and can be used to explain the
complex dynamics often reported in the literature.

An intriguing scenario is exhibited by the dry friction oscillator studied in
[2], which is numerically shown to exhibit a route to chaos characterised by
the abrupt transition from slip periodic motion to stick-slip chaotic behaviour.
The bifurcation mechanism causing the onset of such aperiodic motion is left
unexplained by the authors who conjecture that it must be due to some type of
nonsmooth bifurcation without offering any analytical explanation.

Following [2], the dry friction oscillator under investigation in the dimen-
sionless form can be expressed as:

ÿ + y = f (1− ẏ)+ F cos(νt), (5.4)

where:

f (1− ẏ) = α0sgn(1− ẏ)− α1(1− ẏ)+ α2(1− ẏ)3 (5.5)

is a kinematic friction characteristic and 1− ẏ corresponds to a relative velocity
between the driving belt and moving block of the dry-friction model. In the
case when 1− ẏ = 0 the relative velocity is 0 and the kinematic friction is set
valued i.e.: −α0 < f (1 − ẏ) < α0. The coefficients of the kinematic friction
characteristic i.e.: α0, α1, α2 are positive constants. F is an amplitude, ν a
normalised angular velocity and T a period of the forcing term.

We focus, in particular, on the bifurcation scenario giving rise to the sudden
emergence of chaotic stick-slip motion. Bifurcation diagram depicting one of
the state space coordinates at stroboscopic 4T times versus bifurcation param-
eter ν is depicted in Fig. 4(a). The bifurcation was detected for parameter
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−0.2
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0.4

0.6

0.8

1

grazing orbit
switching manifold

b) y

ẏ

G2

G1

Figure 4. Bifurcation diagram obtained from the numerical integration of the system under
consideration (a) (the stroboscopic section was first applied at ẏ = 0, y ≈ 2.25) and (b) orbit of
period 4T undergoing the grazing-sliding bifurcation for ν = 1.7077997;

values α0 = 1.5, α1 = 1.5, α2 = 0.45, F = 0.1, under variation of the bifurca-
tion parameter ν in a neighbourhood of ν = 1.7078. As shown in Fig. 4(b), at
the bifurcation point, a 4T -periodic orbit grazes the switching manifold at the
boundary of the sliding region (denoted in the figure by a short vertical line).

To confirm that the observed bifurcation scenario is indeed due to the graz-
ing sliding event and to explain the dynamics triggered by the bifurcation we
need:

check if the set of analytical conditions determining the bifurcation is
satisfied

derive a map which captures the dynamics of the bifurcating cycle.

As was shown in [18] the set of analytical conditions which determine the
grazing-sliding event is satisfied at the bifurcation point. The normal form map
for the grazing sliding scenario yields PWL functional form [16]. The PWL
character of this map remains qualitatively unchanged under the composition
with some affine transformation needed to derive a mapping which captures
the dynamics of the bifurcating cycle. Let us now concentrate our attention on
the final form of the mapping.

Following [18] we can write an expression of a map capturing the dynamics
of the bifurcating cycle as:

x̃n+1 =

����
���

�
a11 a12

a21 a22

�
x̃n +

�
b1

b2

�
ν̃ if x̃2n < 0,�

a11 0
a21 0

�
x̃n +

�
b1

b2

�
ν̃ if x̃2n ≥ 0,

(5.6)

where x̃n =
�

x1n x2n
�T

is a state vector (capturing values of the velocity and
position coordinates at the stroboscopic times 4T with T being a period of the
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forcing term) and ai j , bi (for i, j =1, 2) are some constant coefficients. It needs
to be mentioned here that mapping (5.6) is such that the bifurcation values of
the systems states and the bifurcation parameter ν∗ are set at the origin.

For the 4T periodic orbit of interest computed earlier when ν∗=1.7077997,
we find that a11 =−1.85, a12 = 4.396, a21 =−1.14, a22 = 2.704.

To predict the dynamics following the bifurcation we can now use the
classification strategy introduced earlier in Sec. 1.3.1. The eigenvalues of
A1 in (5.6) are λ11 = 0.0107, λ12 = 0.8433 while those of A2 are λ21 = 0,
λ22 = −1.8500. Hence, σ+1 + σ+2 = 0 is even while σ−1 + σ−2 = 1 is odd.

We can conclude that at the grazing-sliding, the bifurcating orbit will not
persist. Namely, the transition will be observed from the stable 4T -periodic
solution (without any stick phase) to at least two coexisting unstable solu-
tions: an unstable sliding orbit of period 4T and an unstable 8T -periodic so-
lutions. Our classification strategy does not provide any information on the
possible existence of chaotic attractors accompanying the bifurcation. In the
low dimensional cases (1 or 2 dimensional PWL maps) we can gather extra
information either by using the classification of border-collisions in one or
two-dimensional PWL maps (for instance classification recently presented in
[11]) or by studying the dynamics of the map a posteriori for the parameter
values for which some bifurcations have been observed. As the map (5.6) has
the property that it is non-invertible in one of its regions of smoothness there
does not exist any classification startegy which could be applied to further de-
termine the dynamics. Nontheless, if we study the dynamics of the map (5.6)
for the values at which the grazing sliding discussed occured it can be rigor-
ously shown that under the variation of the bifurcation parameter µ the sudden
onset of chaos will ensue in (5.6) (for further details see [19]).

Hence, the numerical results reported in [2] are explained analytically and
the role of grazing-sliding in causing the transition from periodic non-sticking
solutions to fully blown chaotic stick-slip motion is proved.
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Abstract: Many physical systems of engineering importance are discontinuous (examples
include systems with impacts, freeplay, backlash, gears). The study of determin-
istic versions of these systems is now well established but these models tend to
ignore any imperfections in the system or the effects of noise. In this paper
we show how the introduction of imperfections and noise can have a dramatic
effect on the systems behaviour. We focus our attention on a much studied sim-
ple generic model of discontinuous systems, namely that of the piecewise linear
map and its associated ordinary differential equation.

Key words: Discontinuous systems, imperfections, noise.

1. A One-Dimensional Piecewise Smooth Map

1.1 Definition

We will study the following deterministic piecewise linear map.

xn+1 = S(xn) =

�
αxn − µ : xn ≥ 0

βxn − (µ+ γ ) : xn < 0
(1)

where xn, α, β, γ, µ ∈ �, γ representing an imperfection in the system. α >
0, β < 0 and it suffices to only consider the cases when γ = +1, γ = 0 and
γ =−1.
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To distinguish between fixed points, higher order periodic solutions and
stability we define the following notation,

A/a denotes stable/unstable period-1 fixed point with xn ≥ 0.

B/b denotes stable/unstable period-1 fixed point with xn < 0.

Ai B/aib denotes stable/unstable period-(i+1) orbit with one iterate on
the negative side of the map and i iterates on the positive side of the
map.

↔ denotes the occurrence of a C-bifurcation as µ crosses a bifurcation
point.

1.2 Simple Fixed Point Transitions

Stability and existence techniques can be used to find transitions between
fixed points as one parameter is varied. These are shown graphically in Figures
1-3 for γ = 0, +1 and −1 respectively.

-1

1

A ↔ B ∅ ↔ a, B

A ↔ b ∅ ↔ b
β

α0

Figure 1. Bifurcations of fixed points in parameter space (for γ = 0). µ ∈ [−∞, 0] ↔ µ ∈
[0,∞]

-1

1

A ↔ A, B ↔ B ∅ ↔ B ↔ a, B

A ↔ A, b ↔ b ∅ ↔ b ↔ a, b
β

α0

Figure 2. Bifurcations of fixed points in parameter space (for γ =+1). µ ∈ [−∞,−1] ↔ µ ∈
[−1, 0] ↔ µ ∈ [0,∞]
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-1

1

A ↔ ∅↔ B ∅ ↔ a ↔ a, B

A ↔ ∅↔ b ∅ ↔ a ↔ a, b
β

α0

Figure 3. Bifurcations of fixed points in parameter space (for γ = −1). µ ∈ [−∞, 0] ↔ µ ∈
[0, 1] ↔ µ ∈ [1,∞]

1.3 Higher Periodic Modes

It is possible to determine transitions between higher modes, examples are
shown graphically in figures 4, 5 and 6 for γ = 0, +1 and −1 respectively.
Figure 4 illustrates the bifurcations that occur as µ crosses the bifurcation
point µ = 0, whereas figures 5 and 6 show existence and stability curves for
specific values of µ.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

α

β

φ → a,b,ab,a2b,a3b

φ → a,b,ab,a2,b

φ → a,b,ab 

φ → a,B A → B 

A → b,AB 

A → b,ab 

A → b,ab,A2B

A → b,ab,a2b

A → b,ab,a2b,A3,B

A → b,ab,a2b,a3b

A → b,ab,a2b,a3b,A4B

Figure 4. Simplest possible bifurcation structure in each region of parameter space for γ = 0.
Solid lines represent existence boundaries and the dashed lines denote the stability boundaries,
see [2]
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Figure 5. Existence and stability curves in parameter space for γ =+1 and µ = 1
4 . Solid lines

represent existence boundaries and the dashed lines denote the stability boundaries
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Figure 6. Existence and stability curves in parameter space for γ =−1 and µ = 5
3 . Solid lines

represent existence boundaries and the dashed lines denote the stability boundaries

2. The Addition of Noise

We now add noise to map (1),

xn+1 = S(xn)+ ξn =

�
αxn − µ+ ξn : xn ≥ 0

βxn − (µ+ γ )+ ξn : xn < 0
(2)

where ξ0, ..., ξ∞ are independent random variables each having the same Gaus-
sian density g(x) with variance σ 2 and mean 0.
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In order to investigate this equation we will use the associated probability
transfer operator for a map with additive noise

P̄ f (x) =
�
�

f (y)g(x − S(y))dy (3)

to evolve an initial distribution toward the invariant density function f ∗.

2.1 Effect of Noise on the Map without a Discontinuity

Let us consider a simplified version of map (1) without the discontinuity

xn+1 = αxn − µ (4)

This map has a fixed point x∗, given by

x∗ =
µ

α − 1
(5)

We now define this map in the presence of additive noise,

xn+1 = αxn − µ+ ξn (6)

where as before ξ0, ..., ξ∞ are independent random variables each having the
same Gaussian density g(x) with variance σ 2 and mean 0.
The analytic solution of the associated probability transfer operator to map
(6) is

f ∗(x) =
1

2σ

�
2(1− α2)

π
e−

1
2 (1−α2)(

x− µ
α−1
σ )2 (7)

Note that the mean of the solution (7) is the fixed point given in (5). A typical
invariant density is shown in Fig. 7.

7.5 8 8.5
0

0.5

1

1.5

2

2.5

3

3.5

p(x)

xn

Figure 7. The invariant density of (6) with α = 0.5, µ =−4, and σ 2 = 0.1
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2.2 Effect of Noise on the Bifurcation of the Stable
Fixed Points

We now look at the effect of noise on some of the simple bifurcations
that were introduced in section 1.2. This section is divided into 3 sections,
γ = 0,±1.

γ = 0. The noise free case is shown in the bifurcation diagram fig. 8(a),
where the fixed point x∗ is plotted against the bifurcation parameter µ. We
have chosen α = 0.3 and β =−0.8, the bifurcation point is at µ = 0.
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Figure 8. γ = 0: (a) The deterministic case from map (1); (b) The stochastic case from map
(2) showing the mean x̄ against the bifurcation parameter µ with σ 2 = 0.01; (c) The stochastic
case from map (2) showing the invariant densities against the bifurcation parameter, µ with
σ 2 = 0.01
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We now compute the invariant density using operator (3) for µ=[−0.5, 0.5]
with additive noise, and plot the mean values x∗ against the bifurcation pa-
rameter µ, this is shown in Fig. 8(b). There is a smoothing of the bifurcation.
Fig. 8(c) shows the invariant density for each value of µ, the probability of the
invariant density is indicated by the relative shading in the figure.

γ = 1. Fig. 9(a) shows the bifurcation diagram for the deterministic case
with α = 0.5 and β =−0.5. To investigate the effect different noise intensities
have on the bifurcation diagram, we alter the variance of the Gaussian density
with which the noise is defined. The stochastic bifurcation diagrams Fig. 9(b)
to Fig. 9(d) were calculated using operator 3 with an initial uniform density
on x = [−1, 2] so as to include both basins of attraction.

Figure 9. Bifurcation diagrams for γ = 1: (a) The deterministic case from map (1); (b)-(d) The
stochastic case from map (2) showing the invariant densities against the bifurcation parameter,
µ; (b) σ 2 = 0.005, (c) σ 2 = 0.01, (d) σ 2 = 0.05
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The area of bistability has decreased from that of the deterministic case. The
reason for this is found in the geometry of our map, the positive side of the
maps fixed point basin of attraction is [0,∞] and [−∞, µ+1

β
], the negative side

of the maps fixed point basin of attraction is [µ+1
β
, 0]. When a fixed point lies

close to the seperatrix x = 0, noise with a small intensity is enough to push the
solution onto the other attractor. This produces a leaking effect at both ends of
the region of bistability of the deterministic case. As the intensity of the noise
is increased the area of bistability is decreased. Noise with a large intensity
produces an invariant density that is a combination of the two solutions from
both the positive and negative parts of the map (see Fig. 10)

γ = −1. The bifurcations that occur are more complicated than those found
previously. For µ > 0 solutions of higher order exist in the deterministic case,
an example is shown in Fig. 11(a). We will focus on the bifurcation that occurs
at µ = 0.
In the stochastic case the bifurcation happens at an earlier point (see
Fig. 11(b)). An alternative way to demonstrate this behaviour is to change our
bifurcation parameter from µ to σ 2. In doing this we are able to set our pa-
rameters so that they are located in the phase space that produces a single fixed
point (µ < 0, α < 1 and β > −1) for the deterministic case. Fig. 12 shows
four different solutions that exist in this part of phase space, each found by
altering our new bifurcation parameter σ 2. When σ 2 is small a single peaked
invariant density exists, with its mean equal to the fixed point of the determin-
istic map. As σ 2 is increased two smaller peaks are created due to the advance
of the bifurcation. As the noise intensity is further increased the two smaller
peaks are eventually engulfed by the larger.
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Figure 10. The invariant density with α = 0.5, β =−0.5, µ =−0.25, γ = 1 and σ 2 = 0.05
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Figure 11. Bifurcation diagrams for γ = −1, α = 0.3, β = −0.8: (a) The deterministic case
from map (1); (b) The stochastic case from map (2) showing the invariant densities against the
bifurcation parameter, µ with σ 2 = 0.005
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Figure 12. Invariant densities of the stochastic map (2) with α = 0.3, β = −0.8, γ = −1 and
µ =−0.05: (a) σ 2 = 0.0001; (b) σ 2 = 0.0025; (c) σ 2 = 0.01; (d) σ 2 = 0.1.

3. A Piecewise Smooth Differential Equation

We define a set of first-order ordinary differential equations

dx
dt = y
dy
dt = 2p( j )y − (1+ p( j )2)x

(8)
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Where p( j ) is a piecewise smooth function defined by

p( j ) =

��
�

1
2π log

�
3+α(Y ( j)−3)+µ

Y ( j)

�
: Y ( j ) ≤ 3

1
2π log

�
3+β(Y ( j)−3)+(µ+γ )

Y ( j)

�
: Y ( j ) > 3

(9)

where Y ( j ) is the y-coordinate of the j th intersection of the phase-plane tra-
jectory with the half-line x = 0, y > 0.
It can be shown that the Poincare section along the half-axis x = 0, y > 0
produces a mapping identical to the map (1), see [1].

3.1 The Addition of Noise

The stochastic differential equation resulting from (8) with additive noise is�
ẋ
ẏ

�
=

�
0 1

−(1+ p( j )2) 2p( j )

��
x
y

�
+ σ√

2π

�
ẇ1

ẇ2

�
, (10)

where wi is a Wiener process and p( j ) is a piecewise smooth function defined
by (9).
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Figure 13. Trajectories of the stochastic differential equation (10) with α = 0.3, β = −0.8,
γ = −1 and µ =−0.05: (a) σ 2 = 0.0001; (b) σ 2 = 0.0025; (c) σ 2 = 0.01; (d) σ 2 = 0.1.
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Fig. 13 shows that the noise-induced bifurcations found for the map with
γ = −1 (see Fig. 12) are identical to those found for the stochastic piecewise
smooth differential equation (10).

4. Conclusion

In section 1.1 the simple piecewise linear map (1) is shown to have quite
different behaviour in the cases γ = 0, ±1 in the absence of noise. Thus we
can deduce that imperfections can significantly effect system dynamics. When
noise is added to the system we see a blurring of bifurcation boundaries, ap-
parent loss of bistability, stochastic resonance and an advance/delay of bifur-
cations. These results are verified in the ordinary differential equations that
correspond to the map.
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Abstract: A Stick-slip Whirl Model is presented which is a simplification of an oilwell
drillstring confined in a borehole with drilling fluid. The disappearance of stick-
slip vibration when whirl vibration appears is explained by bifurcation theory.
The numerical results are compared with the experimental data from a full-scale
drilling rig.

Key words: Drillstring vibrations, discontinuous bifurcations, stick-slip vibrations, whirl,
non-smooth systems.

1. Introduction

This paper attempts to explain the complicated behaviour of oilwell drill-
string motion when both torsional stick-slip and lateral whirl vibration are
involved. It is demonstrated that the observed phenomena in experimental
drillstring data could be due to the fluid forces of the drilling mud. A Stick-
slip Whirl Model is presented which is a simplification of a drillstring confined
in a borehole with drilling mud. The model is as simple as possible to expose
only the basic phenomena but is discontinuous. Bifurcation diagrams of this
discontinuous model for varying rotation speeds reveal discontinuous bifurca-
tions. The disappearance of stick-slip vibration when whirl vibration appears
is explained by bifurcation theory. The numerical results are compared with
the experimental data from a full-scale drilling rig. A more detailed presenta-
tion of the results can be found in [1].
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2. Principles of Oilwell Drilling

For the exploration of oil and gas, wells are drilled, which connect the
oil/gas reservoir to the surface. The cutting tool to drill those wells is called
the drill bit. The bit is turned around with a very slender structure of pipes that
are screwed together (see Figure 1). This structure is called the drillstring and
can be a few thousand meters long.

To turn the bit, the whole drillstring is rotated from surface with the ro-
tary table (a big flywheel). The lower part of the drillstring is called the Bot-
tom Hole Assembly or BHA and consists of heavier thick-walled pipes, called
drillcollars.

On the lower end, the drillstring is resting with the bit on the rock and at
the upper end it is pulled upward with a hook at the rig. The slender drillpipe
section of the drillstring is therefore constantly in tension while the thick-
walled lower part is partly in compression.

Drilling mud, which is a kind of muddy fluid, is pumped through the hol-
low drillstring by a mudpump. The drilling mud flows through the drillstring,
is pumped through nozzles in the bit, and returns to surface in the annulus

Drill pipesDrill pipes

Rotary table

Hoisting System

Tension Compression

Drill collarsDrill collars

BitBit

30-80 m

1-8 km

BHA 100-300 mNeutral Transition
Point

Drilling line

Travelling block

Hook

From mudpump

Axial Load

Figure 1. Drilling rig.
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Figure 2. Bottom hole assembly.

between drillstring and borehole wall. The function of the mud is to transport
the cuttings from the bit to the surface and to lubricate the drilling process.

The tension in the drillpipes avoids buckling of the drillpipe section. The
torsional rigidity of the drillpipe section is however very small, due to its
length and small wall thickness. The Bottom Hole Assembly is rigid in tor-
sional direction as it is relatively short and thick-walled but experiences lateral
deflection due to the compressive force. The drill collars in the BHA are kept
in position by a number of stabilizers, which are short sections with nearly
the same diameter as the bit. The friction forces on the bit and lower part of
the drillstring induce a frictional torque that can cause torsional stick-slip vi-
brations due to the torsional flexibility of the drillpipes [2]. Similarly, whirl
vibrations can exist in the drill collar section [3]. Both types of vibrations are
detrimental to the drillstring and lower the rate of penetration.

3. Drilling Measurements

The measurements reported in this paper were recorded at a full-scale
drilling rig [1]. The experiments were carried out with a measurement device
which was screwed between the bit and the lowest drill collar.

A time history of the rotation speed of the torsionally rigid lower part of
the drillstring is depicted in Figure 3. The drillstring is in a torsional stick-slip
vibration for the first 30 seconds, during which the Bottom Hole Assembly
acts like a torsional pendulum in which one can see the drillpipes as a tor-
sional spring. After 30 seconds, the stick-slip vibration suddenly stops and the
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Figure 3. Measured downhole angular velocity versus time.

rotation speed of the Bottom Hole Assembly becomes constant. Whirl vibra-
tion is initiated, which is a lateral type of vibration.

The downhole measurement device also measured the bending moment
which was exerted on it. The mean bending moment as a function of the
downhole rotation speed is depicted in Figure 4. To some extent, the mean
bending moment is a measure for the radial deflection of the drillstring. During
whirl the mean bending moment is considerably larger than during stick-slip
vibration. This indicates that the vibration denoted by ‘whirl’ in Figure 4 has
a much larger lateral deflection and is indeed a whirl-type of vibration.

The frictional torque as a function of the rotational speed is depicted in
Figure 5. The frictional torque is corrected for acceleration effects. A kind
of friction curve is therefore obtained. During stick-slip vibration the friction
curve clearly shows a Stribeck effect which explains the instability of steady
rotation. Interestingly, during whirl the friction torque is higher. The addi-
tional torque is due to the lateral deflection during whirl. The larger lateral de-
flection will not only increase the contact between the Bottom Hole Assembly
and the borehole wall, but will also increase fluid drag forces on the drillstring
that give a kind a viscous friction torque. Therefore, the whirl phase is not
only characterized by a higher level of the friction curve, but also by a positive
slope of the friction curve due to the viscous friction induced by fluid forces.
The fluid forces therefore annihilate the Stribeck effect and constant rotation
becomes stable. The whirl vibration therefore excludes the stick-slip motion:
the vibration is lateral whirl or torsional stick-slip. Stick-slip occurs for low
angular velocities and whirl for high angular velocities (see Figure 4). There
exists a hysteresis phenomenon in between, where the two types of vibration
are co-existing stable attractors.
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Figure 4. Measured downhole bending moment versus surface angular velocity; sweep-up fol-
lowed by sweep-down.

Figure 5. Measured downhole friction curve.

4. Modelling of Stick-slip Whirl Interaction

As a first step, the interaction phenomenon between stick-slip and whirl is
modelled as simple as possible (see [1] for a detailed description of the model).
The most simple model that can qualitatively describe the observations is a
one-DOF model for the torsional vibration and a two-DOF model for the lat-
eral vibration. The total model thus consists of 3 degrees of freedom: the twist
and two lateral displacements (Figure 6).
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(a) Model. (b) Fluid forces.

Figure 6. Stick-slip Whirl Model.

A kind of interaction must exist between the torsional and the lateral model.
Mass unbalance can explain the occurrence of whirl, but the whirl would then
only be present for angular velocities near a resonance frequency. Instead, we
observe that whirl takes place for angular velocities above a critical value. It
is therefore assumed that fluid forces form the interaction mechanism between
torsional motion and lateral motion.

The fluid forces are modelled as simple as possible by equations that are
also used in the theory for full film bearings [4]

F f r =−m f (r̈ − α̇2r − φ̇2

4 r + φ̇α̇r)− (D + ψ2(r))ṙ − ψ1(r)r,

F f α =−m f (α̈r + 2ṙ α̇ − φ̇ṙ)− (α̇ − φ̇
2 )(D + ψ2(r))r.

(1)

The fluid motion results in a lift force F f r in radial direction on the rotor and
a drag force Ff α in the tangential direction (Figure 6b). The constant m f is
the added mass of the fluid and D is a damping parameter. The nonlinear
functions ψ1(r) and ψ2(r) constitute the higher-order terms. The whirl speed
is denoted by α̇ and the rotation speed of the disk by φ̇. The terms m f α̇

2r and

m f
φ̇2

4 r are forces which push the drillstring to the wall. These terms are very
important as they are the cause of an instability effect as will be explained in
the sequel.
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With numerical continuation methods, we are able to study the nonlinear
dynamics of the Stick-Slip Whirl Model. First, only the Whirl Model is inves-
tigated.

4.1 Whirl Model

The Whirl Model contains only the 2 lateral degrees of freedom of the
Stick-Slip Whirl Model. The bifurcation diagram of the Whirl Model is de-
picted in Figure 7, with the rotational speed as bifurcation parameter and the
lateral deflection on the vertical axis.

For small rotational speeds the drillstring is in a trivial stable equilibrium
position with no deflection. If the rotational speed is increased then the fluid
forces increase and a pitchfork bifurcation occurs at point c. The trivial equi-
librium branch is unstable for high rotational speeds because the destabilizing
effect of the fluid forces is larger than the restoring elastic forces.

For rotational speeds just after point c the drillstring starts to whirl in for-
ward direction. This whirl motion is a periodic solution in a frame fixed to the
world, but is an equilibrium in a co-rotating frame of reference. All branches
in the bifurcation diagram are therefore equilibria because a co-rotating frame
was used for the Whirl Model.

The amplitude of the whirl motion rises until the borehole wall is hit. Bifur-
cation points d and f are discontinuous saddle-node bifurcations of the equi-
librium branch e2 − e3 − e4. Co-existing is a branch with stable backward
whirling solutions. During backward whirl the drillstring is rolling over the
borehole wall. An unstable branch connects the branch of stable forward whirl

(a) Whirl Model. (b) Stick-slip Whirl Model.

Figure 7. Equilibrium branches.
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solutions with the branch of stable backward whirl solutions. Note that for
very small rotational speeds the Whirl Model is in its trivial equilibrium posi-
tion, whereas it is in backward whirl for very high rotational speeds. A kind
of hysteresis phenomenon exists in between.

4.2 Stick-slip Whirl Model; Bifurcation Diagrams

We now study the same equilibrium branches, but for the full Stick-Slip
Whirl Model which also includes the torsional degree of freedom. As the
lateral and the torsional model are uncoupled to some extent, all equilibrium
branches of the Whirl Model are also equilibria of the Stick-slip Whirl Model
(something which is not true in general). The stability of the equilibrium
branches, however, changes due to the torsional degree of freedom.

The disk in the Stick-Slip Whirl Model is a very simple model of the Bot-
tom Hole Assembly and a dry friction torque Tb is assumed to act on it, which
models the bit-rock interaction (as well as the stabilizer wall contact). The
Stribeck effect in the friction curve destabilizes the trivial equilibrium (curve
E1) of the pure Whirl Model. Also a part of the forward whirl branch is unsta-
ble: branch E2 contains a Hopf bifurcation.

The full bifurcation diagram of the Stick-Slip Whirl Model, showing the
equilibrium branches in a co-rotating frame as well as the periodic branches,
is depicted in Figure 8.

For small rotational speeds the full Stick-Slip Whirl Model undergoes a
stable torsional stick-slip oscillation. If the rotational speed is increased, then
the fluid forces destabilize the undeflected trivial position and the drillstring
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Figure 8. Stick-slip Whirl Model, periodic branches (bold).
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will deflect in lateral direction. When the drillstring is laterally deflected the
drillstring will act like a stirring spoon in a cup of tea. The torsional stick-
slip vibration will therefore be damped due to the viscous fluid friction. The
branch E4 of stable backward whirling solution is unaffected by the torsional
model.

For small rotational speeds the Stick-Slip Whirl Model is in torsional stick-
slip oscillation, whereas it is in lateral backward whirl motion for high rotation
speeds. A very complicated hysteresis region exists in between, where both
types of motion can be present as well as many other mixed and period doubled
types of oscillation. This region with very complicated dynamic behavior is,
however, localized.

A zoom of the hysteresis region is depicted in Figure 9. Periodic branches
are created at points where the equilibrium branches lose stability. From the
Hopf bifurcation at the equilibrium branch E2 emanates a periodic branch P6.
Branches P2 to P6 connect the solutions found from the Whirl Model with
the solutions found from the pure Stick-Slip Model (see [1] for details). The
bifurcation structure is apparently very complicated. Branch P4 undergoes a
number of period doubling bifurcations. The period doubled solutions have
not been calculated. A number of bifurcation points are smooth, while other
bifurcation points are non-smooth. These non-smooth bifurcation points be-
have sometimes like classical smooth bifurcation points, but can also show a
behavior which is non-standard [5].
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Figure 9. Stick-slip Whirl Model, zoom of Figure 8.
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5. Conclusions

We concluded from the measurements on a real drillstring that torsional
stick-slip and lateral whirl can be co-existing attractors in oilwell drilling. The
presented Stick-slip Whirl Model is a highly simplified model of reality that
describes the observed phenomena in its most simple form. A bifurcation anal-
ysis of the Stick-slip Whirl Model revealed non-standard bifurcations, which
are due to the non-smoothness of the system.
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Abstract:  The mapping dynamics of non-smooth dynamical systems is presented 
through a three-piecewise linear system with a periodic excitation. The 
mapping structures for periodic motions are developed and a transition from a 
periodic motion to another one is qualitatively discussed through the mapping 
structures. From such mapping structures, the stable and unstable periodic 
motions can be uniquely determined, and generic mapping series in chaotic 
motion can be certainly found. This methodology is extendable to any non-
smooth dynamical system. 

Key words: Piecewise linearity, mapping dynamics, grazing, non-smooth systems. 

1. Introduction 

Consider a periodically excited, piecewise linear system as 

2 ( ) cos ,x dx k x a t+ + = Ω�� �                                                                          (1)

where x dx dt=� . The restoring force is  

,    for                 ;

( ) 0,           for       ;

,    for               ;

cx e x E

k x E x E

cx e x E

− ≥⎧
⎪= − ≤ ≤⎨
⎪ + ≤ −⎩                                                      

(2) 
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with .E e c=  The parameters ( Ω  and a ) are excitation frequency and 
amplitude, respectively. In the foregoing system, there are three linear 
regions of the restoring force (Region I: x E≥ , Region II: E x E− ≤ ≤  and 
Region III: x E≤ − ), and the solution for each region can be easily obtained.  

The above piecewise linear dynamic system possesses very rich dynamic 
behaviors and it exists widely in mechanical and electrical engineering such 
as soft suspension systems in automobile industry. To understand such 
complicated behaviors, in recent decades, non-smooth dynamics appears in 
mechanics as a new field. In 1932, Hartog and Mikina [1] studied a 
piecewise linear system without damping and gave an analytical expression 
of periodic symmetric solution. In 1983, Shaw and Holmes [2] investigated a 
piecewise linear system with a single discontinuity through mapping and 
numerically predicted chaotic motion. In 1989 Natsiavas [3] identified the 
responses of a system with tri-linear springs. In 1992, Kleczka, et al [4] used 
the mapping approach to investigate periodic solutions and bifurcations of 
piecewise linear oscillator. Theodossiades and Natsiavas[5] modeled gear-
pair vibrations as a piecewise linear problem in 2000. In 1999, Hogan and 
Homer [6] applied the graph theory to describe the piecewise smooth 
dynamical system. This qualitative description is very difficult to provide a 
quantitative analysis. In 2000, Lenci and Rega [7] investigated periodic 
solutions and bifurcation in an impact inverted pendulum under an impulsive 
excitation. In 1995, Han et al [8] initialized the mapping dynamics concept 
to develop the analytical solution of impact pairs with two amplitude 
constraints through mapping combinations. In 2002, Luo [9] analytically 
predicted the asymmetric period-1 motion by introduction of a time interval 
between two impacts, and the analytical prediction verified the numerical 
simulation of asymmetrical motion in Li et al [10]. In 2003, Monen and Luo 
[11] gave an analytical prediction of global periodic motion for such a 
system in Eq.(1).  

For a better understanding of the local and global dynamic behaviors in 
non-smooth dynamical systems, in this paper, the mapping dynamics of non-
smooth dynamical systems will be developed to obtain analytical predictions 
for all possible periodic responses. The mapping structure and motion 
transition for Eq.(1) will be investigated as a sampled problem.

2. Switching Sections and Mappings 

For description of motion in Eq.(1), two switching sections (or sets) are: 

( ){ },, ,i i i i i it x y x E x y+Σ = = =�  and ( ){ },, , .i i i i i it x y x E x y−Σ = = − =�           (3) 
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The two sets are decomposed as 

{ }, ,0it E−
+ + +

+Σ = Σ ∪ Σ ∪   and { }, ,0 .it E−
− − −

+Σ = Σ ∪ Σ ∪ −                          (4) 

where four subsets are defined as 

( ){ },, , 0i i i i i it x y x E x y+
+Σ = = = >�  and ( ){ },, , 0 ;i i i i i it x y x E x y+

−Σ = = = <� (5)

( ){ },, , 0i i i i i it x y x E x y−
+Σ = = − = >� and ( ){ },, , 0 .i i i i i it x y x E x y−

−Σ = = − = <� (6)

The points { }, ,0it E  and { }, ,0it E−  strongly dependent on the external force 
direction are singular. From four subsets, six basic mappings are:  

1 2 3

4 5 6

: ,    : ,   : ,

: ,    : ,   : .

P P P

P P P

+ + + − − −
+ − − − − +

− + + + − −
+ + − + + −

⎫Σ → Σ Σ → Σ Σ → Σ
⎪
⎬
⎪Σ → Σ Σ → Σ Σ → Σ ⎭

                                            (7) 

x�

x

−
−Σ +

−Σ

1P

2P

3P

4P

5P6P

+
+Σ−

+Σ

( )0it E, ,( )0it E−, ,

Region IRegion IIRegion III

Figure 1. Switching sections and basic mappings in phase plane. 

The mapping 1P  maps a state ( ), ,i i it x y  with 0iy >  into another state 
( )1 1 1, ,i i it x y+ + +  with 1 0iy + <  at x E=  in Region I. The mapping 3P  similar to 
the mapping 1P  is also defined in Region III. The mappings 1P  and 3P  are 
two self-mappings. Two self-mappings and two transfer-mappings exist in 
Region II. The transfer-mappings 2P  and 4P  in Region II map the motion 
from +

−Σ  into −
−Σ  and from −

+Σ  into +
+Σ , respectively. The self-mapping 5P

maps a state ( ), ,i i it x y  with 0iy <  into another state ( )1 1 1, ,i i it x y+ + +  with 
1 0iy + >  at x E=  in Region II. The self-mapping 6P  maps a state ( ), ,i i it x y

with 0iy >  into another state ( )1 1 1, ,i i it x y+ + +  with 1 0iy + <  at x E= −  in Region 
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II. The expressions for all six mappings were given in [12]. The mappings 

2 4 and P P  are termed the global mapping. The mappings 1 3 5 6, ,   and P P P P  are 
termed the local mapping. 

3. Mapping Structures 

Before the mapping structure of periodic and chaotic motions in Eq.(1) 
are discussed, the following notation for mapping action is introduced as 

1 2 1 2
.

k kn n n n n nP P P P≡
�

� ���                                                                         (8) 

where { } { }1,2, ,6  and 1,2, ,6
in j iP P j n∈ = =� �  with { }1,2, ,i k= � . Note that 

the clockwise and counter-clockwise rotation of the mappings in order gives 
the identical motion (i.e.,

1 2 2 1 1 1
, , ,

k k k kn n n n n n n n nP P P
−� � �

� ), but the selected 
Poincare mapping sections are different. The period-m motion of the 
mapping 

1 2 kn n nP
�

 is defined as 

( ) ( )
1 2 1 2 1 2

-sets

.
k k k

m
n n n n n n n n n

m

P P P P P P P≡
�

� ��� ��� � ���

�������������������

                                   (9) 

To extend this concept to two local motions, define 

( ) ( ) ( ) ( )15 1 5 1 5 36 3 6 3 6

-sets -sets

 and  .m m

m m

P P P P P P P P P P≡ ≡� ��� � � ��� �
��������� �����������

                    (10) 

For a special combination of global and local mappings, introduce a 
mapping structure 

( )

( ) ( )
1 21 2

1 2

sets

.

m
i l ki l k

i l i l k

m
n n n n nn n n n n

n n n n n n n

m

P P P P P

P P P P P P P

−

≡

=

� �

� ��� ���

� ��� � ��� � ���

�����������

                    (11) 

From the above definition, periodic and chaotic motions for Eq.(1) can be 
very easily labeled through mappings accordingly.  

Consider one of global periodic motions with a Poincaré mapping 
:P + +

+ +Σ → Σ  with the following mapping structure as example. 

2 1

2 1
4 36 3 2 15 14(36) 32(15) 1m m

m mP P P P P P P≡ � � � � �                                                    (12) 
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where 1 2 and m m  are arbitrary integers for an expected periodic motion. 
Consider an example for ( 1 1,m = 2 0m = ) and ( 1 0,m = 2 1m = ), the switching 
phase and velocity for periodic motion 

2 1 64(36) 32(15) 1
=m m i iP +x x  where ( ),

T

i i it y=x
at 1x = ±  with the periodic condition ( ) ( )6 6, 2 ,i i i it y t yπ+ + = + Ω  are illustrated 
as in Fig.2. The thin and dark solid curves represent two stable solutions of 

( )432 15 1P  and ( )4 36 321P , respectively. The dashed and dash-dotted curves 
represent two unstable solutions of ( )432 15 1P  and ( )4 36 321P , respectively. For a 
periodic motion ( ) 6432 15 1 i iP +=x x , we have ( ) ( ){ }2 2, , ,i i i it y t y +

+ + +∈ Σ ,
( ) ( ){ }1 1 3 3, , ,i i i it y t y +

+ + + + −∈ Σ , ( )4 4,i it y −
+ + −∈ Σ  and ( )5 5,i it y −

+ + +∈ Σ . However, the  
periodic motion ( ) 64 36 321 i iP +=x x  gives the motion ( ),i it y +

+∈ Σ , ( )1 1,i it y +
+ + −∈ Σ ,

( ) ( ){ }2 2 4 4, , ,i i i it y t y −
+ + + + −∈ Σ  and ( ) ( ){ }3 3 5 5, , ,i i i it y t y −

+ + + + +∈ Σ . The corresponding 
stability and bifurcation are determined as in [11,12]. From these mapping 
structures, any stable and unstable periodic motion can be determined 
analytically. 
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Figure 2. Analytical solutions of (a) switching phases and (b) switching velocities with 
system parameters ( 0.5, 100, 1.0, 20d c E a= = = = ). The circular symbols denote 

bifurcation points. (                stable ( )432 15 1P ,                 stable ( )4 36 321P ,

                  unstable ( )4 36 321P ,                 unstable ( )432 15 1P ).

