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Series Editors’ Foreword

The series Advances in Industrial Control aims to report and encourage technology
transfer in control engineering. The rapid development of control technology has an
impact on all areas of the control discipline. New theory, new controllers, actuators,
sensors, new industrial processes, computer methods, new applications, new phi-
losophies,…, new challenges. Much of this development work resides in industrial
reports, feasibility study papers and the reports of advanced collaborative projects.
The series offers an opportunity for researchers to present an extended exposition of
such new work in all aspects of industrial control for wider and rapid dissemination.

In the 1980s, “Emerging Technologies” was the theme of many conferences and
the published control literature. Techniques such as fuzzy-logic control (FLC),
genetic algorithms for design optimization and iterative learning control (ILC) were
just some of the avenues explored. Iterative learning control was viewed as an
important development owing to the technological revolution involving the
large-scale introduction of repetitive robotic manipulators in manufacturing pro-
cesses. An iconic picture of this change was the car-body paint shop containing
only robots making repetitive paint-spraying motions. It took some years before the
control literature caught up with technological developments and the Advances in
Industrial Control series was fortunate to publish a seminal monograph in the field:
Kevin L. Moore’s text Iterative Learning Control for Deterministic Systems (ISBN
978-1-4471-1914-2, 1992).

For some years, Professor David Owens has researched the modelling and
analysis of systems with repetitive dynamics, and has stimulated interest in the
topic. This work arose from study of the control of underground coal-cutters and
culminated in a theory of “multipass processes” that was developed in 1976 with
follow-on applications introduced by Professor John Edwards. Subsequent research
and applications experience led to substantial contributions (with collaborator
Professor Eric Rogers, and others) in the area of repetitive control systems, but
more specifically, since 1996, in the field of iterative learning control.

Professor Owens’s seminal contribution was the introduction of optimization to
the ILC community in the form of “norm optimal iterative learning control
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(NOILC)”. This idea has now evolved into a fully fledged theory and the Advances
in Industrial Control series is fortunate to include this important monograph:
Iterative Learning Control: An Optimization Paradigm by Professor Owens,
describing the full optimization-based theory.

In the 1970s, postgraduates in control engineering and engineers were reading a
control literature that was influenced by the mathematics of “functional analysis”.
Textbooks such as The Calculus of Variations, Functional Analysis and Optimal
Control Problems by E.K. Blum (1967), Optimization by Vector Space Methods by
D.G. Luenberger (1969), Functional Analysis and Numerical Mathematics by J.M.
Ortega and W.C. Rheinboldt (1970), and Functional Analysis in Modern Applied
Mathematics by R.F. Curtain and A.J. Prichard (1977) were all typical inspirational
textbooks of the period.

One of the key attractions of functional analysis was the potential for abstraction
to generalize problem description, analysis and solution. This is an aspect that
Professor Owens has exploited fully in formulating the new optimization paradigm
presented for iterative learning control. It is for this reason that, after an intro-
ductory Chap. 1, there is a substantial Chap. 2 on “Mathematical Methods” that
presents the functional analysis topics of Banach, Hilbert and real Hilbert spaces.
These presentations are followed by Chaps. 3 and 4 on state-space models (both
continuous and discrete systems) and matrix models, respectively. The analysis of
iterative learning control begins in Chap. 5 and continues through to Chap. 11.

The presentations of ideas begin with general ILC problem formulations that
evolve through precisely specified issues and algorithms. In these chapters the
analytical power of the functional analysis techniques is fully revealed. The
monograph is self-contained and will be essential reading for those researchers and
engineers working in the field of iterative learning control. Postgraduates and
academics in the mechanical engineering, control engineering and applied mathe-
matical communities will also find the monograph of interest. Professor Owens’s
text nicely complements two other recent entries to the Advances in Industrial
Control monograph series on the ILC topic:

• Real-time Iterative Learning Control by Jian-Xin Xu, Sanjib K. Panda and
Tong H. Lee (ISBN 978-1-84882-174-3, 2009)

• Practical Iterative Learning Control with Frequency Domain Design and
Sampled Data Implementation by Danwei Wang, Yongqiang Ye, and Bin
Zhang (ISBN 978-981-4585-59-0, 2014)

About the Author

Professor Owens’s academic and engineering career has spanned some four decades.
He was Head of the School of Engineering and Computer Science at the University
of Exeter (1990–1999) and Head of Dynamics and Control in the Department
of Mechanical Engineering at the University of Strathclyde (1985–1990). At the
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University of Sheffield he has been Head of the Department of Automatic Control
and Systems Engineering (1999–2008) and Dean of the Faculty of Engineering
(2002–2006). Since 2009, he has been an Emeritus Professor of Control and Systems
Engineering in the Department of Automatic Control and Systems Engineering at the
University of Sheffield, UK. He is a Visiting Professor at The University of
Southampton, UK, and a scientific collaborator with the Italian Institute of
Technology, Genova, Italy. Professor Owens is a Fellow of the Royal Academy of
Engineering, UK. He is also a Fellow of the Institution of Engineering and
Technology (IET) and of the Institution of Mechanical Engineering (IMechE).

Scotland, UK Michael J. Grimble
Michael A. Johnson
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Preface

Control Theory and Control Systems Design has a history of over sixty years and
covers a wide range of topics, many of which have relevance to Control
Engineering practice and the process of education and training. Iterative Learning
Control (ILC for short) is an area of control theory and applications that has risen in
its relevance and popularity over the past 30 years. It is seen, for example, in
applications of control where a machine is required to complete a specific tracking
task over a finite time interval [0, T] to a high degree of accuracy. The accuracy
required is taken to be beyond the practical capabilities of feedback control. The
additional features of the system that makes improved accuracy possible are the
assumptions that the task is repeated an indefinite number of times, so that (possibly
large) errors are tolerable in the first few repetitions and that information on pre-
viously seen tracking errors, inputs and other signals can be measured and stored.

Systems with these properties include manufacturing and rehabilitation robotics
and systems for mechanical testing of components and component assemblies in the
automotive and related industries. In the automotive arena, this includes the testing
of whole car performance using laboratory test rigs to replicate accurately road or
track conditions. The words Iterative Control are used to describe the repetitive
nature of the system behaviour and the need for control action. The word iterative is
chosen by analogy with iteration in numerical analysis where the repetition is used to
sequentially (iteration to iteration) reduce the error in obtaining the solution of, say, a
set of algebraic equations. The natural choice of the name “repetitive control” was
rejected by the community as this has been used previously to describe feedback
control design for the tracking of periodic reference signals of known period.

ILC is naturally a branch of control theory and control systems’ design but
differs from its more traditional counterparts owing to the need to include both
times during the repetition (iteration or trial) and the iteration index in data
descriptions. This is done by setting fkðtÞ to be the value of a signal f at time “t” on
iteration “k”. The control problem therefore has two independent variables (t, k).
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Control of the system not only requires proper and effective control during an
iteration (using normal classical criteria for control performance on [0, T]) but also
includes the need to control performance over successive iterations with indices k =
0,1,2,3,4,…. The aim is to improve performance from iteration to iteration. The
ultimate aim is to provide highly accurate tracking which, in the mathematical limit
as “k” tends to infinity becomes perfect tracking. Ideally, this property will be
retained in the presence of modelling errors.

The mechanism for achieving this perfect tracking is the transfer of data from
iteration to iteration. This transfer of data is similar to the process of “learning”
from experience. Hence the subject title “Iterative Learning Control”. Control
design in ILC is the choice of control algorithm to generate an input signal mag-
nitude ukðtÞ at time t on iteration k such that the application of this signal over the
interval t 2 ½0; T� leads to improved tracking as described above. In more details,
design requirements include:

1. Stability during each iteration.
2. Asymptotic convergence of the tracking error to zero as k ! 1.
3. Acceptable behaviour of the tracking error from iteration to iteration by,

a. achieving reasonable improvement within a few iterations and
b. ensuring acceptable convergence and performance despite plant modelling

errors.

4. Implementation options that range from advanced control to simpler forms.

A control theory for ILC is hence at least as rich as that seen in classical control
with opportunities for feedback and feedforward structures, consideration of output
feedback and state feedback strategies, the possibilities for time domain and fre-
quency domain design tools, adaptive and predictive algorithms, optimal control
and many more. This is not to mention the need for linear, nonlinear and hybrid
systems versions of the theories! A single text covering the whole spectrum of
possibilities is not feasible and, indeed, many of these problems are not yet fully
analysed and solved to produce design strategies. For this reason the text examines
one particular coherent body of knowledge within the current ILC spectrum with
the aim of, first, bringing the work together in an integrated whole for researchers,
students and interested users and, second, presenting new results, algorithms and
insights to add value to the literature.

More precisely, this text concentrates on one particular paradigm and focusses
on linear systems, although it is noted that extensions to cover the case of some
nonlinear systems are possible using, for example, linearization-based methodolo-
gies. Motivated by the natural desire to systematically reduce the tracking error
from iteration to iteration, the chosen paradigm is that of the use of optimization as
a tool for algorithm design. The text covers several model types including both
single-input, single-output (SISO) and multi-input, multi-output (MIMO)
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continuous and discrete time, state-space systems. There is some emphasis on
discrete systems as the essentials of the theory and algorithm development are more
easily derived and understood in this format. It is also consistent with the likely
implementation using digital control hardware and software and notionally provides
an insight into the continuous time case by letting the sampling rate become infinite.
Those reading the text will understand that the continuous time case introduces
many additional mathematical complexities that need to be addressed for technical
completeness. Much of this “infinite dimensional” material is included but the
author believes that it is neither necessary for an understanding of the basic con-
cepts nor, indeed, relevant to many applications.

Optimization is used as the paradigm for algorithm development because of its
proven ability to guarantee, in the absence of modelling errors, monotonic reduc-
tions in a norm of the tracking error time series from each iteration k to the next
iteration k þ 1 . This reduction has many interpretations, the simplest being the
reduction of the “energy” in the tracking error. The energy interpretation is related
to the use of the mean square error as the norm. The consequences of this simple
observation are the subject of this text which, following a discussion of some of the
relevant history and applications of ILC algorithms in the introductory chapter,
explores the known consequences and design options available. The rest of the text
is divided into several parts:

1. The design of algorithms might be expected to be model dependent. This is true
but the construction of algorithms and the derivation of their properties is most
easily seen using an operator description of the model and regarding input,
output and other signals as elements of appropriate Hilbert spaces. This level of
abstraction is analogous to the use of transfer function descriptions of linear
systems. As an aid to study, the reader is provided with a chapter of mathe-
matical methods which provides a summary of the essential properties of
operators between Hilbert spaces and the geometrical interpretation of signals
and their relationships. This is followed by material that looks closely at the
structure of discrete time, state space models and the use of the (matrix)
supervector description.

2. Many of the ideas and algorithms apply widely. The overview and formulation
of ILC is constructed using the language of operator theory and recursive
relationships of the typical form ekþ1 ¼ Lek; k� 0 in a Hilbert space Y .
Convergence of the solution sequence fekgk� 0 to a limit is related to the
spectrum of the operator L : Y ! Y . If Y is finite dimensional, the results are
familiar from matrix theory but the case when Y is infinite dimensional is more
complex. Fortunately, for the purposes of optimization, only the case of L being
self adjoint is relevant to this text. This case is however important for continuous
time systems for example.
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3. Although not obviously connected to optimization concepts, a fairly detailed
examination of so-called inverse model algorithms is then provided. This
approach assumes the existence of a left or right inverse to the plant operator
and motivates a set of Iterative Control algorithms that provide simple mono-
tonic error convergence at a rate described by a single gain parameter. This has
practical value but its real value in the following optimization approaches lies in
robustness analysis. The robustness theory presented in this text underpins the
need for positive real multiplicative modelling errors. The results can be con-
verted into frequency domain tests when the model has a discrete time,
state-space form. By the end of the text, the reader will have made the surprising
observation that this robustness theory applies, with suitable modification, to
many of the algorithms described.

4. The first step towards the optimization paradigm is made in the consideration of
gradient or steepest descent algorithms motivated by familiar numerical opti-
mization methods. The gradient is naturally described by the adjoint plant
operator and provides a link to the co-state equations that appear in optimal
control theory. Similar algorithm analyses are provided together with a
robustness analysis which again has a frequency domain form for discrete time
state space systems that reappears for more complex algorithms later in the text.

5. The central section of the text contains the basic concepts of Norm Optimal
Iterative Learning Control (NOILC) This algorithm has strong connections to
linear quadratic optimal control theory and proceeds by minimization of a
sequence of quadratic objective functions. For discrete state-space systems, it
has a realization using either feedforward computations or familiar feedback
structures based on solutions of time dependent matrix Riccati equations. The
algorithm is a benchmark algorithm in the sense that monotonic error conver-
gence is always guaranteed with convergence rates being influenced by the
relative weighting of error and input terms. Greater insight into the behaviour is
obtained using eigenvalue/singular value analysis and approximate eigenvectors
constructed from frequency domain considerations. A robustness analysis is
presented that has close links to inverse model and gradient results, probably
because the NOILC paradigm can be regarded as being both a descent algorithm
and an approximation to an inversion process.

6. The power of the NOILC philosophy and the use of operator descriptions are
demonstrated by the descriptions of natural extensions of the algorithm. These
include intermediate point control problems, tracking for multi-rate sampled
systems and systems where the initial condition on each iteration can be varied.
The concept of Multi-task Algorithms unifies these control problems as a mix
of these and similar variations. All of these variations are described by the
NOILC relationships but differ in form when converted from the operator
description to more familiar state-space equations.

7. In all of these cases, the performance of the control can be enhanced by
including one or both of two important features:
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a. by searching for a solution to the tracking problem that also minimizes an
additional Auxiliary Objective Function representing additional control
objectives and/or

b. improving convergence rates by basing computations on a multi-model that
enhances performance using optimization problems incorporating predic-
tions of future errors. This resultant Predictive Norm Optimal Iterative
Learning Control algorithm, when applied to state-space systems, can again
be implemented using either feedforward computations or feedback real-
izations using the Riccati matrix and states of the multi-model.

In all cases, the robustness theory needed has a very similar structure to that of
inverse model and gradient algorithms.

8. The apparent “perfection” of the NOILC approach is, however, misleading as
proofs of convergence do not provide full information about rates of conver-
gence. This is convincingly demonstrated by a consideration of
non-minimum-phase discrete, state-space systems. For inverse model control,
practical problems will then occur as the inverse system is unstable. For gradient
and NOILC algorithms, the problem appears as a plateauing/flatlining effect
where, after a period of fast error norm reduction, a long period of extremely slow
convergence (represented by infinitesimal changes in error and error norm) can
occur. In practical terms, the algorithm may fail to achieve acceptable tracking
accuracy in the desired number of iterations despite the theoretical proof of
ultimate convergence. The magnitude of the problem is assessed and shown to
depend on the time interval length and the structure of the initial error e0 .

9. The operator theory approach has great power but does not easily make pos-
sible, for example, the inclusion of constraints. The chapters on Successive
Projection methodologies provide ways forward. They are equivalent to
NOILC and its variants in the absence of constraints but, being based on
projection onto closed, convex sets, allow many convex constraints to be
included whether they be input and output constraints or constraint objectives
for auxiliary variables. The geometry of the approach is used to create accel-
erated algorithms using extrapolation mechanisms. An interesting interpreta-
tion of the ideas is given in the section on Loop Management Algorithms
where, rather than using ILC as an automated control algorithm, it can be used
as a decision support aid for the human operators who are supervising the
iteration process.

10. One, particularly interesting, algorithm that further demonstrates the potential
of successive projection is the introduction of the new Notch Algorithm which
uses successive projection onto sets defined by modified plant dynamics. The
modification is parameterized by a single parameter σ2 that can be related to a
property of Approximate Annihilation of spectral components in the error close
to that value. By varying σ2 from iteration to iteration, different parts of the
spectrum are reduced substantially producing rapid convergence in a systematic
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way that resembles an approximate inverse algorithm. Robustness may how-
ever be reduced if the choices of σ2 are not constrained.

11. The final chapter examines the idea of Parameter Optimal Iterative Learning
Control (POILC) by replacing optimization over input signals by optimization
over the parameters in a linear input update equation containing only known
error data and a finite number of free parameters. This reduces the dimension
of the optimization problem and defines the required parameter values using
formulae and off-line computation. The approach has close links to NOILC
(when the number of parameters is “large”) but, more generally, retains the
property of monotonic error norm reduction and simplifies both the control
implementation and its associated computations. The choice of parameteriza-
tion is free for the user to choose but can be suggested by the previous chapters
in the form of approximations to inverses, gradients and norm optimizers. An
examination of the inverse model and other cases suggests that the approach
will be robust provided that gains are “low” and a positive real condition is
again satisfied.

The material in the text has been chosen and ordered to tell a story rather than
reflect the historical development of the ideas. Emphasis is placed on providing
rigour with understanding with the aim of informing and preparing readers for their
own studies, research or applications. The text has many sections that hopefully
help readers find, quickly, the issues that interest them. The reader should note the
following declarations:

1. Although based on optimization concepts, many of the results and algorithms
presented are new to the literature. For those algorithms that have been pub-
lished in the open literature, the text provides a more detailed analysis of their
properties and includes new, previously unreported robustness characterizations
and methodologies.

2. The author has aimed for consistency in notation but has had to deal with the
finite nature of the alphabet and the need for extensive use of subscripts and
superscripts. For example, the subscript yj will typically denote the signal on
iteration j but it may also denote the jth element in the column matrix y. It is the
author’s view that the context of the use of the symbol will provide the right
interpretation.

3. The reader should understand that the text is motivated by the perceived practical
needs of the subject when used in applications but also has the important
objective of addressing what are thought to be important scientific issues asso-
ciated with the topic, some of which are speculative. Applications of the ideas in
controlled laboratory conditions has, to date, provided evidence that the ideas can
translate into practically convergent procedures and this positive outcome has
been supported by a number of industrial tests (subject to commercial, in con-
fidence, agreements). However, it must be recognized that real-world systems
present a whole spectrum of problems that the theory has not considered. No
attempt will be made to list these problems exhaustively but they clearly include

xvi Preface



the presence of severe nonlinearity, substantial noise, unrepeatable/unpredictable
disturbances and time variation of parameters. In addition, hardware issues of a
poor experimental setup or combinations of plant dynamics, parameter choices
and reference signals that maximize the sensitivity of the approaches to such
problems will also often need to be addressed. In view of these comments, the
reader uses the ideas and algorithms at his or her own risk. The author has made
every effort to ensure that the text is both accurate and understandable. He
believes that the methods have both scientific and engineering merit but, given
the uncertainties, he accepts no responsibility for any unacceptable outcomes
arising from the use of the ideas or algorithms described in this text.

Sheffield, UK David H. Owens
April 2015
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Chapter 1
Introduction

Iterative Learning Control sits on the shoulders of the subject of Control Engineering,
adding to its diversity and capabilities in a very specific way. Control Engineering
is now a long established discipline that has worked with other areas of Engineer-
ing and Science in the design and working efficiency of almost every machine used
by mankind including household devices, transportation systems, power generation
plant and equipment that makes satellite and spacecraft technology feasible, oper-
ationally reliable and safe. Its enthusiasts think of it as the unsung hero of mod-
ern technology as few complex, multi-component systems work effectively without
active control intervention either through algorithms embedded in electro-mechanical
devices, computer control systems or simpler rule-based operator guidelines. Yet
much of the hardware and software of control technology is hidden from the user
who, as a consequence, can be forgiven for taking the beneficial consequences of
good control for granted.

Given a desired systembehaviour, control systems are essentially objects driven by
input data streams and creating output data streams. This is because effective control
requires measurement or estimation of relevant output and other signals as the basis
for computation of a suitable intervention using available actuators. Although simply
stated, the reality is that control systems take a wide variety of forms and design is a
skilled process. The complexities of control systems design are reflected in a number
of challenges including

1. The system to be controlled, often called the plant, typically has its own tempo-
ral and/or spatial dynamics. Dynamics can be linear or nonlinear. Behaviours of
apparently complex plant can be quite simple to characterize and control whilst
those of even apparently simple systems can exhibit more complexity ranging
from instability to oscillation to counter-intuitive non-minimum phase character-
istics to time variation or structural change.

2. The accuracy and capabilities of sensors and actuators available to the designer
may be limited by cost, availability and/or the need for a natural simplicity to
make commissioning and maintenance easy.

© Springer-Verlag London 2016
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2 1 Introduction

As a consequence, the need for general theoretical principles to underpin and guide
the design process has been essential. Traditionally, the two guiding design princi-
ples have been the use of feedback and feedforward loops arising from the simple
intuitions that effective control intervention at a given time can only be undertaken
based on, and with a knowledge of, current and past behaviour of the system (i.e. data
feedback) and a knowledge of the desired behaviour (i.e. feedforward elements). The
general design challenge is to choose control elements and parameters to achieve the
desired plant behaviour.

1.1 Control Systems, Models and Algorithms

The wide need for control technology and the complexities briefly stated above have
led to the development of an underlying Control Science that can be used in the
education of practitioners, to underpin the understanding of possibilities, to iden-
tify the source of limitations to achievable controlled performance, to develop and
analyse established control principles and to extend the range of controlled behav-
iour using new design paradigms. The search for general principles and processes
for control systems analysis and design for dynamic processes has inevitably led to
the extensive use of mathematical techniques. These have not only included matrix
theory, ordinary differential equations and the Laplace transform but also many other
branches of mathematics including aspects of optimization theory, statistical estima-
tion theory, functional analysis and operator theory and, for highly nonlinear systems,
differential geometry.

To make use of the power of this mathematics, a mathematical model of the
plant is placed at the centre of the discussion. This model can have many forms
but, for the purposes of this text, it will typically take the form of a set of linear
or nonlinear differential or difference equations with a defined initial condition.
These “multi-input multi-output” (MIMO) models relate the behaviour of m defined
output signals y1(t), y2(t), . . . , ym(t) over a time interval t ≥ t0 to a set of � input
(actuation) signals u1(t), u2(t), . . . , u�(t). Control objectives are typically, but not
exclusively, described as the need to track a set of demand or reference signals
r1(t), r2(t), . . . , rm(t) defined on t ≥ t0. Without loss of generality, it is usual to
take t0 = 0 by simply “re-calibrating the clock”.

Good tracking in this context means that the controlled system is stable and that
the tracking error signals e j (t) = r j (t) − y j (t), 1 ≤ j ≤ m, have acceptable
magnitude and form. The notion of acceptable varies from application to application
but errors are inevitably non-zero because of the control system’s feedback structure
and the reality that the behaviour predicted by the model does not match the real,
physical plant behaviour exactly. This plant-model mismatch or modelling error is
unavoidable in the real world. If a property of the controlled system predicted by the
model is retained by the real plant then that property is said to be robust. The most
important property of a controlled system is that its stability is robust but the idea
applies more generally.



1.1 Control Systems, Models and Algorithms 3

Plant mathematical models are the core of the design process, being used not only
for analysis purposes but also for simulation of uncontrolled (open-loop) and con-
trolled (closed-loop) behaviours. Design is model-based and the nature of the model
has an inevitable impact, in off-lines design studies, on the control system chosen.
An important observation, however, is that the implemented controller can also be
model based in the sense that the plant model can form a part of the control scheme
itself. In this sense, the idea of a controller as the manifestation of an algorithm
(embedded in hardware and/or software) manipulating measured data from t ′ ≤ t at
time t to construct an input signal value u(t) is a core component of control science
philosophy and control engineering practice. Algorithms are, at their most general,
rule-based with rules expressed in a variety of formats including “IF X THEN Y ”
type rules, formulae such as the well known ideas of proportional plus integral plus
derivative (PID) control

u j (t) =
m∑

p=1

[
K P

jpep(t) + K I
jp

∫ t

0
ep(t

′)dt ′ + K D
jp

dep(t)

dt

]
, 1 ≤ j ≤ �, (1.1)

and/or computational rules that are supported by real-time, on-line simulation of a
plant model. Parameters used in the computations may be specified and kept constant
or may themselves vary with time if the control structure contains adaptive elements
or on-line model building tools such as system identification or parameter estimation
techniques are used.

In most classical control topics, tracking control is constructed as the need to track
r(t)on the notionally infinite interval 0 ≤ t < ∞. There are however situationswhere
control on a finite time interval 0 ≤ t ≤ T is the essence of the problem. This is the
case for the area of Iterative Learning Control.

1.2 Repetition and Iteration

The structure of a good control system design will reflect both the plant dynamics
and the nature of the control objective. For example, in classical feedback control
systems design, the requirement to track step demands accurately leads to the use of
integral action in the control element. In the context of this text, the special property
of the plant is the repetitive nature of its operation. Repetition is a common feature
in control applications and takes several forms.

1.2.1 Periodic Demand Signals

The simplest notion of repetition is evident in the situation where the demand signal
r(t) is periodic. That is, for some period T , it satisfies the condition f (t) = f (t +T )
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for all t . Periodicity can be interpreted as repetition of the basic signal on the first
interval 0 ≤ t < T on subsequent intervals kT ≤ t < (k+1)T for all integers k ≥ 1.
Control Design for such systems lies within classical control and asymptotic tracking
is achievedusing feedback controlwith compensators that include the control element
(in transfer function notation)

K (s) = 1

1 − e−sT
(1.2)

based on the idea of the Internal Model Principle. This area of study is of relevance to
many applications where disturbances to dynamics have a known source and period
(for example, the vibrations generated by a power generator in a ship or aircraft) but
whose form is uncertain. Periodic reference signals also apply to rotating systems of
known angular frequency. The subject is not considered in this text.

1.2.2 Repetitive Control and Multipass Systems

A related area, often called Repetitive Control, grew out of the area of Multipass
Systems Theory. It considers systems that evolve on a finite interval 0 ≤ t ≤ T
after which both the system and the clock are reset and the operation repeated. This
procedure is then repeated indefinitely. Repetitions are often called trials, passes
or iterations and the special dynamic characteristic is that the output signal from
each pass has an effect on the next, essentially acting as a correlated disturbance
disrupting the dynamics. This intuitive idea can be illustrated by the simple example
of a recursive first order differential equation

dyk+1(t)

dt
= −yk+1(t) + 2yk(t) + 1, yk(0) = 0 k ≥ 0, (1.3)

with starting condition y0(t) ≡ 0. Here, yk(t) represents the output on pass k and the
term 2yk(t) represents the effect of pass k on the dynamics of the (k +1)th pass. The
presence of the term −yk+1(t) indicates the necessary stable response on each pass
but note that problems accumulate after a large number of passes. More precisely,
assuming that the outputs converge to a limit, limk→∞ yk(t) = y∞(t), this limit is
the solution of the equation

dy∞(t)

dt
= y∞(t) + 1, y(0) = 0. (1.4)

The conclusion is that a series of stable iterations on a dynamical system can converge
but to an unstable, and hence unacceptable, dynamical behaviour. Effective control
is, therefore, a necessary part of good plant operation in a repetitive environment.
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1.2.2.1 Example: Automated Ploughing

A conceptual model of the idea of automated agricultural ploughing is the creation
of a sequence of parallel furrows and approached by setting up an initial furrow
as a reference signal for further furrow creation. Let k ≥ 1 be a counter for the
furrows created. After k furrows, furrow k + 1 is created by using sensors to detect
the form/position of the furrow k and using control signals and systems to recreate
its form at a set distance (the furrow width). The process is subject to disturbance
and errors implicit in the feedback process. The objective of control is to ensure
that the repetitions “settle down” to a sequence of furrows of acceptable form that
replicate themselves from pass to pass with little error. A feature of the system is that
its dynamics not only occur during each pass, creating a new furrow, but also from
pass to pass as the form of the new furrow is influenced, through the control system
detectors, by the data generated from the previous furrow.

1.2.2.2 Example: Automated Coal Cutting

Control of underground longwall coal cutting equipment is an example of a multi-
pass process. Automated coal cutting machinery is designed to “move” through the
subterranean world removing coal from a coal seam. Once cut, the coal is transported
from the coal face and, from there, to the surface for distribution. The machinery
takes the form of rotary cutting tools transported along the coal face extracting mate-
rial from the rock strata at the point of contact. The coal seam is worked over a fixed
distance spanning a section of the coal deposit. The coal is ideally removed by the
cutter moving along the seam with dynamics affected by the nature of the rock bed
on which it moves and by control systems that attempt to ensure that the cutters
cut coal rather than the surrounding rock. Once a pass along the coal face has been
completed, the machinery is moved forward to sit on the bed of rock revealed by the
cut. The process is then repeated and, in this repetitive way, the coal cutter moves
through the earth. Note that the physical position of the cutter is influenced by the
previous cut as the machinery sits on that cut. As a consequence, the two issues here
are, firstly, control of the cutter tool position during each pass and, secondly, the con-
trol of the dynamic behaviour tracking the coal seam from pass to pass. Instability is
manifested by the divergence of the cutting trajectory from the actual coal seam—a
situation when the cutters “cut rock” and the coal mine would become a “rock mine”
of no commercial value.

1.2.2.3 Example: Metal Rolling

Metal rolling has the structure of a repetitive/multipass process. The strip metal is
passed sequentially though the rolls which apply forces to squeeze the metal and
reduce the metal thickness (guage) in a manner dependent on many factors including
the physical shape of the initial metal strip, the force applied by the rolls, the strip
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temperature and the internal stresses within the metal strip. The repetitive nature of
the process is self-evident. The control problem, in essence, is to adjust applied forces
on each pass through the rolls in such amanner as to ensure the correct physical shape
of the final strip after many passes. The complexity of the control problem lies not
only in the need to ensure good performance within each pass but also to cope with
the fact that the outcome of each pass has an effect on the dynamics and outcome of
the next.

1.2.3 Iterative Control Examples

In many ways, Iterative Learning Control (ILC) is a special case of repetitive process
control. It is relevant to applications that consider trajectory tracking control on a
finite interval [0, T ] and focusses on problems where interaction between passes is
normally zero but where the repetition of a specified task creates the possibility of
improving performance from task to task. A simple analogy is the repetitive practice
of a piece of music on piano until your performance is as desired.

The mechanism for improvement in engineering systems terms is the systematic
use of data collected from previous repetitions to create structured interactions that
benefit controlled performance. The combined plant plus control system is hence a
multipass process by design rather than by physical necessity. The repetitive/iterative
nature of the control schemes proposed, the use ofmeasured data frompast executions
of the task to update/improve control action and the asymptotic learning of the
required control signals put the topic in the area of classical control design with the
added complexity of controlling pass to pass dynamics.

Note: The use of the word “learning” in ILC is now established in the published
literature and has a precise interpretation. It reflects the perception that the iterative
structure creates a desired and previously unknown control signal based on the
observed behaviour of previous trials. In this sense, the iteration “learns” the desired
signal using “past experience”.

The analysis and form of control design methodologies for ILC problems is the
central topic of this text. The following subsections present simplified examples of
application areas. The aim is to provide easily visualized physical examples that
could help the reader relate the more abstract, mathematical problem formulations
and algorithms to a physical context.

1.2.3.1 Iteration and Robotics

The simplest visualization of Iterative learning Control can be found in the area of
robotic assembly where a robotic device is used to complete a specified task such as
“pick and place”. In such situations, the objective is to transfer a sequence of objects
(delivered to the robot by conveyor) from a specified position to a new position after
travelling along a well-defined spatial trajectory. The time taken to complete each
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task is assumed to be fixed at a specified value. It is important to note, however, that
the tracking of the trajectory during each transfer is essentially a classical control
problem that can be approached using feedback and feedforward methodologies.
This approach inevitably leads to non-zero tracking errors due to the very nature
of feedback control and the imperfections in the success of feedforward elements
arising from the uncertainties in the model of the system. It is hence natural to ask
the general questions:

1. Can the repetitive nature of the task provide a means of improving tracking accu-
racies despite the model uncertainties?

2. How can this objective be achieved and what are the properties of the plant
dynamics that aid or inhibit the process?

The questions are quite general and have many potential solutions. However, the
general approach, taken here, to sequential improvement in tracking accuracy is to
make use of the data recorded during each execution of the task. Let k be the index of
the repetition. Conceptually, the use, on repetition k +1, of data recorded on previous
repetitions with index k′ ≤ k will contain data on actual input-output behaviour and
the success of previously used control signals. If used intelligently, this “intelligence”
could provide a means of error reduction in future repetitions so that, as k increases
indefinitely, the tracking error will, ideally, be reduced to zero. The combination of
any such control scheme with the robot is an Iterative Learning Control scheme but it
also fits into the repetitive control framework as interaction between task executions
has been introduced through the use of past data. In general,

1. a good Iterative Learning Controller will ensure the reasonable trajectory tracking
behaviour during initial iterations but, ultimately,

2. it will also ensure the convergence property that this tracking accuracy will
become perfect as k → ∞. This statement also leads to the notion of rate of
convergence as the designer will naturally only tolerate a small number of itera-
tions (pick and place operations) where large tracking errors will be observed.

3. Consideration should also be given to the initialization of the iterative process.
That is, the choice of the control signals used on the “zeroth” iteration when the
robot is set up.

1.2.3.2 Iteration and Mechanical Test

Mechanical test procedures have a structure very similar to the robotic example
described above. Test procedures are widely used as a means of either

1. exposing a mechanical specimen to a repeated sequence of defined force profiles
over a specified time interval or

2. replicating, in the laboratory, either-user defined conditions representing typical
operational events or physical conditions recorded during actual operation of the
plant.
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For example, a four poster automotive test system is specifically designed for the
testing of vehicles (cars, trucks). Such test systems consist of four hydraulic actuators
on top of which the wheels of the vehicle are placed. Movements of the actuators aim
to simulate movement of the vehicle over the road surface, the forces exerted by the
road on the wheels and the physical displacements of components or subassemblies.
To achieve this, the movements of the system need to be tightly controlled by a
digital test controller. During the development phase, a 4-poster system is often
used to test newly designed suspension systems and their durability. Different kinds
of testing are possible including sine tests (including frequency sweeps) and tests
aimed at reproducing the conditions met by the vehicle in an actual road environment
(represented by data coming from an outdoor acquisition session/road test).

Successful control during mechanical test is not as straightforward as might ini-
tially appear. For visualization purposes, consider the control of a test facility that
is required to take a road vehicle through a laboratory test that simulates very accu-
rately the conditions recorded on a chosen road surface. The vehicle is assumed to
have been fully instrumented and driven at the desired speed over the surface with
measurements of useful variables made and recorded as time series over a specified
time period. Measurements could include measured forces, accelerations and dis-
placements at chosen points of the vehicle including points on the suspension and
subassembly. These signals form the reference signal for the following process of
iteration in the laboratory.

For commercial or research reasons, suppose that it is required that the vehicle be
subjected to the same “road” conditions but in a laboratory setting. Typically, high
accuracy replication of road conditions is required. The forces are recreated by suit-
able controlled operation of the rig hydraulics but, as the rig is operating dynamically,
it interacts with the vehicle and responds to its motions. As a consequence, errors
in reproducing the desired vehicle response are inevitable in any one test. For this
reason, it is essential that the process is repeated through a sequence of repetitions
or iterations designed to reduce errors by changing the hydraulic actuation signals.
Physically, the iterations consist of repeated operation of the rig using improved actu-
ation signals. The aim of the iterative process is to reduce the errors between signals
observed on road tests and those observed in the laboratory tests. When sufficiently
small to satisfy the needs of the test, the road conditions have been faithfully repli-
cated and the user is able to take the vehicle through the same conditions, whenever
it is required, without the time and expense of more road tests.

The technological key to achieving improved replication of road conditions in the
laboratory is some form of Iterative Learning Control which, in a similar manner to
the robotics example outlined above, uses previously recorded test data to improve
accuracy from iteration to iteration. More precisely, data recorded on previous iter-
ations with index k′ ≤ k will contain data on actual vehicle behaviour whilst on
the rig and, if used intelligently, this could provide a means of generating actuation
signal updates that guarantee error reductions. As k increases indefinitely, the track-
ing error, representing the mismatch between road and laboratory conditions, will
hopefully be reduced, asymptotically, to zero.



1.3 Dynamical Properties of Iteration: A Review of Ideas 9

1.3 Dynamical Properties of Iteration: A Review of Ideas

In the context of thematerial in this text, the examples of the previous section indicate
that Iterative Learning Control (ILC) has two dynamical characteristics, namely

1. the dynamics within each iteration, as exemplified by the time response of the
vehicle to hydraulic actuation forces during each iteration of the mechanical test
procedure, and

2. the dynamics induced by the iterative control interaction between repetitions. This
interaction produces a systematic dynamic behaviour in the sequence of outputs
from the iterations. These dynamics are dependent on both the plant dynamics
and the chosen data transfer mechanisms between iterations.

In general, the dynamics within each iteration will interact with the dynamics
induced by the iterations. This interaction can be positive (that is, beneficial) or neg-
ative (that is, performance degrading) and it is certainly not the case that good control
within each iteration implies that error reduction will be achieved from iteration to
iteration. These ideas will form part of the following chapters. The following obser-
vations use a simple matrix iteration to provide an insight into the issues that can
arise:

Matrix Iteration: The dynamic nature of iteration can be illustrated by the analysis
of iteration in matrix theory in the form of iterative solution of linear simultaneous
sets of algebraic equations. Iterative Control is analogous to the iterative computation
of the solution vector u, for a given choice of r , of a matrix equation

r = y (The “Control Objective”)

where y = Gu + d (The “Input/Output Relation”). (1.5)

The dimensions of the column vectors r, u, d and matrix G are not relevant to the
discussion but are required to be consistent with the matrix operations indicated.

An Approach to Iterative Solution: Let u0, u1, u2, . . . be a sequence of estimated
solutions of the equation. Let y0, y1, . . . be the corresponding values of y. Choose an
initial guess u0 and construct the remainder of the sequence by the update relation

uk+1 = uk + K0ek + K1ek+1, k ≥ 0, (1.6)

where, for any j ≥ 0, e j = r − y j = r − Gu j − d represents the error in satis-
fying the equation r = y using u j . The matrices K0, K1 are chosen by the user and
K0ek + K1ek+1 represents a proposed correction to the iterate uk to produce a new
iterate uk+1. The iterates change every iteration stopping only if uk+1 = uk (when,
necessarily, ek+1 = ek).

Error Dynamics: The update relationship is implicit as ek+1 depends on uk+1. In
this sense the update relationship is an algebraic parallel of the use of feedback
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(represented by K1ek+1) and feedforward (represented by K0ek) control. An explicit
formula is obtained by noting that

ek+1 = ek − G K0ek − G K1ek+1, k ≥ 0, (1.7)

so that, denoting the unit matrix by I and assuming that I + G K1 is nonsingular,

ek+1 = Lek where L = (I + G K1)
−1(I − G K0). (1.8)

It follows that the iteration update formula can be written in the equivalent “feedfor-
ward form”

uk+1 = uk + (K0 + K1L)ek (1.9)

and the evolution of the iteration errors has the dynamic behaviour

ek = Lke0, for k ≥ 0. (1.10)

That is, the errors observed in the iterative process evolve in a dynamicwaydependent
on the initial error e0, G and both K0 and K1.

Error Convergence to Zero: Error convergence to zero is the primary objective of
the iterative process. It clearly depends upon the nature of G, K0, K1 and e0. In
particular, ek converges to zero for all possible initial errors e0 if, and only if, all
eigenvalues of L have modulus strictly less than unity. This condition, in particular,
means that, after a sufficiently large number of iterations, the error in satisfying the
equation is arbitrarily small.

Technical Note: This eigenvalue condition may need refinement if the subspace
of initial errors is restricted but these details are left for later in the text. To illustrate
the refinements, suppose that K1 = 0 so that L = I − G K0. Suppose that G has
full column rank but is non-square so that the best that can be achieved by choice
of K0 is all eigenvalues with modulus less than, or equal to, unity. Unfortunately,
under these conditions, there will always be at least one eigenvalue with the value
of one and hence convergence to zero for all initial errors e0 cannot be achieved. If
however, attention is focussed only on initial errors that can be written as e0 = Gw0
for some column vector w0 the convergence condition will change. To understand
the possibilities, suppose that G has full column rank and suppose that e0 = Gw0 for
some column vector w0. Write, ek = Gwk, k ≥ 0, where the sequence w0, w1, . . .

is uniquely defined. It follows that wk+1 = (I − K0G)wk, k ≥ 0, and hence that wk

(and, equivalently, ek) converges to zero if, and only if, the eigenvalues of I − K0G
have modulus strictly less than unity.

Nature of the Convergence: The eigenvalue condition describes asymptotic conver-
gence precisely and, in simple terms, the closer the eigenvalues are to zero, the faster
the convergence to the solution will be. This simplicity is misleading however as the
precise nature of this convergence depends critically on the detail of the matrices
involved. For example, if
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L =
[
0.5 α

0 0.7

]
, (1.11)

then errors will always converge to zero as the eigenvalues are 0.5 and 0.7. In par-
ticular, error magnitudes will reduce from iteration to iteration if α = 0. In contrast,
if α �= 0, errors from the defined initial condition take the form

e0 =
[
0
1

]
, e1 =

[
α

0.7

]
, e2 =

[
1.2α
(0.7)2

]
, e3 =

[
(0.6 + (0.7)2)α

(0.7)3

]
, · · ·
(1.12)

which will ultimately reduce to zero but, before that happens, can take arbitrarily
large values (dependent on the parameter α) as the iteration index k increases. As
a consequence, it can be expected that, in any iterative process, convergence to a
desired solution will not necessarily imply that the convergence will be accompanied
by acceptable magnitudes and forms of the iterates. In Iterative Learning Control
involving experimental work on the physical system, the magnitudes of signals are
normally subject to constraints due to safety boundaries and/or the physical range of
actuators. Ensuring acceptable signal magnitudes is crucial in this case.

Sensitivity of the Convergence: If the matrix G is such that L only has eigenvalues
with modulus less than unity, then convergence of iterations will be guaranteed.
However, if G is perturbed by a small amount, convergence may be lost. In general
terms, the effect of a small perturbation will be to perturb the eigenvalues also by a
small amount. It follows that those eigenvalues with modulus closest to unity will be
the most sensitive to perturbations to G as perturbations with only small magnitudes
may be all that is required to move the eigenvalue to a position with modulus greater
than unity. Divergence of the iterates will then occur.

The Sign of the Modelling Error: It is interesting to note that the nature of the
perturbation is crucial to the consequences for convergence. More precisely, for an
eigenvalue close to unity, small perturbations could increase the eigenvalue modulus
(potentially causing divergence) whilst the same perturbation but with opposite sign
will tend to reduce the modulus (hence increasing convergence speeds). The ability
of an iterative process to tolerate perturbations and retain convergence therefore can
be expected to depend on its eigenvalue magnitudes and some concept of the “sign”
of the perturbation. This will be reflected in the following text where, for dynamical
systems, the concept of positive real operators plays a role in understanding this
issue more fully.

Design Factors: The factors K0 and K1 are chosen as part of the update relation-
ship by the user whilst the factor G is analogous to the plant dynamical model.
The interplay between these three objects is represented mathematically by the form
of L which is the key object in ensuring algorithm convergence. Clearly the pri-
mary requirement is convergence and hence eigenvalue positioning. However, an
important secondary objective is to control the magnitudes of the iterates as k
increases. To achieve this requires a careful design of K0 and K1, an issue that
dominates this text and the area of Iterative Control. Last but not least, the choices
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made will have an impact on the sensitivity/robustness of the convergence properties
and choices that provide good robustness might be preferred.

An insight into possible guidelines to design choices is suggested by the formof L .
More precisely,

1. If K1 is a right inverse of G in the sense that G K0 = I , then L = 0 and the
iterations converge in one step with e1 = 0 independent of the starting condition
e0. This choice requires inversion which may not be regarded as suitable but,
using some notion of K0 as an approximate right inverse might have the effect of
reducing eigenvalues of L .

2. The factor (I + G K1)
−1 in L may tend to reduce in magnitude if K1 is “large”

in some sense. It may therefore tend to reduce the eigenvalue magnitudes.

The observations made above have a great similarity to the use of inverse systems in
classical feedforward control and the notion of high gain feedback being beneficial
for control performance. The discussion does not prove that the ideas carry over to
Iterative Learning Control without change but they do suggest that inverse systems
and gain may play central roles in design decisions.

1.4 So What Do We Need?

Iterative Learning Control is a model-based control design paradigm that has a struc-
ture very similar to the matrix iteration discussed in the previous section. A good
understanding of matrix theory and computational techniques is still essential but,
as Iterative Learning Control is applied to dynamical systems, there is also a need
to be able to use, develop and analyse problems where plant dynamics are described
by ordinary differential or difference equations.

For linear systems, the techniques used traditionally in control systems design
have included Laplace and Z -transforms. For cases where the Laplace transform
is relevant and m = � = 1, Eq. (1.5) could be replaced by the frequency domain
input/output model

r(s) = y(s)

y(s) = G(s)u(s) + d(s) (1.13)

where f (s) denotes the Laplace transform of a function f (t) on t ≥ 0. The symbol
G(s) represents the system transfer function and d(s) is the term generated by pos-
sibly non-zero initial conditions at t = 0. This equation can be returned to the time
domain using the convolution description

r(t) = y(t)

y(t) =
∫ t

0
h(t − t ′)u(t ′)dt ′ + d(t), t ≥ 0 (1.14)
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where h(t) is the impulse response of the system (the inverse Laplace transform
of G(s)). The conclusion reached from this discussion is that, for a wide class of
linear dynamical systems, the simple representation (1.5) has meaning if r , y, u and
d are interpreted as signals in defined vector spaces and G is a linear operator from
the space containing the input signal into the space containing the output signal.
The advantage of this interpretation is that the reader can, in many ways, think of
the problem in matrix or transfer function terms as the algebraic manipulation of
matrices, transfer functions and operators are very similar. There are differences
however which, from time to time, play a crucial role in the theoretical development
but ultimately, the computational procedures needed returns to matrix computations
and experimental work combined with numerical simulation of dynamic models.

1.4.1 An Overview of Mathematical Techniques

So what do we need to develop a theory of design for Iterative Learning Control?
The structure of the following development is based on the following mathematical
ideas and needs:

1. For completeness, the essential mathematical background in matrix methods is
summarized in a form that meets traditional engineering mathematics course
requirements but provides an interface with the following work on vector spaces
and operator theory.

2. Control algorithms manipulate signals in the form of functions or time series
which can be regarded as being elements of vector spaces. The relevant concepts,
constructions and relationships needed for analysis in finite or infinite dimensional
vector spaces are therefore introduced with emphasis on the ideas of norms as
measures of magnitude, convergence of infinite sequences and the definition and
properties of bounded linear operators. Banach spaces are presented initially but
emphasis is placed on the properties of Hilbert spaces as the intuitively “famil-
iar” geometry of Hilbert spaces and the notions of adjoint operators, orthogonal
projection and convexity provide the mathematical methodologies that underpin
the use of the optimization methods that follow.

3. Optimization methodologies in Hilbert spaces are introduced early in the text
as a means of providing a structured improvement in error magnitudes from
iteration to iteration. The focus is on the minimization of objective functions
that are quadratic in the relevant signals and/or parameters and subject to linear
constraints. The solution of these problems using either the simple notion of
completing the square or, equivalently, using the projection theorem is described
in full detail. Projection onto closed convex sets forms the core concept in the
text. It is used in many guises to cover algorithm development, the inclusion
of constraints and formal solution techniques with detailed application to linear
systems of differential or difference equations (in state space form).
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Note: The advantage of the use of operator theory is that, in principle, the results
and algorithms apply to any situation where the mathematical assumptions of lin-
earity and boundedness apply. These include multi-rate sampled digital dynam-
ical systems, models consisting of differential equations where signals may be
delayed (differential-delay systems), models containing both algebraic and dif-
ferential equations and models containing a wide variety of integral equations.
The computational aspects and challenges arising from these applications may
be much more complex than those met in familiar state space systems.

4. With a focus on state space models, the relevant properties of these models, the
associated transfer function matrices and the ideas of inverse dynamical systems
are central to the content. The link to optimal control with quadratic objective
functions is established and relates naturally to the practical use of optimal control
and state feedback methodologies based on the Riccati equation. The link to
optimal control theory is crucial in providing the step that takes the analysis from
the high level (but abstract) simplicity of operator descriptions nearer to practical
implementations using state feedback and feedforward strategies.

5. There is a natural difference between continuous time systems and discrete sys-
tems on finite time intervals. The difference is quite technical in that contin-
uous time systems require signal spaces that are infinite dimensional whereas
discrete systems are finite dimensional. The finite dimensionality of discrete sys-
tems makes it possible to write dynamics in the form of a matrix equation of the
form of (1.5) with signal time series replaced by so-called “supervectors” and the
matrix G constructed using the impulse response of the system. This interpre-
tation releases many familiar matrix techniques for application to analysis and
algorithm development. In particular,

a. eigenvalue methods underpin the analysis of error convergence and, through
inequalities relating signals on finite intervals to the Z -transform, provide
frequency domain sensitivity and robustness tests.

b. In addition, a number of techniques can be used to condition or redefine output
signals as a means of guaranteeing useful range and kernel properties of G
and hence the existence of left and right matrix inverses.

6. Matrix theory aids the development of ideas in the case of discrete time dynamics.
For continuous time systems, the use of more sophisticated mathematical tools
is necessary. This complexity arises as some of the underlying signal spaces
are necessarily infinite dimensional. The operators in such cases have identical
algebraic properties tomatrices but notions of convergence require amore detailed
consideration. Eigenvalues are replaced by the concept of the spectrum of the
operator but the link between the spectrum and convergence is obtained through
theorems from Functional Analysis.

Whilst representing the dominant specific needs of the theory, the general ideaswithin
classical (non-repetitive) control engineering also play a strong role in interpretation
of models, control structures and behaviours.
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1.4.2 The Conceptual Basis for Algorithms

Themathematical andmodelling techniques summarized above form the toolboxpro-
posed to develop the ideas and algorithms for optimization-based Iterative Learning
Control presented in this text. The topics contain a number of threads and discussion
items including the following:

1. General mathematical models of Iterative Learning Control using operator-based
representations form the basis of the approach. The simplicity of the presentation
is enhanced by this choice of approach but interpretation of the equations needs
to be carefully considered. Readers who are inexperienced in the area should find
the material accessible by interpreting the operators and vectors as matrices and
the systems as being discrete time.

2. Formal definitions of the problemof control algorithmdesign are used throughout.
The primary objective is always error convergence but other issues include,

a. identifying the influence of user defined parameters such as gains and the
weights used in optimization criteria,

b. characterizing the robustness of the convergence to errors in the plant model,
c. controlling the nature of the error convergence in terms of ensuringmonotonic

reductions of defined error measures (norms) from iteration to iteration and/or
d. using available degrees of freedom to ensure error convergence to zero whilst

achieving other performance requirements such as minimizing an auxiliary
objective function representing other desirable dynamical objectives.

3. For linear systems, the systemdynamics and the control objectives can be regarded
as defining separate convex sets in suitable Hilbert spaces. This interpretation
forms the basis of algorithm construction using sequential projection of signals
onto these sets. The many different ways of choosing the Hilbert space topology
and choosing the order of the sequence of projections provides a wide range of
different convergent algorithms including:

a. Inverse Model and Gradient algorithms that play a useful role in defining
simple approaches and typical properties,

b. Norm-optimal Iterative Learning Control (the basic algorithm that forms the
core of the work),

c. Predictive Norm-optimal Iterative Learning Control (where the effect on
future iterations is taken into account in input selection),

d. the inclusion of convex constraints on inputs and output signals (to allow for
applications where such limits are present),

e. algorithms whose objective is limited to, for example, ensuring that an out-
put signal y(t) takes specified values at times t1, t2, . . . , tM—the so-called
Intermediate Point Control Problem. Such problems typically have degrees
of freedom that permit auxiliary optimization objectives to be achieved,

f. Multi-task Algorithms that unify some of these ideas under one algorithmic
structure,



16 1 Introduction

g. so-called Notch Algorithms where the projections are selected carefully to
eliminate, or almost eliminate, errors in output subspaces characterized by a
single parameter or

h. algorithms whose objective is Control Loop Management.

All such algorithms ensure error convergence but the nature of each convergence
differs in substantive, but useful, ways that give flexibility to the control design
process. In general terms, the computational basis of each iteration is optimal
control related and, for state space systems, provides an implementation in terms
of a state feedback and an iteration to iteration feedforward structure.

4. Convergence rates depend in a simple way upon the choice of different topologies
in the input and output spaces but also upon plant dynamical characteristics. The
biggest problems are met when controlling systems which are non-minimum-
phase in the sense that the system transfer function has zeros in the unstable
region of the complex plane. The presence of such zeros leads to rapid error
reduction in the first few iterations but, from that point onwards, the convergence
rate is infinitesimally slow. An analysis of this phenomena is possible and leads,
in practical terms, to design guidelines aimed at improving the situation.

5. Finally, some engineers might baulk at the complexities of optimal control imple-
mentations of the algorithms. Fortunately, the beneficial properties of optimiza-
tion can be retained using simpler implementations and the idea of Parameter
Optimal Iterative Learning Control. Details are contained in later chapters of this
text but can be summarized as replacing control laws based on function or time
series optimization by control laws expressed, in a linear way, in terms of known
data and unknown parameters deduced from a low order optimization problem.
The results of function optimization and parameter optimization are shown to
be identical under certain well-defined conditions. They can then be regarded
as realistic alternative approaches. Parameter optimization can however intro-
duce a number of new dynamical phenomena in the iterative process, including
convergence but to non-zero errors. The reasons for this are related to ideas of
positivity of certain matrices and techniques for assessing the problem and avoid-
ing its occurrence using suitable parameterizations and/or switching strategies
are presented.

1.5 Discussion and Further Background Reading

Control Engineering is a topic of considerable depth and scope with many texts and
published papers. An overview is available in the Control Handbook [65]. The idea
of iteration in control probably emerged from unpublished empirical techniques used
in industry. There was little theoretical support or analysis. The first academic paper
on Iterative Learning Control written in English was published by Arimoto and col-
leagues [10] under the title of a “betterment process” and has received considerable
attention since that time. Readers wishing to read alternative and more recent moti-
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vations for Iterative Control problems can find additional material in survey papers
such as [2, 19, 66, 68, 88, 93, 100, 111, 113] and published texts including the first in
the area [74] together with [3, 17, 25, 78, 114]. The range of applications is growing
with examples to be found in [13, 29, 40, 42, 97, 100] and elsewhere.

The internal model principle is explained in [38]. Readers may also find it useful
to refresh their knowledge of classical control techniques using texts such as [39, 48,
49, 63]. The extensions to state space and multi-input/multi-output (multivariable)
control systems can be found in a number of texts including [4, 43, 71, 81]. The well-
established ideas of optimal control seen in texts such as [8, 9, 11, 24] are central to
what follows. An undergraduate level introduction can be found in [30]. In particular,
the geometric approach used in [69] is particularly suited to the optimization content
of this text.

The ideas ofmultipass systems theory arose out of the pioneeringwork of Edwards
and Owens and can be explored in some detail in [34] with related work on the math-
ematical analysis of repetitive dynamical systems in [99]. Themain preoccupation of
this text is linear systems but many of the ideas apply to nonlinear systems with little
conceptual change but with considerable changes needed in detail and methodology.
The computational load increases greatly and problems such as convergence to local
minima cannot be excluded. The overall nature of the iterative paradigm remains
unchanged however.

Finally, readersmight find it useful to relate thematerial to the linear and nonlinear
iterative techniques found in the mathematical texts such as Collatz [28] and Ortega
and Rheinboldt [79] where the general ideas of fixed point or Newton-like itera-
tion have potential application to Iterative Control (as illustrated by many nonlinear
Iterative Control methods [113] and in Lin et al. [67]).



Chapter 2
Mathematical Methods

A study of control systems dynamics and optimization has always needed a suitable
mathematical language to formulate the problems, analyse possible behaviours and
difficulties, develop algorithms and prove that these algorithms have the desired
properties. This is also true of Iterative Control which exhibits all the properties
and challenges of classical control problems with the added need to consider the
effect of iteration on behaviours. The material in this chapter acts to remind readers
of the mathematics needed for analysis of state space models in control theory and
the essential structure of quadratic optimization problems. To this mix is added an
introduction to the essentials of Hilbert spaces as a representation of signals, as
a means of representing dynamical systems as operators on such spaces and as a
means of creating a geometric approach to iterative optimization based control. The
presentation aims to define both notation and explain concepts. Fuller details and
proofs of the statements can be found in the references.

2.1 Elements of Matrix Theory

A p × q real (or complex) matrix A is an array of real (or complex) numbers of the
form

A =

⎡

⎢⎢⎢⎣

A11 A12 A13 · · · A1q

A21 A22 A23 · · · A2q
...

...

Ap1 Ap2 Ap3 · · · Apq

⎤

⎥⎥⎥⎦ (2.1)

The element in the ith row and jth column is denoted Aij. If q = 1, the matrix is
often called a vector. Block matrices can also be defined where the Aij are pi × qj

sub-matrices. In this case the dimensions of the matrix A are
∑p

i=1 pj × ∑q
j=1 qj.

© Springer-Verlag London 2016
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The following is essential for control theoretical purposes

1. The set of p × 1 real (respectively complex) vectors is given the symbol Rp

(respectively C p).
2. A is said to be square if the number of rows is equal to the number of columns.
3. Addition of two p×q matrices A, B to form a p×q matrixC writtenC = A+ B

is defined by the elements

Cij = Aij + Bij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.2)

The p × q zero matrix is the matrix with all elements equal to zero.
4. Multiplication of A by a scalar λ produces a matrix C = λA where

Cij = λAij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.3)

5. Multiplication of a p × q matrix A by a q × r matrix B to produce a p × r matrix
C = AB is defined by the following computation of elements of C

Cij =
q∑

k=1

Aik Bkj, for 1 ≤ i ≤ p, 1 ≤ j ≤ r. (2.4)

6. The transpose of a p × q matrix A is the q × p matrix AT with

(AT )ji = Aij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q. (2.5)

The act of taking the transpose of a product satisfies the rule (AB)T = BT AT .
If A = AT then A is said to be symmetric.

7. The conjugate transpose of a complex p × q matrix A is the q × p matrix A∗
with

(A∗)ji = Aij, for 1 ≤ i ≤ p, 1 ≤ j ≤ q, (2.6)

where a denotes the complex conjugate of a. The act of taking the conjugate
transpose of a product satisfies the rule (AB)∗ = B∗ A∗. If A = A∗ then A
is said to be Hermitian. If A is real then the conjugate transpose is simply the
transpose and, if A is Hermitian, it is symmetric.

8. The determinant of a square p × p matrix is denoted det[A], |A| or,

det[A] =

∣∣∣∣∣∣∣∣∣

A11 A12 A13 · · · A1p

A21 A22 A23 · · · A2p
...

...

Ap1 Ap2 Ap3 · · · App

∣∣∣∣∣∣∣∣∣

(2.7)
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The determinant has many properties including

a. the properties det[A] = det[AT ] and det[A] = det[A].
b. If both A and B are square p × p matrices, then det[AB] = det[A] det[B] =

det[B A].
9. A is said to be an injection or one-to-one if the only p × 1 vector v satisfying the

equation Av = 0 is the vector v = 0. In general, the set of vectors v such that
Av = 0 is a vector subspace ofRq (or C q) and is called the kernel or null space
of A and denoted

ker[A] = {v : Av = 0} (2.8)

The subspace ker[A] is always �= {0} when q > p.
10. If, for every p × 1 vector w, there exists a vector v such that w = Av, then A is

said to be onto or a surjection. More generally, the set of all vectors w for which
there exists a vector v such that w = Av is called the range of A. It is a vector
subspace of Rp (or C p) and is denoted by

R[A] = {w : w = Av for some vector v} (2.9)

A necessary condition for the range to be equal to Rp (or C p as appropriate) is
that q ≥ p.

11. If A is both a surjection and an injection, it is said to be a bijection (or simply
nonsingular). If A is a p × p square matrix, then it is a bijection if, and only if,
it has non-zero determinant. If det[A] = 0 then A is said to be singular.

12. A p × q matrix A is invertible if, and only if, it is a bijection. In particular, this
requires that it is square (p = q) and it is equivalent to the statement that, for
every vector w, there exists a unique vector v such that w = Av. The inverse of
A is denoted by A−1. It is a square p × p matrix of the form

A−1 = adj[A]
det[A] (2.10)

where the adjugatematrix adj[A] has elements that are well defined polynomials
in the elements of A.

13. For all invertible p × p matrices A, the inverse A−1 satisfies the equations

AA−1 = A−1A = Ip (2.11)

where Ip denotes the p × p unit matrix or identity

Ip =

⎡

⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · ·
...

...

0 0 0 · · · 1

⎤

⎥⎥⎥⎦ (2.12)
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For any p×q matrix B and q×p matrixC , the properties Ip B = B andC Ip = C
hold true. Also det[Ip] = 1 and hence det[A−1] = (det[A])−1.
Note: for notational simplicity, the subscript p on Ip is sometimes dropped to
leave the symbol I . This should cause no confusion as matrix dimensions are
usually clear from the context.

14. If A and B are p × p nonsingular matrices, then (AB)−1 = B−1A−1.
15. If T is square and nonsingular, then the mapping A �→ T −1AT is a similarity

transformation Both A and T −1AT have the same eigenvalues and det[A] =
det[T −1AT ].

16. For non-square p×q matrices A, other definitions of inverse play a role in matrix
analysis. In particular, if p ≥ q, a left inverse B of A is any matrix satisfying
the condition B A = Iq. In a similar manner, if p ≤ q, a right inverse B of A is
any matrix satisfying the condition AB = Ip. A left inverse of A exists if, and
only if, A has kernel {0} and a right inverse exists, if and only if, R[A] = Rp

(or C p). If p �= q, any left or right inverse is non-unique. If p = q, then they
are unique and equal to the inverse A−1. Specific examples of left, respectively
right, inverses are given by, respectively,

B = (A∗ A)−1A∗, B = A∗(AA∗)−1. (2.13)

17. Given the definition of the unit matrix, two useful relationships are as follows

a. If A and B are, respectively, p × q and q × p, then

det[Ip + AB] = det[Iq + B A]. (2.14)

b. If A has the partitioned form

A =
[

M11 M12

M21 M22

]
(2.15)

with M11 square and nonsingular, then Schur’s Formula is valid,

det[A] = det[M11] det[M22 − M21M−1
11 M12]. (2.16)

The above algebraic properties ofmatrices are the basis of manipulation. For analysis
purposes, a number of other properties and concepts are required and are summarized
as follows

1. A finite set {Hj}1≤j≤M of real (respectively complex) p × q matrices is said to be
linearly independent if, and only if, the only real (respectively complex) scalars
{aj}1≤j≤M satisfying the condition

∑M
j=1 aj Hj = 0 are aj = 0, 1 ≤ j ≤ M .

2. The rank of a p × q matrix A is the maximum number of linearly independent
columns of A regarded as p × 1 vectors. A p × p matrix A is nonsingular if, and
only if, it has rank equal to its dimension p.
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3. The characteristic polynomial of a square p × p matrix A is defined by the
determinant

ρ(s) = ∣∣sIp − A
∣∣ =

p∑

j=0

ap−js
j with a0 = 1. (2.17)

It is a polynomial of degree p in the complex variable s with p, possibly complex,
roots λj, 1 ≤ j ≤ p called the eigenvalues of A. If A is a real matrix, then the
eigenvalues are either real or exist in complex conjugate pairs. More precisely,
if λ is an eigenvalue, then its complex conjugate λ is also an eigenvalue. The
spectral radius of A is defined by

r(A) = max
1≤j≤p

|λj|. (2.18)

4. A complex number λ is an eigenvalue of A if, and only if, there exists a non-zero
solution vector v ∈ C p solving the equation

Av = λv (2.19)

Such an eigenvector is not uniquely defined as, for example, it can be multiplied
by any scalar and still be an eigenvector. If A has p linearly independent eigen-
vectors {vj}1≤j≤p then an eigenvector matrix E of A is defined to be the block
matrix E = [

v1, v2, . . . , vp
]
. It is nonsingular and can be used to diagonalize A

using the similarity transformation

E−1AE =

⎡

⎢⎢⎢⎣

λ1 0 0 · · · 0
0 λ2 0 · · ·
...

...

0 0 0 · · · λp

⎤

⎥⎥⎥⎦ = diag
[
λ1, λ2, . . . , λp

]
(2.20)

The diagonal matrix produced is often called the diagonal canonical form of A.
A always has linearly independent eigenvectors if its p eigenvalues are distinct.

5. As |sI − A| = |sI − A∗|, the eigenvalues of the conjugate transpose matrix are
exactly the complex conjugates of the eigenvalues {λj} of A. Suppose that the
eigenvectors of A∗ are denoted wj, 1 ≤ j ≤ p and that A∗wj = λjwj. This can
be rewritten in the form w∗

j A = λjw∗
j and w∗

j is termed a left eigenvector of A.
If A has p linearly independent eigenvectors and associated eigenvector matrix
E , then

E−1A = diag[λ1, λ2, . . . , λp]E−1. (2.21)

Equating rows of the two sides of the equation indicates that the rows of E−1

are left eigenvectors of A and, as E−1E = I , these left eigenvectors satisfy the
conditions

w∗
i vj = δij, (2.22)
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the Kronecker delta defined as δij = 0 whenever i �= j and unity otherwise.
6. If A is Hermitian, then its eigenvalues are all real valued. Its eigenvectors vj

form a set of p linearly independent vectors. It is always possible to scale these
vectors so that they satisfy the orthogonality condition

v∗
i vj = δij (2.23)

Under these circumstances, E−1 = E∗ so that E∗E = I , an example of a unitary
matrix. If E is real then it is an orthogonal matrix.

7. Almost every squarematrix A can be diagonalized in themanner shown above. In
some cases, diagonalization is not possible but, in such cases, a Jordan canonical
form can be produced.More precisely, there exists an integer q and a nonsingular
p × p matrix J with the property that

J−1 AJ =

⎡

⎢⎢⎢⎣

J1 0 0 · · · 0
0 J2 0 · · ·
...

...

0 0 0 · · · Jq

⎤

⎥⎥⎥⎦ = blockdiag
[
J1, J2, . . . , Jq

]
(2.24)

where each Jordan block Jj, 1 ≤ j ≤ q has the structure of a qj × qj matrix as
follows

Jj =

⎡

⎢⎢⎢⎢⎢⎣

γj 1 0 · · · 0 0
0 γj 1 · · · 0 0
...

...
...

0 0 0 · · · γj 1
0 0 0 · · · 0 γj

⎤

⎥⎥⎥⎥⎥⎦
(2.25)

where each γj is an eigenvalue of A.
8. In all cases the determinant of A is computed from the product of all p eigenvalues

det[A] =
p∏

j=1

λj. (2.26)

A is singular if, and only if, it has a zero eigenvalue and hence ker[A] �= {0}.
9. In all cases, a square matrix A “satisfies its own characteristic equation”

ρ(A) =
p∑

j=0

ap−j Aj = 0. (2.27)

This statement is normally known as the Cayley-Hamilton Theorem. The result
is the basis of many theoretical simplifications and insight exemplified by the
easily proven fact that, if A is nonsingular, then ap �= 0 and
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A−1 = −a−1
p

p∑

j=1

ap−j Aj−1. (2.28)

That is, the inverse can be expressed in terms of powers of A and the coefficients
in the characteristic polynomial.
Note:A related polynomial is theminimum polynomialof Awhich is the uniquely
defined polynomial ρmin(s) of minimum degree that has the property ρmin(A) =
0. The degree of the minimum polynomial is always less than or equal to p and
is always equal to p if the eigenvalues of A are distinct.

10. More generally, the Cayley-Hamilton theorem implies useful facts about func-
tions of matrices. If f (s) is an analytic function of the complex variable s express-
ible as a power series

∑∞
j=0 fjsj with radius of convergence R, then the symbol

f (A) denotes the associated function of A defined by

f (A) =
∞∑

j=0

fj Aj (2.29)

This series converges whenever the spectral radius r(A) < R. For example,

a. the exponential function es has a power series expansion with fj = 1
j! . The

corresponding matrix exponential is

eA =
∞∑

j=0

1

j! Aj = I + A + 1

2! A2 + 1

3! A3 + · · · . (2.30)

b. The function (1 − s)−1 = ∑∞
j=0 sj has a radius of convergence R = 1. It

follows that, if the spectral radius r(A) < 1, the matrix inverse (I − A)−1

exists and has the convergent series expansion

(I − A)−1 =
∞∑

j=0

Aj. (2.31)

If A has a nonsingular eigenvector matrix E , then Aj = E diag[λj
1, . . . , λ

j
p]E−1

and

f (A) =
∞∑

j=0

fj Aj = E diag[f (λ1), . . . , f (λm)]E−1 (2.32)

11. From the Cayley-Hamilton theorem it is easily seen that all powers Aj with j ≥ p
can be expressed as a polynomial in A of degree less than or equal to p − 1. It
follow that all functions f (A) can be expressed as a polynomial in A of degree
less than or equal to p − 1 by suitable choice of coefficients.
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12. The Spectral Mapping Theorem states that, if A has eigenvalues λj, 1 ≤ j ≤ p,
and r(A) < R, then the eigenvalues of f (A) are precisely f (λj), 1 ≤ j ≤ p.

The final group of useful properties are associated with the idea of positivity of
quadratic forms

1. Suppose that A is a square, real, symmetric, p × p matrix and x an arbitrary
p × 1 vector in Rp. Then the quadratic function xT Ax is a quadratic form. If A
is not symmetric, it can always be replaced by a symmetric matrix as xT Ax ≡
xT

(
A+AT

2

)
x.

2. If A is complex then the quadratic form is definedonC p as x∗ Ax. If A isHermitian,
then x∗ Ax takes only real values.

3. A real matrix A is said to be positive if, and only if, xT Ax ≥ 0 for all vectors
x ∈ Rp. If xT Ax > 0 whenever x �= 0, then A is said to be positive definite and
written in the form A > 0. If A is positive but not positive definite, it is positive
semi-definite and written in the form A ≥ 0. The expression A ≥ B (respectively
A > B) is equivalent to A − B ≥ 0 (respectively A − B > 0). Similar definitions
are used for complex matrices and their associated quadratic forms.

4. Conditions for positivity for real, symmetric matrices include the following

a. A real, symmetric matrix A is positive if, and only if, all its eigenvalues
satisfy the inequalities λj ≥ 0, 1 ≤ j ≤ p. It is positive definite if, and only if,
all eigenvalues are strictly positive. Positive definite, symmetric matrices are
hence always invertible.

b. If A and B arematrices and A = BT B, then A is positive. A is positive definite
if, and only if, ker[B] = {0}.

c. A real, symmetric p×pmatrix A is positive definite if and only if thePrincipal
Minors ∣∣∣∣∣∣∣∣∣

A11 A12 A13 · · · A1q

A21 A22 A23 · · · A2q
...

...

Aq1 Aq2 Aq3 · · · Aqq

∣∣∣∣∣∣∣∣∣

> 0, for 1 ≤ q ≤ p. (2.33)

5. Positive, symmetric, real matrices A always have an orthogonal eigenvector
matrix E and can be expressed in the form A = Ediag[λ1, . . . , λp]E T with
ET E = I .

6. A positive, symmetric, real matrix A has a unique symmetric, positive square
root B such that B2 = A. As with scalar square roots, B is usually denoted by
the symbol A

1
2 . It can be computed from the formula

A = Ediag[λ 1
2
1 , . . . , λ

1
2
p ]E T (2.34)
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2.2 Quadratic Optimization and Quadratic Forms

2.2.1 Completing the Square

The conceptual basis of much of optimization theory used in control systems algo-
rithms has its origins in the simple ideas of minimization of quadratic functions of
vectors in Rp. This short section explains the basic ideas using a simple example
and without the need for advanced mathematical methodologies more complicated
than the matrix theory described above. The problem used to illustrate the ideas is
the problem of minimizing the quadratic objective function

J (x) = xT Ax + 2bT x + c. (2.35)

where the p × p matrix A is real, symmetric and positive definite, b is real and p × 1
and c is a real number. The solution is easily found by completing the square and
verifying that

J (x) = (x + A−1b)T A(x + A−1b) − bT A−1b + c. (2.36)

The second two terms are independent of x. The fact that A is positive definite
immediately yields the fact that the minimum value occurs when the first term is
zero. The unique minimizing solution is hence

x∞ = −A−1b and J (x∞) = −bT A−1b + c. (2.37)

Both can be computed using standard software if the matrices involved are of rea-
sonable dimension and not ill-conditioned. Factors causing problems include:

1. Suppose that the eigenvalues of A are listed in order of ascending value λ1 ≤
λ2 ≤ · · · ≤ λp and A is written in its diagonal form A = Ediag[λ1, . . . , λp]E T

with E−1 = E T . The condition number of A is defined to be c(A) = λp

λ1
. It follows

that the inverse of A has the structure

A−1 = Ediag[λ−1
1 , λ−1

2 , . . . , λ−1
p ]E T (2.38)

The situation where the spread of the eigenvalues of A is large (that is, c(A) is
large) can be discussed by considering the case where λ1 is very small. In such
situations, small errors in characterizing this eigenvalue can lead to large changes
in the computed solution x = −A−1b.

2. These problems are exacerbated if the dimension p is large due to the number of
floating point operations necessary in computer computation of A−1.

In the quadratic problems considered in this text, similar quadratic objective func-
tions will be considered but the “matrices” involved are replaced by operators
associated with dynamical systems models and, in intuitive terms, have very high
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(even infinite) dimensions and extremely large (possibly infinite) condition numbers.
Formal solutions paralleling the algebraic constructions illustrated above hence have
no immediate computational value, the core of the theoretical problem being that of
developing control algorithms that use only feasible computational procedures that
can be implemented using well-conditioned off-line algorithms and on-line feedback
controllers.

2.2.2 Singular Values, Lagrangians and Matrix Norms

The singular values 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σq of a real (respectively complex)
p × q matrix A are real, positive numbers computed from the eigenvalues 0 ≤ λ1 ≤
· · · ≤ λq of the symmetric (respectively Hermitian) matrix AT A (respectively A∗ A)
by writing λj = σ 2

j , 1 ≤ j ≤ q. The corresponding eigenvectors are often called
singular vectors.

Associated with the matrix A is the notion of a matrix norm. As will be seen
throughout this text, the idea of a norm is non-unique. What follows, therefore, is
only an example that builds on the idea of singular values and illustrates the use of
Lagrangian methods in optimization problems. The first step is the definition of a
particular vector norm, the Euclidean norm, defined on vectors x ∈ Rq (respectively
C q) by ‖x‖ = √

xT x (respectively
√

x∗x). The Euclidean norm induces a norm ‖A‖
on the matrix A by defining

‖A‖ = sup
x �=0

‖Ax‖
‖x‖ = sup{‖Ax‖ : ‖x‖ = 1} (2.39)

In particular, it follows that, for all vectors x ∈ Rq (respectively C q),

‖Ax‖ ≤ ‖A‖ ‖x‖. (2.40)

As a consequence, if A and B are p × q and q × r matrices, it follows that ‖ABx‖ ≤
‖A‖ ‖B‖ ‖x‖ and hence

‖AB‖ ≤ ‖A‖‖B‖. (2.41)

Suppose now that A is real and vectors are in Rq. From the above, the induced
norm is the solution of an optimization problem with an equality constraint, namely

‖A‖2 = sup{‖Ax‖2 : ‖x‖ = 1} = sup{xT AT Ax : xT x = 1}. (2.42)

The solution of this problem is computed by solving for the unique stationary point
of the Lagrangian

L [x, λ] = xT AT Ax + 2λT
(
1 − xT x

)
(2.43)
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where λ is the scalar Lagrange Multiplier for the single constraint 1− xT x = 0. The
stationary point of the Lagrangian is the solution of the two equations

1 − xT x = 0 and AT Ax = λx, (2.44)

That is, λ is an eigenvalue of AT A and the largest value of the optimization objective
function ‖Ax‖2 = xT AT Ax is simply the largest eigenvalue of AT A. Hence

‖A‖ = σq. (2.45)

which provides a simple link between matrix norms and singular values. This rela-
tionship also holds for complex matrices operating on C q. Finally,

1. If A is p × p and nonsingular, then ‖A‖ = σp and ‖A−1‖ = σ−1
1 .

2. The smallest and largest singular values are denoted byσ (A) = σ1 andσ(A) = σp

respectively.
3. The spectral radius is linked to matrix norms by the formula

r(A) = lim
k→∞

‖Ak‖1/k (2.46)

from which, for all ε > 0, there exists a real number Mε ≥ 1 such that

‖Ak‖ ≤ Mε(r(A) + ε)k (2.47)

If A can be diagonalized by a nonsingular eigenvector matrix E , then it is possible
to choose ε = 0 and M0 = ‖E−1‖‖E‖.

2.3 Banach Spaces, Operators, Norms and Convergent
Sequences

2.3.1 Vector Spaces

Matrices are just part of a more general approach to signal analysis based on vector
spaces which are a mathematical generalization of the familiar three dimensional
world that we live in. A real (respectively complex) vector space V is a collection of
objects (called vectors) with defined properties of vector addition and multiplication
by real (respectively complex) scalars that satisfy the familiar relations

v1 + v2 = v2 + v1
v1 + (v2 + v3) = (v1 + v2) + v3

(λ1 + λ2)v = λ1v + λ2v
λ(v1 + v2) = λv1 + λv2

(2.48)
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for all v, v1, v2, v3 in V and all scalars λ, λ1, λ2. The zero vector in V is denoted by
the symbol 0. A vector subspace (or, more simply, a subspace)U ⊂ V is any subset
of V that satisfies the properties defined above.

It is easily seen thatRp (respectively C p) is a real (respectively complex) vector
space. Also the set of real (respectively complex) p×q matrices is a real (respectively
complex) vector space.Other examples and constructs of relevance to this text include

1. If V is any real vector space, then its complexification V c is defined to be the
complex vector space of all complex vectors v = v1 + iv2 with both v1 and v2
elements of V . V c is sometimes written in the form

V c = V ⊕ iV . (2.49)

2. The space of infinite sequences (or time series)α = {α0, α1, α2, . . .}withαj ∈ Rp

(orC p) is a vector spacewith additionγ = α+β andmultiplicationby scalarsγ =
λα defined by the equations, γj = αj + βj and γj = λαj for j = 0, 1, 2, 3, . . .. A
number of subspaces are of particular relevancehere including 
∞ (the subspaceof
bounded sequences of scalars satisfying supj≥0 |αj| < +∞) and 
2 (the subspace
of sequences of scalars satisfying

∑∞
j=0 |αj|2 < +∞)

3. The space of real or complex valued continuous functions of a real variable t on
an interval a ≤ t ≤ b (denoted [a, b] ⊂ R) is denoted by the symbol C[a, b] and
is a vector space with the usual definitions of addition and multiplication.

4. The space of all functions defined on [a, b] and taking values inRp (respectively
C p) is a real (respectively complex) vector space with the usual definitions of
addition and multiplication. The real vector space Lp

2[a, b] is the set of all real
p × 1 vector-valued functions f such that the Lebesgue integral

‖f ‖2 =
∫ b

a
‖f (t)‖2dt (2.50)

is well defined and finite. If Q is any symmetric, positive definite p × p matrix,
then an equivalent statement is that

‖f ‖2Q =
∫ b

a
f T (t)Qf (t)dt (2.51)

is well defined and finite. If p = 1, then the space is written L2[a, b].
The notion of linear independence of a set of vectors follows the example of matrix
theory. More precisely, a set of vector {vj}1≤j≤M is linearly independent if, and only
if,

∑M
j=1 ajvj = 0 implies that all scalars aj are zero. A basis for V is a linearly

independent set {vj}1≤j≤M such that all elements v ∈ V can be written as a unique
linear combination of the {vj}1≤j≤M . If M is finite, then the space is said to be finite
dimensional of dimension M . Otherwise it is infinite dimensional. The spacesRp and
C p have dimension pwhilstC[a, b] and L2[a, b] are infinite dimensional. For infinite
dimensional spaces, the statement is more clearly stated by saying that the basis set
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{vj}j≥0 has the property that all finite subsets of this set are linearly independent and
the set of all finite linear combinations is dense in V . The concept of denseness is
more fully described in Sect. 2.3.4.

Finally,

1. The space V is said to be the sum of the vector subspaces {Vj}1≤j≤q of V , written

V = V1 + V2 + · · · + Vq, (2.52)

if any vector v ∈ V can be written as a linear combination v = ∑q
j=1 αjvj with

vj ∈ Vj, 1 ≤ j ≤ q and suitable choice of scalars {αj}1≤j≤q. It is a direct sum
decomposition written

V = V1 ⊕ V2 ⊕ · · · ⊕ Vq (2.53)

if, and only if, each v ∈ V can be written as a unique linear combination of
elements of the subspaces.

2. A product vector space constructed from vector spaces {Vj}1≤j≤q is denoted by
the Cartesian Product notation

V = V1 × V2 × · · · × Vq (2.54)

and consists of the set of p-tuples v = {v1, v2, . . . , vq} with vj ∈ Vj, 1 ≤ j ≤ q
and the same laws of composition as those defined for (finite) times series. An
example of this notation is the real product space Lp

2[a, b] defined by

Lp
2[a, b] = L2[a, b] × L2[a, b] × · · · × L2[a, b]︸ ︷︷ ︸

p − copies.
(2.55)

It is sometimes convenient to identify Lp
2[a, b] with the space of p × 1 vectors f

with elements consisting of real valued functions fj ∈ L2[a, b], 1 ≤ j ≤ p.

2.3.2 Normed Spaces

Measures of magnitude are important in applications of mathematics and are used
extensively in this text as a means of algorithm design and analysis. For the vector
space Rp, the familiar measure is the Euclidean length of the vector defined as
‖v‖ = √

vT v. This is just an example of the more general concept of a vector norm.
More precisely, if V is a finite or infinite dimensional, real or complex vector space,
then a norm on V is a mapping from vectors v into real numbers ‖v‖ with the
properties that
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‖v‖ ≥ 0

‖v‖ = 0 if , and only if , v = 0 (2.56)

‖λv‖ = |λ|‖v‖
‖v1 + v2‖ ≤ ‖v1‖ + ‖v2‖

for all vectors v, v1, v2 in V and scalars λ. Note that the space V possessing the norm
is normally understood from the context but it is often useful to identify the space
using a subscript such as ‖v‖V or by other means.

An example of a norm in Lp
2[a, b] is

‖f ‖ =
(∫ b

a
e2αt f T (t)Qf (t)dt

)1/2

(2.57)

where Q is a symmetric, real, positive-definite p × p matrix and α is any real scalar.
Also, a norm in C[a, b] can be defined by

‖f ‖ = sup
a≤t≤b

(
eαt|f (t)|) . (2.58)

The Lp
2[a, b] norm is also a norm on C[a, b].

For real (or complex) p × q matrices, A, one choice of norm is the maximum
singular value σ(A) of A whilst, if A is real, another is the so-called Frobenius Norm
defined by the trace formula

‖A‖ =
√

tr[AT A] (the Frobenius Norm). (2.59)

or, more generally,

‖A‖ =
√

tr[W AT Q A] (the weighted Frobenius Norm). (2.60)

where Q and W are symmetric and positive definite matrices.
When endowed with a chosen norm ‖ · ‖, the space V is called a normed space.

The choice of norm is non-unique and the same underlying vector space, when given
different norms, generates a new normed space. ForRp, the following are norms for
v = [v1, v2, . . . , vp]T ,

‖v‖ =
√

vT Qv (Q = QT > 0), ‖v‖ = max |vj|, ‖v‖ = (

p∑

j=1

|vj|q)1/q, q ≥ 1.

(2.61)
Two norms ‖ · ‖1 and ‖ · ‖2 on the same underlying vector space are said to be
topologically equivalent if, and only if, there exists scalars 0 < β1 ≤ β2 such that,
for all v ∈ V ,

β1‖v‖1 ≤ ‖v‖2 ≤ β2‖v‖1 (2.62)

All norms on a given finite dimensional space are topologically equivalent.
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2.3.3 Convergence, Closure, Completeness
and Banach Spaces

Given a normed space V , an infinite sequence {vj}j≥0 = {v0, v1, v2, . . .} is said to
converge in the norm topology (or, more simply, to converge) to a limit vector v ∈ V
if, and only if,

lim
j→∞ ‖v − vj‖V = 0 (written lim

j→∞ vj = v). (2.63)

The nature of this convergence is defined by the norm used but it is easily seen that
convergence with respect to one norm implies convergence with respect to any other
topologically equivalent norm.

A subset S ⊂ V is said to be an open subset if, for every point v ∈ V , the Open
Ball B(v; δ) defined by

B(v; δ) = {w : w ∈ V , ‖v − w‖ < δ} (2.64)

lies in S for some choice of δ > 0. S is said to be closed if it contains the limit points
of all convergent sequences with elements in S. The closure of a subset S (denoted
S) is the set consisting of points in S plus the limits of all convergent sequences in
S. One consequence of this is that the Closed Ball Bc(v; δ) defined by

Bc(v; δ) = {w : w ∈ V , ‖v − w‖ ≤ δ} (2.65)

is the closure of the open ball B(v; δ). Subsets can be neither open nor closed. For real
numbers, the symbols [a, b], [a, b), (a, b] and (a, b) are used to denote the intervals,
respectively,

{t : a ≤ t ≤ b} (a closed interval),
{t : a ≤ t < b} (a half open interval),
{t : a < t ≤ b} (a half open interval),
{t : a < t < b} (an open interval),

(2.66)

ACauchy Sequence {vj}j≥0 inV is a sequence with the property that, for all ε > 0,
there exists an integer nε such that ‖vj −vk‖ < ε for all j ≥ nε and k ≥ nε. That is, all
points vj in the sequence get “closer and closer together” as the index j increases. In
general, not all Cauchy sequences converge. An example of this is the space C[a, b]
with the L2[a, b] norm. It is a simple matter to construct a sequence of continuous
functions that converge in norm to a discontinuous function which, by definition, is
not in C[a, b]. A normed space where all Cauchy sequences converge is said to be
complete and it is said to be a Banach Space. For the purposes of this text, note that
all normed spaces used are Banach Spaces unless otherwise stated includingRp,C p,

2 and Lp

2[a, b] and their Cartesian products for any p and −∞ < a < b < +∞.
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2.3.4 Linear Operators and Dense Subsets

All p × q real matrices are examples of linear operators between the real spaces
Rq and Rp. The more general concepts of a linear operator/linear operators Γ :
V �→ W mapping a vector space V into another vector space W follows similar
lines by satisfying the linearity assumptions that, for all v, v1, v2 in V and scalars λ,

Γ (v1 + v2) = Γ v1 + Γ v2
Γ (λv) = λΓ v

(2.67)

For example, if V = Lq
2[0, T ] and W = Lp

2[0, T ], T is finite and H(t) is a p × q
matrix with elements that are continuous in t, then the mapping v �→ Γ v defined by
the Convolution Integral

(Γ v) (t) =
∫ t

0
H(t − t′)v(t′)dt′, 0 ≤ t ≤ T, (2.68)

is a well-defined linear operator. The identity or unit operator in V is the linear
operator I : V �→ V defined by I v = v for all v ∈ V . If both V and W are real
vector spaces then a linear operatorΓ : V �→ W can be extended to a linear operator
(again denoted by Γ ) mapping the complexification V c into the complexification
W c by the relation Γ (u + iv) = Γ u + iΓ v. Also two operators Γ1 : V �→ V and
Γ2 : V �→ V are said to commute if

Γ1Γ2 = Γ2Γ1. (2.69)

Linear operators can be associated with norms quite easily. More precisely, with
the notation used above, suppose that both V and W are normed spaces, then the
operator norm of Γ (induced by the norms in V and W ) is defined to be

‖A‖ = sup
v �=0

‖Γ v‖W
‖v‖V = sup

‖v‖=1

‖Γ v‖W
‖v‖V (2.70)

If the norm is finite, the operator is said to be bounded. In all other cases, it is
unbounded. The identity operator is bounded with induced norm ‖I‖ = 1.

The definition of the operator norm implies that, for all v ∈ V ,

‖Γ v‖W ≤ ‖Γ ‖‖v‖V (2.71)

which implies the fact that boundedness of an operator is equivalent to its continuity.
In addition, it is easily shown that, if Γ2 : V �→ W and Γ1 : W �→ Z are
two bounded linear operators between normed spaces, then the composite operator
Γ1Γ2 : V �→ Z defined by (Γ1Γ2)v = Γ1(Γ2v) has a norm bound

‖Γ1Γ2‖ ≤ ‖Γ1‖‖Γ2‖. (2.72)
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In a similar manner, the operator sumΓ1+Γ2 defined by (Γ1+Γ2)v = Γ1v+Γ2v and
multiplication by scalars (λΓ )v = λ(Γ v) rules make the set L (V ;W ) of bounded
linear operators from V into W into a normed vector space in its own right. If V
and W are Banach spaces, then so isL (V ;W ).

The kernel and range of an operator Γ : V → W play a vital role in analysis and
are defined (as for matrices) using

ker[Γ ] = {v ∈ V : Γ v = 0}
R[Γ ] = {w ∈ W : w = Γ v for some v ∈ V } (2.73)

The operator is injective (or one-to-one) if its kernel is the single point {0} and it is
surjective (or onto) if its range isW . It is bijective if it is both injective and surjective.
If Γ is bijective and W is finite dimensional, then it has a bounded, linear inverse
Γ −1 : W �→ V defined by the relation Γ −1(Γ v) = v for all v ∈ V or, more simply
Γ −1Γ = I where I is the identity in V . If V = W , then, in addition, Γ Γ −1 = I .

The notion of inverse familiar in matrix theory also has relevance to the interpre-
tation of the idea of inverse operators but with more technical complexity if V and
W are infinite dimensional. One concept that is central to the discussion is that of a
dense subset S1 of a subset S of a normed space V . More precisely, S1 is dense in S
if, and only if, for every point v ∈ S and for every ε > 0, there exists a point vε ∈ S1
such that ‖v − vε‖ < ε. In effect, every point in S has a point in S1 arbitrarily close
to it. Three observations are related to this

1. If Γ is bounded, then its kernel is closed.
2. Γ being bounded does not necessarily imply that its range is closed.
3. If W is finite dimensional and Γ is bounded, Γ has a closed range.

The second observation can be illustrated by the case of a convolution operator (2.68)
mapping Lq

2[0, T ] into Lp
2[0, T ]. The range of Γ is, at best, the set of continuous

p × 1 matrix valued functions which is known to be dense in Lp
2[0, T ].

The important point that follows from the above is that the range of the operator
in infinite dimensional spaces has more complex properties than those observed
for matrices. The consequences of this fact are many in number and include the
possibility that the inverse of a bounded operator may exist but be unbounded. If Γ

has a bounded (and hence continuous) inverse, it is said to be a Homeomorphism. In
such cases it is easily seen that 1 ≤ ‖Γ ‖‖Γ −1‖.

Formatrices, the eigenvalues of amatrix A are defined to be scalarsλwhich ensure
that λI − A has no inverse. The idea of eigenvalues requires careful generalization
to the case of linear operators. More precisely, suppose that V is a complex Banach
space, then the Resolvent Set of a linear operator Γ : V �→ V is defined to be
the set of complex numbers λ where λI − Γ is bijective. As a consequence of
the Open Mapping Theorem, for any such λ, the Resolvent Operator (λI − Γ )−1

is bounded. Using this construction, the spectrum (denoted by spec[Γ ]) of Γ is
defined to be the complement of the Resolvent Set and hence is the set of complex
numbersλwhereλI −Γ does not have a bounded inverse. This definition includes the
eigenvalues of Γ (the so-called Point Spectrum defined by the existence of non-zero
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eigenvectors/eigenfunctions v ∈ V such that Γ v = λv) but also other points in what
are termed the Continuous and Residual Spectrum. In finite dimensional spaces, the
residual and continuous spectra are empty and the results of matrix algebra describe
the spectrum completely in terms of eigenstructure. Finally,

1. the spectral radius of a bounded operator Γ : V �→ V is defined by

r(Γ ) = sup{|λ| : λ ∈ spec[Γ ]}, (2.74)

a definition that reduces to that for matrices if V = C p. In particular, if V is a
Banach space, then

r(Γ ) = lim
k→∞

‖Γ k‖1/k (2.75)

which relates the spectral radius to powers of Γ . As ‖Γ k‖ ≤ ‖Γ ‖k for all k ≥ 1,
this implies that

r(Γ ) ≤ ‖Γ ‖ (2.76)

and, for all ε > 0, there exists a real number Mε ≥ 1 such that

‖Γ k‖ ≤ Mε(r(Γ ) + ε)k . (2.77)

2. The ideas of functions of operators and the Spectral Mapping Theorem, easily
proven for matrices, can be extended to bounded operators from Banach spaces
into Banach spaces. More precisely, if f (z) has a power series expansion

∑∞
j=0 fjzj

with radius of convergence R, then f (Γ ) is defined to be the operator
∑∞

j=0 fjΓ j

which is convergent if r(Γ ) < R. The spectrum of f (Γ ) is simply {z : z =
f (η), η ∈ spec[Γ ]} or, more compactly,

spec[f (Γ )] = f (spec[Γ ]). (2.78)

For example, the Resolvent (λI − Γ )−1 has the power series representation

(λI − Γ )−1 =
∞∑

j=0

λ−(j+1)Γ j (2.79)

which is convergent if Γ has spectral radius strictly less than |λ|. A sufficient
condition for this is that ‖Γ ‖ < |λ|. The spectrum of the Resolvent is {z : z =
(λ − η)−1, η ∈ spec[Γ ]}.

The following result relates the spectral radius to the iterative learning control studies
in this text. More precisely, the spectral radius describes convergence in norm of a
simple, but typical, iteration formula.
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Theorem 2.1 (Convergence in Norm and the Spectral Radius) Let V be a Banach
space. Then, given an arbitrary starting vector v0 ∈ V and a bounded linear operator
Γ : V �→ V , the sequence {vj}j≥0 generated by the iteration vj+1 = Γ vj, j ≥ 0,
converges (in norm) to zero if (a sufficient condition)

r(Γ ) < 1. (2.80)

A sufficient condition for this to be true is that ‖Γ ‖ < 1.

Proof Note, using induction, vj = Γ jv0 for all j ≥ 0. Using the notation above, the
assumptions make possible the selection of ε > 0 such that r(Γ )+ ε < 1. It follows
that, as required,

‖vj‖ = ‖Γ jv0‖ ≤ ‖Γ j‖‖v0‖ ≤ Mε(r(Γ ) + ε)j → 0 as j → ∞. (2.81)

The theorem is proved as the norm condition is sufficient to ensure the required
condition on the spectral radius. �

Note the conceptual similarity of this results to the familiar results from discrete
time, sampled data systems control where asymptotic stability of xj+1 = Axj is
equivalent to the condition r(A) < 1 and hence is equivalent to the poles of the
systems transfer function being inside the unit circle of the complex plane.

2.4 Hilbert Spaces

2.4.1 Inner Products and Norms

Although Banach spaces play a role is some areas of Control Theory and Opti-
mization, the addition of geometrical structures plays an important role in algorithm
design. The relevant structure is that of a Hilbert Space. More precisely, let V be a
real (respectively complex) Banach space endowed with an associated inner product
〈·, ·〉 : V × V �→ R (respectively C ) possessing the properties that, for all u, v, w
in V and real (respectively complex) scalars λ,

〈u, v〉 = 〈v, u〉 (respectively 〈u, v〉 = 〈v, u〉),
〈u, v + w〉 = 〈u, v〉 + 〈u, w〉,

〈u, λv〉 = λ〈u, v〉,
〈v, v〉 ≥ 0 and
〈v, v〉 = 0 if , and only if , v = 0.

(2.82)

Suppose also that the norm in V can be computed from the inner product using the
formula

‖v‖ = √〈v, v〉, (2.83)
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then V is said to be a real (respectively complex) Hilbert Space. Note that, if it is
necessary to identify the space or some other aspect of the formulae arising in the
theory, the norm and inner product may be given subscripts as an aide memoire to
the reader. For example, to identify the space being considered, both ‖v‖ and 〈u, v〉
can be written in the form ‖v‖V and 〈u, v〉V .

Examples of Hilbert spaces include:

1. The space Rp is a Hilbert space with inner product 〈u, v〉 = uT Qv where Q is
any symmetric, positive definite p × p matrix.

2. If −∞ < a < b < +∞, then Lp
2[a, b] is a Hilbert space with inner product

〈u, v〉 =
∫ b

a
uT (t)Q(t)v(t)dt (2.84)

where Q(t) is any piecewise continuous p × p matrix satisfying an inequality of
the form

α1 Ip ≤ Q(t) ≤ α2 Ip, for all t ∈ [a, b] (2.85)

and some scalars 0 < α1 ≤ α2. For example, if α ≥ 0 and Q(t) = e2αt Q with Q
a constant, symmetric, positive definite matrix with eigenvalues 0 < q1 ≤ q2 ≤
· · · ≤ qp, then the conditions are satisfied with α1 = q1eαa and α2 = qpeαb.

Finally, the inner product has a number of useful additional properties including
the Cauchy-Schwarz Inequality which takes the form, for any u, v in V

|〈u, v〉| ≤ ‖u‖‖v‖ (2.86)

with equality holding if, and only if, v is a multiple of u. That is, if and only if, v = λu
for some scalar λ.

Also the inner product allows the introduction of ideas of orthogonality. More
precisely, two vectors u, v in V are said to be orthogonal if, and only if, 〈u, v〉 = 0,
a definition that is consistent with that used for Euclidean geometry in Rp. The
orthogonal complement of a vector subspace S of V is denoted S⊥ where

S⊥ = {v ∈ V : 〈v, u〉 = 0 for all u ∈ S} (2.87)

S⊥ is a closed subspace. If, in addition, S is a closed subspace, then V has the direct
sum decomposition

V = S ⊕ S⊥ = {w = u + v : u ∈ S, v ∈ S⊥}. (2.88)

If {vj}j≥1 is a basis for V and 〈vj, vk〉 = 0 whenever j �= k, then the basis set is an
orthogonal basis. If, by suitable scaling (notably replacing each vj by the normalized
vector vj/‖vj‖), the basis set is said to be an orthonormal basis with the defining
property that, for all j ≥ 1 and k ≥ 1,
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〈vj, vk〉 = δjk where (2.89)

the symbol δjk is the Kronecker Delta defined by δjk = 0 if j �= k and is unity
otherwise. Under these conditions, any vector v ∈ V has the form

v =
∞∑

j=1

αjvj with αj = 〈vj, v〉, for j ≥ 1, and ‖v‖2 =
∞∑

j=1

|αj|2 < ∞. (2.90)

Finally, the ideas of inner products can be applied to some normed spaces that are
not complete. Examples include the space C[a, b] endowed with the inner product
(and induced norm) used for the Hilbert space L2[a, b] or, more generally, a dense,
but not complete, subspace of a Hilbert space. Such spaces are said to be Pre-Hilbert
Spaces. The geometry of such spaces is identical to that of Hilbert spaces but results
that rely on the convergence of Cauchy sequences (and hence the existence of limits)
need to be carefully considered.

2.4.2 Norm and Weak Convergence

The convergence of sequences in Hilbert spaces is defined as in any normed space
but it is often called convergence in norm, convergence in the norm topology or,
more simply, norm convergence. This is because, in Hilbert spaces, another useful
definition of convergence is that of Weak Convergence. More precisely, a sequence
{vj}j≥0 in a Hilbert space V is said to converge weakly to a vector v∞ ∈ V if, and
only if,

lim
j→∞〈f , v∞ − vj〉 = 0 for all f ∈ V . (2.91)

The Cauchy-Schwarz inequality immediately indicates that convergence in norm
to v∞ implies weak convergence to that vector. However, weak convergence of a
sequence does not imply, necessarily, its convergence in norm.

The limit need only be valid on a dense subset of V as,

Theorem 2.2 Using the notation above, suppose that the sequence {vj}j≥0 is bounded
in the sense that there exists a real scalar M such that ‖vj‖ ≤ M for all j ≥ 0. Suppose
also that, for some dense subset S ⊂ V

lim
j→∞ 〈f , v∞ − vj〉 = 0 for all f ∈ S. (2.92)

Then, {vj}j≥0 converges weakly to v∞.

Proof First note that ‖v∞ − vj‖ ≤ ‖v∞‖ + ‖vj‖ ≤ ‖v∞‖ + M . Next write, for any
fε ∈ V ,

〈f , v∞ − vj〉 = 〈f − fε, v∞ − vj〉 + 〈fε, v∞ − vj〉. (2.93)
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Let ε > 0 be arbitrary and choose fε ∈ S so that ‖f − fε‖ < ε, then the inequality

|〈f , v∞ − vj〉| ≤ ‖(f − fε‖‖v∞ − vj‖ + |〈fε, v∞ − vj〉| (2.94)

indicates that
lim sup

j→∞
|〈f , v∞ − vj〉| ≤ ε(‖v∞‖ + M) (2.95)

which proves the result as the left hand side is independent of ε > 0 which is
arbitrary. �

Another useful property of weak convergence is that of guaranteed convergence
of subsequences. This is stated as follows and is usually associated with the notion
of weak compactness of the closed unit ball B(0; 1) in V .

Theorem 2.3 (Ascoli’s Theorem) If V is a Hilbert space and S = {vj}j≥0 is an
infinite but bounded sequence of vectors, then S has a subsequence S1 = {vj}kj≥0

that converges weakly to some vector v∞ in V .

The result states that all bounded sequences in any Hilbert space contain weakly
convergent subsequences. If the convergent subsequence is removed from the orig-
inal sequence, it will leave either a finite set (a situation which implies that the
sequence itself converges weakly to v∞) or an infinite sequence. In the second case,
the remaining sequence is also bounded and hence (by Ascoli’s Theorem) it, too, has
a subsequence converging weakly to some (possibly different) weak limit v̂∞ ∈ V .
It is concluded that there is a possibility that S has many subsequences with different
weak limits.

The essential property needed for weak convergence is boundedness of the
sequence. The following result provides some insight into possibilities.

Theorem 2.4 (Weak Convergence and Operator Norms) Any iteration vj+1 =
Γ vj, j ≥ 0, in a real Hilbert space V where Γ : V → V is a bounded linear
operator with norm ‖Γ ‖ ≤ 1 generates a sequence {vj}kj≥0 that is bounded in norm
and has weakly convergent subsequences. If ‖Γ ‖ < 1, then the sequence converges
in norm to zero.

Proof As vj = Γ jv0, it follows that ‖vj‖ ≤ ‖Γ ‖j‖v0‖ which proves the result as the
sequence is always bounded by ‖vj‖ ≤ ‖v0‖. Ascoli’s Theorem then indicates the
existence of a weak limit of some subsequence. Convergence in norm if ‖Γ ‖ < 1
follows from the definitions. �

Iterations of the form vj+1 = Γ vj appear regularly in this text. Theorems 2.1
and 2.4 above provide two conditions for some form of convergence. It is worth
noting that the values of the spectral radius or norm of the operator Γ are central
to the stated results. As r(Γ ) ≤ ‖Γ ‖, the use of the spectral radius will produce
the best prediction of some form of convergence. This is particularly apparent in the
case when r(Γ ) < 1 < ‖Γ ‖ when the norm cannot be used to prove convergence
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but the use of the spectral radius indicates convergence in norm to zero. The more
difficult, but important, case that also plays a role in iterative control is the case
when r(Γ ) = ‖Γ ‖ = 1 when weak convergence of subsequences is guaranteed by
Theorem 2.4 but convergence in norm is not covered by either result.

2.4.3 Adjoint and Self-adjoint Operators in Hilbert Space

Suppose that Γ : V �→ W is a bounded linear operator mapping a real or complex
Hilbert space V into a real or complex Hilbert space W . The Adjoint Operator
Γ ∗ : W �→ V is the uniquely defined bounded linear operator mapping W into V
and satisfying the identity, for all u ∈ W and v ∈ V ,

〈u, Γ v〉W = 〈Γ ∗u, v〉V (2.96)

There are many general links between an operator and its adjoint. These include the
additive, multiplicative and inversion rules

(Γ1 + Γ2)
∗ = Γ ∗

1 + Γ ∗
2 ,

(Γ1Γ2)
∗ = Γ ∗

2 Γ ∗
1 and, if V = W , (A−1)∗ = (A∗)−1 (2.97)

(when the inverse exists). The cases of real and complex Hilbert spaces need a little
care as, for Γ : V �→ W and any scalar λ, the adjoint (λΓ )∗ = λΓ ∗ if V is a real
Hilbert space but equal to λΓ ∗ if V is a complex Hilbert space. Also

(Γ ∗)∗ = Γ. (2.98)

A result that plays a role in the following text expresses the adjoint of a map into a
product space in terms of adjoints of operators associated with each component.

Theorem 2.5 (The Adjoint of a Map into a Product Hilbert Space) Let V ,W1, . . . ,

Wp be real Hilbert spaces and define the product Hilbert space W1 × · · · ×Wp to be
the product space with inner product and induced norm defined by

〈(w1, . . . , wp), (z1, . . . , zp)〉W1×···×Wp = ∑p
j=1 〈wj, zj〉Wj

and ‖(w1, . . . , wp)‖2W1×···×Wp
= ∑p

j=1 ‖wj‖2Wj
.

(2.99)

Let the operator G : V → W1 × · · · × Wp be linear and bounded. Then G can be
represented by the mapping, for all v ∈ V ,

Gv = (G1v, G2v, . . . , Gpv) (2.100)
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where Gj : V → Wj is linear and bounded. The adjoint map G∗ : W1×· · ·×Wp → V
is the bounded linear operator defined by the relation,

G∗(w1, w2, . . . , wp) = G∗
1w1 + G∗

2w2 + · · · + G∗
pwp, (2.101)

where, for 1 ≤ j ≤ p, G∗
j : Wj → V is the adjoint of Gj.

Proof The characterization of G in terms of the Gj follows easily from the linearity
of G. The adjoint of G is identified from the equation

〈(w1, . . . , wp), Gv〉W1×···×Wp = ∑p
j=1 〈wj, Gjv〉Wj

= ∑p
j=1 〈G∗

j wj, v〉V = 〈 ∑p
j=1 G∗

j wj, v〉V .
(2.102)

The theorem is proved by comparing this with 〈G∗(w1, w2, . . . , wp), v〉V . �

An operator Γ : V �→ V is self adjoint if, and only if, Γ = Γ ∗. If Γ is self
adjoint then 〈u, Γ u〉V is always real. Γ is then said to be positive if 〈u, Γ u〉 ≥ 0
for all u ∈ V , positive definite if it is positive and 〈u, Γ u〉 = 0 if, and only if,
u = 0 and positive semi-definite if it is positive but there exits a non-zero u such that
〈u, Γ u〉 = 0. Positive commuting operators have special properties as follows:

Theorem 2.6 If Γ1, Γ2 and Γ3 are linear, bounded, self-adjoint, positive, commuting
operators mapping a Hilbert space V into itself, then

Γ1 ≥ 0 & Γ2 ≥ 0 ⇒ Γ1Γ2 ≥ 0
Γ1 ≥ Γ2 ⇒ Γ1Γ3 ≥ Γ2Γ3

(2.103)

The form of the adjoint operator depends on the spaces used and, in particular, on
the form of inner product used. For example, matrix algebra proves that,

Theorem 2.7 (Adjoint of a Matrix Operator) let V be Rp with inner product
〈v̂, v〉V = v̂T Rv (where R = RT > 0) and W be Rq with inner product
〈ŵ, w〉W = ŵT Qw (where Q = QT > 0). Γ is a p × q real matrix with adjoint Γ ∗
satisfying, for all u and w,

wT QΓ v = (Γ ∗w)T Rv and hence Γ ∗ = R−1Γ T Q. (2.104)

In particular, when R = Ip and Q = Iq, the adjoint is simply the transpose of the
matrix Γ .

Note: it is conventional to use the ∗ notation to denote the adjoint operator but it is
also often used to denote the complex conjugate transpose of a matrix. There is a
possibility of confusion from time to time but careful attention to the context of the
analysis should easily resolve any ambiguity.

The operator Γ ∗Γ is self adjoint. It is also positive as 〈u, Γ ∗Γ u〉 = 〈Γ u, Γ u〉 =
‖Γ u‖2 ≥ 0. As a consequence,
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Theorem 2.8 (Invertibility and Positivity of Operators) With the above notation,

1. The operator Γ ∗Γ : V → V is positive definite if, and only if, ker[Γ ] = {0}.
2. The operator Γ : V → W has a bounded inverse if, and only if, there exists a

constant α > 0 such that Γ ∗Γ ≥ α IV and Γ Γ ∗ ≥ α IW .

These properties link invertibility to positivity as follows,

Theorem 2.9 (Invertibility and Positivity of Operators) An operator Γ : V → V
has a bounded inverse on the Hilbert space V if there exists a real number ε0 > 0
such that

Γ + Γ ∗ ≥ ε20 I. (2.105)

Proof Noting that, for any real scalar λ,

0 ≤ (I − λΓ ∗)(I − λΓ ) = I − λ(Γ + Γ ∗) + λ2Γ ∗Γ
≤ (1 − λε20)I + λ2Γ ∗Γ.

(2.106)

Exactly the same relation ship for Γ Γ ∗ is obtained using (I − λΓ )(I − λΓ ∗) so
that the positivity condition of the previous result holds by choosing λ so that α =
λ−2(λε20 − 1) > 0. �

The operator norms ‖Γ ‖ and ‖Γ ∗‖ are related by the expression,

‖Γ ‖ = ‖Γ ∗‖ (2.107)

and the range and kernels of the operators satisfy the orthogonality relations

(a) R[Γ ∗]⊥ = ker[Γ ] and hence R[Γ ]⊥ = ker[Γ ∗]
(b) R[Γ ∗] = ker[Γ ]⊥ and hence R[Γ ] = ker[Γ ∗]⊥ (2.108)

from which the Projection Theorem in Hilbert space (Theorem 2.17) gives

V = R[Γ ∗] ⊕ ker[Γ ] and W = R[Γ ] ⊕ ker[Γ ∗] (2.109)

A following result provides an important property of a Hilbert space in terms of the
range of an operator and and the kernel of its adjoint. The result has close links to
the above but, more formally,

Theorem 2.10 (Denseness and the Orthogonal Complement of the Kernel) Suppose
that Γ : V �→ W where V and W are Hilbert spaces. Then the range space R[Γ ∗]
is dense in V if, and only if, ker[Γ ] = {0}.
Proof If ker[Γ ] = {0}, suppose that R[Γ ∗] is not dense. It follows that its closure
is a proper closed subspace S of V with an orthogonal complement S⊥ containing
non-zero vectors. Let v ∈ S⊥ be non-zero and write 〈v, Γ ∗w〉 = 0 for all w ∈ W .
It follows that 〈Γ v, w〉 = 0 for all w ∈ W so that (choosing w = Γ v) Γ v = 0
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which contradicts the assumption that ker[Γ ] = {0}. Next suppose that R[Γ ∗] is
dense. It follows that the condition 〈v, Γ ∗w〉 = 0 for all w ∈ W implies that v = 0
which trivially leads to R[Γ ∗]⊥ = ker[Γ ] = {0} as required. �

The properties of the range spaces of an operator and its adjoint are also connected
as follows:

Theorem 2.11 (Closed Range Theorem) If Γ : V → W is a bounded linear
operator between Hilbert spaces, then Γ has a closed range in W if, and only if, the
range of the adjoint Γ ∗ is closed in V .

The norm of a self adjoint operator Γ : V → V is related to the values taken
by an associated quadratic form. More precisely its norm can be computed from the
parameters

a = inf{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1}
and b = sup{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1}

to be ‖Γ ‖ = max{|a|, |b|}
and, in particular, ‖Γ ‖ = r(Γ ).

(2.110)

This expression can be written in the form, where I is the identity operator,

aI ≤ Γ ≤ bI (2.111)

which forms the basis of the theorem

Theorem 2.12 (Invertibility of Self Adjoint Operators) With the notation used
above, suppose that Γ : V → V is self adjoint. Then the spectrum of Γ con-
tains only real numbers in the closed interval [a, b]. In particular, Γ has a bounded
inverse if ab > 0.

A useful relationship valid when Γ is self adjoint and positive is

‖Γ ‖ = sup{〈u, Γ u〉 : u ∈ V and ‖u‖ = 1} (2.112)

which immediately yields the result that, for any bounded Γ : V → W ,

‖Γ ∗Γ ‖ = ‖Γ ‖2. (2.113)

A useful consequence of this is that

Theorem 2.13 (Norm of a Matrix Operator) Using the notation and assumptions of
Theorem 2.7,

‖Γ ‖2 = sup{〈u, Γ ∗Γ u〉 : u ∈ V and ‖u‖ = 1} = r(Γ ∗Γ ) (2.114)
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where r(Γ ∗Γ ) is the spectral radius ofΓ ∗Γ = R−1Γ T QΓ . Moreover, for all choices
of Q and R, ‖Γ ‖ is the largest singular value of ΓQ R = Q

1
2 Γ R− 1

2 and

‖Γ ∗‖ = ‖Γ ‖. (2.115)

Proof The proof follows from Theorem 2.7 using Lagrange multiplier techniques
to solve 2.112 regarded as a function minimization problem. Next, it is easy to
see that det(λIp − Γ Γ ∗) = λp−q det(λIq − Γ ∗Γ ) so that the eigenvalues of
Γ ∗Γ and Γ Γ ∗ differ, at most, only by a number of zero eigenvalues. Finally,
the eigenvalues of Γ ∗Γ are the squares of the singular values of Q

1
2 Γ R

1
2 as

Γ ∗Γ = R− 1
2

[(
Q

1
2 Γ R− 1

2

)T
Q

1
2 Γ R− 1

2

]
R

1
2 . That is Γ ∗Γ and Γ T

Q RΓQ R are related

by a similarity transformation. �

If Γ : V �→ V is positive and self adjoint there exists a unique positive, self
adjoint operator Γ̂ : V �→ V with the property that Γ = Γ̂ Γ̂ . For this reason, Γ̂ is
said to be the unique positive square root ofΓ and iswritten Γ̂ = Γ 1/2. The bounded,
positive, self-adjoint linear operator Γ 1/2 has the properties that it commutes with
every operator that commutes with Γ and

Γ 1/2 = (Γ 1/2)∗ ≥ 0, ker[Γ 1/2] = ker[Γ ] and R[Γ ] ⊂ R[Γ 1/2] (2.116)

so that, in particular, Γ 1/2 is positive definite if, and only if, Γ is positive definite.
The spectrum of a self adjoint operator Γ lies in the closed ball Bc(0; r(Γ )) ⊂

Bc(0; ‖Γ ‖).Using (2.110), the spectrumofΓ − b+a
2 I lies in the closedball Bc(0, b−a

2 )

and hence, using the spectral mapping Theorem, the spectrum of Γ lies in the shifted
closed ball b+a

2 + Bc(0, b−a
2 ). In particular,

Theorem 2.14 (Invertibility of (I + Γ )−1) Suppose that Γ : Y → Y where Y is
a real Hilbert space is bounded, self adjoint and positive. Then I + Γ is a bijection
and the inverse operator (I + Γ )−1 is well-defined and bounded.

Proof Using the discussion preceding this result, a = 0 and b = ‖Γ ‖ and hence

spec[Γ ] ⊂ ‖Γ ‖
2

+ Bc(0,
‖Γ ‖
2

) . (2.117)

The proof is now complete as −1 is not in the spectrum of Γ . �

Note: Operators of this type play a central role in Iterative Algorithms.
Finally, useful conditions for Γ1Γ2 to be self adjoint can be stated as follows

Theorem 2.15 (When is Γ1Γ2 self adjoint?) Suppose that the two self-adjoint oper-
ators Γ1 and Γ2 map a real Hilbert space Y into itself and that Γ2 is positive definite.
Then the product Γ1Γ2 is self-adjoint if the inner product in Y is replaced by the
new inner product

〈u, v〉0 = 〈u, Γ2v〉Y . (2.118)
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The two topologies are equivalent if there exists a real scalar ε20 > 0 such that
Γ2 ≥ ε20 I .

Proof The bilinear form 〈u, v〉0 satisfies all the requirements of an inner product and
its associated norm ‖ · ‖0. The self-adjoint property follows as

〈u, Γ1Γ2v〉0 = 〈u, Γ2Γ1Γ2v〉Y = 〈Γ1Γ2u, Γ2v〉Y = 〈Γ1Γ2u, v〉0 (2.119)

Finally, the existence of ε20 > 0 ensures the topological equivalence of the two norms
follows as

ε20‖u‖2Y ≤ 〈u, Γ2u〉Y = ‖u‖20 ≤ ‖Γ0‖‖u‖2Y . (2.120)

�

Note: This result plays a role in the analysis of the convergence and robustness of
many of the algorithms in the following chapters.

2.5 Real Hilbert Spaces, Convex Sets and Projections

The structure of real Hilbert spaces provides a powerful set of results related to
optimization. These results are expressed in terms of Projection onto Convex Sets. A
convex set S ⊂ V in a real Hilbert space V is any set satisfying the condition that,
for any two points u, v in S, the vector

w = λu + (1 − λ)v ∈ S for all λ ∈ [0, 1]. (2.121)

(where λ is a real number). The vector w is said to be a convex combination of u and
v. The Convex Hull of a set S ⊂ V is the smallest convex set containing S.

Suppose that v0 is an arbitrary point of V and consider the problem of finding the
point in a convex set S that is closest to v0. This problem can be written formally as
the solution (if it exists) of the optimization problem

v1 = argmin{‖v0 − v‖ : v ∈ S} (2.122)

That is, v1 is the vector v ∈ S that minimizes the norm ‖v0 − v‖ and hence is the
nearest point in S to v0. For visualization purposes, v1 can be thought of as the
projection of v0 onto the set S. In general, it is possible that no such point exists
but, for many problems in practice, a solution does exist. The most useful theorem
characterizing the existence of v1 and its relationship to v0 is as follows:

Theorem 2.16 (Minimum Distance to a Closed Convex Set) Suppose that S is a
closed, convex set in the real Hilbert space V . If v0 ∈ V , then the optimization
Problem (2.122) has a unique solution v1 ∈ S. A necessary and sufficient condition
for v1 to be that solution is that
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〈v − v1, v1 − v0〉V ≥ 0 for all v ∈ S. (2.123)

A particular case of interest is when S is a closed vector subspace of V .

Theorem 2.17 (TheProjectionTheorem inHilbert Space) Suppose that S is a closed
vector subspace in the real Hilbert space V . If v0 ∈ V , then the optimization Prob-
lem (2.122) has a unique solution v1 ∈ S. A necessary and sufficient condition for
v1 to be that solution is that the following orthogonality condition is true,

〈v − v1, v1 − v0〉V = 0 for all v ∈ S. (2.124)

In particular, as v − v1 ∈ S is arbitrary, the condition reduces to

〈v, v1 − v0〉V = 0 for all v ∈ S (2.125)

which is simply the requirement that v1 − v0 is orthogonal to every vector in S.

Proof The existence and uniqueness of v1 follows from the previous theorem as
does the requirement that 〈v − v1, v1 − v0〉V ≥ 0 for all v ∈ S. Suppose that
there exists a vector v ∈ S such that 〈v − v1, v1 − v0〉V > 0, then, noting that
v̂ = −v + 2v1 ∈ S, a simple computation indicates that 〈v̂ − v1, v1 − v0〉V < 0
contradicting the assumption that v1 solves the problem. �

The case of S being a vector subspace gives rise to the notion of a Projection
Operator. More precisely, using the notation of the Projection Theorem 2.17, the
computation v0 �→ v1 defines a mapping PS : V → S. The orthogonality condition
also indicates that the mapping is linear and hence PS is a linear operator called the
Orthogonal Projection Operator onto S. It is bounded as, writing v1 = PSv0, using
the orthogonality condition, and noting that 0 ∈ S,

‖v0‖2 = ‖(v0 − v1) + v1‖2 = ‖v0 − v1‖2 + 2〈v0 − v1, v1〉 + ‖v1‖2
= ‖v0 − v1‖2 + ‖v1‖2 ≥ ‖v1‖2 (2.126)

so that, together with the observation that PSv0 = v0 if, and only if, v0 ∈ S, gives

‖PS‖ = 1 . (2.127)

From the definitions P 2
S = PS and hence ker[I − PS] = S. In addition, any vector

v0 ∈ V has a unique decomposition of the form v0 = v1 + (v0 − v1) = PSv0 + (I −
PS)v0 where v1 = PSv0 is orthogonal to S and hence (I − PS)v0. As a consequence,
V has a direct sum decomposition of the form

V = S ⊕ S⊥ where S = ker[I − PS] and S⊥ = ker[PS]. (2.128)

In particular, for any u and v in V , it follows that 〈PSu, v〉 = 〈PSu, PSv〉 = 〈u, PSv〉
so that PS is self adjoint and positive (but not strictly positive).
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Finally, another form of convex set that plays a useful role in the analysis of linear
control systems is that of a Linear Variety, namely a convex set S that is constructed
by a translation of a subspaceW . The resultant set is denoted by S = a +W where
a ∈ V defines the translation and

S = {v : v = a + w for some w ∈ W }. (2.129)

Note that the choice of a is not unique as it can be replaced by any vector a + w0

with w0 ∈ W . As v − v0 = (v − a) − (v0 − a) and v − a ∈ V , the solution of the
problem in this case can be expressed in the form

v1 = a + PW (v0 − a) (2.130)

A useful example of a closed linear variety is the set

S = {u : r = Gu + d} = u0 + W , with W = ker[G] (2.131)

where G : U → Y is linear and bounded, U andY are real Hilbert spaces, r ∈ Y ,
d ∈ Y and u0 ∈ U is any point (assumed to exist) satisfying r = Gu0 + d. Another
example of a closed linear variety is that of a closed Hyperplane defined by taking
Y = R and G as the map G : u �→ 〈α, u〉 (for some α ∈ U ) and setting

S = {u : 〈α, u〉 = c} (2.132)

where both α ∈ U and the real number c are specified. If u0 ∈ S, then S =
{u : 〈α, u − u0〉 = 0} which identifies the set of vectors u − u0 as that of all vec-
tors orthogonal to α. A Separating Hyperplane separating two sets S1 and S2 in a
real Hilbert space V is a hyperplane of the above type where 〈α, u〉 ≥ c for all
u ∈ S1 and 〈α, u〉 ≤ c for all u ∈ S2 or vice versa. An example of a separat-
ing hyperplane is obtained from the result describing the minimum distance from
v0 ∈ V to a closed convex set S. More precisely, suppose that v0 is not in S. From
Theorem 2.122, the hyperplane 〈v − v1, v1 − v0〉 = 0 is a hyperplane that separates
the point set {v0} from S. Separating hyperplanes are not unique as the hyperplane
〈v − λv1 − (1− λ)v0, v1 − v0〉 = 0 is also a separating hyperplane when λ ∈ [0, 1].

2.6 Optimal Control Problems in Hilbert Space

Quadratic optimization problems for linear systems play a central role in this text.
In general, signals will be regarded as being vectors in suitable real Hilbert spaces.
Operators will be used to represent systems behaviour by providing a linear rela-
tionship between system output signals and its input signals. The minimization of
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objective functions created using quadratic functions of signal norms is the chosen
mechanism for creating new control algorithms with known properties. The use of
this level of abstraction will be seen to provide solutions that cover the solution of
a wide range of problems of interest ranging from the case of continuous dynamics
to sampled data systems to multi-rate systems and many other useful situations. The
details are provided in the following chapters but the general form of the solution
can be derived using the mathematical methods already described in this chapter.

A system will be described as a mapping between a set U of input signals u and
a set Y of resultant output signals y. Both U and Y are taken to be normed vector
spaces. A Linear System is characterized by a bounded, linear operator G : U → Y
and the input to output mapping is defined by a relation of the form

y = Gu + d (2.133)

where d represents the output behaviour when the input u = 0 (and hence, typically,
behaviours due to initial condition and disturbances). A general form of Linear,
Quadratic, Optimal Control Problem can be defined as the computation of the input
that minimizes the Objective Function (often called a Performance Index or Perfor-
mance Criterion)

J (u) = ‖r − y‖2Y + ‖u0 − u‖2U (2.134)

subject to the constraint that y and u are linked by y = Gu + d. The vectors u0 ∈ U
and r ∈ Y are assumed to be known and the problem is interpreted as an attempt to
reduce the variation of the output from the specified signal r whilst not using input
signals that deviate too much from u0. The relative weighting of these two objectives
is reflected in the choice of norms in Y and U .

The solution to this problem when both U and Y are real Hilbert spaces is
particularly valuable. Denote the adjoint operator of G by G∗ and use the notation

e = r − y = r − Gu − d and e0 = r − y0
where y0 = Gu0 + d

(2.135)

is the output response to the input u0.

Theorem 2.18 (Solution of the Optimal Control Problem) With the problem def-
inition given above, the input-output pair (y, u) minimizing the objective function
(2.134) subject to the constraint (2.133) is given by the implicit formulae

u = u0 + G∗e (2.136)

As a consequence,

e = (I + GG∗)−1e0 and hence u = u0 + G∗(I + GG∗)−1e0. (2.137)
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In particular, the minimum value of J (u) can be computed to be

min J (u) = 〈e0, (I + GG∗)−1e0〉Y . (2.138)

Proof Two alternative proofs are provided in the next two subsections. �

The proofs depend on the material in the previous sections. In particular, they
depend on the algebraic properties of inner products, the properties of the adjoint
operator, the Projection Theorem and the identities

G∗(I + GG∗)−1 = (I + G∗G)−1G∗, G(I + G∗G)−1G∗ = GG∗(I + GG∗)−1,

and (I + GG∗)−1 + GG∗(I + GG∗)−1 = I.
(2.139)

The inverses (I + GG∗)−1 and (I + GG∗)−1 exist and are bounded due to the
positivity of GG∗ and G∗G and the resultant lower bounds I + GG∗ ≥ I > 0 and
I + G∗G ≥ I > 0.

2.6.1 Proof by Completing the Square

Note that G(u − u0) = −(e − e0) and consider the following inner product

γ = 〈u − u0 − G∗(I + GG∗)−1e0, (I + G∗G)(u − u0 − G∗(I + GG∗)−1e0)〉U
≥ ‖u − u0 − G∗(I + GG∗)−1e0‖2U ≥ 0,

(2.140)
noting that it is equal to zero if, and only if u − u0 − G∗(I + GG∗)−1e0 = 0. If this
condition is valid then, operating on the equation with G gives e = e0 − GG∗(I +
GG∗)−1e0 = (I + GG∗)−1e0 which would prove (2.137) and hence (2.136). It
remains to prove therefore that γ = 0.

The inner product can be written as

γ = 〈u − u0 − (I + G∗G)−1G∗e0, (I + G∗G)(u − u0 − (I + G∗G)−1G∗e0)〉U
= 〈u − u0, (I + G∗G)(u − u0)〉U − 2〈u − u0, G∗e0〉U + 〈G∗e0, (I + G∗G)−1G∗e0〉U
= ‖u − u0‖2U + ‖e − e0‖2Y + 2〈e − e0, e0〉Y + 〈G∗e0, (I + G∗G)−1G∗e0〉U
= ‖u − u0‖2U + ‖e‖2Y + ‖e0‖2Y − 2〈e, e0〉Y + 2〈e − e0, e0〉Y

+〈G∗e0, (I + G∗G)−1G∗e0〉U
= J (u) + 〈G∗e0, (I + G∗G)−1G∗e0〉U − ‖e0‖2Y= J (u) + 〈e0, G(I + G∗G)−1G∗e0〉Y − ‖e0‖2Y= J (u) + 〈e0,

(
GG∗(I + G∗G)−1 − I

)
e0〉Y

= J (u) − 〈e0, (I + GG∗)−1e0〉Y
(2.141)

the second term being independent of (y, u). It follows that J (u) is minimized if, and
only if, γ = 0. This first proof of Theorem 2.18 is now complete. �
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2.6.2 Proof Using the Projection Theorem

An alternative derivation of the solution uses the Projection Theorem in the product
space Y ×U of input/output pairs (y, u) regarded as a real Hilbert space with inner
product (and associated norm) defined using

〈(z, v), (y, u)〉Y ×U = 〈z, y〉Y + 〈v, u〉U
‖(y, u)‖Y ×U =

√
‖y‖2Y + ‖u‖2U .

(2.142)

With this notation, J (u) = ‖(r, u0) − (y, u)‖2Y ×U and the optimal control problem
is that of finding the pair (y1, u1) that solves the minimum norm problem

(y1, u1) = argmin{‖(r, u0) − (y, u)‖2 : (y, u) ∈ S}
where S = {(y, u) : y = Gu + d} (2.143)

is a linear variety inY ×U . It is closed as any sequence {(yj, uj)}j≥0 in S converging
(in the norm topology) to a point (y, u) has the property that {yj}j≥0 converges to y
in Y and {uj}j≥0 converges to u in U . Also, as yj = Guj + d, j ≥ 0,

0 ≤ ‖y − Gu − d‖Y = ‖(y − yj) − G(u − uj) + (yj − Guj − d)‖Y
≤ ‖(y − yj) − G(u − uj)‖Y + ‖yj − Guj − d‖Y
= ‖(y − yj) − G(u − uj)‖Y
≤ ‖(y − yj)‖Y + ‖G‖‖(u − uj)‖U

(2.144)

which tends to zero as j → ∞. Hence y = Gu + d which proves that (y, u) ∈ S.
Applying the projection theorem, the solution (y1, u1) of the optimal control prob-

lem satisfies

〈(z, v) − (y1, u1), (y1, u1) − (r, u0)〉Y ×U = 0 for all (z, v) ∈ S . (2.145)

This equation is just

〈z − y1, y1 − r〉Y + 〈v − u1, u1 − u0〉U = 0 (2.146)

Using the equations y1 = Gu1 + d, z = Gv + d and e = r − y1 then gives

〈v − u1,−G∗e〉Y + 〈v − u1, u1 − u0〉U = 〈v − u1, u1 − u0 − G∗e〉U = 0 (2.147)

for all v ∈ U . Choosing v = 2u1 − u0 − G∗e, it follows that ‖u1 − u0 − G∗e‖2 = 0
which proves the result using the same algebraic manipulations as those used in
the previous subsection and the computation of the minimum value of the objective
function as follows,



52 2 Mathematical Methods

‖r − y1‖2Y + ‖u0 − u1‖2U = 〈e, (I + GG∗)e〉Y = 〈e0, (I + GG∗)−1e0〉Y .

