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Preface

Inverse Heat Transfer Problems (IHTP) rely on temperature and/or heat flux
measurements for the estimation of unknown quantities appearing in the analysis of
physical problems in thermal engineering. As an example, inverse problems dealing
with heat conduction have been generally associated with the estimation of an
unknown boundary heat flux, by using temperature measurements taken below the
boundary surface. Therefore, while in the classical direct heat conduction problem the
cause (boundary heat flux) is given and the effect (temperature field in the body) is
determined, the inverse problem involves the estimation of the cause from the
knowledge of the effect. An advantage of IHTP is that it enables a much closer
collaboration between experimental and theoretical researchers, in order to obtain the
maximum of information regarding the physical problem under study.

Difficulties encountered in the solution of IHTP should be recognized. IHTP
are mathematically classified as ill-posed in a general sense, because their solutions
may become unstable, as a result of the errors inherent to the measurements used in
the analysis. Inverse problems were initially taken as not of physical interest, due to
their ill-posedness. However, some heuristic methods of solution for inverse
problems, which were based more on pure intuition than on mathematical formality,
were developed in the 50’s. Later in the 60’s and 70’s, most of the methods, which
are in common use nowadays, were formalized in terms of their capabilities to treat
ill-posed unstable problems. The basis of such formal methods resides on the idea of
reformulating the inverse problem in terms of an approximate well-posed problem,
by utilizing some kind of regularization (stabilization) technique. In this sense, it is
recognized here the pioneering works of scientists who found different forms of
overcoming the instabilities of inverse problems, including A. N. Tikhonov, O. M.
Alifanov and J. V. Beck.

The field of inverse heat transfer is wide open and diversified. Therefore, an
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understanding of the subject. This principle has been the basic guideline in the
preparation of this book.

This book is intended for graduate and advanced undergraduate levels of
teaching, as well as to become a reference for scientists and practicing engineers. We
have been motivated by the desire to make an application-oriented book, in order to
address the needs of readers seeking solutions of IHTP, without going through
detailed mathematical proofs.

The main objectives of the book can be summarized as follows:

 Introduce the fundamental concepts regarding IHTP;

¢ Present in detail the basic steps of four techniques of solution of IHTP, as a
parameter estimation approach and as a function estimation approach;

* Present the application of such techniques to the solution of IHTP of practical
engineering interest, involving conduction, convection and radiation; and

e Introduce a formulation based on generalized coordinates for the solution of
inverse heat conduction problems in two-dimensional regions.

The book consists of six chapters.

Chapter 1 introduces the reader to the basic concepts of IHTP.

Chapter 2 is concemed with the description of four techniques of solution for
inverse problems. The four techniques considered in this book include:

Technique I: ~ The Levenberg-Marquardt Method for Parameter Estimation

Technique II: ~ The Conjugate Gradient Method for Parameter Estimation

Techrnique III: The Conjugate Gradient Method with Adjoint Problem for
Parameter Estimation

Technique IV: The Conjugate Gradient Method with Adjoint Problem for
Function Estimation

These techniques were chosen for use in this book because, based on the
authors’ experience, they are sufficiently general, versatile, straightforward and
powerful to overcome the difficulties associated with the solution of IHTP.

In Chapter 2 the four techniques are introduced to the reader in a systematic
manner, as applied to the solution of a simple, but illustrative, one-dimensional
inverse test-problem, involving the estimation of the transient strength of a plane
heat-source in a slab. The basic steps of each technique, including the iterative
procedure, stopping criterion and computational algorithm, are described in detail in
this chapter. Results obtained by using simulated measurements, as applied to the
solution of the test-problem, are discussed. The mathematical and physical
significances of sensitivity coefficients are also discussed in Chapter 2 and three
different methods are presented for their computation. Therefore, in Chapter 2 the
reader is exposed to a full inverse analysis involving a simple test-problem, by using
the four techniques referred to above, which will be applied later in the book to more
involved physical situations, including Conduction Heat Transfer in Chapter 3,
Convection Heat Transfer in Chapter 4 and Radiation Heat Transfer in Chapter 5.
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Chapter 6 is concerned with the solution of inverse heat conduction
problems of estimating the transient heat flux applied on part of the boundary of
irregular two-dimensional regions, by using Technique IV. The irregular region
in the physical domain (x,y} is transformed into a rectangle in the computational
domain (&,77). Different quantities required for the solution are formulated in
terms of the generalized coordinates (& 7). Therefore, the present formulation is
general and can be applied to the solution of boundary inverse heat conduction
problems over any region that can be mapped into a rectangle. The present
approach is illustrated with an inverse problem of practical engineering interest,
involving the cooling of electronic components.

The pertinent References and sets of Problems are included at the end of
each chapter. The proposed problems expose the reader to practical situations in a
gradual level of increasing complexity, so that he(she) can put into practice the
general concepts introduced in the book.

We would like to acknowledge the financial support provided by CNPq,
CAPES and FAPERJ, agencies for science promotion of the Brazilian and Rio de
Janeiro State governments, as well as by NSF-USA, for the visits of M. N, Ozisik to
the Federal University of Rio de Janeiro (UFRJ) and of H. R. B. Orlande to the North
Carolina State University (NCSU). The hospitality of the Mechanical Engineering
Departments at both institutions is greatly appreciated. This text was mainly typed by
M. M. Barreto, who has demonstrated extreme dedication to the work and patience in
understanding our handwriting in the original manuscript. The works of collaborators
of the authors, acknowledged throughout the text, were essential for transforming an
idea for a book into a reality. We would like to thank Prof. M. D. Mikhailov for
invaluable suggestions regarding the contents of Chapter 2 and Prof. R. M. Cotta for
introducing us to the editorial vice president of Taylor & Francis. We are indebted to
several students from the Department of Mechanical Engineering of the Federal
University of Rio de Janeiro, who helped us at different points during the preparation
of the book. They include E. N. Macedo, R. N. Carvalho, M. J. Colago, M. M.
Mejias, L. M. Pereira, L. B. Dantas, H. A. Machado, L. F. Saker, L. A. Sphaier, L. S.
B. Alves, L. R. S. Vieira and C. F. T. Matt. H. R. B. Orlande is thankful for the kind
hospitality of several friends during his visits to Raleigh, who certainly made the
preparation of this book more pleasant and joyful. They include the Fereiras, the
Gonzalezes and the Ozisiks. Finally, we would like to express our deep appreciation
for the love, prayers and support of our families.
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Chapter 1
BASIC CONCEPTS

In recent years interest has grown in the theory and application of Inverse
Heat Transfer Problems (IHTP); it is encountered in almost every branch of
science and engineering. Mechanical, aerospace, chemical and nuclear engineers,
mathematicians, astrophysicists and statisticians are all interested in this subject,
each group with different applications in mind.

The space program has played a significant role in the advancement of
solution techniques for the IHTP in late 50°s and early 60°s. For example,
aerodynamic heating of space vehicles is so high during reentry in the atmosphere
that the surface temperature of the thermal shield cannot be measured directly
with temperature sensors. Therefore, temperature sensors are placed beneath the
hot surface of the shield and the surface temperature is recovered by inverse
analysis. Inverse analysis can also be used in the estimation of thermophysical
properties of the shield during operating conditions at such high temperatures.

Direct measurement of heat flux at the surface of a wall subjected to fire
by using conventional methods is a difficult matter; but it can readily be
estimated by an inverse analysis utilizing transient temperature recordings taken
at a specified location beneath the heated surface.

In situations when the well established classical methods for property
estimation cannot provide the desired degree of accuracy or become inapplicable,
the IHTP technique can be used.

Difficulties associated with the solution of IHTP should also be
recognized. Mathematicaily, inverse heat transfer problems belong to a class
called Ill-posed [1-6], whereas standard heat transfer problems are Well-posed.
The concept of a well-posed problem, originally introduced by Hadamard [2],
requires that its solution should satisfy the following three conditions:
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* The solution must exist;

* The solution must be unique;

* The solution must be stable under small changes to the input data (i.e.,
stability condition)

The existence of a solution for an inverse heat transfer problem may be
assured by physical reasoning; for example, if there is a change in the values of
the measured temperature in a transient problem, there exists a causal
characteristic, say, a boundary heat flux, to be estimated. On the other hand, the
uniqueness of the solution of inverse problems can be mathematically proved
only for some special cases [5,6]. Also, the inverse problem is very sensitive to
random errors in the measured input data, thus requiring special techniques for its
solution in order to satisfy the stability condition.

For a long time it was thought that, if any of the conditions required for
well-posedness were violated, the problem would be unsolvable or the results
obtained from such a solution would be meaningless, hence would have no
practical importance. As a result, interest waned by the mathematicians,
physicists and engineers in the solution of inverse problems [5]. It was
Tikhonov's regularization procedure [3,7-9], Alifanov’s iterative regularization
techniques [1,5,10-24] and Beck's function estimation approach [6,25] that
revitalized the interest in the solution of inverse heat transfer problems. A
successful solution of an inverse problem generally involves its reformulation as
an approximate well-posed problem. In most methods, the solution of inverse
heat transfer problems are obtained in the least squares sense. Tikhonov’s
regularization procedure modifies the least squares equation by adding
smoothing terms in order to reduce the unstable effects of the measurement
errors. In the iferative regularization principle, a sequential improvement of the
solution takes place. The stopping criterion for such iterative procedure is chosen
so that the final solution is stabilized with respect to errors in the input data.

As a result of such new solution techniques and the availability of high
speed, large capacity computers, successful solution of inverse heat transfer
problems has now become feasible. The past three decades have been most active
in the advancement of solution techniques for the IHTP. One of the earliest
discussion of thermal inverse problems is due to Giedt [26] who examined the
heat transfer at the inner surface of a gun barrel. Stolz [27] presented a procedure
for estimating surface temperature and heat flux from the temperature
measurements taken within a body being quenched. Several other works on the
theory and application of inverse heat transfer problems can be found in
references [28-110] and a number of books are also available on the subject [3-
6,21,111-120].

In this chapter, we present a general discussion of inverse heat transfer
problems, including basic concepts, application areas, classification, an overview
of various solution techniques and difficulties involved in such solutions.
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1-1 INVERSE HEAT TRANSFER PROBLEM CONCEPT

The physical significance of the inverse heat transfer problem concept is
better envisioned by referring to the following standard, one-dimensional
transient heat conduction problem in a slab of thickness L. The temperature
distribution in the slab is initially F(x). For times # > 0, a transient heat flux A7) is
applied on the boundary x = 0, while the boundary x = L is maintained at the
constant temperature 7. The mathematical formulation of this problem is given
by:

2(kg}pc or in 0<x<lL, for >0 (1.1.1.a)
ox\ oOx P ot
—kéz—:f(t) at x=0, for >0 (1.1.1.b)
ox
T=TL at x=L, for >0 (l.1.1.¢)
T =F(x) for =0, in 0<x<L (1.1.1.d)

For the case where the boundary conditions f(r) and T;, the initial
condition F(x), and the thermophysical properties p, cp and k are all specified,
the problem given by equations (1.1.1) is concemned with the determination of the
temperature distribution T(x, f) in the interior region of the solid, as a function of
time and position. This is called the Direct Problem.

We now consider a problem similar to that given by equations (1.1.1), but
the boundary condition function f(¢) at the surface x = 0 is unknown, while all

the other quantities appearing in equations (1.1.1), such as T}, F(x), &, p and cp,
are known. We then wish to determine the unknown boundary condition f¢). To
compensate for the lack of information on the boundary condition, measured
temperatures T(Xn.q; , £;) = V; are given at an interior point x,,,;, at different times
t, (i=1,2,.., 1), over aspecified time interval 0 <t < ¢, where ¢ is the final
time. This is an /nverse Problem because it is concerned with the estimation of
the unknown surface condition f(¢). Here the terminology estimation is used in
place of determination. The reason is that the measured temperature data used in
the inverse analysis contain measurement errors. As a result, the quantity
recovered by the inverse analysis. (i.e., the boundary condition f(¢) in the
example above) is not exact, but it is only an estimate within the measurement
erTors.
Then, the mathematical formulation of this Inverse Problem is given by

o(,0T\ _ 0T

e (A N Frew N~ ¢~ 4 117 a0



6 INVERSE HEAT TRANSFER

—k—g-z:f(l) =7 (unknown) at x=0, for 0<¢<it (1.1.2.b)
x

T=TL at x=1L, for 0<r<t  (1.12¢)
T=F(x) for t=0, in 0<x<L (1.1.2.d)

and temperature measurements at an interior location x,,., at different times {; are
given by

T(x .t)= ¥ oat x=Xpe, for t=4(i=1,2,.,1) (1.1.3)

The main objective of the direct problem is to recover the temperature
field T(x, ¢) in the solid, when all the causal characteristics (i.e., boundary
conditions and their parameters, initial condition, thermophysical properties of
the medium and energy generation term, if there is any) are specified. On the
other hand, the objective of the inverse problem is to estimate one or more of
such unknown causal characteristics, from the knowledge of the measured
temperature (the effect) at some specified section of the medium. In the direct
problem the causes are given, the effect is determined; whereas in the inverse
problem the effect is given, the cause (or causes) is estimated.

In the inverse problem given above, the boundary surface function f(¢) is
unknown. Hence, the problem is referred to as a boundary inverse heat transfer
problem. Analogously, one envisions inverse heat transfer problems of unknown
initial condition, energy generation, thermophysical properties, and so on. So far
we considered an inverse heat transfer problem of conduction; similarly, we can
have inverse problems of convection, body or surface radiation, mixed modes of
heat transfer and numerous others.

Inverse problems can be solved either as a parameter estimation or as a
Junction estimation approach. If some information is available on the functional
form of the unknown quantity, the inverse problem is reduced to the estimation of
few unknown parameters. Let us consider the boundary inverse problem given by
equations (1.1.2, 1.1.3) and assume that the unknown function f(t) can be
represented as a polynomial in time in the form

f(t)=Pl+P2t+P3t2+...+PNtN_l (1.1.4.2)

or in the more general linear form as

N
f=3 P C 1) (1.1.4.b)
j=I
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where P;, j=1,..,N , are unknown constants and Cy(f) are known trial functions.
Therefore, the inverse problem of estimating the unknown function f(¢) is
reduced to the problem of estimating a finite number of parameters F;, where the
number N of parameters is supposed to be chosen in advance. Another example
of parameter estimation is the recovering of unknown constant thermophysical
properties, such as the thermal conductivity & or the volumetric heat capacity pc,,
appearing in equations (1.1.2). If no prior information is available on the
functional form of the unknown, the inverse problem can be regarded as a
function estimation approach in an infinite dimensional space of functions.
Techniques for the solution of inverse problems as a parameter estimation, as
well as a function estimation approach, will be presented in the following
chapter.

1-2 APPLICATION AREAS OF INVERSE HEAT TRANSFER

With the advent of modern complex materials having thermophysical
properties strongly varying with temperature and position, the use of conventional
methods for determining thermophysical properties has become unsatisfactory.
Similarly, the operation of modem industrial concerns is becoming more and
more sophisticated, and an accurate in situ estimation of thermophysical
properties under actual operating conditions is becoming necessary. The inverse
heat transfer problem approach can provide satisfactory answers for such
situations.

The principal advantage of the IHTP is that it enables to conduct
experiments as close to the real conditions as possible. Practical applications of
[HTP techniques include, among others, the following specific areas:

e Estimation of thermophysical properties of materials [4,6,20-
23,68,96,103,110]. For example, properties of heat shield material during
its reentry into the earth’s atmosphere, and estimation of temperature
dependence of thermal conductivity of a cooled ingot during steel
tempering.

¢ Estimation of bulk radiation properties and boundary conditions in
absorbing, emitting and scattering semi-transparent materials [73-79,87].

e Control of the motion of the solid-liquid interface during solidification
[89-91].

e Estimation of inlet condition and boundary heat flux in forced convection
inside ducts {72,80,81,108,109].

o Estimation of timewise varying unknown interface conductance between
metal solidification and metal mold during casting [82,85].

o Estimation of interface conductance between periodically contacting
surfaces [83].

e Monitoring radiation properties of reflecting surfaces of heaters and
cryogenic panels [5].
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¢ Estimation of reaction function [84,97].
* Control and optimization of the curing process of rubber [98,99].
* Estimation of the boundary shapes of bodies [93,94,112].

The estimation of such quantities with conventional techniques is an
extremely difficult or impossible matter. However, with the application of the
inverse heat transfer analysis, such problems not only can be handled, but the
information value of the studies is enhanced and the experimental work is
accelerated.

1-3 CLASSIFICATION OF INVERSE HEAT TRANSFER PROBLEMS

Most of the early works on the solution of inverse heat transfer problems
have been concerned with heat conduction in one-dimensional geometries. The
application of inverse analysis techniques to multi-dimensional problems, as well
as to problems involving convection and radiation, is more recent.

Inverse heat transfer problems can be classified in accordance with the
nature of the heat transfer process, such as:

IHTP of conduction

IHTP of convection (forced or natural)

IHTP of surface radiation

IHTP of radiation in participating medium

IHTP of simultaneous conduction and radiation
IHTP of simuitaneous conduction and convection
IHTP of phase change (melting or solidification)

Another classification can be one based on the type of causal characteristic
to be estimated. For example:

IHTP of boundary conditions

IHTP of thermophysical properties

IHTP of initial condition

IHTP of source term

IHTP of geometric characteristics of a heated body

Inverse heat transfer problems can be one-, two- or three-dimensional.
Also, IHTP can be linear or nonlinear. The factors affecting the linearity will be
apparent in the following chapters.
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1-4 DIFFICULTIES IN THE SOLUTION OF INVERSE HEAT
TRANSFER PROBLEMS

To illustrate the inherent difficulties in the solution of inverse heat transfer
problems, we consider a semi-infinite solid (0 < x < oo} initially at zero
temperature. For times ¢ > 0, the boundary surface at x = 0 is subjected to a
periodically varying heat flux in the form

q(t)= q,cos w1

where ¢, and o are the amplitude and frequency of oscillations for the heat flux,

respectively, and ¢ is the time variable. After the transients have passed, the
quasi-stationary temperature distribution in the solid is given by [113,121]

T(x,r)=1—° %exp[—xJ%]cos(wt—xJ%—%J (14.1.a)

where a is the thermal diffusivity and k is the thermal conductivity of the solid.
Equation (1.4.1.a) shows that the temperature response is lagged with
respect to the heat flux excitation at the surface of the body, and such lagging is
more pronounced for points located deeper inside the body. The temperature
lagging indicates the need for measurements taken after the moment that the heat
flux is applied, if such heat flux is to be estimated.
The amplitude for the temperature oscillation at any location,

AT (x)

, 18

obtained by setting cos(:) = | in equation (1.4.1.a). Hence,

|AT (x)|= % \g exp(wx\/% ] (1.4.1.b)

Equation (1.4.1.b) shows that |AT(x)| attenuates exponentiaily with

increasing depth below the surface and with increasing frequency @. On the other
hand, if the amplitude of the surface heat flux, gy, is to be estimated by utilizing
directly the measured temperatures at an interior point, any measurement error on
|AT(x)| will be magnified exponentially with the depth x and with the frequency

w, as shown below in equation (1.4.1.c).

g9, =k|AT(x)|\/§ exp[x\/——aj (1.4.1.c)
a 2a

It is easy to notice that, in order to be able to estimate the boundary heat
flux, a sensor must be located within a depth below the surface where the

amnlithde af the temneratire nceillatinn ic morh areater than the meaanrement
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errors. Otherwise, it is impossible to distinguish if the measured temperature
oscillation is due to changes in the boundary heat flux or due to measurement
errors, thus resulting in the non-uniqueness of the inverse problem solution.

The foregoing discussion reveals that, depending on the location of the
sensor and the frequency of oscillations, the solution of the inverse problem may
become very sensitive to measurement errors in the input data. Since the accuracy
of the solution obtained by an inverse analysis is affected by the errors involved
in temperature measurements, it is instructive to present the eight standard
assumptions proposed by Beck {4,6,86), regarding the statistical description of
such errors. They are:

L. The errors are additive, that is
Y¥=T +¢,
{ { i

where ¥, is the measured temperature, 7; is the actual temperature and & is
the random error.

2. The temperature errors & have a zero mean, that is,

E(ei)=0

where E(°) is the expected value operator. The errors are then said to be
unbiased.

3. The errors have constant variance, that is,

O'f = E{[}; - E(l;)]?}= 0'2 = constant

which means that the variance of ¥ ; is independent of the measurement.

4. The errors associated with different measurements are uncorrelated. Two
measurement errors & and & , where /| # j, are uncorrelated if the
covariance of & and ¢ is zero, that is,

cov(e;,€;) = Ele; - E(e)lle; - E(e I} =0 fori +

Such is the case if the errors ¢ and ¢ have no effect on or relationship to
the other.

5. The measurement errors have a normal (Gaussian) distribution. By taking
into consideration the assumptions 2, 3 and 4 above, the probability
distribution function of & is given by
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2
1 — ¢,
fle )= exp >
Yoo 15
6. The statistical parameters describing &, such as ¢, are known.
7. The only variables that contain random errors are the measured

temperatures. The measurement times, measurement positions, dimensions
of the heated body, and all other quantities appearing in the formulation of
the inverse problem are all accurately known.

8. There is no prior information regarding the quantities to be estimated,
which can be either parameters or functions. If such information exists, it
can be utilized to obtain improved estimates.

All of the eight assumptions above rarely apply in actual experiments. For
example, if the magnitudes of the measurement errors are quite unequal, the
standard deviations &; are likely to be different. However, such assumptions are
assumed to be valid throughout this book. They permit the verification of the
applicability of a method of solution to a specific inverse problem, as well as of
the stability of the inverse problem solution with respect to measurement errors,
number of sensors, sensor locations, experiment duration, etc, by using simulated
measurements in the inverse analysis. Such type of measurements will be
described latter in Chapter 2. We have included in NOTE 1 at the end of this
chapter a brief review of statistical concepts.

1-5 AN OVERVIEW OF SOLUTION TECHNIQUES FOR INVERSE
HEAT TRANSFER PROBLEMS

We present below various techniques used for the soltution of IHTP. Such
techniques generally require the solution of the associated direct problem.
Therefore, it is difficult to present the techniques of solving inverse problems
without referring to those associated with the solution of direct problems. Such
techniques can be loosely classified under the following groups:

Integral equation approach [26-30,32-35].

Integral transform techniques [36,37, 39-45,106,110].

Series solution approach [46-49].

Polynomial approach [50-52].

Hyperbolization of the heat conduction equation [53-55].

Numerical methods such as finite differences [56-62,68-70,80-85,105,107-
109], finite elements [31,63-67,89-91] and boundary elements [92-
95,103,112].

SAINANF ol
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7. Space marching techniques together with filtering of the noisy input data,
such as in the mollification method [38,69,116].

8. Iterative filtering techniques [88].

9. Steady-state techniques [101-103,112).

10.  Beck’s sequential function specification method[6,25,30,31,56,59,86,118].

11.  Levenberg-Marquardt method for the minimization of the least-squares
norm [4,73,75,79,96,104,110,113,122-125].

12, Tikhonov’s regularization approach [3,5-9,116-118,126-128].

13,  Iterative regularization methods for parameter and function estimations
(1,5,10-24,68,72,76-85,89-94,97-100,104-109,113].

14.  Genetic algorithms [111].

The time domain over which measurements are used in the inverse
analysis may be another way to classify the methods of solution [6]. Consider, as
an example, the estimation of the boundary heat flux f{#) in the time domain

O<t<t Iz as discussed in section 1-1, equations (1.1.2, 1.1.3). Three different

possible time domains for the measurements used in the estimation of the heat
flux component f{r;) at time ¢, <t include:

a. up to time 1, <¢, [6,27].
. up to the time #, <?, plus few time steps [6,25,30,31,56,59,86,118].
c. the whole time domain O<r<s_ {1,4-6,10-24,68,72-85,88-94,97-

7
100,104-109,113].

Methods based on the time domains (a) and (b) are sequential in nature.
Methods based on measurements up to time # (a) permit the exact matching of
estimated and measured temperatures, if a single sensor is used in the analysis
[6,27). Although apparently attractive, they have the disadvantage that the
solution algorithms are extremely sensitive to measurement errors. The use of
measurements up to time ¢ plus few time steps, originally proposed by Beck
[6,25,30,31,56,59,86,118), improves the stability of the sequential algorithms.
Such an approach is based on the fact that the temperature response is lagged
with respect to the excitation, as discussed in section 1-4. We note, however, that
sequential methods based on the time domains (a) and (b) generally become
unstable as small time steps are used in the analysis [6]. The whole time domain
approach (c) is very powerful because very small time steps can be taken for the
solution. This is quite important in order to estimate, with good resolution, time
dependent unknown functions, such as the boundary heat flux of the example.
However, methods based on the whole time domain are not as computationally
efficient as the sequential ones.

From the foregoing review of the methods, it is apparent that a variety of
techniques has been used to solve inverse heat transfer problems. Therefore, it is
useful to list some criteria proposed for the evaluation of IHTP solution
procedures [5,6,86]:



BASIC CONCEPTS 13

1.  The predicted quantity should be accurate if the measured data are of high
accuracy.

2. The method should be stable with respect to measurement errors.

3.  The method should have a statistical basis and permit various statistical
assumptions for the measurement errors.

4. The method should not require the input data to be a priori smoothed.

5.  The method should be stable for small time steps or intervals. This permits
a better resolution of the time variation of the unknown quantity than is
permitted by large time steps.

6. Temperature measurements from one or more sensors should be permitted.

7.  The method should not require continuous first derivatives of unknown
functions. Furthermore, the method should be able to recover functions
containing jump discontinuities.

8.  Knowiedge of the precise starting time of the application of an unknown
surface heat flux or source term should not be required.

9.  The method should not be restricted to any fixed number of measurements.

10.  The method should be able to treat complex physical situations, including,
among others, composite solids, moving boundaries, temperature
dependent properties, convective and radiative heat transfer, combined
modes of heat transfer, multi-dimensional problems and irregular
geometries.

11.  The method should be easy for computer programming.

12.  The computer cost should be moderate.

13.  The user should not have to be highly skilled in mathematics in order to
use the method.

14.  The method should permit extension to more than one unknown.

Generally, inverse problems are solved by minimizing an objective
function with some stabilization technique used in the estimation procedure. If
all of the eight statistical assumptions stated above in section 1-4 are valid, the
objective function, S, that provides minimum variance estimates is the ordinary
least squares norm [4,123] (i.e., the sum of the squared residuals) defined as

S=(Y-T)" (Y-T) (1.5.1)

where Y and T are the vectors containing the measured and estimated
temperatures, respectively, and the superscript T indicates the transpose of the
vector. The estimated temperatures are obtained from the solution of the direct
problem with estimates for the unknown quantities. We consider the following
three particular cases:

a, When the transient readings Y; taken at times ¢, i=1,.../ of a single sensor
are used in the inverse analysis, the transpose vector of the residuals,
(Y-T)T, is given by

_T
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and the least squares norm, equation (1.5.1), can be written as

I
s=(v-1 (v-1)=Y (¥ -1) (1.5.2.b)

i=1

b. When the transient readings of multiple sensors are used in the inverse
analysis, the transpose vector of the residuals is then given by

T P — - - - -
(Y-T) =( -—TI ,}’2—T2,...,YI-T[) (1.5.3.3)

where, for time ¢, , ()7“—27",) is a row vector of length equal to the number of

sensors, M, that is,

(

|

)= =T Yy Ty By = Ty)

(1.5.3.b)

In equation (1.5.3.b), the first subscript refers to time ¢; and the second
subscript refers to the sensor number, Thus, the ordinary least squares norm,
equation (1.5.1), can be written as

Mo
T 2
S=(Y-T) (Y-T)=) >(¥ -T) (1.5.3.c)
m=1 i=1
c. If the values of the standard deviations of the measurements are quite

different, the ordinary least squares method does not yield minimum
variance estimates[4, 123]. In such a case, the objective function is given
by the weighted least squares norm, S,,, defined as

s, =(Y-T) W(Y-T) (1.5.4)

where W is a diagonal weighting matrix. Such matrix is usually taken as the
inverse of the covariance matrix of the measurement errors, in cases where the
other statistical hypotheses presented in section 1-4 remain valid [4,123]. By
assuming available the measurements of a single sensor, the weighting matrix W
is then given by:

1/6° 0

2
W= e, (1.5.5)

0 /g
i
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and Sy given by Equation (1.5.4) can be written in explicit form as:

I
S, =) ——— (15.6.2)

where o; is the standard deviation of the measurement Y, at time ¢,.
Similarly, for cases involving M sensors equation (1.5.4) can be written as

e (Y —T)

ZZ (1.5.6.b)

m=| j=1

where o, is the standard deviation of the measurement Y, of sensor m at time ¢,.

If the inverse heat transfer problem involves the estimation of only few
unknown parameters, such as the estimation of a thermal conductivity value from
the transient temperature measurements in a solid, the use of the ordinary least
squares norm given by equations (1.5.2.b) or (1.5.3.c) can be stable. However, if
the inverse problem involves the estimation of a large number of parameters,
such as the recovery of the unknown transient heat flux components f (1,)=f,at
times ¢, i=1,..../, in equations (1.1.2, 1.1.3), excursion and oscillation of the
solution may occur. One approach to reduce such instabilities is to use the
procedure called Tikhonov's regularization [3,5-9,116-118,126-128], which
modifies the least squares norm by the addition of a term such as

! I
SU/AO1=) (¥ -T Y +a* 1 (1.5.7)
i=] i=]

where a* (> 0) is the regularization parameter and the second summation on the
right is the whole-domain zeroth-order regularization term.'In equation (1.5.7), f;
is the heat flux at time ¢, which is supposed to be constant in the interval
i —AV2 <t <t + A2, where At is the time interval between two consecutive
measurements. The values chosen for the regularization parameter o influence
the stabmty of the solution as the minimization of equation (1.5.7) is performed.
As a*—0 the solution may exhibit oscillatory behavior and become unstable,

since the summation of f terms may attain very large values and the estimated

temperatures tend to match those measured. On the other hand, with large values
of a* the solution is damped and deviates from the exact result.

The whole-domain first-order regularization procedure for a single sensor
involves the minimization of the following modified least squares norm

! -
S[f(f)]=3—‘(}’—7*)2+a*?(f ) (1.5.8)
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For a® — 0, exact matching between estimated and measured temperatures
is obtained as the minimization of S[A(f)] is performed and the inverse problem
solution becomes unstable. For large values of a", when the second summation
in equation (1.5.8) is dominant, the heat flux components fx tend to become
constant fori = 1,2, ..., ], that is, the first derivative of f¢) tends to zero.

Instabilities on the solution can be alleviated by proper selection of the
value of a*, as discussed in references {3,5-9,116-118,126-128]. Tikhonov [3]
suggested that a”* should be selected so that the minimum value of the objective
function would be equal to the sum of the squares of the errors expected for the
measurements. The cross-validation approach introduced in references [126-128]
can also be used to determine the optimum value of a”. Fortunately, in several
cases a relatively wide range of values for a" can be used. For example, the
values of & ranged from 10" to 10 in reference {126].

The regularization method described above can be related to damped least
squares methods [4,6], such as the one due to Levenberg [124] and
Marquardt [125]. The so-called Levenberg-Marquardt Method is a powerful
iterative technique for nontinear parameter estimation, which has been applied to
the solution of  various inverse heat  transfer  problems
{4,73,75,79,96,104,110,113,122-125].

An alternative approach for the regularization scheme described above is
the use Alifanov’s Iterative Regularization Methods [1,5,10-24,68,72,76-85,89-
94,97-100,104-109,113]. In these methods, the number of iterations plays the role
of the regularization parameter " and the stopping criterion is so chosen that
reasonably stable solutions are obtained. Therefore, there is no need to modify the
original objective function, as opposed to Tikhonov’s approach. The iterative
regularization approach is sufficiently general and can be applied to both
parameter and function estimations, as well as to linear and non-linear inverse
problems.

In this book we focus our attention on the application of Levenberg-
Marquardt’s method of parameter estimation and Alifanov’s method of iterative
regularization for both parameter and function estimations. These methods are
quite stable, powerful and straightforward and can be applied to the solution of a
large variety of inverse heat transfer problems. They meet the majority of criteria
enumerated above in this section regarding the evaluation of inverse problems
solution procedures. In the following chapters of this book, we shall use these
methods based on the whole time domain approach.

Chapter 2 is concerned with the detailed solution of a model inverse heat
conduction problem by using the Levenberg-Marquardt Method and the
Conjugate Gradient Method. The Conjugate Gradient Method with a suitable
stopping criterion belongs to the class of iterative regularization technigues. The
subsequent Chapters 3-6 are devoted to the application of these methods for the
solution of a wide class of inverse heat transfer problems, involving conduction,
convection and radiation.
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1-1

1-2

1-3

I-5

1-6

1-7

1-8

1-9

PROBLEMS

Derive the analytical solution of the direct heat conduction problem given
by equations (1.1.1).

Use the analytical solution derived above in problem 1-1 to plot the
transient temperatures at different locations inside a steel slab {o = 7753
kg/m’, ¢, = 0.486 kJ/(kgK) and & = 36 W/(mK)] of thickness L = 5 cm,
initially at the uniform temperature of 200 °C. The boundary at x = 0 ¢m is
kept insulated while the boundary at x = 5 cm is maintained at the constant
temperature of 20 °C.

Repeat problem 1-2 for a slab made of brick {p = 1600 kg/m’, c, = 0.84
k¥/(kgK) and £ = 0.69 W/(mK)] instead of steel. Compare the temperature
variations in the steel and brick slabs at selected positions, say, x = 0, 2
and 4 cm.

Consider a physical problem involving one-dimensional heat conduction in
a slab of thickness L, with initial temperature distribution F(x). Assume
constant thermophysical properties. A time-dependent heat flux f{f) is
supplied at the surface x=0, while the surface at x=L is kept insulated.
Energy is generated in the medium at a rate g(x,f) per unit time and per
unit volume. What is the mathematical formulation of this heat conduction
problem?

Derive the analytical solution of the direct problem associated with the
above heat conduction problem 1-4.

Use the solution developed in problem 1-5 to plot the transient
temperatures at several locations inside an aluminum slab [p = 2707
kg/m’, ¢, = 0.896 kJ/(kgK) and k£ = 204 W/(mK)] of thickness L = 3 c¢m,
initially at the uniform temperature of 20 °C. No heat is generated inside
the medium and a constant heat flux of 8000 W/m® is supplied at the
surface x =0 cm.

Consider a physical problem involving one-dimensional heat conduction in
a slab of thickness 2L, with initial temperature distribution F(x). Assume
constant thermophysical properties. Heat is lost by convection to an
ambient at the temperature T with a heat transfer coefficient 4, at the

surfaces x=-L and x=L. Energy is generated in the medium at a rate g(x,f)
per unit time and per unit volume. What is the mathematical formulation
of this heat conduction problem?

Derive the analytical solution of the direct problem associated with the
above heat conduction problem 1-7.

Use the solution developed in problem 1-8 to plot the transient
temperatures at several locations inside an iron slab [p = 7850 kg/m’,
¢, = 0.460 k}/(kgK) and £ = 60 W/(mK)] of thickness 2L = § cm, initially
at the uniform temperature of 250 °C. No heat is generated inside the slab
and the ambient temperature is 25 °C. The heat transfer coefficient at both
slab surfaces is 500 W/(m?K). :



1-10

1-13

1-14

I-15

1-18
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Consider a physical problem involving one-dimensional heat conduction in
a solid cylinder of radius b, with initial temperature distribution F{(r).
Assume constant thermophysical properties. Heat is lost by convection to
an ambient at the temperature 7_ with a heat transfer coefficient A, at the

surface r=b. Energy is generated in the medium at a rate g(r.t) per unit
time and per unit volume. What is the mathematical formulation of this
heat conduction problem?

Derive the analytical solution of the direct problem associated with the
above heat conduction problem 1-10.

Use the solution developed in problem 1-11 to plot the transient
temperatures at several locations inside an iron cylinder [p=7850 kg/m’,
¢, = 0.460 kJ/(kgK) and k = 60 W/(mK)] of radius b = 2.5 cm, initially at
the uniform temperature of 250 °C. No heat is generated inside the
cylinder and the ambient temperature is 25 °C. The heat transfer
coefficient at the cylinder surface is 500 W/(m’K).

Repeat problems 1-10, 1-11 and 1-12, for a solid sphere of radius » = b,
instead of a solid cylinder.

Compare the transient temperature variations at x = r = 0 cm, in problems
1-9, 1-12 and 1-13, for a slab, cylinder and sphere, respectively. "
Consider a physical problem involving two-dimensional heat conduction
in a plate of width g and height b, with initial temperature distribution
F(x,y). Assume constant thermophysical properties. Heat is lost by
convection to an ambient at the temperature T_with 2 heat transfer

coefficient 4, at all plate surfaces. Energy is generated in the medium at a
rate g(x,y,f) per unit time and per unit volume. What is the mathematical
formulation of this heat conduction problem?