4. Motion Transition 

Consider a motion transition from a periodic motion of 
4(36) 32(15) 1m mP  to an 

adjacent periodic motion of 1 14(36) 32(15) 1m mP + + . Since the motion of 
4(36) 32(15) 1m mP

possesses two asymmetrical solutions, there are two transition routes, as 
shown in Fig.3. Once the motion of 

4(36) 32(15) 1m mP  grazes at x E= , the motion 
of 14(36) 32(15) 1m mP +  appears.  If the motion grazing of 14(36) 32(15) 1m mP + occurs at 
x E= − , the motion of  1 14(36) 32(15) 1m mP + +  appears. For simplicity, four motion 
mappings are defined as  

1 1 1 14(36) 32(15) 1 4(36) 32(15) 1 4(36) 32(15) 1 4(36) 32(15) 1
,  , ,  .m m m m m m m mI II III IVP P P P P P P P+ + + +≡ ≡ ≡ ≡ (13)
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Using the above expressions, the motion transition routes are illustrated in 
Fig.4. Two possible routes represent the two motion transitions through 
grazing in Fig.4(a) and (b).  For Route-1, with varying control parameter µ ,
the grazing of motion IP  at x E=  occurs for ( ),

1
I s
gµ µ +=  (i.e., the grazing 

bifurcation appears at +Σ ). After grazing, an asymmetric periodic motion of 

IP  starts to switch to a new motion relative to two mappings IP  and IIP .
Suppose the motion transition from mapping IP  to IIP  completed at 

( ),
2

I e
gµ µ +=  without other grazing, the new motion is generated by mapping 

IIP  only, and this motion is asymmetric. With further varying control 
parameter µ , if the motion grazing of IIP  is relative to the switching plane 

−Σ , the starting and ending grazing bifurcations are at ( ),
3

II s
gµ µ −=  and 

( ),
4

II e
gµ µ −= , respectively. Once the motion of IIP  disappears, the motion 

transition from IP  to IVP  is completed.  Before the motion transition from IP
into IIP  is completely done, the grazing of motion IP  at x E= −  occurs with 

( ),
1

I s
gµ µ −=  and the motion of IIIP  appears. For ( ),

1
I e
gµ µ −= , the motion of IP

disappears completely. Similarly, the starting and ending grazing of motion 

IIIP  occur at ( ) ( ), ,
3 4and III s III e

g gµ µ µ+ += , respectively. 

4(36) 32(15) 1m mP 14(36) 32(15) 1m mP +

14(36) 32(15) 1m mP + 1 14(36) 32(15) 1m mP + +

grazing at x E=

grazing at x E= −

grazing at x E=

grazing at x E= −

Figure 3. Two routes for the motion transition of  
4(36) 32(15) 1m mP  to 1 14(36) 32(15) 1m mP + + .
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Figure 4. A control parameter chart for motion switching though grazing: 
(a) Route-1 and (b) Route-2. 

From the above discussion, the motion of { },I IIP P  exists in the range of 
( ) ( ), ,
1 1,I s I s

g gµ µ µ+ −⎡ ⎤∈ ⎣ ⎦ . For ( ) ( ), ,
1 2,I s I e

g gµ µ µ− +⎡ ⎤∈ ⎣ ⎦ , the motion is relative to 
mappings { }, , ,I II IIIP P P  and two asymmetrical motions of IP  are near the 
switching planes  and + −Σ Σ . For ( ) ( ), ,

2 2,I e I e
g gµ µ µ+ −⎡ ⎤∈ ⎣ ⎦ , the motion is still 
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associated with mappings { }, , ,I II IIIP P P  and only the asymmetric trajectory of 
motion 1P  is near −Σ . The motion relative to mappings { },II IIIP P  lies in the 
range of ( ) ( ), ,

2 3, .I e II s
g gµ µ µ− −⎡ ⎤∈ ⎣ ⎦  For ( ) ( ), ,

3 3, ,II s III s
g gµ µ µ− +⎡ ⎤∈ ⎣ ⎦  the motion includes 

mappings { }, ,II III IVP P P  and the asymmetric trajectory of IIP  is near −Σ . For 
( ) ( ), ,

3 4, ,III s II e
g gµ µ µ+ −⎡ ⎤∈ ⎣ ⎦  the motion includes{ }, ,II III IVP P P , and the asymmetric 

trajectories of motions IIP  and IIIP  are near −Σ  and +Σ , respectively. For 
( ) ( ), ,

4 4, ,II e III e
g gµ µ µ− +⎡ ⎤∈ ⎣ ⎦  the motion relative to { },III IVP P  exists. For 

( ),
4 , ,III e

gµ µ +⎡ ⎤∈ •⎣ ⎦  only the symmetrical and asymmetrical motions of mapping 

IVP  exist. In addition, for ( ),
1, ,I s

gµ µ +⎡ ⎤∈ •⎣ ⎦  only the motion of mapping IP
appears.  In a similar fashion, the motion in Route-2 can be discussed. 

Figure 5. Poincaré mapping section of chaotic motion associated with mappings (
( ) ( )2

4 36 32 15 1
P ,

( ) ( )4 36 32 15 1P ,
( ) ( )2

4 36 32 15 1
P  and 

( ) ( )2 2
4 36 32 15 1

P ) (a)  and + +
+ −Σ Σ  at x E=  and (b)  and − −

+ −Σ Σ  at x E= − .
( 0.5, 100, 1.0, 20d c E a= = = = , 1.4,Ω = 1,ix = 0.054427itΩ ≈  and 2.433327.iy ≈ )

The strange attractors of chaotic motions pertaining to mappings 
( ( ) ( )2

4 36 32 15 1
P , ( ) ( )4 36 32 15 1P , ( ) ( )2

4 36 32 15 1
P  and ( ) ( )2 2

4 36 32 15 1
P ) are presented herein. 

Choose excitation frequency 1.4Ω = with initial phase 0.054427itΩ ≈ and 
velocity 2.433327iy ≈  at ix E= for numerical simulation. The Poincaré  
mapping sections for four sub-switching planes are plotted. The location of 
grazing points is marked by a circular symbol and labeled by “Grazing”. The 
Poincaré  mapping sections in Fig.5 show three branches of the strange 
attractor in each subset of two switching planes, and the grazing points for 
two switching-planes ix E= ±  are with the switching phases 1.98itΩ ≈  and 
5.02 with velocity 0iy = , respectively. In Fig.5(a), the subsets  and + +

+ −Σ Σ  of  
the strange attractor are illustrated on the upper and lower dashed-line. The 
subsets  and − −

+ −Σ Σ  separated by the dashed line are presented in Fig.5(b) for 
the strange attractor of chaotic motion. The generic mappings for this chaotic 
motion are ( ( ) ( )2

4 36 32 15 1
P , ( ) ( )4 36 32 15 1P , ( ) ( )2

4 36 32 15 1
P  and ( ) ( )2 2

4 36 32 15 1
P ). The mapping 

codes (indices) series based on the generic mappings for such a chaotic 
motion varies with control parameters, which can be measured by the 
appearance probability of mapping. Further, by use of the appearance 
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probability, the fractal dimension can be obtained as well. Owing to page 
limitation, this article will not discuss about such an issue, and the grazing 
bifurcation will be discussed in sequel.  

5. Conclusion 

The mapping dynamics of non-smooth dynamical systems is presented for 
all possible periodic responses. The mapping structures and motion 
transition of the periodic and chaotic motions for the piecewise linear system 
are discussed. From such mapping structures, the stable and unstable 
periodic motions are uniquely determined, and generic mappings in chaotic 
motion are certainly determined. This methodology is extendable to any 
non-smooth dynamical system.
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Abstract: An impact oscillator with a drift is considered. Using a simple co-ordinates
transformation the bounded oscillations are separated from the drift. In general
the dynamic state of the system is fully described by four variables: time, τ ,
relative displacement, p, and velocity, y, of the mass and relative displacement
of the slider top, q. However, this number can be reduced by two if the begin-
ning of the progression phase is monitored. In this paper a new two dimensional
numerical map is developed and its dynamics is discussed.

Key words: Impact oscillator, drift, two dimensional map, bifurcations.

1. Introduction

Fundamental dynamic behaviour of impact oscillators has been studied
vigorously in the past (e.g. [1] – [5]) showing great complexity and sensi-
tivity to the system parameters and the initial conditions. In most cases it is
assumed that the impacting system or its elements oscillate around their equi-
librium positions. Only recently a combination of bounded oscillations and
drifting motion has started to be considered [6]–[8]. Co-ordinate transforma-
tion proposed in [7] simplifies significantly the analysis of a drifting impact
oscillator. It allows to study the bounded oscillations separately from the pro-
gressive motion and therefore standard nonlinear dynamic techniques can be
used. In the current study, an implicitly defined map of reduced dimension,
similar to those introduced in [9] – [10], is developed and studied.

The system considered in this work belongs to a class of piecewise smooth
(PWS) systems, whose dynamics are known to exhibit complex bifurcation
scenarios and chaos. These systems can undergo all types of bifurcations that
smooth ones do, but apart from them there is whole class of bifurcations that
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are unique to PWS systems such as grazing [4, 11, 12], chattering [13] or slid-
ing [14]. A good deal of work has been done to study these special bifurcations
using normal form maps (see for example [14]). The general bifurcation sce-
narios in explicitly defined two dimensional PWS maps were also considered
in [5]. However, it is difficult to apply the classical bifurcation theory to the
map developed in the current study as it is not defined explicitly.

2. Impact Oscillator with Drift

We consider a simple two degree-of-freedom oscillator shown in Figure 1.
A mass m is driven by an external force f containing static b and dynamic
a cos(ωτ+ϕ) components. The weightless slider has a linear visco-elastic pair
of stiffness k and damping ratio 2ξ . The mass and the stiffness are assumed
to be equal to 1, which in effect, is equivalent to the nondimensionalization
procedure. As reported in [6] the slider drifts in stick-slip phases where the
relative oscillations between the mass and the slider are bounded and range
from periodic to chaotic. The progressive motion of the mass occurs when
the force acting on the slider exceeds the threshold of the dry friction force
d. x, z, v represent the absolute displacements of the mass, slider top and
slider bottom, respectively. It is assumed that the model operates in a hori-
zontal plane, or the gravitational force is appropriately compensated. At the
initial moment τ = 0 there is a distance between the mass and the slider top
called gap, g. For the simplicity of the further analysis the dimensionless fric-
tion threshold force, d is set to 1 and for all numerical examples ϕ = π/2,
g = 0.02.

The considered system operates at the time in one of the following modes:
No contact, Contact without progression, and Contact with progression. A
detailed consideration of these modes and the dimensional form of equations
of motion can be found in [6]. As it was reported in [7] by introducing a new
system of co-ordinates (p, q, v) instead of (x, z, v):

p = x − v, (1)

q = z − v,

it is possible to separate the oscillatory motion of the system from the drift.
In fact, in the new co-ordinates system p and q are displacements of the mass
and the slider top relative to the current position of the slider bottom v . In this
study we will consider the bounded oscillations and attempt to re-construct
the progressive motion. For the purpose of clarity a brief summary outlin-
ing how all particular phases of the dynamic responses were defined is given
below.
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Figure 1. Physical model of impact sys-
tem with drift.

Figure 2. Trajectory of the system for pe-
riod two motion (thick line, b = 0.12) and
chaotic motion (thin line, b = 0.1) for a =
0.3, ξ = 0.01, ω = 0.1.

No contact. If the distance between the mass and the slider top is greater
than zero, q + g − p > 0, then the mass and the slider top move sepa-
rately.

p′ = y

y′ = a cos(ωτ + ϕ)+ b, for p < q + g (2)

q ′ =− 1

2ξ
q

Contact without progression. During this mode the distance between
the mass and the slider top is equal to zero, i.e. q + g − p = 0, and the
force acting on the mass from the slider is greater than zero but smaller
than the threshold of the dry friction force.

p′ = y

y′ =−2ξ y − q + a cos(ωτ + ϕ)+ b, for 0 < 2ξ y + q < 1 (3)

q ′ = y, and p = q + g

Contact with progression. During this mode the distance between the
mass and the slider top remains equal to zero, q + g − p = 0, but the
force acting on the mass is greater than the threshold of dry friction
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force, the mass, the top and the bottom of the slider move together, and
progression takes place.

p′ =− 1

2ξ
(q − 1)

y′ = a cos(ωτ + ϕ)+ b − 1, for 2ξ y + q ≥ 1 (4)

q ′ =− 1

2ξ
(q − 1), and p = q + g

During No contact and Contact without progression phases the slider bottom
remains stationary, v ′ = 0, and during Contact with progression phase it moves
with velocity v ′ = y + 1

2ξ (q − 1).
The equations of motion are linear for each phase, therefore the global

solution can be constructed by joining the local solutions at the points of dis-
continuities. The set of initial values (τ0; p0, y0, q0) defines in which phase the
system will operate. If p0 < q0+g, it will be No contact phase. For p0=q0+g,
it will be Contact without progression phase if 0 < 2ξ y0 + q0 < 1 or Contact
with progression phase if 2ξ y0 + q0 ≥ 1. When the conditions corresponding
to the current phase fail, the next phase begins, and the final displacements and
velocity for the preceding phase define the initial conditions for the next one.
All details of the semi-analytical method allowing to calculate the responses
of the system using this method are given in [7].

3. Two Dimensional Map

To study the dynamics of the considered system a new two dimensional
(2D) numerical map has been developed [8], and these results are summarized
below. In general the dynamic state of the system is fully described by four
variables: time, τ , relative displacement, p, and velocity, y, of the mass and
relative displacement of the slider top, q. However this number can be reduced
to two and a 2D map can be constructed. This simplification is possible if the
beginning of the Contact with progression phase is monitored. It is worth not-
ing that there are certain regions of the system parameters where progression
does not occur, and consequently the proposed 2D map can not be defined
there.

The beginning of the progression phase is defined as a moment when the
force acting on the slider has reached the critical value, i.e. the condition
2ξ y∗ + q∗ = 1 is satisfied, which means that in this moment of time y∗ and q∗
are linearly dependent as q∗ = 1− 2ξ y∗. Also during the both types of contact
phases (with and without progression) the relative displacements of the mass
and the slider top remains linearly dependent p∗ = q∗ + g = 1 − 2ξ y∗ + g.
Thus the only two independent variables y∗ and τ∗ are needed to fully describe
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the dynamic state of the system in the beginning of the progression phase.
Instead of time τ∗ one can use the angular displacement ψ∗ = ϕ + ωτ∗, and a
pair (y∗, ψ∗) can be used to construct a 2D map, which is the main motivation
of this study.

Since the system dynamics can be monitored at the beginning of the pro-
gression phase, one can express the progression as a function of the previous
one

yn+1 = f1(yn, ψn), (5)

ψn+1 = f2(yn, ψn).

The map (5) can be determined from the solutions of the equations (2) – (4)
which allows to avoid direct numerical integration and to reduce the prob-
lem to solving a set of nonlinear algebraic equations. Here (yn, ψn) and
(yn+1, ψn+1) are current and consecutive positions of the system in the be-
ginning of the progression phase.

To make the understanding of physical meaning of the proposed map (5)
easier, let us consider a trajectory in three dimensions. In Figure 2 two time
histories of period two and of chaotic motions are shown by thick an thin lines
respectively. When system is in No Contact phase, the trajectory belongs to
(p, y) plane. Once the mass hits the slider, the trajectory goes out of (p, y)
plane as q � =0, and during most of the Contact with progression phase it
belongs to the line p ≈ 1 + g, q ≈ 1, which is marked by a dash line. The
map (5) allows evaluating only the beginning of the Contact with progression
phase, which is marked by an arrow, and does not monitor to the dynamics
between two consecutive Contact with progression phases. Also, it should be
noted, that time between these two consecutive phases is not known a priori,
and chaotic motion given by thin line in Figure 2 demonstrates that there could
be quite a few No Contact and Contact without progression phases before the
next progression will happen again.

4. Periodic and Chaotic Orbits

Some results from iterations of the 2D map are shown in Figure 3. As
can be seen the motion of the system varies from chaotic to different types
of periodic regimes. The durations of the periods for these regimes are not
known a priori, because the points are taken at the beginning of Contact with
progression phase, not once per period of external excitation as it is done
in stroboscopic Poincaré maps. For example, period six motion shown in
Figure 3(f) represents periodic response for which during the period Con-
tact with progression phase occurs six times, and its period is 4π/ω, whereas
for period two motion shown in Figure 3(e) Contact with progression phase
occurs twice, and its period is equal to 2π/ω.
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Figure 3. 2D maps computed for
a = 0.3, ξ = 0.01, ω = 0.1, and (a)
b = 0.02,(b) b = 0.05, (c) b = 0.11,
(d) b = 0.24, (e) b = 0.27, (f) b = 0.29.

Figure 4. Bifurcation diagrams computed
for a = 0.3, ξ = 0.01, ω = 0.1 for (a) the
developed 2D map (b) the original set of
piecewise linear ordinary differential equa-
tions Eqs. (2)-(4).

A comparison of bifurcation diagrams calculated for the proposed 2D map
and for the original set of piecewise linear ordinary differential equations
Eqs. (2)-(4) is given in Figure 4. The diagram presented in Figure 4(a) is
constructed by taking 300 points in the beginning of the progression phase af-
ter eliminating transient processes, while the diagram presented in Figure 4(b)
is constructed by taking 300 points once per period of external excitation also
after transient process has passed. As can be clearly seen from this figure
for the most values of static force, b both diagrams indicate the same types
of regimes. However there are several values where the bifurcation diagrams
differ topologically. For example, for b = 0.27 (marked by dotted line) period
two orbit shown in Figure 4(a) appears as period one orbit in Figure 4(b). This
difference is caused by the ways how the points for bifurcation diagrams are
collected. In particular, for b = 0.27, it means that the system responds period-
ically with the period of external excitation (period one regime in Figure 4(b))
where the progression phase occurs twice (period two regime in Figure 4(a)).
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As it was mentioned earlier the proposed 2D map contains sufficient in-
formation to re-calculate all characteristics of the system dynamics, including
the progression. For given a point (ψ∗, y∗) of (ψn, yn) plane, the duration T of
Contact with progression phase is found by solving nonlinear algebraic equa-
tion 2ξ y(τ∗ + T )+ q(τ∗ + T ) = 1, where τ∗ = (ψ∗ − ϕ)/ω, and y(τ ) and q(τ )
are determined from Eqs. (4). Once this equation is solved, T is substituted
into v(τ) found from v ′ = y + 1

2ξ (q − 1), and the progression, v∗ during this
phase can be expressed as

v∗ = −2ξ y∗ − 2ξ y∗ exp

�
− T

2ξ

�
+ y∗T + b − 1

2
T 2

− a

ω2
[cos(ωT + ψ∗)− cos(ψ∗)+ ωT sin(ψ∗)] . (6)

For example, the period two motion shown in Figure 3(c) for b = 0.11 has
two Contact with progression phases. First of them is described by ψ∗1 =
2.14221, y∗1 = 5.88428, and according to Eq.(5) it has the progression
v∗1 = 15.7256. Second Contact with progression phase is described by ψ∗2 =
1.50147, y∗2 = 6.27903 has the progression v∗2 = 20.9695. Thus the total pro-
gression per period for this motion is v∗1 + v∗2 = 36.6951. For the period two
motion shown in Figure 3(e) for b=0.27, we have ψ∗1 =5.9506, y∗1 =0.27231,
v∗1 = 0.0779602 and ψ∗2 = 5.07541, y∗2 = 1.77533, v∗2 = 2.60751, and the to-
tal progression per period is 3.66048. Thus taking into account the difference
in the periods for these regimes we can deduce that during the same time the
progression for b = 0.11 will be approximately 5 times larger than for b = 0.27.

Equation (6) allows to calculate the progression as functions of initial an-
gular displacement ψ∗ and velocity y∗. Thus a surface v(ψ∗, y∗) shows the
level of progression for the given set of system parameters and should be use-
ful to develop appropriate control strategies.

5. Conclusions

In this paper, an impact oscillator with a drift was considered. To study the
bounded dynamics of this system a new two dimensional numerical map was
developed.

The results of numerical iterations of this two-dimensional map show that
the system responses range from periodic to chaotic motion. In contrast to
a classical Poincaré map where a trajectory is sampled once per period of
external excitation, in the introduced two dimensional map the points are taken
at the beginning of the progression phase. As a result the duration and the
shape of periodic orbit are not known a priori. For this reason, it appeared that
period two motion on the bifurcation diagram calculated for this map looks
as period one motion on the bifurcation diagrams calculated for the original
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system. Calculating progression by iterating the developed 2D map should
prove to be useful in devising control strategies for vibro-impact systems.
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Abstract: Rigid impacts are described by the Newton elementary theory with coefficient of
restitution. Different models of elastic and dissipative forces during the contact
of impacting bodies should be assumed in the investigation of the motion of the
oscillators with soft impacts, when impact duration cannot be neglected. This
approach allows also understand the dynamics of mechanical systems, when
the contact stiffness of impacting bodies changes from zero, corresponding to
the impact-less motion, to infinity, which corresponds to the motion with rigid
impacts.

Key words: Piecewise-linear motion, impact interaction, numerical simulation, periodic and
chaotic motions, regions of existence and stability, bifurcation diagrams.

1. Introduction

The work naturally continues on the article [1] on dy-
namics of the impact oscillator shown in Fig. 1. The de-
velopment of non-linear phenomena, when stiffness k2 of
the stop changes from zero to infinity, was explained there
in more detail. In the meantime was analytically proved
the continuous and stable transition cross grazing bifurca-
tion boundary [2] and the oscillator motion with different
model of soft impacts was investigated [3-6]. Fundamental
problems of the dynamics of the simplest impact oscillator
were resolved and their main features are summarized here. Figure 1.
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2. Mathematical Models of Oscillators

The oscillator motion is described gradually by one of two dimensionless
differential equations (the Kelvin-Voigt model of the soft impact):

X ′′ + 2β1 X ′ + X = cos(ητ + ϕ), for X < ρ, (1)

X ′′ + 2(β1 + β2)X
′ + X + k2

k1
(X − ρ) = cos(ητ + ϕ), for X > ρ, (2)

where τ =�t , �=
√

k1/m, η=ω/�, β1 =b1/2
√

k1m, β2 =b2/2
√

k1m, ρ =r/xst,
X ′=d X/dτ , X ′′=d2 X/dτ 2, X = x/xst, xst = F0/k1, xst - static displacement, di-
mensionless parameters: τ - time, η - excitation frequency, β - viscous damp-
ing, ρ - static clearance. It is assumed that b1 = b2.

The piecewise-linear (triangle) model of soft impact will be also assumed
in this paper. Its scheme is included into Fig. 10 and Eq. (2) will change into

X ′′ + 2β1 X ′ + X + (X − ρ)(k2 + k3 sign X ′)/k1 = cos(ητ + ϕ). (3)

This model corresponds, for example, to contact interactions of leaf springs
with dry friction or piercing forces in a forming machine.

The analytical solution of a special set of periodic impact motions and
their stability [2] is more difficult in the comparison with the oscillator with
rigid impacts [7]. There exist nevertheless many more complex periodic and
chaotic impact motions. Numerical integration of motion equations of the
impact oscillator (motion simulation) is the most effective tool, which shows
the factual dynamics of the system. All results obtained in this work were
therefore obtained using this method.

3. Subharmonic Impact Motions

It was ascertained in [1], that the series of subharmonic impact motions ex-
ist outside the region of the necessary onset of the impact motion bounded by
grazing bifurcation boundary ρ0 = 1/|1 − η2| shown in Fig. 2 (for β1 = 0).
Regions of subharmonic impact motions of order z = p/n (p = 2 and n =
2, 3, 4, 5, 6) are also over boundary ρ0, where impactless (z = 0) motion ex-
ists. Quantity z classifies periodic impact motion regime, where p is number
of impacts in n is number of excitation periods T in one period of the impact
motion. Regions of subharmonic impact motions z = 2/5, 2/6 exist only over
boundary ρ0. Such regimes of impact motion were excited by adventitious
way and it was not sure that all possible stable motions were found. The spe-
cial program for the evaluation of basins of attraction was therefore prepared
[8] and new regions of impact motions z = (2/5), 2/7, 2/8, 2/9, 2/10 were
ascertained (Figs. 2, 3).
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Figure 2. Regions of existence and stability of impact motions.

Figure 3. Enlarged subregion of Figure 2.
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Motion initial conditions X (0), X ′(0) and initial phase ϕ of the excitation
force at τ =0 determine the resulting stationary regime for certain combination
of system parameters. Section of space {X (0), X ′(0), ϕ} for ϕ = 0 shows then
basins of attraction in plane {X (0), X ′(0)}. Variable parameters η, ρ were
chosen closely over the grazing boundary ρ0. Examples of basins of attraction
at points S2, S3 in Fig. 3 are shown in Fig. 5. Both points correspond to
triple possible system response. Similar basins of attraction were evaluated
for subharmonic motions z = 2/9 and z = 2/10, while motion z = 2/11 was no
longer ascertained.

Stability boundaries in plane η, ρ of every impact response can be obtained
by quasistationary changes of η, ρ starting from arbitrary point of basin of at-
traction. Existence and stability regions of different subharmonic impact mo-
tions are represented by grey areas in Fig. 3 and motion trajectories in points
F(2/5), F2/5, F2/6, F2/7, F2/8, F0 are shown in Fig. 4. Motions z = 2/n
are characterized by two impacts, which occur in two succeeding excitation
periods T , while remaining (n− 2)T periods in motion period nT are impact-
less. Motion z = (2/5), which exists in narrow region shown in Fig. 2, differs
from motion z = 2/5 by one impactless period T included between impacts
(compare trajectories F(2/5) and F2/5 in Fig. 4).

Regions in Fig. 3 were evaluated for different values of damping β1 =
β2. The extent of regions decreases with increasing damping and order n of
subharmonic motion z = 2/n. Regions of subharmonic motions with β1 = 0
enlarge to high clearances (theoretically they exist along lines η = n/(n + 1)
to infinite value ρ, as was proved by theoretical analysis of the motion with
rigid impacts in [7]). Right hand stability boundaries of subharmonic impact
motions correspond to saddle-node stability boundary, where impacts vanish
and quasiperiodic impactless motion remains as is shown on the grey area of
phase trajectories F0 in Fig. 5. Amplitudes of impactless motion after the loss
of stability equal corresponding clearance ρ, because the part of free vibration
in system motion increases amplitude ρ0 of the excited vibration. Amplitudes
of impactless quasiperiodic motion decrease on value ρ0 (see ellipse in Fig. 4,
F0), when very small damping β1 is supplemented.

4. Hysteresis Phenomena

The development of non-linear phenomena of the oscillator with increas-
ing dimensionless stiffness κ = k2/k1 will be explained by the appearance
and development of hysteretic effects of fundamental z = 1/1 impact motion.
Figure 6 shows one example of the difference between impact motion regions
of the oscillator with rigid and soft impacts. Grazing bifurcation boundary ρ0

divides plane η, ρ on region of impactless motion z = 0/1 (ρ > ρ0) and region
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Figure 4.
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Figure 5. Basins of attraction corresponding to points S2, S3 in Figure 3.

of the necessary onset of impact motion (ρ < ρ0). The transition from impact-
less motion cross grazing boundary ρ0 is never stable for the oscillator with
rigid impacts [7]. The z =1/1 motion is stable under stability boundaries SN∞
and P D∞, which link each other in points X of grazing boundary ρ0 (see dash
and dot-and-dash lines in Fig. 6). There exist two different transition regions
between regions of z = 0 and z = 1 motions:

a) hysteresis regions between boundaries ρ0 and SN∞, where the system
response is ambiguous (z = 0 or z = 1) and

b) beat motion regions between boundaries ρ0 and P D∞, where exist sub-
harmonic and chaotic impact motions.

Similar regions exist also for oscillator with soft impacts, but they birth
inside the region ρ < ρ0 and increase with increasing κ up to mentioned
transition regions of motion with rigid impacts (κ =∞). Hysteresis region for
κ =7 exists between points B1 and B2 and is bounded by boundaries SN7w and
SN7s. Beat motion region is represented by regions of motions z = 1/2 and
z = 2/2.

The process of the development of hysteresis regions will be explained
using bifurcation diagrams (Fig. 7) along the line a(ρ = 0.9) in Fig. 6. Mo-
tion amplitudes Xm(η) of linear (impactless) motion are identical with grazing
boundary ρ0. Amplitudes Xm(η) for increasing κ are labeled in Fig. 6 by cor-
responding value κ . With decreasing η from the region of impactless motion
the oscillator begins touch the stop in point G on grazing boundary ρ0. The
transition into impact motion is continuous, stable and reversible. It means
that motion with zero before-impact velocity is stable in point G. This veloc-
ity continuously increases with decreasing η for κ < 5.8. Bifurcation diagram
Xm(η) for κ = 5.8 has inflexion point and a fold begins to appear. Motion
z = 1w with weak impacts losses the stability and jumps into regime z = 1s

with stronger impact for κ > 5.8. This motion losses again the stability, when
η increases and it jumps back into regime z = 1w (see curves κ ≥ 6 with
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Figure 6. Difference between impact motion regions for rigid and soft impacts.

saddle-node jumps SNκw and SNκs in Fig. 7). Weak and strong regimes of
z = 1 motion are introduced in Figs. 8 (a) and (b) and they correspond to
points Iw and Is on curves κ = 8 in Fig. 7. The general scheme of hysteresis
is introduced in Fig. 9(a). Similar, but more complex scheme exist for beat
motion regions (Fig. 9(b)). The transition cross grazing boundary ρ0 is also
continuous and reversible but inside the region ρ < ρ0 arises the instability of
the period doubling type on stability boundary PD1/1 and subharmonic motion
z = 2/2 stabilises. This process is also reversible. Motion z = 2/2 losses one
impact on grazing boundary ρ1/2 and subharmonic motion z = 1/2 appears.
The transition of the system motion cross grazing boundaries is generally re-
versible for motion with soft impacts.

The instability of the saddle-node type appears inside region z = 1/2 be-
tween points B3 and B4 (Fig. 9(b)) and motion z = (1/2)w jumps into regime
z=(1/2)s with stronger impact. Stronger versions of motion z=1/2 and z=2/2
can exhibit hysteresis into the region of impactless motion z = 0. Mentioned

Figure 7. Bifurcation diagrams along line a in Fig. 6 for increasing stiffness κ = k2/k1.
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Figure 8. Times series of two regimes of z = 1/1 motion with weak (a) and strong impacts (b).

scheme explains the possibility of hysteresis phenomena for subharmonic mo-
tions with soft impacts.

5. System Behaviour with Decreasing Clearance

The system behaviour was so far explained for positive values of clearance
ρ. Negative values ρ correspond to static prestress force between body m and
the stop. It was shown in [7] for the oscillator with rigid stop that number
z increases with decreasing clearance ρ. Regimes with sliding impacts ap-
pear and lastly the body remains at the rest on the rigid stop. The situation
in the case of motion with soft impact will be explained on the impact oscil-
lator with piecewise-linear model of soft impact shown in Fig. 10 (see also
Eq. 3). Regions of different periodic and chaotic impact motion regimes in
plane η, ρ are shown in Fig. 10. Phase trajectories of selected motions are
shown in Fig. 11 for parameters marked by points F in Fig. 10.

The transition between impactless motion without the contact of mass m
with the stop (linear motion z = 0/1h, see Fig. 11, F0h) and impactless mo-
tion with continuous connection of oscillating mass with the stop (non-linear
motion z = 0/1d see Fig. 11, F0d) is realized by decreasing of static clearance

Figure 9. Schematic structure of hysteresis regions of oscillator with soft impacts.



Mechanical systems with soft impacts 321

Figure 10. Regions of motions for oscillator with triangle model of soft impacts.

Figure 11. Phase trajectories of motions in points F in Figure 10.
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ρ from positive values to negative values. It was necessary to introduce, on
the difference with usual grazing bifurcation (Fig. 11, F0h), the conception
of the inverse grazing bifurcation (Fig. 11, F0d) for the phenomenon of the
emergence of the impact motion after impactless motion with the stop.

6. Conclusion

This paper presents new results of the investigation of the oscillator with
soft impact. Transition between two types of impactless motion is explained.
Inverse grazing bifurcation is defined and the development of non-linear
phenomena during the transition from linear to strongly non-linear oscillator
motion is shown.
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Abstract: In this paper a brief account on the methodology of describing and solving non-
smooth dynamical system is given. This is illustrated by a case of study from
rotordynamics, where a combination of analytical, numerical and experimental
methods are employed to investigate nonlinear dynamic interactions between a
rotor system and a snubber ring.
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1. Introduction

Most of real systems are nonlinear and their nonlinearities can be man-
ifested in many different forms. One of the most common in mechanics is
the non-smooth characteristics. One may think of the noise of a squeaking
chalk on a blackboard, or more pleasantly of a violin concert. Mechanical
engineering examples include noise generation in railway brakes, impact print
hammers, percussion drilling machines or chattering of machine tools. These
effects are due to the non-smooth characteristics such clearances, impacts, in-
termittent contacts, dry friction, or combinations of these effects.

Non-smooth dynamical systems have been extensively studied for nearly
three decades showing a huge complexity of dynamical responses even for
a simple impact oscillator or Chua’s circuit. The theory of discontinuous
and non-smooth dynamical systems has been rapidly developing and now we
are in much better position to understand those complexities occurring in the
non-smooth vector fields and caused by generally discontinuous bifurcations.
There are numerous practical applications, where the theoretical findings on
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nonlinear dynamics of non-smooth systems have been applied to verify the
theory and optimize the engineering performance. However from mathemat-
ical point of view, problems with non-smooth characteristics are not easy to
handle as the resulting models are dynamical systems whose right-hand side,
are discontinuous [1], and therefore they require a special mathematical treat-
ment and robust numerical algorithms to produce reliable solutions [2].

Practically, a combination of numerical, analytical and semi-analytical meth-
ods is used to solve and analyse such systems and this particular aspect will
be explored here. The main aim of the paper is to outline a general methodol-
ogy for describing, solving and analysing of non-smooth dynamical systems.
As these systems may produce irregular responses, it is necessary to look at
the chaotic properties of the system behaviour and study their stability. The
developed methodology will be illustrated on a practical case study, where the
dynamics of a Jeffcott rotor with a snubber ring will be examined by a suite of
numerical, analytical and experimental methods.

2. General Methodology

General methodology of describing and solving non-smooth dynamical
system presented here will be an extension of the work undertaken by Wierci-
groch [3]. First this approach considers a dynamical system, which is contin-
uous in global hyperspace �, and can be described by the following first order
differential equation

ẋ = f(t ; x,p) (1)

where x = [x1, x2, . . . , xn]T is the state space vector, p = [p1, p2, . . . , pm ]T

is a vector of the system parameters, and f() = [ f1, f2, . . . , fn]T is the vector
function which is dependent upon the process being modelled. Then assume
that the dynamical system (1) is continuous only in N defined subspaces Xi

of the global hyperspace � (see Figure 1), therefore, the right hand side of
equation (1) may be written as follows

∀t∈[t1,t2]∀x∈Xi fi (t ; x,p), i = 1, ..N . (2)

The global solution is obtained by “stitching” local solutions on the hyper-
surfaces �Xi,i+1 (where i ∈ N ). As the dynamic system goes through dif-
ferent subspaces, as shown in Figure 1, a typical path of a periodic motion
can be drawn. If a response of the investigated system is periodic, its trajec-
tories repeat themselves in the state space, and their paths will form closed
loops. Otherwise chaotic, unstable or quasiperiodic motion can occur. When
a hypersurface �Xi+1,i+2 is intersected by a trajectory emanating from the
subspace Xi+2 towards Xi+1 for the k-th discontinuity crossing, the mapping
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Figure 1. A conceptual model of a dynamical system with motion dependent discontinuities or
in other words non-smooth dynamical system.

x(k)(+) −→ x(k)(−) takes place. In order to solve the system (2) with piecewise
continuous or discontinuous forcing functions, a thorough mathematical jus-
tification of such treatment is given in [1], the precise value of the crossing
time t (k) has to be evaluated since the response can be very sensitive to any
inaccuracy of the computed solution on the above-mentioned hypersurface.
Consequently, a suitable switch function for the discontinuity location has to
be formulated, and a precise value of time determined when the discontinu-
ity occurs. Such determined procedure has to be repeated for each time when
discontinuities are detected.

After transforming ordinary differential equations (ODEs) into the alge-
braic form, in principle, any numerical integration solver can be used, however
a special attention must be paid to the solution error. An appropriately short
integration time step or its on-line adjustment has to be used in order to esti-
mate a local truncation error locating discontinuities sufficiently precisely. In
practical terms, a satisfactory solution for non-smooth nonlinear system can be
obtained using the classical fourth-order Runge-Kutta method supplemented
by two extra steps, (i) the discontinuity detection, and (ii) the calculation of
the precise time value when the discontinuity occurs.