(2.148)

This completes the second proof of Theorem 2.18. �

2.6.3 Discussion

The solution of the optimal control problem described above provides a formal
approach to the solution of a wide class of problems following the process summa-
rized as the steps,

1. Identify the vector space U from which the inputs signals are to be chosen.
2. Choose an inner product and norm for U that ensures that it is a real Hilbert

space and also reflects the physical importance of signals.
3. Identify the vector space Y containing the outputs signals.
4. Choose an inner product and norm forY that ensures that it is a real Hilbert space

and also reflects the physical importance of signals.
5. Characterize the system as a bounded linear mapping G from U into Y and

identify the form of its adjoint operator G∗.
6. Write the defining relationship for the optimal solution in the implicit form u =

u0 + G∗e with e = r − y and find a causal representation of this controller that
can be implemented in real life.

This process could apply to any problem satisfying the assumptions but the devil is in
the detail. The main problem is that expressed in the last step, namely the conversion
of the implicit relationship between u and e into a useable computation. In later
chapters (see for example, Sects. 3.10 and 4.7), this idea will be linked, in the special
cases of linear state space models, to Two Point Boundary Value Problems and the
use of Riccati equations. More generally, the computations suffer from additional
complexities and high dimensionality. Even the simplest cases present challenges.
For example, letU = Rq with inner product 〈v̂, v〉U = v̂T Rv (where R = RT > 0)
and Y = Rp with inner product 〈ŵ, w〉Y = ŵT Qw (where Q = QT > 0). The
operator G is a p×q real matrix with adjoint (Eq. (2.104)) defined by the q×pmatrix
G∗ = R−1GT Q. Rather than using the implicit relationship, the direct computation
of u can be undertaken using

u = u0 + G∗(I + GG∗)−1e0 = u0 + R−1GT Q(Ip + G R−1GT Q)−1e0 (2.149)

This is a feasible approach to finding the solution and may work well in many cases
but, if the dimensions p and q are large, the calculation of the inverse matrix could
be challenging particularly if I + G R−1GT Q is ill-conditioned. This example does
have relevance to the topics in the text associated with the description of discrete time
systems in supervector form (see Sect. 4.7). Simplifications are possible in this case

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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as the elements in G have a structural pattern that makes the inversion implicit in
G∗(I + GG∗)−1 equivalent to the solution of a Two Point Boundary Value Problem
which is solved using Riccati equation and associated simulation methods.

2.7 Further Discussion and Bibliography

The chapter has reviewed material that plays a role in the development of the tech-
niques used in this text. Matrices form the computational core of the algorithms and,
although many readers will be familiar with basic matrix algebra, an understanding
of the structures and the analysis tools available for matrix methodologies is helpful
as is an understanding of the way that matrices are useful in the interpretation of
high (but finite) dimensional problems using simple geometrical insights generated
from the familiar three-dimensional world. There are many texts that cover the mate-
rial required ranging from undergraduate engineering texts such as [60, 105, 106] to
essentially mathematical texts that approach the topics using both algebraic concepts
and the ideas of finite dimensional vector spaces [45, 46, 53] within which matrices
are representations of operators using a specified basis set. Many teaching texts on
control theory and control engineering also have a summary of the necessarymaterial
[4, 39, 43, 63, 71, 81]. The material is essentially the same but differing perspectives
and different levels of abstraction are used. It is useful to note that there are links
between matrices and transfer function descriptions using Toeplitz matrices, details
of which can be found in [51]. For the purposes of this text, an understanding of, and
fluency with, the algebraic structures and analysis tools will help the reader to “see
through the symbols” and concentrate more usefully on the form and meaning of the
system properties used and the nature of the algorithms described. An understanding
of the algebraic and computational aspects of matrix theory will form the basis for
any computational software required for the exploitation of the material and also in
ensuring that data formats fit the necessary matrix structures.

Relevant techniques from functional analysis are also summarized in the chapter.
This material will be less familiar to many readers but, in its simplest form, it can
be regarded as a generalization of matrix theory to cover a wider range of problems.
In particular, matrices are replaced by operators between, possibly infinite dimen-
sional, signal spaces and the geometry of the three dimensional world is generalized
to higher, possibly infinite, dimensions. The underpinning ideas of vector spaces
endowed with norms to measure signal magnitude and the notion of bounded linear
operators between such spaces mirror the familiar notion of a system as a device
that maps input signals into output signals and the measurement of signal magni-
tude using measures such as least square values or maximum magnitudes. Although
much of this work can be viewed at the algebraic level as being very similar to matrix
(or even transfer function) methodologies, the technical details associated with the
ideas do contain many subtle issues that need to be considered at the mathematical
level. These take many forms but, perhaps the most important are those of exis-
tence of solutions to defined problems, the convergence of infinite sequences, the
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introduction of the notion of adjoint operators and their properties, convexity and
the idea of projection onto convex sets. There are many texts that provide the math-
ematical background for these topics including general texts on analysis [101] and
functional analysis such as [12, 31, 52, 107] and more specialist texts on Hilbert
space theory such as [54], operator theory [32, 33] and optimization algorithms
using functional analytic methods [69]. A reference to Open Mapping and Closed
Graph Theorems is found in [73] and an extensive analysis of projection methodolo-
gies is found in [36]. In the author’s experience, the choice of text to suit the needs of
a particular reader depends upon that reader and his or her background and preferred
way of thinking.

Finally, the content of the text is mathematical in its chosen language and much
of the supporting mathematics of Laplace and Z -transforms is used extensively in
control engineering texts. Some of the more advanced tools needed can be found
in texts on classical and multivariable control (see Sect. 1.5), mathematical systems
theory [59, 104] and specialist texts [112] and papers [75] on geometric systems
theory and decoupling theory [37, 47].

http://dx.doi.org/10.1007/978-1-4471-6772-3_1


Chapter 3
State Space Models

In applications of any form of control, there is a system to be controlled, a means
of influencing its behaviour (system input signals), measurements of performance
outcomes (system output signals) plus, in some cases, auxiliary measurements made
for purposes of monitoring, diagnostics or enhancement of control signals. The sys-
tem to be controlled is sometimes called the plant to be controlled. The construction
of control systems for a given plant inevitably required the addition, via feedback
or some other form of interconnection, of designed systems called control systems
or, more simply, controllers. Controllers process current and available past data as a
means of constructing current input values. The computational process is designed
to achieve the desired performance and is often called the control algorithm. The
general aim of control systems analysis and design is to ensure that the composite,
interconnected system consisting of the combined plant plus controller has a behav-
iour that is acceptable to the application and achieves defined performance objectives
to a satisfactory standard.

The use of verbal descriptions to define problems in controller design is necessary
to define context and aid in communication between design engineers but it fails to
produce the means of finding design solutions in the form of control algorithms.
To find systematic approaches to successful design, the history of control engineer-
ing has indicated the central role of a mathematical model of plant behaviour as a
means of investigating a range of behaviours using off-line simulation or other tools.
Such models provide understanding but also permit the investigation of behaviours
that financial or safety considerations might preclude in experiments. Such models
can have many forms including algebraic equations, differential equations, differ-
ence equations, partial differential equations, differential delay equations, frequency
domain relationships and mixtures of such descriptions. To this complexity must be
added the properties of linearity and nonlinearity. The level of detail possible in the
analysis of linear systems tends to be much greater than that possible for nonlinear
systems, probably because the mathematics of linear systems is more fully under-
stood and has a structure that gives engineers both computational and conceptual

© Springer-Verlag London 2016
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links between plant behaviour and the structure and parameters appearing in the
plant model e.g. the links between eigenvalues/poles and stability, frequency domain
analysis and parameter choice using root-locus methodologies and transfer function
matrix analysis.

The systems considered in this text will be almost exclusively linear dynamical
systems with behaviours described by differential or difference equations but the
presentation does not preclude the application to more complex systems containing,
for example, transport delays. In much of the text the use of operator notation in the
construction of controllers can be used to bring these complexities together and, as
a by-product, indicate the essential unity of the work despite substantial differences
in the detail. In all cases the construction of the actual relationships needed to build
the hardware and software used in the physical control system will be based on the
(not necessarily easy) challenge of converting operator relationships into feasible,
and preferably familiar, model and measurement-based computations.

The aim of this text is to describe the elements of a wide ranging and applica-
ble theory and algorithms for iterative control processes. The development can be
based on an underlying representation of plant dynamics by linear state space models
and, from time to time, the related transfer function matrix representations. These
assumptions make possible a level of detailed analysis that links the work closely to
engineering practice and reveals much of the details needed for computational stud-
ies and the properties that add confidence that successful applications are, indeed,
possible. The underlying mathematics is that of matrix theory and and an opera-
tional representation that unifies the ideas and links the analysis to the geometry of
appropriate signal spaces.

In general terms, state space models describe system dynamics by mathematical
relationships between inputs signals u, output signals y and a system state x repre-
senting the internal (possibly unmeasurable) variables needed to fully describe the
dynamical behaviour. The two most familiar forms of relationship are those describ-
ing continuous time state space models and those describing discrete time (sampled
data) state space models.

Consider a dynamical system with m measured outputs y1(t), y2(t), . . . , ym(t)
influenced by � input signals u1(t), u2(t), . . . , u�(t). The symbol t is used to represent
ameasure of time.Assume also that a full description of the dynamics can be obtained
using n state variables x1(t), x2(t), . . . , xn(t). If one or both of m and � are greater
than one, then the system is said to be multivariable, multi-input multi-output, multi-
loop or multi-channel or MIMO for short. If m = � = 1, the system is said to be
single-input single output (or SISO for short).

One concept of note is that of causality. That is, for physical systems, for any
time t, the state of a system at a time t is a consequence of its past history and current
influences (defined as relevant data on the interval t′ ≤ t) and is independent of what
may happen or be done to it at future times t′ > t.
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3.1 Models of Continuous State Space Systems

A general nonlinear continuous time, state space model expressed in terms of these
signals can be written in the following form

ẋ(t) = f (x(t), u(t), t), x(0) = x0
y(t) = h(x(t), u(t), t), 0 ≤ t ≤ T (3.1)

where

1. T is the (finite or infinite) time interval of interest an
2. the column matrices

y(t) =

⎡

⎢⎢⎢⎣

y1(t)
y2(t)

...

ym(t)

⎤

⎥⎥⎥⎦ , u(t) =

⎡

⎢⎢⎢⎣

u1(t)
u2(t)

...

u�(t)

⎤

⎥⎥⎥⎦ and x(t) =

⎡

⎢⎢⎢⎣

x1(t)
x2(t)

...

xn(t)

⎤

⎥⎥⎥⎦ (3.2)

are the m ×1 output vector, �×1 input vector and n×1 state vector respectively.
3. IfH is a p×qmatrixH with elements that depend on time and lettingHij(t) denote

the element of H on row i and column j, then the symbol “Ḣ” denotes simply the

p × q matrix with (i, j) element equal to
dHij(t)

dt i.e. the matrix of derivatives of

the elements of H. The jth element of ẋ(t) is hence
dxj(t)

dt .
4. The n × 1 vector x0 is the column matrix of initial conditions x1(0), x2(0), . . . ,

xn(0) for the state variables x1(t), x2(t), . . . , xn(t).
5. The vector valued function f (x, u, t) (respectively h(x, u, t)) describes the func-

tional dependency of the state derivatives (respectively outputs) at time t on the
values of the state vector x(t) at time t, the input vector u(t) at time t and the value
of t itself.

6. If both f (x, u, t) and h(x, u, t) have no explicit dependence on t, the system is
said to be time invariant. Otherwise it is said to be time varying.

If both f and g are linear in x and u, the state space model is said to be linear. The
linear model used to describe this situation takes the general form

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0
y(t) = C(t)x(t) + D(t)u(t), 0 ≤ t ≤ T (3.3)

where the matrices A, B, C, D are of dimension n × n, n × �, m × n and m × �

respectively. The following terminology and notation will be adopted here:

1. If D(t) is identically zero (written D(t) ≡ 0), the system is said to be strictly
proper. Otherwise it is said to be proper.

2. If any of the matrices A, B, C, D vary with time, then the system is said to be time
varying. Otherwise it is said to be time-invariant.
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3. As the linear state space model can be defined by the four matrices A, B, C, D,
the system will be referred to as the system S(A, B, C, D). If it is strictly proper,
then the notation S(A, B, C, 0) is simplified to S(A, B, C).

3.1.1 Solution of the State Equations

For a given initial state x0 and input signal u(t), the solutions (x(t) and y(t)) of the
state equations can be obtained using computational simulation software. For the
purposes of theory and algorithm development however, a theoretical description of
the solution is extremely useful. This is only possible for linear state space models
and takes the form

x(t) = Φ(t, 0)x0 +
∫ t

0
Φ(t, t′)B(t′)u(t′)dt′ , 0 ≤ t ≤ T ,

with y(t) = C(t)x(t) + D(t)u(t), 0 ≤ t ≤ T . (3.4)

Here

1. If H(t) is a p × q time varying matrix, then
∫ b

a H(t)dt denotes the p × q matrix

with (i, j)th element
∫ b

a Hij(t)dt
2. The n×n state transition matrix Φ(t, t′) is the solution of the family of differential

equations

∂Φ(t, t′)
∂t

= A(t)Φ(t, t′), with Φ(t′, t′) = In, 0 ≤ t′ ≤ t ≤ T (3.5)

where In denotes the n × n unit matrix. A simple formula for Φ(t, t′) is obtained
by solving the equation for t′ = 0 and then setting

Φ(t, t′) = Φ(t, 0)(Φ(t′, 0))−1 (3.6)

3. The state transition matrix hence satisfies the relation

Φ(t′, t)Φ(t, t′) = In so that Φ(t′, t) = (Φ(t, t′))−1 (3.7)

In particular,

∂Φ(t′, t)

∂t
Φ(t, t′) + Φ(t′, t)

∂Φ(t, t′)
∂t

= 0 (3.8)
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so that

∂Φ(t′, t)

∂t
= −Φ(t′, t)A(t) and hence

∂ΦT (t′, t)

∂t
= −AT (t)ΦT (t′, t).

(3.9)
4. If A(t) is a constant matrix A, then

Φ(t, t′) = eA(t−t′) (3.10)

5. If S(A, B, C, D) is linear and time-invariant, then it is asymptotically stable if,
and only if, all eigenvalues of A have strictly negative real parts. That is, all
eigenvalues take values in the open left half of the complex plane.

3.1.2 The Convolution Operator and the Impulse Response

Using the above solution in the form, for 0 ≤ t ≤ T ,

y(t) = C(t)Φ(t, 0)x0 +
∫ t

0
C(t)Φ(t, t′)B(t′)︸ ︷︷ ︸ u(t′)dt′ + D(t)u(t),

or

y(t) = C(t)Φ(t, 0)x0 +
∫ t

0
H(t, t′)u(t′)dt′ + D(t)u(t), (3.11)

with the obvious identification of the kernel H(t, t′). In the linear time-invariant,
strictly proper case

H(t, t′) = CeA(t−t′)B (3.12)

which, for SISO strictly proper systems reduces to the familiar impulse response
function. For the case of linear, time-invariant, strictly proper MIMO systems, the
m×�matrixH(t) = CeAtBwill be termed the impulse response matrix of S(A, B, C).

3.1.3 The System as an Operator Between Function Spaces

It will be useful to consider the solution y(t) on the interval 0 ≤ t ≤ T as the response
to the signal u(t) on the interval 0 ≤ t ≤ T when the initial condition x0 = 0 plus
the response from the initial condition x0 with u(t) ≡ 0 on 0 ≤ t ≤ T . In this form,
the solution can be written as an operational relationship

y = Gu + d = z + d (3.13)
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between signals u ∈ U and y ∈ Y in suitable function spaces U and Y . Here,
d ∈ Y represents the function d(t) = C(t)Φ(t, 0)x0, 0 ≤ t ≤ T , and G : U �→ Y
is a linear operator mapping u(t), 0 ≤ t ≤ T , into z(t) where

z(t) =
∫ t

0
H(t, t′)u(t′)dt′ + D(t)u(t), 0 ≤ t ≤ T . (3.14)

The choice of function space is non-unique. Consider the case of T finite and the
choices of Cartesian product Hilbert spaces

U = L�
2[0, T ] = L2[0, T ] × L2[0, T ] × · · · × L2[0, T ]︸ ︷︷ ︸

� − times
Y = Lm

2 [0, T ] = L2[0, T ] × L2[0, T ] × · · · × L2[0, T ]︸ ︷︷ ︸
m − times

(3.15)

with inner products defined by symmetric positive definite matrices R and Q as
follows

〈u, v〉U =
∫ T

0
uT (t)Rv(t)dt 〈y, w〉Y =

∫ T

0
yT (t)Qw(t)dt. (3.16)

Note: For notational simplicity, the inner products 〈u, v〉U and 〈y, w〉Y may be
denoted by 〈u, v〉R and 〈y, w〉Q to identify the associated matrices.

This abstract description has an algebraic similarity to the use of transfer function
matrices for analysis and design but does not require the time to frequency domain
mapping used in these approaches. The benefits of regarding systems as operators
between function spaces will further emerge in the remainder of this text.

3.2 Laplace Transforms

Laplace Transformmethodologies have been usedwidely in control systems analysis
and design. The basic definition of the Laplace Transform of a scalar function f (t) is
most easily presented in the case of an infinite time interval T = ∞. More precisely,
the Laplace Transform of a function f (defined on an infinite interval 0 ≤ t < ∞) is
a function of the complex variable s defined by

L [f (t)] =
∫ ∞

0
e−st f (t)dt, (3.17)

for all complex number s such that the integral exists. It is noted that a sufficient
condition for the existence of such values is that f is exponentially bounded. That is,
there exists real numbers M ≥ 0 and λ such that
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|f (t)| ≤ Meλt for all t ≥ 0. (3.18)

For such a function, the integral has a finite value for all s with real part strictly
greater than λ. Although only valid for values of s such that the integral converges,
the functions can be extended by analytic continuation to all points of the complex
plane other than singularities. For this reason the issues of integral convergence play
only an occasional role in practical use of the ideas.

Useful properties of the Laplace Transform used in the text and are summarized
below for any function f (t) defined on 0 ≤ t < ∞ with f (0) written as f0:

L [df (t)

dt
] = sL [f (t)] − f0, L [tkf (t)] = (−1)k dk

dsk
(L [f (t)]) ,

L [eαt] = 1

s − α
and L [ tk

k!eαt] = 1

(s − α)k+1
. (3.19)

As a simplification to the notation, the Laplace Transform L [f (t)] will often
be denoted f (s). This clearly could lead to some confusion. However, despite this
possibility, the notation will be used as the differences between f (t) and f (s) will
be clear to the reader from the context. With this convention, the Inverse Laplace
Transform is simply the inverse process and is denoted by L −1, for example,

f (t) = L −1[f (s)] (3.20)

The extension of the ideas to matrix valued functions of time is easily achieved.
For a p × q time dependent matrix H(t) the Laplace TransformL [H(t)] is denoted
by H(s) which has (i, j) element equal to the Laplace Transform of Hij(t).

3.3 Transfer Function Matrices, Poles, Zeros
and Relative Degree

A linear, time-invariant, state space model has a frequency domain description
obtained simply by taking Laplace Transforms of the state equations to obtain

sx(s) − x0 = Ax(s) + Bu(s), y(s) = Cx(s) + Du(s) (3.21)

from which simple matrix algebra to eliminate x(s) gives

x(s) = (sI − A)−1 (Bu(s) + x0) and hence

y(s) = G(s)u(s) + C(sIn − A)−1x0 (3.22)

where the system m × � Transfer Function Matrix G(s) is defined by

G(s) = C(sIn − A)−1B + D. (3.23)
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It has elements that are rational polynomials in the complex variable s. If m = � = 1,
G(s) is the familiar transfer function used to great effect in the analysis and design
of SISO feedback controllers.

Poles and zeros play an important role in classifying systems dynamics in design.
These two concepts are defined as follows

1. The denominator polynomial of G(s) is the characteristic polynomial of A. As
a consequence, the poles of G(s) and their multiplicities are precisely the set of
eigenvalues of the matrix A and their multiplicities.

2. The zeros ofG(s) are defined by rank conditions on a partitionedmatrix dependent
on (A, B, C, D). More precisely, the complex number s is a zero of S(A, B, C, D)

if, and only if,

rank

[
sIn − A −B

C D

]
< n + min{m, �} (3.24)

These zeros are the multivariable analogue of familiar transfer function zeros.
If all zeros lie in the open left half complex plane then the system is said to be
minimum phase. Otherwise it is said to be non-minimum phase. Non-minimum
phase systems are known to lead to control problems and performance limitations
in the design of feedback control systems. Similar problems will be seen to be
the case for inverse-model-based, gradient and Norm Optimal Iterative Control
methodologies described in this text.
Note that if m = �, the zero definition reduces to the computation of the roots of
a determinant, namely, the solutions of

∣∣∣∣
sIn − A −B

C D

∣∣∣∣ = 0 (3.25)

Note also that, when m �= �, the generic situation is that the system has no zeros.
If m = � then the use of Schur’s Formula yields

∣∣∣∣
sIn − A −B

C D

∣∣∣∣ ≡ |sIn − A| det[G(s)]. (3.26)

When m = � = 1, the zeros are precisely those of the system transfer function.

Other useful properties and parameters associated with G(s) can be constructed
as follows

1. by using the power series expansion of (sIn − A)−1 to obtain the expression

G(s) = D + s−1CB + s−2CAB + · · · = D +
∞∑

k=1

s−kCAk−1B (3.27)
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which is convergent for |s| > r(A). The matrices CB, CAB, CA2B, . . . are called
the system Markov Parameter Matrices or, for simplicity, the system Markov
parameters.

2. The relative degree k∗ of G(s) is defined as the unique integer such that G∞ =
lims→∞ skG(s) exists and is non-zero. From the series expansion, it is clear that
either k∗ = 0 when D �= 0 or, when D = 0, k∗ is the smallest integer k for which
CAk−1B is non-zero. Clearly the system is strictly proper if, and only if, k∗ > 0.
In the SISO case of m = � = 1, the relative degree is precisely equal to the
number of poles of G(s) minus the number of zeros of G(s).

3. Clearly G∞ �= 0 from the definition but it does not necessarily have full rank as
a matrix. This complication requires the development of useful practical refine-
ments of the idea of relative degree. Such refinements will be discussed later in
the text when the need for them arises.

3.4 The System Frequency Response

The frequency response function of the linear, time-invariant, system S(A, B, C, D)

is defined to be the (matrix-valued) function G(iω) where i is the familiar “square
root of −1” and ω is a real frequency with units radians/unit time. This function is a
foundation of classical feedback control systems design.

It can also be used to describe the response of an asymptotically stable system from
zero initial conditions x0 = 0 to sinusoidal input signals. More generally, if the data
(A, B, C, D) contains only real numbers and α is a constant, possibly complex � × 1
vector, define inputs uc(t) and us(t) to be the real and imaginary parts of the complex
input u(t) = αest where s is any complex number. The resultant output responses
from zero initial conditions are, respectively, equal to the real and imaginary parts
of the response y(t) from zero initial conditions to the complex input u(t). It is left
as an exercise for the reader to verify that

y(t) = G(s)u(t) − C(sIn − A)−1eAtBα (3.28)

which provides a direct link between the transfer function matrix G(s) and well-
defined time domain behaviours. In particular, if s = iω (with ω a real frequency),
the stability assumption indicates that, for all large enough values of time t, the steady
state oscillation y(t) ≈ G(s)u(t) = G(iω)αeiωt is an accurate description of steady
state oscillatory output behaviour. This is because eAt becomes infinitesimally small
as t becomes large.



64 3 State Space Models

3.5 Discrete Time, Sampled Data State Space Models

In many applications of control systems engineering, the basis of measurement and
control is sampling of continuous signals with simultaneous changing of control
input values at sample times 0, h, 2h, 3h, . . .. This situation is commonly described
as uniform synchronous sampling with sample interval h and sampling rate h−1. In
such circumstances, the sampled output signal is a time series y(0), y(h), y(2h), . . .

and the input signal takes the form of a piece-wise constant input

u(t) = u(kh), for kh ≤ t < (k + 1)h, and 0 ≤ k ≤ N − 1 (3.29)

where T = Nh is the time interval of interest to the control study. The correspond-
ing input time series is hence u(0), u(h), u(2h), . . .. For notational simplicity, the
dependence on h will be suppressed and the input and output time series will be
denoted u(0), u(1), u(2), u(3), . . . and y(0), y(1), y(2), y(3), . . .. That is, they will
be indexed by the sample number only.

3.5.1 State Space Models as Difference Equations

A general nonlinear discrete time, state space model can be written in the following
form indexed by the integer sample time index t = 0, 1, 2, 3, . . .

x(t + 1) = fd(x(t), u(t), t), 0 ≤ t ≤ N − 1, x(0) = x0
y(t) = hd(x(t), u(t), t), 0 ≤ t ≤ N (3.30)

where

1. N represents the (finite or infinite) time interval of interest,
2. the column matrices y(t), u(t), x(t) define output vectors, input vectors and state

vectors as for the continuous time case.
3. The n × 1 vector x0 is the column matrix of initial conditions x1(0), x2(0), . . . ,

xn(0) for the state variables x1(t), x2(t), . . . , xn(t).
4. If both fd(x, u, t) and hd(x, u, t) have no explicit dependence on t, the system is

said to be time invariant. Otherwise it is said to be time varying.

If both fd and gd are linear in x and u, the discrete state space model is said to be
linear. The linear model used to describe this situation takes the general form

x(t + 1) = Φd(t)x(t) + Δd(t)u(t), 0 ≤ t ≤ N − 1, x(0) = x0
y(t) = C(t)x(t) + D(t)u(t), 0 ≤ t ≤ N (3.31)

where the, possibly sample dependent, matrices Φd,Δd, C, D are of dimension n ×
n, n × �, m × n and m × � respectively. The following terminology is adopted from
the continuous time case:
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1. If D(t) is identically zero (written D(t) ≡ 0), the system is said to be strictly
proper. Otherwise it is said to be proper.

2. If any of the matrices Φd,Δd, C, D vary with sample number, then the system is
said to be time varying. Otherwise it is said to be time-invariant.

3. As the linear state space model can be defined by the four matricesΦd,Δd, C, D,
the system will be referred to as the discrete system S(Φd,Δd, C, D). If it is
strictly proper, then the notation is simplified to S(Φd,Δd, C).

Finally, the discrete system is always linear and time invariant if it is is constructed
from an underlying linear, time-invariant system S(A, B, C, D). The constant matri-
ces Φd and Δd can be computed, in this case, from the equations

Φd = eAh and Δd =
∫ h

0
eAtBdt′. (3.32)

Important Note: in the remainder of the text the notation used for discrete systems
will vary to suite the circumstance and to provide simplicity of notation in the presen-
tation. For example, the notation S(A, B, C, D) will be used, on occasion, to denote
a continuous system but also a discrete system with Φd equal to some matrix A and
Δd equal to a matrix B. This should not cause any confusion in cases where any
underlying continuous systems dynamics plays no role in the discussions.

3.5.2 Solution of Linear, Discrete Time State Equations

For a given initial state x0 and input time series u(t), the solution can be obtained
using computational simulation software. For the purposes of theory and algorithm
development however, a theoretical description of the solution is extremely useful.
This is only possible for linear state space models and takes the form

x(t) = Φ(t − 1, 0)Φd(0)x0 +
t−1∑

t′=0

Φ(t − 1, t′)Δd(t′)u(t′), t ≥ 1,

y(t) = C(t)x(t) + D(t)u(t), t ≥ 0,

so that

y(0) = C(0)x0 + D(0)u(0) and

y(t) = D(t)u(t) +
t−1∑

t′=0

C(t)Φ(t − 1, t′)Δd(t′)u(t′)

︸ ︷︷ ︸
“input dependent term”

+ C(t)Φ(t − 1, 0)Φd(0)x0, t ≥ 1. (3.33)
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Here

1. The discrete state transition matrix Φ(t, t′) is the solution of the family of differ-
ence equations

Φ(t, t′) = Φd(t)Φ(t − 1, t′), with Φ(t′, t′) = In, 0 ≤ t′ < t. (3.34)

2. If Φd(t) is a constant matrix Φd , then

Φ(t, t′) = Φ t−t′
d . (3.35)

3. If S(Φd,Δd, C, D) is linear and time-invariant, then

a. the solution of the state equations is computed from the following discrete
convolution equations

x(t) = Φ t
dx0 +

∑t−1

t′=0
Φ t−t′−1

d Δdu(t′), t ≥ 0

y(t) = Du(t) +
∑t−1

t′=0
CΦ t−t′

d Δdu(t′) + CΦ t
dx0, t ≥ 0. (3.36)

b. A linear time-invariant, discrete system is asymptotically stable if, and only if,
all eigenvalues of the matrix Φd have modulus strictly less than unity. Equiv-
alent statements are that all eigenvalues have values in the open unit circle in
the complex plane and, as a consequence, for some M ≥ 1 and 0 ≤ λ < 1,

‖Φ t
d‖ ≤ Mλt, t = 0, 1, 2, 3, . . . (3.37)

3.5.3 The Discrete Convolution Operator and the Discrete
Impulse Response Sequence

In a similar manner to the continuous time case, the mapping between the input
time series u and the output time series y on the time interval 0 ≤ t ≤ N has the
operational form

y = Gu + d (3.38)

where d represents the time series C(0)x0 followed by C(t)Φ(t −1, 0)Φd(0)x0, 1 ≤
t ≤ N , and G represents the linear mapping that maps u into the times series z(0) =
D(0)u(0) followed by

z(t) = D(t)u(t) +
t−1∑

t′=0

C(t)Φ(t − 1, t′)Δd(t′)u(t′), 1 ≤ t ≤ N . (3.39)



3.5 Discrete Time, Sampled Data State Space Models 67

In the linear time-invariant case, the sequence {D, CΔ, CΦdΔd, CΦ2
dΔd, . . .} is

termed the discrete systems impulse response sequence.
To formalize this representation, regard the time series u ∈ U and y ∈ Y as

signals in suitable sequence spaces U and Y . Here, G : U �→ Y is a linear
operator mapping u(t), 0 ≤ t ≤ N , into z(t), 0 ≤ t ≤ N . The choice of sequence
space is non-unique. For the purposes of the current discussion, consider the case of
N finite and the choices of Cartesian product Hilbert spaces

U = R� × R� × · · · × R�

︸ ︷︷ ︸ Y = Rm × Rm × · · · × Rm
︸ ︷︷ ︸ .

(N + 1) − times (N + 1) − times
(3.40)

Define inner products by symmetric positive definite matrices R and Q using

〈u, v〉U =
N∑

t=0

uT (t)Rv(t) 〈y, w〉Y =
N∑

t=0

yT (t)Qw(t). (3.41)

Note: For notational simplicity, the inner products 〈u, v〉U and 〈y, w〉Y may be
denoted by 〈u, v〉R and 〈y, w〉Q to identify the associated weighting matrices.

3.6 Z -Transforms and the Discrete Transfer Function
Matrix

TheZ -transform is amethodology of analysing time series in the form of a sequence
of scalar or matrix valued data points {f (0), f (1), f (2), . . .} using functions of the
complex variable. It has been used widely in control systems analysis and design.
The basic definition of the Z -Transform of a scalar time series f (t), 0 ≤ t ≤ N is
most easily presented in the case on an infinite interval N = ∞. More precisely, the
Z -Transform of the (real or complex) series f = {f (0), f (1), f (2), . . .} is defined as
follows

Z [f ] =
∞∑

j=0

z−jf (t), (3.42)

for all complex number z such that the series converges. It is noted that a suffi-
cient condition for the existence of such values of z is that f is exponentially (or
geometrically) bounded. That is, there exists real numbers M ≥ 0 and λ such that

|f (t)| ≤ Mλt for all t ≥ 0. (3.43)
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For such a time series, the infinite sum converges for all z satisfying |z| > λ. Although
only valid for values of z such that the series converges, the functions can be extended
by analytic continuation to all points of the complex plane other than singularities.
For this reason the issue of convergence plays only an occasional role in practical
use of the ideas.

For notational convenience, the Z -transform of the sequence f will be denoted
by f (z). In the discrete time case this does not lead to any confusion as f denotes a
times series whilst f (z) is a function of the complex variable. With this convention,
the InverseZ -Transform is simply the inverse process of constructing the time series
f from a given transform f (z) and is denoted by Z −1, for example,

f = Z −1[f (z)]. (3.44)

The extension of the ideas to matrix valued time series is easily achieved. For a p×q
time series H(t), t ≥ 0, its Z -Transform Z [H] is denoted by the p × q matrix
function H(z) which has (i, j) element equal to the Z -Transform of the time series
Hij(t), t ≥ 0.

Finally, a number of useful properties of the Z -Transform are used in the text
and are summarized below for any sequence f (t) defined on 0 ≤ t < ∞ with f (0)
written as f0,

Z [{0, f (0), f (1), . . .}] = z−1f (z) , Z [{1, α, α2, . . .}] = z
z−α

,

Z [{1, 2α, 3α2, . . .}] = z ∂
∂α

(
z

(z−α)

)
, Z [{f (1), f (2), . . .}] = zf (z) − zf0.

(3.45)

3.6.1 Discrete Transfer Function Matrices, Poles, Zeros
and the Relative Degree

A linear, time-invariant, state space model has a frequency domain description
obtained simply by taking Z -Transforms of the state equations to obtain

zx(z) − zx0 = Φdx(z) + Δdu(z), y(z) = Cx(z) + Du(z) (3.46)

from which simple matrix algebra to eliminate x(z) gives

y(z) = G(z)u(z) + zC(zIn − Φd)−1x0. (3.47)

where the system m × � Discrete Transfer Function Matrix G(z) is defined by

G(z) = C(zIn − Φd)−1Δd + D (3.48)
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Poles and zeros are defined as follows

1. The poles of G(z) and their multiplicities are precisely the set of eigenvalues of
the matrix Φd and their multiplicities.

2. The zeros of G(z) are defined by rank conditions on a partitioned matrix depen-
dent on (Φd,Δd, C, D). More precisely, the complex number z is a zero of
S(Φd,Δd, C, D) if and only if

rank

[
zIn − Φd −Δd

C D

]
< n + min{m, �} (3.49)

If all zeros lie in the open unit circle in the complex plane, the system is said to
be minimum-phase. Otherwise, the system is said to be non-minimum phase.

A comparison with the equivalent formula for the transfer function matrix of
a continuous time system shows the algebraic similarity, the discrete time case
being obtained from the continuous time formula by the mapping s �→ z and
(A, B, C, D) �→ (Φd,Δd, C, D). It is natural therefore that the discrete time case
inherits the properties and nomenclature described previously for continuous time
case. In particular, its relative degree is the uniquely defined integer k∗ such that
limz→∞ zkG(z) = G∞ exists and is non-zero.

3.6.2 The Discrete System Frequency Response

The linear time-invariant discrete system S(Φd,Δd, C, D) has frequency response
function defined to be the (matrix-valued) function G(z) where |z| = 1 or, equiva-
lently, z = eiθ , 0 ≤ θ ≤ 2π . This function has found considerable application in
multivariable feedback control systems design. It also describes the response of an
asymptotically stable system from zero initial conditions x0 = 0 to sinusoidal input
time series uc, us defined to be the real, (respectively) imaginary parts of the complex
sequence u = {α, zα, z2α, . . .} (that is, u(t) = αzt, t ≥ 0). More generally, if the
data (Φd,Δd, C, D) contains only real numbers and z is an arbitrary complex num-
ber, then the resultant output responses from zero initial conditions are, respectively,
equal to the real and imaginary parts of the response y(t) from zero initial conditions
to the complex input u(t). It is left as an exercise for the reader to verify that

y(t) = G(z)u(t) − C(zIn − Φd)−1Φ t
dΔdα, t = 0, 1, 2, . . . . (3.50)

In particular, if z = eiθ , the stability assumption indicates that, for all large enough
values of sample index t, the steady state oscillation y(t) ≈ G(z)αzt is an accurate
description of steady state oscillatory output behaviour asΦ t

d becomes infinitesimally
small if t is large.
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3.7 Multi-rate Discrete Time Systems

Multi-rate sampling is a common practical way of improving control for systems
where the frequency at which output signals can be sampled is limited by measure-
ment procedures or other factors. In such circumstances, the input signal could be
continuous or discrete as discussed in the previous sections. Models of such systems
are fairly easily parameterized using the previous approaches but with an additional
computation that most easily is described as a multi-rate sampling operator. More
precisely, suppose that input updates take place at times 0, h, 2h, 3h, . . . but that
output samples are taken at times 0, Mh, 2Mh, 3Mh . . .. Note that, sampling is syn-
chronous to the extent that samples are only taken at a subset of times when the
control signal is updated. A simple way of describing a mathematical model of such
a system is as two operations. The first is a dynamical mapping of the input time
series into an output time series y = {y(0), y(h), y(2h), . . .} and the second is a sam-
pling operation that takes every Mth sample of y to produce the measured output ye

defined by ye = {ye(0), ye(1), ye(3), . . .} = {y(0), y(Mh), y(2Mh), . . .}. The inter-
mediate output signals are not measured and play a role in the model description
only.

The mapping of u into y can be described by a model typically of the form
described in earlier sections and could be written, for linear systems, in operator
form as y = Gu + d. The multi-rate operator, denotedSM for simplicity, is a linear
operator on times series with sampling frequency h−1 into a time series of sampling
frequency (Mh)−1. The dynamics is hence of the form of a series connection of two
operators

y = Gu + d, ye = SMy so that ye = SMGu + SMd. (3.51)

In particular, the mathematical structure at the operator level is identical and any
approach to design that uses the operator descriptions will have a similar form for
continuous systems and for both uni-rate and multi-rate sampled data systems.

3.8 Controllability, Observability, Minimal Realizations
and Pole Allocation

This section considers continuous systems only but, being algebraic in nature, the
results apply with no change to uni-rate discrete systems simply by replacing the
complex variable s by z and the quadruple of matrices (A, B, C, D) byΦd,Δd, C, D.

The analysis of linear, time-invariant, continuous state space models relies heav-
ily on properties of (A, B, C, D). From time to time, the ideas of complete state
controllability and complete state observability are crucial.



3.8 Controllability, Observability, Minimal Realizations and Pole Allocation 71

Definition 3.1 The linear system S(A, B, C, D) is completely state controllable if,
and only if, for any initial state x(0) and any desired final state xf , there exists a
control input u(t) and a time tf such that u(t) drives the state x(t) from x0 at t = 0 to
xf at time t = tf .

Definition 3.2 The linear system S(A, B, C, D) is completely state observable if,
and only if, for any initial state x(0) and any control input u(t), t ≥ 0, there exists
a time tf > 0 such that the initial state x0 can be computed uniquely from input and
output records only on some time interval 0 ≤ t ≤ tf .

For linear time-invariant linear systems the relevant algebraic tests are as follows:

1. The system S(A, B, C, D) is completely state controllable if, and only if, one of
the following two (equivalent) conditions is true

rank[B, AB, A2B, . . . , An−1B] = n
rank[sI − A,−B] = n for all complex numbers s

(3.52)

2. The system S(A, B, C, D) is completely state observable if, and only if, one of
the following two (equivalent) conditions is true

rank

⎡

⎢⎢⎢⎣

C
CA
...

CAn−1

⎤

⎥⎥⎥⎦ = n, rank

[
sI − A

C

]
= n for all complex numbers s (3.53)

3. As a consequence,

a. the systemS(A, B, C, D) is completely state controllable (respectively, observ-
able) if, and only if, S(AT , CT , BT , DT ) is completely state observable (respec-
tively, controllable).

b. For all state feedback (respectively output injection) matrices F (respec-
tively H), the completely state controllability (respectively observability) of
the system S(A, B, C, D) implies the complete state controllability (respec-
tively observability) of the system S(A − BF, B, C, D) (respectively S(A −
HC, B, C, D)).

A realization of a proper or strictly proper transfer function matrix G(s) is any
linear, time-invariant model S(A, B, C, D) whose transfer function matrix coincides
with G(s). A minimal realization is any realization where the state dimension n takes
the lowest possible value. Any realization is minimal if, and only if, it is controllable
and observable.

A useful property of controllable systems is the potential for pole allocation.More
precisely, a state feedback control law takes the form

u(t) = Kv(t) − Fx(t) (3.54)
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where F is an � × n real matrix of state feedback gains, K is an � × � matrix of
gains and v(t) is the new input signal. The closed-loop state space model relating
the input v to the output y is based on the same state vector model but with matrices
S(A − BF, BK, C − DF, DK). Note that

1. if S(A, B, C, D) is completely state controllable and K is nonsingular, then the
closed loop system S(A−BF, BK, C −DF, DK) is completely state controllable.

2. The stability of the new feedback system is described by the characteristic poly-
nomial ρF(s) = det[sI − A + BF]. The important property of completely state
controllable systems is the pole allocation property. That is, for any set of com-
plex numbers {μj}1≤j≤n (invariant under complex conjugation), there exists a real
state feedback matrix F such that the eigenvalues of A − BF are precisely the
points {μj}1≤j≤n.

3.9 Inverse Systems

Dynamical systems G are normally regarded as mapping from inputs to outputs. The
general concept of an Inverse System is a system that reconstructs the input from the
observed output. As the output depends also on the initial state condition, it is usual
to assume zero initial conditions. For square systems (where m = �) the operation
parallels the simple observation that y(s) = G(s)u(s) can be reconstructed using
u(s) = G−1(s)y(s) provided that the inverse transfer function matrix exists.

Note: The analysis that follows applies equally to both continuous time and dis-
crete time systems as the definitions and manipulations used are entirely algebraic.

3.9.1 The Case of m = �, Zeros and ν∗

If m = � and S(A, B, C, D) has transfer function matrix satisfying det[G(s)] �= 0 at
all but a finite number of points s, then the system is said to be invertible. The inverse
transfer function matrix takes the form

G−1(s) ≡ P(s) + H(s) (3.55)

where P and H are uniquely defined by the statements,

1. H(s) is strictly proper matrix of rational polynomials and
2. P(s) is either a constant matrix or has elements that are polynomials in s.
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Theorem 3.1 Let S(A, B, C, D) have a transfer function matrix with inverse of the
form of (3.55). Then, the matrix P(s) is invertible for almost all values of s with

lims→∞G(s)P(s) = lims→∞P(s)G(s) = I, and
lims→∞P−1(s)H(s) = lims→∞H(s)P−1(s) = 0.

(3.56)

Moreover, lims→∞ P−1(s) = D and hence P−1(s) has a minimal realization in terms
of a proper state space model. This model is strictly proper if G(s) is strictly proper.

Proof Writing GG−1 = I = GP + GH then lim|s|→∞ G(s)P(s) = I , as required,
as GH is strictly proper. Using a similar argument, G−1G = I = PG + HG so that
lim|s|→∞ P(s)G(s) = I . It follows that P(s) is invertible. Also writing (PG)−1 =
I + HP−1 yields lim|s|→∞ H(s)P−1(s) = 0 and, similarly, lim|s|→∞ P−1(s)H(s) =
0. Finally, write G = (I + P−1H)−1P−1 and note that, as a consequence D =
lim|s|→∞ G(s) = lim|s|→∞ P−1(s) and hence P−1(s) has a minimal realization in
terms of a proper state space model. Taking D = 0 shows that this model is strictly
proper if G(s) is strictly proper. �

Assuming zero initial conditions, the input output relations take the form y(s) =
G(s)u(s) and hence u(s) = G−1(s)y(s). That is, the inverse system reconstructs the
input vector uniquely from the output vector. The transfer function matrix G−1(s),
typically, is neither proper nor strictly proper. Its construction is computationally
complex but has a simple state space form if D is nonsingular:

Theorem 3.2 Suppose that the system S(A, B, C, D) is such that D is nonsingular,
then G−1(s) has a state space realization S(A − BD−1C, BD−1,−D−1C, D−1)

ẋ(t) = (A − BD−1C)x(t) + BD−1y(t), u(t) = −D−1Cx(t) + D−1y(t) (3.57)

Moreover, the poles of this system are the zeros of S(A, B, C, D).

Proof The state space description follows easily from the output equation y = Cx +
Du written in the form u = D−1(y − Cx) and eliminating u from the state equations.
The equivalence of its eigenvalues to the zeros follows from Schur’s Formula

∣∣∣∣
sI − A −B

C D

∣∣∣∣ ≡ det[D] det[sI − A + BD−1C]. (3.58)

�
More generally, the poles of H(s) are zeros of S(A, B, C, D) and hence H(s) ≡ 0

if the system has no zeros. Conversely, any m × m matrix P(s) of polynomials in s
that is invertible and such that the limit lims→∞ P−1(s) = P∞ exists, has a minimal
(controllable and observable) state space realization that has no zeros.
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The construction of P and H can be done using algebraic inversion of G(s). An
alternative approach valid for the case when D = 0 uses a direct sum decomposition
of the state space

Rn = ν∗ ⊕ τ ∗ (3.59)

That is, every vector x ∈ Rn can be written uniquely as the sum of a vector z1 ∈ τ ∗
and a vector z2 ∈ ν∗. These subspaces form the basis for the construction of the
C ∗-canonical form due to Morse. The subspace ν∗ has a particular connection with
the zeros of the strictly proper system S(A, B, C) stated as follows,

Theorem 3.3 ν∗ is the maximal {A, B}-invariant subspace in ker[C]. That is, it is
the largest subspace ν ⊂ Rn satisfying the inclusion conditions

Aν ⊂ ν + R[B], ν ⊂ ker[C]. (3.60)

In addition, there exists a (non-unique) feedback matrix F such that (A−BF)ν∗ ⊂ ν∗
and the eigenvalues of the restriction of A − BF to ν∗ are precisely the zeros of
S(A, B, C) (including multiplicities). Any minimal realization of S(A − BF, B, C)

has no zeros.

Asimple description of systemdynamics fromG(s),P−1(s) andH(s) startswith their
minimal realizations S(A, B, C), S(AP, BP, CP) and S(AH , BH , CH) and associated
state vectors x, xP, xH . Writing xT = [xT

P , xT
H ]T appropriate matrices are computed

from the feedback description G = (I + P−1H)−1P−1 as follows

A =
[

AP −BPCH

BHCP AH

]
, B =

[
BP

0

]
, C = [CP 0] (3.61)

where the zeros of S(A, B, C) are the eigenvalues of AH .

3.9.2 Left and Right Inverses When m �= �

When m �= �, the transfer function matrix is non-square and matrix inversion tech-
niques do not apply. The relevant ideas are those of left inverse and right inverse.

3.9.2.1 Left and Right Inverses

Let S(A, B, C, D) have transfer function matrix G(s) and suppose that m > �. Then a
Left Inverse of G(s) can be regarded as any �×m matrix L(s) of rational polynomials
in s such that

L(s)G(s) = I� (3.62)
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In conceptual terms, assuming zero initial conditions, an input u(s) produces an
output y(s) = G(s)u(s) from G. From the definition of L, the input is reconstructed
using u(s) = L(s)y(s). Note that L(s) is non-unique and, in general, takes the form
L(s) = P(s) + H0(s) where H0(s) is proper and P(s) is a matrix of polynomials
in s with P(0) = 0. The left inverse hence, in general, does not have a state space
realization of an �-output, m-input system S(AL, BL, CL, DL). The case of interest
when such a state space realization exists is defined as follows:

Theorem 3.4 Suppose that m > � and that S(A, B, C, D) satisfies the condition
rank[D] = �. Suppose also that K is any � × m matrix such that KD is nonsingular.
Then the state space system

S(A − B(KD)−1KC, B(KD)−1K,−(KD)−1KC, (KD)−1K) (3.63)

maps y �→ u and hence is a left inverse of S(A, B, C, D).

Proof From the construction, write y = Cx + Du and hence u = −(KD)−1KCx +
(KD)−1Ky. The result follows by substitution of this expression into the equations
for x(t). �

The case of m < � is analysed in a similar manner with a Right Inverse of G(s)
being regarded as any m × � matrix R(s) of rational polynomials in s such that

G(s)R(s) = Im (3.64)

It is a simple matter to see that RT (s) is a left inverse of GT (s) and hence, applying
the previous theorem to S(AT , CT , BT , DT ) gives,

Theorem 3.5 Suppose that m < � and that S(A, B, C, D) satisfies the condition
rank[D] = m. Suppose also that K is any �× m matrix such that DK is nonsingular.
Then the state space system

S(A − BK(DK)−1C,−BK(DK)−1, K(DK)−1C, K(DK)−1) (3.65)

is a right inverse of S(A, B, C, D).

Proof A left inverse of S(AT , CT , BT , DT ) is, using the previous theorem,

S(AT − CT (KT DT )−1KT BT , CT (KT DT )−1KT ,−(KT DT )−1KT BT , (KT DT )−1KT ) (3.66)

which has transfer function matrix LT (s). This is converted easily to the given right
inverse by transposition. �
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3.10 Quadratic Optimal Control of Linear
Continuous Systems

The purpose of this section is to illustrate the application of the language described
in this chapter to a basic optimal control problem. The problem is chosen to match
the results typically described in specialist texts on optimal control and does not
fully meet the needs of this text. The required generalizations will be described
at appropriate points as, and when, needed and will refer back to this section for
techniques and useful simplifications of the presentation.

A dynamic system is described by the �-input, m-output, linear, time varying state
space model

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0 and

y(t) = C(t)x(t) (3.67)

with state vector x(t) ∈ Rn and piecewise continuous A(t), B(t), C(t). Note that it is
assumed that D(t) ≡ 0. Suppose that the control input u(t) on a finite time interval
[0, T ] is to be chosen to minimize the performance criterion J(u) defined by

J(u) = (rT − y(T))T F(rT − y(T))

+ ∫ T
0

(
(r(t) − y(t))T Q(t)(r(t) − y(t)) + (u(t) − u0(t))T R(t)(u(t) − u0(t))

)
dt

(3.68)
where both R(t) = RT (t) > 0 and Q(t) = QT (t) > 0 are piecewise continuous,
symmetric and positive definite for all t ∈ [0, T ], F = FT ≥ 0 is symmetric and
positive semi-definite, u0 ∈ L�

2[0, T ], r ∈ Lm
2 [0, T ] and rT ∈ Rm. Intuitively the

control objective is to ensure that the output remains close to the reference signal
r(t), ensuring that r(T) is close to rT whilst keeping the input u(t) close to u0(t). Both
the phrase “close to” and the relative importance of the three objectives is specified
by the choice of form and relative magnitudes of the weighting matrices F, Q(t) and
R(t). In general, it might be expected that rT = r(T) but this is not necessary in what
follows.

Representations of the solution to the problem are now constructed using operator
methods, a two point boundary value problem and a Riccati solution.

3.10.1 The Relevant Operators and Spaces

The first step in the characterization of the optimal input is to write the problem
as a minimum norm problem in a suitable real Hilbert space. To do this, suppose
U = L�

2[0, T ] is the chosen input space, with inner product 〈·, ·〉R and associated
induced norm ‖ · ‖R identified with
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〈u, v〉R =
∫ T

0
uT (t)R(t)v(t)dt and ‖u‖R =

√∫ T

0
uT (t)R(t)u(t)dt. (3.69)

The result of the application of this input to the system has two important components
for the problem, the first being associated with the output response y(t), t ∈ [0, T ]
and the second identified with the value y(T) at the final time T . The weighting
matrix F is not assumed to be positive definite and the problem needs a little more
manipulation to make the Hilbert space formulation work effectively. For ease of
presentation, it is assumed that F �= 0 and that it is factorized into the product

F = FT
f Qf Ff (3.70)

where Ff has full row rank mf (that is, Ff is mf × m with ker[FT
f ] = {0}) and

Qf = QT
f > 0. The results can be made to apply to the case of F = 0 by choosing

mf = m, Ff = 0 and Qf = QT
f > 0 chosen arbitrarily. The details of this special

case are left for the reader to complete.
Now regard the system as a mapping ye = Gu+d of u into the pair ye = (yf , y) ∈

Y = Rmf × Lm
2 [0, T ]. Here, yf = Ff y(T) and (yf , y) = Gu + d where the operator

G : U → Y is defined by the notation Gu = (
Gf u, Gyu

)
where the operators

Gy : U → Lm
2 [0, T ] and Gf : U → Rmf and the vector d = (df , dy) ∈ Y are

defined by the equations

Gf u = Ff C(T)

∫ T

0
Φ(T , t)B(t)u(t)dt,

(Gyu)(t) = C(t)
∫ t

0
Φ(t, t′)B(t′)u(t′)dt′ and

d(t) = (df , dy(t)) = (
Ff C(T)Φ(T , 0)x0 , C(t)Φ(t, 0)x0

)
for all t ∈ [0, T ].

(3.71)

Regarding Rmf (respectively, Lm
2 [0, T ]) as real Hilbert spaces with inner products

〈zf , yf 〉 = zT
f Qf yf (respectively 〈z, y〉 =

∫ T

0
zT (t)Q(t)y(t)dt), (3.72)

then the product output space Y = Rmf × Lm
2 [0, T ] is a real Hilbert space with

respect to the inner product

〈(zf , z), (yf , y)〉Y = zT
f Qf yf +

∫ T

0
zT (t)Q(t)y(t)dt (3.73)

and the performance index J(u) can be written in the form

J(u) = ‖(rf , r) − (yf , y)‖2Y + ‖u0 − u‖2R where rf = Ff rT . (3.74)
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The optimal control problem hence fits into the framework of Theorem 2.18 and has
a solution that can be written in the form

u = u0 + G∗e where e = (rf , r) − (yf , y) = (rf − yf , r − y). (3.75)

It is therefore necessary to identify the form of the adjoint operator G∗ : Rmf ×
Lm
2 [0, T ] → L�

2[0, T ].

3.10.2 Computation of the Adjoint Operator

UsingTheorem2.5, the adjoint operatorG∗ ofG can be computed from the definitions
and the characterizations of its two components as follows

G∗(rf − yf , r − y) = G∗
f (rf − yf ) + G∗

y(r − y) (3.76)

The following results provide the appropriate characterization, firstly for the map
u �→ y and then for u �→ yf . The notation used follows on from that used in the
previous section.

Theorem 3.6 (The Adjoint Operator of a Linear State Space System) Using the
notation defined above, the linear map u �→ y defined by the �-input, m-output,
linear, time varying state space model

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0 and

y(t) = C(t)x(t) + D(t)u(t) (3.77)

is a bounded, linear operator from L�
2[0, T ] into Lm

2 [0, T ] with the defined Hilbert
space inner products. Its adjoint operator is the map z �→ u defined by

u(t) = R−1(t)DT (t)Q(t)z(t) + R−1(t)BT (t)
∫ T

t
ΦT (t′, t)CT (t′)Q(t′)z(t′)dt′

(3.78)
which has the state space representation, with costate py(t) ∈ Rn, of the form

ṗy(t) = −AT (t)py(t) − CT (t)Q(t)z(t), py(T) = 0,

and u(t) = R−1(t)DT (t)Q(t)z(t) + R−1(t)BT (t)py(t). (3.79)

Proof Denote the map u �→ y by Gy. The proof starts from the inner product

〈z, Gyu〉 =
∫ T

0
zT (t)Q(t)

(
D(t)u(t) + C(t)

∫ t

0
Φ(t, t′)B(t′)u(t′)dt′

)
dt (3.80)

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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The first term is easily manipulated to take the form

∫ T

0
zT (t)Q(t)D(t)u(t)dt =

∫ T

0
(R−1(t)DT (t)Q(t)z(t)(t))T R(t)u(t)dt (3.81)

whilst the second term, after interchanging the order of integration (and the symbols
t and t′), has the form

∫ T

0

∫ t

0
zT (t)Q(t)C(t)Φ(t, t′)B(t′)u(t′)dt′dt

=
∫ T

0

(
R−1(t′)BT (t′)

∫ T

t′
ΦT (t, t′)CT (t)Q(t)z(t)dt

)T

R(t′)u(t′dt)′

=
∫ T

0

(
R−1(t)BT (t)

∫ T

t
ΦT (t′, t)CT (t′)Q(t′)z(t′)dt′

)T

R(t)u(t)dt. (3.82)

The first part of the theorem follows by summing the new representations of the two
terms and comparing with 〈G∗

yz, u〉R. It remains to show that this representation has
the required state space model. First write,

u(t) = R−1(t)DT (t)Q(t)z(t) + R−1(t)BT (t)py(t),

where py(t) =
∫ T

t
ΦT (t′, t)CT (t′)Q(t′)z(t′)dt′. (3.83)

Setting t = T gives the terminal condition py(T) = 0 and differentiating py(t) gives

ṗy(t) = −ΦT (t, t)CT (t)z(t) +
∫ T

t

∂ΦT (t′, t)

∂t
CT (t′)Q(t′)z(t′)dt′ (3.84)

The result is now proved as Φ(t, t) = I and ∂ΦT (t′,t)
∂t = −AT (t)ΦT (t′, t). �

A useful observation is obtained for the case of linear time invariant systems. It
relates the adjoint operator to the Time Reversal Operator TT defined by the map
f �→ TT f and the relation

(TT f )(t) = f (T − t) (the Time Reversal of f on [0, T ]). (3.85)

This notation forms a useful part of the following statement of the form and properties
of the adjoint. In particular, it indicates that both the system and its adjoint can be
related to simulations of state space models from zero initial conditions.

Theorem 3.7 (TheAdjoint Operator of a Linear Time Invariant State Space System)
Assuming the notation of the previous theorem, assume that the state space model
S(A, B, C, D) is linear and time invariant with zero initial conditions and that the
matrices Q(t) and R(t) are constant, symmetric and positive definite. Then the state
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space system is a bounded linear operator mapping the real Hilbert space L�
2[0, T ]

into the real Hilbert space Lm
2 [0, T ] with adjoint operator represented by the linear,

time invariant system S(−AT ,−CT Q, R−1BT , R−1DT Q) with a terminal conditions
py(T) = 0.

In particular, the action of the adjoint operator on a signal z can be written as
the time reversal of the response of the system S(AT , CT Q, R−1BT , R−1DT Q) from
zero initial conditions to the time reversal of z.

Proof The proof uses the substitution t to t′ = T − t and the relation d
dt′ = − d

dt . It
is left as an exercise for the reader. �

Now consider that operator Gf that maps u �→ yf .

Theorem 3.8 (The Adjoint of the Operator Generating the Final Output) Using the
notation of Theorem 3.6, suppose that D(t) ≡ 0. The linear map u �→ yf defined by
the �-input, m-output, linear, time varying state space model

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0 and

yf = Ff y(T), where y(T) = C(T)x(T) (3.86)

is a bounded, linear operator from L�
2[0, T ] into Rmf with the defined Hilbert space

inner products. Its adjoint operator is the map zf �→ u defined by

u(t) = R−1(t)BT (t)ΦT (T , t)CT (T)FT
f Qf zf (3.87)

which has the state space representation with costate pf (t) ∈ Rn satisfying

ṗf (t) = −AT (t)pf (t), pf (T) = CT (T)FT
f Qf zf

and u(t) = R−1(t)BT (t)pf (t) (3.88)

Note: This equation is exactly that for py(t) with Q(t) ≡ 0 and with the addition of
a possibly non-zero final condition at t = T.

Proof Again denoting the map by Gf , the inner product 〈zf , Gf u〉 has the form

zT
f Qf Ff C(T)

∫ T
0 Φ(T , t)B(t)u(t)dt

= ∫ T
0

(
R−1(t)BT (t)ΦT (T , t)CT (T)FT

f Qf zf

)T
R(t)u(t)dt

(3.89)

which proves the result by comparing this with 〈G∗
f zf , u〉R, defining the co-state

pf (t) = ΦT (T , t)CT (T)FT
f Qf zf and using the properties of the state transition

matrix. The details are left as an exercise for the reader. �
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Unfortunately, a knowledge of the form of the adjoint operator is not, in general,
sufficient for immediate real world application as the representation of the optimal
input is not causal. The value of the required control input u(t) at time t < T depends
on values of the output y(t′) for times t′ > t, values that are not normally available
at time t. This does not mean that the theory cannot be applied but it does mean that
an alternative description of the input would be beneficial and probably essential for
the purposes of most applications. The approach to solutions of this problem begin
with the conversion of the representation into a two point boundary value problem.

3.10.3 The Two Point Boundary Value Problem

Returning now to the characterization u = u0 + G∗e using the results described
above. Theorem 2.5 and the linearity of the costate equations indicates that the term
G∗e can be described by setting

p(t) = py(t) + pf (t) for all t ∈ [0, T ] (3.90)

to obtain the equations (noting the assumption that D(t) ≡ 0)

ṗ(t) = −AT (t)p(t) − CT (t)Q(t)(r(t) − y(t)),

p(T) = CT (T)FT
f Qf (rf − yf )

and (G∗e)(t) = R−1(t)BT (t)p(t) (3.91)

Using the relations rf = Ff rT and yf = Ff y(T) then gives the result

Theorem 3.9 (Two Point Boundary Value Problem for the Optimal Control Input)
Using the notation and assumptions given above, the optimal control input to the
linear, time varying system S(A(t), B(t), C(t)) that minimizes the objective function

J(u) = (rT − y(T))T F(rT − y(T))

+ ∫ T
0

(
(r(t) − y(t))T Q(t)(r(t) − y(t)) + (u(t) − u0(t))T R(t)(u(t) − u0(t))

)
dt

(3.92)
can be computed from the equation

u(t) = u0(t) + R−1(t)BT (t)p(t), t ∈ [0, T ], (3.93)

where the state vector x(t) and the costate vector p(t) are the solutions of the coupled
differential equations

ẋ(t) = A(t)x(t) + B(t)u(t), y(t) = C(t)x(t), and

ṗ(t) = −AT (t)p(t) − CT (t)Q(t)(r(t) − y(t)) (3.94)

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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subject to the initial and final conditions

x(0) = x0 and p(T) = CT (T)F(rT − y(T)) (3.95)

The presence of boundary conditions at the two points t = 0 and t = T have
lead to the term Two Point Boundary Value Problem for this characterization. More
generally, such problems are difficult to solve, particularly if a system is time varying
and nonlinear. However, for the state space, linear systems of this text, solutions can
be obtained using Riccati methods, an example of which is described next.

3.10.4 The Riccati Equation and a State Feedback Plus
Feedforward Representation

The solution of any two point boundary value problem of the above general form
can be approached using a simple parameterization of the solution. More precisely,
suppose that x(t) and p(t) are related by the equation

p(t) = −K(t)x(t) + ξ(t), for all t ∈ [0, T ] (3.96)

where K(t) is an n × n time dependent matrix that is differentiable everywhere in
[0, T ] and ξ(t) is a differentiable vector function inRn to be determined. It is useful
at this stage to substitute this into the expression for u(t) to obtain

u(t) = u0(t) + R−1(t)BT (t)p(t)

= u0(t) − R−1(t)BT (t)K(t)x(t) + R−1(t)BT (t)ξ(t), for t ∈ [0, T ]. (3.97)

Note: The expression indicates that the optimal controller is a modification of u0(t)
to include a time varying state feedback term −R−1(t)BT (t)K(t)x(t) and a term
R−1(t)BT (t)ξ(t). As will be shown below, ξ(t) depends only on F, Q, R, K , rT and
the signals u0(t) and r(t). As this term is independent of the dynamics of the state, it
will be regarded as a feedforward (or predictive) component of the control law that
transfers data from the control objectives and u0 to the optimal solution.

Differentiating equation (3.96) gives

ṗ(t) = −K̇(t)x(t) − K(t)ẋ(t) + ξ̇ (t). (3.98)

Substituting from the state and costate equations and rearranging then requires that

(
dK(t)

dt + AT (t)K(t) + K(t)A(t) − K(t)B(t)R−1(t)BT (t)K(t) + CT (t)Q(t)C(t)
)

x(t)

≡ dξ(t)
dt + (

AT (t) − K(t)B(t)R−1(t)BT (t)
)
ξ(t) + CT (t)Q(t)r(t) − K(t)B(t)u0(t).

(3.99)

To remove any dependence of ξ(t) on the state vector, set
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dξ(t)

dt
= −

(
AT (t) − K(t)B(t)R−1(t)BT (t)

)
ξ(t) − CT (t)Q(t)r(t) + K(t)B(t)u0(t) (3.100)

and, to ensure that K(t) is state independent, choose K(t) as the unique solution of
the Differential Riccati Equation

dK(t)

dt
+ AT (t)K(t) + K(t)A(t) − K(t)B(t)R−1(t)BT (t)K(t) + CT (t)Q(t)C(t) = 0. (3.101)

The boundary conditions for these two equations are conditions defined at the ter-
minal time t = T and obtained from the condition defining p(T), namely,

p(T) = CT (T)F(rT − y(T)) = CT (T)F(rT − C(T)x(T)) = −K(T)x(T) + ξ(T)

(3.102)
which is satisfied if K(t) and ξ(t) satisfy the terminal conditions,

K(T) = CT (T)FC(T) and ξ(T) = CT (T)FrT . (3.103)

Note thatK(T) is symmetric and positive definite. In computational terms, theRiccati
matrixK(t) is independent of the initial condition x0 and the three tracking signals rT ,
r(t) andu0(t). Once computed, it can be used as part of the solution of problemswhere
these signals are changed. In contrast, ξ(t) is independent of the initial condition and
is the direct consequence of a linear mapping (rT , r, u0) �→ ξ . It must therefore be
recomputed if these signals are changed. The next subsection describes an alternative
description of the solution in a special case of interest.

Finally, these solutions have a number of interesting properties when F = 0,

1. AsK(T) is symmetric, thenK(t) is symmetric for all t ∈ [0, T ]withK(t′) ≥ K(t)
whenever t′ ≤ t.

2. If u0(t) ≡ 0 and r(t) ≡ 0, then the minimum value of the performance index
takes the value xT

0 K(0)x0. If, also, the system is time invariant, observable and
controllable and both Q and R are constant, symmetric and positive definite, then
the limit

lim
T→∞ K(0) = K∞ (3.104)

exists and is the uniquely defined positive definite solution of theAlgebraic Riccati
Equation

AT K∞ + K∞A − K∞BR−1BT K∞ + Q = 0 (3.105)
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3.10.5 An Alternative Riccati Representation

The representation defined above provides a causal solution that, in principle, can
be used in practice as a feedback/feedforward implementation. It is useful to note
however that this representation is not unique. To illustrate this fact suppose that
u0(t) generates an output y0(t) from the system from the same initial condition. That
is, if the associated state vector is denoted by x0(t) solves the state equations

ẋ0(t) = A(t)x0(t) + B(t)u0(t), x0(0) = x0,

and y0(t) = C(t)x0(t), (3.106)

then, defining δx(t) = x(t) − x0(t), the system dynamics can be written in the form

δ̇x(t) = A(t)δx(t) + B(t)(u(t) − u0(t)), δx0(0) = 0,

and y(t) − y0(t) = C(t)δx(t). (3.107)

Examining the performance index

J(u) = ‖(rf , r) − (yf , y)‖2Y + ‖u − u0‖2R (3.108)

indicates that the change in the model description does not change the solution of
the original optimization problem if the following replacements are made

x(t) �→ x(t) − x0(t) , u(t) �→ u(t) − u0(t)
u0(t) �→ 0 , r(t) �→ r(t) − y0(t)

and rT �→ rT − y0(T).

(3.109)

The representation of p(t) now takes the form

p(t) = −K(t)(x(t) − x0(t)) + ξ(t). (3.110)

Using the methodology of the last subsection then leads to the choice of K(t) as the
same solution of the Riccati equation but that the definition of ξ(t) changes to the
solution of the differential equation inRn,

ξ̇ (t) = −
(

AT (t) − K(t)B(t)R−1(t)BT (t)
)

ξ(t) − CT (t)Q(t)(r(t) − y0(t)),

with ξ(T) = CT (T)F(rT − y0(T)). (3.111)

In contrast to the previous identification of ξ(t) as being generated by a linear map
(rT , r, u0) �→ ξ , this choice is a linear map (rT − y0(T), r − y0) �→ ξ . If rT = r(T),
then the map is a map r − y0 �→ ξ .
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3.11 Further Reading and Bibliography

The introductorymaterial in this chapter is covered, in part and in some form, bymany
texts from undergraduate texts introducing state space methods to more advanced
texts where the details of themathematics is coveredmore fully (see Sect. 1.5). These
texts also tend to provide sufficient material on both Laplace and Z -transforms
to satisfy almost all engineering applications. However, this chapter has focussed
on a presentation that associates dynamical models with linear operators between
a real Hilbert spaces of input signals and a real Hilbert space of output signals.
This point of view is conceptually similar to the use of transfer function matrices
in defining input output relationships and, at the algebraic level, operators can be
visualized as transfer functions operating in the time domain. The algebraic similarity
is superficial however and does not change the need to use and understand many
aspects of more classical systems descriptions including transfer function matrices,
poles and zeros and frequency response relationships. These concepts are similar in
the cases of continuous and discrete time systems.Although the differences are small,
the reader should be careful to note the differences and their effects on mathematical
relationships when they occur.

The analysis of invertibility is complex when examined in fuller detail [16, 103],
particularly when combined with notions of geometric theory. Some knowledge of
these ideas is useful in clarifying details of the theoretical ideas. In particular, the
relationship of the maximal {A, B} invariant subspace in the kernel of C [75] to
system zeros and to state space geometry and, from there, to representations of the
inverse system is very useful. In following chapters, the case of full rank matrix D
provides a link between left and right system inverses and the existence of left and
right inverses of the matrices appearing in the supervector descriptions of the next
chapter. It is hence a formal link between transfer function matrix descriptions, state
space models and dynamics on finite time intervals.

Many control theory texts (Sect. 1.5) that include material on state space design
methods include material on the properties of controllability and observability and
the link to the ideas of pole allocation. They often include introductory material on
optimal control [9, 11, 20, 21, 24, 30], particularly linear quadratic optimal control
using either the Calculus of Variations, Dynamic Programming or the Maximum
Principle of Pontriagin. Some texts provide considerable information on the proper-
ties of the Riccati equation that generates the Riccati matrix K(t). The properties of
K(t) and K∞ have been extensively studied [62] and form an object of study in their
own right [1]. The problem definition used in this chapter (Sect. 3.10) fits into these
approaches and a knowledge of these methods could be useful to some readers. The
approach preferred in this chapter (and the remainder of the text) uses the operator
methodology to demonstrate the generality of the ideas and to exploit the geometry of
the signal spaces to propose and analyse algorithms. In this sense the representation
is in the spirit of texts such a Luenberger [69], Collatz [28] and Ortega and Rheinbolt
[79]. It is interesting to note the central role of adjoint operators and their properties

http://dx.doi.org/10.1007/978-1-4471-6772-3_1
http://dx.doi.org/10.1007/978-1-4471-6772-3_1
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in the construction of the solutions to the Linear Quadratic Optimal Control problem.
The geometry of Hilbert spaces and the computation of adjoint operators are core
tools to these descriptions and to what follows in later chapters.



Chapter 4
Matrix Models, Supervectors and Discrete
Systems

Let S(A, B, C, D) be an �-input, m-output, state dimension n, linear, time-invariant,
discrete, state space model of a dynamical system written in the form

x(t + 1) = Ax(t) + Bu(t), x(0) = x0, t = 0, 1, 2, 3, . . . , N − 1
y(t) = Cx(t) + Du(t), t = 0, 1, 2, 3, . . . , N

(4.1)

Note: For notational convenience, the matrices Φd and Δd used in Sect.3.5 will now
be denoted by A and B. No confusion should occur as the underlying continuous
state space model is not used in what follows.

4.1 Supervectors and the Matrix Model

The state space recursion generates output time series {y(t)}t≥0 from input time
series {u(t)}t≥0. The relationship between these times series can be represented by a
single equation using the idea of “stacking” vectors into output (respectively, input)
supervectors as follows

y =

⎡

⎢⎢⎢⎢⎢⎣

y(0)
y(1)
y(2)

...

y(N )

⎤

⎥⎥⎥⎥⎥⎦
∈ Rm(N+1), u =

⎡

⎢⎢⎢⎢⎢⎣

u(0)
u(1)
u(2)

...

u(N )

⎤

⎥⎥⎥⎥⎥⎦
∈ R�(N+1) (4.2)

of dimension m(N +1) (respectively �(N +1)). Defining the block, lower triangular
m(N + 1) × �(N + 1) matrix

© Springer-Verlag London 2016
D.H. Owens, Iterative Learning Control, Advances in Industrial Control,
DOI 10.1007/978-1-4471-6772-3_4
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G(A, B, C, D) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

D 0 · · · 0 0 0
C B D · · · 0 0 0

C AB C B · · · 0 0 0
...

...
...

...

C AN−2B C AN−3B · · · C B D 0
C AN−1B C AN−2B · · · C AB C B D

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (4.3)

and the vector

d(C, A, x0) =

⎡

⎢⎢⎢⎢⎢⎣

Cx0
C Ax0
C A2x0

...

C AN x0

⎤

⎥⎥⎥⎥⎥⎦
∈ Rm(N+1) (4.4)

then d(C, A, x0) represents the effect of initial conditions whilst the m(N + 1) ×
�(N +1) matrix G(A, B, C, D) represents the state space model as a linear (matrix)
mapping between the supervectors of the input times series and output time series.
The equations of motion now have the simple, linear matrix form

y = Gu + d. (4.5)

Note: For notational simplicity, the arguments in the matrix symbols will be sup-
pressed if this leads to no confusion. Any possible confusion should be resolved by
the context.

In principle, this matrix form releases the full power of matrix algebra for appli-
cation to analysis and design of discrete dynamical systems on finite time intervals.
It also places the model clearly into the framework of operator descriptions of sys-
tem dynamics used later in the text. However, the matrices involved typically have
very large dimension as the time series length N + 1 is almost always long. As
a consequence, the direct use of matrix algebra in computation may be limited in
practice. Note however that the equation is exactly equivalent to the original state
space recursion equations so an output time series y described by y = Gu + d is
best computed using S(A, B, C, D) and simulation. This matrix description does,
however, have great theoretical value and possesses a number of other properties,
some of which are summarized in the following sections.

4.2 The Algebra of Series and Parallel Connections

The reader will be familiar with the use of transfer functions and series and parallel
connections of linear time-invariant systems. The ideas transfer quite naturally to the
use of supervectors with one simple qualification. More precisely, for models on the
interval t = 0, 1, 2, . . . , N ,
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1. if S(A1, B1, C1, D1) is m × �, has input u(t), output ŷ(t) and transfer function
matrix G1(z) and S(A2, B2, C2, D2) is m × �, has input u(t) and output ỹ(t) and
transfer function matrix G2(z), then the parallel connection relating u(t) to the
output y(t) = ŷ(t) + ỹ(t) has a supervector representation with matrix

G(A1, B1, C1, D1) + G(A2, B2, C2, D2). (4.6)

This formula is the analogue of the formula G1(z) + G2(z) in the transfer
function matrix description.

2. If S(A1, B1, C1, D1) is m × r , has input v(t), output y(t) and transfer function
matrix G1(z) and S(A2, B2, C2, D2) is r × �, has input u(t), output v(t) and
transfer function matrix G2(z), then the series connection relating u(t) to the
output y(t)has a supervector representationwithmatrix computed from thematrix
product

G(A1, B1, C1, D1)G(A2, B2, C2, D2). (4.7)

This formula is the analogue of the formula G1(z)G2(z) in the transfer function
matrix description.

The above shows that the algebraic properties of transfer function matrices are inher-
ited by the matrix descriptions using supervectors. The qualification that needs to
be stated is simply that care is needed to ensure the compatibility of the time series
supervectors when related to the underlying time interval. This is not a problem if
the original supervector model described in Sect. 4.1 is used for each subsystem as
the underlying time series and time intervals are unmodified. Problems could occur
however if, for example, G(A1, B1, C1, D1) and G(A2, B2, C2, D2) are constructed
from different operations using relative degree concepts (see Sect. 4.4).

4.3 The Transpose System and Time Reversal

Time reversal for a time series f = { f (0), f (1), . . . , f (N )} with terms in f (t) ∈
R p is the replacement of f by the time series { f (N ), f (N − 1), . . . , f (0)} where
the order of the terms is reversed. Writing f in supervector form, the reverse time
supervector can be written asT (p, N ) f whereT (p, N ) is the square, p(N + 1)×
p(N + 1) matrix time reversal operator

T (p, N ) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0 Ip

0 0 · · · 0 Ip 0
0 0 · · · Ip 0 0
...

...

0 Ip · · · 0 0 0
Ip 0 · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (4.8)
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The proof of the following theorem is left as an exercise in matrix manipulation for
the reader

Theorem 4.1 (Properties of the Time Reversal Matrix) The time reversal matrix has
the properties:

1. Invariance under transposition and inversion,

T (p, N ) = T T (p, N ), (T (p, N ))2 = Ip(N+1) and (T (p, N ))−1 = T (p, N ). (4.9)

2. The following identity relates the transpose of G(A, B, C, D) to time reversal
operators and the “transpose system” S(AT , CT , BT , DT )

GT (A, B, C, D) = T (�, N )G(AT , CT , BT , DT )T (m, N ). (4.10)

3. If S(A, B, C, D) has a transfer function matrix G(z), then S(AT , CT , BT , DT )

has transfer function matrix GT (z).
4. If v is the supervector corresponding to a time series {v(0), v(1), . . . , v(N )} in

Rm, then the computation of the time series in R� generated by the supervector
GT (A, B, C, D)v can be expressed as

GT (A, B, C, D)v = T (�, N )
(

G(AT , CT , BT , DT ) (T (m, N )v)
)

. (4.11)

That is, the time series inR� represented by GT (A, B, C, D)v is the time reversal
of the response of the system S(AT , CT , BT , DT ) from zero initial conditions to
the time reversal of the time series v.

Finally, note that the time reversal operators will often be simply denotedT with
the dimensions understood by the context of the discussion.

4.4 Invertibility, Range and Relative Degrees

It is left as an exercise for the reader to use the structure of G(A, B, C, D) to verify
that,

1. the kernels of G(A, B, C, D) and D are closely related via a rank condition as
follows,

ker [G] = {0} i f, and only i f, rank [D] = � (i.e. ker [D] = {0}) .

(4.12)

This is never the case if � > m and may not be the case if � ≤ m. It excludes
strictly proper systems immediately (as D = 0) with the physical interpretation
that u(N ) has no effect whatsoever on any point y(0), y(1), . . . , y(N ) of the
output time series on the interval 0, 1, 2, 3, . . . , N .
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In dynamical systems terms, ker [G] �= {0} if, and only if, there exists a non-zero
input time series that produces zero output time series from the system with zero
initial conditions. If ker [G] = {0} (respectively ker [G] �= {0}) for some value
of N , then it is also true for all other values of N . That is, changing the length of
the time series retains the property.

2. The range of G(A, B, C, D) need not be the whole ofRm(N+1). More precisely,

R[G] = Rm(N+1) i f, and only i f, rank [D] = m
(
i.e. R[D] = Rm) .

(4.13)
This cannot be satisfied if m > � but also may not be satisfied if m ≤ �. Again,
strictly proper systems do not have a full range as y(0) cannot be influenced by
the input time series.
In dynamical systems terms, if the range of G(A, B, C, D) is a proper vector
subspace of Rm(N+1), there are output time series that cannot be produced by
any input time series from zero initial conditions. Finally,R[G] = Rm(N+1) for
some N if, and only if, it is also true for all values of N .

3. Moregenerally, if S(A, B, C, D)has relative degree k∗, then theoutputs y(t), 0 ≤
t ≤ k∗ − 1, are unaffected by the input sequence. Also the inputs u(t) on the
discrete interval N + 1 − k∗ ≤ t ≤ N have no effect on the output sequence on
0, 1, 2, . . . , N .

4. The system matrix G(A, B, C, D) and its upper, block triangular “transpose sys-
tem” matrix GT have range and kernels related by the properties

R[G(AT , CT , BT , DT )]⊥ = T (�, N )ker [G(A, B, C, D)]
and T (m, N )ker [G(AT , CT , BT , DT )] = R[G(A, B, C, D)]⊥ (4.14)

where X⊥ denotes the orthogonal complement of a vector subspace X with respect
to the Euclidean inner product 〈x, z〉 = xT z.

5. The full rank condition on D links the supervector description to the ideas of
inverse systems. More precisely

a. If m = �, and D is nonsingular, then the inverse system G−1(z) is proper
with a supervector description incorporating the matrix

G−1(A, B, C, D) = G(A − B D−1C, B D−1, − D−1C, D−1). (4.15)

b. Similar observations apply to the cases of m �= � using Theorems 3.4 and
3.5 which provide examples of dynamical systems with left and right inverses
in dynamical system form. The simple algebraic properties of series com-
binations of systems then indicate that their supervector descriptions satisfy
the left and right (matrix) inverse properties illustrated by the fact that (from
Theorem 3.4) the product

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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G(A − B(K D)−1K C, B(K D)−1K ,−(K D)−1K C, (K D)−1K )︸ ︷︷ ︸G(A, B, C, D)

Le f t I nverse of G(A, B, C, D)

(4.16)

is equal to the identity IR�(N+1) whenever rank[D] = � and K D is nonsin-
gular. It is left as an exercise for the reader to use Theorem 3.5 to deduce a
right inverse

G(A − BK (DK )−1C, BK (DK )−1,−K (DK )−1C, K (DK )−1)︸ ︷︷ ︸
Right I nverse of G(A, B, C, D)

(4.17)
when rank[D] = m and DK is nonsingular.

In general terms, if the supervector description of dynamics is used on a finite interval
of time, a loss of rank for D implies that there is redundancy in the input supervector
and/or the existence of output sequences that cannot be achieved by any input times
series. A full rank D removes these problems and simultaneously ensures the exis-
tence of left and/or right inverses generated by dynamical systems. Range and kernel
properties of the system can be related precisely to those of the transpose system
using orthogonality conditions.

Under some circumstances, the kernel and range properties can be simplified by
redefining the supervectors and the associated matrices G and d to eliminate some
or all of the redundancy. The basic idea used in this text is to replace the system
S(A, B, C, D) by a system S( Ã, B̃, C̃, D̃) with essentially the same input output
behaviours but improved conditioning of G( Ã, B̃, C̃, D̃). In the following sections,
some techniques for achieving this are described using the relative degree, modifica-
tions suggested by decoupling theory and, for square, invertible systems, techniques
using a decomposition of the inverse transfer function matrix and a technique based
on the C ∗-canonical form.

4.4.1 The Relative Degree and the Kernel and Range of G

Let k∗ be the relative degree of the discrete system S(A, B, C, D). If, k∗ = 0 (that
is, D �= 0) and ker [D] = {0}, then ker [G(A, B, C, D)] = {0}. Similarly if, k∗ = 0
and R[D] = Rm , then R[G(A, B, C, D)] = Rm(N+1).

More generally, if k∗ ≥ 1, replace the supervector y by ye (of lower dimension)
as follows

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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ye =

⎡

⎢⎢⎢⎣

y(k∗)
y(k∗ + 1)

...

y(N )

⎤

⎥⎥⎥⎦ ∈ Rm(N+1−k∗), u =

⎡

⎢⎢⎢⎢⎢⎣

u(0)
u(1)
u(2)

...

u(N − k∗)

⎤

⎥⎥⎥⎥⎥⎦
∈ R�(N+1−k∗)

(4.18)
of dimension m(N + 1− k∗) (respectively �(N + 1− k∗). Note the replacement of
the output sequence by a shifted sequence ye(t ′) = y(k∗ + t ′) and the replacement
of the time interval of length N + 1 by one of length N∗ + 1 with N∗ = N − k∗.
The matrix G relating u to ye is seen, using the lower block triangular structure of
G(A, B, C, D), to be

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

C Ak∗−1B 0 · · · · · · 0 0 0
C Ak∗

B C Ak∗−1B · · · · · · 0 0 0
C Ak∗+1B C Ak∗

B · · · · · · 0 0 0
...

...
...

...

C AN−2B C AN−3B · · · · · · C Ak∗
B C Ak∗−1B 0

C AN−1B C AN−2B · · · · · · C Ak∗+1B C Ak∗
B C Ak∗−1B

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (4.19)

which can be written in the form G(A, B, C Ak∗
, C Ak∗−1B) with initial condition

term

d(C Ak∗
, A, x0) =

⎡

⎢⎢⎢⎢⎢⎣

C Ak∗
x0

C Ak∗+1x0
C Ak∗+2x0

...

C AN x0

⎤

⎥⎥⎥⎥⎥⎦
∈ Rm(N+1−k∗). (4.20)

The equivalent state space model is just S(A, B, C Ak∗
, C Ak∗−1B) with the same

state vector as S(A, B, C, D) and m × � transfer function matrix zk∗
G(z) and initial

condition x(0) = x0. This model has a “D” term equal toC Ak∗−1B and it is immedi-
ately concluded that the new representation has ker [G(A, B, C Ak∗

, C Ak∗−1B)] =
{0} if, and only if, ker [C Ak∗−1B] = {0}. The relevant necessary and sufficient condi-
tion forR[G(A, B, C Ak∗

, C Ak∗−1B)] = Rm(N+1−k∗) is thatR[C Ak∗−1B] = Rm .

4.4.2 The Range of G and Decoupling Theory

The modified supervector model introduced above covers many situations and indi-
cates, for example, that, ifm = �, k∗ ≥ 1 and them×m matrixC Ak∗−1B is nonsingu-
lar, then them(N +1−k∗)×m(N +1−k∗) squarematrixG(A, B, C Ak∗

, C Ak∗−1B)

is nonsingular.
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This construction covers the SISO case completely but, for MIMO systems, there
remains the possibility that the first non-zero Markov parameter matrix will not have
full rank. One situation where full rank conditions can be recovered is that when the
strictly proper discrete system S(A, B, C) can be decoupled using state feedback.
More precisely, suppose that m ≤ �. Then the system can be decoupled using state
feedback if, and only if, there exists a state feedback control law

u(t) = K v(t) − Fx(t), t = 0, 1, 2, 3, . . . , (4.21)

with � × m matrix K of rank m, � × n state feedback matrix F and new input vector
v(t) ∈ Rm such that the resultant m-input, m-output state space model

x(t + 1) = (A − B F)x(t) + BK v(t), x(0) = x0
y(t) = Cx(t)

(4.22)

has an m × m transfer function matrix G(z I − A + B F)−1BK which is diagonal at
all values of z. The physical interpretation of this construction is that each individual
element of the new input v(t) affects its corresponding output element only. The
system is said to have been decoupled. MIMO systems that can be decoupled in this
way can then be controlled by regarding each loop as a separate, non-interacting SISO
control loop. Control design for such systems is well established and understood and
is not pursued further here.

The relevance of the concept of decoupling to the supervector description follows
from the known necessary and sufficient condition for decoupling. More precisely,
for a system S(A, B, C), identify the m separate rows C1, C2, . . . , Cm of C and the
unique integers k∗

i , 1 ≤ i ≤ m (the row relative degrees) as follows

C =

⎡

⎢⎢⎢⎣

C1
C2
...

Cm

⎤

⎥⎥⎥⎦ , Ci A j−1B = 0, 1 ≤ j ≤ k∗
i − 1, Ci Ak∗

i −1B �= 0 , 1 ≤ i ≤ m.

(4.23)
With this parameterization, the system can be decoupled using state feedback if, and
only if, the m × � matrix

G∞ = C∞B, where C∞ =

⎡

⎢⎢⎢⎣

C1Ak∗
1−1

C2Ak∗
2−1

...

Cm Ak∗
m−1

⎤

⎥⎥⎥⎦ , (4.24)

has rank equal to m . It is a simplematter (a) to use the transfer functionmatrixG(z) =
C(z I − A)−1B to identify k∗

j as the relative degree of the j th row C j (z I − A)−1B
of G(z) and (b) to verify that
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G∞ = lim|z|→∞

(
diag[zk∗

1 , zk∗
2 , . . . , zk∗

m ]G(z)
)

(4.25)

The test for decoupling can hence be done using the transfer function matrix alone.
It is nowamatter of algebra, using the properties of theMarkov parametermatrices

of the rows of G(z), to show that the system S(A, B, C∞ A, G∞) with state space
model

x(t + 1) = Ax(t) + Bu(t), x(0) = x0
ye(t) = C∞ Ax(t) + G∞u(t)

(4.26)

has transfer function matrix

diag[zk∗
1 , zk∗

2 , . . . , zk∗
m ]G(z) . (4.27)

This model has a physical interpretation as being the original system with input u
and a new output vector ye constructed from y using shifted real outputs as follows

ye(t ′) =

⎡

⎢⎢⎢⎣

y1(t ′ + k∗
1)

y2(t ′ + k∗
2)

...

ym(t ′ + k∗
m)

⎤

⎥⎥⎥⎦ , t ′ ≥ 0. (4.28)

The condition rank[G∞] = m ensures that the matrix G(A, B, C∞ A, G∞) has
range Rm(N∗+1) for any “time” interval 0 ≤ t ′ ≤ N∗. A technical issue arises here,
namely that any choice of interval 0 ≤ t ′ ≤ N∗ for ye corresponds to different
underlying time intervals for each element of y. For example, the interval 0 ≤ t ′ ≤
N∗ for y j describes behaviour on the underlying time interval k∗

j ≤ t ≤ N∗ + k∗
j ,

an interval that differs for different values of k∗
j .

There is hence a choice to be made if the modified model G(A, B, C∞ A, G∞) is
to effectively describe dynamics of S(A, B, C) on the whole interval 0 ≤ t ≤ N . A
simple choice that ensures that the resultant time interval covers output behaviour on
the original interval 0 ≤ t ≤ N for y is to let ye(t ′) vary on t ′ = 0, 1, 2, 3, . . . , N∗
with

N∗ = N − k∗
min (where k∗

min = min{k∗
1 , k∗

2 , . . . , k∗
m}). (4.29)

If all k∗
j are identical in value (the so-called uniform rank case), then this causes no

problem. In all other cases, the sequence ye(t ′), 0 ≤ t ′ ≤ N∗ contains values of
the original output outside the interval 0, 1, 2, . . . , N . This is easily demonstrated
by examining the final value of ye(t ′) on 0, 1, 2, . . . , N∗, namely,

ye(N∗) =

⎡

⎢⎢⎢⎣

y(N + k∗
1 − k∗

min)

y(N + k∗
2 − k∗

min)
...

y(N + k∗
m − k∗

min)

⎤

⎥⎥⎥⎦ (4.30)
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which clearly contains values of y(t) outside the original interval 0, 1, 2, . . . , N
unless all k∗

j are the same (and hence equal to k∗
min). If this underlying modification

is accepted, then the objective of ensuring that G(A, B, C∞ A, G∞) has range equal
to the whole of Rm(N∗+1) has been achieved. As a by-product, the reader will note
that, if m = �, then G∞ is square and nonsingular and the objective of ensuring that
the kernel is {0} has also been achieved.

Note: In the case of � ≤ m the reader may wish to explore the parallel idea
of column relative degree and transformation of the input to ensure that the kernel
becomes {0}. The simplest approach is to apply the theory described above to the
transpose system S(AT , CT , BT , DT ).

4.5 The Range and Kernel and the Use of the Inverse System

The use of decoupling concepts extends the idea of relative degree and provides
useful range and kernel properties of G that reduce the redundancy present in the
supervector model. Unfortunately, although this construction covers almost all cases
in practice, there is still the mathematical possibility that G∞ loses rank (that is,
S(A, B, C) cannot be decoupled by state feedback). The technique cannot then be
used. A more general approach for the case of m = � uses the idea of inversion of a
subsystem generated by a partition of the inverse transfer function matrix.

4.5.1 A Partition of the Inverse

Let m = � and suppose that D = 0. Suppose that S(A, B, C) is controllable and
observable and invertible in the sense that

det[G(z)] �= 0 (4.31)

except at a finite number of points (which are zeros of the system). It follows that
G−1(z) exists and has elements that are rational polynomials in the complex variable
z. As the system is strictly proper, the inverse has the form

G−1(z) = P(z) + H0(z) (4.32)

where P(z) is assumed to have elements that are polynomials in the complex variable
z. In this scenario, it is always possible to choose H0 to be strictly proper, fromwhich
the resultant P(z) has the properties that

1. its elements are polynomials in z,
2. P−1(z) exists and is strictly proper and
3. the product H(z) = H0(z)P−1(z) is strictly proper.
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If, however, the requirement that H0 is strictly proper is removed, many more pairs
(P, H0) exist with these three properties. For example, consider the transfer function
with inverse

G−1(s) = s2 + 2s + 1 + 4

s + 3
, (4.33)

then suitable P(s) are written P(s) = s2 + as + b for any scalars a, b.
In all such cases, the system transfer function matrix hence has the form

G(z) = (P(z) + H0(z))
−1 = P−1(z)(I + H0(z)P−1(z))−1 (4.34)

which, for any nonsingular matrix P0, is the product of a strictly proper system
P−1(z)P0 and a proper system H1(z) = P−1

0 (I + H0(z)P−1(z))−1 of uniform rank
k∗ = 0. With this construction, the system model has two components

ye = H1u, and y = P−1P0ye (4.35)

the first of which has a supervector representation with a corresponding nonsingular
matrix H1. Note that

1. The choice of P is non-unique in general as is the choice of nonsingularmatrix P0.
A simple choice of P0 could be based on ensuring a simple order of magnitude
relationship between y and ye. For example, choosing P0 = P(1) provides a
simple equivalence between the two signals at low frequency.

2. The equation y = P−1P0ye is a dynamic relationship between y and ye that
permits computation of the time series of y from that of ye. Conversely, writ-
ing ye = P−1

0 Py inverts this relationship and identifies ye as a vector of for-
ward shifted values of y. The precise composition of this forward shifted version
depends on the precise nature of the polynomial matrix P(z) and, as in the use
of the “relative degree” methodologies of the previous sections, leads to a similar
need to reconsider the underlying time interval.

An interesting link with the uniform rank k∗ ≥ 1 case is obtained by noting that the
nonsingularity of C Ak∗−1B indicates that it is always possible to choose P(z) =
zk∗

(C Ak∗−1B)−1, a choice that satisfies the required conditions for both P(z) and
the consequent H0(z). Choosing P0 = P(1) yields the result that P−1(z)P0 = z−k∗

I
so that y is just ye delayed by k∗ samples. Also

H1(z) = P−1
0 (I + H0(z)P−1(z))−1 = zk∗

G(z). (4.36)

Note: Similar computations can be undertaken for the case of a system that can be
decoupled where the choice is P(z) = G−1∞ diag[zk∗

1 , . . . , zk∗
m ] and P0 = G−1∞ . The

details are left for the reader.
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4.5.2 Ensuring Stability of P−1(z)

A potential problem implicit in the use of partitions of the inverse is that the minimal
realization of P−1(z)may be unstable. It is natural to ask whether or not it is possible
to choose P−1 to be stable. This requirement is strengthened here to ask whether
or or not P−1 can be written as a finite polynomial in z−1. This is equivalent to
requiring that all poles take the value z = 0. In such cases, the relation between ye

and y takes the “moving average” form

y(t) =
q∗
2∑

j=q∗
1

Pj ye(t − j) (4.37)

where {Pj } is a set of coefficient matrices and the integers q∗
1 ≤ q∗

2 are finite.

Theorem 4.2 Let m = � and suppose that D = 0. Suppose also that S(A, B, C) is
controllable and observable and that G(z) is invertible. Then G(z) can be factorized
into the product of two m × m transfer function matrices G(z) = P−1(z)H1(z)
where H1(z) is proper with limz→∞ H1(z) = Im, P−1(z) has no zeros and is a
finite polynomial in the complex variable z−1 and P(z) is a finite polynomial in the
complex variable z. The factorization is not necessarily unique.

Proof At least one factorization exists if the requirement that P−1(z) is a polynomial
in z−1 is ignored. Let S(AP , BP , CP ) be a minimal realization of such a P−1(z) and
let F be a feedback matrix that allocates all eigenvalues of AP − BP F to the origin.
Such a choice is normally non-unique if m > 1. Assume zero initial conditions and
write the state equations for S(AP , BP , CP ) in the form

xP (t + 1) = (AP − BP F)xP (t) + BP (u(t) + FxP (t)). (4.38)

It follows that the transfer function matrix is the product of two factors

P−1(s) = CP (z I − AP + BP F)−1BP

[
I + F(z I − AP )−1BP

]
(4.39)

The first term CP (z I − AP + BP F)−1BP is strictly proper, has no zeros and only
has poles at z = 0. It is hence a finite polynomial in z−1. Invertibility follows from
the invertibility of P and the invertibility of the second factor. It follows that P−1

can be replaced by CP (z I − AP + BP F)−1BP with the second factor H1 replaced
by a minimal realization of (I + F(z I − AP )−1BP )H1(z). Finally the polynomial
nature of P(z) as a matrix with elements that are polynomials in z follows from the
fact that P−1(z) has no zeros. �

Finally, the fact that such moving average representations exist does not imply
that they are unique. In practice, it would be natural to seek a solution with additional
minimality properties such as the “spread” q∗

2 − q∗
1 should be minimal. For uniform
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rank systems of relative degree k∗, the relevant minimal values are q∗
1 = q∗

2 = k∗
and, in this case, no smaller spread is possible.

4.6 The Range, Kernel and the C ∗ Canonical Form

When applicable, the use of relative degree concepts can be seen as an effective
methodology for identifying “natural delays” z−k∗

j for each output in the system
with the aim of producing the required properties for the kernel and range of the
matrix in the supervector description relating u to a modified output ye. The resultant
dynamics are defined on a new interval length 0 ≤ t ′ ≤ N∗. More generally, the use
of inverse system representations replaces delays by matrices P(z) whose elements
are polynomials of finite degree in the complex variable z. The resultant new output
signal ye can then be taken to be a time series of weighted “moving average” values
of the original output y over a finite horizon.

The technique explored in this section is to use the idea of the C ∗- canonical form
of a strictly proper, invertible system S(A, B, C)withm = � to show that every such
system has a natural set of simple delays 1 ≤ k∗

1 ≤ · · · ≤ k∗
m embedded within its

structure. These delays are revealed by a simple transformation to be the row relative
degrees of a system mapping u into a new output ỹ. This system satisfies the decou-
pling condition so ỹ leads naturally to a suitable ye. The approach has connections
to inverse system methods but is approached using state space descriptions.

4.6.1 Factorization Using State Feedback and Output Injection

For any state feedback matrix F , the state space model S(A, B, C) can be written

x(t + 1) = (A − B F)x(t) + B(u(t) + Fx(t)), y(t) = Cx(t). (4.40)

Assuming zero initial conditions, the application of the Z -transform gives

y(z) = C(z I − A + B F)−1B (u(z) + Fx(z)) . (4.41)

Noting that x(z) = (z I − A)−1Bu(z) then indicates that the transfer function matrix
G(z) of S(A, B, C) can be written in the form of the product

G(z) = C(z I − A + B F)−1B
[

I + F(z I − A)−1B
]

(4.42)

Applying the same idea to the transpose of the first term by introducing an output
injection matrix H yields the algebraic description
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“Factori zation One”

⎛

⎜⎜⎝

G(z) = H2(z)P−1(z)H1(z)
whereP−1(z) = C(z I − A + B F + HC)−1B,

H1(z) = [I + F(z I − A)−1B
]
,

and H2(z) = [I + C(z I − A + B F)−1H
]
.

⎞

⎟⎟⎠

(4.43)

H1 has a, possibly non-minimal, realization S(A, B, F, I ) whilst H2 has a, possibly
non-minimal, state space realization S(A − B F, H, C, I ). The matrices in their
supervector representations are nonsingular with unit determinant.

An alternative description starting from the transfer function matrix GT (z) for
the transpose system S(AT , CT , BT , DT ) gives

“Factori zation T wo”

⎛

⎜⎜⎝

G(z) = H2(z)P−1(z)H1(z)
where P−1(z) = C(z I − A + B F + HC)−1B,

H1(z) = [I + F(z I − A + HC)−1B
]
,

and H2(z) = [I + C(z I − A)−1H
]
.

⎞

⎟⎟⎠

(4.44)

Here, H1 has a, possibly non-minimal, realization S(A− HC, B, F, I )whilst H2 has
a, possibly non-minimal, state space realization S(A, H, C, I ). Again the matrices
in their supervector representations are nonsingular with unit determinant.

The important observation here is that, in both cases, the transfer function matrix
P−1(z) has the same form and is strictly proper and invertible whilst both H1(z)
and H2(z) are proper and have uniform rank zero. For the purposes of discussion,
Factorization One is the one of interest and is assumed for the rest of this section.

4.6.2 The C ∗ Canonical Form

The C ∗ Canonical Form due to Morse is a theoretical description of properties of a
matrix triple (A, B, C) under the group of transformations defined by five matrices
(P1, P2, F, H, T ) (with each P1, P2 and T nonsingular) and the group action

(P1, P2, F, H, T ) ◦ (A, B, C) �→ (T −1(A − B F − HC)T, T −1B P1, P2CT )

(4.45)
Associated with this group action is a canonical form for (A, B, C) describing the
state space structure of the system and an associated transfer function matrix. The
simplest expression of the relevant implications of the C ∗ Canonical Form is that
there always exists uniquely defined integers 1 ≤ k∗

1 ≤ k∗
2 ≤ · · · ≤ k∗

m (the so-called
structural invariants of the C ∗-transformation group), nonsingular m × m matrices
P1, P2, a state feedback matrix F and an output injection matrix H such that

P2P−1(z)P1 = diag
[
z−k∗

1 , z−k∗
2 , . . . , z−k∗

m

]
(4.46)
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The two matrices F, H are non-unique but all have a number of general properties
of interest, namely that,

(A − B F)V ∗ ⊂ V ∗, (A − B F − HC)V ∗ ⊂ V ∗
C (A − B F − HC)k = 0 , f or all k ≥ k∗

m,
(4.47)

where V ∗ is the maximal {A, B}-invariant subspace in ker [C] with dimension

dim(V ∗) = nz = n −
m∑

j=1

k∗
j . (4.48)

Here nz is the number of zeros of S(A, B, C). One consequence is that,

Theorem 4.3 (H−1
2 is a Moving Average Filter) The inverse transfer function

matrix, H−1
2 (z) is a matrix with elements that are finite polynomials in the com-

plex variable z−1 of the form

H−1
2 (z) =∑k∗

m
j=0 H ( j)

2 z− j , H (0)
0 = Im,

and H ( j)
2 = −C(A − B F − HC) j−1H, 1 ≤ j ≤ k∗

m .
(4.49)

Proof The proof is a simple consequence of the observation that H−1
2 (z) has a state

space model of the form S(A − B F − HC, H,−C, I ) with a minimal realization
that has poles at the point z = 0 only. More precisely, the proof follows using the
power series expansion,

H−1
2 (z) = I − C(z I − A + B F + HC)−1H

= I −∑∞
j=1 z− j C(A + B F + HC) j−1H

= I −∑k∗
m

j=1 z− j C(A + B F + HC) j−1H

(4.50)

�

This simple characterization suggests, in particular, that a change in the output defi-
nition provides some simplifications to the general case:

Theorem 4.4 (Embedded Delays and Decoupling) Assuming zero initial state
conditions,

1. The signal P2H−1
2 y is a moving average filtered version of y,

2. the elements in the signal P2H−1
2 y and the modified input P−1

1 H1u are related
in a simple way by the time shifts defined by the integers {k∗

j }1≤ j≤m.
3. A link to decoupling characterizations is obtained through the fact that the state

space model defining the mapping u �→ P2H−1
2 y is a dynamical system with row

relative degrees {k∗
j }1≤ j≤m which can be decoupled by state feedback.

Proof The first statement follows from the preceding theorem. The second statement
follows from the factorization of G(z) = H2(z)P−1

2

[
P2P−1(z)P1

]
P−1
1 H1(z). The

final statement follows as P1 is nonsingular and
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lim|z|→∞ diag[zk∗
, . . . zk∗

m ]P2H−1
2 (z)G(z) = P−1

1 . (4.51)

�

The natural interpretation of this result is that a suitable moving average filtering of
the output y yields a new output ỹ for which the decoupling based results described
previously can be used. The filter P2H−1

2 (z) used in the above theorems is a candidate
for such a filter. This choice is non-unique as (a) the values of F and H are non-
unique and (b), for a given pair (F, H), a simple calculation proves that scaling of
the rows of P2 retains the essential properties described provided that the columns
of P1 are scaled by the inverse scaling factors.

A (non-unique) characterization of the output ye required is as the output response
of a minimal realization of the state space model S(A, B, P−1

1 F, P−1
1 ) of the system

P−1
1 H1(z) to the input u. It is seen that ye is related to the original output y by the

Z -transform relation

ye(z) = M(z)y(z) where M(z) = diag[zk∗
1 , . . . , zk∗

m ]P2H−1
2 (z). (4.52)

The process can be regarded as a two step procedure y �→ ỹ �→ ye using the time
series representations

ỹ(t) = P2

k∗
m∑

j=0

H ( j)
2 y(t − j) and ye(t) =

⎡

⎢⎣
ỹ(t + k∗

1)
...

ỹ(t + k∗
m)

⎤

⎥⎦ , t ≥ 0. (4.53)

Computational Note: For practical purposes, it is natural to choose a scaling to
avoid any possible numerical/computational problems arising from the wide range
of gain from steady state to high frequency. An intuitive choice is a scaling that
ensures that the value taken by P−1

1 H1(z) at z = 1, that is P−1
1 [I + F(I − A)−1B]),

has elements with similar magnitude to those in G(1). This would, intuitively, ensure
similar steady state behaviour from both y and ye.

4.6.3 The Special Case of Uniform Rank Systems

For the special case of a uniform rank k∗ systemwhereC A j−1B = 0 for 1 ≤ j < k∗
and C Ak∗−1B is nonsingular, it is true that k∗

j = k∗ for all j = 1, 2, . . . , m. The
values of (F, H, P1, P2) are non-unique.

Example One: A candidate set can be computed from the following direct sum
decomposition of the state space,

Rn = V ∗ ⊕ R[B] ⊕ R[AB] ⊕ · · · ⊕ R[Ak∗−1B] (4.54)

with nz = n − k∗m and noting that
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V ∗ = ker [

⎡

⎢⎢⎢⎣

C
C A
...

C Ak∗−1

⎤

⎥⎥⎥⎦]. (4.55)

In this case, if V ∗
b is an n × nz matrix whose columns span V ∗, the matrix

T =
[

B, AB, . . . , Ak∗−1B,V ∗
b

]
, (4.56)

is nonsingular. Analysis of the form of the state space model in this basis leads to
the following formulae defining candidates for the required F, H, P1 and P2

H = Ak∗
B(C Ak∗−1B)−1, F = (C Ak∗−1B)−1C(A − HC)k∗

,

P2 = I and P1 = (C Ak∗−1B)−1.
(4.57)

from which a state space realization of P−1
1 H1 and the relevant coefficient matrices

{H ( j)
2 } in the inverse H−1

2 can be computed.
Example Two: Applying the procedure above to S(AT , CT , BT ) suggests the

choice of

F = (C Ak∗−1B)−1C Ak∗
, H = (A − B F)k∗

B(C Ak∗−1B)−1,

P1 = I and P2 = (C Ak∗−1B)−1.
(4.58)

Example Three: The choices in Example Two can be simplified by replacing H
by H = 0 and hence H2 by the identity Im . Although this no longer represents the
C ∗-canonical form, this choice retains the required transfer functionmatrix property.
More precisely,

G(z) = C(z In − A + B F)−1B
[

Im + F(z I − A)−1B
]

(4.59)

and
C(z In − A + B F)−1B = z−k∗

C Ak∗−1B (4.60)

as a simple calculation yields the observation that

C(A − B F)k∗ = 0,
C(A − B F) j−1B = 0, 1 ≤ j < k∗ and C(A − B F)k∗−1B = C Ak∗−1B.

(4.61)
This construction leads to the familiar choice of ye(t) = y(t + k∗) and the transfer
function matrix P−1

1 H1(z) = C Ak∗−1B(I + F(z I − A)−1B) = zk∗
G(z).
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4.7 Quadratic Optimal Control of Linear Discrete Systems

Section3.10 provided an introduction to operator based approaches to the solution
of a continuous time linear quadratic optimal control problem. A similar problem
for the �-input, m-output, linear, time invariant, discrete time system

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, 2, . . . , N − 1, x(0) = x0
and y(t) = Cx(t) + Du(t) f or t = 0, 1, 2, 3, . . . , N ,

(4.62)

uses a quadratic objective function

J (u) =
N∑

j=0

(
(r(t) − y(t))T Q(t)(r(t) − y(t)) + (u(t) − u0(t))

T R(t)(u(t) − u0(t))
)

(4.63)

where the time varying weight matrices R(t) = RT (t) > 0 and Q(t) = QT (t) > 0
for t = 0, 1, 2, . . . , N . Note that, in this description, the discrete time structure
makes the separation of the term associated with the final “time” superfluous.

The supervector description provides a simple way to characterize the solution
procedure. The relevant system model is simply

y = G(A, B, C, D)u + d(C, A, x0), (4.64)

where the supervectors y ∈ Y = Rm(N+1) and u ∈ U = R�(N+1). Defining

R = blockdiag [R(0), R(1), . . . , R(N )] and Q = blockdiag [Q(0), Q(1), . . . , Q(N )] ,
(4.65)

the relevant inner products in U (respectively, Y ) are taken to be

〈u, v〉U = uT Rv (respectively 〈y, w〉Y = yT Qw) (4.66)

Denoting the supervectors corresponding to the time series {r(0), r(1), . . . , r(N )}
(respectively {u0(0), u0(1), . . . , u0(N )}) as r (respectively u0), the objective func-
tion takes the form

J (u) = ‖r − y‖2Y + ‖u − u0‖2U (4.67)

The optimal solution is then obtained using Eq. (2.104) and is characterized by the
supervector equation

u = u0 + G∗(A, B, C, D)(r − y) where G∗ = R−1GT (A, B, C, D)Q. (4.68)

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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This matrix characterization of the solution is precise but may lead to computational
problems if N is large. A characterization of solutions using two point boundary
value problems and Riccati matrices are given in the followings sections.

4.7.1 The Adjoint and the Discrete Two Point Boundary Value
Problem

The relationship defining the optimal solution is now converted into a two point
boundary value problem. First note that, as S(A, B, C, D) is assumed to be time
invariant, the time variation in the problem is contained solely in the matrices R
and Q. The transpose GT (A, B, C, D) is associated with the matrix representation
of the linear, time invariant system G(AT , CT , BT , DT ). The precise form of this
relationship is expressed using time reversal matrices (4.8) in the form (Theorem
4.1)

GT (A, B, C, D) = T (�, N )G(AT , CT , BT , DT )T (m, N ) (4.69)

so that

u − u0 = R−1T (�, N )G(AT , CT , BT , DT )T (m, N )Q(r − y). (4.70)

This calculation is nowdone in a number of simple steps. For simplicity, introduce the
supervector z = T (m, N )Q(r − y) and note that the components of the supervector
w = G(AT , CT , BT , DT )z can be computed from the state space simulation

ψ(t ′ + 1) = AT ψ(t ′) + CT z(t ′), t ′ = 0, 1, 2, . . . , N − 1,

ψ(0) = 0,

with w(t ′) = BT ψ(t ′) + DT z(t ′)
and z(t ′) = Q(N − t ′)

(
r(N − t ′) − y(N − t ′)

)
f or t ′ = 0, 1, 2, . . . , N .

(4.71)

The equations defining the time reversed supervector η = T (�, N )w of w are
obtained by the substitution t = N − t ′ and the introduction of the costate vec-
tor p(t) = ψ(N − t) and notation η(t) = w(N − t) to give

p(t − 1) = AT p(t) + CT Q(t) (r(t) − y(t)) , t = 1, 2, . . . , N ,

p(N ) = 0 and
η(t) = BT p(t) + DT Q(t) (r(t) − y(t)) , t = 0, 1, 2, . . . , N .

(4.72)

The final computation is that of u − u0 = R−1η to give the optimal input as the
solution of the two point boundary value problem
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x(t + 1) = Ax(t) + Bu(t), and
p(t) = AT p(t + 1) + CT Q(t + 1) (r(t + 1) − y(t + 1))

f or t = 0, 1, 2, . . . , N − 1,
with u(t) = u0(t) + R−1(t)BT p(t) + R−1(t)DT Q(t) (r(t) − y(t))

f or t = 0, 1, 2, . . . , N .

T he boundary conditions are
x(0) = x0 and p(N ) = 0.

(4.73)

This representation is a discrete equivalent to the two point boundary value problem
for continuous systems derived in Sect. 3.10.3. There are clear structural similarities
between the two solutions and, in fact, the reader might like to demonstrate that they
become equivalent if T is fixed and the sampling interval h = T/N tends to zero as
N → ∞.

4.7.2 A State Feedback/Feedforward Solution

The two point boundary value representation can be converted into a state feedback
plus feedforward solution in a similar manner to that described in Sect. 3.10.4. The
first step in such a conversion is to propose a linear relationship between p(t) and
x(t). The simplest such representation takes the form

p(t) = −K (t)x(t) + ξ(t), t = 0, 1, 2, . . . , N (4.74)

where, as in the continuous time case, the n ×n matrix K (t) and the term ξ(t) ∈ Rn

are, as yet, unspecified. The optimal input is then given by

u(t) = u0(t) + R−1DT Q(t) (r(t) − y(t)) + R−1(t)BT (−K (t)x(t) + ξ(t)) ,

f or t = 0, 1, 2, . . . , N .

(4.75)

The characterization of a suitable K (t) and ξ(t) is now described when D(t) ≡ 0.
The Case of D(t) ≡ 0: Substituting for the costate in the equations for the two

point boundary problem gives

x(t + 1) = (A − B R−1(t)BT K (t)
)

x(t) + Bu0(t) + B R−1(t)BT ξ(t)
and

−K (t)x(t) + ξ(t) = − (AT K (t + 1) + CT Q(t + 1)C
)

x(t + 1) + AT ξ(t + 1)
+CT Q(t + 1)r(t + 1).

(4.76)

Using the first equation to substitute for x(t + 1) into the second of these equations,
collecting terms and setting the coefficient matrix of x(t) to zero then implies that
these equations are satisfied if the feedback matrix satisfies the nonlinear recursion
relations

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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K (t) = (AT K (t + 1) + CT Q(t + 1)C
) (

A − B R−1(t)BT K (t)
)
,

f or t = 0, 1, 2, . . . , N − 1
(4.77)

and the sequence {ξ(t)} satisfies the equations

ξ(t) = − (AT K (t + 1) + CT Q(t + 1)C
) (

Bu0(t) + B R−1(t)BT ξ(t)
)

+AT ξ(t + 1) + CT Q(t + 1)r(t + 1),
f or t = 0, 1, 2, . . . , N − 1.

(4.78)

The boundary conditions are obtained by requiring that p(N ) = 0which is satisfied if

K (N ) = 0 and ξ(N ) = 0. (4.79)

The equations must hence be solved by reverse time recursion.
More explicit representations for the solutions can be obtained by a simple

rearrangement of the equations into the form, for t = 0, 1, . . . , N − 1,

K̃ (t + 1) = AT K (t + 1) + CT Q(t + 1)C,

K (t) =
(

I + K̃ (t + 1)B R−1(t)BT
)−1

K̃ (t + 1)A
(4.80)

and

ξ(t) =
(

I + K̃ (t + 1)B R−1(t)BT
)−1

(AT ξ(t + 1)

−K̃ (t + 1)Bu0(t) + CT Q(t + 1)r(t + 1))
(4.81)

This representation is a basis for the construction of the time varying state feedback
gain matrix −R−1(t)BT K (t) from the model data A, B, C and objective function
weightingmatrices Q(t) and R(t), t = 0, 1, 2, . . . , N . The feedforwardor predictive
term ξ(t), t = 0, 1, 2, . . . , N can then be constructed by backwards recursion from
this data plus the signals r(t) and u0(t), t = 0, 1, 2, . . . , N .

4.8 Frequency Domain Relationships

The concept of a supervector (or “lifted”) description is simply the combing of data
sequences into a single vector and has been used by many authors in several forms
(see, for example, [3, 93]). It has the benefit that it releases matrix methods for
analysis on finite time intervals. This, at first sight, appears to be incompatible with
the use of Z -transform descriptions which normally look at infinite time series.
There are however a number of useful links between the two when S(A, B, C, D)

is asymptotically stable. These links include the use of Z -transforms and transfer
function matrices to compute or bound quadratic forms and operator norms.
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4.8.1 Bounding Norms on Finite Intervals

Consider, the supervector relation y = Gu for S(A, B, C, D) on an interval 0 ≤ t ≤
N for an asymptotically stable, �-input,m-output systemwithm×� transfer function
matrix G(z). Extend the input to the infinite time interval by setting u(t) = 0, t ≥
N+1 anddenote theZ -transformof the resultant signal byu(z) =∑∞

j=0 z− j u( j) =
∑N

j=0 z− j u( j). Note that the first N + 1 terms in the infinite time series computed
from the relationship y(z) = G(z)u(z) are precisely the subvectors of the supervector
y but that the output response on the infinite interval 0 ≤ t < ∞ is typically non-zero
for t ≥ N + 1. It follows from contour integration in the complex plane and the
easily proved property

1

2π i

∮

|z|=1
z p− j dz

z
= δ j p (the Kronecker Delta) (4.82)

(where p and j are integers and the contour integration on the unit circle in undertaken
in the anti-clockwise sense (formally by writing z = eiθ with 0 ≤ θ ≤ 2π ) that the
Euclidean norm inRm(N+1) can be bounded as follows,

‖y‖2 = yT y =∑N
t=0 yT (t)y(t) ≤∑∞

t=0 yT (t)y(t)
= 1

2π i

∮
|z|=1 yT (z−1)y(z) dz

z

= 1
2π i

∮
|z|=1 uT (z−1)GT (z−1)G(z)u(z) dz

z

(4.83)

which is finite as the system is asymptotically stable. Note that, if the system matri-
ces A, B, C, D are real, then, using the properties of complex quadratic forms and
singular values yields the result that the supervector norm

‖y‖2 ≤
(
sup
|z|=1

σ 2
� (z)

)
1

2π i

∮

|z|=1
uT (z−1)u(z)

dz

z
=
(
sup
|z|=1

σ 2
� (z)

)
‖u‖2 (4.84)

where 0 ≤ σ1(z) ≤ σ2(z) ≤ · · · ≤ σ�(z) are the ordered singular values of the com-
plex matrix G(z) on the unit circle. Recalling that ‖G(A, B, C, D)‖ is the smallest
scalar M satisfying the expression ‖y‖ ≤ M‖u‖ for all u ∈ C �(N+1), it follows that
the norm of the matrix G(A, B, C, D) and the frequency dependence of the singular
values of G(z) are closely related. More precisely, and more generally,

Theorem 4.5 (Matrix Norm and the Transfer Function Matrix Norm) Suppose that
S(A, B, C, D) is asymptotically stable and has transfer function matrix G(z). Let Q
and R be symmetric positive definite m × m and � × � matrices respectively. Then,
the norm of G induced by inner products in U = R�(N+1) and Y = Rm(N+1)

defined by

〈u, v〉U =
N∑

t=0

uT (t)Rv(t) and 〈y, w〉Y =
N∑

t=0

yT (t)Qw(t) (4.85)
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is simply bounded as follows,

‖G(A, B, C, D)‖ ≤ sup|z|=1 σ�(z) = ‖Q1/2G(z)R−1/2‖∞
=
√
sup|z|=1 r(R−1GT (z−1)QG(z)),

(4.86)

where σ 2
1 (z) ≤ σ 2

2 (z) ≤ · · · ≤ σ 2
� (z) are the ordered eigenvalues of R−1GT (z−1)

QG(z) and ‖M(z)‖∞ denotes the so-called H∞-norm of a transfer function matrix
M(z).

Note: The eigenvalues σ 2
j (z) are the singular values of Q1/2G(z)R−1/2.

Proof The topology reduces to a Euclidean topology if y (respectively u) is replaced
by Q1/2y (respectively R1/2u) and G(z) is replaced by Q1/2G(z)R−1/2. The dis-
cussion preceding this result then provides the required proof with the final link to
the spectral radius following from the relation,

‖Q1/2G(z)R−1/2‖2 = sup|z|=1 r(R−1/2GT (z−1)Q1/2Q1/2G(z)R−1/2)

= sup|z|=1 r(R−1GT (z−1)QG(z))
(4.87)

as the spectral radius is invariant under similarity transformations. �

In what follows, it is seen that H∞-norms can be arbitrarily accurate estimates of
the induced norm ‖G(A, B, C, D)‖ if N is large.

4.8.2 Computing the Norm Using the Frequency Response

Frequency responses are normally computed using complex number representations
of signals. In what follows, the inner products and norms defined in Theorem 4.5
are extended to the complexifications Uc = C �(N+1) and Yc = C m(N+1) of U =
R�(N+1) and Y = Rm(N+1) using

〈u, v〉Uc =
N∑

t=0

uT (t)Qv(t) and 〈y, w〉Yc =
N∑

t=0

yT (t)Rw(t). (4.88)

Consider the complex valued input sequence {z jα}0≤ j≤N = {α, zα, . . . , zN α} with
|z| = 1 and α ∈ C � with inner product 〈u, v〉 = uT Rv. The resultant complex output
response from zero initial conditions is regarded as a time series in C m with inner
product 〈y, w〉 = yT Qw. It has a supervector y with components

y(t) = G(z)u(t) + d(t), d(t) = −C(z I − A)−1At Bα, 0 ≤ t ≤ N . (4.89)

Note that‖u‖2Uc
= (N+1)‖α‖2 = (N+1)αT Rα. If S(A, B, C, D) is asymptotically

stable, there exists a real number M such that, for all z of unit magnitude, ‖d‖ ≤
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M‖α‖ = M(N + 1)−1/2‖u‖. It follows that the fractional error in approximating y
by setting d = 0 goes to zero as N → ∞. For the complex input considered,

lim
N→∞(N + 1)−1/2 sup{‖y‖Yc : ‖α‖ = 1, |z| = 1} = ‖Q−1/2G(z)R−1/2‖∞

(4.90)
and hence the induced matrix norm is related to the transfer function matrix norm,

Theorem 4.6 (Matrix Norm as N → ∞) Using the notation above, suppose that
the discrete state space system S(A, B, C, D) is asymptotically stable. Then, as N
increases, the induced norm of G(A, B, C, D) : Uc → Yc has the limiting property

lim
N→∞ ‖G(A, B, C, D)‖ = ‖Q1/2G(z)R−1/2‖∞ =

√
sup
|z|=1

r(R−1GT (z−1)QG(z)).

(4.91)
Note: As G(A, B, C, D) is real, this expression also holds for G(A, B, C, D) as a
map U → Y .

The computational benefit of this result is best seen in later chapters where the
maximum gain ranges that guarantee algorithm convergence are related to norms
of matrix operators. If a model is known, the norm can be accurately computed.
Otherwise, system identification or experimental frequency response testing could
be used to construct G(z) at selected frequency points. For iterative control over time
intervals much longer than the time constants of the plant, the results produced can
provide good estimates of useful control parameters.

4.8.3 Quadratic Forms and Positive Real Transfer Function
Matrices

Using the notation of the previous section, suppose that m = � and that dynam-
ics from zero initial conditions is considered on the interval 0, 1, 2, . . . , N . The
two spaces U and Y are identical vector spaces with R = Q. Suppose also that
S(A, B, C, D) is asymptotically stable. Consider 〈u, G(A, B, C, D)u〉Y . Extending
the analysis to infinite sequences by setting u(t) = 0, t > N so that theZ -transform
of the resultant input signal is just u(z) =∑N

t=0 z−t u(t), contour integration gives

〈u, G(A, B, C, D)u〉Y = 1

2π i

∮

|z|=1
uT (z−1)Qy(z)

dz

z
= 1

2π i

∮

|z|=1
uT (z−1)QG(z)u(z)

dz

z
(4.92)

where y(z) = G(z)u(z). It follows that,

Theorem 4.7 (Quadratic Forms and the Frequency Domain) Suppose that
S(A, B, C, D) is asymptotically stable and that m = �. Suppose that g and g are
real scalars with the property that

g Q ≤ QG(z) + GT (z−1)Q ≤ g Q f or all |z| = 1. (4.93)
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where the inequalities are matrix inequalities in the familiar Euclidean sense in C m.
Then the matrix G(A, B, C, D) satisfies the inequality

1

2
g 〈u, u〉Y ≤ 〈u, G(A, B, C, D)u〉Y ≤ 1

2
g 〈u, u〉Y f or all u ∈ Rm(N+1).

(4.94)

Proof Write z = eiθ to obtain

〈u, G(A, B, C, D)u〉Y = 1
2π

∫ 2π
0 uT (e−iθ )QG(eiθ )u(eiθ )dθ

= 1
2π

∫ 2π
0 uT (e−iθ )

(
1
2

) [
QG(eiθ ) + GT (e−iθ )Q

]
u(eiθ )dθ

(4.95)
as 〈u, G(A, B, C, D)u〉Y is real. The result is now completed by writing

1
2g 〈u, u〉Y =

(
1
2g
)

1
2π

∫ 2π
0 uT (e−iθ )Qu(eiθ )dθ ≤ 〈u, G(A, B, C, D)u〉Y

(4.96)
and

〈u, G(A, B, C, D)u〉Y ≤ ( 12g
) 1
2π

∫ 2π
0 uT (e−iθ )Qu(eiθ )dθ = 1

2g 〈u, u〉Y .

(4.97)
�

Cases of special interest are those when either g = 0 or g > 0. More precisely, it
follows from the above result that, using the same topology as above,

Theorem 4.8 (Positive Matrices and Positive Real Conditions) Suppose that
S(A, B, C, D) is asymptotically stable with m = � and that Q = QT > 0. Then, the
matrix G(A, B, C, D) (and hence G +G∗) is positive (respectively, positive definite)
if the associated m × m transfer function matrix G(z) is positive real (respectively,
strictly positive real) in the sense that

QG(z) + GT (z−1)Q ≥ 0 (respectively QG(z) + GT (z−1)Q > 0) f or all |z| = 1.
(4.98)

Note: for SISO systems these sufficient conditions require that the transfer function
G(z) has positive (respectively, strictly positive) real part for all z on the unit circle
of the complex plane.

Proof The result is a consequence of the previous theorem when G(z) is positive
real as g = 0 is the natural choice. If G(z) is strictly positive real, then continuity of
G(z) on the (compact) unit circle implies that g > 0 can be chosen. �

It is useful to note that the condition is only sufficient but, from the analysis of
the frequency response, it can be expected to be quite accurate when N is large. For
strictly proper systems, the positive real conditions are satisfied in only a minority
of cases. The presence of a “D” term plays an important role in producing pos-
itive real properties. In this context, the effects of using the relative degree mod-
ifications described previously can produce positivity. For example, if the system
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S(A, B, C, D) is the stable first order systemwith transfer functionG(z) = 1/(z−λ)

with |λ| < 1 thenG(z) is not positive real as the productG(1)G(−1) < 0. The super-
vector matrix representation in RN+1 in this case is G(λ, 1, 1, 0). However, noting
that the relative degree is k∗ = 1 then themodified representation of zG(z) = 1+ λ

z−λ

in RN is G(λ, λ, 1, 1). That this matrix is positive definite then follows from the
fact that zG(z) (written in the form 1/(1 − z−1λ)) is strictly positive real as its real
part is ≥ 1/(1 + |λ|) > 0.

4.8.4 Frequency Dependent Lower Bounds

The connection between the frequency domain properties and time domain inner
products and norms can be extended by considering the impact of carefully chosen
frequency domain inequalities between two transfer function matrices G(z) and
K (z). The results take the form of defining frequency domain inequalities of the
general form Fz(G(z), K (z), β) ≥ 0 for |z| = 1 that are sufficient to ensure that
associated supervector model operators satisfy inequalities Fs(G, K , β) ≥ 0.

1. Suppose that G(z) is the transfer function matrix of an asymptotically stable,
�-input, m-output, linear, time invariant system S(A, B, C, D) with input and
output spaces U = R�(N+1) and Y = Rm(N+1) and associated inner products
defined by matrices Q and R as in Theorem 4.5. The matrix G(A, B, C, D) in
the supervector description is denoted, for simplicity, by the single symbol G.

2. Suppose also that K (z) is the transfer function matrix of an asymptotically sta-
ble, �-input, �-output, linear, time invariant system S(AK , BK , CK , DK ) with
input space U and output space YK = U with its inner product. The matrix
K (AK , BK , CK , DK ) in its supervector description is denoted by K . Then,

Theorem 4.9 (FromFrequencyDomain toOperator Inequalities) The following two
statements are true,

1. If G(z) and K (z) satisfy, for some real scalar β > 0, the frequency domain
inequality

RK (z) + K T (z−1)R ≥ βGT (z−1)QG(z) whenever |z| = 1, (4.99)

then this inequality is also satisfied if β is replaced by any other value β̃ ∈ (0, β).
In particular,

2〈u, K u〉U = 〈u, (K + K ∗)u〉U ≥ β〈u, G∗Gu〉U = β‖Gu‖2Y f or all u ∈ U
(4.100)

and hence, in the inner product topology of U ,

(a) K + K ∗ ≥ βG∗G and (b) β‖G‖2 ≤ ‖(K + K ∗)‖. (4.101)
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If β∗ > 0 is the largest value of β satisfying (4.99), then, for all β ∈ (0, β∗),

2〈u, K u〉U = 〈u, (K + K ∗)u〉U > β〈u, G∗Gu〉U = β‖Gu‖2Y i f Gu �= 0.
(4.102)

Note: The final inequality is an inequality relating quadratic forms. It can be
expressed in a simple way by saying that K + K ∗ > βG∗G on any subspace
V that is the complement of ker [G] in U . That is, any subspace V such that
U = V ⊕ ker [G]. If ker [G] = {0} then V = U .