Derive the analytical solution of the direct problem associated with the
above heat conduction problem 1-15.

Use the solution developed in problem 1-16 to plot the transient
temperatures for the central point in a square iron plate [p = 7850 kg/m’,
¢, = 0.460 kI/(kgK) and £ = 60 W/(mK)] with sides a = b =5 cm, initially
at the uniform temperature of 250 °C. No heat is generated inside the plate
and the ambient temperature is 25 °C. The heat transfer coefficient at the
plate surfaces is 500 W/(m’K).

Consider a physical problem involving a plate with width a and thickness
b, which moves horizontally along the x direction with a constant velocity
u. Assume constant physical properties. Also, suppose the plate to be
infinitely long in the axial (x) direction. The plate looses heat by
convection through its lateral surfaces, at y = 0 and y = a, to an ambient at
temperatureT_ with a heat transfer coefficient 4. The bottom surface at

z = 0 is supposed insulated, while a transient heat flux with distribution
g(x,.1) is supplied at the top surface z = b, in the region x > 0. The initial
temperature in the medium is F{x,y,z) and the plate enters into the heated
zone (x > 0) with a uniform temperature T, at x = 0. Heat is generated in
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1-19

1-20

1-21

1-22

1-23

1-24

1-25

1-26

1-27
1-28
1-29
1-30

the medium at rate g(x,),z,1) per unit time and per unit volume. What is the
mathematical formulation of this problem?
Simplify the formulation developed in problem 1-18, for the steady-state
heat transfer problem in a plate with negligible lateral heat losses and no
heat generation. The heat flux at z = b is a function of x only, say, g(x).
Derive the analytical solution for the direct problem formulated in problem
1-19.
By using the analytical solution derived in problem 1-20, find the
temperature field in a steel plate [p = 7753 kg/m’, ¢, = 0.486 kJ/(kgK) and
k=36 W/(mK)] of thickness b = 2.5 ¢m, moving with a velocity 0.15 m/s,
for Ty = 20 °C, g(x) = 50x10* W/m® in | < x <2 cm. and g(x) = 0 W/m’
outside this region.
Review, in basic Heat Transfer books, the physics and formulation of heat
transfer by radiation in non-participating and participating media.
For the heat transfer problems formulated above in problems 1-4, 1-7,1-10,
1-13, 1-15 and 1-18, devise inverse problems of:

(1) Boundary condition;

(i)  Initial condition;

(tii)  Energy source-term;

(iv)  Thermophysical Properties.
How would you address the solution of such inverse problems? In terms of
parameter or of function estimation?
Plot the temperature variation given by equation (1.4.l1.a) in a steel
semi-infinite solid [p = 7753 kg/m’, c, = 0.486 kJ/(kgK) and £ = 36
W/(mK)}, at different locations below the surface. for a heat flux with
amplitude go=10* W/m? and frequency: (i) @=1 radss, (ii) @=10 rad/s and
(i) @=100 rad/s. What would be the maximum depth that a temperature
sensor could be located for the recovery of g, in such cases?
Use equation (1.4.1.c) in order to recover the amplitude of the heat flux,
go. by using the readings of a sensor located within the maximum depths
obtained in problem 1-24. Perturb the maximum amplitude of the
temperature variation with different levels of random errors. What are the
effects of the sensor location and random errors on the estimated quantity?
Repeat problems 1-24 and 1-25 for brick [p = 1600 kg/m’, c, = 0.84
kJ/(kgK) and £ = 0.69 W/(mK)] instead of steel. Compare the results of
maximum depths and estimated values for g, , obtained with these two
materials.
Derive equation (1.5.2.b).
Derive equation (1.5.3.¢).
Derive equation (1.5.6.a).
Derive equation (1.5.6.b).
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NOTE 1: STATISTICAL CONCEPTS

The purpose of this note is to present some basic statistical material,
needed in the analysis and solution of IHCP, that is generally not covered in
regular courses in engineering. Readers should consult references
[4,122,123,129,130] for a more in depth discussion of such matters.

Random Variable

A random variable is a variable whose value is a numerical outcome of a
random phenomenon. A phenomenon is denoted random if its individual
outcomes are unpredictable, although a regular pattern of outcomes emerges in
many repetitions.

Let the capital letter X denote a random variable. It is called a discrete
random variable if it can only assume a set of discrete numbers x,, n = 1,2,...,N.
On the other hand, X is called a continuous random variable if it can assume all
values in an interval of real numbers.

Probability Distribution

The assignment of probabilities to the values of a random variable X gives
the probability distribution of X, Depending on whether the random variable X is
discrete or continuous, the probability distribution f{x) is a non-negative number
or function, respectively, satisfying

N
Z J(x,)=1 when X is discrete (N1.1.1.a)
n=|
+0
If (x)dx =1 when X is continuous (N1.1.1.b)
Expected Value of X

Let X be a random variable, discrete or continuous, with the corresponding
probability distributions f (xn) or f(x), respectively. The expected value of X,

denoted by E(X), is defined as
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N

anf(xn) when X is discrete (N1.1.2.2)

n=|

E(X)=

=]

Ix f(x)de  when Xis continuous (N1.1.2.b)

| —0

The expected value of any random variable X is obtained by multiplying
its value by the corresponding probability distribution and then summing up the
results if X is discrete, or integrating the results if X is continuous. Clearly, the
expected value of X is a weighted mean of all possible values with the weight
factor f(x). If the weights are equal, that is, f(x)=I, then the expected value
becomes the arithmetic mean of X. Usually, the expected value is simply referred
to as the mean of the random variable X.

Expected Value of a Function g(X)

Consider a random variable X and the probability distribution f(x)

associated with it. The expected value of the function g(X)}, denoted by E[g(X}], is
given by

(N
Zg(xn )f(x )  when X'is discrete (N1.1.3.a)
Elg(x0)]=1""
Ig(x)f(x) dx when X is continuous (N1.1.3.b)
|~

Variance of a Random Variable X

The variance of a random variable X, denoted by & 2, is a measure of the
spread of X around its mean 4. It is defined by

ol =E[(x-u)°]  where u=E(x) (N1.1.4.2)
or an alternative form is obtained by expanding this expression, that is,
o’ = Exh)- 4 (N1.1.4.b)

since E(u’) =i’
The positive square root o of the variance is called the standard deviation.
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Covariance of Two Random Variables Xand ¥

The covariance of two random variables X and Y is a measure of the linear
dependence between them. It is defined as:

cov(X,Y) = E [(x—4) (r-1)] (NL.1.5)

where 1, = E(x) and g, = E(y).
The covariance cov{X,Y) is zero if X and Y are independent.

Normal Distribution

The most frequently used continuous probability distribution function is
the normal (Gaussian) distribution, which has a bell-shaped curve about its mean
value. The normal probability distribution function with a mean x and variance
o? is given by

_ 1 (x-p :
f(x)—;mﬁxp[ 2( ~ ” (N1.1.6)

The area below this function from — o to x represents the probability
P(- 0 < X <x) that a random variable X with mean y and variance o* assumes a
value between —~ cand x. Therefore, P(— o0 < X <x) is defined by

L oy L XY 1.7
= 275_:[“{ 2( - J]dX (N1.1.7)

To alleviate the difficulty in the calculation of this integral for each given
set of values of o, z and x, a new independent variable Z was defined as

P(-o< X <x)=

z=X"# o EH (N1.1.8)
c o
Then, the integral in equation (N1.1.7) becomes
1 ’ -z2n
P(0<Z<2)=e £e dz (N1.1.9)

The results of this integration were tabulated, as given in Table NI1.1.1.
Readers should consult references [129-130] for more comprehensive tabulation
of the probability function P(~ 0 < Z <z).



BASIC CONCEPTS 3]

TABLE N1.1.1 - Probability P(- o < Z 5 z) given by equation (N1.1.9) for a
normat distribution function.

z P(-w< Z <z) z P(-x<Z<2z)
-2.9 0.0019 0.0 0.5000
-2.8 0.0026 0.1 0.5398
-2.7 0.0035 0.2 0.5793
-2.6 0.0047 0.3 0.6179
-2.5 0.0062 0.4 0.6554
-24 0.0082 0.5 0.6915
-2.3 0.0107 0.6 0.7257
-2.2 0.0139 0.7 0.7580
-2.1 0.0179 0.8 0.7881
-2.0 0.0228 0.9 0.8159
-1.9 0.0287 1.0 0.8413
-1.8 0.0359 1.1 0.8643
-1.7 0.0446 1.2 0.884%
-1.6 0.0548 1.3 0.9032
-1.5 0.0668 1.4 0.9192
-1.4 0.0808 1.5 0.9332
-1.3 0.0968 1.6 0.9452
-1.2 0.1151 1.7 0.9554
-1.1 0.1357 1.8 0.9641
-1.0 0.1587 1.9 0.9713
-0.9 0.1841 2.0 0.9772
-0.8 0.2119 2.1 0.9821
-0.7 0.2420 2.2 0.986!
-0.6 0.2743 2.3 0.9893
-0.5 0.3085 2.4 0.9918
-0.4 0.3446 2.5 0.9938
-0.3 0.3821 2.6 0.9953
-0.2 0.4207 2.7 0.9965
-0.1 0.4602 2.8 0.9974

2.9 0.9981

Table N1.1.1 can be used as follows to determine the normal probability
P(x; £ X <x;), of a random variable X having a mean y and variance o, to
assume a value between x; and x,:

<Zg-2
(o) o)

X - X, -
P(x]sxsx2)=P( I ”)

=P(Z|_<Z_<22):

=P < 7 < s NP rm a7 <=\ N1 1 10
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where P(-0 < Z £ z;) and P(- 0 < Z < z,) are determined from Table N1.1.1.
The normal distribution function is useful in obtaining confidence
intervals for estimated parameters, as will be discussed later in Chapter 2.

Chi-Square Distribution

Let Z,, Z,, ..., Zy be independent random variables normally distributed,
with mean zero and unitary standard deviation. In this case, the summation

2 2
ZN:ZZ (NL.1.11)

has a chi-square probability distribution with N degrees of freedom, given by

Loz

2.2
(x ) -
f(zi’)=—l\jVT(Wj_e Fu for 0<lev<w {(N1.1.12)
2T 3

where I'(*) is the gamma function defined as

e o]
[(n) = J'e"‘x""dx . n>0 (N1.1.13.2)

x=0

and, for n integer, we have
[(n+1) = n! (N1.1.13.b)

The mean and the variance of the chi-square distribution are N and 2V,
respectively. Such distribution is skewed to the right, but it tends to the normal
distribution as N —o. This behavior is shown in figure N1.1.1.

The probability of having a value x smaller than va is obtained by

integrating equation (N1.1.12) from zero to ;gi/ , that is,

2 !
Xy S(¥-2)

2 2 (x)
F(y )sP0<x<y )= | ——-—¢
N N ’ 2N/21'(N/2)

X2 g (N1.1.14)
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Table N1.1.2 shows the values of zi, for various probabilities F(,g«?V ), as

a function of the number of degrees of freedom N. The values of va shown in

table N1.1.2 are useful in obtaining confidence regions for estimated parameters.
A discussion on confidence regions and other quantities of importance to assess
the accuracy of the estimated parameters will be presented in Chapter 2.

0.20
I n=

0.15

X 0.10

1 N=10

0.05— N=50

0.00 —>rT<—T— 7T
0 20 40 60 80 100

Figure N1.1.1 - Chi-Square Probability Distribution Function given by equation
(N1.1.12).
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TABLE NI1.1.2 - Values of va for various degrees of freedom N and

probabilities F(z )= P(0S xS z}).

7~

e
ZN

e

|

0.900 0.950 0.975 0.990 0.995

Z
-+

2.71 3.84 5.02 6.63 7.88
4.61 5.99 7.38 9.21 10.6
6.25 7.81 9.35 11.3 12.8
7.78 9.49 11.1 13.3 14.9
9.24 11.1 12.8 15.1 16.7
10.6 12.6 14.4 16.8 18.5
12.0 14.1 16.0 18.5 20.3
13.4 15.5 17.5 20.1 22.0
14.7 16.9 19.0 21.7 23.6
16.0 18.3 20.5 23.2 25.2
17.3 19.7 21.9 24.7 26.8
18.5 21.0 23.3 26.2 28.3
19.8 224 24.7 27.7 29.8
21.1 23.7 26.1 29.1 313
22.3 250 27.5 30.6 32.8
23.5 26.3 28.8 320 343
24.8 27.6 30.2 33.4 35.7
26.0 28.9 31.5 34.8 37.2
27.2 30.1 329 36.2 38.6
284 31.4 34.2 37.6 40.0
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Chapter 2

TECHNIQUES FOR SOLVING
INVERSE HEAT TRANSFER
PROBLEMS

In the previous chapter we discussed general principles related to the
formulation and solution of inverse heat transfer problems. The main objective of
this chapter is to provide the necessary mathematical background needed in the
use of some powerful techniques for solving inverse heat transfer problems. The
following four techniques are considered:

Technique I: Levenberg-Marquardt Method for Parameter Estimation

Technique II: Conjugate Gradient Method for Parameter Estimation

Technique HI: Conjugate Gradient Method with Adjoint Problem for
Parameter Estimation

Technique IV: Conjugate Gradient Method with Adjoint Problem for
Function Estimation

Although other techniques are available, the above four are chosen for use
in this book because they are sufficiently general, versatile, straightforward and
powerful to overcome the difficulties associated with the solution of inverse heat
transfer problems.

Technique I is an iterative method for solving nonlinear least squares
problems of parameter estimation. The technique was first derived by Levenberg
{1] in 1944, by modifying the ordinary least squares norm. Later, in 1963,
Marquardt [2] derived basically the same technique by using a different approach.
Marquardt’s intention was to obtain a method that would tend to the Gauss
method in the neighborhood of the minimum of the ordinary least squares norm,
and would tend to the steepest descent method in the neighborhood of the initial
guess used for the iterative procedure [2-4]. The so called Levenberg-Marquardt
Method [1-9] has been applied to the solution of a variety of inverse problems
involving the estimation of unknown parameters.
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The solution of inverse parameter estimation problems by Technique I
requires the computation of the Sensitivity Matrix, J, the elements of which are
the Sensitivity Coefficients, J;, defined as

o,

where

I = number of measurements

N = number of unknown parameters
T;is the i estimated temperature

P; is the /" unknown parameter

Technique 1 is quite efficient for solving linear and nonlinear parameter
estimation problems. However, difficulties may arise in nonlinear estimation
problems invelving a large number of unknown parameters, because of the time
spent in the computation of the sensitivity matrix.

Technique II utilizes the Conjugate Gradient Method of Minimization to
. solve parameter estimation problems. As with Technique I, it requires the
computation of the sensitivity matrix, which is a time-consuming process when
the number of parameters to be estimated becomes large, specially in nonlinear
problems.

Techniques III and IV utilize the Conjugate Gradient Method of
Minimization with Adjoint Problem [9-21].. Technique III is specially suitable
for problems involving the estimation of the coefficients of trial functions used to
approximate an unknown function. The use of the adjoint problem in Technique
IIl results in an expression for the gradient direction involving a Lagrange
Multiplier, thus alleviating the need for the computation of the sensitivity matrix.
Technique IV is a function estimation approach and is useful when no a priori
information is available on the functional form of the unknown quantity.
Techniques I, IIT and IV, together with appropriate stopping criteria for their
iterative procedures, belong to the class of iterative regularization techniques.

In this chapter we describe the basic steps and present the solution
algorithms for each of these four techniques, by using a whole time domain
approach and by assuming that the eight assumptions described previously in
Section 1-4 remain valid. We also present the solution of a test-problem by using
Techniques 1 through IV to illustrate their applications. The sensitivity
coefficients play an important role in the application of Techniques I, I and III to
parameter estimation problems. Hence, we also discuss in this chapter the
physical and mathematical significance of the sensitivity coefficients and
describe three different methods for their computation.
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2-1 TECHNIQUE L
THE LEVENBERG-MARQUARDT METHOD
FOR PARAMETER ESTIMATION

The Levenberg-Marquardt method, originally devised for application to
nonlinear parameter estimation problems, has also been successfully applied to
the solution of linear problems that are too ill-conditioned to permit the
application of linear algorithms.

The solution of inverse heat transfer problems with the Levenberg-
Marquardt method can be suitably arranged in the following basic steps:

* The Direct Problem

* The Inverse Problem

* The Iterative Procedure

* The Stopping Criteria

» The Computational Algorithm

We present below the details of each of these steps as applied to the
solution of an inverse heat conduction test-problem, involving the following
physical situation:

Consider the linear transient heat conduction in a plate of unitary
dimensionless thickness. The plate is initially at zero temperature and both
boundaries at x=0 and x=1 are kept insulated. For times ¢ > 0, a plane heat
source of strength g,(r) per unit area, placed in the mid-plane x=0.5,
releases its energy as depicted in figure 2.1.1.

The mathematical formulation of this heat conduction problem is given in
dimensionless form by:

2
0 T(ch,t)+g (,)5(,‘_0_5):.‘?-713-‘-’3 in0<x<1ifort>0 (2.1.1.a)
Ox 4 ot
9_7:_(,9’2=0 atx=0,fort>0 (2.1.1.b)
Ox
M:O atx=1,fort>0 (2.1.1.c)
O0x
T(x,00=0 fort=0,in0<x<1 (2.1.1.d)

where &() is the Dirac delta function.
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gp() E
E

0.5 I

INSULATED
[==]
INSULATED
v

X, meas

Figure 2.1.1. Geometry and coordinates for a plane heat source g,(7).

The Direct Problem

In the Direct Problem associated with the physical problem described
above, the time-varying strength g,(f) of the plane heat source is known. The
objective of the direct problem is then to determine the transient temperature field
T(x,?) in the plate.

The Inverse Problem

For the Inverse Problem considered of interest here, the time-varying
strength g,(f) of the plane heat source is regarded as unknown. The additional
information obtained from transient temperature measurements taken at a
location X=Xy, at times 4, i = 1, 2, ..., 1, is then used for the estimation of g,(1).

For the solution of the present inverse problem, we consider the unknown
energy generation function g,(f) to be parameterized in the following general
linear form:

N
g,(= Z]chj(r) 2.12)
J=

Here, P; are unknown parameters and Ci(#) are known trial functions (e.g.,
polynomials, B-Splines, etc). In addition, the total number of parameters, ¥, is
specified.

The problem given by equations (2.1.1) with g,(f) unknown, but
parameterized as given by equation (2.1.2), is an inverse heat conduction problem
in which the coefficients P; are to be estimated. The solution of this inverse heat
conduction problem for the estimation of the N unknown parameters P,
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j =1, .., N, is based on the minimization of the ordinary least squares norm
given by (see equation 1.5.2.b):

I
S®)=Y I, - 1;(1*)]2 (2.13.2)

i=1

where S = sum of squares error or objective function
P’ = [P\,P,,...,Py] = vector of unknown parameters
T{P) = T(P, ¢, = estimated temperature at time f;
Y; = H(1;) = measured temperature at time #;
N = total number of unknown parameters
I=total number of measurements, where />N.

The estimated temperatures T(P) are obtained from the solution of the
direct problem at the measurement location, Xy, by using the current estimate
for the unknown parameters P;, j =1, ..., N.

Equation (2.1.3.a) can be written in matrix form as (see equation 1.5.1)

S(P)=[Y - T(P)I" [Y - T(P)] (2.1.3)
where the superscript I denotes the transpose, and [Y-T(P)]T is defined as

[Y-T®)) =¥, -T.Y,~T,..,Y,~T] (2.14)

The Iterative Procedure for Technique I

To minimize the least squares norm given by equations (2.1.3), we need to
equate to zero the derivatives of S(P) with respect to each of the unknown
parameters [P, P, ..., Py}, that is,

_05®) _ . _95(R) . (2.15.)

or oF, oP

Such necessary condition for the minimization of S(P) can be represented in
matrix notation by equating the gradient of S(P) with respect to the vector of
parameters P to zero, that is,

T

or (P)
P

VS(P)=2 |:— } [Y-T(P)]=0 (2.1.5.b)

where
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[0
oF
o) |
2= O, TT, 7] (2.1.6)
=
aP
L N

The Sensitivity or Jacobian matrix, J(P), is defined as the transpose of
equation (2.1.6), that is,

31" (P) ’
J(P):{ ~ } (2.1.7.3)

In explicit form, the sensitivity matrix is written as

o7 or or,  of

P oP oP P

1 2 3 N

- o, o, o, .,
J(P){ J= o o, oP o (2.17)

oP 2 .

8T oT or oT

8P oP, &P 0oP.

L 1 2 3 N

where N =total number of unknown parameters
7= total number of measurements

The elements of the sensitivity matrix are called the Sensitivity
Coefficients. The sensitivity coefficient J;1s thus defined as the first derivative of
the estimated temperature at time ¢, wnth respect to the unknown parameter P,

that is,

Jij _B_T (2.1.7.¢)

By using the definition of the sensitivity matrix given by equation
(2.1.7.a), equation (2.1.5.b) becomes

— 23T (PYY - T(P)]=0 (2.1.8)
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For linear inverse problems, the sensitivity matrix is not a function of the
unknown parameters. In such a case, equation (2.1.8) can be solved in explicit
form for the vector of unknown parameters P as [4]:

=0 ¥y |27 2.1.9)

In the case of a nonlinear inverse problem, the sensitivity matrix has some
functional dependence on the vector of unknown parameters P. The solution of
equation (2.1.8) for nonlinear estimation problems then requires an iterative
procedure, which is obtained by linearizing the vector of estimated temperatures,
T(P), with a Taylor series expansion around the current solution P* at iteration k.
Such a linearization is given by

T(P)=T(P*)+J* P - P") (2.1.10)

where T(P*) and J* are the estimated temperatures and the sensitivity matrix
evaluated at iteration k, respectively. Equation (2.1.10) is substituted into
equation (2.1.8) and the resulting expression is rearranged to yield the following
iterative procedure to obtain the vector of unknown parameters P[4]:

PP b oty 7 N =Tty @.1.11)

The iterative procedure given by equation (2.1.11) is called the Gauss
method. Such method is actually an approximation for the Newton (or Newton-
Raphson) method {3].

We note that equation (2.1.9), as well as the implementation of the
iterative procedure given by equation (2.1.11), require the matrix J’J to be non-

singular, or

'JTJ|¢0 (2.1.12)

where | . | is the determinant.

Equation (2.1.12) gives the so called Identifiability Condition, that is, if
the determinant of JJ is zero, or even very small, the parameters P, , for
J =1, .., N, cannot be determined by using the iterative procedure of equation
(2.1.11).

Problems satisfying lJ Ty ‘z 0 are denoted ill-conditioned. Inverse heat

transfer problems are generally very ill-conditioned, especially near the initial
guess used for the unknown parameters, creating difficulties in the application of
equations (2.1.9) or (2.1.11). The Levenberg-Marquardt Method [1-9] alleviates
such difficulties by utilizing an iterative procedure in the form:

PH-Pr i ahT st ot T Y -ty (2.1.13)
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k-, B :
where H  is a positive scalar named damping parameter, and
Q is a diagonal matrix.

The purpose of the matrix term yk Q*, included in equation (2.1.13), is to
damp oscillations and instabilities due to the ill-conditioned character of the
problem, by making its components large as compared to those of J'J if
necessary. The damping parameter is made large in the beginning of the
iterations, since the problem is generally ill-conditioned in the region around the
initial guess used for the iterative procedure, which can be quite far from the
exact parameters. With such an approach, the matrix J7J is not required to be
non-singular in the beginning of iterations and the Levenberg-Marquardt Method
tends to the Steepest Descent Method, that i is, a very small step is taken in the
negative gradient direction. The parameter &° is then gradually reduced as the
iteration procedure advances to the solution of the parameter estimation problem,
and then the Levenberg-Marquardt Method tends to the Gauss Method given by
equation (2.1.11) [4].

The Stopping Criteria for Technique I
The following criteria were suggested by Dennis and Schnabel [7] to stop

the iterative procedure of the Levenberg-Marquardt Method given by equation
(2.1.13):

M SE*<e, (2.1.14.2)
(if) "(J Y—T(P )] (2.1.14.b)
(iiif) { p**!_pt “ <e, (2.1.14.0)
where ¢,, & and & are user prescribed tolerances and | . || is the vector Euclidean

1
. T .
norm, i.e., |x]=(x x)/z, where the superscript T denotes transpose.

The criterion given by equation (2.1.14.a) tests if the least squares norm is
sufficiently small, which is expected to be in the neighborhood of the solution for
the problem. Similarly, equation (2.1.14.b) checks if the norm of the gradient of
S(P) is sufficiently small, since it is expected to vanish at the point where S(P) is
minimum. Although such a condition of vanishing gradient is also valid for
maximum and saddle points of S(P), the Levenberg-Marquardt method is very
unlike to converge to such points. The last criterion given by equation (2.1.14.c)
results from the fact that changes in the vector of parameters are very small when
the method has converged.. The use of a stopping criterion based on small
changes of the least squares norm S(P) could also be used, but with extreme
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caution. It may happen that the method stalls for a few iterations and then starts
advancing to the point of minimum afterwards(3,4,7].

The Computational Algorithm for Technique I

Different versions of the Levenberg-Marquardt method can be found in
the literature, depending on the choice of the diagona’l‘ matrix Q" and on the form
chosen for the variation of the damping parameter 4 [1-9]. We illustrate here a
procedure with the matrix )" taken as

a* = diag[(35)" 14 (2.1.15)

The algorithm described below is available as the subroutine MRQMIN of
the Numerical Recipes [6]. The reader should consult the reference for further
details on the use of such subroutine.

Suppose that temperature measurements Y—( Y,. ,Y,) are given at times
t;, i=1,.,1. Also, suppose an initial guess P is avallable for the vector of
unknown parameters P. Choose a value for 40, say, u° = 0.001 and set k=0 [6].
Then,

Step 1. Solve the direct heat transfer problem given by equations (2.1. 1) with the
avallable estimate P* in order to obtain the temperature vector
TP )=, Ip.... T).

Step 2. Compute S(P*) from equation (2.1.3.b).

Step 3. Compute the sensmwty matrix J* defined by equation (2.1.7.a) and then
the matrix Q given by equation (2.1.15), by using the current values of

P

Step 4. Solve the following linear system of algebraic equations, obtained from
the iterative procedure of the Levenberg-Marquardt Method, equation
(2.1.13):

(357 3% 4t 010t =(J*)T[Y—T(P")] (2.1.16)

in order to compute AP =pt P
Step 5. Compute the new estimate P as

p**'=p" +AP* (2.1.17)

Step 6. Solve the tPrect problem (2.1.1) with the new estimate P! in order
to ﬁnd T(P ) Then compute S(P ), as defined by equation (2.1.3.b).

Step 7. If S(P )ZS(P ) replace ,u by 10;1 and retum to step 4.
Qten R TF&‘(P \< \‘(P Y. accept the new estimate P " and replace u by 0.1 u
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Step 9. Check the stopping criteria given by equations (2.1.14.a-c). Stop the
iterative procedure if any of them is satisfied; otherwise, replace k by
k+1 and return to step 3.

In another version of the Levenberg-Marquardt method due to Moré [8],
the matrix Q" is taken as the identity matrix and the damping parameter y is
chosen based on the so-called trust region algorithm [1,8]. The subroutines
UNLSF, UNLSJ, BCLSF and BCLSJ in the IMSL [5] are based on this version
of the Levenberg-Marquardt Method.

After computing Py, Py, ..., Py with the above computational procedure, a
Statistical Analysis can be performed in order to obtain estimates for the standard
deviations and other quantities of interest to assess the accuracy of the estimated
parameters. The basic steps of such an analysis are included in Note 1 at the end
of this chapter.

Sensitivity Coefficient Concept

The sensitivity matrix (2.1.7.a) plays an important role in parameter
estimation problems. Therefore, we present below a discussion of the physical
and mathematical significance of the sensitivity coefficients and the methods for
their computation.

The sensitivity coefficient J , as defined in equation (2.1.7.¢c), is a
measure of the sensitivity of the esnmated temperature 7, with respect to changes
in the parameter P, . A small value of the magnitude of J; indicates that large
changes in P, ylefd small changes in 7, . It can be easily noticed that the
estimation of the parameter PJ is extremely difficult in such a case, because
basically the same value for temperature would be obtained for a wide range of
values of P, . In fact, when the sensitivity coefficients are small, we

have| Iy ‘ ~0 and the inverse problem is ill-conditioned. It can also be shown

that ‘JTJI is null if any column of J can be expressed as a linear combination of

the other columns [4]. Therefore, it is desirable to have linearly-independent
sensitivity coefficients J; with large magnitudes, so that the inverse problem is
not very sensitive to measurement errors and accurate estimates of the parameters

can be obtained. The maximization of |JTJ[ is generally aimed in order to

design optimum experiments for the estimation of the unknown parameters,
because the confidence region of the estimates is then minimized. Some details
on such an approach are presented in Note 2 at the end of this chapter.

Generally, the timewise variations of the sensitivity coefficients and of

| 373 | must be examined before a solution for the inverse problem is attempted.

Such examinations give an indication of the best sensor location and
measurement times to be used in the inverse analysis, which correspond to
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linearly-independent sensitivity coefficients with large absolute values and large
magnitudes of 1 3 |

Methods of Determining the Sensitivity Coefficients

There are several different approaches for the computation of the
sensitivity coefficients. We present below, with illustrative examples, three such
approaches, including: (i) The direct analytic solution, (ii) The boundary value
problem, and (iii) The finite-difference approximation.

1. Direct Analytic Solution for Determining Sensitivity Coefficients. If the
direct heat conduction problem is linear and an analytic solution is available for
the temperature field, the sensitivity coefficient with respect to an unknown
parameter P, is determined by differentiating the solution with respect to P,. This
approach is illustrated in the following examples.

Example 2-1. Consider the test-problem given by equations (2.1.1). The
analytical solution of this problem at the measurement position is obtained as [9]:

T(x_ 0= Igp(t’)dt'+ 2Ze'”'2'"cos( B x_ )cos(0.58.) J'e”'z""gp(r')dr'
=0 m=| =0

(2.1.18.2)

where ,Bm =mun are the eigenvalues.

The first integral term on the right-hand side of equation (2.1.18.a) is due
to the fact that both boundary conditions for the problem are homogeneous of the
second kind. Suppose g,(f) is parameterized in the general linear form as

N
gp(r)=ZIPjCj(r) (2.1.18.b)
J=

Find an analytic expression for the sensitivity coefficient J; = -g%, with
J

respect to the parameter P

Solution: By substituting the strength of the source term g,(f) given by
equation (2.1.18.b) into equation (2.1.18.2) and differentiating the resulting
expression with respect to P, , we find the expression for the sensitivity
coefficient for the parameter P, as
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J-— Ic (r)dt+2z cos(ﬁx )cos(OSﬁ)J C(t)dt
f
(2.1.18.¢)

The above inverse problem is linear because the sensitivity coefficients do
not depend on P,.

Figure 2.1.2 presents the timewise variation of the sensitivity coefficients
given by equation (2.1.18.c), for a sensor located at x,,.,=1 and for a case
involving N=5 unknown parameters, where the trial functions were taken in the
form of polynomials as

C;()=tUD (2.1.18.d)

Sensitivity Coefficients

0.0 0.2 0.4 06 0.8 1.0
Dimensionless Time , t

Figure 2.1.2, Sensitivity coefficients for polynomial trial functions
given by equation (2.1.18.d)

Figure 2.1.2 shows that the sensitivity coefficients J; , /3, J; and Js, with
respect to the parameters P, , Py, P; and Ps, respectively, tend to be linearly
dependent in the time interval 0 < ¢ < 1. Therefore, the estimation of the five
coefficients of the polynomial used to approximate the unknown source function
is difficult in such a case. This figure also shows that the sensitivity coefficient J,
with respect to the parameter P, does not seem to be linearly dependent with the
others in this time interval. Hence, the estimation of any pair of parameters,
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which necessarily includes P, as one of them, appears to be feasible with a sensor
located a x,,.—1 and with measurements taken in the time interval 0 <7< 1. In
fact, for 100 transient measurements taken in this time interval, the determinant
of J7J assumes the values 7.7 and 3.2x10™", for 2 (P, and P,) and 5 (P; through
Ps) unknown parameters, respectively, indicating that linearly dependent

sensitivity coefficients yield small values of | hER | I

Figure 2.1.3 shows the sensitivity coefficients for a sensor located at
Xmeas=1 and for the first five coefficients of trial functions in the form

C (0= cos[( j-1)§:} for j=1,3,5,... (2.1.18.€)

C (0= sin[ j%t] for j=2,4,6,... (2.1.18.9)

where the source function was approximated by a Fourier series.

2.0 -
4 —— J;
154 &
8 — J,
s 1 e,
Q
% 1.0 —h— J
(=
o i
2
S 054
%
T -
Q
(73]

0.0

0.0 0.4 0.8 1.2 16 2.0
Dimensionless Time , t

Figure 2.1.3. Sensitivity coefficients for the trial functions
given by equations (2.1.18.¢,f)

We notice in figure 2.1.3 that the sensitivity coefficients are not linearly
dependent in the time interval 0.3 < ¢ < 2. Some linear-dependence is noticed
among the sensitivity coefficients J,, J3 and Js for ¢ < 0.3. Therefore, the
conditions for the estimation of the five unknown parameters are not adequate if
measurements taken only in the interval 0 < ¢ < 0.3 are used in the analysis; but it
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appears that the parameters can be estimated if the measurements are taken up to
=2

Figure 2.1.4 illustrates the time variation of the determinant of J'J up to a
final experimental time # = 5, by considering I = 100, 250 and 500 measurements
available from a sensor located at x,,= 1. The trial functions are given by
equations (2.1.18.¢,f). For the three number of measurements considered, we

notice a large increase in the magnitude of |JTJ| up to about £, = 2. The
magnitude of IJTJ ‘ continues to grow for larger times, but at a much

smaller rate. As expected, IJTJ| increases with the number of measurements,

since more information is available for the estimation of the unknown
parameters. However, such increase is not as significant as increasing the
experimental time from #= 1 to #,= 2. In the example, t,= 2 is a suitable duration

for the experiment, since the value of l J73 l has already approached a reasonably

large magnitude and the experiment duration is not too long.

1E+9 —
1E+8 —
1E+7 —
TE+8 —
1E+5 —
1E+4 —
1E+3 —
1E+2 —
1E+1 —
1E+0 =
1E-1 —
1E-2 —
1E-3 —
1E-4 =
1E-5 —
1E-6 —
1E-7 —
1E-8 ~

Determinant

T ' T T 1/
0.0 1.0 2.0 30 4.0 5.0
Dimensionless Time , t

Figure 2.1.4. Determinant of J7J for the trial functions given by
equations (2.1.18.e,f)

Example 2-2. Consider a semi-infinite medium initially at zero
temperature, and for times t> 0 the boundary surface at x = 0 is subjected to a
constant heat flux go, W/m>. Develop an analytic expression for the sensitivity
coefficient Jgy(0, £) with respect to the applied heat flux g, and for the sensitivity
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coefficient Jy(0,f) with respect to the thermal diffusivity @, based on the
temperature at the boundary surface x = 0.

Solution. The temperature of the boundary surface at x = 0 is given by

[9]:

70,n)=

2q 1/2
¢ -‘ﬁ) (2.1.19.a)

k

Then the sensitivity coefficient with respect to g, is determined from its
definition as
8T(0,1) 2 (aa‘)m
J 0)s——=—— 2.1.19.b
" 50 i x (2.1.19.)
which is independent of the applied heat flux go. Then, the inverse problem of

estimating g is linear.
The sensitivity coefficient with respect to a is determined as

1/2
Ja(o,:)aa—@i) :%0(__,__) (2.1.19.c)

oa o

which depends on @, and, hence the inverse problem of estimating « is nonlinear.

Example 2-3. Consider the transient heat conduction problem in a plate of
thickness L, initially at a uniform temperature T,. For times 7 > 0, the boundary
x=L is maintained at a temperature 7. A constant heat flux g, is applied on the
boundary x = 0, during the period 0 <t < . For t > 1, this boundary is kept
insulated. The mathematical formulation of this problem in dimensionless form is
given by:

2
o9 :2—*-9- in 0<é<, for >0 (2.1.20.a)
or 552
56 [-1 for O<z<vt
ev _ h tE=0 2.1.20.
T {0 for r>r, } at & (2.1.20.b)
=0 at =1, forr>0 (2.1.20.¢)
6=0 for =0, 0<éxl (2.1.20.d)

where various dimensionless groups are defined as
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T-T at at x at
f=—-L =2 =t X oL (2.1.21.a-¢)
(ggL7 k) 2 Ly

a = thermal diffusivity

k= thermal conductivity

r, = dimensionless heating time
= dimensionless final time

x

Tf
The dimensionless sensitivity coefficients with respect to the thermal
conductivity £ and heat capacity pe, = C are defined respectively as

A= k 27: (2.1.22.a)
(goLl/k) Ok
and
¢_or (2.1.22.b)

JCE o
(oL k) BC

Develop analytic expressions for the dimensionless sensitivity coefficients
Jy and J- , with respect to thermal conductivity and heat capacity, respectively.