3. Jeffcott Rotor with Preloaded Snubber Ring

A two-degrees-of-freedom model of the rotor system with a preloaded
snubber ring is shown in Figure 2a. The excitation is provided by an out-
of-balance rotating mass mρ. During operation the rotor of mass M makes
intermittent contact with the snubber ring. It is assumed that contact is non-
impulsive and that the friction between the snubber ring and the rotor is
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Figure 2. (a) Physical model of the Jeffcott rotor with snubber ring and (b) adopted co-ordinate
system.

neglected. Since the mass ratio between the snubber ring and the mass of
the rotor is small (for existing experimental rig it is equal to ∼ 1/19) and the
ratio between the stiffnesses of the snubber ring and the rotor is large, it is
assumed that the snubber ring itself is massless. The stiffness and the viscous
damping of the snubber ring are equal to ks (ksx =ksy =ks) and cs . The stiffness
and the damping of the rotor are respectively kr and cr . The springs supporting
the snubber ring are preloaded by �x in horizontal and �y in vertical direc-
tions respectively. There is a gap γ between the rotor and the snubber ring.
Also in the initial position, the centre of the rotor is displaced from the centre
of the snubber ring by the eccentricity vector ε. The system can operate in
one of two following regimes: (a) no contact and (b) contact between the rotor
and the snubber ring. In the latter case, existence of the preloading makes the
dynamics of the system more complicated as the force acting from the snub-
ber ring on the rotor depends on whether the displacement of the snubber ring
exceeds the preloadings (in one or both directions) or not. Thus the following
unique regimes of the system motion can be distinguished:

I No contact between rotor and snubber ring.

II Contact between the rotor and the snubber ring, where the both dis-
placements of the snubber ring are smaller than the preloadings, i.e.
|xs | ≤ �x and |ys| ≤ �y .
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III Contact between the rotor and the snubber ring, where the displacement
of the snubber ring in the horizontal direction is larger than the preload-
ing, |xs | > �x , and in the vertical direction is smaller than preloading,
|ys| ≤ �y .

IV Contact between the rotor and the snubber ring, where the displace-
ment of the snubber ring in the horizontal direction is smaller than
the preloading, |xs | ≤ �x , and in the vertical direction is larger than
preloading, |ys| > �y .

V Contact between the rotor and the snubber ring, where the displacements
of the snubber ring are larger than the preloadings, i.e. |xs | > �x and
|ys| > �y .

3.1 Equations of Motion

The co-ordinate system adopted in this study is presented in Figure 2b.
The initial position of the rotor Or,0 differs from the initial position of the
snubber ring Os,0 by the eccentricity vector ε. The vectors Rr = (xr , yr ) and
Rs = (xs, ys) show the current positions of the rotor and the snubber ring, and
D =

�
(xr − xs)2 + (yr − ys)2 is the distance between the centres of the rotor

and the snubber ring at any given time. R=
�

x2
r + y2

r is the radial displacement
of the rotor. For no contact situation the distance between the centres of the
rotor and the snubber ring is smaller than the gap, γ , that is D ≤ γ . Therefore
equations of motion for the rotor and the snubber ring are

Mẍr + cr ẋr + kr (xr − εx) = mρ�2 cos(ϕ0 +�t),

M ÿr + cr ẏr + kr (yr − εy) = mρ�2 sin(ϕ0 +�t), (3)

cs ẋs + ksxs = 0,

cs ẏs + ks ys = 0,

where ϕ0 is the initial phase shift and � is shaft angular velocity.
Once D = γ , the rotor hits the snubber ring and one or more of the contact

regimes may occur, for which the equations of motion can be written as

Mẍr + cr ẋr + kr (xr − εx)+ Fsx = mρ�2 cos(ϕ0 +�t),

M ÿr + cr ẏr + kr (yr − εy)+ Fsy = mρ�2 sin(ϕ0 +�t), (4)

xs = xs(xr , yr ),

ys = ys(xr , yr ).

Here the force in the snubber ring Fs = (Fsx , Fsy ) varies for different contact
regimes. The unknown xs(xr , yr ) and ys(xr , yr ) give the current location of
the snubber ring as a function of the current location of the rotor.
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3.2 Location of the Snubber Ring

When the rotor and the snubber ring are in contact, the distance between
their centres remains constant and equal to the gap, so (xr − xs)

2+ (yr − ys)
2 =

γ 2. In order to find the location of the snubber ring centre when it moves being
in contact with the rotor, the following approach has been adopted.

The problem of finding the current location of the snubber ring can be
reduced to finding the minimum of the energy E with the constraint con-
dition D = γ . This can be done using the Lagrange multipliers method by
constructing the Lagrange function L = E + λδ, where λ is Lagrange multi-
plier, E is the elastic energy of the snubber ring, δ is the constraint function
δ = (xr − xs)

2 + (yr − ys)
2 − γ 2. As E and δ are the continuous and dif-

ferentiable functions, the current position of the snubber ring (xs and ys) as a
function of the of the current rotor position (xr and yr ) can be determined from
the conditions of the existence of extremum:

∂L

∂xs
= 0,

∂L

∂ys
= 0,

∂L

∂λ
= δ = 0, (5)

where L = E + λ �
(xr − xs)

2 + (yr − ys)
2 − γ 2

�
.

Minimising the energy E with the constraint (xr − xs)
2 + (yr − ys)

2 = γ 2,
the functions xs(xr , yr ) and ys(xr , yr) can be obtained [4], which allow to
analytically describe the geometrical location of the snubber ring (see Figure
3) and the borders between different regimes of operation as shown in Figure 4.

Figure 3. Geometrical interpretation of
the location of the snubber ring position for
different stiffnesses of the snubber ring in
the x- and y-directions.

Figure 4. Regions of operation and their
boundaries for the first quadrant of (xr , yr )

plane.
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3.3 Nonlinear Dynamic Analysis

An extensive nonlinear dynamics analysis has been carried out by a com-
bination of direct numerical integration of Eqs. 3 and 4 and solving nolinear
algebraic equations (xs , ys in Eq. 4). Bifurcation diagrams shown in Figure 5
were constructed for the displacement of the rotor under varying the frequency
ratio for the unpreloaded (Figure 5a) and preloaded (Figure 5b) cases. As can
be clearly seen from this Figure the preloading significantly changes the bifur-
cation structure. First of all it shifts the existing bifurcation points; dash lines
point out such behaviour. For instance the period one observed in the begin-
ning of the diagram bifurcates at η = 2.165 for unpreloaded and at η = 2.213
for preloaded case. The point of bifurcation of period four motion into period
two motion moves from η = 2.717 to η = 2.824, and the period two bifurcates
into period four at η = 3.803 and η = 3.893 for unpreloaded and preloaded
cases respectively. Secondly, the introduction of the preloading changes the
character of bifurcations. For example, the period one motion marked the
leftmost dash line, roughly speaking bifurcates into period three motion for
unpreloaded case and into quasi-periodic motion for preloaded case. Finally
and most importantly the preloading introduces new bifurcations and new
regimes. For example, an additional bifurcation of the period two motion into
quasi-periodic motion appears at η ≈ 3.107 for the preloaded case. Also a
large window of new regimes containing periodic, quasi-periodic and chaotic

Figure 5. Bifurcation diagrams x̂r (η) calculated for (a) �̂x = �̂y = 0, (b) �̂x = �̂y = 0.1, and
ν1 = 0.125, ν2 = 0.02, K̂ = 30, ηm = 0.0017, ρ̂ = 70, ε̂x = 0.9 and ε̂y = 0.
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motions arises between η ≈ 4.221 and η ≈ 4.484 where for unpreloaded case
the only period three motion is observed.

3.4 Experimental Verification

Figure 6 shows the experimental rig which comprises essentially two main
parts, a rigid rotor (1), which is visco-elastically supported by four flexural
rods (2), and excited by the out-of-balance mass (3), and a snubber ring (4),
which is also elastically supporting using four compression springs. The rotor
assembly consists of a mild steel rotor, running in two angular bearings. Holes
(5) are drilled and tapped in both inner sleeves for the addition of imbalance
weights. A pair of dampers (6) is attached to the rotor, one in each direction,
to provide the system with heavier damping. The damping is assumed to be
viscous type. Four flexural rods (2) are symmetrically clamped at one end to
the outer bearing housing and at the other to a large support block. The support
block (7) is in turn bolted to a large cast iron bed. The discontinuous stiffness
is provided by a ring to which four compression springs (8), of much greater
stiffness than that of the flexural rods, are symmetrically secured. The other
ends of the springs are fixed to a large frame, clamped to the bed. The rotor
runs inside the ring, with a radial clearance between the ring (4) and the outer
bearing housing (1).

The response of the rotor system was monitored by noncontacting eddy
probes. Two probes were used for the rotor and another two for the snubber
ring. Subsequently, the displacement and forcing frequency signals were col-
lected by a data acquisition system LabView, with a purpose-written program
controlling rate of sampling, number of samples, calibration and computation
of the rotational frequency. The relative velocities of the rotor and the snubber

Figure 6. Experimental rig of the investigated rotor system.
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Figure 7. A comparison between (a) theoretical and (b) experimental bifurcation diagrams con-
structed for varying frequency keeping viscous damping of the snubber ring at cs = 3.5 kg/sec.

ring ẋr , ẏr , ẋs and ẏs were calculated using the LabView digital differentiation
facility applied to the output signals from eddy current probes. The data was
collated on the computer, where it was scaled, plotted and analysed in the form
of Poincaré maps and bifurcation diagrams.

In experiments the rotor mass was M = 9.7 kg. The mass of the out-of-
balance was equal to m = 0.028 kg. The combined stiffness of the rods sup-
porting the rotor was krx = kry = 79 k N/m and this yields a natural frequency
14.4 Hz. Snubber ring stiffness was ks = 2354 k N/m. Damping from the rods
and the dampers with the fix damping in the horizontal and vertical directions
was the same equal to crx = cry = 105 kg/sec. The out-of-balance radius was
ρ = 35 mm.

For the bifurcation diagrams for the forcing frequency the shaft speed was
varied from 7 up to 30 Hz. The system responses were investigated by collect-
ing data at intervals around 0.6-1 Hz, each step starting with the final initial
conditions for the previous regime and discarding about 400 cycles, in order
to exclude transients.
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A comparison between theoretical and experimental bifurcation diagrams
depicted in Figure 7 shows a number of similarities. In both figures for the
low magnitude of the forcing frequency period one motion is observed both at
f ∈ (7, 13.6) Hz and at f ∈ (16.2, 17.7) Hz followed by chaotic regimes at
f ∈ (13.6, 16.2) Hz and f ∈ (17.7, 22.8) Hz respectively. In the theoretical
and experimental diagrams the width of both periodic and chaotic regimes are
the same. After the flip bifurcation at f =22.8 Hz the theoretical rotor response
becomes periodic up to the end of the diagram. In experimental bifurcation
diagram in Figure 7(b) at f ∈ (25.6, 32) Hz some kind of quasi-periodic
regime was obtained. In both diagrams two cross sections were examined by
Poincaré maps. Here chaotic attractors were obtained for: f = 14.4 Hz, and
f = 19.3 Hz keeping the other parameters γ = 0.5 mm, εx = 0.025 mm, εy =
0.2 mm and �x =�y = 0.04 mm constant. The simulated maps show folding
and stretching. It is also seen that theoretical and experimental attractors are
similar in shape.
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Abstract: The paper presents the rich dynamics of a damped Duffing oscillator with 
negative feedback of delayed velocity. When the absolute value of feedback 
gain is less than the damping coefficient, the equilibrium of system is 
delay-independent stable. Otherwise, it undergoes a number of stability 
switches with an increase of time delay, and becomes unstable at last. At each 
stability switch, a Hopf bifurcation occurs. The amplitude and frequency of the 
bifurcated periodic motion depend on the time delay. When the time delay is 
long enough, any perturbed motion from the unstable equilibrium may become 
chaotic though the oscillator of single degree of freedom is autonomous. All 
these features come from the infinite dimensions of system owing the time 
delay. They explain why a flexible structure under negative velocity feedback 
exhibits various self-excited vibrations when the feedback gain is large. 

Key words: Delay control, stability switch, Hopf bifurcation, basin of attraction.  

1. Introduction 

Recent years have witnessed a rapid development of active control of 
various mechanical systems. With increasingly strict requirements for 
control speed and system performance, the unavoidable time delays, albeit 
very short, in controllers and actuators have become a critical problem in the 
active control of vibration. These time delays often deteriorate the control 
performance or even cause the instability of the system. On the other hand, 
delayed control can be utilized to improve the performance of dynamic 
systems. For instance, the delayed feedback has found its applications to 
controlling chaos and to semi-active vibration absorption [1,2]. 

© 2005 Springer. Printed in Great Britain. 
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Most engineering systems having time delays can be modeled as a set of 
ordinary differential equations with time delays. Even though the number of 
unknowns in the ordinary differential equations is finite, the time delay 
implies that the change of any system state depends on the previous history 
of system. Hence, the initial state space and the solution space of a delayed 
dynamic system are of infinite dimensions. The exact analysis of such a 
system falls into the theory of functional differential equations [3], and few 
methods and results are available for engineering systems [4,5]. 

The objective of this study is to reveal the global dynamics of a damped 
Duffing oscillator with delayed velocity feedback as following 
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⎨
⎧
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 (1) 

where the system parameters yield 0,0,0 >−>≥ vcc µ  such that the 
system is asymptotically stable when 0=τ . This simple system serves as a 
single-mode model for many practical systems, such as the slender beams 
equipped with velocity feedback as artificial damping.

2. Stability Switches of Equilibrium 

The system of concern has a unique equilibrium 0≡x . Any perturbed 
motion )(tx∆  near 0≡x  yields a linearized delay differential equation 
with the following characteristic equation in λ

0e),( 2
0

2 =−++≡ −λτλωλλτλ vcD . (2) 

Equation (2) has no zero roots since 00 >ω . When Equation (2) has any 
pure imaginary root ωλ i=  with 0>ω , its real and imaginary parts yield 
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The imaginary part in Equation (3), together with 0>−vc , requires that 
cv −< . If this condition does not hold, there must be cv <  such that 

Equation (3) has no real root ω  and the equilibrium 0≡x  is 
delay-independent stable. Otherwise, one has 
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Eliminating the harmonic terms in Equation (4) yields 
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,0)()()()( 2422222
0 =++=−+−≡ qpvcF ωωωωωωω  (5) 

where 2
0

22 2ω−−≡ vcp  and 4
0ω≡q . Equation (5) has two positive roots 
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these roots, one has 
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For each of these two roots, hence, Equation (4) gives a series of critical 
time delays 
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As shown in [4], a pair of roots of ),( τλD  is crossing the imaginary axis 
from the left to the right when k,1ττ = , and from the right to the left when 

k,2ττ = . With an increase of time delay τ  from zero to infinity, the number 
of roots with positive real parts varies and gives rise to stability switches. 

Here is an example for 5.0,0,10 −=== vcω  to illustrate the stability 
switches, similar to those reported in [6], of the oscillator. Obviously, 
Equations (6) and (8) give 4/)117(2,1 ±=ω  and the corresponding critical 
time delays 
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�,17.30,13.22,08.14,035.62(
117

4
,2 =π)+

2
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These time delays can be ranked as 

�<<<<<<< 3,11,22,11,10,20,10 ττττττ . (10) 

As analyzed in [4], this sequence of critical time delays indicates that the 
equilibrium is asymptotically stable for ),0[ 0,1ττ ∈  and ),( 1,10,2 τττ ∈ , but 

unstable for ),( 0,20,1 τττ ∈  and ),( 1,1 +∞∈ ττ . Thus, the equilibrium 
undergoes 3 stability switches with an increase of time delay. 
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3. Hopf Bifurcations 

To avoid the tedious analysis [3] of Hopf bifurcation for 0≡x , the 
method of multiple scales is used to determine the periodic motions as done 
in [4,7]. Now, the study is confined to the case of small damping, weak 
nonlinearity and weak feedback. That is, µεµεεζ ˆ,ˆ2,2 === vvc , where 

10 <<<ε , )1(ˆ),1(ˆ),1( OOvO === µζ . Equation (1) is an autonomous 
system, the period ω  of a periodic motion, hence, is an unknown, which 
can be written as εσωω += 2

0
2 , where )1(O=σ  is the detuning frequency. 

Upon these assumptions, applying the method of multiple scales to Equation 
(1) gives the first order approximation of periodic motion 

)()](cos[)()( εεβωεα ottttx ++= , (11) 

where )( tεα  and )( tεβ  yield a set of autonomous differential equations 
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Imposing 01 =αD  and 01 =βD  on Equation (12) leads to the equation of 
steady state motion. Because the behavior of equilibrium is clear, attention is 
hereafter paid to the case when 0≠α . That is, 
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Solving these two triangle equations, one arrives at the amplitude-frequency 
relations and the corresponding frequency-delay relations 
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where �,2,1,0=k  implies an infinite number of periodic motions. As 
εσωω += 2

0
2  is assumed, Equation (14) is reliable only when 0=k .
Now, a special case when 1.0,1,0 0 === µωc , 5.0−=v  is studied to 

demonstrate the above results. Substituting the system parameters into 
Equations (14) gives the first two branches of those infinite periodic motions 

]1)
2

(5.0)
2

[(
3.0

4
,]1)

2
(5.0)

2
[(

3.0

4 2
0,2

2
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ττ
α
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α , (15) 
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where )035.6,0(),0( 0,2 =∈ ττ  is for the stable branch 0,2α  and 
)226.1,0(),0( 0,1 =∈ ττ  for the unstable branch 0,1α . Figure 1 shows the 

amplitude of periodic motion versus the time delay given by Equation (15), 
together with the numerical results obtained by using the Runge-Kutta 
approach. In the terminology of bifurcation, the equilibrium undergoes the 
Hopf bifurcation twice at 266.10,1 =τ  and 035.60,2 =τ  respectively with 
an increase of time delay. 
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Figure 1. Relation of vibration amplitude and time delay
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Figure 2. Two phase trajectories of system when 1=τ

Figure 2 presents two typical phase trajectories of the system with 
negative velocity feedback delay 1=τ . The phase trajectory initiating from 

]0,[,5.21)( 2 τϕ −∈++= tttt  approaches the asymptotically stable 
equilibrium, while that initiating from 2251010)( ttt ++=ϕ , ]0,[ τ−∈t
approaches a periodic motion with fundamental frequency 4.713=ω ,
rapidly. This numerical result coincides very well with the approximate 
solution given by Equation (15), where 73.17→α  and 713.43 ≈π/2→ω
with an increase of time. 

4. Global Dynamics 

To check the infinite number of periodic motions, the initial value 
problem (1) are studied for different Ct ∈)(ϕ , where )],0,([ 1RCC τ−≡  is 
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the space of continuous functions on the interval ]0,[ τ− . This is 
undoubtedly a very tough problem. If the time delay τ  is very short, 
however, it is possible to select a few of scale functions on ]0,[ τ−  as the 
base functions to approximate )(tϕ , For instance, the second-order Taylor 
approximation of )(tϕ  reads 

0
2

00
2

1
)( ϕϕϕϕ ��� ttt ++= , (16) 

where 1
0 )0( R∈≡ϕϕ , 1

0 )0( R∈≡ϕϕ �� , 1
0 )0( R∈≡ϕϕ ���� . The oscillatory 

property of the system reminds that the Fourier expansion is also applicable 
to )(tϕ . For example, the approximation of fundamental harmonics reads 

τωωωϕ π/=++= 2),sin()cos()( 110 tbtaat  (17) 

where ωϕωϕωϕϕ /,/,/ 01
2

01
2

000 ����� =−=+= baa . If three base functions on 
]0,[ τ− , with 3T

000 ],,[ R∈ϕϕϕ ��� , are used, the function space C can be 
mapped onto the Euclidean space 3R , where the global dynamics can be 
examined by using the conventional methods such as the Poincarè mapping. 

Now, the Poincarè section is defined on the phase plane ),( xx �  as 

}0,0),{( ≥=≡ xxxx ��Σ , (18) 

and the intersections �,, 21 pp xx  of a phase trajectory with the Poincarè 
section are used to describe the system dynamics. For a very large integer 
n , the different points in the limit set }{ pnp xx ≡  characterize the long-term 
dynamics. For instance, the zero in px  corresponds to the equilibrium, 
while a finite number of points in px  correspond to a periodic motion. 

Given a region 3R⊂Ω  and an arbitrary Ωϕϕϕ ∈),,( 000 ��� , either the 
second-order Taylor approximation or the Fourier approximation of 
fundamental harmonics can be used to approximate ]0,[)( τϕ −∈t . Then, a 
trajectory )(tx  of Equation (1) for 0>t  can be computed by using the 
Runge-Kutta algorithm and the limit set }{ px  can be recorded when )(tx
intersects the Poincarè section. This way, the limit sets �,2,1},{ =kxpk

corresponding to ���� ,2,1,),,( 000 =∈ kkkk Ωϕϕϕ  are determined. For 
simplicity, the maximal value in each }{ pkx  is used to represent }{ pkx
and denoted by �,2,1, =kxpk . Thus, it is possible to describe the basins of 
attraction in 3R⊂Ω  through �,2,1, =kxpk  for the equilibriums, 
periodic motions and other complicated motions. 

4.1 A System with a Relatively Short Time Delay 

Consider the case when 1,5.0,1.0,1,0 0 =−==== τµω vc . As 
analyzed in Section 3, the equilibrium 0≡x  is asymptotically stable, and 
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there co-exist an infinite number of asymptotically stable periodic motions 
bifurcated from the Hopf bifurcations. The corresponding amplitudes and 
frequencies of periodic motions determined in Equation (14) read 

�,
2

15
,

2

11
,

2

7
,

2

3
2

2
,2

ππππ=π+3π= kkω  (19a) 

=−+= )15.0(
3.0

4
,2

2
,2,2 kkk ωωα 17.72, 40.89, 63.90, 86.87, … (19b) 

The basins of attraction of those periodic motions were computed in 
]50,50[]50,50[]50,50[ −×−×−≡Ω  with help of Equation (16). Figure 3 

shows the correspondence between �,2,1, =kxpk  and 
�� ,2,1),,( 00 =kkk ϕϕ  on section 00 =ϕ��  in Ω . That is, )(tϕ  was 

assumed to be a linear function in time t . In Figure 3, the basin of attraction 
for the equilibrium 00 =px  corresponds to the white elliptic region around 
the origin of the ),( 00 ϕϕ �  plane. The basin of attraction for the periodic 
motion of amplitude 181 ≈px  is the gray region surrounding the basin of 
attraction for the equilibrium on the ),( 00 ϕϕ �  plane. The dark regions 
represent two parts of the basin of attraction for the periodic motion of 
amplitude 412 ≈px , whereas the basins of attraction corresponding to 

643 ≈px , �,874 ≈px  were computed, but not shown here. This figure fully 
coincides with the theoretical prediction. 
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Figure 3. Basins of attraction on 00 =ϕ��  Figure 4. Basins of attraction on 500 −=ϕ��

Figures 4 and 5 show the basins of attraction on sections 500 −=ϕ��  and 
500 =ϕ��  respectively in Ω  for the periodic motions. Now, )(tϕ  includes 

the effect of non-zero acceleration 0ϕ��  when 0=t . On these two sections, 
the basin of attraction for the equilibrium shrinks and moves from the origin 
of the ),( 00 ϕϕ �  plane. One may be surprised that the basin of attraction for 
the equilibrium does not include the equilibrium itself. In fact, what Figures 
4 and 5 show are two sections of three-dimensional basins of attraction 
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parallel to the ),( 00 ϕϕ �  plane. As for the basin of attraction for the periodic 
motion of amplitude 181 ≈px , it looks almost unchanged in Figures 4 and 5. 
So, this periodic motion is likely to happen. 
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Figure 5. Basins of attraction on 500 =ϕ��  Figure 6. Basins of attraction on 500 =ϕ��

To check the effect of )(tϕ  on the system dynamics further, the 
displacement approximated by the fundamental harmonics was also used to 
compute the system dynamics. Figure 6 shows the basins of attraction on 

500 =ϕ��  in Ω . Now, the non-zero initial acceleration 0ϕ��  does not move 
the basin of attraction for the equilibrium position. This implies again that 
only the initial displacement and velocity (and even initial acceleration) at 
the moment 0=t  are not able to determine the subsequent dynamics of a 
delayed dynamic system. 

4.2 A System with a Relatively Long Time Delay 

The system parameters in this case are 4,5.0,1.0,0 =−=== τµ vc .
Now, the equilibrium 0≡x  is unstable, and the frequencies and the 
amplitudes of bifurcated periodic motions yield 
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ππππ=π+
2
π1= kkω  (19a) 

=−+= )15.0(
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4
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2
,2,2 kkk ωωα 3.61, 10.28, 16.26, 22.10, … (19b) 

Given ]20,20[]20,20[]20,20[ −×−×−≡Ω , the basins of attraction of 
various steady-state motions were computed for different approximations of 

)(tϕ . Figure 7 shows the basins of attraction on 00 =ϕ��  in Ω . Now, the 
white elliptic region is the basin of attraction for the periodic motion of 
amplitude of 7.31 ≈px , while the surrounding region is the basin of 
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attraction of a steady-state motion with the maximal amplitude 5.122 ≈px .
As shown in Figure 8, the phase trajectory of this motion intersects itself and 
involves many harmonics in the Fourier spectrum, where the frequency of 
dominant harmonic component coincides with the frequency 

4375.02 =/2π= 2ωf  of the periodic motion predicted by the method of 
multiple scales. Meanwhile, the attractor on the Poincarè section looks quite 
chaotic. The motion starting from the dark regions looks chaotic, and the 
corresponding phase trajectory, the Fourier spectrum and the attractor on the 
Poincarè section are shown in Figure 9. This evidence indicates that it is 
almost impossible to realize the periodic motions predicted by using the 
method of multiple scales when the time delay is relatively long. 

Geometrically speaking, the asymptotically periodic motion determined 
by the method of multiple scales appears on a two dimensional central 
manifold of the equilibrium when a pair of characteristic roots is crossing the 
imaginary axis. The basin of its attraction, however, occupies so small space 
in the infinite dimensional state space that such a motion can not always 
observed, especially when the unstable manifold of equilibrium is of high 
dimensions. 
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a. Phase portrait b. Fourier Spectrum c. Poincarè section

Figure 9. Motion starting from ]0,4[,13)( −∈= ttϕ

5. Concluding Remarks 

As an infinite dimensional dynamic system, the damped Duffing 
oscillator with delayed velocity feedback exhibits abundant dynamic features 
such as the stability switches, an infinite number of Hopf bifurcations and 
associated periodic motions. The corresponding basins of attraction are 
surrounded one by one on the plane of ),( 00 ϕϕ �  when 0ϕ��  is fixed. For a 
large 0ϕ�� , the equilibrium )0,0(  may go out of the basin of attraction for 
the equilibrium on the plane of ),( 00 ϕϕ �  because the initial displacement 
space C  is infinite dimensional. These results well explain why a slender 
beam with strong negative velocity feedback often exhibits various 
self-excited vibrations of high frequency all of a sudden if the feedback gain 
is excessively large. In addition, the numerical studies support the 
applicability of method of multiple scales to the Duffing oscillators with a 
relatively short time delay in velocity feedback. 
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NOISE-INDUCED SYNCHRONIZATION AND 
STOCHASTIC RESONANCE IN A BISTABLE 
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Abstract:  We determine stochastic resonance and locking conditions for noise-induced 
interwell jumps in a bistable system. We demonstrate that the phenomena of 
stochastic resonance and synchronization are not contradictory and can be 
interpreted as the limit cases of hopping dynamics modulated by a weak 
signal. The boundary between the domains of synchronization and stochastic 
resonance is found as a function of the system parameters.  

Key words:  Stochastic systems, synchronization, stochastic resonance. 

1. Introduction 

We study hopping between stable states in the bistable system  

x�� + εβ x� + U′ (x) = εσW(t) + εγsinωt                                                    (1) 

where U(x) is a double-well potential with the maximum U(0) = 0 and the 
minima U(+a) = U(−a) < 0, ε is a small parameter. Noise W(t) is a zero-
mean mixing process, harmonic signal is assumed to be a slow process 
compared to the unperturbed system time scales.  

We suppose that the low frequency signal alone is unable to induce 
transitions across the potential barrier U(0) = 0, whereas the weak noise 
helps to bring about such transitions, i.e., it induces jumps between wells. 
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In the absence of noise, as well as in the presence of very weak noise, 
motion evolves in a single well. In this case any increase in the input noise 
would result in a decrease in the output signal to noise ratio (SNR). As the 
input noise increases, the hopping dynamics is becoming dominant. 
Nonlinear interaction between signal and noise can under certain conditions 
result in an improvement of the output SNR as the input noise increases. A 
further increase of the input noise suppresses the signal effect on the system, 
and the output SNR decreases. Hence, SNR may pass through a maximum at 
an optimal value of the noise intensity. The optimally tuned system with the 
maximum SNR is then said to be in stochastic resonance (SR).  

In a mathematically rigorous sense, this notion is still poorly understood. 
A simple hypothesis has been proposed in [1]. The system dynamics has 
been taken to be discrete: a particle at the bottom of the potential well 
exhibits instant random Poisson switching between the wells, with some 
degree of coherence with the signal. For an overview a wide range of 
applications of this hypothesis see [2], [3].  

A rigorous mathematical investigation of transition between different 
stable states is heavily based on large deviation theory [4]. In particular, it 
has been proved that, if the difference between the wells depths is of Ο(1), 
and the wells switch periodically, then the interwell jumps occur periodically 
with the period of switching [5], [6], [7]. Rudiments of these arguments can 
be found in [1]. However, synchronization of hopping and signal is not 
implicit in SR theory [1], [2], [3]. Following this theory, the output spectrum 
is a sum of a flat wide-band spectrum of the Lorentzian type and a discrete 
spectrum with a peak at the signal frequency; no coherence between the 
switching rate and the signal frequency is implicit in this result.  

In this report we show that these two concepts are not contradictory. We 
will demonstrate that the SR and synchronization effects can be interpreted 
as limiting case of the hopping dynamics for a relatively small and relatively 
high level of signal against noise. Some experimental data and simulation 
results [8], [9] have supported this assumption. A boundary between the 
domains of occurrence of stochastic resonance and synchronization is found 
as a function of the system and excitations parameters.  

We note that the reduced inertia-less model ( x�� = 0) is commonly used in 
the SR theory [1], [2], [3]. This model is in a rather poor agreement with a 
real dynamics. We derive an asymptotic formula for the escape rate in the 
second-order model. Comparison with the reduced model demonstrates that 
the second-order model is more sensitive to noise. 
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2. Mean Escape Rate  

We recall the main results of large deviation theory [4] needed for our 
purposes. Let an unperturbed system have an asymptotically stable fixed 
point. Then a weakly perturbed system rests in a small vicinity of the stable 
point over an exponentially large time interval until the burst-like escape 
through the potential barrier. The hopping dynamics in a bistable system is 
reduced to a simple discrete model. In this model, a particle may be either at 
+ a, or at − a, the burst-like passages between the wells are not taken into 
consideration. The central feature of the theory is calculation of the mean 
escape time T0.

Mean escape rate for a non-modulated system (γ = 0). At the first stage, 
we estimate the mean escape time for the non-modulated noisy system  

x�� + εβ x� + U ′(x) = εσW(t)                                                                    (2) 

We suppose that the stable states x = ± a of the unperturbed systems (σ =
0) are exponentially asymptotically stable. Let Q± be the symmetric domains 
of attraction of the points x = ± a, respectively. In the phase plane each 
domain corresponds to a region inside the loop of the unperturbed separatrix. 
Then the mean escape time T0 can be interpreted as the mean time to reach 
the separatrix from the stable point.  

In order to calculate T0, we make use of the machinery of stochastic 
averaging. Introduce the new variables, the slow energy evolution h and the 
associated fast angle-variable φ [10] 

h = p 2/2 + U(x),    φ = Ω(h) ∫
x

p−1(h, z)dz                                               (3) 

where Ω(h) is the associated angular frequency [10]. The change of variables 
(3) brings equation (2) to the standard form with slow and fast variables 

h� = −εβP2(h,φ) + εP(h,φ)σW(t)                                                             (4) 

φ� = Ω(h) + εF(h,φ)P(h,φ)[−βP(h,φ) + σW(t)]

in which P(h,φ) = p(h, x(h,φ)) = ± [2(h − U(x)]1/2, F(h,φ) = ∂φ/∂h. The right 
hand sides of (4) are 2π-periodic in the angle-variable φ,

The right hand sides of (4) are assumed to satisfy the requisite conditions, 
for the stochastic averaging assumptions hold [11], [12], [13], [14]. Under 
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these assumptions, the process h(t,ε) converges weakly as ε → 0 to a slow 
diffusion process η(t) with the generator [11]  

L = εb(η)
η∂
∂ + ε2

η∂
∂

a(η)
η∂
∂

                                                               (5) 

The drift and diffusion coefficients are calculated as 

b(η) = β <P2(η,φ)>, a(η) = σ2 ∫
∞

0

R(s)<P(η,φ)P(η,φ + Ω(e)s)>ds        (6)

where R(s) is the autocorrelation function of the process W(t), <. > represents 
averaging over a period in φ. Let the process η(t) satisfy the assumption of 
the exponential stochastic stability [12]. This implies the weak convergence 
h(t,ε) →η(t) for all t > 0 and allows consideration of escape on the 
exponentially large time interval [12], [13].  

To make the results transparent, we consider W(t) as white noise with 
autocorrelation function R(s) = δ(s), where δ(s) is the Dirac δ −function. In 
this case we derive from (6) 

<P2(η,φ)> = I(η), β(η) = βΩ(η)I(η),   a(η) = σ 2Ω(η)I(η)/2                 (7) 

where I(η) is action [10]. Let ηs and ηa be the energy levels corresponding to 
the separatrix and the attracting focus, respectively. The asymptotic estimate 
of the mean time required to reach the separatrix from an arbitrary point η  is  

T0 =
0

lim
→ε

u(ηs, ε) = u0(ηs) 

where u(η,ε) is a solution of the boundary problem

− εβΩ(η)I(η)u′ +
2

1 ε 2σ2ω(η)[I(η)u′]′ = − 1

u(ηs ,ε) = 0,  u′(ηa, ε) = 0                                                                       (8) 

As a result of transformation [4], we find the limit solution 

T0 = ⎥⎦
⎤

⎢⎣
⎡

2
)(2

exp
1

D

Ub

K
∆

, λ0 = ⎥⎦
⎤

⎢⎣
⎡−

2
)(2

exp
D

Ub
K

∆ ,  Κ = 
2
0

22

D

Ib sΩ              (9) 
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where b = εβ, D = εσ, Ω 0 = [U′′(± a)]1/2 is the natural frequency of linear 
oscillation in a small vicinity of the stable points ± a. Is is action calculated 
over the separatrix, ∆U = |ηa − ηs| = |U(±a)| is the depth of the well.
Approximation (9) is valid if ∆U  >> D2/2b.

Finally, we compare λ0 with the Kramers rate α0 calculated for the 
simplified first-order model. For α0 we have [1] – [3] 

α0 = ⎥⎦
⎤

⎢⎣
⎡−

2
)(2

exp
D

Ub ∆κ , κ = ,
2 b

So

π
Ωε S = [U′′(0)]                                 (10) 

Since the coefficient κ  is independent of σ, the rate λ0 is more sensitive to 
the noise intensity but decreases slower as ε → 0 than α0.  

Mean escape rate for a weakly modulated system. Introduce a slowly 
varying potential 

V(τ, x) = U(x) − εγxsinτ, τ = ωt                                                          (11) 

Consider the slow dimensionless time τ = ωt as a “frozen” parameter. By 
repeating previous transformations for the potential V(τ, x) and taking into 
account the assumptions ∆U >> ag, ∆U >> D2/2b, we obtain the escape 
rates from the right and left wells as

λ (τ) = λ0exp( � νsinτ),  ν = 2bag/D2                                                       (12) 

where λ 0 is found in (9), g = εγ, the indices ± correspond to the right and left 
wells with the minima at ± a,  respectively. The Fourier decomposition of 
the periodic escape rate (12) has the form 

λ ±(τ) = λ 0[I0(ν) + 2∑
∞

=1n

(−1)nIn( ±ν)sinnτ]                                         (13)

where In(ν) is the modified Bessel function of order n.

3. Characteristics of Motion

Synchronization in a weakly perturbed system. We analyse the escape 
rates for ν > 1 or ν < 1. The asymptotic representation of the modified 
Bessel functions for ν > 1 is 
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In(ν) ~ (2πν) − ½ eν[1 + Ο(ν −1)]  for all n ≥ 0                                         (14) 

This implies that the escape rates can be written as 

λ +(τ) ≈ α0(ν)[1+2 ∑
∞

=1

sin(-1)
n

n nτ ], λ −(τ) ≈ α0(ν)[1 + 2 ∑
∞

=1

sin
n

nτ ]   (15) 

where α0(ν) = λ0I0(ν). Series (15) can be summed in the sense of distribution  

λ +(τ) ≈ α 0(ν) ∑
∞

=1n

δ[τ − (2k −1)π], λ−(τ) ≈ α 0(ν) ∑
∞

=1n

δ(τ − 2kπ)   (16) 

where δ(τ) is the Dirac δ-function. From (15), (16) we deduce that, with 
probability close to 1, a particle rests at the bottom of the deepest well until 
the wells switch and the bottom of the well takes up the highest position. The 
moments of escape for the right (+) and left (−) wells are 

tk
+ = (2k −1)π/ω,,   tk

− = 2kπ/ω ,     k = 1, 2,..                                        (17) 

It follows from (15), (16), (17) that hopping can be interpreted as a series 
of 2π/ω-periodic interwell jumps. The system dynamics can be described as 

x(t) = − a,  (2k −1)π < ωt < 2kπ,  x(t) = a, 2kπ < ωt < (2k + 1)π (18) 

We thus obtain a synchronization-like effect. Interwell jumps are induced 
by noise, but the motion becomes “captured” and sustained by a relatively 
strong signal, and the hopping rate coincides with the signal frequency. 

In fact, we present an idealized depiction of the hopping dynamics. Noise 
induces an eventual excursion from a deeper well to a higher well, or 
escapes from a higher well at the moments different from tk. Due to these 
random walks, the spectrum of hopping is continuous, with sharp peaks at 
the signal’s harmonics.  