2. If (4.99) is replaced by the stronger assumption that

RK (z) + K T (z−1)R > βGT (z−1)QG(z) whenever |z| = 1, (4.103)

then, on the whole space U ,

K + K ∗ > βG∗G. (4.104)

This relationship remains true for all β ∈ (0, β∗).
Note: Although (4.99) is implied by (4.103), the additional detail adds value to
the result and removes the need for Gu �= 0 to ensure that K + K ∗ > βG∗G. The
implications of this change are, in part, that, whereas (4.99) may allow K (z) to
be singular for some z on the unit circle, (4.103) demands that this is not possible.

Proof Consider Part 1. First β can be replaced by β̃ as the right hand side of (4.99)
is positive. Next, in a similar manner to previous analysis,

2〈u, K u〉U = 1
2π i

∮
|z|=1 uT (z−1)

(
RK (z) + K T (z−1)R

)
u(z) dz

z

≥ β
( 1
2π i

) ∮
|z|=1 uT (z−1)GT (z−1)QG(z)u(z) dz

z
≥ β〈Gu, Gu〉Y = β‖Gu‖2Y .

(4.105)

Inequality (a) follows as 〈u, K u〉U = 〈u, K ∗u〉U so that 2〈u, K u〉U = 〈u, (K +
K ∗)u〉U together with 〈Gu, Gu〉Y = 〈u, G∗Gu〉U . Inequality (b) then follows
as the characterization of positive self-adjoint operators then gives β‖G‖2 =
β‖G∗G‖ ≤ ‖(K + K ∗)‖. Finally, the strict inequality whenever Gu �= 0 follows
from the above as, in these circumstances, β∗‖Gu‖2 = β‖Gu‖2+(β∗−β)‖Gu‖2 >

β‖Gu‖2. Part 2 is proved in a similar way by making maximum use of the strict
inequality expressed in (4.103). �

Theorem 4.9 is related to Theorem 4.5 when K = G. The proof of the following
result is a direct consequence of Theorem 4.9 and is left as an exercise for the reader.

Theorem 4.10 (An Application to Iterative Learning Control) Suppose that G rep-
resents a dynamical system with asymptotically stable, �-input, m-output, linear,
time invariant, discrete time, state space model S(A, B, C, D) and transfer function
matrix G(z) operating on a finite time interval 0 ≤ t ≤ N. Using the definitions
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and notation of the previous theorem, let m = �, U = Y , Q = R, ker [G] = {0}
and β > 0. Then the condition ‖(I − βG)‖ < 1 is equivalent to the requirement
that (I − βG)∗(I − βG) < I in Y and hence that G + G∗ > βG∗G. A sufficient
condition for this to be true is that,

QG(z) + GT (z−1)Q > βGT (z−1)QG(z) whenever |z| = 1. (4.106)

This statement remains true for all β ∈ (0, β∗) where β∗ is the largest value of β > 0
satisfying

QG(z) + GT (z−1)Q ≥ β∗GT (z−1)QG(z) whenever |z| = 1. (4.107)

Note: In terms of Iterative Learning Control, this result indicates that the itera-
tive error evolution ek+1 = (I − βG)ek is convergent to zero with monotonically
decreasing norms in Y for all “gains” β ∈ (0, β∗). If m = � = 1, then the factor
Q is a scalar and can be cancelled and the frequency domain condition reduces to
the requirement that the H∞ norm of 1 − G(z) is strictly less than unity.

Theorem 4.9 can be rewritten if the term G∗G is replaced by GG∗ and K : Y →
Y . The result is as follows. It uses the same notation and assumptions as the above.

Theorem 4.11 (Another Frequency Domain to Operator Inequality) The following
two statements are true

1. Suppose that the m × � transfer function matrix G(z) and the m × m transfer
function matrix K (z) satisfy the frequency domain matrix inequality

K T (z)Q+QK (z−1) ≥ βQG(z−1)R−1GT (z)Q whenever |z| = 1, (4.108)

for some real scalar β > 0. Then, this inequality is satisfied if β is replaced by
any other value β̃ ∈ (0, β). In particular, in the supervector descriptions,

2〈y, K y〉Y = 〈y, (K + K ∗)y〉Y ≥ β〈y, GG∗y〉Y = β‖G∗y‖2U f or all y ∈ Y
(4.109)

and hence, in the topology of Y ,

(a) K + K ∗ ≥ βGG∗ so that (b) β‖G∗‖2 ≤ ‖(K + K ∗)‖. (4.110)

If β∗ > 0 is the largest value of β satisfying (4.108), then, for all β ∈ (0, β∗),

2〈y, K y〉Y > β〈y, GG∗y〉Y = β‖G∗y‖2U whenever G∗y �= 0. (4.111)

Note: The final inequality can be expressed by saying that K + K ∗ > βGG∗ on
any subspace V that is the complement of ker [G∗] in Y . That is, any subspace
V such that Y = V ⊕ ker [G∗].

2. If (4.108) is replaced by the stronger assumption that
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K T (z)Q+QK (z−1) > βQG(z−1)R−1GT (z)Q whenever |z| = 1, (4.112)

then, on the whole space Y ,

K + K ∗ > βGG∗. (4.113)

Proof The proof has a similar structure to that of Theorem 4.11 with a number
of changes. First note that K : Y → Y . Next consider an arbitrary time series
{y(t)}0≤t≤N and associated Z -transform y(z) = ∑N

t=0 z−t y(t). Its time reversed
time series will be denoted by w and a simple calculation indicates that it can be
associated with a transform w(z) = z−N y(z−1). In a similar manner to previous
analysis, using complex variable theory and the simple relation R−1 = R−1R R−1,

1

2π i

∮

|z|=1
wT (z−1)QG(z−1)R−1GT (z)Qw(z)

dz

z
≥ 〈G̃w, G̃w〉U = ‖G∗y‖2U

(4.114)

where G̃ is the matrix in the supervector description of S(AT , CT Q, R−1BT ,

R−1DT Q). The final equality follows as the adjoint matrix of G in the given topolo-
gies is given by G∗ = T (�, N )G̃T (m, N ) (using time reversal representations of
transposematrices as in Sect. 4.3), andw = T (m, N )y. In addition, the time reversal
operators are self adjoint with T 2 = I . These facts imply that

〈G̃w, G̃w〉U = 〈G̃T (m, N )y, G̃T (m, N )y〉U
= 〈T (�, N )G̃T (m, N )y,T (�, N )G̃T (m, N )y〉U = 〈G∗y, G∗y〉U = ‖G∗y‖2U

(4.115)

as required. Turning now to the terms containing K , the methodology of Theorem
4.11 gives,

1
2π i

∮
|z|=1 wT (z−1)

(
K T (z)Q + QK (z−1)

)
w(z) dz

z

= 2
( 1
2π i

) ∮
|z|=1 wT (z−1)K T (z)Qw(z) dz

z

= 2
( 1
2π i

) ∮
|z|=1 wT (z−1)Q

[
Q−1K T (z)Q

]
w(z) dz

z = 2〈w, K̃ w〉Y
(4.116)

where K̃ is the supervectormatrix for the system S(AT
K , CT

K Q, Q−1BT
K , Q−1DT

K Q).
A similar calculation using time reversal representations of the adjoint opera-
tor/matrix K ∗ = T (m, N )K̃T (m, N ) gives 2〈w, K̃ w〉Y = 2〈y, K ∗y〉Y =
2〈y, K y〉Y . This proves Part 1 of the result. Part 2 is proved in a similar way making
maximum use of the strict inequality in (4.112). �
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4.9 Discussion and Further Reading

The use of the idea and notation of supervectors (often called a “lifted” description)
has been used by many authors (see, for example, [3, 93]) and has the advantage
of reducing many calculations for discrete state space systems to more familiar
matrix operations. The main advantage is probably theoretical as matrices such as
G(A, B, C, D) are typically of largedimension.The theoretical advantage is valuable
for many reasons including the fact that it opens up the possibility of the use of
eigenvector and singular value analysis and, as has been seen, a simple derivation and
presentation of the solution of linear quadratic optimal control problems. Causality
is represented by lower triangular structures and time reversal by a simple matrix
operation. The ideas are used extensively in this text although it is important to note
that, for applications purposes, problems associated with the high dimensionality are
avoided, in the main, by reducing algorithms to computations and simulations using
the underlying state space models or transfer function matrices.

The range and kernel of G(A, B, C, D) defining dynamics on an interval 0 ≤
t ≤ N have clear physical meaning in terms of the input and output time series.
For theoretical purposes, a range equal to Rm(N+1) and kernel equal to {0} has the
advantage that all reference output trajectories demanded for control purposes will be
achievable and the input achieving this desired result will be unique. Methodologies
for achieving one or both of these objectives by redefining the output vector hence
have control design value as well as theoretical value. There is no obvious best
approach to creating situations where these properties are present but the methods
described suggest that the solution is certainly not unique. The methods presented
here relate closely to systems theoretical concepts already available in the classical
control literature. The ideas of relative degree are a natural generalization of the ideas
used in transfer function analysis and corresponds to a shift that removes signals and
inputs that cause problems. The simplest solution is for uniform rank systems [81]
and sets the scene for the rest of the discussion. Decoupling concepts and the notion
of relative degrees for each loop extend these ideas to a wider class of systems in a
simple way. The use of decoupling theory and the ideas of pole allocation using state
feedback has a long history and is described in classic texts referenced in Sect. 1.5.
The basic ideas are easily stated but computational tools are more complex for high
dimensional problems.

The ideas suggest that the notion of relative degree forMIMO systems is naturally
associated with m “delays”. The importance of the C ∗ canonical form introduced by
Morse [75] is that it indicates that these delays are present in all square systems but
are not necessarily associated with individual outputs. The ideas underpinning the
C ∗ canonical form has been included as a logical next step in the identification of
“natural”, state feedback independent delays k∗

1 , k∗
2 , . . . , k∗

m that exist in the internal
structure of all linear, time invariant systems. The main consequence of the canonical
form is that, for square systems (when m = �), it is always possible (non-uniquely)
to achieve the desired range and kernel properties using state space computations
to redefine the output vector. Details of derivation and background to the canonical

http://dx.doi.org/10.1007/978-1-4471-6772-3_1
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form can be found in the original paper by Morse. The technical problem here is
that its construction is not only based on a search for invariants under state feedback
but also simultaneous invariants under output injection. Output injection has control
theoretical interest and in used in the design of state observers [35, 70, 109], which,
as control systems design elements, could also play a role in implementations of ILC
laws/algorithms.

The application of Iterative Learning Control is firmly embedded in finite time
experiments. The derivation of the link between finite time dynamics and frequency
domain properties relies on well known contour integration methodologies for func-
tions of a complex variablewith normbounds that provide a link to H∞ control theory
[21, 23]. The ideas of positive real transfer function matrices and transfer functions
also has a long history in control theory, particularly in adaptive control [76]. Despite
its apparently restrictive properties, the reader should note that positivity is a natural
property in Iterative Control as it is linked to the need for the spectrum of an operator
to be in the open unit circle. This property inevitably means that retention of the
convergence property requires directional limitations on perturbations. Positive real
properties will be used extensively in this text as a condition that supports algorithm
convergence and robustness. The basic relationships in Theorems 4.9 and 4.11 pro-
vide frequency domain bounding of the effects of modelling error on monotonicity
and convergence of the error sequence are also central to what follows.

Finally, their are many derivations of the solution of discrete linear quadratic
optimal control problems. The one chosen here has the advantage of simplicity and
consistencywith the structure of thematrixmethods used in the text. The text does not
discuss the issues that arise when the methods are used in practice but the interested
reader will be able to find useful information elsewhere (for example, [20]).



Chapter 5
Iterative Learning Control: A Formulation

Classical feedback control theory has a problem formulation that starts with the issue
of stability and follows this requirement closely with issues to do with dynamic per-
formance, robustness to modelling errors and disturbance rejection. Iterative Learn-
ing Control has a similar hierarchy of design requirements. In this chapter, the major
design requirements are defined in a general context to form the language needed for
the remainder of the text.

5.1 Abstract Formulation of a Design Problem

The careful formulation of Iterative Control design criteria provides a bedrock of
ideas to underpin the algorithm developments that follow. Many of the criteria map
over from those familiar in classical feedback control but differ in detail. The main
issues are those of

1. the use of a mathematical model of plant input/output behaviour,
2. a definition of the control objective,
3. an assumption defining the structure of the control system to be designed (that is,

defining the design paradigm),
4. a recognition that the causality structure of Iterative Control has a special form,
5. a recognition that design computations can be a mixture of off-line calculations

between each iteration and on-line (feedback) control decisions,
6. a precise definition of success in terms of convergence conditions and
7. a consideration of other issues including

© Springer-Verlag London 2016
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a. a characterization of what is meant by good and bad dynamic performance
as the iteration sequence evolves,

b. insights into, and tests for, the robustness of the convergence in the presence
of plant/model behavioural differences and

c. a characterization of the effects of imprecise initialization of the plant before
each iteration begins.

5.1.1 The Design Problem

The design problem considered has several components:

The Plant Model: Suppose that a system is driven by an input signal u ∈ U which
produces the output signal y ∈ Y where U and Y are normed linear vector spaces
of plant input and output signals respectively. Suppose also that, the relationship
between the input and output signals can be represented by a mathematical model
of the form

y = G (u, d) (A General Nonlinear Input/output Model) (5.1)

where G : U × Y → Y is a linear or nonlinear mapping and d ∈ Y represents
plant initial conditions or other known phenomena of interest.

Note: For linear systems the model will be written in the form

y = Gu + d (A General Linear Input/output Model) (5.2)

where G : U �→ Y is a bounded linear operator. Examples include the continuous
or discrete state space models S(A, B, C, D) discussed in previous chapters.

The Tracking Objective: Let r ∈ Y be a reference or demand signal chosen by the
user and consider the problem of finding an input u∞ ∈ U such that

r = y∞ (The Perfect Tracking Requirement)
where y∞ = G (u∞, d) (The Input/output Relation).

(5.3)

Note: this idea can be regarded as a theoretical idealization of a practical desire to
achieve excellent accuracy. A formal statement of this is to represent the objective
as that of achieving an accuracy target expressed in the form

‖r − y‖Y < ε (5.4)

where ‖ · ‖Y represents the norm in Y and ε > 0 is a “small” parameter defined
by the user. It represents the tracking accuracy sought for. It is worth noting at this
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stage that the convergence conditions required for Iterative Control ensure that this
condition can be satisfied for any value of ε.

An Iterative Control Structure:Consider the solution of the tracking problem using
an iterative strategy where plant operation is repetitive. An iteration (also called a
repetition, trial or pass) consists of application of an input signal to the plant. Control
signals can vary from iteration to iteration. More precisely,

1. let u0 ∈ U be an initial choice of input signal and
2. suppose that d ∈ Y is the same for each and every iteration. That is, the initial

condition component and the environmental conditions within which the plant
operates are the same for each and every iteration.

Let the integer k = 0, 1, 2, . . . be a counter for the number of repetitions completed.
Denote the input signal used on the kth iteration by uk and let the corresponding
output generated by the plant be yk = G (uk, d) for indices k ≥ 0.
The signal representing tracking accuracy on iteration k is the error signal

ek = r − yk, k ≥ 0. (5.5)

Now suppose that the iterative control strategy is defined by an Iterative Learning
Control law that constructs the input signal uk+1 ∈ U on the (k +1)th iteration from
known measurement data. This typically takes the form of input and error data

e0, e1, . . . , ek, ek+1 and u0, u1, . . . , uk (5.6)

but other measurements should not be excluded from the design process.
In functional terms, the input update procedure is illustrated by a relationship

uk+1 = fk+1(e0, e1, . . . , ek, ek+1, u0, u1, . . . , uk) (5.7)

where fk+1(·) : Y ×Y × · · ·Y ×U × · · · ×U → U represents a computational
procedure or algorithm processing the data in its argument list to produce uk+1.

The choice of fk+1 is the main design objective as, together with plant dynamics G , it
dictates the form of the sequences of input iterates u0, u1, u2, . . ., the resultant output
iterates y0, y1, y2, . . . and hence the error iterates e0, e1, e2, . . .. It can be assumed
to change from iteration to iteration but the most common form taken is the “Finite
Memory Law” represented by

uk+1 = f (ek−Me+1, ek−Me+2, . . . , ek, ek+1, uk−Mu+1, uk−Mu+2, . . . , uk) (5.8)

where f is independent of k. The positive integersMu andMe represent the“memory”
of the algorithm by defining the range of iterations used in input signal updates. The
most common choice is Mu = Me = 1 when

uk+1 = f (ek, ek+1, uk) (A Unit Memory Algorithm). (5.9)
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Causality Requirements: Input update laws need to satisfy the causality require-
ment that states that only available data is used at and during each iteration. More
precisely, the data needed to construct the input signal at any time t on iteration
k + 1 is only the actual data recorded at any time on previous iterations (with index
k′ ≤ k) and the data recorded up to and including time t on iteration k + 1.

This causality definition allows for the use of data at all times t′ > t from iter-
ations with index k′ ≤ k. In this sense the concept differs greatly from classical
mathematical views of causality.

The Convergence Requirement: The successful completion of the tracking task
using the “closed loop” combination of plant input output dynamics and input update
rules leads to a tracking error sequence {ek}k≥0 satisfying the convergence condition

lim
k→∞ ek = 0 (5.10)

in the norm topology in Y . That is

lim
k→∞ ‖ek‖Y = 0 (5.11)

If these conditions are satisfied then arbitrarily accurate tracking (as measured by
the norm ‖ · ‖Y ) can be achieved in a finite number of iterations in the sense that,
for all ε > 0, there will exist an integer Nε (dependent on ε) such that

‖ek‖Y < ε forall k ≥ Nε. (5.12)

A number of important refinements are as follows:

1. As stated above, convergence from the specified initial error e0, only, is required.
The more general requirement is that the convergence condition is satisfied either
for all e0 ∈ Y or for all e0 ∈ Y0 where Y0 is a linear vector subspace of Y .

2. If Y is a real Hilbert space, then convergence in norm could, if necessary, be
replaced by weak convergence. This would not normally be the ideal situation
but may be a necessary consequence of the issues faced in mathematical analysis.

3. No explicit requirement for convergence of the input is assumed in general. For
practical applications, this is not necessarily a problem as the algorithm will be
terminated after a finite number of iterations which, if large enough, can yield a
sufficiently accurate outcome. Theoretical conditions to guarantee convergence
of the input sequence to a signal u∞ ∈ U will normally need assumptions to be
made about the initial error e0 and hence the reference signal r.

Performance Requirements: As in classical feedback control, there may be a wide
range of requirements put in place to meet the specific needs of the application. The
major requirements assumed in this text are those of convergence plus additional
criteria including
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1. an acceptable pattern of changes in the errors from iteration to iteration,
2. ensuring that errors ek are sufficiently small after a small number of iterations

(rapid convergence) and
3. embedding a degree of robustness into the design predictions.

Monotonic Convergence: Of particular interest is the pattern of error changes. This
may take many forms but is illustrated here by a requirement that tracking accuracy
improves on each and every iteration. A simple way of characterizing this idea is to
require that the error norm reduces monotonically from iteration to iteration in the
sense that

‖ek+1‖Y < ‖ek‖Y for all k ≥ 0 (Error Norm Monotonicity). (5.13)

The choice of norm in Y then influences the details of the observed, physical form
of the convergence. For example, in situations where the norm is the mean square
value, a simple, useful and familiar interpretation is available.

5.1.2 Input and Error Update Equations: The Linear Case

The nature of the error evolution from iteration to iteration depends on the control law
assumed. A useful class of linear algorithms for linear systems has the unit memory
form, for all k ≥ 0,

uk+1 = uk + K0ek + K1ek+1 (The Input Update Rule)
with yk = Guk + d (Plant Dynamics)

(5.14)

Here, bothK0 andK1 are linear and bounded operatorsmappingY intoU . Choosing
them is the core of the resultant design problem and the aim of achieving desired
convergence and performance objectives.

Error evolution is obtained using Gu = y − d = r − e − d which gives

ek+1 = ek − GK0ek − GK1ek+1. (5.15)

Note that the input update relationship is implicit as ek+1 depends on uk+1 and
yet ek+1 is the result of application of uk+1. In this sense the unit memory update
relationship is a direct parallel of the use of feedback (represented by K1ek+1) and
feedforward (represented by K0ek) control. Denoting the identity operator by I and
assuming that I + GK1 has a bounded inverse, gives the error evolution

ek+1 = Lek (The Error Evolution Equation)

where the operator L = (I + GK1)
−1(I − GK0)

(5.16)
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is linear and bounded. It follows that the iteration update formula can be written in
the equivalent “feedforward form”

uk+1 = uk + (K0 + K1L)ek (5.17)

Note: In particular, this suggests that the use of feedforward control laws is quite
general although feedback terms could, intuitively, have a useful influence on issues
such as robustness and disturbance rejection in practice.

Using (5.16), the iteration error evolution has the property e1 = Le0, e2 = Le1 =
L2e0 or, more generally, the “power law” formula

ek = Lke0, for all k ≥ 0. (5.18)

That is, the errors observed in the iterative process evolve in a dynamicwaydependent
on several factors including

1. the initial error e0, G and both K0 and K1 plus
2. the properties of powers Lk of the operator L.

The first factor is a design issue with many solutions, some of which are explored in
this text. The second links the notion of convergence to properties of L : Y → Y
and, more specifically, to its spectrum. Using Theorem 2.1, convergence to zero
tracking error is guaranteed (for all initial errors e0) if at least one of the (sufficient)
conditions

r(L) < 1 or ‖L‖ < 1 (5.19)

is satisfied. IfL is amatrix (or, equivalently,Y is finite dimensional), then the spectral
radius condition becomes a condition on eigenvalues. For infinite dimensional Y ,
the analysis is more complex but convergence turns out also to be possible if r(L) =
‖L‖ = 1 under certain conditions that will arise later.

5.1.3 Robustness and Uncertainty Models

Uncertainty Representations and Robustness: The primary robustness require-
ment is a formalization of the need to retain convergence despite differences between
plant behaviour and the behaviour predicted by the model. Such differences can take
many forms and analysis is, to date, confined to certain special representations of
modelling error. Assuming linear plant dynamics, two forms of uncertainty are easily
stated, namely,

1. uncertainty in the value of parameters present in the plant model and
2. uncertainty in the structural form of the plant.

Parametric uncertainty is often expressed in the form of interval bounds for an impre-
cisely known parameter p and could take the form p ∈ [p, p] where both p and p are

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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known upper and lower parameter bounds. Structural uncertainty models could take
many forms in practice but, for theoretical analysis purposes, are often additive or
multiplicative. More precisely, if, G : U → Y represents the plant model, then the
real plant dynamics could be assumed to be characterized by, for example, either the
operator

G + ΔG (the Additive Uncertainty Model),
or UG (a Left Multiplicative Uncertainty Model)

(5.20)

where ΔG : U → Y and U : Y → Y are linear bounded operators. They can
be regarded as alternative representations of the difference between plant and model
behaviours. Other representations are also possible including plant dynamics

GU (a Right Multiplicative Uncertainty Model) (5.21)

where U : U → U is linear and bounded. Alternatively, if both G and the plant
have inverses, the perturbation could be regarded as a perturbation of the inverse with
plant inverse dynamics described by

G−1 + U (an Inverse Additive Uncertainty Model) (5.22)

where U : Y → U is linear and bounded.
The choice of perturbation description, at least in part, is dictated by the feasibility

of deriving useful theoretical results and robustness tests. Few general comments can
be made about their relative merits.

Robustness of the Convergence of an Algorithm requires that convergence to zero
error is retained in the presence of the modelling error U. Convergence can have
many forms and may include unacceptable temporary growth characteristics. To
avoid this problem, the idea of “Robust Monotonic Convergence” adds structure to
the convergence property.

Definition 5.1 (Robust Monotonic Convergence) Suppose that a linear model y =
Gu + d is used for a plant with linear dynamics. Suppose also that an input update
algorithm is chosen and that the use of the model predicts that error norm evolution
will have the properties of converging to zero with monotonically decreasing error
norm. That is, for all e0 and k ≥ 0, the monotonic behaviour

‖ek+1‖Y < ‖ek‖Y and, also , lim
k→∞ ek = 0 (5.23)

is predicted. Then, if the control law is applied to the plant and the plant is represented
by G perturbed by a modelling error U, the resultant closed loop Iterative Learning
Control system is said to be robust monotonically convergent in the presence of the
modelling error U if, and only if, the monotonic convergence properties (5.23) are
retained.
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The reader should note that, from time to time in the text, convergence to zero is
not possible as the reference is unattainable. In such cases the ideas of monotonic
convergence and robust monotonic convergence have natural extensions.

Demonstrating Robustness is Easy? The answer is a definitive “no” in general but
the problem may not be intractable. The simplest approach is to manipulate operator
norms to bound the magnitude of perturbations. For example, taking K1 = 0 so that
L = I −GK0 and supposing that the norm ‖L‖ < 1, Theorem 2.1 predicts convergent
behaviour when using the control law uk+1 = uk + K0ek . However, when applied to
the real plant G + ΔG, the operator L becomes I − (G + ΔG)K0 = L + ΔL with
ΔL = −ΔGK0. Again using Theorem 2.1, an inequality that guarantees convergence
of the algorithm is ‖L + ΔL‖ < 1. As ‖L + ΔL‖ ≤ ‖L‖ + ‖ΔL‖, it follows that,
Theorem 5.1 Using the notation of the preceding discussion, a sufficient condition
for robust convergence of the algorithm uk+1 = uk +K0ek in the presence of additive
uncertainty is that

‖ΔL‖ = ‖ΔGK0‖ < 1 − ‖L‖ (5.24)

This simple norm inequality demonstrates a degree of robustness whenever ‖L‖ < 1
and also that this robustness is described by an interaction between the modelling
error and the choice of control element K0. It also suggests that modelling errors
might need to be small if ‖L‖ takes a value close to unity. If ‖L‖ = 1, it pro-
vides no information whatsoever. This approach can provide insight into many finite
dimensional problems but, for the infinite dimensional case, the use of more refined
techniques than the simple use of norm bounds and inequalities is required. Details
of this will appear later in the text.

Robustness to Initial Condition Variation. Suppose that the plant model is exact
but that the initialization of each iteration is subject to variation. A simple way of
representing this is to replace d by an iteration dependent term dk . Again, using
uk+1 = uk + K0ek + K1ek+1, the model of dynamics on any iteration k now takes
the form yk = Guk + dk and the error evolution becomes

ek+1 = Lek + (I + GK1)
−1(dk − dk+1), k ≥ 0. (5.25)

Clearly the variation in initialization conditions has an effect on convergence. If
the variation of dk has a degree of randomness but is bounded in the sense that the
sequence ‖dk‖Y is bounded, then the best that can be hoped for is that the iteration
does not diverge. This does notmean that the error converges to any value but it would
mean that the error sequence is bounded in norm—a desirable but not necessarily
acceptable performance. The following theorem illustrates potential boundedness
behaviours.

Theorem 5.2 (Bounded Response with Varying Initialization) For the linear repet-
itive system yk = Guk + dk, k ≥ 0, and control update law uk+1 = uk +
K0ek + K1ek+1, suppose that the terms dk, k ≥ 0, can be described by the rela-
tion dk = Hηk, k ≥ 0, where ηk ∈ X0, X0 is a normed linear vector space and

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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H : X0 → Y is linear and bounded. Suppose also that

‖L‖ < 1 and that Md = sup
k≥0

‖ηk − ηnom‖X0 < ∞. (5.26)

where ηnom is the nominal value that generates the ideal initialization condition.
Then the resultant error sequence is bounded in the sense that, for all p ≥ 1,

sup
k≥p

‖ek‖Y ≤ ‖L‖p‖e0‖Y + 2Md

(1 − ‖L‖)‖(I + GK1)
−1H‖ < ∞ (5.27)

and hence

lim sup
k≥0

‖ek‖Y ≤ 2Md

(1 − ‖L‖)‖(I + GK1)
−1H‖ < ∞. (5.28)

Proof Using arguments identical to those used for discrete state space systems

ek = Lke0 +
k−1∑

j=0

Lk−j−1(I + GK1)
−1(dj − dj+1), k ≥ 1 (5.29)

Using d = Hη and taking norms then gives the required result via

‖ek‖ ≤ ‖L‖k‖e0‖ +
∑k−1

j=0
‖L‖k−j−1‖(I + GK1)

−1H‖‖(ηj − ηj+1)‖,
≤ ‖L‖k‖e0‖
+

∑∞
j=0

‖L‖j‖(I + GK1)
−1H‖ sup

j≥0
‖((ηj − ηnom) − (ηj+1 − ηnom))‖

≤ ‖L‖k‖e0‖ + 2
∑∞

j=0
‖L‖j‖(I + GK1)

−1H‖ sup
j≥0

‖(ηj − ηnom)‖

≤ ‖L‖k‖e0‖ + 2
∑∞

j=0
‖L‖j‖(I + GK1)

−1H‖Md

= ‖L‖k‖e0‖ + 2Md

(1 − ‖L‖)‖(I + GK1)
−1H‖, for k ≥ 1. (5.30)

�

The error bound computed above is highly conservative and is likely to have little
practical value as an numerical indicator of performance. Its primary contributions
are that it demonstrates conditions for boundedness of the error sequence response
and that the bound depends on the way in which the terms dk are generated via
H. Clearly, the bound is influenced by the nature and magnitude of the operator
(I + GK1)

−1H and it may be desirable to design a feedback compensator K1 to
reduce this magnitude. For example, consider a continuous time, time invariant,
linear state space system S(A, B, C, D) operating on a time interval [0, T ] from an
assumed, desirable initial condition x0 and in the absence of external disturbances.
In this case, d(t) can be identified with the function on [0, T ]
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d(t) = CeAtx0, t ∈ [0, T ] (5.31)

which can be written as d = Hx0 with x0 = ηnom ∈ X0 = Rn. The operator
H is multiplication by the matrix valued function CeAt . Suppose that initialization
variation is identified with imprecise setting of the initial condition x(0). That is, the
initial condition on iteration k is, in reality, x0k . dk(t) can be assumed to take the
formHx0k, k ≥ 0. The bound on variation is the bound on initial condition variation,

‖x0k − x0‖Rn ≤ Md and ηk = x0k, k ≥ 0. (5.32)

Under these conditions, let Y = Lm
2 [0, T ] and use intuitive classical frequency

domain ideas to identify H with a low pass signal suggesting that the norm of ‖(I +
GK1)

−1H‖ in Lm
2 [0, T ] could be small if the frequency response of (I + GK1)

−1 is
small over the bandwidth of H. This is a classical design concept as (I + GK1)

−1 is
the sensitivity function of a unity feedback control system for G with forward path
controller K1.

5.2 General Conditions for Convergence of Linear Iterations

Many of the iterations described in this text have the general form an iterative evo-
lution in some normed linear vector space Y of the form

ek+1 = Lek + d, with ek ∈ Y , k ≥ 0, and d ∈ Y , (5.33)

with the linear operator L : Y → Y linear and bounded and d is an iteration
independent bias term. For a given initial condition e0 ∈ Y , the solution has the
form

ek = Lke0 +
(

I + L + L2 + · · · + Lk−1
)

d, k ≥ 1. (5.34)

This equation leads to the following theorem that provides properties of both L and
d that guarantee convergence of the signals ek to a limit e∞ in Y .

Theorem 5.3 (General Conditions for Iterative Convergence) Using the notation
above, suppose that, for all e0 ∈ Y ,

lim
k→∞ ‖Lke0‖Y = 0 and also that d ∈ R[I − L]. (5.35)

Then,

1. it is necessary that ker(I − L) = {0}.
2. The sequence {ek}k≥0 converges in the norm topology of Y to a uniquely defined

limit e∞ ∈ R[I − L] satisfying
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d = (I − L)e∞. (5.36)

3. If Y is a real Hilbert space, then convergence in the norm topology can be
replaced by convergence in the weak topology if d ∈ R[I−L]and limk→∞ Lke0 =
0 weakly for all e0 ∈ Y .

Proof First note that ker[I − L] = {0} as otherwise there exists a non-zero vector
z ∈ Y such that Lz = z which, choosing e0 = z indicates that Lkz = z for all k ≥ 0
which contradicts the assumption that Lke0 → 0 for all e0. Next, write d = (I −L)ψ

and note that such a ψ ∈ Y is unique. Substituting into the expression for ek gives

ek = Lke0 + (
I + L + L2 + · · · + Lk−1

)
(I − L)ψ

= Lke0 + (
I − Lk

)
ψ

(5.37)

and hence limk→∞ ek = ψ which is the required value of e∞. The theorem is
proved as the argument applies equally using firstly norm and thenweak convergence
assumptions. �

The result relates both convergence in the norm topology and weak convergence
to general properties of L and d that, in principle, have to be checked for each
application of the theory. Little can be said about the condition d ∈ R[I −L]without
further information of the nature of Y and L. The convergence of Lke0 for all e0
is a property that has useful consequences even at the level of operator theory. In
the following paragraphs, a number of general results are discussed and proven.
They form the basic conditions guiding much of the algorithm analysis in this and
following chapters.

5.2.1 Spectral Radius and Norm Conditions

The first general result is a slightly extended version of Theorem 2.1 expressed using
the notation defined above,

Theorem 5.4 (Convergence of Iterations in Norm and the Spectral Radius) Let Y
be a Banach space. Then, given an arbitrary starting vector e0 ∈ Y and a bounded
linear operator L : Y → Y , the sequence {ek}k≥0 generated by the iteration
ek+1 = Lek, k ≥ 0, converges (in norm) to zero if (a sufficient condition)

r(L) < 1. (5.38)

(a) A sufficient condition for r(L) < 1 is that ‖L‖ < 1.
(b) If Y is finite dimensional, then the spectral radius condition is both necessary

and sufficient.

Proof The proof is simply that of Theorem 2.1 and using familiar matrix methods
to a matrix representation of L. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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In general, dynamical systems have large and possibly infinite dimensional input
and/or output spaces and the computation of the spectral radius could be a challenging
problem. For a class of linear, time invariant discrete (respectively, continuous) state
space systems evolving in Rm(N+1) (respectively Lm

2 [0, T ]), the spectrum can be
computed precisely as follows

Theorem 5.5 (The Spectral Radius of State Space Systems) Suppose that L is the
operator associated with an m-input, m-output, discrete or continuous-time state
space system S(A, B, C, D) on a finite time interval. Then, the spectrum of L is
precisely the set of eigenvalues of D and hence r(L) = r(D).

Proof The proof examines the solution of the relation (ηI − L)w = v for arbitrary
v ∈ Y . A state space realization of ηI − L has the form S(A, B,−C, ηI − D) which,
using Theorem 3.3 (which apples to both continuous and discrete time cases), has
a bounded inverse on the interval if, and only if, ηI − D is invertible. The spectral
values of L are hence the eigenvalues of D and the theorem is proved. �

The theorem provides sufficient conditions for convergence of the iteration. It is
intriguing to note that the condition depends only on the D matrix in the model
S(A, B, C, D).

More generally, the use of norm methodologies can provide good insight into
behaviours. For example, if ‖L‖ < 1, thenTheorem5.2 has already demonstrated that
variable (non-zero) initialization of the iterations (that is, replacing d by a sequence of
bounded dk) will lead to a sequence {ek}k≥0 bounded in norm. Even greater detail can
obtained if the requirement of monotonicity is added to the list of desired behaviours
of the iterations. Monotonicity depends on the choice of norm in Y and the iterative
process may be monotonically convergent with respect to a norm ‖ · ‖0 in Y but not
monotonic in the preferred norm ‖ · ‖Y . Using this notation, the following result is
easily proved,

Theorem 5.6 Suppose that the two norms ‖ · ‖Y and ‖ · ‖0 on Y are topologically
equivalent in the sense that, for some real scalars 0 < a ≤ b,

a‖e‖0 ≤ ‖e‖Y ≤ b‖e‖0 for all e ∈ Y . (5.39)

Suppose that the iterative process ek+1 = Lek generates a monotonically decreasing
sequence satisfying, for some λ < 1, ‖ek+1‖0 ≤ λ‖ek‖0 for all k ≥ 0. Then, for
all k ≥ 0, convergence is achieved in the ‖ · ‖Y norm topology with the, possibly
non-monotonic, behaviour

‖ek‖Y ≤ bλk‖e0‖0 ≤ b

a
λk ‖e0‖Y . (5.40)

There is a strong connection between operator norms and monotonicity.

Theorem 5.7 (Monotonic Convergence and the Operator Norm) Consider the iter-
ation ek+1 = Lek in the normed vector space Y . Then, a necessary condition for
this iteration to be monotonic is that

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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‖L‖ ≤ 1. (5.41)

Moreover, for the cases where Y is finite dimensional, it is both necessary and
sufficient that ‖L‖ < 1 when the iterations are also monotonically convergent. This
condition is also sufficient for monotonic convergence if Y is infinite dimensional.

Proof Note that ‖ek+1‖Y ≤ ‖L‖‖ek‖Y and that, if ‖L‖ > 1 , the definition of
the operator norm implies that there exists an initial error e0 such that ‖e1‖Y >

‖e0‖Y . It is therefore necessary that ‖L‖ ≤ 1. In finite dimensions, L has a matrix
representation and hence, if ‖L‖ = 1, there must exist a non-zero vector e0 such
that ‖e1‖Y = ‖L‖‖e0‖Y = ‖e0‖Y so that ‖L‖ < 1 is necessary for monotonic
convergence. That it is also sufficient follows as then ‖ek+1‖Y ≤ ‖L‖‖ek‖ < ‖ek‖Y
for all k ≥ 0 and ‖ek‖Y ≤ ‖L‖k‖e0‖ → 0 as k → ∞. �

The implications of monotonicity are even greater if additional structure is added
to either Y or the operator L. First, consider the situation when the structure of
Hilbert spaces is added to the mix. More precisely, if Y is a real Hilbert space,
then the following result leads to a useful insight into the nature of L in the form
of positivity conditions on I − L that are essential if monotonic iteration is to be
achieved.

Theorem 5.8 (Positivity and Monotonic Convergence) Suppose that Y is a finite
or infinite dimensional, real Hilbert space with inner product 〈·, ·〉Y and associated
induced norm. Consider the iteration ek+1 = Lek, k ≥ 0. Write L = I − H where
H : Y → Y is linear and bounded. Then, a necessary condition for monotonic
convergence is that

H + H∗ > 0 (A Strict Positivity Condition for Monotonicity) (5.42)

where H∗ is the adjoint of H. Moreover, if Y is finite dimensional, it is necessary
that there exists a real number ε0 > 0 such that

H + H∗ ≥ ε20I (A Stronger Strict Positivity Condition). (5.43)

Suppose that the iteration is modified to replace L by Lβ = I − βH where β > 0
is a real scalar. Then, in both the finite and infinite dimensional cases, the validity
of condition (5.43) implies that there exists a real number β∗ > 0 such that, for
any choice of β ∈ (0, β∗), it is possible to compute a real number λ(β) < 1
(dependendent on β) such that monotonic convergence of the modified iteration
ek+1 = Lβek is guaranteed as ‖Lβ‖ ≤ λ(β) < 1. Finally, the largest possible choice
of β∗ lies in the range

ε20

‖H‖2 ≤ β∗ ≤ 2

‖H‖ . (5.44)

Proof Consider the general case of Lβ = I − βH noting that the original operator
L is regained if β = 1. For monotonicity of the modified iteration independent of
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e0, it is both necessary and sufficient that 〈e1, e1〉Y < 〈e0, e0〉Y for all e0. This is
equivalent to the condition

L∗
βLβ = (I − βH)∗(I − βH) < I (5.45)

which is just
H + H∗ > βH∗H (5.46)

which is positive. The need for H + H∗ to be strictly positive follows. If Y is finite
dimensional, then H can be identified as a matrix for which strict positivity implies
the existence of ε0 > 0 in (5.43).
Next, if (5.43) holds,

L∗
βLβ = I − β(H + H∗) + β2H∗H ≤ (1 − βε20 + β2‖H‖2)I < I (5.47)

for all β ∈ (0, β∗∗) with β∗∗ = ε20/‖H‖2 and the result follows by defining λ2(β) =
1 − βε20 + β2‖H‖2 < 1 and noting that ‖Lβ‖ ≤ λ(β) < 1 for all β ∈ (0, β∗∗).
Finally, it is clear that the largest possible choice of β∗ is ≥ ε20/‖H‖2. The required
upper bound follows as H + H∗ > βH∗H requires that H + H∗ ≥ β∗H∗H and
hence, using the Cauchy Schwarz inequality, that 2‖H‖ ≥ β∗‖H‖2. �

5.2.2 Infinite Dimensions with r(L) = ‖L‖ = 1 and L = L∗

A simple summary of the above is that, if r(L) < 1, convergence of the iterations to
zero is guaranteed but the resultant sequence {ek}k≥0 may not have monotonically
decreasing norms. If, in addition, ‖L‖ < 1, then monotonic convergence is guaran-
teed. Although these conditions cover many potential applications, some, including
the important case of optimal Iterative Control of strictly proper continuous time
state space systems S(A, B, C), will be seen in later chapters to satisfy the conditions

r(L) = ‖L‖ = 1 (5.48)

and none of the results described above apply. This condition sits, intuitively, on the
stability boundary of the iterative process but, as it has primary relevance to the case
when Y is infinite dimensional, it has significant but less obvious consequences.
More precisely, with the addition of an assumption that L (and hence H = I − L) is
self adjoint, the following result adds considerable value,

Theorem 5.9 (Error Monotonicity Properties when r(L) = ‖L‖ = 1) Suppose that
Y is a real Hilbert space with inner product 〈·, ·〉Y and associated induced norm.
Consider the iteration ek+1 = Lek, k ≥ 0 and assume that L is self adjoint, that
r(L) = 1 and that L satisfies the inequality
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(−1 + μ2
0)I ≤ L ≤ I (5.49)

for some μ0 > 0. Then r(L) = ‖L‖ = 1 and, for all e0 in the closure R[I − L] of
the range of I − L, the iteration satisfies

‖ek+1‖Y < ‖ek‖Y , k ≥ 0 and lim
k→∞ |‖Lke0‖Y = 0. (5.50)

In addition,

1. if e0 ∈ R(I − L), then

∞∑

k=0

‖ek‖2Y < ∞ (Norm − squared Summability). (5.51)

2. For an arbitrary e0 ∈ Y , the iteration is monotonic with a limit

lim
k→∞ ek = e∞ = Pker[I−L]e0 (5.52)

where Pker[I−L] is the self adjoint, positive, orthogonal projection operator onto
ker[I − L].

Proof The conditions (−1 + μ2
0)I ≤ L ≤ I implies that ‖L‖ ≤ 1 and hence, as

r(L) ≤ ‖L‖, that ‖L‖ = r(L) = 1. Consider now e0 ∈ R[I − L] and note that the
condition μ0 > 0 ensures that the operator (I + L) has a bounded inverse on Y . It is
hence possible to write e0 = (I − L)w0 and w0 = (I + L)w1 for some w0 and w1 in
Y . That is e0 = (I − L)(I + L)w1 = (I − L2)w1 and hence, for any p ≥ 0, algebraic
methods plus the use of the Cauchy-Schwarz inequality and ‖L‖ = 1 gives

∑p
k=0 ‖ek‖2 = ∑p

k=0〈Lke0, Lke0〉 = ∑p
k=0〈e0, L2ke0〉

= ∑p
k=0〈e0, L2k(I − L2)w1〉 = 〈e0,

[(∑p
k=0 L2k

)
(I − L2)

]
w1〉

= 〈e0, (I − L2(p+1))w1〉 ≤ ‖e0‖ ‖w1‖ (1 + ‖L‖2(p+1)) = 2‖e0‖ ‖w1‖.
(5.53)

Letting p → ∞ proves that
∑∞

k=0 ‖ek‖2 converges and hence that ek → 0 in
norm. Now suppose that e0 ∈ R[I − L] and note that the invariance condition
LR[I − L] ⊂ R[I − L] implies that all iterates lie in R[I − L]. Choose ε > 0
arbitrarily. It is always possible to write e0 = ẽ0 + δ0 with ẽ0 ∈ R[I − L] and
‖δ0‖ < ε and hence to note that

lim sup
k→∞

‖Lke0‖ ≤ lim sup
k→∞

‖Lkẽ0‖ + lim sup
k→∞

‖Lkδ0‖ ≤ ε. (5.54)

which proves that ek → 0 as ε was arbitrary. Each norm ‖ek+1‖ ≤ ‖L‖‖ek‖ = ‖ek‖
but, in fact, ‖ek+1‖ < ‖ek‖ as, if equality holds for some ek �= 0, it follows that
〈ek, (I−L2)ek〉 = 0.As I−L2 is self adjoint and positive, a square root argument then
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indicates that (I − L2)ek = 0 from which (I − L)ek = 0. That is ek ∈ ker[I − L] =
R[I −L]⊥ and hence ek = 0 as ker[I −L]∩R[I − L] = {0}which is a contradiction.

Finally, if e0 ∈ Y is chosen arbitrarily, the sum Y = ker[I − L] + R[I − L] is
a direct sum of orthogonal subspaces. Write e0 = ẽ0 + δ0 with ẽ0 ∈ R[I − L] and
δ0 ∈ ker[I − L] uniquely defined. A simple calculation gives, for all k ≥ 0,

ek = Lkẽ0 + δ0, and ‖ek‖2 = ‖Lkẽ0‖2 + ‖δ0‖2 (5.55)

As Lkẽ0 → 0 monotonically, the monotonic nature of ‖Lke0‖Y and the formula for
the limit follow easily. �

When e0 ∈ R[I − L], the result demonstrates convergence properties of {ek}k≥0
in R[I − L] which may be a proper subspace of Y . As it is closed, it is a Hilbert
space with the same inner product as that used in Y . Also LR[I − L] ⊂ R[I − L]
so that the iteration is an iteration in R[I − L] and the result can be interpreted as
proving the monotonic iteration and monotonic convergence properties in that space.

The above result can be refined if H = I − L > 0 when ker[I − L] = {0}) and,
as ker[I − L] = R[I − L]⊥,
Theorem 5.10 (Monotonic Convergence when r(L) = ‖L‖ = 1 and H = I − L >

0) Using the same constructions and assumptions of Theorem 5.9, suppose also that

(−1 + μ2
0)I ≤ L < I. (5.56)

Then the conclusion of Theorem 5.9 remain valid but, in addition,

R[I − L] = Y (5.57)

and hence monotonic convergence on Y is achieved.

Note: Monotonicity in Y hence needs the range of H = I − L to be dense.

5.2.3 Relaxation, Convergence and Robustness

The spectrum and properties of L are important properties in the behaviour of Iter-
ative Algorithms in terms of convergence and robustness. In this section, a simple
modification to iteration update formulae will provide a means of ensuring conver-
gence properties at the price of convergence to non-zero limit errors. More precisely,
using the notation Sect. 5.2.2, suppose that L = I − H, that L is not necessarily self
adjoint but that it has a spectrum in the closed ball

spec[L] ⊂ Bc(
1

2
μ2
0; 1 − 1

2
μ2
0)) , for some μ2

0 > 0. (5.58)
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A simple calculation indicates that the spectral radius r(L) ≤ 1 and that the only
possible point on the unit circle that could be in the spectrum is the point z = 1. Note
that none of the previously described results applies to this case unless r(L) < 1.
The loss of self-adjoint properties will occur depending on the choice of K0 and the
effects of any modelling errors in plant dynamics.

If r(L) = 1, then a simple mechanism for modifying the iteration to ensure the
convergence of the algorithm is to use a relaxation technique.More precisely, replace
the feedforward input update rule by the formula

uk+1 = αuk + K0ek , k ≥ 0 , (A Relaxed Input Update Rule). (5.59)

The parameter α > 0 is a relaxation parameter and has a default value of α = 1
that is used almost exclusively in this text. To examine the effect of α on algorithm
performance, use the dynamics y = Gu + d to obtain the relaxed error evolution,

ek+1 = Lek +(1−α)(r−d), where, now, L = αI−H and H = GK0. (5.60)

The spectral mapping theorem now places the spectrum of L = (α − 1)I + (I − H)

in (α − 1) + Bc(
1
2μ

2
0; 1 − 1

2μ
2
0)) and hence a sufficient condition for the spectral

radius r(L) < 1 is that α lies in the range

1 − μ2
0 < α < 1 , (the “Permissible Range” of α). (5.61)

That is, the effect of α is to shift the spectrum of L into the open unit circle. The
price paid is that the error evolution now has the additional term (1 − α)(r − d) so
that any converged error must be non-zero unless r = d when the solution u = 0 is
obtained easily and iteration is not needed.

Theorem 5.11 (Convergence and Relaxation Techniques) With the assumptions of
the discussion preceding this result, the error evolution with the relaxed input update
rule and a relaxation parameter α in its “permissible range” will converge to a limit
error eα∞ for all r ∈ Y . The value of eα∞ satisfies

(1 − α)(r − d) = [(1 − α)I + H]eα∞. (5.62)

If, in addition, Y is a real Hilbert space and H is such that H + H∗ ≥ ε20I for some
ε0 > 0, then

‖eα∞‖Y ≤ ‖r − d‖Y and lim
α→1− eα∞ = 0 in the norm topology in Y . (5.63)

If no such value of ε0 exists and the output spaceY has the direct sum decomposition

Y = R[H] ⊕ ker[H], (5.64)
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then αI − H maps R[H] into itself. If H + H∗ > 0 on R[H], then, writing r − d =
r(1) + r(2) with r(1) ∈ R[H] and r(2) ∈ ker[H], the limit error converges to r(2) as
α → 1 − in the weak topology in Y .

Proof Convergence follows, with a change in notation, from Theorem 5.3 and 5.4
noting that, as the point (1, 0) is not in the spectrum of L = αI − H, it follows that
R[I − L] = Y . Next, using the Cauchy-Schwarz inequality,

(1 − α)‖r − d‖‖eα∞‖Y ≥ 〈eα∞, (1 − α)r〉Y
= 〈eα∞, [(1 − α)I + H]eα∞〉Y ≥ (1 − α)‖eα∞‖2Y + 1

2ε
2
0‖eα∞‖2Y ≥ 0

(5.65)

which proves that ‖eα∞‖ ≤ ‖r − d‖ for all permissible α and the limit formula when
ε0 > 0. Finally, if H + H∗ > 0, write ek = e(1)

k + e(2)
k with e(1)

k ∈ R[H] and
e(2)

k ∈ ker[H] and deduce that, for k ≥ 0,

e(1)
k+1 = (αI − H)e(1)

k + (1 − α)r(1) and e(2)
k = αe(2)

k + (1 − α)r(2). (5.66)

Convergence of the component e(2)
k to r(2) in norm follows as |α| < 1. For the iteration

in the Hilbert (sub-)space R[H], let {αj}j≥1 be a sequence of relaxation parameters
converging to unity from below. Without loss of generality, weak compactness of
any closed ball indicates that the sequence {eαj∞}j≥0 has a weak limit e(weak)∞ and,

for all f ∈ R[H], that 〈f , He(weak)∞ 〉Y = 0 . Choosing f = e(weak)∞ , the condition
H + H∗ > 0 leads to the conclusion that e(weak)∞ = 0 and hence that the limit error
sequence converges weakly to zero as α → 1−. �

Conclusion: Benefits of Relaxation Methods: Relaxation concepts provide a sta-
bilizing modification for applications where the non-relaxed algorithm leads to the
condition r(L) = 1.

1. Perhaps the most important potential application of the technique is in the infinite
dimensional case when, in the absence of relaxation, the condition r(L) = 1 may
hold but L is not self-adjoint. Introducing relaxation brings the spectrum into the
open unit circle and guarantees convergence to some limit albeit a non-zero one.
The form of the limit error will depend on the choice of α and the nature of the
dynamics although the general rule that α should be close to unity is necessary
for the limit error to be small.

2. In convergence and robustness studies, the results provide a way forward to useful
convergence as a two step process with the initial objective of ensuring that
r(L) ≤ 1 followed by a choice of α to pull the spectrum into the open unit circle.

3. The value ofμ2
0 may not be known in a given situation but a bound can be deduced

from a norm on H in some circumstances. More precisely, using the fact that, for
any real scalar λ, the spectrum of H lies in any closed ballBc(λ; ‖H − λI‖), the
reader will be able to verify that, if |1 − λ| + ‖H − λI‖ ≤ 1, then r(L) ≤ 1 and
any value of μ2

0 in the range
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0 < μ2
0 < 2 − λ − ‖H − λI‖ (5.67)

can be used. The norm of H − λI can be computed in a number of cases. For
example, using the frequency domain bounds available for linear, discrete (and
continuous), time-invariant, state space systems when identification of H with
S(A, B, C, D) leads to the identification of H − λI with S(A, B, C, D − λIm).

4. The form of the limit error eα∞ may need careful consideration. Theorem 5.11
indicates that the strict positivity of H is sufficient to provide some control over
the limit by the choice of α close to unity. Some insight into the issues can be
seen if H is a linear state space system S(A, B, C, D).

a. For discrete systems the strict positivity of the operator is guaranteed if the
associated transfer function matrix H(z) is strictly positive real. Using Z -
transform notation by extending signals to 0 ≤ t < ∞,

eα∞(z) = (I + (1 − α)−1H(z))−1(r(z) − d(z)). (5.68)

That is, the limit error on 0 ≤ t ≤ N can be computed from the negative
feedback system where H(z) is subjected to a “gain” (1 − α)−1. This is a
high gain system if α is close to unity. The requirement that the error is stable
underlines the importance of the relative degree of H(z) (and hence the shift
techniques discussed in the modelling chapter), the problems associated with
non-minimum-phase zeros and the benefit arising from making H(z) strictly
positive real. In addition, the reference signal r also clearly has an influence.

b. For continuous state space systems, positivity of the associated operator
is guaranteed if the transfer function matrix H(s) is strictly positive real.
The underlying output space is now infinite dimensional and convergence is
achieved but behaviour of the limit error as α → 1 − is now governed by
weak convergence rules. For functions on [0, T ], this is equivalent to con-
vergence (to zero) of all coefficients in the Fourier series expansion, a fact
that suggest that any anomalous limit behaviours will be associated with high
frequency components.

5. Finally, the behaviour of the limit error eα∞ as α varies is seen to be very different
in the two cases of α = 1 and α → 1 − . In the second case, the effect of the
initial input choice u0 is seen to disappear. In effect, the algorithm “forgets” its
starting condition and for this reason, α could be called a “forgetting factor”. In
practice, these subtle differences may play little role as α will be close to unity
and only a finite number of iterations will be undertaken until a desired tracking
accuracy has been achieved.



138 5 Iterative Learning Control: A Formulation

5.2.4 Eigenstructure Interpretation

Using the notation of the previous sections, consider the iterations ek+1 = Lek
in a real Hilbert space Y and write L = I − βH with β > 0. Again assume
that L is self adjoint and, in particular, that H is self adjoint and positive so that
β−1(I − L) = H = H∗ ≥ 0. More detail of iteration performance can, in principle,
be obtained by analysing the situation where, either

1. Y is finite dimensional (when H can be regarded as a matrix) or,
2. H is a compact (completely continuous) operator on an infinite dimensional space

Y .

The common property of these cases is that H then has a complete set of linearly
independent, orthonormal eigenvectors v1, v2, . . . with positive eigenvalues r(H) =
‖H‖ = λ1 ≥ λ2 ≥ . . .. The eigenvalues are the spectral values of H and, in the
infinite dimensional case, all non-zero eigenvalues are isolated points and λ = 0 is
either an eigenvalue and/or a cluster point of the spectrum. That is

Hvj = λvj, and 〈vi, vj〉 = δij, (5.69)

where δij is the Kronecker delta. It follows that

(I − βH)vj = (I − βλj)vj, j ≥ 0 (5.70)

and hence that L has eigenvalues {1− βλj}j≥1 and eigenvectors {vj}j≥0. Note that L
is positive definite if, and only if, all eigenvalues are strictly positive.

Using the completeness assumption, any initial error e0 can be written in the form
e0 = ∑

j≥1 γjvj where γj = 〈vj, e0〉, j ≥ 1, and

‖e0‖2Y =
∑

j≥1

γ 2
j < ∞. (5.71)

The value of γj is a measure of the contribution made by the signal vj to the initial
error. By analogy with frequency analysis of signals, it is expected that, often, the
contribution will vary from being substantial (the “low frequency” components) and
very small (the “high frequency” components).

A simple calculation gives, for any k ≥ 0,

ek = Lke0 =
∑

j≥1

γj(1 − βλj)
kvj with ‖ek‖2 =

∑

j≥1

γ 2
j (1 − βλj)

2k (5.72)

from which the evolution of the different eigenvectors can be seen. More precisely,
the contribution of vj evolves with magnitude γj(1 − βλj)

k, j ≥ 1, and it follows
that
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1. convergence to zero error for all initial error e0 is achieved if, and only if, all
λj > 0 (that is, H is positive definite) and β‖H‖ < 2.

2. More generally, the self adjoint nature of H indicates that

Y = kerH ⊕ R[H] (5.73)

the second component of which is the closure of the subspace generated by arbi-
trary linear combinations of the eigenvectors with non-zero eigenvalues. As a
consequence, the limit of the iterative process is

lim
k→∞ ek = e∞ =

∑

λj=0

γjvj. (5.74)

3. Speed of convergence depends on both the spread and magnitude of the eigen-
values and the values of γj.

a. Convergence is rapid for components vj where (1 − βλj) is close to zero.
b. Convergence is slow for components where (1−βλj) is either close to unity

or the value −1. Slow convergence of these components can only generate
small tracking errors quickly if they start from already small magnitudes
γj. That is, rapid practical convergence (in a small number of iterations) to
small error norm values will only be achieved if the initialization produces
an error e0 dominated by contributionsmade by eigenvectors with the largest
eigenvalues.

The above discussion can be read as being simple statements of matrix theory. For
application to, for example, discrete supervector models, this is the case but it is
important to note that infinite dimensional examples do existwhere the eigenstructure
assumption is satisfied, although the calculation of the eigenvalues and eigenvectors
may be impossible or, at best, very difficult.

5.2.5 Formal Computation of the Eigenvalues
and Eigenfunctions

The purpose of this section is to illustrate the complexities and nature of eigen-
structure computation and provide, by example, some evidence that eigenstructure
assumptions can be valid for infinite dimensional systems in state space form. The
general nature of the eigenvalue equation Hv = λv (where solutions λ such that
v �= 0 are sought) can be envisaged when H = GG∗ and G is described by linear,
time-invariant, state space model with zero initial conditions. Firstly note that the
adjoint operator is then described by linear, time-invariant, state space models with
zero terminal condition at an end-time T . To illustrate the issues that arise in the
eigenvalue analysis of the problem, a simple example is considered below, namely
computing the eigenvalues and eigenfunctions ofGG∗ whereG is the operator formof
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the linear, time-invariant, continuous time system S(A, B, C). The eigenvalue equa-
tion is simply the equation GG∗v = λv for some non-zero vector v. That is, writing
y = λv, y = Gu, u = G∗v,

y(t) = λv(t) where ,

ẋ(t) = Ax(t) + Bu(t) , x(0) = 0 , y(t) = Cx(t),
ṗ(t) = −AT p(t) − CT Qv(t) , p(T) = 0 , u(t) = R−1BT p(t).

(5.75)

First note that the case of λ = 0 corresponds to solutions v ∈ ker[G∗]. The remaining
cases of λ > 0 are considered by writing this expression in the form

d

dt

[
x(t)
p(t)

]
=

[
A BR−1BT

−λ−1CT QC −AT

] [
x(t)
p(t)

]
= H (λ)

[
x(t)
p(t)

]
(5.76)

whereH (λ) is defined naturally. The initial conditions are x(0) = 0 with p(0) to to
be found to ensure that p(T) = 0. This equation has the formal solution in terms of
the matrix exponential eH (λ)t , written as

eH (λ)t =
[

E11(t, λ) E12(t, λ)

E21(t, λ) E22(t, λ)

]
. (5.77)

Using the initial conditions, it follows that the equation defining the non-zero eigen-
values and the consequent (un-normalized) eigenvectors are solutions of the equation
defining initial conditions p(0) that produce the desired terminal condition p(T) = 0,

p(T) = E22(T , λ)p(0) = 0, p(0) �= 0, vλ(t) = CE12(t, λ) p(0). (5.78)

In particular, the eigenvalues are precisely the solutions of the nonlinear equation
defined by the determinant

|E22(T , λ)| = 0. (5.79)

Formulae for the solutions and the forms of the eigenfunctions are not available. It is
known that all solutions λ are real and positive and, from thematrix exponential form
for linear time-invariant systems, the eigenfunctions consist of sums of products of
exponential, polynomial and trigonometric functions associated with the eigenvalues
of H (λ). To illustrate the issues, a simple example is now described:

Example: Consider the simple case of m = � = 1 with A = 0, B = C = Q =
R = 1 when, writing λ = ω−2,

H (λ) =
[

0 1
−ω2 0

]
and hence eH (λ)t =

[
cos(ωt) ω−1 sin(ωt)

−ω sin(ωt)) cos(ωt)

]
. (5.80)

The relevant values ofω are obtained from the solutions of cos(ωT) = 0.That is, there
are an infinite number of solutions parameterized by the relation ωk = π(2k+1)

2T , k =
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0, 1, 2, 3, . . .. This gives the eigenvalues and associated (un-normalized) eigenfunc-
tions as

λk =
(

2T
π(2k+1)

)2
, vk(t) = sin

(
π(2k+1)t

2T

)
for k = 0, 1, 2, 3, . . .

with λ1 > λ2 > λ3 > . . . and limk→∞ λk = 0.
(5.81)

In particular, the eigenfunctions are sinusoidal functions with frequencies spanning
low to high frequencies in a similar manner to the components in Fourier series.
The important point to note is that {vk}k≥0 form a basis for Y = L2[0, T ]. To
prove this, note that each point in f ∈ L2[0, T ] can be associated uniquely with a
function fe in L2[−2T , 2T ] via the construction fe(2T − t) = f (t), ∀ t ∈ [0, T ] and
fe(−t) = −fe(t), ∀ t ∈ [0, 2T ]. Being odd functions they can be uniquely expressed
as a Fourier series with only sinusoidal terms {sin

(
2pπ t
4T

)
}p≥1. The {vk}k≥0 are

simply the terms in this set with p = 2k + 1 (i.e. the odd index values). The property
f (2T − t) = f (t), ∀ t ∈ [0, T ] ensures that these are the only non-zero terms in the
representation of fe. It is concluded that any function f ∈ L2[0, T ] can be expressed as
a uniquely defined linear combination of the {vk}k≥0 as stated at the beginning of the
discussion. Note that, as a by-product of the analysis, it follows that ker[G∗] = {0}.

5.3 Robustness, Positivity and Inverse Systems

This short section anticipates some of the developments of following chapters. It
aims to help the reader more fully understand the structure of robustness analyses
by pointing out a particular robustness condition that is common to many important
cases. Some of the details for each topic are left for the relevant section but it is
useful to identify the pattern before starting on that journey. For this reason, some
of the statements made below will be proved in later chapters. Let Y andU be real
Hilbert spaces and P : U → Y a linear, bounded operator with adjoint P∗. Suppose
that an iterative process in Y is described by a recursion, for k ≥ 0,

ek+1 = Leek, where Le = I − ε−2PP∗(I + λPP∗)−1, ε2 > 0 and λ ≥ 0. (5.82)

Then Le = L∗
e and (

1 − ε−2‖P∗‖2
1 + λ‖P∗‖2

)
I ≤ Le ≤ I. (5.83)

In particular, L is invertible if the left-hand-side is strictly positive. One consequence
of this assumption is that the norm ‖e‖Y in Y is topologically equivalent to the
norm ‖e‖0 induced by the inner product 〈e, w〉0 = 〈e, (I + λPP∗)−1w〉Y . Note, in
particular that ‖ek‖0 → 0 as k → ∞ if, and only if, ‖ek‖Y → 0.

LetU : U → U be a linear bounded operator and consider the perturbed iteration
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ek+1 = LUek, where LU = I − ε−2PUP∗(I + λPP∗)−1. (5.84)

Note that, in general, LU �= L∗
U . In future material, regarding U as a right multiplica-

tive modelling error of the plant model G, the reader should note that, amongst other
examples,

1. the case of P = I , λ = 0 and β = ε−2 forms the basis of robustness of the Left
Inverse Model Algorithm 6.2 for left-invertible systems (Chap.6).

2. Using the data P = G, λ = 0 and β = ε−2 forms the basis of robustness analysis
of the Steepest Descent Algorithm 7.2 described in Chap.7.

3. The data P = G and λ = ε−2 forms the basis of robustness analysis of the Norm
Optimal Iterative Learning Control (NOILC) Algorithm 9.1 in Chap.9.

The robustness question is formulated here as the requirement that, for any choice of
e0, the resultant sequence {ek}k≥0 remains bounded and the monotonicity condition

‖ek+1‖0 ≤ ‖ek‖0 , for all k ≥ 0, (5.85)

is satisfied. This can be written in the form L∗
U(I + λPP∗)−1LU ≤ (I + λPP∗)−1

which is just

(I + λPP∗)−1P
(

U + U∗ − ε−2U∗P∗(I + λPP∗)−1PU
)

︸ ︷︷ ︸
P∗(I + λPP∗)−1 ≥ 0.

(5.86)
A sufficient condition for this to hold is that U and P satisfy the condition

U + U∗ ≥ ε−2U∗P∗(I + λPP∗)−1PU (5.87)

with respect to the original topology in Y . Robust monotonicity is hence typically
connected to positivity conditions onU although the nature of P and parameters such
as ε2 and λ play a role.

The inequality can be further relaxed to produce other sufficient conditions. For
example, it is satisfied if, either

(A) U + U∗ ≥ βU∗U , β = ε−2‖P‖2
1+λ‖P‖2 , or

(B) U + U∗ ≥ βU∗P∗PU , β = ε−2.
(5.88)

The first of these is closely related to the robustness conditions for Inverse Model
Algorithms in Chap.6 whilst the second is closely related to those for Steepest
Descent Algorithms in Chap.7. Both can be applied to the NOILC Algorithm
described in Chap.9 as well as some of its extensions in Chap. 10. These obser-
vations demonstrate that the robustness of these algorithms can be underpinned by
an analysis of Inverse and Descent Algorithms and suggests that all such algorithms,
in some sense, are approximate inversion processes.

The above material has been included here for presentational reasons. The reader
will see it in various guises in many places in the rest of the text but with more detail
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and refinement, particularly related to the replacement of ≤ in the monotonicity
requirement by strict inequality < and, for discrete, linear, state space systems, the
conversion of the criteria into frequency domain inequalities that, in principle, can
be tested by the user. Here, the material in Sect. 4.8 will play a role.

5.4 Discussion and Further Reading

Thegeneral formulationof the IterativeLearningControl problemhas been expressed
in a way that meets the needs of the following chapters and the focus on quadratic
optimization as a tool in algorithm development. There are several ways of formu-
lating the problem but the approach chosen here covers many cases of interest and,
in particular, the approaches that form the foundations of Chap.9 and its extensions
(Chap. 10). Other approaches can be found in [2, 3, 17, 19, 25, 68, 78, 88, 93, 100,
111, 113 and 114]. It is important to note that the formulation inevitably requires
modification from time to time to fit applications needs or the nature of the control
philosophy used. Some of these changes will appear later in this text and include the
introduction of auxiliary variables in Chap.11, additional control criteria, constraints
(Chap. 12) and iteration dependent parameters as in the development of Parameter
Optimal Iterative Learning Control (Chap. 14).

The use of a relatively abstract presentation is in the spirit of the mathematical
texts such as Collatz [28] and Ortega and Rheinboldt [79] which discuss numerical
iterations for solving sets of algebraic equations. The advantage of the approach is
a clear indication of the generality of the algorithms and hence the wide range of
applications that could be considered. This is precisely why this approach is taken
here for Iterative Control as systems can be regarded as mappings on input data and
tracking requirements defined by equations of the form

r = G (u, d) (5.89)

Given r and d, the iterative solution of this (normally dynamic) relationship for the
“solution” u has a structural similarity to equation solving problems in general.
The important point is that it allows many specific interpretations from discrete
and continuous state space relationships, to multi-rate sampled system models and
other more complex dynamical structures including delays, integral operators and
differential-algebraic systems. Operator theoretical tools have already been used
with some success on the problems of Multipass Processes in Edwards and Owens
[34] and, in part, for the related area of repetitive systems [99] although the results
provided in this text go well beyond work in these areas.

Attention has focussed on linear iterations as this is consistent with classical con-
trol theory and design and the engineering philosophy of undertaking analysis and
some modelling based on simplified linear models of plant behaviour. In the author’s
view, linear analysis provides practical solutions with the bonus of providing some
familiar links to feedback theory where the mathematical description has strong con-
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nections to performance of the algorithms when applied to real world processes. The
core requirement is convergence of iterations which, for linear systems, is described
by a combination of circumstances depending on the values and properties of the
spectral radius and induced norm of an operator L characterizing the evolution of the
tracking error from iteration to iteration. For the purposes of this text and the opti-
mization related algorithms described in later chapters, the concept of monotonic
iteration is central to the idea of improving behaviours from iteration to iteration and
integrates well into the objective of achieving convergence. This practical benefit has
theoretical consequences in the three cases of interest

r(L) < 1 or ‖L‖ < 1 or r(L) = ‖L‖ = 1. (5.90)

For applications, these general criteria are ideally converted tomore easily understood
relationships between familiar system properties or parameters. This is achieved in
this text for linear, time invariant, state space models using matrix methodologies
and/or frequency domain inequalities.

The eigenstructure interpretation of the situation when relevant operators are self
adjoint and positive provides interesting insights into iteration dynamics and links the
ideas tomore familiar effects of eigenvalue positions for discrete state space systems.
Most of the mathematics can be viewed, in finite dimensions, as being consequences
of familiar matrix theory but, for infinite dimensional spaces, properties such as
operator compactness [31] have considerable technical value and interest in providing
a conceptual interpretation that parallels the use of Fourier series representations of
functions on finite time intervals [105, 106].

Finally, the use of relaxation techniques has parallels in the area of numerical
analysis as a means of accelerating or controlling convergence rates. For Iterative
Control, the presentation focusses on their use as aids to ensure convergence in the
case when, in the absence of relaxation, r(L) = 1. The technique therefore has a
long history in numerical mathematics and, given the observed benefits, a place in
Iterative Control algorithm development. Readers might note that it is a special case
of, for example, more general feedforward algorithms of the form

uk+1 = FUuk + K0ek, (5.91)

whereFU : U → U is a filter designed to influence convergence rates, the frequency
content of input iterates and/or to reduce the effect of noise in the input signal. Note
that, whenever FU �= I (or α �= 1), convergence to a limit error may be achieved but
it is unlikely to be zero and may not have a form that is desirable for the application.



Chapter 6
Control Using Inverse Model Algorithms

Iterative Learning Control has a close conceptual relationship to the notion of an
inverse model of the plant. The usual notion of a system is that of an input signal
u producing a uniquely defined output signal y via a relationship y = G (u, d). In
contrast, the idea of an inverse model regards the plant input as the response to the
plant output by assuming the existence of a relationship u = H (y, d) obtained “by
solving for u as a function of y and d”. The link to the idea of inverse is strengthened
by noting that, for example,

u = H (G (u, d), d). (6.1)

Given such a relationship, the input u∞ = H (r, d) is a solution of the Iterative
Learning Control problem. For a linear system y = Gu + d where G has an inverse
G−1, the inverse system is simply u = G−1(y − d) and u∞ = G−1(r − d).

6.1 Inverse Model Control: A Benchmark Algorithm

Consider now a linear system and an Iterative Control algorithm defined by the
feedforward input update rule uk+1 = uk + K0ek . Suppose also that there is no
modelling error. Two choices of K0 are of interest in this section. They are both
closely related to ideas of inverse systems and are constructed as follows.

6.1.1 Use of a Right Inverse of the Plant

The operator G may not have an inverse but the idea of inversion is still relevant by
using the idea of Right Inversion. More precisely, a right inverse of G is a linear,
bounded operator GR : Y → U that satisfies GGRy = y for all y ∈ Y i.e.
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GGR = I. (6.2)

For the feedforward input update rule uk+1 = uk +K0ek , the error update relationship
is ek+1 = (I − GK0)ek . This expression forms the basis of the following algorithm
stated with proven properties in the form.

Algorithm 6.1 (A Right Inverse Model Algorithm) Suppose thatG has a right inverse
GR that is both linear andbounded and setK0 = βGR whereβ is a real scalar “learning
gain”. Consider the “Right Inverse Model” input update law

uk+1 = uk + βGRek . (6.3)

Then, the error evolution in the resultant Iterative Control algorithm satisfies

ek+1 = (1 − β)ek and hence ek = (1 − β)ke0 (6.4)

for all k ≥ 0. In particular, the error ek converges to zero for all initial errors e0, if
and only if,

0 < β < 2. (6.5)

Under these conditions, the error norm is monotonically decreasing with ‖ek+1‖ =
|1 − β|‖ek‖ < ‖ek‖ for all k ≥ 0.

Proof The error evolution equations follow easily as ek+1 = (I − βGGR)ek =
(1−β)ek using the properties of GR. This indicates that ‖ek+1‖ = |1−β|‖ek‖. The
range of β needed for stability then follows from the requirement that |1 − β| < 1
as does the monotonicity property of the norms. �

Note that, in particular, all iterates are proportional to the initial error e0. Also the
rate of convergence is controlled by choosing the value of β. For example, choosing
β = 1/2 will lead to halving of the error each iteration. More generally, values of β

close to 2 produce slow convergence and an oscillatory error signal sequence whilst
values of β close to zero produce slow convergence without oscillation. Values of β

close to unity produce fast convergence with convergence in one iteration if β = 1.
The choice of β is a design choice based upon the desired convergence rate and, as
will be seen in following sections, to the degree of robustness to modelling error that
is required.

Existence of a Bounded Right Inverse: A necessary condition for the existence of
a right inverse GR is that G has range equal to Y , written as

R[G] = Y . (6.6)

The reader can construct a proof by supposing that this relationship is not satisfied
and yet G has a right inverse GR. Choosing y that does not lie in R[G] then leads
to a contradiction as GGR = I implies that y = GGRy ∈ R[G]. That this condition
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is also sufficient for cases when both Y and U are finite dimensional is proved by
assuming that G is a matrix with full row rank and noting that QGT (GQGT )−1 is a
right inverse for any nonsingular matrix Q. If G is non-square, then the right inverse
is non-unique.

6.1.2 Use of a Left Inverse of the Plant

A similar algorithm can be constructed for linear plants with bounded left inverses
although, in this case, the form of the initial error e0 must be constrained if conver-
gence to zero is to be guaranteed. The relevant assumption is that G : U → Y has
a left inverse operator GL : Y → U that is both linear and bounded and satisfies

GLG = I. (6.7)

It is easily verified that (GGL)2 = GGLGGL = G (GLG) GL = GGL from which it
is easily seen that (GGL)k = GGL for all k ≥ 1.

Existence of a Bounded Left Inverse: A necessary condition for such a left inverse
to exist is that

ker[G] = {0}, (6.8)

a condition that is proved by assuming that ker[G] �= {0}, choosing a non-zero
u ∈ ker[G] and noting that a contradiction is achieved from the equation u =
GLGu = 0. That this condition is also sufficient for cases when both Y and U are
finite dimensional is proved by assuming that G is a matrix with full column rank
and noting that (GT QG)−1GT Q is a left inverse for any nonsingular matrix Q. If G
is non-square, then the left inverse is non-unique.

The following statement defines a left inverse based algorithm and its properties.

Algorithm 6.2 (A Left Inverse Model Algorithm) Suppose that G has a left inverse
GL that is both linear and bounded. Consider the “Left Inverse Model” input update
law

uk+1 = uk + βGLek . (6.9)

Then, the error evolution in the resultant Iterative Control algorithm satisfies

ek+1 = (1 − βGGL)ek and hence

ek = (1 +
[
(1 − β)k − 1

]
GGL)e0 (6.10)

for all k ≥ 0. In particular, if e0 ∈ R[G], the error evolution is described by ek+1 =
(1 − β)ek for all k ≥ 0 and the error converges to zero, if and only if, 0 < β < 2.
The error norm sequence is then monotonically decreasing to zero.
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Proof The first error evolution equations follow easily by operating on the input
update law with G whilst the second follows by an inductive argument assuming that
ek = (I + γkGGL)e0. This is trivially true for k = 1 with γ1 = −β = (1 − β) − 1
and, if true for k, the property GLG = I leads to the calculation

ek+1 = (I − βGGL)ek = (I − βGGL)(I + γkGGL)e0 = (I + γk+1GGL)e0 (6.11)

where γk+1 = (1 − β)γk − β. The equation γk = (1 − β)k − 1 for all k ≥ 1 is
then easily deduced by an inductive argument. Finally, if e0 ∈ R[G], set e0 = Gw0
for some uniquely defined w0 ∈ U , then, using GLG = I , it is easily seen that
ek = G(1 + [

(1 − β)k − 1
]
)w0 = (1 − β)ke0 which shows that ek+1 = (1 − β)ek

for k ≥ 0. The proofs that the error converges to zero if, and only if, β lies in the
defined range and the monotonicity of the error norms follows easily. �

The general conclusions on algorithm performance and the choice of β are identi-
cal to those deduced for the right inverse algorithm but conditions on e0 are required
for the left inverse algorithm.As e0 = r−Gu0−d, the condition e0 ∈ R[G] becomes
the condition r − d ∈ R[G].

The result indicates that the choice of reference r can be an issue in Iterative
Control and should be regarded as part of the design problem. The condition r −d ∈
R[G] simply means that there exists a control input in U that generates the output
y = r exactly. This is reassuring but, if there are signals inY that cannot be generated
by any input in U , convergence to zero error is impossible. This behaviour of the
algorithm when r − d does not lie inR[G] depends both on properties of G and the
choice of GL . A simple description of possible behaviours can be given using the
fact that the output space Y has a direct sum decomposition of the form

Y = R[G] ⊕ ker[GL]. (6.12)

To prove this, let y ∈ Y be arbitrary and write y = (I − GGL)y + GGLy. It is easily
verified that (I − GGL)y ∈ ker[GGL] = ker[GL] and that GGLy ∈ R[G]. This
proves that Y = R[G] + ker[GL]. The fact that this is a direct sum follows as, if
y ∈ R[G] ∩ ker[GL] is non-zero, then y = Gw0 for some non-zero w0 ∈ U and
0 = GLy = GLGw0 = w0 which is a contradiction. Hence

R[G] ∩ ker[GL] = {0}. (6.13)

Given the discussion above, write e0 = Gw0+v0 where v0 = (I−GGL)e0 ∈ ker[GL]
is uniquely defined and w0 = GLe0 ∈ U . A simple calculation then gives

ek = (1 +
[
(1 − β)k − 1

]
GGL)e0 = (1 − β)kGGLe0 + v0. (6.14)

It is clearly seen that the errors converge to the signal v0 as k → ∞. The component
v0 present in e0 remains unchanged as the iterations progress with the changes in ek
being associated, solely, with the initial component w0. This analysis proves that,
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Theorem 6.1 With the above construction, the algorithm uk+1 = uk + βGLek
where 0 < β < 2 has the following convergence properties for all initial errors e0

lim
k→∞ ek = e∞ = (I − GGL)e0. (6.15)

Little can be said about the behaviour of the sequence of norms ‖ek‖Y , k ≥ 0, unless
GGL = I or e0 ∈ R[G] when e∞ = 0. In particular, monotonic decreases in norms
from iteration to iterationwill only occur if v0 = 0.More generally, however, it is easy
to see that the norms ‖ek − v0‖ reduce monotonically as ek − v0 = (1− β)kGGLe0.
This observation typically has little practical value as the signal v0 is either unknown
or remains uncomputed.

6.1.3 Why the Inverse Model Is Important

The use of inverse model algorithms demonstrates the feasibility of constructing
algorithms that converge but that this convergence depends on properties of G, the
chosen algorithm and e0. If G itself has a bounded inverse, denoted G−1, then GR =
GL = G−1 and the two algorithms are identical. In all cases, the analysis

1. proves that a simple, single parameter algorithm can provide a detailed prediction
of the behaviour of the sequence of iterates,

2. highlights the need to consider the nature of the initial error e0 and
3. indicates that control of the rate of convergence is a feasible design objective. In

fact, choosing β = 1 in a right inverse algorithm leads to convergence to zero
error in one iteration.

This immediately suggests that iteration may be unnecessary but this is incorrect!

Why Iterate? The reasons why iteration is an essential component of high accuracy
control in repetitive environments can be found, for example, in three observations,
namely that,

1. either the complexity of an inverse operator may make implementation of inverse
algorithms unrealistically complex,

2. or the fact that errors between the model G and the plant dynamics will mean
that the first iterate is highly unlikely to be zero in practice even if β = 1 (an
observation compounded by the probable presence of noise onmeasured signals),

3. or that the inverse system may have dynamic characteristics that make its use in
feedforward control difficult. For example, if G is associated with a linear, time
invariant, state space system, the inverse systemmay be unstable depending upon
the position of the system zeros. The use of unstable update laws is, it is assumed,
a computational and implementation problem in practice.



150 6 Control Using Inverse Model Algorithms

The case when the plant has a transfer function description provides an intuitive
underpinning of these observations.

1. Effect of Transfer Function Properties: Suppose that G is a SISO, linear time
invariant system with transfer function G(s) of relative degree k∗ ≥ 0. Assuming
zero initial conditions and letting the duration of each trial T → ∞ to allow the
use of Laplace transform descriptions, the input/output relationship takes the form
y(s) = G(s)u(s) and the input update equation isuk+1(s) = uk(s)+βG−1(s)ek(s).
Perfect tracking is achieved for the input signal with Laplace Transform u∞(s) =
G−1(s)r(s). The inverse transfer function could have a complex form or be unsta-
ble making the input update equation unnecessarily complicated with the added
complication of generating possibly unstable signals.

2. The transfer function will also contain modelling errors. For strictly proper sys-
tems (that is, k∗ ≥ 1),

a. these errors could be substantial, particularly at high frequencies where the
inverse contains derivative operations that could increase sensitivity to noise.

b. Poor modelling of the system zeros that are very close to the imaginary axis
can lead to substantial errors in the inverse and potentially destabilizing ampli-
fication of frequencies close to that zero.

A combination of noise and inadequate modelling could lead to poor input repli-
cation and, potentially, algorithm divergence.

3. The Influence of the Choice of Demand Signal: The effect of r can be illustrated
by assuming that r(s) is a rational polynomial of relative degree kr . If kr ≤ k∗, it
is a simple matter to show that the formula for time signal u∞(t) = L −1[u∞(s)]
contains impulsive (delta function) type terms at t = 0. Such inputs cannot be
generated in practice and it is concluded that the Iterative Control problem has
no practically useful solution unless kr > k∗.

Iteration as Approximate Inversion: The simplicity and effectiveness of the inverse
model algorithms provide an excellent conceptual basis for understanding the issue
of iteration but the complexity of the control law and robustness issues can be a real
problem in practice.

1. The issue of robustness will be discussed in a later section where it becomes clear
that modelling errors can be tolerated but the consequences of such uncertainty
are that the modelling error has to satisfy certain technical positivity conditions
and, also, the usable range of learning gain β is likely to be reduced.

2. Reductions in the complexity of the control law can only be addressed by mod-
ifications to the input update rule and yet any such modification must aim to
retain much of the performance benefits of inverse model control. For this reason,
many Iterative Learning Control algorithms can be regarded as being based on
structured approximations to a plant inverse. Conceptually,

uk+1 = uk + βK0ek where GK0 ≈ I. (6.16)
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The approximation may not be explicit and may not even be good in the normal
mathematical sense. It should, however, ideally be capable of creating observed
behaviours that are similar to inverse model control. The dynamic structure of the
input update rule can have many forms and include many more parameters than
the single learning gain β. This text describes a number of such structures based
on optimization ideas.

6.1.4 Inverse Model Algorithms for State Space Models

Application of inverse model algorithms starts with the selection of a computational
representation of an appropriate left or right inverse of the operator G used in the
model of the plant. This representation, together with a choice of β, can then be used
in the chosen input update law to compute the new input signal off-line between
iterations. Because of the generality of the presentation, the operator G can take
many structures. This leads to the inevitable fact that inverse systems can take many
forms. The ideas of left and right inverse systems for m-output, �-input state space
systems S(A, B, C, D) was discussed in Sect. 3.9 in the form of Theorems 2.2, 2.4
and 2.5. These theorems apply to both continuous time and discrete time cases. For
completeness, the essential conclusion was that

Left Inverse Representation: Suppose that m ≥ �, rank[D] = � and K is any �×m
matrix such that KD is nonsingular. Then the state space system

S(A − B(KD)−1KC, B(KD)−1K,−(KD)−1KC, (KD)−1K) (6.17)

is a left inverse of S(A, B, C, D) on any finite interval.

Right Inverse Representation: If m ≤ �, rank[D] = m and K is any � × m matrix
such that DK is nonsingular, then the state space system

S(A − BK(DK)−1C,−BK(DK)−1, K(DK)−1C, K(DK)−1) (6.18)

is a right inverse of S(A, B, C, D) on any finite interval.

Given the familiar form of these representations, the core computation for inverse
model algorithms is easily stated as follows,

Computation of the Input Update: Inverse model algorithms using these repre-
sentations construct the input change uk+1 − uk in the (off-line) period between the
completion of the kth iteration and initiation of the (k + 1)th iteration. The change
is precisely the signal obtained as the output from a simulation of the state space
model of the relevant inverse model from zero initial conditions to the input ek .

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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Other observations relevant to design include

1. When m = � the two representation given above are identical and independent
of K . Without loss of generality, the value K = I can be taken.

2. If m �= �, K is non-unique and there is a degree of choice available for
design. One particularly important effect of the choice of K is its impact on the
poles/eigenvalues of the left or right inverse system. Ideally, the choice ensures
the stability of the inverse could be but it is possible that no such K exists.

3. The representations given above assume not only that D �= 0 but also that it
has full row or column rank. The analysis of supervector descriptions of discrete
time models has already indicated, using matrix methods, that such properties
are essential to ensuring that either Y = R[G] or that ker[G] = {0}. Chapter 4
presented a number of techniques (based on the relative degree, inverse system
partition, decoupling theory parameterizations and the C ∗ canonical form) that
indicate that a change in the definition of the output signal can transform a strictly
proper system S(A, B, C) into a proper system S(A0, B0, C0, D0) where D0 has
full rowor column rank.Despite their theoretical benefits, the acceptability of such
a process may depend on the nature of the design application being considered.

6.1.5 Robustness Tests and Multiplicative Error Models

The robustness of inverse model algorithms can be approached in a general way. The
methodology is based on the tools provided in Sect. 5.2 and illustrates the challenges
seen in developing useful robustness tests. In particular, it provides a general insight
into the role of positivity conditions in the analysis.

6.1.5.1 Left Multiplicative Perturbations: A General Analysis
of Right Inverse Algorithms

Using the notation of the previous sections, consider the right inversemodel algorithm
for a linear plant with model G : U → Y possessing a bounded right inverse GR.
Suppose that the input update rule is uk+1 = uk + βGRek but that the plant can be
described by the left multiplicative uncertainty model UG where U : Y → Y is
a bounded linear operator. The evolution of the observed plant error is obtained by
operating on the update rule with UG to obtain

UGuk+1 = UGuk + βUGGRek which gives ek+1 = (I − βU)ek (6.19)

as the plant dynamics takes the form of the relationship y = UGu + dU where dU

is the modified (iteration independent) initial condition term. The predictions of the
model G will be correct when U = I and dU = d (which can be thought of as the
“nominal values” of U and dU ).

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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Consider the characterization of the property of Robust Monotonic Convergence
of the resultant dynamics in the presence of the modeling error. It is a simple matter
to use the error update relations and Theorem 5.7 (with L = I − βU) to prove the
following result,

Theorem 6.2 Consider the Right Inverse Model algorithm with β in the range 0 <

β < 2. Then, a necessary condition for robust monotonic convergence in the presence
of the left multiplicative modelling error U is that

‖(I − βU)‖ ≤ 1. (6.20)

Moreover, for the cases where Y is finite dimensional, it is both necessary and
sufficient that ‖(I − βU)‖ < 1. This condition is also sufficient if Y is infinite
dimensional.

More specifically, ifY is a real Hilbert space, then the following result follows from
Theorem 5.8 with L = I − βU and H = U. It provides a useful insight into the
nature of U in the form of positivity conditions that are essential if robust monotonic
convergence is to be achieved.

Theorem 6.3 (Positivity and Robust Monotonic Convergence) Suppose that Y is a
finite or infinite dimensional, real Hilbert space with inner product 〈·, ·〉Y . Consider
the Right Inverse Model algorithm with 0 < β < 2. Then, a necessary condition for
robust monotonic convergence in the presence of the left multiplicative modelling
error U : Y → Y is that

U + U∗ > 0 (A Strictly Positive Modelling Error Condition) (6.21)

where U∗ is the adjoint of U.
Moreover, if Y is finite dimensional, it is necessary that there exists a real number
ε0 > 0 such that

U + U∗ ≥ ε20I (A Stronger Strict Positivity Condition). (6.22)

In both the finite and infinite dimensional cases, the validity of condition (6.22)
implies that there exists a real number β∗ > 0 such that, for any choice of β ∈ (0, β∗),
it is possible to compute a real number λ(β) < 1 (dependent on β) such that robust
monotonic convergence is guaranteed as ‖(I − βU)‖ ≤ λ(β) < 1. Finally, the
largest possible choice of β∗ lies in the range

ε20

‖U‖2 ≤ β∗ ≤ 2

‖U‖ . (6.23)

The theorem throws light on many aspects of robust monotonic convergence
including the role of positivity conditions on U and the inevitable restrictions on
the range of learning gains β that can be used. In the absence of modelling error, U

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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takes the nominal value U = I when, noting that ‖U‖ = 1 and that it it possible
to choose ε20 = 2, the value β∗ = 2 is regained. A simple continuity argument
then suggests that the conditions will be satisfied by all U “close enough” to I . This
observation provides the basis for robustness tests based on modelling errors that are
not known but assumed to lie in a set defined by suitably constructed norm bounds.
More precisely, if U is not known, the ideas can still be applied to provide a link
between the choice of β and a definition of a set of possible modelling errors as
follows.

Theorem 6.4 (Robustness and Norm Bounded Modelling Errors) Suppose that Y
is a real Hilbert space. Consider the Right Inverse Model algorithm with 0 < β < 2
and suppose that all that is known about the modelling error between model and
plant is that U satisfies the condition, for some scalars γ > 0 and 0 ≤ δ < 1,

‖I − γ U‖ ≤ δ (A Defined Set of Modelling Errors). (6.24)

Under these conditions, there exists a real number β∗ > 0 such that the Iterative
Control process is robust monotonic convergent for allβ ∈ (0, β∗) for all U satisfying

(6.24). In particular a lower bound for the largest such β∗ is β∗∗ = γ
(
1−δ
1+δ

)
> 0.

Proof The norm condition (6.24) defining plant perturbations is equivalent to

γ (U + U∗) ≥ (1 − δ2)I + γ 2U∗U ≥ (1 − δ2)I (6.25)

so it is possible to choose ε20 = γ −1(1− δ2) = γ −1(1− δ)(1+ δ) > 0. In addition,
‖γ U‖ ≤ ‖I‖+‖(I −γ U)‖, so that ‖U‖ ≤ γ −1(1+ δ). The results of the preceding
theorem now prove robust monotonic stability for gains 0 < β < β∗∗ = ε20/‖U‖2 =
γ

(
1−δ
1+δ

)
as required. �

The reader should note that:

(a) The range of β permitted depends only on the defined parameters γ and δ.
(b) The norm condition defining the set of modelling errors is equivalent to a state-

ment that the operator U lies in the closed ball Bc(γ
−1I, δγ −1) in the normed

space L (Y ;Y ) of bounded linear operators from Y into itself.
(c) The nominal value U = I lies in the modelling error set if |1 − γ | ≤ δ.

6.1.5.2 Right Multiplicative Perturbations: A General Analysis
of Left Inverse Algorithms

Suppose that the plant has amodelGwith bounded left inverseGL and the relationship
between plant and model is described by a right multiplicative perturbation U. It
follows that ker[G] = {0} and the error update equation for the plant tracking error is
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ek+1 = (I − βGUGL)ek (6.26)

For the nominal case of U = I , monotonic convergence to zero error requires that
0 < β < 2 and that the initial error e0 ∈ R[G]. For robustness analysis, it is
necessary to use a changed perspective by associating the monotonicity with some
subsidiary signal. More precisely, assume that e0 ∈ R[G] and construct uniquely
defined subsidiary signals {wk}k≥0 in U by writing ek = Gwk, k ≥ 0.

Note: If u∞ is an input signal with the property that the resultant tracking error e = 0,
then a simple calculation gives,

wk = U(u∞ − uk), for all k ≥ 0, (6.27)

which links the monotonicity of the norms of wk to the monotonicity of the norm
of U(u∞ − uk). If U = I , then the link is precisely that the norm of u∞ − uk is
monotonic.

Using this construction and the condition ker[G] = {0} in the analysis of the plant
dynamics, the update equation becomes an update equation in U

wk+1 = (I − βUGLG)wk = (1 − βU)wk . (6.28)

This equation is identical in structure to that seen in the right inverse algorithm with
left multiplicative model error. If the robust monotonic convergence property is now
redefined to require that

for all k ≥ 0 and w0 ∈ U , ‖wk+1‖U < ‖wk‖U and, also, lim
k→∞ wk = 0,

(6.29)

then monotonic error convergence is not achieved but ek → 0 as required. With this
understanding, all of the results of the previous section can be applied to the case of
right multiplicative perturbations. It is left as an exercise for the reader to pursue this
observation in more detail.

Finally, using ek = GU(u∞ − uk) and wk = U(u∞ − uk), k ≥ 0, assume that
the perturbations lie in the set defined by (6.24) so that ‖γ U‖ ≤ 1 + δ. Also, using
(I − γ U)∗(I − γ U) ≤ δ2I , the scalar ν0 = inf{‖Uu‖ : ‖u‖ = 1 } > 0 as δ < 1 so
that

ν20 I ≤ U∗U ≤ γ −2(1 + δ)2I. (6.30)

This implies that the norm ‖ · ‖U inU is topologically equivalent to the norm ‖ · ‖0
defined by ‖u‖0 = ‖Uu‖U . More precisely,

ν0‖u‖U ≤ ‖u‖0 ≤ γ −1(1 + δ)‖u‖U for all u ∈ U (6.31)

and the monotonicity of ‖wk‖U ensures the monotonicity of ‖u∞ − uk‖0 which, in
turn, “pulls” ‖u∞ − uk‖U to zero. If δ is small then the sequence {‖u∞ − uk‖U }k≥0
is “almost” monotonic.
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6.2 Frequency Domain Robustness Criteria

The norm-based conditions for robustness provide some evidence for robustness of
both left and right inverse model algorithms but, for application, will need meth-
ods for computation of the norms and, ideally, provide a link between these norms
and physical properties of the system. The ease with which these issues can be pro-
gressed will depend on the nature of G and the input and output spaces used. For
linear, time-invariant state space systems S(A, B, C, D), the natural link to classical
control concepts lies in the use of frequency domain concepts applied to the error or
subsidiary signal evolution equation with multiplicative modelling error U,

ek+1 = (I − βU)ek (for the Right Inverse Algorithm)

wk+1 = (I − βU)wk (for the Left Inverse Algorithm). (6.32)

The great similarity of the error evolution in these two cases means that the analysis
can proceed assuming the use of a right inverse algorithm with left multiplicative
modelling error.

6.2.1 Discrete System Robust Monotonicity Tests

Consider a right inverse algorithm algorithm applied to the discrete time system
S(A, B, C, D) (with m ≤ �) on an interval 0 ≤ t ≤ N on which the matrix
G(A, B, C, D) in the supervector description has a right inverse (that is, rank(D) =
m). If the model transfer function matrix is G(z), suppose that the plant has transfer
function matrix U(z)G(z). For the left inverse algorithm, it is necessary that � ≤ m,
rank(D) = � and that the representation of the plant is G(z)U(z).

With this construction, let thematrixU be thematrix in the supervector description
of U(z). The block diagonal structure in the supervector description of the error
evolution provides convergence conditions as follows.

Theorem 6.5 If U(z) has a state space realization S(AU , BU , CU , DU), then the
Iterative Control process is convergent for all initial errors e0 if, and only if, the
spectral radius r(I − βDU) < 1.

Proof The characteristic polynomial of I − βU is (det (λIm − (I − βDU))N+1. �

The result indicates the ultimate dependence of the convergence on the accuracy of
high frequency modelling and shows that convergence is not necessarily monotonic
in any chosen norm. Monotonicity and the use of the Euclidean signal norm does
however allow much more detail to be derived. A more general approach using
bi-directional filters is provided later in Sect. 8.1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_8
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Theorem 6.6 (Frequency Domain Monotonic Robustness for Discrete Inverse
Model Algorithms) With the conditions described in the preceding discussion, sup-
pose that Y = Rm(N+1) is given the Hilbert space topology defined by the inner
product

〈y, w〉Y =
N∑

t=0

yT (t)Qw(t), with Q = QT > 0, (6.33)

with induced norm ‖y‖ = √〈y, y〉Y . Suppose also that U(z) is asymptotically stable
and that it is strictly positive real in the sense that

QU(z) + UT (z−1)Q > 0 for all complex z satisfying |z| = 1. (6.34)

Then, in some non-empty range of gains (0, β∗), the inverse model algorithm is robust
monotonically convergent (in the given topology) in the presence of the multiplicative
modelling error U(z) and, for all β ∈ (0, β∗), the induced norm ‖(I − βU)‖ < 1.
This norm requirement is satisfied if

sup
|z|=1

r
(

Q−1(I − βU(z−1)T Q(I − βU(z)))
)

= sup
|z|=1

σ 2
max(z) < 1 (6.35)

where σ 2
max(z) is the largest eigenvalue of Q−1(I −βU(z−1)T Q(I −βU(z)). That is,

σmax(z) is the largest singular value of the complex matrix Q1/2(I − βU(z))Q−1/2.

Proof The strict positive real condition on U(z) implies (using Theorem 4.8) that the
matrix U +UT > 0 and hence, noting that the relevant spaces are finite dimensional,
that U + UT ≥ ε20I for some ε0 > 0 . In particular, det(DU) �= 0. The result now
follows from Theorem 4.10. The permissible range of β are those where

QU(z) + UT (z−1)Q > βUT (z−1)QU(z) for all |z| = 1. (6.36)

This statement is equivalent to the stated spectral radius condition. �

If U(z) is a known, the theorem leads to a computational frequency domain test
for robustness for a given U(z) and choice of β by first checking, frequency by
frequency z = eiθ , 0 ≤ θ < 2π , that U(z) is strictly positive real. If successful,
then the spectral radius condition can be checked in the same frequency range to
verify that σmax(z) < 1. The relationship between U(z) and β∗ is highly complex in
this situation so the choice of a suitable β value is, in reality, a trial and error process.

IfU(z) is not known, then the result simply provides a useful statement that robust
monotonic convergence can be attained provided that it is strictly positive real and β

is small enough. It says nothing about the value of β∗. Rather more can be deduced
if U satisfies some known defined conditions such as (6.24) in Theorem 6.4 but it
can be envisaged that even this data may not be available in some applications.

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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These problems disappear to some extent for the case of SISO systems (when
m = � = 1). In this case, Q = 1 without loss of generality, and

1. the robustness condition is simply

|β−1 − U(z)| < β−1 for all z = eiθ , 0 ≤ θ < 2π (6.37)

which, simply stated, requires that—The plot of the frequency response function of
U(z) lies in the interior of the circle Sβ in the complex plant of centre (β−1, 0) and
radius β−1. Simple graphical analysis of this construct also indicates that U(z)
must be strictly positive real in the sense that Re [U(z)] > 0, for all z satisfying
|z| = 1.

2. Alternatively, the robustness condition could be used to define the permitted
modelling errors that retain monotonic convergence. More precisely, for given
β, monotonic convergence will be retained for any error U(z) with frequency
response plot lying in the interior of Sβ .

3. If it is known that U(z) satisfies, for some γ > 0 and 0 ≤ δ < 1,

|γ −1 − U(z)| < δγ −1 for all z = eiθ , 0 ≤ θ < 2π, (6.38)

then the algorithm is robust monotonically stable for all such perturbations pro-
vided that the circle of centre (γ −1, 0) and radius γ −1δ lies in the interior of
Sβ .

6.2.2 Improving Robustness Using Relaxation

The development above applies to inverse algorithms without relaxation. Motivated
by its role in reducing the spectral radius of the operator in the error evolution,
Sect. 5.2.3 suggested, without proof, that relaxation will improve the robustness of
Iterative Control. For inverse algorithms, the relaxed input update rule has the form,
uk+1 = αuk + βĜek, k ≥ 0, where G is a model of the plant and Ĝ is a left or right
inverse. The effect of the relaxation parameter 0 < α < 1 can be assessed using
similar techniques to those used in Sect. 6.2.

Right Inverse Algorithms: Suppose that the plant can be described by UG, where
U is a left multiplicative perturbation, and thatR[UG] = R[G] = Y so that a right
inverse Ĝ = GR exists. The input and error evolutions are described by

ek+1 = (αI − βU)ek + (1 − α)(r − d), k ≥ 0. (6.39)

A sufficient condition for convergence to a limit error is that β > 0 and (αI −
βU)∗(αI − βU) < I in Y which is achieved if

U + U∗ − α−1βU∗U > −(αβ)−1(1 − α2)I. (6.40)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5


6.2 Frequency Domain Robustness Criteria 159

Comparing this expression with the case when α = 1 indicates that, setting β ′ =
α−1β the range of errors that can be tolerated is greater than the range of errors that
can be tolerated by the unrelaxed algorithm with gain β ′. Note that, in principle,
the need for U to satisfy a positivity condition is removed. This is underpinned by
considering the case of discrete state space systems when, in a similar manner to
Theorem 6.6, convergence is achieved if

sup
|z|=1

r
(

Q−1(αI − βU(z−1)T Q(αI − βU(z)))
)

< 1. (6.41)

For SISO state space systems the condition reduces to the frequency domain require-
ment that the modelling error U(z) with |z| = 1 lies inside the circle of radius β−1

and centre (β−1α, 0) in the complex plane. When α < 1, part of this circle lies in
the open left half complex plane.

Left Inverse Algorithms: A similar argument leads to a very similar outcome in
terms of increased robustness. More precisely, using the plant description GU where
U is a right multiplicative modelling error with ker[G] = ker[GU] = {0}, then a left
inverse Ĝ = GL exists and the error evolution is described by

ek+1 = (αI − βGUGL)ek + (1 − α)(r − d), k ≥ 0, (6.42)

A sufficient condition for convergence to a limit error is that β > 0 and (αI −
βU)∗(αI − βU) < I in U . This reduces the algebraic analysis and conclusions
reached for this case to those of m ≤ �. It is left as an exercise for the reader to
provide the details who should note that the m × m matrix Q will be replaced by an
� × � matrix R defining an inner product in U .

6.2.3 Discrete Systems: Robustness and Non-monotonic
Convergence

The flexibility in the choice of spaces and inner products can be used to approach
issues of robust convergence that is not necessarily monotonic in the preferred
choice of norm. To illustrate this fact, consider the �-input, m-output, discrete system
S(A, B, C, D) with input u, output y and state x on the interval 0 ≤ t ≤ N . Suppose
also that D has full rank so that the system has a right (or left) inverse to which a
right (respectively, left) inverse model algorithm is applied. Let ε > 0 and replace
the input, output, reference, error and state vector time series by weighted sequences

uε = {u(0), εu(1), ε2u(2), . . . , εN u(N)}
yε = {y(0), εy(1), ε2y(2), . . . , εN y(N)}
rε = {r(0), εr(1), ε2r(2), . . . , εN r(N)}
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eε = {e(0), εe(1), ε2e(2), . . . , εN e(N)}
xε = {x(0), εx(1), ε2x(2), . . . , εN x(N)} (6.43)

A simple calculation easily reveals that the state spacemodel describing the evolution
of the weighted signals is obtained by the map

S(A, B, C, D) �→ S(εA, εB, C, D) (6.44)

with unchanged initial condition x(0). The transfer function matrix becomes

Gε(z) = C(zI − εA)−1εB + D = G(ε−1z). (6.45)

Asymptotic stability of S(A, B, C, D) implies that of S(εA, εB, C, D) if ε ≤ 1.
Define the inner product inY as in Theorem6.6 and introduce a new inner product

and norm on ε-weighted time series in Y using

〈f , g〉ε = 〈f ε, gε〉Y and ‖f ‖ε = ‖f ε‖Y . (6.46)

Note that, the norm is unchanged if ε = 1 and that, more generally, the two norms
are topologically equivalent with

‖f ‖ε ≤ ‖f ‖Y ≤ ε−N‖f ‖ε if ε ≤ 1. (6.47)

Monotonicity of the sequence of un-weighted norms {‖e0‖Y , ‖e1‖Y , ‖e2‖Y , . . .} is
not equivalent tomonotonicity of theweightednorms {‖eε

0‖Y , ‖eε
1‖Y , ‖eε

2‖Y , . . .} =
{‖e0‖ε, ‖e1‖ε, ‖e2‖ε, . . .}.

For simplicity, consider the case of a right inverse algorithmand the asymptotically
stable, left multiplicative modelling error U(z). The error evolution still takes the
form ek+1 = (I − βU)ek . However, robust monotonic convergence with respect to
the norm ‖ · ‖ε is described by the following generalization of Theorem 6.6.

Theorem 6.7 (Frequency Domain Robustness Test—ANon-monotonic Case) With
the conditions described in the preceding discussion and ε ≤ 1, suppose that U(z)
is asymptotically stable and that it is strictly positive real in the sense that

QU(z) + UT (z−1)Q > 0 for all complex z satisfying |z| = ε−1. (6.48)

Then, in some non-empty range of gains (0, β∗),

sup
|z|=ε−1

r
(

Q−1(I − βUT (z−1))Q(I − βU(z))
)

= sup
|z|=ε−1

σ 2
max(z) < 1. (6.49)

The inverse model algorithm with any such choice of β is robust monotonically con-
vergent with respect to the ‖ ·‖ε-norm in the presence of the multiplicative modelling
error U(z).
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Proof The proof is identical to that of Theorem 6.6 noting that the weighted time
series satisfied eε

k+1 = (I−Uε)eε
k whereUε is thematrix appearing in the supervector

description of Uε(z) = U(ε−1z). The frequency domain conditions for Uε(z) with
|z| = 1 then become conditions on U(z) with |z| = ε−1. �

Using the principle of the maximum from complex variable theory, the quantity
sup|z|=ε−1 σmax(z) is monotonically decreasing with ε which suggests that reducing
ε allows a greater range of perturbations U to be included. The ultimate robustness
characterization is hence obtained by letting ε → 0+. Suppose that U(z) is a given
modelling error and that the “D” term in the state space model of U is denoted by
DU . It is easily seen that lim|z|→∞ U(z) = DU so that

Theorem 6.8 A sufficient condition for the existence of a value of ε ≤ 1 such that
the conditions of Theorem 6.7 are valid is that r

(
Q−1(I − βDT

U)Q(I − βDU)
)

< 1.

Note that, in practice, this implies that convergence with respect to some ε-weighted
norm may depends ultimately on the nature of the high frequency properties of the
modelling error U.

The theoretical implications of the above are that robust monotonic convergence
can, in principle, be relaxed to prove that convergence can be achieved without
monotonicity with respect to the preferred norm. A frequency domain tool is used to
develop conditions for the monotonicity using an ε-weighted norm. The reader will
note that Theorem 6.7 provides computational and graphical tools for checking the
robust convergence conditions for any ε ≤ 1 but that, for ε < 1, the theory provides
little physical insight into the detailed nature of the resultant convergence expressed
in terms of the original un-weighted norm sequence.

6.3 Discussion and Further Reading

The Iterative Control problem can be seen as an inverse problem as it attempts to
solve the equation r = Gu + d. If a solution exists then, intuitively speaking, the con-
verged solution u∞ = Ĝ(r − d) where Ĝ is some inverse mapping of G. The chapter
has provided the mathematical background to the formal use of inverse models to
create convergent algorithms with monotonically decreasing tracking error norms.
The algorithm is remarkably simple in structure with clear properties dependent only
on a single gain parameter β. This simplicity hides a multitude of issues that influ-
ence practical applications. Although the ideas are believed to be part of commercial
Iterative Control software solutions, formal, rigorous research in the area is more
recent and has concentrated on the single-input, single-output case (see, for exam-
ple, [55]) where the simple monotonic convergence rules were first proved and the
need for modelling errors that satisfy positivity conditions became clear. Together
with nonlinearities and other related effects, the violation of positivity conditions
is probably one of the main reasons that poor convergence and divergence can be
observed in practical applications.
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The ideas have great generality when expressed in terms of operator theory,
the main assumptions being the boundedness of the operators and the existence of
inverses. Although algebraically simple, it is necessary to check these assumptions
before use. The focus onmulti-input, multi-output, discrete time, state space systems
is natural in this context as it is possible to create (state space or supervector) models
that map 0 ≤ t ≤ N onto itself and do, indeed, have a left or right inverse which is
also described by a proper state space model. In contrast, the derivatives that exist
in proper or strictly proper, continuous inverse models for continuous time systems
when D does not have full rank will cause problems of boundedness in L2[0, T ]
spaces and introduce sensitivity properties, particularly in noisy environments. The
mathematical solution to these problems is to apply exactly the same transforma-
tions to the continuous system matrices (A, B, C, D) as would be applied to them as
if they described a discrete model. The technical problem with this is, for example,
that the shift operation zk∗

is replaced by the sk∗
operation (mapping signals into

their (k∗)th derivatives). For uniform rank k∗ systems, the transformation regards the
plant as mapping input functions into a new output equal to the (k∗)th derivative of
y. A bounded inverse now exists and the Iterative Control problem would then be
that of ensuring that the (k∗)th derivative of the output y tracks the (k∗)th derivative
of the original reference signal r.

The robustness of the algorithms to multiplicative perturbations has a natural fre-
quency domain structure that provides the first indication of the need for positivity
conditions if themonotonicity of the error norm sequence is to be retained. If violated,
convergencemay still occur but may be characterized by iterations where, albeit tem-
porarily, the norm can increase. This may not be a practical problem if the increases
are small in both magnitude and number but this may not be the case. For discrete
time systems, the analysis of such poor convergence properties can be approached
in a theoretical way by focussing on the use of monotonicity but expressing this in
terms of weighted norms parameterized by a single parameter ε ∈ (0, 1]. This has no
effect on the analysis if there is no modelling error but, in the presence of such errors,
reducing the value from unity makes it possible to analyze robust convergence but at
the expense of allowing transient increases in the preferred error norm. The approach
extends the range of modelling errors that can be tolerated to those where U(ε−1z) is
strictly positive real. An intuitive description of the weighting methodology is that,
by providing increased weighting on the initial part of the interval, the algorithm
concentrates efforts in this area but allows larger deviations at later times. Having
achieved substantial reductions early in the interval, the algorithm then reduces the
error magnitudes at later times.

Finally, the text will return, from time to time, to the ideas of inversion as an
underpinning theme for algorithm development and demonstrate that

the robustness of the inverse model algorithms, in general terms, implies the robust-
ness of many other optimization-based ILC algorithms.

The main focus will be on Norm Optimal Iterative Learning Control beginning in
Chap.9 but, perhaps the simplest link to other approaches comes in Chap.8 where the
inversion methodologies are combined with the gradient approaches introduced in

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
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Chap.7 to provide filtering methodologies, design approaches and other techniques
for improving robustness and shaping convergencebehaviours tomeet practical needs
(including the specific needs for tracking of a reference r). Of particular interest in
this context, design possibilities include

1. the use of bidirectional filters to condition algorithm behaviours (Sect. 8.1) and
2. the consequences of using a stable (approximate) inverse model when the plant

is non-minimum-phase (Sect. 8.2.3).

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
http://dx.doi.org/10.1007/978-1-4471-6772-3_8


Chapter 7
Monotonicity and Gradient Algorithms

The inverse model algorithms have the benefits of being applicable, of ensuring
monotonic convergence and of being amenable to analysis. Another example with
these properties is that of Gradient Algorithms. The concept behind the approach is,
again, to construct control algorithms that guarantee a reduction of some measure of
error magnitude from iteration to iteration. In practice, such measures could include
its mean square value. This chapter takes a general viewpoint and extends this simple
idea by taking an error measure that is the error norm in some chosen normed space
Y and expresses error improvement from iteration to iteration by requiring that, for
all k ≥ 0,

‖ek+1‖Y < ‖ek‖Y (Error Norm Monotonicity). (7.1)

Clearly the ease with which this can be achieved will depend on the choice of norm
in Y . It also depends on the chosen change in the input signal uk+1 − uk . In what
follows it is assumed that both the input space U and the output space Y are real
Hilbert spaces. The plant dynamics is assumed to be described by the relationship
y = Gu + d with G : U → Y linear and bounded. Writing

‖ek+1‖2Y = ‖ek + (ek+1 − ek)‖2Y (7.2)

= ‖ek‖2Y + 2〈ek, ek+1 − ek〉Y + ‖ek+1 − ek‖2Y ,

and using the identity ek+1 − ek = −G(uk+1 − uk) and the properties of adjoint
operators gives

‖ek+1‖2Y = ‖ek‖2Y − 2〈ek, G(uk+1 − uk)〉Y + ‖G(uk+1 − uk)‖2Y (7.3)

= ‖ek‖2Y − 2〈G∗ek, (uk+1 − uk)〉U + ‖G(uk+1 − uk)‖Y .
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The second term is linear in the input changewhilst the third is quadratic and positive.
In general terms, a necessary condition for the norm to reduce in magnitude is to
ensure that the second term 〈G∗ek, uk+1 − uk〉 > 0 whilst making uk+1 − uk small
enough to ensure that the positive contribution of the third term does not negate this
effect. This leads to the following conceptual algorithm,

Algorithm 7.1 (Conceptual Gradient Algorithm) Let K0 : Y → U be linear and
bounded. Consider the feedforward Iterative Control input update law

uk+1 = uk + βK0ek, k ≥ 0. (7.4)

Then there exists a value of β on iteration k + 1 that reduces the error norm as is
easily seen by writing

‖ek+1‖2Y = ‖ek‖2Y − 2β〈ek, GK0ek〉Y + β2‖GK0ek‖2Y (7.5)

This is quadratic in β and, assuming that ‖GK0ek‖Y �= 0, is minimized by the choice

βk+1 = 〈ek, GK0ek〉Y
‖GK0ek‖2Y

(7.6)

The value of the norm that results from this choice is then

‖ek+1‖2Y = ‖ek‖2Y −
( 〈ek, GK0ek〉Y

‖GK0ek‖Y
)2

< ‖ek‖2Y . (7.7)

A real reduction in norm is achieved if both GK0ek and 〈ek, GK0ek〉Y are non-zero.
No change in norm is possible if GK0ek = 0.

In this chapter, the central issues considered are the choice of K0, and the choice of
gain β that is iteration independent, to provide and control descent properties.

7.1 Steepest Descent: Achieving Minimum Energy Solutions

The Steepest Descent algorithm is defined by the choice of K0 = G∗ where G∗ :
Y → U is the adjoint operator of G in the defined topologies of Y and U . The
formal algorithm is then defined by the statement

Algorithm 7.2 (The Steepest Descent Algorithm for Iterative Control) The Steepest
Descent algorithm is defined by the choice of a scalar gain β and the use of the input
update rule

uk+1 = uk + βG∗ek, for all k ≥ 0. (7.8)

The resultant error evolution satisfies the recursive relation
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ek+1 = Lek, for all k ≥ 0 where L = I − βGG∗. (7.9)

The operator L is self adjoint.

The algorithm requires the construction of a computational procedure to generate
the signal G∗ek but, once achieved, has quite general convergence properties. The
following theorem applies in both finite and infinite dimensions and provides an
insight into optimality properties and the choice of initializing control input u0,

Theorem 7.1 (Convergence of Steepest Descent in Finite and Infinite Dimensions)
Consider the steepest descent control law uk+1 = uk + βG∗ek and suppose that
0 < β‖G∗‖2 < 2. Then, for all e0 in the closure R[GG∗] of the range of GG∗, the
iteration satisfies

‖ek+1‖Y < ‖ek‖Y , k ≥ 0, and lim
k→∞ ‖ek‖Y = 0. (7.10)

In particular, β > 0 and

1. for an arbitrary e0 ∈ Y , the iteration is again monotonic with a limit

lim
k→∞ ek = e∞ = Pker[G∗]e0 (7.11)

where Pker[G∗] is the self adjoint, positive, orthogonal projection operator onto
ker[G∗].

2. If ker[G∗] = {0} then monotonic convergence is achieved on the whole of Y .
3. If only an upper bound B(G∗) for ‖G∗‖2 is available, then the gain range can be

replaced by 0 < βB(G∗) < 2.

Proof The result follows from Theorems 5.9 and 5.10 using the identification L =
I −βGG∗, the fact that GG∗ ≤ ‖G∗‖2I and the inequality (−1+ (2−β‖G∗‖2))I =
(1 − β‖G∗‖2)I ≤ L ≤ I so that μ2

0 = (2 − β‖G∗‖2) > 0. The result follows as
ker[I − L] = ker[βGG∗] = ker[G∗] and ker[G∗] = {0} implies that GG∗ > 0 and
hence that L < I . �

The convergence of the input sequence {uk}k≥0 is similarly proved by the follow-
ing result which also provides a useful insight into the nature of the limit u∞ and its
connections to the choice of u0.

Theorem 7.2 (Input Convergence and Minimum Norm Solutions) Using the nota-
tion and assumptions of Theorem 7.1, suppose that e0 ∈ R[GG∗]. Then the input
sequence {uk}k≥0 in U converges in the norm topology to a limit u∞ ∈ U described
by the relations

r = Gu∞ + d, u∞ = u0 + G∗v0 where e0 = βGG∗v0 and v0 ∈ R[GG∗].
(7.12)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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In particular, u∞ is the unique solution of the (minimum norm) optimization problem

u∞ = arg min
u∈U

{‖u − u0‖2U : subject to r = Gu + d}. (7.13)

Proof Convergence of the error follows from Theorem 7.1. Apply induction to the
input update equation to show that

uk+1 = u0 + G∗
k∑

j=0

Lke0 where L = I − βGG∗. (7.14)

Write e0 = βGG∗v0 = (I − L)v0 for some v0 ∈ Y and, using Y = ker[G∗] ⊕
R[GG∗], take, without loss of generality v0 ∈ R[GG∗]. It follows that Lkv0 → 0 as
k → ∞ and

uk+1 = u0 + G∗
⎛

⎝
k∑

j=0

Lk

⎞

⎠ (I − L)v0 = u0 + G∗(I − Lk+1)v0 → u∞ (7.15)

as required. Finally, the equations define the minimum norm solution. This can
be verified by the calculation, for any u in the closed linear variety S = {u: r =
Gu + d} ⊂ U , of the inner product 〈u − u∞, u∞ − u0〉U = 〈u − u∞, G∗v0〉U =
〈G(u − u∞), v0〉Y = 0 as G(u − u∞) = 0. This is precisely the condition defining
the orthogonal projection of u0 onto S which, from the Projection Theorem 2.17,
defines the unique solution of the minimum norm problem. �

The results provide a general characterization of convergence properties, guaran-
teed monotonicity and a natural description of the limits. One consequence is that the
choice of u0 has more significance than the simple intuition that a good choice will
influence convergence rates beneficially. More generally, the limit u∞ is the closest
input to u0 in theU topology. That is, the “drift” from u0 during the iterative process
is minimized and choosing u0 = 0 leads to the input u∞ of minimum norm which,
in optimal control terminology, is the minimum energy solution.

7.2 Application to Discrete Time State Space Systems

Application of the Steepest Descent Algorithm 7.2 and Theorem 7.1 to a linear, time
invariant, discrete/sampled-data system with state space model S(A, B, C, D) on a
time interval 0 ≤ t ≤ N requires the characterization of the adjoint of the operator
in the supervector description and an estimate of relevant operator norms.

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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7.2.1 Algorithm Construction

Choice of Spaces: Take the general case where the output space Y = Rm(N+1)

(respectively, input space U = R�(N+1)) has inner product

〈y, z〉Y =
N∑

t=0

yT (t)Q(t)z(t)

(
respectively 〈u, v〉U =

N∑

t=0

uT (t)R(t)v(t)

)
,

(7.16)
where the m × m (respectively, � × �) matrices Q(t) = QT (t) > 0 (respectively,
R(t) = RT (t) > 0) for 0 ≤ t ≤ N . Using the associated characterization of G∗ then
gives,

Algorithm 7.3 (Steepest Descent for Linear, Discrete, State Space Systems) Using
the methodology of Sect. 4.7.1 transforms the input supervector update rule uk+1 =
uk + βG∗ek into feedforward state space computations as follows

uk+1(t) = uk(t) + βR−1(t)vk+1(t) (T he Input Update Rule)

where vk+1(t) = BT pk+1(t) + DT Q(t)ek(t)

for t = 0, 1, 2, . . . , N

and pk+1(t) = AT pk+1(t + 1) + CT Q(t + 1)ek(t + 1)

for t = 0, 1, 2, . . . , N − 1, with pk+1(N) = 0. (7.17)

These computations are done between iterations using data ek(t) and reverse time
simulation of the state equations for pk+1(t).

Choice of Weighting Matrices: The choice of weighting matrices {Q(t)}0≤t≤N and
{R(t)}0≤t≤N is a design choice reflecting

1. the physical units used for inputs and outputs and their relative importance in
measuring accuracies and convergence rates and/or

2. the relative importance of different times/time intervals in measuring tracking
accuracy and the required convergence rates. For example,

a. if it is more important to achieve convergence rapidly in the initial parts of
the time interval, the choice of “ε-weighting” and Q(t) = ε2tQ (with Q time
independent) and 0 < ε < 1 will slowly reduce the weighting as t increases.
The range of weights is from unity (at t = 0) to ε2N at t = N which provides
an insight into the choice of ε to meet the needs of the application.

b. If the priority is to meet accuracy requirements, very quickly, at specified
intermediate times 0 < t1 < t2 < · · · < tM with other times being of much
less importance, then an intuitive choice is obtained using a “small” parameter
ε > 0 and setting

Q(t) = Q if t = tj and Q(t) = ε2Q otherwise. (7.18)

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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Note: The reader may like to consider how this idea can be generalized to
allocate greater emphasis to several subintervals t1 ≤ t ≤ t̂1 , t2 ≤ t ≤ t̂2 ,
t3 ≤ t ≤ t̂3 etc. Applications for this generalization can be illustrated if there
is only one such interval and convergence on the intervals 0 ≤ t < t1 and
t̂1 < t ≤ N is relatively unimportant to the practical outcome. Intuitively,
the small weighting on these intervals will lead to iteration evolution where
emphasis is initially placed on the tracking on t1 ≤ t ≤ t̂1. The very small
weighting on the other intervals will allow control actions on those intervals
to operate in a manner that will accelerate convergence on t1 ≤ t ≤ t̂1.

3. The choice of {R(t)}0≤t≤N may arise out of a real need to converge to a minimum
input energy solution. More generally, there will be a need to reflect the physical
units used and the priorities or preferences describing time intervals or loops
where control action/input change activity should be limited. They could also be
constructed for algorithmic reasons such as the use of ε-weighting by choosing
R(t) = ε2tR.

Together with the choice of β, the choices made will have an impact on the observed
rate and nature of the observed convergence.
The Role of β and R: β and R appear in the update formula as a product βR−1(t).
This product controls the relative magnitude of the changes in loop inputs and is
crucial to algorithm performance and the issue of allowing the user to tailor the
evolution to meet the needs of the application. It suggests that β can be absorbed
into R without any loss of generality. In this sense, β is irrelevant to the mathematics
of the problem. However, for the purposes of this text and applications, β is retained
as a design parameter and

1. the choice of the values ofR(t), 0 ≤ t ≤ N is assumed to be fixed before iterations
begin, the choice being based on issues of energy measurement, unit choice and
the degree of activity required in individual control loops.

2. β is then regarded as a “tuning parameter” available to the user as a simple
mechanism for influencing/changing convergence rates and robustness.

Computation of β∗: Computing a range of learning gains β ∈ (0, β∗) that produce
convergence can be approached in the cases when the weights are iteration indepen-
dent. That is, when Q(t) = Q and R(t) = R for all 0 ≤ t ≤ N . Here, Q and R are
symmetric and positive definite matrices. First use Theorem 2.13 to show that

r(GG∗) = r(G∗G) and hence that ‖G∗‖2 = ‖GG∗‖ = ‖G∗G‖ = ‖G‖2. (7.19)

Then compute the required range 0 < β < β∗ = 2
‖G‖2 . Applying, Theorem 4.5 then

provides a slightly smaller, but useful, range of gains in the form

0 < β <
2

‖Q
1
2 G(z)R− 1

2 ‖2∞
= 2

(
sup
|z|=1

r(R−1GT (z−1)QG(z)

)−1

(7.20)

computed using eigenvalue evaluation for z = eiθ with 0 ≤ θ < 2π .

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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Choice of β: The final choice of β for an application could be guided by intuitive
ideas suggested by eigenvalue structure and robustness characterizations or, given
an estimate of β∗, simple trial and error. The user may wish to change the gain
β on each iteration. The analysis of the consequences can be approached using
eigenanalysis to each such iteration but the nature of the convergence will depend
upon the chosen pattern of gain variations. One such approach could be to start
iterations in a cautious manner with “small” values of β such as β = 0.1β∗. This
value can then be increased each iteration until adequate convergence rates and
perceived robustness are regarded as being satisfactory. Following this initial gain
selection, the reminder of the iterations could proceed with some confidence with
the final chosen value βfinal on, say, iteration kfinal. Note that variations in β require
that the minimum norm characterization of u∞ needs to be reinterpreted as the input
(solving the tracking problem) minimizing ‖u − ufinal‖2U .

7.2.2 Eigenstructure Interpretation: Convergence in Finite
Iterations

Suppose that G is the matrix in a supervector description of an �-input, m-output,
discrete time, state space system S(A, B, C, D). In this circumstance, the condition
ker[G] = ker[G(A, B, C, D)] = {0} holds if, and only if, ker[D] = {0}. Simi-
larly, the condition ker[G∗] = {0} holds if, and only if, ker[DT ] = {0}. That is,
rank[D] = � (respectively rank[D] = m). As the matrix GG∗ is self adjoint, the
eigenstructure interpretation of steepest descent iteration is possible and is identical
to that of Sect. 5.2.4 with orthogonality of eigenvectors expressed in terms of the
inner product defined by the {Q(t)}0≤t≤N in Eq. (7.16).

Suppose initially that β is constant from iteration to iteration. Using the notation
of Sect. 5.2.4, note that algorithm convergence, combined with very rapid conver-
gence of the component corresponding to a chosen eigenvector vj, is only possible
if, within the range 0 < βr(GG∗) < 2, there exists a β such that 1 − βλj is close to
zero. In fact, if 1 − βλj = 0, then the contribution of vj is eliminated from the error
in one iteration. Once eliminated, it will never reappear unless the plant is subject to
external disturbances and/or the plant model is inaccurate.

However, it is clearly open to the user to change β on each iteration opening up the
possibility of eliminating each eigenvector component sequentially. The application
of this idea motivates a consideration of the following conceptual algorithm, based
on the sequential elimination of the eigenvector components corresponding to an
ordering λj1, λj2 , . . . of the non-zero eigenvalues of GG∗.

Algorithm 7.4 (Theoretical Convergence in a Finite Number of Iterations) Suppose
that Y is finite dimensional of dimension dim[Y ]. Let λj1, λj2 , λj3 , . . . be a chosen
ordering of the non-zero eigenvalues of GG∗ and suppose that GG∗ has q zero
eigenvalues (that is ker[G∗] has dimension q). Then the parameter varying Iterative

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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Control algorithm,

uk+1 = uk + βk+1G∗ek, k ≥ 0, with the choice 1 − βk+1λjk+1 = 0, (7.21)

converges to the limit e∞ defined by Eq. (5.74) in a finite number of iterations.

Proof of Algorithm Properties: Write e0 = ∑
p≥1 γpvp. Note that the proposed

iteration generates the error sequence

ek =
⎛

⎝
k∏

j=1

(
I − βjGG∗)

⎞

⎠ e0 =
∑

p≥1

γp

⎛

⎝
k∏

j=1

(
I − βjλp

)
⎞

⎠ vp, k ≥ 1. (7.22)

The discussion of eigenstructure indicates that the choice of β = β1 on the first
iteration eliminates the component of vj1 from the error. By induction, the use of
β = βk on iteration k eliminates the component of vjk but does not reintroduce the
previously eliminated components. The iteration terminates after, atmost,dim[Y ]−q
iterations as all non-zero eigenvalues have been covered and hence all corresponding
eigenvectors vj eliminated. �
Discussion and Extension: Although conceptually interesting, the approach is not
presented as a practical design policy as small values ofλj will lead to very high values
of βj and hence to extremely large transient variations in error norm. This problem
will become intolerable if model errors are present when elimination of eigenvector
components will not be achieved in any iteration and/or may be re-introduced in later
iterations.