Solution. The transient heat conduction problem given by equations
(2.1.20) has been solved in reference [22] and the resulting expressions for the
dimensionless temperature field 8 (£,7) are given in the form

® n 5
(& r)=(1-&)-2 Z(—_;z)— sin[ln(l - 5)]e_1"r for 0<r< g
n=0 n
(2.1.23.2)
- (-1)" ke Zery)
6(¢1)=-2) o sind (1=Oe " e " M1 for <<y
n=0 A

n

(2.1.23.b)

where /ln =(2n+ 1)% are the eigenvalues.

Since the temperature field #(&,7) is known explicitly, analytic

expressions can be developed for the dimensionless sensitivity coefficients
according to equations (2.1.22). We obtain the sensitivity coefficients for the
thermal conductivity as
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0 n 2
szw(1—§)+22(_;2) sin[ﬂn(l—f)]e il (1+/lir) for 0<7<y
n=0 n
(2.1.24.2)
and
=2 D G a '1'2"1 A "Ai(”’ﬁ 2
J, = ZO sinlA, (=lle " (1+4,0)] e (144 (r - 7,)]

forp<r<ry (2.1.24.b)

Similar expressions can be developed for the dimensionless sensitivity
coefficients with respect to the heat capacity as

o0 _/_{2
Jo==2 (=D"sin[4, (1- )] re " for 0<r<gz  (2.125.a)
n=0

and

= n —Azr
J =2 (-)'sin[4, (1-g)){-re " +(z-7,)e

n=0

2
A (r-1.)
nohY) for <<ty

(2.1.25.b)

Figures 2.1.5.a-c show the plots of, respectively, the dimensionless
temperature 6, the dimensionless sensitivity coefficients J, and J- , as a

function of the dimensionless time 7, for 7, = ;= 7 and at several different
dimensionless locations §=—z—=0, 0.25, 0.5 and 0.75. These figures show that for

this particular case the magnitude of sensitivity coefficients attain relatively large
values, i.e., of the order of dimensionless temperature 6. The magnitude of the
sensitivity coefficients for the volumetric heat capacity are smaller than those for
the thermal conductivity and they approach zero for r > 2. Thus, basically no
information can be obtained from measurements taken for r > 2 for the
estimation of C. Also, note that the magnitude of the sensitivity coefficients for &
and C decrease as the sensor is placed farther from the boundary =0, For each
sensor location, the shapes of the sensitivity coefficient curves for J; and J. are
different except at the very early times. In fact, J; tends to a finite value after the
steady-state is reached, while J- becomes zero. Therefore, they are not linearly-
dependent on each other, and, as a result, the conditions are good for the
estimation of the unknown parameters with a single sensor. Such sensor should
be located as close to the boundary £=0 as possible, because the magnitudes of
the sensitivity coefficients are larger in this region.
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Figure 2.1.5.b Dimensionless sensitivity coefficient for thermal conductivity
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Figure 2.1.5.c Dimensionless sensitivity coefficient for volumetric heat capacity

In problems involving parameters with different orders of magnitude, the
sensitivity coefficients with respect to the various parameters may also differ by
several orders of magnitude, creating difficulties in their comparison and
identification of linear dependence. These difficulties can be alleviated through
the analysis of either dimensionless sensitivity coefficients (given in the example
above by equations 2.1.22.a,b), or relative sensitivity coefficients defined as

oT

J, =P —— 2.1
Py oP; (2.1.26)
where P;, j = 1, ..., N, are the unknown parameters. Note that the relative

sensitivity coefficients have the units of temperature; hence, they are compared as
having the magnitude of the measured temperature as a basis.

2. The Boundary Value Problem Approach For Determining The Sensitivity
Coefficients. A boundary value problem can be developed for the determination
of the sensitivity coefficients by differentiating the original direct problem with
respect to the unknown coefficients. If the direct heat conduction problem is
linear, the construction of the corresponding sensitivity problem is a relatively
simple and straightforward matter. To illustrate this approach, we use the
following examples.
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Example 2-4. For the test-problem given by equations (2.1.1) with g (1)
parameterized by equation (2.1.2), find the boundary value problem for the
sensitivity coefficient with respect to the parameter P, .

Solution: By using equation (2.1.2), differentiating equations (2.1.1) with

) oT . b
respect to the parameter P, and noting that J; =——-, we obtain the sensitivity

5P,

problem governing the sensitivity coefficients J; (x,t) as

8°J (x) 8J (x,1)
—-—jTu-i-C,(t)é'(x—O.S): ] in0<x<l, fort>0
Ox / ot
(2.1.27.a)
°oJ.
—4 = atx=0, fort>0 (2.127.b)
0x
3J;
—==0 atx=1, fort>0 (2.1.27.¢)
Ox
Jj(x,0)=0 fort=0, in0<x<l (2.1.27.d)

Note that problem (2.1.27) is similar to problem (2.1.1). The problem
(2.1.27) needs to be solved N times, in order to compute the sensitivity
coefficients with respect to each parameter P;, j = 1, ..., N. For this particular
case, the analytical solution of problem (2.1.27) can be easily obtained with
equation (2.1.18.c). For more involved cases, the solution of the boundary value
problem for determining the sensitivity coefficients may require numerical
techniques, such as finite-differences. Thus, the computation of the sensitivity
coefficients may become very time-consuming,.

Example 2-5: Consider the following heat conduction problem

ki%=C£ in0<x<L, for > 0 (2.1.28.a)
Ox ot
-kéz:q at x=0, fort>0 (2.1.28.b)
ox 0
27—~=0 at x=1L, fort>0 (2.1.28.c)
ox
T=T, for =0, in0<x<lL (2.1.28.d)
where pc, = C, heat capacity

g, = applied heat flux
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k = thermal conductivity

Construct the sensitivity problem for determining the sensitivity
coefficients with respect to thermal conductivity, i.e.,

Jy == (2.1.29)

Solution: By differentiating problem (2.1.28) with respect to k and utilizing
the definition of J,, we obtain the following boundary value problem for
determination of the sensitivity coefficients

kK —* 4 =C in 0<x<L, fort>0 (2.1.30.a)

kg —=0 at x=0, forz>0 (2.1.30.b)
dx Ox

9y _ st x=L,  fort>0 (2.130.¢)

Ox

Jy=0 for =0, in0<x<lL (2.1.30.d)

We note that problem (2.1.30) contains the non-homogeneous terms

5’2 T/ 5x2 and 8T /Jx in equations (2.1.30.a) and (2.1.30.b), respectively. Also,

the unknown parameter k appears in these two equations; thus, the problem of
estimating & is nonlinear. The solution of problem (2.1.30) yields the sensitivity
coefficients J; , with respect to thermal conductivity k. By following a similar
procedure, the sensitivity problem for determining the sensitivity coefficient Je ,
with respect to heat capacity C, can be developed.

3. Finite Difference Approximation For Determining Sensitivity Coefficients.
The first derivative appearing in the definition of the sensitivity coefficient,
equation (2.1.7.c), can be computed by finite differences. If a forward difference
is used, the sensitivity coefficient with respect to the parameter P, is
approximated by

N 7:'(P|’P2""’Pj + EPj,...,PN)— 7;.(P|,P2,...,}"’,,...,P )

J = N
i eP,
J

(2.131.a)
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where £~10730r 1078, If the first-order approximation given by equation

(2.1.31.a) is not sufficiently accurate, the sensitivity coefficients can be
approximated by using central differences in the form

T(P,F,,. ,P +€P, wPy)=T(H

ij 2e P,
i

By P, = 6P s Py)

(2.1.31.b)

We note that the approximation of the sensitivity coefficients given by
equation (2.1.31.a) requires the computation of N additional solutions of the
direct problem, while equation (2.1.31.b) requires 2N additional solutions of the
problem. Therefore, the computation of the sensitivity coefficients by using
finite-differences can be very time-consuming.

The Use of Multiple Sensors

The computational algorithm of the Levenberg-Marquardt Method, as
given above, can also be used with few modifications in cases involving the
measurements of multiple sensors. The quantities requiring modifications include
the explicit forms of the vector [Y-T(P)], of the objective function S(P) and of
the sensitivity matrix J.

In cases where the measurements of M sensors are available for the
analysis, the vector containing the differences between measured and estimated
temperatures is written as (see equation 1.5.3.a):

[Y-T®)]" =[F,-1,(P), F,-To (), F;-T;(P)]  (2.1.32.2)

where [?,--T,-(P)] is a row vector which contains the difference between

measured and estimated temperatures for each of the M sensors at time f,
i=1, ..., 1 Itis given in the form(see equation 1.5.3.b):

7T, (P)] =Yg =Ta(P), Yo -Tp(B),+ Vg =Ty (P} for i=l,....I (2.1.32)

In the vector element {¥,,,—T;,,(P)] , the subscript i refers to time #;, while

the subscript m refers to the sensor number, where i=1,...,/ and m=1, ..., M.

By substituting equations (2.1.32.a,b) into equation (2.1.3.b), the least-
squares norm can be expressed in the following explicit form (see equation
1.5.3.¢):

M 1
SP)= D) [Yim~Tim (P (2.1.32.0)

m=1i=1
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The sensitivity matrix defined by equation (2.1.7.a) needs also to be
modified in order to accommodate the measurements of M sensors. The transpose
of the sensitivity matrix, defined by equation (2.1.6), is then written as

.
AP,
8
; 2
M'-: 5})2 [f] fz L T]] (2.1.33.3)
P .
o
9Py |
where T, =[T, Ty Tay)  fori=1,..1 (2.1.33.b)

Therefore, we can write the sensitivity matrix in the form

_af]T a]"*lT aﬁT a]'-iT
on or, OR oPy
JP)= > = 6{’] oP, 0P, 8Py (2.1.34.2)
off off oIl  oaiff
| 0 OP, OB OPy |
where
_ﬂ_
an
57T | 2T
—_=| 3p, fori=1,...,1 and j=1,..,N (2.1.34.b)
an :j
0T
_and

I = number of transient measurements per sensor
M = number of sensors
N = number of unknown parameters

The elements of the sensitivity matrix, as given by equation (2.1.34.a), can
be suitably written in the form
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2T,
Jy=—2 (2.135.2)
SP;
where the subscripts £ and j refer to the row number and to the column number of
the sensitivity matrix, respectively. The row number £ is then related to the
measurement time ¢; and to the sensor number m by the expression

k=(i-DM+m (2.1.35.b)

With the modifications above, the computational algorithm for Technique
I can be applied to cases involving the measurements of multiple sensors.

2-2 TECHNIQUE II:
THE CONJUGATE GRADIENT METHOD
FOR PARAMETER ESTIMATION

We present in this section an alternative technique for the estimation of
unknown parameters. Technique II, the Conjugate Gradient Method, is a
straightforward and powerful iterative technique for solving linear and nonlinear
inverse problems of parameter estimation. In the iterative procedure of the
Conjugate Gradient Method, at each iteration a suitable step size is taken along a
direction of descent in order to minimize the objective function. The direction of
descent is obtained as a linear combination of the negative gradient direction at
the current iteration with the direction of descent of the previous iteration. The
linear combination is such that the resulting angle between the direction of
descent and the negative gradient direction is less than 90° and the minimization
of the objective function is assured. Theorems regarding the convergence of the
Conjugate Gradient Method can be found in references [14,15,17,19]. The
Conjugate Gradient Method with an appropriate stopping criterion belongs to the
class of iterative regularization techniques, in which the number of iterations is
chosen so that stable solutions are obtained for the inverse problem.

Similarly to Technique I, the application of Technique II to inverse heat
transfer problems of parameter estimation can be conveniently organized in the
following steps:

* The Direct Problem

* The Inverse Problem

* The Iterative Procedure

* The Stopping Criterion

* The Computational Algorithm

We present below the details of each of such steps, as applied to the heat
conduction test-problem described in section 2-1, involving the estimation of the
unknown source term function g,(7).
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The Direct Problem

In the Direct Problem related to the physical problem described above in
section 2-1, which i1s mathematically formulated by equations (2.1.1), the time-
varying strength g,(f) of the plane heat source is known. The objective of the
direct problem is then to determine the transient temperature field 7(x,f) in the
region.

The Inverse Problem

In the Inverse Problem considered here, the time-varying strength g,(f) of
the plane heat source is regarded as unknown and transient temperature
measurements taken at a location x = X, , at times &, i = 1, 2, ..., I, are
considered available for the analysis.

For the solution of such inverse problem, we consider the unknown energy
generation function g,(#) to be parameterized in the general linear form given by
equation (2.1.2). The estimation of the unknown function g,(#) then reduces to the
estimation of the N unknown parameters P;, j = 1, ..., N. Such parameter
estimation problem is solved by the minimization of the ordinary least squares
norm:

SP)=[Y-TP)] [Y-T(®)] (2.2.1)

The Iterative Procedure for Technique IT

The iterative procedure of the Conjugate Gradient Method for the
minimization of the above norm S(P) is given by [9-19]

pk+l = pk _ ghgF (2.2.2)

where B* is the search step size, d* is the direction of descent and the superscript
k is the number of iterations. The direction of descent is a conjugation of the

; ; k : : -
gradient direction, VS(P'), and the direction of descent of the previous
iteration, d**') It is given as

at = vs(pt)+ ykak! (2.2.3)

Different expressions are available for the conjugation coefficient #*. The
Polak-Ribiere [12,14] expression is given in the form:
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N
y { [VS(P" )MVS(P" )-vs(pt ‘)] }

i= J
yh=22 . fork=12,..  (224.)
Z[VS(P ]
J=1
with y'=0 fork=0

while the Fletcher-Reeves [12,14,15] expression is given as

i [VS(P ]

1

fork=1,2, .. (2.24.b)
2

l[V’S(P - )]j

‘MZ‘.;

J

with y¥=0  for k=0

Here, [VS(Pk )]j is the /* component of the gradient direction evaluated

at iteration k. The expression for the gradient direction is obtained by
differentiating equation (2.2.1) with respect to the unknown parameters P, i.e.,

vsPFy= 205y - 1Pty (2.2.5.2)

where J¥ is the sensitivity matrix defined by equation (2.1.7.a). The 7™ component
of the gradient direction can be obtained in explicit form as

Y
k i k .
[VS(P )]f -2;:1:6—})}[)’,_ -7, (@) forj=1,...N  (225b)

Either expressions (2.2.4.a,b) for the computation of the conjugation
coefficient y* assure that the angle between the direction of descent and the
negative gradient direction is less than 90°, so that the function S(P) is minimized
[14]. They are equivalent on linear estimation problems; but there is some
evidence that the Polak-Ribiere expression provides improved convergence in
nonlinear estimation problems [6,14].

We note that if y*=0 for all iterations ,/the direction of descent becomes
the gradient direction in equation (2.2.3) and the steepest-descent method is
obtained. Although simpler, the steepest descent method does not converge as
fast as the conjugate gradient method [10-21].
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The search step size B* appearing in equation (2.2.2) is obtained by
minimizing the function S(P*+1) with respect to A%, that is,

k+1..T

min S@**") = min [y -T@** ) [Y- (¢ ) (2.2.6.2)

B A

)]

By substituting PA*1 as given by equation (2.2.2) into equation (2.2.6.a),
we obtain

min S(P**") = min[Y - 1" - gra* )T Y-T@* - gfd*y)  (26b)
A B
The temperature vector T(Pk - ﬂkd") can be linearized with a Taylor

series expansion and then the minimization with respect to 8 # is performed to
yield the following expression for the search step size

k=l P
g = > (2.2.7.2)
M7 AL
2 || 5] ¢
=1 |\EP
where
T
L2/ 2V R TR @27b)
OP 8Pl &P aPk

We note that the vector in equation (2.2.7.b) is the ™ row of the sensitivity matrix
(see equation 2.1.7.b). Hence, we can write equation (2.2.7.a) in matrix form as

v [taYy meh-v)

- [Jkdk]T[Jkdk]

(2.2.7.¢)

For further details on the derivation of equations (2.2.7.a,c), the reader
should refer to Note 3 at the end of this chapter.

After computing the sensitivity matrix J¥, the gradient direction VS(Pk ),

the conjugation coefficient ¥ * and the search step size f*, the iterative procedure
given by equation (2.2.2) is implemented until a stopping criterion based on the
Discrepancy Principle described below is satisfied. The sensitivity matrix may be
computed by using one of the appropriate methods described in section 2-1.
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The Stopping Criterion for Technique II

The iterative procedure given by equations (2.2.2-4), with the search step
size B* given by equation (2.2.7.c), does not provide the conjugate gradient
method with the stabilization necessary for the minimization of the objective
function (2.2.1) to be classified as well-posed. Such is the case because of the
random errors inherent to the measured temperatures. As the estimated
temperatures approach the measured temperatures containing errors, during the
minimization of the function (2.2.1), large oscillations may appear in the inverse
problem solution, resulting in an ill-posed character for the inverse problem.
However, the conjugate gradient method may become well-posed if the
Discrepancy Principle [12] is used to stop the iterative procedure.

In the discrepancy principle, the iterative procedure is stopped when the
following criterion is satisfied

S(P**H<e (2.2.8)

where the value of the tolerance ¢ is chosen so that sufficiently stable solutions
are obtained. In this case, we stop the iterative procedure when the residuals
between measured and estimated temperatures are of the same order of
magnitude of the measurement errors, that is,

|Y(’i)'T(xmeas"i)|'~'0i (2.2.9)

where o, is the standard deviation of the measurement error at time ¢;. For
constant standard deviations, i.e., ¢; =0 =constant, we can then obtain the

following value for £by substituting equation (2.2.9) into equation (2.2.1)
!
e=Y o’ =lo® (2.2.10)
i=1

The above assumption for the temperature residuals in the discrepancy
principle was also used by Tikhonov [12], in order to find the optimal
regularization parameter. Such a procedure gives the conjugate gradient method
an iterative regularization character. If the measurements are regarded as
errorless, the tolerance £ can be chosen as a sufficiently small number, since the
expected minimum value for the objective function (2.2.1) is zero.

At this point it is important for the reader to notice that the use of the
discrepancy principle is not required to provide Technique I, the Levenberg-
Marquardt method, with the regularization necessary to obtain stable solutions for
those cases involving measurements with random errors. Computational
experiments revealed that the [Levenberg-Marquardt method, through its
automatic control of the damping parameter u*, reduces drastically the increment
in the vector of estimated parameters, at the iteration where the measurement
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errors start to cause instabilities in the inverse problem solution. The iterative
procedure of the Levenberg-Marquardt method is then stopped by the criterion
given by equation (2.1.14.c).

We note that the above stopping criterion approach, based on the
discrepancy principle, requires the a priori knowledge of the standard deviation
of the measurement errors. For those cases involving measurements with
unknown standard deviations, an alternative approach based on an additional
measurement can be used for the stopping criterion, as described in Note 4 at the
end of this chapter. The stopping criterion approach based on the additional
measurement also provides the conjugate gradient method with an iterative
regularization character.

The Computational Algorithm for Technique Il

Suppose that temperature measurements Y=(Y1,Y5,...,¥;) are given at times
1, i =1, .., I, and an initial guess PO is available for the vector of unknown
parameters P. Set £ = 0 and then

Step 1. Solve the direct heat transfer problem (2.1.1) by using the available
estimate P¥ and obtain the vector of estimated temperatures
TP®N=(T1,T5,....T)).

Step 2. Check the stopping criterion given by equation (2.2.8). Continue if not
satisfied.

Step 3. Compute the sensitivity matrix J* defined by equation (2.1.7.a), by using
one of the appropriate methods described in section 2-1.

Step 4. Knowing J* Y and T(P*), compute the gradient direction VS(P*) from
equation (2.2.5.a) and then the conjugation coefficient y# from either
equation (2.2.4.a) or (2.2.4.b).

Step 5. Compute the direction of descent d* by using equation (2.2.3).

Step 6. Knowing J& Y, T(P*) and d*, compute the search step size f* from
equation (2.2.7.c).

Step 7. Knowing P4, gt and d* , compute the new estimate P**! using equation
(2.2.2).

Step 8. Replace k by k+1 and return to step 1.

The Use of Multiple Sensors

As for the case of Technique I, the above computational algorithm for
Technique 11 can be applied to cases involving the measurements of multiple
sensors, with modifications in the explicit forms of few quantities as described
next.
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For those cases involving transient measurements of M sensors, the vector
[Y-T(P)] is given by equations (2.1.32.a,b). Hence, the objective function or
least-squares norm S(P) is obtained from equation (2.1.32.c), while the sensitivity
matrix J is given by equations (2.1.34.a,b).

Since the objective function was modified, the computation of the
tolerance ¢ for the stopping criterion based on the discrepancy principle needs
also to be modified; it is now obtained from equation (2.1.32.c) as

M
e=2,

m=1i

I
o2, =IMo? (2.2.11)
=]
where I =number of transient measurements taken per sensor
M = number of sensors
o,z = G = constant standard deviation of the measurements

In cases involving the readings of M sensors, the search step size A* can
still be obtained from the matrix form given by equation (2.2.7.c). However, the
explicit form of B, equation (2.2.7.a), needs to be modified since the sensitivity
matrix is now given by equations (2.1.34.a,b) instead of equation (2.1.7.b). Then,
the search step size takes the form

$5 (7t ufr)- ]

gk = - (2.2.12)

&g aTr’m\T k
—7Z | d
22 (apk)

Similarly, the expression in matrix form for the gradient of the objective
function, equation (2.2.5.a), remains valid for the case involving multiple sensors;
but the explicit form for the components of the gradient, equation (2.2.5.b),
becomes

M 1

[VS(P" )] =2 Z%’f"— [V, =T, (P*)]  forj=1,...N (2.2.13)
i

m=1 i=]

Continuous Measurements

So far we have considered the measured data in the time domain to be
discrete. In cases where the measured data are so many that it can be
approximated as continuous, some modifications are needed in the expressions of
the objective function (2.2.1), the gradient vector (2.2.5.a), the search step size
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(2.2.7) and the tolerance for the discrepancy principle (2.2.10). This matter is
discussed next.

We now consider a situation in which the measured temperature data of a
single sensor located at x,,.,; can be approximated as being continuous. For such a
case, the objective function involves an integration over the time domain

0<r<t Iz where Iris the duration of the experiment. It can be written as

t

J
S®)= [tY®- TG, 6P d 2.2.13)
t=0

Thus, the gradient of equation (2.2.14) becomes

!

( oT
vS(P)= -2 _[O[Y(t) =I5, i) S (2.2.15.2)
(=

or, more explicitly, each component of the gradient vector is given by

!

J

oT )

[vs(p)], = -2 '[[Y(t)-r(xmemt;P)]E-ﬁdr forj=1,..N  (2.2.15.b)
t=0 J

In addition, equation (2.2.7.a) for the search step size #* should also be
expressed in the continuous form in the time domain. This is accomplished by
minimizing the objective function (2.2.14) with respect to B* 10 obtain

tj T
_"[T(xmmz;P* )-Y(1)] [—”:’-T;J at dr
ﬁk _ 120 op

5 (22.16)

!f T
I [_fz_f_} & a
1=0 P

Note that the expressions for £ * given by equations (2.2.7.a) and (2.2.16)
are very similar. The summation appearing in equation (2.2.7.a) changes into an
integral for the continuous measurements case of equation (2.2.16).

The tolerance & for the stopping criterion based on the Discrepancy
Principle, for cases involving continuous measurements, is obtained from

equation (2.2.14) as

PpLy (2.2.17)
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The remaining quantities appearing in the computational algorithm for
Technique II stay unaltered for cases involving continuous measurements.

We note that in cases involving continuous measurements of multiple
sensors, the integral on the right-hand side of equation (2.2.14) is summed-up
over the number of sensors, that is,

M7
s)=Y" I[Ym(t)—T(xm,t;P)]zdt (2.2.18)

m=1 =0

Thus, the other quantities appearing in equations (2.2.15-17) also involve
summations over the number of sensors. The derivations of the expressions for
the gradient equation, the search step size and the tolerance for the stopping
criterion, for cases involving continuous measurements of multiple sensors, are
straightforward. They are left as an exercise to the reader.

In order to implement the iterative algorithm of the conjugate gradient
method as presented above, the sensitivity matrix needs to be computed for each
iteration. For linear problems, it is quite easy to compute such matrix with an
analytical solution. Indeed, the sensitivity matrix being constant for linear
problems, it has to be computed only once. On the other hand, for general
nonlinear inverse problems, the sensitivity matrix needs to be computed most
likely by finite-differences. This might be very time-consuming when the
problem involves a large number of parameters and/or measurements. For cases
involving the estimation of the coefficients of unknown functions parameterized,
we present below an alternative implementation of the conjugate gradient
method, which does not require the computation of the sensitivity matrix in order
to obtain the gradient direction and the search step size.

2-3 TECHNIQUE IlI:
THE CONJUGATE GRADIENT METHOD
WITH ADJOINT PROBLEM FOR
PARAMETER ESTIMATION

In this section we present an alternative implementation of the conjugate
gradient method where two auxiliary problems, known as the sensitivity problem
and the adjoint problem, are solved in order to compute the search step size S+
and the gradient equation VS(P"). The technique is specially suitable for
problems involving the estimation of the coefficients of trial functions used to
approximate an unknown functional form.

For convenience in the subsequent analysis, we consider the measured
data to be continuous, rather than discrete. Thus, the ordinary least squares norm,
equation (2.1.3.a), is rewritten as
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t

/
S(P) = j[Y(z)-T(xmm,z;P)]zdz 23.1)
t=0

where Y({) is the measured temperature, T(Xpeqs1;P) is the estimated temperature
at the single measurement location X4 and #;is the duration of the experiment.

The basic steps for the solution of parameter estimation problems, by
using the conjugate gradient method with adjoint problem, include:

* The Direct Problem

* The Inverse Problem

* The Sensitivity Problem

+ The Adjoint Problem

* The Gradient Equation

* The Iterative Procedure

* The Stopping Criterion

» The Computational Algorithm

We present below the details of each of these basic steps as applied to our
_ test-problem.
The Direct Problem
For the test-problem considered here, involving the estimation of the

strength g,(¢) of a plane heat source, the direct problem is given by equations
(2.1.1). It is rewritten below in order to facilitate the analysis.

2
9 T(x,) +g (N8(x-05)= OT(x.0) in0<x<1,forr>0 (2.3.2.2)
ax2 p ot
aT(O! ") = 0 aty = D’ fort > O (232-b)
ox
ox
T(x, 0) = 0 forr=0,in0<x<1 (2.3.2.d)

The direct problem is concerned with the determination of the temperature
field T(x.7) in the region 0 < x < 1, when the strength of the source term gy(?) is
known.
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The Inverse Problem

The inverse probiem, on the other hand, is concerned with the estimation
of the unknown strength of the source term by using the readings taken by a
sensor located at X=Xeq;. We consider the unknown function gp(s} to be
parameterized in a general linear form given by

N
g,)= ZleCj(t) 2.33.)
Jj=

where C(#), j = 1, ..., N are known trial functions. Thus, the objective of the
inverse problem is to estimate the N unknown parameters P, j = 1, ..., N,

The Sensitivity Problem

The sensitivity function AT(x,1), solution of the sensitivity problem, is
defined as the directional derivative of the temperature T(x,?) in the direction of
the perturbation of the unknown function [12,21]. The sensitivity function is
needed for the computation of the search step size B*, as will be apparent later in
this section.

The sensitivity problem can be obtained by assuming that the temperature
T(x,?) is perturbed by an amount AT{(x,#), when the unknown strength g,() of the
source term is perturbed by Agy(?). Since the strength was parameterized in the
form given by equation (2.3.3.a), the function Agy(f) is obtained by perturbing
each of the unknown parameters P; by an amount 4P, that is,

N
Ag, (1) = ;APj C, () (2.3.3.b)

By replacing T{(x,7) by [T(x.1) + AT(x,1)] and g,(1) by [g,(r) + Ag,(?)] in the
direct problem given by equations (2.3.2), and then subtracting the original direct
problem from the resulting expressions, we obtain the following sensitivity
problem:

2
GATD | ng (1)8(x-0.5)=22L0 g <x<t form0 (234a)
o2 ot
OAT(0M) _, atx =0, fort>0 (2.3.4.b)
ox

Ox
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AT(x,0)=0 fortr=0,in0<x<1 (2.34.d)

In the sensitivity problem (2.3.4), Ag,(#) as given by equation (2.3.3.b) is
the only forcing function needed for the solution. The computation of Agp(n) will
be addressed later in this section.

The Adjoint Problem

A Lagrange multiplier A(x,f) comes into picture in the minimization of the
function (2.3.1) because the temperature 7{x.,s¢;P) appearing in such function
needs to satisfy a constraint, which is the solution of the direct problem. Such
Lagrange multiplier, needed for the computation of the gradient equation (as will
be apparent below), is obtained through the solution of a problem adjoint to the
sensitivity problem given by equations (2.3.4). For the definition and properties
of adjoint problems, the reader should consult references [12,21].

In order to derive the adjoint problem, we write the following extended
function:

i
S
S(P) = J' (Y()-T(x, P) di+
t=0 (2.3.5)
1 t_f
; j _[z(x t)[———+g (H)(x - 05)—— dt dx
x=0t=0

which is obtained by multiplying the partial differential equation of the direct
problem, equation (2.3.2.a), by the Lagrange multiplier, A(x,?), integrating over
the time and space domains and adding the resulting expression to the function
S(P) given by equation (2.3.1).

An expression for the variation AS(P) of the function S(P) can be
developed by perturbing T(x,7) by AT(x,t) and g,(r) by Ag,(r) in equation (2.3.5).
We note that AS(P) is the directional derivative of S(P) in the direction of the
perturbation AP=[AP,, AP,,..,APy] [12,21]. Then, by replacing I(x,f) by
[T0s 09+ AT0,)) , 8(0) by [g() + Agy()] and S(P) by [S(P+ AS(P)] in equation
(2.3.5), subtracting from the resulting expression the original equation (2.3.5),
and neglecting second order terms, we find
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ff 1
AS(P) = _[ JZ[T(x,t;P)—Y(t)]AT(x,t)d(x—xmm)dxdt
y r=0x=0 (2.3.6)
.[ I A(x r){a AT+Ag (1) 6(x - 05)—y]dxdt
t=0x=0

where 8(.) is the Dirac delta function.

The second integral term on the right-hand side of this equation is
simplified by integration by parts and by utilizing the boundary and initial
conditions of the sensitivity problem. The integration by parts of the term
involving the second derivative in the spatial variable yields

I 2
J‘ Axt) 0 AT
x=0

By substituting the boundary conditions (2.3.4.b,c) of the sensitivity
problem into equation (2.3.7.a), we obtain

Jox @éx

I 2
_[ 08T 34 Ar} + jAT(x,z)?—f dx (2.3.7.a)
o ? Bx

azz

! 2
J';“( t)a AT 616(0 Z)AT(O -

a’la(l OMLY ATt 1)+ jAr(x nt

(2.3.7.b)
Similarly, the integration by parts of the term involving the time derivative
in equation (2.3.6) gives

ty iy
le( :)?ﬂd: [A(x.0 AT 0}, - J’Ar(x,r)%—’:‘dr (2.3.8.0)

After substituting the initial condition (2.3.4.d) of the sensitivity problem,
the equation above becomes

J-A( t)——dt At AT (x ) - J'AT(x,z)%i}dr (23.8.b)
=0

Equations (2.3.7.b) and (2.3.8.b) are then substituted into equation (2.3.6)
to obtain
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0 (.,

N 0°A(x,t) B0A(x,t)
s | jo{ M) 240

t=0x=

+ 2T (x,;P)~Y (1)) 6(x ~ X, )}AT(x,t) dr dt

y ” (23.9)
+ [22OD s 0.0y - f OAD A 111y
ox ox
=0 t=0
Iy
~ | At ) AT (x ) et IA(O.S,t)AgP(t)dt

x=0 =0

The boundary value problem for the Lagrange multiplier A(x,) is obtained
by allowing the first four integral terms containing AT{(x,f) on the right-hand side
of equation (2.3.9) to vanish. This leads to the following adjoint problem:

2
0A(x,t) O A(x,1) _
Py + . +2[T(x,t;P) - Y(1)] 5(x—xmm)=0

mb<x <l,for0<¢< 7 (2.3.10.a)
OM0,1) =0 atx=0,for0<r<¢ (2.3.10.b)

Ox s
w=0 atx=1,for0<z<t (2.3.10.c)

Ox s
/l(x,tf)=0 fort=tf ,in0<x <1 (2.3.10.d)

We note that in the adjoint problem, the condition (2.3.10.d) is the value of
the function A(x,?) at the final time ¢ = #,. In the conventional initial value
problem, the value of the function is specified at time r = 0. However, the final
value problem (2.3.10) can be transformed into an initial value problem by
defining a new time variable given by r= l-t.

The Gradient Equation

After letting the terms containing A7T(x,7) vanish, the following integral
term is left on the right-hand side of equation (2.3.9):
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t

S
AS(P)= j MO50)8g (1t 23.11)

=0

By substituting Ag,(?) in the parametric form given by equation (2.3.3.b)
into equation (2.3.11), we obtain

t

N 7 '
as()=Y IA(OS,:)Cj(t)thPj (23.12)
J=1 =0

By definition, the directional derivative of S(P) in the direction of a vector
AP, is given by

N
AS(P)=) [VS(P));AP; (2.3.13)
j=1
where
AP =[APy, APy, ..., APy) (2.3.14)

We note that the magnitude of the vector AP was omitted in equation (2.3.13),
since it is not relevant for the present analysis. Therefore, by comparing equations
(2.3.12) and (2.3.13), we obtain the " component of the gradient vector VS(P)

for the function S(P) as

!

,
[vsP)),= jz(o.s,:)cj(r)d: for j=1,...,.N (2.3.15)
=0

The use of an adjoint problem for the computation of the gradient vector is
most useful for problems involving unknown functions that can be parameterized
in a form similar to equation (2.3.3.a), especially those problems which do not
have analytical expressions for the sensitivity coefficients and finite-difference
approximations need to be used. With the present approach, the gradient vector is
computed with the solution of a single adjoint problem. On the other hand, the
calculation of the gradient vector in Technique II, as given by equation (2.2.5.b),
may require N additional solutions of the direct problem in order to compute the
sensitivity coefficients by forward finite-differences (see equation 2.1.31.a).
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The Iterative Procedure for Technique III

The iterative procedure of the conjugate gradient method, for the
computation of the vector of unknown parameters P, is given by equations
(2.2.2), (2.2.3) and (2.2.4.a,b). However, the gradient vector components are now
computed by using equation (2.3.15), rather than equation (2.2.5.b).

The search step size #* is chosen as the one that minimizes the function
S(P) at each iteration £, that is,

{

s
minS(P**") = min I[Y(t)—T(x Pt gt ah (2.3.16)
ﬂk ,Bk R meas

By linearizing the estimated temperature T (xmm,t;Pk - ﬂkdk) with a

Taylor series expansion and performing the above minimization, we find

t

S

J'[T(xmm,t;P" )- YOI ATt yar
,Bk = =0

(2.3.17)

ty

_[ [ATGe 1))
t=0

whete AT(Xmeas ;d%) is the solution of the sensitivity problem given by equations
(2.3.4), obtained by setting AP;= j" , j=1,..., N, in the computation of the function
Agp(t) given by equation (2.3.3.b). Further details on the derivation of equation
(2.3.17) can be found in Note 5 at the end of this chapter. The reader should note
that a single sensitivity problem is solved for the computation of £ * at each
iteration, because the unknown function was parameterized in the form given by
equation (2.3.3.a). Therefore, in the present approach the computation of #* does
not require the computation of the sensitivity matrix as in equation (2.2.7.c). For
problems not involving the estimation of coefficients of trial functions, as in
equation (2.3.3.a), the use of Techniques I or Il may be more appropriate.

The Stopping Criterion for Technique II

As for Technique 11, the stopping criterion for Technique III is based on
the Discrepancy Principle, when the standard deviation ¢ of the measurements is
a priori known. It is given by

S(P)<e (2.3.18)
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where S(P) is now computed with equation (2.3.1). The tolerance ¢ is then
obtained from equation (2.3.1) by assuming

Y -T(x . LP) =0 (2.3.19)

where o is the standard-deviation of the measurement errors, which is assumed to
be constant. Thus, the tolerance ¢ is determined as

£= 01 , (2.3.20)

For those cases involving measurements with unknown standard deviation,
the alternative approach based on a additional measurement can be used for the
stopping criterion, as illustrated in Note 4 at the end of this chapter.