Stochastic resonance in a weakly modulated system. In case ν < 1, ω <
λ0, the model corresponds to SR assumptions. The approaches of SR theory 
are used in order to calculate SNR as a function of the mean escape rate and 
the system parameters, details can be found in [1], [2], [3] and references 
therein. The task is to compare the optimum values of the noise intensity for 
the first-order and second-order models 

In case ν << 1, the mean escape rate (12) can be presented as  
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λ ±(τ) ≈ λ 0[1 � νsinτ], ν < 1                                                                 (19) 

By repeating the transformations [1], we find the averaged power 
spectrum S(k) of the hopping process and define signal-to-noise ratio (SNR) 
at the signal frequency ω  << 2λ0

S(k) = )]()([)(2
4

4 2
22

0

0
2

ωδωδνπ
λ

λ ++−+
+

kka
k

a
������������������������������������������= SN(k) + 2π(aν)2

Sδ (k)
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)(2 2

ω
νπ

NS

a
                                                                                  (20) 

where SN (k) is the flat Lorentzian portion of the spectrum generated only by 
noise, Sδ (k) is the discrete part of the spectrum. By letting ω  << 2λ0 and 
taking into account  (9), (20), we find 

SNR = ⎥⎦
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A similar ratio for the first order model takes the form [1] 
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As seen from equations (21), (22) the functions η(D) and η∗(D) are 
similar and have a maximum at an optimal value of the noise intensity D.
The optimum is found from the equation dη/dD = 0 and takes the value D
= [2b(∆U)/3]1/2 for function (21). A similar calculation for the first-order 
model (22) gives D* = [b(∆U]1/2. The difference is about 20 %. 

Note that ratio (21) are obtained under the assumption ν = 2baγ/D2 < 1, 
as a similar ratio (22) for the first-order model. This makes it impossible to 
extrapolate the SR curve to small D → 0 [1], [2], [3]. As D → 0 and, 
therefore, λ0 → 0, a particle remains at the initial position, and calculation of 
the signal enhancement becomes meaningless. 
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4. Summary 

This paper has investigated the phenomena of stochastic resonance and 
synchronization in a bistable system subject to weak periodic and random 
forcing. We have shown that SR it not directly correlated with the matching 
of the signal frequency and the switching rate. Stochastic resonance can be 
interpreted as a nonlinear effect arising due to the passage from oscillatory to 
noise-induced hopping motion. The mean switching rate has been derived 
and the signal-to-noise ratio has been calculated for the second-order model 
of a bistable system. 

The boundary between the domains of stochastic resonance and 
synchronization has been defined as a function of the parameters. If signal is 
weak compared to noise, the hopping dynamic is random, with a weak 
periodic component, and stochastic resonance can appear. While the relative 
signal intensity increases, the wide band portion of the spectrum decreases, 
and, in the limit, a nearly periodic hopping motion occurs. If noise is weak 
compared to signal the escape rates exhibit sharp peaks at the extrema of the 
cycles, and the intervals between interwell jumps correspond to the signal 
period. The occurrence of periodic motion induced by noise but locked to a 
periodic signal can be interpreted as synchronization. 
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Abstract: The suppression of regenerative chatter by spindle speed variation is attracting
increasing attention. In this paper, we study nonlinear delay differential equa-
tions with periodic delays which model the machine tool chatter with continu-
ously modulated spindle speed. We make use of the center manifold reduction
and the method of normal forms to determine the periodic solutions and analyze
the tool motion. Analytical results are very close to those obtained experimen-
tally.

Key words: Delay equations, machine tool chatter, center manifold, normal forms.

1. Introduction

Functional Differential Equations (FDE) have a number of applications
in a variety of research areas ranging from population dynamics to physi-
ology. Since FDE are more realistic than ordinary differential equations in
some important applications, they are generating increasing interest from en-
gineers and scientists in recent years. Delay Differential Equations (DDE)
also referred to as Retarded Functional Differential Equations, where the time
derivative can depend on both past and present values of the variable, are of
interest in this paper. This work is motivated by an important problem in
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manufacturing called regenerative chatter, the self-excited relative vibration
between workpiece and cutting tool that grows to prohibitive proportions. Its
adverse effects include noise, poor surface finish, reduced dimensional accu-
racy and shortened machine tool life. In models that take into consideration
the regenerative effect, the forces acting on the cutting tool depend not only on
the current state, but also on the past state one revolution earlier (the surface
generated by the tool on one pass becomes the upper surface of the chip on
the subsequent pass). Therefore, the equations governing the tool motion are
differential equations with time-delay terms– DDE.
A method of chatter suppression or elimination, applicable irrespective of ma-
chine cutter class and physical configuration, would clearly be beneficial. The
purpose of this paper is to clarify the mechanism of suppression of regener-
ative chatter through modulating the spindle speed continuously. We achieve
this by center-manifold and normal form methods and evaluate the effects of
the system parameters such as amplitude and frequency of the spindle speed
variation on the chatter suppression. In addition to recovering the previous
results [1, 2] we also provide some new results pertaining to suppression of
chatter. Moreover, the approach employed in these proceedings, based on the
paper [3], is superior in that it provides a more transparent derivation of the
chatter suppression results. Analytical results will serve as an effective guide
for rapidly locating stability boundaries, predicting post-critical behavior and
suppressing chatter. Explicit formulae are very useful in the development and
design of real-time control.

2. Hanna-Tobias Model and Spindle Speed Variation

In regenerative chatter nonlinear differential equations with time delay serve
as convenient models. A widely accepted one degree of freedom model to
describe regenerative cutting-tool chatter in turning or milling was developed
by Hanna and Tobias [4],

ẍ(t)+ 2ζ pẋ(t)+ p2 �
x(t) + β2x2(t)+ β3x3(t)

�

=− κp2{x(t)− x(t − τ)+ β̂2 (x(t)− x(t − τ))2 + β̂3 (x(t)

−x(t − τ))3} (1)

p2 =
k0

m
, ζ =

�

2

p

ω̂
, � =

h

k0
, κ =

k1

k0
, τ =

1

N
and N = z�

where x(t) is the displacement normal to the machined surface at time t , m
is the equivalent mass of the tool, k0 is the linear stiffness, p is the natural
frequency of the system, h = ω̂d is the hysteretic damping coefficient, ω̂ is the
chatter frequency which depends on system parameters, d represents damp-
ing, and k1 is the width-of-cut parameter. The regenerative effect enters the
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equation of motion through chip thickness where � is the spindle speed and
z is the number of cutter blades. Coefficients β2 and β3 are two constants
describing the nonlinear stiffness of the machine tool, and β̂2 and β̂3 are con-
stant coefficients of the nonlinear cutting force function which depends on chip
thickness. These parameters are often evaluated empirically and representative
values are given in [4].
For τ = 0, linear part has two roots with negative real parts. As soon as τ > 0,
the characteristic equation is transcendental and has infinitely many solutions
for ρ̂(κ, τ ) = δ̂(κ, τ )+ iω̂(κ, τ ), expressed in terms of the width-of-cut κ , and
time delay τ , which are the natural control parameters in the machine cutting
process. These new roots may cross the imaginary axis as τ or κ is further
increased. Assuming that at κ = κc, and τ = τc we have such a crossing, with
the critical chatter frequency ω̂c, we find the critical value of the width-of-cut
as

κc =
ω̂2

c − p2

2p2
+ �2 p2

2(ω̂2
c − p2)

(2)

In addition, we have

τc =
2(arctan( p2−ω̂2

c
�p2 )+ kπ)

ω̂c
k = 1, 2, 3, · · · (3)

Equations (2) and (3), which are solved parametrically in terms of critical
chatter frequency, ω̂c, yield the conventional stability chart [4].
As mentioned in the introduction that greater widths of cut could be achieved
without chatter by modulating the spindle speed continuously. To this end, we
let

τ → τ0 + εσ̂ (t) where σ̂ (t)
def
= µ̂1eiν̂t + ¯̂µ1e−iν̂t (4)

as in Inamura and Sata [5] and Sexton et al. [6], ε << 1. The mean value
of the period of spindle rotation, τ0, and complex constant, µ̂n , are related to
mean cutting speed, N , and the amplitude of spindle speed variation, ±δN .
Rescaling time t → t

ω̂c
with r0 = ω̂cτ0 and defining the new variables

u(t)
def
= x(

τ0

r0
t) and σ (t)

def
=

r0

τ0
σ̂ (
τ0

r0
t)

and by augmenting the system, the explicit time-dependent delay terms may
be replaced by state dependent delay terms. Periodic modulation of the delay
can easily be generated by an oscillator with the correct frequency, that is
σ̈ (t)+ν2σ (t)=0 and appropriate initial conditions. Letting x = (x1, x2, x3, x4)
where x1(t)=u(t), x2(t)=u̇(t) in the original equation (1) , and νx3(t)=−σ̇ (t)
and x4(t)=σ (t) for the fluctuation, and after simplification, we can replace the
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original equation (1) by the following augmented set of autonomous first order
equations

ẋ(t)=E(α)x(t)+D(α)x(t−r0−εσ (t))+F̂(x(t), x(t−r0−εσ (t)), α), (5)

where

E (α)
def
=

�
���

0 1 0 0
−B(α) −A(α) 0 0

0 0 0 ν
0 0 −ν 0

�
��� , D (α)

def
=

�
���

0 0 0 0
−C(α) 0 0 0

0 0 0 0
0 0 0 0

�
���

and F̂ = (0, f̂ (x(t), x(t − r0 − εσ (t)), α), 0, 0) with

f̂ (x(t), x(t − r0), α) = c20(α)x
2
1(t)+ c11(α)x1(t)x1(t − r0 − εx4(t))

+c02(α)x
2
1(t − r0 − εx4(t))+ c30(α)x

3
1(t)

+c21(α)x
2
1(t)x1(t − r0 − εσ (t))

+c12(α)x1(t)x
2
1 (t − r0 − εx4(t))+ c03(α)x

3
1(t − r0 − εx4(t))

and the linear and nonlinear coefficients are given explicitly as

A(α) = A0 + A1α, B(α) = B0 + B1α, C(α) = C0 + C1α.

In the case of fixed spindle speed, with varying width-of-cut, we choose κ
as the bifurcation parameter while r0 is fixed. The coefficients, in terms of
machine tool parameters, are given as

A0 = 2ζcωp =�ω2
p, B0 = ω2

p(1+ κc), C0 =−κcω
2
p,

A1 = 2ζ ′cωp =−�ω2
p ω

′
c, B1 = ω2

p, C1 =−ω2
p

c20(0) =−ω2
p(β2 + κcβ̂2), c11(0) = 2κcω

2
p β̂2, c02(0) =−κcω

2
p β̂2

c30(0) =−ω2
p(β3 + κcβ̂3), c03(0) = κcω

2
p β̂3, −c12(0) = c21(0) = 3c03(0).

(6)

The machine tool parameters are evaluated empirically through experiments
and are given below:

����
��	

h = 78250 lb rad/ in k0 = 1.87 106 lb rad/ in
p = 173.25 c/sec z = 24 H SS blades
β2 = 479.3 1/ in β3 = 264500 1/ in2

β̂2 = 5.668 1/ in β̂3 =−3715.2 1/ in2

(7)

To our knowledge, there are no known Hopf bifurcation theorems for such
state-dependent delay equations. Hence, the natural question here is, how
do we apply or extend the results from general Hopf bifurcation theories for
constant delay equations to the state dependent delay system (5) knowing that
the fluctuations in the delay are small.



Nonlinear analysis of variable speed machining 359

Since the fluctuations are small, |ε| << 1, bounded, and independent of the
tool motion x1(t), one of the strategies for attacking this is to use Taylor ex-
pansions and expand in powers of |ε| about a finite mean delay r0 as

x1(t − r0 − εx4(t)) = x1(t − r0 − εσ (t))
= x1(t − r0)− εx2(t − r0)σ (t)+ ε2

2 ẋ2(t − r0)σ
2(t)+ h.o.t.

(8)

Since the original DDE is second order, it is obvious that ẋ2(t−r0)= ẍ1(t−r0)
is bounded. The problem would be with the higher orders derivatives of the
solution x1(t − r0) which may not exist at points kr0. In bifurcation studies
such as the one that is presented in this paper, we are interested in the asymp-
totic or long time behavior. Using the method of steps, it is easily shown
that solutions for nonlinear DDEs with continuously varying delay become
smoother with increasing values of time, provided the nonlinear functions are
sufficiently smooth. The nonlinear function in (5) is C∞, being a polynomial
in x(t) and x(t − r(t)), and so the existence of higher order derivatives of the
solution is ensured for sufficiently large time t . Though we do not rigorously
justify the existence of derivatives beyond second order, due to this smoothing
property, we shall assume that sufficient higher derivatives exist while analyz-
ing its asymptotic behavior.
Now we follow the procedure of order reduction that is often used in the
evaluation of the higher time-derivative terms in (8). This procedure uses re-
peated substitution of the equations of motion to yield a second order equation.
Hence, by adding a time lag in the equation of the motion, we replace ẋ2(t−r0)
on the right hand side of the above approximation by

ẋ2(t − r0) ∼ −B(α)x1(t − r0)− A(α)x2(t − r0)− C(α)x1(t − 2r0)

Now that we have given an heuristic justification for the Taylor expansion of
the term x1(t − r0 − εσ (t)) about a finite mean delay r0, we shall drop ε and
consider the truncated system neglecting the higher order terms. Hence, the
state dependent delay equations (5) can be written as autonomous constant
delay equations

ẋ(t) = E (α) x(t) + D (α) x(t − r0)+ F(x(t), x(t − r0), α), (9)

where, again, the relevant expressions can be found in Appendix-I of [2].
The corresponding linear system is decoupled

ẍ1(t)+ A(α) ẋ1(t)+ B(α) x1(t)+ C(α)x1(t − r0) = 0,

ẍ4(t)+ ν2 x4(t) = 0,
(10)

with the characteristic equations

ρ2 + A(α) ρ + B(α)+ C(α) e−ρr0 = 0 and ρ2 + ν2 = 0.
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It is obvious that the eigenvalues of the augmented oscillator is ρ = ±iν. The
transcendental equation, at α = 0, has a pair of pure imaginary roots, which
we normalize to one, that is ρ = ±i . This normalization of chatter frequency
gives the following relations between the mean delay and the linear critical
coefficients

C0 cos r0 = 1− B0, C0 sin r0 = A0 (11)

where A0
def
= A(0), B0

def
= B(0), C0

def
= C(0). We shall use the relations (11)

to simplify some of the expressions in the subsequent sections.

Assumption 1 (Non-resonance) In the absence of the periodic pertur-
bation, σ (t)=0, the DDE (9) exhibits a Hopf bifurcation at α=αc =0 (a critical
value of some system parameter), with a simple pair of pure imaginary eigen-
values ±i and all the other roots of the characteristic equation have negative
real parts. We furthermore assume that in the presence of periodic perturba-
tion, we have two non-resonant pairs of simple eigenvalues ±i and±νi on the
imaginary axis, with 0 < ν << 1, such that there is no rational number k1

k2

with small |k| (|k| < 5) satisfying 1 = k1
k2
ν, that is, there are no primary reso-

nances due to the low value of ν. However, there are infinitely many weaker
resonances (with a larger norm |k|) which can be neglected due to the presence
of dissipation.

In the subsequent sections we examine the effects of periodic variation in de-
lay ( σ (t) � = 0) on the asymptotic stability of the trivial solution of (0) and
the associated bifurcations close to the critical parameter, α = 0. We hope that
stabilization or further destabilization of the trivial solution for α > 0 may
explain the mechanism of SSV in chatter suppression.

3. Problem Formulation as FDE

The theory of FDE [7] has been developed to a point of high sophistication
and provides successful description of the evolution of DDE. Suppose r0 ≥ 0
is a given number. We denote the Banach space of continuous functions from

the interval [−r0, 0] to R
4 by C

def
= C([−r0, 0],R4) endowed with sup norm.

If x ∈ C([−r0,∞),R4), then for any t ∈ [0,∞), we let xt ∈ C be defined by

xt (θ)
def
= x(t + θ), −r0 ≤ θ ≤ 0

to denote a segment of the solution. For each different t , we get a new continu-
ous function xt on this Banach space. Hence the delay differential equation (9)
is defined as in [7]

ẋ(t) = L(α)xt + F(xt , α), x0 = φ ∈ C (12)
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where L(·) is a bounded linear operator from C ×R to R
4 which by the Riesz

theorem has an unambiguous representation given by the following Stieltjes
integral

L(α)xt =
� 0

−r0

[dη(θ, α)]xt (θ) (13)

and F : C × R → R
4 is a smooth nonlinear vector functional. For discrete

delays the measure [dη(θ, α)] which defines the linear operator on C is just a
combination of Dirac delta functions, that is

dη(θ, α)
def
= E(α)δ(θ)dθ + D(α)δ(θ + r0)dθ (14)

The characteristic matrix of L(α) is given as

�(s, α) def
= s I −

� 0

−r0

esθ [dη(θ, α)] (15)

Setting the determinant of the characteristic matrix equal to zero gives us a
transcendental equation which has infinitely many solutions; hence we have
an infinite dimensional dynamical system.
For any initial condition φ ∈ C , the solution of the DDE is a continuously
differentiable function xt that satisfies equation (12) for every t ≥ 0 and
x0(θ) = φ(θ) for every θ ∈ [−r0, 0]. An orbit of a solution is traced out by
the family of functions xt for t ∈ [0,∞) (for details, see, Hale and Verduyn-
Lunel [7]). It is well known [7] that the translation along the solution of the
linear equation

ẋ(t) = L(α)xt , x0 = φ ∈ C (16)

induces a strongly continuous semigroup T (t) : C → C defined by the rela-
tion

T (t)φ
def
= xt(.; φ). (17)

The infinitesimal generator A : D(A )→ C for the strongly continuous semi-
group T (t) is given by

A φ
def
=

dφ(θ)

dθ

D(A )
def
=

�
φ ∈ C :

dφ

dθ
∈ C ,

dφ(0)

dθ
= Lφ

def
=
� 0

−r0

[dη(θ, α)]φ(θ)

�

(18)

which has only a point spectrum

σ (A (α)) = σP(A (α))
def
= {λ : det(�(λ, α)) = 0} (19)
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At α = 0, based on assumption 1, equation (16) has two eigenvalues on the
imaginary axis and all other eigenvalues have negative real parts. Suppose
that

 
def
= {λ ∈ σ (A (0)) :�(λ) = 0} = {±i, ±iν} (20)

and let P be the generalized eigenspace associated with the eigenvalues of  

with the bases given by �
def
= �(θ). Let �

def
= � (τ) be the bases for the

generalized eigenspace (dual space P∗) of the transposed equation associated
with  and � is normalized by the condition 〈�,�〉 = I . The bilinear form
〈·, ·〉 is given by

〈ψ,φ〉 = (ψ(0), φ(0))−
� 0

−r

� θ

0
ψ(ξ − θ)[dη(θ, α)]φ(ξ)dξ (21)

and (·, ·) stands for Hermite inner product. Then C can be decomposed by  
as

C = P ⊕ Q, where Q
def
= {φ ∈ C : 〈�,φ〉 = 0} (22)

and any element xt ∈ C can be written as xt = x P
t + x Q

t where x P
t ∈ P with

x P
t =� 〈�, xt 〉 and x Q

t ∈ Q

3.1 Nonlinear Problem

Making use of T (t), in the integrated form, equation (12) with initial data φ
becomes

xt =T (t)φ+
� t

0
T (t−s)X0 F(xs, α)ds, where X0(θ)=

�
0, −r ≤ θ < 0,

I, θ = 0.

(23)

Equation (23) on differentiation with respect to time yields a formal expression

dxt

dt
= A (α)xt + X0F(xt , α), x0 = φ ∈ C . (24)

The nonlinear equation (24) has jump discontinuities at θ = 0. Hence, the
appropriate solution space for (24) is

BC
def
= C⊕ < X0 >

=
�
φ : [−r0, 0] → R

4; φ is continuous on [−r0, 0) with jump

discontinuities at 0}
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Then any solution of (9) for t ≥ 0, satisfies the abstract ODE in BC

dxt

dt
= �A (α)xt + X0 F(xt , α), x0 = φ ∈ C . (25)

where

�A φ def
= φ′ + X0

�
Lφ − φ′(0)� (26)

This procedure of treating the equation in BC was used effectively by Faria
and Magalhães [8] in their development of normal form theory for FDE. Let
the projection φ̂P of any φ̂ ∈ BC onto P be defined as

π : BC → P, π (φ + X0β)
def
= � [〈�,φ〉 +�(0)β] (27)

It can be shown [8] that the projection π commutes with �A in C 1, that is,�A π = π �A for elements in C 1. Making use of this commutative property of
π and the decomposition of C = P ⊕ Q it can be easily shown that BC has a
direct sum decomposition, that is

BC = P ⊕ ker(π).

Then, for xt ∈ C 1, we write

xt =�z(t)+ yt , where z ∈ R
4, and yt ∈ Q ∩ C 1 (28)

Making use of the domain decomposition (28), the relation A� = �B with
B = diag{i,−i, iν,−iν} and the fact that 〈�, yt 〉 = 0, in the abstract ODE (25)
yields

�ż(t)+ dyt

dt
=�Bz(t)+ (I − π) �A yt

+��(0)F (�z(t)+ yt , α)+ (I − π)X0F (�z(t)+ yt, α) .
(29)

Now projecting (29) onto P and its complement in BC yields

ż(t) = Bz(t)+�(0)F (�z(t)+ yt , α)

dyt

dt
= (I − π) �A yt + (I − π)X0 F (�z(t)+ yt , α)

(30)

where we have once again used the fact that 〈�, yt〉=0. The abstract ODE (25)
in BC is equivalent to (30). It is very important to realize that these almost
decoupled equations are the starting point for the rest of our analysis. The
second equation in (30) is interpreted as an equality for each θ ∈ [−r0, 0], but
we may informally think of it as an equation in Q∩C 1. The complete decom-
position of (30) into a four-dimensional equation and an infinite-dimensional
equation is the main goal of the subsequent section.
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4. Center Manifold Reduction and Normal Forms

The existence of such a manifold for FDE was first proved by Chafee [9] and
is given by

W c
loc(0) = {φ ∈ C :φ =�z + h(z), z ∈ V } (31)

where V is a neighborhood of zero in R
4. The center manifold theorem assures

that the four-dimensional invariant manifold is tangent to the center subspace
P , that is h(0) = 0 and Dzh(0) = 0, and h : V → Q ∩ C 1 is Ck-smooth.
Furthermore, the long term behavior of solutions of the original DDE (12) is
described by the solutions of the four-dimensional ODE

ż(t) = Bz(t)+�(0)F (�z(t)+ h (z(t)) , 0) (32)

In equation (32), B is the 4 × 4 diagonal matrix of eigenvalues with zero real
parts, �(0) are the bases evaluated at θ = 0 for the invariant dual subspace P∗,
and � are the bases for the invariant subspace P . The stability on the center
manifold determines the stability of the original equation. This is the frame-
work in which we shall construct the center manifold and then the normal
forms to study the bifurcations of the trivial equilibrium in (12).
Construction of center manifolds for FDE is still a computationally intensive
exercise, unlike their construction for ODE’s. Taking the solution of the center
manifold as xt (θ) =�(θ)z(t)+ h (z(t); θ) in (12) or equivalently, substituting
for yt the expression h (z(t); θ) in (30) yields

Dzh (z(t); θ) ż(t) = A h (z(t); θ)−�(θ)�(0)F (�(θ)z(t)
+h (z(t); θ) , 0)+ X0

�
Lh (z(t); θ)− h ′ (z(t); 0) F (�(θ)z(t)

+h (z(t); θ) , 0)]
(33)

where ż(t) is given by the four-dimensional ODE (32). On substitution in the
left hand side of equation (33) yields a system of partial differential equations
for h (z; θ), viz.

Dzh (z; θ) Bz + Dzh (z; θ) �(0)F(�(θ)z + h (z; θ) , 0)
= A h (z; θ)−�(θ)�(0)F(�(θ)z + h (z; θ) , 0) − r0 ≤ θ < 0

Dzh (z; 0) Bz + Dzh (z; 0)�(0)F(�(0)z + h (z; 0) , 0)

=
� 0

−r0

[dη(τ, 0)]h (z; τ)+ (I −�(0)�(0)) F(�(0)z

+ h (z; 0) , 0)θ = 0.

(34)

We can approximate h (z; θ), using the standard approach in center manifold
theory, as a polynomial or power series in z. Construction of center manifolds
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and numerical calculation (approximation) of Hopf bifurcation for FDE was
given by Hassard et al. [10] for the first time. Since only terms up and includ-
ing |z|3 are needed in the normal forms for non-degenerate Hopf bifurcations,
it is sufficient to construct, as shown in [3], an approximation to the center
manifold up and including |z|2.

4.1 Computation of Normal Forms

Based on assumption 1, the two pairs of pure imaginary eigenvalues, at α = 0,
are such that there are no rational numbers k1

k2
with small |k| satisfying 1 = k1

k2
ν,

that is, there are no primary resonances due to the low value of ν. Identifying
z2 = z̄1, z4 = z̄3, the amplitude of the spindle speed modulation as µ=

√|z3z4| (a
constant which depends on the initial conditions of the augmented ODE), and

introducing the linear unfolding term given by λ′ def
= dλ

dα |α=0 yields the neces-

sary differential equation in normal form for the unknown amplitude z
def
= z1,

i.e.,

ż(t) − i z(t) − αλ′ z(t) − |µ|2 S(r0, ν)z(t) −  (r0) |z(t)|2 z(t) = 0,

(35)

where

 (r0) =

�
c12 + c11 (2 c02 + c11)

B0 + C0
+ 2 c11c02 + c11c20 + 2 c20c02

2 i A0 − 4+ B0 + C0e−2 i r0

�
e−2 i r0

N

+
�

c21 + c11 (c11 + 2 c20)

B0 + C0
+ c11c20

2 i A0 − 4+ B0 + C0e−2 i r0

�
e i r0

N

+
�

3 c03 + 2 c21 + 4 c02
2 + c11

2 + 4 c20c02 + 4 c11c20 + 2 c11c02

B0 + C0

+ 2 c20c02 + 2 c11c20 + c11c02

2 i A0 − 4+ B0 + C0e−2 i r0

�
e− i r0

N

+ 3 c30 + 2 c12

N
+ 4 c20c02 + c11

2 + 4 c20
2 + 2 c11c20 + 4 c11c02

N (B0 + C0)

+ 2 c02
2e−3 i r0 + c11

2e−3 i r0 + c11c02e−4 i r0 + 2 c20
2 + c11

2

N
�
2 i A0 − 4+ B0 + C0e−2 i r0

�

λ′ = − 1

N

�
C1e− i r0 + i A1 + B1

�
, N = A0 + 2i − r0C0 exp(−ir0),

S(r0, ν) =
C0e− i r0

N

�
n∈{−1,1}

�
1

2
− C0 (1+ nν) e− i (1+nν)r0

B0 − (1+ nν)2 + C0e− i (1+nν)r0 + i (1+ nν) A0

�
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and the coefficients in terms of machine tool parameters are defined in (6)
and (6). The main objective of this paper can now be answered by studying
the reduced nonlinear equation (35), which represents the “normal form” of
the original system (1) with periodic time delay.

5. Stability and Bifurcation Analysis

First, we clarify the mechanism for the suppression of regenerative chatter
by examining the stability of the trivial solution, which is governed by equa-
tion (35) in polar coordinates

ṙ(t) =
�
αδ′c +R(r0, ν) |µ|2 + Re(r0)r

2(t)
�

r(t) (36)

where δ′c is the crossing condition, stability index R(r0, ν) is the real part of
S(r0, ν), and Re(r0) is the real part of the nonlinear coefficient (r0) all given
in Appendix-II of [3]. When µ=0, it is obvious that the machine tool system is
unstable for α > 0, which is the chatter instability for constant spindle speed,
as discussed in Section 2. Hence, stabilization is possible only if the real part
of S(r0, ν) is negative, i.e.,

R(r0, ν) =
�

n∈{−1,1}

Ac
n cos(nνr0)+As

n sin(nνr0)+A0
n

Bc
n cos(nνr0)+ Bs

n sin(nνr0)+ B0
n

< 0 (37)

Figure 1. Variation of stability index R

unstablestable stabilized

Figure 2. Stability chart with ν= 0.30

where the coefficients An’s and Bn’s are given in Appendix-III of [2, 3]. It
is obvious from the above expression (37) that R(r0, ν) fluctuates with ν. It
is important to determine the optimal value of ν for which R(r0, ν) has an
infimum. Since the coefficients An’s and Bn’s are long and contains various
powers of ν, tedious computations are involved to determine this optimal value
of ν explicitly. Instead, by plotting the variation of R(r0, ν) and its derivative
with ν, we identify the optimal frequency of the spindle speed variation. They
are obtained in each lobe and the variation for the second lobe is shown in
Figure 1.
As expected, the stability of the system improved with increasing SSV-frequency
ν and the value of the optimal SSV-frequency varies form region to region.
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From (37), we derive a new stability boundary which depends on the SSV-
amplitude µ and SSV-frequency ν and the bifurcation parameter α. The new
stability boundary, in terms of the width of cut, is given as

αssv
cr =− |µ|2 R(r0, ν)/δ

′
c. (38)

Positive values of αssv
cr imply stabilization and greater widths of cut that could

be achieved without chatter, while negative values of αssv
cr imply further desta-

bilization. Finally, we show in Figure 2 a modest level of increase of stability,
and the curves have similar parabolic lobes as the constant stability curves.
The actual value of the improved width of cut can be easily calculated by mul-
tiplying the value from Figure 2 by the factor |µ|2, which denotes the square
of the amplitude of the spindle speed modulation.
From (36), we have

r1 = 0, r2 = {−[αδ′ +R(r0, ν) |µ|2]/ Re(r0)}1/2 (39)

as the stationary solutions. The nontrivial solution indicates a delayed Hopf bi-
furcation and the sign of  Re(r0) governs the qualitative behavior close to the
new bifurcation point αssv

cr . The bifurcation is supercritical when Re(r0) < 0,
and subcritical when  Re(r0) > 0. In both cases the trivial solution becomes
unstable for widths of cut larger than αssv

cr . However in subcritical bifurcations
the increase of oscillation amplitude is sudden and sometimes very dangerous,
a well known result in classical bifurcation theory.

6. Results and Conclusions

The mechanism of the SSV has been made clear through the development of
a systematic analytic method, therefore obtaining the parameters crucial for
SSV chatter control. An explicit formula (38) for the stability boundaries was
obtained in terms of modulation amplitude, µ, and frequency, ν. This was
achieved by developing an algebraic construction of four-dimensional center
manifolds and the subsequent calculations of Hopf bifurcation for the FDE (12).
Since these results are explicit, making use of the expression (37), we have
showed how an optimal frequency ν can be determined to achieve greater
widths of cut. We have also emphasized several key points that shed light
on the underlying mathematical structure and the stabilization mechanism that
exist in such infinite dimensional systems with one critical mode. It was shown
in [2, 3] that the theoretical value of the optimal frequency ν was very close
to that obtained experimentally in [11]. Finally, we predicted analytically the
nonlinear behavior beyond the new threshold of chatter using three possible
combinations of the nonlinear stiffness and cutting force coefficients. The de-
layed subcritical bifurcation behavior corresponding to the problem with only
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cutting force characteristics, agrees with the results of Kalmár-Nagy et al. [12]
and Liang [13].
In this and previous work [1–3], the first author and his co-workers were
able to demonstrate analytically the potential effectiveness of SSV to elimi-
nate cutting-tool chatter in turning based on a one degree of freedom model
developed by Hanna and Tobias [4]. While these preliminary analytical stud-
ies were successful, there are many important questions that are left unan-
swered. For example, if the delayed bifurcation is subcritical, the stabilization
due to SSV will not be significant due to the fact that any small disturbance
can cause the oscillations to jump from small to large amplitudes. Hence, for
a robust SSV design it is imperative to include random perturbations due to
surface roughness, material inhomogeneity, environmental fluctuations, tem-
perature variations and other unknown effects that are inherent in any cutting
process. Random excitations can, over a long time interval, have significant
interplay with the dynamics of nonlinear systems with periodic delay [14];
this effect can have direct impact upon material removal processes. There are
no significant results reported on chatter dynamics which provide the effect
of such random fluctuations on chatter characteristics. Therefore, the influ-
ence of these random excitations must be considered for an effective analysis.
Future work should aim to address these issues using a combination of analyt-
ical and numerical efforts, bridging the gap from the one-degree of freedom
turning model to realistic multi-degree of freedom models, specifically, for
high-speed milling processes. These results are not presented due to the page
limitation of these proceedings.
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VERTICAL DYNAMICS OF RIDING CARS
UNDER STOCHASTIC AND HARMONIC
BASE EXCITATIONS

Walter V. Wedig
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Abstract: Cars riding on rough road surfaces possess critical speeds for which the vertical
car vibrations become resonant. The paper investigates these effects in case of
harmonic and stochastic base excitations. The investigations are extended to
nonlinear dynamics to calculate Lyapunov exponents and rotation numbers for
quarter car models with bilinear damping characteristics. In the nonlinear case
there are critical parameter values of the wheel suspension where stationary car
vibrations bifurcate into chaos and exponential growth behavior.

Key words: Vertical car dynamics, resonant car speeds, bilinear damping, Lyapunov expo-
nents, chaos and exponential growth.

1. Introduction

To investigate critical speeds v=const. of cars riding on rough road sur-
faces, quarter car models under stochastic and harmonic base excitations are
considered. Figure 1 shows a car model with one degree of freedom consisting
on a mass m, a linear spring with the elasticity constant c and a dashpot b with
a bilinear damping characteristic depending on the vertical relative vibration
velocity. If z(t) denotes the given base excitation in dependence on the time t
and y(t) is the response of the car mass, the equation of motion is given by

ÿ + 2Dω1( ẏ − ż + γ |ẏ − ż|)+ ω2
1(y − z) = 0. (1)

Herein, dots on y(t) denote derivatives with respect to the time t . The parame-
ters ω2

1 =c/m and D=b/(2ω1m) are the squared natural frequency of the linear
371
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system and its dimensionless damping measure, respectively. Introducing the
relative coordinate x = y − z the equation of motion takes the form

ẍ + 2Dω1(ẋ + γ |ẋ|)+ ω2
1x =−z̈, (x = y − z). (2)

In both equations (1) and (2), the parameter γ quantifies the nonlinearity in-
tensity of the bilinear damping mechanism.

According to [1], the bilinear damping characteristic can be realized e.g.
by two different hydraulic bypasses for the up and down of the wheels, re-
spectively by means of two different piston valves in the hydraulic damping
cylinder. Moving up the first valve is closed and the second one is opened.
Moving down both valves are operating vice versa. If the cross sections of the
two valves are different, the bilinear damping characteristic, shown in figure
1, is evident. Note that the nonlinearity parameter is bounded by |γ | < 1
provided that the bilinear damping characteristic has to be realized by pas-
sive elements of dissipation. Bilinear damping characteristics with |γ | ≥ 1
can only be realized by active elements of control. In extension to [2], both
cases of nonlinearities are investigated particularly with respect to the stability
of stationary vibrations. Main goal is to answer the question whether there
are critical parameter values of the wheel suspension or which the stationary
vibrations bifurcate into chaotic attractors.
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v=const−→
m

c b

z

y

ẋ = ẏ − ż

D(ẋ)

D(ẋ) = ẋ + γ |ẋ|

Figure 1. Quarter car model with bilinear damping characteristics
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2. Resonances of Linear Car Vibrations

Base excitations of cars riding on roads are generated by rough surfaces
of ways and roads. In a first investigation, the equation of motion (1) may be
linear for a vanishing nonlinearity (γ =0) and the road surface z(s) is assumed
to be harmonic of the form

z(s) = Z cos�s, � = 2π/L . (3)

Herein, Z denotes the amplitude of the harmonic surface function z(s), s is
the road coordinate and � is the road frequency defined by the wave length
L of the road, as noted in (3). For constant car velocities, the road coordinate
s is transformed into the time domain by s = v t . Accordingly, the stationary
response of the vertical car vibrations is calculated by the set-up

y(t) = Y cos(�v t − ε), s = v t. (4)

Herein, Y and ε are amplitude and phase, respectively. Introducing (4) into
the equation (1) leads to the amplitude ratio

Y

Z
=

�
1+ (2Dν)2

(1− ν2)2 + (2Dν)2
, ν =�

v

ω1
. (5)

This is a well-known result of the linear vibration theory completely deter-
mined by the two parameters D and ν, where ν is the related frequency speed
given by the road frequency � times the car velocity v related to the natural
frequency ω1 of the vertical car vibrations. Figure 2 shows typical amplitude
frequency diagrams for the damping values D = 0.11, 0.2, 0.3 and D = 0.5.
Note that the scaling of the relative frequency speed in figure 2 is linear with
ν = n in the first range 0 ≤ n ≤ 1 and hyperbolic with ν = 1/(2 − n) in the
second range 1 ≤ n < 2.

Following [3], more realistic road surfaces are random functions appropri-
ately generated from broad-banded processes by means of filter equations. For
this purpose, the following first order filter equation is applied:

d Zs =−�Zsds + σdWs, E(dW 2
s ) = ds. (6)

Herein, Zs is the filter process in dependence on the way coordinate s and
Ws denotes the Wiener process with stationary increments dWs normally dis-
tributed with zero mean and normalized mean square, as noted in (6). The
parameter σ denotes the intensity of dWs and � is a way frequency with di-
mension 1/m determining the bandwidth of Zs in the way domain. The sta-
tionary solution of the filter equation (6) has a zero mean, the mean square σ 2

z
and the power spectrum Sz(ω̄), as follows:

Sz(ω̄) =
σ 2

ω̄2 +�2
, σ 2

z = E(Z2
s ) =

σ 2

2�
. (7)
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According to [3], the transformation of the filter equation into the time domain
is performed by means of the momentary car velocity v , as follows:

dWs =
√
vdWt , E(dW 2

t ) = dt (8)

d Zt = −�vZtdt + σ√vdWt , ds = vdt. (9)

In the time domain, the filter equation (8) possesses stationary solutions which
have the following power spectrum and mean square value:

Sz(ω) =
σ 2v

ω2 +�2v2
, σ 2

z = E(Z2
s ) =

σ 2

2�
. (10)

Same results can be derived by a direct transforming of the power spectra from
road frequencies to time frequencies [4]. Some more details are given in [5].