If the algorithm is to stay within its range of convergence, it is essential only to
use gains in the range 0 < βk‖G‖2 < 2. In this case, the variable gain algorithm
can, in principle, be used to eliminate all components with eigenvalues satisfying
λj > 1

2‖G‖2 in a finite number of iterations after which convergent iterations can
continue with a constant value of β. Although this looks, at first sight, like a practical
approach, it is possible that ‖G‖2 can be computed or estimated accurately (using
frequency domain analysis) whereas it is highly unlikely that the eigenvalues will
be known or computed. However, substantial reductions to all components with
eigenvalues satisfying λj > 1

2‖G‖2 can be achieved by using the following algorithm

Algorithm 7.5 (Suppression of Eigenvalues λ ∈ ( 12‖G‖2, ‖G‖2]) Choose a finite
number Np of points p1, p2, . . . spread over the half-open interval ( 12‖G‖2, ‖G‖2]
and set the gain βk = p−1

k on any iteration k ≤ Np. If, on subsequent iterations, a
fixed value in the range 0 < β‖G‖2 < 2 is used, it follows that the resultant error
sequence has the form

ek =
(∏k

j=1
(I − βjGG∗)

)
e0, for 1 ≤ k ≤ Np, and

ek = (I − βGG∗)(k−Np)eNp , for k ≥ Np. (7.23)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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Here, eNp is, in effect, the initial error for the remainder of the iterative process
and the properties of fixed gain iteration are known, namely convergence to e∞ =
Pker[G∗]eNp = Pker[G∗]e0. The error eNp will have had the contributions of eigenvec-

tors with eigenvalues in the interval ( 12‖G‖2, ‖G‖2] greatly reduced provided that,
for each such eigenvalue, at least one value of pj is very close to that eigenvalue.
This is easily verified by computing the coefficient of vj in eNp to have magnitude

∣∣∣∣∣∣
γj

Np∏

i=1

(1 − p−1
i λj)

∣∣∣∣∣∣
≤ |γj| min

1≤i≤Np
{|1 − p−1

i λj|} � |γj|. (7.24)

Two observations can be made:

1. The choice of Np is open to the user. Intuitively, Np should be large enough
to provide “adequate cover” of the interval ( 12‖G‖2, ‖G‖2]. In addition the set
{pj}1≤j≤Np could contain repeated entries, a property that is equivalent to repeated
efforts to reduce the eigenvectors in the selected range.

2. Intuitively, the approach will increase convergence speed in the first Np iterations
as compared with the case of a constant β taken from the same interval.

A Link to the Frequency Domain: An empirical relationship between eigenvalues
and frequency response characteristics is provided in the next subsection. This link
suggests that careful choice of the pj could target specific frequency ranges and
problematic issues such as resonance. For the SISO case with Q = R = 1, this link
suggests the choice of

pj = |G(zj)|2, 1 ≤ j ≤ Np, (7.25)

where {zj}1≤j≤Np are chosen frequency points that provide “cover” for the frequency
range where the transfer function G(z) has gain in the range

√
1

2
‖G(z)||∞ < |G(z)| ≤ ‖G(z)||∞ where ‖G(z)‖∞ = sup

|z|=1
|G(z)|. (7.26)

For the MIMO case, the natural extension is to cover frequencies in the range where

1

2
sup
|z|=1

r(R−1GT (z−1)QG(z)) < r(R−1GT (z−1)QG(z)) ≤ sup
|z|=1

r(R−1GT (z−1)QG(z)).

(7.27)

It is interesting to note that:

1. The Effect of Resonance: If there is a substantial resonance in G(z), this phe-
nomenon will mean that the value of ‖G‖ is possibly very large with the majority
of frequencies having gains that are outside of the interval ( 12‖G‖2, ‖G‖2]. This
will lead to slow convergence as the corresponding values of β will be small.With
this interpretation, the elimination or reduction of resonances in G(z) is seen to
be essential for good algorithm performance.
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2. A Frequency Range Interpretation: Interpreting the number of eigenvalues in
the range ( 12‖G‖2, ‖G‖2] as ameasure of the width of the frequency band covered
by the algorithm, it is seen that the choice of Q and R will influence this aspect.
It might be expected that Q is selected on the basis of the required measure
of error convergence. In contrast R, unless required for other design purposes, is
available to increase the frequency band covered.At this time there is no additional
theoretical information about this issue and there are no algorithms that consider
this option.

7.2.3 Frequency Domain Attenuation

Practicing engineers tend to be familiar with frequency domain characterizations of
control design processes and dynamics. In Iterative Control, this is possible in some
cases using a frequency domain interpretation of the error evolution equation. How-
ever, as Iterative Control is based on finite time intervals, the interpretation is approx-
imate and improves in accuracy only as N → ∞. For steepest descent iteration, the
following analysis relates frequency response characteristics of the operator GG∗ to
the transfer function matrix G(z)R−1GT (z−1)Q. For SISO systems this quantity is
just QR−1|G(z)|2 which provides a link to familiar frequency domain gain charac-
teristics such as resonance, bandwidth, “notch frequencies” and the significance of
pole and zero positions.

For an asymptotically stable, discrete, time invariant system S(A, B, C, D) with
transfer function matrix G(z) = C(zI − A)−1B + D, the matrix G(A, B, C, D)

in the supervector description on 0 ≤ t ≤ N is the core object for eigenvalue
analysis of GG∗. There is no formula for these eigenvalues but a link to frequency
responses is provided using the ideas in Sect. 4.8.2. More precisely, the inner prod-
ucts and norms in Y = Rm(N+1) and U = R�(N+1) are taken to be defined by
Eq. (7.16) with constant Q(t) = Q and R(t) = R, 1 ≤ t ≤ N . Using Theorem 2.7,
the adjoint is then G∗ = T (�, N)G(AT , CT Q, R−1BT , R−1DT Q)T (m, N) where
T (·, ·) represents the time reversal operator of Sect. 4.3. Consider a complex val-
ued supervector u(z, α) associated with a time series u(z, α) = {u(t, z, α)}0≤t≤N =
{α, αz, αz2, . . . , αzN } with α ∈ C m. Its time reversal is just zN u(z−1, α). Operating
with G(AT , CT Q, R−1BT , R−1DT Q) produces the time series ψ1(t), 0 ≤ t ≤ N ,

ψ1(t) = R−1GT (z−1)QzN−tα + η1(t)

where η1(t) = −R−1BT (z−1I − AT )−1(AT )tCT QzNα. (7.28)

A number of properties of this expression are important. Note that

1. the stability assumption implies that the norm of the supervector η1 of the time
series η1(t) is uniformly bounded over both N and the unit circle |z| = 1,

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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sup
N≥0 & |z|=1

‖η1‖ < +∞. (7.29)

2. In particular, ‖η1(t)‖ ≤ M‖α‖λt for some M > 0 and λ ∈ (0, 1) (both indepen-
dent of N and |z| = 1). It takes small values for all 0 � t ≤ N and values of η1(t)
that are significant are clustered towards the beginning of the interval 0 ≤ t ≤ N .

The time reversal of ψ1 is just

ψ1(N − t) = R−1GT (z−1)Qztα + η1(N − t)

= R−1GT (z−1)Qu(t, z, α) + η1(N − t). (7.30)

Operating on this time series withG(A, B, C, D) then leads to the supervector y(z, α)

associated with the output time series {y(t, z, α)}1≤t≤N defined as follows,

Theorem 7.3 (Frequency Attenuation and GG∗) Using the construction and nota-
tion of the discussion above,

y(t, z, α) = G(z)R−1GT (z−1)Qu(t, z, α) + η2(t), 0 ≤ t ≤ N , (7.31)

where η2(t) is uniformly bounded over all N and |z| = 1. It also has the property
that its significant values are clustered at the beginning and end of the time interval
by an expression of the form

‖η2(t)‖ ≤ M‖α‖(λt + λN−t), for 0 ≤ t ≤ N, and (7.32)

for some M > 0 and λ ∈ (0, 1) (independent of N and |z| = 1). In particular, it
follows that the limit lim supN→∞ ‖η2‖ is finite.

Proof In supervector notation,

y(z, α) = G(A, B, C, D)ψ(z, α)

= G(A, B, C, D)
(

u(z, R−1GT (z−1)Qα) + T (�, N)η1

)

= G(A, B, C, D)u(z, R−1GT (z−1)Qα) + T (m, N)G(AT , CT , BT , DT )η1.

(7.33)

The proof is completed using the techniques used in the preceding discussion. �

Note that η2(t) is small in the “mid-range” 0 � t � N , a range which dominates
the nature of the time series if N is large. The important conclusion is that, in this
range, a good approximation to output behaviour is

y(t, z, α) ≈ G(z)R−1GT (z−1)Qu(t, z, α) , (7.34)

so the properties of them×m transfer functionmatrixG(z)R−1GT (z−1)Q are central
to behaviour of the algorithm.
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Now note that G(z)R−1GT (z−1)Q = Q−1/2
(
Q1/2G(z)R−1GT (z−1)Q1/2

)

Q1/2 is obtained, using a similarity transformation, from a positive Hermitian matrix
when |z| = 1 and hence has real eigenvalues σ 2

j (z) ≥ 0 with associated eigenvectors

wj(z) that are orthonormal with respect to the inner product 〈y, w〉 = yT Qw in C m.
Let zk = e2π ik/(N+1), 0 ≤ k ≤ N , be the distinct (N + 1)th roots of unity. Then an
orthogonal basis for the complexification Yc = C m(N+1) = Y ⊕ iY of Y is,

Wj(zk) =
[
wT

j (zk), wT
j (zk)zk, wT

j (zk)z
2
k , . . . , wT

j (zk)z
N
k

]T
, 1 ≤ j ≤ m, 0 ≤ k ≤ N, (7.35)

where each basis vector has norm
√

N + 1. Normalizing this basis by replacing

Wj(zk) by (N + 1)− 1
2 Wj(zk) then gives, using Theorem 7.3,

GG∗Wj(zk) = σ 2
j (zk)Wj(zk) + ηj,k

where ‖Wj(zk)‖ = 1 and lim
N→∞ ‖ηj,k‖ = 0. (7.36)

asWj(zk) can be associatedwith the input sequenceu(t, zk, (N+1)− 1
2 wj(zk)). Clearly

the Wj(zk) are normally not eigenvectors of GG∗ but they can be regarded as approx-
imate eigenvectors when N is large.
The results above are summarized in the form of the following theorem. The result
assumes the notation used in the preceding discussion.

Theorem 7.4 (Frequency Domain Approximate Eigenvector Properties of GG∗)
Suppose that the discrete system S(A, B, C, D) is asymptotically stable and that the
output space Y = Rm(N+1) (respectively, input space U = R�(N+1)) has inner
product

〈y, z〉Y =
N∑

t=0

yT (t)Qz(t) (respectively 〈u, v〉U =
N∑

t=0

uT (t)Rv(t)) , (7.37)

where the m×m (respectively, �×�) matrix Q = QT > 0 (respectively, R = RT > 0).
Then, the response y = GG∗u to the complex input u(t) = u(t, z, α) is the time series

y(t, z, α) = G(z)R−1GT (z−1)Qu(t, z, α) + η2(t), 0 ≤ t ≤ N . (7.38)

Moreover, η2(t) is uniformly bounded over all N and the unit circle |z| = 1. It also
has the property that its significant values are clustered at the beginning and end of
the time interval as

‖η2(t)‖ ≤ M‖α‖(λt + λN−t), for 0 ≤ t ≤ N , (7.39)
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for some M > 0 and λ ∈ (0, 1) (independent of N and |z| = 1). Finally, let
zk = e2π ik/(N+1), 0 ≤ k ≤ N, be the (N + 1)th roots of unity, and set {wj(zk)}1≤j≤m

to be the orthonormal eigenvectors of G(zk)R−1GT (z−1
k )Q (in C m) associated with

eigenvalues {σ 2
j (zk)}1≤j≤m, then the basis vectors {Wj(zk)} defined by Eq. (7.35) all

have the approximate eigenstructure property

GG∗Wj(zk) = σ 2
j (zk)Wj(zk) + ηj,k

where ‖Wj(zk)‖Yc = 1 and lim
N→∞ ‖ηj,k‖Yc = 0. (7.40)

Consequences for the steepest descent algorithm? Assume that the spaces Y
and U and the inner products of Theorem 7.4 are used. Remembering that (The-
orem 2.13) ‖G‖ = ‖G∗‖, it is only necessary to consider the gain range 0 <

β‖Q1/2G(z)R−1/2‖2∞ < 2where ‖Q1/2G(z)R−1/2‖2 can be computed as the spectral
radius sup|z|=1 r(G(z)R−1GT (z−1)Q). The Iterative algorithm is then monotonically
convergent. Also 0 < βσ 2

j (z) < 2, 1 ≤ j ≤ m, and |1 − βσ 2
j (zk)| < 1. A simple

calculation shows that

(I − βGG∗)Wj(zk) = (1 − βσ 2
j (zk))Wj(zk) − βηj,k . (7.41)

That is, assuming zero initial conditions and a starting vector consisting of a single
frequency component e0 = Wj(zk), the approximate effect of each iteration is to
produce a response with magnitude reduced by |1− βσ 2

j (zk)| and dominated by the
same frequency as the input. This approximation will be good, ifN is large, at sample
times in the mid-range 0 � t � N of the interval 0 ≤ t ≤ N .

Attenuation of Discrete Frequencies: Normally e0 will contain contributions
from all frequency components. If the initial error is written in the form e0 =∑

j,k γjk Wj(zk) then, using the steepest descent algorithm, assuming that N is large,
a simple conceptual model of iteration dynamics is to write the initial amplitudes

γjk = 〈W T
j (zk), e0〉Yc = 1

(N + 1)1/2

N∑

t=0

(
wT

j (zk)Qe0(t)
)

z−t
k . (7.42)

The amplitude of each discrete frequency z0, z1, . . . , zN is then attenuated approx-
imately by a factor of 1 − βσ 2

j (zk) from iteration to iteration. This statement is
approximate as the contribution of the term ηj,k , although small, does have an effect
and is not included in the argument. Despite this approximation, the analysis does
provide guidance on the effects in the frequency domain. For example, intuitively,

1. convergence rates for high frequency inputs will be slow if the plant G(z) is low
pass. This is because σ 2

j (zk) can be interpreted as as a system “gain” at the fre-

quency zk . First note that ‖G∗Wj(zk)‖ ≈ σ 2
j (zk)‖Wj(zk)‖ if N is large. That is,

usingG∗, the eigenvector componentWj(zk) is attenuated byσ 2
j (zk). As the eigen-

values of GG∗ are identical to those of G∗G, ‖GW̃j(zk)‖2 = σ 2
j (zk)‖W̃j(zk)‖2

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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for some orthonormal eigenvectors {W̃j(zk)} ⊂ U which shows that the smallest
values of the eigenvalues will be very small if G is low pass.

2. Resonances will cause problems as they will reduce the range of β that can be
used. More generally, when m = �, the effect of plant zeros close to the unit circle
will cause slow convergence at frequencies zk close to that zero as the smallest
singular value σ of G(z) will be small and hence at least one value of 1−βσj(zk)

will be close to unity.

A Useful Generalization: Finally, The frequency domain interpretation extends
naturally to more general iterative operations. For example, noting that, for all ε > 0,

(I + ε−2GG∗)Wj(zk) =
(
1 + ε−2σ 2

j (zk)
)

Wj(zk) + ε−2ηj,k, (7.43)

Theorem 7.5 (The Frequency Domain, (I + ε−2GG∗)−1 and NOILC) With the
notation and construction defined above

(I + ε−2GG∗)−1Wj(zk) = (I + ε−2σ 2
j (zk))

−1Wj(zk) + ηNOILC
j,k

where ‖Wj(zk)‖Yc = 1 and limN→∞‖ηNOILC
j,k ‖Yc = 0. (7.44)

The result provides insight into the frequency domain effects of the operator (I +
ε−2GG∗)−1. This operator plays a central role in error evolution in Norm Optimal
Iterative Learning Control in later chapters.

7.3 Steepest Descent for Continuous Time State Space
Systems

Algorithm 7.6 (Continuous Time Steepest Descent Algorithm) Let G be generated
by a linear, continuous time, time invariant, state space system S(A, B, C, D) with
input space U = L�

2[0, T ] and output space Y = Lm
2 [0, T ] with inner products,

respectively,

〈u, v〉U =
∫ T

0
uT (t)R(t)v(t)dt and 〈y, w〉Y =

∫ T

0
yT (t)Q(t)w(t)dt (7.45)

where Q(t) and R(t) are piece-wise continuous, symmetric , positive definite matri-
ces. The adjoint system is constructed using the data {Q(t)}0≤t≤T , {R(t)}0≤t≤T and
dynamics S(−AT ,−CT , BT , DT ) with a zero terminal condition.
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The steepest descent algorithm constructs the input uk+1 = uk +βG∗ek using the
feedforward calculations

uk+1(t) = uk(t) + βR−1(t)vk+1(t), for t ∈ [0, T ],
where vk+1(t) = BT ψk+1(t) + DT Q(t)ek(t)

and ψ̇k+1(t) = −AT ψk+1(t) − CT Q(t)ek(t), with ψk+1(T ) = 0. (7.46)

Convergence properties are described by Theorems 7.1 and 7.2. The computation
of ψk+1(t) is approached using reverse time simulation from the terminal condition
t = T . Alternatively, setting ηk+1(t) = ψk+1(T − t), then ηk+1(t) can be computed
from the initial value problem

η̇k+1(t) = AT ηk+1(t) + CT Q(T − t)ek(T − t), with ηk+1(0) = 0 . (7.47)

The role of theweightingmatrices in this case is a direct parallel to that seen in the case
of discrete time systems and is not discussed further here. The calculation of ‖G∗‖
is more complex however, even in the case of time independent Q(t) and R(t). This
case can be analysed if G is asymptotically stable by identifying G∗ as the product
of a time reversal operator on [0, T ], the system S(AT , CT Q, R−1BT , R−1DT Q) and
a time reversal operator. As time reversal operators have unit norm, the use of the
Laplace Transform description and Parseval’s Theorem leads to the norm bound

‖G∗‖ ≤
√
sup
ω≥0

r(G(iω)R−1GT (−iω)Q) (7.48)

which can be identified as the H∞ norm of R−1/2GT (s)Q1/2.
Finally, the introduction of relaxation parameters (see Sect. 5.2.3) yields,

Algorithm 7.7 (Continuous Time Steepest Descent with Relaxation) With the nota-
tion of Algorithm 7.6, replace the input update rule by

uk+1(t) = αuk(t) + βR−1(t)vk+1(t), for t ∈ [0, T ] , and k ≥ 0 , (7.49)

Convergence to a limit error eα∞ follows for all choices of α in the range

− 1 + β‖G∗‖2 < α ≤ 1 (as μ2
0 = 2 − β‖G∗‖2) . (7.50)

1. If α = 1, then eα∞ is equal to the orthogonal projection of e0 onto the subspace
ker[G∗].

2. If α < 1, then the limit error eα∞ is the unique solution of the equation

(1 − α)(r − d) = ((1 − α)I + βGG∗)eα∞ . (7.51)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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3. If, α < 1 and, in addition, GG∗ ≥ ε20I for some ε0 > 0, then

limα→1− eα∞ = 0 . (7.52)

in the norm topology in Y .
4. More generally, if no such ε0 exists, the limit errors eα∞ converge (as α → 1− )

in the weak topology in Y to the orthogonal projection of r − d onto ker[G∗].
Proof of Algorithm Properties: The case of α = 1 is the unrelaxed algorithm. It
is only necessary, therefore, to consider the case of α < 1. The error evolution is
ek+1 = Lek + (1− α)(r − d). L = (αI − βGG∗) = L∗ is self adjoint with spectrum
on the real interval α − β‖G∗‖2 ≤ λ ≤ α. For the specified range of α, r(L) < 1.
Noting that I − L = (1 − α)I + βGG∗) has a bounded inverse, Theorems 5.3 and
5.4 (with H = βGG∗) prove convergence to some limit eα∞ for all r ∈ Y . If ε20 > 0,
then the behaviour of eα∞ as α varies follows from Theorem 5.11. Finally, Y has the
orthogonal subspace decompositionR[GG∗]⊕ker[GG∗] and ker[GG∗] = ker[G∗].
Theorem 5.11 and the orthogonal decomposition ofY proves the weak convergence
property. The details are left for the reader as an exercise. �

Finally, the behaviour of the limit error eα∞ as α varies is seen to be very different
in the two cases of α = 1 and α → 1−. In the second case, the effect of the
initial input choice u0 is seen to disappear leaving the limit equivalent to the use of
the unrelaxed algorithm with u0 = 0. In effect, the relaxed algorithm “forgets” its
starting condition and α could be called a “forgetting factor”.

7.4 Monotonic Evolution Using General Gradients

Return now to the general feedforward iteration uk+1 = uk + βK0ek . In this section,
conditions for monotonic convergence are identified when K0 has no presumed inter-
nal structure but, with carefully chosen β, produces gradient properties. More pre-
cisely, using Theorem 6.3 with U replaced by GK0,

Algorithm 7.8 (Positivity of GK0 and Monotonic Convergence) Suppose that Y
is a finite or infinite dimensional, real Hilbert space with inner product 〈·, ·〉Y
and associated induced norm. Consider the feedforward Iterative Control algorithm
uk+1 = uk +K0ek, k ≥ 0, withK0 : Y → U linear and bounded. Then, a necessary
condition for monotonic convergence is that

GK0 + (GK0)
∗ > 0 (A Strict Positivity Condition). (7.53)

In particular, it is necessary that ker[GK0] = {0}.

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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If Y is finite dimensional, it is necessary that there exists a real number ε0 > 0
such that

GK0 + (GK0)
∗ ≥ ε20I (A Stronger Strict Positivity Condition). (7.54)

In both the finite and infinite dimensional cases, the validity of condition (7.54)
implies that there exists a real number β∗ > 0 such that, for any choice of β ∈
(0, β∗), it is possible to compute a real number λ(β) < 1 (dependent on β) such that
monotonic error convergence is guaranteed as ‖(I − βGK0)‖ ≤ λ(β) < 1. Finally,
the largest possible choice of β∗ lies in the range

β∗∗ = ε20

‖GK0‖2 ≤ β∗ ≤ 2

‖GK0‖ . (7.55)

The algorithm can be interpreted in computational terms as providing conditions for
K0ek to be a Descent Direction for ‖e‖2Y at ek . The existence of ε20 > 0 then guar-
antees the existence of a range of gains β that produce norm reduction independent
of e0 and hence independent of ek at each iteration. Insight into the general meaning
of the conditions can be obtained from the special case where both G and K0 are
the matrices in the supervector descriptions of discrete time, state space models of
transfer function matrices G(z) and K(z) on some interval 0 ≤ t ≤ N .

1. Theorems 4.5 and 4.6 indicate that a sufficient condition for (7.54) to hold is that

H(z) = QG(z)K0(z)+KT
0 (z−1)GT (z−1)Q ≥ ε20Q whenever |z| = 1 . (7.56)

In the simplest case when Q = Im, the matrix H(z) is Hermitian with real eigen-
values hmin(z) = h1(z) ≤ h2(z) ≤ · · · ≤ hm(z) and the condition becomes
min|z|=1 hmin(z) > 0. It is then possible to choose ε20 = min|z|=1 hmin(z).

Note: this condition is particularly simple in the case of SISO systems (m = � =
1) when it is equivalent to the requirement that the Nyquist plot of GK0(z) lies in
the region to the right of the vertical line { z : 2Re[z] = ε20 > 0 } in the complex
plane. It indicates the role of K0 as a phase compensation component as, if G has
substantial phase lag, it will be essential that K0 has compensating phase lead.
The use of K0 = G−1 provided this property for inverse model algorithms but at
the price of introducing complexity and possible controller instabilities.

2. Given a value of ε20 > 0, Theorems 4.5 and 4.6 then indicate that convergence to
zero is guaranteed if

‖Q1/2(I − βG(z)K0(z))Q
−1/2‖∞

=
√
sup|z|=1r

(
Q−1(Im − G(z−1)K0(z−1))T Q(Im − G(z)K0(z))

)
< 1 ,

(7.57)
a condition that can be checked computationally. The existence of suitable values
of β is guaranteed up to a value of β∗ that can be taken to be in the range obtained
by replacing ‖GK0‖ by the upper bound

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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‖Q1/2G(z)K0(z)Q
−1/2‖∞ =

√
sup
|z|=1

r
(
Q−1KT

0 (z−1)GT (z−1)QG(z)K0(z)
)
.

(7.58)
Note: Again the SISO case simplifies the picture with Eq. (7.57) being interpreted
as the need for the Nyquist plot of G(z)K0(z) to be contained in the open circle
of centre (β−1, 0) and radius β−1 in the complex plane.

It is essential to examine the case when the strict positivity condition (7.54) is
not satisfied. An alternative approach can be used if ker[G] = {0} using subsidiary
signals in a similar manner to the left inverse model algorithm. It is left as an exercise
for the reader to confirm the following statements.

Algorithm 7.9 (Positivity of K0G and Monotonicity of Subsidiary Signals) Suppose
thatU is a finite or infinite dimensional, real Hilbert space with inner product 〈·, ·〉U
and associated induced norm. Suppose that ker[G] = {0}, that e0 ∈ R[G] and that
u∞ is the unique input that provides exact tracking of r i.e. r = Gu∞. Consider the
feedforward IterativeControl algorithmuk+1 = uk+K0ek, k ≥ 0withK0 : Y → U
linear and bounded. Then ek ∈ R[G] for all k ≥ 0 and, writing ek = Gwk for all
k ≥ 0, the subsidiary signals {wk}k≥0 in U are simply wk = u∞ − uk, k ≥ 0, and
satisfy the evolution equation

wk+1 = (I − βK0G)wk, k ≥ 0 . (7.59)

Under these conditions, a necessary condition for monotonic convergence of the
subsidiary signals is that

K0G + (K0G)∗ > 0 (A Strict Positivity Condition). (7.60)

Moreover, if U is finite dimensional, it is necessary that there exists a real number
ε0 > 0 such that

K0G + (K0G)∗ ≥ ε20I (A Stronger Strict Positivity Condition). (7.61)

In both the finite and infinite dimensional cases, the validity of condition (7.61)
implies that there exists a real number β∗ > 0 such that, for any choice of β ∈
(0, β∗), it is possible to compute a real number λ(β) < 1 (dependent on β) such that
monotonic convergence of the subsidiary signals is guaranteed as ‖(I − βK0G)‖ ≤
λ(β) < 1. Finally, {ek}k≥0 is then convergent to zero and the largest possible choice
of β∗ lies in the range

β∗∗ = ε20

‖K0G‖2 ≤ β∗ ≤ 2

‖K0G‖ . (7.62)

If G and K0 are the matrices in the supervector descriptions of discrete time state
spacemodels of transfer functionmatricesG(z) andK(z) on some interval 0 ≤ t ≤ N
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then Theorem 4.9 indicates that a sufficient condition for (7.61) to hold is that

RK0(z)G(z) + GT (z−1)KT
0 (z−1)R ≥ ε20R whenever |z| = 1 . (7.63)

Convergence is then guaranteed for β ∈ (0, β∗) if

‖R1/2(I − βK0(z)G(z))R−1/2‖∞
=

√
sup|z|=1r

(
R−1(I� − K0(z−1)G(z−1))T R(I� − K0(z)G(z))

)
< 1

(7.64)
whilst Theorems 4.5 and 4.6 indicate that a suitable value of β∗ can be taken to be
in the range obtained by replacing ‖K0G‖ by

‖R1/2K0(z)G(z)R−1/2‖∞ =
√
sup
|z|=1

r
(
R−1GT (z−1)KT

0 (z−1)RK0(z)G(z)
)
. (7.65)

Note: In the case of SISO systems the two analyses are identical as both Q and R
cancel from the relationships and, trivially, G(z)K0(z) = K0(z)G(z).

7.5 Discrete State Space Models Revisited

7.5.1 Gradients Using the Adjoint of a State Space System

Steepest descent algorithms use the adjoint G∗ of the operator G associated with the
plant as the choice of feedforward elementK0. The benefits and simplicity seen in this
case suggests that the choice of K0 as the adjoint K∗ of an operator K that is simpler
than, but not necessarily the same as, the plant G might provide useful control laws
and design tools. Typically, it could be envisaged that, by choosing K as a simplified
model of G with reduced state dimension, the computational load when computing
the input signal uk+1 from uk and ek will be reduced whilst simultaneously satisfying
other conditions (such as those discussed in what follows) that ensure monotonic
convergence.

Suppose that G is generated by an m-output, �-input, asymptotically stable,
discrete, state space system S(A, B, C, D) and that the compensator K0 = K∗ is
generated as the adjoint K∗ of the m-output, �-input, asymptotically stable sys-
tem K described by the state space model S(AK , BK , CK , DK ). The topologies in
Y = Rm(N+1) andU = R�(N+1) are assumed to be those defined in Theorem 7.4.

Algorithm 7.10 (Gradient Algorithms Using an Adjoint System K∗) Using the nota-
tion defined above, an Iterative Algorithm using the adjoint K∗ of S(AK , BK , CK ,

DK ), takes the form of the input supervector update computation

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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uk+1 = uk + βK∗ek, k ≥ 0 , (7.66)

with scalar gain β > 0. In state space form, this update takes the form

uk+1(t) = uk(t) + βR−1vk+1(t) (T he Input Update Rule)

where vk+1(t) = BT
K pk+1(t) + DT

K Qek(t) for t = 0, 1, 2, . . . , N

and pk+1(t) = AT
K pk+1(t + 1) + CT

K Qek(t + 1), with pk+1(N) = 0. (7.67)

It is assumed throughout the following analysis that both G and K are asymptotically
stable and that

rank[D] = rank[DK ] = min{m, �}. (7.68)

In particular, this guarantees the existence of left or right inverses.

Computational Note: The condition rank[DK ] = min{m, �} is a design choice.
In contrast, achieving the condition rank[D] = min{m, �} will typically require a
redefinition of the output using techniques such as those described in Chap. 4.

In a similar manner to Sect. 7.2.3, the response of the non-causal system GK∗ to
a single frequency input time series u(t, z, α) = ztα, 0 ≤ t ≤ N and |z| = 1, has
the form of a time series

y(t, z, α) = G(z)R−1KT (z−1)Qu(t, z, α) + η2(t) , 0 ≤ t ≤ N , (7.69)

where ‖η2(t)‖ ≤ M‖α‖ (
λt + λN−t

)
for some M > 0 and λ ∈ (0, 1). This suggests

that the transfer function matrices G(z), K(z) and G(z)R−1KT (z−1)Q are strongly
related to both performance and convergence properties. In what follows, frequency
domain conditions describing monotonic convergence of the algorithm are derived.

The Case of m ≤ � : Noting that the spaces are finite dimensional, monotonic
convergence using the algorithm uk+1 = uk +βK∗ek with β > 0 is guaranteed if, in
the topology of Y , the inequality (I − βGK∗)∗(I − βGK∗) < I is satisfied. That is,

GK∗ + KG∗ > βKG∗GK∗ , (7.70)

which requires that ker[GK∗] = ker[KG∗] = {0}, and hence that both matrices GK∗
and KG∗ are nonsingular. In addition, this implies the necessary conditions

ker[G∗] = ker[K∗] = {0} , R[G] = R[K] = Y ,

and R[K∗] ∩ ker[G] = R[G∗] ∩ ker[K] = {0} ,

which implies that U = R[K∗] ⊕ ker[G] = R[G∗] ⊕ ker[K] .

(7.71)

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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The basic assumption made in the analysis is that the control element K and plant G
are related by an expression

G = KU. (7.72)

As both G and K are matrices in the supervector description of the plant and con-
troller, it follows that U is a (possibly non-unique) matrix operator U : U → U .
This description is sufficient for a matrix analysis of algorithm properties but, if a
frequency domain interpretation is sought, it seems to be natural to seek a realization
of U as the matrix representation of an �-input, �-output, linear, state space system
S(AU , BU , CU , DU) with �× � transfer function matrix U(z). From this perspective,
the following relationship must hold,

G(z) = K(z)U(z), (7.73)

Note that a simple algebraic analysis indicates that such a transfer function matrix
always exists. For current purposes, U(z) itself requires some structure and it is
assumed that it is asymptotically stable.

The simplest example of this construction is when m = � and K(z) is invertible. It
then follows thatU(z) = K−1(z)G(z)which is stable ifG is stable andK isminimum-
phase. More generally, if m ≤ �, suppose that K has an asymptotically stable right
inverse KR generated from a discrete state space model S(AKR, BKR, CKR, DKR)with
�×m transfer function matrix KR(z). In particular, note that K(z)KR(z) = Im and, in
their supervector form, KKR = Im(N+1). In this case, U can be expressed in the form

U = KRG+U0 with transfer function matrix U(z) = KR(z)G(z)+U0(z), (7.74)

where U0 is arbitrary provided that it is asymptotically stable and satisfies KU0 = 0.
Note that, as it is a right inverse, it is necessary that ker[KR] = {0} from which it
follows that

DK DKR = Im, ker[DKR] = {0} and also that
ker[U] = ker[G] if U0 = 0.

(7.75)

Using the matrix description G = KU, monotonic convergence requires that the
operators satisfy

K
(
U + U∗ − βG∗G

)
K∗ > 0 or, equivalently,

Ψ (U, G, β) = U + U∗ − βG∗G > 0 on the subspace R[K∗] ⊂ U . (7.76)

As operator properties, these define monotonic convergence although, if U is non-
unique, it is necessary to find an appropriate choice. In particular, it is sufficient to find
aU that satisfies the conditions and is also positive semi-definite on the full spaceU .
Assuming this possibility, the next step uses the approach described in Theorem 4.9

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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with K replaced by U. It reduces the analysis to an examination of the behaviour of
the quadratic form 〈u, Ψ (U, G, β)u〉U on the full space U . In particular, assume
now that there exists at least one β1 > 0 such that Ψ (U, G, β1) ≥ 0 onU . Then, as
〈u, Ψ (U, G, β)u〉U = 〈u, Ψ (U, G, β1)u〉U + (β1 − β)‖Gu‖2Y , it follows that, for
all β ∈ (0, β1), the operator Ψ (U, G, β) ≥ 0 on U but Ψ (U, G, β) > 0 on R[K∗]
if R[K∗] ∩ ker[G] = {0}. Let β∗ > 0 be the largest value of β1 with this property.
That is

β∗ = sup{ β : Ψ (U, G, β) ≥ 0 on the full space U }. (7.77)

It follows that, for any β ∈ (0, β∗), the condition R[K∗] ∩ ker[G] = {0} ensures
that Ψ (U, G, β) > 0 onR[K∗] and hence that the operator norm ‖(I − GK∗)‖ < 1.
Expressed in frequency domain terms,

Theorem 7.6 (Frequency Domain Convergence Conditions for Non-causal Com-
pensators) Using the notation of the preceding discussion, suppose that m ≤ �,
that G is asymptotically stable and that G and K are related by an expression
G(z) = K(z)U(z) where U(z) is proper and asymptotically stable. Suppose also
that there exists a real scalar β1 > 0 and a choice of U(z) such that, for all z
satisfying |z| = 1, the matrix equation

RU(z) + UT (z−1)R ≥ β1GT (z−1)QG(z) (7.78)

is valid in the (complex) Euclidean Topology in C �. Let β∗ > 0 be the largest such
value of β1. Then, for all choices of β ∈ (0, β∗), the norm ‖(I − βGK∗)‖ ≤ 1 and
the feedforward algorithm represented by the supervector update formula uk+1 =
uk + βK∗ek is monotonically bounded with ‖ek+1‖Y ≤ ‖ek‖Y ≤ ‖e0‖Y for all
k ≥ 0. If, in addition, R[K∗] ∩ ker[G] = {0}, then ‖(I − βGK∗)‖ < 1 and the
sequence is monotonically convergent to the unique limit e∞ = 0.

Proof In supervector form, using Theorem 4.9 with K replaced by U, the condition
(7.78) is a sufficient condition to ensure that U + U∗ ≥ βG∗G on U for all β ∈
(0, β∗). This proves that ‖(I − βGK∗)‖ ≤ 1 and hence the monotonic boundedness
property. Also U + U∗ > βG∗G on R[K∗] (and hence ‖(I − βGK∗)‖ < 1) if
R[K∗] ∩ ker[G] = {0}. This proves monotonic convergence to zero and completes
the proof of the result. �

If the frequency domain inequality is satisfied, the boundedness of the error
sequence is guaranteed by the result. This is reassuring for practical applications
as it indicates that, in the absence of modelling errors and/or worst case disturbances
on each iteration, error norm magnitudes will not increase. However, convergence to
zero error then depends on the truth of the conditionR[K∗]∩ker[G] = {0}. Inmatrix
terms, this is achieved ifGK∗ is nonsingular, a condition satisfied bymany choices of
K including, wheneverR[G] = Y , the choice of K = G as thenR[G∗]⊥ = ker[G].
There are an infinity of other choices, including those “close to G” as exemplified
by the following result,

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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Theorem 7.7 (R[K∗]∩ ker[G] = {0}, (K −G)∗ and Algorithm Convergence) With
the notation of the discussion above, suppose that ker[G∗] = ker[K∗] = {0} (and
hence that R[G] = R[K] = Y ).

1. Then, a sufficient condition for the relation R[K∗] ∩ ker[G] = {0} to be true is
that, in the assumed topologies of U and Y ,

‖(K − G)∗y‖U < ‖G∗y‖U for all non-zero y ∈ Y
(so that (K − G)(K − G)∗ < GG∗ and KK∗ < GK∗ + KG∗ ) .

(7.79)

2. Under these conditions, the Iterative Algorithm uk+1 = uk + βK∗ek is monoton-
ically convergent whenever 0 < β‖G‖2 ≤ 1.

3. Suppose that K is one such operator, then, as the conditionR[K∗]∩ker[G] = {0}
will also be valid if any such K is replaced by γ K with γ > 0, it follows that the
set of compensators can be extended to elements of the “positive cone” defined
by the set

{ K = γ K̃ : γ > 0 and ‖(K̃ − G)∗y‖U < ‖G∗y‖U for all y ∈ Y } .

(7.80)

Proof IfR[K∗] ∩ ker[G] �= {0}, then there exists a non-zero y such that GK∗y = 0
and hence G(K − G)∗y + GG∗y = 0. That is, 〈y, G(K − G)∗y〉Y + ‖G∗y‖2U = 0.
Using the Cauchy Schwarz inequality, |〈y, G(K − G)∗y〉| ≤ ‖G∗y‖‖(K − G)∗y‖
which leads to a violation of the assumed inequality if y �= 0. Hence y = 0 which
proves the first part of the result. Next note that βG∗G ≤ β‖G‖2I ≤ I , so that

GK∗ + KG∗ > KK∗ ≥ βKG∗GK∗ (7.81)

which proves monotonic convergence. The cone characterization is a simple conse-
quence of invariance of subspaces under scalar multiplication. �

In frequency domain terms,

Theorem 7.8 A sufficient condition in the frequency domain for R[K∗] ∩ ker[G] =
{0} to be true is that there exists a proper, asymptotically stable, dynamical system
S(AU , BU , CU , DU) with � × � transfer function matrix U(z) that satisfies the two
conditions

G(z) = K(z)U(z) , and also that
RU(z) + UT (z−1)R > 0 , whenever |z| = 1 .

(7.82)

Proof Continuing with the notation of the proof of the previous result, write G=KU.
The condition RU(z) + UT (z−1)R > 0 , whenever |z| = 1 implies the existence of
a real scalar γ > 0 such that

RU(z) + UT (z−1)R > γ R , whenever |z| = 1 . (7.83)
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Using Theorem 4.9 with K replaced by U, setting Y = U and replacing G by the
identity verifies the operator inequality U + U∗ > γ I and hence that GK∗ + KG∗ >

γ KK∗. A simple calculation then indicates that γ K satisfies the conditions derived
in the first part of this result and hence R[K∗] ∩ ker[G] = {0}. �

The case of m = � is simpler to state and is left as an exercise for the reader.

Theorem 7.9 (R[K∗] ∩ ker[G] = {0} whenever m = �) Using the notation given
above, suppose that m = � ≥ 1, that both D and DK are nonsingular. Then ker[G] =
{0} and hence R[K∗] ∩ ker[G] = {0} and U = R[K∗] ⊕ ker[G] trivially.

The results given above require the identification of a suitable, asymptotically stable
U to satisfy the desired inequality. If m < �, it is expected that the choices available
for U will be non-unique. The consequences are simplified when m = � and K is
invertible as then there is onlyonepossible choice forU, namelyU(z) = K−1(z)G(z).
The following result defines convergence conditions very precisely in this case. The
proof is left as an exercise for the reader but consists, essentially, of substituting the
expression U(z) = K−1(z)G(z) to simplify Eq. (7.78).

Theorem 7.10 (Spectral Radius Condition for Convergence when m = �) Suppose
that m = �, that G(z) is asymptotically stable, that K(z) is minimum-phase and
asymptotically stable and that the determinant det[G(z)R−1KT (z−1)Q] �= 0 for all
z satisfying |z| = 1. Under these conditions, KR(z) = K−1(z) exists, is asymptotically
stable and Eq. (7.78) is true if, whenever |z| = 1,

G(z)R−1KT (z−1)+K(z)R−1GT (z−1) > β1K(z)R−1GT (z−1)QG(z)R−1KT (z−1) (7.84)

Moreover, this condition is equivalent to the spectral radius condition

sup
|z|=1

r
(
(Im − βK(z)R−1GT (z−1)Q)(Im − βG(z)R−1KT (z−1)Q)

)
< 1 (7.85)

Proof Let |z| = 1. Multiplying Eq. (7.78) from the left by the nonsingular matrix
K(z)R−1 and from the right by its complex conjugate transpose R−1KT (z−1) yields
the required inequality which, by construction, is equivalent to (7.78). The spectral
radius condition then follows by multiplying from the left and right by Q1/2 and
writing the derived frequency domain inequality, in the Euclidean topology in C m,
as, for all |z| = 1,

(Im − βQ1/2K(z)R−1GT (z−1)Q1/2)(Im − βQ1/2G(z)R−1KT (z−1)Q1/2) < I ,

(7.86)
which, as the left-hand-side is Hermitian, is just the spectral radius condition

sup
|z|=1

r
(

Q1/2(Im − βK(z)R−1GT (z−1)Q)(Im − βG(z)R−1KT (z−1)Q)Q−1/2
)

< 1 .

(7.87)

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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This is the required result as the spectral radius is unchanged under the similarity
transformation H �→ Q−1/2HQ1/2. �

The importance of the spectral radius condition to convergence in this case sug-
gests the possibility of using these ideas as the basis of systematic frequency domain
design. The concept is supported by considering the case of SISO systems. When
m = � = 1 , the analysis reduces to a graphical condition relating convergence
to gain/phase characteristics of the transfer function G(z)K(z−1). More precisely,
bringing previous results together gives the following result.

Theorem 7.11 (The Single-input Single-output Case, m = � = 1) Using the nota-
tion and assumptions given above, suppose that m = � = 1 and that both D �= 0 and
DK �= 0. Then R[K∗] ∩ ker[G] = {0}. In these circumstances, a sufficient condition
for monotonic convergence of the iterative algorithm uk+1 = uk +βK∗ek, with β >

0, is that

| R

βQ
− G(z)K(z−1)| <

R

βQ
for all |z| = 1. (7.88)

An equivalent graphical condition is that the Nyquist plot of G(z)K(z−1) on the unit
circle z = eiθ , 0 ≤ θ ≤ π , lies entirely within the interior of the circle of radius R

βQ

and centre ( R
βQ , 0) in the complex plane. Finally,

1. if β∗ is the least upper bound of all such values of β, then monotonic convergence
is assured for all choices β ∈ (0, β∗).

2. A necessary condition for the graphical frequency domain condition to be valid
(for some value of β > 0) is that the Nyquist plot of G(z)K(z−1) lies entirely in
the open right-half complex plane defined by {s : Re[s] > 0} (another form of
Positive Real Property!).

Note: the result indicates that the effects of Q and R are simply to scale the gain
β. It is expected in practice that the choice of Q = R = 1 will simplify the analysis.
Alternatively, setting β = 1 will leave the ratio R−1Q as an effective “gain” to be
chosen to achieve the required convergence condition.

The conditions are easily checked for a given choice ofK(z)but are expressed in terms
of K(z−1). The phase φGK∗(z) of G(z)K(z−1) is the phase φG(z) of G(z) minus the
phaseφK (z) ofK(z),which, togetherwith the required positive real property indicates
a design objective of ensuring that

− π

2
< φG(z) − φK (z) <

π

2
whenever |z| = 1. (7.89)

If achieved, the Nyquist plot of G(z)K(z−1) lies in the interior of the right half
complex plane and the computation of the permissible range (0, β∗) ofβ then follows
from the graphical condition. Additional frequency shaping could be approached
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using a suitable transfer function FB(z) and choosing K(z) to satisfy an inequality
of the form (assuming the choice of Q = R = 1)

|1 − βG(z)K(z−1)|2 ≤ 1 − |FB(z)|2 on the unit circle |z| = 1. (7.90)

The magnitude and bandwidth of FB will provide a method of influencing the nature
and convergence rate of the algorithm in situations where the reference signal has a
frequency content dominated by frequencies in the chosen bandwidth.
The case of m < � has more structure but has strong relationship with the spec-
tral radius conditions. More precisely, an identical algebraic approach yields the
statement,

Theorem 7.12 (Convergence and the Spectral Radius when m < �) Suppose that
m < � and that the conditions of Theorem 7.6 are satisfied and that U(z) satisfies
Eq. (7.78). Then, whenever |z| = 1,

G(z)R−1KT (z−1)+K(z)R−1GT (z−1) ≥ β1K(z)R−1GT (z−1)QG(z)R−1KT (z−1) (7.91)

Moreover, this condition is equivalent to the spectral radius condition

sup
|z|=1

r
(
(Im − βK(z)R−1GT (z−1)Q)(Im − βG(z)R−1KT (z−1)Q)

)
< 1 . (7.92)

The Final Case of m ≥ �: This case uses subsidiary signals as the basis of analysis.
Supposing that ker[G] = {0}, then any error e ∈ R[G] can be written uniquely in
the form e = Gw where w ∈ U . Note that, if u∞ is an input that generates a zero
tracking error e = 0, then w = u∞ − u. The evolution of ek can then be replaced by
the evolution of wk using the expression

ek = Gwk and wk+1 = (I − βK∗G)wk, for k ≥ 0. (7.93)

Convergence analysis for the case of e0 ∈ R[G] can then proceed by examining
conditions for the monotonic convergence of the associated sequence {wk}k≥0 to a
limit w∞ = 0. As ‖ek‖ ≤ ‖G‖‖wk‖, this will then ensure the convergence of the
error to a limit e∞ = 0. More generally, if e0 is an arbitrary starting condition, then,
assuming that the conditions

Y = R[G] ⊕ ker[K∗], (and hence that R[G] ∩ ker[K∗] = {0}) , (7.94)

are satisfied, the reader can verify that, by writing e0 = Gw0 + ξ with ξ ∈ ker[K∗],
the error evolution can be described by the equation ek = Gwk + ξ for all k ≥ 0
where wk+1 = (I − K∗G)wk . That is, even if convergence of wk to zero is achieved,
the component ξ of e0 in ker[K∗] remains unchanged. In fact, under these conditions,
ek → e∞ = ξ as k → ∞.
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Returning to the case of e0 ∈ R[G], a simple calculation, using the assumption that
β > 0, indicates that monotonic convergence of {wk}k≥0 to w∞ = 0 is guaranteed
if, in the topology of U ,

K∗G + G∗K > βG∗KK∗G (7.95)

A simple comparison with the case of m ≤ � indicates that the mathematics is very
similar with the substitution of GK∗ by K∗G which is just the substitutions G �→ K∗
and K∗ �→ G. The consequences of these facts can be used, together with Theorem
4.11, to give frequency domain characterizations of convergence properties. The
approach and conclusions are summarized below.

Note that both K∗G and G∗K must have kernels {0}. As a consequence ker[G] =
ker[K] = {0} and R[K] ∩ ker[G∗] = R[G] ∩ ker[K∗] = {0}). As a consequence,
Y = R[G] ⊕ ker[K∗] as, if y ∈ Y is non-zero and orthogonal to both R[G] and
ker[K∗], then y ∈ R[K] ∩ ker[G∗]. That is, y = 0 contrary to assumption.

Following the approachused for the case ofm ≤ �, assume thatK = UGwhereU :
Y → Y is bounded. For example, suppose that G represents a discrete, state space
system and has a proper left inverse S(AGL, BGL, CGL, DGL) where rank[DGL] = �.
Define the operator U = KGL + U0 where U0 satisfies U0G = 0 but is otherwise
arbitrary. A simple calculation gives UG = KGLG + U0G = K . The condition for
monotonic convergence then becomes

G∗ (
U + U∗ − βKK∗) G > 0 on U

which is just U + U∗ − βKK∗ > 0 on R[G]. (7.96)

Using Theorem 4.11, the natural parallel to Theorem 7.6 can be stated as follows

Theorem 7.13 (Frequency Domain Convergence Conditions when m ≥ �) Using
the notation of the preceding discussion, suppose that m ≥ � and that ker[G] = {0}.
Suppose also that there exists a real scalar β1 > 0 and an m × m, asymptotically
stable system U(z) such that K(z) = U(z)G(z) and, for all z satisfying |z| = 1, the
matrix equation

UT (z)Q + QU(z−1) ≥ β1QK(z−1)R−1KT (z)Q (7.97)

is valid in the (complex) Euclidean Topology in C m. Let β∗ > 0 be the largest
such value. Then, for all choices of β ∈ (0, β∗), the induced operator norm ‖(I −
βK∗G)‖ ≤ 1 and the feedforward algorithm represented by the supervector update
formula uk+1 = uk + βK∗ek generates bounded sequences {ek}k≥0 and {wk}k≥0
with ‖wk+1‖U ≤ ‖wk‖U ≤ ‖w0‖U and ‖ek‖Y ≤ ‖G‖‖wk‖U for all k ≥ 0. If, in
addition, R[G]∩ ker[K∗] = {0}, then ‖(I −βK∗G)‖ < 1 and the sequence {wk}k≥0
is monotonically convergent to the limit w∞ = 0. In particular, limk→∞ ek is equal
to the component of e0 in ker[K∗].
Note that the conditionR[G] ∩ ker[K∗] = {0} is essential to the proof and parallels
the need for R[K∗] ∩ ker[G] = {0} when m ≤ �. The condition is easily seen to be

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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valid if m = � and both D and DK are nonsingular as then ker[K∗] = {0} trivially.
A parallel to Theorem 7.7 is as follows,

Theorem 7.14 (A Sufficient Condition for R[G] ∩ ker[K∗] = {0} to be Valid)
Suppose that ker[K] = {0}. Then, a sufficient condition for the relation R[G] ∩
ker[K∗] = {0} to be true is that, in the topology of U ,

‖(K − G)u‖Y < ‖Ku‖Y for all u ∈ U
(so that (K − G)∗(K − G) < K∗K and G∗G < G∗K + K∗G ) .

(7.98)

Under these conditions, the Iterative algorithm is convergent for all β satisfying
0 < β‖K∗‖2 ≤ 1.

Also a direct parallel to Theorems 7.10 and 7.12 can be stated in the form,

Theorem 7.15 (Spectral Radius Condition for Convergence when m ≥ �) Suppose
that the determinant det[R−1KT (z)QG(z−1)] �= 0 for all z satisfying |z| = 1. Then,

1. If m = �, then Eq. (7.97) is equivalent to the existence of β1 > 0 such that

KT (z−1)QG(z) + GT (z−1)QK(z) ≥ β1GT (z−1)QK(z)R−1KT (z−1)QG(z)
(7.99)

for all z satisfying |z| = 1. Moreover, if β∗ is the largest such value of such β1
and β ∈ (0, β∗), convergence to zero error is guaranteed by the spectral radius
condition

sup
|z|=1

r
(
(I� − βR−1GT (z−1)QK(z))(I� − βR−1KT (z−1)QG(z))

)
< 1

(7.100)
2. If m > � and, also, U(z) satisfies the requirements of Theorem 7.13, then the

spectral radius condition is satisfied.

7.5.2 Why the Case of m = � May Be Important in Design

The previous section has shown that the case of m = � is, on paper, simpler than
the cases when m �= �. Spectral radius conditions can be associated with all cases
but, whenever m �= �, the non-uniqueness of U(z) adds a degree of complexity to
the analysis. The purpose of this section is to show that the choice of compensator
can reduce or eliminate these problems in practice. The compensation is a series
connection of causal and anti-causal elements. More precisely,

1. If m < �, let K1 : V → Y and K2 : V → U be state space, linear systems
with m × m, respectively � × m, transfer function matrices K1(z) and K2(z). The
space V is a space of intermediate signals and is identical to Y but with Q (in
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the associated inner product) replaced by the symmetric positive definite matrix
QV . Now consider the control update law,

uk+1 = uk + βK2K∗
1 ek so that ek+1 = (I − βGK2K∗

1 )ek, k ≥ 0. (7.101)

This expression has the structure of a control law for the m-input, m-output,
composite linear system GK2 using the non-causal implementation of the m × m
compensator K = K1. Under these conditions, Theorem 7.10 requires that GK2
is asymptotically stable and that K1 is asymptotically stable and minimum-phase.
It also indicates that monotonic error convergence of the algorithm can then be
described precisely by the condition

r
(
Q−1(Im − βΓ T (z−1))Q(Im − βΓ (z))

)
< 1

(where Γ (z) = G(z)K2(z)Q
−1
V KT

1 (z−1)Q)
(7.102)

for all z satisfying |z| = 1.
2. If m > �, let K1 : U → V and K2 : Y → V be � × �, respectively � × m,

linear, state space systems. The space V is taken to be as the same asU but with
R replaced by RV .
Consider the control update law,

uk+1 = uk + βK∗
1K2ek so that ek+1 = (I − βGK∗

1K2)ek, k ≥ 0. (7.103)

Assuming that

ker[G] = {0}, ker[K1] = {0} and Y = R[G] ⊕ ker[K2], (7.104)

define subsidiary variables wk using the representation ek = GK∗
1wk + ξk, ξk ∈

ker[K2], k ≥ 0. This gives the evolution

wk+1 = (I − K2GK∗
1 )wk, k ≥ 0 and ξk = ξ0, k ≥ 0. (7.105)

Convergence ofwk to zero then guarantees convergence of ek to e∞ = ξ0. Replac-
ing convergence of the {wk}k≥0 by monotonic convergence makes it possible to
apply Theorem 7.10 with appropriate changes of notation to produce the conver-
gence requirement

r
(

R−1
V (Im − βΓ T (z−1))RV (Im − βΓ (z))

)
< 1, whenever |z| = 1,

where now Γ (z) = K2(z)G(z)R−1KT
1 (z−1)RV .

(7.106)
Note: In this case, the information available about the nature of the convergence
of the error is limited as the interpretation of wk is unclear. Also the nature of the
limit e∞ = ξ0 depends on K2 and the initial input signal u0.
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7.5.3 Robustness Tests in the Frequency Domain

This section is devoted to developing the form of frequency domain robustness tests
for the steepest descent algorithm. It will be assumed that the plant has an asymp-
totically stable, discrete state space model S(A, B, C, D) and that the matrix D and
the left or right multiplicative perturbation U satisfy the conditions

rank[D] = min{m, �} and ker[U] = {0} (that is det[U] �= 0). (7.107)

The supervector representation G then has a left and/or a right inverse. Also,

(a) ker[GU] = ker[G] = {0} and R[GU] = R[G] if m ≥ �

(b) R[UG] = R[G] = Y and ker[UG] = ker[G] if m ≤ �.
(7.108)

A Preliminary Discussion of the SISO Case: One approach to analyzing robustness
of the steepest descent algorithms can be based on the results in the previous section.
For example, when m = � = 1, suppose that K is replaced by G and G by UG.
Theorem 7.10 then provides a computational approach to assessing the effects of
a known perturbation U(z) on convergence of the steepest descent algorithm. For
the SISO case, the conditions reduce to the need for (a) U(z) to be asymptotically
stable, (b) for G(z) to be asymptotically stable and minimum-phase and (c) for the
following frequency domain inequality to be satisfied

∣∣∣∣
R

βQ
− U(z)|G(z)|2

∣∣∣∣ <
R

βQ
whenever |z| = 1. (7.109)

Taking Q = R = 1 for simplicity, an equivalent statement is that the plot, in the
complex plane, of the frequency response U(z)|G(z)|2 with |z| = 1 lies entirely
within the interior of the circle of radius β−1 and centre (β−1, 0).

This condition again underlines the need for U(z) to be strictly positive real if
monotonic convergence is to be retained. It also suggests that the model character-
istics influence robustness by modulating the gain characteristics of the modelling
error U. This is better seen by comparison with the equivalent condition for the
inverse model algorithm, namely,

∣∣∣∣
1

β
− U(z)

∣∣∣∣ <
1

β
whenever |z| = 1. (7.110)

In the inversemodel case, ifU contains seriousmodelling errors such as any parasitic
resonances that exist outside of the bandwidth of the system, then, even if the positive
real property is present, the magnitude of U(z) may significantly reduce the range of
gains β that can be tolerated to small values. This will inevitably limit achievable per-
formance and produce slow convergence rates. In contrast, in the case of the steepest
descent algorithm and assuming that G(z) has low-pass characteristics, the presence
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of the product U(z)|G(z)|2 in the robustness condition implies that the effects of the
high frequency modelling errors will be substantially reduced in magnitude. This, in
turn, implies that higher gains can be used and, potentially, improved convergence
rates achieved.

The analysis provided above gives considerable insight into the robustness of the
steepest descent iteration. The need for a strictly positive real modelling error U(z)
is, again, inevitable but the frequency domain conditions provide for substantial vari-
ation in the detailed frequency domain characteristics. In the following paragraphs,
direct proofs of robustness conditions with fewer assumptions are presented.

The Case of m ≤ �: In this case, the compensator K = G, G represents a plant
model whilst the actual plant is UG where U is a left multiplicative perturbation.
The error evolution for the algorithm is ek+1 = (I − βUGG∗)ek . Suppose that
R[UG] = R[G] = Y and hence that ker[G∗] = {0} and det[GG∗] �= 0. Suppose
also that u∞ ∈ U is an input signal that produces the required reference signal
exactly. That is, r = UGu∞ + d and the corresponding tracking error is zero. As
ker[G] = R[G∗]⊥ and hence U = ker[G] ⊕ R[G∗], it is possible to assume,
without loss of generality, that both u∞ ∈ R[G∗] and u0 ∈ R[G∗] and hence
that uk ∈ R[G∗] for all k ≥ 0. Being finite dimensional, R[G∗] is closed and
hence is a Hilbert space in its own right. Let wk = u∞ − uk ∈ R[G∗], k ≥ 0,
and note that ek = UGwk . The update formula uk+1 = uk + βG∗ek then indicates
that the evolution of the sequence {wk}k≥0 in R[G∗] is governed by the recursion
wk+1 = (I − βG∗UG)wk . Robustness of the convergence of the algorithm, in a
general context, would simply require that the sequence wk → w∞ with w∞ = 0.
A sufficient condition for this is that the convergence to zero is monotonic. That is,
if β > 0 and (I − βG∗UG)∗(I − βG∗UG) < I inR[G∗] which is achieved if

G∗ (
U + U∗ − βU∗GG∗U

)
G > 0 on R[G∗],

or, equivalently, U + U∗ − βU∗GG∗U > 0 on Y (7.111)

as GG∗ is invertible. As U is assumed to be invertible, this is equivalent to

Û + Û∗ − βGG∗ > 0 on Y , (7.112)

where Û denotes the inverse of U. Application of Theorem 4.11 then yields

Theorem 7.16 (Robustness Tests when m ≤ �) Using the notation in the preceding
discussion, suppose that m ≤ �, that G(z) is a model of a discrete system which has the
transfer function matrix U(z)G(z) where the left multiplicative modelling error U(z)
has a minimum-phase state space model S(AU , BU , CU , DU) with det[DU ] �= 0.
Suppose also that R[G] = R[UG] = Y and that the inner products defined in
Theorem 7.4 are used in the input and output Hilbert spaces U and Y .
Under these conditions, there exists a unique input u∞ ∈ R[G∗] such that r =
UGu∞ + d. Suppose that wk = u∞ − uk, k ≥ 0. Then a sufficient condition for the
monotonic convergence of the subsidiary sequence {wk}k≥0 to a limit w∞ = 0 (and

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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hence the convergence of the error sequence {ek}k≥0 to e∞ = 0) is that u0 ∈ R[G∗]
and that the following inequality holds for all z satisfying |z| = 1,

ÛT (z)Q + QÛ(z−1) > βQG(z−1)R−1GT (z)Q. (7.113)

More generally, suppose that u0 = u(1)
0 + u(2)

0 with u(1)
0 ∈ R[G∗] and u(2)

0 ∈ ker[G].
The result still stands in this case but wk → w∞ = −u(2)

0 .

Proof The proof when u0 ∈ R[G∗] follows from the discussion that precedes the
statement and the invertibility of GG∗ ensures the existence of a unique value of
u∞ ∈ R[G∗]. More generally, write uk = u(1)

k + u(2)
k with u(1)

k ∈ R[G∗] and

u(2)
k ∈ ker[G]. An examination of the control update rule shows that u(2)

k = u(2)
0 and

u(1)
k+1 = u(1)

k + βG∗ek for k ≥ 0. As a consequence limk→∞ u∞ − u(1)
k = 0 and the

result is proved as the subsidiary signals wk = u∞ − uk → −u(2)
k = w∞, k ≥ 0. �

The Case of m ≥ �: In this case, the compensator K = G and the plant is taken
to be GU where U is a right multiplicative perturbation. The error evolution for
the algorithm is simply ek+1 = (I − βGUG∗)ek . Note that ker[G∗] = R[G]⊥,
Y = ker[G∗] ⊕ R[G] and det[G∗G] �= 0. This indicates that the error evolution
can be described by writing e0 as a component in ker[G∗] and another inR[G]. The
component in ker[G∗] is unchanged from iteration to iteration and represents un-
achievable reference signals. It is therefore necessary only to consider the case of e0 ∈
R[G]. Beingfinite dimensional,R[G] is closed and hence is aHilbert space in its own
right. In addition, I−βGUG∗ mapsR[G] into itself.Robustness of the convergenceof
the algorithm, in a general context would simply require that the sequence ek → e∞
with e∞ = 0. A sufficient condition for this is that the convergence to zero is
monotonic. This will be achieved if (I −βGUG∗)∗(I −βGUG∗) < I inR[G]which
is achieved if

G
(
U + U∗ − βU∗G∗GU

)
G∗ > 0 on R[G],

or, equivalently, U + U∗ − βU∗G∗GU > 0 on U . (7.114)

as G∗G is invertible. Application of Theorem 4.9 then yields the robustness test

Theorem 7.17 (Robustness Tests when m ≥ �) Using the notation in the preceding
discussion, suppose that m ≥ �, that G(z) is a model of a discrete system with
transfer function matrix G(z)U(z) where the right multiplicative modelling error
U(z) is asymptotically stable. Suppose also that ker[G] = ker[UG] = {0} and that
the topologies defined in Theorem 7.4 are used in the input and output spaces U
and Y .

Under these conditions, a sufficient condition for the monotonic convergence of
the error sequence {ek}k≥0 to a limit e∞ = 0 is that e0 ∈ R[G] and that the following
inequality holds for all z satisfying |z| = 1,

RU(z) + UT (z−1)R > βUT (z−1)GT (z−1)QG(z)U(z). (7.115)

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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More generally, if e0 = e(1)
0 + e(2)

0 with e(1)
0 ∈ R[G] and e(2)

0 ∈ ker[G∗], then the

inequality ensures that limk→∞ ek = e∞ = e(2)
0 .

A Comment on the Structural Form and Assumptions: It is of interest to note that
the robustness results require either that U(z) is minimum-phase if m ≥ � but that it
is asymptotically stable if m ≥ �. Pre- and post multiplication will give a number of
alternative but equivalent descriptions. This can be illustrated by the case of m ≥ �

and right multiplicative perturbations when the relevant conditions in Theorem 7.17
are replaced by requiring that U(z) is minimum-phase and that, for all z satisfying
|z| = 1,

ÛT (z−1)R + RÛ(z) > βGT (z−1)QG(z). (7.116)

This illustrates the need for the uncertainty to satisfy some form of positivity con-
dition. This essentially constrains the “phase” of Û(z) (and hence U(z)) but the
positivity also limits the magnitude of U(z). This is most easily seen in the case of
SISO systems when the condition reduces to

Re
[
Û(z)

]
>

β

2

(
Q

R

)
|G(z)|2, whenever |z| = 1. (7.117)

This formula provides a precise, numerical expression of the phase and gain con-
straints and indicates the practical point that both Q and R can be set equal to unity
as their effects are equivalent to a change in the learning gain β.

7.5.4 Robustness and Relaxation

The discussion in the previous section applies to the steepest descent algorithmwith-
out relaxation. Motivated by its role in reducing the spectral radius of the operator in
the error evolution, Sect. 5.2.3 suggested, without proof, that relaxation will improve
the robustness of Iterative Control. For steepest descent algorithms, the relaxed input
update rule has the form,

uk+1 = αuk + βG∗ek, k ≥ 0, (7.118)

where G is a model of the plant. The effect of the relaxation parameter 0 < α < 1
can be assessed using similar techniques to those used in Sect. 7.5.3.

The Case of m ≤ �: Suppose that the plant can be described by UG, where
U is a left multiplicative perturbation, and that R[UG] = R[G] = Y so that
ker[G∗] = {0}. The error evolution is described by

ek+1 = (αI − βUGG∗)ek + (1 − α)(r − d), k ≥ 0. (7.119)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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Define wk = G∗ek, k ≥ 0 noting that convergence of {wk}k≥0 implies the conver-
gence of {ek}k≥0. A sufficient condition for convergence of {wk}k≥0 to a limit error
is that β > 0 and (αI −βG∗UG)∗(αI −βG∗UG) < I inR[G∗] which is achieved if

G∗ (
αβ(U + U∗) − β2U∗GG∗U

)
G > −(1 − α2)I on R[G∗],

or, onY , U + U∗ − α−1βU∗GG∗U > −(αβ)−1(1 − α2)(GG∗)−1, (7.120)

as GG∗ is invertible. The fact that the right-hand-side is strictly negative definite
when α < 1 removes the need for U to satisfy a positivity condition. The range of
model errors that can be tolerated has therefore increased.

The Case of m ≥ �: A similar argument leads to a very similar outcome in terms
of increased robustness. More precisely, using the plant description GU where U is
a right multiplicative modelling error, the error evolution is described by

ek+1 = (αI − βGUG∗)ek + (1 − α)(r − d), k ≥ 0, (7.121)

A sufficient condition for convergence to a limit error is that β > 0 and (αI −
βGUG∗)∗(αI − βGUG∗) < I inR[G] which is achieved if

G
(
αβ(U + U∗) − β2U∗G∗GU

)
G∗ > −(1 − α2)I on R[G],

or, U + U∗ − α−1βU∗G∗GU > −(αβ)−1(1 − α2)(G∗G)−1 on Y ,

(7.122)

as G∗G is invertible. The fact that the right-hand-side is strictly negative definite
when α < 1 removes the need for U to satisfy a positivity condition. The range of
model errors that can be tolerated has therefore increased.

7.5.5 Non-monotonic Gradient-Based Control
and ε-Weighted Norms

The ideas described in previous sections are now extended to include convergence
and robustness by a structured change to the idea of monotonicity. Care has to be
taken however if the very useful link to the frequency domain is to be retained. A
way forward is to note that the inner product induced topology used in the Theorems
of the previous sections is a special case (by choosing ε = 1) of ε-weighted inner
products used for inverse algorithms in Sect. 6.2.3. More precisely, let ε ∈ (0, 1] and
define Yε = Rm(N+1) and Uε = R�(N+1) to be Hilbert spaces (of supervectors)
with inner products

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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〈y, z〉Yε
=

N∑

t=0

ε2tyT (t)Qz(t) and 〈u, v〉Uε
=

N∑

t=0

ε2tuT (t)Rv(t). (7.123)

The cases of ε = 1 and any ε ∈ (0, 1] can be connected for any supervector f associ-
atedwith the time series {f (t)}0≤t≤N by defining aweighted time series {εt f (t)}0≤t≤N

and constructing the associated supervector

f ε =
[
f T (0), εf T (1), ε2f T (2), . . . , εN f T (N)

]T
. (7.124)

Working with weighted signals uε, yε, rε, eε, xε rather than the original vectors
u, y, r, e, x provides a simple approach to introducing and analyzing different con-
vergence behaviours. One important aspect of this is that the inner products (and
hence the norms) are related by

(a) 〈y, z〉Yε
= 〈yε, zε〉Y and 〈u, v〉Uε

= 〈uε, vε〉U , whilst
(b) ‖y‖Yε

= ‖yε‖Y and ‖u‖Uε
= ‖uε‖U (7.125)

Convergence properties with respect to these norms are related also as, for example,
if 0 < ε2 ≤ ε1 ≤ 1 , then it is easily shown that, for all e ∈ Y ,

(
ε2

ε1

)N

‖e‖Yε1
≤ ‖e‖Yε2

≤ ‖e‖Yε1
≤ ‖e‖Y ≤ ε−N

1 ‖e‖Yε1
, (7.126)

and hence convergence in one topology guarantees convergence in the other. Specif-
ically in terms of monotonic convergence,

1. the monotonic convergence of the sequence {ek}k≥0 in Yε1 implies the conver-
gence of that sequence in Yε2 .

2. The converse statement is that themonotonic convergence of the sequence {ek}k≥0
in Yε2 implies the convergence of the sequence in Yε1 .

In particular, if ε1 = 1, then convergence is guaranteed if monotonic convergence is
achieved for the weighted signal with any choice of 0 < ε < 1. The convergence in
Y = Y1 need not, however, be monotonic.

A simple calculation easily reveals that the state space model describing the evo-
lution of the weighted signals uε, xε, yε is obtained by the data map

S(A, B, C, D) �→ S(εA, εB, C, D) and

G(z) �→ Gε(z) = C(zI − εA)−1εB + D = G(ε−1z). (7.127)

The initial condition xε(0) = x(0) remains the same and the values of Gε(z) for
|z| = 1 are generated from the values of G(z) when |z| = ε−1 .

The matrices in the supervector descriptions of S(A, B, C, D) and S(εA, εB,

C, D) will be denoted by G and Gε respectively. A simple calculation indicates
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that the Markov parameter matrices CAjB are replaced by εj+1CAjB for j ≥ 0 and
hence that

Gε = Θε(m, N)GΘ−1
ε (�, N) (7.128)

where, for example,

Θε(m, N) =

⎡

⎢⎢⎢⎣

Im 0 0 · · · 0
0 εIm 0 · · · 0
...

...

0 0 0 · · · εN Im

⎤

⎥⎥⎥⎦ (7.129)

In what follows, the simplified symbol Θε will be used with the required dimensions
being understood from the context.

The poles and zeros of Gε(z) are those of G(z) scaled by a factor of ε. As a conse-
quence, the asymptotic stability of S(A, B, C, D) then implies that of S(εA, εB, C, D)

if ε ≤ 1. More generally,

1. The modification leaves the system’s relative degree(s) unchanged.
2. If S(A, B, C, D) is unstable, then S(εA, εB, C, D) is stable in some interval ε ∈

(0, εas).
3. If S(A, B, C, D) is non-minimum phase, then S(εA, εB, C, D) is minimum-phase

in some interval ε ∈ (0, εmp).
4. If S(A, B, C, D) is both unstable and non-minimum-phase then S(εA, εB, C, D)

is asymptotically stable and minimum-phase whenever ε ∈ (0,min{εas, εmp}).
5. If Ĝ(z) is an inverse of G(z), then Ĝε(z) = Ĝ(ε−1z) is an inverse of Gε(z).
6. As a consequence, assumptions of asymptotic stability, minimum-phase char-

acteristics or the existence of stable inverses can be achieved by using the
ε-weighted inner products and norms and examining the iterative control prob-
lem for S(εA, εB, C, D) with ε chosen to ensure that the desired conditions are
satisfied. Remember however that monotonicity with respect to an ε-weighted
norm may not guarantee acceptable convergence properties with respect to the
unweighted norm.

7. If Gε : U → Y is the matrix in the supervector description of S(εA, εB, C, D),
then its adjoint is the familiar productT (�, N)GET (m, N). HereT denotes the
appropriate discrete time reversal operator (Chap.4) and GE is the matrix in the
supervector description of S(εAT , CT Q, εR−1BT , R−1DT Q) which is identical
to that of S(εAT , εCT Q, R−1BT , R−1DT Q). Note that

G∗
ε = Θ−1

ε G∗Θε, and hence, G∗
ε2

= Θ−1
ε G∗

εΘε. (7.130)

Nowconsider the ε-weighted, �-input,m-outputmodel S(εA, εB, C, D) of the system
S(A, B, C, D) with supervector matrix Gε : U → Y . Let K(z) be a compensator
with state space model S(AK , BK , CK , DK ) and transfer function matrix K(z). The
equivalent ε-weighted model is S(εAK , εBK , CK , DK ). The resultant matrix in the

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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ε-weighted supervector description isKε : U → Y . The general gradient algorithm
for this description updates ε-weighted inputs base on ε-weighted errors as follows

uε
k+1 = uε

k + βK∗
ε eε

k (7.131)

where K∗
ε : Y → U is the adjoint. That is, the signal ψε

k (t) defined by the super-
vector ψε

k = K∗
ε eε

k is generated from the equations

zε
k(t + 1) = εAT zε

k(t) + εCT Qeε
k(N − t), zε

k(0) = 0, and

ψε
k (t) = R−1BT zε

k(N − t) + R−1DT Qeε
k(t), for 0 ≤ t ≤ N . (7.132)

The update relationship for weighted errors in Y is just

eε
k+1 = (I − βGεK∗

ε )eε
k, for k ≥ 0. (7.133)

It follows that the convergence and robustness analysis of previous sections applies
here with G, K , U etc. replaced by Gε, Kε, Uε etc. and their associated transfer
function matrices. In particular, the frequency domain conditions previously derived
for convergence and robustness are of the form of inequalities involving z and z−1

that must hold on the unit circle {z : |z| = 1}. If the transfer function matrices
Gε(z) etc. are replaced by their original (un-weighted) descriptions G(ε−1z) etc.,
and subsequently by G(z) etc. the conditions take a simple form involving values at
z and z with |z| = ε−1. To illustrate the change, note that Theorem 7.16 describing
one of the robustness conditions for the steepest descent algorithm can be extended
to the case of weighted norms as follows,

Theorem 7.18 (Robustness and ε-norms when m ≤ �) Under the assumptions of
Theorem 7.16, let ε ∈ (0, 1] be such that Gε(z) = G(ε−1z) is asymptotically stable
and Uε(z) = U(ε−1z) is minimum-phase. Suppose that the chosen input update rule
is now expressed in the form

uε
k+1 = uε

k + βG∗
εeε

k . (7.134)

Then, a sufficient condition for the monotonic convergence (with respect to the ε-
weighted norm in Uε) of the subsidiary sequence {wε

k}k≥0 to a limit wε∞ = 0 (and
hence the convergence of the error sequence {ek}k≥0 to e∞ = 0) is that,

ÛT (z)Q + QÛ(z) > βQG(z)R−1GT (z)Q whenever |z| = ε−1. (7.135)

The result is based on using weighted supervectors. At first sight, it extends the
range of modelling errors that can be considered and, by using small values of ε,
can make it possible, in principle, to remove assumptions requiring the stability of
G and minimum-phase properties of U. The price that is paid for this, more general,
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approach is that monotonicity of the ε-weighted norm sequence in Uε may allow
large, and possibly very large, increases in norms in U as, at best,

‖w‖U ≤ ε−N‖w‖Uε
for all w ∈ U . (7.136)

Monotonicity for the weighted norm sequence hence could allow substantial “up and
down” variations of the un-weighted norm sequence. As stated therefore, the result
may only have practical value for cases where U(z) is minimum-phase.

Proof of Theorem 7.18 The evolution of the error sequence {ek}k≥0 inYε is described
by the supervector recursion eε

k+1 = (I −βUεGεG∗
ε)e

ε
k inY . From previous results,

a sufficient condition for monotonicity of the weighted norms and convergence of
the subsidiary sequence ‖wε

k‖U is that, whenever |z| = 1,

ÛT
ε (z)Q + QÛε(z

−1) > βQGε(z
−1)R−1GT

ε (z)Q. (7.137)

which is just

ÛT (ε−1z)Q + QÛ(ε−1z−1) > βQG(ε−1z−1)R−1GT (ε−1z)Q. (7.138)

The result follows by replacing ε−1z by z and noting that ε−1z = ε−1z−1. �
In general, the consequences of the use of ε-weighted norms are that

1. Monotonic convergence and robustness can be analysed (using the results of this
chapter) for some choice of ε ∈ (0, 1] using weighted signals and models.

2. It is always possible to satisfy any necessary theoretical assumptions of stability
and/or minimum-phase properties using a suitable choice of ε > 0. This observa-
tion release the results of this chapter for application to almost all discrete systems
by focussing attention on monotonicity of ε-weighted norms.

3. For implementation purposes, the update relationship (7.131) for the weighted
input can be expressed in terms of an update relationship for the un-weighted
input by replacing

uε
k+1 = uε

k + βK∗
ε eε

k by uk+1 = uk + βK∗
ε2

ek, (7.139)

where K∗
ε2

: Y → U is the adjoint of the operator Kε2 : U → Y corresponding
to the state space model

S(ε2AK , ε2BK , CK , DK ). (7.140)

The proof of this statement follows using Θε and the connection, f ε = Θεf ,
between a supervector f and its weighted form f ε and the relationship K∗

ε2
=

Θ−1
ε K∗

ε Θε. The details are left as an exercise for the reader.
4. If ε → 0+, then continuity of the eigenvalues of GK∗

ε2
at ε = 0 implies that

convergence is always achieved for small enough values of ε > 0 if the m × m
matrix Im − βDR−1DT

K Q has eigenvalues in the unit circle only.
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7.5.6 A Steepest Descent Algorithm Using ε-Norms

The use of ε-weighted norms also open up the possibility of new algorithms. For
example, consider the steepest descent algorithm for S(A, B, C, D) in the absence of
any modelling error. Choosing the gradient compensator K = Gε2 with state space
model S(ε2A, ε2B, C, D) suggests the algorithm

Algorithm 7.11 (Steepest Descent with ε-Weighting) Suppose that ε ∈ (0, 1]. Then
the modified steepest descent algorithm

uk+1 = uk + βG∗
ε2

ek, for k ≥ 0 (7.141)

has an equivalent ε-weighted description in U and Y of the form

uε
k+1 = uε

k + βG∗
εeε

k, with eε
k+1 = (I − βGεG∗

ε)e
ε
k k ≥ 0. (7.142)

Then, Theorem 7.1 and related results indicate that there are now two possibilities
describing convergence in the absence of modelling errors.

1. Suppose thatm ≤ � and thatR[G] = Y . Then,R[G] = R[Gε] and the algorithm
generates amonotonically decreasing sequence of ε-weighted error norms ‖ek‖Yε

for all β in the range
0 < β‖G∗

ε‖2 < 2 (7.143)

Moreover, the sequence converges to the limit e∞ = 0.
2. Letm ≥ �. Suppose that ker[G] = {0} andwrite e0 = Gw0+ξ0 with ξ0 ∈ ker[G∗].

Then ek = Gwk + ξ0 where wk+1 = (I − βG∗
ε2

G)wk, k ≥ 0. As a consequence
wε

k+1 = (I − βG∗
εGε)wε

k . The algorithm therefore generates a monotonically
decreasing sequence of ε-weighted norms ‖wε

k‖U = ‖wk‖Uε
for all β in the

range 0 < β‖Gε‖2 < 2 so that

lim
k→∞ wk = 0 and, also, lim

k→∞ ek = ξ0. (7.144)

The bounding of the norms ‖Gε‖ and ‖G∗
ε‖ of Gε : U → Y and its adjoint

G∗
ε : Y → U can be done using frequency domain properties of the state space

model S(εA, εB, C, D) and its associated transfer function matrix Gε(z) = G(ε−1z).

7.6 Discussion, Comments and Further Generalizations

Classically, control systems design has been underpinned by a number of principles
that guide the design engineer and offer choices that benefit both the design process
and the performance of the control system that results from their application. The
ideas of gain and phase compensation increase the prospect of obtaining greater
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performance using relatively simple control elements including, for example, phase-
lead (or lead-lag) networks. In this text the ideas of feedforward and feedback iterative
control have been introduced but, within these principles, there are many options yet
to be explored.

7.6.1 Bringing the Ideas Together?

Guided by an assumption that monotonic reduction of quadratic measures (norms)
of the tracking error is of practical benefit in both the design process and achievable
performance of Iterative Control systems, the analysis has shown the great benefits
inherent in the use of compensators that are adjoints K∗ of operators K of linear
dynamical systems. For linear, continuous time or discrete time, state space systems,
input update computations are done off-line, between iterations, and take the form of
reverse time simulations fromzero terminal conditions. Such computations have been
associated with R−1KT (z−1)Q. As a consequence, they have a natural “phase lead”
structure that can be applied to create the positivity conditions on GK∗ necessary for
monotonic convergence of iterations of the form ek+1 = Lek where L = (I −βGK∗).
The case of m = � is the simplest case. The cases of m > � and m ≤ � differ in
the introduction of subsidiary signals related to input signals. The reader should take
note of the difference in convergence properties that may result.

The use of steepest descent is simply to set K to be a model G of the plant. In this
case, L is self adjoint if there is no modelling error. Preliminary results in this area
were derived by the author and co-workers in [94] and, adding a flavour of inverse
algorithm, in [85]. Related ideas are presented in [115].

The approach presented in this text generalizes those results substantially. The
most general convergence theorem is Theorem 7.1 which considers quite general
plant operators including, for typical applications, discrete and continuous state
space systems. Note however that, as G need only be linear and bounded, other
possibilities include the application to multi-rate, discrete, sample-data systems. For
applications where the input generating the desired output y = r is non unique,
Theorem 7.2 relates the converged solution to the optimal control concepts of mini-
mum energy/minimum norm inputs. Despite the power of this result, there is always
the need to consider the details. The issues that have a direct impact on practical appli-
cations are those of realizing the update relation uk+1 = uk +βG∗ek as a reasonable
computational procedure, identifying the role of parameters in the performance of
the algorithms and the nature of the limit and, finally, characterizing the effect of
modelling errors on the convergence that might be expected in practice.

The main parameters in steepest descent algorithms are the “gain” β and the
weighting matrices Q and R (which define the topologies in output and input spaces
but also arise as parameters in the adjoint operator). The matrix Q may be specified
by the designer for reasons unrelated to the performance of the algorithm or to
reflect the relative importance of the accuracies required in each control loop. In
contrast, the matrix R−1 either defines an “energy function” (minimized in the limit)
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or performs the role of a “gain matrix” that gives the engineer some control over
relative magnitudes of control input changes in each control loop. Finally, β is the
tuning parameter and is available as a final influence on convergence rates with
a suitable range defined by an H∞-norm or equivalent spectral radius condition.
Monotonicity does not define the rate of convergence which depends very much on
controller and plant structures and, indeed, the reference signal. Insight into the nature
of the convergence has been obtained using the eigenstructure of GG∗. In principle,
it offers the possibility of convergence to zero error in a finite number of iterations
but a lack of information about the eigenvalues limits the practical use of this idea. It
does however suggest that systematic variations in β from iteration to iteration may
improve convergence properties (an idea linked to that of Parameter Optimal Iterative
Learning Control as introduced in Chap.14). Eigenstructure analysis also shows that
the reference signal itself will influence convergence rates with slow convergence
being expected if it is dominated by eigenvectors related to very small eigenvalues.
These ideas are intuitively linked to the use of frequency domain analysis using
Fourier series representations of r on an interval [0, T ].

Amore familiar description of algorithm properties comes when the robustness of
the steepest descent approach is considered. Conditions for monotonic convergence
in the presence ofmodelling errors take the form of inequalities relating the necessary
properties of the modelling error U(z) and the plant transfer function matrix G(z).
In general, there does not appear to be a graphical interpretation of the condition
except in the case of single-input, single-output systems when the need for positiv-
ity properties and magnitude constraints are expressed in terms of the behaviour of
the Nyquist plot of U(z)|G(z)|2 in the complex plane. This condition suggests the
possibility for the development of frequency domain design techniques specifically
for gradient-based Iterative Control. This idea is supported by the section on more
general gradients where frequency domain conditions suggest that anti-causal com-
pensators can provide essential phase lead and positivity properties. Further research
is needed to make this work easier to apply in practice. For example, regarding K as
a simplified model of G, how can a suitable choice be made and what is the simplest
such choice? Part of the answer to this question can be deduced from the section on
robustness of steepest descent algorithms using a change in notation. More precisely,
if the compensator K is a simplified model G of the actual plant model and the actual
plant model is the simplified model G modified by a multiplicative modelling error,
U, the robustness theorems provide a formal relationship between G and U.

Given the practical uncertainty in the choice of Q and R, it can be argued that
monotonicity could usefully be relaxed to allow some increase in norm provided
that it is limited in magnitude. There is no general analysis available for what might
be seen by some readers as an ill-defined concept. However, the use of ε-weighted
norms provides a useful special case by transferring the monotonicity requirement
to a simple norm that weights the earlier parts of the time interval more than later
parts using a geometric weighting εt with 0 < ε ≤ 1. This changes the frequency
domain analysis by replacing the unit circle by the circle |z| = ε−1. The results
extend (a) the range of compensators that guarantee convergence and/or (b) the
range of uncertainties that can be tolerated. An important byproduct of the idea is

http://dx.doi.org/10.1007/978-1-4471-6772-3_14
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that, with a suitable choice of ε, the model used to describe weighted inputs, outputs
and states will be both “minimum-phase” and “asymptotically stable”. As many of
the theoretical results depend on pole and zero positions, the technique provides
a mechanism for transforming a system S(A, B, C, D) into a form S(εA, εB, C, D)

where they can be applied. The reader should note however that, if ε is small, the
monotonicity of the weighted norm may allow large increases in un-weighted norm
before convergence is finally achieved. A simple approach to choice of an acceptable
range of ε could be based on examination of the highest power εN . This quantity
describes the weights at the final time relative to the weighting given to t = 0. If this
relative weight is defined by the user to be RW , then ε can be computed, in principle,
from the formula N−1 loge RW = loge ε.

7.6.2 Factors Influencing Achievable Performance

The dynamical structure of the plant S(A, B, C, D) and the choice of Q and R will
influence achievable performance through pole and zero positions, the frequency
domain properties of matrices such as G(z)R−1KT (z−1)Q and its interaction struc-
ture. From the derived frequency domain conditions, the presence of resonances may
both limit the gains β that can be used even in the absence of modelling errors whilst
the presence of zeros close to the stability boundary will guarantee slow convergence
of frequency components in the reference that lie close to those zeros.Non-minimum-
phase zeros will also limit performance. This issue will be addressed in more detail
later in the text where eigenvalue analysis links the property to a tendency of the
signal norms to “plateau” (sometimes called “flat-lining”). This is a situation where
monotonicity is retained but, after an initial period of faster convergence, the algo-
rithmmay converge infinitesimally slowly. This final convergence is so slow that, for
all practical purposes, no further improvement in tracking accuracy is achievable.

Although many of the issues associated with non-minimum-phase properties can
be eliminated from the mathematics by the use of ε-weighted signals and norms,
the nature of the monotonicity also changes and this approach is not the dominant
design issue. The real choices are those of ensuring that the plant itself has accept-
able properties and of choosing K(z) to meet design requirements for convergence
and robustness. In Chap.8, a generic design approach is suggested that provides a
systematic way of structuring the decision-making process. Not every aspect of what
will be suggested will be relevant or possible in any particular application but the
aim is to open “design doors” by providing details of possibilities for immediate use
and further development.

http://dx.doi.org/10.1007/978-1-4471-6772-3_8


7.6 Discussion, Comments and Further Generalizations 207

7.6.3 Notes on Continuous State Space Systems

The form of the algorithm has been defined for both continuous time and discrete
time systems. The analysis has, however, focussed mainly on the case of discrete
time systems as the methodology has a strong link to the ideas of matrix algebra.
The analysis of continuous time systems has a similar structure with properties
covered by the general Theorems 7.1 and 7.2 but full details have been omitted
from the text for reasons of available space. The generalization to continuous time
state space systems S(A, B, C, D) is relatively straightforward as its adjoint is easily
computed and typically takes the form S(AT , CT Q, R−1BT , R−1DT Q) with zero
terminal condition at the final time T . For cases where D loses rank, the range of
G, at best, is dense in Y but, as continuous systems are effectively discrete systems
with an “infinitely high” sampling rate, the essential structure of the theory will be
very similar.

Finally, readersmaywish to consider the extension of the ideas of weighted norms
to continuous time, state space systems, with inner products in Yε = Lm

2 [0, T ] and
Uε = L�

2[0, T ],

〈y, w〉Yε
=

∫ T

0
e−2εtyT (t)Qw(t)dt and 〈u, v〉Uε

=
∫ T

0
e−2εtuT (t)Rv(t)dt

(7.145)
with the choice of ε > 0 clearly indicating a higher weighting on the early parts of
the interval [0, T ]. The weighted signals rε, yε, eε, uε, xε, . . . are computed using
the generic “exponentially weighted” map f (t) �→ f ε(t) = e−εt f (t). The continuous
system S(A, B, C, D)mapping u into y then becomes the systems S(A−εI, B, C, D)

that maps uε into yε. As the transfer function matrix changes from G(s) to Gε(s) =
G(s + ε), this model becomes both asymptotically stable and minimum -phase if ε

is large enough. In addition,

1. in frequency domain analysis, the imaginary axis must be replaced by the vertical
line {s : Re[s] = ε}.

2. The weighted input update relationship is defined by

uε
k+1(t) = uε

k(t) + βG∗
εeε

k(t), for t ∈ [0, T ], (7.146)

where G∗
ε : Y → U is the adjoint operator for the system S(A − εI, B, C, D).

The un-weighted signal update relationship is then easily derived to be

uk+1(t) = uk(t) + βG∗
2εek(t), for t ∈ [0, T ], (7.147)

where G∗
2ε is the adjoint operator for the system S(A − 2εI, B, C, D).

The reader may wish to explore previously defined uses of “exponentially weighted
norms” in nonlinear Iterative Control by examination of publications such as [113,
17, 25, 78] and [114] and the references therein.



Chapter 8
Combined Inverse and Gradient
Based Design

Preceding chapters have shown the theoretical power of inverse model-based and
gradient-based Iterative Control algorithms for linear systems using an operator for-
mulation that highlights the great generality of the concepts. The general theory
inevitably needs more detail to be added depending on the form of plant model to
be used. Linear, time invariant state space models (and their transfer function matrix
equivalents) formed the focus of the discussion with emphasis on the case of dis-
crete/sampled data systems as the finite dimensional nature of the resultant problem
simplified the presentation considerably. The purpose of this chapter is to explore
the links between inverse model and gradient approaches and bring them together in
the form of a structured design approach. It will not be claimed that the presentation
answers all the questions posed by the wide range of applications but it is hoped that
the issues described and answers considered will help the reader in the process of
tailoring the ideas to meet his or her needs.

The benefits of bringing inverse model and gradient concepts together is first
described by a section on filtering to improve the robustness of inverse model algo-
rithms. This is followed by a summary of issues that may be faced in design and a
range of compensation strategies.

8.1 Inverse Algorithms: Robustness and Bi-directional
Filtering

The purpose of this section is use gradient concepts to improve the robustness of
the inverse model algorithms discussed in Chap.6 using bi-directional (“zero phase
change”) filtering techniques. The approach is capable of achieving some compen-
sation of the effects of modelling error gains without the introduction of the phase
lag associated with “uni-directional” filters. Controlling phase lag is essential as it
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could lead to the possible consequence that the required positivity conditions for the
modelling error are violated.

The operator notation is used throughout and specific detailed results for linear,
time invariant, discrete time state space models stated in some detail.

The Case of m ≤ � Suppose that GR is a right inverse of a model G of a plant UG
with left multiplicative modelling error U. Then the inverse model Algorithm6.1
has update formula uk+1 = uk + βGRek and is monotonically convergent if U
is asymptotically stable and the relevant operator or frequency domain conditions
are satisfied (Theorem6.6). Compensation for any difficult gain characteristics of
U(z) such as high frequency parasitic resonances clearly must take into account the
need to avoid introducing additional phase lag into the system whilst simultaneously
providing appropriate gain changes over chosen frequency bands. In what follows
this is achieved using an algorithm based on the use of a filter F : F → Y where,
as used previously, Y = Rm(N+1) is regarded as a Hilbert space created from time
series in Rm of length N + 1 in supervector form. The chosen inner product and
norm are

〈y, w〉Y =
N∑

t=0

yT (t)Qw(t) and ‖y‖Y = √〈y, y〉Y with Q = QT > 0. (8.1)

The spaceF = RmF (N+1) is regarded as a Hilbert space created from time series in
RmF of length N + 1 in supervector form. The chosen inner product and norm are
written as follows

〈f , g〉F =
N∑

t=0

f T (t)RFg(t) and ‖f ‖F = √〈f , f 〉F where RF = RT
F > 0.

(8.2)
As usual, the filter is assumed to have a state space model S(AF , BF , CF , DF). The
following algorithm is bi-directional (or bi-causal) as it includes the operation FF∗ek
which is realized by two simulations. The first filtering computation, ψk = F∗ek , is
approached using the “adjoint model”

S(AT
F , CT

F Q, R−1
F BT

F , R−1
F DT

FQ)

and time reversal operator techniques and takes the form

ψk = T (mF , N)G(AT
F , CT

F Q, R−1
F BT

F , R−1
F DT

FQ)T (m, N)ek, (8.3)

An equivalent statement is as follows,

zk(t + 1) = AT
Fzk(t) + CT

F Qek(N − t), zk(0) = 0, and
ψk(t) = R−1

F BT
Fz(N − t) + R−1

F DT
FQek(t), 0 ≤ t ≤ N .

(8.4)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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The second simulation, F(F∗ek) = Fψk uses the state space model S(AF , BF , CF ,

DF) to compute its response, fromzero initial conditions, to the time seriesψk(t), 0 ≤
t ≤ N .

Algorithm 8.1 (Right Inverse Algorithm with Bi-directional Filtering) Suppose that
amodelG of the plantUG has a right inverseGR andU is invertible. Suppose also that
the design process has specified an m × mF filter F(z) that is asymptotically stable
and minimum-phase with the property that ker[F∗] = {0} (that is, rank[DF ] = m
and hence m ≤ mF and R[F] = Y ). The Right Inverse Model Algorithm with
Bi-directional Filtering is defined by the input update formula

uk+1 = uk + βGRFF∗ek, k ≥ 0. (8.5)

The resultant error evolution is described by the equation

ek+1 = (I − βUFF∗)ek, k ≥ 0. (8.6)

The error evolution equation has the formal structure of a perturbed steepest descent
algorithm with G replaced by F and hence

1. A sufficient condition for convergence to be achieved is obtained from Theorem
7.16. In terms of the proof of that Theorem, the error waswritten as e = UG(u∞−
u) and monotonic convergence defined in terms of the subsidiary time series
wk = u∞ − uk, k ≥ 0, which has an obvious interpretation. For Algorithm 8.1,
the variable wk defined by ek = UFwk does not have this interpretation but it can
still be used in the proof as it is uniquely defined if values are taken to be in the
closed (Hilbert) subspaceR[F∗]. With this understanding, a sufficient condition
for monotonic convergence is that U(z) is minimum-phase and also that,

ÛT (z)Q + QÛ(z−1) > βQF(z−1)R−1
F FT (z)Q whenever |z| = 1 . (8.7)

The left-hand-side of this expression depends primarily on the modelling error
U(z) whilst the right-hand-side depends on the chosen filter F(z) and the gain
β. This observation is a key link between the properties of U and the choice of
filter. Conversely, for a given filter, the expression provides data on the class of
modelling errors U that can be tolerated whilst retaining monotonic convergence.

2. In the “nominal” case of no modelling error, U = I and the condition reduces to
2Q > βQF(z−1)R−1

F FT (z)Q whenever |z| = 1, which, in operator terms, is just
0 < β‖F∗‖2 < 2 if N is large.

3. Both of the previous two observations have meaning if ε-weighted models and
norms are used as described in Sect. 7.5.5, simply by replacing U(z) by Uε(z) =
U(ε−1z) and F(z) by Fε(z) = F(ε−1z) from which monotonic convergence with
respect to the weighted norm is ensured if

ÛT (z)Q + QÛ(z) > βQF(z)R−1
F FT (z)Q whenever |z| = ε−1. (8.8)

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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The choice of F(z) is an open question that is strongly related to the design issues
pertinent to the problem/application being considered. The need for a form of posi-
tive real modelling errors is still essential but, using the techniques of Sect. 7.2.3, an
analysis of the first iteration e1 = (I − βFF∗)e0 where e0 is the supervector corre-
sponding to the time series {e0(t, z, α)}0≤t≤N = {ztα}0≤t≤N gives the approximate
time series

e1(t) ≈ (I − βU(z)F(z)R−1
F FT (z−1)Q)e0(t, z, α), 0 ≤ t ≤ N, if N is large.

(8.9)

This indicates that (a) the use of low pass filters with a specified bandwidth will help
to suppress the effects of significant high frequency properties of U(z) or (b) the use
of a notch filter could reduce the effects of problematic frequency ranges. The choice
should reflect the need to reduce problems in algorithm performance and also allow
increased values of gain β to improve convergence rates.

Special Case of m = � = 1: Insight into possibilities is clearer in the SISO case.
Take, for example,Q = 1 and RF = ImF , and set F(z) to be the row vector

F(z) = [
F1(z), . . . , FmF (z)

]
(8.10)

where Fj(z), 1 ≤ j ≤ mF , are scalar, asymptotically stable filters. The condition
ker[F∗] = {0} simply requires that at least one such filter has a non-zero “D” term
in its state space model. With this construction, the convergence condition becomes

∣∣∣∣∣∣
1

β
− U(z)

mF∑

j=1

|Fj(z)|2
∣∣∣∣∣∣
<

1

β
whenever |z| = 1 . (8.11)

This clearly reveals the role of F in shaping the gain characteristics of U and their
consequences for convergence and gain selection. The flexibility implicit in the role
of mF is also revealed. Note the separate effects of each filter in the summation. This
structure opens up the possibility of filter design using simple component elementsFj

designed for different purposes over different bandwidths. For example, let mF = 2
and consider the 1 × 2 filter structure

F(z) = [F1(z), F2(z)] =
[
(1 − λ)0.5, λ0.5

(
1 − p

z − p

) ]
, with λ ∈ (0, 1), (8.12)

gives
mF∑

j=1

|Fj(z)|2 = (1 − λ) + λ
(1 − p)2

|z − p|2 (8.13)

and provides separate influence over high frequency and low frequencies (by choice
of λ) and bandwidth compensation (by choice of p).

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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The Case of m ≥ �: The algorithm in this case takes the form,

Algorithm 8.2 (Left Inverse Model Algorithm with Bi-directional Filtering) Sup-
pose that m ≥ � and that the model G of the plant GU has a left inverse GL (and
hence that ker[G] = {0} andY = ker[GL]⊕R[G]). Suppose also thatU is invertible
and that the design process has specified an � × mF filter F(z) that is asymptotically
stable with the property that ker[F∗] = {0} (that is rank[DF ] = �). The Left Inverse
Model Algorithm with Bi-directional Filtering is defined by the update formula

uk+1 = uk + βFF∗GLek, k ≥ 0. (8.14)

The resultant error evolution is described by ek+1 = (I − βGUFF∗GL)ek, k ≥ 0 .

Each error ek can be written in the unique form ek = Gwk + ξk with ξk ∈ ker[GL].
A simple calculation gives the result that ξk = ξ0 for all k ≥ 0, and hence that the
component of e0 in ker[GL] remains unchanged from iteration to iteration. Significant
error evolution only occurs, therefore, in R[G] and is described by the formula

wk+1 = (I − βUFF∗)wk, k ≥ 0 . (8.15)

Again, the equation has the structure of a perturbed steepest descent algorithm with
G replaced by F and hence a sufficient condition for convergence of {wk}k≥0 to a
limit w∞ = 0 is that given for the case of m ≤ �. The corresponding error evolution
satisfies the condition

lim
k→∞ ek = ξ0 . (8.16)

Conclusions and Comments: The material described above provides a partial unifi-
cation of the inversemodel and gradient paradigms for IterativeControl. The outcome
is aimed at providing some control over the robustness of the inverse model approach
using bi-directional filtering operations that mimic the structure of gradient method-
ologies. In the form described, the need for positivity conditions to be satisfied is
retained but, where this causes difficulties, the use of ε-weighted signals can help
considerably. With these constraints in mind however, the approach is suitable for
implementation as a conditioning tool for inverse model algorithms although the
choice of filter F will need careful consideration to meet the needs and concerns of
the particular application being considered.

8.2 General Issues in Design

Although much of the general theory and underlying concepts and ideas presented
in the text applies to a wide class of dynamical systems, the detailed analysis of the
case of linear, time invariant, discrete time, state space systems provides some tools
for analysis and design and indicates that the properties of the plant model G and the
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form of any multiplicative modelling error U play an important role in the design
process and behaviours. A review of the material of previous chapters suggests some
general design guidelines. For example, specific issues that can be identified include:

1. The application of fixed (iteration independent) control loops to “pre-condition”
the plant may be essential as a means of improving the potential for successful
Iterative Control. The resultant controller is implemented on the plant. The orig-
inal plant model is then replaced by a model of the pre-conditioned plant (and
again denoted by G).

2. A preliminary analysis of the resultant conditioned model is useful and perhaps
essential.

3. The design of of compensation schemes for the pre-conditioned plant to achieve
the desired Iterative Control performance and robustness are the final off-line
design stage.

8.2.1 Pre-conditioning Control Loops

Given an �-input, m-output, state space model S(A, B, C, D) (and associated trans-
fer function matrix G(z)) of the plant to be controlled, the stability and robustness
conditions for gradient-based Iterative Control depend explicitly on the the transfer
function matrix G(z) of the plant model and model error U(z). In particular there
is a need to ensure stability of the plant (essential for feedforward Iterative Control
algorithms) and, where possible to eliminate or, at least reduce, the effects of non-
minimum-phase zeros, resonances (small damping) and zeros close to the stability
boundary. With this in mind, it is reasonable to assert that control loops should be
added to the plant before Iterative algorithms are considered.

There are a large number of candidates for such pre-conditioning control loops
and the pre-conditioning can be applied as “analogue control” to the underlying
continuous system before sampling or to the sampled system itself. They, of course,
include standard output feedback and feedforward controllers designed for stability,
robustness and applications specific reasons. From a scientific point of view however,
it is of interest to assess the potential full power of feedback by investigating what
the use of full state feedback can offer. The full analysis of such an idea is beyond the
scope of this text but an insight into possibilities can be obtained from the following
examples.

Deadbeat Control Suppose that m = �, that D = 0 and that the model has uniform
rank k∗ ≥ 1. That is, CAj−1B = 0 for 1 ≤ j < k∗ with det[CAk∗−1B] = 0. Then the
state feedback control law

u(t) = v(t) − (CAk∗−1B)−1CAk∗
x(t), t ≥ 0 (8.17)
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replaces the input u by the new input v and generates the closed loop plant model
S(A − B(CAk∗−1B)−1CAk∗

, B, C). A simple calculation then yields the following
simple equation for closed loop output dynamics,

y(t + k∗) = CAk∗−1Bv(t), t ≥ 0. (8.18)

This model has a minimal realization of state dimension k∗m defined by the matrices

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 Im 0 · · · · · · 0
0 0 Im 0 · · · 0
...

...
... Im

0 0 0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
, B =

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
CAk∗−1B

⎤

⎥⎥⎥⎥⎥⎦
, C = [Im 0 · · · 0] . (8.19)

The state vector is x(t) = [
yT (t + k∗), yT (t + k∗ − 1), . . . , yT (t)

]T
. The remaining

n − k∗m unobservable states are associated with poles equal to the zeros of the plant
and hence are stable if, and only if, the original plant was minimum-phase.

State feedback can simplify the nature of plant dynamics although the range of its
successful applicationmaybe influenced by the position of plant zeros.An interesting
observation here is that the resultant closed loop system has transfer function matrix
equal to z−k∗

CAk∗−1B and hence, assuming zero initial conditions, that the shifted
output ye(t) defined by ye(t) = y(t + k∗) for t ≥ 0 is described by the simple
algebraic expression ye(t) = CAk∗−1Bv(t). It is a simple matter now to show that the
update rule vk+1(t) = vk(t) + β(CAk∗−1B)−1ee

k(t) where ee
k(t) = re(t) − ye

k(t) and
re

k(t) = r(t + k∗) gives the recursion ee
k+1(t) = (1 − β)ee

k(t), t ≥ 0. This converges
if β ∈ (0, 2), a direct parallel to the expressions appearing in the inverse model
algorithm. Clearly the use of state feedback can create inverse model behaviour
exactly. More generally, it may create useful approximations to inverse algorithms.

Pole Allocation Loops: State feedback can also be used to allocate the poles of the
preconditioned plant using the more general state feedback rule

u(t) = v(t) − Fx(t), t ≥ 0, (8.20)

where F denotes an � × n state feedback matrix. If S(A, B, C) is controllable, the
eigenvalues/poles of the closed loop system S(A − BF, B, C) can be allocated to
any desired locations. The deadbeat control example is just one choice but leads
to an unobservable closed loop system. Consider the special case of a single-input,
single-output system (m = � = 1) of relative degree k∗ = 1 and with n − 1, distinct,
real zeros 0 < zj < 1 ordered as follows z1 > z2 > · · · > zn−1. Choose F to allocate
the closed loop poles to real values 0 < pj < 1, ≤ j ≤ n satisfying the interlacing
condition

pn < zn−1 < pn−1 < · · · < z1 < p1. (8.21)
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The interesting properties of such “interlaced systems” include the facts that

1. The residues of the poles of G(z) in its partial fraction expansion all take the
same sign. Physically, if they are positive for example, the step response from
zero initial conditions is monotonically increasing in the sense that y(t2) ≥ y(t1)
whenever t2 > t1.

2. Also theH∞ norm ‖G(z)‖∞ = sup|z|=1 |G(z)| of the closed loop transfer function
G(z) (and its shifted version zG(z)) is exactly the steady state value |G(1)|. This
value can be used to compute a good upper bound for the induced norm of the
matrix operator in the supervector description of S(A − BF, B, C) and its shifted
version S(A − BF, B, CA, CB).

Within the monotonicity property, there is an infinity of design opportunities to
influence closed loop response speed and bandwidth.Once achieved, the computation
of a suitable range of β for use in steepest descent-based Iterative Control can then be
computed from steady state step response characteristics. The approach also creates
opportunities for simplification of the algorithm. For example, if the interlacing
condition is satisfied and the differences |zj − pj|, 1 ≤ j ≤ n − 1 are small, then the
closed loop system can be thought of as being the product of a first order model G(z)
and a model error U(z) described by,

G(z) = G(1)
(1 − pn)

(z − pn)
and U(z) =

n−1∏

j=1

(
(z − zj)(1 − pj)

(z − pj)(1 − zj)

)
. (8.22)

Noting that U(1) = 1, it is a simple matter to prove that U(z) is also strictly positive
real. The use of the first order model (in shifted form) as the model to be used for
steepest descent Iterative Control will therefore be successful with a suitable value
of β. Using the techniques of Sect. 7.5.3, the permissible range of β is computed
from the graphical condition that, whenever |z| = 1,

∣∣∣∣
1

β
− U(z) (zG(z))

(
z−1G(z−1)

)∣∣∣∣ =
∣∣∣∣
1

β
− U(z)

|G(1)|2(1 − pn)
2

(z − pn)(z−1 − pn)

∣∣∣∣ <
1

β
(8.23)

8.2.2 Compensator Structures

Given the final, pre-conditioned, asymptotically stable, plant model G, the design
of steepest descent algorithms opens up a wide range of possibilities. Based on the
successful analysis of inverse and gradient-based algorithms, the following general
structures could form the basis of systematic design. The two compensator char-
acterizations considered below contain elements of approximate inversion aimed at
producing rapid and controlled convergence rates but also make use of the “zero-
phase” aspects of steepest descent. The details are as follows and are based on the
use of an “approximate right inverse” GaR of a discrete state space system G,

http://dx.doi.org/10.1007/978-1-4471-6772-3_7


8.2 General Issues in Design 217

Algorithm 8.3 (Combined Inverse and Gradient-based Control when m ≤ �) Sup-
pose that m ≤ � with R[G] = Y . Suppose also that R[GaR] ∩ ker[G] = {0}
and ker[GaR] = {0}. In particular it follows then that U = R[GaR] ⊕ ker[G]. A
combined inverse and gradient-based input update rule could have the form

uk+1 = uk + βGaR(GGaR)∗ek, k ≥ 0, (8.24)

whereGaR is an asymptotically stable compensation network. Conceptually, it can be
regarded as an approximate right inverse of G. The idea that GaR is an approximate
right inverse is not interpreted in a narrow sense and allows the design engineer
freedom to roam over a wide range of possibilities.

The resultant error evolution is represented by the supervector recursion

ek+1 = (I − βGGaR(GGaR)∗)ek (8.25)

and the choice of β can be based on the conditions for the steepest descent algorithm
for the m-input, m-output system GGaR. Analysis of robustness to left multiplicative
model errors can be approached using the techniques of Sect. 7.5.3.

The following is a similar result using “approximate left inverse” systems GaL of G.

Algorithm 8.4 (Combined Inverse and Gradient-based Control when m ≥ �) Sup-
pose that m ≥ �, that ker[G] = {0}, thatR[GaL] = U and that ker[GaL] ∩R[G] =
{0}. In particular, it follows that Y = ker[GaL] ⊕R[G]. The compensator structure
naturally takes the form

uk+1 = uk + β(GaLG)∗GaLek, k ≥ 0, (8.26)

where GaL represents an approximate left inverse of G. The error evolution is

ek+1 = ((I − βG(GaLG)∗GaL))ek (8.27)

Defining wk = GaLek, k ≥ 0, then

wk+1 = (I − βGaLG(GaLG)∗)wk (8.28)

and choice of β can be based on the conditions for the steepest descent algorithm
for the �-input, �-output system GaLG. Monotonic convergence of {wk}k≥0 to zero
then ensures that ek → e(2)

0 where the initial error has the unique decomposition

e0 = e(1)
0 + e(2)

0 with e(1)
0 ∈ R[G] and e(2)

0 ∈ ker[GaL].
Finally, analysis of robustness to right multiplicative model errors can be

approached using the techniques of Sect. 7.5.3.

Note that in the case when the approximate inverse is an exact inverse, the algorithms
reduce to the simple inverse model algorithms described in Chap.6.

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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8.2.3 Stable Inversion Algorithms

Combined approximate inverse and gradient concepts by adding bi-directional filter-
ing offers a possible means of coping with inverse algorithms when the plant model
G is non-minimum-phase.

The Case of m = � = 1: Consider the case of SISO systemswith nz zeros z1, . . . , znz ,
the first n+ of which, {zj}1≤j≤n+ , have a modulus |z| > 1 with all remaining zeros
satisfying |z| < 1. The transfer function of this system can be written as a product
G = GapGm. That is,

G(z) = Gap(z)Gm(z) where Gap(z) =
n+∏

j

(
z − zj

1 − zzj

)
. (8.29)

Here Gm is minimum-phase as the zeros of G at the points z = zj, 1 ≤ j ≤ n+
have been replaced by zeros at points z = z−1

j , 1 ≤ j ≤ n+. The factor Gap(z) is an
asymptotically stable, all-pass network in the sense that

Gap(z)Gap(z
−1) ≡ 1, and hence |Gap(z)| ≡ 1 whenever |z| = 1. (8.30)

Following the application of the relevant shift, the system Gm has a stable inverse
G−1

m . Consider the Iterative Algorithm

Algorithm 8.5 (Stable Inverse Algorithm when m = � = 1) Using the notation
defined above, suppose that the input and output spaces have the Euclidean norms
‖f ‖ = √

f T f (so that Q = R = 1). Suppose also that the plant has dynamics
represented by UG where the multiplicative modelling error U(z) is asymptotically
stable. Consider the Iterative Algorithm input update rule

uk+1 = uk + βG−1
m FF∗G∗

apek (8.31)

where F is a filter as described in Sect. 8.1. The resultant error evolution is described
by

ek+1 = (1 − βUGapFF∗G∗
ap)ek, k ≥ 0. (8.32)

The error sequence hence has the structure of steepest descent control for a process
with model GapF and modelling error U(z). Taking mF = 1, application of the
robustness conditions for steepest descent iterations then proves that {ek}k≥0 con-
verges to zero for all choice of β satisfying the graphical condition

∣∣∣∣
1

β
− U(z)|F(z)|2

∣∣∣∣ <
1

β
, whenever |z| = 1. (8.33)

The algorithm properties follow from discussion of robustness of steepest descent
algorithms in Sect. 7.5.3. In particular it follows as the all-pass structure of Gap

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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implies that U(z)|Gap(z)F(z)|2 ≡ |F(z)|2U(z). The interesting conclusion is that
the convergence condition is precisely the condition derived for robustness of the
inverse algorithm using the full (right) inverse G−1 of the model G of UG. The
replacement of this inverse by the defined stable inverse hence has no effect on the
choice of gain required for monotonic convergence.

Note: There is a significant algorithm behaviour hidden behind this analysis. In
the next subsection, an eigenvalue analysis indicates that convergence rates have
special properties that can severely limit convergence rates in certain subspaces.

The Case of m = � ≥ 1: Finally, the supervector descriptions may apply , in princi-
ple, to the case of multi-input, multi-output systems. The theoretical and computa-
tional aspects of this observation are beyond the scope of this text but it is worthwhile
stating the natural structures that could be needed. More precisely, assuming m = �

and the topologies in Y andU defined by weighting matrices Q and R respectively,
the natural model G should have a decomposition G = GapGm where both elements
have asymptotically stable, discrete, state space models. The model of Gm should
also be minimum phase whilst that of Gap should be all-pass in the sense that its
transfer function matrix Gap(z) satisfies the identity

Gap(z)Q
−1GT

ap(z
−1)Q ≡ Im. (8.34)

In operator terms, this simply a condition that ensures that GapG∗
ap = I .

8.2.4 All-Pass Networks and Non-minimum-phase Systems

In what follows, the mathematical structure of G∗
apGap and GapG∗

ap is described and
related to slow algorithm convergence in certain subspaces of Y . The SISO case of
m = � = 1 is considered using eigenvalue analysis. Without loss of generality, it is
assumed that Q = R = 1. The main theorem is now stated,

Theorem 8.1 (All-pass System Singular Value Distribution)
Suppose that an all pass system Gap(z) has the form

Gap(z) =

n+∏
j=1

(z − zj)

n+∏
j=1

(1 − zjz)

= a0 + a1z + · · · + an+zn+

an+ + an+−1z + · · · + a0zn+ , (8.35)

where |zj| > 1, i = 1, . . . , n+, an+ = 1 and a0 = 0. If the system operates on the
time interval 0 ≤ t ≤ N, then there are two cases possible for the distribution of the
singular values of the supervector model matrix operator Gap : RN+1 → RN+1:
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1. if the time interval length N + 1 ≤ n+, then all singular values σj < 1.
2. Alternatively, there are n+ singular values σj < 1, 1 ≤ j ≤ n+ whilst all

remaining singular values take the value σ = 1.

Note: the eigenvalues of GT
apGap and GapGT

ap are identical.

Proof For any vector u = [u(0), u(1), . . . , u(N)]T define u(z) = ∑N
j=0 u(j)z−j, and

y(z) = Gap(z)u(z). Note that

uT GT
apGapu ≤ 1

2π i

∮

|z|=1

∣∣Gap(z)u(z)
∣∣2 dz

z
= 1

2π i

∮

|z|=1
|u(z)|2 dz

z
= uT u.

(8.36)
so that GT

apGap ≤ I and all the eigenvalues of GT
apGap are less than or equal to one.

That is, all the singular values of Gap are less than or equal to one. Now, consider
the equation

uT (I − GT
apGap)u = 0. (8.37)

All the non-zero solutions u are eigenvectors ofGT
apGap corresponding to eigenvalues

equal to one, and they span a subspace ofRN+1 whose dimension is identical to the
number of singular values satisfying σi = 1. Examination of the frequency domain
inequality indicates that the equality condition holds if, and only if, in the expansion
y(z) = ∑∞

j=0 y(j)z−j, the coefficients y(j) are zero for j > N . That is y(z) must be

a polynomial in z−1 of degree ≤ N . There are two cases to consider, the first being
the most important as, typically, N is large.

Case 1: Suppose that N + 1 ≥ n+. Consider the choice u(z) = a0 + a1z−1 + · · · +
an+z−n+ , then

y(z) = Gap(z)u(z) = an+ + a(n+−1)z
−1 + · · · + a0z−n+ . (8.38)

Clearly y(j) = 0 for j > n+ and hence for j > N . Therefore the equality in Eq.
(8.36) holds, which means u = [a0, a1, . . . , an+ , 0, . . . 0]T is a solution of (8.37).
There are N + 1 − n+ solutions of this type defined by the “shifted” polynomials

u(n+p)(z) = z−(p−1)u(z) = a0z−(p−1) + a1z−(p−1)−1 + · · · + an+z−(p−1)−n+ ,

where p = 1, . . . , N + 1 − n+,

(8.39)
that also yield equality in Eq. (8.36) and the corresponding supervectors,

un++1 = [a0, a1, · · · , an+ , 0, · · · , 0, 0]T

un++2 = [ 0, a0, a1, · · · , an+ , 0, · · · , 0]T

...
...

uN+1 = [ 0, 0, · · · 0, a0, a1, · · · , an+]T

(8.40)
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are also solutions of (8.37). This procedure generates N + 1 − n+ linearly
independent supervector solutions {up} of (8.37). There are no other linearly inde-
pendent solutions. To prove this, suppose there exists such a solution supervector
v = [v(0), . . . , v(N)]T represented by v(z) = ∑N

j=0 v(j)z−j. Then there must exist

a non-zero v0(z) = ∑N
j=N−n++1 v0(j)z−j which is also a solution and can be con-

structed by subtracting linear combinations of up from v. Note that

Gap(z)v0(z) =
(

a0 + a1z + · · · + an+zn+

an+ + a(n+−1) + · · · + a0zn+

) N∑

j=N−n++1

v0(j)z
−j (8.41)

is a polynomial, if and only if, v0(z) cancels all the poles of Gap(z). This, however,
cannot be satisfied because v0(z) has n+ − 1 non-zero roots whilst Gap(z) has n+
poles. Hence, there are exactly N − n+ linearly independent solutions of (8.37) and
these correspond to N − n+ singular values equal to one. This also proves that all
other singular values are strictly less than unity.

Case 2: N +1 < n+ In this case, it can be easily seen from the discussion above that
there are no solutions satisfying (8.37). Hence all the singular values should be less
than one. That completes the proof of the Theorem. �

Theorem 8.2 (Eigenvectors of GapGT
ap) Assume the notation of the preceding result

and suppose that N + 1 > n+. Then the eigenstructure of GapGT
ap has the form of

1. N + 1 − n+ linear independent eigenvectors corresponding to the N + 1 − n+
eigenvalues σ 2

j = 1, n+ + 1 ≤ j ≤ N + 1:

ũn++1 = [an+ , a(n+−1), · · · a0, 0, · · · , 0, 0]T

ũn++2 = [ 0, an+ , · · · , a1, a0, 0, · · · , 0]T

...
...

ũN = [ 0, 0, · · · 0, an+ , a(n+−1), · · · , a0]T

(8.42)

The span of these vectors, denoted E1, has the property that GapGT
apy = y when-

ever y ∈ E1.
2. The n+ eigenvectors of GaGT

a corresponding to the n+ eigenvalues that are less
than one span the subspace Ea+ = E ⊥

1 .

Proof Using time reversal matrices, note that GapGT
ap = T (1, N)GT

apGapT (1, N)

and hence the eigenvectors up of GT
apGap and ũp of GapGT

ap are related by T (1, N).
The proof of Theorem 8.1 then completes the proof of the first part of the result as
a simple calculation gives ũp = T (1, N)uN+2+n+−p, p = n+ + 1, . . . , N + 1. The
form of Ea+ follows as all other eigenvalues are less than unity and the eigenspaces
of symmetric matrices corresponding to different eigenvalues are orthogonal. �



222 8 Combined Inverse and Gradient Based Design

The two issues of importance to what follows are the magnitude of the non-unit
eigenvalues and the structure of the subspace Ea+. The simplest case is that when
n+ = 1 when the zero z1 is real. In this case Ea+ has dimension equal to one. Using
the orthogonality property of Ea+ and the definition of the zero, a simple calculation
shows that eigenvector is expressed simply as

α1 =
[
1, z−1

1 , z−2
1 , . . . , z−N

1

]T
(8.43)

as ũT
p α1 = 0, n+ + 1 ≤ p ≤ N + 1. Noting that, in any state space realization

of U(z), the “D” matrix is simply the scalar −z−1
1 , and that the determinant is the

product of the eigenvalues, write

det[GapGT
ap] = det[Gap]2 = z−2(N+1)

1 =
N+1∏

j=1

σ 2
j = σ 2

1 . (8.44)

which proves the result that

Theorem 8.3 (Non-unit SingularValues andEigenvectorswhen n+ = 1) If n+ = 1,
then the only non-unit eigenvalue of GapGT

ap is σ 2
1 = z−2(N+1)

1 with eigenvector α1.
In particular, as |z1| > 1,

lim
N→∞ σ 2

1 = 0 (8.45)

and hence this eigenvalue can be made to be arbitrarily small if z2(N+1)
1 is sufficiently

large.
Note: For a given value of z1, increasing the length of the interval reduces the

magnitude of the eigenvalue.

It is useful at this stage to discuss the implications of this result for the stable inverse
Algorithm of Sect. 8.2.3 in the special case of F = I (no filtering) and the use of
Euclidean norms. The resultant error evolution ek+1 = (I − βGapGT

ap)ek can then

be described by decomposing e0 into the sum e0 = e(1)
0 + e(2)

0 where e(1)
0 ∈ Ea+ and

e(2)
0 ∈ E1, from which

ek = (1 − βσ 2
1 )ke(1)

0 + (1 − β)ke(2)
0 , k ≥ 0 . (8.46)

If zN
1 is large, then, whereas the second term in E1 becomes small quickly (depending

on the choice of β), it is clear that the first term in Ea+ decays infinitesimally slowly.
This is clearly demonstrated in the special case of β = 1 when the second term is
removed in one iteration. Suppose that z1 = 1.1 and N = 127, then σ 2

1 ≈ 0.5×10−4

and it is clear that (1 − β0.5 × 10−4)k reduces very slowly. This situation is further
worsened as N increases. The theoretical convergence to the limit e∞ = 0 remains
true but the practical implication of the zero z1 is that the user, over the finite number
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of iterations possible in the real world, will observe an apparent convergence to a
“pseudo-limit” vector

epseudo∞ = e(1)
0 = 〈α1, e0〉

‖α1‖2 α1 (The Apparent Limit Error). (8.47)

Graphically, this will observed as monotonic reductions in error norm until an appar-
ent “plateauing” or “flat-lining” of the plot of ‖ek‖ against k will appear at a value
very close to that computed from the formula

‖epseudo∞ ‖ = ‖e(1)
0 ‖ = |〈α1,e0〉|‖α1‖ =

√
1−z−2

1

1−z−2(N+1)
1

|〈α1, e0〉|

=
√

1−z−2
1

1−z−2(N+1)
1

∣∣∣
∑N

t=0 z−t
1 e0(t)

∣∣∣ (The Apparent Limit Norm).

(8.48)

These equations shed light on the relationship between themagnitude of the apparent
limit, the initial error and the value of the zero. In particular,

1. Error norms continue to reduce monotonically from iteration to iteration.
2. The apparent limit error is proportional to α1 which can be identified with the

time series {1, z−1
1 , z−2

1 , . . . , z−(N−1)
1 , z−N

1 }.
a. This signal decays geometrically with the most significant values being at the

beginning of the time interval.
b. The larger the value of z1, the smaller the size of this interval.
c. If |z1| is very large, the decay z−t

1 indicates that the apparent limit has signif-
icant values only in the first few samples.

3. The Cauchy-Schwarz inequality proves that ‖epseudo∞ ‖ ≤ ‖e0‖. As a consequence,
the smaller the magnitude of the initial error is, the smaller the magnitude of the
apparent limit. In particular, the magnitude can be reduced by ensuring that the
initial errors e0(t) are very small at the beginning of the time interval.

4. For a given norm of e0, the norm of the apparent converged error is maximized
when it is proportional to α1. If e0 = α1, then epseudo

0 = e0 and the convergence
observed in practice will immediately become problematic.

5. Given the above and assuming zero initial conditions, the choice of u0 = 0 will
produce the initial error e0 = r. This suggests that

a. a reference signal r(t) that is small or zero at sample points when z−t
1 is sig-

nificant relative to unity will produce small apparent limit vector magnitudes.
b. If, however, |z1| is close to unity then epseudo

0 can still be small but the value
will depend on the details of the time series {r(t)}. As a guide to what may
be required, consider the case where z1 is sufficiently close to unity so that
zt
1 ≈ 1 for 0 ≤ t ≤ N . In this circumstance, the plateau will occur at a small
value of the norm only if the arithmetical mean of the elements of r is around
zero.
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The final observation suggests that highly “active” reference signals will tend to
reduce the plateau value. Also, when made possible by the conditions required
by the application, it might be a good design strategy to lengthen the interval
0 ≤ t ≤ N to include the addition of NI sample points to form an initial period
where the reference signal is taken to be zero. The tracking of r on the orig-
inal interval may then be replaced by the tracking of the new reference signal
{0, 0, . . . , 0, r(0), r(1), . . . , r(N)} on 0 ≤ t ≤ N + NI . The simple calculation
with e0 equal to the new reference gives

N+NI+1∑

t=0

z−t
1 e0(t) = z−NI

1

(
N+1∑

t=0

z−t
1 r(t)

)
, (8.49)

which indicates that the observed limit is reduced by a factor of approximately z−NI
1 ,

a factor that can be small if NI is large enough. For example, if NI = 8 and z1 = 2,
then the reduction factor is 2−8 ≈ 4 × 10−3 which is substantial.

Intuitively, the addition of this interval adds degrees of freedom that the algorithm
can use to create inputs that reduce the pseudo-limit error to smallermagnitudesmore
rapidly. This will be manifested by input activity on 0 ≤ t ≤ NI . In effect, a non-zero
“initial condition” for the remainingN +1 samples is created to produce the practical
error reduction sought.

The general ideas described above also apply when n+ > 1. The following results
consider the eigenvalues and eigenvectors as N increases.

Theorem 8.4 (Distinct Zeros and a Basis for Ea+) Suppose that the zeros
{zj}1≤j≤n+ are distinct and that N ≥ n+ + 1. Then Ea+ is spanned by the vectors
αj = α(z−1

j ), 1 ≤ j ≤ n+, where

α(z) =
[
1, z, z2, . . . , zN

]T
, 1 ≤ j ≤ n+. (8.50)

Moreover, the Euclidean norm of each αj remains bounded as N → ∞.
Note: This defines αj if zj is real but, if complex with zk = zj, the pair αj and αk

should be replaced by the real and imaginary parts of αj .

Proof From Theorem 8.2 and the definition of the zeros, it is a simple matter to
demonstrate that ũT

p αj = 0 so that αj ∈ Ea+. That the {αj} span Ea+ follows as they
are linearly independent when the zeros are distinct. Finally, a simple calculation
gives αT

j αj < (1 − |zj|−2)−1 for all N . �

Theorem 8.5 (Non-unit Eigenvalues when n+≥1) Suppose that the zeros {zj}1≤j≤n+
of the all-pass system Gap are distinct. Then, all non-unit eigenvalues σ 2

j , 1 ≤ j ≤ n+
of GapGT

ap (and hence GT
apGap) converge to zero as N → ∞. In particular, defining

z0 = min{|z1|, . . . , |zn+|}, there exists a scalar M(+) such that

max{σ 2
1 , . . . , σ 2

n+} ≤ M(+)z
−2N
0 for all N ≥ n+ + 1. (8.51)
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Proof It is sufficient to show that αT
j GapGT

apαj ≤ (|zj| − 1)−1|zj|−2N , 1 ≤ j ≤ n+.
Without loss of generality, take j = 1 and consider the input time series defined by
α1 = {1, z−1

1 , . . . , z−N
1 }. Using time reversal operators T (1, N), αT

1 GapGT
apα1 =

(T α1)
T GT

apGap(T α1). The Z -transform of the time series T α1is just

(T α1)(z) =
N∑

j=0

z−jzj−N
1 = z−N

1

N∑

j=0

z−jzj
1 = z−N

1

(
(1 − ( z1

z )N+1)

1 − z1
z

)
. (8.52)

and GapT α1 is the restriction of the infinite time series on 0 ≤ t ≤ ∞ generated
by Gap(z)(T α1))(z) to the interval 0 ≤ t ≤ N . Defining G̃ap(z) = Gap(z)

z
z−z1

, the
pole-zero cancelation produces a stable transfer function with H∞ norm

‖G̃ap(z)‖∞ = sup
|z|=1

∣∣∣G̃ap(z)
∣∣∣ = sup

|z|=1

∣∣∣∣
z

z − z1

∣∣∣∣ = (|z1| − 1)−1. (8.53)

Noting that the term ( z1
z )N+1 in (T α1)(z) does not contribute to the time series on

0 ≤ t ≤ N , the use of discrete time reversal operators gives

αT
1 GapGT

apα1 = (T α1)
T GT

apGap(T α1)

≤ z−2N
1

1
2π i

∮
|z|=1

∣∣∣G̃ap(z)
∣∣∣
2

dz
z ≤ ‖G̃ap(z)‖2∞z−2N

1

(8.54)

which is the desired result. �

The immediate conclusion from the above is that the consequences, for conver-
gence, of having n+ > 1 distinct zeros are the same as those already described for the
case of n+ = 1. The changes are in the technical details, but the general conclusion,
for the stable inverse algorithm, is that, for large values of N (measured by the need
for z−2N

0 to be very small), the algorithm will appear to converge to the orthogonal

projection e(1)
0 of e0 onto Ea+. If E+ is an (N + 1) × n+ real matrix whose columns

span Ea+, then

epseudo
0 = e(1)

0 = E+(ET+E+)−1ET+e0 with ‖e(1)
0 ‖2 = eT

0 E+(ET+E+)−1ET+e0.
(8.55)

Using the vectors {αj} as models of such a basis, the reader can easily verify that
initial errors e0 that take small values on some interval close to the origin will have
apparent convergence but to a plateau where norm values are, potentially, small.
The section is concluded by two observations

1. Repeated Zeros: The most useful conclusion from the analysis is expected to
carry over to the more general case when some or all of the zeros in an all-pass
system are repeated. It is left as an exercise for the reader to verify that, if the
system has q distinct zeros zj, one or more of which has multiplicity nj ≥ 1, then
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Ea+ is spanned by vectors, 1 ≤ p ≤ nj, 1 ≤ j ≤ q, computed from the (scaled)
time reversal z−N

j T (1, N)γjp of the supervectors

γjp = dp−1

dzp−1α(z) evaluated at z = zj. (8.56)

2. Gradient Algorithms:Many of the results have implications for other algorithms
where the plant has non-minimum-phase zeros. For example, if m = � = 1, write
the transfer function G(z) = Gm(z)Gap(z) where Gm is minimum-phase and Gap

is all-pass. In the supervector form, G = GmGap. Write GGT = GmGapGT
apGT

m

and note that, if v0 ∈ Ea+ and e0 = (GT
m)−1v0, then, if N is large, the norm of the

product GGT e0 will be infinitesimally small relative to ‖e0‖. As a consequence
e1 = (I − βGGT )e0 ≈ e0 and convergence will be infinitesimally slow.
Note: The issue of slow convergence in (GT

m)−1Ea+ will be compounded, for low
pass systems by the inevitable slow convergence of the high frequency com-
ponents of the error. However, whereas high frequencies are associated with
rapidly varying time series such as {1,−1, 1,−1, . . .}, the consequences of non-
minimum-phase zeros are associatedwith slowly varying signals such asα1 which
contains substantial low (but still slowly converging) frequency components.