The Computational Algorithm for Technique III

The computational aigorithm for the conjugate gradient method with
adjoint problem for parameter estimation can be summarized as follows. Suppose
that temperature measurements Y=(¥1,Y2,...,Y;) are given at times ¢; , i = 1, ..,, 1,
and an initial guess PO is available for the vector of unknown parameters P. Set
k=0 and then

Step 1. Compute g(1) according to equation (2.3.3.a) and then solve the direct
problem given by equations (2.3.2) in order to compute T(x, ?).

Step 2. Check the stopping criterion given by equation (2.3.18). Continue if not
satisfied.

Step 3. Knowing T(Xpeqs, #) and the measured temperature ¥(7), solve the adjoint
problem (2.3.10) to compute (0.5, 7).

Step 4. Knowing (0.5, ), compute each component of the gradient vector
VS(P) from equation (2.3.15).

Step 5. Knowing the gradient VS(P), compute y” from either equation (2.2.4.a)
or (2.2.4.b), and then the direction of descent d* from equation (2.2.3).

Step 6. By setting APk = d*, compute Agy(f) from equation (2.3.3.b) and then
solve the sensitivity problem given by equations (2.3.4) to obtain
AT(Xmeasst;d%).

Step 7. Knowing AT(Xpeas,t;d*), compute the search step size S* from equation
(2.3.17).

Step 8. Knowing ,B" and d*, compute the new estimate P**! from equation
(2.2.2). Replace k by k+1 and return to step 1.
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The Use of Multiple Sensors

The above computational algorithm can also be applied, with few
modifications, to cases where the readings of M sensors are available for the
inverse analysis. In such cases, the objective function (2.3.1) is modified to

M
SP)=) J'[Ym(z)—T(xm,z;P)]zd: (2.3.21)

m=l =0

where V,(f) are the continuous measurements of the sensor located at x,,, for
m=1,...M.

Since the objective function appears in the development of the adjoint
problem, such a problem needs also to be modified in order to accommodate the
readings of multiple sensors. It can be easily shown that the differential equation
for the adjoint problem, equation (2.3.10.a), then becomes

2 M
a/l(x,f) 0 i(x,t) P _ _
Py + ax2 + 22 [T(xm,t,P) Y(H)16(x xm) =0

m=]

in0<x <1,for0<t<tf (2.3.22)

while the final and boundary conditions, equations (2.3.10.b-d), remain unaltered

for multiple sensors.

- The objective function also appears in the development of the search step
" size, equation (2.3.17), and of the tolerance for the stopping criterion, equation

(2.3.20). For the readings of M sensors, such quantities are respectively obtained

from the following expressions:

M

Y I[T(x,,,,t;Pk)-Y,,,(t)]AT(x,,,,t;d")dt
k_m=1 4=
- 2323
B T ( )
Y _[[Ar(xm,x;d*)]zdx
m=1 y=0
and
£=Mok, (2.3.24)

There are many practical situations in which no information is available on
the functional form of the unknown quantity. Therefore, it should not be
parameterized as in equation (2.3.3.a), since wrong trial functions can be used in
such process. Although general trial functions, such as B-Splines, could be used
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in the parameterization, there would still remain the question of how many trial
functions need to be used for a correct approximation of the unknown quantity.
For cases with no prior information on the functional form of the unknown
quantity, the minimization of equation (2.3.1) should be preferably performed in
a space of functions. In other words, in this section the function (2.3.1) was
minimized in the space of all possible N parameters P;. On the other hand, for a
function estimation approach, equation (2.3.1) will be minimized in an infinite
space of functions. In the next section we present the Conjugate Gradient Method
as applied to the function estimation approach.

2-4 TECHNIQUE IV:
THE CONJUGATE GRADIENT METHOD
WITH ADJOINT PROBLEM FOR
FUNCTION ESTIMATION

In this section we present a powerful iterative minimization scheme called
the Conjugate Gradient Method of Minimization with Adjoint Problem, for
solving inverse heat transfer problems of function estimation. In this approach, no
a priori information on the functional form of the unknown function is available
[9-21]}, except for the functional space which it belongs to.

To illustrate Technique IV, we consider the test-problem given by
equations (2.3.2) for the estimation of the unknown time-varying strength gp(#) of
a plane energy source, by using the transient readings of a single sensor located at
Xmeas. We assume that the unknown function belongs to the Hilbert space of
square-integrable functions in the time domain [12,14,21], denoted as Lj(0,4),
where ¢ is the duration of the experiment. Functions in such space satisfy the
following property:

t

f
flgptonar<eo @4.1)
=0

For some definitions and properties regarding Hilbert spaces, the reader is
referred to Note 6 at the end of the chapter.
In order to solve the present function estimation problem, the functional

Slg, (1] defined as

Iy
S[gp(t)]z I{y(t)'T[xmeawt;gp(t)]}zdt (24.2)
=0

is minimized under the constraint specified by the corresponding direct heat
conduction problem.
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The basic steps of Technique IV for the solution of function estimation
problems, obtained through the minimization of functional (2.4.2), are very
similar to the basic steps of Technique III for parameter estimation problems.
They include:

» The Direct Problem

* The Inverse Problem

* The Sensitivity Problem

* The Adjoint Problem

* The Gradient Equation

» The Iterative Procedure

* The Stopping Criterion

* The Computational Algorithm

We now present some details for each of these distinct steps.

The Direct Problem

The direct problem involves the determination of the temperature field in
the medium when the source term is known. The formulation of the direct
problem is given by equations (2.3.2).

The Inverse Problem

In the inverse problem considered here, the source term gp(f) is an

unknown function of time, while measured transient temperature data ¥(/), taken
at the location x4, are available over the time domain 0 < ¢ < t,. where tfis the
final time. However, differently from Technique III where gp(t) was
parameterized by equation (2.3.3.a), no functional form is now a priori assumed
for the source-term. The only assumption is that gp(t) belongs to the space
LA0,t). The sensitivity function AT(x,t) and the Lagrange multiplier A(x,!) are
needed to implement the iterative procedure of Technique IV. Therefore, we need
to develop two auxiliary problems, i.e., the sensitivity problem and the adjoint
problem, in order to determine these two functions, as described below.

The Sensitivity Problem

The derivation of the sensitivity problem for Technique 1V is very similar
to that for Technique III. It is assumed that when 8p(#) undergoes an increment
Agp(f), the temperature T(x,!) changes by an amount AT(x,f). Therefore, we
replace T(x,r) by [T(x,/)+AT(x,)] and gp(t) by [gy(n) + Agp(n)] in the direct
problem (2.3.2) and subtract from it the original problem (2.3.2), in order to
obtain the sensitivity problem given by equations (2.3.4). However. in Techniane
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IV the variation of the unknown function, Agy(f), is not given in the
parameterized form of equation (2.3.3.b). Such variation of gp(l) is now a general
function in the space L;(0,), as the unknown function itself. The choice of Agp(f)
will be described later in the analysis.

The Adjoint Problem

As for the sensitivity problem, the derivation procedure of the adjoint
problem for Technique IV is very similar to the one for Technique III. To
develop the adjoint problem, we introduce a Lagrange multiplier Ax,t). We
multiply equation (2.3.2.a) by A(x,?), integrate the resulting expression over the
spatial domain from x = 0 to x = 1, and then over the time domain from ¢ = 0 to
t = 1;. The expression obtained in this manner is added to the functional S[gp(t)]

given by equation (2.4.2) in order to obtain the following extended functional

!
!
Sle, )= [ro)-Tex, 68 (O dr+
=0 (24.3)
1 f 2
I [ -——+g 5(:-08)- 2L lara
x=0 =0 x

which is the equivalent form of equation (2.3.5) for parameter estimation.

An expression for the variation AS[g,(r)] of the functional S[g,()] can be
developed by assuming that 7{(x,?) is perturbed by AT(x,7) when gp(t) is perturbed
by Agy(9). The variation AS[g;()] gives the directional derivative of S[gy(1)} in
the direction of the perturbation Ag,(r) [12,21]. By replacing T(x,r) by
[T, 0ATGD], 85() by [g,()+Ag,(] and Slg,(1)] by {SlgO}+ASlg,(0)]} in
equation (2.4.3), subtracting from the resulting expression the original equation
(2.4.3), and neglecting second order terms, we obtain

’f ]

Aslg, (0] = j _'2 {T[x,t;gp(z)} - Y(t)} AT(x,0)8(x~x_ )k di
1=0x=0 (2.4.9)

s 2
N J' J‘ aen| 22T >+ Ag (180 - 05)—§—§—T-j|dxd

ax

where 8(.) is the Dirac delta function. Equation (2.4.4) is analogous to equation
(2.3.6) for parameter estimation.
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The second integral term on the right-hand side of equation (2.4.4) is
simplified with integration by parts, and by utilizing the boundary and initial
conditions of the sensitivity problem. The integral terms containing AT{x,?) in the
resulting expression are then allowed to go to zero, in order to obtain the adjoint
problem given by equations (2.3.10) for the determination of the Lagrange

Muttiplier A(x,?).

The Gradient Equation

In the limiting process used above to obtain the adjoint problem, the
following term is left:

t

5
Aslg, ()= jo MOS0 bg (1) d (2.4.5.2)
I=

The reader should recall that in Technique III the parameterized form of
Agy(1), equation (2.3.3.b), was substituted into the equation above in order to

obtain the components of the gradient vector given by equation (2.3.15). Such an
approach cannot be used here, since we are now dealing with function estimation,
rather than with parameter estimation as in Technique III. However, by invoking
the hypothesis that the unknown function g,(r) belongs to the space of square-

integrable functions in the domain 0 < ¢ < ¢, we can write [12,14,21]:

4

s
NEROIE J; vSlg, (0Ag, (1) di (2.4.5.b)

where V S[g,(f)] is the gradient of the functional S[g,(1)].
From the comparison of equations (2.4.5.a) and (2.4.5.b), we conclude that

VSlg, ()]=A(0.5,0) (2.4.6)

which is the gradient equation for the functional.

The Iterative Procedure for Technique IV

The mathematical development given above provides three distinct
problems defined by equations (2.3.2), (2.3.4) and (2.3.10), called the direct,
sensitivity and adjoint problems, for the computation of the functions T(x,),
AT(x,) and A(x,t), respectively. The measured data Y(¢) are considered available
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from a sensor located at X, and the gradient V.§[g,(f)] is given by equation

(2.4.6).
The unknown function g,(f) is estimated through the minimization of the

functional S[gp(f)] given by equation (2.4.2). This is achieved with an iterative

procedure by proper selection of the direction of descent and of the step size in
going from iteration & to k + 1. The iterative procedure of the conjugate gradient
method [9-21] for the estimation of the function gy(?) is given by:

k+1 k k Lk
g, (N=g,(-Fd (1) (24.7)
where B* is the search step size and d*(1) is the direction of descent, defined as
k k k k-1
d (N=VS[g Ol+y d" (1) (24.8)

The conjugation coefficient y*¥ can be computed either from the Polak-
Ribiere [12,14] expression:

t
/
[vsiel 0nvsie, ©1-Vsig, " @y
yk=t=0 for k=12,.. (2.49.a)

s
[twste, " onar
1=0

with 7° =0 fork=0
or from the Fletcher-Reeves [12,14,15] expression:

/

t
k 2
o Jstg o'

4

for k=1,2,... (2.4.9.b)

LN

(VSle, (e
t=0

with ° =0 fork=0

The step size f k is determined by minimizing the functional S[gp"”(r)]

given by equation (2.4.2) with respect to S * that is,
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ty

. 2
mian[ng l(t)]zmikn I{Y(t)-T[xmm,r;gi(t)- ﬁ"d"(:)]} dt
ﬂ ﬁ =0

(2.4.10.2)

Then, by a Taylor series expansion equation (2.4.10.a) takes the form

Yy

. _ 2

r)r;in S[g"; l(t)] = n;}cn J;{ Y(1)- T[xmeas, t gi(t)]+ ,BkAT[xmas, t;dk (t)]} dt
=

(2.4.10.b)

where AT [Xpmeast,d K9} is the solution of the sensitivity problem given by
equations (2.3.4), obtained by setting Agp"(t)=d"(t). To minimize equation
(2.4.10.b), we differentiate it with respect to ﬂk and set the resulting expression
equal to zero. After some manipulations, the following expression is obtained for

the step size ﬂk
(

/
({5 0] YO} 7] 5, 1 )

g = 1=0 » (2.4.11)

7K ?
’J;{AT[ a9 (r)}} dt

The reader should refer to Note 7 at the end of this chapter for more

details on the derivation of the above expression for ﬂk. We note that equations
(2.4.7-9) and (2.4.11) for function estimation are analogous to equations (2.2.2-4)
and (2.3.17) for parameter estimation, respectively.

By examining equations (2.3.10.d) and (2.4.6), it can be noticed that the
gradient equation is null at the final time { Therefore, the initial guess used for
gl atr=1 is never changed by the iterative procedure of the conjugate gradient

method for function estimation, given by equations (2.4.7-9,11). The estimated
function can deviate from the exact solution in a neighborhood of #, if the initial
guess used is too different from the exact gy(). This apparent drawback of the

method can be easily overcome by using a final time larger than that of interest,
so that the effects of the initial guess are not noticeable in the time interval that
the solution is sought. Another approach to overcome this difficulty is to repeat
the solution of the inverse problem, by using as initial guess a previously
estimated value for g,(7) in the neighborhood of 1 Both approaches will be

illustrated with examples later in the book.
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The iterative procedure given by equations (2.4.7-9,11) is applied until a
stopping criterion based on the Discrepancy Principle is satisfied, as described
below.

The Stopping Criterion for Technique IV

Similarly to Techniques Il and III, the stopping criterion based on the
Discrepancy Principle gives the Conjugate Gradient Method of Function
Estimation an iterative regularization character. The stopping criterion is given by

Slg (D)< (2.4.12)

where S{g,(1)] is computed with equation (2.4.2). The tolerance ¢ is chosen so

that smooth solutions are obtained with measurements containing random errors.
It is assumed that the solution is sufficiently accurate when

Y(1)- T[xmem,t;gp INET (24.13)

where o is the standard deviation of measurement errors.
Thus, ¢ is obtained from equation (2.4.2) as

a=a%f (2.4.14)

For cases involving etrorless measurements, £ can be specified a priori as
a sufficiently small number. For those cases involving measurements with
unknown standard deviation, an alternative approach based on an additional
measurement can be used, as described in Note 4 at the end of this chapter.

The Computational Algorithm for Technique IV

Suppose an initial guess gp”(t) is available for the function g‘,'p(t). Setk=0
and then:

Step 1. Solve the direct problem (2.3.2) and compute 7{(x,f), based on g,,"(t).

Step 2. Check the stopping criterion (2.4.12). Continue if not satisfied.

Step 3. Knowing T(Xp..!) and measured temperature Y(7), solve the adjoint
problem (2.3.10) and compute A(0.5, 7).

Step 4. Knowing A(0.5, f), compute VS[g,,"(t)] from equation (2.4.6).

Step 5. Knowing the gradient VS[gp"(t)], compute y" from either equations
(2.4.9.a) or (2.4.9.b) and the direction of descent d*(f) from equation
(2.4.8).
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Step 6. Set Agf,(t)=d" (1) and solve the sensitivity problem (2.3.4) to obtain

AT [Xeasst:d (1)].

Step 7. Knowing AT {xp,eq.,t:d* (9], compute the search step size g* from equation
(2.4.11).

Step 8. Knowing the search step size #* and the direction of descent a*(s),
compute the new estimate g,k*}(s) from equation (2.4.7), and return to
step 1.

The extension of the above algorithm to the use of multiple sensors is
analogous to that described in the previous section for Technique III. It is a
straightforward matter and will not be repeated here.

2-5 SOLUTION OF A TEST-PROBLEM

In the previous sections of this Chapter, we developed the relevant
equations and introduced the computational algorithms for Techniques I, IT, III
and IV, In this section, we present the results obtained with such techniques as
applied to the solution of our test-problem, involving the estimation of the
strength of a plane heat source term.

As apparent from the analysis of figure 2.1.2, the problem of estimating
the coefficients of polynomial trial functions used to approximate the unknown
source term is quite difficult, due to the linear dependence of the sensitivity
coefficients. Therefore, we consider here the source term to be approximated by
Fourier series, where the trial functions are given in the form of equations
(2.1.18.¢,f). The duration of the experiment is taken as #,= 2, since the rate of

increase in , 7y | is strongly reduced for ¢ > 2, as shown in figure 2.1.4 for a case

involving 5 unknown parameters. During the time interval 0 < ¢ < 2, we consider
available for the inverse analysis 100 transient measurements of a single sensor
located at x,.,=1. Techniques I, II and III are applied to the estimation of the
coefficients of the trial functions (2.1.18.e,f), while Technique IV is applied to
the estimation of the source term function itself, by assuming that no information
regarding its functional form is available,

We use simulated measurements in the forthcoming analysis, as described
next.

Simulated Measurements

Simulated measurements are obtained from the solution of the Direct
Problem at the sensor location, by using a priori prescribed values for the
unknown parameters or functions.

Consider, as an example, that 5 trial functions are to be used in the
analysis. Hence, the number of parameters to be estimated is N=5. Also, consider
for generating the simulated measurements that the five parameters are equal to 1.
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that is, Py=P,=Py=Ps=Ps=1. By using the trial functions (2.1.18.¢e,f), the source
term function is then given by

gp(t)=1+sin;rt+cosm+sin2:rt+cosZm (2.5.1)

The solution of the direct problem (2.1.1) at the measurement location
Xmeas=1, by using the source term given by equation (2.5.1), provides the exact
(errorless) measurements Y, (1), i = 1, ..., I. Measurements containing random
errors are simulated by adding an error term to Y,,(#;) in the form:

Y(I,-)=Yex(t,-)+a)0‘ (2.5.2)
where Y(t) =simulated measurements containing random errors
Y..(t) = exact (errorless) simulated measurements
o = standard deviation of the measurement errors
w = random variable with normal distribution, zero mean and

unitary standard deviation. For the 99% confidence level
we have -2.576 < @ < 2.576. This variable can be
generated with the subroutine DRRNOR of the IMSL [5].

With the use of such simulated measurements as the input data for the
inverse analysis, we expect the solution of the estimation problem to be
P,=P,=P;=P,=Ps=1, if Techniques I, I or IIl of parameter estimation are
utilized; or the function given by equation (2.5.1) itself, if Technique IV of
function estimation is utilized. We note that the stability of the inverse problem
solution can be examined for various levels of measurement errors, by generating
measurements with different standard deviations ¢ and by comparing the
estimated quantities with those used to generate the simulated measurements.

Solution

We now consider the inverse problem of estimating the parameters
P,=Py=Py=P4=Ps=1 of the function (2.5.1) by Techniques I, II and III, and the
estimation of the function itself by Technique IV. The IMSL [5] version of the
Levenberg-Marquardt method in the form of subroutine DBCLSJ was used for
Technique 1. The other techniques were programmed in FORTRAN, in
accordance with the computational algorithms described above. The direct,
sensitivity and adjoint problems were solved with finite-volumes by using an
implicit discretization in time. The spatial domain 0 < x <1was discretized with
100 volumes, while 100 time-steps were used to advance the solutions from ¢ =0
to t,= 2. The sensitivity coefficients, needed for the solutions with Techniques I
and II, were evaluated with finite-differences by utilizing the forward
approximation of equation (2.1.31.a) with £=10%.
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We note that the computational algorithms of Techniques I and II as
presented above could be simplified, since the present parameter estimation
problem is linear, as shown by equation (2.1.18.c). In this case, the sensitivity
matrix could be computed only once because it is constant, instead of being
recomputed every iteration as suggested in the algorithms. However, for the sake
of generality we preferred to use the computational algorithms as presented above
in sections 2.1 and 2.2, instead of their simplified versions for linear cases. For
the same reason, we preferred to use a numerical method of solution for the
direct, sensitivity and adjoint problems, as well as for the computation of the
sensitivity coefficients.

The initial guesses for the unknown parameters and for the unknown
function were taken as zero, that is,

PP=P)=Pl=P)=P)=0 for Techniques I, I and I}
and

go(1)=0 in 0<r<t, , for Technique IV

Since the gradient equation is null at the final time for Technique 1V, the
initial guess used for g,(#,) is never changed by the iterative procedure, generating
instabilities on the solution in the neighborhood of #. One approach to overcome
such difficulties is to consider a final time larger than that of interest. We
illustrate such an approach by considering for Technique IV ¢,= 2.0, 2.2 and 2.4.
The number of measurements and number of time-steps were increased
accordingly in such cases.

Table 2.5.1 presents the results obtained for the estimated parameters,
RMS errors, CPU time and number of iterations for Techniques I, II, III and IV.
The computer used was a Pentium 166 Mhz with 32 Mbytes of RAM memory.
Two different levels of measurement errors considered for the analysis included
o= 0 (errorless) and o= 0.017,,, where T,, is the maximum measured
temperature. The RMS error is defined here as

I
eRMS =J}Z[gm(n)—ga(n)]2 (2.53)
i=l

where ZesA1;) is the estimated source term function at time #;,
g.{t) is the exact source term function (used to generate the
simulated measurements) at time #; and
1 is the number of measurements.
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Table 2.5.1. Results obtained with parameter and function estimation.
Source term function given by equation (2.5.1).

Technique o Estimated RMS error CPU Iterations
Parameters Time (s)
P, P
P;, P,
Ps
I 0.0 1.000, 1.000, 0.0 0.11 2
1.000, 1.000,
1.000
0.017 . ] 0.999, 1.003, 0.008 0.17 5
0.997, 1.004,
1.009
II 0.0 1.000, 1.000, 0.0 0.33 10
1.000, 1.000,
1.000
0.017,,, | 0.968, 1.020, 0.139 0.11 5
0.918, 1.130,
0.894
111 0.0 1.000, 1.000, 0.0 0.93 26
1.000, 1.000,
1.000
0.017,,. | 0.981,1.016, 0.087 0.28 8
0.949, 1.065,
0.916
IV, =2 0.0 - 0.476 1.37 101
0.01T e - 0.553 0.17 12
IV, =22 0.0 - 0.054 1.48 101
0.01T g - 0.157 0.27 17
IV, =24 0.0 - 0.042 2.59 101
0.017 g, - 0.157 0.17 11

Let us consider first in the analysis of table 2.5.1, Techniques I, Il and 1l
of parameter estimation. Table 2.5.1 shows that the exact values
P,\=Py=Py=P=Ps=] were recovered with these 3 techniques, when errorless
measurements (¢ = 0) were used. In such cases, we had the smallest number of
iterations and the smallest computational time for Technique 1. For cases
involving measurement errors (¢ = 0.017,,,), the smallest RMS error was also
obtained with Technique I; but the smallest CPU time was obtained with
Technique 11, which had the largest RMS error.

The foregoing analysis reveals that Technique I, among those examined
for parameter estimation, provided the best results in the estimation of the five
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coefficients of the Fourier series utilized to approximate the source term function.
Technique I had the smallest CPU time for errorless measurements (o = 0) and
the smallest RMS error for measurements with random errors (¢ = 0.017,,,,). The
reader must be aware that such conclusion is not general and should not be
extended directly to other problems of parameter estimation. The results may
depend on the physical character of the problem, number of parameters to be
estimated, initial guess, etc [28]. In fact, the computational times and the RMS
errors shown in table 2.5.1 were quite small for all cases considered, as a resuit of
the simplicity of the present test-problem.

Table 2.5.1 shows that the number of iterations and the CPU time
decreased for Techniques II and III, when measurements containing random
errors were used instead of errorless measurements. This is because of the
discrepancy principle used to obtain the tolerance for the stopping criterion, when
measurements with errors were used in the analysis. The value obtained with
equation (2.2.10) for the tolerance in the stopping criterion of Technique II was
0.032. For Technique III, the tolerance obtained with equation (2.3.20) was
0.00064. On the other hand, a much smaller value could be prescribed for the
tolerance when errorless measurements were used in the analysis, since the
solution was not affected by the measurement errors. For the results shown in
table 2.5.1, we prescribed the tolerances of 10” and 2x10™" for techniques 11 and
11, respectively. Such values were not set identical because of the different
definitions of the objective function for techniques II and III (see equations 2.2.1
and 2.3.1, respectively). We note that the tolerances &, & and & appearing in
equations (2.1.14) for Technique I are set internally by the subroutine DBCLSJ of
the IMSL {5].

We note in table 2.5.1 the larger number of iterations for Technique III, as
compared to Technique II, for both cases of errorless measurements and
measurements with random errors. This is probably due to the different
calculations that are performed with both techniques, in order to compute the

gradient equation VS(P*) and the search step size 8. While the computation of
these two quantities with equations (2.2.5.a) and (2.2.7) in Technique II involves
the sensitivity matrix, the expressions for VS(P") and B! for Technique IN,
equations (2.3.15) and (2.3.17), respectively, involve the solutions of the adjoint
and sensitivity problems.

Figures 2.5.1-3 present the results for the source term function, obtained
with Techniques I, II and III, respectively. These figures clearly show the better
results obtained with Technique I when measurements with random errors were
used in the analysis, although the results obtained with techniques II and III were
also quite good.
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Figure 2.5.1. Estimation of the source term given by equation (2.5.1)
with Technique I
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Figure 2.5.2. Estimation of the source term given by equation (2.5.1)
with Technique 11
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Figure 2.5.3. Estimation of the source term given by equation (2.5.1)
with Technique III

After discussing the solution of the inverse problem of estimating the
source term function given by equation (2.5.1) as a parameter estimation
approach, by using techniques I, II and III, let us consider now the results
obtained with the function estimation approach of Technique IV. Table 2.5.1
shows a large reduction on the RMS errors for both errorless measurements and
measurements with random errors, when the final time was increased from = 2
to #,= 2.2. Such a reduction on the RMS errors is due to the effects of the initial
guess on the solution, because of the null gradient at the final time. The RMS
errors were computed for 0<¢<2, for both cases involving ,= 2 and 1, = 2.2,
since this is our time domain of interest. We also note in table 2.5.1 that the RMS
errors were very little affected when ¢, was increased from 2.2 to 2.4,

Figures 2.5.4.a-c show the results obtained with Technique IV for final
times of 2.0, 2.2 and 2.4, respectively. The deviation of the estimated function
from the exact one in the neighborhood of f, caused by the null gradient at 1/, is
apparent in figure 2.5.4.a. Note in this figure that the estimated function is zero
for ¢ = 1; which is exactly the initial guess used for the iterative procedure of
Technique IV. As fy was increased to 2.2, the effects caused by the null gradient
at the final time are practically not noticeable in the time domain of interest,
0 <t <2, as can be seen in figure 2.5.4.b. In fact, quite accurate estimates were
obtained in this case with errorless measurements, as well as with measurements
containing random errors. The solution in the neighborhood of #=2 can be further
improved by increasing the final time from 2.2 to 2.4, as apparent in figure
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2.5.4.c. However, we notice in this figure a deviation of the estimated function
from the exact one for small times.

s Exact
¥y X o=  Estimated,6=0
\ Estimated, ¢ = 0.01 Tmax

c 2.0

S

g i

| =

=

L 10—

3

‘g 1 &
B 00— %

-1.0 —

0.0 0.4 0.8 1.2 16 2.0
Time
Figure 2.5.4.a. Estimation of the source term given by equation (2.5.1)
with Technique IV for £,=2.0
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Figure 2.5.4.b. Estimation of the source term given by equation (2.5.1)
with Technique IV for 1= 2.2
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0.0 0.4 0.8 1.2 16 2.0
Time
Figure 2.5.4.c. Estimation of the source term given by equation (2.5.1)
with Technique IV for £=2.4

It is interesting to note in table 2.5.1 that generally more accurate results
were obtained with parameter estimation (Techniques I, Il and III) rather than
with function estimation (Technique IV). However, such parameter estimation
results were based on the a priori available information that the function could be
exactly approximated by 5 trial functions in the form given by equations
(2.1.18.¢,f). Unfortunately, this is not generally the case. In several applications
there is no prior information regarding the functional form of the unknown. In
such cases, the use of parameter estimation approach can yield completely wrong
solutions, because either wrong trial functions or an insufficient number of them
can be chosen to approximate the unknown function. As an example, consider a
step variation for the source term in the form

1 , for t<2/3 and 1>4/3

= 254
£p(t) {2 , for 2/35t<4/3 (2.34)

Also, consider for the parameter estimation approach that the unknown
function is approximated by 5 trial functions in the form of equations (2.1.18.¢,1),
that is,

gp(t) = P] + P2 sinmf+ P3 cos i+ P4 sin2zt+ P5 cos 27t (2.5.5)
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Hence, the estimation of the function given by equation (2.5.4) reduces to
the estimation of the parameters P, P, P;, Py and Ps of equation (2.5.5), when
Techniques I, II and III of parameter estimation are applied.

Figure 2.5.5 illustrates the solutions obtained with Techniques I and IV for
the step variation of gy(r) given by equation (2.5.4), by using errorless
measurements in the analysis. The results obtained with Techniques II and III
were identical to those obtained with Technique I and were omitted here for the
sake of clarity. Figure 2.5.5 shows that the exact functional form was not
recovered by the parameter estimation approach, with the unknown function
approximated by equation (2.5.5). On the other hand, the step variation of &1
was correctly recovered by the function estimation approach of Technique 1V,
when the final time was taken as £=2.2, although some oscillations are observed
near the discontinuities. The RMS error obtained with the function estimation
approach of Technique IV was 0.085. In order to match such a value for the RMS
error, 30 trial functions in the form of the Fourier series approximation given by
equations (2.1.18.e,f) were required in the parameter estimation approach. We
note that functions containing discontinuities and sharp comers (i.e.,
discontinuities on their first derivatives) are the most difficult to be recovered by
an inverse analysis. Such functions are usually chosen to test algorithms and
methods of solution for inverse problems.

3.0 -
. ——  Exact

Estimated, Technique |
Estimated, Technique IV (t;=2.2)

2.5

> <

Source Function

Time

Figure 2.5.5. Inverse problem solutions for a step variation of the source function
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The foregoing analysis reveals that the parameter estimation approach
should only be used when there is available sufficient information regarding the
functional form of the unknown. If such is not the case, a function estimation
approach should be applied to the solution of the inverse problem.

In this chapter we developed the basic steps and algorithms of four
powerful techniques of solution of inverse problems. The remaining chapters of
this book are devoted to the application of such techniques to the solution of
inverse problems involving different heat transfer modes.

PROBLEMS

2-1 Prove that, for linear parameter estimation problems, the vector of
estimated temperatures can be written as T = JP, where J is the sensitivity
matrix and P is the vector of parameters.

2-2  Use the relation T = JP to derive equation (2.1.9) for linear parameter
estimation problems.

2-3  Show that the linearization of the estimated temperatures T(P) around the
vector of parameters P* at iteration &, can be written in the form given by
equation (2.1.10).

2-4  Derive equation (2.1.11).

2-5 Calculate the sensitivity coefficients presented in figures 2.1.2 and 2.1.3 by
using forward and central finite-difference approximations, instead of
using the analytical expression given by equation (2.1.18.c). How do the
sensitivity coefficients calculated numerically by finite-differences
compare to those calculated analytically in terms of accuracy and
computational time? What is the effect of the factor ¢, appearing in
equations (2.1.31.a,b), on the accuracy of the finite-difference
approximations?

2-6  Derive equation (2.1.34.a).

2-7  Derive the sensitivity problem given by equations (2.3.4).

2-8  Derive equation (2.3.6).

2-9 A semi-infinite medium initially at the zero temperature, has the
temperature at the surface x = 0 suddenly changed to a constant value T,
The formulation of such heat conduction problem is given by:

C-q—t:k-—-—f forx>0 and t>0
! ox

T=T, atx=90 for >0

T=0 fort=0 and x>0

Examine the transient variation of the sensitivity coefficients with respect
to the volumetric heat capacity C=pc, and to the thermal conductivity £,
for sensors located at different depths below the surface. Is the
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2-10

2-11

2-13
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simultaneous estimation of C and & possible? What is the behavior of
2

Repeat problem 2-9 for the surface at x = 0 subjected to a constant heat
flux gy, instead of being maintained at the constant temperature Ty. In this
case the formulation of the heat conduction problem is given by:

2
2l T forx>0 and >0
at 6x2
-kg—:=q0 atx=0 for >0
=0 fort=0 and x>0

By using the formulation of either problem 2-9 or problem 2-10
(whichever is more appropriate) estimate simultaneously k¥ and C with
Techniques I and II. Use C =k =1 and Ty = I (or go = 1), in order to
generate the simulated measurements of a single sensor for the analysis.
Examine the effects of random measurement errors, initial guess and
sensor location on the estimated parameters. Is such parameter estimation
problem linear or nonlinear?

For the physical situation of problem 2-10, consider k and C known and g,
unknown. Examine the transient variation of the sensitivity coefficients
with respect to go for sensors located at different depths below the surface.
Use C = k= go= 1 in order to generate the simulated measurements of a
single sensor for the analysis. Thus, use such measurements to estimate g,
by using Techniques I and II. Examine the effects of random measurement
errors, initial guess and sensor location on the estimated heat flux. Is it
possible to estimate simultaneously £ and/or C together with g;?

Consider the following heat conduction problem in dimensionless form:

2
i{:u in0d<x<l1 fort>0
ot 6x2
6_T=0 atx=90 fort>0
0x
ﬂ:q(t) atx=1 fort>0
O0x
T7=0 fort=0 in 0<x<1

Formulate all the steps for the solution of the inverse problem of
estimating the unknown heat flux g(f), by using Techniques I, I and III.
Consider available the transient readings ¥;, i = 1, ..., 7 of a single sensor
located at x,..,. Also, assume that g(f) is given in the following general
linear parametric form
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2-16

2-17

2-18

N
q()= ) P.C (1)
j=1

where P; are the unknown parameters and C(f) are known trial functions.
Is the inverse probiem involving the estimation of P; in problem 2-13
linear or nonlinear?

Consider g(f) in problem 2-13 to be approximated by 3 trial functions in
the form of a polynomial, as given by equation (2.1.18.d). Examine the
transient variation of the sensitivity coefficients with respect to the
parameters P;, j = 1, 2, 3, for a sensor located at x,,.,~ 0. Is the estimation
of such parameters possible? What is the behavior of |J7J|?

Consider g(?) in problem 2-13 to be approximated by 3 trial functions in
the form of a Fourier series, as given by equations (2.1.18.e,f). Examine
the transient variation of the sensitivity coefficients with respect to the
parameters P;, j = 1, 2, 3, for a sensor located at x,,,~= 0. Is the estimation
of such parameters possible? What is the behavior of [J7J|?

Repeat problem 2-13 by now assuming available the transient readings of
M sensors located atx =x,,, m=1, ..., M.

Repeat problem 2-13 by using the function estimation approach of
Technique IV, where no information regarding the functional form of g(f)
is assumed available for the analysis.
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NOTE 1. STATISTICAL ANALYSIS FOR PARAMETER ESTIMATION

By performing a statistical analysis it is possible to assess the accuracy of
ﬁ’j, j =1, ..., N, which are the values estimated for the unknown parameters P,

j=1,..., N. Assuming that the eight statistical assumptions discussed in section

1-4 are valid, and using the minimization of the ordinary least-squares norm for
solving the parameter estimation problem, the covariance matrix, V, of the
estimated parameters P;,j =1, ..., N, is given by [4]

_cov(f’ 13) cov(ﬁ Az) cov(f’I PN)
cov(f’ f’) cov(ﬁ f’) ccw(ﬁ:z f’N)
y S
V= =J J) o
l_cov(PN,Pl) cov(PN,Pz) cov(P PN)_
(N1.2.1)

where J is the sensitivity matrix and o is the standard deviation of the
measurement errors, which is assumed to be constant,

The standard deviations for the estimated parameters can thus be obtained
from the diagonal elements of V as

. = / PP = | =1, 1.2.2.
chj cov( Pj Pj) Vﬂ forj=1,.,N (N a)

where ¥ is the 7™ element in the diagonal of V. More explicitly, we can write:

-1
o, =0 [JTJ} forj=1,.,N (N12.2.b)
J i

Confidence intervals at the 99% confidence level for the estimated
parameters are obtained as

P ~25760. <P <P +2570, forj=1,.,N (N1.2.3)
J Pj J J Pj

The factor 2.576 appearing in the expression above comes from table
N1.1.1 in Chapter 1 for the normal distribution, so that the probability of the

actual parameter P; be in the interval ﬁj 125760 b, is 99%. For other confidence

levels, this factor is changed accordingly. For example, for the 95% confidence
level, 2.576 should be replaced by 1.96.
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Confidence intervals do not provide a good approximation for a joint
confidence region for the estimated parameters. In fact, the confidence interval is
obtained for each parameter, regardless the estimation of the other parameters.
Confidence regions built from confidence intervals may include areas outside the
actual confidence region and not include areas that belong to the actual
confidence region [4,23].