Applied to the equation of motion (1) the spectral method leads for vanish-
ing nonlinearity (γ =0) to the power spectrum Sy(ω) of the entire road-vehicle
system

Sy(ω) =
σ 2v[ω4

1 + (2Dω1ω)
2]

[(ω2
1 − ω2)2 + (2Dω1ω)2](ω2 +�2v2)

. (11)

It is integrated over the entire frequency range to obtain the root-mean-square

σy

σz
=

�
2D + (1+ 4D2)ν

2D[1+ (ν + 2D)ν]
, ν =�

v

ω1
. (12)

It gives a measure for the amplitudes of the vertical car vibrations. Figure
2 shows numerical evaluations of the related σy over the related frequency

ν −→
−→ ν

↑ Y
Z

σY
σZ
↑

D = .011

D = .05
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Figure 2. Resonances in case of harmonic and stochastic excitations
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speeds ν. Comparing both resonance diagrams in figure 2 shows clearly that
both excitations, the harmonic and stochastic base excitation, lead to similar
resonance effects when the dimensionless car speeds are near one. The only
difference between both is that the resonance peaks become broader when the
narrow banded harmonic excitation is replaced by a broad band excitation in
the stochastic case.

3. Main Effects of Bilinear Damping

To derive main effects of bilinear damping mechanisms, it is sufficient to
replace the base excitation of the filter process Zt by white noise −σ Ẇt of
intensity σ . For this purpose, the equation of motion is applied in its relative
form (2), where Xt = Yt − Zt . Introducing the state process Vt = Ẋt of the
vertical vibration velocity, the equation (2) takes the first order form

Ẋt = Vt , Vt =−2Dω1(Vt + γ |Vt |)− ω2
1 Xt + σ Ẇt . (13)

This modelling by white noise reduces the number of parameters. However, it
possesses the disadvantage that only relative motions of the vertical car vibra-
tions can be investigated and there is no influence of the car velocities.

Introducing the dimensionless time τ = ω1t and the related processes

Xt = X̄t

�
E(X2

t ), E(X2
t ) = σ 2/(2Dω3

1), (14)

Vt = V̄t

�
E(V 2

t ), E(V 2
t ) = σ 2/(2Dω1), (15)

the first order equations (13) take the dimensionless increment form

d X̄τ = V̄τdτ, dV̄τ =−[2D(V̄τ + γ |V̄τ |)+ X̄τ ]dτ + 2
√

D dWτ , (16)

wherein the time increment and corresponding noise terms are given by

dτ = ω1dt, dWτ =
√
ω1 dWt . (17)

Note that in the linear case (γ = 0), the dimensionless equations (16) have the
stationary solutions E(X̄2

τ ) = E(X̄2
τ ) = 1. For |γ | > 0, the 4 parameters in

equation (13) are reduced to D and γ, meanwhile the other two parameters σ
and ω1 are eliminated. They have no influence in the following analysis.

Figure 3 shows a typical density distribution of the stationary state pro-
cesses X̄τ and V̄τ . The right side of figure 3 gives a three dimensional picture
of the density p(x, v). Associated contour lines are shown in the left side o
figure 3. Both pictures are taken for the parameters D = 0.25 and γ = 3.0. In
comparison with the elliptic, perfectly symmetric contour lines of a normal
distribution obtained in the linear case for γ = 0, the nonlinear density distri-
bution, shown in figure 3, is highly nonsymmetric. The top point of the density
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�

�

p(x, v) = p(x1, x2)

Figure 3. Stationary distribution density of the state space processes

is shifted to the upper left quarter of the state space and the distribution is ob-
viously clockwise rotated out of the symmetry axis indicating that both state
processes are correlated in the nonlinear case. To obtain the two-dimensional
density in figure 3, the system equations (16) are approximated by means of
the Euler forward difference scheme

X̄n+1 = X̄n + V̄n�τ, �Wn = Rn

√
�τ, (18)

V̄n+1 = V̄n − [2D(V̄n + γ |V̄n|)+ X̄n]�τ + 2
√

D�Wn . (19)

Herein, Rn denotes a sequence of random numbers normally distributed with
zero mean and the normalized mean square E(R2

n) = 1. The scan rate selected
for the Monte-Carlo simulation in figure 3, was �τ = π/512 applied for n =
0, 1, 2, . . . up to N = 108 sample points.

The same simulation data are applied to obtain the mean values of both
related state processes X̄τ and V̄τ and their stationary root-mean-square values
in dependence on the nonlinearity parameter γ for the fixed damping value
D = 0.5. The results, given in figure 4, show the main effect of the bilinear
damping mechanism. For increasing nonlinearity parameter γ > 0, the mean
values are proportionally shifted to the negative range meanwhile the root-
mean-square values remain approximately unchanged. Therewith, the danger
that the bouncing wheel sets hit their upper limits is reduced without any loss
of comfort. Furthermore, the driving safety is increased since lowering the
mean values leads to higher contact forces between wheel and road.
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Figure 4. Mean- and rms-values of the stationary state processes

4. Stability, Chaos and Exponential Growth

The above statement on driving stability of cars is only true provided that
the stationary car vibrations remain asymptotically stable with increasing non-
linearity. Therefore, it is necessary to investigate the stability reserve by means
of the Lyapunov exponents of the stationary car vibrations. For this purpose,
the stationary car vibrations Xst and Vst are perturbed so that perturbations
�Xτ and �Vτ are generated which are investigated by

X̄τ = Xst +�Xτ , V̄τ = Vst +�Vτ . (20)

Introducing (20) into the equation system (13) leads to two dynamic systems:
the first one for the stationary car vibrations which satisfy the original equation
of motion

d Xst = Vstdτ, dVst =−[2D(Vst + γ |Vst |)+ Xst ]dτ + 2
√

DdWτ (21)

and the second one for the perturbations which is derived to

d�Xτ =�Vτdτ, d�Vτ =−[2D�Vτ (1+ γ signVst)+�Xτ ]dτ. (22)

Note that the sign-function in (22) follows from the limiting procedure

lim
�Vτ→∞

1

�Vτ
(|Vst +�Vτ | − |Vst |) = signVst (23)

provided that the perturbations are infinitesimally small. Correspondingly, the
variational equations (22) are linear. They decide the exponential time behav-
ior of the perturbations and therewith the asymptotic stability of the stationary
car vibrations.
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According to [6], the polar coordinate processes defined by

Aτ =
�
�X2

τ +�V 2
τ , �τ = arctan

�Vτ
�Xτ

, (24)

are introduced into the variational equations (22). They lead to transformed
equations of the following form:

d�τ =−[1+ D(1+ γ signVst) sin 2�τ ]dτ, (25)

d ln Aτ =−2D(1+ γ signVst) sin2�τdτ . (26)

Both increment equations can formally be integrated and related to the time
in order to obtain the corresponding mean value in the time domain. The first
time average (26) denotes the rotation number !1

!1 = −1− D lim
t→∞

1

t

� t

0
(1+ γ signVst) sin 2�τdτ (27)

λ1 = −2D lim
t→∞

1

t

� t

0
(1+ γ signVst) sin2�τdτ (28)

and the second time average (27) represents the top Lyapunov exponent λ1.
According to the multiplicative ergodic theorem of Osceledec, it determines
the exponential time behavior of the perturbations�Xτ and�Vτ and therewith
the asymptotic stability of the stationary vibration Xτ and Vτ .

The variational equations (22) possess the linear vector form

�̇x = A(t)�x , λn ≤ . . . ≤ λ2 ≤ λ1, (29)

where A(t) is a n×n matrix of the system and �x is a n-dimensional state vector
whose exponential growth behavior is determined by the Lyapunov exponents,
noted in (29). Associated to the above vector equation, there is an adjoint
system of the form

�̇y =−AT (t)�y, µn ≤ . . . ≤ µ2 ≤ µ1. (30)

The Lyapunov exponents λi and µi of both systems satisfy the relation [7]

λi + µi = 0 for all i = 1, 2, . . . , n. (31)

Therewith, the smallest Lyapunov exponent λn of the original system can eas-
ily be calculated by the top Lyapunov exponent of the adjoint system. Ac-
cording to the theorem of Liouville, the sum of all Lyapunov exponents is
given by

 =
n�

i=1

λi = lim
t→∞

1

t

� t

0

n�
i=1

aii (t)dt, (32)
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where aii (t) are the diagonal terms of the system matrix A(t). Figure 5 shows
numerical evaluations of the three Lyapunov exponents λ1, λ2 and =E(div f )
for the damping measure D = 0.5 in dependence on the nonlinearity parame-
ter γ . Obviously, the top Lyapunov exponent changes the sign shortly before
γ = 2.75 denoting the boundary between stability and chaos, where the sta-
ble stationary vibrations bifurcate into a stochastic attractor. At γ = 3.0, all
Lyapunov exponents jump to positive values where the stochastic attractor bi-
furcates into hyper-chaos. Probably, the jumps of all Lyapunov exponents are
due to the bilinear damping mechanism and can be avoided when the damp-
ing characteristic is smoothed out. The last figure represents a stability map
over the parameter space of damping D and nonlinearity γ . Solid lines give
zero values of both Lyapunov exponents λ1 and λ2. Dot-dashed lines belong
to vanishing Lyapunov exponents  of the phase volume behavior. Note that
between stability and exponential growth behavior there is only a small chaos
region.

5. Summary and Conclusions

Bilinear damping characteristics of quarter car models lead to the effect,
that the stationary response of cars riding on rough road surfaces possesses
highly nonsymmetric distribution densities with the consequence, that the sta-
tionary mean of the vertical car vibrations is shifted to negative values mean-
while all other mean values and the response variances remain unchanged,
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approximately. Lowering mean values of the vertical vibrations effect higher
contact forces between wheel and road leading to more safety and driving sta-
bility.

The paper investigates the stability of the vertical car vibrations for in-
creasing nonlinearity parameter γ. For this purpose, the stationary solution is
perturbed in order to determine the top Lyapunov exponent of the perturbed
solution by means of the multiplicative ergodic theorem. For negative Lya-
punov exponents the stationary solution is asymptotically stable. If the top
Lyapunov exponent becomes positive for increasing nonlinearity parameter γ ,
the perturbed solution will become unstable leading to stochastic attractors.
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VI.

CONTROL OF SYSTEMS AND PROCESSES 

Control of nonlinear dynamic systems and processes is at the center of 
many engineering applications. Several relevant techniques and phenomena 
are the focus of the sixth part of the Proceedings, which opens with the Key 
Lecture of the Symposium given by Ali Nayfeh of the Virginia Polytechnic 
Institute and State University, USA. The rest of the papers are compiled 
alphabetically, based on the last name of the first author. 

Ali Nayfeh et al report on the design and implementation of a nonlinear 
controller, based on delayed-position feedback, that suppresses cargo 
pendulation on cranes in the presence of noise, initial sway, and wind 
disturbances. The effectiveness of the controller is demonstrated through 
nonlinear numerical simulations and scaled models of ship-mounted, rotary, 
and container cranes. As a result of pendulation reduction, both the rate of 
cargo-transfer operation and the range of operating sea conditions can be 
greatly improved.  

A few papers are related to applications in biomechanics of locomotion, 
robotics, and manipulation. Chernousko investigates multibody systems 
moving along a plane in the presence of dry friction. Control forces created 
by actuators installed at the joints of the mechanism show to be effective in 
ensuring periodic motions of different configurations of multibody systems, 
as well as a maximum average speed of the relevant motions.  

Schiehlen and Guse address the problem of realizing periodic motions by 
a passive limit cycle of a nonlinear conservative system and some additional 
low energy control. They show how, by adding control to conservative 
systems, asymptotic stable, weakly dissipative limit cycle oscillations can be 
obtained and adapted to prescribed motions in manufacturing processes, by 
significantly reducing the energy consumption. 

Yabuno et al. propose a method for motion control of an underactuated 
manipulator, in which information on the free link is not required. The 
concept is based on the appropriate actuation of the perturbation of pitchfork 
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bifurcations produced in the free link under high-frequency excitation, and is 
validated through experiments on a simple apparatus. 

The nonlinear coupling between flexural and torsional oscillations in 
long slender drillstrings is investigated by Kreuzer and Struck. Vibrations 
generated during the drilling process for the exploration of oil and gas 
resources are dangerous, and reduce the overall efficiency. A theoretical and 
experimental study is performed to model the phenomenon and implement a 
control strategy. Since the bending vibrations depend on torsion, just the 
torsional vibrations are actively damped through an effective control 
procedure in which the measured signals are reduced by a recursive use of 
proper orthogonal decomposition.  

Steindl et al. address the optimal control of the retrieval of a tethered 
subsatellite to a space ship, which is an important and complicated operation 
during a tethered satellite system mission. Uncontrolled retrieval results in 
strong oscillatory motion of the tether. The proposed optimal control strategy 
is a first successful step to achieve a force controlled retrieval of the 
subsatellite from the radial relative equilibrium position far away from the 
space ship to the corresponding position close to the space ship.  

Finally, two papers investigate mechanisms of passive vibration control, 
based on attaching a proper subsystem to the main system. Popp and 
Rudolph give an insight in basic excitation mechanisms of friction-induced 
vibrations, which are unwanted phenomena in technical applications, and 
show possible ways of avoidance. Investigating in detail a dynamic vibration 
absorber, they show numerically and experimentally that stick-slip vibration 
can be avoided or reduced by an additional spring-mass-damper system 
attached to the main oscillator. Vakakis et al. deal with the energy pumping 
phenomenon, which denotes a passive, one-way, irreversible transfer of 
energy from a linear structure to a nonlinear attachment. Theoretically and 
experimentally observed multifrequency energy pumping cascades are 
particularly interesting from a practical point of view, since they indicate 
that nonlinear attachments can be designed to resonate and extract energy 
from an a priori specified set of modes of a linear structure, consistent with 
design objectives. 
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Abstract: We have designed and implemented a nonlinear controller, based on delayed-
position feedback, that suppresses cargo pendulation on most common military
and commercial cranes in the presence of noise, initial sway, and wind distur-
bances. The controller is designed to operate transparently to the crane oper-
ator, thereby eliminating any special training requirements for crane operators
and furnishing smoother and faster transport operations. The system can be
operated in both the automated and manual modes and is capable of handling
an operator stop command at any random time. Neither the trajectory nor the
end point of the transport maneuver needs to be predefined. The controller
is insensitive to the system parameters and can handle base excitations, initial
sways, and noise. Such a control can be achieved with the heavy equipment
that is already part of existing cranes so that retrofitting them would require a
small effort. Most large-scale mechanical drivers have inherent time delays. In-
stead of compensating for these time delays, the proposed feedback controller
makes use of these time delays. The effectiveness of the controller has been
demonstrated using fully nonlinear numerical simulations as well as on scaled
models of ship-mounted, rotary, and container cranes. The numerical and ex-
perimental results demonstrate that pendulations can be significantly reduced,
and therefore the rate of operation can be greatly increased and the range of sea
conditions in which cargo-transfer operations can take place can be greatly ex-
panded. Moreover, because the controller eliminates pendulations of the load,
the power needed in the controlled case is guaranteed to be less than the power
needed in the uncontrolled case.

Key words: Delay controller, boom crane, rotary crane, container crane, ship-mounted crane,
pendulation, pendulum
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1. Introduction

Ship-mounted cranes, such as those shown in Figure 1, are used to transfer
cargo at sea from large container ships to smaller ships. During the transfer
operation, wave-induced ship motions can produce large pendulations of cargo
being hoisted and cause operations to be suspended. Vaughers [1] and Vaugh-
ers and Mardiros [2] reported that, in Joint Logistic over the Shore (JLOTS),
JLOTS II, and JLOTS III operations, once seas built to a low sea state 3 (as de-
fined by the Pierson-Moskowitz Sea Spectrum with significant wave heights in
the range of 1.0 - 1.6 m), crane payload pendulations on The Auxiliary Crane
Ships (T-ACS ships) became dangerously large and the operations had to be
suspended. Since much time and money can be wasted waiting for accept-
able sea conditions, it is important to develop ship-mounted cranes capable of
cargo transfer in sea state 3 and higher.

Also, cranes are increasingly used in transportation and construction. Dur-
ing operations using rotary cranes, inertial forces due to operator commands
lead to an increase in payload pendulations. In addition to posing hazardous
work conditions, these pendulations slow down the rate of operation and in-
crease the operational cost. Moreover, cranes are getting larger, faster, and
higher, necessitating efficient controllers to guarantee fast turn-over time and

Figure 1. Typical T-ACS cargo transfer scenario.
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to meet safety requirements. Consequently, the last 40 years have seen mount-
ing interest in research on the modeling and control of cranes [3].

One of the common recent strategies of controlling payload pendulations
without including the operator in the control loop is “Input Shaping” [3-5].
For a predefined endpoint of transport, the input shaping controller adjusts
the length of the hoist cable and drives the suspension point of the payload
along predefined (shaped) trajectories that avoid exciting payload pendula-
tions. This approach requires time optimal trajectories of the crane system.
Also, in controllers based on LQR, the crane maneuvers had to be pre-defined
[6]. Another approach is an input shaping strategy in which the controller ac-
celerates in steps of constant acceleration and then kills the acceleration when
the load reaches zero-pendulation angle. The same approach is used in the de-
celeration stage [7-12]. Filtering out unwanted frequencies in the input com-
mands of the crane operator, Parker et al. [13,14] and Lewis et al. [15] used
a three-dimensional linear model of a boom crane to include the crane oper-
ator commands in the control loop of rotary and boom cranes. Experimental
results showed a significant reduction in the cargo pendulations. However, the
filtering process imposed significant delays between the operator-commanded
input and the filtered input to the crane.

Optimal control techniques and input shaping techniques are limited by
the fact that they are extremely sensitive to variations in the parameter values
about the nominal values and to changes in the initial conditions and external
disturbances and that they require “highly accurate values of the system pa-
rameters” to achieve satisfactory system response [16-18]. While a good de-
sign can minimize the controller’s sensitivity to changes in the payload mass,
it is much harder to alleviate the controller’s sensitivity to changes in the cable
length. In fact, Singhose et al. [19] showed that input shaping techniques are
sensitive to the pendulation natural frequency. As a result, they suffer signifi-
cant degradation in crane maneuvers that involve hoisting. Furthermore, input
shaping and optimal control techniques require a predetermined endpoint of
the transport process. This makes them less practical because most crane op-
erations are coordinated visually by the crane operator. Linear controllers and
static feedback linearization control techniques have very poor performance
and usually fail due to the highly nonlinear nature of the payload oscillations
[20]. Moreover, these control strategies are of limited use when excitations are
introduced through the base of the crane, as in ship-mounted cranes. Imazeki
et al. [21] used a 35-ton active mass-damper system to control the pendula-
tions in one plane of a barge-mounted crane. The system reduced the payload
pendulations by 67%.

We have developed a strategy [22-26] by which cargo pendulations of a
crane payload are significantly suppressed by forcing the suspension point
of the payload hoisting cable to track inertial reference coordinates, which
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consist of a percentage of the delayed motion of the payload in the inertial
horizontal plane relative to the suspension point superimposed on the operator
commanded motion. The in-plane and out-of-plane pendulations in boom and
tower cranes are controlled by simply actuating the luff and slew angles of the
boom. These degrees of freedom already exist in ship-mounted cranes, and
therefore modification to the hardware of current cranes would be limited to
the addition of a few sensors and electronics to execute the control algorithm.
The control strategy is based on time-delayed position feedback of the payload
cable angles. This control algorithm is superimposed transparently on the in-
put of the crane operator, which eliminates any special training requirements
for crane operators and furnishes smoother and faster transport operations.

The effectiveness of the control strategy has been demonstrated using nu-
merical simulations of computer models of ship-mounted (the T-ACS crane),
rotary, and container cranes. Furthermore, the control strategy has been ap-
plied to, and tested on, experimental scaled models of rotary cranes operating
in both rotary and gantry modes of operation and the T-ACS crane excited by
the motion of a platform with three degrees of freedom, which correspond to
the heave, pitch, and roll of a ship. These results are summarized next.

2. Ship-Mounted Cranes

A number of numerical simulations was carried out for the full-scale T-
ACS crane. At the beginning of one set, the crane was oriented so that the
boom was extended over the side of the ship perpendicular to its axis. The
boom luff angle was set equal to 45◦. The controller was turned off, and
the crane operator executed a sinusoidal slewing action through 90◦ and back
in every 40 seconds. The same simulation was then repeated with the con-
troller turned on. The results of the controlled and uncontrolled in-plane and
out-of-plane angles of the hoisting cable are shown Figure 2. The payload
pendulation in the uncontrolled simulation grew rapidly to approximately 85◦
in-plane and 80◦ out-of-plane; while in the controlled simulation the in-plane
and out-of-plane pendulation angles remained within 8◦.

To validate the theory and the computer simulations, we built an exper-
imental setup. A 1/24 scale model of a T-ACS crane was mounted on the
moving platform of a Carpal wrist mechanism, as shown in Figure 3. A rotary
platform with a 1:45 gear ratio was used to give the crane its slewing degree
of freedom.

The platform used is capable of producing arbitrary independent roll, pitch,
and heave motions. A desktop computer supplies the roll, pitch, and heave
commands to the platform motors. The platform was driven to simulate the
motion of the crane ship. A 1/24 scale model of an 8 f t by 8 f t by 20 f t
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Figure 2. Computer simulations: (a) in-plane and (b) out-of-plane angles of the payload cable
as functions of time. The ship was excited sinusoidally in roll and pitch at the natural frequency
of the payload pendulation and sinusoidally in heave at twice the natural frequency of the
payload pendulation and the crane was performing a slewing action through 90◦ and back
every 40 seconds.

Figure 3. A 1/24 scale model of the T-ACS crane mounted on the three-degrees-of-freedom
Carpal wrist platform used to simulate ship motions.
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container weighing 20 tons was used as a payload. The center of gravity of the
payload was located 1 m below the boom tip. This length yields a pendulation
frequency of 0.498 Hz. The delayed-position feedback controller algorithm
was designed in a way that it could be turned on and off at any time during the
experiment.

Again, a number of experiments were carried out. In one set, the crane
model was initially extended over the side of the modeled ship and perpendic-
ular to its axis. The boom luff angle was set equal to 45◦. The crane operator
performed a sinusoidal slewing action from 0◦ to 90◦ in every 8 seconds. In
the uncontrolled case, as shown in Figure 4, the excitation together with the
slewing action caused the amplitude of the pendulation angles to grow rapidly,
and the experiment had to be stopped after 10 seconds when the in-plane pen-
dulation angle reached approximately 70◦. The same experiment was then
repeated with the controller being turned on. The maximum amplitude of the
in-plane and out-of-plane pendulation angles remained less than 6◦.

3. Container Cranes

A number of full-scale simulations were carried out for the container crane
shown in Figure 5. The operation requirement is to move the container from
a ship to a waiting truck 50 m away in 21.5 seconds while the crane performs
a variety of hoisting maneuvers. At the end of the transfer maneuvers, the
payload sway should settle to less than 50 mm within 5 seconds.

(a) (b)

Figure 4. Experimental results: (a) in-plane and (b) out-of-plane angles of the payload cable
as functions of time. The platform was excited sinusoidally in roll and pitch at the pendulation
frequency of the payload and sinusoidally in heave at twice the pendulation frequency of the
payload and the crane model was performing a slewing action through 90◦ and back every 8
seconds.
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Figure 5. Typical container crane.

We present numerical simulations obtained with a fully nonlinear computer
model of a 65-ton container crane with its actual hoisting assembly, including
a 15-ton spreader bar. At the beginning of the transfer maneuver, the container
is raised from 35 m below the trolley to 20 m and lowered 15 m to a waiting
truck. The operator inputs are step functions.

In the mathematical model, we used the actual configuration of the hoisting
mechanism because it is significantly different from a simple pendulum with
a lumped mass. The hoisting mechanism consists typically of a four hoisting
cable arrangement. The cables are hoisted from four different points on the
trolley and are attached on the payload side to four points on a spreader bar
used to lift containers. The mathematical model is linearized to obtain the
gain and delay required by the controller. Then, using the controller with
these delay and gain, we numerically solved the full nonlinear equations and
obtained the results shown in Figure 6. Clearly, the container settles to less
than 50 mm in 4 seconds after the end of the transfer although the lowering
maneuver ended at 28.5 seconds.

We used an experimental 1/10 scale model, Figure 7, of the 65-ton con-
tainer crane to test the performance of the controller. The crane model was
built by Ishikawajima-Harima Heavy Industries (IHI) and is located at their
Yokohama Research Facility. The model has a 4.8 m track, a 15 kg spreader
bar, and a 65 kg payload. The payload consists of four 250 by 250 mm steel
slabs mounted to the bottom of the spreader bar. The trolley is driven with
a pulley-cable system. Four cables are used as a hoisting mechanism. The
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Figure 6. Controlled and uncontrolled cargo sway motions for a container crane.

distance separating the front and rear hoisting cables at the trolley is 282 mm.
The four cables are then attached to the spreader bar. The distance between
the front and rear hoisting cables is 141 mm. A heavy set of cables supported
on one side of the spreader bar, shown in Figure 7, are used to transmit signals
from and to a number of sensors and actuators on the spreader bar. These sen-
sors and actuators are used for experiments conducted by IHI. DC brushless
rotary motors are used to drive the trolley and the hoisting mechanism. Each

Figure 7. IHI’s 1/10 experimental model of a 65-ton container crane.
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motor is equipped with an optical encoder to track its motion. Amplifiers with
internal PI velocity tracking controllers are used to drive the crane motors. An
optical encoder attached to one of the hoisting cables is used to measure the
payload sway.

To test the performance of the controller, we also developed a 1/10 scale
computer model of the experimental container crane. The commanded ac-
celeration and the controlled simulation and experimental accelerations are
shown in Figure 8a. The simulation and experimental results are in excellent
agreement and the payload sway was within the 5 mm requirement at 8.2 sec-
onds, Figure 8b.

4. Concluding Remarks

We have designed and implemented a controller based on delayed posi-
tion feedback that is applicable to most commercial and military cranes: ship-
mounted, rotary, and container cranes. Significant reductions in the pendula-
tion angles can be achieved with relatively small control inputs. The system
can be operated in both the automated and manual modes. Neither the tra-
jectory nor the end point of the transport maneuver need be predefined. The
controller is insensitive to the system parameters and can handle base excita-
tions, initial sways, and noise. The controller is nonlinear and hence it can
handle large pendulations. Most large-scale mechanical drivers have inher-
ent time delays. Instead of compensating for these time delays, the controller
makes use of these time delays. The effectiveness of the controller has been
demonstrated using fully nonlinear numerical simulations as well as on scaled
models of ship-mounted, rotary, and container cranes. Dramatic reductions
in the pendulation angles of the payload in the controlled system have been
achieved in the simulations as well as in the experiments. The controller
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Figure 8. (a) Reference and controlled trolley accelerations and (b) controlled and uncontrolled
payload sway.
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has been demonstrated to be effective in absorbing these pendulations at high
speeds during and at the end of the commanded motions. The controller is
effective in handling and rapidly absorbing pendulations due to inertial forces
resulting from operator commands as well base-induced motions.

The cost effectiveness of the delayed position-feedback controller is an-
other advantage. The controller does not require any modifications to crane
structures. Modifications are usually very expensive, time consuming, and, in
some instances, impractical to make. A few sensors and a personal computer
or a programmable control board are all that it takes to apply the controller.
Moreover, the operator commands are channeled through the control board to
the crane actuators, and hence the controller functions transparently. Further-
more, the controller can respond to any operator input. In the manual phase
of the demonstration conducted on a scaled model of a container crane at IHI,
many people operated the crane randomly, yet the controller was able to elim-
inate the pendulation at the end of each operation.
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Abstract: Motions of multibody systems along a horizontal plane are investigated in the
presence of dry friction forces acting between the system and the plane. The
dry friction forces obey Coulomb’s law. The motions are controlled by actu-
ators installed at the joints of the system. Various configurations of multibody
systems are analyzed in which the bodies are connected by prismatic or revolute
joints. Periodic motions of the systems along the plane are constructed. Opti-
mal parameters corresponding to the maximum average speed are evaluated.
The obtained results are related to applications in robotics and biomechanics
of locomotions.

Key words: Multibody system, control, dry friction, snake-like locomotion.

1. Introduction

The motion of multilink systems along a plane are of interest with respect
to locomotions of snakes and other animals [1]. Snake-like robots consisting
of separate links equipped with passive wheels are described in [2], see also
[3, 4].

In the paper, we consider multibody systems moving along a plane in the
presence of dry friction. Control forces (torques) are created by actuators in-
stalled at the prismatic (revolute) joints of the mechanism. Note that the dry
friction plays an important role here: the motion is impossible in the absence
of friction, and at the same time the friction is directed against the velocity of
the moving point. Therefore, one must apply the internal control forces and
torques in such way as to ensure the desired motion. For different configura-
tions of multibody systems, we show that they can perform periodic motions
along the plane and find the maximum average speed of the motions.
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2. Linear Motion

First, consider a system of N identical rigid bodies if mass m on a hor-
izontal plane (Fig. 1). Dry friction forces, obeying Coulomb’s law, act be-
tween each body and the plane; the coefficient of friction is denoted by k.
Adjacent bodies may interact with one another via control forces F . Let us
describe a simple mode of motion of the system along the x-axis. At the ini-
tial instant, all the masses are the rest. First, mass 1 moves along the x-axis
for a certain distance �x and then stops, while all other masses stay at rest.
During this motion, mass 1 first accelerates (F > mgk) and then decelerates
(F < mgk). Here, g is the gravity acceleration. Next, mass 2 moves along the
x-axis in a way similar to mass 1 at the previous stage, while all other masses
stay at rest. Continuing the process for masses 3, 4, . . ., N , we displace the
whole system by the distance �x . Repeating this procedure, we obtain a pe-
riodic motion of the multibody system along the x-axis. It is easily shown
that this motion is possible if and only if the force F lies within the limits:
mgk < |F | ≤ (N − 1)mgk. Thus, the described simple motion is possible
only if N ≥ 3. Therefore, it is of interest to investigate possible motions of a
two-mass system (N = 2).

Consider a system of two interacting rigid bodies of masses m1 and m2

which can move along the horizontal x-axis in the presence of dry friction
(Fig. 2). The coefficients of friction for masses m1 and m2 are k1 and k2,
respectively. The force that mass m2 exerts on mass m1 is denoted by F ;
then mass m1 exerts a force −F on mass m2. Suppose the distance L be-
tween the masses may vary within the interval L0 − η ≤ L ≤ L0, where
L0 is the initial distance and η ≤ L0 is the admissible range of the relative
displacement.

Let xi be the displacement of the mass mi from the initial position, and vi

its velocity, i = 1, 2. The distance between the masses is L0 + x2 − x1. The
eqations of motion of the masses m1 and m2 are

Figure 1. System of N masses.
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Figure 2. Two-mass system.

m1v̇1 = F − m1gk1 sign v1 for v1 �= 0

m2v̇2 =−F − m2gk2 sign v2 for v2 �= 0

|F | ≤ mi gki for vi = 0, ẋi = vi , i = 1, 2.

(1)

Suppose at the initial time instant t = 0 both masses are at rest and at the
maximal admissible distance L0 from one another.

We will construct a piecewise-constant law for the control force F(t), un-
der which both masses move by the same distance ξ in a time T and come to
rest at the end of motion. Throughout, the distance between the masses must
stay within the limits 0 ≤ x1(t)− x2(t) ≤ η, t ∈ [0, T ], where η > 0 is given.
The required motion consists of four steps.

1) Forward accelerated motion of mass m1, mass m2 stays at rest.
2) Forward decelerated motion of mass m1, forward accelerated motion of

mass m2.
3) Reverse accelerated motion of mass m1, forward accelerated motion of

mass m2.
4) Reverse decelerated motion of mass m1, forward decelerated motion of

mass m2.
Let us explain the meaning of these steps. We assune that mass m2 is the

main body, and m1 is an auxilary one, m1 < m2. At the first step, mass m1

approaches m2 in such a way as not to produce reverse motion of m2. During
the second and third steps, mass m2 moves forward due to the strong repulsion
of masses. In the fourth step, both masses slow down and halt simultaneously
at the same distance from one another as initially.

We denote by τi the durations of the steps and by Fi the constant values of
the control force at these steps, i = 1, 2, 3, 4. To simplify matters, we assume
that F2 = F3. The following inequalities ensure that the motion satisfy the
imposed properties:

m1gk1 < F1 < m2gk2, F2 < −m2gk2, F4 > −m1gk1. (2)
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The introduced parameters τi , Fi must also satisfy certain relations which
follow from equations (1) and imposed conditions. These relations are
deduced in [5]. Here, we restrict ourselves with a case where explicit formulas
can be presented.

Suppose the force F2 is big enough: |F2| # m1gk1, so that steps 2 and 3
can be treated as an impulse motion of zero duration. Denote

µ = m1m−1
2 < 1, ν = m2k2(m1k1)

−1,

fi = Fi (m1gk1)
−1, i = 1, 4, T = τ1 + τ2 + τ3 + τ4.

(3)

Here, T is the duration of the motion, fi are the dimensionless forces, µ and ν
are dimensionless parameters. Calculations [5] show that in our case we have

τ1 =
(ν − 1)T

f1 + ν − 2
, τ2 → 0, τ3 → 0, τ4 =

( f1 − 1)T

f1 + ν − 2
,

f4 =
(ν − 1)2 − ( f1 − 1)(1+ µν)

( f1 − 1)(1+ µ) , F2 →∞, (4)

F2(τ2 + τ3)→ q = m1gk1( f1 − 1)( f4 + ν)(ν − 1)−1

ξ =
gk1τ

2
1µ( f1 − 1)( f1 + ν − 2)

2(ν − 1)(1+ µ) , η =
gk1τ

2
1 ( f1 − 1)

2
.

Here, q is the value of the impulse, ξ is the total displacement during the time
T , and η is a given admissible range for the relative distance. Eliminating τ1

from the last two equations (4), we evaluate the average speed of the periodic
motion of our system

v =
ξ

T
=

�
gk1η( f1 − 1)

2

�1/2 µ

1+ µ.

The parameter f1 can be chosen within the limits 1 < f1 < ν which follow
from (2) and (3). Choosing f1 so that to maximize v , we obtain:

f1 → ν, τ1 = τ4 = T
2 =

�
2η

gk1(ν − 1)

�1/2
, ξ = 2ηµ

1+ µ,

vmax =
�

gk1η(ν − 1)
2

�1/2 µ
1+ µ.

(5)

Let us analyze the influence of the coefficients of friction and the mass ratio
on the maximal speed. If the coefficients of friction lie within the limits ki ∈
[k−, k+], i = 1, 2, the maximum velocity is reached when k1 = k−, k2 = k+. For
fixed k1 and k2, the maximum value of vmax with respect to µ is reached when
µ = k2(2k1 + k2)

−1 and is equal to

v∗max = (gη)1/2k2[8(k1 + k2)]
−1/2 (6)
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In the special case k1 = k2 = k we obtain

µ = m1/m2 = 1/3, T = 2η1/2(gk)−1/2, ξ = η/2, v∗max = (gηk)1/2/4.

Thus, we have explicit relations for the optimal motion. The two-mass
system considered above is a simple mechanical model capable of moving
along a plane in the presence of dry friction under the influence of internal
control forces.

3. Snake-Like Locomotions

Multilink mechanisms represent a more complicated case of systems which
can move along a plane in the presence of dry friction. These mechanisms
imitate, to some extent, locomotions of snakes [1, 2]. Control torques are
applied at the revolute joints of the mechanisms.

We have considered mechanisms with two [6], three [7, 8], and many [9]
links, and constructed periodic motions of these systems. For two-link and
three-link mechanisms shown in Figs. 3 and 4, respectively, the periodic mo-
tions consist of slow and fast phases. In slow phases, only the tail of the
two-link mechanism (respectively, the end links of the three-link mechanism)
moves, whereas the “main” link (respectively, the central link of the three-link
mechanism) stays at rest. In fast phases, all links move with a sufficiently high

Figure 3. Two-link mechanism.
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Figure 4. Three-link mechanism.

speed, so that the influence of the dry friction is negligible. Thus, the slow and
fast phases resemble the steps of the linear motion described in Section 2.

For the longitudinal motion of the two-link mechanism, the phases of the
periodic motion are shown in Fig. 5. For the three-link mechanism, the phases
of different motions are shown in Figs. 6-8. In Figs. 5-8, even (odd) numbers
correspond to slow (fast) phases.

Let us consider the three-link mechanism (Fig. 4) in more detail. Suppose
the mass of the linkage is concentrated at the joints and end points which
have the masses m1 and m0, respectively. The total mass of the mechanism
is m = 2(m0 + m1). Denote by l the length of the end links, by 2a the length
of the central link, and by k0 and k1 the coefficients of friction for the end
masses and joints, respectively. The proposed periodic motions are realizable,
if m0k0(a + l) < m1k1a [8]. The average speed of the longitudinal motion [8]
is given by:

v = 8m0m−1lT−1 sin2(γ /2), (7)

where T is the duration of the cycle of Fig. 6 and γ is the angle of rotation of
the end links.