8.3 Gradients, Compensation and Feedback Design Methods

The previous sections have indicated the potentially powerful role of compensation
in steepest descent algorithms and the inhibiting role of non-minimum-phase zeros
on convergence rates. It also demonstrated the natural place of inverse models in
Iterative Control and has suggested that good choices of compensator will, in some
way, have a role that mirrors that of good approximate models of an inverse of G.
Feedback design methodologies can be regarded as methods of designing structured
approximations to inverse systems by ensuring good tracking of a specified reference
signal. By their very nature, they must recognize the very significant place of non-
minimum-phase zeros in the design process.

The following discussion is formulated using language relevant to applications
to linear, time-invariant, discrete time state space systems S(A, B, C, D) and, in the
following section, to the continuous time case. It describes Iterative Control design
as a two stage process beginning with feedback system design for the plant followed
by its conversion into a steepest descent-like algorithm. Note, however, that, being
formulated in operator notation, it also applies more generally although the design
of feedback systems in such cases may need further development.
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8.3.1 Feedback Design: The Discrete Time Case

Algorithm 8.6 (Compensators based on Feedback Design Principles) Suppose that
Q is a constant matrix (independent of time) defining the topology in Y . Suppose
also that Kc is the forward path compensator in a unity negative feedback system for
the plant G. The output from this closed-loop system is the plant output y whilst its
inputs (equivalent to reference signals) are denoted by ũ.

The design criteria for Kc is assumed to include closed loop stability and familiar
performance objectives in the frequency domain with the aim of providing some
ability to track, albeit approximately, the reference signal r. Implicitly, it is assumed
that the tracking is good and that the compensator ameliorates the effects of plant
properties such as oscillation and loop interaction, the effects of non-minimum-
phase zeros and, where thought to be of significance, to incorporate issues such as
sensitivity, robustness and disturbance rejection.

Let V denote the input space for the closed loop system and assume that this is
the Hilbert spaceRm(N+1) with the same inner product as Y but with Q replaced by
a constant, m × m, symmetric, positive definite matrix QT. The closed loop operator
T and sensitivity operator S of the resultant closed loop system will be denoted by

T = (I + GKc)
−1GKc : V → Y and S = I − T = (I + GKc)

−1 : V → Y .

(8.57)

The compensator for the compensated steepest descent algorithm is then constructed
using

K = KcS and GK = GKcS = T, (8.58)

and the input update formula

uk+1 = uk + βKcST∗ek, k ≥ 0. (8.59)

The resultant error evolution has the form

ek+1 = (I − βTT∗)ek, k ≥ 0, (8.60)

which takes the form of the error evolution obtained when the steepest descent
algorithm is applied to the “plant” model y = Tũ + d tracking the reference r with
initial values ũ0. The consequent Iterative algorithm is convergent for all β in the
range 0 < β‖T∗‖2 < 2.

The interpretation of the symbol T∗ contains additional flexibility in the design
process in the form ofQT which plays the role ofR as it was used in previous sections.
With this in mind, ‖T‖ = ‖T∗‖ and it can be bounded by

‖T‖ ≤ ‖Q1/2T(z)Q−1/2
T ‖∞ =

√
sup
|z|=1

r(T(z)Q−1
T T T (z−1)Q). (8.61)

The upper bound is an increasingly accurate estimate of the norm as N increases.
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Design Notes: An insight into the potential benefits of a combination of feedback
design and gradient iteration can be obtained by a consideration of the input-output
equation y = Tr of the feedback system. Perfect tracking requires thatT = I which is
unattainable using feedback but a well-designed feedback system typically ensures
that y tracks r well except, possibly, at high frequencies. Expressed in terms of
bandwidth for discrete time systems where G and Kc have state space models and
associated transfer function matrices G(z) and Kc(z), the transfer function matrix
associated with T can be denoted by T(z) = (I + G(z)Kc(z))−1G(z)Kc(z). Good
tracking often means that T(z) is close to the identity I over a desired bandwidth and,
in the absence of inhibiting factors such as substantial high frequency resonances, it is
likely that the associated operator norm ‖T‖ ≈ 1.A clearer picture ofwhat is required
is obtained using the frequency domain descriptions of Sect. 7.2.3. More precisely,
the supervector response (I −βTT ∗)Wj(zk) to the time series zt

kwj(zk), 0 ≤ t ≤ N ,
represents the approximate time series

(I − βT(z)Q−1
T TT (z−1)Q)zt

kwj(zk), 0 ≤ t ≤ N . (8.62)

The effect of the operator TT∗ is closely linked to the values of transfer function
matrix T(z)Q−1

T TT (z−1)Q. The closer this matrix is to the identity and the wider the
bandwidth over which this property can be achieved, the more likely it will be that
frequency components in that bandwidth will be reduced by a factor of 1 − β.

The discussion therefore suggests that, if Kc provides excellent feedback control
of G and the dominant frequency content of the reference r lies in the bandwidth of
the closed loop system T, then rapid convergence could be attained with a choice of
gain β ≈ 1.

Finally, the introductionof the use of feedbackdesignpotentially puts the proposed
iterative compensation technique into the familiar area of classical multi-loop control
systems design. Using the notation of discrete systems, the approach to algorithm
design then includes the computational stages:

1. Firstly, consider the properties of G(z) and any potential benefits of replacing it
by and ε-weighted model.

2. Next, design a forward path compensator Kc(z) for the plant G(z) based on per-
ceived needs for stability, the desired bandwidth and robustness.

3. Next, construct state spacemodels of the systemsK(z) = Kc(z)(I + G(z)Kc(z))−1

and T(z) = G(z)K(z) = (I + G(z)Kc(z))−1GKc(z) and, adding in the choices of
Q and QT, obtain a state space model of T∗.

4. Analyze the properties of T(z) and, if appropriate, re-assess the benefits of using
an ε-weighted model in algorithm construction.

5. If required, assess the monotone robustness of the anticipated Iterative Control
algorithm using the techniques of Sect. 7.5.3 and known, or assumed, data on
anticipated multiplicative modelling errors U.

6. Finally, choose a value of β and construct the input update rule as a computational
procedure that computes the response T∗ek using reverse time simulation from
zero terminal conditions and then sets uk+1 − uk equal to the response, from zero
initial conditions, of βK to that output.

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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Note: The summary above could also include the use of relaxation factors as discussed
in Sect. 5.2.3.

8.3.2 Feedback Design: The Continuous Time Case

The observant reader will note that the basic idea of feedback design in Iterative
Control generalizes quite naturally to the case of continuous time, state space systems.
The changes required lie in the detail of the feedback design and the need to use the
more general Theorem7.1 to assess convergence properties. The main issue here
is that, for convergence of errors to zero, the closure R[TT∗] of the range of TT∗
must contain the reference signal otherwise a residual error equal to the orthogonal

projection of the reference signal r onto R[TT∗]⊥ = ker[T∗] will remain.The
relevant modifications needed to include relaxation factors can be deduced from
Algorithm 7.7.

8.4 Discussion and Further Reading

The concepts of inversion and gradient-based Iterative Control, although seemingly
based on different basic principles, have in common the monotonic reduction of cho-
sen signal norms. It is not surprising, therefore, that there is the possibility of bringing
them together in the development of feedforward algorithms (see, for example, [85]).
The key is the use of gradientmethodologies as applied to compensated plantmodels,
the benefits being that the convergence and robustness results available for steepest
descent algorithms can be used on the compensated process. This compensation has
two general forms: the first is the pre-conditioning of the plant by control loops that
address issues of plant input-output performance such as resonance whilst the second
is the (series) compensator in the Iterative Control algorithm.

Pre-conditioning seems to be essential even from the point of view of ensuring
acceptable plant behaviour during each iteration, plant operation and test. However,
taking the characteristics of the reference signal r into account may help in guiding
the process. The formof the pre-conditioning is not specified precisely by algorithmic
considerations so almost all of the many control systems design techniques devel-
oped over the past eight decades could, in principle, be used. They include classical
Nyquist, Bode and root-locus analysis tools for output feedforward and feedback
design but also include state feedback design approaches and many of the frequency
domain approaches to the design of MIMO (multi-input, multi-output, multi-loop,
multivariable, multi-channel) feedback systems. Such approaches should be influ-
enced by the nature of the reference signal r which may allow the application of the
Internal Model Principle to improve tracking performance.

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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The pre-conditioned plant becomes the new plant to which Iterative Control will
be applied. Inverse algorithms could be applied to these without modification but
could suffer from robustness issues and/or instability of the inverse (and associated
sensitivity and computational problems) if the plant is non-minimum-phase. For
minimum-phase systems, the simple modification described in Sect. 8.1 shows how
bi-directional filtering can be included in the inverse algorithm. This leads to error
evolution which has the structure of a gradient algorithm for the filter. As the filter
will, typically, have simple structure, the convergence conditions will be simple to
deduce as ‖F‖ will be computable exactly off-line. The filter provides a mechanism
for affecting and improving the robustness of the inverse algorithm.

Simple filters offer the potential for substantial benefits but are only the tip of the
iceberg when it comes to discussing the choice of feedforward compensator. The
next easily constructed step in complexity considers non-minimum-phase systems.
The computational aspects for multi-loop systems is not included in the text but
the benefits are clearly seen by considering the single-input, single-output case.
By factoring the model transfer function into the series connection of a minimum-
phase system and an all-pass network, the inverse algorithm can be modified as in
Sect. 8.2.3 (see also [61]). More precisely, by only inverting the minimum-phase
factor, the algorithm reduces to that of a steepest descent algorithm for the all-
pass system (plus any filter included). This change removes unstable computations
from the algorithm and, in the absence of filtering, leaves the range of permissible
gains β unchanged. The hidden issue here is that of the rate of convergence and its
relationship to the zeros and the reference signal. Section8.2.4 provides theoretical
evidence that there is, indeed, a significant effect on convergence rates. The analysis
takes the form of proving that the space of error signals can be decomposed into
two components: in one, the error converges to zero as expected from the inverse
algorithm but, in a subspace of dimension n+ defined by the n+ non-minimum-phase
zeros, error convergence in practice will be infinitesimally slow if N is large. This
may or may not be a problem because the error norm reduces to what appears, in
practice, as a plateau beyond which further reductions are so slow as to be virtually
unseen. This effectiveminimum achievable tracking error depends on the initial error
e0 and time series/vectors defined by the zeros. This relationship throws light on the
form of reference signal that reduces the norm value on the plateau and hence makes
improved tracking possible. It suggests that a good strategy could be to use, when
possible, reference signals augmented by extending the time interval to include an
initial “lead-in phase”. This adds degrees of freedom whose objective is to attain
reduced plateau errors.

The non-minimum-phase analysis in this chapter has focussed on applications to
stable inverse algorithms but was originally addressed for Norm Optimal Iterative
Learning Control (see Chap.9). The approach used is based on results in the text
[51] on Toeplitz matrices and applied to discrete systems in [84]. A generalization
to continuous systems is also available in [86] although this paper is technically
more complex as the underlying spaces are infinite dimensional. The papers include
comprehensive simulation and experimental results which provide a convincing ver-
ification of the physical reality of the phenomenon in practice.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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More general compensation structures may suit or be necessary in some applica-
tions and further research may be needed in each case. The general principle of using
compensators that are structured approximations to inverse systems naturally sug-
gests the use of feedback methodologies. The general class of algorithms described
in Sect. 8.3 have potential value as they link closely to the output feedback design
techniques that may have been used in the pre-conditioning phase. In effect, the com-
pensator is constructed from a feedback controller designed for the pre-conditioned
plant. The reader is reminded that this model will often be the original plant model
modified by output shifts.

MIMO control systems design methodologies are many [71, 81] and the author
emphasizes his belief that there is no answer to the question “which is the best?”. Each
reader will have their own favorite ranging from simple process controllers, [65], to
the complexities of H∞ control [21, 23]. The development of good practice in this
area will depend on the applications sector and the education, skills and preferences
of the design team.



Chapter 9
Norm Optimal Iterative Learning Control

Gradient methodologies aim to reduce the magnitude of the tracking error from iter-
ation to iteration, the ultimate objective being to minimize that tracking error. They
are, as a consequence, strongly related to the idea of optimization regarded as the
minimization of some objective function subject to defined constraints. This chapter
creates a new perspective on Iterative Learning Control and monotonicity beginning
from the construction of optimization problems that ensure monotonic reductions of
errors from iteration to iteration. Emphasis is placed on wide applicability, establish-
ing convergence properties and convergence rates, assessing the effects of parameters
and characterizing robustness to modelling errors.

The approach is structured so that familiar optimization algorithms including
those used in optimal control theory can be used to provide implementable solu-
tions. For linear, discrete or continuous, state space systems, the control laws have
both feedforward and state feedback representations related to the structures seen in
quadratic optimal control. However, the chapter develops and describes the approach
bywriting themodels and algorithms in operator notation and by regarding signals as
points in defined Hilbert spaces. The approach is notationally compact and provides
a clear, geometrical interpretation of algorithm behaviour. In addition, although it is
algebraically similar to the use of transfer function notation, it has wider applicabil-
ity and demonstrates that the algorithms apply to a wide class of model types and
tracking objectives. The power of the approach will be seen in the following sections
and chapters by their application to

1. tracking of a specified reference signal at each point on a finite time interval or
2. finding a suitable input signal to ensure that the plant output “passes through”

specified points (that is, takes required values) at selected points on the time
interval of interest (the, so-called, Intermediate Point problem).

3. The two ideas briefly described above can be combined to solve Multi-task Track-
ing problems where, together with the need to pass through intermediate points,
the output is required to track reference signals on one or more subintervals and
plant motion may be free on other subintervals.

© Springer-Verlag London 2016
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These applications are possible as the plant operators G are associated with adjoints
G∗ with simple, state space structure and realizations that can be implemented as
iterative feedback and feedforward controls.

The reader will see that this chapter describes a benchmark solution to many
linear tracking problems but does not necessarily include all aspects of interest in
applications. The addition of more complex design requirements such as satisfy-
ing auxiliary design objectives and “hard” input/output constraints is left for later
chapters including Chaps. 11 and 12.

9.1 Problem Formulation and Formal Algorithm

In what follows, input-output dynamics are described by the familiar relationship
y = Gu + d with input u ∈ U and output y ∈ Y where U and Y are real Hilbert
spaces. The control objective is to track a specified reference signal r ∈ Y using
an Iterative Control procedure. The tracking error is e = r − y and, as in previous
chapters, signals f on iteration k are denoted by fk . Iterations are initiated by an input
signal u0 generating an initial error e0 = r − y0 with output y0 = Gu0 + d being
obtained either from simulation or from experiments on the physical plant.

9.1.1 The Choice of Objective Function

Consider the problem of reducing the magnitude of a non-zero, initial error e0 by a
change u1 − u0 in u0. The gradient methodologies of Chap. 7 produce reductions in
error norm by choosing a suitable descent direction G∗e0 and ensuring, by choice of
β, that the magnitude of the change βG∗e0 in input signal is not too large. A similar
effect is obtained naturally by minimizing an objective function

J(u, u0) = ‖e‖2Y + ε2‖u − u0‖2U︸ ︷︷ ︸
, with e = r − y, where ε2 > 0,

(Objective Function)
(9.1)

subject to the dynamical system constraint y = Gu + d.
Note: The function contains error magnitudes and the magnitude of the change

in input signal. It is expressed in a quadratic form because this will lead to solutions
that depend linearly on data u0, e0. The parameter ε2 is added to provide a sim-
ple mechanism for varying the relative contributions of ‖e‖2 and ‖u − u0‖2 to the
objective function. Intuitively, if it is large, then the optimization will place greater
emphasis on making u very similar to u0. If it is small, greater variation in u is
permitted to achieve a greater reduction in the error norm ‖e‖.

http://dx.doi.org/10.1007/978-1-4471-6772-3_11
http://dx.doi.org/10.1007/978-1-4471-6772-3_12
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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The formal way of representing this problem is to write the minimizing input
u1 as

u1 = arg min
u∈U

{ J(u, u0) : e = r − y, y = Gu + d} (9.2)

This problem is essentially the problem discussed in Sect. 2.6 and, in particular,
using the techniques of Theorem 2.18, gives the solution u1 = u0 + ε−2G∗e1 where
e1 = r − y1 and y1 = Gu1 + d. As J(u1, u0) ≤ J(u, u0) for all u ∈ U , it follows,
choosing u = u0, that

‖e1‖2Y + ε2‖u1 −u0‖2U ≤ ‖e0‖2Y and hence ‖e1‖2Y ≤ ‖e0‖2Y , for all ε > 0,
(9.3)

equality holding if, and only if, u1 = u0. In such a situation G∗e0 = 0, a condition
that cannot hold if ker[G∗] = {0}.

In summary, by formulating the issue of reducing error norms as a quadratic
optimal control problem in Hilbert space, the input update rule deduced from the
optimization guarantees a reduction in error norm and removes the need for the use
of a gain parameter β by replacing e0 by e1.

Regardingu1 and e1 as new initial signals, application of the sameprocesswill lead
to a further reduction in error norm ‖e2‖2Y ≤ ‖e1‖2Y . This process can be continued
indefinitely and, using Theorem 2.18, leads to the following general algorithm and
associated properties,

Algorithm 9.1 (Norm Optimal Iterative Learning Control) Using the notation and
terminology of the preceding discussion, the Norm Optimal Iterative Learning Con-
trol algorithm initiated by the input u0 generates a sequence of inputs {uk}k≥0 (and
associated errors {ek}k≥0) by computing

uk+1 = arg min
u∈U

{ J(u, uk) : e = r − y, y = Gu + d} for k ≥ 0. (9.4)

That is, uk+1 is the the input that satisfies the dynamical relationships and also
minimizes

J(u, uk) = ‖e‖2Y + ε2‖u − uk‖2U , with e = r − y. (9.5)

The inputs and errors are related by the formulae

uk+1 = uk + ε−2G∗ek+1, and hence ek+1 = Lek, k ≥ 0,

where the operator L = (I + ε−2GG∗)−1, (9.6)

is self-adjoint and positive definite with 0 < L ≤ I (a fact that follows from the
monotonicity properties). In addition,

1. The error sequence {ek}k≥0 has norms that satisfy the monotonicity conditions,

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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‖ek+1‖2Y + ε2‖uk+1 − uk‖2U ≤ ‖ek‖2Y , and hence, ‖ek+1‖2Y ≤ ‖ek‖2Y
(9.7)

with equality holding if, and only if, uk+1 = uk .
2. If equality holds for some value of k = k̃, then uk = uk̃ for all k ≥ k̃ and the

algorithm converges in a finite number of iterations with limk→∞ ek = e∞ = ek̃ .
3. As {‖ek‖}k≥0 is positive and reducing, the limit limk→∞ ‖ek‖Y = E∞ exists with

E∞ ≥ 0. The error converges to zero if, and only if, E∞ = 0.
4. If ker[G∗] = {0} and e0 	= 0, then 0 < ‖ek+1‖2Y < ‖ek‖2Y for all k ≥ 0.

Proof If ‖ek+1‖2Y = ‖ek‖2Y holds for some index k, then uk+1 = uk and hence
G∗ek+1 = 0. It follows that ek+1 = ek = 0 and hence uk = uk−1 which leads to
the conclusion that ek−1 = 0. An inductive argument then leads to the conclusion
that ej = 0, 0 ≤ j ≤ k + 1 which contradicts the assumption that e0 	= 0. �

5. Writing ‖ek‖2Y − ‖ek+1‖2Y ≥ ε2‖uk+1 − uk‖2U for all k ≥ 0 and adding gives

‖e0‖2Y − E2∞ ≥ ε2
∞∑

k=0

‖uk+1 − uk‖2U , (9.8)

so that lim→∞ ‖uk+1 − uk‖ = 0. That is, ultimately, the changes in input signal
become infinitesimally small.

6. Finally, the minimum value of J(u, uk) is J(uk+1, uk) which takes the form

J(uk+1, uk) = 〈ek, (I + ε−2GG∗)−1ek〉Y = 〈ek, Lek〉Y = 〈e0, L2k+1e0〉Y .

(9.9)
Proof The derivation uses the defining relationships, the algebra

J(uk+1, uk) = ‖ek+1‖2Y + ε2‖ε−2G∗ek+1‖2U = 〈ek+1, (I + ε−2GG∗)ek+1〉Y
(9.10)

and the substitution ek+1 = Lek and ek = Lke0. �
Note: For simplicity of presentation, the use of the label “Norm Optimal Iterative
Learning Control” Algorithm will be abbreviated to the NOILC Algorithm.

9.1.2 Relaxed Versions of NOILC

TheNOILC algorithm provides both a descent direction for ‖e‖ and, implicitly, a step
size. Relaxation techniques retain this structure but use a variety of modifications to
influence algorithm properties such as convergence rates and robustness. A relaxed
version of NOILC that retains the feedback and optimization structure of the basic
Algorithm 9.1 has the following form

Algorithm 9.2 (NOILC with Relaxation: Feedback Version) Using the notation of
Algorithm 9.1, the relaxed version uses the modified objective function
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J(u, αuk) = ‖ek+1‖2Y + ε2‖u − αuk‖2U with 0 < α ≤ 1, (9.11)

obtained by replacing uk by αuk . Minimizing this objective function leads to the
relaxed input update formula

uk+1 = αuk + ε−2G∗ek+1. (9.12)

Using the dynamics y = Gu + d results in the error evolution

ek+1 = L (αek + (1 − α)(r − d)) where, again, L = (I +ε−2GG∗)−1. (9.13)

The feedback interpretation is motivated by the presence of ek+1 in the formula for
uk+1 whilst relaxation is represented by replacing uk by a scaled version αuk .

An alternative approach to relaxed algorithm development is as follows,

Algorithm 9.3 (NOILC with Relaxation: Feedforward Version) Using the notation
of Algorithm 9.1, a feedforward, relaxed version, on iteration k + 1, computes a
preliminary input signal ũk+1 by minimizing the NOILC objective function

J(u, uk) = ‖e‖2Y + ε2‖u − uk‖2U . (9.14)

Following thisminimization, the new input uk+1 to be applied to the plant is computed
from the relaxed, feedforward, input update formula

uk+1 = αuk + β(ũk+1 − uk) with 0 < α ≤ 1, and 0 < β ≤ 1 (9.15)

incorporating relaxation defined by the parameter α plus an additional “gain” β.
Using the dynamics y = Gu + d yields

ũk+1 − uk = ε−2G∗(I + ε−2GG∗)−1ek (9.16)

and hence that

ek+1 = ((α−β)I +βL)ek + (1−α)(r −d) where, again, L = (I +ε−2GG∗)−1.

(9.17)

The relaxation parameter α plays its usual role whilst the introduction of the parame-
ter β is motivated by its use in, for example inverse model and gradient algorithms
as described in Chaps. 6 and 7. This link can be reinforced by writing

(α − β)I + βL = αI − βε−2GG∗(I + ε−2GG∗)−1 (9.18)

which is precisely the error evolution operator expected from the relaxed algorithm
uk+1 = αuk + βK0ek with feedforward compensator K0 = ε−2G∗(I + ε−2GG∗)−1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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The behaviour of the three algorithms defined above is governed by the spectrum
of the three operators L, αL and (α − β)I + βL which, using the Spectral Mapping
Theorem, can be computed from the spectral properties of L.

The next two sections underpin the algorithm descriptions given above by putting
them into a familiar state space system context. This is then followed by a general
analysis of the properties of the algorithms using operator theory methods including
an eigenstructure interpretation that sheds some light on the role and choice of ε.

9.1.3 NOILC for Discrete-Time State Space Systems

With the objective of setting the algorithms of the previous section into a more
familiar context, the realization of Algorithm 9.1 when the plant model G takes the
form of an m-output, �-input, linear, time-invariant, discrete time system S(A, B, C)

of state dimension n, operating on a finite time interval 0 ≤ t ≤ N , is considered.
The model has the form

x(t + 1) = Ax(t) + Bu(t), 0 ≤ t ≤ N − 1, with x(0) = x0,
and y(t) = Cx(t), 0 ≤ t ≤ N . (9.19)

The initial condition x0 is assumed to be iteration independent and the objective of
Iterative Control is to find an input u∞ that tracks, exactly, a specified reference signal
r defined by the time series r(t), 0 ≤ t ≤ N . The model is most easily discussed
by using supervector terminology and identifying the input and output spaces as
U = R�(N+1) and Y = Rm(N+1) respectively with inner products

〈u, v〉U =
N∑

j=0

uT (t)R(t)v(t) and 〈y, w〉Y =
N∑

j=0

yT (t)Q(t)w(t) (9.20)

where the time varying weight matrices R(t) = RT (t) > 0 and Q(t) = QT (t) > 0
for t = 0, 1, 2, . . . , N .
With the above definitions, Algorithm 9.1 becomes

Algorithm 9.4 (NOILC for Discrete Time, State Space Systems) Using the notation
given above, suppose that, on iteration k, the input uk was used and generated output
and error time series yk and ek = r − yk . NOILC Algorithm 9.1 then constructs the
input time series uk+1(t), 0 ≤ t ≤ N, to be used on iteration k + 1 as the one that
minimizes the quadratic objective function

J(u, uk)

=
N∑

j=0

(
(r(t)−y(t))T Q(t)(r(t) − y(t))+ ε2(u(t)−uk(t))

T R(t)(u(t)−uk(t))
)

.

(9.21)
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This input is applied to the plant to generate data yk+1 and ek+1, the index is updated
and the process repeated indefinitely.

The optimal control problem is that of Sect. 4.7 with R(t) replaced by ε2R(t). The
solution can be implemented in either a feedback or feedforward form.

Two Feedback Implementations: Two feedback implementations can be consid-
ered. In the feedback Implementation One, the control signal has the form

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t)xk+1(t) + ξk+1(t)) , 0 ≤ t ≤ N, (9.22)

where xk+1(t) is the measured state vector at time t on iteration k + 1. In addition,

1. the (iteration independent) n × n state feedback matrices K(t), 0 ≤ t ≤ N
are computed off-line before initialization of the iterative procedure using the
nonlinear recursion

K̃(t + 1) = AT K(t + 1) + CT Q(t + 1)C,

K(t) =
(

I + ε−2K̃(t + 1)BR−1(t)BT
)−1

K̃(t + 1)A (9.23)

starting from the terminal condition K(N) = 0.
2. The predictive term ξk+1(t), 0 ≤ t ≤ N , is computed from the recursion, 0 ≤

t ≤ N − 1,

ξk+1(t) =
(

I + ε−2K̃(t + 1)BR−1(t)BT
)−1

ψk+1(t), where,

ψk+1(t) = AT ξk+1(t + 1) − K̃(t + 1)Buk(t) + CT Q(t + 1)r(t + 1), (9.24)

beginning with the terminal condition ξk+1(N) = 0.

Note that, whereas the state feedback matrices are computed only once and used on
all iterations, it is necessary to compute the predictive term ξk+1 for each iteration. It
is computed off-line, using a plant model, in the time between iteration k and k + 1
when the system is being reset for the next iteration. The feedback term provides
performance data from the current state of the system on iteration k + 1 whilst the
term ξk+1 feeds information forward from iteration k.

A alternative approach uses ek in the calculations. An approach to this is deduced
by writing the input update formula in the form

uk+1 − uk = ε−2G∗ek+1 = ε−2G∗Lek . (9.25)

The second term ε−2G∗Lek is identical to the control input computed using one
iteration of NOILC for the system y − yk = G(u − uk) from the starting condition of
zero input (u = uk) and a reference signal equal to ek . Noting that the state for the
system is x(t) − xk(t), this leads to what will be called the feedback Implementation
Two which generates the input signal using

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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uk+1(t) = uk(t) + ε−2R−1(t)BT
(

−K(t) (xk+1(t) − xk(t))︸ ︷︷ ︸+ξk+1(t)

)
, (9.26)

where the feedback gain K(t) now operates on the difference xk+1(t) − xk(t) in
state vectors between iterations. The matrices {K(t)}0≤t≤N remain unchanged, but
the predictive term ξk+1(t), 0 ≤ t ≤ N , is computed from the modified recursion,
0 ≤ t ≤ N − 1,

ξk+1(t) =
(

I + ε−2K̃(t + 1)BR−1(t)BT
)−1

ψk+1(t), with,

ψk+1(t) = AT ξk+1(t + 1) + CT Q(t + 1) ek(t + 1)︸ ︷︷ ︸, ξk+1(N) = 0. (9.27)

The two feedback implementations differ in their use of data. Both implementations
use current iteration data in the form of xk+1(t) with previous iteration performance
being represented by uk(t) and, in Implementation Two, via the state xk(t) and the
presence of the error ek(t) in the equations forψk+1. Intuitively, Implementation Two
contains the greatest link to iteration k but, mathematically, the two are identical in
the absence of modelling errors.

Feedforward Implementation: Given the data r, uk, ek , the feedforward implemen-
tation of NOILC for discrete time state space systems is simply stated as the use
of models to calculate the new input uk+1, off-line, in the time between iterations k
and k + 1. These calculations can be approached using the formulae given for the
feedback case above. Following its evaluation, uk+1 is applied to the plant and new
data ek+1 obtained from sensors to allow iterations to continue.

There is, however, an important practical issue implicit in these comments, namely,
that computations using the first feedback implementation in the form described
above use only r and uk to generate uk+1. In a feedforward computation, this cal-
culation therefore ignores the actual behaviour of the plant as there is no feedback
from the previously observed error ek . In effect, the algorithm is ignoring the external
reality which plays no role in the computations at all! In contrast, the use of equations
for Implementation Two includes measurements of the error data ek(t) and provides
the necessary link.

9.1.4 Relaxed NOILC for Discrete-Time State Space Systems

Continuing with the discussion of the previous section, the relaxed versions of the
algorithm has two forms.

Feedback Relaxation: Using the feedback relaxation Algorithm 9.2, a relaxed ver-
sion of Algorithm 9.4 gives the input update in the form uk+1 = αuk + ε−2G∗ek+1.

1. Using the equations for Implementation One, a feedback implementation is
obtained by modifying the equations for ψk+1 by the substitution
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uk(t) �→ αuk(t). (9.28)

2. For Implementation Two, the dynamics are written in the form y − αyk = G(u −
αuk)+(1−α)d which has a state spacemodel S(A, B, C)with input u(t)−αuk(t),
output y(t) − αyk(t), state x(t) − αxk(t) and initial condition (1 − α)x0. Writing
the performance index in the form

J(u, uk) = ‖r − αyk − (y − αyk)‖2Y + ε2‖u − αuk‖2U , gives

uk+1(t) − uk(t) = ε−2R−1(t)BT
(

−K(t) (xk+1(t) − αxk(t))︸ ︷︷ ︸ +ξk+1(t)

)
,

(9.29)

where {ξk+1(t)} comes from the equations for ψk+1 using the substitutions

uk(t) �→ 0 and r(t) �→ r − αyk . (9.30)

This gives the modified equation, with ξk+1(N) = 0,

ξk+1(t) =
(

I + ε−2K̃(t + 1)BR−1(t)BT
)−1

ψk+1(t), with,

ψk+1(t) = AT ξk+1(t + 1) + CT Q(t + 1) (r(t + 1) − αyk(t + 1))︸ ︷︷ ︸ . (9.31)

Feedforward Relaxation Using the feedback relaxation Algorithm 9.3, a relaxed
version of Algorithm 9.4 is obtained by computing, off-line, the feedforward imple-
mentation value of the new input, denoting it by ũk+1, and subsequently computing
the new input to be applied to the plant from the formula

uk+1(t) = αuk(t) + β (ũk+1(t) − uk(t)) , for 0 ≤ t ≤ N . (9.32)

9.1.5 A Note on Frequency Attenuation: The Discrete Time
Case

Error evolution is governed by the properties of the operatorL. Themost precise phys-
ical interpretation of this uses eigenvector and eigenvalue analysis but the robustness
analysis of later sections will link robustness properties to the frequency domain and
the transfer function matrix G(z). The methodology and notation of Sect. 7.2.3 can
be applied to the equation ek+1 = Lek in the frequency domain by supposing that

http://dx.doi.org/10.1007/978-1-4471-6772-3_7


242 9 Norm Optimal Iterative Learning Control

ek = Wj(zk) and noting that ek+1 can then be approximated, if N is large, by

ek+1 ≈ (1 + ε−2σ 2
j (zk))

−1Wj(zk), (9.33)

which links the evolution of individual frequency components in the error in terms
of the eigenstructure of G(z)R−1GT (z−1)Q. It is an approximation as initial and
terminal conditions for G and G∗ are neglected. It does however provide support
for the intuitive idea that individual frequency components are influenced by the
frequency domain properties of G(z). In particular, it suggests that

1. for low pass systems, high frequency error components are attenuated slowly,
2. frequency content in the vicinity of resonances are attenuated more severely than

other frequency ranges and,
3. if, G(z) has a zero close to the unit circle, frequencies close to that zero will be

attenuated very slowly.

Future development to choice of weights Q and R could be based on their effects on
the eigenvalues σ 2

j (zk) (see Theorem 9.20).

9.1.6 NOILC: The Case of Continuous-Time State Space
Systems

The form of the NOILC algorithm for a linear, time-invariant, m-output, �-input,
continuous time system S(A, B, C) is constructed in much the same way as that for
the discrete time case in Sects. 9.1.3 and 9.1.4. The dynamics on [0, T ] are

ẋ(t) = Ax(t) + Bu(t), with x(0) = x0,

and y(t) = Cx(t), 0 ≤ t ≤ T . (9.34)

The initial condition x0 is assumed to be iteration independent and the objective of
Iterative Control is to find an input u∞ that tracks, exactly, a specified reference
signal r ∈ Y defined by the vector function r(t) ∈ Rm, 0 ≤ t ≤ T . The input and
output spaces are U = L�

2[0, T ] and Y = Lm
2 [0, T ] with inner products

〈u, v〉U =
∫ T

0
uT (t)R(t)v(t)dt and 〈y, w〉Y =

∫ T

0
yT (t)Q(t)w(t)dt (9.35)

where the matrices R(t) = RT (t) > 0 and Q(t) = QT (t) > 0 for all t ∈ [0, T ].
Algorithm 9.5 (NOILC for Continuous Time, State Space Systems) Using the nota-
tion given above, suppose that, on iteration k, the input uk was used and generated a
measured output and error signals yk and ek = r − yk . NOILC Algorithm 9.1 then
constructs the input signal uk+1(t), 0 ≤ t ≤ T , to be used on iteration k + 1 as the
one that minimizes the quadratic objective function
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J(u, uk) =
∫ T

0
((r(t) − y(t))T Q(t)(r(t) − y(t))

+ ε2(u(t) − uk(t))
T R(t)(u(t) − uk(t))dt. (9.36)

This input is then applied to the plant to generate data yk+1 and ek+1, the index is
updated and the process repeated indefinitely.

The computations are precisely those needed to solve the optimization problem
discussed in Sect. 3.10 with R(t) replaced by ε2R(t). By transforming the input
update rule uk+1 = uk + ε−2G∗ek+1 into a two-point boundary value problem, the
solution can be implemented in either a feedback or feedforward form.

Feedback Implementation: There are two feedback implementations. In the feed-
back Implementation One, the results of Sect. 3.10.4 indicate that the control signal
has the form

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t)xk+1(t) + ξk+1(t)) , 0 ≤ t ≤ T , (9.37)

where xk+1(t) is the measured state vector at time t on iteration k + 1. In addition,

1. the (iteration independent) n × n, time varying, state feedback matrix K(t), 0 ≤
t ≤ T , is computed off-line before initialization of the iterative procedure by
solving the nonlinear matrix differential equation

dK(t)

dt
+ AT K(t) + K(t)A − ε−2K(t)BR−1(t)BT K(t) + CT Q(t)C = 0 (9.38)

with the terminal condition K(T) = 0.
2. The predictive term ξk+1(t), 0 ≤ t ≤ T , is computed from the terminal condition

ξk+1(T) = 0 and the differential equation on [0, T ],
dξk+1(t)

dt
= −

(
AT − ε−2K(t)BR−1(t)BT

)
ξk+1(t)−CT Q(t)r(t)+K(t)Buk(t).

(9.39)

Again, K(t) is computed only once and used on each and every iteration but it is
necessary to recompute the predictive term ξk+1 for each iteration. It is computed
off-line in the time between iteration k and k + 1 when the system is being reset.

In feedback Implementation Two, the ideas expressed in Sect. 9.1.3 can again be
applied to replace the control law by

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t)(xk+1(t) − xk(t)) + ξk+1(t)) , (9.40)

where, using the same terminal condition,

dξk+1(t)

dt
= −

(
AT − ε−2K(t)BR−1(t)BT

)
ξk+1(t) − CT Q(t)ek(t). (9.41)

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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Intuitively, this version will suit applications better as ξk+1 responds directly to the
measured error data rather than the input used.

Feedforward Implementation: Given the data r, uk, ek , the feedforward implemen-
tation of NOILC for continuous time state space systems is simply stated as the use
of models to calculate the new input uk+1, off-line, in the time between iterations k
and k + 1. These calculations can be approached using the formulae given for the
feedback case above. Following its evaluation, uk+1 is applied to the plant and new
data ek+1 obtained from sensors to allow iterations to continue. The discussion of
the discrete case in Sect. 9.1.3 applies here. That is, in order to make the algorithm
respond, explicitly, to the previously observed error ek , the computations associated
with Implementation Two seem to be the most appropriate.

Finally, the relaxed versions of the algorithm are simply stated as follow:

Feedback Relaxation: Using the feedback relaxation Algorithm 9.2 and a similar
analysis to that of Sect. 9.1.4, a relaxed version of Algorithm 9.5 is obtained in two
forms. Implementation One replaces uk by αuk to give

uk+1(t) = αuk(t) + ε−2R−1(t)BT (−K(t)xk+1(t) + ξk+1(t)) , and

dξk+1(t)

dt
= −

(
AT − ε−2K(t)BR−1(t)BT

)
ξk+1(t)−CT Q(t)r(t)+αK(t)Buk(t)

(9.42)

with the terminal condition ξk+1(T) = 0. In contrast, Implementation Two uses

uk+1(t) = αuk(t) + ε−2R−1(t)BT (−K(t)(xk+1(t) − xk(t)) + ξk+1(t)) , and

dξk+1(t)

dt
= −

(
AT − ε−2K(t)BR−1(t)BT

)
ξk+1(t) − CT Q(t) (r(t) − αyk(t))

(9.43)

which is driven by the measured output yk .

Feedforward Relaxation: Using the feedback relaxation Algorithm 9.3, a relaxed
version of Algorithm 9.5 is obtained by computing, off-line, the input ũk+1 generated
by Implementation Two of Algorithm 9.5. The new input to be applied to the plant
is then obtained from the formula

uk+1(t) = αuk(t) + β (ũk+1(t) − uk(t)) , for 0 ≤ t ≤ T . (9.44)

9.1.7 Convergence, Eigenstructure, ε2 and Spectral
Bandwidth

Sections9.1.3 and 9.1.6 provide simple computations for practical implementations.
They carry no obvious information on the effects of the reference signal r or the



9.1 Problem Formulation and Formal Algorithm 245

objective function weights Q and R on algorithm performance. There is no explicit
relationship available but a useful insight can be obtained by assuming an eigen-
structure for GG∗ and examining the convergence in terms of the evolution of the
eigenvector components of the error. A sufficient condition for such an eigenstructure
to exist is that Y is finite dimensional as, for example, in the case of discrete state
space models.

Section5.2.4 has revealed the potential power of eigenstructure in iterative analy-
sis. The main value of the results was in increasing the understanding of iteration
behaviour. The techniques are not aimed at practical computation as, in practice, com-
putation of the eigenvalues and eigenvectors of high or infinite dimensional operators
is a difficult or impossible task. In this section, the assumption of an eigenstructure
for GG∗ is used to create a greater understanding of the “internal dynamics” of the
NOILC algorithms. Note that

Y = ker[G∗] ⊕ R[GG∗] (9.45)

is an orthogonal subspace decomposition of Y and ker[G∗] is the eigenspace of
GG∗ corresponding to zero eigenvalues. By construction, GG∗ maps R[GG∗] into
the dense subspace R[GG∗] of R[GG∗]. Assume that GG∗ : R[GG∗] → R[GG∗]
has eigenvalues {σ 2

j }j≥1 with corresponding orthonormal eigenvectors {vj}j≥1 that

span R[GG∗]. Then, by construction, σ 2
j > 0, j ≥ 1 and, by reordering,

σ 2
1 ≥ σ 2

2 ≥ σ 2
3 ≥ · · · (where multiplicities are permitted). (9.46)

As GG∗ is self-adjoint,

r(GG∗) = ‖GG∗‖ = ‖G∗‖2 = σ 2
1 . (9.47)

Consider now the operator L = (I + ε−2GG∗)−1 and note that Le = e for all
e ∈ ker[G∗] and that Lvj = (1 + ε−2σ 2

j )−1vj for all j ≥ 1.
Consider Algorithm 9.1 with initial error e0 decomposed into the sum e0 =

e(1)
0 + e(2)

0 with e(1)
0 ∈ ker[G∗] and e(2)

0 ∈ R[GG∗]. Then, writing e(2)
0 = ∑

j≥1 γjvj,

‖e(2)
0 ‖2Y =

∑
j≥1

γ 2
j , so that limj→∞ γj = 0

and ek = Lke0 = e(1)
0 +

∑
j≥1

(1 + ε−2σ 2
j )−kγjvj︸ ︷︷ ︸

. (9.48)

The simple observations suggested by this analysis include,

1. The component of e0 in ker[G∗] remains unchanged from iteration to iteration.
2. The contribution of the eigenvector vj decreases in significance from iteration to

iteration at a rate governed by the power rule (1 + ε−2σ 2
j )−k, k ≥ 0. Hence,

defining σ 2∞ = inf j≥1 σ 2
j ,

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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a. if σ 2∞ > 0, then ‖ek −e(1)
0 ‖ ≤ (1+ε−2σ 2∞)−k‖e0−e(1)

0 ‖ so that e0 converges

to the orthogonal projection e(1)
0 of e0 onto R[GG∗].

b. If σ 2∞ = 0, the convergence properties are retained but the magnitude of the
contribution of eigenvectors corresponding to eigenvalues σ 2

j � ε2 reduces
infinitesimally slowly. This observation provides insight into the effect of the
reference signal. More precisely, rapid convergence (faster than some power
rule (1+ δ2)−k , with δ2 > 0) to small errors will only occur if e(1)

0 = 0 and r
is dominated by the contribution of eigenvectors with eigenvalues σ 2

j similar

in magnitude to or greater than ε2δ2. It is important to note that the number
of reference signals in this set increases as ε2 reduces suggesting that fast
convergence is then achieved for a wider class of reference signals.

c. In many situations, the eigenvectors corresponding to very small eigenvalues
will be associatedwith “high frequency” characteristics of the plant. This idea
is supported by the state space example in Sect. 5.2.5 where eigenfunctions
are associatedwith terms in a Fourier series representation. This can be a good
guide to physical behaviour but it does not tell the whole story as is seen by
noting, Sect. 8.2.4, that non-minimum-phase behaviours are associated with
infinitesimally small eigenvalues but are not a high frequency phenomenon.

d. The signal with the fastest convergence to zero are those in the subspace
spanned by eigenvectors with eigenvalues equal to σ 2

1 = ‖GG∗‖. That is, the
choice of inner products in Y and U (which influence the form of G∗) also
influence convergence rates.

3. Finally, the norm and spectral radius can be computed as follows,

a. r(L) = ‖L‖ = 1 if ker[G∗] 	= {0}.
b. If ker[G∗] = {0}, then r(L) = ‖L‖ = (1 + ε−2σ 2∞)−1.

In case (b), ifσ 2∞ > 0, the convergence of the algorithm to zero error is guaranteed.
If, however, σ 2∞ = 0 then the reader can verify that ek → 0 in the weak topology
in Y . A proof of convergence in norm is left for the next section.

These observations indicate a link between any eigenstructure of GG∗ and conver-
gence rates. In the following paragraphs, a simple parametric characterization of the
link between convergence and the spectrum of GG∗ is suggested as an aid to design
discussions and the choice of ε2.

Definition 9.1 (The Concept of Spectral Bandwidth) Suppose thatGG∗ has an eigen-
structure as discussed in the preceding paragraphs and that e0 = ∑

j≥1 γjvj. Then,
given two real numbers λ and μ in the half-open interval (0, 1], the NOILC Iterative
Control algorithm is said to have a Spectral Bandwidth SBW (λ, μ) if, and only if, the
contribution, to the error signal, of all eigenvectors vj with eigenvalues σ 2

j ≥ λ‖G∗‖2
decay at a rate bounded from above by the geometric sequence μkγj.

As ek = Lke0, it follows that ek = ∑
j≥1 (1 + ε−2σ 2

j )−kγjvj and hence a spectral
bandwidth SBW (λ, μ) is achieved if

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
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(1 + ε−2λ‖G∗‖2)−1 ≤ μ for the chosen ε2 > 0. (9.49)

This condition has application to the choice of ε2 for a given choice of λ and μ.

1. If attention is focussed on the convergence rate of σ 2
1 only, then λ = 1. If it is seen

as desirable that this eigen-component at least halves in magnitude from iteration

to iteration, then it must converge faster than
( 1
2

)k
and the choice of μ = 0.5 is

appropriate. The spectral bandwidth SBW (1, 0.5) is then achieved for any choice
of 0 < ε2 ≤ ‖G∗‖2.

2. If attention is focussed on the convergence rate of eigenvectors with eigenvalues
greater than 1

2σ
2
1 only, then λ = 0.5. If it is seen as desirable that all such eigen-

components converge faster than
( 1
2

)k
, choose μ = 0.5. The spectral bandwidth

SBW (0.5, 0.5) is then achieved for any choice of 0 < ε2 ≤ 0.5‖G∗‖2.
3. If attention is focussed on the convergence rate of eigenvectors with eigenvalues

greater than 1
2σ

2
1 only, then λ = 0.5. If it is seen as desirable that all such eigen-

components converge faster than
( 1
3

)k
, choose μ = 0.33. The spectral bandwidth

SBW (0.5, 0.33) is then achieved for any choice of 0 < ε2 ≤ 0.25‖G∗‖2.
Note that achieving a specific spectral bandwidth SBW (λ, μ) does not imply that error
convergence satisfies ‖ek‖ ≤ μk‖e0‖. The precise form of convergence depends
on the initial error e0 and hence r and u0. Loosely speaking, such convergence is
achieved approximately for any e0 whose eigenvector representation is dominated by
eigenvectors with eigenvalues in the range λ‖G∗‖2 ≤ σ 2

j ≤ ‖G∗‖2. A more precise
description is obtained by assuming that a spectral bandwidth SBW (λ, μ) has been
achieved and then writing

e0 =
∑

σ 2
j ≥λ‖G∗‖2

γjvj +
∑

σ 2
j <λ‖G∗‖2

γjvj = e(1)
0 + e(2)

0 (9.50)

with the natural identification of terms. It follows that,

‖ek‖Y ≤ μk‖e(1)
0 ‖Y + ‖e(2)

0 ‖Y (9.51)

and hence that the error sequence convergence can be thought of as an initial
convergence following the power law μk to a closed ball centred on the origin
of radius ‖e(2)

0 ‖Y . This is followed by slower convergence to its final limit. If

‖e(2)
0 ‖Y � ‖e0‖2Y then the algorithm achieves accurate tracking quickly. Note

that reducing λ with μ fixed will (a) require a reduction in the value of ε2 and (b)
include more terms in the expression for e(1)

0 and hence reduce ‖e(2)
0 ‖Y .

Finally, a good choice of ε2 is clearly related to desired convergence properties
and the norm ‖G∗‖2. For asymptotically stable, linear, time invariant, discrete, state
space systems S(A, B, C, D) for example, previous calculations in Sect. 4.8.2 have
proved that ‖G∗‖2 = ‖G‖2 and provided a bound described by the spectral radius
r
(
R−1GT (z−1)QG(z)

)
that is accurate if N is large.

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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9.1.8 Convergence: General Properties of NOILC Algorithms

The previous section has demonstrated the power of an eigenstructure interpretation
of algorithm behaviour. However, the form of L and the fact that it is self adjoint
makes it possible to make useful statements about its spectral radius and norm and
hence the convergence properties of the algorithm without appealing to or assuming
any eigenstructure. These relationships are stated as formal theorems inwhat follows.
The first defines useful properties of L as follows,

Theorem 9.1 (General Properties ofL = (I+ε−2GG∗)−1)With the notation defined
above, the operator L in the NOILC Algorithm 9.1 satisfies the conditions

ker[L] = {0} and 0 < (1 + ε−2‖G∗‖2)−1I ≤ L ≤ I. (9.52)

In particular,

1. If there exists a scalar ε0 > 0 such that GG∗ ≥ ε20I, then

(1 + ε−2‖G∗‖2)−1I ≤ L ≤ (1 + ε−2ε20)
−1I < I. (9.53)

2. If no such value of ε0 exists, then L < I if, and only if, ker[G∗] = {0}.
3. Le0 = e0 if, and only if, e0 ∈ ker[G∗]. That is, there exists a non-zero initial error

e0 such that no improvement in tracking error is possible using NOILC if, and
only if, ker[G∗] 	= {0}.

Proof Using the NOILC interpretation, denote e1 = Le0. If e0 	= 0 and e1 = Le0 =
0, then u1 	= u0 and J(u1, u0) = 〈e0, Le0〉 = ε2‖u1−u0‖2 > 0which is not possible.
Hence e0 = 0 and ker[L] = {0} as required. Next, note that ‖e1‖ ≤ ‖e0‖ for all
e0 ∈ Y . It follows that ‖L‖ ≤ 1. That is, as L is self-adjoint, L ≤ ‖L‖I ≤ I as
required. Also, J(u1, u0) = 〈e0, Le0〉 > 0 for all e0 	= 0 and hence L > 0. Next, let
H = H∗ be a self-adjoint, positive operator and denote the unique positive-definite,
self-adjoint, square root of (I + H)−1 by X. Then

(I + H)−1 − (I + ‖H‖)−1I = (I + H)−1(I + ‖H‖)−1 (‖H‖I − H)

= (I + ‖H‖)−1X (‖H‖I − H) X ≥ 0 (9.54)

as ‖H‖I − H ≥ 0. Choosing H = ε−2GG∗ (respectively, H = ε−2G∗G) then gives

(I + ε−2GG∗)−1 − (I + ε−2‖G∗‖2)−1I ≥ 0
(resp. (I + ε−2G∗G)−1 − (I + ε−2‖G‖2)−1I ≥ 0)

(9.55)

as ‖GG∗‖ = ‖G∗‖2 and ‖G∗G‖ = ‖G‖2. Now, consider I − L in the form

I − L = (I + ε−2GG∗)−1ε−2GG∗ = G(I + ε−2G∗G)−1ε−2G∗, and hence
ε−2‖G∗e0‖2U ≥ 〈e0, (I − L)e0〉Y ≥ (I + ε−2‖G‖2)−1ε−2‖G∗e0‖2U

(9.56)
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which proves that Le0 = e0 if, and only if, e0 ∈ ker[G∗] and also that L < I if
ker[G∗] = {0}.
Finally, suppose that GG∗ ≥ ε20I and that e0 	= 0. Again writing H = GG∗,

(I + ε−2H)−1 − (I + ε−2ε20)
−1I = (I + ε−2H)−1(I + ε−2ε20)

−1ε−2
(
ε20I − H

)

≤ 0 (9.57)

which completes the proof of the result. �

Discussion: The result has a number of useful consequences,

1. The property ker[L] = {0} indicates that, if e0 	= 0, all following ek 	= 0.
2. The subspace ker[G∗] plays an important role in convergence properties.

Monotonicity of the error norm sequence becomes strict monotonicity, ‖ek+1‖ <

‖ek‖, k ≥ 0 if ker[G∗] = {0}. However, if ker[G∗] 	= {0}, then there exists
initial errors for which no change in error can be achieved.

3. As ker[G∗] = R[G]⊥, the condition ker[G∗] = {0} implies that the range of G is
dense in Y . More generally, using the fact that ker[G∗] = ker[GG∗],

Y = R[G] ⊕ ker[G∗] and R[GG∗] = R[G]. (9.58)

from which it is concluded that R[GG∗] is dense inR[G].
4. The positivity properties of GG∗ play an important role in the characterization of

‖L‖ and situations when L < I . These properties, and the results in Sect. 5.2 are
central to the important convergence properties discussed in the next theorem.

5. Using the Spectral Mapping Theorem gives the inclusion conditions

if GG∗ ≥ ε20I > 0, then, spec[L] ⊂ [(1 + ε−2‖G∗‖2)−1, (1 + ε−2ε20)
−1],

and spec[L] ⊂ [(1 + ε−2‖G∗‖2)−1, 1] otherwise.

Also spec[αL] = αspec[L]
and spec[(α − β)I + βL] = (α − β) + βspec[L]. (9.59)

These relations can be used to bound operator norms as the operators are self
adjoint and hence the spectral radius is equal to the operator norm.

Turning now to the issues of convergence in NOILC algorithms,

Theorem 9.2 (Error Convergence in NOILC Algorithm 9.1) Application of the
NOILC Algorithm 9.1 to the dynamics y = Gu + d with reference r and initial
input u0 has the following error convergence properties

1. ‖ek+1‖Y ≤ ‖ek‖Y for all k ≥ 0 with strict inequality holding if ker[G∗] = {0}.
2. If ‖L‖ < 1, then the error sequence converges to zero as k → ∞.
3. If ‖L‖ = 1, then the error sequence converges to zero as k → ∞ if the initial

error e0 ∈ R[I − L] = R[G]. If, in addition, ker[G∗] = {0}, then L < I and
convergence to zero is achieved for all e0 ∈ Y .

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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4. In general, the error sequence converges to Pker[G∗]e0 as k → ∞ where Pker[G∗]
is the self adjoint, positive operator defining the orthogonal projection of a vector
onto the closed subspace ker[G∗] ⊂ Y .

Proof The monotonicity properties have been discussed previously and need no
further comment. If ‖L‖ < 1, then convergence to zero follows from Theorem 5.4.
Next, if ‖L‖ = 1, then Theorem 5.9 shows that ek → 0 whenever e0 ∈ R[I − L]
which is just e0 ∈ R[GG∗] as I−L = GG∗(I+GG∗)−1 and hence for any e0 ∈ R[G]
as R[GG∗] = R[G]. If, in addition, ker[G∗] = {0}, then Theorem 9.1 proves that
I −L > 0. Theorem 5.10 then proves convergence to zero for all e0 ∈ Y . Finally, the
projection characterization of the limit follows from Theorem 5.9 using the identity
ker[I − L] = ker[G∗]. �

As in Theorem 7.2, the convergence of the input signal sequence {uk}k≥0 requires
an additional condition, namely that e0 ∈ R[I −L] = R[GG∗]. The following result
has a similar structure and demonstrates that NOILC retains many of the desirable
properties of steepest descent algorithms.

Theorem 9.3 (Input Convergence in NOILC Algorithm 9.1) With the notation of
Theorem 9.2 suppose that e0 ∈ R[I − L] = R[GG∗]. Under these conditions,
the sequence {uk}k≥0 converges in norm to the unique input u∞ ∈ U satisfying
the tracking relationship r = Gu∞ + d whilst simultaneously minimizing the norm
‖u − u0‖2U . That is,

u∞ = argmin{ ‖u − u0‖2U : r = Gu + d }. (9.60)

Proof Convergence of the error to e∞ = 0 follows from Theorem 9.2. Apply induc-
tion to the input update equation to show that

uk+1 = u0 + ε−2G∗L
k∑

j=0

Lje0. (9.61)

As e0 ∈ R[I − L], write e0 = (I − L)v0 for some v0 ∈ Y and, using the orthogonal
subspace decompositionY = ker[I −L]⊕R[I − L], take, without loss of generality
v0 ∈ R[I − L]. Theorem 5.9 then proves that Lkv0 → 0 as k → ∞ and

uk+1 = u0 + ε−2G∗L

(∑k

j=0
Lj

)
(I − L)v0 = u0 + ε−2G∗L(I − Lk+1)v0

→ u∞ = u0 + ε−2G∗Lv0 (as k → ∞) (9.62)

and, as e∞ = 0, it follows that r = Gu∞+d as required. Finally, the equations define
the minimum norm solution as, for any u in the closed linear variety S = { u : r =
Gu + d} ⊂ U , the inner product 〈u − u∞, u∞ − u0〉U = 〈u − u∞, G∗Lv0〉U =
〈G(u − u∞), Lv0〉Y = 0 as G(u − u∞) = 0. This is precisely the condition defining

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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the orthogonal projection of u0 onto S which, from the Projection Theorem 2.17,
defines the unique solution of the minimum norm problem. �

The inclusion of relaxation simplifies the result considerably but requires a char-
acterization of the non-zero limit error,

Theorem 9.4 (Error Convergence in Relaxed NOILC: The Feedback Case) Appli-
cation of the relaxed feedback NOILC Algorithm 9.2 with 0 ≤ α < 1 to the dynamics
y = Gu+d with reference r and initial input u0 has the following convergence prop-
erties

lim
k→∞ ek = e∞ where e∞ = L [αe∞ + (1 − α)(r − d)] . (9.63)

In particular, this equation has the unique solution

e∞ = (I + (1 − α)−1ε−2GG∗)−1(r − d), (9.64)

and hence, limk→∞ uk = u∞, which is the input signal that minimizes the quadratic
performance index

J(u) = ‖e‖2Y + (1 − α)ε2‖u‖2U with e = r − y, (9.65)

subject to the constraints y = Gu + d.

The result has an interesting performance and design interpretation,

1. The result ensures convergence to a limit that has a clear interpretation as the
solution of a quadratic optimization problemwhere the input weighting is reduced
by a factor of 1 − α.

2. If α is close to unity, the weighting of the input is very close to zero—a so-called
“cheap” optimal control problem. In essence, this problem tries to minimize the
error norm with only a small penalty on large deviations of the input signal from
zero. As ε2(1 − α) increases, the penalty for using significant input magnitudes
increases, leading to smaller control magnitudes and larger limit errors.

3. If theminimization of the objective function J(u) is set as the asymptotic objective
of the iterations, the properties and magnitude of the limit error e∞ is defined
by the parameter γ = (1 − α)ε2. The value of this product is chosen by the
user and is likely to be small. It does not define α or ε uniquely leaving room
for design considerations. For example, if ε2 ≥ γ is chosen to provide desirable
convergence properties of the operator L, the value of α (and hence the magnitude
of the limit e∞) is computed from α = 1− ε−2γ . For discrete or continuous state
space systems, desirable convergence properties may include a need to avoid high
feedback gains in the Riccati matrix.

Proof of Theorem 9.4 Using the error evolution in Algorithm 9.2, note that r(αL) =
‖αL‖ ≤ α < 1 and hence the algorithm converges to a limit (in the norm topology)
as required. The value of e∞ is obtained by replacing ek+1 and ek by e∞ which gives
the required result. As L is invertible,

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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(I + ε−2GG∗)e∞ = αe∞ + (1 − α)(r − d)

so that ((1 − α)I + ε−2GG∗)e∞ = (1 − α)(r − d)
(9.66)

which provides the desired unique solution as (1 − α)I + ε−2GG∗ is invertible.
Finally, using the techniques of Theorem 2.18, the input minimizing J(u) is the
solution of the equation ε2(1 − α)u = G∗e so that ε2(1 − α)Gu = GG∗e. That is,
ε2(1 − α)(r − d − e) = GG∗e which gives the required solution. �

Finally, the feedforward version 9.3 of the relaxed algorithm has the following
convergence properties.

Theorem 9.5 (Error Convergence in Relaxed NOILC: The Feedforward Case)
Application of the relaxed feedforward NOILC Algorithm 9.3 with 0 < α < 1
and 0 < β ≤ 1 to the dynamics y = Gu + d with reference r and initial input u0 has
the following convergence properties

lim
k→∞ ek = e∞ where e∞ = [(α − β)I + βL] e∞ + (1 − α)(r − d). (9.67)

In particular, if α = 1 and 0 < β ≤ 1, then the error sequence converges to the
orthogonal projection of e0 onto the closed subspace ker[G∗].
Proof The proof when α < 1 follows immediately as (α − β)I ≤ (α − β)I + βL =
αI −β(I −L) ≤ αI and hence the spectral radius r ((α − β)I + βL) < 1. The details
are left as an exercise for the reader. If α = 1 and 0 < β < 1, then convergence is
guaranteed as,

Lβ = (1 − β)I + βL = I − βε−2GG∗(I + ε−2GG∗)−1

with
(
1 − βε−2‖G∗‖2

1+ε−2‖G∗‖2
)

I ≤ Lβ ≤ I.
(9.68)

If ‖Lβ‖ < 1, the proof follows as ‖ek+1‖ ≤ ‖Lβ‖‖ek‖ for all k ≥ 0 and hence
e∞ = 0. If ‖Lβ‖ = 1, then Theorem 5.9 indicates that e∞ = 0 if e0 ∈ R[I − Lβ ] =
R[GG∗]. The orthogonal complement of this closed subspace is ker[I − Lβ ] =
ker[GG∗] = ker[G∗] and it is a simple calculation to show that Lβv = v for all

v ∈ ker[G∗]. The result follows by writing e0 = e(1)
0 + e(2)

0 with e(1)
0 ∈ R[I − Lβ ]

and e(2)
0 ∈ ker[G∗]. �

9.2 Robustness of NOILC: Feedforward Implementation

The reader will note that, being monotonic, NOILC Algorithm 9.1 shares many
properties with gradient-based and inverse-model-based algorithms. This section
considers the feedforward implementation of NOILC and demonstrates that it also
has robustness properties that are strongly related to those of gradient and inverse

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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algorithms. The model of process dynamics is, again, y = Gu+d and the underlying
feedforward input update equation used for off-line computation is

uk+1 = uk + ε−2G∗(I + ε−2GG∗)−1ek = uk + ε−2G∗Lek . (9.69)

where ek is the measured error signal on iteration k. The following analysis firstly
considers computation of uk+1. Robustness analysis is separated into two cases,
namely the case of left and the case of right multiplicative modelling errors. It is
based on monotonicity of carefully selected quadratic forms and again introduces
a need for positivity of multiplicative modelling errors. As was the case in inverse
and gradient algorithms, the geometry of the input and output spaces is central to the
analysis. For example, Y has an orthogonal subspace decomposition of the form

Y = R[G] ⊕ ker[G∗], with ker[G∗] = ker[G∗L],
and R[G∗G] = R[G∗LG] = R[G∗], (9.70)

the second equality follows from G∗L = (I + ε−2G∗G)−1G∗ and the final equality
from ker[G∗G] = ker[G] and G∗LG = G∗G(I + ε−2G∗G)−1.

9.2.1 Computational Aspects of Feedforward NOILC

ek is the observed/measured tracking error on iteration k and not necessarily equal to
the error predicted by the plant model. Updating of the input using the model can be
achieved based on the observation that the input change uk+1 − uk = ε−2G∗Lek can
be computed off-line as the input generated by the model in one iteration of NOILC
from a starting condition of zero input using the value d = 0 and the “reference
signal” equal to the measured error ek . For example,

1. for discrete state space Algorithm 9.4 for the model S(A, B, C), the update
Δuk+1 = uk+1 − uk = ε−2G∗Lek is computed from the equations used in feed-
back Implementation Two of Sect. 9.1.3 written in the form,

zk+1(t + 1) = Azk+1(t) + BΔuk+1(t), zk+1(0) = 0︸ ︷︷ ︸,

Δuk+1(t) = R−1(t)BT (−K(t)zk+1(t) + ξk+1(t)) ,

ξk+1(t) =
(

I + ε−2K̃(t + 1)BR−1(t)BT
)−1

ψk+1(t), with,

ψk+1(t) = AT ξk+1(t + 1) + CT Q(t + 1) ek(t + 1)︸ ︷︷ ︸, ξk+1(N) = 0.

(9.71)

where K(t) remains unchanged and is that defined by model data A, B, C, D plus
Q(t), R(t) and ε2.
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2. For continuous state space Algorithm 9.5 for the model S(A, B, C), the update
Δuk+1 = uk+1−uk = ε−2G∗Lek is computed from the equations used in feedback
Implementation Two of Sect. 9.1.6 written in the form,

żk+1(t) = Azk+1(t) + BΔuk+1(t), zk+1(0) = 0︸ ︷︷ ︸,

Δuk+1(t) = R−1(t)BT (−K(t)zk+1(t) + ξk+1(t)) ,

ξ̇k+1(t) =
(

AT − ε−2K(t)BR−1(t)BT
)

ξk+1(t) − CT Q(t) ek(t)︸︷︷︸ . (9.72)

where K(t) remains unchanged and is that defined by model data.

9.2.2 The Case of Right Multiplicative Modelling Errors

Now suppose that G is a model of the actual plant and that the plant is represented
by the operator GU where U : U → U represents a right multiplicative modelling
error. The case when U = I is that when the model is capable of predicting plant
behaviour exactly. Using the plant input/output relationship y = GUu + dU then
gives the error update equation

ek+1 = LUek, for all k ≥ 0, where LU =
(

I − ε−2GUG∗L
)

(9.73)

noting that, in general, LU 	= L∗
U and that LUe = e if e ∈ ker[G∗]. Note, in

particular, that any component of e0 ∈ ker[G∗L] = ker[G∗] is unchanged by the
iterative process. The only significant evolution occurs in R[G], which is both L-
invariant andLU -invariant and is aHilbert space in its own right. This canbe expressed
more clearly by writing e0 = e(1)

0 + e(2)
0 with e(1)

0 ∈ R[G] and e(2)
0 ∈ ker[G∗]. A

simple calculation gives,

ek = Lk
Ue0 = Lk

Ue(1)
0 + e(2)

0 and ‖ek‖ ≥ ‖e(2)
0 ‖, for all k ≥ 0. (9.74)

Convergence is hence described entirely by the properties of the restriction of LU to
the closed subspace R[G]. The best that can be achieved is that limk→∞ ek = e(2)

0 .
Convergence in the presence of the modelling error U is defined by the con-

struction of a topologically equivalent norm in Y (and hence R[G]). Noting that
L = L∗ > 0, Theorem 9.1 then indicates that the inner product

〈e, w〉0 = 〈e, Lw〉Y generates a norm ‖e‖0 = 〈e, Le〉1/2Y (9.75)

that is topologically equivalent to ‖e‖Y .
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The approach to robustness analysis is based on a consideration of the possibility
of ensuring the monotonicity property ‖ek+1‖0 < ‖ek‖0 for all k ≥ 0. That is,

(Robust Monotonicity) 〈ek+1, Lek+1〉Y < 〈ek, Lek〉Y , for all k ≥ 0, (9.76)

which, using the error evolution equation, can be written in the form

‖ek+1‖20 = ‖ek‖20 + ε−2〈ηk,
[
ε−2U∗G∗LGU − (U + U∗)

]
ηk〉U

where ηk = G∗Lek ∈ R[G∗] ⊂ U .
(9.77)

Note that ηk = 0 if, and only if, ek ∈ ker[G∗L] = ker[G∗] i.e. e(1)
k = 0. Also, as L

has a bounded inverse, R[G∗L] = R[G∗] and ηk can take any value inR[G∗].
The following Theorem describes robust monotonic convergence in the new norm

topology.

Theorem 9.6 (Robustness of NOILC with Right Multiplicative Errors) Consider
NOILC Algorithm 9.1 in its feedforward implementation using the measured data
ek. Using the notation defined above, a necessary and sufficient condition for the
norm sequence {‖ek‖0}k≥0 to satisfy the monotonicity condition ‖ek+1‖0 < ‖ek‖0,

for all k ≥ 0, and for all e0 with e(1)
0 	= 0, is that

Condition One − U + U∗ > ε−2U∗G∗LGU, on R[G∗]. (9.78)

In these circumstances,

1. The modelling error satisfies the condition ker[U] ∩ R[G∗] = {0}.
2. For any initial error e0, the norm sequence {‖ek‖0}k≥0 is bounded and the limit

limk→∞ ‖ek‖0 = E0 ≥ 0 exists. The limit e∞ = limk→∞ ek = 0 is therefore
achieved if, and only if, E0 = 0.

3. A sufficient condition for Condition One to be satisfied is that the operator inequal-
ity holds either on the closureR[G∗] or on the full input spaceU . If ker[G] = {0},
then, as R[G∗] = U , these two alternatives are identical.

Finally, in the new topology,

1. the induced norm of LU in Y satisfies ‖LU‖0 ≤ 1 and, more specifically,
2. the induced norm of the restriction of LU toR[G] in the new topology also satisfies

‖LU‖0 ≤ 1. (9.79)

In particular, if R[G] is finite dimensional, then this norm is strictly less than
unity and,

for all starting conditions e0 ∈ Y , lim
k→∞ ek = e(2)

0 ∈ ker[G∗]. (9.80)

Note: If ker[G∗] = {0}, R[G] is dense in Y and monotonicity occurs for all e0 ∈ Y .
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Proof The first condition follows by noting that U + U∗ > 0 onR[G∗] by assump-
tion as U∗G∗LGU ≥ 0. The assumed inequality would then be violated if there
existed a non-zero u ∈ R[G∗] satisfying Uu = 0. For the remainder of the proof, it
is only necessary to consider the case when k = 0. The necessity of the conditions
for monotonicity follows as, if e(1)

0 	= 0, then η0 	= 0 and, by suitable choice of e(1)
0 ,

η0 can take any value in R[G∗]. Condition One then follows from Eq. (9.77) which
then requires that the second term is strictly negative for all non-zero η0 ∈ R[G∗].
Sufficiency follows easily from Eq. (9.77). The existence of E0 ≥ 0 follows from
positivity of norms and monotonicity whilst the comment on the case when E0 = 0
is a consequence of the definition of convergence in norm to zero. Next the inequality
holds onR[G∗] if it holds on any subspace that contains it. The proofs that ‖LU‖0 ≤ 1
are a direct consequence of the monotonicity of the norms on Y and hence on any
LU -invariant subspace. Finally, if R[G] is finite dimensional, then R[G] = R[G].
Choose a non-zero e0 ∈ R[G] arbitrarily. Then η0 	= 0 and the resultant inequality
‖e1‖0 < ‖e0‖0 plus the compactness of the unit sphere leads to the strict bound
‖LU‖0 < 1 on the norm of the restriction of LU toR[G] for, otherwise, there would
exist a non-zero e ∈ R[G] such that ‖LUe‖0 = ‖e‖0. This contradicts the proven
monotonicity. The proof of convergence to e(2)

0 follows. �

In principle, this result provides a good description of robustness in the presence
of the modelling error. The practical problems implicit in checking Condition One
lie in the presence of the operator L, which depends on GG∗ in a “nonlinear” way.
The following result simplifies the condition by providing two simpler, but more
conservative, alternative sufficient conditions.

Theorem 9.7 (Robust Convergence and Boundedness: Alternative Conditions)
Using the assumptions of Theorem 9.6, its conclusions remain valid if (a sufficient
condition) Condition One is replaced by either

Condition Two − U + U∗ >
ε−2‖G‖2

1 + ε−2‖G‖2 U∗U, on R[G∗],
or, Condition Three − U + U∗ > ε−2U∗G∗GU, on R[G∗]. (9.81)

A sufficient condition for each Condition to be satisfied is that the associated operator
inequality holds either on R[G∗] or on the full space U .

Proof The sufficiency ofCondition Two follows fromConditionOne and the identity

ε−2G∗LG = (I+ε−2G∗G)−1ε−2G∗G = I−(I+ε−2G∗G)−1 ≤
(

ε−2‖G‖2
1+ε−2‖G‖2

)
I from

Theorem 9.1 (with G replaced by G∗). Condition Three also follows from Theorem
9.1 as L ≤ I . �

Note: Of the three given, Condition One is clearly the least conservative, Condition
Two adds conservatism by replacing G∗LG by a constant upper bound whilst Condi-
tion Three replaces L by a constant upper bound and leaves the factor G∗G in place.
The replacement ofR[G∗] byR[G∗] orU also adds conservatism but maymake the
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checking of the condition easier in practice. A useful example of this relaxation also
allows Conditions Two and Three to be combined into one, parameterized condition
by writing L = θL + (1 − θ)L and noting that, for all θ ∈ [0, 1],

ε−2G∗LG ≤ θ
ε−2‖G‖2

1 + ε−2‖G‖2 I + (1 − θ)ε−2G∗G (9.82)

in the Y topology. Applications of this bound include,

Theorem 9.8 (Robust Convergence and Boundedness: Conditions Combined)
Using the notation of the discussion above, suppose that U has a bounded inverse
Û on U and that, for some θ ∈ [0, 1],

Condition Four − Û + Û∗ > θβI I + (1 − θ)βGG∗G on U

where βI = ε−2‖G‖2
1+ε−2‖G‖2 and βG = ε−2.

(9.83)

Then Condition One holds and the monotonicity and convergence predictions of
Theorem 9.6 are guaranteed.

Proof Consider Condition one with R[G∗] replaced by U and write it in the form
Û + Û∗ > G∗LG on U . Using the mixed bound for L then gives the result. �

Some insight into the implications of these NOILC robustness conditions is obtained
by considering the case of no modelling error when U = I and linking the results to
conditions for robustness of the inverse model and gradient algorithms in Chaps. 6
and 7. More precisely,

1. Condition Two is always satisfied when U = I as it then reduces to 2I > βI I as

the “gain” parameter βI = ε−2‖G‖2
1+ε−2‖G‖2 < 1.

2. More generally, Condition Two is algebraically identical to the robustness condi-
tion for the left inverse model algorithm with right multiplicative perturbation U.
In particular, it is satisfied if,

‖(I − βI U)‖2 = r
(
(I − βI U)∗(I − βI U)

)
< 1. (9.84)

3. If U = I , then Condition Three reduces to 2I > ε−2G∗G which is satisfied if
ε2 > 1

2‖G‖2. That is, theweighting on the control component of theNOILCobjec-
tive function is limited by this condition. The eigenstructure ideas of Sect. 9.1.7,
then imply that the achievable spectral bandwidth is limited as is the achievable
convergence rate.

4. More generally, Condition Three is identical to that derived for the gradient algo-
rithm with right multiplicative perturbation U. In particular, it is satisfied if,

r
(
(I − βGGUG∗)∗(I − βGGUG∗)

)
< 1. (9.85)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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5. The mixed condition of Theorem 9.8 provides a continuous link between the
inverse and gradient conditions and will be seen to have possible value in the later
development of frequency domain robustness criteria.

Finally, the nature of the convergence can, in general, be refined by considering the
detailed form of U and G in the application of the results. The monotonicity of the
error sequence measured by the ‖ · ‖0 norm implies that the induced operator norm
‖LU‖0 ≤ 1 in the topology induced by the inner product 〈e, w〉0 = 〈e, Lw〉Y . In
particular, ‖LU‖0 = 1 if ker[G∗] 	= {0}. More generally, its restriction to R[G] can
have unit norm even if ker[G∗] = {0}, a property that occurs only in the infinite
dimensional case and leads to technical problems beyond the chosen scope of this
text. The result has shown that ‖LU‖0 < 1 on R[G] if it is finite dimensional. The
following result describes a case that is particularly relevant to finite or (a class of)
infinite dimensional problems where ker[G] = {0}.
Theorem 9.9 (Robust Convergence to e(2)

0 ∈ ker[G∗]) Suppose that the plant GU
has model G and right multiplicative modelling error U. Suppose also that that there
exists a real number ε20 > 0 such that

G∗G ≥ ε20I in R[G∗]. (9.86)

Suppose also that either

Condition Two − (A) U + U∗ ≥ ε−2‖G‖2
1 + ε−2‖G‖2 U∗U + ε20I in R[G∗],

or Condition Three − (B) U + U∗ ≥ ε−2U∗G∗GU + ε20I in R[G∗],
(9.87)

or, U has a bounded inverse on U , θ ∈ [0, 1] and

Condition Four − (C) Û + Û∗ > θβI I + (1− θ)βGG∗G + ε20I on U (9.88)

holds, then ‖LU‖0 < 1 on R[G] and the error sequence converges to the component
e(2)
0 ∈ ker[G∗].

Proof Note that a proof that ‖LU‖0 < 1 on R[G] proves the convergence to e(2)
0 .

Next consider the use of (A). From (9.77) with ηk = G∗Lek and ek arbitrary,

‖ek+1‖20 = ‖ek‖20 + ε−2〈ηk,
[
ε−2U∗G∗LGU − (

U + U∗)] ηk〉U

≤ ‖ek‖20 + ε−2〈ηk,

[
ε−2‖G‖2

1 + ε−2‖G‖2 U∗U − (
U + U∗)

]
ηk〉U

≤ ‖ek‖20 − ε−2ε20‖ηk‖2U . (9.89)

Now set ek = Gwk ∈ R[G] and note that, using Theorem 9.1 with G replaced by
G∗, and the inequality ‖e‖ ≤ ‖G‖‖w‖, it follows that
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‖ηk‖2U = ‖G∗LGwk‖2U = 〈wk, G∗LGG∗LGwk〉U

≥
(

ε20

1 + ε−2‖G‖2
)2

‖wk‖2U ≥
(

‖G‖−1ε20

1 + ε−2‖G‖2
)2

‖ek‖2Y . (9.90)

Using this relation and the topological equivalence of the norms implies that, for
any ek ∈ R[G], the inequality ‖ek+1‖20 ≤ (1 − λ)‖ek‖20 holds for some λ > 0.
The relation therefore is also valid in the closure R[G]. The required inequality
‖LU‖0 < 1 then follows. Finally, for (B), note that L ≤ I and write

‖ek+1‖20 = ‖ek‖20 + ε−2〈ηk,
[
ε−2U∗G∗LGU − (

U + U∗)] ηk〉U

≤ ‖ek‖20 + ε−2〈ηk,
[
ε−2U∗G∗GU − (

U + U∗)] ηk〉U

≤ ‖ek‖20 − ε−2ε20‖ηk‖2U . (9.91)

The proof is then concluded using a similar argument to that used for (A). (C) is
proved in a similar way noting that

‖ek+1‖20 ≤ ‖ek‖20 − ε−2ε20‖Uηk‖2U (9.92)

and, using invertibility of U, the existence of a real number α > 0 such that U∗U ≥
αI . The details are left as an exercise for the reader. �

The robustness results are reassuring in that they indicate substantial robustness of
the algorithms whenever the defined positivity conditions are satisfied. To be useful
in practice, the conditions must be converted into checkable conditions, preferably
written in terms of quantities familiar to practicing engineers. One such example is
now described.

9.2.3 Discrete State Space Systems with Right Multiplicative
Errors

Consider the casewhenG can be represented by a discrete time, linear, time invariant,
state space model S(A, B, C, D) (or its equivalent supervector description) on the
interval 0 ≤ t ≤ N and that it has the transfer function matrix G(z). Consider
Algorithm 9.4 where the weights Q and R are taken to be independent of sample
number “t”. The actual plant model is assumed to be expressed in the form GU with
right multiplicative modelling error U : U → U which has its own state space
model S(AU , BU , CU , DU) and � × � transfer function matrix U(z). In this case, Y
and U are finite dimensional and hence every vector subspace is closed.
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In what follows, Conditions Two and Three of Theorem 9.7 are converted into
frequency domain tests for robust convergence of the feedforward implementation.

Theorem 9.10 (Checking Condition Two for Discrete, State Space Systems) Let
the model G, the actual plant GU and the NOILC objective function be as described
above. Then a sufficient condition for Condition Two of Theorem 9.7 to hold is that
U(z) is asymptotically stable and also that

RU(z) + UT (z−1)R > βI UT (z−1)RU(z), for all |z| = 1, (9.93)

where the “gain” parameter

βI = ε−2‖G‖2
1 + ε−2‖G‖2 . (9.94)

In these circumstances, the Feedforward NOILC algorithm converges to the com-
ponent e(2)

0 of e0 in ker[G∗], this convergence being monotonic in the norm
‖e‖0 = √〈e, Le〉. Finally, for computational purposes, ‖G‖2 can be replaced in
the formula for βI by its upper bound

‖G‖2 ≤ sup
|z|=1

r
(

R−1GT (z−1)QG(z)
)

, (9.95)

a relationship that links the frequency domain condition to the weighting matrices
Q and R.

Proof First note that continuity and compactness of the unit sphere implies that there
must exist a real number g > 0 such that RU(z)+UT (z−1)R ≥ gR whenever |z| = 1
and hence U(z) is strictly positive real in the sense defined by Theorem 4.7. The
same theorem can then be used, with a change in notation, to prove the operator
inequality U + U∗ ≥ gI > 0 on U and hence that ker[U] = {0}. The proof that
U + U∗ > βU∗U onU using the frequency domain condition follows by applying
Theorem 4.9 with a change in notation, replacing both G(z) and K(z) by U(z) and
noting that β∗ > βI andUu 	= 0 for all non-zero u ∈ U . Using the finite dimensional
nature of U and Y then indicates that LU has norm strictly less than unity on the
closed subspace R[G] which proves the convergence statement. Finally, as a

1+a is
monotonically increasing in a, β can be replaced by the value obtained when ‖G‖
is substituted by any upper bound. The bound stated in the theorem was derived in
Chap.4 in Theorem 4.5. �

Theorem 9.11 (Checking Condition Three for Discrete State Space Systems) A
sufficient condition for Condition Three of Theorem 9.7 to hold is that both G(z)
and U(z) are asymptotically stable and also that

RU(z) + UT (z−1)R > βGUT (z−1)GT (z−1)QG(z)U(z), for all |z| = 1, (9.96)

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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where the scalar βG = ε−2. The Feedforward NOILC algorithm then converges to
the component e(2)

0 of e0 in ker[G∗]. Convergence is monotonic in the norm ‖e‖0.

Proof As in the proof of the preceding result, U + U∗ ≥ gI for some g > 0. The
same theorem can then be used, with a change in notation, to prove the operator
inequality U + U∗ ≥ gI > 0 on U and hence that ker[U] = {0}. The proof that
U +U∗ > βU∗G∗GU onR[G∗] using the frequency domain condition then follows
by applying Theorem 4.9 with a change in notation, replacing G(z) by G(z)U(z) and
K(z) by U(z), noting that β∗ > βG and that GUu 	= 0 for all non-zero u ∈ R[G∗].
This last statement is proved by writing any non-zero u ∈ R[G∗] as u = G∗w,
from which the equality 2〈w, GUu〉Y = 2〈G∗w, Uu〉U = 〈u, (U + U∗)u〉U ≥
g‖u‖2U > 0. Using the finite dimensional nature of U and Y then indicates
that LU has norm strictly less than unity on R[G] which proves the convergence
statement. �

The following result is proved in a similar way,

Theorem 9.12 (Condition Four in Discrete State Space System Applications) A
sufficient condition for Condition Four of Theorem 9.7 to hold is that U(z) is both
invertible and minimum-phase, that G(z) is asymptotically stable and also that, for
some θ ∈ [0, 1],

RÛ(z) + ÛT (z−1)R > θβI R + βG(1− θ)GT (z−1)QG(z), for all |z| = 1. (9.97)

The Feedforward NOILC algorithm then converges to the component e(2)
0 of e0 in

ker[G∗], this convergence being monotonic in the norm ‖e‖0.

The results provide considerable insight into robustness of the NOILC procedure and
some reassurance that robustness is an inherent property of the algorithmic process.
Some areas of uncertainty do remain, as reflected by the observations that,

1. as presented, the conditions require the existence of a strictly positive real error
U(z). When � > m such a description requires the definition and the use of
redundant components in the kernel of G(z).

2. The assumption of asymptotic stability of U(z) suggests that the non-minimum-
phase zeros of G must be those of GU.

3. The conditions require that ker[U] = {0} and hence that DU is nonsingular.
The single-input, single-output case leads to the interpretation that, in effect, the
modelling error cannot change the relative degree of the model.

Theorems 9.10 and 9.11 provide frequency domain checks for the use of the model
G in the presence of U but also link the robustness to the chosen value of ε2 and the
choice of Q and R (which appear explicitly and also, implicitly, in the value of ‖G‖).
These relationships are complex, but they can be simplified for the single-input,
single-output case (m = � = 1) to the conditions, respectively,

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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∣∣∣β−1 − U(z)
∣∣∣ < β−1 with “gain” β = ε−2‖G‖2

1 + ε−2‖G‖2 ,

and ‖G‖2 = R−1Q‖G(z)‖2∞
or,

∣∣∣β−1 − |G(z)|2 U(z)
∣∣∣ < β−1 with “gain” β = ε−2QR−1, (9.98)

for all z satisfying |z| = 1. These are precisely the robustness conditions for inverse
and steepest descent algorithms in Chaps. 6 and 7 and provide a link between these
algorithms and NOILC. Both have graphical interpretations and underline both the
need for U(z) to be strictly positive real and, also, the benefits (to robustness) of
using smaller values of β. Within this constraint, note that the different criteria
provide different characterizations of the range of U(z) that can be tolerated.

1. In both cases, the modelling error can vary considerably, particularly if β is small
or, equivalently, ε2 is sufficiently large.

2. Although the second condition does not permit small values of ε2, it may be of
more practical use when G(z) is low pass but U(z) has high frequency resonances
of large magnitude. The first condition will limit the value of gain β in such
circumstances but, as the product |G(z)|2U(z) attenuates the high frequencyvalues
of U, the second test may permit larger gain values.

3. Themixed robustness criterion of Theorem9.12 represents a compromise solution
where the frequency domain content of the right hand side of the test can be
manipulated, in a limited way, by a choice of θ ∈ [0, 1]. Conceptually, varying θ

changes the predicted permissible range of ε2 that can be used. The natural choice
is the value which maximizes this range.

9.2.4 The Case of Left Multiplicative Modelling Errors

This case is described by the use of a model G in the situation where the actual
plant is described by UG where the left multiplicative modelling error operator
U : Y → Y is linear and bounded. As with right multiplicative modelling errors,
the error evolution in the feedforward implementation is described by a recursion

ek+1 = LUek where LU = I − ε−2UGG∗L = I − U(I − L),
with L = (I + ε−2GG∗)−1 and I − L = ε−2G(I + ε−2G∗G)−1G∗.

(9.99)
A simple calculation shows that errors in ker[G∗] are unchanged by the iterative
process and that error changes occur only in the subspace R[UG]. The difference
between left and right multiplicative modelling errors therefore is that the subspace
where dynamics is concentrated depends on the modelling error itself. The technical
issue that arises from this fact can be expressed in terms of the characterization of
all signals into components in ker[G∗] and R[UG] or its closureR[UG].

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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Theorem 9.13 (Properties of U, ker[G∗], R[UG] andR[UG]) Assuming the nota-
tion described above, the condition ker[G∗] ∩ R[UG] = {0} is satisfied if

U + U∗ > 0 on R[G]. (9.100)

In addition, if, for some scalar ε20 > 0,

U + U∗ ≥ ε20I on Y , (9.101)

then U has a bounded inverse Û on Y and the following relationships are satisfied

ker[G∗] ∩ R[UG] = {0} and Y = ker[G∗] ⊕ R[UG]. (9.102)

Notes:

1. A continuity argument also indicates that the existence of ε0 > 0 implies that the
positivity condition U + U∗ ≥ ε20I remains valid on R[G].

2. The simplest situation is when ker[G∗] = {0} when R[G] is then dense in Y .

Proof of Theorem If ker[G∗] ∩ R[UG] 	= {0}, there exists a non-zero y ∈ R[G]
and a u ∈ U such that y = Gu and G∗Uy = G∗UGu = 0. It follows that 〈Gu, (U +
U∗)Gu〉Y = 〈y, (U +U∗)y〉Y = 0 which contradicts the assumed strict positivity of
U + U∗ onR[G]. Next, given the existence of ε20 > 0, the invertibility of U follows
from Theorem 2.9. If ε20 > 0 exists, then suppose that there exists a non-zero vector
y ∈ R[UG] such that G∗y = 0. Let δ > 0 be arbitrary and choose w ∈ R[UG] such
that ‖y−w‖ < δ. Note thatw 	= 0 if δ < ‖y‖Y is sufficiently small as ‖w‖ > ‖y‖−δ.
Write w = UGv and G∗y = G∗ (UGv + (y − w)) = 0 and use the Cauchy Schwarz
inequality to deduce that

ε20‖Gv‖2Y ≤ 〈Gv, (U + U∗)Gv〉Y ≤ 2|〈v, G∗(y − w)〉U | < 2‖Gv‖Y δ. (9.103)

Asw 	= 0,Gv 	= 0 and hence ε20‖Gv‖ < 2δ.Writing ‖w‖ ≤ ‖U‖‖Gv‖ then produces

‖y‖ − δ < ‖w‖ ≤ ‖U‖‖Gv‖ < 2ε−2
0 ‖U‖δ for all δ > 0. (9.104)

That isGv = 0 and y = 0, which is a contradiction. This proves that ker[G∗]∩R[G].
Next, suppose that there exists a non-zero vector y that is orthogonal to the vector
subspace S = ker[G∗] ⊕ R[UG] ⊂ Y . It follows that it is also orthogonal to the
subset S0 = ker[G∗] ⊕ UR[G] ⊂ S . Writing an arbitrarily chosen x ∈ Y in the
form x = g∗ + g with g∗ ∈ ker[G∗] and g ∈ R[G], the elements inS0 then take the
form g∗ + Ug. Examination of the orthogonality condition 〈y, g∗ + Ug〉 = 0 for all
x implies that 〈y, g∗〉 = 0 and hence that y ∈ ker[G∗]⊥ = R[G]. Choosing g = y
then gives 0 = 〈y, Uy〉 ≥ 1

2ε
2
0‖y‖2 yielding y = 0 which is a contradiction. Hence

S ⊥ ⊂ S ⊥
0 = {0} proving denseness and S 0 = S = Y .

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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Finally, note that S0 is the range of the bounded linear operator Ω : Y → Y
defined by Ω = (I − P) + UP where P is the self-adjoint, positive, orthogonal
projection operator ontoR[G]. Note that P2 = P, ker[P] = ker[G∗],R[P] = R[G]
and the restriction of P to R[G] is the identity. To prove that S0 = S = Y it
is sufficient to prove that the range of Ω is closed in Y . From the Closed Range
Theorem 2.11, it is sufficient to prove that the range of Ω∗ is closed. Note that
Ω∗ = (I − P) + PU∗ and choose y ∈ R[Ω∗] and a sequence {xk}k≥1 in Y with the
properties that ‖y − Ω∗xk‖ < k−1. Using orthogonality,

k−2 > ‖(I − P)(y − xk)‖2 + ‖P(y − U∗xk)‖2, for all k ≥ 1. (9.105)

In particular, limk→∞ (I −P)xk = (I −P)y and limk→∞ P(y−U∗xk) = 0. Writing

P(y − U∗xk) = P(y − U∗(I − P)xk) − PU∗Pxk and Pxk = P(Pxk)

then gives limk→∞ PU∗P(Pxk) = Py − PU∗(I − P)y.
(9.106)

Writing xk = (I − P)xk + Pxk , the convergence of {xk} to a limit x∞ ∈ Y (which
automatically satisfies y = Ω∗x∞) then follows by regarding R[G] as a Hilbert
space with the inner product and norm inherited from Y , regarding PU∗P as a map
fromR[G] into itself and proving that it has a bounded inverse. First note that PU∗P
has an adjoint PUP. Then use the inequalities,

0 ≤ P(I − λU)P(I − λU∗)P and 0 ≤ P(I − λU∗)P(I − λU)P, (9.107)

noting that P2 = P, and that PUP + PU∗P ≥ ε20I on R[G], to give (by suitable
choice of λ) the existence of a scalar α > 0 such that (PUP)PU∗P ≥ αI and
(PU∗P)PUP ≥ αI onR[G]. The existence of a bounded inverse then follows from
Theorem 2.9. This completes the proof. �

The result will be used to derive robustness conditions. In particular, the charac-
terizationY = ker[G∗]⊕R[UG] creates a property that is a parallel to the condition
Y = ker[G∗] ⊕ R[G] used in the right multiplicative modelling error case. Before
this is done, a suitable norm with which to model robust monotonicity and conver-
gence is needed. First note that any initial error e0 can be expressed, uniquely, as
e0 = e(1)

0 + e(2)
0 with e(1)

0 ∈ R[UG] and e(2)
0 ∈ ker[G∗] so that LUe(2)

0 = e(2)
0 and

hence
ek = Lk

Ue(1)
0 + e(2)

0 for all k ≥ 0. (9.108)

Errors therefore evolve, essentially, in R[UG]. For the purposes of analysis, this
closed subspace is regarded as a Hilbert space with inner product 〈·, ·〉0 defined by

〈y, w〉0 = 〈y, (I − L)w〉Y for all y, w in R[UG]. (9.109)

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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The inner product satisfies the linearity requirement with respect to each argument
and also satisfies the required positivity properties as, for any non-zero y ∈ Y ,

‖y‖20 = 〈y, (I − L)y〉Y = ε−2〈G∗y, (I + ε−2G∗G)−1G∗y〉U
≥ ε−2

1 + ε−2‖G‖2 ‖G∗y‖2U (9.110)

and the necessary positivity follows as G∗y 	= 0 if y ∈ R[UG].
Note: The norm ‖ · ‖0 on R[UG] is not a norm on Y if ker[G∗] 	= {0}. More
generally, it is not necessarily topologically equivalent to the norm ‖ · ‖Y applied to
R[UG] but it will be
1. if ker[G∗] = {0} andR[UG] is finite dimensional, as is the casewhenG represents

a discrete time state space systemS(A, B, C, D)on afinite time intervalwithm ≤ �

and rank[D] = m,
2. or, if G∗ has positivity properties such as GG∗ ≥ ε21I on R[G] for some ε1 > 0.

In such circumstances, convergence is guaranteed with respect to the norm ‖ · ‖Y .
More generally, the nature of any convergence could be complex and it will be
good practice to consider the nature of convergence with respect to this norm for
the model class under consideration. The following result does not resolve the issue
but it provides some insight into the issues that may arise. In particular, a proof of
boundedness will imply weak convergence.

Theorem 9.14 (Robustness, Boundedness and Weak Convergence) Using the
notation defined above, limk→∞ ‖ek‖0 = 0 if, and only if, the condition limk→∞
‖G∗ek‖U = 0 is satisfied. In addition, if limk→∞ ‖ek‖0 = 0, then

lim
k→∞〈f , ek − e(2)

o 〉Y = 0, for all f ∈ R[G] ⊕ R[UG]⊥. (9.111)

If R[G] is closed, then {ek}k≥0 converges to zero in the weak topology in Y defined
by the inner product 〈·, ·〉Y . Otherwise weak convergence is assured if the sequence
{‖ek‖Y }k≥0 is bounded.

Proof The first statement follows as the two norms ‖e‖0 and ‖G∗e‖U in Y are
topologically equivalent. To prove the second, note that it is necessary only to prove
the statement for ek − e(2)

0 ∈ R[UG]. The first step is to prove that

Y = R[G] ⊕ ker[(UG)∗] = R[G] ⊕ R[UG]⊥ (9.112)

by using Theorem 9.13 and noting that the invertibility of U implies that Û + Û∗ ≥
ε20Û∗Û ≥ ε̃20I for some ε̃20 > 0. Again using Theorem 9.13 with the replacements
G �→ UG,U �→ Û and ε0 �→ ε̃0, it is then deduced thatY = R[G]⊕ker[(UG)∗] =
R[G] ⊕ R[UG]⊥ as required. Let f = f1 + f2 with f1 = Gf3 ∈ R[G] and f2 ∈
R[UG]⊥ so that 〈f , ek − e(2)

0 〉Y = 〈f1, ek − e(2)
0 〉Y = 〈f3, G∗(ek − e(2)

0 )〉Y → 0 as
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k → ∞ if limk→∞ ‖ek‖0 = 0. Weak convergence then follows if R[G] = R[G].
Otherwise, boundedness of the sequence {‖ek‖Y }k≥0 permits the extension of this
result to include cases where f1 ∈ R[G]. �

Using the new topology, {‖ek‖Y }k≥0 will typically not be monotonic. However,
the monotonicity of {‖ek − e(2)

0 ‖0}k≥0 can be proved in the following form,

Theorem 9.15 (Monotonicity andRobustnesswith LeftMultiplicative Errors)Con-
sider NOILC Algorithm 9.1 in its feedforward implementation. Using the notation
defined above, a sufficient condition for the norm sequence {‖ek − e(2)

0 ‖0}k≥0 to sat-

isfy the monotonicity condition ‖ek+1 − e(2)
0 ‖0 < ‖ek − e(2)

0 ‖0, for all k ≥ 0, in the

presence of the left multiplicative modelling error U, is that e(1)
0 	= 0 and that there

exists a real number ε20 > 0 such that

Condition One − U + U∗ ≥ U∗(I − L)U + ε20I, on R[G]. (9.113)

In these circumstances the subspace decomposition Y = ker[G∗]⊕R[UG] is valid
and, in the new topology,

1. the induced norm of the restriction of LU to the LU-invariant subspace R[UG]
satisfies

‖LU‖0 ≤ 1. (9.114)

2. In particular, if R[G] is finite dimensional, then this norm is strictly less than
unity and, in the original norm topology of Y ,

for all starting conditions e0 ∈ Y , lim
k→∞ ek = e(2)

0 ∈ ker[G∗]. (9.115)

Proof The subspace representation follows from Theorem 9.13 and it is clear that
ek+1 − e(2)

0 = LU(ek − e(2)
0 ) for k ≥ 0. Next, note that, if e(1)

0 = 0, then ek = e0 for

all k ≥ 0. Suppose therefore that e(1)
0 	= 0 and note that ker[I −L] = ker[G∗] so that

R[I − L] = ker[G∗]⊥ = R[G]. Examine the operator Λ : Y → Y defined by

Λ = (I − L) − L∗
U(I − L)LU = (I − L)

(
U + U∗ − U∗(I − L)U

)
(I − L)

≥ ε20(I − L)2 (9.116)

and note that, as a consequence, 〈e,Λe〉Y ≥ ε20‖(I − L)e‖2Y . In particular,
〈e,Λe〉Y > 0 on any subset that intersects with ker[G∗] at e = 0 only. The rel-
evant example of such a set isR[UG] from which, for all e ∈ R[UG],

〈e,Λe〉Y > 0 which is just ‖e‖20 > ‖LUe‖20 on R[UG] (9.117)

which proves monotonicity. The observation that ‖LU‖0 ≤ 1 on R[UG] follows
from the definition of operator norms whilst strict inequality ‖LU‖0 < 1, and the
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convergence property, whenR[UG] is finite dimensional, follows from the compact-
ness of the unit sphere in any finite dimensional space Hilbert space. �

The following result follows using similar techniques to Theorem 9.8,

Theorem 9.16 (Alternative, Simplified Robustness Conditions) Two sufficient con-
ditions for Condition One of Theorem 9.15 to be valid for some choice of ε0 > 0,
are as follows

Condition Two : U + U∗ ≥ ε−2‖G∗‖2
1+ε−2‖G∗‖2 U∗U + ε20I on R[G]

Condition Three : U + U∗ ≥ ε−2U∗GG∗U + ε20I on R[G] (9.118)

Finally, another sufficient condition is that U has a bounded inverse Û on Y , and,
with a suitable choice of ε0 > 0 and θ ∈ [0, 1],

Condition Four : Û + Û∗ ≥ θβI I + (1 − θ)βGGG∗ + ε20I on Y

where βI = ε−2‖G∗‖2
1+ε−2‖G∗‖2 and βG = ε−2.

(9.119)

Note that Condition Four is related to conditions Two and Three by choice of θ = 0
or θ = 1. A simple illustration of this fact uses algebraic manipulation to give
U+U∗ ≥ θβI U∗U+(1−θ)βGU∗GG∗U+ε20U∗U onY and, noting thatU∗U ≥ αI
for some α > 0, then replacing ε20 by αε20.

9.2.5 Discrete Systems with Left Multiplicative Modelling
Errors

The results derived for the case of right multiplicative perturbations carry over to
discrete state space systems with a few minor changes. More precisely, consider
the case when G can be represented by a discrete time, linear, time invariant, state
space model S(A, B, C, D) (or its equivalent supervector description) on the interval
0 ≤ t ≤ N and that it has the transfer function matrix G(z). Using the notation of
Sect. 9.2.3, the actual plant model is now assumed to take the form UG with left mul-
tiplicative modelling error U : Y → Y with state space model S(AU , BU , CU , DU)

and m × m transfer function matrix U(z). Again, Y and U are finite dimensional
and hence every vector subspace is closed.

The following results can be proved by requiring the operator inequalities to be
valid in the whole spaceY orU as appropriate. Also note that the finite dimensional
nature of the spaces and the compactness of the unit circle in the complex plane make
it possible to replace ε0 > 0 by ε0 = 0 provided that the symbol ≥ is replaced by
the strict inequality >.

Theorem 9.17 (Condition Two for Discrete, State Space System Applications) Let
the model G, the actual plant UG and the NOILC objective function be as described
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above. Then a sufficient condition for Condition Two of Theorem 9.16 to hold is that
U(z) is asymptotically stable and also that, in the complex Euclidean topology in
C m, the matrix inequality

QU(z) + UT (z−1)Q > βI UT (z−1)QU(z), for all |z| = 1, (9.120)

is satisfied where the “gain” parameter

βI = ε−2‖G∗‖2
1 + ε−2‖G∗‖2 . (9.121)

In these circumstances, the Feedforward NOILC algorithm converges to the compo-
nent e(2)

0 of e0 in ker[G∗]. The convergence of ek − e(2)
0 to zero is monotonic in the

norm ‖e‖0 = √〈e, (I − L)e〉 on R[UG].
Finally, for computational purposes, ‖G∗‖ can be replaced in the formula for βI by
its upper bound

‖G∗‖ = ‖G‖ ≤ sup
|z|=1

r
(

R−1GT (z−1)QG(z)
)

, (9.122)

a relationship that links the frequency domain condition to the weighting matrices
Q and R.

The proof is left as an exercise for for the reader to fill in. The following result is
also proved in a similar matter to Theorem 9.12,

Theorem 9.18 (Condition Four in Discrete State Space System Applications) A
sufficient condition for Condition Four to hold is that G(z) is asymptotically stable,
U(z) is invertible and minimum-phase and also that there exists a θ ∈ [0, 1] such
that, on C m, for all |z| = 1,

QÛ(z) + ÛT (z−1)Q > θβI Q + (1 − θ)βGQG(z)R−1GT (z−1)Q. (9.123)

In these circumstances, the Feedforward NOILC algorithm converges to the compo-
nent e(2)

0 of e0 in ker[G∗]. The convergence of ek − e(2)
0 is monotonic in the norm

‖e‖0 = √〈e, (I − L)e〉 on R[UG].

9.2.6 Monotonicity in Y with Respect to the Norm ‖ · ‖Y
This short section is relevant to the situation where the model G is related to the plant
by two possible uncertainty descriptions ULG and GUR where both the left (respec-
tively, right) multiplicative perturbation UL (respectively, UR) satisfy the conditions
of the previous sections for monotonicity in the relevant norm topology. It is assumed
here that R[G] = Y and R[G∗] = U so that ker[G∗] = {0} and hence e(2)

0 = 0.
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The monotonicity conditions become, for all e0 ∈ Y ,

〈ek+1, Lek+1〉Y < 〈ek, Lek〉Y and 〈ek+1, (I − L)ek+1〉Y < 〈ek, (I − L)ek〉Y ,

(9.124)
so that monotonicity with respect to the norm ‖ · ‖Y follows by adding to give

‖ek+1‖2Y < ‖ek‖2Y for all k ≥ 0. (9.125)

The reader will also note that this ensures boundedness but, ifR[G] is finite dimen-
sional, it also ensures that limk→∞ ek = 0. Finally,

Theorem 9.19 (Monotonicity of ‖ek‖Y with Commuting ErrorModels) If UL com-
mutes with G (as is the case with linear, single-input, single-output, time-invariant,
state space systems), UR = UL and satisfaction of any of the robustness conditions
guarantees monotonicity of the norm sequence {‖ek‖Y }k≥0.

9.3 Non-minimum-phase Properties and Flat-Lining

Previous chapters (Sect. 8.2.4) have noted that, for single-input, single-output, dis-
crete time state space systems, the presence of non-minimum-phase zeros has a very
specific effect on Iterative Control convergence if the number of samples N + 1 is
large. It takes the form of initially good norm reductions followed by a “plateauing”
(or “flat-lining”) phenomenonwhere the norm‖ek‖Y is non-zero but begins to reduce
infinitesimally slowly. Convergence to zero is still guaranteed theoretically but this
slow convergence, in practical terms, means that no further realistic improvement in
tracking error is possible using the chosen algorithm. Indeed, tens of thousands of
iterations may be needed to achieve even small further improvements. This can be
understood, conceptually, by taking an error norm sequence of the form

‖ek‖Y = 1

2
‖e0‖Y

(
λk
1 + λk

2

)
(9.126)

where the two positive scalars λ1 and λ2 are strictly less than one but λ1 < λ2 and λ2
is very close to unity. If, for example, λ1 = 0.1 and λ2 = 1 − 10−8 < 1, then, after
only a few iterations, the first termbecomes very small leaving a residual convergence
represented by ‖ek‖Y = 1

2‖e0‖Y λk
2 which remains very close to 1

2‖e0‖Y for many
thousands of iterations.

In what follows, a brief discussion of the same phenomenon is given with the
conclusion that NOILC and gradient algorithms have identical properties in this
case. The approach taken is that of constructing a model of the convergence that
reveals the plateauing phenomenon by, firstly, identifying subspaces associated with
normal convergence rates and slow convergence and then modelling the plateauing
effect by setting the slow convergence rate to precisely zero.

http://dx.doi.org/10.1007/978-1-4471-6772-3_8


270 9 Norm Optimal Iterative Learning Control

The analysis is restricted to the case of single-input, single-output, asymptotically
stable, discrete time state space systems S(A, B, C, D) described by the transfer
function G(z) = Gm(z)Gap(z) where Gap(z) is all pass and Gm(z) is asymptotically
stable and minimum phase. It is assumed that D 	= 0 by using the shift techniques
of Chap.4 and hence that the supervector model matrices G and Gm are invertible.
The notation of Sect. 8.2.4 is used and the simplest case of n+ = 1 and a single real
zero with modulus |z1| > 1 is assumed to simplify the discussion. Theorem 8.3 in
Sect. 8.2.4 is particularly relevant to the development.

Using supervector descriptions, GG∗ can be identified with ε−2R−1QGGT which
takes the form of the symmetric matrix ε−2R−1QGmGapGT

apGT
m. The factor GapGT

ap
is the key to understanding the phenomenon. More precisely, its eigenvalues are all
equal to unity apart from a single eigenvalue σ 2

1 which takes the value z−2(N+1)
1 → 0

as N → ∞. This eigenvalue has eigenvector α1 = [1, z−1
1 , . . . , z−N

1 ]T spanning the
subspace Ea+. The orthogonal complement of this subspace is denoted by E1 and, if
V : RN → RN+1 is an (N +1)×N matrix whose columns span E1, then V T α1 = 0.
Without loss of generality, V can be constructed to satisfy V T V = IN .

The key to understanding the behaviour when N � 0 is obtained by using the
approximation σ1 = 0 and using the orthogonal subspace decomposition

Y = GmE1 ⊕ (GT
m)−1Ea+. (9.127)

Note that, with these assumptions, GGT
(
(GT

m)−1α1
) = σ 2

1 Gmα1 = 0. Also, note
that the matrix (GmV )T GmV ≥ ε20I for all N ≥ 1 and some ε20 > 0. This suggests
the approximation GapGT

ap = V V T and hence

L = (I + GG∗)−1 ≈ LA = (IN+1 + ε−2R−1QGmV V T GT
m)−1 (9.128)

will be accurate for a large number of iterations when N is very large. In particular,
LA(GT

m)−1α1 = (GT
m)−1α1 and hence, if e0 is written in the form e0 = e(1)

0 + e(2)
0

with e(1)
0 = GmV γ1 and e(2)

0 = (GT
m)−1α1γ2 for some scalar γ2 and vector γ1 ∈ RN ,

a simple computation gives

ek = Lke0 ≈ Lk
AGmV γ1 + e(2)

0

= GmV (IN + ε−2R−1QV T GT
mGmV )−kγ1 + e(2)

0 , (9.129)

and the approximation predicts the convergence to the apparent limit epseudo∞ = e(2)
0

as k → ∞ as ‖(IN + ε−2R−1QV T GT
mGmV )−1‖ ≤ (1 + ε−2R−1Qε20)

−1 < 1. This
apparent limit vector is a close approximation to the errors that will be observed as the
flat-lining phenomenon begins. That is, it is closely associatedwith the plateauwhich

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
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consists of slow convergence from the value ‖e(2)
0 ‖Y to zero. A simple calculation

using orthogonality of E1 and Ea+ gives

epseudo∞ = αT
1 G−1

m e0

αT
1 G−1

m (GT
m)−1α1

(GT
m)−1α1 = αT

1 G−1
m e0

αT
1 (GT

mGm)−1α1
(GT

m)−1α1. (9.130)

Its value is linked to the vectorα1 but is also influenced by the nature of theminimum-
phase component Gm. In this simple case, the nature of the signal can be computed
by using the properties of time reversal operators T (defined in Sect. 4.3) to write
GT

m = T GmT and hence (GT
m)−1 = T G−1

m T . That is, the elements of (GT
m)−1α1

can be computed from the time reversal of the signal obtained from the first N + 1
components of the signal G−1

m (z)α̂1(z) where α̂1(z) is theZ -transform of the signal
obtained from the time reversal of α1, on 0 ≤ t ≤ N , which is then extended to the
infinite interval. As the time reversal of α1 is just z−N

1

[
1, z1, . . . , zN

1

]T
, the natural

extension is α̂1(t) = z−N
1 zt

1 for t ≥ N + 1 which gives α̂1(z) = z−N
1 (z/(z − z1)).

Partial fraction methods indicate that

G−1
m (z)α̂1(z) = G−1

m (z1)α̂1(z) + z−N
1 ψ(z, z1) (9.131)

where ψ(z, z1) is uniformly bounded on the unit circle |z| = 1 and for all N . If N is
large, z−N

1 is very small and it follows that the time reversal of G−1
m α̂1 on 0 ≤ t ≤ N

is very close to the time series Gm(z1)−1α1 which is just

(GT
m)−1α1 ≈ Gm(z1)

−1
[
1, z−1

1 , . . . , z−N
1

]T
when N � 0. (9.132)

This time series is definedby the inverse of the zero. Finally, using this approximation,
the plateau is characterized by the limit

epseudo∞ = αT
1 G−1

m e0

αT
1 G−1

m (GT
m)−1α1

(GT
m)−1α1 ≈ αT

1 e0
αT
1 α1

α1. (9.133)

which is precisely the limit computed for the stable inverse algorithm in Sect. 8.2.4.

This signal is proportional to the stable time series α1 =
[
1, z−1

1 , . . . , z−N
1

]T
with

the constant of proportionality

αT
1 e0

αT
1 α1

=
(
1 − z−2(N+1)

1

1 − z−2
1

)
N∑

t=0

z−j
1 e0(t) (9.134)

which is small only if z1 is large and/or e0(t) is small on the initial time interval and
gaining significant values only when |z−t

1 | � 1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
http://dx.doi.org/10.1007/978-1-4471-6772-3_8
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9.4 Discussion and Further Reading

9.4.1 Background Comments

The introduction of the use of optimization-based Iterative Learning Control was
originally introduced in the general form described here in [6] by the author and
co-workers and has led to a number of approaches and proposed generalizations
(for example, [17, 44, 64]). Its aim was to create algorithms capable of achiev-
ing monotonic convergence for a wide class of linear systems. The use of operator
notation in a Hilbert space setting makes this possible with the key assumptions of
linearity, boundedness of the operator G and the use of objective functions that are
quadratic in the error norm and input change. This structure requires the use of the
adjoint operator to compute optimal minimizing solutions described by equations
linear in the signals of interest. Crucially, it also permits significant generality whilst
providing a natural link with linear, quadratic, optimal control theory for continu-
ous systems [6] and discrete systems [5]. For notational convenience, only examples
taken from linear time-invariant, state space systems have been considered but the
reader will note that this assumption is easily removed to create convergent NOILC
algorithms for “time varying” state space models illustrated by

ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0, y(t) = C(t)x(t) (9.135)

using the minimization uk+1 = argmin J(u, uk) with weights Q(t) and R(t) as
defined in Sect. 9.1.6.

The potentially wide application to different model types is a good feature of
NOILC but it also acts as a source of new ideas. The next chapter considers exam-
ples of new algorithms where NOILC theory provides iterative control solutions of
problems that introduce addition features to this basic idea and/or relax some of the
assumptions. These include multi-rate sampling, variations of initial conditions, the
notions of intermediate point and multi-task problems and the use of predictive con-
trol methodologies to improve convergence rates using multi-models. Other model
types can be considered in these approaches including differential delay systems
exemplified by the state equations

dx(t)

dt
= A(t)x(t) + A0(t)x(t − τ) + B(t)u(t),

x(t) = x0(t), t ∈ [−τ, 0] and

y(t) = C(t)x(t) + D(t)u(t), (9.136)

where τ > 0 is a state time delay. Further information on time delay systems can be
found in, for example, [50]. Note the need for a function x0(t) to define the initial
condition. This model can be identified with a bounded mapping G with the same
input and output spaces as those used in the delay free case. The optimal solution
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has the same characterization in terms of G∗ but the conversion of the update law
into a causal form is more complex.

9.4.2 Practical Observations

Before concluding this chapter, it is worthwhile noting the following points:

1. Applications Potential: The practical viability of NOILC has been verified in
applications to physical plant as in [13, 29, 97, 100] and Freeman et al. [42].

2. Nonlinearity: The algorithm uk+1 = argmin J(u, uk) provides monotonic error
reductions even if the plant model is nonlinear. The optimization problem is then
more computationally demanding, its solution may be non-unique, convergence
to the reference signal cannot be guaranteed in general and the analytical tools
that permitted a detailed analysis of algorithm properties in the linear case are no
longer available.

3. Effect of Parameters: The theory shows the place thatQ,R and ε2 play inNOILC
algorithms and, in the SISO case, the choice of suitable values can be guided by
concepts such as that of spectral bandwidth. In MIMO systems, the choice of the
“internal structure” of the matrices Q and R is less clear at a theoretical level.
Simple guidelines suggest that Q influences the relative convergence rates in the
control loops whilst R provides some control over the changes in control signal
at each iteration. Where solutions are non-unique, R can be used to reflect the
preferred inputs to be used to solve the tracking problem. For example, if R is
diagonal, increasing Rjj will penalize changes in a loop input uj(t) and hence
encourage the algorithm to use inputs in the other loops to achieve the error
reduction sought. These connections are, however, imprecise and detailed choices
will inevitably often involve a degree of trial and error or experience with the
domain of application.

4. Exponentially Weighted Signals: As in the case of inverse and gradient algo-
rithms, the use of exponentially weighted signals can be included in the algorithm
in both the continuous time and discrete time cases. For continuous time systems,
the objective function, with λ > 0, is

∫ T

0
e−2λt

×
(
(r(t)− y(t))T Q(t)(r(t)− y(t))+ (u(t)− uk(t))

T R(t)(u(t)− uk(t))
)

dt

(9.137)

and provides (additional) time dependent weighting e−2λt for S(A, B, C). Equiva-
lently, the weighting can be removed and the system replaced by S(A − λI, B, C)

with signals u, x, y, r, e replaced by weighted signals defined by the map f (t) �→
e−λt f (t). This simple modification could, in principle, be used to reduce the
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plateauing effect caused by non-minimum-phase properties but the nature of the
convergence is changed as greater emphasis will be placed on error reductions
early in the interval [0, T ] before later errors can take any priority.

5. Iteration Variation of Parameters: The parameters Q, R and ε could, in practice
be varied from iteration to iteration to speed up or slow down convergence speeds.
The theory still guarantees norm reductions at each iteration but, as that normmay
be changing as Q changes, little can be said about the nature of the convergence
without additional assumptions. Note that the Riccati solution will need to be
recomputed whenever any one or more of Q, R and ε is changed. This idea will be
revisited in Chap.13 in the “Notch Algorithm” and in the “Parameter Optimal”
methods in Chap.14.

9.4.3 Performance

It can be argued that NOILC is a benchmark ILC algorithm in the sense that it has
defined properties and guaranteed convergence for a wide class of linear applica-
tions. Its application to non-minimum-phase (NMP) systems is influenced by the
emergence of two stage convergence. This consists of an initially good convergence
rate followed by a rate that is so slow that, in practice, no further benefits can be
achieved. For minimum-phase systems, the algorithm is therefore capable of excel-
lent convergence properties but acceptable behaviour in the NMP case will depend
on the zero positions and the reference signal in order to ensure that the “plateau”
value for ‖ek‖Y represents acceptable tracking accuracy. A more detailed analysis
of these phenomena is given in the reference [84] for discrete state space systems
and in [86] for the continuous case. The two analyses suggest that large zeros and/or
reference signals that are small over a suitably large initial sub-interval can lead
to outcomes where tracking accuracy is very good. The validity of the predictions
of the analysis has been tested, successfully, in a laboratory environment [86] and
also in unreported industrial tests, the outcomes of which are subject to commercial
confidentiality agreements.

9.4.4 Robustness and the Inverse Algorithm

Next, as in the case of inverse model and gradient algorithms, modelling errors also
influence the nature of the convergence. The interesting conclusion arising in this
chapter is that, assuming that robustness will be assessed in terms of monotonicity
of signal norms in the presence of multiplicative modelling errors U, the error norm
‖e‖Y is not necessarily the most appropriate norm for analysis. For the situations
considered, the choice of norm seems to depend on the nature of the modelling
error as exemplified by the choice of error norm ‖e‖0 = √〈e, Le〉Y with L = (I +
ε−2GG∗)−1 for asymptotically stable right multiplicative perturbations. The nature
of the new form of monotonicity will therefore, in general, need to be considered to
make sure that it is acceptable for the application domain. A unifying theme is that,

http://dx.doi.org/10.1007/978-1-4471-6772-3_13
http://dx.doi.org/10.1007/978-1-4471-6772-3_14
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the robustness of NOILC can be guaranteed by positivity tests that are algebraically
identical to those that guarantee robust convergence of inverse model and/or gradient
algorithms,

(Chapters6 and 7). There seems to be no escaping the need for positivity of the
multiplicative modelling error U although, being expressed as a positivity condition
on U +U∗, the use of the topology in the relevant Hilbert space (in the form of Q and
R for example) may be helpful. The analysis of robustness is technically complex
and there may be room for improvements in and extensions to the results presented.
The chosen material was aimed at three objectives, namely,

1. that of achieving a degree of generality at the operator theoretical level to illustrate
and underline the robustness implicit in the NOILC paradigm and

2. providing guidance on the technical issues that separate the cases where the output
space Y is either finite or infinite dimensional.

3. Crucially, the approach permits the construction of more familiar frequency
domain tests for discrete time, state space systems and, in particular, linking these
tests to structural properties of the plant model such as pole and zero positions.

9.4.5 Alternatives?

The reader may have a view on the choices made by the author. Alternatives could
modify the form of the objective function or the characterization of the modelling
errors, for example, using errors in the parameters in the model [3]. The choice of
objective function has received attention [17, 64] with the change

J(u, uk) �→ ‖e‖2Y + ε2‖u − uk‖2U + ε21‖u|2U , ε21 > 0, (9.138)

where the last term is included to constrain the magnitude of the inputs that are used.
In this case ‖e‖2Y + ε21‖u|2U reduces monotonically each iteration and the limit error
cannot be zero. The optimal solution on iteration k + 1 is

uk+1 = ε2

ε2 + ε21
uk + 1

ε2 + ε21
G∗ek+1 (9.139)

which is a version of the feedback relaxedNOILCAlgorithm 9.2where ε2 is replaced
by ε2 + ε21 and α = ε2

ε2+ε21
.

Another example, [102] added data from a number of iterations and an optimiza-
tion over a number of parameters in the objective function

‖e‖2Y + ‖u −
np∑

j=1

αk+1,juk+1−j‖2U , with

np∑

j=1

αk+1,j = 1 (9.140)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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representing linear combinations of np previous input signals. The options are many
and include a multi-objective approach proposed by Tousain et al. [108].

9.4.6 Q, R and Dyadic Expansions

Finally, the evolution of individual frequency components in the error provides an
interesting approximation, in the frequency domain, in terms of the eigenvalues σ 2

j (z)

of G(z)R−1GT (z−1)Q. It opens up the possibility of using it as a basis for the choice
of Q and R, particularly if one particular frequency zs is very important to design.
For example, suppose that m = �. Using the concept of Dyadic Expansions [80,
81], consider the case where G(zs)G−1(zs) only has eigenvalues {ζj}1≤j≤m of unit
modulus, then there exists real, nonsingular, m × m matrices P1 and P2 such that

G(zs) = P1ΛP2 with Λ = diag[ζ1, ζ2, . . . , ζm]. (9.141)

Noting that G(z)R−1GT (z−1)Q = P1ΛP2R−1PT
2 ΛPT

1 Q and ΛΛ = Im then gives,

Theorem 9.20 (NOILC,Q, R andDyadic Expansions) Suppose that m = �, |zs| = 1
and let P0 be any choice of real, positive definite, diagonal m × m matrix. Using the
notation and assumptions described above, then σ 2

j (zs) = 1, 1 ≤ j ≤ m, and hence

G(zs)R−1GT (z−1
s )Q = Im if

P2R−1PT
2 = P0 and P1P0PT

1 Q = Im. (9.142)

The result suggests that the frequency component of the error signal at z = zs

will be attenuated at a rate (1 + ε−2)−k . The degrees of freedom implicit in P0
leave a number of open questions that would need resolution for wide application.
The approach places constraints on the choice of Q and/or R as, for example, it is
unlikely that the relations above will allow diagonal choices. Also, [80], it is known
that, although Dyadic Expansions apply more generally, the assumptions of unit
modulus eigenvalues for G(zs)G−1(zs) does not describe every situation. Further
research is needed to cover such cases.



Chapter 10
NOILC: Natural Extensions

Norm Optimal Iterative Learning Control has great generality in its formulation,
convergence properties and robustness characterizations. The two examples of lin-
ear, continuous and discrete time, state space systems provide a link to applications
and design and underline the algorithm as a viable approach for practice. The ideas
apply much more generally but the user may have to think very clearly about how
an Iterative Control problem can be formulated as a NOILC problem. The essential
ingredients are the choice of Y and U (and their Hilbert space topologies), the
construction of the operator G and its adjoint G∗ and the solution of the optimality
conditions to form an implementable, real-world solution. This leads to many pos-
sibilities, some of which are explored in this chapter. The theoretical content retains
the, now familiar, NOILC structure including the objective function J(u, uk) and
relies heavily on the update relation uk+1 = uk + ε−2G∗ek+1 and error evolution
characterization ek+1 = Lek where L = (I + ε−2GG∗)−1.

10.1 Filtering Using Input and Error Weighting

For systems evolving on the infinite discrete time interval 0 ≤ t < ∞, there may be
benefits in measuring errors by a frequency domain-based norm

‖e‖2 = 1

2π i

∮

|z|=1
eT (z−1)FT

e (z−1)QFe(z)e(z)
dz

z
(10.1)

where Fe(z) is a minimum-phase, asymptotically stable, proper filter. The choice of
Fe can be based on a desire to place greater importance on some frequency ranges.
For example, in the single-input, single-output case, ensuring that its low frequency
gains are higher than its high frequency gainswill place emphasis on reducing the low
frequency components of the tracking error. Iterative Control, however, is, inevitably,
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278 10 NOILC: Natural Extensions

on a finite interval and hence the frequency domain interpretation (in terms of con-
tour integrals) is imprecise. The use of such filters in the time domain can however
still be considered. In such circumstances, an m-input, m-output state space model
S(Ae, Be, Ce, De) can be used and Fe can be regarded as an operator on Y . This
observation motivates the general discussion that follows.

Suppose that Fe (respectively, Fu) is a bounded filter mapping Y (respectively,
U ) onto itself and that it has a bounded inverse. A norm on Y (respectivelyU ) can
be defined by

‖e‖20e = ‖Fee‖2Y (respectively ‖u‖20u = ‖Fuu‖2U ) (10.2)

The norm ‖ · ‖0e (respectively, ‖ · ‖0u) is topologically equivalent to the norm ‖ · ‖Y
(respectively, ‖ · ‖U ) and hence convergence with respect to one norm guarantees
convergence with respect to the other.

Algorithm 10.1 (A Filtered NOILC Algorithm) A NOILC Algorithm 9.1 using the
filtered signals can be stated as the computation of the input update uk+1 from the
data uk as the input minimizing the objective function

J0(u, uk) = ‖ek+1‖20e + ε2‖u − uk‖20u (10.3)

subject to the dynamics y = Gu + d.
This algorithm can be restated in an alternative, and more familiar, form by defining
signals w = Fey, re = Fer and v = Fuu and updating the signal v at each iteration.
More precisely, the update vk+1 of vk minimizes the objective function

J(v, vk) = ‖re − wk+1‖2Y + ε2‖v − vk‖2U (10.4)

subject to the dynamics represented by the composite operator FeGF−1
u ,

w = FeGF−1
u v + Fed. (10.5)

That is,

vk+1 = vk + (FeGF−1
u )∗(re − wk+1) from which uk+1 = F−1

u vk+1. (10.6)

The evolution of the filtered error has exactly the properties described for NOILC
in the previous chapter with G replaced by FeGF−1

u . For state space systems, the
construction of a state space representation of FeGF−1

u by combining the state space
models of its components again releases the use of optimal controlmethods to provide
feedback or feedforward solutions.

Although the filtered algorithms inherit all of the beneficial properties of NOILC
Algorithm 9.1, no additional general statements can be made as the physical perfor-
mance of the algorithm will depend on the choice of filters. For discrete time state

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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space systems, the frequency domain intuition obtained from contour integral repre-
sentations on infinite intervals can be expected to be a good guide for the choice if N
is large as J(u, uk) can be interpreted as a finite time interval form of the frequency
domain objective function

1
2π i

∮
|z|=1 eT (z−1)FT

e (z−1)QFe(z)e(z)
dz
z

+ ε2 1
2π i

∮
|z|=1 (u(z−1) − uk(z−1))T FT

u (z−1)RFu(z)(u(z) − uk(z))
dz
z .

(10.7)

10.2 Multi-rate Sampled Discrete Time Systems

Consider a linear, time invariant, state space system as discussed in Sect. 3.7. Regard
the underlying dynamics as that of a uni-rate, discrete time, state space system
S(A, B, C, D) written as y = Gu + d in Y . The outputs can be represented by
a selector operator SM : Y → Ye that maps the underlying output sequence
y = {y(0), y(1), . . . , y(N)} into a sequence of measurements ye = {ye(0), ye(2), . . .}
with ye(t) = y(Mt), t ≥ 0. For simplicity, it is here assumed that N is an integer
multiple of M so that Ye = Rm(N/M+1) and SM has an m(N/M + 1) × m(N + 1)
matrix representation consisting of the array of m × m blocks of the form

(SM)ij = ImδM(i−1)+1,j, 1 ≤ i ≤ N/M + 1, 1 ≤ j ≤ N + 1. (10.8)

The resultant multi-rate dynamics are expressed in the form

ye = SMGu + SMd. (10.9)

Using the inner product and norm in Y and U as defined in Eq. (7.16), note that
‖ye‖Ye = ‖ST

Mye‖Y is a norm in Ye. Given a reference signal re defined at the slow
sampled rate, the NOILC problem for the multi-rate system is therefore based on the
minimization of an objective function

Je(u, uk) = ‖ee
k+1‖2Ye

+ ε2‖u − uk‖2U = ‖ST
Mee

k+1‖2Y + ε2‖u − uk‖2U (10.10)

where ee = re − ye is the slow sampled error signal. The process of interpreting this
as a recursive optimal control problem consists of regarding re as a sampled version
of a signal r ∈ Y satisfying re = SMr. Defining the error e = r − y as the resultant
error at the underlying (faster) sample rate, the optimal control computations used
in Algorithm 9.4 will successfully solve this multi-rate case by working in terms
of the signals u and e and, crucially, using the same objective function but setting
Q(t) = 0 whenever the underlying sample rate index t is not equal to any of the
values 0, M, 2M, . . .. Note that, although e contains signals that are not measured
if M > 1, these signals disappear from the computations and are not required in
control input evaluations.

http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Finally, two simple observations can be made

1. A simple extension of this multi-rate case is obtained if the sampling is non-
uniform in the sense that the measured output ye = {y(t0), y(t1), y(t2), . . .} con-
sists of the time series created when y is sampled at times 0 ≤ t0 < t1 < t2 < · · · .
The outcome of the analysis is then that Algorithm 9.4 can again be used by set-
ting Q(t) = 0 whenever the slow rate sample index t is not equal to any of the
values t0, t1, t2, . . .. This idea will be discussed further when the Intermediate
Point NOILC Algorithm is considered in Sect. 10.5.