The joint confidence region for the estimated parameters is given by
{4,23):

P-P)Y v IB-P)< y} (N1.2.4)

where V = covariance matrix of the estimated parameters,
given by equation (N1.2.1)
P= [f’l , f’z ,...,ﬁN] is the vector with the values estimated
for the parameters
P= [P1 , P2 yerrs PN] is the vector of unknown parameters
N = the number of parameters
;(i, = value of the chi-square distribution with N degrees

of freedom for a given probability, obtained from table N1.1.2.

The confidence region given by equation (N1.2.4) is thus the interior of a
hyperellipsoid  centered at the origih and with  coordinates
(B - P)(Py =Py, (By - Py ). The surface of the hyperellipsoid is a constant

probability density surface, obtained from the chi-square distribution for a chosen
confidence level (probability). For a case involving the estimation of two

parameters, the values of zi obtained from table N1.1.2 in Chapter 1 for the
95% and 99% confidence levels are 5.99 and 9.21, respectively.

NOTE 2. DESIGN OF OPTIMUM EXPERIMENTS
a. Parameter Estimation

Optimum experiments are usually designed by minimizing the
hypervolume of the confidence region of the estimated parameters, in order to
ensure minimum variance for the estimates. The minimization of the confidence
region given by equation (N1.2.4) can be obtained by maximizing the
determinant of V', in the so called D-optimum design [4,12,22,24,25]. Since the
covariance matrix V is given by equation (N1.2.1), we can then design optimum

, . , . T
experiments by maximizing the determinant of the matrix J J. Therefore,
experimental variables such as the duration of the experiment, location and
number of sensors, are chosen based on the criterion
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maleTJ] (N2.2.1)

By using the definition of the sensitivity matrix for the case invoiving a
single sensor, equation (2.1.7.b), each element F,,,, mn =1, ..., N, of the matrix

F=37Jis given by:

ry oT \( a7, _
li‘m,’l = [J ]m’n = ,_Z, aP formn=1,..,N (N2.2.2)

where / is the number of measurements and N is the number of unknown
parameters.

Different particular cases of the general criterion (N2.2.1) can now be
examined.

Case 1. A large but fixed number of equally spaced measurements is
available. Then, each element F,, , can be written as

(ot ; ‘s
F =— —L —I ——\dt formn=1,..,N
mn = At dei | OP '

=1\ m t=0

- (N2.2.3.a)

where # is the duration of the experiment and At is the constant time interval
between two consecutive measurements. Since the number of measurements, /, is
fixed, we can choose to maximize the determinant of F, instead of maximizing
the determinant of F, where the elements of F; are given by

(EZ-J( aT)dl formn=1,...,N (N2.2.3.b)

Case 2. In addition to a large and fixed number of equally spaced
measurements, the maximum value for the temperature in the region, T,
is known. Thus, equation (N2.2.3.b) can be written as

2 'j
T P sr\l P or
= max m n =
(F /1, =25 I[T = HT - |dt formn=1.N (N2248)
S m ng=g- max m max n

Note that the quantities inside parentheses in equation (N2.2.4.a) are
dimensionless. However, it is possible that 7", and not T, is the variable
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suitable for the non-dimensionalization of the temperature T. In such a case,
equation (N2.2.4.a) can be written as

2 iy . \2
T P P
[F,] =—20&_ —Tﬁ- —%——éz- I dat formn=1,..,N
I'mp ¢ pp T 0P T 6P J\T
J m n;=¢ m n max
(N2.2.4.b)

and the design of optimum experiments is then based on the maximization of the
determinant of the dimensionless form of Fy, F; , the elements of which are given
by

s +\2
P P
=~LI or —':—ﬁT T a formn=1,... N
1 m,n t b T 5P T 0"1; Tax

m
(N2.2.4.¢)

Case 3. Measurements of M sensors are available. Thus, the elements [F; ],
become

M / . 2
. P ﬁT P T
F),, =Y [l 2| T ar formn=1,.0N
I'mn Ay T ﬁP T opP T
=0 n

(N2.2.5)

We note that for non-linear parameter estimation problems, the sensitivity
matrix, and thus | 3y | , depend on the unknown parameters P;, j = s N. In
such cases, only a local optimum experimental design is possible by usmg some a
priori information regarding the expected values for the unknown parameters.

In order to illustrate this approach for the design of optimum experiments,
we consider the analysis developed in reference [22] for the physical problem
described in example 2-3, involving the estimation of thermal conductivity, &, and
volumetric heat capacity, C. It is assumed that a large but fixed number of
measurements is available from a single sensor. By taking into account the
maximum temperature in the medium and using the dimensionless temperature 6,
as defined in equation (2.1.21.a), we can write equation (N2.2.4.c) as

Tr 2
. 1 59)( aa}( 1 )
F = — By,——I|| B, dr formn=1,2 2.2.6
(F; 1mn y ,;[0( mo"P,,, ap)\a. t formn (N )

where the unknown parameters are Py=k and P,=C. The dimensionless
sensitivity coefficients appearing inside parentheses in equation (N2.2.6) are
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computed with equations (2.1.24) and (2.1.25). Note that in the present problem,
the suitable quantity for the non-dimensionalization of temperature is

T = % (N2.2.7)

The maximum dimensionless temperature 6,,, is obtained from equation
(2.1.23.a) for £ = 0 and 7 = 7y when ;< %, and for £ = 0 and 7=1,, when 7> 1.

We can choose different experimental variables, such as the heating and
final times, % and z; respectively, as well as the sensor position, by plotting the

time variation of the determinant of the matrix F; , that is,

IF; \= [Fl]il[F; b —[F; ]fz (N2.2.8)

Figure N2.2.1 presents the variation of [F/*| for different heating times and
for a single sensor located at £ = 0. This figure shows that the maximum value of
|F/*| is reached with heating and final times of approximately 2.5 and 3.3,
respectively. Note that a curve joining the peaks for 7, = 2 and 2.5 is rather flat,
showing that any value in this range will be very close to the optimum heating
time. On the other hand, the behavior of |F/*| is very sensitive to the choice of the
final time 7; . Note that |F*| decreases very fast after its maximum value is
reached. Therefore, an analysis of figure N2.2.1 reveals that the heating time for
an optimum experiment should be chosen in the interval 2 < S 2.5, with final

time given approximately by 7, + 0.8.

The reader should note that such conclusions are based on the hypothesis
that a large but fixed number of measurements is available. Thus, the number of
measurements remain constant when the final time is increased. Different
conclusions could be obtained if the number of measurements increases with
increasing final time. As a matter of fact, more accurate estimates for the
parameters are generally obtained if more measurements are available for the
inverse analysis. Therefore, the design of optimum experiments requires detailed
knowledge of the experimental setup and data acquisition system utilized in the

experiment, in order to choose the correct form of ! Iy | to be maximized.

Figure N2.2.2 presents the transient behavior of |F;*| for a single sensor
located at different positions and for 7, = 7. This figure shows that the sensor
should be located as close to the boundary & = 0 as possible, since [F,*| attains the
largest values in this region. Such conclusion was also obtained from the analysis
of the sensitivity coefficients presented in figures 2.1.5.
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Heating Time

Determinant

0.0 2.0 4.0 6.0 8.0
Dimensionless Time,t

Figure N2.2.1. Effect of the heating time on the determinant |F*|.
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Figure N2.2.2. Effect of the sensor position on the determinant |F*|.
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b. Function Estimation

Consider now the case involving the estimation of an unknown function
g,(1), by using the measurements of M sensors and by minimizing the following
functional

t

M/
Sle, =Y. I{Ys(t)-T(xs,t)}zdt (N2.2.9)

s=| =0

where Yy(f) and T(xgf) are the measured and estimated temperatures,

respectively, at the sensor positions x, s =1, ..., M.
Consider now that the temperature T(x,f) is perturbed by AT{xy?) and the

functional S[gp(t)] is perturbed by AS'[gp(t)], when the unknown function gp(t) is
perturbed by Agp(t). Then we can write the perturbed form of equation (N2.2.9)
as

MY
S[gp(t)]+AS[gp(t)]=Z I[Ys(f)-T(xs,t)-AT(xs,t)]zdf (N2.2.10)

521,420

By subtracting equation (N2.2.9) from equation (N2.2.10), we find

t

M/
AS[gp(t)] = Z J {2AT(xs, t)[T(xs, - Ys(t)] +[AT(xs, 1‘)]2 ydt (N2.2.11.a)
s=l =0

In the neighborhood of the minimum of the functional, we have
Ys ()= T(xs, 1). In this case, equation (N2.2.11.a) can be approximated by

¢

M '/
INEXOEDY I (AT(x,, 1)) dt (N2.2.11.b)

s=1 =0

As for the problems involving parameter estimation, the optimum design
of experiments for function estimation involves locating the sensors and choosing
other experimental variables, so that the measured temperatures are most affected
by changes in the sought function. This is accomplished by maximizing the
functional given by equation (N2.2.11.b) involving the sensitivity function
AT(xs,t) for, say, a unitary perturbed function Agp(t). This criterion might not
work properly for nonlinear estimation problems, where the sensitivity function
depends on the unknown function [26].
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For the linear test problem of this chapter, involving the estimation of the
strength g,(#) of the source function, an analysis of the sensitivity problem given
by equations (2.3.4) clearly reveals that the sensor should be located as close to
the unknown source function as possible, in order to maximize equation
(N2.2.11.b). Also, note that the use of several sensors (M > 1) may increase the
value of the functional given by equation (N2.2.11.b), since more information can
be available for the inverse analysis.

NOTE 3. SEARCH STEP-SIZE FOR TECHNIQUE II
The search step size, #*, for the conjugate gradient method of parameter

estimation, is obtained as the one that minimizes the least-squares norm given by
equation (2.2.1) at each iteration, that is,

min SP**') = min[Y -T@* ")) Y - T(P* )] (N3.2.1)
s 8

From the iterative procedure of the conjugate gradient method, we have
Pk = pk _ gkgk (N3.2.2)

Thus, by substituting P into equation (N3.2.1), we obtain

min SP**") = min[Y-T(P* - g*a* ) [Y-T(P* - ffd*)] 3239
s s

which can be written, for cases involving a single sensor, as

!
min SB**') = min (v - 7.(p* - g*dF ) (N3.2.3.b)
k k i i
B B =i
where / is the number of measurements.
We now linearize Tt,(Pk - ﬁkdk) by using a Taylor series expansion in
the form

T,(P* - g*aty =T, (P —ﬂ"d{‘),wz" - B*d5), - (P - prak )=

oT;
s T(Pt,Pf - Ph Y~ Bt 'dl -prdf ﬂ*———dN
oBf OP§ APk

(N3.2.4.2)
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or, in vector form,

T,(P* - pa* )~ T,(P*)- B [j:} d* (N3.2.4.b)

where

T
a"Ti ) ari,ari"“, ari N32.5)
IP Ak’ apt’ " opk

By substituting equation (N3.24.b) into equation (N3.2.3.b) and
performing the minimization with respect to f ¥ we obtain the following
expression for the search step size for Technique II:

Ll(or) k
Y=k o |meh-n)
k=l op
B = = 3 (N3.2.6.a)
i ﬁT\T ‘
2l =) ¢
i=1 | \OP

or, by using the definition of the sensitivity matrix J given by equation (2.1.7.b),
the expression above for B* can be written in matrix form as

_utdy e )-Y]

ka1 ot d"

(N3.2.6.b)

NOTE 4. ADDITIONAL MEASUREMENT APPROACH
FOR THE STOPPING CRITERION OF THE
CONJUGATE GRADIENT METHOD

The stopping criterion approach based on the discrepancy principle,
described above for Techniques II, III and IV involving the conjugate gradient
method, requires the a priori knowledge of the standard deviation of the
measurement errors. However, there are several practical situations in which
scarce information is available regarding this quantity. For such cases, an
alternative stopping criterion approach based on an additional measurement [12]
can be used, which also provides the conjugate gradient method with an iterative
regularization character.
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In order to illustrate the additional measurement approach for the stopping
criterion, we take as an example the estimation of the boundary heat flux ¢(¢) in 2
slab of unitary thickness, by using Technique IV. The formulation of the
dimensionless heat conduction problem considered here is given by

2
E’_Zg?_i in 0<x<1, fort>0 (N4.2.1.a)
ot 8x2
22._,,—, at x=0 . fort>0 (N4.2.1.b)
Ox
g—T::q(t) at x=1 , fort>0 (N4.2.1.¢)
X
T=0 fort=0 , in 0<x<1 (N4.2.1.d)

The unknown function g(¢) is estimated with Technique IV by minimizing
the following functional

!

S
Sla@®)= [(1©)-Tix, . ba @1} d (N422)
=0

where Y(f) are the measured temperatures at the location Xm.., Wwhile
T{xmeasst;q(#)] are the estimated temperatures at the same location.

Consider now that the additional measured data Y.(r) of a sensor located at
x, are also available for the analysis. The functional S.[g(r)] based on such data is
given by

¢

S
S, lg@)= [tr,0-Tlx q] (N4.2.3)
=0

The examination of the behavior of the functional S/[q(#)], as the
minimization of S[¢{(#)] is performed, can be used to detect the point where the
errors in the measured data Y(¢) start to cause instabilities on the estimated
function ¢(#). Generally, the value of S.[¢(¢)] passes through a minimum and then
increases, as a result of such instabilities. The iterative procedure is then stopped
at the iteration number corresponding to the minimum value of Sc[g(#)], so that
sufficiently stable solutions can be obtained for the inverse problem.

Results for the estimation of a step variation of the boundary heat flux g(¢),
obtained by using the stopping criterion approaches based on the discrepancy
principle and on the additional measurement, are illustrated in figure N4.2.1. The
simulated measured data ¥{f) and Y.(f) were generated with a constant standard
deviation ©=0.01Y,,,, where YV, is the maximum value of Y(#). The
measurements Y(¢) used in the minimization of the functional S[g(#)] were
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considered taken at the position x,,..,,=0.986. For the case involving the additional
measurements for the stopping criterion, the additional sensor was supposed to be
located at x,=0.982. Figure N4.2.1 shows that the two approaches for the stopping
criterion are equivalent. Both provide quite accurate and stable estimates for the
step variation of the heat flux, which represents a very strict test function.

We note that the additional measurement approach for the stopping
criterion, illustrated above as applied to Technique IV, can be readily modified to
be applied to Techniques II and III.

1.2 I I | { |
1ok Sensor at x = 0.986
) ¢ =0.0] Ymax
0.8 Exact Heat Flux ]
o2 Disc. Principle
0.6 4 Additional ]
Measurement

atx=0.982
0.4

Dimensionless Heat Flux

0.2

0.00 0.20 0.40 0.60 0.80 1.00
Dimensionless Time (t/t)

Figure N4.2.1. A comparison of the discrepancy principle and additional
measurement approaches for the stopping criterion

NOTE 5. SEARCH STEP-SIZE FOR TECHNIQUE III

Similarly to Technique II, the search step size for Technique III is obtained
as the one that minimizes the objective function given by equation (2.3.1) at each
iteration, that is,

!

,
. k+1 . k+1..2
min S(P**') = min I[Y(t)—T(xmm,r;P N dr (N5.2.1)

P B 20



108 INVERSE HEAT TRANSFER

From the iterative procedure of the conjugate gradient method, we have
pi+l = pk — pkgt (N5.2.2)

k+ .
By substituting P i into equation (N5.2.1), we obtain

t

S
min S(P* ") = min I[Y(t) -1(x, P* - ptat (N5.2.3)
5 R

We now linearize 7(P* — #*d*) by using a Taylor series expansion in the
form

k k k k k ,k k k Lk k k Lk
1t - gtat) = B! - B )P - B4, Py - B )=

oT k
S TN N Wy L By Ry
oF oF, opP,
(N5.2.4)
By making
dt =apPF | ab=aPF , ., df=0P§ (N5.2.5)
the equation above becomes
ko ok ok k ok k i T .k
T(P" -5'd")=T(P',P/,....P)~f Z__apk AP, (N5.2.6)
j=1e4
J
where N is the number of parameters.
L oor
Let AT(@)= > Z=-apf (N5.2.7)
‘oep
J
Then equation (N5.2.6) can be written as
T(P* - pEd*)y ~ T(P*)- p*AT(d*) (N5.2.8)

By substituting equation (N5.2.8) into equation (N5.2.3), we obtain
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t

J
min S(P**!) = min _[[Y(r) “Tx P+ AT ndDPar (Ns2.9)

k k meas meas
ﬁ p !=0
which is then minimized with respect to 8* to yield
‘f k k
I[T(xmm,t;P )- Y(O1ATCe, iy
gt =1=0 (N5.2.10)

i

J
k2
j (aT(x_nd") dr

=0

where AT(Xmeas?;d%) is the solution of the sensitivity problem given by equations
(2.3.4), obtained by setting APj=d,-" , forj =1, ..., N, in the computation of

N
Agp(t)=ZIAPj c 0 (N5.2.11)
J=

NOTE 6. HILBERT SPACES

We present in this note some definitions and properties regarding Hilbert
spaces. For further details on the subject, the reader should consult references
[14,27].

A Hilbert space is a Banach space in which the norm is given by an inner
(or scalar) product < -, - >, that is,

bl = )" (N6.2.1)

where |-} designates the norm in the space.

For u belonging to a linear space ¥, a norm on this space is a mapping
from ¥ into the non-negative real axis, [0,00), satisfying the following properties:

(@) [4=0 ifandonlyifu=0;
(i) frd=]4|}] ,where Ais ascalar;
(iii) Ju+v|<]d+|| ,foranyuandvinV.

Property (iii) is the so-called triangle inequality.
In a Hilbert space V, the inner product is given by the following symmetric
bilinear form:
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(u,v)E%("zwv"z =) | Vv ev (N6.2.2)

The vector space RY with the Euclidean norm

N 1/2
[P} = {Z sz] (N6.2.3.2)
j=!

is a Hilbert space, with inner product given by

(PR)=) PR =P'R (N6.2.3.b)

M=

where P’ =[PP T=[R.R,,...R

P,] J]

and the superscript 7 denotes transpose.
Similarly, the space of square-integrable real valued functions in a
domain Q, Ly(€), satisfying

I[f(w)]zdw<oo for winQ

is a Hilbert space with norm

1/2
O { I[f W)’ dw} (N6.2.4.2)
Q

and inner product

(f(w),g(W)) = jf(W)g(w) dw, for f(w)and g(w)e L,(Q) (N6.2.4.b)
Q

If Q refers to the time domain, 0 < ¢ < #; equations (N6.2.4) become

respectively
12

Lr@)= _f[f Q) (N6.2.5.2)

=0
and
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‘f

(Fg@) = I f0g@ar, for f()and g(t)inL,(0.t ) (N6.2.5.b)
t=0

Similarly, if Q refers to the joint time and spatial domains, 0 < ¢ < 7;and
0 <x <1, equations (N6.2.4) can be written respectively as:

| t 1/2

|fx.0]= f j[f(x OF di dx (N6.2.6.2)
x=0¢=0
and
1 !

(f(x1)g(x0)= j' f £ 0)g(x, 1) dt d,
x=0 =0
for f(x,)and g(x0)in L,[(0,¢ x(OD)]

{(N6.2.6.b)

Other expressions for the norm and inner product can be developed from
equations (N6.2.4) for various domains Q of interest.

The reader should note that the expressions for the conjugation
cocfﬁcnents (2.2.4) and (2.4.9) are analogous. They are given by inner products in
the RY and Lz(Otf) spaces, equations (N6.2.3.b) and (N6.2.5.b), respectively.
Also, expressions (2.3.13) and (2.4.5.b) are inner products of the gradient
direction with the direction of perturbed parameters AP in R", and with the
direction of the perturbed function Ag,() in Ly(0,1), respectively. Therefore, they
give the directional derivative of S(P) and S[g,(1)], respectively, in the direction
of the perturbed unknown quantities. Note that S(P) and S[gp(t)] given by
equations (2.1.3.a) and (2.4.2), are the squares of the norms in the RY and L,(0, t)
spaces, respectively.

NOTE 7. SEARCH STEP-SIZE FOR TECHNIQUE IV

Similarly to Techniques II and III, the search step size for Technique IV is
obtained as the one that minimizes the objective functional given by equation
_(2.4.2) at each iteration, that is,

‘y

. k+1 , . k+l 2
r;in S[gp = ?‘n J;{ Y(r)- T[xmm, t; gp (l)]} dt (N7.2.1)

The iterative procedure of the conjugate gradient method for function
estimation is given by
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g, (=g, (-pd" ® (N7.2.2)

Thus, equation (N7.2.1) can be written as

ly

2
: k+1 , Lk ok ok
rzinS[gp ®]= IEint:[){Y(t)—T[xmm,t,gp(t) pd (t)]} dt (N7.2.3)

By linearizing T[gf’ (1)- ﬂkdk(t)] and making

d*(1y= Agp(0) (N7.2.4)
we obtain
Tis, )~ B4 01~ Tigy 01~ " T 48,0 N7.25)
g
p
Let AT[d* (1)) = -OlkAg" (t) (N7.2.6)
o"gp P

and then equation (N7.2.5) can be written as
Tlgy (- B*d* (= Tigy (0]~ p*aTid* (1)) (N7.2.7)
By substituting equation (N7.2.7) into equation (N7.2.3), we obtain

'y

min Slg, " Ol=min [(F0)-T(x, . .68501 F ATIx,  6d" O] d
,Bk 4 ﬂk 20 meas J/ meas

(N7.2.8)

By performing the minimization above, we find the following expression
for the search step size for Technique IV:

Ly

[TV 5 5 (01 V() AT g, 0¥ 1))
gk = 1=0 7 (N7.2.9)
[(8T e 110 (N2
t=0

where AT [x,,,e,,,,t,'d"(t)] is the solution of the sensitivity problem given by
equations (2.3.4), obtained by setting Agp"(t)= d (o).
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Chapter 3
INVERSE CONDUCTION

In the previous chapter we presented four powerful methodologies for
solving inverse heat transfer problems. This chapter is devoted to the application
of these techniques to the solution of Inverse Heat Conduction problems. The
specific examples considered here include the solution of the following problems:

» Estimation of constant thermal conductivity components of an orthotropic
solid [1-3]

o Estimation of initial condition [5]

o Estimation of timewise variation of the strength of a line heat source [6]

e Estimation of timewise and spacewise variation of the strength of a
volumetric heat source [7]

» Estimation of temperature-dependent properties and reaction function [8,9]

e Estimation of thermal diffusivity and relaxation time for a hyperbolic heat
conduction mode] [13]

o Estimation of contact conductance between periodically contacting
surfaces [21]

» Estimation of contact conductance between a solidifying metal and a metal
mold [26,27]

3-1 ESTIMATION OF CONSTANT THERMAL CONDUCTIVITY
COMPONENTS OF AN ORTHOTROPIC SOLID [1-3]

In nature, several materials have direction-dependent thermal
conductivities including, among others, woods, rocks and crystals. This is also
the case for some man-made materials, for example, composites.
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Such kind of materials is denoted anisotropic, as an opposition to isotropic
materials, in which the thermal conductivity does not vary with direction. A
special case of anisotropic materials involve those where a thermal conductivity
component can be identified along the three mutually orthogonal directions. They
are referred to as orthotropic materials.

In this section we illustrate the application of Technique I, the Levenberg-
Marquardt Method, to the estimation of the three thermal conductivity
components of orthotropic solids. ‘

Basic steps of Technique I, including the definitions of the direct and
inverse problems, are presented below. The reader should refer to section 2.1 for
the iterative procedure, stopping criteria and computational aigorithm of
Technique I, which are not repeated here.

Direct Problem

The physical problem considered here involves the three-dimensional
linear heat conduction in an orthotropic solid, with thermal conductivity

components k: , k; and k; in the x*, y* and z* directions, respectively. The solid

is considered to be a parallelepiped with sides a*, b* and c*, initially at the
uniform temperature T, . For times t*>0, uniform heat fluxes q; , q; and q; are

supplied at the surfaces x* = a*, y* = b* and z* = c*, respectively, while the other
three remaining boundaries at x* = 0, y* = 0 and z* = 0 are supposed insulated.
The mathematical formulation of such physical problem is given in dimensionless
form by

2 2 2
kla Z'*'kza €+153a '.;":67' in0<x<a 0<y<h O<z<c; >0 (3.1.1.a)
8 x 8 az° Ot
aT oT
E:Oatx:() ; k‘a—x=ql atx=a , fort>0 (3.1.1.b,c)
0T _ erT
-a—'-v—zoaly=0 M k253;=q2 aty=b ,fOI‘f)O (311d,e)
oT ] oT
_a_z=()atz=0 ; k35=q3 atz=c , fort>0 (3.1.1.f,g)
T=0 fort=0 ;in0<x<a,0<y<b,0<z<c (3.1.1.h)

The superscript * denotes dimensional variables and the following
dimensionless groups were introduced:
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k t _ * » L]
‘= *rflj;l = T:T‘ Tg x_:f-;— y;y_* Z"-’ET (3.1.2.a-¢)
kref

k k. k.

ko= k=2 k=3 (3.1.2.f-h)
S AP S
ref ref ref
q q q .

q] = --—J-—- qz = *2 q3 = '—3 (3.1.2.1'1{)

qref qref qref

* *
where L* is a characteristic length, while and &k . are reference values for
ref ref

heat flux and thermal conductivity, respectively.

In the direct problem associated with the physical problem described
above, the three thermal conductivity components &, k; and k;, as well as the
solid geometry, initial and boundary conditions, are known. The objective of the
direct problem is then to determine the transient temperature field in the body.

The solution of the direct problem (3.1.1) can be obtained analytically as a
superposition of three one-dimensional solutions in the form [2,3]:

a k t b k1 c k.t
T ynn=tle| 2 Al D2 g2 Bl 52 BT (i3a)
a g k b ko©

2
)'c] 5 b ¢

where

2

0(§,r)=—%+%+r+ (-ni*h cos(int) exp{-1(ir)°]  (3.13.b)
i=]

(ir)*

Inverse Problem

For the inverse problem considered here, the thermal conductivity
components k), k; and %; are regarded as unknown, while the other quantities
appearing in the formulation of the direct problem described above are assumed
to be known with sufficient degree of accuracy.

For the estimation of the vector of unknown parameters P’ = [y, k3, k3) we
assume available the readings of three temperature sensors. Since it is desirable to
have a non-intrusive experiment, we consider each of the sensors to be located at
the insulated surfaces x=0, y=0 and z=0.
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The solution of the present parameter estimation problem is obtained
through the minimization of the least-square norm.

T
SP)=[Y-T(P)] [Y-T(P)] (3.14)
where, for the case involving multiple sensors (see equation 2.1.32.a), we have
T - - — — - e
[Y-T®)' =[F,-F, (L7, ~T,(P),... 7, ~ T, (P)] (3.15)

Each element [)7'_ —f‘i (P)] is a vector of length equal to the number of

sensors, M. In the present case M=3, so that we can write (see equation 2.1.32.b):

7, - T @N=1, -7, ()Y, =T, (B). Yy =T, (P)] fori=1, ...l 3.16)

In equation (3.1.6), ¥Yim, i = 1, ..., I, m =1, 2, 3, are the measured
temperatures of the sensor m at time #;. The estimated temperatures T‘_m(P) are

obtained from the solution of the direct problem given equation (3.1.3.a), by
using the current available estimate for the vector of unknown parameters

P’ = [k.ky k).
The least-squares norm (3.1.4) is minimized here by using Technique 1.

Results

We use simulated measurements in the form given by equation (2.5.2) in
order to examine the accuracy of Technique 1, as applied to the estimation of the
unknown thermal conductivity components. The simulated measurements were
generated by solving the direct problem with the exact values &) = 1, k; = 2 and
k3 = 3. In this case we considered the solid to be a cube with sidesa=b=c=1,
with unitary heat fluxes supplied atthe boundaries x =a=1, y=5b=1 and
z =c=1,thatis, g; = g, = g; = 1. However, before proceeding to the solution of
the present parameter estimation problem, we perform an analysis of the
sensitivity coefficients and choose experimental variables based on the D-optimal
design, as discussed in Note 2 of Chapter 2.

Since the unknown parameters can assume different values, the analysis of
the sensitivity coefficients is much simplified by using their relative versions
defined by equation (2.126). In the present case, the relative sensitivity
coefficients with respect to ky, k; and k; are given respectively by:

=k 8Ty 3T, OT

VN ok, 2 2&2 © Y3 35;' (3.1.7.a-¢)
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Due to the analytical nature of the solution of the direct problem given by
equation (3.1.3.a), analytical expressions can also be obtained for the relative
sensitivity coefficients. We note in equation (3.1.3.a) that, since the solution of
the direct problem is obtained as a superposition of three one-dimensional
solutions in the x, y and z directions, the relative sensitivity coefficient J, is a
function of x, but not of y and z. The analytical expression for the relative
sensitivity coefficient with respect to k, is given by:

. (2
_ g8 (x K1) gt c 1+i irx (=k, )i 7)
Jl = —— (;,—2 +7 1-2 E (-1) " cos » exp 5

kl a =1 a

(3.1.8)

where the function 6(¢,7) is obtained from equation (3.1.3.b). Analogous
expressions can be obtained for the sensitivity coefficients J; and J3, by making
appropriate substitutions in equation (3.1.8). We note that the present estimation
problem is non-linear, since the sensitivity coefficients are functions of the
unknown parameters.

Figures 3.1.1.a-c present the transient behaviour of the relative sensitivity
coefficients for sensors located at (0, 0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0),
respectively. We note in these figures that, for each sensor, the sensitivity
cocfficient for the thermal conductivity in the direction normal to the surface
where the sensor is located is positive, while the other sensitivity coefficients are
negative (with the exception for very small times). Such figures show that the
measurements are immediately affected by the thermal conductivities in the
directions not normal to the surface where the sensor is located; but a lagging is
observed in the sensors’ response with respect to changes in the thermal
conductivity in the other direction. As expected, this lagging is reduced as the
value of such thermal conductivity is increased, which can be clearly noticed by
comparing the curve for J; in figure 3.1.1.a, with the curve for J; in figure 3.1.1.b
and with the curve for J; in figure 3.1.1.c (recall that the values k=1, k=2 and
k3=3 were used to generate the curves for the sensitivity coefficients). For each
sensor location, the sensitivity coefficients with respect to the thermal
conductivities in the directions not normal to the plane where the sensor is
located tend to be linearly-dependent. The sensitivity coefficient for the thermal
conductivity in the other direction does not seem to be linearly-dependent to the
others. We also notice in figures 3.1.1.a-c that, if we consider a pair of sensors,
the sensitivity coefficients are identical for the thermal conductivity in the
direction parallel to the surfaces where they are located. Take as an example the
sensors at (0.9, 0, 0.9) and (0.9, 0.9, 0), as shown in figures 3.1.1.b and 3.1.1.c,
respectively. We notice that the curves for the sensitivity coefficient J; are
identical for these sensors. The reason for this behaviour is because the sensitivity
coefficient J; is a function of x, but not of y and z, as can be observed with the
analysis of equation (3.1.8).
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Figure 3.1.1.a — Relative Sensitivity Coefficients for a sensor located at

(0,0.9,0.9).
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Figure 3.1.1.b - Relative Sensitivity Coefficients for a sensor located at
0.9,0,0.9).

The linear-dependence of two sensitivity coefficients at each sensor
location makes impossible the estimation of the parameters by using the
measurements of a single sensor, since two columns of the sensitivity matrix
become linearly-dependent. In fact, difficulties were observed in the convergence
of Technique I when the measurements of only one sensor were used in the
analysis. However, the estimation of the three thermal conductivity components is
possible if the measurements of more than one sensor, located at the positions
shown in figures 3.1.1.a-c, are utilized. Such is the case because each row of the
sensitivity matrix would have two columns proportional; but the proportional
columns alternate for the rows corresponding to different sensors. Hence, the
columns of the sensitivity matrix are not linearly-dependent.
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0.20 Sensorat (0.9,0.9,0)
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Figure 3.1.1.c - Relative Sensitivity Coefficients for a sensor located at
0.9, 0.9, 0).

Figures 3.1.2.a-c present the transient variation of the sensitivity
coefficients for sensors located at the positions (0, 0.5, 0.5), (0.5, 0, 0.5) and
(0.5, 0.5, 0), respectively. By comparing figures 3.1.1.a (sensor at 0, 0.9, 0.9) and
3.1.2.a (sensor at 0, 0.5, 0.5) we notice that the curves for J; are identical for
these two different sensor locations. This is because the x position of the two
sensors are the same (see equation 3.1.8). Similar behaviors are noticed for J, and
Js, as can be observed in figures 3.1.1.b and 3.1.2.b, as well as in figures 3.1.1.c
and 3.1.2.c, respectively. We notice in figures 3.1.2.a-c that the sensitivity
coefficients are positive for the thermal conductivities in the directions not
normal to the surfaces where the sensors are located, while in figures 3.1.1.a-c
such sensitivity coefficients are negative. This is in accordance with the physics
of the problem, since an increase in the thermal conductivities tends to decrease
the temperature in regions closer to the hottest point in the solid (point 1, 1, 1),
but tends to increase the temperatures in regions far from such point. At each
sensor location of figures 3.1.2.a-c, the sensitivity coefficients tend to be more
linearly-dependent than those of figures 3.1.1.a-c. Also, the sensitivity
coefficients for the thermal conductivities in the directions not normal to the
surfaces where the sensors are located attain smaller absolute values in figures
3.1.2.a-c than in figures 3.1.1.a-c. As a result, the estimation with sensors located
at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0) is more difficult and not as accurate
as the estimation with sensors located at (0, 0.9, 0.9), (0.9, 0, 0.9) and
(0.9, 0.9, 0). This fact will be apparent later in the analysis of the results.
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Figure 3.1.2.a — Relative Sensitivity Coefficients for a sensor located at
(0, 0.5, 0.5).
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Figure 3.1.2.b — Relative Sensitivity Coefficients for a sensor located at
(0.5,0,0.5).
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Figure 3.1.2.c - Relative Sensitivity Coefficients for a sensor located at
(0.5, 0.5, 0).
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Based on the concepts described in Note 2 of Chapter 2, we choose the
optimal duration of the experiment by considering available for the inverse
analysis a large but fixed number of measurements, of three sensors located at (0,
0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). We also take into account the maximum
temperature in the region, T, which is obtained from equation (3.1.3.a) for the
pointx =y = z =1 at each final time considered. Hence, we choose to maximize

the determinant of the matrix F;, the elements of which are defined by (see
equation N2.2.5):

2
. 3 (0 et or
[F} =_LZJ' kol —m |l 1] g (3.1.9)
11,0 31t Pok || 90k || T
p g J\ " max

where the subscripts p and g refer to the matrix row and column, respectively
Pg=1223).

Sensors at

(0,09,09),(09,0,09)and(0.9,0.9,0)
4.0E-8 — '
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Time

Figure 3.1.3 - Determinant of FI'

Figure 3.1.3 shows the variation of the determinant of F; with time. An

analysis of this figure reveals that, for three sensors located at (0, 0.9, 0.9),
(0.9, 0, 0.9) and (0.9, 0.9, 0), the duration of the experiment should be taken as
1= 0.22 where such determinant is maximum, so that the confidence region of the
estimated parameters is minimized. A similar analysis involving three sensors
located at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0) yields a maximum
determinant of 7 x 10 ™' for #; = 0.3. Such a value for the determinant is about
three orders of magnitude smaller than the maximum determinant of figure 3.1.3.
Similarly to the analvsis of the sensitivity coefficients. this gives alen an
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indication that the measurements of sensors located at (0, 0.9, 0.9), (0.9, 0, 0.9)
and (0.9, 0.9, 0) provide more accurate estimates than the measurements of
sensors located at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0).

We now present the results obtained with the estimation procedure of
Technique ], by using in the analysis 100 transient measurements of three sensors
located at (0, 0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). The duration of the
experiment was taken as f,= 0.22, in accordance with the analysis of figure 3.1.3.
The IMSL [4] version of Technique I in the form of subroutine DBCLSJ was
used for the estimation of the thermal conductivity components k;, &, and k3. For
the results presented below, we have used as initial guesses in the iterative

procedure of Technique I the values klo = kg = k;) =0.1.

Table 3.1.1 illustrates the results obtained for the estimated parameters,
standard deviations and 99% confidence intervals, for different levels of
measurement errors, including ¢ = 0, ¢ = 0.01Y,,,, and 6 = 0.05Y g, Where Vg,
is the maximum measured temperature. This table shows that the exact values
ky=1, ky = 2 and k3 = 3 are perfectly recovered when errorless measurements
(c = 0) are used in the analysis. We observe on table 3.1.1 that quite accurate
estimates are obtained, even for large measurement errors of 6 = 0.05Y,q. As
expected, the standard-deviations of the estimates increase when measurements
with larger errors are used in the analysis.