Similar formulas are obtained for other types of motion of the three-link
mechanism [7, 8] and also for the two-link mechanism [6]. It is shown that
these mechanisms can reach any prescribed position and configuration in the
plane. The magnitude of the required torques produced by the actuators of
two-link and three-link mechanisms is about M ∼ 10mgLk, where m is the
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Figure 5. Motion of two-link mechanism.

mass of the system, L is the length of the link, and k is the maximal value of
the friction coefficients.

Since the average speed of motion depends significantly on the geometrical
and mechanical parameters of mechanisms, it is natural to find the optimal
values of parameters corresponding to the maximum average speed.

Figure 6. Longitudinal motion of three-link system.
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Figure 7. Laterial motion of three-link system.

Figure 8. Rotation.

Let us consider the optimization of the longitudinal motion for the three-
member linkage shown in Fig. 4. We use the same notation as in equation (7).
Suppose the mass m1 of the joints, the length 2a of the central link, and the
angle of rotation γ are fixed. The mass m0, the length l of the end links, the
duration T , and the coefficients of friction k0 and k1 satisfying the inequalities
k− ≤ k0 ≤ k+, k− ≤ k1 ≤ k+ are to be chosen in order to maximize the aver-
age velocity v of the periodic motion given by (7). Also, certain constraints en-
suring the possibility of the described periodic longitudinal motion should be
taken into account. It is shown [10] that the desired maximum of v is reached
when k0 = k−, k1 = k+. The maximum dimensionless speed V = v(gak+)−1/2

as a function of the angle γ is shown in Fig. 9. Here, γ is measured in ra-
dians, and χ is the ratio of the minimal and maximal coefficients of friction:
χ = k−/k+. One can see that the maximum speed V depends significantly on
the angle γ and increase with γ . The saturation occurs as γ ∼ 2.5. Also,
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V decreases with χ . The detailed results of the parametric optimization are
presented in [10].

Figure 9. Maximum speed.

Figure 10. Wavelike motion with three moving links.

As a rough estimate, the maximum longitudinal speed of the three-link
mechanism can be evaluated as v ∼ 0.1(glk+)1/2.
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The maximum lateral speed of this mechanism is several times higher.
Since the two-link mechanism is controlled by only one actuator, its maxi-
mum speed is several times smaller than that of the three-link mechanism.

For multilink mechanisms with more than four links, wavelike modes of
motion are possible. In these motions, a wave of twisting travels along the
mechanism which, as a result, moves forward. One type of wavelike motions
is presented in Fig. 10. Here, only slow phases of motions are involved,
and the magnitude of the required control torques is smaller than that for the
mechanisms with two or three links: M ≤ 2mgLk.

Results of computer simulation as well as experimental data confirm the
obtained theoretical results.

The principle of motion and the structure of mechanisms considered here
are simple and can be of interest for mobile robots, especially for small
ones.
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Abstract: In the drilling process for the exploration of oil and gas resources a variety
of vibration phenomena occur. Here, just self–excited torsional vibrations and
forced flexural vibrations of the drill–string are considered. An experimental
setup which models a real drill–string was designed and constructed. The aim is
to actively damp these vibrations. The string of the setup was modeled as a one–
dimensional continuum. The resulting equations of motion were approximated
using Galerkin’s method. Reducing the system’s order by applying the proper
orthogonal decomposition results in only one coordinate which is fed back in
order to actively damp the system.

Key words: Modelling, stick–slip vibrations, optimisation, nonlinear control.

1. Introduction

In long slender drill–strings different vibration phenomena occur during
the operation. Moreover, a coupling of torsional vibrations with bending and
axial vibrations is often observed. These spatio–temporal vibrations reduce the
quality and efficiency of the drilling process and may even cause a complete
failure of the drill–string, which is very costly in offshore industry. Therefore,
various passive and active damping methods have been suggested in recent
years. Field measurements are rare and field test are rather impossible. In or-
der to overcome this drawback and to investigate these vibrations as well as to
evaluate control strategies an experimental setup was designed and constructed
at the Technical University Hamburg–Harburg.

The outline of the paper is as follows. In section 2 the experimental setup
is introduced. The modelling of the drill–string and the control strategy are
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described in sections 3 and 4. In section 5 the implementation and the results
from measurements are presented.

2. Experimental Setup

The experimental investigations are intended to allow for both, a thorough
study of all kinds of vibration phenomena occurring in slender drill–strings as
well as the implementation of controllers for the active damping of vibrations.
The mechanical parts of the experimental setup are presented in Figure 1. Two
motors are attached at both ends of a vertical brass string (length " = 10m,
diameter 2R = 5mm).

The upper motor imitates the rotary table of a drilling–rig and drives the
string with a prescribed angular speed. This motor can neither be displaced
nor be inclined in any direction. The lower motor simulates the friction be-
tween the bit and the ground. It applies a torsional moment Me according to
a prescribed characteristic. A roller bearing allows the motor to move only
vertically. The weight of the motor produces an external tension force on the
string. Five angular sensors are attached to the string, one to each motor and
three equally spaced between them. Bearings protect the sensors from lateral
loads. These bearings just enable rotations and displacements about the ver-
tical axis. The bearings and the sensors form units which are fixed to their

Figure 1. Sketch of experimental setup and boundary conditions at both ends
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position during the operation but can be displaced horizontally during off–
state. The units subdivide the string into four sections of same length. The
parallel offset (up to � = 0.3 m) of the units cause a slight curvature of the
string. The string resides in a tube (inner diameter D = 35 mm) which con-
strains unilaterally the motion of the string. The tube can be filled with a
fluid. This fluid is intended to model the fluid–structure interaction of a real
drill–string and fluid.

The friction characteristic is derived from field data [1]. The applied mo-
ment Me depends on the angular speed ωbit at the bit:

Me = Md
ωbit

ω2
bit + c2

d

+ Ms tanh

�
ωbit
cs

�
. (1)

The diagram given in Figure 2 was obtained using the following parameters:
Ms = 0.136 Nm, Md = 1.087 Nm, cs = 1.0 rad/sec, and cd = 2.0 rad/sec. The
mass of the lower motor is mM = 16 kg, hence, the tensional force applied on
the string is approximately Se = 160 N .

On a transputer five parallel processes are implemented: the first evaluates
the sensor signals and provides the other processes with the measured data, the
second and third one control the motors by means of prescribed characteristics
for Me and �des , the fourth and the fifth one carry out the identification and
the feedback control for the active damping. A personal computer is used
for the evaluation of the measured data as well as the programming of the
transputer.
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Figure 2. Friction characteristic.
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3. Modelling of the Drill–String

The dynamics of the string can be described in a compact form using
Hamilton’s Principle. At first, the external loads are assumed to be constant.
Then, the Lagrangian is analysed. Finally, the equations of motion are derived.

3.1 Kinematic Relations

The string is assumed to be stiff in axial direction. Furthermore, according
to the Euler–Bernoulli beam theory, cross sections remain plain and perpen-
dicular with respect to the axis of the string under any deformation. The defor-
mation is assumed to be so small, hence, Hooke’s law is valid and only linear
terms contribute to the strain. Plain stress is presumed.

The theorem of Pythagoras yields an expression for the vertical displace-
ment w in terms of u and v (compare the orientation of the coordinate frames
according to Figure 3):

dz2 = (u′dz)2 + (v ′dz)2 + (dz + w′dz)2

⇒ w′ =−1+
�

1− (u′2 + v ′2), (2)

where (•)′ denotes the partial derivative of (•) with respect to z. The anal-
ysis in the forthcoming section yields that w can be neglected. The vertical
displacement w is approximated by

w=
� 4"

0

�
−1+

�
1− (u′2 + v ′2)

�
dz

≈
� 4"

0

�−1+ �
1− �

u′2 + v ′2� /2�� dz ≈ −2"
�
u′2 + v ′2� . (3)

Figure 3 presents two sets of coordinates. On the right hand side, the de-
formation is described by Cardan angles α, β, and γ . The base vectors are
transformed according to three consecutive rotations: the first rotation α is
about the x–axis, the second β about the new y–axis resulting the base vectors
e∗i . In the figure only the third rotation γ about e∗z is shown. On the left hand
side of the same figure the displacements u, v and w are defined. In order to
express α and β in terms of u, v and γ , the tangent vector of the deformed
string is expressed in two different ways.

In the undeformed configuration a local frame fixed to an arbitrary cross
section has the same orientation as the inertial frame, i.e. the z–axis points
down vertically, the x– and the y– axis span a horizontal plane. Under any

deformation the base remains perpendicular. Hence, the base vectors
0
ei in the
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Figure 3. Two ways to describe the deformation: displacement and rotation

undeformed configuration can be transformed with a rotation matrix R to the
deformed configuration:

ei = R· 0
ei . (4)

Now, R is expressed using Cardan angles and equation (4) is evaluated for the
vector ez which is tangential to the centre line of the string:

ez = sin(β)
0
ex − sin(α) cos(β)

0
ey + cos(α) cos(β)

0
ez . (5)

Any material point of the string in the undeformed configuration is denoted

with
0
r and the displacement from this configuration with u = [u, v,w], where

u, v , and w refer to the inertial frame. The position vector of a material point
in the deformed configuration is

r =
0
r +u = (x + u (z))

0
ex + (y + v (z)) 0

ey + (z + w (z)) 0
ez . (6)

By using Frenet’s formula (see [6]) the vector ez is expressed in terms of u and
v :

ez =
d

dz
r = u′

0
ex +v ′ 0

ey +
�

1− u′2 − v ′2 0
ez . (7)

Comparing the coefficients of eq. (5) with those of eq. (7) yields

sin(β)=
∂u

∂z
, (8)

tan(α)=−∂v
∂z
/
�

1− u′2 − v ′2. (9)
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The angle γe describes the rotation of the string projected onto the z–axis in
the undeformed configuration. The partial derivative of γe with respect to
z is:

γ ′e = cos(α) cos(β)γ ′ + sin(α)β ′ − cos(α) sin(β)α′. (10)

The vector of angular velocity in terms of Cardan angles is

ω =

�
���

α̇ cos (β) cos (γ )+ β̇ sin (γ )

−α̇ cos (β) sin (γ+)+ β̇ cos (γ )

γ̇ + α̇ sin (β)

�
��� . (11)

3.2 Hamilton’s Principle

Nonconservative systems cannot be handled with a variational principle
like Hamilton’s principle but in a generalized form, see [2]:

δ

� t2

t1

L(u̇, v̇, u′′, v ′′, γ̇ , γ ′)dt +
� t2

t1

δW (u′, v ′, u′′, v ′′, γ ′)dt = 0. (12)

Here, the virtual work of the external loads δW is not the variation of a func-
tional W as long as these loads are not conservative. It is much more simple to
analyse the Lagrangian than the equations of motion. Generally, a nonconser-
vative system cannot be described by a Lagrangian. Hence, all applied loads
are approximated using constant values. The order of magnitude of the terms
of the Lagrangian are compared and the smaller ones are neglected. The equa-
tions of motion are derived using the simplified Lagrangian. In the equations
of motion the constant terms for Me, qx , and qy are replaced by state dependent
terms.

The Lagrangian consists of three parts: the kinetic energy, the strain energy,
and the energy of the external loads. The kinetic energy is given by (note, that
(•) · (•) denotes a single–dot product of two tensors, see [3]):

T = 1
2

� 4"
0

�
ω · I · ω + ρR2π

	
u̇2 + v̇2 + 2"



u̇′ + v̇ ′�2

�
dz

= ρR2π

�
R2

8



α̇2[1+ sin2(β)]+ β̇2 + 2γ̇ 2

�+ u̇2 + v̇2

�
. (13)

The strain energy due to bending and torsion can be expressed as:

U =
1

2

� 4"

0

�
E Ib



α′2 + β ′2�+ G Ipγ

′2� dz, (14)

where E Ib denotes the bending stiffness and GIp the torsional stiffness. The
virtual work done by the constant external loads is:

W=
� 4"

0

�
qx u + qyv

�
dz + Sew(4")+ Meγe(4"), (15)
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=
� 4"

0

�
qx u + qyv + Sew

′ + Meγ
′
e

�
dz. (16)

Here, qx and qy are distributed forces acting along the string.

3.3 Reduction of the Equations of Motion

The terms of equation (12) are known and can be expressed in terms of u,
v , and γ , respectively, and the derivatives of these quantities. By means of a
Taylor series expansion, the Lagrangian L =T −U+W is approximated using a
third order polynom, which corresponds to equations of motion of second order.
The parallel offset � acts in the x–direction only. Hence, displacement u is
subdivided into a static and a dynamic part u = us + ud , whereas v only consists
of a dynamic part. Both displacements are related to �. The angle γ is also
subdivided into a static and a dynamic part. The variables t and z are normalized:

z = "ξ, u =�(ũs + ũd) , v =�ṽ,
t = 1

ω0
τ γ = γs + γd = θ (4" + "γ̃ ) . (17)

The tilde indicates that the according quantity is dimensionless. The orders of
magnitude are O(ũs)=1, O(ũd)=(ṽd )=0.1 since the string resides in a tube and,
therefore, the displacement is bounded. The order of magnitude of γ̃d = 0.1
was taken from measurements at the straight string. By means of the kinetic
energy related to the coordinate z the comparison of the terms is presented:

∂T

∂z
= R2ρπω2

0

�
R2�2

4"2

�
ũ2

d ,τξ +ṽ2
d ,τξ

�+ R2�2θ/"γ̃ ,τ ṽ,ξτ
�
ũs,ξ +ũd,ξ

�

+ R2

2θ2"2
�2 �ũ2

d,τ +ṽ2
d,τ +2"2θ2/2γ̃ 2,τ

� �
. (18)

Here, (•),η abbreviates the derivation with respect to a dimensionless variable
η ∈ (ξ, τ ). The geometrical quantities as well as values for the Young’s mod-
ulus (E = 8 · 1010 N/m2) and the shear modulus (G = 3 · 1010 N/m2) are taken
into consideration. Experiments on the straight string show a power spectrum
with a maximum at 3 H z, hence, ω0 is set to ω0 = 20 rad/s. The terms in-
dicated in gray in (17) are small compared to the remaining ones and can be
neglected. By means of Euler’s equation the equations of motion are obtained:

0 =
� 4"

0

� ��
ρ Ip + δ(z − 4")#M

�
γ̈ − G Ipγ

′′ − Meδ(z − 4")
�
δγ

+ �
µü + E Ibuiv − Se

�
u′′s + u′′

�+ Mev
′′′ − qx

�
δu

+ �
µv̈ + E Ibv

iv − Sev
′′ − Meu′′′ − qy

�
δv

�
dz. (19)
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Equation (19) even holds for nonconservative loads Me, qx , and qy and can
directly be applied to approximate the motion using Galerkin’s method. Note,
that δγ, δu, and δv are arbitrary and independent of each other. Hence, the
expressions in the brackets are equal to zero. The resulting equations superim-
pose different elementary effects: statical and dynamical behaviour of chords,
beams and strings, compare [4]. The simulation of equation (18) as well as
experiments reveal self excited torsional vibrations due to the friction charac-
teristics (1).

4. Control–Strategy

Equation (18) shows that the torsional vibration is independent from bend-
ing vibration. On the other hand, the bending vibration depends on the external
moment Me, which depends on the torsional vibration. Therefore, just the tor-
sional vibrations are actively damped. The dynamics of the system is reduced
due to the Proper–Orthogonal–Decomposition (POD) decomposing the signal
in so–called characteristic functions which optimally approximate the signal
with respect to the kinetic energy.

4.1 The Recursive Proper–Orthogonal–Decomposition

The control of the drill–string using the POD was already examined in [1].
The characteristic functions change after closing the control loop. Thus, the
technique is improved and the characteristic functions are calculated recur-
sively.

The angular velocities of the five sensors are measured at discrete time
instances ti (i = 1, 2, · · ·). The deviation of the five measured values from the
mean is put in the column matrix u(ti ). A matrix C(ti ) is recursively calculated
such that

xi = 1+ λxi−1, x0 = 0;
C(ti) = 1

xi
u(ti ) · uT (ti)+ λC(ti−1), C(t0) = 0. (20)

Here, λ denotes a value which describes the decrease of the influence of pre-
vious measurements. For λ= 1 all values are considered equally, for λ= 0 only
the actual value is considered. Here, the influence of previous data is supposed
to decay, but at the same time, sufficient information is needed for an accurate
calculation of the characteristic functions. A good compromise between these
contradicting demands is λ = 0.975. The orthogonal eigenvectors φi of the
eigenvalue problem (C(ti)−µE)φ are the characteristic functions, the eigen-
values µ denote the content of kinetic energy contained in the correspond-
ing characteristic function. For the drill–string the first characteristic function
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contains about 98% of the total kinetic energy. The motion is approximated
by:

u(ti ) ≈ a(ti )φ, with: a(ti ) = uT (ti ) · φ. (21)

The driving speed is controlled using this signal and a feedback PD–controller:

�c(ti) =�des + kpa(ti−1)+ kd ȧ(ti−1). (22)

The parameters kp and kd have to be adjusted experimentally.

4.2 Nonlinear Optimisation

The simplex algorithm of Nelder and Mead [5] is a useful tool for mini-
mizing a cost functional Jc, e.g. for minimizing the least square sum

Jc =
� t2

t1

(ωbit −�des)
2 dt ≈

tb�
ta

�
ωbit (ti)−�des

�2
. (23)

The idea of the simplex algorithm is shown in Figure 4. The two optimal
parameters form a point in a two dimensional plane corresponding kp and kd ,
respectively. The algorithm works as follows: At first, three arbitrary points
which construct a triangle are chosen and the cost functional is evaluated for
these points. The worst point is replaced by a new point which is symmetric
about the centre of mass of the remaining points, i.e. the position of the trian-
gle is changed. The cost functional is evaluated for the new point. Depending
on the value of the new point in comparison with the others, different rules can
apply: the triangle can change its position and its size. Figure 4 only shows

Figure 4. Simplex algorithm - mirroring of a simplex
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the case of mirroring. After each iteration the simplex approaches the opti-
mum. When the size of the simplex falls below a certain bound, the iteration
is stopped and the optimal values of kp and kd are reached.

5. Implementation

The POD was implemented in the transputer using a dialect of the lan-
guage basic which does not provide special functions for eigenvalue calcula-
tion. Since only the biggest eigenvalue is needed, this value is calculated by
vector iteration:

φ
k

=
C(ti ) · φk−1

||C(ti ) · φk−1
|| . (24)

After few iterations (3 to 5) the eigenvector is approximated sufficiently well.
The cost functional (22) is evaluated from experimental data, the value varies
statistically. Thus, multiple measurements are taken and the sum of the mean
and the variance is used.

Using this approach for the active damping results in the speed of the drill–
string presented in Figure 5. The angular velocities at the top and the bottom
of the string are shown. The vibrations of the speed at the bit are actively
damped after the control is started.

6. Summary

A detailed modelling process yields linear equations of motion which de-
scribe torsional and flexural vibrations. The torsional vibrations are self–
excited vibrations caused by the characteristics of the applied moment. This

Figure 5. Angular speed at bit - uncontrolled and controlled
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moment depends on the angular velocity at the bit and varies as long as tor-
sional vibrations occur. The state dependent applied external moment excites
flexural vibrations. In order to minimize the torsional and the flexural vibra-
tions only the torsional vibrations are actively damped. The angular speed is
measured at five locations and the signal is reduced applying a recursive POD.
The recursive algorithm guarantees a fast calculation and decaying influence
of previously measured data. The resulting signal is used for the feedback con-
trol. The controller parameters are optimized with respect to a cost functional
using a simplex method. This approach was implemented in an experimental
setup and the torsional vibrations were successfully actively damped.
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Abstract: Friction induced vibrations in technical applications are usually unwanted, as 
they create noise, diminish accuracy and increase wear.  By this article the 
authors intend to give an insight in basic excitation mechanisms of friction 
induced vibrations and to show possible ways of avoidance. A dynamic 
vibration absorber is investigated in detail. Numerical and experimental results 
show that stick-slip vibrations can be avoided or at least reduced considerably 
by an additional spring-mass-damper system attached to the main oscillator. 

Key words: Vibration absorber, stick-slip, nonlinear dynamics. 

1. Introduction 

Friction is an everyday phenomenon which everybody is familiar with. 
From an engineering point of view two different phenomena can be 
distinguished. First, the resistance against the start of a relative motion of 
bodies (sticktion) which is caused by the contact between these bodies. 
Secondly,  the resistance against an existing relative motion (sliding) of two 
contacting bodies. An intermittant change of sticktion and sliding is called a 
stick-slip motion, it belongs to friction induced oscillations. 

In the following sections a mechanism to generate self-excited friction 
induced vibrations will be shown and explained by means of a simple 
mechanical model. If this mechanism has been understood countermeasures 
can be taken. Thus, subsequently some measures to avoid friction induced 
vibration will be summarized and a dynamic vibration absorber will be 
presented. 

© 2005 Springer. Printed in Great Britain. 
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2. Excitation Mechanisms 

Figure 1.  Model of a simple friction oscillator. 

As an example we investigate the simple friction oscillator shown in Fig. 
1. This oscillator with one degree of freedom DOF represents a classical 
self-excited system, cp. [5]. 

The energy source is a moving base with constant speed v0 driving the 
mass m of the discrete spring-mass oscillator. The friction force FR usually 
depends on the relative velocity   xvvrel

�−= 0  between base and mass. 
Different friction characteristics )( relRR vFF =  are shown in Fig. 2.

Figure 2. Friction characteristics : (A) generally decreasing, (B) linearly 
decreasing, (C) constant. 

In the characteristics (A) and (B) the limit value of the static friction 
force )0( →relR vF  is greater than the kinetic friction force )0( ≠relR vF ,
thus, the friction force characteristic is decreasing for small values of vrel.

This effect has been observed experimentally many times, cp. [1], [3], 
[4]. If the base velocity is adjusted so that the friction force shows a negative 
slope at the equilibrium state 0, == xxx S

� , then this state becomes unstable 
if no damping is present. Hence, the amplitudes grow and the trajetory in the  

xx �, -phase plane reaches a limit cycle.  

c
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Figure 3. Mechanical power input at the mass. 

The physical reason for the instability is an energy transfer from the base 
to the mass. This is quantitatively shown in Fig. 3 by a sequence of time 
histories of one period duration. Assuming a small mass motion around the 
equilibrium position with a sinusodial velocity, Fig. 3a, results in a 
sinusoidal fluctuation of the relative velocity around the mean value v0, Fig. 
3b. Due to the force characteristic the corresponding friction force is larger 
for small values of vrel  than for large values of vrel , Fig. 3c. Thus, the 
product xFR

�  that denotes the mechanical power input at the mass shows 
larger positive than negative values, Fig. 5d. Hence, a positive input of 
mechanical energy, 

0
0

>=∆ ∫
ST

Rin dtxFE � , (1) 

results during each period ST , which in turn leads to increasing vibration 
amplitudes until the limit cycle is reached. However, the decreasing friction 
characteristic is not the only mechanism that can lead to an increase of 
mechanical energy due to eq. (1). Even for a constant kinetic friction 
coefficient according to characteristic (C) a positive energy input is possible 
if we assume fluctuating normal forces FN. This can also be shown by the 
same sequence of diagrams in Fig. 3, only the interpretation of Fig. 3c has to 
be changed. Suppose the normal force FN consists of a constant part and a 
superimposed sinusoidally fluctuating part, 

)/2sin(ˆ)( 0 SNN TtFFtF π+= . (2)

Then it follows that the friction force const.),()( =µµ= tFtF NR ,
fluctuates as shown in Fig. 3c. The consequence is a positive input of 
mechanical energy, compare eq. (1). Important for this excitation mechanism 
is, that the sinusoid of x� , Fig. 3a, and that of FR, Fig. 3c, are in phase. If 
they would be in antiphase, the energy input would turn out to be negative 

x
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resulting in damping. The last mentioned mechanism can be used to reduce 
the vibration amplitudes and to stabilize the equilibrium position. This 
mechanism is the basic idea behind the vibration control by the dynamic 
vibration absorber which will be described later in this paper. 

3. Measures to Avoid Friction Induced Vibrations 

Figure 4. Measures to avoid stick-slip motion: a) additional external 
damping, b) additional external excitation, c) fluctuating  normal forces. 

In this section different measures shall be summarized that allow to avoid 
self-excited friction induced vibration. We start with a review of the 1 DOF-
systems depicted in Fig. 4. 

Firstly, an increase of external damping can compensate the negative 
damping induced by a decreasing friction characteristic, see Fig. 4a. 

Secondly, an additional external excitation can be applied, either as a 
harmonic base excitation, cp. Fig. 4b, or as a harmonic force excitation of 
the mass. This excitation can break up the robust stick-slip limit cycle, 
however, it usually leads to chaotic motions showing a rich bifurcational 
behaviour. This case has extensively been studied in [5], [7], [8], [10],  and 
shall not be discussed here. However, for high excitation frequencies a 
stabilisation is possible, see e.g. [12]. 
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Thirdly, vibration control can be used to provide fluctuating normal 
forces that can result in a negative energy input as has been shown in the 
above chapters. 

In the following it will be shown that it is possible to neutralize the self-
excitation mechanism of the falling friction characteristic by fluctuating 
normal forces.  

Considering a block sliding on a moving base, cp. Fig. 4c, we assume a 
harmonic motion  

,
2

,cosˆ)(
ST

txtx
π=ωω=  (3) 

of the block and a harmonic normal force  

)cos(ˆ)( 0 ϕ−ω+= tFFtFN , (4) 

where there is a phase shift ϕ  between normal force and motion.  

Further on, calculations are done with friction characteristic (B), but 
assuming that always 0>relv  holds, i. e. no sticking occurs. Then the energy 
transferred into the system by the friction force during one period ST  of 
vibration can be determined by 

+− +=δπω+ϕπδ−µ−==∆ ∫ EExFxFvdttxtFE
sT

Rin
2

000

0

ˆˆˆsin)()()( � . (5) 

Expression +E  gives the energy growth due to negative damping created 
by the friction characteristic. The dynamical part of NF leads to −E , which 
is a dissipated energy if 0sin >ϕ . So, this inequality is a necessary 
condition for a damping effect by fluctuating normal forces. 

A sufficient condition for the wanted effect is 

Fv

xF
Ein ˆ)(

ˆ
sin0

00

0

δ−µ
δω>ϕ⇒<∆ . (6) 

Optimal damping is given if inE∆  becomes a minimum, 

2
Min * π=ϕ=ϕ⇒→∆ inE . (7) 

In this case, the optimal dissipated energy reads 
2

000
** ˆˆˆ)()( xFxFvEE inin δπω+πδ−µ−=ϕ=ϕ∆=∆ . (8) 

The optimal force amplitude F̂  is given for  0
ˆ FF = . For amplitudes 

0
ˆ FF >  the mass would lift off from the moving base. 

The effect of fluctuating normal forces can be realized by active vibration 
control, cp. Fig. 5c. Measuring the stick-slip displacement )(tx  or the stick-
slip acceleration )(tx�� results in a control to get the optimal phase shift 
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2/* π=ϕ=ϕ  for the optimal normal force )(tFN . The phase shift can be 
provided by using either the displacement measurement at a shifted time, 

),
4

(
ˆ

ˆ
)

2
cos(ˆ)( 00

S
N

T
tx

x

F
FtFFtF −+=π−ω+=  (9) 

 or to take the acceleration measured at a shifted time , 

).
4

(
ˆ

ˆ
)

2
cos(ˆ)( 00

S
N

T
tx

x

F
FtFFtF −−=π−ω+= ��

��

 (10) 

Also other control regimes are possible e.g. using delayed feedback, cp. [2]. 
Active control, however, requires additional energy. Thus, a passive control 
regime would be desirable that adds damping and provides fluctuating 
normal forces. The idea behind passive vibration control is to introduce an 
additional degree of freedom normal to the motion of the body and to couple 
both degrees of freedom. This can be done by a coupling with a tilted spring 
or by an inertia coupling, see Fig.5 and the following section about dynamic 
vibration absorber. 

Figure 5. a) Extended friction oscillator, b) Friction characteristic

4. Dynamic Vibration Absorber 

The basic friction oscillator is extended by an additional oscillator (absorber) 
which is tilted against the normal direction of the friction contact, like in Fig. 
5a. In the case of sliding the equations of motion for this system are given by

02sin 2
2 =+′+′′+′′α ybybDyx , (11)

)(2sin)1( 1 relr vFxxDyaxa =+′+′′α+′′+ , (12) 
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where 

τ
=′

d

d
)( , t1ω=τ ,

2,1

2,1
2,1 m

c
=ω ,

2,12,1

2,1
2,1 2 ω

=
m

d
D

1

2

m

m
a = ,

1

2

ω
ω=b , *)()( nrelrelr FvvF µ= .

The right hand side of eq. (12) is composed by the friction characteristic  
xvvvkvv brelrelrelrel
�−=−µ=µ ),)(sgn()( 0 . (13) 

which is depicted in Fig. 5b, and the normal force 

.cos)(
1 *

00
1

* yaFFF
c

F ndynnnn
′′α−=+=  (14) 

If the mass m1 sticks to the base, the friction force )0( =relr vF becomes a 
reaction force and eq. (12) changes to  

b
b v

v
xx ~with0

1

≡=′=′′
ω

. (15)

while eq. (11) stays the same.  
The condition for the transition from sliding to sticking is  

bvx ~=′   and *

012sin nFxxDya µ≤+′+′′α  (16) 

while the transition from sticking to sliding takes place if  
*

012sin nFxxDya µ>+′+′′α . (17) 

5. Experimental Results 

The theoretical results were checked by experiments. Therefore an 
existing test rig for stick-slip vibrations has been equipped by an additional 
oscillator. The mechanical parameters of this  setup have been identified to  

.ms)(82.27,37.0,m1074.1~
m,10638.2,01.0,924.0,56.0

1-
0

3

3*
01

==µ⋅=
⋅====

w

-

-

kv

NDba

b

. (18)

As it can be seen in Fig.  6,  theoretical and experimental results agree quite 
well bearing in mind the known complexity of frictional processes. An 
unsymmetry of the stick-slip region has been found which indicates the 
effect of  fluctuating normal forces.  As the time histories show, the system 
behavior is unequal for negative and positive values of α . Deviations from 
the theoretical results are due to variations in the friction characteristic. 
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Figure 6.  Calculated stability bounderies (solid lines) and  experimental 
results (crosses indicate decaying vibrations and circles stand  for limit 

cycles). time series showing the system’s behavior for two different values 
of α, which are equal in the absolute value but have opposite sign.

6. Concluding Remarks 

Knowing and understanding the mechanisms to generate self-excited 
friction induced vibrations can help to avoid these unwanted motions. To 
this aim the following measures have been shown and described shortly: (a) 
adding proportional damping, (b) applying a harmonic external base 
excitation or force excitation, (c) implementing active or passive vibration 
control. The vibration control is based on the mechanism of fluctuating 
normal forces. This effect results in an energy flow into the system as 
mentioned above. However, choosing the proper phase relation this effect 
can be used to take energy out of the system and, thus, achieve damping. 

Numerical and experimental investigations show that stick-slip vibrations 
can be avoided or at least reduced by this dynamic vibration absorber. Two 
effects are responsible for this.: (i) The absorber contributes linear damping 
to the system. (ii) Fluctuating normal forces neutralize the excitation due to a 
decreasing friction characteristic. Experiments show that the theoretically 



Dynamic vibration absorber for friction induced oscillations 427

predicted stable operation regions do exist and that the absorber works 
efficiently. 
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CONTROL OF LIMIT CYCLE OSCILLATIONS
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Abstract: Limit cycles are defined as periodic motions in mechanical systems. Self excited
systems like Van der Pol oscillators are characterized by asymptotically stable
limit cycles due to steady energy dissipation. On the other hand, conservative
systems show marginally stable limit cycles without energy dissipation. How-
ever, such motions are very sensitive to disturbances and, therefore, less helpful
in engineering. By adding control to conservative systems asymptotic stable,
weakly dissipative limit cycles can be found. It is shown how limit cycle os-
cillations can be adapted to prescribed motions in manufacturing processes re-
ducing energy consumption. For this purpose the shooting method is employed,
harmonic and arbitrary prescribed motions are considered.

Key words: Control, limit cycle, energy consumption, shooting method.

1. Introduction

Manufacturing processes require periodic motions which may be realized
by active robot control with high energy demand or by a passive limit cycle of
a nonlinear conservative system and some additional low energy control.

A well established robot control principle is inverse dynamics which is
used to overcome high nonlinearities typical for mechanical systems undergo-
ing large displacement motion. Based on an accurate model of the system un-
der consideration, all the nonlinearities are compensated first by control action
and, then, the remaining double integrator is controlled by linear feedback.
This approach is very attractive to control engineers since a broad variety of
design tools can be applied successfully. However, this principle results in
high energy demand, see e.g. Waldron.

In this paper, the application of nonlinear conservative oscillators is pro-
posed to generate the required motion coarsely without energy dissipation and

429
G. Rega and F. Vestroni (eds.),
IUTAM Symposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, 429–439.
© 2005 Springer. Printed in Great Britain. 



430 W. Schiehlen and N. Guse

to adjust the motion finely by linear control with strongly reduced energy con-
sumption. Thus, periodic trajectories are adapted as closely as possible to
the limit cycle of the underlying mechanical system. A similar approach was
chosen by Babitsky et. al. for resonant vibration machines. Here, we will
additionally specify the period and desired trajectory of the system. The fun-
damentals of energy consumption and energy storage of mechanical systems
with rheonomic constraints have been analyzed for a linear harmonic oscil-
lator, see Schiehlen. it is shown how spring characteristics can be chosen
to reduce the energy consumption for arbitrary periodic trajectories of a robot
arm.

The power aspects of inverse dynamics control systems or rheonomic con-
straints, respectively, will be reported for an actively controlled oscillators with
one degree of freedom. Then, these principles will be applied to a robot arm
which shows very good results featuring the control of limit cycles.

2. Power Aspects of an Actively Controlled Oscillator

It is very well known that a harm-
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Figure 1. Actively controlled oscillator.

onic oscillator is a conservative system
with a periodic exchange of kinetic and
potential energy. The resulting motion
is characterized by a fixed frequency
which can not be adjusted during oper-
ation. In technological processes, how-
ever, motions with an adjustable
frequency are often required demand-
ing active control. Due to the necessary

power supply a controlled oscillator, shown in Figure 1, is no longer conser-
vative. The equation of motion reads simply m ẍ(t)+ c x(t)= u(t) where
m is the mass, c is the spring coefficient and u(t) is the actuator force. For a
harmonic prescribed motion r(t) =−A cosωt the actuator force follows from
the principle of inverse dynamics as u p(t)= A (mω2−c) cosωt , see also Falb
et. al. and Craig.

The energy consumed in the first quarter of a cycle is W (t = π/2ω) =
1
2 A2(mω2 − c). Thus, for the spring coefficient c = mω2 the actively con-
trolled system remains conservative. By adding a velocity feedback u(t) =
u p(t) − D(ẋ(t) − ẋ p(t)) with some positive coefficient D > 0 an asymptoti-
cally stable limit cycle is obtained. The resulting control system including the
energy supervision is shown in figure 2. A limit cycle is presented in figure 3.
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Figure 2. Control loop of the system. Figure 3. Limit cycle.

For prescribed motions with piecewise constant accelerations often found
in technological processes nonlinear springs with a characteristic n(x)may be
used. Typical characteristics read as

n(x) =

��
�
α x(t)− β x3(t) cubic degressive
x(t) linear
δ x(t)+ ε x3(t) cubic progressive

(1)

It has been shown that nonlinear springs offer a saving up to 61% for a pre-
scribed motion with piecewise constant acceleration, see Schiehlen.

3. Control Based on Limit Cycles

The spring mass oscillator shows that the storage property of springs ex-
ploited in a controlled system offers energy savings of easily more than 50%.
For more complex systems, the problem is to design these springs such that
still energy can be saved. For systems which undergo periodic motions, it is
promising, to adjust the control system such that its limit cycle is very close to
the desired trajectory.

The desired trajectory of the system defines the boundary conditions for
the state of the motion as well. These conditions are the position and the
velocity at the beginning and at the end of the motion, respectively. Thus, for
a periodic motion, the state has to be the same after a full cycle. The goal is
to adjust the mechanical system to meet the boundary conditions by adjusting
its parameters, like spring fastening and stiffness. Therefore, the standard
shooting method which is a helpful tool to solve boundary value problems is
modified to get these parameters.
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4. Shooting Method with Robot Application

With the standard shooting method as described e.g. in Stoer a differen-
tial equation

ÿ = f (t, y, ẏ) (2)

with be boundary conditions y(t1) = A and y(t2) = B is solved by setting up
the function

F(s) = y(t2, s)− B = 0 (3)

where s = ẏ(t1) is the variational value to be found. In other words: the end
point y(t2) is a function of the initial slope s and has to meet B at time t2. When
F(s) is solved for s, the starting slope s is found such that the differential
equation meets the boundary conditions. For nonlinear systems it is rather
difficult to solve equation (2) explicitly for s. Therefore, numerical solvers
like the Newton-Raphson iteration are used to find the roots of equation (3).

Now, the shooting method is modified, so that system parameters instead
of the initial slope can be found to meet the bounding conditions. As already
said, the boundary conditions for this case are the position and the velocity.

For simplicity, an assembly robot is modeled as a double pendulum moving
in a horizontal plane within a manufacturing process, as shown in figure 4.

The model consists of two particles m1 and m2 connected by two bars
of length l1 and l2. The rotational springs (spring stiffness c1 and c2) can be
mounted differently. In the zero position of the springs denoted by the constant
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Figure 4. Model of a simplified assembly robot.
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angles α1N and α2N the spring torque is vanishing. Two drive motors generate
the torque u1 and u2 at the joints of the robot. The equations of motion read as

�
2m2l1l2 cos α2 + (m1 + m2)l2

1 + m2l2
2 + J1 + J2 sym.

m2(l1l2 cos α2 + l2
2)+ J2 m2l2

2 + J2

��
α̈1

α̈2

�

+
� −m2l1l2 sinα2(α̇

2
2 + 2α̇1α̇2)

m2l1l2α̇
2
1 sinα2

�
=

�
c1(α1N − α1)+ u1

c2(α2N − α2)+ u2

�
.