2. If each output of a multi-input, multi-output system is sampled at a different rate
(the case of non-uniform sampling across the outputs), the basic constructions
used above can be modified by redefining the notion of a selector operator S. The
details are omitted but readers now have the machinery to derive the resultant
algorithm for themselves.

10.3 Initial Conditions as Control Signals

Consider a linear state space system S(A, B, C) with initial condition for the state
x(0) ∈ Rn. In most applications, x(0) is specified by a known initial state x0 that is
independent of iteration index k. In this section, motivated by the conceptual case of
amechanical system starting from rest but where the starting position can be changed
by the user, it is assumed that this is not the case and that the user has some control
over its choice. More precisely, the initial condition on iteration k is assumed to lie
in a linear variety in Rn defined by

xk(0) = x0 + H0hk, k ≥ 0, (10.11)

where x0 is fixed, H0 is a n × p matrix defining a p-dimensional subspace within
which xk(0) − x0 can vary and hk ∈ Rp is the flexibility in changing the initial
condition within that space. If the initial condition can be chosen arbitrarily, then
x0 = 0 and H0 = In are suitable choices. If H0 = 0, then the initial condition is
independent of iteration.

Taking the case of continuous time, the solution from the initial condition x0 + H0h
at t = 0 is

x(t) = eAt (x0 + H0h) +
∫ t

0
eA(t−t′)Bu(t′)dt′, with y(t) = Cx(t). (10.12)

Being free variables, the mathematical “input” to the plant is the pair (u, h) and, in
operator notation,

y = G (u, h) + d, where G (u, h) = Gu + Hh (10.13)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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is the linear operator acting on (u, h). Again, G is the familiar convolution operator
used in the case of fixed initial condition (when H0 = 0) and d(t) = CeAtx0. The
column matrix h is taken to lie in the Hilbert space X0 = Rp with inner product
〈h1, h2〉X0 = hT

1 Q0h2 (where Q0 = QT
0 > 0). H : X0 → Y is then the map

h �→ (Hh)(t) = CeAtH0h with adjoint defined by

w �→ H∗w = Q−1
0

∫ T
0 HT

0 eAT tCT Q(t)w(t)dt.
(10.14)

Defining the inner product in the “extended input”, product space U × X0 by

〈(u, h1), (v, h2)〉U ×X0 = 〈u, v〉U + 〈h1, h2〉X0

=
∫ T

0
uT (t)R(t)v(t)dt + hT

1 Q0h2, (10.15)

gives the adjoint of G as the operator defined by the relation

G ∗e = (G∗e, H∗e) ∈ U × X0 so that

GG ∗ = GG∗ + HH∗. (10.16)

With this notation, a NOILC algorithm that uses both input signals u and initial
condition updates to achieve tracking is as follows,

Algorithm 10.2 (NOILC with Initial Conditions as Additional Controls) Let the
starting values u0 and h0 be arbitrarily chosen. Suppose that, on iteration k, the input
uk was used and that the initial condition was generated by hk , then a convergent
NOILC algorithm tracking a reference signal r(t) on [0, T ] is obtained by choosing
uk+1 and hk+1 to minimize

J((u, h), (uk, hk)) = ‖e‖2Y + ε2‖(u − uk, h − hk)‖2U ×X0

= ‖e‖2Y + ε2
(
‖(u − uk‖2U + ‖(h − hk‖2X0

)

=
∫ T

0
eT (t)Q(t)e(t)dt + ε2

∫ T

0
(u(t) − uk(t))

T R(t)(u(t) − uk(t))dt

+ ε2(h − hk)
T Q0(h − hk), (10.17)

In operator notation, the algorithm is describedby theupdate relations (uk+1, hk+1) =
(uk, hk) + ε−2G ∗ek+1 which has the familiar form

uk+1 = uk + ε−2G∗ek+1 plus the additional condition

hk+1 = hk + ε−2H∗ek+1. (10.18)

The error evolution is described by ek+1 = (I + ε−2GG ∗)−1ek, k ≥ 0 with
convergence being described by Theorems 9.2 and 9.3 (with G replaced by G ).

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Theorem 9.3 also provides conditions for the converged solution to minimize ‖(u −
u0, h − h0)‖2U ×X0

.
Finally, note that the fact that GG ∗ ≥ GG∗ suggests that the following inequality

holds,
(I + ε−2GG ∗)−1 ≤ (I + ε−2GG∗)−1 (10.19)

That is, the initial condition variation (being additional degrees of freedom) will tend
to improve error convergence speeds as compared to the convergence rates seen with
the basic NOILC Algorithm 9.1.

The computational aspects of this algorithm are a littlemore complex than those of
the case of fixed initial conditions. The Two-Point-Boundary-Value Problemdefining
the solutions is stated fully as follows,

ẋk+1(t) = Axk+1(t) + Buk+1(t) with xk+1(0) = x0 + H0hk+1

yk+1(t) = Cxk+1(t) for t ∈ [0, T ], and

ek+1(t) = r(t) − yk+1(t). In addition,

uk+1(t) = uk(t) + ε−2R−1(t)BT p(t), with

ṗ(t) = −AT p(t) − CT Q(t)ek+1(t), and p(T) = 0.
︸ ︷︷ ︸

(10.20)

Added to these relations is complexity which comes from the additional update
relationship for h which depends on ek+1, namely,

hk+1 = hk + ε−2Q−1
0

∫ T

0
HT
0 eAT tCT Q(t)ek+1(t)dt.

︸ ︷︷ ︸
Additional Initial Condition Update Equation

(10.21)

Analysis of these relationships suggests that the solution can be derived as for Algo-
rithm 9.5 to be

uk+1(t) = uk(t) + ε−2R−1(t)BT [−K(t)xk+1(t) + ξk+1(t)
]

(10.22)

where K(t) and ξk+1(t) are as defined in Sect. 9.1.6. K(t) is iteration independent
and ξk+1(t) depends only on data from iteration k and can be computed off-line
between the end of iteration k and the initiation of iteration k + 1. However, the
initial condition hk+1 defined by Eq. (10.21) depends on future values of the output.
This could make a feedback implementation of the algorithm difficult to realize but
a feedforward version of the implementation can be viewed from two perspective,
namely,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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1. as the iterative, off-line solution of the three equations

ek+1 = r − Guk+1 − Hhk+1 − d,

uk+1 = uk + ε−2G∗ek+1, and hk+1 = hk + ε−2H∗ek+1.
(10.23)

The equations define closed linear varieties in Y × U × X0. Computation of
(ek+1, uk+1, hk+1) is hence the problem of finding a point in their intersection.
The use of the ideas of successive projection introduced in Chap.12 represent
one possible approach.

2. Alternatively, a formula-based analytic solution can be obtained. To do this, write
the dynamics of the implemented control in the form

ẋk+1(t) = (
A − Bε−2R−1(t)BT K(t)

)
xk+1(t) + B

(
uk(t) + ε−2R−1(t)BT ξk+1(t)

)
,

with yk+1(t) = Cxk+1(t) and ek+1(t) = r(t) − yk+1(t).
(10.24)

a. Let e(0)
k+1(t) be the error computed using the input update rule but using the

initial condition xk+1(0) = x0, then

ek+1(t) = e(0)
k+1(t) − CΦK (t)H0hk+1, where ΦK (t) is n × n and

Φ̇K (t) = (
A − Bε−2R−1(t)BT K(t)

)
ΦK (t) with ΦK (0) = In.

(10.25)
Using this in the update equation for h then yields the formula

hk+1 = (Ip + ε−2WH)−1
(

hk + ε−2Q−1
0

∫ T
0 HT

0 eAT tCT Q(t)e(0)
k+1(t)dt

)

where WH = Q−1
0

∫ T
0 H0eAT tCT Q(t)CΦK (t)H0dt

(10.26)
and the matrix inverse is assumed to exist.

b. Alternatively, let e(hk)

k+1(t) be the error computed using xk+1(0) = x0 + H0hk ,
then

ek+1(t) = e(hk)

k+1(t) − CΦK (t)H0(hk+1 − hk), so that

hk+1 = hk + (Ip + ε−2WH)−1ε−2Q−1
0

∫ T
0 HT

0 eAT tCT Q(t)e(hk)

k+1(t)dt.
(10.27)

The reader should note that a feedback implementation of these formulae can be
achieved by computing e(·)

k+1 either off-line or by experiment and following this by
the evaluation of the required hk+1. The generation of ek+1 is then achieved using
the standard NOILC feedback Algorithm 9.5 implementation from the initial
condition xk+1(0) = x0 + H0hk+1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_12
http://dx.doi.org/10.1007/978-1-4471-6772-3_9


284 10 NOILC: Natural Extensions

10.4 Problems with Several Objectives

Although, implicitly, very general, the presentation has primarily illustrated the ideas
using the tracking of functions or time series r(t) on finite intervals. In the next
sections, this idea will be refined to provide useful and substantial generalizations.
This section presents the basic concepts to be used. The approach arises from a more
detailed structural definition of the tracking task. More precisely, consider a system
described by dynamic relationships y = Gu + d with input u ∈ U and output
y ∈ Y . This underlying dynamics may take any form but, as an aid to visualization
of the idea, the reader may wish to consider the case of a state space model where
the tracking tasks may be written in the form of other derived variables such as a
combination of the specification of

1. required values of outputs at isolated times in the interval,
2. periods where no tracking is required or
3. subintervals where tracking of a reference is required.

This list is only indicative but, in general, the problem is one of finding an input u to
ensure that M tracking objectives are satisfied. Symbolically, this is represented by
a set of linear equations

y(j) = Gju + d(j), 1 ≤ j ≤ M, (10.28)

where y(j) ∈ Yj (a real Hilbert space) is a signal or value of interest andGj : U → Yj

is a bounded linearmap. These objects can be combined to produce a signal ye defined
by the M-tuple

ye =
(

y(1), y(2), . . . , y(M)
)

∈ Y1 × Y2 × · · · × YM = Ye (10.29)

where the product space Ye inherits a Hilbert space structure by using the inner
product

〈(y(1), y(2), . . . , y(M)), (w(1), w(2), . . . , w(M))〉Ye =
M∑

j=1

〈y(j), w(j)〉Yj , (10.30)

and associated induced norm. Note that ye can also be regarded as the column vector

ye =
⎡

⎢⎣
y(1)

...

y(M)

⎤

⎥⎦. The control task is to find a suitable u to satisfy the requirement that

ye = re =
⎡

⎢⎣
re
1
...

re
M

⎤

⎥⎦ where the {re
j }1≤j≤M are the desired “values” of {y(j)}1≤j≤M .
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Bringing the individual elements together produces the model

ye = Geu + de with de =
(

d(1), . . . , d(M)
)

and (10.31)

the operator Ge : U → Ye is defined by Geu = (G1u, G2u, . . . , GMu) with adjoint

G∗
e

(
y(1), y(2), . . . , y(M)

)
=

M∑

j=1

G∗
j y(j). (10.32)

With this construction, the operator GeG∗
e can be identified with the block matrix

GeG∗
e =

⎡

⎢⎢⎢⎣

G1G∗
1 G1G∗

2 · · · G1G∗
M

G2G∗
1 G2G∗

2 · · · G2G∗
M

...
...

GMG∗
1 GMG∗

2 · · · GMG∗
M

⎤

⎥⎥⎥⎦ (10.33)

which, if Ye is finite dimensional is simply a matrix of real scalars.
The NOILC algorithm that can solve the Iterative Control problem is as follows,

Algorithm 10.3 (NOILC with Many Objectives) Suppose that u0 and re are specified
for the process y = Gu + d and that ye = Ge + de represents the dynamics of the
variables to be controlled. Suppose that the input uk produced the outcome ye

k and

consequent tracking error ee
k =

(
e(1)

k , . . . , e(M)
k

)
on iteration k, then the NOILC

algorithm that constructs uk+1 as that input that minimizes the objective function

J(u, uk) = ‖ee
k+1‖2Ye

+ ε2‖u − uk‖2U (10.34)

produces a monotonically reducing norm sequence ‖ee
k‖Ye . The solution of the prob-

lem leads to the input and error update formulae

uk+1 = uk + ε−2G∗
eee

k+1 = uk + ε−2
∑M

j=1
G∗

j e(j)
k+1 and

ee
k+1 = Leee

k, for k ≥ 0, where Le = (I + ε−2GeG∗
e)

−1. (10.35)

The convergence properties are described by Theorems 9.2 and 9.3 with G replaced
by Ge.

The algorithm has structural similarity to that of NOILC as described in Chap.9
but, again, the input update uk+1 depends on the outcome ee

k+1. It is therefore nec-
essary to use a feedforward implementation unless a causal feedback/feedforward
realization can be derived.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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10.5 Intermediate Point Problems

The problems discussed in Sects. 9.1.3, 9.1.6, 10.2 and 10.3 indicate the richness
of the range of applications of Algorithm 9.1, even for linear state space systems.
Some possibilities were summarized in Sect. 10.4. The problem considered here is a
pre-cursor to that of Sect. 10.6.

Consider the objective of controlling a linear, continuous (or discrete), state space
system S(A, B, C) from an initial condition x(0) = x0 on a defined finite interval
[0, T ] (or 0 ≤ t ≤ N). The objective of the control system is assumed to be that
of using iteration aimed at ensuring that the output signals pass through specified
intermediate points or linear varieties inRm at specified times.

10.5.1 Continuous Time Systems: An Intermediate Point
Problem

Assume that the input/output dynamics are represented by the model y = Gu + d
with u ∈ U = L�

2[0, T ] and y ∈ Y = Lm
2 [0, T ] but that the reference signal is not

defined in Y . Instead. let

0 < t1 < t2 · · · < tM ≤ T (10.36)

be chosen points on the interval [0, T ]. For notational purposes, set t0 = 0. Let
F1, F2, . . . , FM be fj × m matrices of full row rank and set the control objective to
that of ensuring that the output response y(t) satisfies the M point value constraints

re
j = Fjy(tj) ∈ Rfj , for 1 ≤ j ≤ M. (10.37)

where {re
j }1≤j≤M define intermediate values specified by the user.

Example If m = 3 and T = 10, the objective might be to ensure that the following
conditions are achieved

[1 1 1]y(1) = 2 = re
1, y(4) =

⎡

⎣
0
0

−6

⎤

⎦ = re
2,

[
0 1 1
2 0 1

]
y(7) =

[
1

−1

]
= re

3, y(10) =
⎡

⎣
−1
2

−4

⎤

⎦ = re
4.

(10.38)

Clearly, M = 4, t1 = 1, t2 = 4, t3 = 7 and t4 = 10 with

F1 = [1 1 1 ], F2 = I3, F3 =
[
0 1 1
2 0 1

]
and F4 = I3 (10.39)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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so that f1 = 1, f2 = 3, f3 = 2 and f4 = 3. The aim of the control is to ensure that the
output vector takes specified values at t = 4 and t = 10 whilst passing through the
two-dimensional “plane” F1y = re

1 at t = 1 and hitting the one-dimensional “line”
F3y = re

3 at t = 7. The precise places where that plane and line is intersected is not
specified and is assumed to be unimportant to the problem.

Note: It is always possible to replace the plane and line intersection requirements by
specified values of y at t = 1 and t = 7 but this would tend to lead to increases in
the control energy used. �

In operator form, the reference signal can be regarded as a finite sequence(
re
1, . . . , re

M

)
in the space Ye with

Ye = Y1 × Y2 × · · · × YM , with Yj = Rfj , 1 ≤ j ≤ M, (10.40)

which can also be identified with R
∑M

j=1 fj by writing re as a column vector
[(re

1)
T , (re

2)
T , . . . , (re

M)T ]T . The topology in Yj is assumed to be generated by the
inner product 〈z, w〉Yj = zT Qjw where Qj is fj × fj, real, symmetric and positive
definite.

The underlying dynamics S(A, B, C) can be represented in the operator form

ye = Geu + de (10.41)

where Ge : U → Ye and associated operators Gj : U → Rfj are defined by

Geu = (G1u, . . . , GMu) , where Gju =
∫ tj

0
Ff CeA(tj−t)Bu(t)dt, 1 ≤ j ≤ M,

(10.42)

andde is the columngenerated from theM-tuplede = (
F1CeAt1x0, . . . , FMCeAtM x0

)
.

The topology inU is that given for NOILC in Sect. 9.1.6whilst the norm topology
in Ye is generated from the inner product

〈ye, we〉Ye =
M∑

j=1

〈y(j), w(j)〉Yj =
M∑

j=1

(y(j))T Qjw
(j). (10.43)

With these definitions, the Intermediate Point Norm Optimal Iterative Learning Con-
trol Algorithm (or, IPNOILC for simplicity) is defined as

Algorithm 10.4 (The Intermediate Point NOILC Algorithm) Let the starting values
u0 be arbitrarily chosen. Suppose that, on iteration k the input uk was used, then a
convergent IPNOILC algorithm tracking a reference signal re ∈ Ye is obtained using
Algorithm 9.1 and choosing uk+1 to minimize

J(u, uk) = ‖ee
k+1‖2Ye

+ ε2‖u − uk‖2U (with error ee = re − ye) (10.44)

subject to the constraint ye = Geu + de.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The convergence of the algorithm is governed by Theorems 9.2 and 9.3. As a conse-
quence, a sufficient condition for the algorithm to converge to the limit error ee∞ = 0
is that (A, B) is controllable as then there exists at least one input that solves the
tracking problem. The algorithm also inherits the NOILC property of converging to
the input u∞ minimizing the input energy function ‖u − u0‖2U .

In operator notation, the details of the algorithm are described by the update
relation uk+1 = uk + ε−2G∗

eee
k+1. The adjoint of Ge is defined by its operation on

ee
k+1 as follows,

G∗
eee

k+1 = ∑M
j=1 G∗

j e(j)
k+1 where e(j)

k+1 = (re
j − Fjyk+1(tj)), 1 ≤ j ≤ M,

(G∗
j e(j)

k+1)(t) = 0, for tj < t ≤ T , and

(G∗
j e(j)

k+1)(t) = R−1(t)BT eAT (tj−t)CT FT
j Qje

(j)
k+1, 0 ≤ t ≤ tj,

(10.45)
which can be written in the form

(G∗
eee

k+1)(t) = R−1(t)BT
(∑M

j=1 pj(t)
)

where ṗj(t) = −AT pj(t)

with pj(tj) = CT FT
j Qje

(j)
k+1 and pj(t) = 0, for tj < t ≤ T .

(10.46)

Using linearity and defining p(t) = ∑M
j=1 pj(t) then gives

(G∗
eee

k+1)(t) = R−1(t)BT p(t) where ṗ(t) = −AT p(t) whenever t = tj,
p(t) = 0 for tM < t ≤ T plus the “jump conditions”

p(tj−) − p(tj+) = CT FT
j Qje

(j)
k+1 with p(tM+) = 0.

(10.47)

Feedback Solution: The input uk+1 is given by uk+1(t) = uk(t)+ε−2R−1(t)BT p(t).
The state equations, together with the costate equation ṗ(t) = −AT p(t) are identical
in form to the equations analyzed in Sect. 3.10 with Q(t) = 0 but with the addition
of the “jump conditions”. As a consequence, the implemented control takes the form

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t)xk+1(t) + ξk+1(t)) by writing
p(t) = −K(t)xk+1(t) + ξk+1(t),

on each subinterval (tj−1, tj), 1 ≤ j ≤ M.

(10.48)

The reader can verify that both K(t) and ξk+1(t) satisfy the equations derived in

Sect. 3.10 (and used for the Algorithm 9.5), with the only data changes that the
weight Q(t) = 0, r(t) = 0 and R(t) is replaced by ε2R(t). That is

K̇(t) + AT K(t) + K(t)A − ε−2K(t)BR−1(t)BT K(t) = 0 and
ξ̇k+1(t) = −(AT − ε−2K(t)BR−1(t)BT )ξk+1(t) + K(t)Buk(t),

(10.49)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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In order for the jump conditions for p(t) to be satisfied at the intermediate points,
K(t) and ξk+1(t) must satisfy their own jump conditions, namely,

K(tj−) − K(tj+) = CT FT
j QjFjC, 1 ≤ j ≤ M with K(tM+) = 0,

ξk+1(tj−) − ξk+1(tj+) = CT FT
j Qjre

j with ξk+1(tM+) = 0.
(10.50)

Jumps are easily included in computations using simulations, sequentially, over the
open intervals

(tM , T), then (tM−1, tM), then (tM−2, tM−1) . . . , and finally (t0, t1), (10.51)

including the jumps to generate the terminal condition for the next subinterval.

Error Evolution and Eigenstructure: As in the case of NOILC, the error evolution
is given by the expression ee

k+1 = (I + ε−2GeG∗
e)

−1ee
k but, as the output space is

finite dimensional (of dimension
∑M

j=1 fj), GeG∗
e is a matrix with block elements

consisting of fi × fj matrices

(GeG∗
e)ij = GiG

∗
j =

∫ min (ti,tj)

0
FiCeA(ti−t)BR−1(t)BT eAT (tj−t)CT FT

j Qjdt, (10.52)

where i is the block row index and j is the block column index.

Theorem 10.1 (Invertibility of GeG∗
e and Controllability) A sufficient condition for

GeG∗
e to be nonsingular is that the pair (A, B) satisfies the state controllability

conditions.

Proof State controllability guarantees that all targets re ∈ Ye can be achieved by
suitable choice of input. IPNOILCAlgorithm 10.4 hence converges for all references
re. This requires that GeG∗

e > 0 which proves nonsingularity. �

As GeG∗
e is self adjoint in Ye, it has real, positive eigenvalues. As a consequence,

examination of (I + ε−2GeG∗
e)

−1 indicates that

1. convergence rates increase as ε gets smaller,
2. convergence is fastest in the subspace(s) ofYe where those eigenvalues are largest

and
3. convergence may be slow if any one, or more, of the eigenvalues is/are small

relative to ε2.

If the eigenvalues 0 < σ 2
1 ≤ σ 2

2 ≤ · · · of GeG∗
e are computed, this information

can guide the choice of ε2 as the slowest convergence rate occurs in the subspace
spanned by the eigenvectors corresponding to the eigenvalue σ 2

1 . If convergence of
error norms is to be guaranteed to satisfy ‖ee

k‖Ye ≤ μk‖ee
0‖Ye for all k ≥ 0, it is

sufficient to ensure that
(1 + ε−2σ 2

1 )−1 < μ. (10.53)
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Feedforward Solution: A feedforward solution can be constructed for off-line com-
putation of uk+1 by computing thematrixGeG∗

e and using the error evolution formula
to compute the predicted value of ee

k+1. The required new input is then

uk+1 = uk + ε−2G∗
eee

k+1 (10.54)

with G∗
eee

k+1 written as R−1(t)BT p(t) where ṗ(t) = −AT p(t) and the solution is
generated using simulation and the jump conditions generated by ee

k . It is left as an
exercise for the reader to fill in the details.

10.5.2 Discrete Time Systems: An Intermediate Point Problem

The problem formulation for discrete systems is identical to the case of continuous
systemswith the time interval [0, T ] replaced byN +1 samples at t = 0, 1, 2, . . . , N .
The intermediate points {tj}1≤j≤M are then sample instants and the space Ye is as
described above. The main difference is that the operators G, Ge and {Gj}1≤j≤M and
the underlying input space U change.

The simplest approach to the solution of the problem is to note that the IPNOILC
objective functionminimization is essentially a linear quadratic optimal control prob-
lem. It is then possible to appeal to the optimal control solution described in Sect. 4.7
and set

Q(t) = 0 whenever t = tj, Q(tj) = FT
j QjFj for 1 ≤ j ≤ M (10.55)

and replacing the time series r(t)by any sequence satisfyingFjr(tj) = re
j , 1 ≤ j ≤ M.

10.5.3 IPNOILC: Additional Issues and Robustness

The application of Intermediate Point Iterative Norm Optimal Iterative Learning
Control in practice inevitably leads to other questions that users may ask or add to
the design. Issues include:

1. Nature of the Converged Solution: The converged input u∞(t) typically mini-
mizes the quantity ‖u−u0‖2U andmay have undesirable characteristics. If u0 = 0,
then it is the “minimum energy” solution. This solution has the typical property
that, if the length tj − tj−1 of the subintervals is long, the exponential nature of
the solution of ṗ(t) = −AT p(t) suggests that most of the control activity takes
place in the vicinity of tj–. If however u0 = 0 then u∞ is close to u0 (in norm) so
the choice of u0 is one way of influencing its form and the distribution of control
input activity. This choice could be made in many ways including,

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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a. Parameterized Control Signals: u0 could be assumed to be close to a
desired structural form. For example, a smoother change in control signal
might be achieved using a continuous, piecewise linear form,

u(t) = u(tj−1) + (u(tj) − u(tj−1))

(
t − tj−1

tj − tj−1

)
when tj−1 ≤ t ≤ tj,

(10.56)
which parameterizes the input in terms of the values {u(tj)}0≤j≤M . The reader
will recognize that the consequence of this assumption is that the dynamics
ye = Geu + de can be replaced by a relationship ye = Gpup + de where up

is the supervector generated by the sequence (u(t0), u(t1), . . . , u(tM)) and
Gp is a mM × M� matrix of scalar quantities. Using a few iterations of the
NOILC Algorithm 9.1 to this model with the reference trajectory re would
generate a piece-wise linear control signal which can then be used as the
initial input u0 for the use of IPNOILC Algorithm 10.4 which then allows
full freedom of form for further input changes.

b. Applying Input and Output Constraints: Some control over the likely
form of the converged input could be attempted using constraints on inputs
and outputs. For example, suppose that the user specifies a desirable range
of input and output values at each point of time t ∈ [0, T ] by set inclusion
conditions

u(t) ∈ Ωu(t) and y(t) ∈ Ωy(t), for 0 ≤ t ≤ T , (10.57)

where Ωu(t) (respectively, Ωy(t)) are closed, convex subsets ofR� (respec-
tively,Rm). Then the dynamics y = Gu + d and the set {(y, u) : (y(t), u(t))
∈ Ωy(t)×Ωu(t), 0 ≤ t ≤ T } define closed convex sets in Y ×U . Appli-
cation of a few iterations of the successive projection algorithm of Chap.12
should lead to a pair (ŷ, û) that is close to the constraint set and the output
will be close to the target re. Choosing u0 = ûmay then be a suitable starting
condition for the use of Algorithm 10.4.
There are many options here and further research can be merited. In partic-
ular, the constraint set in Y ×U is usefully closed and convex but need not
be expressed in terms of point-wise properties of y and u. For example, the
constraint on the output could be expressed in a norm form ‖r − y‖Y ≤ My

where My is a defined upper bound for the norm and r(t) is a piecewise
linear form

r(t) = re
j−1 + (re

j − re
j−1)

(
t − tj−1

tj − tj−1

)
when tj−1 ≤ t ≤ tj. (10.58)

2. Algorithm Robustness: The behaviour of the algorithm depends on the form and
properties of GeG∗

e whereas model mismatch is most easily represented for the
underlying model y = Gu + d.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_12
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a. Left Multiplicative Perturbations: Supposing that GeG∗
e is nonsingu-

lar, the effect of error in G will affect Ge in the form of a left mul-
tiplicative perturbation U which is simply a matrix of scalar quantities.
Using a feedforward implementation then gives the error evolution ee

k+1 =
(I − ε−2UGeG∗

e(I + ε−2GeG∗
e)

−1)ee
k . Using exactly the same arguments

as those used for robustness of NOILC in Sect. 9.2.4 provides the sufficient
condition for robust monotonic convergence with respect to the norm

‖ee‖0 =
√

〈ee, (I − Le)ee〉Ye , where Le = (I + ε−2GeG∗
e)

−1 (10.59)

in the form of positivity conditions, using Theorem 9.16,

U + U∗ > β1U∗U, where β1 = ε−2‖G∗
e‖2

1 + ε−2‖G∗
e‖2

, (10.60)

which, as 0 < β1 < 1 includes the nominal case of U = I and, particularly
if β1 is small, allows a wide range of additional perturbations.

b. Right Multiplicative Perturbations: If the underlying model G has a right
multiplicative modelling error U : U → U , then the plant has dynamics
GU which, when transferred to Ge, replaces the model Ge by GeU and
produces the error evolution (for a feedforward implementation)

ee
k+1 =

(
I − ε−2GeUG∗

eLe

)
ee

k, k ≥ 0. (10.61)

The relevant norm to be used is now ‖ee‖0 = √〈ee, Leee〉Ye and, in the same
way as that described in Theorem 9.6, monotonic convergence with respect
to this norm is ensured if, using that Theorem,

U + U∗ > ε−2U∗G∗
eLeGeU, on R[G∗

e ]. (10.62)

The techniques of Sect. 9.2.2 then apply to this equation with G and L
replaced by Ge and Le respectively. To obtain a frequency domain descrip-
tion of robustness, Ge must be removed from the problem as it is not easily
incorporated into such an approach. The relevant result here is Theorem 9.10
which provides the robust monotonicity condition, for all |z| = 1,

RU(z)+ UT (z−1)R > βI UT (z−1)RU(z), βI = ε−2‖Ge‖2
1 + ε−2‖Ge‖2 . (10.63)

The reader should note that, as both Y and U are finite dimensional, it
follows that ‖G∗

e‖ = ‖Ge‖ so the gain parameter appearing in both the
left and right multiplicative error cases is identical. It cannot normally be
computed, however, from the TFM G(z) of the underlying discrete model

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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G. The natural approach is to note that ‖G∗‖2 is the largest eigenvalue of
the matrix GG∗.

3. Removal of Intermediate Points: The number and values of the intermediate
times {tj}1≤j≤M will influence convergence rates and the control energy used.

a. The impact on energy usage, as measured by ‖u∞−u0‖U , is simple to state as
the solution for M specified, intermediate points {tj}1≤j≤M is, for given values
of {re

j }1≤j≤M , suboptimal for any problem where some of the intermediate
times (and the corresponding reference values) are omitted. It follows that the
control energy needed for this second case will be smaller.

b. The removal of intermediate points has the effect of removing the correspond-
ing rows and columns of GeG∗

e and hence increases the smallest eigenvalue.
In general terms, this indicates that faster convergence rates can be expected
if intermediate points are removed from the problem.

10.6 Multi-task NOILC

The success of Norm Optimal Iterative Learning Control lies in its generality, the
monotonic error norm property and the further details that can be derived for state
space systems. The previous section has shown how the notion of tracking of a refer-
ence signal r(t) can be relaxed to the problem of ensuring that the output trajectory
passes through specified intermediate points or linear varieties in Rm at specified
times. In this section, linear state space systems S(A, B, C) are again considered with
tracking objectives consisting of a mix of requirements of the general form of

1. achieving user-defined values of outputs at specified isolated times in the interval,
2. allowing periods where no tracking is required and
3. including requirements to track reference signals on subintervals.

The first two properties have already been seen in Sect. 10.5. The new ingredi-
ent, therefore, is the need to track on subintervals. In what follows, the problem is
defined, set in a general NOILC context and the solutions obtained using Riccati
methodologies enhanced by “jump conditions”.

Illustrative Example: A simple illustration of the idea using a continuous time,
single output system could specify the control objective to be as follows,

1. The system starts from a specified initial condition at t = 0 and evolves on the
interval 0 ≤ t ≤ 10 = T .

2. The output is required to satisfy point-wise values y(1) = 1, y(9) = −1 and
y(10) = 0 at times t1 = 1, t2 = 9 and t3 = 10 whilst

3. tracking the reference signal sin t on the subinterval 2 ≤ t ≤ 8.

The range of possible tracking specifications are extensive and could include
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1. a need to meet rate of change requirement using the simple mechanism of adding
the required derivatives to the output specification and,

2. more generally, by setting C = In and m = n gives y = x and point-wise values
or tracking requirements can be specified for any linear combination of state
variables. This general approach includes the fact that

3. linear trajectory constraints of the form αT y(t) = rα(t) (where α is a constant
vector and rα(t) is a specified function) can be included by adding the quantity
αT y(t) to the list of outputs.

10.6.1 Continuous State Space Systems

Assume that the input/output dynamics are represented by the �-input, m-output
state space model S(A, B, C) in the form y = Gu + d with u ∈ U = L�

2[0, T ] and
y ∈ Y = Lm

2 [0, T ]. The inner product inU is that used in Sect. 9.1.6. The topology
ofY plays no role inwhat follows as the reference signal is not defined inY . Instead,
define the tracking problem as follows,

Intermediate Point Tracking: As in Sect. 10.5, let

0 = t0 < t1 < t2 · · · < tM ≤ T (10.64)

be chosen points on the interval [0, T ]. Let F1, F2, . . . , FM be fj × m matrices of full
row rank and set part of the control objective to be that of ensuring that the output
response y(t) satisfies the M point value constraints

re
j = y(j) where y(j) = Fjy(tj) ∈ Rfj , for 1 ≤ j ≤ M, (10.65)

and {re
j }1≤j≤M defines the desired intermediate values as specified by the user.

Subinterval Tracking Requirements: In addition, tracking requirements on subin-
tervals are specified using M̂ additional requirements on the values of output signals
on intervals [t̂j−1, t̂j] ⊂ [0, T ] with 0 = t̂0 < t̂1 < t̂2 < · · · < t̂M̂ = T . The tracking
requirement is that

Pjy(t) = rP
j (t), for t ∈ [t̂j−1, t̂j] and 1 ≤ j ≤ M̂, (10.66)

where rP
j (t) defines the required form of Pjy(t) on [t̂j−1, t̂j]. Note that either

1. each Pj is a pj × m matrix of full row rank defining those outputs for which
tracking is required,

2. or Pj = 0 (representing no tracking requirement on that interval), pj is arbitrary
and rP

j (t) = 0.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The Model of Dynamic Behaviour: It is useful to use the notation, for any f ∈
Lm
2 [0, T ],

f e =

⎡

⎢⎢⎢⎣

F1f (t1)
...

FMf (tM)

Pf

⎤

⎥⎥⎥⎦ ∈ Ye = Rf1 × · · · × RfM × Lp1
2 [0, t̂1] × · · · × L

pM̂
2 [t̂M̂−1, t̂M̂ ]

(10.67)

Equivalently, f e can be written as a row f e = (F1f (t1), . . . , FMf (tM), Pf ) in situa-
tions where it helps the presentation. The operatorP is defined by functional relations
as follows,

Pf = (
(Pf )1, . . . , (Pf )M̂

)
, with (Pf )j ∈ L

pj
2 [t̂j−1, t̂j], 1 ≤ j ≤ M̂,

and (Pf )j(t) = Pjf (t), t ∈ [t̂j−1, t̂j], 1 ≤ j ≤ M̂.
(10.68)

Technical Note: The map f �→ f e has range dense in Ye.
The model is the means of predicting values of ye from input signals. Combining

these ideas with the notation of Sect. 10.5 yields a model of the form

ye = Geu + de, Geu =

⎡

⎢⎢⎢⎣

G1u
...

GMu
PGu

⎤

⎥⎥⎥⎦ , de =

⎡

⎢⎢⎢⎣

F1d(t1)
...

FMd(tM)

Pd

⎤

⎥⎥⎥⎦ (10.69)

where Ge is the bounded linear operator

Ge : L�
2[0, T ] → Rf1 × · · · × RfM × Lp1

2 [0, t̂1] × · · · × L
pM̂
2 [t̂M̂−1, t̂M̂ ]. (10.70)

Here, Gj : L�
2[0, T ] → Rfj is as defined in Sect. 10.5 and (PG)j : L�

2[0, T ] →
L

pj
2 [t̂j−1, t̂j] is defined by

((PG)ju)(t) = (Pj(Gu))(t) = Pj

∫ t

0
CeA(t−t′)Bu(t′)dt′, t ∈ [t̂j−1, t̂j]. (10.71)

The Reference Signal Characterization: The reference signal is constructed for this
model by specifying the desired values of Fjy(tj), 1 ≤ j ≤ M and the desired form
of the signals Pjy(t), t ∈ [t̂j−1, t̂j], 1 ≤ j ≤ M̂. The attainability of this reference by
the system requires some consistency between these characterizations, particularly
at the points t̂j connecting the subintervals. In addition, the point-wise constraints
need to be consistent with subinterval tracking objectives. The natural way to do this
is to choose a continuous reference signal r ∈ Y for y such that the reference signal
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for ye is precisely re. This linking of the control objective in Ye to an objective in
the underlying space Y is crucial to the interpretation of the problem in NOILC and
hence optimal control terms. More precisely, the tracking error ee = re − ye can be
associated with an underlying tracking error e(t) = r(t) − y(t) used in NOILC as
follows,

ee = re − ye = (r − y)e =

⎡

⎢⎢⎢⎣

F1e(t1)
...

FMe(tM)

Pe

⎤

⎥⎥⎥⎦ (10.72)

It is useful to note the following:

1. The “virtual reference” r and the “virtual error” e play a role in the simplification
of the theory and in relating the optimization problems used in the algorithm to
more familiar optimal control problems. Neither r nor e are needed in the final
computations as they are always multiplied by operations that convert them into
components of the extended signals such as Pje that can be computed from the
specified signal Pjr = rP

j and the measured plant output.
2. The pure intermediate point problem of Sect. 10.5 is obtained simply by removing

Pf from the definition of f e whilst the NOILC problem of Sect. 9.1.6 is obtained
by removing the intermediate points and looking at the case of M̂ = 1, t̂1 = T
and P = I . In terms of defining f e, this is just (respectively)

f e =
⎡

⎢⎣
F1f (t1)

...

FMf (tM)

⎤

⎥⎦ ∈ Rf1 × · · · × RfM , and f e = f ∈ Lm
2 [0, T ] (10.73)

Note: In terms of parameter choice, the first is obtained in what follows by setting
Pj = 0, 1 ≤ j ≤ M̂ whilst the second is obtained using Fj = 0, 1 ≤ j ≤ M.

The Consequent Topology in Ye: The inner product proposed for Ye is

〈(w1, . . . , wM , h1, . . . , hM̂), (w̃1, . . . , w̃M , h̃1, . . . , h̃M̂)〉Ye

= ∑M
j=1 wT

j Qjw̃j +∑M̂
j=1

∫ t̂j
t̂j−1

hT
j (t)Q̂j(t)h̃j(t)dt

(10.74)

where the Qj are as used in Sect. 10.5 and the pj × pj matrices Q̂j(t) are specified by
the user as being symmetric and positive definite at each point in [t̂j−1, t̂j].

The control problem defined above has many components and will be described
as a Multi-task Control Problem to reflect this fact. In terms of Iterative Control,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Algorithm 10.5 (Multi-task NOILC for Continuous State Space Systems) Let S
(A, B, C) be a continuous linear state space system evolving on [0, T ] from a fixed,
iteration independent, initial condition x0. Let u0 and the reference signal re ∈ Ye be
specified and that re can be generated using a tracking signal r ∈ Y defined on [0, T ].
Then, given a control signal uk used on iteration k, the control signal uk+1 to be used
on iteration k + 1 is computed as the unique solution of the NOILC optimization
problem defined by the minimization of the objective function

J(u, uk) = ‖ee
k+1‖2Ye

+ ε2‖u − uk‖2U
= ∑M

j=1 eT
k+1(tj)F

T
j QjFjeT

k+1(tj) +∑M̂
j=1

∫ t̂j
t̂j−1

eT
k+1(t)P

T
j Q̂j(t)Pjek+1(t)dt

+ ∫ T
0 (u(t) − uk(t))T R(t)(u(t) − uk(t))dt

(10.75)
subject to the constraint ye = Geu + de.

The convergence of the algorithm is described by Theorems 9.2 and 9.3 with G
replaced by Ge. In particular, if r − d lies in the closure of the range of G, then the
limit of the error sequence is precisely zero. If R[G] = Y , the algorithm achieves
perfect tracking for all references re.

A Feedback Implementation: The objective function J is reminiscent of a quadratic
optimal control performance criterion. A feedback implementation of this algorithm
is obtained by using NOILC concepts. More precisely,

uk+1 − uk = ε−2G∗
eee

k+1 = ε−2
(∑M

j=1 G∗
j e(j)

k+1 + (PG)∗Pek+1

)

with e(j)
k+1 = Fjek+1(tj) = Fj

(
r(tj) − yk+1(tj)

) = re
j − Fjy(tj), 1 ≤ j ≤ M.

(10.76)
Using the notation of Sect. 9.1.6, this formula can be converted into a more useful
form. First note that the first term is precisely that seen in Sect. 10.5 and hence has
the form

(
∑M

j=1 G∗
j ek+1)(t) = R−1(t)BT p(t) where ṗ(t) = −AT p(t) whenever t = tj

and p(tj−) − p(tj+) = CT FT
j Qje

(j)
k+1, 1 ≤ j ≤ M, with p(tM+) = 0.

(10.77)
The computation of the second term starts with the use of the notation (Pek+1)j ∈
L

pj
2 [t̂j−1, t̂j] to denote the signal (Pek+1)j(t) = Pjek+1(t) on [t̂j−1, t̂j] and then to

identify (PG)∗Pek+1 as the sum
∑M̂

j=1 (PG)∗j (Pek+1)j with

((PG)∗j (Pek+1)j)(t) = R−1(t)BT p̂j(t) on [0, T ],
p̂j(t) is continuous on [0, T ], p̂j(t) = 0 when t̂j < t ≤ T ,

˙̂pj(t) = −AT p̂j(t) − CT PT
j Q̂j(t)Pjek+1(t) on [t̂j−1, t̂j]

with p̂j(t̂j) = 0 and ˙̂pj(t) = −AT p̂j(t) for 0 ≤ t < t̂j−1.

(10.78)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The computations can be simplified using

1. the m × m, symmetric, positive semi-definite matrix Q(t), 0 ≤ t ≤ T , as the
time-varying matrix taking the values Q(T) = PT

M̂
Q̂M̂(T)PM̂ and

Q(t) = PT
j Q̂j(t)Pj, for t ∈ [t̂j−1, t̂j), 1 ≤ j ≤ M̂. (10.79)

2. Also define

p(t) =
M∑

j=1

pj(t) +
M̂∑

j=1

p̂j(t) (10.80)

Linearity then gives (G∗
eee

k+1)(t) = R−1(t)BT p(t) with p(t) solving

ṗ(t) = −AT p(t) − CT Q(t)ek+1(t), with p(T+) = 0
and p(tj−) − p(tj+) = CT FT

j QjFj
(
r(tj) − yk+1(tj)

) (10.81)

and the required input is defined by

uk+1(t) = uk(t) + ε−2R−1(t)BT p(t), 0 ≤ t ≤ T . (10.82)

The feedback formof this input is obtainedbywritingp(t) = −K(t)xk+1(t) + ξk+1(t)
and using the same techniques as those used in Sect. 10.5 to deduce that K(t) is the
solution of the matrix Riccati equation

K̇(t) + AT K(t) + K(t)A − ε−2K(t)BR−1(t)BT K(t) + CT Q(t)C = 0
on [0, T ], with jump conditions

K(tj−) − K(tj+) = CT FT
j QjFjC, 1 ≤ j ≤ M, where K(T+) = 0.

(10.83)

The term ξk+1(t) is computed by solving

ξ̇k+1(t) = −(AT − ε−2K(t)BR−1(t)BT )ξk+1(t) − CT Q(t)r(t) + K(t)Buk(t) with
ξk+1(tj−) − ξk+1(tj+) = CT FT

j Qjre
j , 1 ≤ j ≤ M, and ξk+1(T+) = 0.

(10.84)
The impact of the choice of {Pj}1≤j≤M̂ is hidden in the matrix Q(t) which contains
all of the information on intervals where tracking is needed together with the outputs
relevant to those intervals.. The reader should note that the term Q(t)r(t), although
apparently requiring full details of the virtual reference r(t) does, in fact, only use
the originally specified functions {rP

j (t)}1≤j≤M̂ on intervals where tracking is needed

as Q(t)r(t) contains the product Pjr(t) on [t̂j−1, t̂j]which is just rP
j (t). If Pj = 0 then

Pjr(t) can be replaced by rP
j (t) whenever it appears. When Pj = 0, Pjr(t) = 0 and

any consideration of a choice of r(t) is irrelevant.
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Algorithm 10.6 (Multi-task Algorithm10.5 in State Feedback Form)Using the same
construction as that stated in Algorithm 10.5 and the results of the discussion above,
the iteration process generates the input signal uk+1(t) on iteration k + 1 from the
feedback formula

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t)xk+1(t) + ξk+1(t)) (10.85)

where K(t) is computed before the iteration process is started whilst ξk+1(t) is com-
puted off-line between iterations k and k + 1 using the reference signal and input
data from iteration k.

This parallels Implementation One in Sect. 9.1.6. The parallel to Implementation
Two is as follows,

Algorithm 10.7 (Multi-task Algorithm: Alternative State Feedback Form) Using the
same construction as that stated in Algorithm 10.5 and the results of the discussion
above, the iteration process generates the input signal uk+1(t) on iteration k +1 from
the feedback formula

uk+1(t) = uk(t) + ε−2R−1(t)BT (−K(t) (xk+1(t) − xk(t)) + ξk+1(t)) (10.86)

where K(t) is computed before the iteration process is started whilst ξk+1(t) is com-
puted off-line between iterations k and k + 1 using error data as follows

ξ̇k+1(t) = −(AT − ε−2K(t)BR−1(t)BT )ξk+1(t) − CT Q(t)ek(t) with

ξk+1(tj−) − ξk+1(tj+) = CT FT
j Qj

(
re

j − Fjyk(tj)
)

, 1 ≤ j ≤ M,

and ξk+1(T+) = 0.

(10.87)

This version is suited to feedforward implementation as it uses measured error data.

10.6.2 Adding Initial Conditions as Controls

Using the notation of Sect. 10.3, the reader will see that, simply by replacingG byGe,
the use of initial condition variation defined by xk = x0 + H0hk can be included in
the multi-task NOILC algorithm. In this case, the map H and its adjoint H∗ become,
respectively,

h �→ Hh =
(

F1CeAt1H0h, . . . , FMCeAtM H0h, Pψh

)
, with (ψh)(t) = CeAtH0h,

and
(

w1, w2, . . . , wM , v1, . . . , vM̂

)
�→ H∗ (w1, w2, . . . , wM , v1, . . . , vM̂

)

= ∑M
j=1 Q−1

0 HT
0 eAT tj CT FT

j Qjwj + ∑M̂
j=1 Q−1

0

∫ t̂j
t̂j−1

HT
0 eAT tCT PT

j Q̂j(t)vj(t)dt.

(10.88)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Define, using the objects ΦK (t) and Q(t) defined in Sects. 10.3 and 10.6,

WHe = Q−1
0

∑M

j=1
HT
0 eAT tj CT FT

j QjFjCΦK (tj)H0

+ Q−1
0

∑M̂

j=1

∫ t̂j

t̂j−1

HT
0 eAT tCT PT

j Q̂j(t)PjCΦK (t)H0dt

= Q−1
0

∑M

j=1
HT
0 eAT tj CT FT

j QjFjCΦK (tj)H0

+ Q−1
0

∫ T

0
HT
0 eAT tCT Q(t)CΦK (t)H0dt. (10.89)

Algorithm 10.8 (Multi-task NOILC with Initial Condition Variation) Algorithm
10.6 is extended to include initial condition variation as described in Sect. 10.3 by ini-
tiating the algorithm by choice of u0 and h0 and, for following iterations, computing
uk+1 and hk+1 for iteration k + 1 by the two step process:

STEP ONE: Use the data from iteration k, use Algorithm 10.6 to compute the input
and resultant underlying error e(hk)

k+1 that results from the use of the initial condition
x0 + H0hk . The tracking error from the initial initial condition hk+1 can then be
represented by

ee
k+1 =

(
e(hk)

k+1

)e − (CΦK H0(hk+1 − hk))
e. (10.90)

STEP TWO: Use this result to compute uk+1 as the input created by again using
Algorithm 10.6 from the initial condition xk+1(0) = x0 + H0hk+1 where hk+1 is
evaluated from the expression hk+1 = hk + H∗ee

k+1 to be

hk+1 = hk + ε−2(Im + ε−2WHe)
−1γk+1 with

γk+1 =
∑M

j=1
Q−1
0 HT

0 eAT tj CT FT
j QjFje

(hk)

k+1(tj)

+ Q−1
0

∫ T

0
HT
0 eAT tCT Q(t)e(hk)

k+1(t)dt. (10.91)

The proof of the form and properties of the algorithm are very similar to that given in
Sect. 10.3 with the revised definitions of H and H∗. The details are left as an exercise
for the reader. Convergence properties are described by Theorems 9.2 and 9.3 with
G replaced by Ge.

10.6.3 Discrete State Space Systems

Multi-task NOILC with and without variation of initial conditions also applies to the
case of discrete time state space models S(A, B, C) using discrete time analogues to
those used in Sects. 10.3 and 10.6. The necessary computations are relatively simple.
The details are left for the reader to explore.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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10.7 Multi-models and Predictive NOILC

Intuitively, a consideration of the effect of current decisions on future iterations
whilst constructing the current input signal could provide improved control and better
convergence rates. Formally, the optimization problem on iteration k + 1 could be
formulated over the M ≥ 1 iterations with index k +1, k +2, . . . , k +M. Each of the
M iterations considered can be associated with a “prediction” of the consequences of
current control signals on future behaviour. The following physical/computational
realization of the idea takes the form of either

1. the use of the physical plant operating in parallel with M − 1 models of the plant
(a feedback implementation) or

2. M plant models used off-line to compute the desired control input uk+1 (a feed-
forward implementation)

plus the interpretation of these “multi-models” as processes to which the Norm Opti-
mal Iterative Learning Control ideas of Chap.9 and its extensions can be applied.

10.7.1 Predictive NOILC—General Theory and a Link to
Inversion

Using the notation of the previous chapters, the plant is assumed to be described
by the model y = Gu + d with input and output spaces U and Y respectively. For
theoretical development, the situation of zeromodelling error is assumed. Robustness
is discussed in Sect. 10.7.6. The reference signal r ∈ Y is given. The Multi-model
of the plant describes the effects of M input signals {u(j)}1≤j≤M using M copies of
the plant,

y(j) = Gu(j) + d each yielding M errors e(j) = r − y(j), 1 ≤ j ≤ M. (10.92)

Let uk and ek be plant data recorded on iteration k. Consider iteration k + 1 and the
objective function,

JM(λ, u(1), . . . , u(M), uk) = ∑M
j=1 λ2(j−1)J(u(j), u(j−1))

= J(u(1), u(0)) + λ2J(u(2), u(1)) + · · · + λ2(M−1)J(u(M), u(M−1))

with u(0) = uk .

(10.93)

Here, M is termed the “prediction horizon”, λ > 0 is a real scalar and J(u(j), u(j−1))

is the NOILC objective function of Algorithm 9.1 in the form, for 1 ≤ j ≤ M,

J(u(j), u(j−1)) = ‖e(j)‖2Y + ε2‖u(j) − u(j−1)‖2U . (10.94)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Clearly Eq. (10.93) represents a weighted sum of NOILC objective functions over
M iterations and hence its minimization generates M inputs that could be used on
those iterations. However, all of the input signals {u(j)}1≤j≤M are computed on the
current iteration k + 1 and, as a consequence, can be interpreted as potential input
signals to be used on that (rather than future) iteration(s). The parameter λ describes
this weighting and the power law λ2(j−1) provides a simple structure for analysis.
Note that the individual terms in JM(λ, . . .) are linked as each u(j), 1 ≤ j < M − 1,
occurs in both J(u(j), u(j−1)) and J(u(j+1), u(j)).

If the objective function is minimized with respect to the inputs and defined
multi-model constraints, the unique minimizing solution consists of M input signals,
denoted {u(j)

k+1}1≤j≤M which generate M predicted errors e(j)
k+1 = r − y(j)

k+1 from

dynamics y(j)
k+1 = Gu(j)

k+1 + d. It is important to note that, if αj, 1 ≤ j ≤ M, are real
scalars satisfying the convex combination rule

M∑

j=1

αj = 1, (10.95)

then the input u
{αj}
k+1 generates the output and tracking error y

{αj}
k+1 and e

{αj}
k+1 where

u
{αj}
k+1 =

M∑

j=1

αju
(j)
k+1, y

{αj}
k+1 =

M∑

j=1

αjy
(j)
k+1 and e

{αj}
k+1 =

M∑

j=1

αje
(j)
k+1. (10.96)

Algorithm 10.9 (Predictive NOILC with Convex Combinations) Suppose that the
reference r and initial input signal u0 are given and that the scalars {αj}1≤j≤M are
chosen. Suppose also that, on iteration k ≥ 0, the input uk was used and resulted
in the error signal ek . Then the Predictive Norm Optimal Iterative Learning Control
Algorithm with Convex Combinations computes the input to be used on iteration
k + 1 from the formula

uk+1 = u
{αj}
k+1 =

M∑

j=1

αju
(j)
k+1, (10.97)

where u
{αj}
k+1 is the input signal generated from the sequence {u(j)

k+1}1≤j≤M that mini-
mizes the objective function of Eq. (10.93). That is,

(
u(1)

k+1, . . . , u(M)
k+1

)
= argmin JM(λ, u(1), . . . , u(M), uk). (10.98)

Note: Simple extensions of the algorithm would allow {αj}1≤j≤M and/or the value of
λ to change from iteration to iteration. These refinements are not considered here.
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The properties of the algorithm are considered in the following sections. It is
however possible, at this point to make certain general statements,

Theorem 10.2 (Predictive NOILC—General Properties) Algorithm 10.9 has the
following properties:

1. The algorithm reduces to the basic NOILC Algorithm 9.1 when M = 1.
2. Suppose that r − d ∈ R[G]. Then, if u∞ ∈ U is any input signal that generates

zero tracking error, the M-tuple (u∞, . . . , u∞) is suboptimal and hence, for all
M ≥ 1,

JM(λ, u(1)
k+1, . . . , u(M)

k+1, uk) ≤ JM(λ, u∞, . . . , u∞, uk) = ε2‖u∞ − uk‖2U .

(10.99)

3. If αj = δj,j′ (the Kronecker delta), then uk+1 = u(j′)
k+1 and

‖ek+1‖Y ≤ λ−(j′−1)ε‖u∞ − uk‖U . (10.100)

Proof The first two statements follow from the definitions and optimality of

{u(j)
k+1}1≤j≤M . The third is a simple consequence of the inequality λ2(j

′−1)‖e(j′)
k+1‖2Y ≤

JM(λ, u(1)
k+1, . . . , u(M)

k+1, uk) and noting that uk+1 = u
{αj}
k+1 = u(j′)

k+1. �

This result suggests that choosing j′ > 1 and uk+1 = u(j′)
k+1 whilst reducing ε

and/or increasing the value of λ for fixed j′ will tend to reduce the error ek+1. In
particular, supposing that ε is fixed, the following result applies to the first iteration,

Theorem 10.3 (Theoretical Accuracy of Predictive Control as λ → ∞) Suppose
that k = 0. If 1 < j′ ≤ M, r − d ∈ R[G] and u0 ∈ U is arbitrary, then

lim
λ→∞ e1 = 0. (10.101)

The general interpretation of the result is that,

1. for large values of λ, highly accurate tracking can be achieved in one iteration
using any of the inputs u(j)

k+1, 1 < j ≤ M, a property previously observed only
for the Inverse Model Algorithms of Chap. 6.

2. In addition, the values of λ needed to generate this result depend on themagnitude
of u∞ (and hence r) and u0. For an accuracy condition ‖e1‖Y < E1 to hold, it is
sufficient that E1 satisfies ε‖u∞−u0‖U < λj′−1E1. In the case of non-minimum-
phase (NMP) state space systems, the inverse system is unstable and hence u∞
typically contains unstable exponentials. If the iteration time interval is long, then
‖u∞‖ can be very large. The natural conclusion reached is that using M > 1 and
increasing λM provides a general benefit and may be capable of improving the
conditioning of NOILC algorithms, even in application to NMP systems.

Further information is also provided in Theorem 10.6 for situations whereM is large.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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10.7.2 A Multi-model Representation

From an optimization point of view, the Predictive NOILC Algorithm 10.9 is well-
defined and provides a starting point for computational studies. A derivation of
its properties requires a more detailed analysis. This is achieved starting from the
construction of a “multi-model” of the form

ye = Geue + de, ye ∈ Ye, re ∈ Ye, de ∈ Ye, ue ∈ Ue, ee = re − ye (10.102)

where Ye = Y × · · · × Y (M-times product) and Ue = U × · · · × U (M-times
product). The inner products (and associated norms) in Ye and Ue are defined by

〈(y(1), . . . , y(M)), (w(1), . . . , w(M))〉Ye =
∑M

j=1
λ2(j−1)〈y(j), w(j)〉Y and

〈(u(1), . . . , u(M)), (v(1), . . . , v(M))〉Ue =
∑M

j=1
λ2(j−1)〈u(j), v(j)〉U . (10.103)

Multi-model ONE: In a matrix-like format, the parallel, synchronized, off-line or
on-line operation of plant models can be represented in the form

ye =
⎡

⎢⎣
y(1)

...

y(M)

⎤

⎥⎦ , ue =
⎡

⎢⎣
u(1)

...

u(M)

⎤

⎥⎦ , de =
⎡

⎢⎣
d
...

d

⎤

⎥⎦ ,

with reference re =
⎡

⎢⎣
r
...

r

⎤

⎥⎦ and Ge =
⎡

⎢⎣
G 0 · · · 0
...

...

0 · · · 0 G

⎤

⎥⎦ .

(10.104)

Note: In feedback realizations, the multi-model uses M − 1 “copies” of the plant G
to construct Ge. Although it is not sensible to preclude the possibility that, in some
applications, actual physical replication of the plant may be feasible, it is more likely
that the plant cannot be duplicated in this way. In this case, M − 1 of the terms G are
models and only one term G is the actual physical plant. This still leaves open the
possibility that any one of these copies could be the plant.

Multi-model TWO: For analysis purposes, it is convenient to write Multi-model
One in terms of input differences u(j) −u(j−1) to obtain the alternative definitions for
iteration k + 1,

ue =
⎡

⎢⎣
u(1) − u(0)

...

u(M) − u(M−1)

⎤

⎥⎦ , de =

⎡

⎢⎢⎢⎣

yk
yk
...

yk

⎤

⎥⎥⎥⎦ , Ge =

⎡

⎢⎢⎢⎣

G 0 0 · · · 0
G G 0 · · · 0
...

...

G G · · · G G

⎤

⎥⎥⎥⎦ (10.105)
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with u(0) = uk . It is simple matter to show that

M∑

j=1

λ2(j−1)〈y(j),

j∑

i=1

Gw(i)〉Y =
M∑

i=1

λ2(i−1)〈
M∑

j=i

λ2(j−i)G∗y(j), w(i)〉U (10.106)

and hence that the operator Ge : Ue → Ye has the adjoint (in “matrix of operators”
form)

G∗
e =

⎡

⎢⎢⎢⎣

G∗ λ2G∗ λ4G∗ · · · λ2(M−1)G∗
0 G∗ λ2G∗ · · · λ2(M−2)G∗
...

...

0 0 · · · 0 G∗

⎤

⎥⎥⎥⎦ mapping Ye → Ue. (10.107)

10.7.3 The Case of Linear, State Space Models

To illustrate the form of the computations that may be used, consider an �-input,
m-output, state dimension n, linear, continuous time, state space system S(A, B, C)

operating on [0, T ]. The reader should note that the case of discrete time models can
be considered in a similar way. The details are left as an exercise. Multi-model One
takes the form of M copies of S(A, B, C) written as

ẋe(t) = Aexe(t) + Beue(t), xe(0) = xe
0 with ye(t) = Cexe(t) and, t ∈ [0, T ],

ye(t) =
⎡

⎢⎣
y(1)(t)

...

y(M)(t)

⎤

⎥⎦ , xe(t) =
⎡

⎢⎣
x(1)(t)

...

x(M)(t)

⎤

⎥⎦ , Ae =

⎡

⎢⎢⎢⎣

A 0 0 · · · 0
0 A 0 · · · 0
...

...

0 · · · 0 0 A

⎤

⎥⎥⎥⎦ ,

ue(t) =
⎡

⎢⎣
u(1)(t)

...

u(M)(t)

⎤

⎥⎦ , Be =
⎡

⎢⎣
B 0 · · · 0
...

...

0 · · · 0 B

⎤

⎥⎦ , xe
0 =

⎡

⎢⎣
x0
...

x0

⎤

⎥⎦ ,

Ce =
⎡

⎢⎣
C 0 · · · 0
...

...

0 · · · 0 C

⎤

⎥⎦ , re(t) =
⎡

⎢⎣
r(t)
...

r(t)

⎤

⎥⎦ , and ee(t) = re(t) − ye(t).

(10.108)
On iteration k + 1, write the input differences in the form, with u(0)(t) = uk(t),
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⎡

⎢⎣
u(1)(t) − uk(t)

...

u(M)(t) − u(M−1)(t)

⎤

⎥⎦ = F0 (ue(t) − ũk(t))

where ũk(t) =
⎡

⎢⎣
uk(t)

...

uk(t)

⎤

⎥⎦ and F0 =

⎡

⎢⎢⎢⎣

I 0 0 · · · 0
−I I 0 · · · 0
...

...

0 · · · 0 −I I

⎤

⎥⎥⎥⎦ .

(10.109)

For generality, assume that basic NOILCAlgorithm 9.1 is used in the form described
in Sect. 9.1.6 and that Q(t) and R(t) are the, possibly time dependent, weights in the
objective function J(u(j), u(j−1)). It follows that Algorithm 10.9 computes ue

k+1 by
minimizing JM(λ, u(1), . . . , u(M), uk) written in the form

JM(· · · ) =
∫ T

0

(
(ee(t))T QM(t)ee(t) + ε2(ue(t) − ũk(t))

T RM(t)(ue(t) − ũk(t))
)

dt

(10.110)
where QM(t) is block diagonal of the form

QM(t) =

⎡

⎢⎢⎢⎣

Q(t) 0 0 · · · 0
0 λ2Q(t) 0 · · · 0
...

...

0 · · · 0 0 λ2(M−1)Q(t)

⎤

⎥⎥⎥⎦ (10.111)

and RM(t) has the form

RM(t) = FT
0

⎡

⎢⎢⎢⎣

R(t) 0 0 · · · 0
0 λ2R(t) 0 · · · 0
...

...

0 · · · 0 0 λ2(M−1)R(t)

⎤

⎥⎥⎥⎦F0 (10.112)

Application of the familiar solution procedures of Sect. 3.10 in the form used in
Sect. 10.6,

ue
k+1(t) = ũk(t) + ε−2R−1

M (t)BT
e

(−Ke(t)xe
k+1(t) + ξ e

k+1(t)
)

(10.113)

whereKe(t) is theMn×Mn solution of theRiccati equation for thematricesAe, Be, Ce

of the multi-model with weights QM(t) and RM(t). That is,

K̇e(t) + AT
e Ke(t) + Ke(t)Ae − ε−2Ke(t)BeR−1

M (t)BT
e Ke(t) + (Ce)

T QM(t)Ce = 0,
(10.114)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_3
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with Ke(T) = 0. In a similar manner, ξ e
k+1(t) ∈ RMn is the solution of the predictive

equation with ũk(t) ∈ RM� replacing uk(t) ∈ R�. That is, with ξ e
k+1(T) = 0,

ξ̇ e
k+1(t) = −(AT

e − ε−2Ke(t)BeR−1
M (t)BT

e )ξ e
k+1(t) − (Ce)

T QM(t)re(t) + Ke(t)Beũk .

(10.115)
The actual implemented input signal has the feedback/feedforward form

uk+1(t) =
M∑

j=1

αju
(j)
k+1(t) = Γαue

k+1(t), with Γα = [α1I�, . . . , αMI�] . (10.116)

As Γα ũk(t) = uk(t), this can be written as

uk+1(t) = uk(t) + Γαε−2R−1
M (t)BT

e

(−Ke(t)xe
k+1(t) + ξ e

k+1(t)
)
. (10.117)

This control law has the form of Riccati feedback with a predictive term but

1. the � × Mn state feedback matrix ΓαR−1
M (t)BT

e Ke(t) operates on states from all

M state components x(j)
k+1(t) of the state xe

k+1(t) of the multi-model, one of which
may be the plant itself.

2. The predictive term ΓαR−1
M (t)BT

e ξ e
k+1(t) can be computed off-line in the usual

way.

A useful simplification of R−1
M (t) is obtained by noting that

R−1
M (t) =

⎡

⎢⎢⎢⎣

I 0 0 · · · 0
I I 0 · · · 0
...

...

I I I · · · I

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

R−1(t) 0 0 · · · 0
0 λ−2R−1(t) 0 · · · 0
...

...

0 0 0 · · · λ−2(M−1)R−1(t)

⎤

⎥⎥⎥⎦

×

⎡

⎢⎢⎢⎣

I I I · · · I
0 I I · · · I
...

...

0 0 · · · 0 I

⎤

⎥⎥⎥⎦ .

(10.118)
Finally, by suitable choice ofG, the ideas also apply to the Intermediate Point NOILC
problem and the use of Multi-task NOILC with either fixed initial stage conditions
or varying initial conditions as seen in Sects. 10.3, 10.5 and 10.6. The details are left
for the reader to explore.
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10.7.4 Convergence and Other Algorithm Properties

Using Multi-model Two, the objective function of Eq. (10.93) is

JM(λ, u(1), . . . , u(M), uk) = ‖ee‖2Ye
+ ε2‖ue‖2Ue

. (10.119)

Standard NOILC methodologies with u(0) = uk give the minimizing input signals
and error

ue
k+1 = ε−2G∗

e ee
k+1, and ee

k+1 = (I + ε−2GeG∗
e )−1(re − de), with re − de =

⎡

⎢⎣
ek
...

ek

⎤

⎥⎦ .

(10.120)

The simplest way of viewing this computation is as that resulting from one iteration
of NOILC for this multi-model with d = 0 and the reference replaced by the previous
error ek observed on the plant. A general representation of error evolution is

ek+1 = ∑M
j=1 αje

(j)
k+1 = LM,{αj}ek,

with LM,{αj} = ∑M
j=1 αjLM,j and e(j)

k+1 = LM,jek,
(10.121)

for some operators LM,j : Y → Y mapping ek into e(j)
k+1. Clearly each LM,j′ is the

value of LM,{αj} when αj = δj,j′ and it is the choice of {αj}1≤j≤M and the properties
of these operators that govern the error evolution and convergence properties.

Theorem 10.4 (Construction and Properties of the Operators {LM,j}1≤j≤M ) The
sequence of operators Xj : Y → Y defined by

Xj+1 = (I + ε−2GG∗(I + λ2Xj))
−1(I + λ2Xj), j ≥ 0, with X0 = 0, (10.122)

is well-defined and each operator is linear, bounded, self adjoint and has a bounded
inverse. Moreover,

1. they all commute with each other and with GG∗ and have the property that
2. the minimum value of the objective function JM used in Algorithm10.9 on iteration

k + 1 is equal to 〈ek, XMek〉Y .

In particular, the self-adjoint operator X1 = (I + ε−2GG∗)−1 > X0 = 0 is the
operator associated with the NOILC Algorithm9.1. More generally,

Xj+1 > Xj for all j ≥ 0, (10.123)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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and the errors {e(j)
k+1}1≤j≤M in Algorithm10.9 are related by, for 1 ≤ j ≤ M,

e(j)
k+1 = L̃j,j−1e(j−1)

k+1 , with e(0)
k+1 = ek

and L̃j,j−1 = (I + ε−2GG∗(I + λ2XM−j))
−1 = XM+1−j(I + λ2XM−j)

−1,

(10.124)

where each L̃j,j−1 is self adjoint and positive definite and commutes with all other
L̃i,i−1 and GG∗. In particular, X1 = L̃M,M−1 and

I ≥ (I + ε−2GG∗)−1 ≥ L̃j+1,j ≥ L̃j,j−1, for 1 ≤ j ≤ M − 1,
so that 1 ≥ ‖L̃j+1,j‖ ≥ ‖L̃j,j−1‖ for 1 ≤ j ≤ M − 1.

(10.125)

In addition,

1. for all indices j ≥ 0, L̃j+1,je = e if, and only if, e ∈ ker[G∗] i.e.

ker[I − L̃j+1,j] = ker[G∗] and hence R[I − L̃j+1,j] = R[G], (10.126)

from which, using invertibility, L̃j+1,jR[G] = R[G].
2. The errors {e(j)

k+1}1≤j≤M satisfy the relations

‖e(j)
k+1‖Y ≤ ‖e(j−1)

k+1 ‖Y , 1 ≤ j ≤ M, (10.127)

strict inequality holding if, and only if, the orthogonal projection of ek onto R[G]
is non-zero.

3. For all M and 1 ≤ j ≤ M, LM,j is the composite operator

LM,j = L̃j,j−1 . . . L̃1,0, written LM,j =
j∏

i=1

L̃i,i−1. (10.128)

These operators are self-adjoint and positive, form a commuting set and also
commute with GG∗.

4. Finally, LM,j+1 ≤ LM,j ≤ I, ‖LM,j+1‖ ≤ ‖LM,j‖ ≤ 1 and, for 1 ≤ j ≤ M,

ker[I − LM,j] = ker[G∗] and LM,jR[G] = R[G]. (10.129)

Proof First observe that JM−j+1(λ, u(j), . . . , u(M), u(j−1)
k+1 ) is minimized by the

sequence (u(j)
k+1, . . . , u(M)

k+1) as, from the definitions, and taking J0(· · · ) = 0,

JM(λ, u(1)
k+1, . . . , u(j−1)

k+1 , u(j), . . . , u(M), uk)

= Jj−1(λ, u(1)
k+1, . . . , u(j−1)

k+1 , uk) + λ2(j−1)JM−j+1(λ, u(j), . . . , u(M), u(j−1)
k+1 ).

(10.130)
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If j = M, then u(M)
k+1 minimizes the NOILC objective function J(u(M), u(M−1)

k+1 ) giving

u(M)
k+1 = u(M−1)

k+1 + ε−2G∗e(M)
k+1, and e(M)

k+1 = L̃M,M−1e(M−1)
k+1 where

L̃M,M−1 = X1 = (I + ε−2GG∗)−1 > 0 = X0 and

J(u(M)
k+1, u(M−1)

k+1 ) = 〈e(M−1)
k+1 , X1e(M−1)

k+1 〉Y .

(10.131)

More generally, the hypothesis that

1. XM−j is self-adjoint and positive definite, and that XM−j > XM−j−1,
2. that XM−j commutes with all Xi, 0 ≤ i ≤ M − j − 1, and with GG∗,
3. that the minimum value

min JM−j(λ, u(j+1), . . . , u(M), u(j)
k+1) = 〈e(j)

k+1, XM−je
(j)
k+1〉Y (10.132)

4. and that e(j+1)
k+1 = L̃j+1,je

(j)
k+1,

forms the basis of an inductive proof.
Note, in particular, that the first two statements imply that L̃j,j−1 is well defined,

self-adjoint and strictly positive as GG∗(I + λ2XM−j) ≥ 0. As a consequence, the
inverse exists. Also, as XM−j > XM−j−1, so that L̃j,j−1 ≤ L̃j+1,j and hence the set
{L̃j,j−1} is bounded above by L̃M,M−1 = X1 ≤ I .

Returning to the inductive proof, the hypothesis is certainly true for j = M − 1.
If true for all j ≤ M − 1, then the characterization of LM,j follows trivially noting

that e(0)
k+1 = ek . Consider now the minimization of JM−j+1(λ, u(j), . . . , u(M), u(j−1)

k+1 )

by minimizing J(u(j), u(j−1)
k+1 ) + λ2〈e(j), XM−je(j)〉Y with respect to u(j) and the

dynamics y(j) = Gu(j) + d. This can be written in the form

〈e(j), (I + λ2XM−j)e(j)〉Y + ε2‖u(j) − u(j−1)
k+1 ‖2U which is minimized when

u(j)
k+1 = u(j−1)

k+1 + ε−2G∗(I + λ2XM−j)e
(j)
k+1 and hence

e(j)
k+1 = (I + ε−2GG∗(I + λ2XM−j))

−1e(j−1)
k+1 = L̃j,j−1e(j−1)

k+1 .

(10.133)
The inductive hypothesis is proved as a simple calculation yields the minimum value

〈e(j)
k+1, (I + λ2XM−j)e

(j)
k+1〉Y + ε2‖u(j)

k+1 − u(j−1)
k+1 ‖2U

= 〈e(j)
k+1,

(
I + λ2XM−j + ε−2(I + λ2XM−j)GG∗(I + λ2XM−j)

)
e(j)

k+1〉Y
= 〈e(j−1)

k+1 , XM+1−je
(j−1)
k+1 〉Y as L̃j,j−1(I + λ2XM−j) = XM+1−j

(10.134)
from the definitions. ThatXM−j+1 is self adjoint and commuteswithXi with i ≤ M−j
follows easily whilst XM+1−j ≥ 0 as min JM+1−j ≥ 0. In particular XM+1−j ≥
XM−j as
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min JM+1−j(λ, u(j), . . . , u(M), u(j−1)
k+1 ) ≥ min JM−j(λ, u(j), . . . , u(M−1), u(j−1)

k+1 )

+ λ2(M−j)
(
‖e(M)

k+1‖2Y + ε2‖u(M)
k+1 − u(M−1)

k+1 ‖2U
)

.

(10.135)

It also follows that strict inequality holds otherwise, for some non-zero e(j−1)
k+1 , the

final term is zero indicating that e(M)
k+1 = 0 and u(M)

k+1 = u(M−1)
k+1 . Invertibility of

L̃M,M−1 then shows that e(M−1)
k+1 = 0 and, using recursion, all e(i)

k+1 = 0, i ≥ j − 1
which provides a contradiction.

From the properties of NOILCAlgorithm 9.1,X1e = e if, and only if, e ∈ ker[G∗]
and hence X1 < I on the closed subspace ker[G∗]⊥ = R[G] so that ‖e(M)

k+1‖ <

‖e(M−1)
k+1 ‖ if, and only if, the orthogonal projection PR[G]e

(M−1)
k+1 of e(M−1)

k+1 ontoR[G]
is non-zero.More generally,writing L̃j,j−1 = I−ε−2XM+1−jGG∗ leads to the conclu-
sion that ker[I − L̃j,j−1] = ker[G∗] for 1 ≤ j ≤ M and hence that PR[G]e

(M−1)
k+1 = 0

only if PR[G]e
(j−1)
k+1 = 0 for 1 ≤ j ≤ M. In particular, for strict inequality to hold

for 1 ≤ j ≤ M, it is necessary that PR[G]e
(0)
k+1 = PR[G]ek = 0. To prove that this is

sufficient, note that ker[L̃j,j−1] = {0} and L̃j,j−1R[G] ⊂ R[G] so PR[G]e
(j)
k+1 = 0

for 1 ≤ j ≤ M. The required monotonicity follows as L̃j,j−1 < I on R[G].
Finally, LM,j+1 = LM,jL̃j+1,j ≤ LM,j and all LM,j ≤ I as all L̃j+1,j ≤ I . From

the properties of the {L̃j,j−1}, ker[G∗] ⊂ ker[I − LM,j] for all M and j. If j = 1,
then LM,1 = L̃1,0 and the required result ker[G∗] = ker[I − LM,1] follows from the
properties of L̃1,0. More generally, if ker[I − LM,j] = ker[G∗], write

I − LM,j+1 = I − LM,jL̃j+1,j = (I − LM,j) + LM,j(I − L̃j+1,j) (10.136)

both terms on the right hand side being self-adjoint and positive. It follows that
ker[I − LM,j+1] ⊂ ker[I − LM,j] = ker[G∗] and the result is now proved using an
induction process. �

The result has no impact on practical computation but has consequences for the
convergence properties of the Predictive Algorithm 10.9. More precisely,

1. It is an easy matter to prove that

(i) LM,j+1 = L̃j+1,jLM,j ≤ LM,j so that (ii) LM,j ≤ (I+ε−2GG∗)−j (10.137)

and hence the use of αj = δj,j′ (and hence uk+1 = u(j′)
k+1),

a. will, in a single iteration, produce a norm reduction better than that obtained
using “j′” iterations of NOILC Algorithm 9.1.

b. In addition, increasing “j′” will improve convergence rates and the use of
the control input uk+1 = u(M)

k+1 will lead to the fastest convergence. It may,
however, have implications for the robustness of the application.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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2. Assuming that all αj ≥ 0 and that
∑M

j=1 αj = 1, suppose that jα is the index of
the first non-zero value of αj. Then the simple inequality

‖e
{αj}
k+1‖ ≤

M∑

j=1

αj‖e(j)
k+1‖Y ≤ ‖e(jα)

k+1‖Y (10.138)

bounds the error norm ‖ek+1‖Y as a convex combination of the norms of the
error signals {‖e(j)

k+1‖Y }1≤j≤M and indicates that a consideration of the convex
combinations always provides improved convergence when compared to that
obtained using the choice α1 = 1 and all other αj = 0. For a feedforward

implementation, it is a simple matter to show that the smallest value of ‖e
{αj}
k+1‖

can be computed by evaluating {e(j)
k+1}1≤j≤M off-line and then using the convex

combination that minimizes

‖e
{αj}
k+1‖2 subject to

M∑

j=1

αj = 1. (10.139)

This idea is linked to that of Parameter Optimal ILC (see Chap. 14).

Finally, convergence is described as follows,

Theorem 10.5 (Convergence of Predictive NOILC) Suppose that αj ≥ 0, 1 ≤ j ≤
M and

∑M
j=1 αj = 1, then the Predictive Algorithm10.9 has the properties that, for

k ≥ 0, ‖ek+1‖Y ≤ ‖ek‖Y . In particular {ek}k≥0 converges monotonically to the
orthogonal projection of e0 onto ker[G∗] and

lim
k→∞ ek = 0 if r − d ∈ R[G]. (10.140)

Proof The positive, self adjoint operator LM,{αj} = ∑M
j=1 αj LM,j gives LM,{αj} ≤

∑M
j=1 αj I = I from the properties of the operators {LM,j}1≤j≤M (Theorem 10.4). It

follows that ‖ek+1‖ = ‖e
{αj}
k+1‖ ≤ ‖ek‖. Convergence properties then follows from

Theorem 5.4 if ‖LM,{αj}‖ < 1. If ‖LM,{αj}‖ = 1, then the desired convergence
properties follow from Theorem 5.9 and the easily proved observation that I −
LM,{αj} = ∑M

j=1 αj(I − LM,j) ≥ 0 for all permissible choices of {αj}1≤j≤M . As a
consequence, ker[I − LM,{αj}] = ker[I − LM,j] = ker[G∗] for all j and hence the

orthogonal complement R[I − LM,{αj}] = R[G]. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_14
http://dx.doi.org/10.1007/978-1-4471-6772-3_5
http://dx.doi.org/10.1007/978-1-4471-6772-3_5


10.7 Multi-models and Predictive NOILC 313

10.7.5 The Special Cases of M = 2 and M = ∞

Although Theorem 10.2 suggests that increasing λM and choosing uk+1 wisely from
the available options {u(j)

k+1}will improve convergence rates, the question of whether
or not it is best to increase λ and/or M is open for discussion. The simplest real-time
implementation that retains the benefits of prediction whilst reducing the computa-
tional load is that achieved when M = 2 and λ is “large”. In this case,

X1 = L̃2,1 = (I + ε−2GG∗)−1 ≥ L̃1,0 = (I + ε−2GG∗(I + λ2X1))
−1. (10.141)

The choice of α1, α2 and ε2 also influence algorithm performance. The case of
α1 = 1 and α2 = 0 is often called the Receding Horizon choice. Note that, in this
case, the error evolution operator LM,{αj} = L̃1,0. Insight into the acceleration of
convergence is obtained by comparing this with that seen in the NOILC Algorithm
9.1 and noting the presence of the additional term ε−2λ2GG∗X1 in the denominator.
Using the eigenstructure assumptions of Sect. 9.1.7 for GG∗, LM,{αj} has eigenvalues

(1 + ε−2σ 2
j Aj)

−1 where Aj = (1 + λ2

(
1

1 + ε−2σ 2
j )

)
) > 1 (10.142)

which can be interpreted as a formula similar to that obtained for NOILC but with
an amplification of each eigenvalue σ 2

j of GG∗ by a factor Aj dependent on σ 2
j , ε2

and λ2. For a fixed value of ε2, the amplification of very small eigenvalues is approx-
imately 1 + λ2 whilst the amplification of the largest eigenvalues σ 2

j ≈ ‖G∗‖2 is
approximately

A1 =
(
1 + λ2

(
1

1 + ε−2‖G∗‖2
))

< (1 + λ2). (10.143)

In terms of state space models and frequency domain properties, this suggests that

1. the Prediction methodology accelerates convergence at low frequencies as λ

increases but that the accelerated reduction of high frequency components of
the error is more significant.

2. At high frequencies, the error evolution is similar to that obtained in NOILCwhen
ε2 is replaced by the smaller value ε̃2 = ε2(1 + λ2)−1. If λ = 4, this gives the
value ε2/17.

3. If ‖G∗‖ is computed, then the effect on the low frequency components is approx-
imately equivalent to replacing ε2 (in NOILC Algorithm 9.1) by a new, smaller,
value ε̃2 defined by the map

ε2 �→ ε̃2 = ε2
(
1 + λ2

(
1

1 + ε−2‖G∗‖2
))−1

. (10.144)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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For example, choosing ε2 = ‖G∗‖2/3 and λ = 4 yields the new value ε̃2 = ε2/5.

Noting that non-minimum-phase components of the system are also associated
with non-zero but extremely small eigenvalues, this suggests that there may be a
useful impact of prediction on the convergence of non-minimum-phase behaviour.
In reality, this will be limited unless λ is very large. This provides somemotivation for
the use ofM > 2 but a precise theoretical relationship betweenM, λ and convergence
speeds in this case is not available currently and may not be attainable. Some insight
is gained however by again considering the “Receding Horizon” case when M > 1
and αj = δj,1 (when the chosen input uk+1 = u(1)

k+1) and letting the “Prediction
Horizon” M → ∞. Noting that,

LM,{αj} = L̃1,0 = XM(I + λ2XM−1)
−1. (10.145)

it is clear that the convergence behaviour of the algorithm depends entirely on the
behaviour of the sequence of operators {Xj}j≥0 and the value of λ. The following
theorem examines convergence as M → ∞ in terms of the spectrum/eigenvalues.

Theorem 10.6 (The Behaviour of {Xj}j≥0 and L̃1,0 as M → ∞) Suppose that GG∗
has strictly positive eigenvalues σ 2

1 ≥ σ 2
2 ≥ · · · associated with a complete set of

orthonormal eigenvectors {vi}i≥1 that span R[G]. Then each Xj has an eigenvalue

χ
(j)
0 = 1+ λ2 + · · · + λ2(j−1) with eigenspace ker[G∗] if ker[G∗] = {0} plus strictly

positive eigenvalues {χ(j)
i }i≥1 with associated eigenvectors {vi}i≥1. More precisely,

using the notation σ 2
0 = 0,

χ
(j+1)
i = (1 + ε−2σ 2

i (1 + λ2χ
(j)
i ))−1(1 + λ2χ

(j)
i ), χ

(0)
i = 0,

and χ
(j+1)
i > χ

(j)
i for all j ≥ 0 and i ≥ 0.

(10.146)

In particular, for each index i ≥ 1, the sequence {χ(j)
i }j≥0 converges to a finite value

χ∞
i > 0. As a consequence, for all e ∈ R[G],

lim supM→∞ ‖L̃1,0e‖Y ≤ λ−2‖e‖Y︸ ︷︷ ︸
Plant Independent Convergence Rate as M → ∞

(10.147)

Proof The proof of the eigenvalue formula follows from the relationship between
Xj+1 andXj, the commutation property of all such operators andGG∗ and the spectral
mapping theorem. The increasing property of {χ(j)

i }j≥0 follows from the correspond-

ing property of the {Xj}j≥0. For i = 0, the characterization of χ
(j)
0 follows from the

recursion formula with σ 2
i = 0. For i ≥ 1, the existence of χ∞

i follows as σ 2
i > 0

by assumption and hence the statement χ
(j)
i → ∞ as j → ∞ leads to a con-

tradiction. Next, note that, for a given M, the eigenvalues of L̃0,1 are simply l̃M,i =
χ

(M)
i /(1+λ2χ

(M−1)
i ), with i ≥ 1, and limM→∞ l̃M,i = χ∞

i /(1+λ2χ∞
i ) < λ−2. Let

ε0 > 0 and e ∈ R[G] be arbitrarily chosen. It is always possible to write e = v1 + v2
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with ‖v2‖ ≤ ε0 and v1 as a finite linear combination of the {vj}j≥1. It follows that,
for large M, ‖L̃1,0e‖Y ≤ ‖L̃1,0v1‖Y + ‖L̃1,0v2‖Y ≤ λ−2‖v1‖Y + ‖v2‖Y ≤
λ−2‖e‖Y + (1 + λ−2)ε0 as L̃1.0 ≤ I , ‖v1‖ ≤ ‖e‖ + ‖v2‖ and ‖v2‖ ≤ ε0. The
result is now proved as ε0 is arbitrary. �

The result has a number of simple interpretations, namely that,

1. for any initial error e0 ∈ R[G], the choice of sufficiently high value ofM andαj =
δj,1 will produce an error e1 with norm reduced by a factor very close to, or better
than, λ−2. This emphasizes the need to choose λ > 1 and highlights the ability
of the algorithm to produce arbitrarily small errors quickly by choosing λ � 1.
For example, values of λ in the range [√2, 4] would then produce reductions of
the order of 50–94% on each and every iteration.

2. Note that, if M is large, this contraction of the error is similar to that achieved in
(right) inverse model control in Chap.6 where contraction by a factor of (1− β)

is achieved and described by a parameter, β, chosen by the user.
3. The precise benefits that can be achieved in any particular application will depend

on the details of the dynamics and the form of the reference signal r. In eigen-
structure terms, the benefits may be most easily achieved using modest values of
the prediction horizon M if the eigenfunction expansion of r is dominated by the
largest eigenvalues of GG∗.

10.7.6 A Note on Robustness of Feedforward Predictive
NOILC

In principle, techniques similar to those used for analysis ofNOILC robustness can be
used to provide insight into robustness of the Predictive Algorithm 10.9. The details
are different however as there is added complexity because of (i) the effects of the
choice of parameters in the convex combinations and (ii) because, in a feedback
implementation, the use of the Multi-model implies that M − 1 copies of G are
models and hence the modelling error only applies to the remaining copy. This case
presents considerable challenges for theoretical analysis and hence, in what follows,
the feedforward implementation is considered.

Consider the feedforward implementation of Algorithm 10.9 based on the use
of a model G of plant dynamics. Using M copies of G in a multi-model, off-line
computation of the input signal uk+1 to be used on iteration k + 1 can be under-
taken using the previously used input uk , the measured tracking error ek and chosen
{αj}1≤j≤M . More precisely, one iteration of Predictive NOILC is undertaken using
the multi-model with zero initial conditions d = 0, a reference signal ek and zero
initiating input.

It is assumed that
∑M

j=1 αj = 1. A formal description of uk+1 takes the form
uk+1 = uk + Ω{αj}ek for some linear operator Ω{αj} : Y → U . Assuming a
left multiplicative modelling error U, the actual plant has dynamics represented by

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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the operator UG. A simple calculation then gives ek+1 = (I − UGΩ{αj})ek . This
description applies for all U including U = I and hence, using the notation of
Sect. 10.7.4, I − GΩ{αj} = LM,{αj} so that

ek+1 = (I − U(I − LM,{αj}))ek, k ≥ 0. (10.148)

As for NOILC in Sect. 9.2.4, error evolution occurs in the subspace R[UG] whilst
errors in ker[G∗] remain unchanged. Following the approach of that section, suppose
that

Y = ker[G∗] ⊕ R[UG]. (10.149)

The results of Theorem 10.4 indicate that ker[I − LM,{αj}] = ker[G∗] and its range

is dense inR[G]. Using the bilinear form and associated semi-norm

〈y, w〉0 = 〈y, (I − LM,{αj})w〉Y and ‖y‖0 = √〈y, y〉0 (10.150)

on Y also generates an inner product and norm on R[UG] if αj ≥ 0, 1 ≤ j ≤ M.
Robust monotonic convergence of the algorithm in the presence of the modelling
error can then be defined as a need to satisfy, for all e0, the following monotonicity
condition

‖ek+1‖0 < ‖ek‖0 on R[UG], for all k ≥ 0. (10.151)

Note that, if e0 ∈ Y is arbitrary, then its component in ker[G∗] remains unchanged
from iteration to iteration whilst its component inR[UG] then reduces in norm from
iteration to iteration. From this the reader should be able to prove that, whatever
the initial error, the resultant error sequence is bounded in norm. Applying a similar
approach to that of Sect. 9.2.4,

Theorem 10.7 (Robustness of Predictive NOILC) A sufficient condition for the
robust monotonicity defined above to be present is that, for some ε0 > 0,

U + U∗ > U∗ (I − LM,{αj}
)

U + ε20I on R[G] (10.152)

in the original inner product topology of Y .

This condition is a parallel to that provided in Theorem 9.15 for the basic NOILC
algorithm. In a similar manner it can be relaxed by

1. replacing R[G] by Y and/or,
2. by constructing positive, self-adjoint bounds I −LM,{αj} ≤ ΓM,{αj} ≤ I to produce

simplified sufficient conditions generated from

U + U∗ > U∗ΓM,{αj}U + ε20I on R[G]. (10.153)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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For example, using only positive values of αj yields 0 ≤ I − LM,{αj} ≤ I and the
robustness condition

U + U∗ > U∗U + ε20I on R[G] (10.154)

which is independent of prediction horizon M, {αj}1≤j≤M and λ. For linear, discrete,
state space models S(A, B, C) of G, the value ε0 = 0 can be used and the condition
reduces to that seen in the robustness analysis of the Right Inverse Model Algorithm
of Sect. 6.2 with learning gain β = 1.

A comparison of the robustness of the Predictive Algorithm 10.9 with that of the
NOILC Algorithm 9.1 can be undertaken by considering the Receding Horizon case
when α1 = 1 and all other αj = 0. This gives LM,{αj} = L̃1,0 (which decreases as M
increases) and hence

I − LM,1 ≤ I − LM+1,1 (10.155)

with strict inequality on R[G]. That is, for the special case of Receding Horizon
prediction, increasing the prediction horizon M will tend to reduce the robustness of
the Algorithm 10.9 as the set of permissible modelling errors satisfying the robust
monotonicity condition of Theorem 10.7 is reduced in size. It is concluded that the
use of M = 1 (NOILC Algorithm 9.1) is likely to be the most robust case.

Given the above, the reader may wish to consider the possibility that the use of
M = 2 could be the best choice if a balance between improving convergence rates
and retaining robustness is required? Choosing α1 = 1 and α2 = 0 provides the
characterization

L2,{αj} =
(

I + ε−2GG∗(I + λ2(I + ε−2GG∗)−1)
)−1

so that

I − L2,{αj} = ε−2GG∗X2 ≤ βPI with

βP = ε−2‖GG∗(I + λ2X1)‖
1 + ε−2‖GG∗(I + λ2X1)‖ . (10.156)

A simpler upper bound is obtained as

βP = ε−2‖G∗‖2(1 + λ2)

1 + ε−2‖G∗‖2(1 + λ2)
. (10.157)

A sufficient condition for robust monotone convergence in the ‖ · ‖0 norm is hence
that

U + U∗ > βPU∗U + ε20I on R[G]. (10.158)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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which,whenλ = 0, isConditionTwo for robustness ofNOILCas derived inTheorem
9.16. Forλ > 0,βP lies in the range 0 < βP < 1, the values increasing as ε2 decreases
and/or λ increases. Hence,

1. this condition reduces the robustness analysis to that of the Right Inverse Model
Algorithm of Sect. 6.2 with learning gain β = βP.

2. It is also the condition for robustness of NOILC given in Theorems 9.15 and 9.16
with ε2 replaced by the value ε2/(1 + λ2). That is, the effect of prediction on
robustness can be visualized as robustness of the basic NOILC Algorithm 9.1
with reduced input weighting.

Both interpretations suggest that the algorithm robustness decreases as λ increases
but a substantial degree of robustness remains even if λ is very large (and hence
βP → 1−). The reader will note that, with ε2 = 0.5‖G∗‖2, βP is close to one for
“small” values of λ e.g. choosing λ = 2 (respectively, λ = 5) gives a value of
βP = 10

11 ≈ 0.9 (respectively, βP = 52
53 ≈ 0.98).

Finally, in principle, there are many other choices of ΓM,{αj} but their application
to robustness analysis depends crucially on the detailed properties of the operators
{Xj}j≥0 and the choice of M and {αj}1≤j≤M . Again assuming the receding horizon
case of αj = δj,1 and M ≥ 2 so that LM,{αj} = LM,1 = L̃1,0 gives

LM,1 = (I + ε−2GG∗(I + λ2XM−1))
−1 ≥ (I + ε−2GG∗(1 + λ2‖XM−1‖))−1

(10.159)

where ‖XM−1‖ is the norm of XM−1 regarded as an operator on the subspaceR[G].
This formula indicates that robustness is again related to that ofNOILCbut, now,with
ε2 replaced by the smaller value ε2(1+λ2‖XM−1‖)−1 which reduces monotonically
as M increases. A further simplification, the details of which are left to the reader,
returns an inverse-model-like robustness test with

βP = ε−2‖G∗‖2(1 + λ2‖XM−1‖)
1 + ε−2‖G∗‖2(1 + λ2‖XM−1‖) . (10.160)

Note that ‖XM−1‖ can be replaced by any computable upper bound. The calculation
of a bound for ‖XM−1‖ has already been seen for M = 2 but, for M > 2 a more
detailed analysis is needed. For example, an examination of the formula for XM

indicates that, in Y , XM ≤ I + λ2XM−1 and hence, by induction, using X0 = 0,
Xj ≤ ∑j

i=1 λ2(j−1)I for all j ≥ 1. That is,

‖Xj‖ ≤
j∑

i=1

λ2(i−1) for all j ≥ 1. (10.161)

This bound is easily computed but, for large M with λ > 1, produces increasingly
large values and, ultimately, the limit βP → 1−.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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10.8 Discussion and Further Reading

The chapter underlines the large number of problems that can be formulated and
solved using NOILC-like algorithms. The presentation is not exhaustive but includes
the use of state space models whether continuous or sampled. The general approach
is identical in each case and is based on the identification of suitable spaces and
operators, computation of adjoint operators and direct appeal to NOILC formulae
derived inChap.9. The details depend on the problem considered but, in principle, the
relevant equations and algorithms for differential-algebraic systems and differential
delay systems could be derived. Systems described by partial differential equations
are not easily covered (unless approximated by finite difference or other numerical
techniques) as the operators involved are unbounded in general. The existence of an
adjoint is essential as is the solution of the (implicit) formula for uk+1 to provide an
implementable solution.

At a more practical level, the use of filters in Sect. 10.1 provides practical ways
of enhancing and/or suppressing the effect of NOILC in selected frequency ranges.
This allows the frequency content of the reference to be reflected in algorithm design
and may increase robustness if the frequency ranges where model errors are largest
are known and the filters are chosen to reduce the importance of this range on input
updates. Typically low pass filters might be used as reference signals are often dom-
inated by low frequency content. The use of notch frequencies to reduce the effects
of specified (possibly narrow) frequency ranges can also be considered.

Much of the rest of the chapter is based on more complex input and/or reference
signal specifications. The idea of the initial condition being a control variable has a
physical motivation and may help in some applications. The solution relies heavily
on the feedback form of the basic Algorithm 9.1 for state space systems as seen in
Sect. 9.1.6. Its effect is to split each NOILC iteration into two stages, the first being a
NOILC iteration from the previous initial condition followed by a NOILC iteration
from a new initial condition computed from that data. This idea extends to the case
of intermediate point and multi-task ILC as seen in Sects. 10.5, 10.6 and 10.6.2.

Multi-task and Intermediate Point algorithms open up possibilities forwider appli-
cation of NOILCmethodologies. The IPNOILC Algorithm 10.4 was first introduced
in [41] with a solution provided in [92]. Its performance was assessed experimentally
with considerable success. The results underlined the need for further consideration
of both the initial input u0 and the form of the converged output y∞, both issues
that may be of importance in some applications. The use of constraints is suggested
in Sect. 10.5 but other approaches include the addition of auxiliary optimization
objectives as in [90, 91], references that provide both a theoretical and experimental
assessment. These algorithms are described in Chap.11.

The multi-task Algorithms are a new addition to the algorithm set for ILC. They
arise from the general study in Sect. 10.4 but have specific forms for each class of
model and tracking objective. For linear state space systems, Sect. 10.6 provides an
optimal control framework to include a combination of intermediate point require-

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_11
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ments, trackingon subintervals and intervalswith no tracking.This allows application
to many new situations including

1. initial intervals [0, t̂1] with no intermediate points or tracking requirements. This
freedom could allow the use of control activity to produce an “initial condition”
x(t̂1) for the remaining interval [t̂1, T ] that makes tracking easier and, hopefully,
convergence faster.

2. If higher derivatives are important to the tracking objective, the inclusion of rates
of change in the measured output may allow intermediate points to be specified.
More generally, by putting C = In, the choice of {Fj}1≤j≤M and {Pj}1≤j≤M̂
will permit control over any state variables that can be measured or accurately
estimated.

3. For mechanical systems where outputs can represent spatial variables, choice of
{Fj}1≤j≤M and {Pj}1≤j≤M̂ could be based on a need to ensure that the system
satisfies planar constraints.

The general theory provides the required knowledge of convergence properties in
terms of the self-adjoint, positive operator (I + ε−2GeG∗

e)
−1 that defines error

updates. This knowledge is extremely important but, in the end, the solution for
uk+1 reduces to familiar linear quadratic optimal control problems using Riccati
equation solutions with “jump” conditions at intermediate points.

The underlying plant G may be non-minimum-phase (NMP). It is natural to ask
whether or not the “plateauing” effects noted in Sect. 9.3 and the associated limita-
tions imposed on achievable convergence will also have effects on the algorithms
described in this chapter. There is no precise answer to this question but, intuitively,
IPNOILCwill not be overly sensitive provided that the number of intermediate points
is not too large as NMP properties are typically associated with frequency domain
characteristics, characteristics that have no obvious relevance to IPNOILC. Multi-
task algorithms may suffer from NMP convergence issues but the degree to which
this is a practical problem will depend on details. In particular, suppose that there is
no subinterval tracking requirement on a sufficiently long initial period [0, t̂1] in the
Multi-task Algorithms of Sect. 10.6. The effects of NMP characteristics will then,
intuitively, be reduced as the input on this interval is free to ensure that the state x(t̂1)
could reduce their impact. This is consistent with the notion, mentioned in Sect. 9.3,
that e0(t) should be small around t = 0. It is conceivable that the best approach to
control of NMP systems lies in a combination of multi-task algorithms with the ideas
of Predictive NOILC described in Sect. 10.7, the use of a model relating exponen-
tially weighted signals in a similar manner to that described in Chaps. 6 and 7 and
the removal of a tracking requirement on [0, t̂1].

Finally, predictive NOILC [7] has structural connections to the ideas of Model
Predictive Control (see, for example, [22, 72, 98, 110]), particularly in the case
when the “Receding Horizon” choice uk+1 = u(1)

k+1 is made, but it has the important
additional property that physical interactions between iterations are not present. They
occur only after the Iterative Control algorithm is implemented! The parameters
added to the design process are the prediction horizon M, the weight λ > 1 and
the parameters {αj}1≤j≤M , as each iteration generates M possible input functions,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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the choice of which to use and in what (convex) combination [56] is a decision that
must be made in the context of the application. Increasing the value of λ makes the
algorithm closer, in principle, to the inverse algorithm but may make the Riccati
solution badly conditioned. Increasing M adds to the computational complexity but,
if large, has the benefit, ultimately, of producing reductions by a factor better than
λ−2. However, the readermay take the view that this added complexity is best avoided
and that it is difficult to devise an argument that justifies the use of M > 2. This view
has merit and is perhaps strengthened by the robustness analysis which suggests that
robustness is strongly related to the robustness of inverse model algorithms and that
the predicted robustness reduces as λ increases.



Chapter 11
Iteration and Auxiliary Optimization

The optimization paradigm discussed in previous chapters is focussed on the prime
objective of reducing the tracking error norm from iteration to iteration. However, if
ker[G] �= {0}, the input achieving the desired tracking is non-unique. In state space
terms, these ideas apply to cases when � > m. In such situations a useful by-product
of using NOILC methodologies is that convergence also finds the input signal that
minimizes the “control energy” measure ‖u − u0‖2U . It is natural to ask whether or
not it is possible to select one such input to satisfy other performance requirements.
In what follows, this question is expressed in terms of the construction of iterative
algorithms that converge to the desired tracking condition using an input that mini-
mizes a secondary quadratic optimization objective. This is seen to be possible using
(right) inverse models or a modified form of a NOILC algorithm but involves an
increase in algorithm complexity either in the evaluation of a suitable right inverse
operator or through the addition of “inner” iteration loops.

11.1 Models with Auxiliary Variables and Problem
Formulation

The approach taken in this chapter is quite general and continues with the ideas and
operator formulation of previous chapters. The plant model does, however, need a
more detailed definition as it has three components—the plant dynamics, the tracking
dynamics and the dynamics of auxiliary variables.

Underlying Plant Dynamics: plant dynamics has the form used in NOILC,

y = Gu + d (Plant Dynamics) (11.1)
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with input u and output y being vectors in the real Hilbert spaces U and Y respec-
tively. The operator G : U → Y is linear and bounded and d represents the effects
of initial conditions or known disturbances.

Tracking Dynamics: the tracking problem is described by dynamics

ye = Geu + de (Tracking Dynamics) (11.2)

with output ye in the real Hilbert space Ye. The operator Ge : U → Y is linear and
bounded and de represents the effects of initial conditions or known disturbances.

Note: this notation allows application of the ideas to signal tracking, intermediate
point tracking, multi-task control and other examples considered previously in this
text (Sects. 10.5, 10.6 and elsewhere). With initial conditions as “control inputs”, the
description also includes problems such as that described in Sect. 10.3.

Auxiliary Variables: It is assumed that the plant can be associated with auxiliary
signals z regarded as vectors in a real Hilbert space Z with inner product 〈·, ·〉Z .
These auxiliary variables are constructed from the input signal u from the relation

z = G1u + d1 (Auxiliary V ariable Dynamics). (11.3)

The operator G1 : U → Z is linear and bounded and d1 represents the effects of
initial conditions or known disturbances.

For continuous state space models S(A, B, C) with state vector x(t) and initial con-
dition x0,

1. Auxiliary variables can be seen as additional measurements that do not form part
of the tracking requirement but over which some control would be desirable.

2. For example, the auxiliary variables couldbe linear combinations of state variables
written in the form z = Fx for some matrix F. The operator G1 is simply the state
space model S(A, B, F) and d1(t) = FeAtx0.

3. z(t) could be the derivative ẏ(t) generated from the model S(A, B, CA, CB). If
CB = 0, then the second derivative can be constructed from S(A, B, CA2, CAB).

4. Alternatively, z could be a (causal or non-causal) filtered version of the input u
and G1 the operator associated with a model of that filter. A non-causal filter in
this context will typically be the adjoint of a state space system S(A1, B1, C1, D1).

The Iterative Control problem considered is expressed as follows,

Definition 11.1 The Iterative Control Problem with Auxiliary Optimization The
Objective of the Iterative Control with Auxiliary Optimization Problem is to find
an input signal u∞ that ensures accurate tracking of a reference signal re ∈ Ye

whilst also minimizing the objective function

JZ (u, z0, u0) = ‖z − z0‖2Z + ‖u − u0‖2U (11.4)

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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Here u0 is the initial control signal and z0 = G1u0 + d1 is the associated auxiliary
signal. Formally the objective of iteration is to converge to the input

u∞ = arg min
u∈U

{ JZ (u, z0, u0) : re = Geu + de, z = G1u + d1} (11.5)

Minimization of the auxiliary objective function JZ represents a desire to keep z
close to z0 whilst using controls that do not differ too much from u0. The relative
weights given to each of these objectives is reflected in the choice of inner products
and norms in Z , U and Y .

The interpretation of this problem differs from application to application. Some
interpretations of auxiliary variables have been given above. They could be physical
variables but it is worth noting that they could be introduced to add additional degrees
of freedom toNOILC iteration. For example, consider the choice of z = u (and hence
G1 = I and d1 = 0). This apparently trivial definition does have potential value as, if
JZ = ‖u−u0‖2Z +‖u−u0‖2U represents the control energy function to beminimized,
then changes to the inner products inZ andU that leave this unchanged may allow
the inner product in U to be chosen to improve conditioning or convergence of an
algorithm. For linear state space systems, this flexibility is made clearer using the
inner products

〈u, v〉U = γ 2
∫ T
0 uT (t)Rv(t)dt, 〈u, v〉Z = γ 2

∫ T
0 uT (t)RZ v(t)dt, γ 2 > 0,

so that JZ (u, z0, u0) = γ 2
∫ T
0 (u(t) − u0(t))T (RZ + R)(u(t) − u0(t))dt.

(11.6)

If the weight defining the chosen control energy is RE = γ 2(RZ +R) and this is kept
constant, then the two weights RZ and R and scaling parameter γ 2 can be varied
to influence algorithm performance. The only constraints are that they should be
symmetric and positive definite.

In what follows, the existence of at least one iterative solution of the problem is
demonstrated using an appropriate right inverse algorithm in a similar manner to that
seen in Chap.6. This is followed by a more detailed study of an algorithm that avoids
the use of inversion by using a modification of the Norm Optimal Control Algorithm
and its extensions described in Chaps. 9 and 10. The presentation assumes that the
reader is familiar with that material.

11.2 A Right Inverse Model Solution

The solution of the optimization problem defined by Eq. (11.5) can be written in the
form of an equation whenever Ge has a bounded right inverse. More precisely,

Theorem 11.1 (An Important Right Inverse) Suppose that, for some scalar ge �= 0,
GeG∗

e ≥ g2eI. Then, for any bounded linear operator G1 : U → Z ,

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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1. Ge(I + G∗
1G1)

−1G∗
e has a bounded inverse and

2. the bounded operator ĜeR = (I + G∗
1G1)

−1G∗
e(Ge(I + G∗

1G1)
−1G∗

e)
−1 is well-

defined and satisfies GeĜeR = I. It is hence a right inverse of Ge.

Moreover, the input u∞ solving the problem defined by Eq. (11.5) is uniquely
defined by

u∞ = u0 + ĜeRee
0 where ee

0 = re − ye
0 and ye

0 = Geu0 + de. (11.7)

Proof The existence of a bounded inverse follows as Ge(I + G∗
1G1)

−1G∗
e is self

adjoint with spectrum in the closed interval [(1+‖G1‖2)−1g2e, ‖G∗
e‖2] that excludes

the origin. The right inverse property of ĜeR follows by computing GeĜeR. The
characterization of u∞ follows by writing z − z0 = G1(u − u0) so that JZ =
〈u − u0, (I + G∗

1G1)(u − u0)〉U . Constructing the Lagrangian

L
[
u, γ

] = 〈u − u0, (I + G∗
1G1)(u − u0)〉U + 2〈γ, re − Geu − de〉Ye (11.8)

with Lagrange Multiplier γ ∈ Ye, the Lagrangian is stationary if the following two
conditions are satisfied,

(I + G∗
1G1)(u∞ − u0) − G∗

eγ = 0 and re − Geu∞ − de = 0. (11.9)

The result follows by constructing the solution algebraically. �

The following algorithm is a direct parallel to the Right Inverse Algorithm of
Chap.6 but, with a careful selection of a right inverse, error convergence to zero is
guaranteed with convergence to the solution of the auxiliary optimization problem
being the added bonus.

Algorithm 11.1 (Inverse Algorithm with Auxiliary Optimization) With the notation
given above and the right inverse defined by Theorem 11.1, let β be a real “learning
gain” in the range 0 < β < 2. Let u0 be the initial control input. Then the Iterative
Algorithm defined by the update equation

uk+1 = uk + βĜeRee
k (where ee

k = re − ye
k and ye

k = Geuk + de) (11.10)

generates a tracking error sequence {ee
k}k≥0 satisfying the equations

ee
k+1 = (1 − β)ee

k, for k ≥ 0 and lim
k→∞ ee

k = 0. (11.11)

Moreover, the input sequence {uk}k≥0 converges to the limit u∞ solving the auxiliary
optimization problem of Eq. (11.5).

Proof The proof is very similar to that for the right inverse algorithm in Chap. 6. The
details are left as an exercise for the reader. The last statement follows from

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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uk+1 = u0 +
k∑

j=0

(uj+1 − uj) = u0 + βĜeR

k∑

j=0

ee
j = u0 + βĜeR

k∑

j=0

(1 − β)jee
0,

(11.12)
noting that |1 − β| < 1, letting k → ∞ and evaluating the summation. �

In summary, Algorithm11.1 demonstrates the possibility of converging efficiently
to the desired solution. The auxiliary objective is embedded in the algorithm by the
choice of an appropriate right inverse of Ge. Many of the design comments made in
Chap.6 apply to this case. In particular, the rate of convergence can be controlled by
the choice of β and, if the algorithm based on a model Ge is applied to a plant where
Ge actually takes the form UGe with right multiplicative modelling error U, robust
monotonic convergence is achieved if

U + U∗ > βU∗U in the tracking space Ye. (11.13)

In the case of the Intermediate Point NOILC problem of Sect. 10.5, Ye is finite
dimensional and both GeG∗

e and U are matrices. The robustness condition is a matrix
inequality that demonstrates the robustness of the algorithm for some range of β.
The only constraint is the familiar positivity requirement that U + U∗ > 0.

11.3 Solutions Using Switching Algorithms

The Right Inverse Algorithm 11.1 requires (right) invertibility and computation of
(right) inverses of operators. Invertibility cannot be guaranteed in many situations
and, even if present, may be computationally difficult (particularly in the situation
when Ye is infinite dimensional). In such cases, an alternative approach is needed
or may be useful. In what follows, inversion is replaced by “switching” mechanisms
based on a modified sequence of NOILC computations.

11.3.1 Switching Algorithm Construction

Each iteration of the following switching algorithm consists of two steps, the first
being on-line or off-line use ofNOILCAlgorithm9.1 and the second being an off-line
or on-line optimization based on JZ .

Algorithm 11.2 (A Switching Algorithm for Auxiliary Optimization) With the nota-
tion of previous sections, suppose that the initial input u0 ∈ U is given and that the
associated z0 and error ee

0 = re − ye
0 has been computed/measured. Each iteration

with index k + 1 then consists of TWO steps:

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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STEP ONE: Given the input uk , use one (on-line or off-line) iteration of NOILC
Algorithm 9.1 to create the input ũk+1 that minimizes J(u, uk) for the tracking system
ye = Geu + de. That is,

ũk+1 = arg min
u∈U

J(u, uk) subject to ye = Geu + de. (11.14)

This input can be represented by the feedforward formula

ũk+1 = uk + ε−2G∗
e(I + ε−2GeG∗

e)
−1ee

k where ee
k = re − ye

k (11.15)

or can be generated by a suitable feedback realization. This step always produces an
error that is smaller in norm than that of ek . However, the input uk+1 is, in general,
not equal to ũk+1 and is constructed in the next step.

STEP TWO: Compute the signal zk associated with uk and use (off-line or on-line)
NOILC techniques to compute the control signal uk+1 as the control signal that
minimizes

JZ (u, zk, ũk+1) = ‖zk − z‖2Z + ‖u − ũk+1‖2U (11.16)

subject to the auxiliary dynamical constraint z = G1u + d1. That is,

uk+1 = ũk+1 + G∗
1 (zk − zk+1) . (11.17)

Note: This problem can be interpreted as a NOILC problem for the auxiliary system
that computes the input uk+1 that “optimally” improves tracking of the “reference”
zk using an input that remains close to ũk+1. Intuitively, this step is best suited to
off-line evaluation as the tracking of zk is not a design requirement and also, perhaps,
the real-time measurement of the signal z may not be possible. It will be seen later in
this chapter that the step can be implemented on-line in a natural way if G1 = Ge.

The reader will note that, as expressed above, there are two control input sequences
{uk}k≥0 and {ũk}k≥0 and it is the sequence {ũk}k≥0 that is applied to the plant in the
first step. If G1 = 0, then a simple calculation shows that the algorithm reduces to
NOILC Algorithm 9.1 as ũk = uk, k ≥ 1.

11.3.2 Properties of the Switching Algorithm

The properties of this algorithm are obtained by producing the relationship between
ee

k+1 and ee
k . Firstly note that zk − zk+1 = G1(uk − uk+1), so that

uk+1 = ũk+1 + G∗
1G1 (uk − uk+1) = (I + G∗

1G1)
−1 (

ũk+1 + G∗
1G1uk

)
. (11.18)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Writing ũk+1 = uk + ε−2G∗
e(I + ε−2GeG∗

e)
−1ee

k then gives

uk+1 = uk + (I + G∗
1G1)

−1ε−2G∗
e(I + ε−2GeG∗

e)
−1ee

k (11.19)

and hence the error evolution

ee
k+1 = L1ee

k, for k ≥ 0, where the operator
L1 = (

I − ε−2Ge(I + G∗
1G1)

−1G∗
eΨ1

)
with Ψ1 = (I + ε−2GeG∗

e)
−1.

(11.20)
The key to characterizing the behaviour of the algorithm is to examine L1 as an
operator on Ye but in the alternative topology defined by the inner product

〈ye, we〉0 = 〈ye, Ψ1we〉Ye (11.21)

and associated norm ‖ye‖0 = √〈ye, ye〉0 .
Theorem 11.2 (Properties of L1 in the Alternative Topology) Using the above nota-
tion, L1 : Ye → Ye is a positive, self-adjoint operator in the topology induced by
〈·, ·〉0. It has induced norm

‖L1‖0 ≤ 1 (11.22)

with ker[I − L1] = ker[G∗
e ] and R[I − L1] = R[Ge] .

Proof Noting that Ψ1L1 = L∗
1Ψ1 (the adjoint being defined in the 〈·, ·〉Ye topology),

〈ye, L1we〉0 = 〈ye, Ψ1L1we〉Ye
= 〈ye, L∗

1Ψ1we〉Ye
= 〈L1ye, Ψ1we〉Ye

= 〈L1ye, we〉0
(11.23)

and hence L1 is self-adjoint in the topology induced by the inner product 〈·, ·〉0 (see
also Theorem 2.15). For the rest of the theorem, it is sufficient to prove that, in the
original topology in Ye,

0 < Ψ1

(
I − ε−2Ge(I + G∗

1G1)
−1G∗

eΨ1

)
≤ Ψ1. (11.24)

The second inequality follows as the self-adjoint operator Ψ1Ge(I + G∗
1G1)

−1G∗
eΨ1

≥ 0. The first inequality is a consequence of the identity

Ψ1L1 = Ψ1
[
I − ε−2GeG∗

eΨ1 + ε−2GeG∗
1(I + G1G∗

1)
−1G1G∗

eΨ1
]

≥ Ψ1
[
I − ε−2GeG∗

eΨ1
] = Ψ 2

1 > 0.
(11.25)

Finally, (I − L1)e = 0 if, and only if, G∗
eΨ1e = 0 i.e. Ψ1e ∈ ker[G∗

e ] which is
equivalent to the condition e ∈ ker[G∗

e ]. An immediate consequence of this result
is that the closure of the range R[I − L1] is just the orthogonal complement of
ker[G∗

e ] in the alternative topology, a property shared byR[Ge]. That completes the
proof. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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These properties immediately allow the application of the general convergence
Theorems 5.4 and 5.9 to produce the result,

Theorem 11.3 (Error Convergence in Switching Algorithm 11.2) Suppose that u0
has been specified. Then the sequence of errors {ee

k}k≥0 satisfies the monotonicity
condition and boundedness property

‖ee
k+1‖0 ≤ ‖ee

k‖0 for all k ≥ 0. (11.26)

In particular,
lim

k→∞ ee
k = Pker[G∗]ee

0 (11.27)

where Pker[G∗] is the orthogonal projection operator onto ker[G∗
e ] in Ye with respect

to the inner product 〈·, ·〉0. In addition,

1. The error sequence converges to zero if, and only if ee
0 ∈ R[Ge].

2. Convergence to zero tracking error is assured for all ee
0 ∈ Ye if and only if

Ye = R[Ge]. This is always the case if ker[G∗
e ] = {0}.

Proof If ‖L1‖0 < 1, then Theorem 5.4 implies that the error converges to zero
monotonically for all initial errors ee

0. The remaining case to consider is that when
‖L1‖0 = 1. This case is covered by Theorem 5.9 noting that, from the previous result,
R[I − L1] = R[Ge]. �

Theorem 11.4 (InputConvergenceConditions forSwitchingAlgorithm11.2)Using
the ideas developed above, suppose that, in addition, the initial error ee

0 ∈ R[I −L1]
then both input signal sequences {uk}k≥0 and {ũk}k≥0 converge in the norm topology
of U to the same unique limit u∞ (dependent on u0 and re) defined by the relation

u∞ = u0 + (I + G∗
1G1)

−1ε−2G∗
e(I + ε−2GeG∗

e)
−1êe

0
where ee

0 = (I − L1)ê0 and êe
0 ∈ Ye.

(11.28)

Proof Writing

uk+1 = uk + (I + G∗
1G1)

−1ε−2G∗
e(I + ε−2GeG∗

e)
−1ee

k, k ≥ 0 (11.29)

yields, using ee
j+1 = L1ee

j for j ≥ 0,

uk+1 = uk + (I + G∗
1G1)

−1ε−2G∗
e(I + ε−2GeG∗

e)
−1Lk

1ee
0, k ≥ 0 (11.30)

so that

uk+1 = u0 + (I + G∗
1G1)

−1ε−2G∗
e(I + ε−2GeG∗

e)
−1

k∑

j=0

Lj
1ee

0, k ≥ 0. (11.31)

http://dx.doi.org/10.1007/978-1-4471-6772-3_5
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Let êe
0 be the unique vector inR[I − L1] satisfying ee

0 = (I − L1)êe
0. It follows that

uk+1 = u0 + (I +G∗
1G1)

−1ε−2G∗
e(I +ε−2GeG∗

e)
−1(I −Lk+1

1 )êe
0, k ≥ 0, (11.32)

which converges to the defined u∞ as k → ∞ by Theorem 11.3. �

The results prove convergence of the switching Algorithm 11.2 but say nothing
about the relationship between the limit and the auxiliary optimization problem. The
key to describing the nature of the limit lies in input convergence Theorem 11.4
from which, if ee

0 ∈ R[I − L1], the limit u∞ exists and the error sequence {ee
k}k≥0

converges in norm to zero. As a consequence, the limit is described by the relations

re = Geu∞ + de, u∞ = u0 + (I + G∗
1G1)

−1G∗
eγ

and γ = ε−2(I + ε−2GeG∗
e)

−1êe
0.

(11.33)

Writing the auxiliary optimization problem as that of minimizing

JZ = 〈u − u0, (I + G∗
1G1)(u − u0)〉U subject to re = Geu + de (11.34)

then yields the reassuring result that

Theorem 11.5 (The Nature of the Limit of Algorithm 11.2) If the assumptions of
Theorem 11.4 hold, then Switching Algorithm 11.2 converges to a stationary point
of the Lagrangian

L [u, γ ] = 〈u − u0, (I + G∗
1G1)(u − u0)〉U + 2〈γ, re − Geu − de〉Ye (11.35)

where the Lagrange Multiplier γ = ε−2(I + ε−2GeG∗
e)

−1êe
0 . This stationary point

input u∞ is unique and corresponds to the minimum of L .

The proof is left as an exercise for the reader.
In summary, the switching algorithm uses familiar NOILC-like computations to

construct a convergent solution to the tracking problem that also converges to a
solution to the auxiliary optimization problem expressed in terms of a stationary
point of an associated Lagrangian function. The proof and algorithm properties are
expressed in terms of inputs {uk}k≥0 and their associated errors {ek}k≥0 although, as
described in Algorithm 11.2, it is the input signals {ũk}k≥0 that may be used on-line.
For a feedforward implementation, both inputs are computed off-line so either could
be used in principle.

11.3.3 Characterization of Convergence Rates

The detailed form of the convergence rate of Algorithm 11.2 depends on both G1
and Ge. It is not, in general, possible to compute the spectrum of L1. It is, however,
possible to bound the eigenvalues of L1 as follows,
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Theorem 11.6 (Bounds on the Spectrum of L1) The spectrum (and hence all eigen-
values) of L1 is (are) real. Points σ 2 in the spectrum spec[L1] can be bounded by the
relations

1

1 + ε−2‖G∗
e‖2

≤ σ 2 ≤ ‖Ψ1‖ + ‖G1‖2
1 + ‖G1‖2 where Ψ1 = (I+ε−2GeG∗

e)
−1. (11.36)

Proof As L1 is strictly positive and self adjoint in the topology defined by 〈·, ·〉0, its
spectrum contains only real, positive values. They are bounded as above as

Ψ1L1 = Ψ1 − Ψ1ε
−2Ge(1 + G∗

1G1)
−1G∗

eΨ1 ≤ Ψ1 − Ψ1ε
−2Ge(1 + ‖G1‖2)−1G∗

eΨ1

= Ψ1

[
I − (1 + ‖G1‖2)−1ε−2GeG∗

eΨ1

]
= Ψ1

[
I − (1 + ‖G1‖2)−1 (I − Ψ1)

]

= Ψ1

[ ‖G1‖2
(1+‖G1‖2) I + 1

(1+‖G1‖2)Ψ1

]
≤ Ψ1

( ‖Ψ1‖+‖G1‖2
1+‖G1‖2

)
.

(11.37)
Also, Ψ1L1 = Ψ1 − Ψ1ε

−2Ge(I + G∗
1G1)

−1G∗
eΨ1 is bounded from below by

Ψ1

[
I − ε−2GeG∗

eΨ1

]
= Ψ 2

1 ≥ Ψ1(1 + ε−2‖G∗
e‖2)−1. (11.38)

This completes the proof of the result. �

An immediate consequence of this is that, for all k ≥ 0,

‖ee
k+1‖0 ≤ λe‖ee

k‖0 where λe =
(‖Ψ1‖ + ‖G1‖2

1 + ‖G1‖2
)

. (11.39)

It is deduced that

1. The norm sequence typically has a geometric bound λe < 1 only when ‖Ψ1‖ < 1,
a situation that is achieved only when GeG∗

e has a bounded inverse. It is necessary
that the origin is not in the spectrum of GeG∗

e , a condition that requires that
ker[G∗

e ] �= {0}.
2. The remaining case when ‖Ψ1‖ = 1 corresponds to situations where either

ker[G∗
e ] �= {0} and/or the tracking space Ye is infinite dimensional and 0 ∈

spec[GeG∗
e ].

The first case covers applications including discrete state space systems, multi-rate
systems and the intermediate point tracking problems of Algorithm 10.4 with the
added dimension of auxiliary optimization. The second case includes application to
continuous state space systems whether that application is the basic NOILC Algo-
rithm 9.1 or, for example, its multi-task versions as in Algorithms 10.6 and 10.8.

Finally, the choice of weights in JZ (or, equivalently, inner products in Z and
U ) will influence convergence rates through the operator G∗

1G1. To represent this
replace JZ by

JZ = ‖z − z0‖2Z + ε21‖u − u0‖2U where ε21 > 0 (11.40)

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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is a parameter representing changes in the relative weights of the two terms in the
objective function. The effect on the analysis is to replaceG∗

1 by ε−2
1 G∗

1. Consider the
equationwε1 = (I+ε−2

1 G∗
1G1)

−1v,with v �= 0, as ε1 > 0varies.Note that‖wε1‖U ≤
‖v‖U for all ε1 > 0. Writing the equation in the form ε21wε1 + G∗

1G1wε1 = ε21v and
letting ε1 → 0 indicates that limε1→0 ‖G1wε1‖U = 0 . It follows that, using this
notation,

Theorem 11.7 (Algorithm Behaviour as ε1 → 0+) Suppose that U = R[G∗
1].

Then there exists a non-zero initial error ee
0 such that the iteration error ee

1 = L1ee
0

in iteration number one converges to ee
0 in the weak topology in Ye as ε1 → 0+.

Proof First note that, for any f ∈ Z , limε1→0〈f , G1wε1〉Z = limε1→0〈G∗
1f , wε1〉U

= 0 which proves weak convergence as {wε1}ε1>0 is bounded and R[G∗
1] is dense.

Next choose any ee
0 such that v = G∗

eΨ1ee
0 �= 0 and note that, for any f ∈ Ye,

〈f , ee
0 − ee

1〉Ye = 〈f , (I − L1)ee
0〉Ye

= ε−2〈f , Ge(I + ε−2
1 G∗

1G1)
−1v〉Ye = ε−2〈G∗

e f , wε1〉U → 0
(11.41)

as ε1 → 0. This completes the proof. �

The value of this result lies in its interpretation in terms of the choice of JZ . More
precisely, as the weighting on (z − z0) increases relative to the weight allocated
to (u − u0), there will be a tendency for convergence rates to slow. That is, there
is an implicit limitation in the switching algorithm that says, either accept slow
convergence rates or accept that the priority in auxiliary optimization must reflect a
priority to minimize the energy measure ‖u−u0‖2U . This does not mean that control
over the dynamics of z via the magnitude of ‖z − z0‖2Z cannot be usefully achieved.

The details of performance will depend on the details of the parameters and
operators used and occurring in the application. The examples described in the next
few sections are chosen for their relative simplicity, their potential usefulness in
practice and their links to previous chapters.

11.3.4 Decoupling Minimum Energy Representations
from NOILC

Consider the choice of z = u (and hence G1 = I and d1 = 0). This apparently trivial
definition does have potential value as, if JZ = ‖u − u0‖2Z +‖u − u0‖2U represents
the control energy function to be minimized, then changes to the inner products in
Z andU that leave this unchanged may allow the inner product inU to be chosen
to improve conditioning or convergence of an algorithm. For linear, continuous state
space systems, choose the inner products
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〈u, v〉U = ∫ T
0 uT (t)Rv(t)dt, 〈u, v〉Z = ∫ T

0 uT (t)RZ v(t)dt,

so that JZ (u, z0, u0) = ∫ T
0 (u(t) − u0(t))T (RZ + R)(u(t) − u0(t))dt.

(11.42)
If the weight defining the chosen control energy is RE , then the minimum energy
solution will be the same if RE is replaced by r2ERE where r2E > 0 can be chosen
arbitrarily. If the sum r2ERE = RZ + R and is satisfied, then r2E and the two sym-
metric and positive definite weights RZ and R can be varied to influence algorithm
performance in STEP ONE whilst avoiding the problem of slow convergence due to
STEP TWO. In this case STEP TWO of Switching Algorithm 11.2 reduces to the
minimization of

(uk(t) − u(t))T RZ (uk(t) − u(t)) + (ũk+1(t) − u(t))T R(ũk+1(t) − u(t)), (11.43)

for every t ∈ [0, T ]. That is, uk+1(t) is obtained from the formula

uk+1(t) = (RZ + R)−1 (RZ uk(t) + Rũk+1(t)) for t ∈ [0, T ]. (11.44)

The case of linear, discrete state space systems can be derived in a similar way.

11.3.5 Intermediate Point Tracking and the Choice G1 = G

Suppose that the auxiliary dynamics is simply the underlying plant dynamics y =
Gu + d evolving in Y . Then the choice of G1 = G and d1 = d is a statement that,
although the tracking problem is the main objective of iteration, there is a secondary
objective of influencing the nature of the resultant underlying output behaviour. In
this case without loss of generality, choose Z = Y and

JZ [u, y0, u0] = ‖y − y0‖2Y + ε21‖u − u0‖2U (11.45)

where ε21 > 0 provides a NOILC-like mechanism for influencing the relative weights
in JZ . In this case STEP TWO in Algorithm 11.2 is precisely a NOILC iteration for
the plant with ε replaced by ε1, the reference signal replaced by yk and uk replaced
by ũk+1. This step could be completed on-line for a feedback implementation, or
off-line, using a plant model.

One interesting possibility for the above is the use of auxiliary optimization for
influencing the form of the solution of the Intermediate Point Algorithm 10.4 for state
space systems. The solution of the IPNOILC problem also minimizes ‖u − u0‖2U ,
a fact that can lead to periods of relative input inactivity and decay of outputs.
Conditioning of the solution could be undertaken using a mix of algorithms. One
example is as follows:

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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1. Start the control design by choosing a reference signal r(t) on [0, T ] that satisfies
the intermediate point requirement at the intermediate times {tj} and represents
what is seen as a “good” trajectory between these times. Note that, tracking of
r(t) is not the ultimate objective.

2. Next, undertake a number (ka ≥ 1 say) of iterations of NOILC Algorithm 9.1 to
produce an output yka(t), t ∈ [0, T ] that is regarded as reasonable.

3. Finally, use the data D = (yka , uka) to initialize the Switching Algorithm 11.2
with Ge and Ye as defined for intermediate point problems, JZ defined as above
and with the data y0 = yka and u0 = uka . Convergence to the solution of the
associated auxiliary optimization problem will then provide a limit that solves
the intermediate point tracking problem whilst keeping plant outputs and control
inputs “close to” the data set D .

The mixture of algorithms is, in effect, a new algorithm. It is not presented in this
way as its properties are clearly those of Algorithm 11.2 used as an approach to solv-
ing/conditioning the Intermediate Point tracking problem. The first ka “iterations”
set up the data D . The degree to which they represent the nature of the converged
solution cannot be quantified at a general theoretical level. Intuitively, however, the
approach has the potential to positively influence the achieved solution.