Table 3.1.1 — Estimation of the exact parameters k; = 1, k; = 2 and k3 = 3 by
using Technique I.

G Parameters| Estimates Standard- Confidence Intervals
deviations
ky 1.000 0.000 -
0 ks 2.000 0.000 -
ks 3.000 0.000 -
ky 1.009 0.006 0.993 < k; £1.026
0.01Y pnax k) 1.986 0.016 1.945 <k, £ 2.027
ky 3.031 0.031 2950< k3 <3.111
ky 1.059 0.034 0972<k £1.146
0.05Y ax k; 2.060 0.084 1.845 <k £2.276
k3 2.961 0.150 2.574 < k1< 3.348

The standard-deviations and confidence intervals presented in table 3.1.1
were computed in accordance with the concepts described in Note 1 of Chapter 2.
Based on such concepts, we can also obtain expressions for the confidence
regions at the 99% confidence level. For measurements involving errors of
6 = 0.01Y,,,, and 6 = 0.05Y,,,, the confidence regions are given respectively by
(see equation N1.2.4 in Chapter 2):
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46936 + 24465k +4034.82 k> ~ k_ (14685.3+399.28 k) —
1 2 2 3 (3.1.10.2)

k (4838344128615 k, +245.66 k)~ 52409 k, +1036.41 k: <0

1822.8+873.653 k% +144.429 k2 —k_(535.801+16.0212 k_)—
1 2 2 3 (3.1.10.b)

k, (1791.01+11.1704 k2 +12.1191 ks)—2l9.778 k3 +44.8506 k; <0

We note that the exact values k; = 1, ky = 2 and k3 = 3 fall inside the
confidence regions given by equations (3.1.10).

Finally, let us consider in the analysis 100 transient measurements of three
sensors located at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0), instead of
0, 0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). In this case, the duration of the
experiment was chosen as #~0.3, which yielded the maximum determinant of the
matrix F, for the new locations for the sensors. For measurements with
6=0.01Y,,,,, the estimated parameters were k; = 1.007, k, = 2.006 and k; = 2.873,
with standard-deviations of oy, = 0.018, o,, = 0.044 and o,; = 0.078, respectively.
As expected from the analyses of the sensitivity coefficients and of the maximum
determinant of F, , we note that the parameters estimated with the sensors located
at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0) are not as accurate as those shown in
table 3.1.1, which were estimated with the sensors located at (0, 0.9, 0.9),
(0.9, 0, 0.9) and (0.9, 0.9, 0).

3-2 ESTIMATION OF INITIAL CONDITION [5)

In this section we discuss the inverse problem of estimating the unknown
initial condition in a slab of finite thickness by using Techmique IV, the
conjugate gradient method with adjoint problem for function estimation. The
solution of inverse problems with Technique IV consists of the following basic
steps: direct problem, inverse problem, sensitivity problem, adjoint problem,
gradient equation, iterative procedure, stopping criterion and computational
algorithm.

The details of such steps, as applied to the inverse problem considered
here, are described below,

Direct Problem

The mathematical formulation in dimensionless form of the physical
problem considered here, is given by:



126 INVERSE HEAT TRANSFER

Fo(X,1) _ (X,1)

> in 0<X<l, >0 (3.2.1.a)
X or
1774
—=0 at X=0 and X =1, forr>0 (3.2.1.b,c)
ox
8(X,0)=F(X) in 0<X<], forr=0 (3.2.1.d)

The direct problem is concerned with the determination of the temperature
field & X, 7), when the initial condition F(X) is known.

Inverse Problem

In the inverse problem, the initial condition F{X) is regarded as unknown
and is to be estimated by using the transient measurements of two sensors,
located at the boundaries X' = 0 and X = 1, respectively. Figure 3.2.1 shows the
geometry, coordinates and the locations of the temperature sensors.

The solution of this inverse heat transfer problem involves the
minimization of the following functional:

r
stren]= [ {z0.n-60,0] +[20,0- o0, 0 ez (322)
=0

Z(O,T) Z(l,‘f‘)
¥

Figure 3.2.1 - Geometry and sensor locations.

where Z(X,7) and &X,7) are the measured and estimated temperatures,
respectively. In order to apply the conjugate gradient method for the minimization
of the functional (3.2.2), we need to develop two auxiliary problems, called the
sensitivity and adjoint problems, as described next,
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Sensitivity Problem

This problem is obtained by replacing in the above direct problem (3.2.1)
6(X,7) by [B(X, r)+A6(X,r)] and F(X)by [F(X)+AF(X)], and by
subtracting from the resulting expressions the original direct problem, where
A@(X,7) and AF(X) are small perturbations. We find:

5 AG(X,7) _ OAO(X, z')

5 n0<X<l,7>0 (3.2.3.3)
AX or
éA~‘2=0 at X=0and X =1,forr>0 (3.2.3.b,c}
17D.4
AB(X,0)=AF(X) for =0, in0< X <1 (3.2.34d)
Adjoint Problem

The adjoint problem is obtained by multiplying equation (3.2.1.a) by the
Lagrange Multiplier A(X,7), integrating the resulting expression over time and
space domains and adding the result to the functional given by equation (3.2.2).
We obtain:

/ A
s[Fx))= j[e(o,r)-Z(o,r)]de [60,7)-Z(L,r)Pdr+
r=0 =0 (3.2.4)

——-—1dX dr

Then, the variation AS[F(X)] of the functional S[F(X)] is obtained by
perturbing F(X) by AF(X) and 8(X,7) by AG(X,7), performing integration by parts
and utilizing the boundary and initial conditions of the sensitivity problem. Then,
by requiring that the coefficients of AG(X,7) vanish, the following adjoint
problem is obtained

324 yz
e 2{[6(0,r) - Z(0,1))8(X - 0)+[8(1,7) - Z(1, 1)) 6 (X - 1)}= »

in0< X <1, for0<r<rf (3.2.5.a)
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ff‘-:o at X=0and X=1, forO0<r<rt (3.2.5.b,c)

ox f

A=0 in0<Xx<l, for r=17 (3.25.4)
Gradient Equation

In the process of obtaining the adjoint problem, the following integral term
is left:

]
AS[F(X)]= IZ(X,O) AF(X)dX (3.2.6.a)
X=0

By using the assumption that F(X) belongs to the space of square
integrable functions in the domain 0 < X < 1, we can write:

]
ASIF(0)= [ VS[FCO] AF(X) dX (3.26)
X=0

Thus, by comparing equations (3.2.6.a,b), we obtain the gradient equation
for the functional as

VSIF(X)] = A(X,0) (3.2.7)

Iterative Procedure

The iterative procedure of the conjugate gradient method, as applied to the
estimation of the initial function F(X) is given by:

Flon=rton-gdt (3.2.8.2)

where the superscript k refers to the number of iterations. The direction of
descent is obtained as:

d* )y =vs[F* o+ rtad (3.2.8.b)

and the conjugation coefficient used here is given by the Fletcher-Reeves
expression as:
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1
2
f{VS[Fk(X)]} dx
y = A;=° X fork=1,2,.. withy? =0 , fork=0
IVS{F*"(X)]} dx

[ )

X
(3.2.8.¢)

By applymg the procedure outlined in Note 7 of chapter 2, the search step-
size is obtained as:

s
J’ {[60.7) - 2(0,7)] A6(0,7) +[6(1, ) - Z(1,7)] AB(L, 7Y} d
gt = =0 (3.2.9)

T

j {[Ae(o, o +{asq, r)]z} dr

r=0

where A& (X,7) is the solution of the sensitivity problem, equations (3.2.3),
obtained by setting AF(X) = d(X).

Stopping Criterion

The conjugate gradient method requires the stopping criterion based on the
Discrepancy Principle in order to pursue an iterative regularization character, as
discussed in Chapter 2. In the case of the present estimation problem, the
stopping criterion is given by:

S[FX))<e¢ (3.2.10)

where S[F(x)] is obtained from equation (3.2.2).
In order to obtain the tolerance & we assume

|Z(r)-6(r)|~ o (3.2.11)

where o is the constant standard deviation of the measurements. Thus, ¢ is
obtained from equation (3.2.2) as:

5=202rf (3.2.12)
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The computational algorithm of Technique IV, as applied to the
estimation of the unknown initial condition F(X), is quite similar to the one
presented in section 2-4, and is not repeated here for the sake of brevity.

Results

The accuracy of the inverse analysis for estimating the initial condition
was examined by using simulated temperature readings. The simulated
temperature data containing measurement errors, Z, were generated by solving
the direct problem for a specified initial condition F(X) and by adding to it an
error term, as outlined in section 2-35.

Figures 3.2.2.a and 3.2.2.b show the estimated functions for an exact sine
variation used in the direct problem to generate the measurements, and for the
final experimental time of 7= 0.024 and 7; = 0.040, respectively. The standard
deviation of measurement errors was taken as o = 0.04, representing an error of
up to 10% in the input data. An examination of figures 3.2.2.a,b reveals that the
accuracy of estimation improves as the final time increases. The reason for this
behaviour is that as time elapses, more information reaches the boundaries
allowing better estimations.

) _‘_ ..T. T T T 3
— exact
e estimated ‘|

Initial Condition

0 02 04 06 08B 1

X

Figure 3.2.2.a - Estimated initial condition for final experimental time 7= 0.024.
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Initial Condition

0 02 04 06 08 1

X

Figure 3.2.2.b - Estimated initial condition for final experimental time
7,=0.040.

3-3 ESTIMATION OF TIMEWISE VARIATION OF THE STRENGTH
OF A LINE HEAT SOURCE [6}

In this section we illustrate the application of Technique IV, the conjugate
gradient method with adjoint problem, for the estimation of the timewise-varying
strength of a line-heat source, in a two-dimensional inverse heat conduction
problem. We assume that no a priori information is available on the functional
form of such variation of the heat source. The basic steps in the analysis include:
direct problem, inverse problem, sensitivity problem, adjoint problem, gradient
equation, iterative procedure, stopping criterion and computational algorithm. We
present below the details of such basic steps, except for the stopping criterion and
the computational algorithm. They are very similar to those presented in section
2-4 and are not repeated here for the sake of brevity.

Direct Problem

The physical problem considered here involves two dimensional transient
heat conduction in a dimensionless square domain 0 < X <1, 0 < ¥ < 1, initially
at zero temperature. For times r > 0, a line heat source of strength G(7) is
activated to generate energy while the lateral surfaces are kept insulated.

The mathematical formulation of this heat conduction problem in
dimensionless form is given by
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2 2
—é—'92+—é’~#2—+6(r)6(X—X*)5(Y—Y*)=-@ in0<X<1,0<¥<1,7>0
8x° oY ot
(3.3.1.a)
6 _
—=0 atX=0and X=1,7>0 (3.3.1.b,c)
1704
ﬁ=0 atY=0and Y=1,7>0 (3.3.1.d,e)
aY
8(X,Y,r)=0 fort=0,in0<X<1,0<¥Y<1 (33.1.9)

where X* and Y* is the location of the heat source.
The objective of the direct problem is to determine the temperature field
@(X,Y,7) in the medium, where the strength G(7) of the heat source is known.

Inverse Problem

The inverse probiem is concerned with the estimation of the unknown
timewise varying strength, G(1), of the line heat source, by utilizing the transient
temperature readings of a temperature sensor. Figures (3.3.1.a,b) show the
locations of the source and sensor, in two different configurations tested.

Y Y
1 1
7 y
F N p: \ /
N y; N /
N\ / N N /
~ y, /
1 Ny 1 1 N source 1
N 7/ (0.5x0.5)
N s N N
~
/soufce ~ y / \
y {0.25x0.25) N y N
N . X N\ ¢
S6Nnsor sensor
(0.25x0.0) (0.5x0.0)
(a) (b)

Figure 3.3.1 - Locations of the line heat source and temperature sensor.
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The inverse problem is solved here by the application of Technique IV,
since no a priori information is available on the functional form of the timewise
variation of the heat source.

The inverse problem is solved so that the following functional is
minimized.

T

M S
sle@)=Y" I[Zm(r)—ﬁm(r)]zdr (3.3.2)

m=l =0

where Z,,(7) and 6,(7) are the measured and estimated temperatures, respectively,
while M is the total number of sensors, assumed greater than one in the
formulation for the sake of generality.

In order to implement the iterative algorithm of the conjugate gradient
method, we need to develop the sensitivity and adjoint problems, as described
below.

Sensitivity Problem

Suppose that the energy generation rate G(7) is perturbed by a small
amount AG(z); it results in a small change in temperature by an amount
A@ (X,Y,7). Then, the sensitivity problem governing A6 (X,Y,7) is obtained by
replacing in the direct problem (3.3.1), 8(X.Y,7) by [8(X,Y,7) + AG(X,Y,1)]), G(D
by [G(7) + AG(7)] and subtracting from the resulting expressions the original
direct probiem. We obtain:

ola8(x.v,1)]
or
in 0<X<1,0<Y<lLzr>0 (3.3.3.3)

V2[A8(X.Y,7))+ AG(z) 6(X - X*)E(Y -Y*) =

A40) _, at X=0 and X=1, forz>0  (3.3.3.b,0)
X

A48 _, at ¥=0 and Y=1, forr>0 (333.de)
oY

AG(X,Y,r)=0 forr=0,in0<X<1,0<Y <] (3.3.3.0)

where V? is the Laplacian in rectangular coordinates. Equations (3.3.3) give the
sensitivity problem for the determination of the sensitivity function A@ (XY, 7).
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Adjoint Problem

The adjoint problem is developed by multiplying equation (3.3.1.a) by the
Lagrange multiplier A(X,Y,7), integrating the resulting expression over the time
and spatial domains and then adding this result to the functional given by
equation (3.3.2). We obtain:

T

sle@)=Y, [16,@-2, @0 dr+
m=tr=0

(3.3.4)

o
j J' I(XYT)[V 0 +G(r)S(X - X*)5(Y - Y*)-ﬁﬁ]dXde

The variation AS[G(7)] of the functional S[G(7)] is obtained by perturbing
G(7) by AG(7) and 8 (X,Y,7) by A@ (X,¥,7) in equation (3.3.4) and subtracting
from it the original equation (3.3.4). By neglecting the second order terms,
performing integrations by parts and using the boundary and initial conditions of
the sensitivity problem, we obtain the following adjoint problem for the
determination of the Lagrange Multiplier A(X.,Y,7):

M

2 oA
" A+”!Z=12[Bm(r)—zm(r)]5(,\’—~Xm)é(Y—Ym)——;T—

inO<X<l,0<Y<1,for0<r<rf (3.3.5.8)

o2 _ at X=0 and X =1, for 0<z<7 (3.3.5.b,c)
X ’ f o
a2 _ at Y=0 and Y =1, for 0<r<r (3.3.5.d,e)
oY ’ / R
A=0 forr=7_,in0<X<1,0<¥Y<I (3.3.5.6)

f b

where the points (X, Y.), m = 1,2,...M are the locations of the sensors.

Gradient Equation

In the process of obtaining the above adjoint problem, the expression for
the variation of the functional AS[G(7)} reduces to
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T

J
as[6@] = fax+,r,r) aG(r)ds (3.3.6.2)

r=0

By assuming that G(7) belongs to the space of square integrable functions
in 0 < 7< 7, we can Write

s
AS[G(7)] = .[ VS[G(1)] AG(r)d+ (3.3.6.b)
=0

Then, by comparing equations (3.3.6.a,b) we find the gradient equation as

VS[G(7)] = A(X*. Y%, 1) (3.3.7)

1terative Procedure

The conjugate gradient method of minimization, as applied to the
estimation of the unknown function G(7), is written as

() =G (r)- p'd* (n) (3.3.8.2)

where the superscript & refers to the number of iterations, and the direction of
descent is taken as

d* ()= vS[G* () + 7 d" () (3.3.8.b)

The conjugation coefficient ¥* is given by the Fletcher-Reeves expression
as

.
s ‘ 2
I{VS[G (r)]} dr

yk = z=0 fork=1.2,.. withy’=0 (3.3.8.c)

Ty

k-1, )2
| iVS[G (r)]} dr

and the search step-size B is determined by the minimization of the objective
function (3.3.2) as (see Note 7 in Chapter 2):
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T

M
> b -2z @)red*)ar

m

pt = nle= (339

M
2

| [Ae(d" )]zdr

m lr=0

where AB(d*) is the solution of the sensitivity problem (3.3.3), obtained by
setting AG(7) = d*(1). Note that the only difference between S*, as given by the
above expression (3.3.9) and that given by equation (N7.2.9) in Note 7 in Chapter
2, is that the former contains a summation term due to the presence of multiple
SEnsors.

Results

The accuracy of the inverse analysis for estimating the timewise varying
strength of an unknown line heat source G(7), located at a specified position (X*,
¥*), is now examined by using simulated measured data. Several test cases have
been run with simulated test data Z,(7) and the estimated values were compared
with the exact results.

For all the cases considered here, the stopping criterion given by the
discrepancy principle was used to stop the iterations. The functions exhibiting a
step change or a sharp corner are generally the most difficult cases to be
recovered by inverse analysis. In order to perform the tests under most strict
conditions, functions involving abrupt changes in the form of step and triangular
variations were considered for G(z7).

A finite difference mesh of 25 x 25 nodes was used for the spatial
discretization and the value of the dimensionless final time, 7= 6.9 x 102, was
divided into 280 time steps for all the results presented here. For a 10 cm thick
region, this value of final dimensioniess time corresponds to a physical final time
ty = 69 seconds for a material having thermal diffusivity @ = 10° m%s and to a
physical time ;= 6900 seconds for an insulating material having &= 10" m¥s.

By examining equations (3.3.5.f) and (3.3.7), we note that the gradient
equation is null at the final time 7. Therefore, the initial guess used for G(7) is
never changed by the iterative procedure of the conjugate gradient method. In
order to avoid such difficulty, the calculations were repeated few times by using
for the initial guess, previously estimated values for G(7) at a time r in the
neighbourhood of 7.

Two different locations of the source and sensor considered in the present
study included the cases:

(a) The source G(7) at (0.25, 0.25) and the sensor at (0.25, 0.0), as shown

in figure 3.3.1.a

(b) The source G(7) at (0.5, 0.5) and the sensor at (0.5, 0.0), as illustrated

in figure 3.3.1.b
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Figure 3.3.2 presents the exact and estimated strength G(7), for the
configuration shown in figure 3.3.1.a and for measured data involving a standard
deviation o = 0.0025. The agreement between exact and estimated functions is
quite good.

Figures 3.3.3 illustrate the effect on the inverse problem solution, of
locating a sensor farther from the source. It can be clearly noticed that the
estimation deteriorates for the case involving the configuration shown in figure
3.3.1.b, where the source is located at the center of the region, as compared to
that obtained with the configuration of figure 3.3.1.a.

m T L] I L] L) L] T I “Y L}
L:: Iy p . !
o v
2 4 | | -
)
B l
[ 1]
=
0
]
T 2f -
0 exact
2 come-e. Tegular CGM
g l iterated
i o = 0.0025 |
- ' ‘ AN e
" 0 \I' |‘ y
O Nl 1 i L l L 'l i i l L ‘: 1
0 100 200

Number of time steps

Figure 3.3.2 - The estimation of the strength of a line heat source varying with
time as a step function.

3.4 ESTIMATION OF TIMEWISE AND SPACEWISE VARIATIONS
OF THE STRENGTH OF A VOLUMETRIC HEAT SOURCE [7]

In the previous section we presented the estimation of the timewise
varying strength of a line heat source by the application of Technique IV. We
now apply this technique for estimating the timewise and spacewise varying
strength of a volumetric heat source, G(X, 7), in a plate. The solution technique
follows the methodology described previously, which includes the following
basic steps: direct problem, inverse problem, sensitivity problem, adjoint
problem, pradient equation, iterative procedure, stopping criterion and
computational algorithm.
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Figure 3.3.3 - Effects of moving the source to the center of the region.
(a) - Configuration shown in figure 3.3.1.a.
(b) - Configuration shown in figure 3.3.1.b.

Direct Problem

The direct problem is concerned with the determination of the temperature
field in a one-dimensionat plate with time and space varying heat source, G(X, 7).
We assume that the solid is initially at zero temperature. For times ¢ > 0, the
energy source is activated while the boundaries at X = 0 and X = 1 are insulated.
The mathematical formulation of this direct problem in dimensionless form is
given by

2
J ‘9(’\;__”)+G(X,f)=—__‘ae(X’r) in 0<X<l,forr>0 (34.1.a)
éX ﬁf
X _o at X=0, for >0 (3.4.1b)
oxX
fg:o at X=1, forr>0 (3.4.1.c)
oxX

B(X,1)=0 forr=0, in0<X<l (34.1.4d)
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Inverse Problem

For the inverse problem, the source function G(X,7) is regarded as
unknown. In order to estimate G(X,7), we consider available the transient
readings of M temperature sensors in the region and choose to minimize the
following functional:

T

M S
slecx,0l=Y. (12, -6, @0 dr (34.2)

m=1 r=0

where Z,(7) is the measured temperature of sensor m (m = 1, ..., M), while g,(7)
is the estimated temperature at the sensor location, which is obtained from the
solution of the direct problem by using an estimate for G(X, 7).

For the solution of the present inverse problem via the conjugate gradient
method of function estimation, we need to develop the sensitivity and adjoint
problems as described next.

Sensitivity Problem
The sensitivity problem is obtained by replacing in the direct problem
(3.4.1), (X0 by [8(X,7) + AB(X, 7)), GX,») by [G(X,7) + AG(X,7)] and

subtracting from the resulting expression the original direct problem, where
AB(X,7) and AG(X, ) are small perturbations. We find:

_-[_———152 AB()Zf,r) +AG(X,7)= 2 Aga(X’t) in 0<X<l,forr>0 (343.)
X :

X489 _, at X=0, forr>0 (3.43.b)

oX

A489) _, at X=1, forr>0 (3.4.3.0)

X

AG(X,7)=0 forz=0, in0<X<1 (3.4.3.4)
Adjoint Problem

The adjoint problem is developed by multiplying equation (3.4.1.a) by the
Lagrange multiplier A(X,7), integrating the resulting expression over time and
space domains and then adding the result to the functional given by equation
(3.4.2). We obtain:
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T

slocx.n)= Y I 8 (1)-Z () dr+
m=lr=0 (3.4.4)
1

Ty
J' A(X r)

il +G(X z‘)—a—g}dXd

The variation AS[G(X,7)] of the functional S[G(X,7)] is obtained by
perturbing G(X,7) by AG(X,7) and & X,7) by A&X,7) in equation (3.4.4) and
subtracting from it the original equation (3.4.4). By neglecting second-order
terms, performing integration by parts and using the boundary and initial
conditions of the sensitivity problem, we obtain after some manipulations the
following adjoint problem:

2 M
G AX,1) GAX,t)
£a50 +Zz[csvm(r)-zm(r)](S()(—)(m)=-~-~-——a,,r

JX m=1

in0<Xx<l, for0<z'<rf (3.4.5.3)

z'l= at X=0, for0<r<r (3.4.5.b)
oxX f
ﬁ=0 at X =1, for0<r<r (3.4.5.¢)
1724 f
A=0 forr=rf, in0<X <1 (34.5.d)

Gradient Equation

In the process used to obtain the adjoint problem, the following integral
term is left:

T

J
AS[G(X,7)]= _[ J' A(X,7) AG(X,7)dX dr (3.4.6.2)
=0 X=0

By using the hypothesis that G(X, 7) belongs to the space of square
integrable functions in the domain 0 < r< 7 and 0 <X < 1, we can write
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T
AS[G(X,7)]= I IVS[G(X,t)]AG(X,r)dXdr (3.4.6.b)
=0X=0

Thus, by comparing equations (3.4.6.a,b) we obtain the gradient equation
as

vS[G(X,)]= A(X,7) (3.4.7)

Iterative Procedure

The iterative procedure of Technique IV, as applied to the estimation of
the function G(X, 7), is given by:

“lox.n=65x,n- g  x, (3.4.8.2)

where the direction of descent at iteration & is obtained as a conjugation of the
gradient direction and of the previous direction of descent, in the form

d¥(x,7) = vS[G(x, 0]+ y*ad* 7 (X, 1) (3.4.8.b)

The conjugation coefficient is obtained from the Fletcher-Reeves
expression as

f 1
.[ _[{VS[G (X, r)]} dX dr
yk __r=0 X=0 fork=12,...withy" =0 (3.4.8.c)

9

and the search step size is determined as (see Note 7 in Chapter 2)

VS[Gk_l(X,r)]}de dr

) e,

T

M S
Z _“9 (f)-Zm(r)]AG(d*)dr

m

ﬂk _m=l¢=0 > (3.4.8.d)
M
%, [[soa]e
m=1r=0

where A&d*) is the solution of the sensitivity problem given by equations (3.4.3),
obtained by setting AG(X, 1) = d*(¥X, 1).
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Results

The accuracy of Technique IV, as applied to the estimation of G(X,7) is
examined by using simulated measured temperature data. The stopping criterion
was based on the Discrepancy Principle as described in section 2-4. Similarly,
the computational algorithm presented in section 2-4 can be applied to the present
estimation problem with few modifications. Hence, they are not repeated here.

Figures 3.4.1.a,b show the estimated function G(X,7) by using errorless
measurements (o = 0) taken by seven equally spaced temperature sensors. Figure
3.4.1.a shows G as a function of position at different dimensionless times (i.e.,
77= 0.1, 0.3 and 0.5), while figure 3.4.1.b shows G as a function of time 7/zat
three different locations (ie., X = 0.13, 0.25 and 0.5). Similar results, obtained by
using 9 equally spaced temperature sensors containing measurement error
(o = 0.05), are shown in figure 3.4.2.a,b. The results were good, showing the
feasibility of such estimates. Reasonably accurate estimates were obtained for
G(X,7) with standard deviation o = 0.05, corresponding to an error of up to
13%.

3.5 ESTIMATION OF TEMPERATURE-DEPENDENT PROPERTIES
AND REACTION FUNCTION [8,9]

In the previous sections of this chapter, we considered inverse problems
involving linear heat conduction. In this section, we illustrate the solution of the
inverse problems of estimating the temperature-dependent thermal conductivity,
heat capacity or reaction function. The reaction-diffusion type of problems
considered here are found in nonlinear heat conduction, chemical reactor
analysis, combustion, enzyme kinetics, population dynamics and many other
practical applications.

Inverse problems of estimating temperature-dependent properties and
reaction function have been generally solved by using Technique III [10-12].
However, in situations where no information is available on the functional form
of the unknown quantity, the inverse problem can be recast as a function
estimation problem. Here we apply Technique IV, the conjugate gradient
method with adjoint problem for function estimation, to solve such classes of
inverse problems. Details on the basic steps of Technique IV are described
below. Also, a comparison of Techniques III and IV is presented for the case of
estimating the reaction function.
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Figure 3.4.1 - The estimation of a space and time dependent volumetric heat
source by using 7 temperature sensors and o= 0.
(a) Spatial variation. (b) Timewise variation.
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Figure 3.4.2 - The estimation of a space and time dependent volumetric heat
source by using 9 temperature sensors and o= 0.05,
(a) Spatial variation. (b) Timewise variation.
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Direct Problem

For the present study, we consider the following nonlinear, one-
dimensional heat conduction problem with temperature dependent properties and
reaction function:

a“T(x,t)_i

c(T
() ot Ox

{k(T)?]—g(T):O in0<x<L,fort>0  (3.5.1.a)
X

—=0 atx=0,fort>0 (3.5.1.b)
ox
or
kT —=¢, (1) atx=L,fort>0 (3.5.1.¢)
éx L
T(x,0) = F(x) forr=0,in0<x<L - (3.5.1.d)

The direct problem defined above by equations (3.5.1) is concerned with
the determination of the temperature distribution 7{x,f) in the medium, when the
physical properties C(7) and k(T), the boundary and initial conditions, and the
reaction function g(T) are known.

Inverse Problem
Consider the following three different inverse problems of estimating:

(i)  g(7) unknown, but &(T) and C(T) known
(ii)  k(T) unknown, but C(7) and g(7T) known
(iii)  C(7) unknown, but 4(7) and g(T) known

where g(7) is the energy generation rate (reaction-function), 4(7) is the thermal
conductivity and C(T) is the heat capacity.

For the solution of each of these inverse problems, we consider transient
temperature readings available from M temperature sensors at the positions x,,
m=1, 2, .., M. To solve these inverse problems, one needs to minimize the
following objective functional S[P(T)] defined as

t

M S
S[P(T)]:Z I{Ym(t)—T{xm,r;P(T)]}zdt (3.5.2)

m=) =0

where P(T) = g(T), k(T) or C(T), unknown quantities,
Y..(1) is the measured temperature, and
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T [xm t; P(1)] is the estimated temperature.

The estimated temperatures are obtained from the solution of the direct
problem by using an estimate for the unknown quantity P(T).

The development of the sensitivity and adjoint problems, required for the
implementation of Technique IV, are described next.

Sensitivity Problem

In order to develop the sensitivity problem we assume that the unknown
quantity P(T) is perturbed by an amount ¢AP(T). Thus, the temperature T{(x,)
undergoes a variation eéAT(x,?), that is,

T, (x,0) = T(x,0) + eAT(x,1) (3.5.3.a)

where ¢ is a real number and, as a subscript, erefers to a perturbed variable.

Due to the nonlinear character of the problem, the perturbation of
temperature causes variations on the temperature-dependent properties, as well as
on the reaction function. The resulting perturbed quantities are linearized as:

ks(Tg) = k(T +&AT) + eAk(T) zk(T)+(3—l;,) EAT + eAk(T) (3.5.3.b)
CE(Y;) = C(T+eAT)+eAC(T) ~ C(T)+(Z—g) eAT +eAC(T) (3.5.3.¢)
gs(TE) = g(T+eAT) +eAg(T) zg(T)+(%) EAT +eAg(T) (3.5.3.d)

where AKT)=AC(T)=0 for P(T)= g(T) unknown,
AC(T)y=Ag(D) =0 for P(T) = k(T) unknown, and
AK(Ty=Ag(T)=0 for P(T) = C(T) unknown.

For convenience in the subsequent analysis, the differential equation
(3.5.1.a) of the direct problem is written as

AT(x,t) N

D(T) = C(T) -1~ E[k(r)-‘;—ﬂ— g(T)=0 (3.5.4.a)

and the perturbed form of this equation becomes

G

oT.(x,1) 4 T,
Ox

D,(T,)=C(T)—%; —5[&(@)

]—gc(TE)z 0 (3.5.4.b)
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To develop the sensitivity probilem we apply a limiting process to the
differential equations (3.5.4.a,b) in the form:

D (T.)- DT
lim 2e7 PO _ g

£—0 £

(3.5.5)

and similar limiting processes are applied for the boundary and initial conditions
of the direct problem. After some manipulations, the following sensitivity
problem results for the determination of the sensitivity function AT(x,f):

2
HCAT)_STWAT) dg \p 0 (40T, ncl_pg
EY Ax dT Ox Ox ot
in0<x<L, fort>0 (3.5.6.a)
o(kAT) =0 atx=0,fort>0 (3.5.6.b)
ox
5(’;27") =—%¢L atx=L, fort>0 (3.5.6.¢)
AT =0 forr=0,in0<x<L (3.5.6.d)

where AT = AT(x,1), C=C(D), k=kT), g=g(T), Ak=AKT), AC=AC(T) and
Ag = Ag(T).

The procedure used here to develop the sensitivity problem for the
nonlinear case is more general than that given in Chapter 2 for the linear case.
Since the original problem involves temperature-dependent quantities, it is more
convenient to use here the limiting process given by equation (3.5.5). A similar
approach is used for the derivation of the adjoint problem, as described next.

Adjoint Problem

In order to derive the adjoint problem and the gradient equation, we
multiply equation (3.5.1.a) by the Lagrange multiplier A(x,r) and integrate over
the time and space domains. The resulting expression is then added to the
functional given by equation (3.5.2) to obtain:
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L M
s[pen)]= J' IZT Y)Y 6(x-x )didy+
x=0=0 m=l (3.5.7)
L OT(x,1)
X,
x :[OIJL{C(T)—----—& E—{k(T)———} g(T)}/l(x £) i dx

where &.) is the Dirac delta function.

The above extended functional S[P(T)] undergoes a variation AS[P(D)]
when the unknown quantity and the temperature undergo variations AP(T) and
€AT(x, 1), respectively. The variation AS[P(T)] can be conveniently obtained by
applying the following limiting process:

s[2.(7)]- S| P(N)]

&

AS[P(T)] = lim0 (3.5.8)

where the term S[P(T,)] is obtained by writing equation (3.5.7) for the perturbed
quantities given by equations (3.5.3). We obtain

AS[ ()] 2J' IZ(T Y)8(x - x )Adedz+J' J‘ﬁ(cmz( ) dtdx -

1=0 x=0 m=] x=0 1=0
oL
-J' 52("”)/1( drd - _H' ( ﬂ)l(x £)dsdt -
Loxlo OX 120 x=0
L ‘fd L'y
_ [ 48 -
J' [ e AT Ax.rydrae + J' ACA(x,t)dt d
x=0 =0 x=0 1t
L ’f_
- A(x,t)Agdt dx (3.5.9)
x=0.r=.0

The inner integrals in the second, third and fourth terms of equation (3.5.9)
are integrated by parts and the boundary and initial conditions of the sensitivity
problem are utilized. In the resulting expression, the terms containing AT(x,?) are
then allowed to go to zero to obtain the following adjoint problem:

-Céi—k?—f-iglz ZZ(T Y)s(x=x )=0
ot ox- AT

1n0<x<L.forO<1<rf (3.5.10.a)
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94 _ atx=0,for0<r<t (3.5.10.b)

Ox /

4 _ atx=L,for0<t<t (3.5.10.0)

ox s

A=0 fort=1t,in0<x<L (3.5.10.d)
Gradient Equation

In the process used to obtain the adjoint problem (3.5.10), equation (3.5.9)
reduces to

t

L ’f L
AS[P(T)] = I or fiAk(ndzazx j I—a{-/t(x,z)AC(T)dtdxw
x=0£=0 x=0 t=0
L ‘f
- _[ I)l(x,t)Ag(T)dtdx (3.5.11)
x=0 1=0

For a function P(x,f) belonging to the space of square integrable functions
in the domain (0,7 x (0,L), we can write:

t

L
asPan)= | [ vslPexn) PG dx (3.5.12)
x=0 =0

—

By assuming that there exists one-to-one correspondence between the
temperature T and the pair (x,f), that is, P(T) = P(x,f) and AP(T) = AP(x,!), we can
transform the minimization of the functional given by equation (3.5.2) from the
temperature space to the (x,r) space. Therefore, we can compare equations
(3.5.11) and (3.5.12) to obtain the gradient equations for the cases of unknown
reaction function, thermal conductivity and volumetric heat capacity, respectively
as

vS[g(D)]}=-A(x,) . for P(T)=g(T) (3.5.13.a)
VS[k(n]*é{% , for P(T)=k(T) (3.5.13.b)

vs[c(n) = %}T- Ax.t) , for P(T)=C(T) (3.5.13.¢)
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We note that the sensitivity and adjoint problems given by equations
(3.5.6) and (3.5.10), respectively, are linear, although the direct problem given by
equations (3.5.1) is nonlinear.

Iterative Procedure

The following iterative procedure based on the conjugate gradient method
is applied for the estimation of P(T):

Pi+i(T)= P'(T)-—ﬂ'd'(T) (35]4&)

where the superscript / denotes the number of iterations and the direction of
descent d'(T) is given by:

d'(T) = vs[r; P’(T)]+y’d"'(r) (3.5.14.b)

The expression of Polak and Ribiere is used here for the conjugation
coefficient "

J' ’]{VS[T;Pi(T)] - VS[T; P"'(T)]] VS[T ; P'T(T)}df ax
7:‘ _ x=01=0 (3.5.14.¢)

.

. 2
j {VS[T; PH(T)]} dt d
x=0 =0

fori=1,2,.. with y* =0

The search step-size ' is obtained by minimizing the functional given by
equation (3.5.2) with respect to #'. The following expression results (see Note 7
in Chapter 2):

't M . _

j ¥ T(xm,r;P‘)-Ym(t)]AT(xm,z;d’)d:
i =g m=l
g =1 — — (3.5.14.d)
Z[AT(xm,t;d')] dt

o m=1

~,

{

where AT(x,, t; d') is the solution of the sensitivity problem at position x,, and
time ¢, which is obtained from equations (3.5.6) by setting AP(T) = d'(D).
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Once d'(T) is computed from equation (3.5.14.b) and B’ from equation
(3.5.14.d), the iterative process given equation (3.5.14.a) can be applied to
determine P**'(7), until a specified stopping criterion based on the discrepancy
principle is satisfied, as described in Chapter 2.