For vanishing drive torques, the shooting method is applied to calculate the
parameters for the system featuring a limit cycle close to the desired trajectory:
starting with the given initial conditions, the position and velocity after the
desired cycle period are calculated by integration. Estimated values for the
design parameters c1, c2, α1N and α2N are used as initial values for the shooting
process.

Now, equation (3) results in four boundary conditions written as

F1(s) = α1(tend , s)− α10 = 0

F2(s) = α2(tend , s)− α20 = 0

F3(s) = α̇1(tend , s)− α̇10 = 0

F4(s) = α̇2(tend , s)− α̇20 = 0

composing the error vector

F =
�

F1 F2 F2 F4
�T

(4)

and the parameter vector

s =
�

c1 c2 α1N α2N
�T
. (5)

The roots of F can be calculated using the Newton-Raphson iteration with

∂F

∂s

����
si

�si =−F (si) (6)

and

si+1 = si +�si . (7)

where the Jacobian ∂F
∂s is numerically computed using finite differences. The

result is a set of parameters s for the robot model such that the boundary
conditions of the integration for a cycle are met.

Four limit cycle trajectories of the robot are treated, see also Reber.
Firstly, a harmonic constraint motion in z− and y−direction, then the same
two trajectories with an arbitrarily prescribed motion.
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5. Actively Controlled Harmonic Motion

Firstly, the motion of the second particle is prescribed as a harmonic oscil-
lation in z−direction as

y = 0 , (8)

z = B + A sinωt . (9)

Figure 5 shows the corresponding trajectory. The parameters (spring stiff-
ness and spring mounting) of the system have been calculated using the shoot-
ing method as described above. In figure 6 the resulting trajectory of the sys-
tem without control is shown for some starting parameters (dashed line) and
for the parameters computed by the shooting method resulting in a limit cy-
cle (solid line). A difference between the desired trajectory in figure 5 and
the limit cycle can hardly be noticed but there is a very small deviation to the
right. Figure 7 shows the angles α1 and α2 as well for the desired trajectory as
for the limit cycle motion. No difference is visible.

Figure 8 shows the total work Wtot that is required by the drive motors
when the system is controlled by inverse dynamics control for one cycle of the
periodic motion. The values are normalized using the maximum amount of
work. The solid line shows the work consumed without springs in the system.
The dashed line shows the amount of work that is needed when the springs are
added resulting in a limit cycle very close to the desired trajectory. Now, much
less energy is required to force the system onto the desired trajectory. In this
case saving of 94% is obtained.

Figure 5. Desired trajectory of motion in
z−direction.

Figure 6. Trajectory of the system us-
ing starting parameters (dashed line) and
the limit cycle computed by the shooting
method (solid line).
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Figure 7. Angles α1 and α2 for the desired
trajectory and the limit cycle of the motion
in z−direction.

Figure 8. Energy consumed by the drives
for the motion in z−direction.

Secondly, the motion in y−direction is investigated, see figure 9, which is
prescribed to

y = A sinωt , (10)

z = B . (11)

Due to the strongly nonlinear behavior of the system, it is more difficult to
find a limit cycle that is close to the desired trajectory. In Figure 10 the dashed

Figure 9. Desired trajectory of motion in
y−direction.

Figure 10. Trajectory of the system us-
ing starting parameters (dashed line) and
the limit cycle computed by the shooting
method (solid line).
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line shows the trajectory using estimated starting parameter, the solid line re-
presents the trajectory after the computation of the parameters by the shooting
method. The limit cycle is not really close to the desired motion. This is due
to the characteristic of the system, a straight motion can not be achieved by
the two rotational springs. However, the shooting method leads to the closest
possible limit cycle.

Here, the dashed line shows again the trajectory using estimated starting
parameter, the solid line represents the trajectory after the computation of the
parameters by the shooting method.

As shown in figure 11 the difference between the desired trajectory and the
limit cycle is visible for both angles. Obviously, more torque has to be applied
by the drive motors to force the system onto the desired trajectory. Therefore,
the savings of the system with springs compared to the system without springs
are less than for the motion in , z−direction see figure 12. But still, 52% of
energy can be saved.

6. Arbitrarily Prescribed Motion and Nonlinear
Springs

It has already been shown by Schiehlen that for technological processes
that require a prescribed motion, e.g, with piecewise constant acceleration
nonlinear springs offer additional savings. Therefore, the motions in y− and
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Figure 11. Angles α1 and α2 for the de-
sired trajectory and the limit cycle of the
motion in y−direction.

Figure 12. Energy consumed by the drives
for the motion in y−direction.



Control of limit cycle oscillations 437

in z−direction now are investigated for a rheonomic constraint of intervals of
constant acceleration

y = 0 , (12)

z = B + 1

2
At2 (13)

as shown in figure 13. The trajectory is geometrically the same as before, see
figure 5, only the time history is different.

Again, the modified shooting method is

 p
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Figure 13. Position, velocity
and acceleration of a prescribed
motion.

used to find a combination of parameters
such that the system limit cycle is close to
the desired trajectory. For the motion in
z−direction, very good parameters can be
found. The work consumed by the drive
motors is reduced by almost 58%, see the
dotted line in figure 16. Moreover, accord-
ing to the findings for the mass-spring os-
cillator, cubic degressive nonlinear spring
with two additional parameters α and β are
used, which offer another 11% saving.

For the motion in y−direction, shown
in figure 14, the parameters are calculated
as described above. A limit cycle is found,
see figure 15, which is slightly better than
for the harmonic motion. Here, also the

amount of consumed energy can be reduced by 33% when linear springs are
used. It is reduced by another 5% when cubic degressive nonlinear springs are
used, see figure 17.

7. Summary

It has been shown that adapting the limit cycle of a system to a prescribed
periodic trajectory offers significant amounts of power savings. Firstly an
actively controlled mass spring oscillator was considered to show the basic
concept using nonlinear springs for systems with rheonomic constraints, too.
These findings were extended to a more complex system, a two degree of free-
dom robot arm.

A shooting method was applied to adjust the system to the boundary condi-
tions of a limit cycle close to the desired trajectory. Then, a low energy control
is sufficient to force the system onto the desired trajectory.

An assembly robot model is supposed to operate on perpendicular straight
trajectories with harmonic time history, and a time history with constant
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Figure 14. Desired trajectory of motion in
y−direction.

Figure 15. Trajectory of the system with
nonlinear springs using starting parame-
ters (dashed line) and the limit cycle com-
puted by the shooting method (solid line).

accelerations. For the harmonic motion in z−direction, the limit cycle of
the system could be adjusted very precisely by proper spring coefficients and
mounting positions of the springs resulting in 94% energy saving. For the har-
monic motion in y−direction, the limit cycle could be adjusted only coarsely
reducing the energy consumption nevertheless by 52%. In the nonharmonic
case also significant savings could be achieved. Here, nonlinear springs were
investigated, too. The design parameters for the nonharmonic motion were
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Figure 16. Energy consumed by the drives
for the arbitrarily prescribed motion in
z−direction.

Figure 17. Energy consumed by the drives
for the the arbitrarily prescribed motion in
y−direction.
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stiffness coefficients, spring mountings and the characteristics of nonlinearity.
Nonlinear springs are recommended for all nonharmonic motions.
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OPTIMAL CONTROL OF RETRIEVAL
OF A TETHERED SUBSATELLITE
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Abstract: The most important and complicated operations during a tethered satellite sys-
tem mission are deployment and retrieval of a subsatellite from or to a space
ship. The deployment process has been treated in [15]. In this paper retrieval
is considered. We restrict to the practically important case that the system is
moving on a circular Keplerian orbit around the Earth. The main problem dur-
ing retrieval is that it results in an unstable motion concerning the radial relative
equilibrium which is stable for a tether of constant length. The uncontrolled
retrieval results in a strong oscillatory motion. Hence for the practically useful
retrieval of a subsatellite this process must be controlled. We propose an opti-
mal control strategy using the Maximum Principle to achieve a force controlled
retrieval of the tethered subsatellite from the radial relative equilibrium position
far away from the space ship to the radial relative equilibrium position close to
the space ship.

Key words:

1. Introduction

The optimal control of deployment of a tethered subsatellite from a
main satellite has been treated in [15]. We consider in this paper, supple-
menting the investigation in [15], the retrieval process. Although the op-
timal control strategy is similar, some additional aspects have to be taken
into account, as it is immediately understandable, if one looks at the simpler
but analogous problem of the motion of a string pendulum with fixed pivot
point in the constant gravitational field. It is well known that the vertical sta-
ble rest position for constant string length remains stable for increasing the
length of the string (deployment) but becomes unstable if the string is short-
ened (retrieval) as a function of time. In fact by analytic methods or by
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numerical simulation it can be shown that in this latter case symmetric os-
cillations about the vertical position are excited. These have the interesting
property that the transversal amplitude defined by the initial condition remains
constant whereas, the angular deflection increases strongly if the string length
of the pendulum is continuously decreased. This behaviour will be character-
istic for the out of plane behaviour of the tethered satellite in deployment or
retrieval, respectively.

The concept of TSS (Fig. 1), that is, two or more satellites in orbit con-
nected by thin and long cables – a length of 100 km is not unusual – has now
been well established in astrodynamics. There exist various ideas of this con-
cept for future space applications ([4, 5, 7, 8, 12]). Some flights (SEDS- and
TSS1-projects) in orbit around the Earth were already performed by NASA
during the last decade of the 20th century ([12]). The fundamental property

0
3

e1
0

e0
2

rM

rS

x0

e

y0

Figure 1. Tethered satellite sys-
tem, consisting of two satellites
connected by a massive tether, in
orbit around a planet.

of a TSS, important for its practical applications ([5]), is that a system of two
satellites connected by a tether with constant length moving on a circular Ke-
plerian orbit around the Earth possesses a stable radial relative equilibrium,
provided the length of the tether is not too long, that is, if it is not of the or-
der of the radius of the orbit ([5], [10]). In this radial relative equilibrium the
tether is under tension due to the action of the centripetal acceleration and the
nonlinear gravitational field.

We investigate in this paper retrieval of a subsatellite to a space ship (see
also [11], [6]), which moves on a Keplerian circular orbit. We want to retrieve
the subsatellite from its initial configuration, which is the stable radial relative
equilibrium, in which the subsatellite is far away from the space ship, to a
radial relative equilibrium position, in which the subsatellite is close to the
space ship.
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That the process of retrieval will lead also to motion strongly deviating
from the local vertical position which is rotating with orbital angular velocity
in the orbital plane is due to the action of the Coriolis force. This has been
shown already for the deployment process treated in [15], where a strong de-
viation from the local vertical relative equilibrium position in the plane of orbit
occurs. For retrieval strong oscillatons set in as numerical simulations show
([16]). Even if the main control problem both of retrieval or deployment takes
place in the orbital plane at least one has to be aware of the fact that these two
operations are distict concerning perturbations out of the plane of orbit. How-
ever, from a practical point of view the planar problem can be treated since
comparisons with the string pendulum and numerical simulations of the TSS
show, that for retrieval the transversal motions out of the plane of orbit remain
bounded.

It is important to mention a peculiarity of TSS, namely, how the control
action is applied to the system. Of course, the control action to suppress un-
desired oscillations could be realized by thrusters acting on the subsatellite.
However it is much simpler but still very effective to act on the motion of the
system only by changing the tension force in the cable, which in the literature
is called “tension control”. We adopt this strategy and want, only by means
of varying the tension force, to steer the subsatellite as fast as possible from
its stable initially radial relative equilibrium position far away from the main
satellite to its final position, which for constant tether length again is the stable
radial relative equilibrium but now very close to the main satellite.

Making use of the Maximum Principle allows us to introduce constraints
which are important from the practical point of view. We will consider in this
paper two different constraints: (A) The motion of the retrieving tether should
be monotonically decreasing. From a practical point of view this might be rel-
evant, since it is only possible to pull the tether and it is impossible to push it.
(B) The tension force during steered retrieval must always be positive and its
maximum value must be bounded. In [15] also the constraint was considered
that the deviation of the deploying subsatellite from the local vertical should
remain small. Due to lack of space we do not include it here.

The paper is organized as follows: Since a straight forward application of
the mathematical methods of optimal control theory can be easily formulated
only for a finite dimensional system we consider a simplified system model,
where the tether is assumed to be massless. The corresponding equations of
motion to the three-dimensional motion are derived in [2] and presented in the
next section. We also give a simple explanation for the out of plane instability
during retrieval for an exponential law of reduction of the length of the string.

Since the basic application of the Maximum principle to such a process
is described in detail in [15] for deployment and we only consider the planar
problem, the difference between deployment and retrieval in the formulation
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is marginal and we immediately present the corresponding results obtained for
the simple massless model.

Finally, we shortly discuss the implementation of the obtained control strat-
egy into a simulation package developed for a system of two satellites con-
nected by a massive tether ([16]), which is described by a coupled system of
nonlinear partial and ordinary differential equations. A comparison of these
results for the more accurate model with those of the simplified model and
their interpretation is given. Finally we comment whether applying tension
control a three-dimensional analysis might be possible.

2. Simple Mechanical Model and Equations of Motion

We assume that the two satellites are modelled as point masses and are
connected by a straight massless inextensible string. For such a system in its
orbital motion around the Earth the equations of motion are derived in [2]. In
dimensionless variables they are

ξ ′′ − ξ �
ϑ ′2 + �

(ϕ ′ − 1)2 + 3 cos2 ϕ
�

cos2 ϑ − 1
�

=
Ql

mω2l0
=−u

ϕ ′′ + 3

2
sin 2ϕ − 2(ϕ ′ − 1)ϑ ′ tanϑ + 2

ξ ′

ξ
(ϕ ′ − 1) = 0 (1)

ϑ ′′ + 1

2

�
(ϕ ′ − 1)2 + 3 cos2 ϕ

�
sin 2ϑ + 2

ξ ′

ξ
ϑ ′ = 0 .

Here ξ = l/ l0, where l0 is the length of the cable at the begining of the re-
trieval process. u denotes the dimensionless tether force. ( )′ designates the
derivative with respect to a dimensionless time τ = ωt , where ω is the angular
velocity of the Keplerian motion of the main satellite.

From the equations of motion (0) follows that for constant tether length the
radial relative equilibrium position ϑ = 0, ϕ = 0, l = l0 (or. ξ = 1) is a solution
resulting into the static tether tension Qstat

l =−3mω2l0 or uS = 3.
For the special retrieval law

"(t) = "0eντ (2)

the equations of motion (0) become autonomous because

ξ ′/ξ = ν, ξ ′′/ξ = ν2.

The first equation of (0) yields the necessary retrieval force and the two other
equations yield the equilibrium angles

ϑ = ϑ0 = 0 and sin 2ϕ0 = 4ν/3.



Optimal control of a tethered subsatellite 445

By linearization of equations (0) about this equilibrium we see that the equa-
tion for the out of plane angle ϑ(t) completely decouples and takes the fol-
lowing form (we use again ϑ(t) as variable for the small displacement)

ϑ ′′ + 2νϑ ′ + �
1+ 3 cos2 ϕ0

�
ϑ = 0. (3)

Since for retrieval according to (2) ν is negative, there appears in (3) a damping
term with negative coefficient resulting in an unstable out of plane angular
motion.

For the formulation of the control problem we make additional simplifying
assumptions: (1) As drawn in Fig. 2 the main satellite (M) is supposed to
move on a circular Keplerian orbit around the Earth. (2) The subsatellite m is
connected to M by a massless straight string, on which the control force Q"

acts. (3) We further neglect the influence of the motion of m on the dynamics
of M. This is a practically reasonable assumption, since the mass ratio between
M and m is of the order of 102, if, for example, M is the space shuttle and m is
a satellite as it is used in the TSS1 experiment. (4) As in ([5]) we approximate
the local gravity gradient by the so-called “near-field dynamics”, that is by a
locally linearly varying gravitational field. (5) The subsatellite (m) moves only
in the orbit plane of M.

The control variable u, which is proportional to the tension force Q", is
allowed to vary in the interval [umin, umax], where umin ≥ 0, because the tether
cannot transmit compressive forces. The upper bound umax is chosen larger
than the static force uS = 3, which is necessary to sustain the equilibrium con-
figuration at the beginning of the retrieval process. We choose umax = 1.05 uS

for our calculations. Instead of using the tension force u one could also think

Satellite

Shuttle

Orbit

O

Earth
x

y

z

ϕ ϑ

Figure 2. System geometry showing the shuttle with mass M on a prescribed circular orbit,
the in-plane angle ϕ and out-of-plane angle ϑ of the straight tether of length l connecting the
satellite (m) to M
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of using the length change rate ξ̇ as control variable. Since the tether is mod-
elled as a string we are not able to apply a compressive force, i.e. to push the
tether. Hence we could not satisfy the constraints for u.

Our main goal is to search for a time optimal solution.

3. Optimal Control Problem

The formulation of the optimal control problem is completely analogous to
the one given in [15]. Only the constraint equation

ξ̇ ≤ 0 (4)

and the boundary conditions, where we assume that the subsatellite is steered
from its relative equilibrium far away from the main satellite (tether length ξ0)
into a new relative equilibrium with tether length ξT < ξ0:

ϑ(0) = 0, ϑ̇(0) = 0, ϑ(T ) = 0, ϑ̇(T ) = 0,
ξ(0) = ξ0 = 1, ξ̇ (0) = 0, ξ(T ) = ξT , ξ̇ (T ) = 0.

(5)

have to be changed.
The numerical solution of the boundary value problem by a homotopy

strategy is also described in detail in [15].
For a tether length ratio ξ0/ξT =100 this procedure results in a time optimal

solution (no monotonicity constraint (4)) with 5 switching points, which are
obtained from the zeros of the switching function λ4 as depicted in Fig. 3.
The corresponding control function is depicted in Fig. 4 showing the “bang-
bang” character of the control switching between umin = 0 and umax = 3.15. In
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Figure 3. Switching function λ4(t) of the
time optimal solution with (full line) and
without (dotted line) the constraint ξ̇ ≤ 0.
Five (resp. seven) switching points are ob-
tained for the length ratio ξ0/ξT = 100.

Figure 4. Bang-bang shaped control function
u(t) corresponding to the switching function
of Fig. 3. Full lines with and dotted lines
without constraint.
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both figures the full lines designate the control taking the constraint (4) into
account. If the switching function vanishes on an interval, so called boundary
control is necessary, where the length is kept constant ([15]). The dotted lines
in Fig. 3 and Fig. 4 are the switching function λ4 and the control u, without
taking into account of the constraint (4), hence resulting in the time optimal
solution. The corresponding time dependence of the retrieving tether length
and the variation of the in plane angle are shown in Fig. 8, where it is clearly
visible that the constraint (4) is taken into account because of the occurence of
sections where the tether length is kept constant.

The time optimal orbits in the orbital frame are depicted in Fig. 5 in the
unconstrained case and in Fig. 6 taking the constraint (4) into account. The
five switching points are marked by changing the drawn line of the orbit.

Those branches of the trajectory in Fig. 6, where ξ̇ =0, start at cusps and are
denoted by ubnd. They are circular arcs about the suspension points because
the length is kept constant. The difference in retrieval time between the two
solutions shown in Fig. 5 and in Fig. 6, which are distinguished by taking into
account or neglecting the constraint (4), is about 4%.
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Figure 5. Time optimal flight paths of the
subsatellite in the orbital coordinate frame
(x0, y0) of Fig. 1 for unrestricted deviation
without constraint (4).

Figure 6. As in Fig. 5 but taking the con-
straint (4) into account.The dashed curves de-
note boundary arcs (ξ= const.)
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4. Application of the Optimal Strategy to a Massive
Tether System

The optimal control strategy works fine for the simplified model of the
tethered satellite system. Since for a real system a flexible massive tether joins
the two satellites we now want to show whether the strategy developed for the
massles tether model can be of practical use for the system with massive tether.
For this purpose we implement the optimal control strategy into the computer
code developed in [16] which is based on the finite element discretization for
a massive tether model.

We consider the case of the time optimal solution obtained for the system
(0) with massless tether and without taking into account the constraint (4), that
is ξ̇ ≤ 0. We recall that for ξ0/ξT = 100 in the time optimal case, 5 switching
points are obtained, as is shown in Fig. 5. For a length ratio ξ0/ξT = 20 we
apply this result to the massive system and obtain Fig. 7.

We note that as in Fig. 5, neglecting the constraint (4) results in a loop in
the motion of the subsatellite due to the fact that now the tether also partly
is deployed during the time optimal retrieval process. The switching intervals
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Figure 7. Trajectory of the subsatellite for
the time optimal solution without the con-
straint ξ̇ ≤ 0 for the massive tether
model in the orbital frame. Three switch-
ing points are applied for the length ratio
ξ0/ξT = 20.

Figure 8. Retrieving tether length ξ and
in-plane angle ϕ for the massless tether
model corresponding to the control shown
in Fig. 4 with active constraint (4).
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obtained for the massless tether system are taken as inputs for the simulation of
the continuous massive tether system. For the free flight phase we additionally
used umin = 0.005uS . The flight path of the subsatellite with the massive tether
shown in Fig. 7 follows the trajectory of the simpler optimal control model
quite closely, but fails to meet the final boundary conditions precisely, because
the dynamics of the simplified model used in the optimal control model and
the model used in the FE simulation differ sligthly. By slightly adjusting the
location of the switching points this small deviation could be corrected. See
also the comments made in ([15]).

That the controlled motion of the continuous system, which is governed
by a set of partial differential equations, is so close to the optimally controlled
motion of the simple finite dimensional system is surprising at the first glance.
But a plausible explanation is that the control action on the system by tension
control is practically the same for both systems and is effective for the system
with massive tether only if the tether is streched. This, however, is exactly the
situation stipulated for the simplified model.

5. Conclusions

The main result of this paper is the extension of the optimally controlled
deployment process of a tethered satellite presented in [15] to the process of
retrieval.

Although the optimal control processes for deployment and retrieval in the
orbital plane and their analyses are quite similar it still has to be remarked that
for the retrieval process also the motion out of the orbital plane must, at least,
be addressed. Here the question arises if assuming, as we did, that only ten-
sion control is applied, whether the three-dimensional problem of retrieval of
a subsatellite from the radial relative equilibrium position far away from the
main satellite to the radial relative equilibrium position close to the main satel-
lite is controlable. Looking at the simpler problem of the motion of the string
pendulum mentioned above might indicate that this is not the case, because
for the string pendulum only planar oscillations can be extinguished by length
manipulations and not three dimensional motions.

Hence our investigation performed in the orbital plane is a first step to be
done in the full three dimensional control problem of retrieval of a subsatellite
to a main satellite which still requires further investigations.
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Abstract: We analyze energy pumping phenomena in a linear periodic substructure, 
weakly coupled to an essentially nonlinear attachment. By energy pumping we 
denote passive, one-way, irreversible transfer of energy from the linear 
substructure to the nonlinear attachment. As a specific application the 
dynamics of a system of linear coupled oscillators with a nonlinear end 
attachment is examined. Both theoretical and experimental results are 
discussed, including resonance capture cascades, i.e., a series of energy 
pumping phenomena occurring at different frequencies, with sudden lower 
frequency transitions between sequential events. The observed multi-
frequency energy pumping cascades are particularly interesting from a 
practical point of view, since they indicate that nonlinear attachments can be 
designed to resonate and extract energy from an a priori specified set of modes 
of a linear structure, in compatibility with the design objectives. 

Key words: Nonlinear energy pumping, vibration control. 

1. Introduction 

It was shown recently [1-3] that under certain conditions essentially 
nonlinear attachments can passively absorb energy from linear 
nonconservative (damped) structures, acting, in essence, as nonlinear energy 
sink. Then, energy pumping from the linear structure to the attachment 
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occurs, namely, a one-way, irreversible transfer of energy. This is due to 
resonance capture [2-7], e.g., temporary transient capture of the dynamical 
flow on a resonance manifold of the system. In this paper we summarize the 
main theoretical results related to nonlinear energy pumping, and provide 
some preliminary experimental verification. In addition, we show that there 
exists even the possibility of resonance capture cascades whereby, the 
attachment resonates sequentially with a number of modal oscillators, 
extracting energy from each at a different frequency range. 

2. Theoretical Results 

Consider the system of Figure 1, composed of a linear substructure with 
(N+1) degrees-of-freedom (DOF) that is weakly coupled to a local 
essentially nonlinear attachment at point O – termed nonlinear energy sink 
(NES). The attachment consists of a nonlinearizable stiffness nonlinearity of 
the third order in parallel with a viscous dashpot that models energy 
dissipation; throughout this work the mass of the NES will be taken m=1. 
The coupling stiffness between the linear and nonlinear parts is assumed to 
be linear and weak, of order ��� <<ε<ε . In addition, the connection 
between the two systems is assumed to be one-dimensional. 

Introducing modal coordinates N,...,0m),t(a m =  for the linear 
substructure, its response �����  at the point of attachment O is expressed in 
the following modal form, 

                                      (1) 

where ���

�φ  denotes the element at position O of the k-th mass normalized 
eigenvector; in general, ���

�φ  denotes the element at position j of the mass-
normalized eigenvector 

���φ  of the uncoupled linear substructure with 
0=ε . In (1) it is assumed that the uncoupled linear substructure possesses 

(N+1) mass-normalized eigenvectors 
���φ  corresponding to (N+1) distinct 

eigenfrequencies iω , i=0,1,…,N. Taking into account (1), the (N+1) 
equations of motion of the combined system are expressed in the following 
form, 

(2)
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where the viscous damping forces are also weak and ordered by the small 
parameter ε . In (2) the equations of motion are expressed in terms of the 
(N+1) modal oscillators of the uncoupled linear substructure. 

Of interest is to study resonance interactions between the nonlinear 
attachment and individual modes of the linear substructure. As shown in [1-
3] such resonance interactions can lead to interesting resonance capture [5] 
and energy pumping phenomena, whereby externally imparted energy in the 
linear system gets transferred (pumped) to the nonlinear attachment in a one 
way irreversible fashion. In that case the nonlinear attachment acts, in 
essence, as a nonlinear energy sink.

Figure 1. Linear (main) substructure with a weakly connected local nonlinear attachment.

For the simulations the system depicted in Figure 2 was considered with 
N=9 (that is, a ten DOF linear chain with an end nonlinear attachment), with 
each oscillator (including the nonlinear attachment) possessing a grounded 
weak viscous damper with constant equal to ελ . The parameters of the 
system are chosen as, 1.0and,5.0,0.5C,5.3d,4.02

0 =ε=λ===ω ,
with initial conditions, 0)0(v)0(v == � , N,...,1,0m,0)0(ym == , and 

m 2y (0) 0, m 0,1,3,..., N, y (0) 10= = =� � ; these correspond to an 
impulsive excitation of magnitude Y applied to the third from the right end 
particle of the chain. In Figure 3 the responses )t(yand)t(y),t(v 90  are 
depicted, together with the variation of the instantaneous frequency of 
oscillation of the nonlinear attachment, )t(Ω , versus time. This 
instantaneous frequency was estimated elsewhere [2]. Note, that this 
frequency differs from the frequencies of oscillation of the particles of the 
chain during the damped motion of the system, since the transient dynamics
is considered.  

Judging from the instantaneous frequency of the nonlinear attachment, 
one notes that there occurs a cascade of resonance captures involving the 
lowest three linearized modes of the chain. Referring to Figure (3b), at the 
initial stage of the motion when the energy is relatively high, the attachment 
resonates with linearized mode 2 and energy pumping from the chain to the 
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attachment takes place at frequencies near    . As energy decreases due to 
damping there occurs a sudden lower frequency transition (jump) into a 
regime where the attachment resonates with linearized mode 1; this results in 
energy pumping at frequencies near 1ω . With further decrease of the energy, 
there occurs a second lower frequency transition in the neighborhood of 0ω ;
at this third stage pumping is realized at frequencies near the lowest 
eigenfrequency of the linear chain. One concludes that for sufficiently strong 
excitations energy pumping from the chain to the attachment occurs at 
different frequency regimes that are reached through sudden transitions 
(jumps) from higher to lower frequencies; these regimes of energy pumping 
and resonance in the system represent resonance capture cascades. 

               •••           y1(t)          y0(t)         v(t) 

Figure 2. The (N+1) DOF linear periodic chain with a nonlinear end attachment 

In an additional illustrative example of energy pumping, consider the 10 
DOF damped linear chain with the nonlinear end attachment considered 
previously, with the same parameters, and initial conditions,  

0)0(v)0(v == � , N,...,1,0m,0)0(ym == ,
�������	�


�������������

��
=== ��

Hence, an impulsive excitation is applied to the most distant from the 
attachment particle of the chain. In Figure 4 the response of the attachment 

��� is depicted, together with the variation of the instantaneous frequency 
of oscillation of the nonlinear attachment versus time. Note the vigorous 
resonance capture cascading involving as many as six of the linearized 
modes of the chain (including both the highest and lowest linearized modes 
in the frequency domain). 

2.1 Experimental Results 

The experimental fixture built [9] to examine the nonlinear energy 
pumping phenomenon is depicted in Figure 5. It consists of two single-
degree-of-freedom oscillators (the ‘subsystems’) connected by means of a 
linear coupling stiffness. The left oscillator (the linear subsystem) is 
grounded by means of a linear spring, whereas the right one (the nonlinear 
energy sink) is grounded by means of a nonlinear spring with essential cubic 

2ω
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nonlinearity. To dissipate the pumped energy, a grounded viscous damper 
exists in the NES. Transient (shock) excitation of the system is provided by 
means of a rod that impacts elastically with the left mass. Assuming that an 
impulsive (broadband) excitation of finite duration is acting on the linear 
oscillator, it is of interest to study the transient (damped and essentially 
nonlinear) dynamics. Hence, the aim of the experimental work is to show 
that broadband energy initially imparted to the linear subsystem is passively 
‘pumped’ to the NES where it is confined and dissipates without ‘spreading’ 
back to the linear subsystem. More details of the experimental fixture and the 
experimental protocol can be found in [9]. 

(a)

     Frequency 

                          t 
 (b) 

Figure 3. Resonance capture cascades leading to energy pumping for the strongly forced 

system: (a) Transient (solid line corresponds to the attachment); (b) Instantaneous frequency 

of the attachment versus time (dashed lines indicate the linearized eigenfrequencies). 
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        Frequency 

                           t 
Figure 4. Resonance capture cascades leading to energy pumping for the strongly forced 

system: Instantaneous frequency of the attachment versus time (dashed lines indicate the 

linearized eigenfrequencies). 

Figure 5. Experimental fixture for nonlinear energy pumping. 
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In Figure 6 a case of experimental energy pumping is presented, together 
with a comparison between the experimental and theoretical acceleration 
time series of the two subsystems. Good agreement between theory and 
experiment is noted. Such agreement is typical of what was observed for all 
experimental trials [9]. Nonlinear energy pumping is noted, especially at 
early times of the response (in the period 0 – 4 sec) when the energy of the 
system is relatively high and the nonlinear effects are more profound. 

By studying the experimental time series one notes that, in the energy 
pumping regime 0 – 4 sec, the NES oscillates with a dominant ‘fast’ 
frequency, which is approximately equal to the eigenfrequency of the linear 
subsystem. As mentioned earlier, this is a manifestation of resonance capture 
of the dynamics in the neighborhood of a 1:1 resonance manifold of the 
system. In the reported experiment eventually 88.5% of the total input 
energy is absorbed and dissipated at the NES. 
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Abstract: A technique without state feedback is proposed for swing-up and stabilization at
the upright position of the free link in a two-link underactuated manipulator (the
first and second links are active and passive, respectively). The objectives are
accomplished by actuating the perturbation of bifurcations produced in the sec-
ond link under high-frequency excitation for the first link. Experimental results
confirm the validity of the proposed method for the underactuated manipulator.

Key words: Underactuated manipulator, high-frequency excitation, pitchfork bifurcation,
perturbation of bifurcation, bifurcation control.

1. Introduction

Manipulators with free joints (links) are called underactuated manipulators
and in these systems, the number of generalized coordinates is larger than the
number of control inputs (the number of actuators). The equations of motion
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for the free links are regarded as nonholonomic constraints because they are
nonintegrable.

There have been many studies on the control of underactuated manipulators
(comprehensive references can be found in [1]). In all previous methods, the
control of the free joint is carried out by actuating the active joint based on
the motion of the free link. On the other hand, the method presented in this
study does not require any information on the motion of the free link. Namely,
from the practical point of view, while the application of the past methods
is for overcoming actuator failure due to unexpected accident, the proposed
method can also be regarded as a control strategy for the case when not only
the actuator but also the sensor breaks down. The control objective is for the
two link underactuated manipulator (Fig. 1) to swing up the second (free)
link, which hangs down in the direction of gravity in the initial state, to the
state where the second (free) link points in the direction opposite the gravity
effect and also to stabilize the free link. The control is based on the actuation
of the perturbation of bifurcations in the free link produced by changing the
configuration of the high-frequency excited active link. Finally, the efficiency
of the proposed control method is experimentally validated.

2. Bifurcations Produced under High-Frequency
Excitation and Their Perturbations

Before proposing our control method, we briefly consider the behavior of a
pendulum under high-frequency excitation from a general point of view. The
equation of motion of a pendulum subjected to sinusoidal excitation at the
supporting point is expressed in dimensionless form as

θ̈ + µθ̇ + σ 2 sin θ + a cos t∗ sin(θ − γ ) = 0, (1)
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Figure 1. Two-link underactuated manip-
ulator.

Figure 2. Pendulum periodically excited
in any direction.
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where a = β/ l and σ 2 = (g/ l)/ω2. (̇) denotes the derivative with respect to
dimensionless time, t∗= t ·ω, and the viscous damping effect µθ̇ is considered.
In particular, in the cases where the excitation direction is nearly lateral (γ =
π/2+�γ ) and nearly vertical (γ = 0+�γ ), the above equation is rewritten
as follows:

Lateral : θ̈ + µθ̇ + σ 2 sin θ − a cos t∗ cos(θ −�γ ) = 0 (2)

V ertical : φ̈ + µφ̇ − σ 2 sinφ − a cos t∗ sin(φ −�γ ) = 0, (3)

where φ = θ − π . After linearization, Eq. (3) corresponds to the well-known
Mathieu equation [2].

We set the magnitude of the excitation frequency ω to be a large value
compared with the linear natural frequency of the pendulum

√
g/ l, and then

the dimensionless parameter σ is very small. We also set a small value for
the dimensionless excitation amplitude a. Now, by using a small parameter ε
(|ε|  1) as a bookkeeping device, we quantitatively set the magnitudes of
the parameters as

σ = ε2σ̂ , a = εâ, µ = εµ̂ ( σ̂ = âθ1 = µ̂ ≡ O(1)), (4)

where ˆ denotes “of the order O(1).” Then the dimensionless equation (3) is
written as follows:

φ̈ + εµ̂φ̇ − ε2σ̂ sin φ − εâ sin(φ −�γ ) cos t = 0. (5)

We analyze Eq. (5) using the multiple time scales as t0 = t∗, t1 = εt∗, t2 = ε2t∗.
We seek an approximate solution in the form [3]

φ = φ0 + εφ1 + ε2φ2 · · · . (6)

Substituting Eq. (6) into Eq. (5) and equating the coefficients of like powers
of ε yield the following equations for the orders:

O(ε0) : D2
0φ0 = 0 (7)

O(ε1) : D2
0φ1 =−2D0 D1φ0 − µ̂D0φ0 + â sin(φ0 − γ ) cos t0 (8)

O(ε2) : D2
0φ2 =−2D0 D1φ1 − 2D0 D2φ0 − D2

1φ0 − µ̂(D0φ1 + D1φ0)

+σ̂ sin φ0 + â cos(φ0 − γ )φ1 cos t0, (9)

where Di ≡ ∂/∂ti . From conditions under which the secular term in each
order is not produced, we obtain the following autonomous equation:

D2
1φ0 + µ̂D1φ0 − σ̂ sinφ0 + 1

4
â2 sin 2(φ0 −�γ ) = 0. (10)

Furthermore, the above equation can be rewritten in neglecting the error of
O(ε) as follows:

φ̈ + µφ̇ − σ sinφ + 1

4
a2 sin 2(φ −�γ ) = 0. (11)
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Analogously, we obtain the autonomous equation governing the motion of a
pendulum excited nearly in the lateral direction as follows:

θ̈ + µθ̇ + σ sin θ − 1

4
a2 sin 2(θ −�γ ) = 0. (12)

Because Eqs. (11) and (12) are autonomous, it is very easy to perform bifur-
cation analysis.