11.3.6 Restructuring the NOILC Spectrum by Choosing
G1 = Ge

This section considers the use of Auxiliary Optimization as a tool in the re-design
of NOILC Algorithm 9.1. To do this consider the case when G1 = Ge and d1 = de

and, in effect, Z = Ye but with

JZ [u, ye
0, u0] = ‖ye − ye

0‖2Ye
+ ε21‖u − u0‖2U (11.46)

which is theNOILCobjective function ofAlgorithm9.1with ε replacedby a, possibly
different, value ε1. The corresponding operator L1 has the form

L1 = I − ε−2Ge(I + ε−2
1 G∗

e Ge)
−1G∗

e (I + ε−2GeG∗
e )

−1

= (I + ε−2GeG∗
e )

−1 + (
(I + ε−2GeG∗

e )
−1ε−2GeG∗

e

) (
(I + ε−2

1 GeG∗
e )

−1ε−2
1 GeG∗

e

)

≥ (I + ε−2GeG∗
e )

−1 in Ye.

or, alternatively,
L1 = (I + ε−2

1 GeG∗
e )

−1ε−2
1 GeG∗

e + (I + ε−2GeG∗
e )

−1(I + ε−2
1 GeG∗

e )
−1

≥ (I + ε−2
1 GeG∗

e )
−1ε−2

1 GeG∗
e .

(11.47)
These expressions describe the effect of the auxiliary optimization and, in particular,
the first suggests its tendency to slow down convergence rates when compared with
NOILC Algorithm 9.1 whilst the second supports Theorem 11.7 by suggesting slow
convergence if ε1 is small. In the case when G1 = Ge however, the minimization of

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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JZ is ultimately identical to the minimization of ‖u−u0‖2U whenever ye → re. The
algorithm therefore converges to the same solution asAlgorithm9.1 but the dynamics
of the iteration is changed. This change is implicit in the form of L1 but is most easily
characterized using spectral values or, more precisely, eigenvalue behaviour.

An Eigenvalue Interpretation: Suppose therefore that GeG∗
e : Ye → Ye has zero

eigenvalues with eigenvectors equal to any element of ker[G∗
e ] and that the remaining

non-zero spectral values are eigenvalues ‖G∗
e‖2 = σ 2

1 ≥ σ 2
2 ≥ · · · which are

all strictly positive and have associated orthonormal eigenvectors {vj}j≥1 spanning
R[Ge]. The Spectral Mapping Theorem implies that the eigenvalues of L1 are hence
unity on ker[G∗

e ], and can be expressed, for j ≥ 1, in two ways

σ 2
j (L1) = 1

(1+ε−2σ 2
j )

+
(

ε−2σ 2
j

(1+ε−2σ 2
j )

) (
ε−2
1 σ 2

j

(1+ε−2
1 σ 2

j )

)
> 1

(1+ε−2σ 2
j )

and

σ 2
j (L1) = ε−2

1 σ 2
j

(1+ε−2
1 σ 2

j )
+

(
1

(1+ε−2σ 2
j )

) (
1

(1+ε−2
1 σ 2

j )

)
>

ε−2
1 σ 2

j

(1+ε−2
1 σ 2

j )
.

(11.48)

Introduction of the auxiliary optimization therefore implies that convergence of the
Switching Algorithm 11.2 is slower than NOILC Algorithm 9.1. At first sight, this
suggests that the algorithm has little value. However, the point to note is that the
effect of switching is to change the evolution of the component of the output that lies
in the subspace spanned by the eigenvectors corresponding to each new eigenvalue
value σ 2

j (L1). Perhaps of more significance is the observation that the influence of

the algorithm using the choice of ε2 and ε21 is to modify the distribution of these
changes. Some of these modifications can be linked to potentially useful properties
for practical applications. Some of these properties are discussed below:

1. For small values of σ 2
j , the presence of the term σ 4

j in the second term suggests

that these eigenvector components evolve as (σ 2
j (L1))

k ≈ (1 + ε−2σ 2
j )−k which

is that of NOILC Algorithm 9.1. That is, auxiliary optimization techniques have
little effect on these components.
Conclusion: Iteration dynamics for small eigenvalues (high frequencies) is rel-
atively unaffected by the addition of the auxiliary optimization criterion. This
component of Algorithm performance is influenced solely by the choice of ε2.

2. As ε2 → ∞, the non-unity eigenvalues σ 2
j (L1) approach the value unity. Eigen-

components are then almost unchanged from iteration to iteration.
3. As ε2 → 0, the non-unity eigenvalues σ 2

j (L1) approach (1 + ε−2
1 σ 2

j )−1ε−2
1 σ 2

j
from above. This eigenvalue distribution eliminates the low eigenvalue compo-
nents rapidly with larger eigenvalues being eliminated more slowly. The slowest

rate of elimination is described by the geometric sequence
(
(1 + λ)−1λ

)k
where

λ is defined by λ = ε−2
1 σ 2

1 = ε−2
1 ‖G∗

e‖2. For example, if λ = 1, the contribution

of each eigenvalue reduces faster than
( 1
2

)k
.
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Conclusion: As ε2 → 0, the convergence rate is dominated by the behaviour and
parameter choice in the auxiliary optimization step. In particular, it is dominated
by the ratio λ between ‖G∗

e‖2 and ε21 .
4. The eigenvalue variation with ε can be bounded in terms of λ. That is,

σ 2
j (L1) ≤ 1

(1+ε−2σ 2
j )

+
(

ε−2σ 2
j

(1+ε−2σ 2
j )

)(
λ

(1+λ)

)

= λ
(1+λ)

+ 1
(1+ε−2σ 2

j )

(
1

(1+λ)

) (11.49)

This formula bounds the spectrum of L1 in terms of the spectrum (1 + ε−2σ 2
j )−1

of theNOILCoperator (I+ε−2GeG∗
e)

−1 andλ. Asλ gets smaller (as ε1 increases),
the weighting of the input in JZ gets larger and the convergence rate approaches
that of basic NOILC Algorithm 9.1. If, however, λ is fixed and ε is reduced
substantially, then σj(L1) ≈ λ/(1+λ) over a wide range of the larger eigenvalues.
Conclusion: Useful eigenvalue bounds can be expressed in terms of λ =
ε−2
1 ‖G∗

e‖2 and ε. They provide a useful way of visualizing the effects of para-
meter choice on the spectrum.

5. Relative convergence speeds can be investigated by considering

(1 + ε−2
1 σ 2

j )−1 − σ 2
j (L1) = ε−2σ 2

j

(1+ε−2σ 2
j )

1
(1+ε−2

1 σ 2
j )

− ε−2
1 σ 2

j

(1+ε−2
1 σ 2

j )

= σ 2
j

(1+ε−2
1 σ 2

j )

(
ε−2

(1+ε−2σ 2
j )

− ε−2
1

)
.

(11.50)

Conclusion: The auxiliary switching algorithm converges faster than Algo-
rithm 9.1 with ε replaced by ε1 if

ε21 ≥ ε2 + ‖G∗
e‖2 (or, equivalently, 1 ≥ ε−2

1 ε2 + λ). (11.51)

This follows by requiring the expression above to be positive for all j ≥ 1.
6. In particular, the previous items suggest a “flattening” of the spectrum of L1

relative to that of NOILC can be achieved. To illustrate this, set ε21 = ε2+‖G∗
e‖2,

then eigen-components in the vicinity of σ 2
1 = ‖G∗

e‖2 converge at the same rate
as those in NOILCwith the weight ε21 but eigen-components in some range below
this converge faster than that achieved by NOILC.

Design Implications? The suggested interpretation of these observations is that,
with G1 = Ge, the values of ε2 and ε21 are the major influences on the nature of
the convergence. In particular, the motivation for choosing G1 = Ge is found in
the ability to influence both the convergence rate and the range of eigenvalues that
have that convergence rate. The approach uses high gains (small values of ε) in
STEP ONE whilst using lower gains (larger values of ε1 > ε) in STEP TWO of
Algorithm 11.2. As lower gains are normally preferred for physical plant opera-
tion, it is therefore expected that either a feedforward implementation is used or,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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alternatively, STEP TWOwill be better suited to on-line implementation with STEP
ONE being computed off-line using a model. If this is done, then Inequality (11.51)
is a sufficient condition to ensure that a real benefit is achieved relative to a NOILC
algorithm with the weight value ε21.

11.4 A Note on Robustness of Switching Algorithms

Suppose that a feedforward implementation of Algorithm 11.2 is used. Suppose
also that the parameter ε1 introduced into the auxiliary objective function to analyse
the effect of relative control weightings is retained in what follows. In principle,
modelling errors for both Ge and G1 should be considered but, for our purposes here,
only errors inGe will be considered. In effect,G1 is to be seen only as a mathematical
model defining the auxiliary minimization objective in terms of the computed z and
known input u. In more detail, if, on iteration k, the input uk produced the measured
output ee

k , then

1. compute the input ũk+1 from STEP ONE of Switching Algorithm 11.2. Using the
underlying representation,

ũk+1 = uk + ε−2G∗
e(I + ε−2GeG∗

e)
−1ee

k = uk + Δuk+1, (11.52)

Δk+1 is identical to the input generated in one step of NOILC Algorithm 9.1 with
initial input uk = 0, zero initial conditions and reference signal re = ee

k .
2. Next undertake STEP TWO using the model G1 to evaluate the input uk+1 for

iteration k + 1. This produces the input uk+1 which has an underlying represen-
tation,

uk+1 = ũk+1 + ε−2
1 G∗

1(zk − zk+1)

= uk + (I + ε−2
1 G∗

1G1)
−1ε−2G∗

e(I + ε−2GeG∗
e)

−1ee
k .

(11.53)

If the plant can be described by a model UGe with left multiplicative perturbation
U : Ye → Ye, then, applying this input to the plant indicates that the plant error
evolution is described by

ee
k+1 = (I − U(I − L1)) ee

k, for k ≥ 0. (11.54)

The algebraic similarities with the analysis of Sect. 10.7.6 are apparent. In particular,
the subspace decomposition

Ye = ker[G∗
e ] ⊕ R[UGe] (11.55)

is seen to be desirable and can be guaranteed using Theorem 9.13 with G replaced
by Ge. Also, as ker[I − L1] = ker[G∗

e ], any component of ee
0 that lies in ker[G∗

e ]
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remains unchanged from iteration to iteration. The evolution of the error lies therefore
inR[UGe].

The effect of the auxiliary optimization step is that two additional alternative
topologies onR[UGe] are required for the following robustness analysis. These are
defined by the inner products,

〈ye, we〉0 = 〈ye, Ψ1we〉Ye and 〈ye, we〉1 = 〈ye, Ψ1(I − L1)w
e〉Ye . (11.56)

and associated norms ‖ · ‖0 and ‖ · ‖1. The norm ‖ · ‖0 is topologically equivalent to
‖·‖Ye . Using the inner product 〈·, ·〉0 inYe, Theorem 9.13 indicates that the subspace
decomposition is guaranteed if, for some ε20 > 0,

Ψ1U + U∗Ψ1 ≥ ε20Ψ1. (11.57)

Robustness is then defined as the requirement that the error sequence has the property
that, whenever ee

0 ∈ R[UGe], the error norm ‖ee
k‖1 reduces from iteration to iteration

despite the presence of the modelling error U. That is,

(Robust Monotonicity) ‖ek+1‖1 < ‖ek‖1, for all k ≥ 0. (11.58)

Supposing that ee
0 ∈ R[UGe], the condition ‖ee

1‖21 < ‖ee
0‖21 reduces, after a little

algebraic manipulation and using the identity Ψ1(I − L1) = (I − L1)
∗Ψ1, to the

inequality, with respect to the inner product 〈·, ·〉Ye ,

Ψ1U + U∗Ψ1 > U∗Ψ1(I − L1)U on the subspace (I − L1)R[UGe]. (11.59)

This condition can be simplified by noting that (I − L1)R[UGe] ⊂ R[Ge] and
replacing it with the condition given in the following Theorem,

Theorem 11.8 (Robustness of the Auxiliary Optimization Switching Algorithm)
The subspace decomposition Ye = ker[G∗

e ] ⊕ R[UGe] holds true and, in the pres-
ence of the left multiplicative modelling error U, the robust monotonicity condition
‖ee

k+1‖1 < ‖ee
k‖1 for all k ≥ 0 and all ee

0 ∈ R[UGe] is guaranteed if

Ψ1U + U∗Ψ1 > U∗Ψ1(I − L1)U + ε20Ψ1 on R[Ge] for some ε20 > 0. (11.60)

Proof The proof of monotonicity follows from the previous discussion. The addi-
tion of the final term ε20Ψ1 > 0 ensures that the subspace decomposition holds as
U∗Ψ1(I − L1)U ≥ 0. �

AsΨ1 occurs in all terms, ε2 plays quite a complex role in assessing robustness. In
contrast ε1 occurs only inΨ1(I −L1) = ε−2Ψ1Ge(I +ε−2

1 G∗
1G1)

−1G∗
eΨ1 which sug-

gests that robustness increases as ε21 gets smaller. A more conservative, but simpler,
robustness condition is obtained by writing
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Ψ1(I − L1) ≤ Ψ1ε
−2GeG∗

eΨ1 ≤ Ψ1
ε−2‖G∗

e‖2
(1 + ε−2‖G∗

e‖2)
(11.61)

Using this bound, a sufficient condition for monotonic robustness is hence that

Ψ1U + U∗Ψ1 > βU∗Ψ1U + ε20Ψ1 on R[Ge]
with β = ε−2‖G∗

e‖2
(1+ε−2‖G∗

e‖2) .
(11.62)

Regarding U as an operator onR[Ge] into Ye, this is just ‖I − βU‖0 ≤ 1− βε20 or,
more precisely,

Theorem 11.9 (A Norm-based Robustness Condition) Using the assumptions of
Theorem 11.8, robust monotonicity is guaranteed in the presence of the left multi-
plicative modelling error U if

‖I − βU‖0 < 1 on R[Ge] (a Robust Monotonicity Condition), (11.63)

the induced operator norm being computed in the topology defined by the inner
product 〈·, ·〉0 on R[Ge]. A sufficient condition for this to be true is that

‖I − βU‖0 < 1 on Ye (another Robust Monotonicity Condition), (11.64)

the induced operator norm being computed in the topology defined by the inner
product 〈·, ·〉0 on Ye. These two conditions coincide if R[Ge] is dense in Ye.

In conclusion, the switching algorithm has a degree of robustness as expressed by
the inequality of equation (11.63) which states, in simple terms, that U should not
differ too much from the identity. This expression is expressed in the alternative
topology and has a formal similarity to the robustness conditions for the Inverse
Model Algorithm of Chap.6 and for the Inverse Auxiliary Optimization Algorithm
of Sect. 11.2. The norm of I − βU is however computed in the topology induced by
〈·, ·〉0 for the restriction of I −βU toR[Ge], the computation of which is a non-trivial
task even when R[Ge] = Ye. Note that its value depends, via Ψ1, not only on the
plant model Ge but also on the value of the weight parameter ε2. This is most easily
expressed in the case when Ye = R[Ge] by noting that,

supye �=0

( 〈(I−βU)ye,Ψ1(I−βU)ye〉Ye〈ye,Ψ1ye〉Ye

)

≤ (1 + ε−2‖G∗
e‖2) supye �=0

( 〈(I−βU)ye,(I−βU)ye〉Ye〈ye,ye〉Ye

)
.

(11.65)

Hence, expressed in terms of the original topology induced by 〈·, ·〉Ye , a sufficient
condition for Eq. (11.63) to hold is that

‖I − βU‖ <

(
1

(1 + ε−2‖G∗
e‖2)

)0.5

. (11.66)
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This expression is likely to be highly conservative but it does suggest that robustness
reduces substantially as ε becomes small as robustness depends on the proximity of
U to the identity I . For example, if Ge = G, Ye = Y (with inherited inner products)
and the plant is a linear, discrete time, multi-input, single output state space model
S(A, B, C, D), then U can be characterized by a discrete transfer function U(z). In
this case, the condition becomes, assuming that U(z) is stable,

| 1
β

− U(z)| <

(
1

β

) (
1

(1 + ε−2‖G∗
e‖2)

)0.5

for |z| = 1, (11.67)

where ‖G∗
e‖ = ‖Ge‖ can be replaced by the H∞ norm of the transfer function matrix

of G, namely
‖G(z)‖∞ = sup

|z|=1
|G(z)R−1GT (z−1)Q|. (11.68)

where Q and R are the weights in the inner products in Y and U respectively. The
graphical interpretation of this condition is thatU(z) lies, when |z| = 1, in the interior

of a circle of centre β−1 and radius β−1
(

1
(1+ε−2‖G∗

e‖2)
)0.5

< β−1. The reader should

verify that this circle contains the point (1, 0) representing the zero error case U = I .

11.5 The Switching Algorithm When GeG∗
e Is Invertible

The advantages of Switching Algorithm 11.2 include the facts that Ye can be finite
or infinite dimensional and few assumptions are made about properties of Ge. The
algorithm requires two applications of NOILC algorithms on each iteration. This
short section explores the idea that this requirement can be removed if GeG∗

e has a
computable bounded inverse. This assumption includes some infinite dimensional
cases and all finite dimensional cases and immediately yields the consequence that
ker[G∗

e ] = {0} andYe = R[Ge]. The computation of the inverse is simpler and more
reliable whenYe is finite dimensional and of “small” dimension. Such cases include,
for example, the Intermediate Point NOILC Algorithm 10.4 for state space systems
and its discrete time equivalent. The following algorithm definition and discussion
follows a similar structure to that of previous sections. Indeed, the reader will note
that the analysis is almost identical in many places, differing mainly in some of the
operator and parameter bounds.

Algorithm 11.3 (A Simplified Switching Algorithmwhen GeG∗
e is Invertible) With

the notation of previous sections, suppose that GeG∗
e has a bounded inverse and that

it has been computed. Suppose also that the initial input u0 ∈ U is given and that the
associated z0 and error ee

0 = re − ye
0 has been computed/measured. Each iteration

with index k + 1 then consists of TWO steps:

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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STEP ONE: Given the input uk , compute (off-line) the input ũk+1 as as an input that
tracks re precisely and solves the problem

ũk+1 = arg min
u∈U

{ ‖u − uk‖2U : subject to re = Geu + de }. (11.69)

That is, use the data (uk, ee
k) to compute the “intermediate” input signal

ũk+1 = uk + G∗
e(GeG∗

e)
−1ee

k where ee
k = re − ye

k . (11.70)

STEP TWO: Compute the signal zk associated with uk and use (off-line or on-line)
NOILC techniques to compute the control signal uk+1 as the control signal that
minimizes

JZ (u, zk, ũk+1) = ‖zk − z‖2Z + ‖u − ũk+1‖2U (11.71)

subject to the auxiliary dynamical constraint z = G1u + d1. That is,

uk+1 = ũk+1 + G∗
1 (zk − zk+1) . (11.72)

This algorithm has a very similar interpretation to that of Algorithm 11.2. It is linked
to that algorithm in a formal mathematical sense by the replacement of the factor
ε−2Ψ1 = ε−2(I + ε−2GeG∗

e)
−1 in the expression for ũk+1 by its limit (GeG∗

e)
−1 as

ε → 0. Alternatively, it can be seen as the construction of ũk+1 by setting ε = 1 and
defining Ψ1 = (GeG∗

e)
−1. Using this simple substitution, the algorithm evolution is

described by the familiar formula

uk+1 = uk + (I + G∗
1G1)

−1G∗
eΨ1ee

k, and ee
k+1 = L1ee

k, k ≥ 0,
with L1 = I − Ge(I + G∗

1G1)
−1G∗

eΨ1 and Ψ1 = (GeG∗
e)

−1.
(11.73)

The operator L1 is self-adjoint in the alternative topology defined by the inner product
〈ye, we〉0 = 〈ye, (GeG∗

e)
−1we〉Ye and, with respect to this inner product,

0 ≤ L1 ≤ ‖G1‖2
1 + ‖G1‖2 I < I, (11.74)

as Ψ1 (L1 − I) = −Ψ1Ge(I + G∗
1G1)

−1G∗
eΨ1 gives

Ψ1 (L1 − I) ≤ − 1

1 + ‖G1‖2Ψ1GeG∗
eΨ1 = − 1

1 + ‖G1‖2Ψ1. (11.75)

As a consequence, its induced norm ‖L1‖0 < 1 and its spectral radius r(L1) < 1. The
convergence of the algorithm is then guaranteed with the monotonicity condition

‖ee
k+1‖0 < ‖ee

k‖0, for all k ≥ 0, and lim
k→∞ ee

k = lim
k→∞ Lk

1ee
0 = 0. (11.76)
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The input sequence satisfies the condition

uk+1 − u0 = (I + G∗
1G1)

−1G∗
eΨ1

∑k
j=0 ee

j = (I + G∗
1G1)

−1G∗
eΨ1

∑k
j=0 Lj

1ee
0

= (I + G∗
1G1)

−1G∗
eΨ1(I − L1)

−1
(

I − Lk+1
1

)
ee
0

= (I + G∗
1G1)

−1G∗
e(Ge(I + G∗

1G1)
−1G∗

e)
−1

(
I − Lk+1

1

)
ee
0

(11.77)

where the inverse exists and is bounded as Ge(I + G∗
1G1)

−1G∗
e ≥ (1 + ‖G1‖2)−1

GeG∗
e . As a consequence, the following limits exist

limk→∞ uk = u∞ = u0 + (I + G∗
1G1)

−1G∗
e(Ge(I + G∗

1G1)
−1G∗

e)
−1ee

0
limk→∞ zk = z∞ = G1u∞ + d1

(11.78)

Application of Theorem 11.1 can now be used to prove that Algorithm 11.3 hence
has the desired properties of convergence to a solution of the auxiliary optimization
problem. The computations are significantly simplified in STEP ONE and, in terms
of analysis, the techniques of Sect. 11.3 can be used by the simple substitution of
ε = 1 and replacing Ψ1 by (GeG∗

e)
−1. However, the error norm sequence is not

necessarily monotonic in the norm ‖ · ‖Ye but is monotonic in the norm ‖ · ‖0.
A consideration of the robustness of the algorithm (in the presence of a left multi-

plicative modelling error U) has the same general form as that in Sect. 11.3 but there
are some changes. The general condition for monotonic robustness in the topology
defined by the inner product 〈ye, we〉1 = 〈ye, Ψ1(I − L1)we〉Ye is that, for some
ε20 > 0,

Ψ1U + U∗Ψ > U∗Ψ1(I − L1)U + ε20I on Ye (11.79)

but the change in the form of Ψ1 and the inequality Ψ1(I − L1) ≤ Ψ1 obtained by
removing G1 from the expression implies that the condition reduces to

‖I − U‖0 < 1 and hence r
(
Ψ −1
1 (I − U∗)Ψ1(I − U)

)
< 1 (11.80)

which are similar formulae to those obtained for the Switching Algorithm 11.2. Two
changes of note are, in particular, that

1. the parameter β = 1 in this case and,
2. in terms of the norms in the original topology in Ye, the robustness condition is

satisfied if the induced operator norm ‖I − U‖ is strictly less than the square root
of the ratio of the minimum and maximum eigenvalues of GeG∗

e .
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11.6 Discussion and Further Reading

The idea of adding auxiliary optimization objectives was introduced by the author
and his co-workers [41] and an extensive theoretical analysis is presented in [90, 91]
with the results verified by laboratory experimentation. In these references, it was
assumed that Ye is finite dimensional. The presentation in this chapter has removed
this assumption and hence extended the range of applications considerably. The
robustness analysis provided for switching algorithms is also new to the literature.

For presentational purposes, some topics have been omitted and the focus has
concentrated on the demonstration of the relevant properties of what is seen as the
case with the greatest relevance to practice. The additional properties discussed in
the references include

1. The possibility [90] of enhancing STEP ONE of Switching Algorithm 11.2 to
include k0 ≥ 1 “inner iterations” of NOILC Algorithm 9.1 from the starting
data uk . The benefits of this increase in algorithm complexity have not yet been
demonstrated. Note, however, that as k0 → ∞ Theorem 9.3 and its consequences
indicate that this step computes an input that tracks re exactly and minimizes
‖u − uk‖2U which is exactly STEP ONE of Algorithm 11.3. It follows that the
algorithm of Sect. 11.5 can be regarded as the special case of this more general
algorithm with the choice of k0 = ∞.

2. The computation [91] of an appropriate right inverse for the Inverse
Algorithm 11.1 when the auxiliary system G1 is generated by a linear, discrete
time, state space model S(A1, B1, C1).

3. For the Inverse Model Algorithm 11.1, two additional design concerns are
addressed in [91], namely

a. The effects of zero-mean, additive, output noise. Noise prevents convergence
to zero in practice but, in a statistical sense, tends to drive initial errors system-
atically to smaller values. The asymptotic magnitudes of the norms is related
to the covariance matrix of the noise.

b. Similar techniques can be used to produce a statistical analysis of the effects
of random variations in the initial condition xk(0) on each iteration. Again,
this implementation issue does not prevent useful convergence to errors with
magnitude related to the co-variance matrix describing these variations.

A common feature of the approaches to analysis is the use of modified inner product
topologies in Ye to study monotonic convergence of errors.

1. The Hilbert space structure is retained but the inner product 〈·, ·〉Ye is replaced
by a topologically equivalent description using the inner product 〈ye, we〉0 =
〈ye, Ψ1we〉Ye and the associated induced norm. The form of Ψ1 depends on the
algorithm considered but its effect is to ensure that L1 is self adjoint, positive
and <I in the new topology. This proves monotonicity of {‖ek‖0}k≥0 but does
not, in general, imply that the norm sequence {‖ek‖Ye}k≥0 is also monotonic.
Boundedness is however proved as ee

k → 0 as k → ∞.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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2. For robustness studies, yet another modified topology has been introduced using
the inner product 〈ye, we〉1 = 〈ye, Ψ1(I −L1)we〉Ye on the subspaceR[Ge] ofYe.
The conditions for robust monotonicity are derived in this topology. The approach
makes it possible to prove robust monotonicity of the norm sequence {‖ek‖1}k≥0
but, again, this does not, in general, imply that the norm sequence {‖ek‖Ye}k≥0 is
also monotonic.

The reader should note that the ideas of incorporating auxiliary optimization objec-
tives into NOILC relies only on NOILC concepts and hence applies quite generally
to, for example, Intermediate Point,Multi-rate, Predictive andMulti-taskAlgorithms
with or without initial condition variation. The realizations of the algorithm in each
area of application depends solely on the form of Ge and its adjoint operator G∗

e .
The choice of inner products inU and Ye does not affect the reality of convergence
but does influence the nature of the convergence including the rate of convergence.
For state space systems, this issue is represented by the choice of Q, R and QZ . The
chapter has indicated the trends as their “values” increase or decrease and has linked
the effects to the consequent operator norms ‖G∗

e‖2. This still needs decisions to be
made at the algorithm design stage and may be problematic, particularly in the case
of MIMO systems when these weights are matrix valued.

Although possessing considerable generality, the material in the chapter has not
addressed fully many questions of interest including

1. The issue of robustness in the presence of right multiplicative modelling errors.
2. The further practical development of the links to the Intermediate Point NOILC

Problem (see Sects. 11.3.5 and 10.5 and the followingmaterial) obtained by taking
G1 = G and choosing u0 and y0 to suit the objectives of the application.

3. The real benefits of choosing G1 = Ge in practice. This intriguing possibility
provides a mechanism for shaping of the eigenvalues of the algorithm operator
L1 and hence influencing the nature and form of the convergence using NOILC
computations alone.

4. The choice of auxiliary variable and JZ may arise from physical considerations
but using spectral factorization methods to write

GT
1 (z−1)QZ G1(z) + ε21R = FT (z−1)RF(z), (11.81)

where F(z) is �×�, asymptotically stable and minimum-phase, links the criterion
JZ to the squared normof the filtered inputF(u − u0) inU . Conversely, choosing
F(z) and using it to construct G1 provides a useful way of influencing frequency
content in the converged input.

5. The use of the feedback form of algorithm implementation requires the measure-
ment of the state vector x(t) and/or z(t). In practice, this may be done using a state
observer based on a model. Issues of estimation errors and robustness naturally
arise in such realizations and need further research.

http://dx.doi.org/10.1007/978-1-4471-6772-3_10


346 11 Iteration and Auxiliary Optimization

This chapter concludes the discussion of the optimization paradigm for linear
systems based on norm-optimal computations. In many ways, it represents a robust,
benchmark solution to the problemof IterativeLearningControl as it has considerable
generality and, by careful problem specification, can address many issues that relate
to tasks seen in many applications.



Chapter 12
Iteration as Successive Projection

The material of the preceding chapters has provided a benchmark set of algorithms
for Iterative Control and supported those algorithms using convergence analysis and
robustness criteria together with insights into the choice and influence of parameters
available to the design engineer. The use of an optimization paradigm has permitted
a quite general analysis based on an operator description of systems dynamics and
uses the geometry induced in Hilbert space by inner product and norm descriptions.
As presented, it has a degree of completeness but it does leave open questions that
need further research. Some of these include issues of successful Iterative Control in
the presence of input and output constraints, situations that can be approached using
the material and algorithms in this chapter.

12.1 Convergence Versus Proximity

This chapter modifies the NOILC methodology using a change in the interpretation
of the objectives of Iterative Control. To illustrate the ideas, NOILC Algorithm 9.1
is considered initially. More precisely, the operator descriptions and Hilbert space
structures of the NOILC algorithm are retained and the objective of Iterative Control
is seen as finding an input u associated with the intersection of TWO sets in the
product space H = Y × U , namely

System Dynamic Relationships − SD = { (e, u) : e = r − y , y = Gu + d }
Tracking Objective Solutions − ST = { (e, u) : e = 0 }

(12.1)

Successful Iterative Algorithms can be seen as algorithms with both off-line and
experimental components that generate sequences {(ek, uk)}k≥0 ∈ Y × U that,
ideally, converge to a point in the intersection SD ∩ ST .
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To use this idea in algorithm development, it is necessary to assume that SD ∩ST is
non-empty and hence that there exists at least one point (0, u) that solves the tracking
control problem for the system considered. The topology in Y × U is defined by
the inner product and norm(squared)

〈(e, u), (w, v)〉Y ×U = 〈e, w〉Y + ε2〈u, v〉U
‖(e, u)‖2Y ×U = ‖e‖2Y + ε2‖u‖2U

(12.2)

where the weight parameter ε2 > 0 is included to link the presentation to that of
NOILC in Chap.9. Note that convergence of an algorithm can be associated with the
distance between iterates (ek, uk) and the sets SD and/or ST . More precisely,

1. any sequence {ek, uk)}k≥0 in SD that satisfies the system dynamic equations and
also has the property that it is approaches ST as k → ∞, that is

lim
k→∞ inf

(0,u)∈ST
‖(0, u) − (ek, uk)‖Y ×U = 0, (12.3)

will satisfy the tracking objective e = 0 arbitrarily closely and limk→∞ ek = 0.

Proof Choosing a sequence {(0, ũk)}k≥0 in ST that is sufficiently close to (ek, uk)

to ensure that that limk→∞ ‖(0, ũk) − (ek, uk)‖Y ×U = 0 leads to the consequence
that ‖(ek, uk) − (0, ũk)‖2 = ‖ek‖2 + ‖uk − ũk‖2 ≥ ‖ek‖2 becomes arbitrarily
small. �

2. Similarly, consider any sequence {0, uk)}k≥0 in ST that has the property that it is
approaches SD as k → ∞, that is

lim
k→∞ inf

(e,u)∈SD
‖(0, uk) − (e, u)‖Y ×U = 0. (12.4)

Then any convergent subsequence has a limit input u∞ satisfying the tracking
objective e = 0 exactly.

Convergence is therefore described in terms of the “proximity” of iterates (ek, uk) to
the sets SD and ST . Iterative Control cannot, in practice, realize the infinite number
of iterations needed for exact tracking so the best that can be expected is arbitrarily
accurate tracking followed by algorithm termination when the desired accuracy is
achieved. In this sense, ILC algorithms can be seen as being Proximity Algorithms,
a concept that is illustrated by the following definition in the context of NOILC.

Definition 12.1 (Proximity Algorithms in Iterative Control) Suppose that SD ∩ST is
non-empty. Suppose that the solution of an IterativeControl problem is defined by any
point in SD∩ST in the product Hilbert spaceH = Y ×U . Then an iterative algorithm
generating a sequence of pairs {(ek, uk)}k≥0 is said to be a proximity algorithm if it
has the property that

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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lim
k→∞ inf

(e,u)∈SD
‖(e, u) − (0, uk)‖Y ×U = lim

k→∞ inf
(0,u)∈ST

‖(0, u) − (ek, uk)‖Y ×U = 0.

(12.5)

Theorem 12.1 (NOILC is a Convergent Proximity Algorithm) The Norm Optimal
Iterative Learning Control Algorithm 9.1 is a Proximity Algorithm if e0 ∈ R[G]. In
particular, the algorithm can be described by the two steps, for all k ≥ 0,

STEP ONE : (0, uk) = argmin(0,u)∈ST ‖(0, u) − (ek, uk)‖Y ×U
STEP T W O : (ek+1, uk+1) = argmin(e,u)∈SD ‖(e, u) − (0, uk)‖Y ×U

(12.6)

Proof The assumption that e0 ∈ R[G] implies that r − d ∈ R[G]. It therefore
ensures (Theorems 9.2 and 9.3) that the error converges to zero, the input signal
sequence converges and SD ∩ ST is non-empty. The remainder of the proof is left as
an exercise for the reader who will note that STEP ONE follows from the definitions
of norms and needs no computation. STEPTWO is theNOILC optimization problem
defining input updates as ‖(e, u) − (0, uk)‖2Y ×U = J(u, uk). �

These observations naturally lead to a questioning of the focus on convergence
in algorithm construction and replaces it with the objective of ensuring proximity
properties of the sequence {(ek, uk)}k≥0. In what follows, these ideas are generalized
to create classes of algorithms that have similar proximity properties. The approach
generates new algorithms and make it possible to include input and/or output/error
signal constraints in the iteration process. It also suggestsmechanisms for introducing
acceleration of convergence (Chap. 13).

12.2 Successive Projection and Proximity Algorithms

This section uses the two step structure of Theorem 12.1 to motivate a Successive
Projection approach relevant to Iterative Learning Control. More precisely, Iterative
Algorithms in a real Hilbert space H are regarded as algorithms that aim to find any
point x ∈ ⋂NS

j=1 Sj where each set Sj ⊂ H , 1 ≤ j ≤ NS is both closed and convex.
The number of sets NS is assumed to be finite. In terms of the discussion and notation
of Sect. 12.1, NS = 2 and S1 = SD with S2 = ST .

Algorithm 12.1 (Successive Projection in Hilbert Space) Suppose that the sets
{Sj}1≤j≤NS are arranged to form an infinite sequence {S̃p}p≥1 within which each
and every set Sj occurs an infinite number of times. Then a successive projection

algorithm for the construction of a point x ∈ ⋂NS
j=1 is defined by choosing a start-

ing point s0 ∈ H and constructing the sequence {sj}j≥0 with sj ∈ S̃j , j ≥ 1 by
solving, recursively, the infinite number of (minimum distance or minimum norm)
optimization problems

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_13
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sj+1 = arg min
s∈S̃j+1

‖s − sj‖H , for j ≥ 0. (12.7)

For example, for NOILC Theorem 12.1, given a starting condition s0 = (0, u0), the
sequence {S̃p}p≥1 is simply the alternating sequence SD, ST , SD, ST , SD, ST . . .which
generates the iterates s1 = (e1, u1), s2 = (0, u1), s3 = (e2, u2), s4 = (0, u2), . . . or,
more generally

s2k+1 = (ek+1, uk+1) and s2k = (0, uk) , k ≥ 0
(Successive Projection and NOILC Iterates).

(12.8)

The properties of Algorithm 12.1 are derived as follows,

Theorem 12.2 (Asymptotic Properties of Algorithm 12.1) Using the notation given
above, suppose that

⋂NS
j=1 Sj is non-empty. Then, for any point x ∈ ⋂NS

j=1 Sj , Algo-
rithm 12.1 has the properties that

‖x − sj−1‖2H ≥ ‖x − sj‖2H + ‖sj − sj−1‖2H ≥ ‖x − sj‖2H , for all j ≥ 1,

and ‖x − s0‖2H ≥ ∑∞
p=1 ‖sp − sp−1‖2H .

(12.9)
As a consequence,

lim
j→∞ ‖sj+1 − sj‖2H = 0. (12.10)

Proof The proof uses Theorem 2.16 which implies that, for all j ≥ 1 , 〈s − sj, sj −
sj−1〉H ≥ 0 for all s ∈ S̃j. Choosing s = x andwriting x−sj−1 = (x−sj)+(sj−sj−1) ,

‖x − sj−1‖2H = ‖x − sj‖2H + ‖sj − sj−1‖2H + 2〈x − sj, sj − sj−1〉H

≥ ‖x − sj‖2H + ‖sj − sj−1‖2H ≥ ‖x − sj‖2H .
(12.11)

Applying induction then gives

‖x − s0‖2H ≥ ‖x − sj‖2H +
j∑

p=1

‖sp − sp−1‖2H for all j ≥ 1. (12.12)

Letting j → ∞, noting that the right hand side is positive and monotonic in “j”,
proves convergence of the series and the fact that ‖sj − sj−1‖H becomes arbitrarily
small. The result is now proved. �

The result can be interpreted as stating that the sequence {sj}j≥0 gets closer to

each and every point of x ∈ ⋂NS
j=1 Sj as the iterations evolve. In addition, the iteration

difference sj − sj−1 ultimately becomes infinitesimally small. In effect, the iterates
become better and better approximations to a solution to the problem but, ultimately,
convergence rates slow.

http://dx.doi.org/10.1007/978-1-4471-6772-3_2
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In the special case of NS = 2 and choosing the sequence {S̃j}j≥1 to be of the
alternating form of either S1, S2, S1, S2, . . . or S2, S1, S2, S1, . . . immediately gives

lim
j→∞ min

s∈S1
‖s − sj‖H = lim

j→∞ min
s∈S2

‖s − sj‖H = 0 (12.13)

and hence the algorithm is a proximity algorithm in a similar sense to that stated in
Definition 12.1. That is, the iterates become arbitrarily close to both sets S1 and S2.
The case of NS = 2 has an additional property, namely,

Theorem 12.3 (Successive Projection: monotonicity properties whenNS = 2)With
the assumptions of Theorem 12.2, suppose that NS = 2 and that {S̃j}j≥1 is the
alternating sequence S1, S2, S1, S2, . . .. Then, choosing s0 ∈ H, the resultant iterates
{sj}j≥1 satisfy the additional monotonicity property,

‖sj+2 − sj+1‖H ≤ ‖sj+1 − sj‖H , for all j ≥ 1. (12.14)

Proof Suppose that sj+1 ∈ S1 then sj+2 is the nearest point in S2. Clearly sj ∈ S2 is
more distant which is precisely the statement to be proved. As the same argument
applies when sj+1 ∈ S2, the result is proved. �

An immediate application of this result is a derivation of the properties of NOILC
as a successive projection algorithm.

Theorem 12.4 (NOILC Properties Revisited) Using the notation of Theorem 12.1
to describe NOILC Algorithm 9.1 and setting SD = S1, ST = S2 with a starting point
s0 = (0, u0) ∈ S2 ⊂ H = Y × U , suppose that a solution to the tracking problem
exists and hence that S1 ∩ S2 is non-empty. Under these conditions, for all k ≥ 0,

‖ek+1‖2Y ≤ J(uk+1, uk) = ‖ek+1‖2Y + ε2‖uk+1 − uk‖2U ≤ ‖ek‖2Y (12.15)

In addition, the infinite summation
∑∞

k=0

(
J(uk+1, uk) + ‖ek+1‖2Y

)
converges so

that, both ∞∑

k=0

‖ek‖2Y < ∞ and
∞∑

k=0

‖uk+1 − uk‖2U < ∞. (12.16)

Proof The form of each sj follows from the NOILC Algorithm 9.1 as interpreted in
Theorem 12.1. The inequalities follow from the monotonicity properties in Theorem
12.3 as s2k −s2k−1 = (−ek, 0), s2k+1−s2k = (ek+1, uk+1−uk) and s2k+2−s2k+1 =
(−ek+1, 0), noting that ‖s2k+1 − s2k‖2H = J(uk+1, uk). Finally, Theorem 12.2 gives

∞∑

j=0

‖sj+1 − sj‖2H =
∞∑

k=0

(
J(uk+1, uk) + ‖ek+1‖2Y

)
< ∞ (12.17)

The result now follows from the definitions. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Note: The result re-affirms the properties of NOILC Algorithm 9.1 with a geometric
proof of properties of the error sequence, namely that the summation

∑∞
k=0 ‖ek‖2Y

is finite and hence that ek → 0 (in norm) as k → ∞.
The link between proximity, successive projection and NOILC iteration is estab-

lished above for the case of NS = 2. More generally, proximity properties are guar-
anteed in, for example, the following case, which builds on the assumptions and
outcomes of Theorem 12.2,

Theorem 12.5 (Multi-set Proximity Properties and {S̃j}j≥1) Let ND ≥ NS be given.
Suppose also that, for each index “p” in the sequence {S̃j}j≥1, the subset defined by
values p − ND ≤ j ≤ p + ND contains every set in {Sj}1≤j≤NS . Then Algorithm 12.1
is a proximity algorithm in the sense that

limj→∞ mins∈Sp‖s − sj‖H = 0, for 1 ≤ p ≤ NS

( A Multi − set Proximity Property).
(12.18)

That is, the points in the sequence {sj}j≥0 asymptotically approach every set Sj, 1 ≤
j ≤ NS.

Proof Convergence of ‖sj −sj−1‖H to zero implies that, for all δ > 0 (no matter how
small), ‖sj+1−sj‖H < δ for all large enough indices “j”. It follows that ‖sj −sp‖H <

NDδ for all large enough “p” and all “j” in the range p − ND ≤ j ≤ p + ND. This
proves that, for all large enough values of “p”, sp is distant from each Sj by less than
NDδ. The result follows as δ was chosen arbitrarily. �

The multi-set proximity property, in principle opens up an infinite number of
new algorithms simply by changing the sequencing and repetition of the {Sj}1≤j≤NS

within {S̃j}j≥1. All such algorithms will be proximity algorithms and, in principle,
the issues of convergence to a limit, the rate of convergence and the nature of that
limit will require investigation. It is useful to note that the Switching Algorithm 11.2
is one such proximity algorithm.

Theorem 12.6 (Switching Algorithm for Auxiliary Optimization Revisited) Using
the notation of Chap.11, let H = Ye × U × Z with inner product

〈(ee, u, z), (h, v, w)〉H = 〈ee, h〉Ye + ε2 (〈u, v〉U + 〈z, w〉Z ) . (12.19)

and associated induced norm ‖ · ‖H. Under these conditions, suppose that the refer-
ence signal re ∈ Ye can be created exactly by an input u ∈ U , then, defining closed
convex sets in H by

S1 = { (ee, u, z) : ee = 0 }
S2 = { (ee, u, z) : ee = re − Geu − de },
S3 = { (ee, u, z) : z = G1u + d1 }

and noting that S1 ∩ S2 ∩ S3 is non − empty,

(12.20)
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Switching Algorithm11.2 is recreated from a starting point s0 = (ee
0, u0, z0) ∈ S2∩S3

by computing sj ∈ S̃j , j ≥ 1 using the sequence

{S̃j}j≥1 = {S1, S2, S3, S1, S2, S3, S1, . . .}. (12.21)

Proof First note that the projection of s0 onto S1 generates the iterate s1 = (0, u0, z0)
by minimizing

‖(ee, u, z) − (ee
0, u0, z0)‖2 = ‖ee − ee

0‖2Y + ε2(‖u − u0‖2Y + ‖z − z0‖2Y ), (12.22)

noting that (ee, u, z) ∈ S1 requires that ee = 0 and that the minimizing values are
u = u0 and z = z0.
Next, for any k ≥ 0, STEP ONE of Algorithm 11.2 is just the projection S1 → S2

(ẽe
k+1, ũk+1, zk) = arg min

(ee,u,z)∈S2
‖(ee, u, z) − (0, uk, zk)‖2H . (12.23)

As the values of z are unconstrained in S2, this norm minimization reduces to the
choice of z = zk followed by solving the optimization problem

(ẽe
k+1, ũk+1) = arg min

(ee,u)∈Ye×U

(
‖ee‖2Ye

+ ε2‖u − uk‖2U
)

, (12.24)

subject to the dynamic constraint ee = re − Geu − de. This is then followed by the
projection S2 → S3, to give

(ẽe
k+1, uk+1, zk+1) = arg min

(ee,u,z)∈S3
‖(ee, u, z) − (ẽe

k+1, ũk+1, zk)‖2H . (12.25)

As the values of ee are unconstrained in S3, this norm minimization reduces to the
choice of ee = ẽe

k+1 followed by solving the optimization problem

(uk+1, zk+1) = arg min
(u,z)∈U ×Z

(
‖z − zk‖2Z + ‖u − ũk+1‖2U

)
, (12.26)

subject to the dynamic constraint z = G1u + d1. This is just STEPTWOofAlgorithm
11.2. Finally, projecting this iterate back onto S1 is the computation

(0, uk+1, zk+1) = arg min
(ee,u,z)∈S3

‖(ee, u, z) − (ẽe
k+1, uk+1, zk+1)‖2H . (12.27)

This forms the starting condition for the next iteration. �

The result demonstrates existence of NS > 2 sets defining some Iterative Con-
trol problems. The two sets S2 and S3 are created from the models of input-output
behaviour and auxiliary variable dynamics. Neither set (or their intersection) requires
that the tracking error is zero. The set S1 is therefore introduced to ensure that the

http://dx.doi.org/10.1007/978-1-4471-6772-3_11
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intersection S1 ∩ S2 ∩ S3 requires that ee = 0. The combined effect is to “pull”
the iterates into the position where useful control of the auxiliary variable z can be
achieved (in this case, minimization of JZ (u, u0, z0)).
Note: Using the notation (S1, S1)k0 to denote the repetition of the pair (S1, S2) k0
times or, equivalently, completing k0 iterations of NOILC Algorithm 9.1, variations
of the algorithm are easily created. They suggest the possibility of great flexibility
in applications. For example, the algorithm resulting from the sequence

{S̃j}j≥0 = { (S1, S2)
k0 , S3, (S1, S2)

k1 , S3, (S1, S2)
k3 , S3, . . . } with kj ≥ 1 , j ≥ 0,

(12.28)

is also a proximity algorithm if the integer sequence {kj}j≥0 is bounded.
In summary, the Successive Projection Algorithm 12.1 provides an alternative

viewpoint on the optimization-based algorithms described in previous chapters. It
arises from their common Hilbert space context and the interpretation of NOILC
computations as projections. The advantage of the operator-based methods used
previously is that they provide a clear link between the dynamics, the observed
properties of monotonicity, robustness and the nature of the limit. The advantage of
successive projection and the idea of proximity is that it shows the great richness of
the set of potential “new” algorithms. This is useful but, perhaps, a better proof of
the benefits of successive projection approaches lies in

1. the handling of constraints on inputs and outputs/errors,
2. the management of signal magnitudes during the iteration process,
3. the introduction of new sets to NOILC Algorithm 9.1 to add projections that can

improve or condition algorithm performance and/or
4. modifications to Algorithm 12.1 for the case of NS = 2 that provide acceleration

mechanisms.

12.3 Iterative Control with Constraints

Constraints on signal magnitude arise in many situations. Two forms of constraint
can be envisaged, namely, those that must be satisfied at all times, and those that are
desirable but not essential. For example, for input constrained problems there is

1. CASE ONE: the situation where the input signal constraints cannot be violated
for physical or safety reasons or

2. CASE TWO: situations where input signals have no formal constraints but, as
the choice of input signal producing an output exactly equal to a reference r is
non-unique, it is desirable that the iteration process asymptotically selects one
such input satisfying the constraints.

Both types of constraint can take many forms. For simplicity, the model of the
process and the notation used in the Auxiliary Optimization problem (Chap.11) is
used to provide a framework for discussion. It is assumed that all or some of the

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_11
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signals (u, y, z) (and, perhaps (ye, ee)) are required to satisfy constraints defined by
set inclusion conditions written as

u ∈ Ωu ⊂ U , y ∈ Ωy ⊂ Y , z ∈ Ωz ⊂ Z , (12.29)

where each of the sets Ω(·) is closed and convex in the relevant Hilbert space. Exam-
ples of such sets include,

Ωu = { u : ‖u‖2U ≤ Mu } ⊂ U − Limited Energy Control Requirements
Ωy = { y : ‖y‖2Y ≤ My } ⊂ Y − Limiting Output Energy
Ωz = { z : ‖z‖2Z ≤ Mz } ⊂ Z − Limited Auxiliary V ariable Magnitudes

(12.30)

where Mu, My and Mz represent permissible, desired or specified norm magnitudes.
For situations where G represents a single-input, single-output, discrete state space
model on an interval 0 ≤ t ≤ N , other examples include

Ωu = { u : |u(t)| ≤ Mu(t) , 0 ≤ t ≤ N } − Limited Input Magnitudes
Ωy = { y : |y(t)| ≤ My(t) , 0 ≤ t ≤ N } − Limiting Output Magnitudes

(12.31)
The absence of constraints is simply the case when Ω(·) is the whole space. For
example, taking Ωu = U removes any constraint on the input signal.

A suitable Iterative Algorithm for a given problem will depend on the the details
and complexities of the constraints sets. Some of these possibilities are discussed
in the following sections beginning with the simplest case of NOILC Algorithm 9.1
with added input constraints.

12.3.1 NOILC with Input Constraints

Consider the Norm Optimal Algorithm 9.1 but with the addition of input constraints
u ∈ Ωu. The following conceptual algorithm covers the case (CASE ONE) where
input constraints are due to hardware limitations and cannot be violated,

Algorithm 12.2 (NOILC with Input Constraints that must not be violated) Suppose
that the input constraint u ∈ Ωu is added to the Norm Optimal Iterative Learning
Control problem and that there exists an input u∞ ∈ Ωu such that perfect tracking
of a reference signal r is achieved. Then, a proximity algorithm for computing an
arbitrarily accurate solution of the problem starting from an initial input u0 ∈ Ωu is,
for k ≥ 0, the feedforward computation of the input to be used on iteration k + 1 by
solving the optimization problem,

uk+1 = arg min
u∈Ωu

J(u, uk) subject to e = r − Gu − d. (12.32)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The algorithm has the property that the tracking error ek = r − yk converges to zero
as k → ∞.

Proof of Algorithm Properties The analysis of the behaviour of this algorithm
uses successive projection with the sets and the alternating sequence {S̃j}j≥1 =
{S1, S2, S1, S2, S1, . . .} in H = Y × U defined by

S1 = { (e, u) : e = r − Gu − d , u ∈ Ωu } and
S2 = { (e, u) : e = 0 } (12.33)

starting with the point (0, u0) in S2. The inner product in H is

〈(e, u), (w, v)〉H = 〈e, w〉Y + ε2〈u, v〉U . (12.34)

The associated norm is defined by ‖(e, u)‖2H = ‖e‖2Y + ε2‖u‖2U . In NOILC terms,
‖(e, u) − (0, uk)‖2H = J(u, uk). The projection of (0, uk) ∈ S2 onto S1 is precisely
the minimization specified in Algorithm 12.2 and leads to the pair (ek+1, uk+1).
Projecting this back onto S2 gives (0, uk+1) which starts the next iteration with
k replaced by k + 1 . Finally, limk→∞ ek = 0 as, from Theorem 12.2, the
algorithm is a proximity algorithm with s2j−1 = (ej, uj) and s2j = (0, uj) , j ≥ 1.
Theorem 12.2, then gives ‖s2j − s2j−1‖H = ‖(0, uj) − (ej, uj)‖H = ‖ej‖Y → 0 as
k → ∞. �

Algorithm 12.2 is identical to the unconstrained version (Algorithm 9.1) but the
minimization searches only over inputs within Ωu. This normally means that, for
example, the Riccati representations and solutions for linear state space systems
cannot be used. A feedback implementation will, therefore, not be feasible, an obser-
vation that leaves only a feedforward implementation to be considered. However, a
feed forward implementations is off-line and model-based and the reader will note
that the constrained minimization of J(u, uk) then has no input from the observed
data ek generated on iteration k. The algorithm, in the form presented therefore is
“blind” to actual control performance—a situation that is unacceptable, particularly
in the presence of modelling errors.

This problem does not arise however in the case (CASE TWO) where the input
is not constrained during the iterative process but where it is required that the input
asymptotically satisfies a constraint u ∈ Ωu to an arbitrary accuracy. The following
algorithmprovides an approach to a solution and, as a by-product, provides the option
of a feedforward algorithm with inputs satisfying the constraint u ∈ Ωu, k ≥ 0.

Algorithm 12.3 (NOILC with Asymptotically Desirable Input Constraints) Using
the notation of Algorithm 12.2, suppose that a solution to the tracking problem exists
that satisfies the input constraint u ∈ Ωu but that the input signal is unconstrained
during the iteration process. Then, a proximity algorithm for computing an arbitrarily
accurate solution of the tracking problem using an input inΩu starting from an initial
input u0 ∈ Ωu is, for k ≥ 0, the repeated application of a two step process. The first
step is the computation of an input u(1)

k+1 by solving the unconstrained optimization
problem,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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u(1)
k+1 = arg min

u∈U
J(u, uk) subject to e = r − Gu − d. (12.35)

The second step replaces u(1)
k+1 by the input uk+1 obtained by solving

uk+1 = arg min
u∈Ωu

‖u − u(1)
k+1‖U . (12.36)

In particular,

1. limk→∞ ‖u(1)
k+1 − uk+1‖H = 0 and hence, for large enough values of interation

index k , u(1)
k satisfies the constraint u ∈ Ωu arbitrarily accurately.

2. The algorithm has the property that the tracking errors, resulting from the use of
either u(1)

k+1 or uk+1, converges to zero as k → ∞. This gives the user a choice
that can be made to suit the needs of the application.

3. For a feedforward implementation, off-line computation of both u(1)
k+1 and uk+1

allows either to be used on the physical plant itself. For practical purposes this
permits the user to satisfy the input constraints on every iteration. More precisely,
using the input uk ∈ Ωu on each and every iteration, the constraints are satisfied
and the full data set (ek, uk) can be used to compute u(1)

k+1 using the normal
feedforward computations for NOILC Algorithm 9.1. This provides the real link
to plant behaviour that is necessary to ensure that the algorithm responds to the
consequences of previous decisions.

4. For state space systems, the construction of u(1)
k+1 can be done either off-line (a

feedforward implementation) or as an on-line feedback implementation using
Riccati-based state feedback. The construction of uk+1 will normally be under-
taken off-line as it is typically independent of plant dynamics.

Proof of Algorithm Properties The relevant sets for the underlying successive pro-
jection algorithm are

S1 = { (e, u) : e = r − Gu − d } and
S2 = { (e, u) : e = 0 with u ∈ Ωu } = {0} × Ωu.

(12.37)

The reader can verify that the algorithm is then a successive projection algorithm
starting from s0 = (0, u0) ∈ S2 and using the sequence {S1, S2, S1, S2, S1, . . .}. The
existence of a solution ensures that S1∩S2 is nonempty so it is a proximity algorithm
with s2j = (0, uj) and s2j−1 = (e(1)

j , u(1)
j ) for j ≥ 0. The proof of convergence of the

error then follows using an analysis similar to that used above for Algorithm 12.2.
Noting that ε2‖uj − u(1)

j ‖2U ≤ ‖s2j − s2j−1‖2H → 0 and that each uj ∈ Ωu, it follows

that the input sequence {u(1)
k }k≥0 satisfies the constraints arbitrarily accurately if k is

large. �
The setΩu is typically independent of the dynamics and can be computed off-line.

For SISO state space application, examples include the formula-based solutions

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Ωu = { u : |u(t)| ≤ Mu} gives uk+1(t) =
⎛

⎝
Mu if u(1)(t) > Mu,

u(1)(t) if |u(1)(t)| ≤ Mu

−Mu if u(1)(t) < −Mu,

⎞

⎠

Ωu = { u : ‖u‖U ≤ Mu } gives uk+1(t) = Mu
u(1)

k+1(t)

‖u(1)
k+1‖U

.

(12.38)
Finally, note that, as the operator G can take many forms, the discussion above
also applies to other algorithms that have the original NOILC structure including
Multi-task Algorithms and Intermediate Point Algorithms. In addition, the addition
of initial conditions as “control” variables is included by a suitable definition of u
and Ωu.

12.3.2 General Analysis

The example of the previous section illustrates the possibilities implicit in successive
projection. In what follows, it is shown that NOILC concepts are fundamental to the
solution of a variety of constrained tracking problems in a way suitable for Iterative
Learning Control. The model of Sect. 11.1 is used with dynamics represented by

y = Gu + d, ye = Geu + de, z = G1u + d1 with
y ∈ Y , ye ∈ Ye , z ∈ Z and u ∈ U .

(12.39)

The approach places the points (ye, y, u, z) in the real Hilbert space H = Ye ×Y ×
U ×Z . The tracking objective is to track a a specified signal re ∈ Ye using an input
u ∈ Ωu that generates a trajectory with zero tracking error

ee = re − ye = 0 , with associated signals y ∈ Ωy and z ∈ Ωz. (12.40)

Iterative algorithms therefore generate a sequence of signals {(ee
k, yk, uk, zk)}k≥0

with the objective of asymptotically ensuring that (i) the tracking error ee = re − ye

approaches zero and that (ii) the signals (y, u, z) approach Ωy ×Ωu ×Ωz . As in the
previous section, two cases are considered,

1. CASE ONE: the situation where the input signal constraints cannot be violated
for physical or safety reasons or

2. CASE TWO: situations where the choice of input signal producing an output
exactly equal to a reference r is non-unique. The role of constraints is purely to
reflect a desire to converge to one such input that satisfies the constraints.

The inner product in H is given, with ε2 > 0 and ε21 > 0, by

〈(ye, y, u, z), (he, w, v, ψ)〉H = 〈ye, he〉Ye
+ ε2ε−2

1 〈y, w〉Y + ε2
[〈u, v〉U + 〈z, ψ〉Z

]

(12.41)

with the associated norm ‖(ye, y, u, z)‖H = √〈(ye, y, u, z), (ye, y, u, z)〉H .

http://dx.doi.org/10.1007/978-1-4471-6772-3_11
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The following conceptual algorithm is an approach to case one. It is a successive
projection algorithm based on the following closed, convex sets in H,

S1 = { (ee, y, u, z) : ee = re − Geu − de , u ∈ Ωu }
S2 = { (ee, y, u, z) : y = Gu + d , y ∈ Ωy , u ∈ Ωu }
S3 = { (ee, y, u, z) : z = G1u + d1 , z ∈ Ωz , u ∈ Ωu }
S4 = { (ee, y, u, z) : ee = 0 }

(12.42)

Sets S1, S2 and S3 describe the three sets of dynamics and associated constraints
whilst S4 “pulls” them together by requiring that the tracking error is zero. The sets
intersect if, and only if, a solution to the problem exists.

Algorithm 12.4 (A Conceptual Algorithm with Inviolable Constraints) Suppose that
S1 ∩ S2 ∩ S3 ∩ S4 is non-empty. Let the data initializing the algorithm be s0 =
(0, y0, u0, z0) ∈ S4 and, for each k ≥ 0, follow the four step process

1. Given the data (0, yk, uk, zk) ∈ S4, construct an input u
(1)
k+1 and associated tracking

error ee
k+1 by solving (on-line or off-line) the constrained optimization problem,

(ee
k+1, u(1)

k+1) = argminu∈Ωu

(
‖ee‖2Ye

+ ε2‖u − uk‖2U
)

subject to ee = re − Geu − de.
(12.43)

This step is exactly the projection of (0, yk, uk, zk) ∈ S4 onto S1 to produce the
data (ee

k+1, yk, u(1)
k+1, zk).

2. Given the data (ee
k+1, yk, u(1)

k+1, zk) ∈ S1, construct an input u(2)
k+1 and associated

output yk+1 by solving (on-line or off-line) the constrained optimization problem,

(yk+1, u(2)
k+1) = argminu∈Ωu , y∈Ωy

(
‖y − yk‖2Ye

+ ε21‖u − u(1)
k+1‖2U

)

subject to y = Gu + d.

(12.44)
This step is exactly the projection of (ee

k+1, yk, u(1)
k+1, zk) ∈ S1 onto S2 to produce

the data (ee
k+1, yk+1, u(2)

k+1, zk).
3. Next compute the input uk+1 and associated auxiliary variable zk+1 by solving

the constrained optimization problem

(zk+1, uk+1) = argminu∈Ωu , z∈Ωz

(
‖zk − z‖2Z + ‖u − u(2)

k+1‖2U
)

subject to z = G1u + d1.
(12.45)

This step is exactly the projection of (ee
k+1, yk+1, u(2)

k+1, zk) ∈ S2 onto S3 to
produce the data (ee

k+1, yk+1, uk+1, zk+1) .
4. Finally, the initial data for the next iteration is the point (0, yk+1, uk+1, zk+1)

which is just the projection of (ee
k+1, yk+1, uk+1, zk+1) ∈ S3 onto S4.
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In particular,

1. by construction, each triple (yk, uk, zk) satisfies the constraints and
2. the tracking errors {ee

k}k≥0 converge to zero as k → ∞.

Proof of Algorithm Properties In terms of the notation of successive projection,
s4j = (0, yj, uj, zj), s4j+1 = (ee

j+1, yj, u(1)
j+1, zj), s4j+2 = (ee

j+1, yj+1, u(2)
j+1, zj),

s4j+3 = (ee
j+1, yj+1, uj+1, zj+1). In particular ‖ee

j+1‖2Ye
= ‖s4(j+1) − s4j+3‖2H and

convergence of the tracking error follows as Theorem 12.2 shows that limj→∞
‖sj+1 − sj‖H = 0. �

Clearly, because the constraints are embedded within each successive projec-
tion, the computational problems met in solving constrained optimization problems
off-line are typically very challenging. In addition, the algorithm suffers from the
problem noted in Sect. 12.3.1, namely that, using state space systems as a basis for
the discussion,

1. the solution typically cannot be implemented using on-line feedbackmechanisms.
2. In addition, feedforward implementations are also problematic as there is no

obvious mechanism for embedding data from iteration k into the computations
for iteration k +1. The algorithm is essentially off-line, model-based and “blind”
to plant behaviours.

One way to achieve a resolution of the problem is to note that the sets of acceptable
solutions is precisely S1∩S2∩S3∩S4 and that any redefinition of the component sets
that leaves this intersection unchanged can also be used as the basis of an algorithm.
This opportunity offers many choices, particularly for the case where, for example,
the input is unconstrained during the iterations but the desirable outcome is that u
approaches Ωu arbitrarily closely in the limit. Some examples of this idea can be
stated as modifications to Algorithm 12.4. For example,

Algorithm 12.5 (General Tracking with Asymptotic Input Constraints) Using the
notation of Algorithm 12.4, suppose that the input constraints in S1 are removed and
transferred to S4, and S1 and S4 are re-defined to become

S1 = { (ee, y, u, z) : ee = re − Geu − de } (Unconstrained Dynamics)
S4 = { (ee, y, u, z) : ee = 0 , u ∈ Ωu}.

(12.46)
Then S1 ∩ S2 ∩ S3 ∩ S4 is unchanged and Algorithm 12.4, with STEP ONE replaced
by the unconstrained optimization

STEP ONE : (ee
k+1, u(1)

k+1) = argminu∈U
(
‖ee‖2Ye

+ ε2‖u − uk‖2U
)

subject to ee = re − Geu − de,

(12.47)
is still a proximity algorithm that retains the properties of Algorithm 12.4.



12.3 Iterative Control with Constraints 361

Note: The new version of STEP ONE is simply one iteration of NOILC Algorithm
9.1. The absence of input constraints in S1 permits, using the state space system as an
example for discussion, the implementation of STEP ONE either in a feedback form
(using the data uk and state feedback) or in a feedforward form (using the observed
plant data (ee

k, uk)).

The modification described provides a link between the iteration process and
actual, observed plant data but still requires the solution of constrained optimization
problems in STEPS 2 and 3 (presumed to be off-line). This may be acceptable for
a given application but the reader will note that the constraint transfer process used
in Algorithm 12.5 could also be applied to one or both of these steps. For example,
if it is decided that all dynamic optimizations are to be unconstrained, the algorithm
becomes

Algorithm 12.6 (Decoupled Constraints and Dynamic Optimization) Using the
notation of Algorithm 12.4, suppose that the constraints on (y, u, z) are removed
from the sets S1, S2 and S3 and transferred to S4, to give

S4 = { (ee, y, u, z) : ee = 0 , y ∈ Ωy , u ∈ Ωu , z ∈ Ωz } (12.48)

Then S1∩S2∩S3∩S4 is unchanged andAlgorithm 12.4, with STEPSONE, TWOand
THREE replaced by unconstrained versions of the optimization problems mapping
data as follows

STEP ONE : (0, yk, uk, zk) → (ee
k+1, yk, u(1)

k+1, zk)

STEP T W O : (ee
k+1, yk, u(1)

k+1, zk) → (ee
k+1, y(1)

k+1, u(2)
k+1, zk)

STEP THREE : (ee
k+1, y(1)

k+1, u(2)
k+1, zk) → (ee

k+1, y(1)
k+1, u(3)

k+1, z(1)
k+1)

(12.49)

whilst STEP FOUR becomes the generation of (0, yk+1, uk+1, zk+1) from the opti-
mizations

yk+1 = argminy∈Ωy ‖y − y(1)
k+1‖Y , uk+1 = argminu∈Ωu ‖u − u(3)

k+1‖U
and zk+1 = argminz∈Ωz ‖z − z(1)

k+1‖Z ,

(12.50)
yields a proximity algorithm that retains the properties of Algorithm 12.4.

The reader may note that the use of successive projection opens up a wide range of
possibilities for algorithm development based on choice of the {Sj} and their sequenc-
ing in {S̃j}. For example, the reader can confirm that a proximity algorithm that retains
the unconstrained optimization associated with S1, S2 and S3 but places greater
emphasis on ensuring that the input is constrained is created using the sequence

S1, S4, S2, S4, S3, S4, S1, S4, S2, S4, S3, S4, S1, . . . (12.51)

in which the iterations are interlaced by projections onto the new constraint set S4.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The structuring of the problem and its link to its implementation will therefore, in
general, need careful consideration, particularly when constraints are introduced to
shape the form of the desired solution. In the next few sections, a number of problems
are considered “from first principles” to show how the ideas could apply in practice.
For simplicity, this is done by extending or modifying algorithms derived earlier in
this text to cope with constraints.

12.3.3 Intermediate Point Control with Input and Output
Constraints

It was observed in Chap.10 that the Intermediate Point Algorithm 10.4, in the form
described, provides no influence or control over the form of the input signal or the
behaviour of the plant output between intermediate points.A special demonstration of
the power of successive projection can be obtained by generalizing the Intermediate
Point Algorithm 10.4 to include the convergence to a solution that satisfies both input
constraints u ∈ Ωu ⊂ U and specified output constraints y ∈ Ωy ⊂ Y . In terms of
the problemof Sect. 12.3.2, the auxiliary variable z is not defined and is removed from
the problem. The motivation for algorithm development is to control the behaviour
of the output y(t) between the intermediate points {tj} by using desirable ranges of
values to define the closed convex set Ωy and to achieve this controlled behaviour
without using excessively large input signals. The setΩy can be constructed in many
ways. For example, an “additional reference signal” can be added to the problem.
More precisely, re remains the prime reference signal for tracking purposes but an
additional “reference” signal r(t), t ∈ [0, T ] is introduced. This signal is chosen
by the design engineer to represent a desirable but, not essential, output on [0, T ].
This reference is then used to construct the constraint set. An example of a reference
signal r(t) could be the straight line segments jointing points that satisfy the tracking
condition ye = re. Examples of constraints might take the form (where m denotes
the number of outputs and yj(t) denotes, temporarily, the element of the m×1 vector
y(t) in the jth position/row)

|rj(t) − yj(t)| ≤ My,j(t), for t ∈ [0, T ] − (Point − wise Constraints).
(12.52)

That is, the upper and lower bounds rj(t) ± My,j(t) generate an “envelope” within
whichdesirable values of the output signal yj(t) are located. For consistencypurposes,
the values of r(t) at the intermediate points should be consistent with the choice of
re.

A suitable successive projection-based Iterative Algorithm is set in the product
space H = Ye × Y × U of triples (ee, y, u) with inner product

〈(ee, y, u), (he, w, v)〉H = 〈ee, he〉Ye + ε2ε−2
1

(
〈y, w〉Y + ε21〈u, v〉U

)
. (12.53)

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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The sets can be defined as follows,

S1 = { (ee, y, u) : ee = re − Geu − de } ,

S2 = { (ee, y, u) : y = Gu + d } and
S3 = { (ee, y, u) : ee = 0 , y ∈ Ωy and u ∈ Ωu }.

(12.54)

Note that S1 ∩ S2 ∩ S3 defines triples (0, y, u) ∈ {0} × Ωy × Ωu that also satisfy
the dynamic equations and hence is the set of solutions to the constrained tracking
problem. The sequence {S̃j}j≥0 defining the projections is the cyclic sequence

{S̃j}j≥1 = {S1, S2, S3, S1, S2, S3, S1, . . .}. (12.55)

The starting condition is non-unique.One choice of the initial point s0 = (0, r0, u0) ∈
S3 is obtained by choosing u0 ∈ Ωu where r0 = r ∈ Ωy. The reader can now verify
that the resultant proximity algorithm takes the form,

Algorithm 12.7 (Tracking with Output Variable Constraints) Using the notation of
Sect. 10.5 suppose that a solution to the intermediate point tracking problem exists
using an input u ∈ Ωu with output trajectory y ∈ Ωy and that the input signal is
unconstrainedduring the iterationprocess but, ideally, becomes arbitrarily close to the
constraint set Ωu. Then, a proximity algorithm for computing an arbitrarily accurate
solution of the tracking problem starting from an initial data set s0 = (0, r0, u0) ∈ S3
is, for k ≥ 0, the repeated application of the following three step process:

1. STEP ONE: Given the data (0, rk, uk) ∈ S3, find the input u(1)
k+1 and associated

tracking error ee
k+1 by solving the unconstrained intermediate point optimization

problem,

(ee
k+1, u(1)

k+1) = argminu∈U
(
‖ee‖2Ye

+ ε2‖u − uk‖2U
)

subject to ee = re − Geu − de.
(12.56)

This step is exactly the projection of (0, rk, uk) ∈ S3 onto S1 to produce the
data (ee

k+1, rk, u(1)
k+1) using the techniques of Sect. 10.5 in either a feedback or

feedforward form.
2. STEP TWO: Next compute the input u(2)

k+1 and associated output yk+1 by solving
the unconstrained optimization problem

(yk+1, u(2)
k+1) = argminu∈U

(
‖rk − y‖2Ye

+ ε21‖u − u(1)
k+1‖2U

)

subject to y = Gu + d.
(12.57)

This step is exactly the projection of (ee
k+1, rk, u(1)

k ) ∈ S1 onto S2 to produce

(ee
k+1, yk+1, u(2)

k+1). It is computed by one iteration of the NOILC Algorithm 9.1

using initial input u(1)
k and iteration dependent “reference” signal rk and with ε

replaced by ε1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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3. STEP THREE: Finally, set up the initial data for the next iteration by setting

rk+1 = arg min
r∈Ωy

‖r − yk+1‖2Y and uk+1 = arg min
u∈Ωu

‖u − u(2)
k+1‖2U . (12.58)

This is the projection of (ee
k+1, yk+1, u(2)

k+1) ∈ S2 onto S3 to produce (0, rk+1,

uk+1) which is the triple that starts the next iteration. uk+1 will normally be
computed off-line.

Notes: Links to plant performance can be included by implementing STEPS ONE
and/or TWO on-line or off-line in feedforward or feedback form. In practice, each
iteration may require several plant experiments to obtain response data but this price
seems to be unavoidable if the additional constraints are to be satisfied. In addition,

1. limk→∞ ‖u(2)
k+1 − u(1)

k+1‖H = limk→∞ ‖u(1)
k+1 − uk+1‖H = 0 and hence, for

large enough values of interation index k , both u(1)
k and u(2)

k satisfy the constraint
u ∈ Ωu arbitrarily accurately.

2. In a similar manner, the output sequence {yk}k≥0 satisfies limk→∞ ‖rk −
yk‖Y = 0 and hence the outputs increasingly satisfy the required constraints
y ∈ Ωy to an arbitrary accuracy.

3. The algorithm has the property that the tracking errors {ee
k}k≥0 converge to zero

as k → ∞.

The algorithm is a proximity algorithm by construction. Its convergence properties
follow from the definitions and the properties of such algorithms as expressed in
Theorem 12.2. The details are left to the reader as part of his/her study during which
he or shemaywish to investigate the proximity properties of andmotivations for other
algorithms induced by changes to the set sequencing. For example, the sequence

{S̃j}j≥1 = {(S1, S2)
k1, S3, (S1, S2)

k2 , S3, . . .} (Repetition), (12.59)

defines a new algorithm with the desired proximity properties.

12.3.4 Iterative Control to Satisfy Auxiliary Variable Bounds

Successive projection can also be used to reformulate Algorithm 11.2 (Sects. 11.1
and 11.3) bymodifying the objectives of the control.More precisely, this section uses
the model and notation of those sections but replaces the objective of successfully
achieving tracking of a reference signal re whilst simultaneously minimizing an
auxiliary optimization criterion JZ by that of

1. successful tracking of re using a control signal u ∈ Ωu and
2. simultaneously ensuring that the auxiliary variable z satisfies a specified closed

and convex constraint z ∈ Ωz ⊂ Z .

http://dx.doi.org/10.1007/978-1-4471-6772-3_11
http://dx.doi.org/10.1007/978-1-4471-6772-3_11
http://dx.doi.org/10.1007/978-1-4471-6772-3_11
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The space H = Ye × U × Z of triples (ee, u, z) is used with the inner product

〈(ee, u, z), (he, v, w)〉H = 〈ee, he〉Ye + ε2 (〈u, v〉U + 〈z, w〉Z ) . (12.60)

The iteration sequence {S̃j}j≥0 cycles around the sets

S1 = { (ee, u, z) : ee = re − Geu − de }
S2 = { (ee, u, z) : z = G1u + d1 }
S3 = { (ee, u, z) : ee = 0 , u ∈ Ωu and z ∈ Ωz }.

(12.61)

It is a simple matter to prove that, if a solution exists, the following algorithm is a
proximity algorithm and hence solves the control problem to increasing and arbitrary
accuracy as iterations progress.

Algorithm 12.8 (Tracking with Auxiliary Variable Constraints) Let the initial data
be s0 = (0, u0, z0) ∈ S3 and for each k ≥ 0 follow the three step process

1. STEPONE:Given the data (0, uk, zk) ∈ S3, construct an inputu
(1)
k+1 and associated

tracking error ee
k+1 by solving (on-line or off-line) the unconstrained optimization

problem,

(ee
k+1, u(1)

k+1) = argminu∈U
(
‖ee‖2Ye

+ ε2‖u − uk‖2U
)

subject to ee = re − Geu − de.
(12.62)

This step is exactly the projection of (0, uk, zk) ∈ S3 onto S1 to produce the data
(ee

k+1, u(1)
k+1, zk).

2. STEP TWO: Next compute the input u(2)
k+1 and associated auxiliary variable zk+1

by using NOILC techniques to solve the unconstrained optimization problem

(z(1)
k+1, u(2)

k+1) = argminu∈U
(
‖zk − z‖2Z + ‖u − u(1)

k+1‖2U
)

subject to z = G1u + d1.
(12.63)

This step is exactly the projection of (ee
k+1, u(1)

k+1, zk) ∈ S1 onto S2 to produce

(ee
k+1, u(2)

k+1, z(1)
k+1).

3. STEP THREE: Finally, set up the initial data for the next iteration by setting

zk+1 = arg min
z∈Ωz

‖z − z(1)
k+1‖2Z and uk+1 = arg min

u∈Ωu
‖u − u(2)

k+1‖2U . (12.64)

This is just the projection of the triple (ee
k+1, u(2)

k+1, z(1)
k+1) ∈ S2 onto S3 to produce

(0, uk+1, zk+1).
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In particular, using the properties of successive projection,

1. for large enough values of interation index k, both u(1)
k and u(2)

k satisfy the con-
straint u ∈ Ωu arbitrarily accurately.

2. In a similar manner, the auxiliary variables satisfy limk→∞ ‖zk − z(1)
k ‖Z = 0

and hence they increasingly satisfy the required constraints z ∈ Ωz to an arbitrary
accuracy.

3. The tracking errors {ee
k}k≥0 converges to zero as k → ∞.

The typical simplicity of the computations of STEPTHREEare illustrated as follows:

If Ωz = { z : ‖z‖Z ≤ Mz } then zk+1 = z(1)
k+1 if ‖z(1)

k+1‖Z ≤ Mz.

Otherwise it takes the value zk+1 = Mz
z(1)
k+1

‖z(1)
k+1‖Z

.

(12.65)

12.3.5 An Overview and Summary

The previous section has demonstrated the use of successive projection as a tool in
solving Iterative Control problems (regarded as proximity problems). The approach
has the benefits of having a geometric interpretation and having natural links to
Norm Optimal Iterative Learning Control Algorithms exemplified by Sect. 9.1 and
its many realizations in, for example, the Intermediate Point Algorithm 10.4 and
the Auxiliary Optimization Algorithms in Chap.11. The approaches apply to other
algorithms including Multi-task Algorithms 10.5, 10.6 and 10.8. The last example
is interesting as it opens up the possibility, by regarding initial conditions as part of
the control input, of selecting an input from a defined closed convex set.

Algorithm development can be summarized as the definition of a suitable “set
of sets” {Sj}1≤j≤NS in a real Hilbert space H with the properties that any point in

the intersection
⋂NS

j=1 Sj solves the combined tracking problem with any additional

objectives. These sets are then put in a sequence {S̃1, S̃2, S̃3, . . .} typically satisfying
a condition such as that given in Theorem 12.5. An algorithm is then obtained by
solving the sequence of optimization problems generated by successive projection.
Assuming that at least one solution to the problem exists, the algorithm is then a
proximity algorithm that creates iterates that become arbitrarily close to every set
Sj , 1 ≤ j ≤ NS .

In the real world, it is important to remember that part of this process involves
experimental work on the plant to ensure that the algorithm is informed by the actual
response of the physical system.

The structure of algorithm development is clear and relatively simple. The chal-
lenge in practice will be the choice of sets and inner products and norms that also
satisfy the need for good convergence rates combined with mechanisms for using
measured plant data in the iteration process. This is essential to ensure that the

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_11
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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algorithm responds to the consequences of its previous inputs. In practice this is nec-
essary for situations where plant modelling errors are present. Some of the associated
robustness questions have been addressed in previous chapters. Unfortunately, at this
time, there is no robustness theory for more general cases, particularly those where
signals are subject to constraints and/or complex sequencing in {S̃j}j≥1.

12.4 “Iteration Management” by Operator Intervention

In this section successive projection is moved from its position as an approach that
forms an Iterative Algorithm in its own right. Its new role reflects the possibility of
including the presence of a human operator in the decision-making process prior to
each iteration. In previous algorithms, the presence of the operator played no role in
algorithm development and performancewas analysed using theoretical tools and the
mathematical relationships between signals and iterates. In effect the operator was a
passive presence at the real-world implementation whose main roles were limited to
parameter choice (or variation), algorithm initialization, algorithm termination and/or
coping with fault situations. In contrast, this section regards Iterative Algorithms as
human operator driven processes defined by

1. Tracking: the need to satisfy tracking objectives plus any associated performance
objectives and constraints and

2. Intervention: providing the option for the human operator to specify or modify
the aims of each iteration using appropriate interventions.

It is the second point that guides the material that follows. It is assumed that an
operator, having seen the outcomes of previous iterations, has a view of what is
acceptable or desirable behaviour in the next iteration. The expression of these views
is formed by choosing closed convex sets to shape or constrain the form of the next
error signal and/or constrain input values. These sets, together with a plant model,
form the data for selecting the next input signal using a supporting computational
toolbox. The ideas are suitable for a feedforward implementation.

For simplicity of presentation, the following discussion considers operator driven
iteration as a modification to the NOILC Algorithm 9.1. The plant is modelled by
y = Gu+d, u ∈ U , y ∈ Y and a reference signal r ∈ Y is specified. A conceptual
algorithm that places the operator at the centre of the iteration process is as follows:

Algorithm 12.9 (Iteration Management using Constraints) Suppose that error and
input data (ek, uk) have been obtained from iteration k. Suppose also that the operator
wishes to choose an input uk+1 for implementation on iteration k + 1 but has
views/preferences on what the preferred characteristics of the signals (ek+1, uk+1)

should be. The procedure is as follows,

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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1. STEP ONE: Compute the data (e(0)
k+1, u(0)

k+1) to be the off-line, feedforward pre-
diction of input and error obtained from the data (ek, uk), namely

u(0)
k+1 = uk + Δuk and e(0)

k+1 = r − Gu(0)
k+1 − d, (12.66)

where Δuk is the control change computed using one iteration of NOILC
Algorithm 9.1 from the initial input u = 0 using the model y = Gu with zero
initial conditions and a reference signal equal to ek .

2. STEP TWO: The data (e(0)
k+1, u(0)

k+1) has a special role in this computation as it is
the outcome of the normal NOILC iteration and hence is unaffected by operator
intervention. However,

a. if the data has acceptable characteristics, then set p = 0 and go to STEP
FOUR. Otherwise,

b. the data can be used to inform the operator’s choice of closed, convex con-
straint sets Ωe(k + 1) ⊂ Y and Ωu(k + 1) ⊂ U representing his or her
preferences for the characteristics of the predicted errors and input signals on
iteration k + 1.

3. STEP THREE: Define the following sets in Y × U ,

S1 = { (e, u) : e = r − Gu − d } (Plant Dynamic Model)
S2 = { (e, u) : e ∈ Ωe(k + 1) , u ∈ Ωu(k + 1) } (Iteration Objectives).

(12.67)
The data s0 = (e(0)

k+1, u(0)
k+1) is then used in an off-line, model-based, succes-

sive projection algorithm with alternating sets {S2, S1, S2, S1, . . .}j≥1 to generate

iterates (e(j)
k+1, u(j)

k+1) ∈ S1, j = 1, 2, . . . and (ẽ(j)
k+1, ũ(j)

k+1) ∈ S2, j = 1, 2, . . . .

a. Projection of (e(j−1)
k+1 , u(j−1)

k+1 ) ∈ S1 onto S2 to produce (ẽ(j)
k+1, ũ(j)

k+1) ∈ S2 is
normally a simple process expressed in the form

ẽ(j)
k+1 = argmine∈Ωe(k+1)‖e − e(j−1)

k+1 ‖2Y and

ũ(j)
k+1 = argminu∈Ωu(k+1)‖u − u(j−1)

k+1 ‖2U
(12.68)

b. Projection of (ẽ(j)
k+1, ũ(j)

k+1) ∈ S2 onto S1 to produce (e(j)
k+1, u(j)

k+1) ∈ S1 is the
off-line NOILC computation of the signals minimizing

‖ẽ(j)
k+1 − e‖2Y + ‖u − ũ(j)

k+1‖2U (12.69)

subject to the plant dynamic model e = r − Gu − d.
Note: A moment’s consideration indicates that this is precisely the NOILC
objective function that appears in in Algorithm 9.1 with uk replaced by ũ(j)

k+1

and the reference signal r replaced by r − ẽ(j)
k+1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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This iterative process is terminated at a point (e(p)

k+1, u(p)

k+1) ∈ S1 which satisfies the

constraints e(p)

k+1 ∈ Ωe(k + 1) and u(p)

k+1 ∈ Ωu(k + 1) to an acceptable accuracy.
The number of iterations p required is not fixed and will typically vary with
index k and the desired accuracy.

4. STEP FOUR: The input signal uk+1 is then set equal to u(p)

k+1 and applied to the
plant to generate a new error signal ek+1. Then, either a new iteration begins by
returning to STEP ONE with the data (ek+1, uk+1) and k increased by unity, or
the iterative process is terminated as acceptable tracking has been achieved.

In practice, the choice of the sequences {Ωe(j)}j≥1 and {Ωu(j)}j≥1 are crucial to
algorithm performance. Convergence to acceptable tracking errors simply requires
that each iteration successfully achieves the operator’s requirements and that, for
some iteration index k = NF , the set Ωe(NF) only contains signals that satisfy the
ultimate tracking accuracy requirements of the application.

The overall process consists of operator-guided “outer iterations” indexed by k
each of which consists of a number of (off-line) “inner iterations” of the successive
projection algorithm. In the absence of modelling errors, it results in a new iteration
input uk+1 that is predicted to ensure that the error satisfies the iteration constraint to
a good accuracy. If modelling errors are present and substantial, this objective may
be achieved but only approximately.

For the purposes of discussion, consider an �-input, m-output state space system
S(A, B, C) with inner products defined by m × m and � × � matrices Q and R
respectively. Given a reference signal r(t), the performance of NOILC Algorithm
9.1 in the form of Algorithm 9.5 will depend on the choices of Q and R in the
sense that the relationship between these choices and the behaviour and magnitude
of outputs in each loop/channel as iterations progress cannot be predicted. If the
operator has views or concerns about the dynamics of particular channel outputs
following iteration k, the set Ωe(k + 1) can be defined to reflect those concerns. For
example,

1. in an attempt to control convergence rates, the operator may choose to define

Ωe(k + 1) = { (e, u) : ‖e‖Y ≤ γk+1‖ek‖Y } (12.70)

where γk+1 represents the desired fractional reduction of the error. For example,
choosing γk+1 = 0.5 expresses the desire that the error norm will (more than)
halve in the next iteration.

2. Alternatively, although the error norm may be reducing, the distribution of this
reduction across the channels may not be what is preferred. In this caseΩe(k +1)
could be a set defining desired norm bounds on individual channel errors or point-
wise bounds on individual errors. In this way, the operator can reflect preferences
and also manage situations arising from previous iterations.

Note that the role of Q and R in this approach is no longer that of ensuring good
convergence rates. Rather, it is that of ensuring a good performance from the inner
iteration processes.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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This section concludes with some examples describing how constraint sets can be
constructed. For simplicity of presentation, the state space model is again used and
subscripts on errors will, for this discussion, describe the row position of the error
in its vector format [e1(t), . . . , em(t)]T . If, in addition, Q is diagonal of the form
Q = diag[Q1, Q2, . . . , Qm],
1. the definition of the constraint set

Ωe(k + 1) = { e :
∫ T

0
e2j (t)dt ≤ Mj , 1 ≤ j ≤ m } (12.71)

places desired bounds on the mean-square errors in each error channel. These
bounds can be an expression of a requirement that error norms in each channel are
reduced at specified rates. Alternatively, they could reflect a desire to concentrate
on reductions in some loopswhilst preventing excessive increases in the remaining
loops.

2. Another possible constraint description takes the form

Ωe(k + 1) = { e : |ej(t)| ≤ Mj(t) , 1 ≤ j ≤ m, t ∈ [0, T ] } (12.72)

where now Mj(t) describes a time-varying bound on the error. Such a description
could be used to concentrate on errors in certain subintervals if this is deemed to
be important for system operation.

A mix of these two constraint definitions could also be used in an obvious way.

12.5 What Happens If S1 and S2 Do Not Intersect?

The purpose of this shorts section is to consider possible algorithm behaviours in the
casewhen the defining sets {Sj}1≤j≤NS do not intersect. That is, a tracking problemhas
been defined that has no solution. This has already been seen to occur, for example,
in NOILC Algorithm 9.1 when the range of G,R[G], is a proper subspace of Y and
the user specifies a reference signal such that r − d does not lie in that subspace.
For NOILC and related gradient algorithms, linear analysis shows, typically, that
monotonic convergence is achieved to a limit error equal to the component of e0
that lies in ker[G∗]. Such analyses are not appropriate for more general, constrained,
tracking problems. For example, using Algorithm 12.3, perfect tracking may be
possible if the input is unconstrained by not possible if input constraints are too
tight.

To illustrate the sort of behaviours that might be observed in practice, successive
projection between NS = 2, closed, convex sets S1 and S2 in a real Hilbert space H is
considered in the case where the intersection S1∩S2 is empty. The projection process
is still well-defined for such a case but convergence to a point in the intersection is
clearly not possible. The following result provides some insight into situations where
H is finite dimensional and S2 is also bounded.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9


12.5 What Happens If S1 and S2 Do Not Intersect? 371

Theorem 12.7 (Asymptotic Behaviour when S1 ∩ S2 is Empty) Suppose that two
closed,convex sets S1 and S2 are given in a real, finite-dimensional Hilbert space H
and that their intersection is empty. Suppose also that S2 is bounded. Then, defining
the ordered set of sets {S̃j}j≥1 by the alternating sequence {S1, S2, S1, S2, S1, . . .},
the successive projection algorithm beginning with a point s0 ∈ S2 and subsequently
evaluating the iterates {sj}j≥1 by the optimization problem

sj+1 = arg min
s∈S̃j+1

‖s − sj‖2H , j ≥ 0, (12.73)

has the properties that

‖sj+2 − sj+1‖H ≤ ‖sj+1 − sj‖H (Monotonicity),
limj→∞ ‖sj+2 − sj‖H = 0 and limj→∞ ‖sj+1 − sj‖H = δ

where δ = inf{ ‖v1 − v2‖ : with v1 ∈ S1 and v2 ∈ S2 }
(12.74)

is the minimum distance between the two sets.

The theorem has a simple interpretation, simply stated as a form of convergence. It
does not say that the iterates converge but, rather, says that the sequence alternates
(in a form of “limit cycle”) between the two sets, getting closer together all the time.
Critically, it demonstrates that, ultimately, it is not possible to create iterates in S1
(respectively, S2) that are any closer to S2 (respectively, S1). In Iterative Control
terms, the system dynamics can be satisfied with signals that best approximate the
constraints represented by their companion set. Best is defined by the minimum
distance property.

Proof of Theorem 12.7 The monotonicity property follows from the definitions of the
iterates as sj+2 is closer than any other point to sj+1. Monotonicity guarantees the
existence of the real number δ which is strictly positive as the intersection is empty
and S2 is closed and bounded (and hence compact). If δ = 0, then an argument based
on selection of appropriate subsequences creates limit points ŝ1 ∈ S1 and ŝ2 ∈ S2
satisfying ‖ŝ1 − ŝ2‖H = 0. That is, ŝ1 = ŝ2 which contradicts the non-intersection
assumption. Hence δ > 0.
Next, using the property 〈sj − sj+2, sj+2 − sj+1〉H ≥ 0, write

‖sj+2 − sj‖2H = ‖sj+2 − sj+1‖2H + ‖sj+1 − sj‖2H + 2〈sj+2 − sj+1, sj+1 − sj〉H
so that

‖sj+2 − sj‖2H = ‖sj+2 − sj+1‖2H + ‖sj+1 − sj‖2H+2〈sj+2 − sj+1, (sj+1 − sj+2) + (sj+2 − sj)〉H

≤ ‖sj+1 − sj‖2H − ‖sj+2 − sj+1‖2H → 0+
(12.75)

as k → ∞ as required. The compactness of S2 means that a subsequence of iterates
{sjp}p≥1 in S2 converges to a point ŝ2 ∈ S2. Set δ = infp≥1 ‖sjp+1 − ŝ2‖H and,
using the optimization properties, that this implies that δ = infs∈S1 ‖s − ŝ2‖H . The
shifted sequence {sjp+1}p≥1 in S1 is bounded and hence,without loss of generality, it is
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possible to assume that it converges to a point ŝ1 ∈ S1 with δ = infs∈S1 ‖sjp+1− ŝ1‖H

and hence δ = infs∈S2 ‖s − ŝ1‖H . In particular, δ = ‖ŝ2 − ŝ1‖H . As a consequence,

〈s − ŝ1, ŝ1 − ŝ2〉H ≥ 0 for all s ∈ S1 and
〈s − ŝ2, ŝ2 − ŝ1〉H ≥ 0 for all s ∈ S2.

(12.76)

Now let Ps be the orthogonal projection onto the subspace spanned by ŝ1 − ŝ2. Then,
for any vector s ∈ H

Pss = 〈ŝ1 − ŝ2, s〉H

‖ŝ1 − ŝ2‖2H
(ŝ1 − ŝ2) and Ps(ŝ1 − ŝ2) = ŝ1 − ŝ2. (12.77)

It follows that, for any s1 ∈ S1 and s2 ∈ S2,

‖s1 − s2‖2H ≥ ‖Ps(s1 − s2)‖2H = ‖Ps
(
s1 − ŝ1) + (ŝ1 − ŝ2) + Ps(ŝ2 − s2)

) ‖2H
= ‖ŝ1 − ŝ2‖2H

(
1 + 〈s1−ŝ1,ŝ1−ŝ2〉H

‖ŝ1−ŝ2‖2H
+ 〈s2−ŝ2,ŝ2−ŝ1〉H

‖ŝ1−ŝ2‖2H

)2

≥ ‖ŝ1 − ŝ2‖2H .

(12.78)

This completes the proof of the theorem. �
In practice, the calculation of ŝ1 and ŝ2 is not possible prior to the iterative process.

In certain cases, it is easy, however, to demonstrate that they are uniquely defined and
have properties that can have design interpretations. For example, suppose that H
is finite dimensional and consider a variation of Algorithm 12.3 obtained by setting
H = U and using the two sets

S1 = { u : r = Gu + d } (Exact Tracking Achieved)

S2 = { u : ‖u − u0‖U ≤ Mu } (Bounded Input Energy)
(12.79)

Algorithm 12.10 (NOILC Algorithm with Bounded Input Energy) Suppose that
GG∗ has a bounded inverse in Y and that H = U is finite dimensional. Using
the notation defined above, let u0 ∈ S2 initiate the following iterative algorithm for
k ≥ 0,

STEP ONE: Given the input uk ∈ S2 and associated tracking error ek = r − yk ,
compute the input

u(1)
k+1 = uk + G∗(GG∗)−1ek (12.80)

That is, project the point uk onto the tracking requirement S1. Equivalently, the input
u(1)

k+1 satisfies the tracking requirement and minimizes ‖u − uk‖2U .

STEP TWO: Replace u(1)
k+1 by the input signal for the next iteration
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uk+1 =
⎛

⎝
u(1)

k+1 if ‖u(1)
k+1 − u0‖ ≤ Mu

u0 + Mu

‖u(1)
k+1−u0‖U

(u(1)
k+1 − u0) if ‖u(1)

k+1 − u0‖ > Mu

⎞

⎠ (12.81)

obtained by projecting u(1)
k+1 onto S2.

The reader should be able to verify that the algorithm has the following properties

1. If S1 ∩ S2 is non-empty, then the algorithm is a proximity algorithm with

lim
k→∞ ‖uk+1 − u(1)

k+1‖U = 0 (12.82)

As iterations progress,

a. inputs u(1)
k satisfy the tracking requirements and also ultimately satisfy the

norm constraint requirement to an arbitrary accuracy. In addition,
b. the inputs uk satisfy the constraint and the tracking requirement to an arbitrary

accuracy.

2. If S1∩S2 is empty, then, noting that the form of S1 and S2 indicates that the points
u(1)∞ ∈ S1 and u∞ ∈ S2 satisfying δ = ‖u(1)∞ − u∞‖ are uniquely defined and that
the following limits

lim
k→∞ u(1)

k = u(1)∞ and lim
k→∞ uk = u∞ exist, (12.83)

it follows that the smallest value of Mu for which tracking is possible is obtained
by the map

Mu �→ Mu + ‖u∞ − u(1)∞ ‖U . (12.84)

12.6 Discussion and Further Reading

Successive projection has been proposed in several contexts [14, 15, 18, 36] and was
proposed for solution of differential algebraic equations in [95]. It has a conceptual
simplicity that fits very well into the Hilbert space setting and the sequential use of
familiar optimization (minimum norm) algorithms in a process that finds “feasible
points” in the intersection of closed convex sets. Perfect tracking problems can be
seen as feasible point problems and hence successive projection is very consistent
with typical IterativeLearningControl tasks for linear systems. The choice of the term
“Proximity Algorithm” used in this text reflects the practical realities that Iterative
Control is only ever applied for a finite number of iterations and that exact tracking is
un-achievable and, in reality, not explicitly required. If this is accepted, the asymptotic
property of successive projection iterates {sj}j≥1 of being arbitrarily close to all sets
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defining the Iterative Control problem can be a good mathematical representation of
what is needed in practice.

One major structural assumption is that all sets {Sj}1≤j≤NS are closed and convex.

The second is that the intersection
⋂NS

j=1 Sj is non-empty (that is, a solution to the
tracking problem exists). With these assumptions, successive projection provides
an alternative to operator theory and can be used to analyse algorithms such as the
many forms of NOILC Algorithm 9.1, Auxiliary Optimization Algorithm 12.4 and
Predictive NOILC Algorithm 10.9. The operator approach has the advantages of
being a familiar parallel to transfer function analysis and providing more details on
the form of the convergence, particularly when an assumed eigenstructure is present.
It is, however, a linear analysis and, typically, neither allows constraints to be included
nor does it easily reveal the many other algorithms that can be generated. In contrast,
successive projection can be applied to these problems to reveal a wide variety of
new results as,

1. The sequence of projections is chosen by iteratively projecting onto a sequence of
sets {S̃j}j≥1 taken from the {Sj}1≤j≤NS . Different sequences will produce different
algorithms with different convergence properties.

2. The definitions of the sets {Sj}1≤j≤NS also affects their computational form and the
complexity of the projection evaluations. In IterativeControl, the choices are often
non-unique. This is true when input, output and auxiliary variable constraints play
a role in defining the tracking task. The algorithm designer has a choice of asso-
ciating the constraints with the dynamics such as in Conceptual Algorithm 12.4
(when projections are constrained dynamic optimization problems) or separating
the constraints into another set (when the dynamical optimization calculations
are unconstrained) to reveal algorithms such as Algorithms 12.5 and 12.6.

In their simplest form, the ideas allow useful extensions of NOILC to include con-
straints [26]. In this text, the ideas are taken further as in Algorithms 12.2 and 12.3.
They also permit extensions of Intermediate Point control to include the shaping of
output trajectories between intermediate points in the form of Algorithm 12.7 and
extensions of auxiliary variable control algorithms by replacing optimization by a
need to satisfy auxiliary variable bounds as in Algorithm 12.8. The reader will note
that, by an appropriate definition of operators, sets and signals, other algorithms such
as Multi-task Algorithms and variations in initial conditions (see Chap. 10) can be
included.

The theory is based on the assumption that the tracking problems defined have at
least one solution. Section12.5 offers some insight into what could happen in such
circumstances. The analysis of the case of NS > 2 has infinite variability in the
sequencing of the sets {Sj}1≤NS in {S̃j}j≥1 and an analysis has not been attempted
here. The case of NS = 2 is, however, simple enough to allow some analysis and
suggests that, as a rule, iterations in multi-set analysis will remain bounded and
oscillate between the sets in a way that can be quite complex.

Do not get carried away by the mathematical formulation however as, ultimately,
the algorithms should be designed to be applied with at least some part of the com-
putations being represented by on-line experiments and the use of measured data in

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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the next computational stage. That is, whatever the chosen algorithm structure, care
should be taken to ensure that measurement data from iteration k does influence the
choice of input for iteration k+1 for, without this property, the actual response of the
plant to an applied input will, effectively be ignored. This is clearly undesirable, par-
ticularly in situations where modelling errors exist. The analysis of unconstrained
algorithms in previous chapters suggests that successive projection can be a very
robust approach to practice but, at this time, there is no formal theory available to
describe this robustness or provide tests for its presence. A moment’s thought by
the reader will reveal the fact that modelling errors change the plant model G to,
say, UG so that at least one of the sets is changed. That is, off-line computations are
projecting onto the wrong set!

Finally, Sect. 12.4 introduces the idea of “iteration management” which has the
potential, in the author’s view, to transform Iterative Learning Control paradigms
from automated, autonomous algorithms into decision support tools for operators.
It introduces additional degrees of freedom into Iterative Control by adding, as iter-
ations progress, the knowledge and experience of the user and his or her ability to
see patterns in the data. The advantages and cost-effectiveness of such intelligent
intervention should not be underestimated but, one supposes, it must be balanced
against the consequent training requirements for operators.



Chapter 13
Acceleration and Successive Projection

The previous chapters have described and analysed many Iterative Control algo-
rithms based on optimization principles. In the main, convergence was assured by
monotonic reductions in the error norm combined with semi-quantitative rules for
convergence rates based on experience of optimal control theory, the influence and
choice of weight parameters and matrices (in norm definitions) and insights obtained
using eigenvalue and/or frequency domain analysis. These rules introduce their own
problems. Using, for example, NOILC Algorithm 9.1 as a model, rapid convergence
is normally associated with low control weighting in the objective function. For state
space systems, this leads to high gain state variable feedback and high gain feedback
may not be advisable for the application considered. Therefore, despite the persua-
sive content of the rules, they provide trends rather than detail of likely outcomes and,
following these trends to their natural conclusion can produce unacceptable control
system characteristics.

The idea of creating rapidly convergent algorithms without undue need for unde-
sirable control system characteristics (such as high gain controls), therefore, merits
further research. Three approaches to the problem are presented, namely,

1. Savingon-plant-timeandcost byoff-line iterations using aplantmodel (Sect. 13.1).
2. Section13.2, extends successive projection to improve convergence rates by

adding in extrapolation (sometimes called over-relaxation) factors.
3. In Sect. 13.3, acceleration is achieved using successive projection and iteration

dependent choice of parameterized sets S2(σ 2).

Both sections rely heavily on the material in Chaps. 9 and 12 as the underlying
computations retain the NOILC computational framework at their core.
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13.1 Replacing Plant Iterations by Off-Line Iterations

One simple acceleration mechanism is obtained by noting that there is no need for
every mathematical iteration to include experimental data collection. In reality, only
iterations that are implemented on the plant are normally counted by the user when
costing the process in terms of time undertaking plant experimental work. Model-
based, off-line iterations simply add to the computational burden but do not add to
the cost. This idea applies to any iterative algorithm but, for NOILC Algorithm 9.1,
details could be as follows,

1. implementation can take the form of partition of the iteration indices into two
disjoint sets I1 and I2 and implementing the algorithmon the plantwhen k ∈ I1 and
using model-based computation when k ∈ I2. The choices I1 = {0, 2, 4, 6, 8, . . .}
and I2 = {1, 3, 5, 7, . . .} describes a situation where, following initialization with
k = 0, the iteration is applied to the plant when k is even but is model-based (and
off-line) when k is odd. Different partitions can be used if regarded as useful but,
intuitively, the ratio of on-line to off-line iterations should not be too small if the
plant is to have data input to the process.

2. Using the same notation, the off-line iterations could be based on different algo-
rithms or simply use different parameters. For NOILC and state space systems,
the control weighting ε2 used when k ∈ I1 could represent the need to have
monotonic behaviours but avoid the use of on-line, high gain state feedback con-
trols. For off-line iterations, the weight can be reduced to achieve faster error
norm reduction. The reader will note the connection between this idea and the
material in Sect. 11.4.

3. In both cases, the number of plant iterations required is reduced and acceleration
is achieved. This is obvious for the first suggestion as, in the absence of modelling
errors, the error update relationship ek+1 = Lek is unchanged. For the second, the
change in on-line value ε2 to a smaller, off-line value ε2off implies that errors are
updated, alternately, as ek+1 = L1ek (off-line) and ek+1 = L0ek (on-line). The
changing parameter is represented by the inequality L1 ≤ L0 ≤ I and it follows
that acceleration is achieved as ek+2 = L1L0ek for all k ≥ 0 and L1L0 ≤ L2

0.

There are many variations on the ideas expressed above, not all of which link easily
to successive projection. The interested reader is invited to explore the possibilities.

13.2 Accelerating Algorithms Using Extrapolation

In this section, attention is focussed on successive projection algorithms with just
NS = 2 closed, convex sets S1 ⊂ H and S2 ⊂ H in a real Hilbert space H. In
particular, it is assumed that S1 is a linear variety. This assumption is natural as,
typically, S1 describes the dynamics of the plant in the absence of constraints.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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13.2.1 Successive Projection and Extrapolation Algorithms

The following Algorithm defines the proposed extrapolation algorithm using the
notation of Chap.12. It covers the case of two closed, convex sets S1 and S2 where
the set S1 is a linear variety in a real Hilbert space H. The starting point is a point
s0 ∈ S2 and successive projections are onto the sequence of sets {S̃j}j≥1 defined by
the alternating sequence {S1, S2, S1, S2, S1, . . .}.
Algorithm 13.1 (Successive Projection with Extrapolation Factors) Suppose that
S1 ∩ S2 is non-empty. Then an accelerated successive projection algorithm for the
constructionof iterates that approachS1 ∩ S2 arbitrarily closely is definedbychoosing
a starting point s0 ∈ S2 and constructing the sequence {sj}j≥0 with sj ∈ S̃j, j ≥ 1, by
solving, recursively, the optimization problems

s̃j+1 = arg min
s∈S̃j+1

‖s − sj‖H , for j ≥ 0 (13.1)

and defining new iterates sj+1 by the relations s1 = s̃1 and, more generally, for j ≥ 1,

sj+1 =
(

s̃j+1, if S̃j+1 = S2 (j odd)

sj−1 + λj+1(s̃j+1 − sj−1), if S̃j+1 = S1 (j even)

)
(13.2)

where λj+1 can be chosen to be any value in the range

1 ≤ λj+1 ≤ ‖sj − sj−1‖2H
‖s̃j+1 − sj−1‖2H

. (13.3)

For all such sequences and for all choices of point x ∈ S1 ∩ S2,

‖x − s2j−1‖2 ≥ ‖x − s2j+1‖2 + λ2j+1︸ ︷︷ ︸
‖s2j − s2j−1‖2H , for j ≥ 1,

(The Effect of the Extrapolation Factor λ2j+1)
(13.4)

and

‖x − s1‖2H ≥
∞∑

j=1

λ2j+1‖s2j − s2j−1‖2H ≥
∞∑

j=1

‖s2j − s2j−1‖2H . (13.5)

As a consequence,

limj→∞ ‖s2j − s2j−1‖H = 0, so that limj→∞ ‖s2j − s̃2j+1‖H = 0
and limj→∞ infs∈S2 ‖s − s2j−1‖H = 0.

(13.6)

http://dx.doi.org/10.1007/978-1-4471-6772-3_12
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That is,

1. the algorithm generates a sequence of iterates that, from Eq. (13.4), get closer
to S1 ∩ S2 and ultimately, Eq. (13.6), lie arbitrarily close to both S1 and S2. It is
therefore a proximity algorithm.

2. If the user chooses the value λ2j+1 = 1 for all indices j, the algorithm is precisely
NOILC Algorithm 9.1 as expressed in the form of Theorems 12.1 and 12.4.

3. Using a value λ2j+1 > 1 appears, from Eq. (13.4), to reduce the range within
which ‖x − s2j+1‖2H can sit as compared with that achieved by NOILC. This is
the fact that supports the interpretation that using larger values of the extrapolation
factor will tend to accelerate the iteration process. However,

4. in practice, small errors in s̃2j+1 and s2j−1 could lead to larger errors in s2j+1. That
is, the algorithm is likely to be less robust than NOILC, particularly if λ2j+1 is
large. In practice, therefore, it is advisable to limit it to a chosen maximum value
λmax ≥ 1 even if larger values are allowed by the (error free) theory. That is, the
range defined by Eq. (13.17) is replaced by the range

1 ≤ λj+1 ≤ min{ ‖sj − sj−1‖2H
‖s̃j+1 − sj−1‖2H

, λmax}. (13.7)

Note: The algorithm has very precise properties that are revealed very well by the
general approach used. In the form described, the extrapolation is placed in the set
S1. The reader will note that, if both S1 and S2 are closed linear varieties, there will
be two choices of set that can be used.

Proof of Algorithm PropertiesAdemonstration that the algorithm is well-defined and
has the stated properties now follows. The first step is to show that the value of λj+1 is
well defined. First assume that j is even so that sj+1 ∈ S̃j+1 = S1. Next observe that,
if the algorithm has not converged, ‖sj − sj−1‖H 
= 0 and it is then only necessary to
show that 0 < ‖s̃j+1−sj−1‖2H ≤ ‖sj−sj−1‖2H . If ‖s̃j+1−sj−1‖2H = 0 then s̃j+1 = sj−1.
Using the linear variety assumption for S1, it follows that (s̃j+1 − sj) ⊥ (x − s̃j+1)

for all x ∈ S1. Using the fact that 〈x − sj, sj − sj−1〉H ≥ 0 for all x ∈ S2 then gives
two expressions, satisfied for all x ∈ S1 ∩ S2,

〈x − sj, sj − sj−1〉H ≥ 0 and 〈x − sj−1, sj−1 − sj〉H = 0 (13.8)

so that ‖sj − sj−1‖2H ≤ 0 which is impossible as sj 
= sj−1 by assumption. Therefore
s̃j+1 
= sj−1 and the fact that λj+1 > 1 then follows from the identity ‖sj − sj−1‖2H =
‖sj − s̃j+1‖2H + ‖s̃j+1 − sj−1‖2H > ‖s̃j+1 − sj−1‖2H .
Next, let x ∈ S1 ∩ S2 and consider, for j ≥ 1,

〈s2j+1 − s2j−1, s2j−1 − x〉H = λ2j+1〈s̃2j+1 − s2j−1, s2j−1 − x〉H

= λ2j+1〈
(
s̃2j+1 − s2j

) + s2j − s2j−1, s2j−1 − x〉H

= λ2j+1〈s2j − s2j−1, s2j−1 − x〉H
(13.9)
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where the orthogonality of s̃2j+1 − s2j and s2j−1 − x has been used. It follows that

〈s2j+1 − s2j−1, s2j−1 − x〉H = λ2j+1〈s2j − s2j−1, s2j−1 − s2j + s2j − x〉H

= −λ2j+1‖s2j − s2j−1‖2H+ λ2j+1〈s2j − s2j−1, s2j − x〉H

≤ −λ2j+1‖s2j − s2j−1‖2H .

(13.10)

Writing

λ2j+1‖s2j − s2j−1‖2H = λ2j+1

(
‖s2j−s2j−1‖2H

‖s̃2j+1−s2j−1‖2H

)
‖s̃2j+1 − s2j−1‖2H

≥ λ22j+1‖s̃2j+1 − s2j−1‖2H = ‖s2j+1 − s2j−1‖2H
(13.11)

then gives

‖s2j+1 − x‖2H = ‖s2j−1 − x‖2H + ‖s2j+1 − s2j−1‖2H + 2〈s2j+1 − s2j−1, s2j−1 − x〉H

≤ ‖s2j−1 − x‖2H + ‖s2j+1 − s2j−1‖2H − 2λ2j+1‖s2j − s2j−1‖2H
(13.12)

Re-arranging yields the required inequality (13.4) as

‖s2j−1 − x‖2H ≥ ‖s2j+1 − x‖2H + (
λ2j+1‖s2j − s2j−1‖2H − ‖s2j+1 − s2j−1‖2H

)

+λ2j+1‖s2j − s2j−1‖2H≥ ‖s2j+1 − x‖2H + λ2j+1‖s2j − s2j−1‖2H
(13.13)

The remainder of the proof is an application of an induction argument and the
condition λ2j+1 ≥ 1. This yields Eq. (13.5) and hence Eq. (13.6). �

13.2.2 NOILC: Acceleration Using Extrapolation

Algorithm 13.1 combines the computations of NOILC Algorithm 9.1 (and all its
subsequent variations) with a simple linear combination in S1 parameterized by
λ2j+1. In structure it has some similarity to the use of relaxation methods but the
fact that λ2j+1 ≥ 1 links it more to extrapolation methodologies. The precise link
with NOILC Algorithm 9.1 is obtained by generalizing Algorithm 12.3 to include
extrapolation. The sets used are

S1 = {(e, u) : e = r − Gu − d} and S2 = {(e, u) : e = 0, u ∈ Ωu}. (13.14)

Projection of (e, u) onto S2 is typically an off-line computation which, in the uncon-
strained case, yields (0, u) so no computation is needed. The algorithm statement
therefore can concentrate on the projection onto S1 and takes the form described

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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below. Note that there is some change in the notation used to make Algorithm 13.1
match that used in NOILC studies in previous chapters.

Algorithm 13.2 (NOILC with Extrapolation and Input Constraints) Suppose that
there exists an input u ∈ Ωu that generates a zero tracking error. Then, using the nota-
tion and terminology of Algorithms 9.1 and 12.3, the Norm Optimal Iterative Learn-
ing Control algorithm (with extrapolation) generates a sequence of inputs {uk}k≥0
(and associated errors {ek}k≥0) by using the process,

STEP ONE (Initialization): Choose u0 ∈ U and find the error response e0 to gen-
erate the iterate (e0, u0) ∈ S1. Then, for k ≥ 0, undertake steps 2, 3, 4, 5 iteratively
until the desired accuracy has been achieved.
STEP TWO (Projection onto S2): Given the data (ek, uk) ∈ S1, find the constrained
input u(1)

k and hence the point (0, u(1)
k ) ∈ S2 solving

u(1)
k = arg min

u∈Ωu
‖u − uk‖2U . (13.15)

Note: For application to physical systems, it is important to ensure that plant response
data is included in the next step. In the above, this requirement is included the
construction of the plant error response e(1)

k to the input u(1)
k .

STEP THREE: (Projection onto S1) Project the data (0, u(1)
k ) ∈ S2 onto S1, using

off-line or on-line calculations to find the minimum distance to S1 expressed as the
problem of finding the solution of the NOILC optimization problem

u(2)
k+1 = arg min

u∈U
{J(u, u(1)

k ) : e = r − y, y = Gu + d} (13.16)

and the associated tracking error e(2)
k+1. To ensure a link to plant data, the process

should be driven by e(1)
k rather than u(1)

k .
STEP FOUR (Evaluation of an Extrapolation Factor): Choose a value of extrap-
olation factor λ(k + 1) ≥ 1 in the range

1 ≤ λ(k + 1) ≤ ‖ek‖2Y + ε2‖u(1)
k − uk‖2U

‖e(2)
k+1 − ek‖2Y + ε2‖u(2)

k+1 − uk‖2U
(13.17)

to produce the new control input

uk+1 = uk + λ(k + 1)
(

u(2)
k+1 − uk

)
. (13.18)

STEP FIVE (Error Measurement): Compute the response ek+1 to uk+1 by, either
using the off-line formula

ek+1 = ek + λ(k + 1)
(

e(2)
k+1 − ek

)
, (13.19)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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or using uk+1 on-line to find themeasured tracking error. This step has then generated
the data (ek+1, uk+1) and the procedure returns to STEP TWO.
The statement of and analysis following Algorithm 13.1 then proves that the tracking
error converges to zero and the input signals becomes arbitrarily close to the constraint
set Ωu.

Algorithm 13.1 in the form of Algorithm 13.2 has potential value in accelerating
NOILC algorithmswithout the need to use low input signal weighting in the objective
function. This is true for linear, discrete or continuous, state space systems S(A, B, C)

where lowcontrolweights leads to highgain state feedback through theRiccatimatrix
solution of the optimization problem. For example, the inclusion of extrapolation
in Algorithm reference 9.4 is a simple modification with the added calculation of
λ(k + 1) and the extrapolation formulae for uk+1 and ek+1. The signal u(2)

k+1 is just,
with a change in notation, the iterate uk+1 computed in Algorithm 9.4.

13.3 A Notch Algorithm Using Parameterized Sets

With the exception of the ideas of IterationManagement in Sect. 12.4, the discussion
has, so far, assumed that the sets S1, S2, S3, . . . , SNS are iteration independent. There
is no mathematical reason why this should be the case but the choice of any variation
in the definition of the sets will need detailed consideration and analysis. One set
almost always describes the system dynamics. This section considers the choice of
a companion set that is based on the idea of accelerating algorithm convergence by
“annihilation” of part of the spectrum of GG∗. The notation of the NOILCAlgorithm
9.1 is used for a system with dynamics y = Gu + d and underlying spaces Y and
U , although the ideas apply more generally by suitable choice of G.

The system is required to track a reference r ∈ Y with tracking error e = r − y
equal to zero. Plant behaviours are associated with data points (e, u) in the product
space H = Y × U . H is a real Hilbert space with inner product

〈(e, u), (w, v)〉H = 〈e, w〉Y + ε2〈u, v〉U , where ε2 > 0. (13.20)

13.3.1 Creating a Spectral Notch: Computation
and Properties

The plant is identified with the set

S1 = {(e, u) : e = r − Gu − d} ⊂ H, (Plant Dynamics). (13.21)

The process considered here is that of creating a set S2 ⊂ H, projecting a point
(e0, u0) ∈ S1 onto S2 to create a point (e(1)

1 , u(1)
1 ) ∈ S2. This is then followed by
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the projection of this point back onto S1 to give a point (e1, u1) ∈ S1. To be useful
in practice, it is essential that e1 has useful properties of monotonic norm reduction
‖e1‖Y ≤ ‖e0‖Y for all e0. A stronger version of this requirement is that the norm
reduction has the potential to be considerably greater than that achieved by NOILC
Algorithm 9.1 for the given norm(s) and weight. The presentation takes the form of
a constructive argument.

The set S2 is parameterized by a single parameter σ 2 > 0 and denoted by

S2(σ
2) = {(ẽ, u) : −σ 2ẽ = r − Gu − d} ⊂ H, (Modified Dynamics). (13.22)

Writing ẽ = −σ−2(r − Gu − d) = −σ−2e identifies the signal ẽ as the error
in tracking a signal −σ−2r with output defined by −σ−2Gu − σ−2d. That is, G
is replaced by −σ−2G and d is replaced by −σ−2d. If G is a state space model
S(A, B, C, D)with initial state x(0) = x0, this change has two interpretations, namely
that, either

1. the model S(A, B, C, D) can be replaced by S(A, B,−σ−2C,−σ−2D) with no
change in x0

2. or replaced by S(A,−σ−2B, C, D)) if x0 is replaced by −σ−2x0.

The first step is to suppose that (e0, u0) ∈ S1 is given. The projection onto S2(σ 2) is
then

(e(1)
1 , u(1)

1 ) = argmin(ẽ,ũ)∈S2(σ 2)

(‖ẽ − e0‖2Y + ε2‖ũ − u0‖2U
)

subject to the constraints ẽ = −σ−2(r − Gũ − d).
(13.23)

This is simply a NOILC problem but it has two important interpretations, the first of
which is

1. application ofNOILCAlgorithm9.1 for themodified dynamicswith the reference
signal replaced by −σ−2r − e0.

2. The second interpretation is, again, that of NOILCAlgorithm 9.1. Using a scaling
factor of (−σ 2)2 on the objective function, the optimization can be written as

((−σ 2)e(1)
1 , u(1)

1 ) = argmin(e,u)∈S2(σ 2)

(‖e + σ 2e0‖2Y + σ 4ε2‖u − u0‖2U
)

subject to the constraints e = r − y and y = Gu + d.

(13.24)
This problem is precisely that of the application of NOILC to the original dynam-
ics with reference replaced by r + σ 2e0 and weight parameter ε2 replaced by
σ 4ε2. That is, the computation can be undertaken using the substitutions

ε2 �→ σ 4ε2 (weight change) and
r �→ r + σ 2e0 (error adjusted reference)

(13.25)

followed by scaling of the error resulting from u(1)
1 by −σ−2.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The two interpretations offer two alternative approaches to evaluation. The first is, in
the form presented, off-line whilst the second could also be off-line but, in principle,
could be on-line. This advantage in this case would be that the simple parameter
change and modification to the reference is easily incorporated into the NOILC
implementation. The first interpretation is used in the following analysis.

Projection onto S2: The analysis of Chap.9 indicates that

u(1)
1 = u0 + ε−2(−σ−2G)∗

(
e(1)
1 − e0

)
= u0 − σ−2ε−2G∗ (

e(1)
1 − e0

)
. (13.26)

The consequent “error” for the modified dynamics is then given by

e(1)
1 = −σ−2

(
r − Gu(1)

1 − d
)

= −σ−2
(

e0 + σ−2ε−2GG∗e(1)
1 − σ−2ε−2GG∗e0

)

so that e(1)
1 = (σ 4I + ε−2GG∗)−1

(
ε−2GG∗ − σ 2I

)
e0.

(13.27)

Projection onto S1: Next compute the projection of (e(1)
1 , u(1)

1 ) ∈ S2(σ 2) onto S1 to
give

(e1, u1) = argmin(e,u)∈S1

(
‖e − e(1)

1 ‖2Y + ε2‖u − u(1)
1 ‖2U

)

subject to the constraints e = r − Gu − d.
(13.28)

This is a NOILC problem with r replaced by r − e(1)
1 and hence u1 = u(1)

1 +
ε−2G∗

(
e1 − e(1)

1

)
. Substituting as required then gives

e1 = r − Gu1 − d =
(

r − Gu(1)
1 − d

)
− ε−2GG∗

(
e1 − e(1)

1

)

= −σ 2e(1)
1 − ε−2GG∗

(
e1 − e(1)

1

)

so that e1 = (
I + ε−2GG∗)−1 (

ε−2GG∗ − σ 2I
)

e(1)
1 .

(13.29)

Combining the two projections hence states that the resultant errors e1 and e0 in S1
are related by the linear mapping e1 = L(σ 2)e0 where the operator L(σ 2) : Y → Y
is bounded and has the form

L(σ 2) =
(

I + ε−2GG∗)−1
(σ 4I + ε−2GG∗)−1

(
ε−2GG∗ − σ 2I

)2
(13.30)

where the fact that the terms commute has been used to simplify the expression.
Interesting observations about the form of L(σ 2) include the following,

1. the operator has the form of the familiar operator (I + ε−2GG∗)−1 that describes
the error evolution for NOILCAlgorithm 9.1modified by themultiplicative factor(
ε−2GG∗ − σ 2I

)2
(σ 4I + ε−2GG∗)−1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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2. The factor (ε−2GG∗ − σ 2I) indicates that e1 = 0 if ε−2GG∗e0 = σ 2e0. That is,
if ε2σ 2 is an eigenvalue of GG∗ and e0 is an associated eigenvector.

The second observation indicates one possible effect of the combined projection,
namely that for some initial errors e0, the algorithm“annihilates” the signal to produce
a consequent error e1 = 0. A more general statement of this property is as follows,

Theorem 13.1 (Approximate Annihilation Properties of L(σ 2)) Using the notation
and definitions of the preceding discussion, the operator L(σ 2) : Y → Y is self-
adjoint and has the property that

γ 2
1

(
ε−2GG∗ − σ 2I

)2 ≤ L(σ 2) ≤ γ 2
2

(
ε−2GG∗ − σ 2I

)2

with
0 < γ 2

1 = 1
(1+ε−2‖G∗‖2)(σ 4+ε−2‖G∗‖2) ≤ γ 2

2 = σ−4.

(13.31)

As a consequence, e1 = 0 if e0 is an eigenvector of GG∗ with eigenvalue ε2σ 2 and,
more generally, e1 is arbitrarily small (relative to e0) if e0 has the property that
‖(ε−2GG∗ − σ 2I)e0‖Y � ‖e0‖Y .

Proof L(σ 2) is self-adjoint as it is a function of the self-adjoint operator GG∗. The
inequality for L(σ 2) follows from the properties seen in Theorem 9.1 applied to
both (I + ε−2GG∗)−1 and (σ 4I + ε−2GG∗)−1 = σ−4(I + σ−4ε−2GG∗)−1. The
eigenvector property then follows easily by writing the inequality in the form

γ 4
1

(
ε−2GG∗ − σ 2I

)4 ≤ L2(σ 2) ≤ γ 4
2

(
ε−2GG∗ − σ 2I

)4
(13.32)

so that ‖e1‖2 = ‖L(σ 2)e0‖2 ≤ γ 4
2 ‖(ε−2GG∗ − σ 2I)2e0‖2. The result now follows

easily. �

The operator also has more detailed properties expressed as follows,

Theorem 13.2 (Bounds on L(σ 2) and Monotonicity)

0 ≤ L(σ 2) ≤ I, ker[I − L(σ 2)] = ker[G∗]
and

R[I − L(σ 2)] = R[G] = ker[G∗]⊥
(13.33)

so that, if e1 = L(σ 2)e0, then ‖e1‖Y ≤ ‖e0‖Y for all e0 ∈ Y . In particular,
‖e1‖Y < ‖e0‖Y for all e0 that do not lie in ker[G∗].
Proof The proof that L(σ 2) ≥ 0 follows from Theorem 13.1 as (σ 2I −ε−2GG∗)2 ≥
0. Next, for simplicity, write X = ε−2GG∗ ≥ 0 so that, as required,

L(σ 2) = I − (I + X)−1(σ 4I + X)−1
(
1 + σ 2

)2
X ≤ I. (13.34)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The same formula shows that ker[I − L(σ 2)] = ker[X] = ker[G∗], a fact that,
together with ker[G∗]⊥ = R[G], also proves the correspondence of the closure
of the ranges. It follows that ‖e1‖ ≤ ‖e0‖ in all cases. Finally, noting that I −
L(σ 2)2 = X0(I + L(σ 2))X0 where X0 is a positive definite, self-adjoint, square root
of I − L(σ 2) ≥ 0, any situation where ‖e1‖2 = ‖e0‖2 corresponds to the case where
0 = 〈e0, (I − L2(σ 2))e0〉Y ≥ ‖X0e0‖2Y . This implies that e0 ∈ ker[X0]. The proof
is now complete as ker[X0] = ker[I − L(σ 2)] = ker[G∗]. �

In general therefore, the two step projection process has properties of both error
norm reduction and annihilation. The detailed form of the annihilation property in
a particular situation depends on the choice of σ 2 > 0. At first sight, this appears
to improve on the properties of NOILC Algorithm 9.1 but there is no guarantee, for
an arbitrary choice of e0 that the error norm reduction achieved is greater than that
achieved using NOILC. A guarantee can be provided as follows,

Theorem 13.3 (Guaranteeing Improvements on NOILC) With the assumptions of
Theorem 13.2,

L(σ 2) ≤ (I + ε−2GG∗)−1 if ε−2‖G∗‖2 ≤ 1 + 2σ 2. (13.35)

This condition is satisfied for all σ 2 > 0 if ε−2‖G∗‖2 ≤ 1, a condition that requires
the weight ε2 to be sufficiently large.

Note: If applied, the stated limitation imposed on the value of σ 2 ensures that the
error norm resulting from the use of one iteration of NOILC from any initial error e0
is greater than that achieved using the two step projection process considered in this
section. If it is violated, the reader should be able to use an eigenvalue/eigenvector
methodology to show that reductions will be achieved in all eigen-subspaces corre-
sponding to eigenvalues of GG∗ strictly less than ε2

(
1 + 2σ 2

)
.

Proof Examination of L(σ 2) indicates that it is only necessary to ensure that, with
X = ε−2GG∗, the operator (σ 4I +X)−1(σ 2I −X)2 ≤ I . This is simply the condition
(σ 4I + X) − (σ 2I − X)2 = X((1 + 2σ 2)I − X) ≥ 0 which is satisfied if ((1 +
2σ 2)I − X) ≥ 0. The result follows from the fact that X ≤ ‖X‖I and the relation
‖X‖ = ε−2‖G∗‖2 . �

An easily obtained insight into the underlying effects on the error is to note,
using Theorem 13.2, that L(σ 2) leaves errors in ker[G∗] unchanged. In addition, it
mapsR[G] into itself. Suppose, therefore that GG∗ has strictly positive eigenvalues
{σ 2

j }j≥1 satisfying the order property ‖G∗‖2 = σ 2
1 ≥ σ 2

2 ≥ σ 3
1 ≥ · · · and gen-

erating a complete set of orthonormal eigenvectors {vj}j≥1 spanning R[G]. Write

e0 = ∑
j≥1 γjvj + e(2)

0 with e(2)
0 ∈ ker[G∗] and suitable scalars {γj}j≥1 satisfying∑

j≥1 γ 2
j < ∞. Using the Spectral Mapping Theorem, the eigenvalues of L(σ 2)

take the values {f (σ 2
j , σ 2)}j≥0 where

f (μ, σ 2) = (σ 2 − ε−2μ)2

(1 + ε−2μ)(σ 4 + ε−2μ)
(13.36)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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and 0 ≤ f (μ, σ 2) ≤ 1 for all μ > 0. In addition, it follows that

L(σ 2)e0 =
∑

j≥1

γjf (σ
2
j , σ 2)

︸ ︷︷ ︸
vj + e(2)

0 . (13.37)

Note that,

1. each eigenvector vj has its contribution to e0 reduced by a factor of f (σ 2
j , σ 2).

2. Choosing σ 2 = ε−2μ and μ = σ 2
p then gives f (σ 2

p , σ 2) = 0 and the eigenvector
vp is eliminated from the resultant error e1.

3. In a similar manner, all eigenvalues μ of GG∗ that are close to ε2σ 2 are “almost”
eliminated from the resultant error e1.

These properties are the motivation for the use of the word “notch” to describe the
outcome of the projection process. Clearly the choice of σ 2 can have a benefit by
eliminating, or almost eliminating, specific eigenvalue components of the error. This
property is used in the next section as the basis of algorithm development and also
used in Sect. 13.3.3 where the choice of σ 2 is related to approximate elimination of
frequency components of the error.

As a final point in this section, the function f (μ, σ 2), on the interval 0 < μ ≤
‖G∗‖2 can be interpreted as a function shaping the spectrum of L(σ 2) as a function
of the spectrum of GG∗. It is useful to note that, even if the eigenvalues of GG∗ are
not known, f (μ, σ 2) offers the opportunity of assessing the effect on any eigenvalues
at, or in the vicinity of, a chosen pointμ. It is the factor by which the contributions of
eigenvectors to the representation of e0 are reduced by the two step “notch” process.
The reader will be able to prove the following result using elementary algebra and
calculus,

Theorem 13.4 (Properties of f (μ, σ 2) for μ ∈ [0,∞)) Suppose that σ 2 > 0 is
fixed. Then the continuous, differentiable function f (μ, σ 2) is positive for μ ∈ [0,∞)

and has the properties of being monotonically decreasing on the interval [0, ε2σ 2],
monotonically increasing on [ε2σ 2,∞) with a unique minimum at the point μ0 =
ε2σ 2. In addition,

f (0, σ 2) = 1, f (ε2σ 2, σ 2) = 0, and lim
μ→+∞ f (μ, σ 2) = 1. (13.38)

The shaping of the function f (μ, σ 2) and its effect on error norm reduction is a design
option. A possible approach to influencing the shape is

1. to choose the point μ0 where f takes its minimum value of zero and hence to
approximately annihilate the contribution of the spectrum of GG∗ in the vicinity
of this value.