Results

In order to examine the accuracy of Technique IV, as applied to the
analysis of the inverse problems previously described, we studied test cases by
using simulated measured temperatures as the input data for the inverse analysis.
To generate the simulated measurements, the direct problem given by equations
(3.5.1) was expressed in dimensioniess form by introducing the following
dimensionless variables:

T-T k t
g0 ; p=8DL o0 X 58 (351500
%, 4, L’c, L ¢,
ky
and by taking the coefficients k(7) and C(7) in the form
k(T)=k0K(6) and C(7)= Coz(ﬁ) (3.5.16.a,b)

where k; and C; are constants with units of (7} and C(T), respectively; x(6) and
26 are dimensionless functions of &; T; is the initial temperature in the medium
which is assumed to be uniform; and ¢, is the heat flux applied at the boundary
x = L, which is assumed to be constant.

The direct, sensitivity and adjoint problems were solved by using finite
differences with 51 mesh points and 100 time steps. These values were chosen by
comparing the numerical solution of the direct problem with a known analytic
solution. The agreement between the two solutions was better than 1%.

The accuracy of the present method of inverse analysis was verified under
strict conditions by using the measurements of a single sensor. In such a case, the
requirement of one-to-one correspondence between the temperature 7 and the
pair (x,f), used to derive the gradient equations (3.5.13), is automatically satisfied.

Consider initially the inverse problem of estimating the reaction function,
ie. P(N = g(T), with k&(T) and C(T) known. For simplicity, we have assumed
K(6) = (0 = 1. Figures 3.5.1-3 present the results for exponential, triangular and
step variations for the dimensionless reaction function, respectively, obtained
with errorless measurements (o= 0) and measurements with random error,
o= 0.01 8,,, where 6, is the maximum measured temperature. Note in these
figures that very accurate results are obtained, even for functions containing
sharp comners and discontinuities, which are the most difficult to be recovered by
an inverse analysis.
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In order to compare the present function estimation approach of Technique
IV with the traditional approach of Technique III, we also solved the inverse
problem of estimating the reaction function parameterized with B-Splines trial
functions in the form:

N
g()=) PB(T) (3.5.17)
j=

Thus, the inverse problem of estimating the reaction function reduces to
the problem of estimating the unknown parameters P, j = 1, ..., N, where B(T)
are the known B-Splines. The number N of trial functlons used in the
parameterization is also considered known.

The iterative procedure of Technique III can be found in section 2-3 and is
not repeated here. In order to implement such a procedure, the sensitivity and
adjoint problems given by equations (3.5.6) and (3.5.10) are also required. The
gradient vector components are shown to be given by:

H

S
[vs®)];=- | [a0B [T 0]drae (3.5.18)
x=0¢=0
1 ' ' i ' i ! ! N : ' ' '
© L —_EXACT i
S o ESTIMATED , 0=0.01 6, _
O [ — —ESTIVATED , 0=0 1
= b
zYr
= 050
[ r(e)=e .
Q
w
(8 4
-~ 4
—
I | i 1 L o

¢ , TEMPERATURE

Figure 3.5.1 - Inverse solution with exponential variation for the reaction
function in the form I'(6) = £**%.
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Figure 3.5.2 - Inverse solution with triangular variation for the reaction

function.
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Figure 3.5.3 - Inverse solution with step variation for the reaction function.
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Table 3.5.1 presents the number of iterations, the RMS error and the CPU
times for Technique IV, as applied to the test-cases shown in figures 3.5.1 to
3.5.3, respectively, for measurements containing random errors. The calculations
were performed on a Cray Y-MP supercomputer and the RMS error is defined as:

1
eRMS - J%Z][gex(t)— gest(I;') 2

where the subscripts ex and est denote exact and estimated quantities,
respectively, and / denotes the number of temperature measurements used in the
inverse analysis.

Similarly, table 3.5.2 presents the results obtained with Technique III for
the same functional forms considered above. A comparison of tables 3.5.1 and
3.5.2 reveals that, for the same order of magnitude of RMS errors, the CPU times
for the parameter estimation are larger than those for the function estimation. It
appears that the evaluation of the B-splines, during each iteration of the conjugate
gradient method, causes the increase in CPU time for the parameter estimation
approach. These tables show that the number of iterations is very similar for the
function and parameter estimation approaches, except for the case of exponential
variation of the reaction function. The initial guess used for both approaches was
the exact value of the reaction function at the final temperature measured by the
sensor, so that the instabilities inherent of Technique IV at the final temperature
value could be avoided.

(3.5.19)

Table 3.5.1 - Results obtained with Technique IV

Function Number of RMS CPU Time
Iterations error (sec)
Exponential 5 0.1047 2.13
Triangular 6 0.0885 2.14
Step 8 0.2097 2.85

Table 3.5.2 - Results obtained with Technique III using cubic B-splines to

approximate the reaction function

Function Number of | Number of RMS CPU Time
B-Splines | Iterations erTor (sec)
Exponential 4 50 0.0989 31.07
Triangular 15 7 0.0923 4.52
Step 20 7 0.2080 4.60
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Figure 3.5.4 - Estimation of the dimensionless thermal conductivity x(6).
Functional forms containing discontinuities.
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Figure 3.5.5 - Estimation of the dimensionless volumetric heat capacity ().
Functional forms containing discontinuities.
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The results obtained with Technique IV for the estimation of KT), by
assuming g(T) and C(T) known, and for the estimation of C(T) for g(7) and K(T)
known, are also quite accurate. They are illustrated in figures 3.5.4 and 3.5.5 for
both increasing (open symbols) and decreasing (closed symbols) functions,
containing discontinuities.

Simultaneous Estimation of k(T) and C(T)

The foregoing analysis for the estimation of either &{(T), C(T) or g(T) can
be easily extended for the estimation of several quantities. Consider, as an
example, that A(T) and C(T) are unknown, but g(7) is known. In this case,
Ag(T) = 0 and the inverse problem is solved by the minimization of the following
functional.

H

S[k(T),C(T)] = i Jj{ym(r)- T{xm,t;k(T),C(T)] }2 dt (3.5.20)

m=] ,'=0

The iterative procedures of the conjugate gradient method, for the
simultaneous estimation of thermal conductivity and volumetric heat capacity, are
given by

kT = k'(T)- B, d (T) (3.5.21.a)

c*i(ny=c'(n-p.d(1) (3.5.21.b)
where the directions of descent are obtained from
di(T)= Vs[k" (T)]+ yidi™\ (1) (3.5.22.2)

i

d'(1) = Vs[c" (T)] +ytd ™) (3.5.22.b)

c

with conjugation coefficients given by the Polak-Ribiere expression as

Ly
vs|k (|- sl () ]VS k' (1)|dt dx
7, = ’*L ’J"{ [ ] [ ] [ ] | (3.5.23.2)

{

} jj-{VS[ki_l (T)]}zdt dx

x=0 t=0
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Ilc—.h

Jj‘{ Vs[c"(r)] - vs[c’" (T)]} VS[C‘ (T)]dt dx

y! = x=01=0 (3.5.23.b)
f

J{vs[c (T)” dt dx

t=0

I e, T
(==}

X
with y2 =y, =0 for i=0.

The gradient directions for thermal conductivity, VS[k(T)], and heat
capacity, VS[C(T)], are given by equations (3.5.13.b,c), respectively. The direct,
sensitivity and adjoint problems are not changed for the simultaneous estimation
of k(T) and ({T), and they are given by equations (3.5.1), (3.5.6) and (3.5.10),
respectively.

The search step sizes §, and £ are obtained by minimizing the functional
(3.5.20) with respect to these two quantities. By using equations (3.5.21), we can
write equation (3.5.20) as

S[k"*‘,c"*‘]=i j'{}' (k -pldc- ,Bd)}z dt (3.5.24)

where the functional dependence of several quantities were omitted above for
simplicity.
The estimated temperature T (k - ﬂ ‘ k,C ,B d ) is linearized by a

Taylor series expansion in the form:

T(k'-gd ,C'-8d T k.C 7, "ﬂ'"d'

,.( -Bd.C -8 ) (k,C)- ﬁ,‘;;- *_'B‘ac' ; (3.5.25)
Let di = Ak (3.5.26.a)
and d =ac (3.5.26.b)

Then, equation (3.5.25) can be written as (see Note 7 in Chapter 2)

Tm(k’ -f,d,.C' -8 di) ~T (k'.C')- ﬂiAﬁi.m -f Mim (3.5.27)
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where AT/: . and AT; ,, are the solutions of the sensitivity problem, equations

(3.5.6), at the measurement locations x,,, m = 1, ..., M, obtained by setting
Ak =di , AC' =4g' =0
and AC = d; , Ak = Agi =0 , respectively.
By substituting equation (3.5.27), we can write the functional (3.5.24) as
s[k'“ ’*‘] i jj{y -T (k",c‘)+ﬂ' AT g ar Var
~ ) m ko km Pe T em

(3.5.28)

The above equation is minimized with respect to ,B; and 'B.: to obtain the
following expressions for the search step sizes:

i FnAzz -'FzAu i F A AIZ
p =220 B = ————-2-_- (3.5.29.a,b)
AIIAZZ - AIZ AHAZZ Al2

(3.5.30.2-¢)

After developing expressions for the directions of descent, equations
(3.5.22), and for the search step-sizes, equations (3.5.29), the iterative procedure
of the conjugate gradient method given by equations (3.5.21) can be applied for
the simultaneous estimation of &(7) and C(7).
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3-6 ESTIMATION OF THERMAL DIFFUSIVITY AND RELAXATION
TIME WITH A HYPERBOLIC HEAT CONDUCTION MODEL [13]

So far in this chapter, we considered inverse heat conduction problems
mathematically modeled by the parabolic heat conduction equation. The Fourier’s
Law serves as the constitutive equation relating the heat flux to the temperature
gradient in the classical theory of diffusion, based on the parabolic heat
conduction model. In accordance with Fourier’s Law, heat propagates with an
infinite speed in a conducting medium, that is, the effect of a thermal disturbance
is felt instantaneously, although not homogeneously, in all parts of the medium.
Despite such an unacceptable notion of energy transport in solids, Fourier’'s Law
is accurate in describing heat conduction in most engineering situations
encountered in daily life. However, there are practical situations in which the
effects of the finite speed of heat propagation become important. For such
situations, a constitutive equation which allows a time lag between the heat flux
vector and the temperature gradient is given by [14]

g(r.0)+ rf-"g-’-’l = —kVT(r,1) (3.6.1)

where tis the relaxation time, an intrinsic property of the medium. This equation,
when combined with the energy equation

T (r,t)

i (3.6.2)

-V-gq(r,0)+ g(r,t)= pe,

yields the following hyperbolic equation for heat conduction in the medium
[15,16]

8T(r,1)  O°T
+7
at a1

- aVZT(r,t)+—l—[g(r,t)+ . ag(””] (3.6.3)
pcp ot _

Equation (3.6.3) predicts a wave behavior for the heat propagation, where
the thermal wave speed, C, is related to the relaxation time and to the thermal
diffusivity by

c=[|2 (3.6.4)
T

Equation (3.6.3) has been applied on the modeling of physical processes
dealing with extremely short time responses, extremely high-rate change of
temperature and heat flux, initial conditions involving the time-rate change of
temperature (67 / J¢) and temperatures approaching the absolute zero [15-17]. In
experiments on the propagation of heat waves in liquid and solid helium, as well
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as in dielectric crystals at cryogenic temperatures, values of relaxation time of the
order of 10" seconds and of thermal diffusivity of the order of 10 m?/sec were
reported [17].

In this section we present an inverse analysis for the simultaneous
estimation of the thermal diffusivity o and the relaxation time t for a hyperbolic
heat conduction model, by using transient temperature measurements taken in a
semi-infinite region. The resulting parameter estimation problem is solved with
Technique 1, Levenberg-Marquardt Method, and an analysis of the sensitivity
coefficients permits the design of an optimum experiment with respect to the heat
flux boundary condition at the surface of the semi-infinite medium.

Direct Problem

The direct problem is concerned with the determination of the temperature
field in the medium, when the physical properties, the initial and the boundary
conditions are known.

Here we consider a semi-infinite medium with no energy generation,
subjected to a time-dependent heat flux at the boundary x = 0 and to equilibrium
initial conditions. The mathematical formulation of this problem is given by:

T &T &T

— T =g forx>0, t>0 3.6.5.a
ot ar’ ox’ ( )

T(x,0)=0 fqr t=0, x>0 (3.6.5.b)
%ﬂ} fort=0, x>0 (3.6.5.¢)
g(0,7) = go(?) forx=0 t>90 (3.6.5d)
where
T Jq
9’ === WD
g{(x,t) o T 5 (3.6.5.¢)

The solution of problem (3.6.5) is obtained by the application of
Duhamel’s Theorem [18,19]. For the case of go(f) containing N jump
discontinuities, it is given by

dg (')

! N-1
- 20N T
T(x,0) = .wa H— dt+; fxt-A)bg H(t-A4)  (36.6)

!

t
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where H(.) is the Heaviside step function, Ag; is the magnitude of the step change
in the surface heat flux at time A;, and ¢(x,?) is the solution of problem (3.6.5) for
go(f) = 1 W/m?,

Here we assume that go(f) is constant in each of the N intervals
A<t < Am, fori=0, 1, ..., N-1. Thus, the solution of problem (3.6.5) is obtained
as [19]:

Nolpg .
T(x,¢t)= Z—T"\/(ZTH[I—Zi _‘/;x]
i=0

—(e-A;)12¢ 1\/ 2 7 2] 1 r12e |1 |2 1 2
Il—\(=2) ——x" |+— _[ e Ij— 1" =—x" |dt'
¢ 0[21’ =4) a J T 0[21 o J
T
P

(3.6.7)

The corresponding parabolic solution of problem (3.6.5) for r= 0 is also
obtained via Duhamel’s Theorem and is given by [19]:

N-1
Aq,' . x
T(x,t)= ;T /4a(t - /1') le’ﬁ[-—ﬁa:(t——_r—)_] H(t - /11) (3.6.8.a)

where

2
ierfe(z) = ——\/1—_—8—z —zerfe(z) (3.6.8.b)
PR

Inverse Problem

The inverse problem is concerned with the simultaneous estimation of
thermal diffusivity and relaxation time, from the knowledge of transient
temperature measurements taken with a single sensor in the medium. The
boundary and initial conditions of problem (3.6.5), as well as the sensor location,
are assumed to be known exactly, but the temperature measured data may contain
random errors.

The solution of such an inverse problem is obtained so that the least
squares norm is minimized with respect to each of the unknown parameters. The
least squares norm is written in matrix form as

SP) =[Y-T®)] [Y-T(P)] (3.6.9.2)
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where
[Y-TP)] = [Y(rl )= T(t,;P).... Y(t,) - T, ;P)] (3.6.9.b)

P’ =[a,] (3.6.9.c)

Y(1,) is the measured temperature at time ¢, and [ is the total number of
measurements. The estimated temperature T(t;P) at time ¢ and at the
measurement location is obtained from the solution of problem (3.6.5) by using
an estimate for the unknown vector P.

The Technique I, Levenberg-Marquardt method, was chosen for the
minimization of the least squares norm (3.6.9.a). Such method requires the
computation of the sensitivity matrix, which for the present case involving the
estimation of the thermal diffusivity « and relaxation time 7, is given by:

- J
la Ir
J J
JPy=| ¥ o (3.6.10.a)
J J
L la lf_

where the sensitivity coefficients J’,a and J,_ are given as

o1(1,:P) o1(1,:P) _
Jia = e and J’,r = 5 for i=1,....I (3.6.10.b,c)
Details of the Levenberg-Marquardt method are omitted here for the sake
of brevity, but they can be found in section 2-1 in Chapter 2. The subroutine
DBCLSJ of the IMSL [4], based on this method, was used here to obtain
estimates for @ and 7, by using simulated experimental data, as described next.

Results

Before we proceed to the examination of the accuracy of Technique I, as
applied to the present inverse problem, we shall determine the timewise variation
of the heat flux at the boundary x = 0 which provides the most meaningful
temperature measurements for the estimation of thermal diffusivity and relaxation
time. This is accomplished by an analysis of the sensitivity coefficients Jm and

g, defined by equations (3.6.10.b,c). The sensitivity coefficients represent the

changes in the temperature T{z; P) with respect to the unknown parameters ¢ and
7. It is desirable to have large, linearly independent sensitivity coefficients and
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the sensors should be placed at locations where the temperature readings are most
sensitive to changes in the values of the unknown parameters.

Here we consider the following three different timewise variations for the
boundary heat flux in an experiment of duration ¢

(i) A constant heat flux of strength qo(t) = q,. For this case we have N=1
and Ago(7) = g, at 4o =0.
(i) On-Off Heat Flux with period P: The step changes in the heat flux are

ag, = (=1 29, fori=0,.,N-1 (3.6.11.2)

and the times when the changes Ag; occur are given by:

/1,_ = (i/2)P fori=0,.,N-1 (3.6.11.h)

where N = (2¢/P). The durations of nonzero and zero heat fluxes were
considered to be equal.
(iii)  Single-Pulse Heat Flux of duration A,: For this case we have N =2 with

t !
Ag, = —;{—qc at 2 =0 and Ag = "ich at 4 (3.6.11.c)

1 !

We note that the magnitude of the nonzero heat flux was chosen so that the
total energy input during the experiment would be the same for the three cases
considered.

For the sake of generality and simplicity in the comparison, the sensitivity
coefficients are determined in dimensionless form by introducing the following
dimensionless variables:

g=Tx0 . 4, 9 ., 1x (3.6.12.2-¢)
L q 2L
q. T c
é’=l£ a0 ="2 . 0=""_y (3.6.12.d-)
2 ;2 a Le T Lt
|agl lagl
where the characteristic length L is defined as

L=\Jar (3.6.12.g)

Figures 3.6.l.a-c present the dimensionless temperature variation for
constant, on-off and single-pulse boundary heat fluxes, respectively, at a position
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n = 0.5 and for an experiment of duration & = 1. For sake of comparison, the
dimensionless temperatures obtained from the solution of the parabolic problem
are also included in these figures.

1.0
Constant Heat Flux

0.8

DIMENSIONLESS TEMPERATURE
~

/ ——— Hyperbolic
0.2 . — — — Parabolic

0.0 BARARRAAARSARAARANY RARARSZON RARRARAZ S
0.0 0.2 04 06 08 1.0 1.2

¢ , DIMENSIONLESS TIME

Figure 3.6.1.a - Temperature distribution at position 7= 0.5 for a constant heat
flux applied at = 0.

Figures 3.6.2.a-c present the dimensionless sensitivity coefficients
corresponding to the three cases shown in figures 3.6.1.a-c, respectively. The
behaviors of the sensitivity coefficients for the hyperbolic problem are quite
different for each case considered; they look like their corresponding temperature
profiles shown in figures 3.6.1.a-c. For times £ < 0.5, the sensitivity coefficients
are zero because the thermal wave has not yet reached the point 7 = 0.5. For the
cases of on-off and single-pulse heat fluxes and for & > 0.5, the sensitivity
coefficients become very small and practically linearly-dependent during those
periods that correspond to a zero boundary heat flux, as seen in figure 3.6.2.b,c.
Such fact indicates that the simultaneous estimation of « and 7 is very difficult
for these two cases. For the on-off heat flux, the measurements would have to be
synchronized with the nonzero boundary heat flux, and for the single-pulse heat
flux, all the measurements would have to be taken during the very short period
when the temperature wave passes through the measurement point. On the other
hand, for the constant heat flux boundary condition for times £ > 0.5, the
sensitivity coefficients are not linearly dependent and attain relatively large
values, as seen in figure 3.6.2.a. Therefore, the foregoing analysis of the
sensitivity coefficients reveals that constant heat flux is the best boundary
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Figure 3.6.1.b - Temperature distribution at position 7= 0.5 for on-off heat
flux of period P = 0.1 applied at =0.
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Figure 3.6.1.c - Temperature distribution at position n=0.5 for a single-
pulse heat flux of duration A, = 0.1 applied at n= 0.
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condition among those examined, for simultaneous estimation of thermal
diffusivity and relaxation time in the case of hyperbolic heat conduction model.
In addition, temperature measurements taken before the wave reaches the
measurement point are useless for the inverse analysis, since the sensitivity
coefficients are null during this time.

The sensitivity coefficients for the estimation of & in parabolic heat
conduction are also included in figures 3.6.2.a-c. The magnitude of the sensitivity
coefficients changes much slower for the parabolic than for the hyperbolic case,
for the on-off and single-pulse heat fluxes. Also, the sensitivity coefficients for
the parabolic model begin to increase at very small times for all three cases
considered. These results are due to the diffusive behavior of the parabolic
solution. It is interesting to note that in the very popular Flash method [20] of
estimating thermal diffusivity, a semi-infinite medium is heated by a single-pulse
heat flux from a flash lamp or a laser, and one single temperature
measurement corresponding to half of the maximum temperature measured by the
sensor is used to estimate a. Indeed, figures 3.6.1.c and 3.6.2.c show that such
value of temperature corresponds to a sensitivity coefficient very close to its
maximum, which yields an accurate estimate for the thermal diffusivity.
However, such is not the case for the hyperbolic heat conduction model.

1.0; Constant Heat Flux
] —— 0, , Hyperboiic

n 2 --- Q. , Hyperbolic P
2083 . Q, . Parabolic_. -
Wi 3 -7
o -7
[ . r
& 0.6 '
O ] '
© 3 L e
> g e
> 0.4 '
= ] !
n . |
v ;
N 0.2 2

0.0 J ./ — T[T TTTY T T r T T T T Irrr g

06 08 1.0 1.2
¢, DIMENSIONLESS TIME

Figure 3.6.2.a - Dimensionless sensitivity coefficients for a sensor at 7= 0.5 for
a constant heat flux applied at = 0.
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Figure 3.6.2.b - Dimensionless sensitivity coefficients for a sensor at n=0.5
for on-off heat flux of period P = 0.1 applied at n=10.
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Figure 3.6.2.c - Dimensionless sensitivity coefficients for a sensorat n=0.5
for a single-nulse heat flux of duration 2, =0 1 annlied at n=10
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We present below the results obtained for the simultaneous estimation of a
and 7, by using simulated measurements containing random errors with standard
deviations of & = 0.01 Ty and o = 0.03 T, where T, is the maximum
measured temperature. Exact values of 7= 10 sec and @ = 0.1, 1 and 10 m?¥/sec
were used in the direct problem, in order to generate such simulated measured
data. Values in this range were reported in an experimental work involving
crystals at cryogenic temperatures [17]. Table 3.6.1 shows the estimated values
for @, r and for the 99% confidence interval of the parameters, as well as the
initial guess used for the Levenberg-Marquadt Method. For the inverse analysis
we used 46 transient measurements obtained with one single sensor located at
x = 0.005 m below the boundary surface. These measurements were obtained
after the heat wave reached the measurement point and the duration of the
simulated experiments was taken as twice the time that the heat wave took to
reach such a location.

Table 3.6.1 - Results for 7= 10" seconds.

a T
2 -6
m~ /sec 10 " sec
o Exact Estimate | Initial | Confidence Exact Estimate | Initial | Confidence
Guess Interval Guess Interval

0.017T s 0.1000 0.1001 [ 0.0100 | +0.0006 1.0000 1.0i23 | 0.0200 | +0.0729

| 0.03Ts 0.1000 0.1004 | 0.0100 | 10.0018 1.0000 1.0368 | 0.0200 | +0.2161

0.01 Toer 1.0000 1.0015 | 0.1000 | +0.0049 1.0000 1.0322 | 0.0200 | +0.0902

0.03T e 1.0000 1.0046 | 0.1000 § 30.0147 1.0000 1.0967 | 0.0200 | +0.2704

0.017a | 10.0000 | 10.0933 | 0.1000 { +0.2739 1.0000 0.9409 | 0.0200 | +0.1734

0.03T,. | 10.0000 | 10.2871 | 0.1000 | 10.8788 1.0000 0.8163 | 0.0200 | +0.5653

The results shown in table 3.6.1 reveal that Technique I provides accurate
estimates for both the thermal diffusivity and relaxation time. Generally,
convergence was achieved with initial guesses of one order of magnitude smaller
than the exact value for a, and two orders of magnitude smaller for 7 ; but there
are cases for which convergence was obtained even with initial guesses of two
orders of magnitude smaller than the exact values for both « and z. On the other
hand, convergence difficulties were observed when initial guesses larger than the
exact values were used, since the sensitivity coefficients are shown to be very
small in such cases.

3.7 ESTIMATION OF CONTACT CONDUCTANCE BETWEEN
PERIODICALLY CONTACTING SURFACES {21}

Problems involving periodically contacting surfaces have different
practical applications, including, among others, the contact between a valve and
its seat in internal combustion engines. We illustrate the application of
Technique IV to the estimation of the timewise variation of contact conductance
between two one-dimensional solids with periodic contact. Small periods are
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usually the most difficult to perform an inverse analysis. The present approach is
found to be accurate and stable, even for situations involving very small periods.

As discussed previously, the solution of this inverse problem by Technique
IV requires the development of the direct, inverse, sensitivity and adjoint
problems as well as the gradient equation. These basic steps to solve the problem
are described next. Details on the other steps of Technique IV can be found in
section 2-4.

Direct Problem

Figure 3.7.1 shows the geometry and the coordinates for the one-
dimensional physical problem considered here. Two rods, referred to as regions 1
and 2, are contacting periodically with period 7 and with a contact conductance
k() at the interface. The non-contacting ends are kept at constant, but different
temperatures T; , and Toz. It is assumed that sufficient number of contacts has

been made, so that the quasi-steady-state condition is established for the
temperature distribution in the solids, that is, the temperature distribution in the
regions during one period is identical to that in the following period.

The mathematical formulation of this heat conduction problem is given in
dimensionless form as:

Region1(0 < x < I):

&'T T, _

_21=-— in 0<x<1, for t>0 (3.7.1.a)

Ox ot

Tl ={ at x=0, for 1>0 (3.7.1.b)
7,

- L=kt [TlmTz] at x=1, for 1>0 (3.7.1.c)

T](x,O) = T](x,z') (3.7.1.d)

Region2(l s x < 1+L)

&T, 4T

: 15 inl<x<l+l , for t>0 (3.7.2.3)
Ox a &t

T,
~ k=2 = h(t) [TI—TZ] at x=1, for t>0 (3.7.2.b)
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T2=1 at x=1+L , for t>0 (3.7.2.¢)
T, (x,0)=T,(x.7) (3.7.2.d)

where the following dimensionless quantities were defined

x=_f_ h=.’.l_i t:gl_t_ a=.—?—2. T= T-T;” k:f}_ L=_L_2_

— — —3 — — = =

L k, L ¢, I, T, k, L
(3.7.3.2-g)

and the superscript “~” above indicates dimensional variables.

Region 1 H\'E)\ Region 2
— :“1 z 1 1 2 N,| _
" 01 ¢ T R Y
‘ 81] 31} & EzJ
f T !
L1 Lz
Lo "I

Figure 3.7.1 - Periodically contacting solids.

The direct problem considered here is concerned with the determination of
the temperature field in the regions when the thermophysical properties, interface
conductance, 4(7), and the boundary conditions at the outer ends of the regions
are known.

Inverse Problem

For the inverse problem, the interface conductance, A(¢), is regarded as
unknown, but everything else in the system of equations (3.7.1-2) is known and
temperature readings taken at some appropriate locations within the medium are
available.

Referring to the nomenclature shown in figure 3.7.1, we assume that N,
sensors are located in Region 1 and N, sensors are located in Region 2. The first
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sensors are located at distances 51 and (5_'2 from the interface, while the remaining
sensors are located with equal spacing of Zl in Region 1 and Zz in Region 2.

Let the temperature recordings taken with these sensors over the period
to be denoted by:

Ywy)=Y,, , i=1,2,.,N;inRegion ] and
Yy(h=Yy , j=1,2,.,N,inRegion 2.

Then, the inverse problem can be stated as: By utilizing the above
mentioned measured temperature data Yy; (i = 1, 2,.., Njyand Yy, (j = 1, 2,..., Ny),
estimate the unknown interface conductance A(f) over the period 7.

It is assumed that no prior information is available on the functional form
of h(?), except that the period 7 is known. We are after the function k() over the
whole time domain (0, ), with the assumption that A(f) belongs to the space of
square integrable functions in this domain, i.e.,

_[[h(:)Pd: <®
t=0

The solution of the present inverse problem is to be obtained in such a way
that the following functional is minimized:

T

Nl T N2
slhn)= j ST, - ) |a+ j DT, -1, ) |a (3.7.4)

=0 i=1 1=0| j=1

where Ty; = Ti(f) and Ty = Ty{t) are the estimated temperatures at the
measurement locations in regions ! and 2, respectively.

Sensitivity Problem

The sensitivity problem is obtained from the direct problem defined by
equations (3.7.1) and (3.7.2) in the following manner. It is assumed that when
h(t) undergoes a variation AA(f), T(x,f) is perturbed by AT\(x,t) and Ty(x,) is
perturbed by AT(x,). Then, by replacing in the direct problem h{s) by
[A(ry + AAD)], Tilx8) by [Ti(x,1) + ATy(x,0)] and T(x,f) by [Ta(x,1) + ATx(x,0)],
subtracting from the resulting expressions the original direct problem and
neglecting second-order terms, the following Sensitivity Problem for the
sensitivity functions AT (x,f) and AT,(x,?) is obtained:
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Region 1 (0 < x < 1):

FAT  OAT
= — in 0<x<1, for >0
Ox ot
AT]=0 at x=0, for t>0
OAT

- - 24(1) [7.-7,] +4(r) [T - 4T}
at x=1, for t>0

AT, (x,0)= AT, (x,7)

Region2 (1 < x < 1 +L):

2
é’x2 a ot

AT, | OAT.
-2 inl<x<1+L, fort>0

OT,
k=00 [T-T] K1) [T - 47
at x=1, for t>0

AT =0 at x=1+L , for t>0

AT, (x,0)= AT, (x,7)

Adjoint Problem

(3.7.5.2)

(3.7.5.b)

(3.7.5.c)

(3.7.5.d)

(3.7.6.a)

(3.7.6.b)

(3.7.6.c)

(3.7.6.d)

In the present inverse problem, the estimated temperatures need to satisfy
two constraints, which are the heat conduction probtems for regions 1 and 2,
given by equations (3.7.1) and (3.7.2), respectively. Therefore, two Lagrange
multipliers come into picture here. To obtain the adjoint problem, equation
(3.7.1.a) is multiplied by the Lagrange multiplier 1,(x.f), equation (3.7.2.a) is
multiplied by the Lagrange multiplier A;(x,?) and the resulting expressions are
integrated over the time and space domains. Then, the results are added to the
right-hand side of equation (3.7.4) to yield the following expression for the

functional S[A(?)]:



INVERSE CONDUCTION 173

T Nl T N2
2 * A
shn)= J' Z(Tli—-Yli) ae [ |3, -7, ) lde+
t=0] =1 =0 /=1
2’1, or, ] P 1l T, 1T
J' J-/l(x,t) T dxdt+I /12(x,:)~---»3-’--~—5—2 dx di
t=0x=0 ox i =0 x=1 ox a ot

(3.1.7)

The variation AS[A(f)] is obtained by perturbing Ty(x,?) by AT(x,?), Tx(x,0)
by ATy(x,) in equation (3.7.7), subtracting from the resulting expression the
original equation (3.7.7) and neglecting second-order terms. We find

T N T N
AS[r(H)]= szar (T, ~Y )dr+ JZZAT (T,,-Y, ydr+
=0 i=l t=0 /=1
r 1 2
A S°AT.  OAT
+ A (x,0) 21- a;l dx dt + (3.7.8)
l=.0x;0 ox
ars O°AT, | OAT.
+ ,1 (x,1) 2 - 3 2 |dx dt
t= Ox 1 Ox @ !

In equation (3.7.8), the last two integral terms are integrated by parts; the
initial and boundary conditions of the sensitivity problem given by equations
(3.7.5.b-d) and (3.7.6.b-d) are utilized and then AS[A()] is allowed to go to zero.
The vanishing of the integrands containing AT)(x,f} and ATy{x,!) leads to the
following adjoint problem for the determination of the Lagrange multipliers
Ai(x,0) and Ay(x,1):

Region 1 (0 < x < 1):

2 N

g A PA L

e -y Jole-x )20 in0<x<l.forr>0  (379a)

St li li i

éx i=1

A=0 at x=0, for t>0  (3.7.9.b)

5/1 A,

}-—*-—h(t) ——l at x=1, for t>0 (3.7.9.c)
X

A (x7)=4 (x,0) (3.7.9.d)
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Region2 (1l < x < 1+L):

" A oA
22+ 1 2+ZZ(T2.—Y2.)5(x—x,)=O
ax o ﬁ[ j=l J J J
inl<x<l+L,fort>0 (3.7.10.a)
oA A
—2=p()—2-4 atx=1, for t>0 (3.7.10.b)
Ox kool
/12=0 atx=1+L ,fort>0 (3.7.10.¢)
A, (x7)=2,(x0) (3.7.10.d)
where &(°) is the Dirac delta function.
Gradient Equation

In the limiting process used to obtain the adjoint problem above, the
following integral term is left:

4,0,
AS[A(1)] = I{[ 2 t)—ll(l,t)}[T](l,f)—Tz(l,t)]}Ah(t)dt (3.7.11)

k
1=0
From the assumption that A(t) € Ly(0,7), AS[A(r)] is related to the gradient
VSEh(1)] by:

AS[h(H)] = IVS[h(t)]Ah(t)dt (3.7.12)
t=0

Thus, a comparison of equations (3.7.11) and (3.7.12) leads to the
following expression for the gradient VS[A(¢)] of the functional S[A(5)}:

A (Lt
vs[mo]:ﬂ Zi )—,1‘(1,:)][7'[(1,1)—Tz(l,z)]} (3.7.13)
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Iterative Procedure

The following iterative procedure of Technique IV is used for the
estimation of A(?):

HYo=rtw-pdt e (3.7.142)

where f* is the Search Step Size in going from iteration k to iteration k+1, and
d*(?) is the Direction of Descent given by:

¥ = VS[hk(t) +y ' (3.7.14.b)

which is a conjugation of the gradient direction VS[H'(#)] at iteration & and the
direction of descent d*"'(r) at iteration -1. The Conjugation Coefficient ¥* is
determined from the Fletcher-Reeves expression as

}{VS[hk (r)]}2 dt

yt = =0 fork=12,.. with ) =0 fork=0 (3.7.14.)

]{VS[hH (z)]}2 dt

=0

The step size ' is determined by minimizing the functional S[h(1)] defined by
equation (3.7.4) in the following manner. By utilizing the expression for #**!(z)
given by equation (3.7.14.a), the functional given by equation (3.7.4) takes the
form:

S[h"*'(z)] IZ[ W - gat Y]dt

=0 1! (3.7.15)
)

_[Z[ (h —,Bd Y]dt

J:

By linearizing the temperatures T 1,(h" ﬂ*d") and sz(h - ﬁ"’d*) and
minimizing the resulting expressmn with respect to ,0" we obtain the following
expression for the search step size (see Note 7 in Chapter 2):
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L N,
[ {3ln-nlan+ 2[5, -1, Jor,
= f=1 j=]
gt =2 / (3.7.16)
: / Nl 2 N2 2
Z[AT“] + [Asz] dr
t=0 i=1 j=]

where T); and T, are the solutions of the direct problem (3.7.1) and (3.7.2),
obtained by using the current estimate for A(f); while the sensitivity functions ATy,
and ATy, are the solutions of the sensitivity problem (3.7.5) and (3.7.6), obtained
by setting Ah(f) = d*(z).

Results

The problems of periodically contacting surfaces involving very small
periods are the most difficult to perform an inverse analysis. Therefore, to
illustrate the accuracy of Technique IV under very strict conditions, we examine
the problems for very small periods.

Consider two identical regions each of length L =L, =0.Im

and made of brass (I?' =l?2 =106.1 W/mK; ('i] =¢:72 = 3.4><10.S m2 /s) studied

experimentally in reference [22] and theoretically by solving the inverse problem
using B-Splines in reference [23]. Each region contains four sensors and 18
measurements are made per sensor per period. Figure 3.7.1 shows the notation for
the geometry, while Table 3.7.1 lists typical dimensional and dimensionless
sensor locations, as well as periods of variation of A(f).

Let A(f) vary in the form

(3.7.17)

H(r) = 2 for the contact period
1o for the non - contact period

This dimensionless value of A(7) = 2 corresponds to a dimensional contact
conductance of 2122 W/mzK, which is encountered in the contact of metallic
wavy surfaces [24]. Both exact and inexact simulated temperature measurements
are considered, but all the other quantities used in the inverse analysis are
assumed to be etrorless.
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Table 3.7.1 - Periods and sensor locations

Dimensionless Dimensional
10" 29.41s
Period 10° 2.94 s
10° 0.29s
Sensor 5= A=0.005 8 =A=05mm
Locations 5=A=001] d=A=1mm
6=0.05A=0.1 S =5mm: A =10 mm

Due to the periodic characteristic of the problem, it is shown [25] that
under the quasi-steady-state condition, the temperature distribution in the regions
vary only within a finite depth of &y beiow the surface. The temperature
distributions in each region at the end of the contact (7;) and non-contact (7')
periods are presented in figure 3.7.2 for = 10", Therefore, if the sensors are
located outside this thermal layer &, no difference can be detected between the
temperature measurements for the contact and non-contact periods. Thus, to
obtain meaningful results from the temperature measurements, the sensors must
be located within the thermal layer §7. Here we define &7 as the depth below the
surface such that

-T

/2 t

> ¢, (3.7.18)

where ¢ 5 is a fixed tolerance.