Equations (11) and (12) with d/dt∗2 = d/dt∗ = 0 lead to the following
bifurcation equations with the accuracy of O(3) as follows:

V ertical :−(σ − a2

2
)φ − (a

2

3
− σ

6
)φ3 + a2

2
�γ = 0 (13)

Lateral :(σ − a2

2
)θ + (a

2

3
− σ

6
)θ3 + a2

2
�γ = 0. (14)

Therefore, in the case of �γ = 0, it follows that the bifurcations for vertical
and lateral excitations are complete subcritical and supercritical pitchfork bi-
furcations, as shown in Figs. 3(a) and (b), respectively. On the other hand, the
tilt (�γ �= 0) perturbs these complete bifurcations as shown in Figs. 3(c) and
(d), respectively.
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Figure 3. Bifurcation diagram in the pendulum under high-frequency excitation (solid line:
stable, dashed line: unstable): (a) vertical excitation (γ = 0); (b) lateral excitation (γ = π/2);
(c) tilted vertical excitation (γ = 0+�γ ); (d) tilted lateral excitation (γ = π/2+�γ ).
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3. Motion Control of Underactuated Manipulator by
Actuating the Perturbation of the Pitchfork
Bifurcations

We consider the analytical model shown in Fig. 1. The manipulator expe-
riences the gravity effect g′(=g sinα)[m/s2] in the positive direction of the x ′
axis. Here we can set the position of the first link as follows:

θ1 = aθ1 cosωt + θ1of f , (15)

where the first term is for applying high-frequency excitation to the second link
(the frequency ω is called excitation frequency). The second term expresses
the configuration of the first link with respect to the direction of the gravity
effect (θ1of f is called the offset of excitation). Then the equation governing
the motion of the second link is expressed in dimensionless form as

θ̈2 + µθ̇2 − aθ1(1+ c cos θ2) cos t∗

+ca2
θ1 sin θ2 sin2 t∗ + σ sin(aθ1 cos t∗ + θ1of f + θ2) = 0, (16)

where (˙) denotes the derivative with respect to dimensionless time, t∗ = t ·ω,
and the dimensionless parameter values corresponding to the subsequent ex-
periment are c = 0.635, σ = 4.08/ω2, and µ = 0.524/ω, where the excitation
frequency of the first link ω is variable. By applying the method of multi-
ple scales, as described in section 2, Eq. (16) can be transformed into the
autonomous differential equation:

θ̈2 + µθ̇2 + σ sin(θ1of f + θ2)− c2a2
θ1

2
sin θ2 cos θ2 = 0. (17)

From Eq. (17) we can show the bifurcation diagrams as function of the off-
set of the excitation θ1of f . Figure 4(a) is the bifurcation diagram for the case
of θ1of f = 0 which includes the supercritical pitchfork bifurcation for Fig. 3
(b), because θ1of f = 0 corresponds to the lateral excitation of the pendulum:
γ =π/2. Figure 4(c) is the bifurcation diagram for the case of θ1of f =π/2 which
includes the subcritical pitchfork bifurcation in Fig. 3 (a), because θ1of f =π/2
corresponds to the vertical excitation of the pendulum: γ = 0. Furthermore,
Fig. 4(b) is the bifurcation diagram for the case of θ1of f = π/4 which includes
both the perturbed subcritical and supercritical pitchfork bifurcations in Figs.
3 (c) and (d), because the excitation in the case of θ1of f = π/4 simultaneously
possesses the characteristics of both tilted vertical and lateral excitations. The
three branches of (1) in Figs. 4(a) and (2) in Fig. 4(b) and (c) are smoothly
connected by a continuous change of the value of θ1of f from 0 to π/2 [4].
Therefore, the high-frequency excitation indicated by point a in Fig. 4, i.e.,
σ < c2θ1a/4, carries out the swing-up of the second link and can change the
absolute angle of the second link, θ2abs = θ1 + θ2 ≈ θ1of f + θ2, from 0 to π .
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Figure 4. Strategy of motion control for the underactuated manipulator: swing-up and stabi-
lization by actuating the perturbation of pitchfork bifurcations (solid line: stable, dashed line:
unstable) ((a) θ1of f = 0, (b) θ1of f = π/4, (c) θ1of f = π/2) .

Also, when the free link reaches the upright position, this state is stable be-
cause the subcritical pitchfork bifurcation is produced, as shown in Fig. 4(c).
On the other hand, in the case of the low excitation frequency, as indicated by
point b in Fig. 4, i.e., σ > c2θ1a/4, the swing-up cannot be realized.

4. Experiment

We experimentally investigate the validity of the theoretically proposed
control method using the experimental apparatus shown in Fig. 5. Figure 6(a)
shows the time histories of the first and second links for sufficiently
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high-frequency excitation. It is experimentally clarified that the second link is
swung up to the upright position and is stabilized at this position. In Fig. 6(b),
the swing-up cannot be realized because of insufficiently high frequency
excitation.
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5. Summary

We proposed a method for motion control of an underactuated manipu-
lator, in which information on the free link is not required. The concept is
based on the appropriate actuation of the perturbation of supercritical and sub-
critical pitchfork bifurcations produced in the free link under high-frequency
excitation. The experiments performed using a simple apparatus confirmed
the validity of the proposed control method.
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METHODS AND EXAMPLES OF CONTROLLING
CHAOS IN MECHANICAL SYSTEMS

Alexander Fradkov and Boris Andrievsky
Institute for Problems of Mechanical Engineering of Russian Academy of Sciences,
Saint Petersburg, 199178, Russia.
{alf,andr}@control.ipme.ru∗

Abstract: State-of-the-art of the field related to control of chaotic systems is surveyed.
Several major branches of research are discussed: feedforward (“nonfeedback”)
control, “OGY method”, “Pyragas method”, traditional for control engineering
methods of nonlinear and adaptive control. A new solution to the problem of
angular velocity stabilization for the spinning spacecraft is suggested. Numer-
ical simulation results are presented showing efficiency and robustness of the
speed-gradient control strategy for suppression of possible chaotic motion of
the spacecraft.

Key words: Nonlinear control, chaotic behavior.

1. Introduction

The idea of controlling chaos in dynamical systems has come under de-
tailed investigation during last decade, see [1]. Starting with a few papers in
1990, the number of publications in peer reviewed journals exceeded 2700 in
2000, with more than half published in 1997–2000. According to the Science
Citation Index, in 1997-2002 about 400 papers per year related to control of
chaos were published in peer reviewed journals, see bibliography [2] and sur-
veys [3, 4]. Authors of numerous papers have developed new methods for
control of nonlinear systems and demonstrated advantages of their usage both
for analysis of system dynamics and for significant change of system behavior
by small forcing.

∗Partial funding provided by the Russian Foundation for Basic Research, project 02-01-00765 and by the
Presidium of Russian Academy of Sciences (Program 19, project 1.4.).
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State-of-the-art of the field related to control of chaotic systems is sur-
veyed in the paper. Several major branches of research are discussed: feed-
forward (“nonfeedback”) control (based on periodic excitation of the system),
“OGY method” (based on linearization of Poincare map), “Pyragas method”
(based on a time-delayed feedback), traditional for control engineering meth-
ods of nonlinear and adaptive control. Most attention is paid to the control of
continuous-time chaotic systems.

A number of application examples in mechanics and mechanical engi-
neering are discussed, including control of pendulum systems, beams, plates,
control of stick-slip friction motion, control of vibroformers, control of micro-
cantelivers.

As an example, a new solution to the problem of angular velocity stabiliza-
tion for the spinning spacecraft is suggested. The energy-based speed-gradient
(SG) control law is proposed and numerical examination of the closed-loop
system is provided. Numerical simulation results are presented showing effi-
ciency of the SG control strategy for suppression of possible chaotic motion
of the spacecraft.

2. Methods of Chaos Control

Consider a continuous-time system with lumped parameters described in
the state space by differential equations

ẋ = F(x, u), (1)

where x is an n-dimensional vector of state variables; ẋ = d/dt ; u is an m-
dimensional vector of inputs (control variables). A typical goal of controlling
a chaotic system is full or partial stabilization of an unstable trajectory (or-
bit) x∗(t) of the unforced (u = 0) system. The trajectory x∗(t) may be either
periodic or chaotic (nonperiodic). An important requirement is the restriction
of the control intensity: only small controls are of interest.

A specific feature of this problem is the possibility of achieving the goal
by means of an arbitrarily small control action. Other control goals like syn-
chronization (concordance or concurrent change of the states of two or more
systems) and chaotization (generation of a chaotic motion by means of con-
trol) can also be achieved by small control in many cases.

More subtle objectives can also be specified and achieved by control, for
example, to modify a chaotic attractor of the free system in the sense of chang-
ing some of its characteristics (Lyapunov exponents, entropy, fractal dimen-
sion), or delay its occurrence, or change its locations, etc.

Feedforward control by periodic signal. Historically the first method
to transform a chaotic trajectory into aperiodic one was based on applying a
“nonfeedback” control, e.g. a harmonic one: u(t) = Asin(ωt). Excitation
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can reflect influence of some physical actions. In these cases, the value u(t)
depends only on time and does not depend on the current measurements of the
system variables. Such an approach is attractive because of its simplicity: no
measurements or executions are needed for state information.

The possibility of transforming a periodic motion into a chaotic one, or vice
versa, by means of periodic excitation of a medium level was demonstrated in
[5, 6]. These results were based on computer simulations. In [7, 8] suppression
of chaos in one degree-of-freedom nonlinear oscillators is studied analytically,
via the Melnikov method.

Linearization of Poincaré map (OGY method). The real burst of interest in
the control of chaotic systems was triggered by a paper [9], before which there
was a common perception that chaos was not controllable. In this seminal
paper two key ideas were introduced:

– to use the discrete system model based on linearization of the Poincaré
map for controller design;

– to use the recurrence property of chaotic motions and apply control action
only at an instant when the motion returns to the neighborhood of a desired
state of the orbit.

Introduction of the switching off threshold (“outer” deadzone) has the ef-
fect of bounding control action and allows to respect the small control restric-
tion, pertaining only to the special recurrence feature of chaotic motions.

Numerous extensions and interpretations have been proposed in subse-
quent years, and the method is commonly referred to as the “OGY method.”
Efficiency of this approach has been confirmed by numerous simulations as
well as physical experiments. However, the convergence rate may be low,
which is the price for achieving nonlocal stabilization of a nonlinear system
by small control.

To overcome uncertainty of the linearized plant model, the authors of [9]
and their followers suggest estimation of parameters in state-space form. The
problem is of course well known in identification theory and is not straightfor-
ward, because identification in closed loop under “good” control may prevent
“good” estimation.

In [1, 25] a justification of the above method was given for the special
case when yk,i = yk−i , i = 1, . . . , n. In this case the outputs are measured and
control action is changed only at the instants of crossing the surface. For con-
troller design an input-output model was used containing fewer coefficients
than the state-space one. For estimation, the method of recursive goal inequal-
ities due to Yakubovich was used, introducing an additional inner deadzone
to resolve the problem of estimation in closed loop. An inner deadzone com-
bined with the outer deadzone of the OGY method, provides robustness of the
identification-based control with respect to both model errors and measure-
ments errors.



484 A. Fradkov and B. Andrievsky

Delayed feedback (Pyragas method). The method of time-delayed feed-
back was proposed in [26]. It suggests to find and stabilize a τ -periodic orbit
of the nonlinear system (1) in the simple form of

u(t) = K [x(t) − x(t − τ)] (2)

in which K is the feedback gain and τ is the constant time delay.
If τ is equal to the period of an existing periodic solution x̄(t) of system

(1) with u = 0, and if the solution x(t) to the closed-loop system (1), (2) starts
from Γ = {x̄(t)}, then it will remain in Γ for all t ≥ 0. However, it has been
noticed that x(t) may converge to Γ even if x(0)∈̄Γ .

The control law (2) applies also to stabilization of forced periodic motions
in system (1) with a T -periodic right-hand side. Then, τ should be chosen
equal to T . A number of modifications of the method were proposed lately.

This method is subjected to the so-called “odd number limitation” meaning
that if the Jacobian of system (1) at the target UPO has an odd number of
real eigenvalues that are unstable, then the UPO cannot be stabilized by the
controller (2) no matter what constant gain K is used. Some extended versions
of the algorithm (2) where constant gain K is replaced by a dynamical system
(filter) may overcome the “odd number limitation” [10].

Linear and nonlinear control. Many conventional engineering control tech-
niques are effective for controlling chaos. In some cases, even the simple pro-
portional feedback controller works quite well.

More sophisticated methods of nonlinear control can also be applied: ge-
ometric methods (feedback linearization, center manifold approach); goal-
oriented techniques (Lyapunov design, speed-gradient method, passivity based
feedback design, sliding mode control), frequency-domain methods (harmonic
balance), iterative design methods (backstepping), etc.

A number of methods are based on continual reduction of some goal (ob-
jective) function Q(x(t), t). The current value Q(x(t), t) may reflect the dis-
tance between the current state x(t) and the current point of the goal trajectory
x∗(t), such as Q(x, t) = |x − x∗(t)|2, or the distance between the current state
and the goal surface h(x)=0, such as Q(x)= |h(x)|2. For continuous-time sys-
tems the value Q(x) does not depend directly on the control u and decreasing
the value of the speed Q̇(x) = ∂Q/∂x F(x, u) can be posed as an immediate
control goal instead of decreasing Q(x). This is the basic idea of the speed-
gradient (SG) method [11], where a change in the control u occurs along the
gradient in u of the speed Q̇(x). This approach was first used for control of
chaotic systems in [27]. Systematic exposition and further references can be
found in [1]. The general SG algorithm has the form

u =−�[∇u Q̇(x, u)], (3)
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where �(z) is vector-function forming an acute angle with its argument z.
For affine controlled systems ẋ = f (x)+ g(x)u the algorithm (3) simplifies to
u =−�[g(x)T∇Q(x)].

Note that directly using the well-developed machinery of modern linear
and nonlinear control theories often implies “brute force control” and does
not take into account the special features of chaotic motions. This means that
the “small control” requirement is ignored or violated; therefore, this simple-
minded application of conventional control theory works, but not in a way as
efficient and effective as expected when chaos is available for control utiliza-
tion.

Adaptive and intelligent control. Because of complex nonlinear behaviors
of chaotic systems and uncertainty of parameters in many physical systems,
adaptive and intelligent control techniques can be quite desirable. Among nu-
merous methods of intelligent control, those using neural network and fuzzy
systems are the most popular ones. Various control algorithms can be ap-
plied to create a fuzzy control system. The most convenient one for control
design and applications is the so-called Takagi–Sugeno fuzzy models.

3. Examples of Controlling Chaos in Mechanics

As it was mentioned in [12], chaos occurs widely in applied mechanical
systems. A few recent examples are mentioned below.

Control of pendulums, beams, plates. A number of studies have been de-
voted to the control of chaos in systems of one or more pendulums. Due
to interesting and readily observable behavior, pendulum systems have been
used for numerical and experimental demonstration of most existing methods
of chaos control [13–15]. Chaos suppression and creation has been studied
in standard mechanical structures like beams [16], plates [17], impact systems
[13, 18], externally forced array of oscillators with nearest-neighbor viscoelas-
tic coupling [19].

Control of friction. It is known that a low velocity regime of mechanical
systems is characterized by chaotic stick-slip motion caused by the
interplay between static and kinetic friction forces. From a practical point
of view one may wish to control the system in such a way that the overall
friction is reduced or enchanced, the chaotic mode is eliminated and smooth
sliding is achieved. Such a control is of high technological importance for
micromechanical devices e.g. in computer disk drives, where the early stages
of motion and the stopping process, which exhibit chaotic stick slip, pose a
real problem. Controlling frictional forces has been traditionally approached
by chemical means, namely, using lubricating liquids. A different approach,
proposed in [20, 21] is based on controlling the system mechanically. The
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goal is twofold: a) to achieve smooth sliding at low driving velocities, which
otherwise correspond to the stick-slip regime; b) to decrease the frictional
forces. The disadvantage of the method of [21] is the necessity of recon-
structing the dynamics. This may be more or less difficult depending on
the details of the dynamics of the internal degrees of freedom at the friction
interface.

Besides achieving the goals mentioned in the beginning, controlling fric-
tion provides a better understanding of friction by measuring velocity-
weakening friction forces.

Control of vibroformers. As it is known, the vibration-compaction of the
heated mixed paste in the manufacturing of anodes for reduction cells is much
more effective than monotone compression. The vibration-compaction helps
a good mixing of the material, produces well compacted anode blocks and,
above all, tends to eliminate air bubbles decreasing strength of the anodes.
In the paper [22] a method for vibroformer control is proposed. The vibro-
former is considered as an impact oscillator and is described by a version of
the bouncing ball model. The frequency of the vibroformer exciter rotation
is used as a control variable. To speed up changing the regime of the unit,
targeting methods of [23] are applied.

Control of microcantilevers. The dynamics and control of a microcan-
tilever system are studied in [24]. The cantilever is vibrated by a sinusoidal
input, and its deflection is detected optically.

4. Stabilization of the Spinning Spacecraft

In a number of applications irregular vibrations of mechanical units arise
from rotation of unbalanced rotors, vibrations in appendages, etc. The control
goal is then suppression of these undesirable vibrations. Problems of this kind
are often solved by the methods of linear control. In some cases nonlinear
approaches are reported to be successful, e.g. [28] designed a stabilization
algorithm for a spinning spacecraft using system energy as a Lyapunov (goal)
function.

4.1 Model of the System Dynamics and Uncontrolled
Motion Analysis

For the sake of simplicity, the 1-DOF model of the satellite angular motion
is used below. The degrees of freedom of the system describe the damper
mass displacement and rotation of the satellite. The damper is centered on the
body fixed X -axis and has a point mass m. That mass moves along an axis
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Figure 1. Chaotic oscillations for the case of uncontrollabe motion

a) b)

Figure 2. Active damping via control algorithm (7)

Figure 3. Satellite speeding-up via the control law (7), M̄ = 0.5M̄E
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perpendicular to X -axis at the some distance of the principal axis Z . Under
these assumptions the system satellite-damper model can be written as follows
[28]:�

(I + m(1− µ)y2)ω̇ + 2m(1− µ)y ẏω − mbÿ = M(t),

m(1− µ) ÿ + cẏ + �
k − (1− µ)ω2

�
y − bω̇ = 0,

(4)

where ω, y denote satellite angular velocity and damper mass displacement;
I,m, k, c stand for the satellite moment of inertia about Z -axis, damper mass,
spring constant and viscous resistance gain; µ = m/mT , where mT denotes a
total mass of the considered system. The external torque M(t) is a sum of
the excitational torque and the control torque, i.e. M(t) = ME (t) + MC(t). It
is assumed that MC(t) ≤ M̄ , where M̄ represents restriction on the control
torque.

The system (4) examinations show that if M(t) ≡ 0 and initial conditions
belong to some region, the system is dissipative and is attracted to the equi-
librium state of constant angular velocity ω∗ and no damper mass deflection.
If these conditions are violated, the amplitude of y(t) becomes inadmissible
large and the system can perform chaotic jumps between two stable equilib-
rium points [28]. To improve the system performance let us use, in addition,
the active damping by means of the resistojets torque MC .

4.2 Control Law Design

The control aim is to stabilize the desired state [y, ẏ, ω]T = [0, 0, ωre f ]T.
This aim corresponds to the desired constant rotation rate ω(t) ≡ ωre f and
zero displacement of the damper mass y(t) ≡ 0. Following [29–31] let us use
an energy-based approach and apply the SG-method [1, 32] for control law
design.

The total energy H of the system (4) may be derived as

H (y, ẏ, ω)=0.5
�
(m(1−µ)+k)y2+ I

�
ω2−mbẏω−0.5m(1−µ) ẏ2. (5)

Substitution of y = ẏ = 0, ω = ωre f to (5) gives the desired energy Hre f as
Hre f =0.5Iω2

re f . Let us introduce the goal function Q =(H−Hre f )
2 and derive

the SG control laws in the finite form ([32]). It gives the “proportional” and
relay algorithms as follows:

MC = γ
�
Hre f − H (y, ẏ, ω)

� · �ω + ˙̃y( Ĩ + ỹ2 − 1)−1
�
, (6)

MC = γ sign
�
Hre f − H (y, ẏ, ω)

� · sign
�
ω + ˙̃y( Ĩ + ỹ2 − 1)−1�, (7)

where ỹ = (1− µ)b−1 y, Ĩ = (1− µ)m−1b−2 I are introduced. The control law
(7) can be directly implemented by means of the on-off operating resistojets.
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In such a case the gain γ gives the control torque amplitude: M̄ = γ . The
pulse-width modulation can be used for implementation of the “proportional”
control law (6) by means of the on-off thrusters.

4.3 Simulation Results

For numerical examination the parameters of the spinning spacecraft
with circumferential nutational damper were chosen to be similar to that of
Intelsat-II being m = 0.3 kg, b = 1 m, k = 0.2 N/m, µ = 0.01, I = 100 kgm2,
c = 0.002 Ns/m, [28]. The harmonic disturbance torque ME is taken: ME (t) =
M̄E sin�t . The excitation frequency �=0.04 s−1 and the amplitude M̄E =0.05
Nm. Following initial conditions are picked up for the simulations: ω(0) =
0.815 s−1, y(0)= 0, ẏ(0)= 0. Two cases of the control torque amplitude M̄ are
studied: a) M̄=0.0225 Nm, M̄ < M̄E , and b) M̄=0.055 Nm, M̄=1.1M̄E > M̄E

(for example, the SSTL’s water resistojets producing the thrust in the order
0.01 ÷ 0.10 N would be meant).

Some simulation results are shown in Figs. 1–3.
The simulation results for the case of active damping absence MC ≡ 0 are

plotted in Fig. 1. One sees that the chaotic motion with a large magnitude of
y(t) appears. (Note that in practice y(t) is restricted due to travel limits, but
it is seen that the damper can not be effective in that case.) The effect of the
feedback control via relay SG-law (7) is demonstrated in Fig. 2. It is taken
Hre f = 33 kgm2s−2, which corresponds to ωre f = 8.124 rad/s. It is seen that
even in the case when the amplitude of control torque is less that one of the
disturbance, M̄ = 0.5M̄E (see Fig. 2a), the system behaviour is improved in a
great extent in comparison with the uncontrollable case. Perfect supression of
oscillations is obtained for the case M̄ = 1.1M̄E (Fig. 2b). Note that in [28] the
ratio M̄/M̄E is about 15. Therefore the proposed method is characterized as a
low level control.

Speeding-up the satellite rotation from ω(0)= 0.6 rad s−1 to given velocity
ωre f is demonstrated in Fig. 3 for the case M̄ = 0.5M̄E . In the case M̄ = 1.1M̄E

the finite-time convergence of ω(t) to ωre f takes place. The transient time is
about 360 s. The sliding motion with exact holding the desired state arises
after the transient is finished. (The similar processes are pictured in Fig. 2b.)
The control algorithm with a dead-zone or a pulse-width modulation control
can be used to reduce propellent consumption and working fluid discharge.

The simulations demonstrate effeciency of the SG control strategy in elim-
inating chaotic instabilities in a spinning spacecraft and robustness properties
with respect to excitation torque amplitude.
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5. Conclusions

State-of-the art of the field related to control of chaotic systems is briefly
surveyed and some examples for control of chaos in mechanical systems are
presented. The authors do not insist that chaos should be used in realistic
applications: the point of the paper is to show a variety of methods capable ei-
ther to increase chaos, or to eliminate it. These methods often achieve the goal
with smaller control power compared with traditional control engineering ap-
proaches, as it is demonstrated in the problem of supression chaotic behaviour
of the spinning satellite.
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Abstract: We show that the largest Lyapunov exponent of the dynamical system with 
time delay can be estimated by the procedure based on the phenomenon of 
chaos synchronization. Our approach can be applied both for flow and discrete 
maps. 

Key words: Lyapunov exponents, chaos synchronization, systems with delay. 

1. Introduction 

Lyapunov exponents are numbers which describe exponential 
convergence or divergence of trajectories that start close to each other. The 
existence of such numbers has been proved by Oseledec theorem [1]. The 
number of Lyapunov exponents, which characterize the behavior of 
dynamical system, is equal to the dimension of this system. If the sum of all 
Lyapunov exponents is negative then the system has an attractor. For practical 
applications it is most important to know the largest Lyapunov exponent. If 
the largest value in the spectrum of Lyapunov exponents is positive, it means 
that the system is chaotic. The largest value equal to zero indicates periodic 
or quasi-periodic dynamics. If all Lyapunov exponents are negative then the 
stable critical point is an attractor. 

Currently there exist robust algorithms for calculating Lyapunov exponents 
for the system given by a continuous and differentiable ordinary differential 
equation (for example [2-6]). These algorithms allow an easy estimation of 
entire spectrum of Lyapunov exponents but they do not work for the system 
with discontinuities or time delay and in the case when the equations of 

© 2005 Springer. Printed in Great Britain. 
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motion describing dynamics of the system are unknown. In such a case the 
estimation of Lyapunov exponents is not straightforward [7-10]. 

Our method is based on the phenomenon of synchronization of coupled 
identical systems [11]. Previously it has been successfully used for dynamical 
systems with discontinuities [12-14]. 

2. Estimation Procedure 

Consider two identical dynamical systems )(xfx =�  and )(yfy =� , which 
are unidirectionally coupled by the negative feedback mechanism 

),()( xyDxfx −+=�  (1a) 

)(yfy =� , (1b) 

where x, y∈�k, D=diag[d, d, ... ,d]∈�k is the diagonal coupling matrix and 
d∈� represents a coupling coefficient. Now, we introduce a new variable z
representing the trajectory separation between both subsystems during the 
time evolution. This variable is defined by the expression: 

yxz −=� , (2) 

After substituting equations (1a) and (1b) into equation (2) we obtain: 

Dzyfxfz −−= )()(� . (3) 

In the first part of our considerations, let us assume that for d=0 (lack of 
coupling) each of the subsystems given by equations (1a) and (1b) evolves 
on the asymptotically stable chaotic attractor A. In this case the equation (3) 
is simplified to the following form: 

)()( yfxfz −=� . (4) 

Since these both systems are identical, it can be assumed that the 
solutions to both equations (1a) and (1b), starting from different initial points 
of the same basin of attraction, represent two uncorrelated trajectories 
evolving on the same attractor A (after a period of the transient motion). 

For sufficiently small trajectory separation vector, that is to say, 
�z��⏐A⏐, where ⏐A⏐∈�≥0 is the attractor’s size, i.e. the maximum distance 
between two points on the attractor in the phase space, we can assume that 
an average distance between trajectories of the subsystems under 
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consideration is given by the linearized solution resulting from the definition 
of the Lyapunov exponent 

)0()()( zEz tt = , (5) 

where E(t)=diag[exp(λ1t), exp(λ2t), ... , exp(λkt)] and λi (i=1, 2, … , k) are 
Lyapunov exponents. Equation (5) describes the time evolution of the sphere 
with infinitely small initial radius z(0) in the phase space. The first time 
derivative of equation (5) is given by the relation 

)0()( z��z t=� , (6) 

where Λ=diag[λ1, λ2, ... , λk] is diagonal matrix of Lyapunov exponents. 
Substituting equation (5) into equation (6) and comparing with equation (4) we 
obtain 

��yfxf =− )()( . (7) 

Next, we can put the above equality (equation (7)) into equation (3). Hence, 
taking into consideration diagonal coupling (D=dI), for small trajectory 
separation equation (3) takes the following form: 

zI�z )( d−=� . (8) 

Matrix Λ–dI with eigenvalues si=λi–d (i=1, 2, … , k) determines stability of 
ideal synchronization (i.e. limt→�

�z(t)�=0 [15]) between both subsystems 
(equations (1a) and (1b)). Synchronuous regime is stable if the largest 
eigenvalue of stability matrix is negative: 

011 <−= ds λ . (9) 

Thus, the following condition of ideal synchronization for the system under 
consideration (equations (1a) and (1b)) results from equation (9): 

1λ>d , (10) 

where λ1 is the largest Lyapunov exponent. 
Inequality (10) allows us to propose a novel method of estimation of the 

largest Lyapunov exponent for dynamical systems. In fact, it follows from 
inequality (10) that the smallest value of the coupling coefficient d for which 
synchronization takes place is equal to the maximum Lyapunov exponent λ1.
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To apply our method for any dynamical system )(xfx =� it is necessary 
to build an augmented system according to equations (1a) and (1b). The next 
action is numerical search for the smallest synchronization parameter d for 
such a system, which approximates to the largest Lyapunov exponent of the 
investigated system. The numerical procedure of estimation process is 
described in details in [12-14]. Since the synchronization is easily detectable, 
the presented method has significant practical advantage over more 
traditional algorithmic methods, especially in dealing with non-smooth 
systems or systems with time delay. 

In this paper we describe the method which allows the estimation of the 
largest Lyapunov exponent for the systems with time delay described by the 
retarded differential equation 

( ))(),( τ−= tt xxfx� , (11) 

where x∈�k, τ∈� denote the delay. Equation (11) can be easily integrated 
numerically but due to the retarded arguments in x(t–τ), Lyapunov 
exponents cannot be calculated using algorithms based on the Oseledec 
theorem [1-6]. In the case of equation (11) one can develop argument x(t–τ)
into the Taylor’s series in the neighbourhood of τ

∑ −+=−
i i

i
i

dt

td

i
tt

)(
)(

!

1
)()(

x
xx ττ . (12) 

(where i∈�). After substitution of equation (12) into equation (11) the 
retarded differential equation (11) becomes ordinary differential equation 
with delay τ as one of the constant parameters. Then we can apply the 
classical algorithms for calculation of Lyapunov exponents. This 
transformation gives some approximation of the dynamics governed by 
equation (11) only in the case of small time delay τ for which it is sufficient 
to consider only a few first components of power series (equation (12)). 
However, it should be noted here that the dynamics governed by equation 
(11) is very sensitive to the changes of the delay τ, particularly in the case of 
chaotic behavior, so the approximation given by equation (12) rarely gives 
good results. 

In practice, our synchronization based method of the estimation of the 
largest Lyapunov exponent for the systems with time delay can be 
implemented by substitution of equation (11) into equations (1a) and (1b). 
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3. Numerical Example 

As a numerical example we consider nonlinear Van der Pol oscillator 
with external harmonic excitation and time delay [16] 

)cos()()1( 32 tptyyyyy ητκβα −−=+−− ��� . (13) 

where α, β, p, η,κ and time delay τ are constant. 

(d )

λ  = 0.3771
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Figure 1. The Poincaré maps of the delayed Van der Pol oscillator (equation (13)) together 
with estimated values of the largest Lyapunov exponent (on the top); α=0.20, β=1.00, τ=2.00, 
η=4.00, p=17.00: (a) chaotic attractor – κ=0.80, (b) periodic attractor – κ=2.20, (c) quasi-
periodic attractor – κ=6.00. 

After the change of variables (x=x1, 2xx =� ) and substitution of equation 
(13) into equations (1a) and (1b) we obtain the augmented system  

,)1()cos()(
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which is numerically integrated. 
In the numerical simulation we took α=0.20, β=1.00, τ=2.00, η=4.00, 

p=17.00 and assumed κ as a control parameter. The assumed large value of 
delay excludes the application of equation (12) in practice. The examples of 
Poincaré maps of the system (13) and the estimated values of the largest 
Lyapunov exponent λ1 are shown in Figures 1a, 1b, and 1c. In Figures 2a 
and 2b the comparison of the bifurcation diagram of the system (equation 
(13)) with the bifurcation diagram of the largest Lyapunov exponent 
obtained by means of proposed method is shown. In both Figures good 
agreement between the values of the largest Lyapunov exponent and 
character of motion is observed. 

  7 .0
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Figure 2. Bifurcation diagram of the Van der Pol oscillator with time delay (equation(13)) – 
(a) and corresponding the largest Lyapunov exponent (b) estimated by means of the proposed 
method; α=0.20, β=1.00, τ=2.00, η=4.00, p=17.00. 
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4. Conclusions 

In summary, we conclude that the proposed method allows the 
estimation of the largest Lyapunov exponent for the dynamical systems with 
time delay. Our numerical examples showed that the synchronization based 
approach can be applied for such systems no matter how large the delay is. 
The novelty of the method lies in its use of the synchronization phenomenon 
(readily recognized). Since the synchronization is easily detectable, the 
method has significant practical advantage over more traditional algorithmic 
methods, especially in dealing with systems with delay and also in dealing 
with non-smooth systems. 
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1. R.T. Haftka, Z. Gürdal and M.P. Kamat: Elements of Structural Optimization. 2nd rev.ed., 1990
ISBN 0-7923-0608-2

2. J.J. Kalker: Three-Dimensional Elastic Bodies in Rolling Contact. 1990 ISBN 0-7923-0712-7
3. P. Karasudhi: Foundations of Solid Mechanics. 1991 ISBN 0-7923-0772-0
4. Not published
5. Not published.
6. J.F. Doyle: Static and Dynamic Analysis of Structures. With an Emphasis on Mechanics and

Computer Matrix Methods. 1991 ISBN 0-7923-1124-8; Pb 0-7923-1208-2
7. O.O. Ochoa and J.N. Reddy: Finite Element Analysis of Composite Laminates.

ISBN 0-7923-1125-6
8. M.H. Aliabadi and D.P. Rooke: Numerical Fracture Mechanics. ISBN 0-7923-1175-2
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13-16 June 2000. 2001 ISBN 1-4020-0171-1

95. U. Kirsch: Design-Oriented Analysis of Structures. A Unified Approach. 2002
ISBN 1-4020-0443-5

96. A. Preumont: Vibration Control of Active Structures. An Introduction (2nd Edition). 2002
ISBN 1-4020-0496-6

97. B.L. Karihaloo (ed.): IUTAM Symposium on Analytical and Computational Fracture Mechan-
ics of Non-Homogeneous Materials. Proceedings of the IUTAM Symposium held in Cardiff,
U.K., 18-22 June 2001. 2002 ISBN 1-4020-0510-5

98. S.M. Han and H. Benaroya: Nonlinear and Stochastic Dynamics of Compliant Offshore Struc-
tures. 2002 ISBN 1-4020-0573-3

99. A.M. Linkov: Boundary Integral Equations in Elasticity Theory. 2002
ISBN 1-4020-0574-1

100. L.P. Lebedev, I.I. Vorovich and G.M.L. Gladwell: Functional Analysis. Applications in Me-
chanics and Inverse Problems (2nd Edition). 2002

ISBN 1-4020-0667-5; Pb: 1-4020-0756-6
101. Q.P. Sun (ed.): IUTAM Symposium on Mechanics of Martensitic Phase Transformation in

Solids. Proceedings of the IUTAM Symposium held in Hong Kong, China, 11-15 June 2001.
2002 ISBN 1-4020-0741-8

102. M.L. Munjal (ed.): IUTAM Symposium on Designing for Quietness. Proceedings of the IUTAM
Symposium held in Bangkok, India, 12-14 December 2000. 2002 ISBN 1-4020-0765-5

103. J.A.C. Martins and M.D.P. Monteiro Marques (eds.): Contact Mechanics. Proceedings of the
3rd Contact Mechanics International Symposium, Praia da Consolação, Peniche, Portugal,
17-21 June 2001. 2002 ISBN 1-4020-0811-2

104. H.R. Drew and S. Pellegrino (eds.): New Approaches to Structural Mechanics, Shells and
Biological Structures. 2002 ISBN 1-4020-0862-7

105. J.R. Vinson and R.L. Sierakowski: The Behavior of Structures Composed of Composite Ma-
terials. Second Edition. 2002 ISBN 1-4020-0904-6

106. Not yet published.
107. J.R. Barber: Elasticity. Second Edition. 2002 ISBN Hb 1-4020-0964-X; Pb 1-4020-0966-6
108. C. Miehe (ed.): IUTAM Symposium on Computational Mechanics of Solid Materials at Large

Strains. Proceedings of the IUTAM Symposium held in Stuttgart, Germany, 20-24 August
2001. 2003 ISBN 1-4020-1170-9
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Series Editor: G.M.L. Gladwell

109. P. Ståhle and K.G. Sundin (eds.): IUTAM Symposium on Field Analyses for Determination
of Material Parameters – Experimental and Numerical Aspects. Proceedings of the IUTAM
Symposium held in Abisko National Park, Kiruna, Sweden, July 31 – August 4, 2000. 2003

ISBN 1-4020-1283-7
110. N. Sri Namachchivaya and Y.K. Lin (eds.): IUTAM Symposium on Nonlinear Stochastic

Dynamics. Proceedings of the IUTAM Symposium held in Monticello, IL, USA, 26 – 30
August, 2000. 2003 ISBN 1-4020-1471-6

111. H. Sobieckzky (ed.): IUTAM Symposium Transsonicum IV. Proceedings of the IUTAM Sym-
posium held in Göttingen, Germany, 2–6 September 2002, 2003 ISBN 1-4020-1608-5

112. J.-C. Samin and P. Fisette: Symbolic Modeling of Multibody Systems. 2003
ISBN 1-4020-1629-8

113. A.B. Movchan (ed.): IUTAM Symposium on Asymptotics, Singularities and Homogenisation
in Problems of Mechanics. Proceedings of the IUTAM Symposium held in Liverpool, United
Kingdom, 8-11 July 2002. 2003 ISBN 1-4020-1780-4

114. S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry and B. LaMatina (eds.): IUTAM
Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of
Engineering Materials. Proceedings of the IUTAM Symposium held in Marrakech, Morocco,
20-25 October 2002. 2004 ISBN 1-4020-1861-4

115. H. Kitagawa and Y. Shibutani (eds.): IUTAM Symposium on Mesoscopic Dynamics of Fracture
Process and Materials Strength. Proceedings of the IUTAM Symposium held in Osaka, Japan,
6-11 July 2003. Volume in celebration of Professor Kitagawa’s retirement. 2004

ISBN 1-4020-2037-6
116. E.H. Dowell, R.L. Clark, D. Cox, H.C. Curtiss, Jr., K.C. Hall, D.A. Peters, R.H. Scanlan, E.

Simiu, F. Sisto and D. Tang: A Modern Course in Aeroelasticity. 4th Edition, 2004
ISBN 1-4020-2039-2

117. T. Burczyński and A. Osyczka (eds.): IUTAM Symposium on Evolutionary Methods in Mechan-
ics. Proceedings of the IUTAM Symposium held in Cracow, Poland, 24-27 September 2002.
2004 ISBN 1-4020-2266-2

118. D. Ieşan: Thermoelastic Models of Continua. 2004 ISBN 1-4020-2309-X
119. G.M.L. Gladwell: Inverse Problems in Vibration. Second Edition. 2004 ISBN 1-4020-2670-6
120. J.R. Vinson: Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials,

Including Sandwich Construction. 2005 ISBN 1-4020-3110-6
121. Forthcoming
122. G. Rega and F. Vestroni (eds.): IUTAM Symposium on Chaotic Dynamics and Control of

Systems and Processes in Mechanics. Proceedings of the IUTAM Symposium held in Rome,
Italy, 8–13 June 2003. 2005 ISBN 1-4020-3267-6
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