2. As μ = ε2σ 2, choose ε2 and σ 2 to satisfy the conditions of Theorem 13.3. This
condition has the alternative form

‖G∗‖2 ≤ ε2 + 2μ0. (13.39)
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This relationship provides a range of values for ε2. In particular,

a. if a small value of ε2 � ‖G∗‖2 is desired to ensure that the underlying NOILC
algorithm produces a large error reduction, then μ0 is bounded from below by
a value close to 1

2‖G∗‖2. That is, annihilation can only be attempted for those
parts of the spectrum of GG∗ in the range ( 12‖G∗‖2, ‖G∗‖2].

b. Alternatively, if complete freedom to choose μ0 > 0 arbitrarily is preferred,
ε2 must be larger than ‖G∗‖2. That is, the price of this flexibility is that the
underlying NOILC problem cannot reduce the error too much.

To illustrate the magnitude of the effects described, suppose that the value of ε2 is
guided by Theorem 13.3. For example, if the process is to improve on the norm
reduction achieved by NOILC and eliminate any limitations on the choice of σ 2,
choose ε2 = ‖G∗‖2. The eigenvalues of (I+ε−2GG∗)−1 are then {(I+ε−2σ 2

j )−1}j≥1

which lie on the curve (1 + (μ/‖G∗‖2))−1, 0 ≤ μ ≤ ‖G∗‖2, a curve that reduces
monotonically from the value of unity to the value 0.5 when μ = ‖G∗‖2. The effect
of the choice of σ 2 is illustrated in the following examples,

1. A notch at σ 2 = 0.5 then ensures that approximate annihilation of the eigenvalues
σ 2

j is achieved in the vicinity of μ = 0.5‖G∗‖2. Improvements on NOILC error
reductions are achieved elsewhere. For example, examining the cases of μ =
‖G∗‖2 and μ = 0.25‖G∗‖2 gives f (‖G∗‖2, 0.5) = f (0.25‖G∗‖2, 0.5) = 0.1.
Using the monotonicity properties of f gives 0 ≤ f (μ, 0.5) ≤ 0.1 on the
interval 0.25‖G∗‖2 ≤ μ ≤ ‖G∗‖2. The corresponding range of reductions for
NOILC is [0.5, 0.8] in that same eigenvalue range. The conclusion is that, when
compared with NOILC, a substantial norm reduction is achieved over a wide
range of eigenvalue values.

2. A notch at σ 2 = 1 gives values f (‖G∗‖2, 1) = 0, f (0.5‖G∗‖2, 1) = 1/9 and
f (0.25‖G∗‖2, 1) = 9/25. This illustrates, again, the improvement on NOILC. It
also shows that the range of eigenvalues with substantial reductions in magnitude
depends on the choice of σ 2.

3. A notch at σ 2 = 2 is too large to provide annihilation properties on any eigenvalue
but error reduction benefits are still seen as illustrated by the computed values
f (‖G∗‖2, 2) = 0.1, f (0.5‖G∗‖2, 2) = 1/3 and f (0.25‖G∗‖2, 2) = 49/85.

13.3.2 The Notch Algorithm and Iterative Control Using
Successive Projection

The two step process and described and the properties presented in the previous
Sect. 13.3.1 are central to what follows. First note that the computations can be
continued using the pair (e1, u1) ∈ S1 to create an algorithm. That is, the computation
can be repeated from this data point to create (e(1)

2 , u(1)
2 ) ∈ S2 and, from this, the data

(e2, u2) ∈ S1. However, the value of σ 2 used in this second application need not be
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that used in the first! With this in mind, an Iterative Algorithm based on the concept
of introducing an iteration dependent notch can be described as given below.

Algorithm 13.3 (A Notch Algorithm with Iteration Dependent Notch) Using the
notation of Sect. 13.3.1, suppose that r ∈ Y , ε2 > 0 and that the iterative process
is initiated by the choice of an input u0 ∈ U that produces the data (e0, u0) ∈ H =
Y ×U from the plant. Then, an Iterative Notch Algorithm is defined by the process,
for k ≥ 0, of sequentially/iteratively using data (ek, uk) in the three step process
defined by,

STEP ONE: Choose a value σ 2 = σ̃ 2
k+1 > 0 to create a notch in the desired part of

the spectrum of L(σ̃ 2
k+1).

STEP TWO:Use off-line computations to find the input u(1)
k+1 and associated tracking

error e(1)
k+1 that solves the optimization problem

(e(1)
k+1, u(1)

k+1) = argmin(ẽ,ũ)∈S2(σ̃ 2
k+1)

(‖ẽ − ek‖2Y + ε2‖ũ − uk‖2U
)

subject to the constraints ẽ = −σ̃−2
k+1(r − Gũ − d).

(13.40)

Note: This is the projection of (ek, uk) onto S(σ̃ 2
k+1) and is, simply, either

1. one step of the NOILC Algorithm 9.1 where the data (r, G, d) for the original
plant is replaced by (−σ̃−2

k+1r −ek,−σ̃−2
k+1G,−σ̃−2

k+1d) for the modified dynamics.
2. Alternatively, it is one step of NOILC for the original plant but with reference

replaced by r + σ̃ 2
k+1ek and ε2 replaced by σ̃ 4

k+1ε
2. In this case, the computations

might be possible on-line.

STEPTHREE:Useon-line or off-line computations to construct the data (ek+1, uk+1)

(for use in the next iteration) as the solution of the optimization problem

(ek+1, uk+1) = argmin(e,u)∈S1

(
‖e − e(1)

k+1‖2Y + ε2‖u − u(1)
k+1‖2U

)

subject to the constraints e = r − Gu − d.
(13.41)

Note: This is the projection of (e(1)
k+1, u(1)

k+1) onto S1. It is one step of the NOILC

Algorithm 9.1 for the original plant using the minimization of J(u, u(1)
k+1) but where

the reference signal r is replaced by r − e(1)
k+1.

The algorithm produces an error evolution expressed as

ek+1 = L(σ̃ 2
k+1)ek, so that ek =

k∏

j=1

L(σ̃ 2
j )e0 for k ≥ 1. (13.42)

In particular, using Theorem 13.2, the algorithm generates a monotonically decreas-
ing error sequence satisfying

‖ek+1‖Y ≤ ‖ek‖Y for k ≥ 0 with (13.43)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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strict inequality holding if ek 
= 0 does not lie in ker[G∗]. If e0 ∈ ker[G∗], then
ek = e0 for all k ≥ 0.

The detailed properties of the algorithm can be deduced in several ways. The
simplest convergence result is constructed using the annihilation properties of the
basic notch process.

Theorem 13.5 (Sequential Eigenvector Annihilation/Finite Convergence) Suppose
that GG∗ has strictly positive eigenvalues {σ 2

j }j≥1 satisfying the order property

‖G∗‖2 = σ 2
1 ≥ σ 2

2 ≥ σ 3
1 ≥ · · · and generating a complete set of orthonormal

eigenvectors {vj}j≥1 spanning R[G]. Then, every initial error e0 can be written in

the form e0 = ∑
j≥1 γjvj + e(2)

0 with
∑

j≥0 γ 2
j < ∞ and the term e(2)

0 ∈ ker[G∗]
identified as the orthogonal projection Pker[G∗]e0 of e0 onto ker[G∗]. The Notch
Algorithm 13.3 then produces the tracking errors, for k ≥ 1,

ek =
k∏

p=1

L(σ̃ 2
p )e0 =

∑

j≥1

γj

⎛

⎝
k∏

p=1

f (σ 2
j , σ̃ 2

p )

⎞

⎠ vj + Pker[G∗]e0. (13.44)

Let the indices {jk}k≥1 be a re-ordering of the non-zero eigenvalues of GG∗ and set
σ̃ 2

k = ε−2σ 2
jk

. Then, Notch Algorithm 13.3

1. generates a monotonically reducing sequence of error norms and convergent
errors satisfying

lim
k→∞ ek = Pker[G∗]e0. (13.45)

2. If, in addition, Y is finite dimensional, then, this limit is achieved in a finite
number of iterations.

Note: The finite convergence theoretically possible in this case is a parallel to Algo-
rithm 7.4 presented in Sect.7.2.2. Discrete state space systems satisfy the finite dimen-
sionality assumption as does the Intermediate Point control problem (Sect.10.5).

Note: The formula for ek provides useful insight into the choices of σ̃ 2
j and underlines

the rapid convergence that is possible if they are selected carefully.

Proof Every initial error e0 can be written in the form e0 = ∑
j≥1 γjvj +e(2)

0 with the

term e(2)
0 ∈ ker[G∗] identified as the orthogonal projection of e0 onto ker[G∗]. The

formula for ek then follows from the eigen-propertiesL(σ 2
j , σ 2)vj = f (σ 2

j , σ 2)vj, j ≥
1. Let δ > 0 be arbitrary. As

∑
j≥1 γ 2

j < ∞, it is possible to choose an integer N1(δ)

such that
∑

j>N1(δ)
γ 2

j < δ. In addition, for all sufficiently large integers k ≥ N2(δ)

(say), the values ε−2σ 2
j , 1 ≤ j ≤ N1(δ) have been used and the contribution of the

associated eigenvectors to the error has been annihilated. The remaining error has
norm ‖ek‖Y ≤ δ for all k ≥ N2(δ). That is, lim supk→∞ ‖ek − e(2)

0 ‖Y ≤ δ and
convergence to zero follows as δ can be arbitrarily small. This process is finite if Y
is finite dimensional. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_10
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In practice, of course, the eigenvalues of GG∗ will not be known and hence the
exact annihilation property cannot be used. This does not prevent the successful
application of Algorithm 13.3 as indicated by the following result that uses the
information provided by Theorem 13.3.

Theorem 13.6 (Convergence Using a Limited Bandwidth) Using the notation of
Algorithm 13.3, suppose that, following N0 iterations of unconstrained choice, the
remaining values of σ̃ 2

k+1 satisfy the condition

1 + 2σ̃ 2
k+1 ≥ ε−2‖G∗‖2 for all k ≥ N0 (say). (13.46)

Then, Notch Algorithm 13.3 generates a monotonically reducing sequence of error
norms satisfying limk→∞ ek = Pker[G∗]e0. In particular,

1. if N0 = 0, the error norm sequence reduces at a rate faster than that of NOILC
Algorithm 9.1.

2. More generally, the algorithm converges faster than NOILC from the initial error
eN0 .

Proof First note that the projection Pker[G∗]ek = Pker[G∗]e0 and, using Theorem
13.2, the error norm sequence is monotonically reducing for all k. It is possible to
assume, without loss of generality, that N0 = 0. Using Theorem 13.3 then gives
L(σ̃ 2

k+1) ≤ (I + ε−2GG∗)−1 so that

k∏

j=1

L(σ̃ 2
j ) ≤ (I + ε−2GG∗)−k (13.47)

Convergence properties of the Notch Algorithm then follow from those of
Algorithm 9.1. �

The result allows situations where choices for the first iterations are flexible but,
asymptotically, it requires emphasis on the interval 1 + 2σ 2 ≥ ε−2‖G∗‖2 which,
if ε−2‖G∗‖2 > 1 does not permit “small” values of σ 2 to be used. This will limit
the options available to influence convergence rates as part of the spectrum cannot
be annihilated. In applications, two strategies will be required namely one to choose
the first N0 values, the second stage being the systematic selection of σ̃ 2

k+1 satisfying
1 + 2σ̃ 2

k+1 ≥ ε−2‖G∗‖2. For example

1. IfN0 = 0, the first stage is not needed. IfN0 > 0, a selection of values that covers a
wide range of the spectrum is covered by the equally (linearly or logarithmically)
spaced points. For example,

σ 2 = ε−2‖G∗‖2
(

j

N0

)
, 1 ≤ j ≤ N0. (13.48)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The reader should note that, ifN0 is sufficiently large, the notch properties suggest
that the contribution to eN0 of eigenvalues in, for example, the rangeN−1

0 ‖G∗‖2 ≤
μ ≤ ‖G∗‖2 will have been greatly reduced.

2. For k ≥ N0, there may be many more iterations to do. Although it is permitted to
use values of σ 2 > ε−2‖G∗‖2, a focus on the interval of choice [0.5(ε−2‖G∗‖2−
1), ε−2‖G∗‖2] still leaves an infinity of choices including, for example,

a. choosing an iteration independent value σ̃ 2
k+1 = σ 2 in that range,

b. choices randomly generated by a uniform pseudo-random number generator,
c. choices selected from N1 equally spaced points in the interval, or
d. choices guided by “expert” knowledge of the plant and its observed behaviour

(see Sect. 13.3.3 and the proposed use of frequency domain criteria).

Finally, with an iteration independent notch and a reference that can be tracked
by some input signal, it is left as an exercise for the reader to prove the existence of a
limit for the input sequence in the norm topology and, in addition, that the increased
convergence rate does not influence the nature of this limit which is exactly the
minimum energy/minimum norm solution obtained using NOILC without the notch
modification.

13.3.3 A Notch Algorithm for Discrete State Space Systems

NotchAlgorithm 13.3 applies quite generally and, being based onNOILCAlgorithm
9.1, computations can be applied in any situation where NOILC, and its derivative
algorithms, can be applied. It is expected that the most commonly used model in
many applications is that of a state space model S(A, B, C) with a specified initial
condition x(0) = x0. In this section, m-output, �-input, linear, discrete state space
models, operating on an interval 0 ≤ t ≤ N , are considered. Algorithm 13.3 then
has a very specific realization.

13.3.3.1 Algorithm Statement

More precisely, if Q(t), 0 ≤ t ≤ N and R(t), 0 ≤ t ≤ N are symmetric, positive
definite weighting matrices,

Algorithm 13.4 (A Notch Algorithm for Discrete State Space Systems) Using the
notation of Algorithm 13.3, suppose that the reference r has been specified and the
iterative process initiated by the choice of u0 that produces the data (e0, u0) from the
plant. Then, an Iterative Notch Algorithm for the linear, discrete, state space system
S(A, B, C) is defined by the process, for k ≥ 0, of sequentially using data (ek, uk) in
the three step process,

STEP ONE: Choose a value σ 2 = σ̃ 2
k+1 > 0 to create the desired notch for iteration

k + 1.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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STEP TWO: Use off-line computations to find the input time series u(1)
k+1 and asso-

ciated tracking error e(1)
k+1 that minimizes the objective function

∑N
j=0

(
(ẽ(t) − ek(t))T Q(t)(ẽ(t) − ek(t)) + ε2(ũ(t) − uk(t))T R(t)(ũ(t) − uk(t))

)

subject to the dynamic constraints − σ̃ 2
k+1ẽ = r − Gũ − d.

(13.49)
For state space computations, the constraints can be written in the form ẽ(t) =
−σ̃−2

k+1r(t) − ỹ(t), 0 ≤ t ≤ N , where ỹ(t), 0 ≤ t ≤ N , is the response of the system

S(A, B,−σ̃−2
k+1C) to ũ(t) from the initial condition −σ̃−2

k+1x0.

Note: As noted in Algorithm 13.3 there are two possible ways to approach this
problem.

1. The approach described above is one step of theNOILCAlgorithm9.1 (perhaps in
the form of Algorithm 9.4) from the input data uk but where the data (r, C, x0) for
the original plant are replaced by (−σ̃−2

k+1r − ek,−σ̃−2
k+1C, x0). This data change

will, for example, change the form of both the Riccati equation and the equation
for the predictive term ζk+1 used in the computations.

2. The second approach uses the NOILC Algorithm 9.1 for the original plant model
and initial condition, using the reference r(t) + σ̃ 2

k+1ek(t) and replacing ε2 by
σ̃ 4

k+1ε
2.

STEPTHREE:Useon-line or off-line computations to construct the data (ek+1, uk+1)

(for use in the next iteration) as the solution that minimizes the objective function

∑N
j=0 ((e(t) − e(1)

k+1(t))
T Q(t)(e(t) − e(1)

k+1(t))

+ε2(u(t) − u(1)
k+1(t))

T R(t)(u(t) − u(1)
k+1(t)))

(13.50)

subject to the constraints that e(t) = r(t) − y(t), 0 ≤ t ≤ N , where y(t), 0 ≤ t ≤ N ,
is the response of the system S(A, B, C) to u(t) from the initial condition x0.

Note: This is one step of the NOILC Algorithm 9.1 from the data u(1)
k+1 for the

original plant but where the reference signal r is replaced by r − e(1)
k+1. This data

change requires only one Riccati equation but the equation for the predictive term
ζk+1 is driven by the input u(1)(t) and the “error corrected reference” r − e(1)

k+1.
The algorithm has the monotonicity and convergence properties described by

Algorithm 13.3 and illustrated by Theorems 13.5 and 13.6 and other material in
Sect. 13.3.1 and 13.3.

The implementation of the algorithm is very similar to that of NormOptimal Control
and an understanding of that algorithm is essential. Together with Q and R, the
choice of σ̃ 2

k+1 is central to the prediction and achievement of significantly improved
convergence rates.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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13.3.3.2 Notch Values and the Frequency Domain

In what follows, it is seen that the choice of σ̃ 2
k+1 can be supported by the frequency

domain properties of the signal ek .More precisely, suppose that the system S(A, B, C)

is asymptotically stable and that the matrices {Q(t)}0≤t≤N and {R(t)}0≤t≤N are inde-
pendent of “t”. In Sect. 7.2.3, an approximate eigenvector property was derived in
terms of (complex) vectors Wj(zp) associated with the positive, real eigenvalues
σ 2

j (zp) of the matrix G(z)R−1GT (z−1)Q at frequencies z = zp = e(2π ip)/(N+1), 0 ≤
p ≤ N . These relationships are precisely those required by Theorem 13.1, as, for
large values of N , it follows that ‖(σ 2

j (z)I − GG∗)Wj(z)‖ � ‖Wj(z)‖ for all z on the
unit circle in the complex plane. As a consequence, it is concluded that the choice
of a “frequency” zc,k on the unit circle followed by setting

σ̃ 2
k+1 = ε−2σ 2

j (zc,k) on each iteration (for k ≥ 0) (13.51)

will have the effect of annihilating, approximately, the frequency content of the error
at the frequency z = zc,k in the subspace generated by the eigenvector wj(zc,k) of
G(z)R−1GT (z−1)Q corresponding to the eigenvalue σ 2

j (zc,k). Of course, for multi-
output systems, other parts of the frequency content (corresponding to eigenvalues
of G(z)R−1GT (z−1)Q at other frequencies that are equal to σ̃ 2

k+1) will also be sup-
pressed. The notch is hence a notch based on “gain” values rather than individual
frequencies. This interpretation is simplified for SISO systems as wj(zc,k) = 1 and

the associated eigenvalue is exactly G(zc,k)R−1GT (z−1
c,k)Q = QR−1

∣∣G(zc,k)
∣∣2. This

links the choice to the frequency domain and the values of Q and R in a familiar way
but does not specify a suitable value of zc,k . Intuitively, a good choice might be either

1. a frequency, generated from an analysis of ek , representing a frequency range
where error magnitudes are large or

2. a frequency representing physical phenomena that are ideally suppressed rapidly.
3. Theorem 13.6 may also play a role in limiting the choice. That is, if better con-

vergence rates than those achieved by the NOILC Algorithm are required, the
choice of zc,k is limited to a frequency range defined, approximately, by values
satisfying

sup
|z|=1

|G(z)|2 ≤ ε2RQ−1 + 2|G(z)|2. (13.52)

Finally, in theoretical terms, the frequency analysis of ek has used the supervector
description and is based on representations of the error as a finite summation of the
basis vectors {Wj(zk)}. In practice, it is more likely to be assessed using the familiar
Fast Fourier Transform (FFT).

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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13.3.4 Robustness of the Notch Algorithm in Feedforward
Form

Robustness of Notch Algorithm 13.3 is an important issue. Intuitively, it is expected
to be less robust thanNOILCAlgorithm9.1 asmodelling errorswill inevitably reduce
the precision and effectiveness of the annihilation that can be achieved. Given a mea-
sured error signal ek on iteration k, let y = Gu+d be amodel of the plant but suppose
that the plant has a modelling error represented by a linear, bounded, multiplicative
modelling error U. Off-line feedforward computations using this model ignore this
error and produce the data

u(1)
k+1 = uk − σ−2ε−2G∗

(
e(1)

k+1 − ek

)
,

e(1)
k+1 = (σ 4I + ε−2GG∗)−1

(
ε−2GG∗ − σ 2I

)
ek,

uk+1 = u(1)
k+1 + ε−2G∗

(
ek+1 − e(1)

k+1

)
and predicted error

ek+1 = L(σ 2)ek = (
I + ε−2GG∗)−1

(σ 4I + ε−2GG∗)−1
(
ε−2GG∗ − σ 2I

)2
ek

(13.53)

Simple algebra then indicates that the implemented input signal takes the form

uk+1 = uk + ε−2G∗(I + ε−2GG∗)−1Γ (GG∗, σ 2)ek
where

Γ (GG∗, σ 2) = (1 + σ 2)2(σ 4I + ε−2GG∗)−1

and L(σ 2) = I − (I − L)Γ (GG∗, σ 2) where L = (I + ε−2GG∗)−1

(13.54)

is the familiar operator seen in NOILC (Chap.10). Note that both Γ (GG∗, σ 2) :
Y → Y and Γ (G∗G, σ 2) : U → U are self-adjoint and have bounded inverses.

Left Multiplicative Modelling Errors: Suppose that σ 2 is iteration independent
and that U is a left multiplicative modelling error. It then follows that the error seen
on the plant following application of uk+1 will be

ek+1 = (I − ε−2UGG∗(I + ε−2GG∗)−1Γ (GG∗, σ 2))ek = (I − U(I − L(σ 2)))ek .

(13.55)

With a simple change in notation, this is just the expression seen in Sect. 9.2.4 with
L replaced by L(σ 2). Using the same approach as that section, an inner product on
R[G] can be defined to be

〈e, w〉σ 2 = (1 + σ 2)−2〈e, (I − L(σ 2))w〉Y (13.56)

where the term (1 + σ 2)−2 is introduced to scale the inner product and associated
norm. It has the benefit of simplifying the expression and plays only a minor role in
the following examination of inequalities. Note that

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Theorem 13.7 (Topological Equivalence of Norms) With the definitions given
above, the norm ‖e‖σ 2 = √

(1 + σ 2)−2〈e, (I − L(σ 2))w〉Y is topologically equiv-
alent to ‖e‖0 = √〈e, (I − L)e〉Y where L = (I + ε−2GG∗)−1 as

1

σ 4 + ε−2‖G∗‖2 (I − L) ≤ (1 + σ 2)−2(I − L(σ 2)) ≤ σ−4(I − L) (13.57)

and hence, for any e ∈ Y ,

(
1

σ 4 + ε−2‖G∗‖2
)

‖e‖20 ≤ ‖e‖2
σ 2 ≤ σ−4‖e‖20 (13.58)

Note: As consequence, convergence or boundedness in R[G] with respect to one
norm implies that using the other norm.

It is now easily shown that,

Theorem 13.8 (A Robustness Result for the Notch Algorithm with Constant σ 2)
Suppose that σ̃ 2

k+1 = σ 2 is iteration independent. Then, Theorem 9.15, with L
replaced by L(σ 2), remains valid for the Notch Algorithm 13.3 if the norm ‖ ·‖0 used
is replaced by

‖e‖2
σ 2 = (1 + σ 2)−2〈e, (I − L(σ 2))e〉Y , e ∈ Y . (13.59)

More precisely, if there exists a real number ε20 > 0 such that, expressed in terms of
the original topology in Y ,

U + U∗ ≥ U∗(I − L(σ 2)U + ε20I on R[G], (13.60)

then ,

1. the monotonicity condition ‖ek+1 − e(2)
0 ‖σ 2 ≤ ‖ek − e(2)

0 ‖σ 2 is satisfied for all
k ≥ 0.

2. In addition, Theorem 13.7 then indicates that the sequence {‖ek‖0}k≥0 is bounded.
It converges to zero if, and only if, the sequence {‖ek‖σ 2}k≥0 converges to zero.

Simplifications are possible by noting that,

I − L(σ 2) = Γ (GG∗, σ 2)(I − L) ≤ (1 + σ 2)2

σ 4 (I − L) (13.61)

so that a sufficient condition for robustness is that

U + U∗ ≥
(

(1 + σ 2)2

σ 4

)
U∗(I − L)U + ε20I on R[G]. (13.62)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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which is the condition seen in Theorem 9.15 with an additional scaling factor of
(1+σ 2)2

σ 4 > 1. This expression immediately suggests that the Notch Algorithm 13.3
is likely to be less robust than NOILC and that this robustness probably reduces as
σ 2 gets smaller. Use of the notch algorithm will therefore be a balance between the
benefits of the improved convergence rates and annihilation properties as measured
against any loss in robustness if modelling errors are thought to be large.

Further simplifications of the robustness criterion follow directly by defining

βI =
(

(1 + σ 2)2

σ 4

)(
ε−2‖G∗‖2

(1 + ε−2‖G∗‖2)
)

and βG =
(

(1 + σ 2)2

σ 4

)
ε−2,

(13.63)
from which, using the same norm definitions, it follows that

Theorem 13.9 (A Simplified Robustness Result for the Notch Algorithm) Suppose
that σ̃ 2

k+1 = σ 2 is iteration independent. Then, condition Four of Theorem 9.16, with
βI and βG defined as above and with ‖ · ‖0 replaced by ‖ · ‖σ 2 , remains valid as a
predictor of robustness for the Notch Algorithm 13.3.

In particular,

1. The parameters βI and βG depend on the choice of Q, R, ε2 and σ 2 and reduce
to values used in Theorem 9.16 as σ 2 → ∞.

2. For application to discrete state space models, the results are easily translated into
frequency domain criteria simply by using the new definitions of parameters. The
details are left as an exercise for the reader and should be related to Theorems
9.17 and 9.18.

The assumption that σ 2 is iteration independent can be relaxed by noting that

(1 + σ 2)−2(I − L(σ 2)) − (1 + μ2)−2(I − L(μ2)) ≥ 0 if μ2 ≥ σ 2 (13.64)

so that ‖e‖σ 2 reduces, monotonically, as σ 2 increases.

Theorem 13.10 (Robustness using Monotonic Values of σ̃ 2
k+1) With the notation of

the discussion above, assume that the sequence {σ̃ 2
k+1}k≥0 is monotonically increas-

ing from an initial value σ̃ 2
1 > 0 and bounded by the value σ̃ 2∞ < ∞. Then, if

U + U∗ ≥
(

(1 + σ̃ 2
1 )2

σ̃ 4
1

)
U∗(I − L)U + ε20I on R[G], (13.65)

the error sequence generated by the Notch Algorithm 13.3 satisfies the monotonicity
condition

‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

≤ ‖ek‖2σ̃ 2
k+1

, for k ≥ 0. (13.66)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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In particular, there exists a real number E∞ ≥ 0 such that

lim
k→∞ ‖ek‖σ̃ 2

k+1
= E∞ and lim sup

k→∞
‖ek‖0 ≤ E∞

√
σ 4∞ + ε−2‖G∗‖2 (13.67)

and hence limk→∞ ‖ek‖0 = 0 if E∞ = 0.

Proof The proof follows from the discussion that precedes the theorem and the
observation that the condition (13.65) applied to iteration k +1 gives, using Theorem
13.8 with σ 2 = σ̃ 2

k+1 ≥ σ̃ 2
1 , ‖ek+1‖2σ̃ 2

k+1
≤ ‖ek‖2σ̃ 2

k+1
. The result is then easily proved

using the monotonicity assumption to give ‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

. The existence

of the limits then follows with the bounds on ‖ek‖0 being deduced using Theorem
13.7. �

The monotonicity assumption for {σ̃ 2
j }j≥1 is a useful assumption for analysis

as it adds a structure that produces a simple argument. For state space systems,
Sect. 13.3.3, it can be interpreted as choosing values of ε2σ̃ 2

j that sweep a range of

eigenvalue magnitudes from a defined minimum σ̃ 2
1 to some defined maximum σ̃ 2∞.

As this maximum increases, the closer the asymptotic behaviour and robustness will
be to that observed inNOILC. If σ̃ 2

1 is too small, then robustness in the initial iterations
may be compromised, an observation that can be interpreted as a warning that the
notch procedure should not be used to “annihilate” high frequency components of
the error.

Right Multiplicative Modelling Errors: Again assume that σ̃ 2
k+1 = σ 2 is inde-

pendent of iteration. Suppose also that U is now a right multiplicative modelling
error so that, in a feedforward implementation, the observed error evolution is sim-
ply ek+1 = (I − ε−2GUG∗LΓ (GG∗, σ 2))ek . The techniques used in Sect. 9.2.2 for
analysis of right multiplicative perturbations can now be used. The key to the analysis
is to note that LΓ (GG∗, σ 2) = Γ (GG∗, σ 2)L is self-adjoint and strictly positive and
to use the inner product in Y defined by

〈e, w〉σ 2 = (1 + σ 2)2〈e, LΓ (GG∗, σ 2)w〉Y . (13.68)

The norm induced by this inner product is equivalent to the norm ‖ · ‖0 used in
Sect. 9.2.2 as

(
1

σ 4+ε−2‖G∗‖2
)

L ≤ (1 + σ 2)−2LΓ (GG∗, σ 2) ≤ σ−4L implies that(
1

σ 4+ε−2‖G∗‖2
)

‖e‖20 ≤ ‖e‖2
σ 2 ≤ σ−4‖e‖20.

(13.69)

With this definition, the analysis of Sect. 9.2.2 can be used and leads easily to the
following result

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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Theorem 13.11 (A Robustness Result for the Notch Algorithm with Constant σ 2)
Suppose that σ̃ 2

k+1 = σ 2 is iteration independent. Then, Theorem 9.15, with L
replaced by LΓ (GG∗, σ 2) and ‖ · ‖0 replaced by ‖ · ‖σ 2 , remains valid for the
Notch Algorithm 13.3. More precisely, Condition One is replaced by the condition

U + U∗ > ε−2U∗G∗LΓ (GG∗, σ 2)GU, on R[G∗]. (13.70)

It ensures that ‖ek+1‖σ 2 ≤ ‖ek‖σ 2 for all k ≥ 0. Boundedness of both {‖ek‖σ 2}k≥0
and {‖ek‖0}k≥0 then follow from topological equivalence of the norms as does the
equivalence of their convergence to zero (if it occurs).

As with the case of left multiplicative perturbations, the inequality is satisfied if

U + U∗ >

(
(1 + σ 2)2

σ 4

)
ε−2U∗G∗LGU, on R[G∗] (13.71)

which is precisely Theorem 9.6 with the added factor of
(

(1+σ 2)2

σ 4

)
> 1 suggesting

a reduction in robustness as σ 2 gets smaller. It is now an easy task to prove that
monotonicity of the sequence {‖ek‖σ 2}k≥0 for the notch algorithm with iteration
independent values σ̃ 2

k+1 = σ 2 > 0 follows in a similar way to Theorem 9.8 from
the condition

Û + Û∗ > θβI U∗U + (1 − θ)βGG∗G on U for some θ ∈ [0, 1], (13.72)

provided that βI and βG are replaced by

βI =
(

(1 + σ 2)2

σ 4

)
ε−2‖G‖2

1 + ε−2‖G‖2 and βG =
(

(1 + σ 2)2

σ 4

)
ε−2. (13.73)

The reminder of the analysis follows the pattern seen for the case of leftmultiplicative
modelling errors and is left as an exercise for the reader who will note that ‖e‖σ 2

again reduces as σ 2 increases. As a consequence Theorem 13.10 remains valid in
the form,

Theorem 13.12 (Robustness using Monotonic Values of σ̃ 2
k+1) With the notation of

the discussion above, assume that the sequence {σ̃ 2
k+1}k≥0 is monotonically increas-

ing from an initial value σ̃ 2
1 > 0 and bounded by the value σ̃ 2∞ < ∞. Then, if

Û + Û∗ >

(
1 + σ̃ 2

1

σ̃ 2
1

)2

U∗G∗LGU on R[G∗], (13.74)

the error sequence generated by the Notch Algorithm 13.3 satisfies the monotonicity
condition

‖ek+1‖2σ̃ 2
k+2

≤ ‖ek+1‖2σ̃ 2
k+1

≤ ‖ek‖2σ̃ 2
k+1

, for k ≥ 0. (13.75)
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In particular, there exists a real number E∞ ≥ 0 such that

lim
k→∞ ‖ek‖σ̃ 2

k+1
= E∞ and lim sup

k→∞
‖ek‖0 ≤ E∞

√
σ 4∞ + ε−2‖G∗‖2 (13.76)

and hence limk→∞ ‖ek‖0 = 0 if E∞ = 0.

13.4 Discussion and Further Reading

Successive projection was defined in Chap.12 based on the work in [95]. That refer-
ence provided a convincing indication that the geometry of the Hilbert space H can
lead to slow convergence. In the case of NOILC Algorithm 9.1, this is easily seen
in computational studies and is primarily associated with the use of large values of
weight ε2 (as well as other dynamic factors such as non-minimum-phase properties).
Unfortunately, for state space models, small values of weight can lead to high gain
feedback solutions. The case for using an acceleration mechanism in Iterative Con-
trol that does not require small weight values is therefore appealing, although, being
model-based, issues of robustness need to be considered.

The work in [95] proposed an extrapolation approach based on Successive Projec-
tion. This was adopted in [83] for Iterative Control and its accelerating effects have
been demonstrated in computational studies [27, 83]. Reductions in robustness, as
compared with NOILC Algorithms such as Algorithm 9.1, can be expected in prac-
tice as the methodology is an extrapolation process using data from models and the
plant. High values of the extrapolation factor λk+1 could amplify the errors leading
to erratic algorithm performance and, potentially, divergence. The most dangerous
situation will occur if the sets S1 and S2 do not intersect. That is, there is no solu-
tion to the tracking problem. Reference [95] then suggests that wild oscillations and
divergence could occur unless the design uses the flexibility in the choice of λk+1
and puts practical limits λ ∈ [1, λmax] on the range used in the implementation!

The concept of successive projection seems to have considerable power in linking
algorithms to practical experimental processes. There is no real reason why the sets
involved need not vary from iteration to iteration. The question is “how should the
sets vary and what effect will the choice and variation have on convergence rates
and robustness?”. This text has introduced the Notch Algorithm 13.3 which is new
to the literature and uses this flexibility in the form of a parameterized family of
sets in the product space Y ×U . Essentially, it applies a scaling factor −σ 2 to one
term in the error definition, follows this by constructing a set S2(σ 2) to complement
the dynamics S1, and then applies successive projection. In the form presented,
it is an algebraic construct but has properties of acceleration demonstrated by its
improvements on NOILC as stated in Theorem 13.3 and, more fundamentally, the
property of exact or approximate annihilation of spectral components of the error
signal. Simple calculations based on the form of f (μ, σ 2), 0 < μ ≤ ‖G∗‖2 provide

http://dx.doi.org/10.1007/978-1-4471-6772-3_12
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considerable insight into the benefits of this algorithm, particularly when the factor
σ 2 is varied from iteration to iteration in an intelligent way.

The key to analysing the benefits on iteration k + 1 lie in the consideration of
functions defined by the products, with k ≥ 0,

k∏

j=0

f (μ, σ̃ 2
j+1) = 1

(1 + ε−2μ)k+1

k∏

j=0

(σ̃ 2
j+1 − ε−2μ)2

(σ̃ 4
j+1 + ε−2μ)

, 0 < μ ≤ ‖G∗‖2. (13.77)

The first factor describes the changes that would arise from k + 1 iterations of basic
NOILC Algorithm 9.1. The second factor

k∏

j=0

(σ̃ 2
j+1 − ε−2μ)2

(σ̃ 4
j+1 + ε−2μ)

, 0 < μ ≤ ‖G∗‖2, (13.78)

describes the way in which the various notches used on the iterations in Algorithm
13.3 affect the performance of the NOILC Algorithm. This term has well-defined
“zeros” at ε2σ̃ 2

j+1, 0 ≤ j ≤ k, providing the desired annihilation properties. In
addition, the placing of the values opens up the opportunity, for a given value of “k”,
of ensuring that f has very small values over a chosen spectral range. The interested
reader will be able to assess the effects and benefits by looking at a simple case with
ε2 = ‖G∗‖2 = 1, choosing k = 2with σ̃ 2

1 = 1, σ̃ 2
2 = 0.5 and σ̃ 2

3 = 0.25 and plotting
the form of the expression above in the range 0 < μ ≤ 1. A remarkable reduction
in values will be observed and demonstrates the ability to create fast convergence
without “high gain” control loops. In this case, for initial errors e0 dominated by the
contribution of the spectral values σ 2 > 0.25, rapid reductions in error magnitude
can be achieved.

Finally, the robustness analysis has used the mathematical construct of introduc-
ing new norms to the problems and deriving operator inequalities that define tolerable
multiplicative modelling errors. These inequalities are based on the artificial require-
ment of requiring monotonicity properties of the error sequence as measured by the
new norms. The results provide some reassurance that bounded responses will be
seen in practice. However, the precise behaviour of the errors as measured by the
original norm ‖ · ‖Y is difficult to ascertain from the properties of L and L(σ 2),
particularly when the “notch” σ 2 is varied from iteration to iteration.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9


Chapter 14
Parameter Optimal Iterative Control

This chapter continues with the use of optimization as the basis of Iterative Learning
Control but considers a process of simplification of the computational structure. In
the most general terms, the algorithms replace the search over “all” input signals by
restricting the search to one defined by a finite number of parameters and previously
recorded data. The free parameters are then computed as the solution of, what then
becomes, a finite dimensional optimization problem. There are considerable benefits
to be obtained by this process. In particular, monotonic reduction of error norms can
be retained and computation is simplified as the parameters are defined by formulae
obtained from an analytic solution. The representation is, however, nonlinear in the
measured error data.

The presentation takes a quite general form emphasizing principles, properties
and problems that can be met in applications. For example, care should be taken
in the design of an algorithm as the choice of a poor parameterization can lead to
flat-lining/plateauing effects very similar to those observed in gradient and NOILC
algorithms when applied to non-minimum-phase state space systems. The problem
can be avoided if an appropriate operator is strictly positive definite.

14.1 Parameterizations and Norm Optimal Iteration

The purpose of this section is twofold, namely

1. to show that suitable parametric representations of feedforward Iterative Control
laws can be equivalent to the Norm Optimal Control Algorithm 9.1 and

2. to use this fact to create simplified algorithms that use only a few parameters.
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Consider a process described by the dynamic relationship

y = Gu + d, with output y ∈ Y and u ∈ U (14.1)

where Y andU are real Hilbert spaces and G is a bounded linear operator mapping
U → Y . Together with NOILC, this representation (with G replaced by “Ge”) also
includes Intermediate Point Algorithms,Multi-task Algorithms and other algorithms
that are underpinned by the NOILC philosophy.

Definition 14.1 A general form of parameterization for feedforward algorithms is
described by the update formula

uk+1 = uk + Γk+1ek with ek = r − yk

(Conceptual Parameterized Feedforward Iterative Control).
(14.2)

It is parameterized by the iteration dependent, bounded, linear operator Γk+1 : Y →
U representing the process chosen for input updating. Rather than allow any choice,
it is allowed to vary from iteration to iteration within limits defined by a constraint
set ΩΓ defined by the user.

Note: In what follows, optimization over signals u ∈ U is replaced by optimizing
with respect to the choice of operator Γk+1 ∈ ΩΓ .

The behaviour of the algorithm depends crucially on the interaction between the
choice of ΩΓ , Γk+1 ∈ ΩΓ , the dynamics G and reference signal r. The problem of
algorithm design is therefore one of choosing the constraints ΩΓ and then, on each
iteration, the operator Γk+1 to achieve desired convergence characteristics. Algo-
rithms such as NOILCAlgorithm 9.1 create choices by optimization of J(u, uk) over
input signals to give the result Γk+1 = ε−2G∗(I + ε−2GG∗)−1 whilst intermedi-
ate point, multi-task and other algorithms, including the notch algorithm, give other
choices. In what follows, the optimization is that of choosing the “best” operator
rather than the best signal. Using optimization for operator choice can be a complex
mathematical task but the potential power of the idea is revealed in a special case
described in what follows.

The Unconstrained Finite Dimensional Case: Suppose that bothY andU arefinite
dimensional and identify signals with columnmatrices and the operators G and Γk+1
with matrices of the appropriate dimensions. Such an assumption includes the use of
supervector descriptions of discrete state space models (Chap. 4). The inner products
used can then be expressed in the form 〈y, w〉Y = yT Qw and 〈u, v〉U = uT Rv
where both Q and R are symmetric positive definite matrices. Note that, using these
topologies, the adjoint operators are

G∗ = R−1GT Q and Γ ∗ = Q−1Γ T R. (14.3)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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The optimization proposed is expressed as theminimization of the “quadratic” objec-
tive function

Jk+1(Γ ) = ‖e‖2Y + tr[Vk+1Γ
T Wk+1Γ ],

where Vk+1 = VT
k+1 > 0 and Wk+1 = WT

k+1 > 0
(14.4)

are, as yet unspecified, weighting matrices of appropriate dimension and the opti-
mization is done subject to the dynamic constraints e = r − Gu − d and the
relationship u = uk + Γ ek . Otherwise the choice of Γ is unrestricted. That is,

Γk+1 = argmin{ Jk+1(Γ ) : subject to e = (I − GΓ )ek}. (14.5)

The key to the existence and form of a solution is to note that

〈Γ1, Γ2〉F = tr[Vk+1Γ
T
1 Wk+1Γ2] (14.6)

is an inner product onmatrices and hence ‖Γ ‖F = √
tr[Vk+1Γ T Wk+1Γ ] is a norm (a

weighted formof Frobenius norm). The equation e = (I−GΓ )ek is therefore a linear,
input-output relationship between two real Hilbert spaces but where the “input” is the
matrix Γ . The problem of finding an unconstrained optimal Γ is therefore the linear
quadratic optimization problem of minimizing Jk+1(Γ ) subject to e = ek − Xk+1Γ ,
where Xk+1 is a bounded, linear operator (between real Hilbert spaces) defined by
Xk+1Γ = GΓ ek . The problem therefore has a unique solution. More formally,

Theorem 14.1 (Parameter Optimization can be Equivalent to NOILC) The notation
of the discussion above is assumed and the choice of Γ is taken to be unconstrained.
Under these conditions, the solution for the minimization of Jk+1(Γ ) subject to the
constraint e = (I − GΓ )ek is the unique solution of the equation

Γk+1 = W−1
k+1GT Q(I − GΓk+1)ekeT

k V−1
k+1 (14.7)

and the input update law takes the form, for k ≥ 0,

uk+1 = uk + Γk+1ek

= uk + (I + ‖ek‖2Vk+1
W−1

k+1GT QG)−1‖ek‖2Vk+1
W−1

k+1GT Qek,
(14.8)

where ‖ek‖2Vk+1
= eT

k V−1
k+1ek. Moreover, the norm sequence {‖ek‖Y }k≥0 is monoton-

ically decreasing and, if Wk+1 is chosen by the formula

Wk+1 = ε2‖ek‖2Vk+1
R, (14.9)
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the update law is precisely that obtained from the NOILC Algorithm 9.1. Under these
circumstances the algorithm is identical to NOILC Algorithm 9.1 and inherits the
properties of NOILC exactly.

Proof Writing the objective function in the form Jk+1 = ‖e‖2Y + ‖Γ ‖2F and the
constraint in the form e = ek − Xk+1Γ gives the solution Γk+1 = X∗

k+1ek+1 where
X∗

k+1 is the adjoint of Xk+1. This is computed by considering, for any e ∈ Y and
matrix Γ , the inner product

〈e, Xk+1Γ 〉Y = eT QGΓ ek = eT QGW−1
k+1Wk+1Γ ek = tr[ekeT QGW−1

k+1Wk+1Γ ]
= tr[Vk+1V−1

k+1ekeT QGW−1
k+1Wk+1Γ ]

= tr[Vk+1(W
−1
k+1GT QeeT

k V−1
k+1)

T Wk+1Γ ]
= 〈W−1

k+1GT QeeT
k V−1

k+1, Γ 〉F = 〈X∗e, Γ 〉F ,

(14.10)
so that X∗ is defined by the relationship X∗e = W−1

k+1GT QeeT
k V−1

k+1. The result for
Γk+1 = X∗ek+1 follows by replacing ek+1 by (I − GΓk+1)ek to give

Γk+1 = W−1
k+1GT Q(I − GΓk+1)ekeT

k V−1
k+1. (14.11)

The formula for uk+1 then follows by computing Γk+1ek and rearranging. The
monotonicity of the error norms follows from the observation that Γ = 0 is
suboptimal. The final observation follows trivially as a simple substitution gives
Γk+1ek = (I + ε−2G∗G)−1G∗ek = G∗(I + ε−2GG∗)−1ek which are precisely the
formula derived for feedforward NOILC. �

The result shows the, perhaps surprising, equivalence of a signal optimization
problem and a class of “parameter optimization problems” if a suitable quadratic
objective function is used and theweights in the norms associatedwith the parameters
are carefully chosen. For an N1 × N2 matrix Γ , the number of parameters used is
precisely N1 × N2 which, in Iterative Control, is typically very large indeed. The
theorem will be used in Sects. 14.2 and 14.4 to motivate an approximation procedure
based on the intuition that, if the number of free parameters is reduced, the resultant
sub-optimal Parameter Optimal Iterative Learning Control (POILC) Algorithm may
offer a simplified alternative to Norm Optimal ILC that avoids complex computation
and retains the important, practical property of monotonic error norm reduction.

Choosing Vk+1: Theorem 14.1 is true for all symmetric, positive definite choices of
Vk+1. It is natural to ask whether or not this non-uniqueness can be resolved using
some other criterion. For example,

1. the choice of Vk+1 = I (the identity) produces the result that ‖ek‖Vk+1 =
√

eT
k ek

is the Euclidean norm. This has a certain simplicity but its numerical value will
depend on the units used to describe the physical variables in ek and hence the
contribution of individual elements may not reflect their true importance in the
application.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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2. On the assumption that the matrix Q is chosen to reflect the physical units used
and the relative importance of the variables, a definition of Vk+1 that transforms
to unit changes in the same way is obtained by the choice of

Vk+1 = Q−1 when, in particular, V−1
k+1Γk+1R = Γ ∗. (14.12)

In this case ‖ek‖Vk+1 = ‖ek‖Y and

Theorem 14.2 (The Optimal Value of Γk+1) If Wk+1 = ε2‖ek‖2Vk+1
R and Vk+1 =

Q−1, then the optimal Γk+1 is given by

Γk+1 = (I + ε−2G∗G)−1ε−2G∗ekeT
k Q‖ek‖−2

Y
= ε−2G∗(I + ε−2GG∗)−1ekeT

k Q‖ek‖−2
Y

(14.13)

and
ε2‖ek‖2Y tr

[
Γ ∗

k+1Γk+1
] = ε2‖ε−2G∗(I + ε−2GG∗)−1ek‖2U . (14.14)

Note: The optimal value of the trace term can therefore be identified with the opti-
mal value of ε2‖u − uk‖2U as computed using the NOILC Algorithm of Chap.9.
This observation provides an additional strengthening of the intuitive link between
parameter optimization and NOILC-based signal optimization.

Proof Using Theorem 14.1 with the values assumed, write Γk+1 = Ψ ekeT
k Q for

some matrix Ψ to obtain

ε2‖ek‖2Y Γk+1 = G∗ (I − GΓk+1) ekeT
k Q

= G∗ (
I − GΨ ekeT

k Q
)

ekeT
k Q

= G∗ekeT
k Q − ‖ek‖2Y G∗GΓk+1.

(14.15)

The expression for Γk+1 follows by rearranging. Next, note that the orthogonal

projection f 	→ ek
eT

k Qf

‖ek‖2Y
is self adjoint as a map fromY intoY and use the notation

L = (I + ε−2GG∗)−1 to write

ε2‖ek‖2Y tr
[
Γ ∗

k+1Γk+1
] = ε−2‖ek‖−2

Y tr
[
ekeT

k QLGG∗LekeT
k Q

]

= ε−2‖ek‖−2
Y eT

k QLGG∗Lek(eT
k Qek)

= ε−2〈ek, LGG∗Lek〉Y
= ε−2‖G∗Lek‖2U = ε2‖ε−2G∗Lek‖2U

(14.16)

which is the required expression. �

It is the second choice that is assumed in this text. Noting that Γ ∗ = Q−1Γ T R then
indicates that the objective function has the simple form

J(Γ ) = ‖e‖2Y + wk+1tr[Γ ∗Γ ] with weighting parameter
wk+1 = w0 + ε2‖ek‖2Y where w0 = 0.

(14.17)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The iteration dependent parameter wk+1 represents the changing weight given to the
operator Γ (squared) norm term as iterations progress.

Note: The apparently redundant introduction of a parameter w0 followed, imme-
diately, by setting it to zero will play a role in what follows when this constraint will
be removed to allow choices w0 ≥ 0. Intuitively, choosing w0 > 0 can be seen as
a simple mechanism to avoid numerical ill-conditioning and, perhaps, retaining a
degree of robustness by preventing the weight from reducing to zero as ‖ek‖ becomes
small. During iterations where w0 
 ε2‖ek‖2Y , the link to NOILC is retained.

14.2 Parameter Optimal Control: The Single Parameter
Case

The notion of Parameter Optimal Iterative Learning Control (POILC) is motivated
by the analysis of the previous section with the addition of a constraint set ΩΓ . As
an introduction to the ideas, the case of a single parameter β is considered in this
section. Even at this simple level, several technical issues arise, not least of which
are the choice of parameterization and the selection of an objective function.

14.2.1 Alternative Objective Functions

The choice of parameterization and its consequences for the form of the objective
function offers a number of alternatives.

14.2.1.1 Approach One

Consider the class of control laws u = uk + Γ ek and the optimization problem of
minimizing (14.17) over all possible operators Γ ∈ ΩΓ , with

ΩΓ = {Γ : Γ = βΓ0}, (14.18)

where Γ0 : Y → U is a fixed (iteration independent) operator chosen by the user
and β is a free scalar “gain” parameter. The vector Γ0ek can be regarded as the
chosen search direction for the update rule on iteration k + 1. The objective function
motivated by (14.17) is

J(Γ ) = ‖e‖2Y + wk+1β
2 with weight

wk+1 = w(ek) where
w(e) = (

w0 + ε2‖e‖2Y
)

tr[Γ ∗
0 Γ0] and w0 ≥ 0.

(14.19)
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The parameter ε2 > 0 is the notional link to NOILC but if, this link is unimportant,
it is possible to allow the choice of ε2 and w0 satisfying

w0 ≥ 0, ε2 ≥ 0 and w0 + ε2 > 0 (that is w1 > 0 if e0 �= 0). (14.20)

In addition, it may make practical sense to set

tr[Γ ∗
0 Γ0] = 1, (trace normalization) (14.21)

by absorbing its real value into the choice of w0 and ε2.
Note: The algorithms described in Chaps.6 and 7 represent examples of this

constraint with Γ0 = G−1 (inverse model algorithms) and Γ0 = G∗ (gradient-based
algorithms). In those cases, β was regarded as a fixed, user-specified gain, but it is
now regarded as a parameter that can be varied in an optimization problem.

14.2.1.2 Approach Two

Examination of the form of the optimal choice in (14.13) suggests that ΩΓ should
be error dependent. The natural generalization takes the form

ΩΓ (e) = {Γ (e, β) : Γ (e, β) = βΓ0eeT Q‖e‖−2
Y }, (14.22)

The control laws considered then take the form

u = uk + Γ (ek, β)ek = uk + βΓ0ek . (14.23)

That is, despite the different parameterization, the control update rule is identical to
that used on Approach One. However, the objective function does change as

tr[Γ ∗(e, β)Γ (e, β)] = β2tr[eeT QΓ ∗
0 Γ0eeT Q‖e‖−4

Y ]
= β2‖e‖−2

Y 〈e, Γ ∗
0 Γ0e〉Y = β2‖e‖−2

Y ‖Γ0e‖2U .
(14.24)

The objective function therefore naturally takes the form

J(Γ ) = ‖e‖2Y + ε2‖ek‖2Y tr[Γ ∗(ek, β)Γ (ek, β)]
= ‖e‖2Y + ε2β2‖Γ0ek‖2U

(14.25)

More generally, an option is to let

J(Γ ) = ‖e‖2Y + wk+1β
2 with weighting parameter wk+1 > 0, (14.26)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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where an additional parameter w0 ≥ 0 is included using the definition,

wk+1 = w(ek) where w(e) = w0 + ε2‖Γ0e‖2U . (14.27)

The constraints on w0 and ε2 to ensure that wk+1 > 0 for all non-zero e ∈ Y are
that

w0 > 0 if ker[Γ0] �= {0} and
w0 + ε2 > 0 otherwise.

(14.28)

14.2.1.3 Approach Three

Athird approach to creation of a parameter optimization problem is to use the inequal-
ity ‖Γ0ek‖U ≤ ‖Γ0‖2‖ek‖2Y and replace (14.26) by

J(Γ ) = ‖e‖2Y + wk+1β
2 with weight wk+1 = w(ek), and

w(e) = w0 + ε2‖Γ0‖2‖e‖2Y , where
w0 ≥ 0, ε2 ≥ 0 and w0 + ε2 > 0.

(14.29)

This expression includes an additional degree of approximation but note that

1. The increased value of wk+1 increases the weighting placed on β in J .
2. The expression can be further simplified by setting ‖Γ0‖ = 1 and scaling ε2

appropriately. In this case, ε2 no longer has the same relationship to the underlying
NOILC problem.

14.2.2 Problem Definition and Convergence Characterization

In all three cases discussed in Sects. 14.2.1.1–14.2.1.3, the user must choose an
operator Γ0 and to select, for iteration k + 1, the optimizing parameter value in a
class of one parameter update laws

u = uk + βΓ0ek (14.30)

using the optimization problem

βk+1 = argmin
β

J(Γ ), where J(Γ ) = ‖e‖2Y + wk+1β
2, (14.31)

subject to the dynamical constraint e = r − y, y = Gu + d. The resultant input is
denoted byuk+1 = uk+βk+1Γ0ek and the error response is denoted by ek+1. The error
arising from using any value is denoted by e = r −y = r −Gu−d = (I −βGΓ0)ek .
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Substituting for e in J(Γ ) gives

J(Γ ) = ‖ek‖2Y − 2β〈ek, GΓ0ek〉Y +
(
‖GΓ0ek‖2Y + wk+1

)
β2, (14.32)

which is minimized by βk+1 = β(ek) where the function β(e) is defined by

β(e) =
[ (

w(e) + ‖GΓ0e‖2Y
)−1 〈e, GΓ0e〉Y , if e �= 0

0 , if e = 0.

]

(The Function Defining Optimal Parameter Values).
(14.33)

Note that β(e) = 0 if, and only if, either e = 0 or e �= 0 and 〈e, GΓ0e〉Y = 0.
Also, β(e) is continuous everywhere if w0 > 0 and continuous everywhere but at
the origin e = 0 if w0 = 0.

The following algorithm exploits the discussion provided above. It can be applied
to any of the formulations described in Sects. 14.2.1.1–14.2.1.3 by using the relevant
expression for wk+1 and constraints on w0 and ε2.

Algorithm 14.1 (Parameter Optimal Iteration: Single Parameter Case) Given a
system y = Gu + d with output y ∈ Y , input u ∈ U and reference signal r ∈
Y , suppose that both Y and U are finite dimensional with signals represented by
column vectors and operators by matrices and inner products 〈e, w〉Y = eT Qw and
〈u, v〉U = uT Rv respectively. Then, using the notation of the preceding discussion,
choose an operator (matrix/dynamical system) Γ0, parameters ε2 ≥ 0, w0 ≥ 0 and
initial input signal u0 and obtain its associated tracking error e0. Then the resultant
single parameter,Parameter Optimal Iterative Learning Control (POILC) Algorithm,
for all k ≥ 0, sets the input for iteration k + 1 equal to that obtained with parameter
β equal to the optimizing value βk+1 = β(ek) computed from Eq. (14.33).

Note: The algorithm could, in principle, be used for cases where either or both of
the spaces Y and U are infinite dimensional. This is true for the two approaches
in Sects. 14.2.1.2 and 14.2.1.3 as the form of wk+1 has a natural interpretation in
infinite dimensions. Problems can occur using the approach of Sect. 14.2.1.1 as the
coefficient tr[Γ ∗

0 Γ0] can be seen as a source of technical problems as it is linked
to matrix descriptions. The reader will note, however, that the algorithm can make
mathematical sense of the trace computation in some cases including

1. if Y is finite dimensional as, then, Γ ∗
0 Γ0 : Y → Y is a matrix.

2. IfU is finite dimensional, then the range ofG is finite dimensional and the matrix
identity tr[Γ ∗

0 Γ0] = tr[Γ0Γ
∗
0 ] (where Γ0Γ

∗
0 is now a matrix) allows appropriate

trace computation.
3. If both spaces are infinite dimensional, then tr[Γ ∗

0 Γ0] canbe replacedby any scalar
T0 > 0, the choice of this scalar being an issue for the user to resolve. A default
choice could be unity by absorbing T0 into the choice of parameters in wk+1.
In this case the link to NOILC is lost but the algorithm still has computational
validity.
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The algorithm is feedforward and is implemented by plant tests using uk to com-
pute/measure the error ek . This is followed by inter-task computation of the signal
GΓ0ek either by

1. using a model and off-line simulation (the simplest option) or
2. by computing vk = Γ0ek off-line and then finding GΓ0ek = Gvk as the output

from the plant using vk as an input and using zero initial state conditions.

The inner product and norm evaluations are then possible for the evaluation of βk+1
and then uk+1. Being a single parameter approximation to NOILC probably means
that, for a given topology and choice of ε2, convergence rates will be slower but the
simplicity of the computations offers considerable potential benefits in the imple-
mentation. Details of convergence properties follow,

Theorem 14.3 (POILC: General Monotonicity and Convergence Properties) Using
the notation defined above, Algorithm 14.1 generates error and parameter sequences
{ek}k≥0 and {βk+1}k≥0 that satisfy the monotonicity and convergence conditions

‖ek+1‖Y ≤ ‖ek‖Y , for all k ≥ 0 (Monotonicity),
and

∑∞
k=0 wk+1β

2
k+1 < ∞ (Parameter Convergence).

(14.34)

In particular,

1. equality ‖ek+1‖Y = ‖ek‖Y holds if, and only if, βk+1 = 0.
2. Finally, if e0 �= 0, then ek �= 0 for all k ≥ 0. That is, convergence to zero error in

a finite number of iterations cannot occur.

Proof As β = 0 is sub-optimal and the corresponding error is ek , it follows that
‖ek+1‖2Y +wk+1β

2
k+1 ≤ ‖ek‖2Y for all k ≥ 0 (provingmonotonicity and the comment

on conditions for equality). Recursive computation gives

‖e0‖2Y ≥ ‖ek‖2Y +
k∑

j=1

wjβ
2
j ≥ 0, for all k ≥ 1. (14.35)

The parameter convergence result follows easily from the positivity of norms and
parameters. Finally, suppose that ek �= 0 but that ek+1 = 0. It follows that βk+1 �= 0
and GΓ0ek = β−1

k+1ek . Substituting into the formula for βk+1 gives

βk+1 =
(

wk+1 + β−2
k+1‖ek‖2Y

)−1
β−1

k+1‖ek‖2Y (14.36)

which is just wk+1 = 0. That is, for the three cases considered,

(
w0 + ε2‖ek‖2Y

)
tr[Γ ∗

0 Γ0] = 0,
w0 + ε2‖Γ0ek‖2U = 0 or

w0 + ε2‖Γ0‖2‖ek‖2Y = 0.
(14.37)
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With ek �= 0, these conditions are inconsistent with the specified constraints on the
choices of w0 and ε2. �

The monotonicity property of NOILC Algorithm 9.1 is therefore retained but the
price paid for the simplicity of the parameterization is that the relationship between
parameter choice and convergence properties is more complex. The simplest differ-
ences arise as a consequence of the value of w0 chosen and the properties of the
quadratic form 〈e, GΓ0e〉Y when e �= 0.

14.2.3 Convergence Properties: Dependence on Parameters

Case ONE: If w0 = 0 and ek �= 0, then the construction seen in Sect. 14.2.1.2 is
excluded. For the cases explained in Sects. 14.2.1.1 and 14.2.1.3, ε2 is necessarily
non-zero and ek can be replaced by its normalized value hk = ek/‖ek‖Y to give
‖hk‖2Y = 1.

βk+1 = 〈hk, GΓ0hk〉Y
(ε2T0 + ‖GΓ0hk‖2Y )

, (14.38)

for some real number T0 > 0. It follows that βk+1 lies in a closed and bounded range
β ≤ β ≤ β for all ek �= 0. Without loss of generality, assume that β (respectively,

β) is the largest (respectively, smallest) such value. The situations considered are as
follows,

1. If ββ > 0, then β2
k+1 ≥ min{β2, β

2} > 0 for all k ≥ 0. The convergence of the
infinite series in Theorem 14.3 then implies the ideal outcome that

lim
k→∞ ‖ek‖2Y = 0 (Error Convergence to Zero) (14.39)

as min{β2, β
2}ε2 ∑∞

k=0 ‖ek‖2Y ≤ ∑∞
k=0 wk+1β

2
k+1 < ∞.

2. If ββ < 0, then there exists at least one non-zero vector ê ∈ Y such that β(ê) = 0
and hence that 〈ê, GΓ0ê〉Y = 0. Under these conditions, the algorithm converges
immediately if the initial error e0 = ê as β1 = β(e0) = 0 from which u1 = u0
and e1 = e0. The algorithm produces no change as it follows that ek = e0
and βk+1 = 0 for all k ≥ 0. More generally, if e0 is arbitrarily chosen, the
parameter sequence {βk+1}k≥0 remains bounded but, although the error norms
reduce monotonically, the error sequence {ek}k≥0 may not necessarily converge
to zero.

3. If ββ = 0, then either 0 = β < β or β < β = 0. For simplicity, the first case
of β = 0 is considered and the reader is invited to complete the analysis for the

second case of β = 0. Two situations should be considered. The first is when
there exists a non-zero vector ê ∈ Y such that 〈ê, GΓ0ê〉Y = 0. It is easily
seen that the behaviour has the same properties as that deduced for ββ < 0.

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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This leaves the case where β = 0 but where there is no vector ê �= 0 such that
〈ê, GΓ0ê〉Y = 0. This can only occur if both Y and U are infinite dimensional,
a case not considered further in this text.

The discussion indicates the benefits of choosing Γ0 to ensure that ββ > 0. A
consideration of the form of β(e) indicates that this is achieved if, and only if, GΓ0
is sign definite in the sense that, for some ε20 > 0, either

〈e, GΓ0e〉Y ≥ ε20‖e‖2Y or 〈e, GΓ0e〉Y ≤ −ε20‖e‖2Y for all e ∈ Y . (14.40)

In terms of the operators involved, these conditions are expressed as

GΓ0 + (GΓ0)
∗ ≥ 2ε20I or GΓ0 + (GΓ0)

∗ ≤ −2ε20I. (14.41)

One condition becomes the other if Γ0 is replaced by −Γ0 so, without loss of gen-
erality, the positivity condition describes the situation completely.

Case Two: Ifw0 > 0, then all three of the approaches seen in Sects. 14.2.1.1–14.2.1.3
can be considered together. Error norm monotonicity is present and there exists a
scalar w̃0 > 0 such that wk+1 ≥ w̃0 for all k ≥ 0. Using Eq. (14.34), it follows that

∞∑

k=0

w̃0β
2
k+1 <

∞∑

k=0

wk+1β
2
k+1 < ∞ so that lim

k→∞ βk+1 = 0. (14.42)

The nature of the asymptotic behaviour of the algorithm is, again, described entirely
by the behaviour of 〈e, GΓ0e〉Y . The analysis is very similar to that of w0 = 0. In
particular,

1. if GΓ0 is sign-definite in the sense of Eq. (14.40) then convergence of the
{βk+1}k≥0 to zero implies that limk→∞ ek = 0.

2. If there exists a non-zero vector ê ∈ Y such that 〈ê, GΓ0ê〉Y = 0, then β(ê) = 0
and the initial error e0 = ê is unchanged by the algorithm. That is, the algorithm
ensures monotonic reductions in error norm but the error does not necessarily
converge to zero.

The introduction of w0 > 0 therefore does not change the basic nature of the con-
vergence of the algorithm. Its role lies, primarily, in avoiding any ill-conditioning of
the computations when the error norms are small. For example, a useful choice may
be to make it sufficiently small so that it has little effect on initial iterations and only
comes into play when the error is near to the desired tracking accuracy.
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14.2.4 Choosing the Compensator

Section14.2.3 has shown the benefits of choosing Γ0 to satisfy a sign-definiteness
condition (14.40). Four examples are described in what follows based on the Inverse
Model Algorithm 6.1, the Gradient Algorithm 7.2 and the Norm Optimal Algorithm
9.1 for discrete systems (Algorithm 9.4).

Inverse Model Compensation: The choice of a right inverse GR (when it exists)
of G as the operator Γ0 gives GΓ0 = I and the positivity condition (Eq.14.41) is
satisfied. Algorithm 14.1 hence produces monotonic errors converging to zero and

βk+1 = ‖ek‖2Y(
wk+1 + ‖ek‖2Y

) . (14.43)

Gradient-based Compensation: The choice of the adjoint operator G∗ (of G) as
the operator Γ0 gives GΓ0 = GG∗ and

βk+1 = ‖G∗ek‖2Y(
wk+1 + ‖GG∗ek‖2Y

) . (14.44)

The orthogonal subspace decomposition Y = ker[G∗] ⊕ R[G] and the evolution
ek+1 = (I − βk+1GG∗)ek then indicates that the orthogonal projection Pker[G∗]e0 of
e0 onto ker[G∗] is unchanged from iteration to iteration and that all error evolution is
confined toR[G]. For analysis purposes Y can be replaced byR[G]. The positivity
condition GG∗ > 0 is therefore always satisfied on the Hilbert subspace R[G] and,
in the finite dimensional case, GG∗ ≥ (1/2)ε20I for some ε0 > 0. Hence, the error
norms are monotonically reducing and

lim
k→∞ ek = Pker[G∗]e0. (14.45)

Approximate Inverses and Gradients: In the above, Γ0 can be replaced by an
approximation to either an inverse plant or the adjoint. The motivation for such
approximations is primarily to simplify the computation of Γ0ek . There is an infin-
ity of such simplifications but, for successful algorithm performance, the positivity
conditions should, ideally, be satisfied.

Norm Optimal Iteration: NOILC Algorithm 9.1 suggests the choice of Γ0 =
ε−2G∗(I + ε−2GG∗)−1.

1. For the parameterization introduced in Sect. 14.2.1.1, eigenvalue-based matrix
analysis then shows that

ε−4

(1 + ε−2‖G∗‖2)2 tr[GG∗] ≤ tr[Γ ∗
0 Γ0] ≤ ε−4tr[GG∗] (14.46)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_7
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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which bounds the trace by that seen in the case of gradient algorithms.
2. For the parameterization used in Sect. 14.2.1.2 with ε2 > 0, the computation of

‖Γ0ek‖2U is precisely the evaluation of the norm ‖uk+1 − uk‖2U computed using
the NOILC Algorithm using the specified value of ε2.
Note: If the value of w0 = 0 were to be used on any iteration, then the material
in Sect.14.1 indicates that the optimal value of the parameter βk+1 = 1 on that
iteration. Using w0 > 0 will change this situation.

3. For the parameterization used in Sect. 14.2.1.3, an estimate of the norm of Γ0 is
required and can be undertaken using computational and/or theoretical eigenvalue
analysis and the spectral mapping theorem. The eigenvalues are unknown but, as

Γ ∗
0 Γ0 = ε−4(I + ε−2GG∗)−1GG∗(I + ε−2GG∗)−1 ≥ 0, (14.47)

it can be bounded by analysis of the properties of the function ε−2x(1 + x)−2 in
the range 0 ≤ x ≤ ε−2‖G∗‖2. This gives

‖Γ0‖2 ≤ sup
0≤x≤ε−2‖G∗‖2

ε−2x(1 + x)−2. (14.48)

The supremum over [0,∞) occurs at x = 1 from which

‖Γ0‖2 = ε−4‖G∗‖2(1 + ε−2‖G∗‖2)−2, if ε2 ≥ ‖G∗‖2 and

|Γ0‖2 ≤ 1
4ε

−2 otherwise.
(14.49)

In any situation, the user has the choice of three forms of wk+1. This choice can be
reduced as there are problems implicit in the approach suggested in Sect. 14.2.1.1.
This is illustrated by considering the frequency domain estimation of the trace of
GG∗ and G∗G for discrete state space systems in the next section.

14.2.5 Computing tr[Γ ∗
0 Γ0]: Discrete State Space Systems

The value of tr[Γ ∗
0 Γ0] used in the expressions for βk+1 must be either assumed, esti-

mated or computed if the approach of Sect. 14.2.1.1 is selected. This section considers
the problemof estimating tr[Γ ∗

0 Γ1]whereΓ0 (respectively,Γ1) can be represented by
a linear, discrete, state space model S(A, B, C, D) (respectively, S(A1, B1, C1, D1))
and associated discrete transfer functionmatrixΓ0(z) (respectively,Γ1(z)). The trace
computation can then be approximated as follows,

Theorem 14.4 (Estimating the Trace of Γ ∗
0 Γ1 for Discrete State Space Systems)

Using the notation above, suppose that both Γ0 : Y → U and Γ1 : Y → U are
asymptotically stable, discrete, �-output, m-input, state space systems operating on
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the discrete interval 0 ≤ t ≤ N and that Y = Rm(N+1) and U = R�(N+1) with
inner products

〈e, w〉Y =
N∑

t=0

eT (t)Qw(t) and 〈u, v〉U =
N∑

t=0

uT (t)Rv(t) (14.50)

where R (respectively, Q) is an �×� (respectively m×m) symmetric, positive definite
matrix. Then, keeping the sample interval constant and extending the time interval
by increasing N gives

lim
N→∞ (N + 1)−1tr[Γ ∗

0 Γ1] = tr

[
1

2π i

∮

|z|=1
Q−1Γ T

0 (z−1)RΓ1(z)
dz

z

]
. (14.51)

Note: The contour integral integrates on the unit circle in the complex plane in a
counterclockwise direction represented by z = eiθ , 0 ≤ θ ≤ 2π .

Proof Using the supervector description (Chap. 4) of the system, the adjoint operator
is the supervector description of S(AT , CT R, Q−1BT , Q−1DT R)with a zero terminal
condition at t = N . Using the structure of supervector descriptions, the trace ofΓ ∗

0 Γ1
is then given by

tr[Γ ∗
0 Γ1] =

N∑

j=0

(N + 1 − j)tr[Q−1XT
j RYj] (14.52)

where X0 = D, Y0 = D1 and Xj = CAj−1B, Yj = C1Aj−1
1 B1 for j ≥ 1. The

asymptotic stability assumption, the Cauchy-Schwarz Inequality and the fact that the
trace is an inner product on matrices then implies the existence of scalars λ ∈ (0, 1)

and M > 0 such that 0 ≤
∣∣∣tr[Q−1XT

j RYj]
∣∣∣ ≤ Mλj−1 for all j ≥ 1. It follows that,

∣∣∣∣∣∣
lim

N→∞

N∑

j=0

j tr[Q−1XT
j RYj]

∣∣∣∣∣∣
≤ M lim

N→∞

N∑

j=1

jλj−1 = M

(1 − λ)2
< ∞ (14.53)

and hence that,

limN→∞ (N + 1)−1tr[Γ ∗
0 Γ1] = limN→∞

∑N
j=0

(N+1−j)
(N+1) tr[Q−1XT

j RYj]
= ∑∞

j=0 tr[Q−1XT
j RYj]

= tr
[∑∞

j=0 Q−1XT
j RYj

]
< ∞

(14.54)
The result follows by writing Γ0(z) = ∑

j≥0 z−jXj, Γ1(z) = ∑
j≥0 z−jYj and

evaluating the contour integral. �

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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The result provides an estimate of the trace when N is finite but large. Namely,

tr[Γ ∗
0 Γ1] ≈ tr

[
N + 1

2π i

∮

|z|=1
Q−1Γ T

0 (z−1)RΓ1(z)
dz

z

]
, (14.55)

the fractional error in this estimate becoming arbitrarily small as N increases. More
structure is revealed by considering the example of Γ0 = Γ1 with

Γ0(z) = z(1−λ)
z−λ

when 1
2π i

∮
|z|=1 Γ0(z−1)Γ0(z)

dz
z = 1−λ

1+λ
, (14.56)

where λ ∈ (−1, 1) ensures stability and Γ0(1) = 1 normalizes low frequency gains.
If the pole λ = eah where h = N−1T is the sample interval and the system evolves
on an underlying continuous time interval [0, T ], then, assuming that h is small, the
integral≈ −ah/2 and hence is small. Multiplying byN +1 then shows that tr[Γ ∗

0 Γ0]
is approximately proportional to T .

Finally, approximate gradient-based methodologies (Chap. 7) would choose Γ0
as the adjoint K∗ of an asymptotically stable, discrete, �-input, m-output, state space
system K : U → Y (with transfer function matrix K(z)) operating on the discrete
interval 0 ≤ t ≤ N . If Γ1 is the adjoint of an asymptotically stable, discrete, �-input,
m-output, state space system K1 : U → Y (with transfer function matrix K1(z)),
Theorem 14.4 immediately gives,

Theorem 14.5 (tr[ Γ ∗
1 Γ0] for Adjoints of Discrete State Space Systems) Using the

notation and assumptions preceding this theorem,

lim
N→∞ (N + 1)−1tr[Γ ∗

1 Γ0] = tr

[
1

2π i

∮

|z|=1
R−1KT (z−1)QK1(z)

dz

z

]
. (14.57)

Proof The techniques used in the proof of Theorem 14.4 can be used. If K has a
state space model S(A, B, C, D), K∗ then has the model S(AT , CT Q, R−1BT , R−1

DT Q) with zero terminal condition at t = N . The result follows by writing Γ0 = K∗
and Γ ∗

1 = (K∗
1 )∗ = K1 so that

tr[Γ ∗
1 Γ0] = tr[K1K∗] = tr[K∗K1] (14.58)

and noting the interchanged roles of R and Q in the algebra. �

14.2.6 Choosing Parameters in J(β)

As presented in previous sections, the choice of parameters w0 and ε2 is an
essential part of algorithm design. Section14.1 provides an interpretation of ε2

as the parameter appearing in the NOILC objective function where, in addition,
w0 = 0. An alternative approach is simply to regard w0 and ε2 as parameters for

http://dx.doi.org/10.1007/978-1-4471-6772-3_7
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influencing the performance of POILC. This relationship is complex and no general
result is available. The simplest approach to seeing the issues is to consider a simple
example.

Consider the case of linear discrete time state space systems on an interval 0 ≤
t ≤ N . Let Γ0 = GR where GR is a right inverse of G, and hence GGR = I . Writing

β(e) in terms of the “mean square value” ‖e‖2Y = (N + 1)−1‖e‖2Y ,

β(e) = ‖e‖2Y(
w(e)(N + 1)−1 + ‖e‖2Y

) . (14.59)

The factor w(e)(N + 1)−1 provides some guidance as, in the three cases considered
in Sects. 14.2.1.1–14.2.1.3 which give

(A) w(e)(N + 1)−1 =
(

w0(N + 1)−1 + ε2‖e‖2Y
)

tr[G∗
RGR],

(B) w(e)(N + 1)−1 =
(

w0(N + 1)−1 + ε2‖GRe‖2U
)

and

(C) w(e)(N + 1)−1 =
(

w0(N + 1)−1 + ε2‖GR‖2‖e‖2Y
) (14.60)

These expressions suggest the following observations

1. In all cases, if the parameter w0 is to have any effect, it will need to increase as
N increases.

2. Using (A) with a long time interval N yields, from Theorem 14.4,

a. the result that β(e) is inversely proportional to N + 1 so that, for a given
mean square error and parameters w0 and ε2, convergence may be slow. This
problem can be removed by using the substitution

tr[Γ ∗
0 Γ0] = 1 (Trace Normalization) (14.61)

and then to regard ε2 ≥ 0 and w0 ≥ 0 as independent parameters to be chosen
to achieve the desired convergence rates and robustness.

b. This approach is reinforced when GR is unstable as then the trace can be very
large.

3. Using (C) with w0 = 0 gives a constant value

β(e) = 1

ε2‖GR‖2 + 1
(14.62)

and the analysis reduces to the choice of gain for the inverse algorithm analysed
in Chap.6. The choice of a non-zero value w0 > 0 could be based on the selection
of both w0 and ε2 to make β1 take a desired value βinit < 1 and to take the value
βtol < βinit when the error norm reaches a value Etol with E2

tol < ‖e0‖2Y . That is
the parameters are the solutions of the two equations

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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βinit = ‖e0‖2Y
(w0+ε2‖GR‖2‖e0‖2Y )+‖e0‖2Y

and

βtol = E2
tol

(w0+ε2‖GR‖2E2
tol)+E2

tol

(14.63)

which are just two linear simultaneous equations inw0 and ε2. If positive solutions
exist, the effect of the procedure is to implement a faster convergence rate in the
initial iterations but to reduce this rate progressively as the error normgets smaller.
The benefits of this are expected to be increased robustness of the iterative process
in the latter stages of the algorithm.

4. For case (B), the analysis is less clear as, for a given mean square error, the mean
square value of GRek can take a range of values dependent on ek .

The effect of parameter choice on robustness is considered in Sect. 14.3 with the
general result that increased robustness will be associated with increased values.

14.2.7 Iteration Dynamics

Suppose that both Y and U are finite dimensional. Parameter optimal iteration
dynamics can be seen as a finite dimensional nonlinear dynamical system defined
by the equations

ek+1 = (I − βk+1GΓ0)ek, βk+1 = β(ek), for k ≥ 0, (14.64)

with parameter evolution,

βk+1 = 〈ek, GΓ0ek〉Y
(wk+1 + ‖GΓ0ek‖2Y )

, (14.65)

where wk+1 is constructed in one of the ways described in Sects. 14.2.1.1–14.2.1.3.
In the ideal case, when the sign-definiteness conditions (14.40) are satisfied, con-

vergence of the error to zero is guaranteed. In addition, the parameter sequence
{βk+1}k≥0 is bounded if w0 = 0 and converges to zero if w0 > 0. If, however,
(14.41) is not satisfied, the situation is more complex. It is still possible for the error
to converge to zero but the dynamical behaviour has more components.

14.2.8 Plateauing/Flatlining Phenomena

Convergence problems exist only at error data points e in the set

S0 = {e : 〈e, GΓ0e〉Y = 0}, (that is, S0 = {e : β(e) = 0}) (14.66)
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in the sense that initial errors e0 ∈ S0 are equilibrium points of the iteration dynamics.
Note that,

1. S0 always contains the kernel/null space ker[GΓ0] of GΓ0.
2. Starting at any nonzero point e0 ∈ S0, the resultant iteration response has the

form ek = e0 and βk+1 = 0, for all k ≥ 0. That is, Algorithm 14.1 does not
improve on the initial error.

3. If S0 �= {0} and e is close to S0, then β(e) is small.
4. If e ∈ S0 then λe ∈ S0 for all real scalars λ and any S0 �= {0} contains error

signals of arbitrarily large and small magnitudes.
5. The case when (14.40) holds corresponds to S0 = {0}.
Consider, therefore, the case where S0 contains at least one nonzero element. Starting
at any nonzero point e0 ∈ Y , the resultant iteration error sequence {ek}k≥0 can have
several characteristics including convergence to zero error. However, the presence
of the set S0 �= {0} means that, if an error ek in the sequence, at any time, moves
close to S0, the resultant small value of βk+1 leads to a small change in error which
then leads to a small value of βk+2. Continuing with this argument, it is deduced
therefore, that, close to S0,

1. small changes in error occur over several, or even many, iterations. That is, the
algorithmwill lead to an iteration responsewith a period of very slow convergence
represented by an almost constant value of error norm. Hence,

2. the closer an iterate ek gets to S0, the greater the number of iterations that will be
needed to escape from the slow convergence phenomenon (if, indeed, escape is
possible).

The period of infinitesimally slow convergence if the error sequence gets close to S0
is an analogue, for Parameter Optimal Control, of the behaviour seen in Gradient and
Norm Optimal Algorithms applied to non-minimum-phase discrete state space sys-
tems (see Sects. 8.2.4 and 9.3). The period of poor convergence could, in principle,
consist of just a few iterations but, very close to S0, the period could consist of hun-
dreds or even thousands of iterations. Such a situation would be indistinguishable, in
practice, from actual convergence of the algorithm to a non-zero limit error. Using the
dynamical system interpretation of Eq. (14.64) suggests several possibilities based
on the interpretation of S0 as the set of equilibrium points. That is,

1. S0 could attract the sequence {ek}k≥0 with convergence limk→∞ ek = e∞ ∈ S0
where e∞ need not be zero, or

2. it could attract the sequence which, rather than converging to a limit, slides
monotonically and very slowly over the surface of S0. Alternatively,

3. S0 could repel the error sequence in the sense that, despite a period near to S0,
the iterates ultimately move away and, improved convergence rates reappear.

4. Note that, even if the sequence moves away from S0, it is still possible that it
could return to be close to it again. That is periods of slow convergence could
reappear several times before final convergence (or “sliding”) is achieved.

http://dx.doi.org/10.1007/978-1-4471-6772-3_8
http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The possible behaviours described above are deduced from the dynamical system
interpretation (14.64) of iteration evolution. The dynamics are evolving, typically,
in a high dimensional space which makes detailed computational analysis difficult.
For practical purposes therefore, the discussion underlines the benefits of ensuring
that the positivity condition (14.40) is satisfied. If, however, it is not satisfied, the
discussion throws light on the range of behaviours and difficulties that can be met.

A natural question to ask is whether or not conditions can be derived that describe
the “attracting” and “repelling” behaviours in terms of subsets of S0 where they
occur. A semi-quantitative analysis of the situation now follows. The proximity of
e ∈ Y to S0 is associated with the value of β(e). S0 is characterized by β(e) = 0 and
is the frontier of two disjoint sets in Y where, respectively, β(e) > 0 and β(e) < 0.
Suppose that ek is non-zero and not in S0.

A simple characterization of situations where S0 attracts iterates is represented by
movement towards S0 represented by the inequality β2

k+2 < β2
k+1. This is just

0 > (βk+2 + βk+1) (βk+2 − βk+1) = (2βk+1 + (βk+2 − βk+1)) (βk+2 − βk+1) .

(14.67)
If ek is non-zero and infinitesimally close to S0, then ek+1 − ek is infinitesimally
small and, using a first order power series expansion of the function β(e) about the
point ek gives

βk+2 − βk+1 = β(ek+1) − β(ek) ≈ ∂β(e)

∂e
|e=ek (ek+1 − ek) (14.68)

where the vector ∂β(e)
∂e |e=ek represents the Frechet derivative of β(e) at ek . Using the

iteration dynamics ek+1 − ek = −βk+1GΓ0ek then characterizes movement to S0 by
the condition

0 <

(
2βk+1 − βk+1

∂β(e)

∂e
|e=ek GΓ0ek

)
βk+1

∂β(e)

∂e
|e=ek GΓ0ek . (14.69)

Considering the situation where ek is infinitesimally close to a point e ∈ S0 and
dividing by β2

k+1 > 0 suggests that iterations close to a point e ∈ S0 will tend to
move towards S0 if

0 <

(
2 − ∂β(e)

∂e
GΓ0e

)
∂β(e)

∂e
GΓ0e, (14.70)

which is just

0 <
∂β(e)

∂e
GΓ0e < 2. (14.71)

Consideration of repelling behaviour starting with the inequality β2
k+2 > β2

k+1 (rep-
resentingmovement away from S0) suggests, using a similar argument that this occurs
near to e ∈ S0 if
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either
∂β(e)

∂e
GΓ0e < 0 or

∂β(e)

∂e
GΓ0e > 2. (14.72)

A more complete characterization of behaviours requires the computation of ∂β(e)
∂e

with e ∈ S0. This is now illustrated by writing

(
w(e) + ‖GΓ0e‖2Y

)
β(e) = 〈e, GΓ0e〉Y . (14.73)

Differentiating and using the fact that β(e) = 0 then gives

(
w(e) + ‖GΓ0e‖2Y

) ∂β(e)

∂e
GΓ0e = 〈e, (GΓ0 + (GΓ0)

∗) GΓ0e〉Y . (14.74)

Using this in Eq. (14.71), iterations close to a point e ∈ S0 will move towards S0 if

0 <
‖GΓ0e‖2Y +〈e,(GΓ0)

2e〉Y(
w(e)+‖GΓ0e‖2Y

) < 2,

(A Characterization of Attracting Regions of S0).

(14.75)

The nonlinear and high dimensionality of the relationship make a more detailed
analysis very complex. It is not attempted here and is unlikely to have any real value
in practice other than as a tool for understanding observed behaviourswhen analyzing
data. Note also that behaviours near to points where equality holds in Eq. (14.75) are
excluded. An analysis of these special situations would require second (or higher
order) order term(s) in the power series expansion of β(e) to be included.

Note that satisfaction of (14.75) is equivalent to the two conditions

(A) ‖GΓ0e‖2Y + 〈e, (GΓ0)
2e〉Y > 0 and

(B) ‖GΓ0e‖2Y − 〈e, (GΓ0)
2e〉Y + 2w(e) > 0.

(14.76)

The first inequality depends only on the properties ofGΓ0 and hence is a consequence
of the choice of Γ0 only. The second, however, depends also on the user-specified
parameters w0 and ε2. For example,

1. using the approach of Sect. 14.2.1.1 with the trace normalization assumption of
Eq. (14.61), (B) is replaced by

(B1) ‖GΓ0e‖2Y − 〈e, (GΓ0)
2e〉Y + 2(w0 + ε2‖e‖2Y ) > 0. (14.77)

Given a choice of Γ0 and a data vector e ∈ S0 satisfying (A),

a. increasingw0 increases the range of values of ε2 that imply that e ∈ S0 satisfies
(B1) and hence is an attracting point.

b. A (conservative) estimate of the range of ε2 that satisfies (B1) at e is obtained
by noting that |〈e, (GΓ0)

2e〉Y | ≤ ‖GΓ0‖2‖e‖2Y so that the second inequality
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(B1) is satisfied if

‖GΓ0‖2‖e‖2Y < 2
(

w0 + ε2‖e‖2Y
)

. (14.78)

This inequality is true if
‖GΓ0‖2 < 2ε2. (14.79)

c. More generally, consider the POILC Algorithm starting from e0 and let S(e0)
be the subset of e ∈ S0 that satisfy ‖e‖Y ≤ ‖e0‖Y and for which condition
(A) holds but where

‖GΓ0e‖2Y − 〈e, (GΓ0)
2e〉Y + 2ε2‖e‖2Y ≤ 0. (14.80)

Then these points will be added to the set of attracting points if

2w0 > sup
e∈S(e0)

(
〈e, (GΓ0)

2e〉Y − 2ε2‖e‖2Y − ‖GΓ0e‖2Y
)

(14.81)

2. For the case considered in Sect. 14.2.1.2, (B) is replaced by

(B2) ‖GΓ0e‖2Y − 〈e, (GΓ0)
2e〉Y + 2(w0 + ε2‖Γ0e‖2U ) > 0. (14.82)

As above, increasing the values of w0 and ε2 increases the size of the attractive
component of S0. It is left as an exercise for the reader to use similar techniques
to assess the effect of parameter choices on the size of the attractive set.

3. The reader is also invited to complete the cases considered by considering the
case of w(e) as specified in Sect. 14.2.1.3.

Example Finally, the following example suggests that both attracting and repelling
surfaces can co-exist. Consider the simple situation whereY = R2 with the Euclid-
ean inner product 〈y, w〉 = yT w and with

GΓ0 =
[
1 0
4 1

]
so that (GΓ0)

2 =
[
1 0
8 1

]
= 2GΓ0 − I. (14.83)

S0 is therefore characterized, with e = [e1, e2]T , by

〈e, GΓ0e〉 = e21 + e22 + 4e1e2 = 0 and hence e2 = e1(−2 ± √
3) (14.84)

which has two distinct components corresponding to the two signs ±. Next, from
Eq.14.76, compute the first part (A) as

‖GΓ0e‖2 + 〈e, (GΓ0)
2e〉 = 8e1(2e1 + e2) = ± 8e21

√
3. (14.85)
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Note that both negative and positive values can be achieved. The negative sign cor-
responds to part of a repelling component of S0 whilst the positive sign suggests the
possibility of the existence of an attracting component. This is verified by noting that
the second part (B) is also positive for all ε2 and w0 as

‖GΓ0e‖2Y − 〈e, (GΓ0)
2e〉Y = ‖GΓ0e‖2Y + ‖e‖2Y > 0. (14.86)

It is concluded that S0 contains both repelling and attracting subsets for all choice
of w0 and ε2. The interested reader may find it interesting and/or instructive to plot
these sets in the (e1, e2) plane and to confirm, by simulation, that the error update
equation ek+1 = (I − βk+1GΓ0)ek has different properties depending on the initial
error. In particular, unless the initial error lies precisely on the repelling set, the
iterations typically have a non-zero limit that lies on the attracting set. Also, if the
initial condition lies extremely close to the repelling set, the algorithm starts very
slowly with many iterations that result in infinitesimal changes in error until, finally,
the iterates “escape” and move more rapidly to a limit on the attractive set.

14.2.9 Switching Algorithms

Sections14.2.7 and14.2.8 havepointedout the possibility that, despite themonotonic-
ity property, the failure to satisfy positivity conditions of the form of (14.40) can lead
to a flat-lining, plateau-like behaviour represented by convergence to a strictly posi-
tive residual error norm. The behaviour is induced by the set S0 defined in Eq. (14.66)
and occurs in situations where convergence rates slow because the error becomes
very close to S0 and, as a consequence, the values of βk+1 remain infinitesimally
small for many iterations.

Once “trapped” near to an attracting component of S0, the error sequence may
fail, in practical terms, to converge further. This situation cannot then be improved
upon as it is a consequence of the properties of GΓ0 and, in particular, the choice
of Γ0. This suggests that iterates will be released if S0 is “moved” away from ek by
changing Γ0 on iteration k +1. This may allow an increase in the values of βk+1 that
will be computed, begin the process of moving iterates away from S0 and ultimately
improving the achievable error norm reduction. If such a change is applied on each
iteration, it may be possible to eliminate the flat-lining problem altogether.

The above discussion leads to the question—how can Γ0 be changed from
iteration to iteration to eliminate the flat-lining phenomenon? A complete answer
to this question is not possible but an indication of the possibilities can be obtained
using some simple constructions. Consider therefore the case ofG as a linear, discrete
time, state space system operating on a time interval 0 ≤ t ≤ N . Choose M ≥ 1
(non-zero) operators (matrices) {Γ (j)

0 }1≤j≤M each of which is associated with its own

set S(j)
0 = {e : 〈e, GΓ

(j)
0 e〉Y = 0} of equilibrium points. All contain the points in

the intersection
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S∞ =
M⋂

j=1

S(j)
0 . (14.87)

On iteration k, Γ0 is taken to have the value Γ0(k) = Γ
(jk)
0 where jk is chosen from

the range 1 ≤ j ≤ M in such a way that any index j in this set will be chosen, for
some M̃ ≥ M, at least once in each index set k, k + 1, . . . , k + M̃ for all k ≥ 0. The
intuition behind the intersection property is that convergence to any set S(j)

0 is avoided
by the changes leaving motion to S∞ as the only remaining option. If S∞ = {0},
then, intuitively, the error converges to zero. This is formalized as follows using the
objective function used in Sect. 14.2.1.1 with the trace normalization assumption of
Eq. (14.61).

Algorithm 14.2 (Single Parameter Optimal Iteration with Switching) Using the
assumptions and construction provided above, a Parameter Optimal Iterative Control
Algorithm with switching can be defined by the input update for iteration k + 1,

uk+1 = uk + βk+1Γ0(k + 1)ek, (14.88)

where

βk+1 = 〈ek, GΓ0(k + 1)ek〉Y(
(w0 + ε2‖ek‖2Y ) + ‖GΓ0(k + 1)ek‖2Y

) (14.89)

is the value of β that minimizes the objective function

Jk+1(β) = ‖e‖2Y + wk+1β
2,

with wk+1 = w0 + ε2‖ek‖2Y , w0 ≥ 0, ε2 ≥ 0, and w1 > 0,
(14.90)

subject to the constraint e = (I − βGΓ0(k + 1)) ek .
The resulting iteration dynamics has the properties of generating a monotonically

decreasing error norm sequence with error sequence {ek}k≥0 that asymptotically gets
arbitrarily close to S∞. If S∞ = {0}, then the error sequence converges to zero.

Proof of the Stated Convergence Properties From optimality, the choice of β = 0 is
sub-optimal so monotonicity follows from the inequality

‖ek+1‖2Y + wk+1β
2
k+1 ≤ ‖ek‖2Y , (14.91)

from which, for all k ≥ 0,

‖ek+1‖2Y ≤ ‖e0‖2Y −
k∑

j=0

wj+1β
2
j+1. (14.92)

Monotonicity implies that the limit limk→∞ ‖ek‖Y = E∞ ≥ 0 exists. Either E∞ =
0 (when the error sequence converges to zero and the proof is complete) or E∞ > 0.
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If E∞ > 0, then, for all parameter choices, limk→∞ βk+1 = 0. In particular, as the
error differences ej+1 − ej then converge to zero, it follows that, for 1 ≤ j ≤ M,

limk→∞ 〈ek, GΓ
(j)
0 ek〉Y = 0. Continuity arguments then prove the asymptotic

proximity of the error sequence to S∞ and convergence to zero if S∞ = {0}. �
The use of switching has the theoretical potential to significantly improve the con-

vergence characteristics of POILC although the choice of M, the {Γ (j)
0 }1≤j≤M and

their sequencing to create {Γ0(k +1)}k≥0 requires careful consideration. Ultimately,
their choice will be guided by two factors namely, reducing the asymptotic value
of the error norm and ensuring that S∞ only contains error signals of an acceptable
dynamic form. The practical feasibility of the algorithm will then depend on accept-
able convergence properties over the, probably relatively small, number of iterations
that are ideally used in practice.

Finally, the following examples link properties of S∞ to the choice of {Γ (j)
0 }1≤j≤M .

1. If, for example,
∑M

j=1 αj

(
GΓ

(j)
0 + (GΓ

(j)
0 )∗

)
is strictly positive definite for some

choice of scalars {αj}1≤j≤M , then the reader can verify that S∞ = {0}. This
suggests that the richer the set used, the more likely it is that convergence will be
achieved.

2. For an asymptotically stable, single-input, single-output, discrete time, state space
systemwith transfer functionG(z)withΓ0 the adjoint of an asymptotically stable,
SISO, discrete time, state space system with transfer function K(z), the inner
product can be identified intuitively if N is very large, with

〈e, GK∗e〉Y ≈ 1

2π i

∮

|z|=1
|e(z)|2Re

[
G(z)K(z−1)

] dz

z
, (14.93)

which suggests that the associated set S0 = {e : 〈e, GK∗e〉Y = 0} requires a bal-
ance between the “energy” in the frequency range where the phase ofG(z)K(z−1)

lies in the interval (−π
2 , π

2 ) and the energy at other frequencies. The introduction
of several such relationships then defines S∞ as the region where M such energy
balances are satisfied. If both G and K are low pass systems, this will require a
balance between the energies at “low” and “high” frequencies. Combining this
with the monotonicity properties then suggests that S∞ may often be associated
with signals of pre-dominantly higher frequency content.

3. The operators {Γ (j)
0 }1≤j≤M need not be dynamically complex. To illustrate this

fact, suppose thatG andK are linear, SISO, asymptotically stable, discrete systems
with state space models S(A, B, C, D) and S(AK , BK , CK , DK ). The iterations are
assumed to operate on the interval 0 ≤ t ≤ N and the relative degree-based, shift
techniques of Chap.4 have been used to ensure that the matrices, G and K , in the
supervector description are invertible (that is,D �= 0 andDK �= 0). The switching
mechanism is introduced using a simple first order filter F(z) = (1 − λz−1)−1

with state space model S(λ, λ, 1, 1) and supervector description associated with
the matrix

http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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F(λ) =

⎡

⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
λ 1 0 · · · 0
...

...

λN−1 λN−2 · · · 1 0
λN λN−1 · · · λ 1

⎤

⎥⎥⎥⎥⎥⎦
(14.94)

The choice of λ = 0 generates the “filter” F(z) ≡ 1 when no filtering occurs.
More generally, assume the Euclidean inner product 〈e, w〉Y = eT w in both
U = Y = RN+1 and set

Γ
(j)
0 = F∗(λj)K

∗ = (
KF(λj)

)∗
, 1 ≤ j ≤ M, (14.95)

where {λj}1≤j≤M is a set of real, distinct scalars in the open interval (−1, 1)
and M ≥ N + 1. Note that the adjoint in this case is simply the transpose of the
matrix and, for single-input, single-output systems,K commutes with all matrices
F(λj), 1 ≤ j ≤ M.

Algorithm 14.3 (SISO POILC: Switching and Anti-causal Filters) A switching
algorithm based on the above construction uses the update rule

uk+1 = uk + βk+1Γ0(k + 1)ek = uk + βk+1K∗eF
k

where eF
k = F∗(λjk )ek

(14.96)

where the indices {jk}k≥1 satisfy the assumptions of Algorithm 14.2.

In essence the algorithm uses the adjoint K∗ as an operator on the filtered error and
the bandwidth of the filter is systematically changed from iteration to iteration. The
filtering operation is done in reverse time using a state space representation of the
adjoint with zero terminal state condition.

Properties of the above algorithm are stated formally as follows,

Theorem 14.6 (SISO POILC: Switching and Anti-causal Filters) The effect of the
choices made above is to ensure that S∞ = {0} and hence that the tracking error
sequence converges to zero.

Proof S∞ is defined by M equations as

S∞ = {e : 〈e, GF∗(λj)K
∗e〉Y = 0, 1 ≤ j ≤ M}. (14.97)

Equivalently, for 1 ≤ j ≤ M, with w = G∗e and Ĝ as the inverse system of G,

〈G∗e, F∗(λj)K∗Ĝ∗G∗e〉Y = 〈G∗e, F∗(λj)K∗Ĝ∗G∗e〉Y
= 〈w,

(
ĜKF(λj)

)
w〉Y = 0.

(14.98)

That is, using the form of F(λ), ψ(λ, w) = 〈w,
(

ĜKF(λ)
)

w〉Y is a polynomial

in λ of degree N with M ≥ N + 1 distinct roots. It is therefore identically zero
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and, in particular the coefficients in the polynomial are all zero. Noting that ĜKF(λ)

represents a linear dynamical system and that w = [w(0), w(1), . . . , w(N)]T is a
time series, the coefficient of λN is easily computed to be D−1DK w(0)w(N) = 0.
That is, w(0) = 0 and/or w(N) = 0. In all situations, the time interval can be reduced
by one or two samples leaving a characterization of S∞ that is structurally identical
but of lower dimension. Applying an inductive argument sequentially shortens the
interval to indicate that w(t) = 0 at all samples except, possibly, at one point t = t∗
where DDK w2(t∗) = 0. That is w(t∗) = 0 which proves that w = 0, that e = 0 and
hence that S∞ = {0}. �
Note: The example illustrates the theoretical validity of the switching concept using
simple control elements. The price paid for convergence is that M ≥ N + 1 filters
are needed and N is typically very large in practice. At least one sweep of the filter
set may be required to ensure satisfactory accuracy so that convergence rates may
be slow. An alternative viewpoint is that the switching is simply there to achieve
improvements on the performance to be expected in the absence of switching.

14.3 Robustness of POILC: The Single Parameter Case

In single parameter Optimal Iteration Algorithm 14.1, Γ0ek can be interpreted as a
tentative descent direction for the problem with optimization being used to choose
the step length βk+1. Intuitively, this will be tolerant of some modelling errors as
multiplicative modelling errors will introduce perturbations of GΓ0 that retain the
descent characteristic provided that the value of β is small enough. Examination of
the form of β(e) suggests that this “smallness” will be associated with, in particular,
larger values of ε2 and/or w0.

A general analysis of the robustness of Algorithm 14.1 is not available but an
indication of robustness properties is possible. The simplest approach examines a
special case of interest.

14.3.1 Robustness Using the Right Inverse

More precisely, suppose that G is a right-invertible model of the plant dynamics in
the form of an asymptotically stable, �-input, m-output, discrete, state space system
with associated transfer function matrix G(z). Plant dynamics is assumed to take
place on an interval 0 ≤ t ≤ N and the inner product in Y = Rm(N+1) is

〈y, w〉Y =
N∑

t=0

yT (t)Qw(t), where Q = QT > 0 (14.99)

is the chosen m × m, positive definite weight matrix.
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A Parameter Optimal Algorithm can then be constructed using a right inverse
GR of a model G in a similar manner to Algorithm 6.1 in Chap.6. The input update
relation takes the form

uk+1 = uk + βk+1Γ0ek with Γ0 = GR and GGR = I (the identity). (14.100)

The objective function used has the form

J(β) = ‖e‖2Y + wk+1β
2 with wk+1 = w(ek) (14.101)

where w(e) is constructed using the ideas of Sect. 14.2.1.1 (with or without trace
normalization), Sect. 14.2.1.2 or 14.2.1.3. The optimizing value of βk+1 predicted
by the model is obtained as

βk+1 = β(ek) where β(e) = ‖e‖2Y
w(e) + ‖e‖2Y

∈ [0, 1]. (14.102)

This value can be computed from measured error data ek on each iteration even if
modelling errors are present. The result of the calculation can then be used in input
updating. Suppose that the modelling error is a left multiplicative modelling error
U with associated m × m transfer function matrix U(z). The actual plant is then
characterized by the operator UG and the error evolution is described by

ek+1 = (I − βk+1U)ek (14.103)

The robustness analysis of Chap.6, Sect. 6.2 then shows that the monotonicity prop-
erty ‖ek+1‖Y < ‖ek‖Y is retained for all k ≥ 0 if, in the topology induced by
〈·, ·〉Y ,

U + U∗ > βk+1U∗U, for all k ≥ 0, (14.104)

a condition that is satisfied only if, during the iterations,

U + U∗ >

(
sup
k≥0

βk+1

)
U∗U. (14.105)

The sequences {βk+1}k≥0 and {ek}k≥0 are unknown before iterations are initiated but
a sufficient condition is easily obtained by replacing the condition by

U + U∗ > β∗U∗U where β∗ = sup
‖e‖≤‖e0‖

β(e) ∈ (0, 1]. (14.106)

This can be written as a robustness condition expressed in terms of the spectral radius

r
(
(I − β∗U)∗(I − β∗U)

)
< 1. (14.107)

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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As in Sect. 6.2, this then provides the frequency domain condition for discrete state
space systems

sup
|z|=1

r
(

Q−1(I − β∗UT (z−1))Q(I − β∗U(z))
)

< 1. (14.108)

The interpretation of the result is identical to that of the fixed parameter case and,
in particular, again requires U to have positivity properties. Note the additional
information provided from the equation for β(e) and the fact that robustness of the
algorithm will increase as β∗ decreases. The details depend on the chosen form for
w(e). More precisely,

1. for the choices in Sects. 14.2.1.1 and 14.2.1.3, β∗ = β(e0) = β1. That is the value
β1 computed on the first iteration decides the monotonic robustness of all of the
following iterations.

2. Using w(e) from Sect. 14.2.1.2,

β∗ = sup
‖e‖≤‖e0‖

( ‖e‖2Y
w0 + ε2‖GRe‖2U + ‖e‖2Y

)
, (14.109)

the value of which depends on the form and properties of GR.

All of the above verify the intuition that robustness increases if either or both para-
meter values w0 and ε2 increase. In addition, the tracking accuracy, as measured by
‖e0‖2Y , achieved using u0 on the zeroth iteration, influences the robustness of the
algorithm and provides a convincing motivation for the user to choose it carefully.

14.3.2 Robustness: A More General Case

The analysis of the robustness of POILC can be related, more generally, to that of
the fixed parameter case. Suppose that,

1. GR is replaced by an operator Γ0 and that the positivity conditions in Eq. (14.40)
are satisfied. Suppose also that the plant is described by the model G subjected to
a left multiplicative modelling error U and that U satisfies a positivity property
of the form

U + U∗ ≥ ε20I for some real scalar ε20 > 0. (14.110)

2. As U may be unknown, the gains {βk+1}k≥0 used in POILC will be computed
using the model G of the plant.

3. It follows that the gains that can be used in both the fixed parameter and POILC
cases are positive. The gain in POILC is given by βk+1 = β(ek) where β(e) is
now given by

http://dx.doi.org/10.1007/978-1-4471-6772-3_6
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β(e) = 〈e, GΓ0e〉Y
w(e) + ‖GΓ0e‖2Y

. (14.111)

4. Let βf > 0 be the largest gain such that the fixed parameter, perturbed process
UG has the property of robust monotonic reduction of the error norm sequence
using any value of β in the range 0 < β < βf .

5. It follows that the variations in gain value from iteration to iteration generated by
POILC will also produce monotonic convergence provided that

sup
k≥0

βk+1 < βf . (14.112)

This immediately yields an alternative criterion for single-parameter POILC prob-
lems in the form of properties of β(e), namely,

Theorem 14.7 (Robustness of POILC: A General Result) Using the notation and
assumptions of the preceding discussion, a sufficient condition for robust monotonic
convergence of the error norm sequence in the presence of the left-multiplicative
modelling error U is that ‖e0‖Y should be small enough and/or w0 and ε2 large
enough to ensure that

β∗ = sup
‖e‖≤‖e0‖

β(e) < βf . (14.113)

This again indicates that robustness conditions for the fixed parameter case can be
used to generate robustness conditions for the related POILC approach and that
robustness can be influenced by parameter choice and judicious choice of u0. If βf is
not known, the result provides trend information. If βf can reasonably be estimated,
then an evaluation of sup β(e) may be considered. For a gradient-based POILC
algorithm where Γ0 = G∗, the analysis requires evaluation of βf followed by an
investigation of the effect of parameter choice and u0 to satisfy the condition

sup
0<‖e‖Y ≤‖e0‖Y

‖G∗e‖2(
w(e) + ‖GG∗e‖2Y

) < βf . (14.114)

The supremum is achieved for some vector e satisfying ‖e‖Y = ‖e0‖Y so that
evaluation of the left hand side is an optimization problemwith an equality constraint.
The solution is obtainable as a stationary point of the Lagrangian

L [e, λ] = β(e) + λ(‖e0‖2Y − ‖e‖2Y ) (14.115)

with scalar Lagrange Multiplier λ.
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14.4 Multi-Parameter Learning Control

Parameter Optimal Iterative Learning Control (POILC) is motivated by the analysis
of Sect. 14.1. In contrast to the single parameter approach of Sect. 14.2, this section
uses a constraint set ΩΓ of a very specific, multi-parameter form containing np free
parameters {β(j)}1≤j≤np regarded as elements of a parameter vector

β = [β(1), β(2), . . . , β(np)]T ∈ Rnp . (14.116)

14.4.1 The Form of the Parameterization

The operator Γ (β) in the input update rule is now dependent on β and the optimiza-
tion for iteration k + 1 searches over inputs

u = uk + Γ (β)ek with β ∈ Rnp . (14.117)

The np ×1 parameter vector β is a design variable with the value chosen for iteration
k + 1 denoted by βk+1 leading to an error response ek+1. The spaces Y and U are
finite dimensional with signals and operators represented by matrices. The spaces
are given the inner products 〈y, w〉Y = yT Qw and 〈u, v〉U = uT Rv where both Q
and R are symmetric positive definite matrices. The operator Γ (β) : Y → U can
in principle take any functional dependence on the parameters but, in the “linear”
spirit of this text, the structure is simplified by

Linearity and No Redundancy Assumptions: More precisely, Γ (β) is assumed to
depend linearly on β so that

Γ (λ1β + λ2β
′) = λ1Γ (β) + λ2Γ (β ′), (and hence Γ (0) = 0), (14.118)

for all β, β ′ ∈ Rnp and real scalars λ1 and λ2. In addition, it is assumed that

Γ (β) = 0 implies that β = 0, (14.119)

which ensures that there is no redundancy in the parameterization.

An important consequence is that there exists an alternative representation described
by

Γ (β)e = M(e)β, for all e ∈ Y and β ∈ Rnp, (14.120)
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where M(e) is linear in e with M(0) = 0. For example, if np = 2 and e = [e1, e2]T

and

Γ (β) =
[

β(1) −β(2)

2β(1) + 3β(2) 4β(1) − 5β(2)

]
, then M(e) =

[
e1 −e2

2e1 + 4e2 3e1 − 5e2

]
.

(14.121)
More generally, writing, with suitable choice of coefficient matrices {Γ̃j}1≤j≤np ,

Γ =
np∑

j=1

Γ̃jβ
(j), then M(e) =

[
Γ̃1e, Γ̃2e, . . . , Γ̃np e

]
. (14.122)

The input and error update equations hence have the form

u = uk + M(ek)β and e = ek − GM(ek)β. (14.123)

14.4.2 Alternative Forms for ΩΓ and the Objective Function

The discussion follows the form used in the single parameter case in Sects. 14.2.1.1–
14.2.1.3.

14.4.2.1 Approach One

Consider the class of control laws u = uk + Γ ek and the optimization problem of
minimizing (14.17) over all possible operators Γ ∈ ΩΓ , with

ΩΓ = {Γ : Γ = Γ (β)}, (14.124)

where Γ (β) : Y → U is a parameter dependent operator chosen by the user and
β is a free parameter vector. The first calculation replaces tr[Γ ∗Γ ] by the quadratic
form

tr[Γ ∗(β)Γ (β)] = βT Wβ, (14.125)

where the np × np matrix W is symmetric with elements,

Wij = tr[Γ̃ ∗
i Γ̃j] = tr[Q−1Γ̃ T

i RΓ̃j] = Wji. (14.126)

The non redundancy assumption and the positivity of the trace norm on matrices
ensures that W is positive definite.
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The objective function suggested by this expression and Eq. (14.17) takes the form

J(Γ ) = ‖e‖2Y + βT Wk+1β with weight matrix
Wk+1 = W(ek) where
W(e) = (

w0 + ε2‖e‖2Y
)

W and w0 ≥ 0.
(14.127)

As in Sect. 14.2.1.1, the parameter ε2 > 0 is the notional link to NOILC but if, this
link is unimportant, it is possible to allow any choice of ε2 and w0 satisfying

w0 ≥ 0, ε2 ≥ 0 and w0 + ε2 > 0. (14.128)

In addition, it may make practical sense

1. to avoid problems such as those seen in Sect. 14.4 by using trace normalization.
This could take many forms but the most natural is the replacement

W 	→ np

(
1

tr[W ]
)

W , (multi-parameter trace normalization), (14.129)

a mapping that takes the identity in Rnp into itself.
2. Alternatively, W may simply be a simple and convenient choice for the user.

14.4.2.2 Approach Two

Following Sect. 14.2.1.2, set

ΩΓ (e) = {Γ (e, β) : Γ (e, β) = Γ (β)eeT Q‖e‖−2
Y }. (14.130)

The control laws considered then take the form

u = uk + Γ (ek, β)ek = uk + Γ (β)ek . (14.131)

That is, despite the different parameterization, the control update rule is identical to
that used on Approach One. Computing

tr[Γ ∗(e, β)Γ (e, β)] = tr[eeT QΓ ∗(β)Γ (β)eeT Q‖e‖−4
Y ]

= ‖e‖−2
Y 〈e, Γ ∗(β)Γ (β)e〉Y

= ‖e‖−2
Y 〈Γ (β)e, Γ (β)e〉U

= ‖e‖−2
Y βT W1(e)β,

(14.132)

where W1(e) is symmetric as it has elements

(W1(e))ij = 〈Γ̃ie, Γ̃je〉U = (W1(e))ji (14.133)

It is also positive as the trace norm is positive on matrices.
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Theorem 14.8 Using the above construction, W1(e) is positive definite if, and only
if, the vectors {Γ̃je}1≤j≤np are linearly independent.

Proof The result is a consequence of noting that βT W1(e)β = ‖v‖2U where v =
Γ (β)e = ∑np

j=1 β(j)Γ̃je. �

The objective function therefore naturally takes the form

J(Γ ) = ‖e‖2Y + ε2‖e‖2Y tr[Γ ∗(ek, β)Γ (ek, β)]
= ‖e‖2Y + ε2βT W1(ek)β.

(14.134)

However, the preferred choice has the form,

J(Γ ) = ‖e‖2Y + βT Wk+1β with weighting matrix Wk+1 > 0, (14.135)

defined by

Wk+1 = W(ek) where W(e) = W0 + ε2W1(e). (14.136)

To ensure that an optimization problem is well-conditioned, it is advisable to ensure
that Wk+1 > 0 for all non-zero e ∈ Y . This is achieved if the np × np matrix W0 is
both symmetric and positive definite and ε2 ≥ 0.

14.4.2.3 Approach Three

A third approach to creation of a parameter optimization problem is to use a par-
allel process to that used in Sect. 14.2.1.3. Formally, the idea is to replace Wk+1 in
Eq. (14.136) by

Wk+1 = W(ek) where W(e) = W0 + ε2‖e‖2Y W∞ (14.137)

and W∞ is symmetric and positive definite and satisfies the inequality,

W1(e) ≤ ‖e‖2Y W∞ for all e ∈ Y . (14.138)

Such a matrix is non-unique and a suitable candidate might be difficult to compute.
The set of candidates

SW = {W̃ : W(e) ≤ W̃ , for all ‖e‖ = 1} (14.139)
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is easily seen to be closed and convex and can be regarded as being bounded as

βT W1(e)β = ‖Γ (β)e‖2U ≤ ‖Γ (β)‖2‖e‖2Y ≤ βT β

(
sup

βT β=1
‖Γ (β)‖2U

)
‖e‖2Y
(14.140)

and hence it is only necessary to consider W∞ satisfying a bound such as

W∞ ≤ sup
βT β=1

‖Γ (β)‖2U I. (14.141)

An alternative viewpoint is simply to regard W0 and W∞ as weight matrices chosen
by the user to achieve the required algorithm performance.

It is of interest to note that SW contains elements with minimality properties. The
proof of the statement depends the notion of partial and total orders on sets and the
application of Zorn’s Lemma, which is beyond the scope of this text. The details
are left for the reader to explore if he or she so wishes. The computation of such a
“minimal” element is non-trivial and may have little practical benefit.

Theorem 14.9 (Choices of W∞ with Minimality Properties) Using the notation
of the discussion above, suppose that there exists a vector e such that the vectors
{Γje}1≤j≤np are linearly independent. Then, the closed, convex set SW contains only
positive definite, symmetric matrices. In particular, there exists at least one choice
of W∞ ∈ SW with the minimality property that, if W ∈ SW and W ≤ W∞, then
W = W∞.

Proof Using Theorem 14.8 indicates the positive definiteness of every element of
SW . Next, the symbol ≤ is a partial order on SW that relates some (but not all) pairs
of matrices by the statement A ≤ B. A totally ordered subset TW of SW is a subset
of SW for which, either A ≤ B or B ≤ A for all pairs (A, B) in TW . It is easy to prove
that every totally ordered subset TW of SW has a lower bound WTW in SW satisfying
WTW ≤ W for all W ∈ TW . The result now follows from Zorn’s Lemma. �

14.4.3 The Multi-parameter POILC Algorithm

The previous sections have considered various forms of objective functionsmotivated
by the link to NOILC explored in Sect. 14.1. Whatever the chosen form of W(e), and
hence Wk+1, the formula for J(Γ ) becomes

J(Γ ) = ‖e‖2Y + ‖β‖2Wk+1

(the Multi-parameter Objective Function)
(14.142)

This is a quadratic objective function with iteration dependent weight matrix Wk+1
where the norm ‖β‖Wk+1 in Rnp is induced by the inner product 〈β, γ 〉Wk+1 =
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βT Wk+1γ . It has been constructed using the relationships that were created in the
discussion and proof of Theorem 14.1. In this sense, minimization of J(Γ ) with
respect to β ∈ Rnp can be viewed as generating a parametric approximation to
an iteration of NOILC Algorithm 9.1 when the underlying spaces are finite dimen-
sional. The general form of Parameter Optimal Iterative Learning Control (POILC)
algorithm that this creates is as follows.

Algorithm 14.4 (Multi-Parameter Optimal Iterative Learning Control)Given a sys-
tem y = Gu + d with output y ∈ Y , input u ∈ U and reference signal r ∈ Y ,
suppose that

1. a linear parameterization Γ (β) has been chosen by the user to form candidate
inputs using Eq. (14.117) and that

2. a form W(e) for the weight used to generate the matrix Wk+1 = W(ek) on each
and every iteration k + 1 has been selected.

The iterative process is initiated by a control signal u0 with associated tracking error
e0. The resultant iterative control algorithm constructs, for all k ≥ 0, the input uk+1
to be used on iteration k + 1 by using the parameter βk+1 defined as the solution of
the optimization problem

βk+1 = arg min
β∈Rnp

{J(Γ ) : subject to e = r −Gu−d = ek −GΓ (β)ek} (14.143)

where J(Γ ) is defined by Eq. (14.142).

Note that the optimization problem is well-defined and has a unique solution as
Wk+1 > 0 whenever ek �= 0.

Despite the formal algorithm definition, the choice of βk+1 is based on a formula
derived below

Theorem 14.10 (POILC:GeneralMonotonicity andConvergenceProperties)Using
the notation defined above, Algorithm 14.4 can be implemented using the formula
βk+1 = β(ek), k ≥ 0, for the optimal parameter choice where

β(e) = (W(e) + MT (e)GT QGM(e))−1MT (e)GT Qe. (14.144)

The resultant error and parameter sequences {ek}k≥0 and {βk}k≥1 satisfy the
monotonicity and convergence conditions

‖ek+1‖Y ≤ ‖ek‖Y , for all k ≥ 0
and

∑∞
k=0 ‖βk+1‖2Wk+1

< ∞.
(14.145)

Proof Write the constraint e = ek − GΓ (β)ek = ek − GM(ek)β as a linear
map of β into e. Note that GM(ek) maps Rnp into Y and hence has an adjoint
W−1

k+1MT (ek)GT Q. The optimizing solution

βk+1 = (GM(ek))
∗ek+1 = W−1

k+1MT (ek)G
T Q(ek − GM(ek)βk+1). (14.146)

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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The formula for βk+1 follows by rearranging. Monotonicity of {‖ek‖Y }k≥0 and
convergence of the series follows as in the proof of Theorem 14.3. �

In computational terms, the optimal parameter vector βk+1 is defined by a matrix
computation constructed from R, G, the functional form of M(e) and W(e) and the
data vector ek . The columns of M(ek) are computed by evaluation of the operations
Γ̃jek, 1 ≤ j ≤ np. Each column of GM(ek) can then be computed as the response of
the model G from zero initial conditions to the equivalent column of M(ek). Similar
calculations combined with evaluation of the norm of ek form the basis of evaluation
of Wk+1 = W(ek).

14.4.4 Choice of Multi-parameter Parameterization

Algorithm 14.4 has a well-defined solution for every chosen parameterization. Most
of the properties seen in the discussion for the single parameter case hold in the
multi-parameter case and the role of the weights are relatively unchanged. It is left as
an exercise for the reader to explore these observations. The most complex property
to generalize to the multi-parameter case is that of flat-lining/plateauing of the plot
of ‖ek‖Y against iteration index k and its removal by switching (Sect. 14.2.9). For
the case where switching is not included, the set defining any plateau effects is

S0 = {e : β(e) = 0} = {e : MT (e)GT Qe = 0}
= {e : eT Γ̃ T

j GT Qe = 0, 1 ≤ j ≤ np}. (14.147)

If S0 = {0}, then the error converges to zero. If S0 �= {0}, convergence to a non zero
error is likely. By analogy with the single parameter case, S0 then, typically, contains
regions that attract iterations whilst others repel iterations. Plots of ‖ek‖Y against k
will hence have one or more periods of slow convergence before the limit is reached.

In what follows, the case of S0 = {0} is considered using a number of examples.

Example ONE: Approximations to ε−2G∗(I + ε−2GG∗)−1 The formal power
series expansion

ε−2G∗(I + ε−2GG∗)−1 = ε−2G∗
∞∑

j=0

(−1)j(ε−2GG∗)j (14.148)

of the operator seen in NOILC Algorithm 9.1 suggests the parameterization

Γ (β) = ε−2G∗ ∑np
j=1 β(j)(ε−2GG∗)j−1

(with Γ̃j = ε−2G∗(ε−2GG∗)j−1, 1 ≤ j ≤ np),
(14.149)

based on truncation of the series after np terms and choosing the coefficients
{β(j)}1≤j≤np using a POILC methodology. The signal (GG∗)jek, j ≥ 1 is computed

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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from 2j off-line simulations starting with G∗ek and then computing GG∗ek =
G(G∗ek), G∗GG∗ek = G∗(GG∗ek) etc. Note that,

1. The case of np = 1 corresponds to a gradientmethodologywhilst choosing np > 1
provides greater variability in descent direction and offers the potential for faster
convergence rates.

2. As Γ̃1 = ε−2G∗, then S0 = {0} if ker[G∗] = {0} and convergence of the error to
zero is guaranteed.

The reader will note that, if K : Y → U is an additional compensator chosen to
modify plant dynamics (in a similar manner to the methods of Sect. 8.2.2), a more
general structure takes the form

Γ (β) = ε−2(GK)∗
∑np

j=1 β(j)(ε−2GK(GK)∗)j−1

(with Γ̃j = ε−2(GK)∗(ε−2GK(GK)∗)j−1, 1 ≤ j ≤ np),
(14.150)

Example TWO: Simpler Approximations to G∗(I + ε−2GG∗)−1 A further sim-
plification of the argument used in Example One suggests the choice of

Γ (β) =
np∑

j=1

β(j)K∗
j , (i.e., Γ̃j = K∗

j , 1 ≤ j ≤ np) (14.151)

where K∗
j is the adjoint of an operator Kj : U → Y . For example, for discrete

state space systems, Kj will have a state space model S(Aj.Bj, Cj, Dj). A sufficient
condition for S0 = {0} is that GK∗

j + KjG∗ is positive for one or more indices j.

Example THREE: Approximations to the Inverse Compensator For (square)
m-input, m-output, linear, discrete time state space systems S(A, B, C, D) operating
on 0 ≤ t ≤ N , the case where the associated matrix operator G in the supervector
description (Chap. 4) is invertible makes the choice Γ0 = G−1 the natural choice for
single parameter, inverse model-based POILC algorithms. Inverse models, however,
tend to be sensitive to high frequency modelling errors. A general approximation
that avoids the use of inverses is constructed as follows: choosing another m-input,
m-output, linear, discrete time state space system K , the inverse compensator G−1

can be written in the form K(GK)−1. From the Cayley-Hamilton Theorem, if GK
has characteristic polynomial ρGK (z) = ∑m(N+1)

j=0 am(N+1)−jzj with a0 = 1, then
invertibility ensures that am(N+1) �= 0 so that

(GK)−1 = −a−1
m(N+1)

∑m(N+1)
j=1 am(N+1)−j(GK)j−1, and hence

G−1 = −K
∑m(N+1)

j=1 a−1
m(N+1)am(N+1)−j(GK)j−1.

(14.152)

http://dx.doi.org/10.1007/978-1-4471-6772-3_8
http://dx.doi.org/10.1007/978-1-4471-6772-3_4
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Truncation of the series suggests a multi-parameter controller defined by approxi-
mating G−1 with

Γ (β) = K

np∑

j=1

β(j)(GK)j−1, Γ̃j = K(GK)j−1, 1 ≤ j ≤ np. (14.153)

This parameterization generates a POILC algorithm that searches for a descent direc-
tion over a subspace spanned by {K(GK)j−1ek}1≤j≤np . There is considerable freedom
to choose K to influence convergence and robustness. Possible examples include

1. K = G−1
A where GA is an approximation to G when a sufficient condition for

S0 = {0} is that GG−1
A + (GG−1

A )∗ is positive.
2. Alternatively, it could be a filter to condition the algorithm to reduce sensitivity

to frequency ranges where modelling errors are thought to be most significant.

Finally, the strengths of POILC lie in the essential simplicity of the computations and
the guarantee of monotonicity of error norms. The number of degrees of freedom
available to the control design engineer is however large. The NOILC Algorithm
9.1 provides, for example, some insight into the choice of Q and R but the choice
of np and parameterization Γ (β) opens up a wide variety of choices. These can be
guided by the examples given above and moderated by the simplicity and/or ease of
implementation required by the user.

14.5 Discussion and Further Reading

14.5.1 Chapter Overview

The presentation chosen for this chapter does not follow the time-line of its devel-
opment in the literature from its original introduction in [89] motivated by links to a
linear form of “Hebbian” neural search algorithm [58, 77]. In that approach, the only
real link to NOILC is the linear quadratic nature of the optimization problems. In the
alternative presentation chosen for this text, the ideas are linked to Norm Optimal
Iterative Control through the equivalence stated in Theorem 14.1 (a generalization of
the work reported in [82]). The construction of Parameter Optimal Iterative Learn-
ing Control from this result could go in several directions. The one chosen retains
both the linear and quadratic nature of the optimization problem and automatically
leads to monotonic error norms and formulae for off-line calculation of the required
parameter vectors for each iteration.

The algorithms can be seen in two ways. Using the single parameter algorithm as
a model, the first approach uses an approximation to a specified, underlying NOILC
problem that generates the values of w0 and ε2 to be used, with ‖ek‖2Y , in wk+1.
Being suboptimal, the resultant convergence rate cannot be predicted. The second

http://dx.doi.org/10.1007/978-1-4471-6772-3_9
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approach regards the link to NOILC as being secondary to actual performance and
chooses these parameters to achieve the desired properties using empirical and/or
trial and error methods. POILC can perform well in practice but situations can be
created where convergence properties are unacceptable. This is particularly clear
in the single parameter Algorithm 14.1 where (Sect. 14.2.8) practical convergence
to a non-zero error norm can be observed (the flat-lining/plateauing phenomenon).
It is associated with the failure to ensure that the set of equilibrium points S0 is
the singleton set {0} or, more generally, to ensure that S0 only contains signals of
acceptable form. The analysis of switching algorithms in Sect. 14.2.9 suggests that
a practical approach to amelioration of this behaviour is to change the input update
formulae on each iteration. See also [96].

Improved convergence and reductions in the negative effects of the flat-lining
phenomenon can also be attempted using multi-parameter POILC as in Algorithm
14.4. In optimization terms, multi-parameter algorithms aim to achieve improved
norm reductions by searching over an np dimensional subspace of possible descent
directions. These algorithms inherit many of the properties, problems and simplicity
of the single-parameter case but are more complex to analyze due to the number
of parameters available and the matrix-valued, nonlinear nature of the optimizing
parameter vector βk+1 as a function of ek . The approach suggests multi-parameter
parameterizations by using approximations to NOILC, gradient and inverse-model
algorithms (see also [85, 87, 94]).

The analysis of the robustness of POILC is more complex than that of the fixed
parameter case, primarily because of the nonlinear dependence of the optimal para-
meters on error data. Available results are provided in Sect. 14.3 and in [55] for the
case of single parameter, inverse model compensators. The theory works well here
as conditions for monotonic error norm reductions fit naturally with the monotonic
dependence of β(e) on ‖e‖Y . Similar ideas work to a certain extent for gradient-
based iteration, the original ideas being presented in [94], and Theorem 14.7 provides
a general link between the robustness of fixed parameter cases and POILC although
the computation of the range of parameters that can be used is more complex. The
results reinforce the intuition that increased robustness of the fixed parameter algo-
rithm will tend to increase the robustness of the POILC version. The derivation of
useful robustness conditions for the multi-parameter case is an open problem but
an investigation of any link to the fixed parameter case may be the vital key to any
progress.

Finally, there are many open questions in POILC that could be worthy of further
research. Robustness is perhaps the most urgent but parameter choice is also crucial.
The choice/computation of W∞ is particularly intriguing. Theorem 14.9 suggests the
existence of “optimal” choices. Information on Zorn’s Lemma can be found in many
texts including [107].
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14.5.2 High Order POILC: A Brief Summary

The literature also contains related notions of “high-order” Iterative Control, [17,
25, 78, 114] a topic not covered in this text as it seems to add little to the scien-
tific understanding of the algorithms. A more direct description of this idea can
start from the observation that the theory of POILC could be formulated from the
description/parameterization

uk+1 = uk + M(ek)β, with β ∈ Rnp . (14.154)

If this is done then linearity with respect to the parameter vector is retained and
the basic theory in Sect. 14.4 is unchanged other than a need to consider the form
of the weight W(e) used to generate Wk+1. In this scenario, M(e) can have any
functional form including nonlinearities. The casewhere linearity is retained but with
M(0) �= 0 has been analysed in [57] and interpreted as a representation of control
signal elements that are error independent but included to reflect perceived needs for
defined forms of control action on specific time intervals where, for example, large
input signals are (temporarily) expected.

High order update rules and algorithms can take many forms, including

u = uk + M(ek, ek−1, . . . , ek+1−ne)β. (14.155)

Clearly, M(·) depends on ne past error signals ek, ek−1, . . . , ek+1−ne . With ne = np,
the update rule has the form

uk+1 = uk + ∑np
j=1 β(j)Γ̃jek+1−j,

(so that M(ek, ek−1, . . . , ek+1−ne) =
[
Γ̃1ek, . . . , Γ̃np ek+1−np

]
)

(14.156)

generates descent directions using np compensators {Γ̃j}1≤j≤np and error signals
{ek+1−j}1≤j≤np from np previous iterations. There may be benefits for convergence
rates in the initial stages of the algorithm but, if the error converges to a non-zero
value, the errors become aligned and the algorithm is then expected to behave in a
similar way to the multi-parameter algorithm.
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