Figure 3.7.3 shows the effects of the period rand the contact conductance
h during the contact period, on the dimensionless thickness &7 of the thermal
layer, for a tolerance £5 = 10, We note that the value of the contact conductance
has negligible effect on &67; on the other hand, Jr is strongly dependent on the
period 7, such that 57 becomes very small for short periods. As an example, for
the physical case considered here, for r= 10 (i.e., 0.029 s) the thermal layer is of
the order of 10”, which corresponds to tenths of millimeter. The results presented
in figure 3.7.3 are obviously dependent on the tolerance &5, which is directly
related to the accuracy of the sensors used. Therefore, these results are just a
qualitative indication of the behavior of the thermal layer, with respect to
variations in /2 and 7.
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Figures 3.7.4 to 3.7.6 show the results obtained with simulated errorless
measurements for the periodically varying contact conductance in the form of a
step function. Note that for the 3 cases considered, the solutions obtained with the
conjugate gradient method (CGM) are more accurate than those obtained with
h(t) parameterized with B-Splines in reference [23]. As a matter of fact, the B-
Splines solutions exhibit oscillations near the discontinuities, which increase with
decreasing period. On the other hand, the solutions with the Conjugate Gradient
Method are very stable and do not exhibit oscillations, even for very small
periods.

Similarly, the estimation of A(f) with B-Splines become unstable when
measurements with random errors are utilized in the analysis; but reasonably
accurate results can be obtained with the conjugate gradient method of function
estimation. This is illustrated in figure 3.7.7 for the period r = 10" and for a
standard-deviation of the measurement errors of o= 0.0065.

We define the root mean square (RMS) error as

I
€args = \/—;—Zl[hex(t)—hes! (:)]2 (3.7.19)

where [ is the number of transient measurements per sensor, while the subscripts
ex and est refer to the exact and estimated contact conductance, respectively.
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Figure 3.7.4 - Inverse solution for exact measurements and 7= 10,
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Figure 3.7.6 - Inverse solution for exact measurements and 7= 10",
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Figure 3.7.7 - Inverse solution for o= 0.0065 and 7= 10~

Table 3.7.2 shows the values of egys for cases involving measurements
with standard-deviation o = 0.0065. Clearly, the RMS error increases as the
period decreases and, for 7= 107, the RMS error for the B-spline method is much
higher than that for the conjugate gradient method. The increase in the RMS error
with decreasing period is expected. This is due to the fact that for shorter periods,
the measurement error increases relatively to the maximum temperature variation
in the regions. This maximum variation occurs at the contacting interface (see
figure 3.7.2) and gives the upper limit of the temperature variations the sensors
will measure. The ratio between the measurement error e at the 99% confidence
level for o= 0.0065 and the maximum temperature variation in the regions 7,,, is
presented in the last column of table 3.7.2.

Table 3.7.2 - Total rms error and relative error

Period erMS e/Tyr
B-spline CGM

10 0.36 0.36 0.15

107 0.60 0.43 0.42

107 2.90 0.58 1.67
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3-8 ESTIMATION OF THE CONTACT CONDUCTANCE BETWEEN
A SOLIDIFYING METAL AND A METAL MOLD [26,27]

Heat transfer problems involving melting or solidification have different
practical applications in engineering, including, among others, the solidification
of metals, thermal storage of heat, cooling of electronic equipment, production of
ice, etc. [18].

Phase-change problems involving melting or solidification of pure
substances or of eutectic alloys are characterized by the existence of a sharp
interface between the solid and liquid phases. The temperature of this interface
remains constant and equal to the melting temperature (7,) of the material. On
the other hand, when the phase-change phenomena takes place in mixtures, non-
eutectic alloys or impure materials, there exists a two-phase (mushy) region
between the solid and liquid phases, and the phase-change takes place over an
extended temperature range. In such cases, it is considered to exist an interface
between the solid and mushy phases at the constant solidus temperature T, and an
interface between the mushy and liquid phases at the constant liguidus
temperature T).

The one-dimensional solidification of pure and impure materials is
illustrated in figure 3.8.1. The material, initially at a temperature T; larger than the
melting temperature (figure 3.8.1.a) or liquidus temperature (figure 3.8.1.b), is
put into contact with the boundary surface at x = 0, which is maintained at a
temperature 7o below the melting temperature (figure 3.8.1.a) or solidus
temperature (figure 3.8.1.b). As a result, solidification takes place and the solid-
liquid interface in the case of pure materials (figure 3.8.1.a), as well as both the
solid-mushy and mushy-liquid interfaces in the case of impure materials (figure
3.8.1.b), move towards the x > 0 direction. The location of such interfaces is not
known a priori and, hence, phase-change problems are non-linear. Therefore,
analytical solutions for phase-change problems are available only for simple
geometries, such as one-dimensional semi-infinite medium, and for cases
involving simple boundary conditions, such as the prescribed temperature at the
boundary surface [18]. For general cases, phase-change problems need to be
solved numerically.

Different numerical techniques for the solution of phase-change problems
were developed in the past, including single-region and multiple-region methods
[18,26-36). Single-region methods involve one single general formulation that is
valid for the solid, liquid and mushy phases, as well as for the interfaces between
phases [26-31,35,36]. On the other hand, in multiple-region methods each phase
is modeled by a different governing equation and interface conditions are used to
couple the formulations of adjacent regions [18,32-34]. Single-region methods
are advantageous because of their simplicity; but they cannot be extended to take
into account the coupling between microscopic and macroscopic phenomena, as
multiple-region methods can [32-35].
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Figure 3.8.1 - One dimensional solidification of pure substances (a) and of
impure substances or alloys (b).

If the effects of fluid flow in the liquid phase are negligible, convection
heat transfer can be neglected and the phase-change problem can be formulated
only in terms of heat conduction.

In this section we present the solution of an inverse phase-change
problem, involving the estimation of the contact conductance between a
solidifying metal and a metal mold [26,27]. Convective effects on the liquid
phase are neglected. The transient contact conductance is estimated by using
Technique IV, the conjugate gradient method of function estimation. The direct
problem involving the solidification of the metal is solved with the Implicit
Enthalpy Method, which is a very straightforward single-region method [26-
31,36]. Both simulated and actual experimental data were used in the analysis.
Such experimental data were obtained with an apparatus based on unidirectional
solidification.

The details of the experimental apparatus and of Technique IV, as applied
to the estimation of the unknown transient contact conductance, are described
next.

Direct Problem

A bottom filling solidification apparatus based on the unidirectional
solidification principle, as illustrated in figure 3.8.2, was constructed to study
experimentally the air gap conductance between the mold and the casting. It
consists of a pouring sprue, a runner and a slightly tapered rectangular mold.
Molten metal poured into the sprue gradually fills the space and eventually comes
into contact with the chill-plate, through which heat is extracted from the
solidifying ingot. The determination of the air gap conductance between the
chill-plate and the solidifying ingot is the subject of this investigation. The chill-
plate, which can be made of copper, steel or any other material, is clamped to the
open face of the apparatus and cooled uniformly by a water jet.
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To ensure unidirectional solidification, as well as to avoid premature
freezing of the melt and the moisture-induced oxidation of the melt during
pouring, the entire unit is preheated to above the liquidus temperature of the
metal, prior to pouring.

Cooling
fluld oul \
e g

Cooling —e 1+ Pouring
fluld in sprus
/ ............ (D -1 mm from chiil-plate
—2 5 mm trom chill ~piate
Copper chill- Lot +—insulsting
plate (2.45 mm) ~—® 10 mm trom chiil-plate casisble
o= —® ceramic
Mold

reglon

La ]

Decaniing
plug

Figure 3.8.2 - Experimental solidification apparatus.

Transient temperature recordings were taken with 28 gauge (0.012”)
chromel-alumel thermocouples placed at pertinent locations in the chill-plate and
casting region and the temperature-time data were obtained with computer
controlled data acquisition system at a rate of 6 readings per second.

The transient temperature data taken as a function of time in the casting
and in the metal mold are used in the inverse analysis in order to estimate the
timewise variation of the unknown interface conductance.

For the present study, the direct problem is the mathematical formulation
of the following solidification problem: Suppose a molten metal suddenly comes
into contact with a cold chill-plate and the timewise variation of the contact
conductance /.(f) between the chill-plate and the solidifying casting is known.
Assuming constant properties, the mathematical formulation of such a problem is
given by:

The Chill-Plate (0 < x < b):

2
74 Tp(x,t) e ﬁTp(x,t)

S — in0<x<b,fort>0 (3.8.1.a)
F é'xz root

Tp=f(t) atx =0, forz>0 (3.8.1.b)
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orT
k —£=h)(T-T) atx=b, for1>0 (3.8.1¢)
P ox ¢ ¢ p
TP=Tp0 in0<x<b, fort=0 (3.8.1.d)

where C = P,C, is the heat capacity per unit volume, while P, and ¢ are the
P

density and the specific heat of the plate, respectively. Boundary condition
(3.8.1.b) implies that the temperature of the outer surface of the chill-plate is
available from temperature measurements by a thermocouple. This eliminates the
necessity to know the convection heat transfer coefficient between the chill-plate
and the cooling fluid.

The Casting Region (b < x < a):

To alleviate the tracking of the moving interface, the enthalpy form of the
energy equation is used for the casting region.

2
MR ACONNACY)

T P, o inb<x<a,fort>0 (3.8.2.a)

or
k —<=h0)(T -T) atx=2», fort>0 (3.8.2.b)
c o"x ¢ ¢ P
T
—£=0 atx =g, fort>0 (3.82.)
ox
T =T, inb<x<a, forr=0 (3.8.2.d)

where a'Hc B cch is the enthalpy change of the casting material; c. and p, are

respectively the specific heat and density of the casting, which initial temperature
is T, <0+

The objective of the Direct Problem is the determination of the
temperature field inside the chill-plate and the casting region.

Inverse Problem

For the inverse problem considered here, the contact conductance Ac{?) is
regarded as unknown and is to be estimated by using the temperature
measurements of N, sensors located inside the chill-plate and of N, sensors
located inside the casting region. The function A(f) is estimated through the
minimization of the following functional
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‘7N Ny
Slk (1)) = J' Z(T],.-Y“)"’+Z(T2j—yzj)2 dt (3.8.3)
(=01 i=! Jj=1

where I; ,- 57; (x“,t) and Y“_ are the estimated and measured temperatures,
respectively, at a location x in the chill-plate. Similarly, T ;= Tc (xzj,t) and Y2 ;
are the estimated and measured temperatures, respectively, at a location xzj in the
casting region. If an estimate is available for A.(f), the temperatures T and T ;

can be computed from the solution of the direct problem defined by equations
(3.8.1) and (3.8.2).

The minimization of the functional (3.8.3) with Technique IV requires the
solution of the sensitivity and adjoint problems. The development of such
auxiliary problems is described next.

Sensitivity Problem

Suppose h(f) undergoes a variation Ah(f). Then let AT, »» AT, and AH, be
the corresponding variations of the plate temperature, casting temperature and
casting enthalpy, respectively. To construct the sensitivity problem we replace T,
by [T, + AT}, T. by [T, + AT.], H.by [H. + AH,] and h, by [h, + Ak} in the direct
problem given by equations (3.8.1) and (3.8.2) and then subtract equations (3.8.1)
and (3.8.2) from the resulting equations. The following sensitivity problem is
obtained for the determination of the functions AT, and AT, in the chill-plate and
casting, respectively.

The Chill-Plate (0 < x < b):

G AT (x,1) AT (x,1)
P =C —f in 0<x<b, for t>0 (3.84.3)

P ot L
ATp =() atx =0, fort>0 (3.8.4.b)
AT

k E=h()(AT —AT )+Ah (1)(T ~T) atx=5, fort>0  (3.8.4.)
P 5x ¢ ¢ P c ¢ p

ATP=O in0<x<b, fort=0 (3.8.4.d)
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The Casting Region (b < x < a):

&AT (x,1) . AT (x,1)

Tl R in b<x<a, fort>0  (3.8.5.a)
AT
k 2 < =h(t) (AT -—ATP)+Ah @» (T —Tp) atx=», fort>0 (3.8.5.b}
¢ X c [ [ [
OAT
£=0 atx=a, fort>0 (3.8.5.¢)
ox
AT =0 inb<x<a, fort=0 (3.8.5.d)

<

In equation (3.8.5.a) we replaced AH, by its equivalent ¢ AT, since this is
not a phase change problem. Therefore it can be solved with standard finite
difference techniques.

Adjoint Problem
To derive the adjoint problem, we multiply equations (3.8.1.2) and
(3.8.2.a) by the Lagrange Multipliers /lp(x,t) and /lc(x,t), respectively;

integrate the resulting expressions over the time and correspondent space
domains; and then add the resultant equation to the functional given by equation
(3.8.3). The following expression results:

’f Nl

Ny
STk (1)]= _[ Z(T“—Y“)%Z](sz—yzj)z dt +
j:

t=0 |=]

1T, e,

j' jzp(x,z) k, — -C, =~ |dvar+ (3.8.6)
t=0x=0 L
. -
fI ‘]',1( ) & o', oA, dxd

x,! -p t

[ c 2 c

=0x=b ox ot

The variation of the extended functional (3.8.6) is obtained and allowed to
go to zero. After some manipulations, as outlined in section 2-4, we obtain the
following adjoint problem for the Lagrange Multipliers /lp (x,t) and Ac(x,t) .
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The Chill-Plate (0 < x < b):

2 N

274 (x,1) A (x n 1

—2 v, —2 TS ofr -y Yol
P ox Pt i=
A =0
P

o4

—P _ -
k,—E=h()(2,~4)

The Casting Region (b < x < a):
2
o Ac(x,t) c?i ZZ (

2
¢ ox

oA,
kc—ﬁ? = hc(t) (;{C "/‘{p)

oA
€=
Ox

A =0

[+
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x,)=0
I
in0<x<b, for 0<r<y,

atx=0, for 0<t<y

atx=»5, for 0<t<y

in0<x<p, for 1=

e,

inb<x<a, for 0<r<y

atx=»5, for 0<r<y

atx=a, for 0<t<y

inb<x<a, for t=y

(3.8.7.2)

(3.8.7.b)

(3.8.7.¢0)

(3.8.7.d)

(3.8.8.a)
(3.8.8.b)

(3.8.8.0)

(3.8.8.d)

Note that the adjoint problem defined by equations (3.8.7) and (3.8.8) is
not a phase change problem and can be solved with standard finite difference

techniques.

Gradient Equation

In the process of obtaining the adjoint problem, the following integral term

1s left:

‘r

AS[h (1)) = J{[Ac(b,t) =2, (BN (6.~ T (B0} Ak (1)ds

=0

(3.8.9.2)
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By assuming that 4(¢) belongs to the space of square integrable functions
in the time domain 0 <# < ; we can write

t
f

ASTh (= [VSlA,(O18k, (1) i (3.8.9.b)
=0

Therefore, by comparing equations (3.8.9.a) and (3.8.9.b), we can obtain
the gradient equation for the functional as

VS[hC N]= [zlc(b,t) - ﬂp (b,t)][Tp(b,t) - Tc (5,1)] (3.8.10)

Iterative Procedure

The following iterative procedure of Technique IV is used for the
estimation of the contact conductance h.(f):

hf*‘(r):hf 1) - g5 d* ) (3.8.11.2)

where the superscript & refers to the number of iterations and the direction of
descent is given by

d* (0= vsth* 1+ d 1) (3.8.11.b)

The conjugation coefficient is obtained from the Fletcher-Reeves
expression as

!

k ]'{vs[h: (t)]}zdt

y =z'f=0 for k=1,2,3,... withy"=0 (3.8.11.)
2

Hvs[h:“‘(r)]} dt

=0

An expression for the search step size is obtained by minimizing the
functional given by equation (3.8.3) with respect to B*. We obtain (see Note 7 in
Chapter 2):

t
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rf N] L N2 )
[ 1287, @M, - 1,0+ 3 AT, (@i, -, )
g =~ (3.8.11.d)
rf N1 5 N2 ,
J Z{A%(d")} +Z[AT2j(d")] dr
=0 | i=l J=1

k . k .
where AT, (d") = AT, (x,.1).i =1,.., N, and AT, (d")= AT, (x, .0),j =1, N,

are the solutions of the sensitivity problem given by equations (3.8.4) and (3.8.5),
for the chill-plate and casting regions, respectively, obtained by setting

Bk (1) = d').

Results

In order to examine the accuracy of the conjugate gradient method, as
applied to the analysis of the inverse solidification problem previously described,
we studied test cases by considering a fictitious interface conductance and using
simulated temperatures as the input data for the inverse analysis. The simulated
temperature data were generated by solving the direct solidification problem for
aluminum, on a geometry similar to that of the experimental rig and for a
specified functional form of the interface conductance.

A proper choice for the locations of the temperature sensors is important
for the success of the inverse analysis. The temperature readings taken with one
thermocouple located near the cooled side of the plate served as the boundary
condition for the solidification problem. The temperature readings from another
thermocouple located in the chill-plate near the casting side and from one more
thermocouple placed in the casting region near the plate, were used for the
inverse analysis. Inverse calculations were performed by using simulated
temperature data with and without measurement errors. The effects of errors in
the thermocouple locations on A.(f) were also examined. These matters are
discussed below.

Figure 3.8.3.a shows the estimated values of the contact conductance A,
plotted as a function of time, obtained by using simulated temperature data
containing no measurement errors, for the case of a 6mm thick steel plate with 2
thermocouples embedded into the plate at a distance 4mm apart, in the direction
normal to the surface of the plate. A third thermocouple was located in the
casting at a distance | mm from the surface of the chill-plate. A comparison of
the exact and the estimated values of the contact conductance k. shown in figure
3.8.3.areveals that they are in excellent agreement. In the solution of inverse heat
conduction problems with the conjugate gradient method, the value of A, at the
final time is the same as the initial guess for /. used to start the calculation. This
difficulty was alleviated by repeating the calculations with an initial guess chosen
as the value of A, at several time steps before the final time. Figure 3.8.3.b shows
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the estimated and the exact temperatures at the plate thermocouple located at the
casting side of the plate.
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Figure 3.8.3.a - Estimated contact conductance obtained from simulated
experimental data with no measurement error (6 mm thick steel chill-plate).

150

10C

TEMPERATURE , °C

50

! L 1l i

0 20 40 80 80 100
T™E , s

Figure 3.8.3.b - Estimated and exact simulated temperatures for the
thermocouple in the chill-plate (6 mm thick steel chill-plate).

Figure 3.8.4 shows the estimated and the exact values of the contact
conductance &, for the same thermocouple configuration used before, but for a
6mm copper chill-plate. We note that during the first 5 or 6 seconds, the
estimated values of the contact conductance A are not accurate. This is because
of the small value of the temperature difference between the readings of the two
thermocouples embedded in the plate, resulting from the high thermal
conductivity of the copper chill-plate. Since the readings of one of the plate
thermocouples are used as the boundary condition for the solidification problem
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and the readings of the other are used for the inverse problem, the accuracy of the
estimation is impaired if the temperature difference between them becomes small.
After a few seconds from the initiation of the solidification, the solid-liquid
interface reaches the thermocouple located in the casting at a distance 1mm from
the plate surface. Then, the thermocouple in the casting provides useful
information to perform the inverse analysis and the agreement between the
estimated and the exact values of the contact conductance begins to improve.
Such behavior was also observed in simulations using thinner plates, with one
thermocouple placed inside the chill-plate and one thermocouple in the casting
region. The former served as the boundary condition for the solidification
problem and the later to perform the inverse analysis.
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Figure 3.8.4 - Estimated contact conductance obtained from simulated
experimental data with no measurement error (6 mm thick copper chill-plate).

Figure 3.8.5 shows the exact and estimated contact conductances by using
a 6mm thick copper chill-plate with two thermocouples embedded into the plate
at a distance 4mm apart. The only difference between figures 3.8.4 and 3.8.5 is
that in the later, the contact conductance is larger, thus allowing larger heat flux
across the plate. As a result, the temperature difference between the two
thermocouples is larger and the accuracy of the inverse analysis is significantly
improved.

Figure 3.8.6 is prepared in order to illustrate the effects of the input data
containing measurement errors on the estimation of A, with the present inverse
analysis. For this case it is assumed that the standard deviation of the
measurement errors is o = 0.5 for the mold region and o = 1| for the casting
region. These values are based on the actual calibration data for the thermo-
couples. Since the measured data contains measurement errors, the discrepancy
principle was used to terminate the iterations. The results shown in figure 3.8.6
are for a 6mm thick steel chill-plate with two thermocouplies embedded into the
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plate at a distance 4mm apart. The agreement between the exact and the estimated
contact conductance is good.
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Figure 3.8.5 - Estimated contact conductance obtained from simulated
experimental data with no measurement error (6 mm thick copper chill-plate).
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Figure 3.8.6 - Estimated contact conductance obtained from simulated
experimental data with measurement errors (6 mm thick steel chill-plate).

To examine the errors associated with the misplacement of the
thermocouple located in the casting region, Imm error was assumed in the exact
location of this thermocouple. The contact conductance was insensitive to such
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an error in the thermocouple location. For example, the contact conductance was
overestimated (or underestimated) by less than two percent when the
thermocouple junction in the casting was shifted towards (or away from) the
chill-plate.

Finally, in figures 3.8.7.a-c we present the correlation of the actual
experimental data for the solidification of aluminum on a 2.5 mm thick,
substantially smooth (i.e., 0.125 to 0.25 um roughness) copper chill-plate. Figures
3.8.7.a and 3.8.7.b show the estimated contact conductance and heat flux,
respectively, while figure 3.8.7.c gives the estimated and the measured
temperatures of sensor # 1 (see figure 3.8.2) located in the casting at a distance
I mm from the chill-plate. Clearly, the estimated and the measured temperatures
are in very good agreement. Figure 3.8.7.a shows that the contact conductance
increases to a peak value of about 3500 W/m? °C within 18 seconds after the start
of the solidification and then decreases to the steady-state value of about
2200 W/m?* °C. The increase of the contact conductance is probably due to the
increasing number of asperities of the chill-plate surface coming into contact with
the solidifying metal during the initial stages of the solidification. Afier this
period, thermal stresses on both the plate and the solidified region of the casting
tend to break the intimate contact at the interface, resulting in the decrease of the
contact conductance until a steady-state value is approached. The interface heat
flux shown in figure 3.8.7.b exhibits almost the same functional behavior of the
contact conductance.
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Figure 3.8.7.a - Contact conductance estimated from the actual experimental
data.
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Figure 3.8.7.b - Estimated interface heat flux obtained from the actual
experimental data.
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Figure 3.8.7.c - Estimated and actual experimental temperature for sensor
number 1.

PROBLEMS

Consider the inverse problem studied in section 3.1, involving the
estimation of the thermal conductivity components of a 3D orthotropic
solid. By using the transient measurements of three sensors optimally
located as described in section 3.1, solve this inverse problem by utilizing
Technique II. Compare the results obtained with Technique 1I to those
obtained with Technique I, for the estimated parameters, CPU time,
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3-2

3-3

INVERSE HEAT TRANSFER

number of iterations and standard-deviations for the parameters. Study also
the effect of the initial guess on the results.

For the inverse problem studied in section 3.1, consider the boundary heat
fluxes to be in the form

qg. = for j=1,2,3

J

{1 for O<t<t,

0 Jor th<f<tf

where 7, is the heating time and #,is the final time. For such boundary heat
fluxes, design optimum experiments with respect to the variables £, and l.
Consider for the analysis the values for the parameters and the sensors
locations shown in section 3-1. Estimate the thermal conductivity
components with the optimal values of #, and 1z Does the accuracy of the
estimated parameters improve, as compared to the values estimated in
section 3-17 Why?

Solve the inverse problem of estimating the initial condition of section 3-2
by using Technique IV and measurements of sensors located inside the
region, in addition to the measurements taken at the boundary. Does the
accuracy of the estimated functions shown in figures 3.2.2.a,b improve?
Consider the following heat conduction problem in dimensionless form:

%:% in0<x<l1, for 1>0
X

%7_"=0 atx=0, for 1>0

x

%:q(:) atx=1]1, for t>0
T=0 fortr=0, in0<x<]

Assume g(f) varies linearly with time, i.e.,
gity=a+ bt

Then, set @ = b = 1 in the direct problem to generate 100 equally spaced
transient simulated measurements in the time interval 0 < ¢ < 1, for a
sensor located at x,,..,; = 0. Use such simulated measured data to estimate
the parameters a and b with Techniques I, II and III. Examine the effects
of initial guess and random measurement errors on the final estimates.
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3-5

3-6

3.7

3-8

Solve the inverse problem of estimating the boundary heat flux g(7)
described in problem 3-4, by using Technique IV of function estimation.
Assume that no information is available on the functional form of g(#),
except that it belongs to the space of square integrable functions in the
domain 0 < 1 < 1. Use for the inverse analysis 100 equally spaced transient
measurements in 0 < ¢ < 1, of a sensor located at Xpe.s = 0.

In order to generate the simulated measurements, utilize the following
functional forms:

i qg=1+¢
Gi) g=1+t+7

i o]l 1s03mdi207
(i) gl)= 2, 03<t<07

1, t<03and?20.7
(iv) q()=45-05, 03<1<05
-5t+45 , 0.5<t<0.7

Use as initial guess a constant function ¢(f} = 0 and examine the effects of

random measurement errors on the solution.

Try to improve the estimated functions of problem 3-5 in the time interval

0 <t < 1, by using the following approaches:

(i)  Use g(¢) = 0 as initial guess, but consider a time interval larger than
that of interest. For example, use for the final time ¢ = 1.1, 1.25,
1.5, etc. Does the quality of the estimated functions in the time
domain 0 < ¢ < | improve? Remember to increase the number of
measurements accordingly, so that 100 measurements appear in the
interval 0 <r <1,

(ii) Repeat the calculations with #,= 1 and with an initial guess for g(#)
equal to the value estimated in problem 3-5, for a time in the
neighborhood of f: Let’s say, use now as initial guess the value
estimated in problem 3-5 for ¢(0.9). Repeat this procedure until
sufficiently accurate estimates are obtained in the interval 0 <7< 1.

Repeat problems 3-4 and 3-5 by using fewer transient measurements in the

inverse analysis. Take, as an example, 20 measurements of the sensor

located at X, = 0 in the time interval 0 < ¢ < 1. Are the final solutions
sensitive to the number of measurements?

By examining the sensitivity coefficients for problem 3-4 and the

sensitivity problem for problem 3-5, show that more accurate estimates can

be obtained by locating the sensor closer to the boundary x = 1. Do the
estimates actually improve if you locate the sensor at X, = 0.5, instead of

Xmeas = 0?

Repeat problems 3-4 and 3-5, by using in the inverse analysis the transient

readings of two sensors located at x = 0 and x = 0.5. Compare the results
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obtained with two sensors to the results obtained in problems 3-4 and 3-5
with a single sensor.

Repeat problem 3-5 by using the Steepest Descent Method (the
conjugation coefficient 7* is null for all iterations), instead of Technique
IV. How do the two methods compare with respect to the number of
iterations required for convergence?

Repeat problem 3-5 by using a very small number for the tolerance ¢ in the
stopping criterion, instead of using the discrepancy principle, for cases
involving measurements with random errors. What happens to the stability
of the estimated functions? Why?

Repeat problem 3-5 by using the additional measurement approach for the
stopping criterion, for cases involving measurements with random errors.
Compare the results obtained with this stopping criterion approach to those
obtained by using the discrepancy principle.

Derive equations (3.5.29.a,b).

Use the approach developed in section 3-5 in order to estimate
simultaneously the temperature dependencies of thermal conductivity and
volumetric heat capacity, '

REFERENCES

Sawaf, B. and Ozisik, M. N., “Determining the Constant Thermal
Conductivities of Orthotropic Materials by Inverse Analysis”, Int. Com
Heat and Mass Transfer, 22, 201-211, 1995,

Mejias, M. M., Orlande, H. R. B. and Ozisik, M. N., “Design of Optimum
Experiments for the Estimation of Thermal Conductivity Components of
Orthotropic Solids”, Hybrid Methods in Engineering, 1, 37-53,1999.
Mejias, M. M., Orlande, H. R. B. and Mikhailov, M. D., “Estimation of the
Thermal Conductivity Components of Orthotropic Solids by using Mixed
Computations”, Bull. of the Braz. Soc. Appl. Comput. Math., (to appear),
1999,

IMSL Library Edition 10.0, User s Manual, IMSL, Houston, 1987.

Silva Neto, A. J. and Ozisik, M. N., “An Inverse Heat Conduction Problem
of Unknown Initial Condition”, 10" Int. Heat T ransfer Conference,
Brighton, UK, August 14-18, 1994.

Silva Neto, A. J. and Ozisik, M. N., “Two-Dimensional Inverse Heat
Conduction Problem of Estimating the Time-Varying Strength of a Line
Heat Source”, J. Applied Physics, 71, 5357-5362, 1992,

Sitva Neto, A. J. and Ozisik, M. N., “The Estimation of Space and Time
Dependent Strength of a Volumetric Heat Source in a One-Dimensional
Plate”, Int. J. Heat and Mass Transfer, 37, 909-915, 1994,

Orlande, H. R. B. and Ozisik, M. N., “Determination of the Reaction
Function in a Reaction-Diffusion Parabolic Problem”, ASME J Heat
Transfer, 116, 1041-1044, 1994,



INVERSE CONDUCTION 199

10.

11.

12.

13.

14.

15.

16.

17.

18,

19.

20.

21.

22.

23.

24.

Dantas, L. B. and Orlande, H. R. B., “A Function Estimation Approach for
Determining Temperature-Dependent Thermophysical Properties™, Inverse
Problems in Engineering, 3, 261-279, 1996.

Artyukhin, E., Inanov, G. and Nenarokonov, A., “Determining the Set of
Thermophysical Properties of Materials from Unsteady-State Temperature
Measurements”, High Temperature, 31, 199-202, 1993.

Artyukhin, E. “Iterative Algorithms for Estimating Temperature-
Dependent Thermophysical ~Characteristics”, Jnverse Problem in
Engineering - Proceedings, Palm Coast, FL, 101-108, 1993.

Artyukhin, E., “Experimental Design of Measurements for the Solution of
Coefficient-Type Inverse Heat Conduction Problems”, J. Eng. Phys., 48,
372-376, 1985.

Oriande, H. R. B. and Ozisik, M. N., “Simultaneous Estimation of
Thermal Diffusivity and Relaxation Time with a Hyperbolic Heat
Conduction Model”, Paper 15 - CI - 20, 10" Int. Heat Transfer
Conference, Brighton, UK, 403-408, 1994.

Cattaneo, C., “A Form of Heat Conduction Equation which Eliminates the
Paradox of Instantaneous Propagation”, Compte Rendus, 247, 431-433,
1958.

Vick, B. and Ozisik, M. N., “Growth and Decay of a Thermal Pulse
Predicted by the Hyperbolic Heat Conduction Equation”, J. Heat Transfer,
105, 902-907, 1983.

Ozisik, M. N. and Tzou, D. Y., “On the Wave Theory in Heat
Conduction”, Fundamental Issues in Small Scale Heat Transfer HTD-227,
Y. Bayazitoglu and G. P. Peterson (eds.), ASME, 13-27, 1992.

Brown, J. B., Chung, D. Y. and Mathews, P.W., “Heat Pulses at Low
Temperatures”, Phys. Lett., 21, 241-243, 1966.

Ozisik, M. N., Heat Conduction, 2" edition, Wiley, New York, 1993.
Glass, D. E., Ozisik, M. N. and Vick, B., “Non-Fourier Effects on
Transient Temperature Resulting from Periodic On-Off Heat Fiux”, Int. J
Heat Mass Transfer, 30, 1623-1632, 1987.

Taylor, R. E. and Maglic, K. D., “Pulse Method for Thermal Diffusivity
Measurement”, Compendium of Thermophysical Property Measurement
Methods 1, K. D. Maglic (ed.), Plenum, New York, 305-336, 1984,
Orlande, H. R. B. and Ozisik, M. N., “Inverse Problem of Estimating
Interface Conductance Between Periodically Contacting Surfaces”, 4144
J. Thermophysics and Heat Transfer, 7, 319-325, 1993.

Moses , W. M. and Johnson, R. R., “Experimental Study of the Transient
Heat Transfer Across Periodically Contacting Surfaces”, A4I44 J.
Thermophysics and Heat Transfer, 2, 37-42, Jan. 1988.

Flach, G. P. and Ozisik, M. N., “Inverse Heat Conduction Problem of
Periodically Contacting Surfaces”, ASME J. Heat Transfer, 110, 821-829,
Nov. 1988.

Bardon, J. P., “Heat Transfer at Solid-Solid Interface: Basic
Phenomenons-Recent Works”, Seminar EUROTHERM 4, Nancy, France,
June 1988.



200

25.

26.

27.

28,

29.

30.

3L

32.

33.

34.

35.

36.

INVERSE HEAT TRANSFER

Vick, B. and Ozisik, M. N., “Quasi-Steady-State Temperature Distribution
in Periodically Contacting Finite Regions”, ASME J. Heat Transfer, 103,
1991.

Huang, C. H,, Ozisik, M. N. and Sawaf, B., “Conjugate Gradient Method
for Determining Unknown Contact Conductance During Metal Casting”,
Int. J. Heat Mass Transfer, 35, 1779-1789, 1992,

Ozisik, M. N., Orlande, H. R. B., Hector Jr., L. G. and Anyalebechi, P. N.,
“Inverse Problem of Estimating Interface Conductance During
Solidification via Conjugate Gradient Method”, J. Mat. Proc. & Manuf.
Sci., 1,213-225, 1992,

Voller, V. and Cross, M., “Accurate Solution of Moving Boundary
Problems Using the Enthalpy Method”, Int. J. Heat Mass Transfer, 24,
545-556, 1981.

Shamsundar, N. and Rozz, E., “Numerical Methods for Moving Boundary
Problems”, in Handbook of Numerical Heat Transfer, W.J. Minkowycz,
E.M. Sparrow, G.E. Schneider and R.H. Pletcher (eds.), Wiley, New York,
1988.

Shamsundar, N. and Sparrow, E. M., “Analysis of Multidimensional
Conduction Phase Change via the Enthalpy Model”, J. Heat Transfer, 333-
340, 1975.

Shamsundar, N. and Sparrow, E. M., “Effect of Density Change on
Multidimensional Conduction Phase Change”, J. Heat Transfer, 550-557,
1976.

Ni, J. and Incropera, F. P., “Extension of the Contintum Model for
Transport Phenomena Occurring During Metal Alloy Solidification -
Part 1”, Int. J Heat Mass Transfer, 38, 1271-1284, 1995.

Ni, J. and Incropera, F. P., “Extension of the Continuum Model for
Transport Phenomena Occurring During Metal Alloy Solidification -
Part I1”, Int. J. Heat Mass Transfer, 38, 1285-1296, 1995

Feller, R. J. and Beckermann, C., “Modeling of the Globulitic &
Solidification of a Binary Metal Alloy”, Int. Comm. Heat Mass Transfer,
20, 311-322, 1993,

Rappaz, M., “Modeling of Microstructure Formation in Solidification
Process”, Int. Mat. Rev., 34, 93-123, 1989,

Ozisik, M. N., Finite Difference Methods in Heat Transfer, CRC Press,
Boca Raton, 1994,



201

Chapter 4
INVERSE CONVECTION

So far in this book we have considered problems involving conduction,
which is the heat transfer mode that received most of the attention of the
community dealing with inverse problems. More recently, inverse problems in
which convection is the dominant heat transfer mode started to appear in the
literature [1-13).

In this chapter we present the solution of inverse problems involving the
estimation of inlet and boundary conditions in forced convection in parallel plate
channels. For all the problems considered here we assumed the flow to be
hydrodynamicaily developed, that is, the region of interest is sufficiently far from
the inlet of the channel, so that the velocity profile does not vary with the axial
direction. Analytic expressions for hydrodynamically developed velocity profiles
for newtonian and non-newtonian fluids in laminar and turbulent flows can be
found in standard textbooks {14-17). Hence, such velocity profiles are considered
to be known for the analysis, so that the solutions of the inverse problems to be
considered here only involve the energy equation.

The solutions of the following inverse problems are considered in this
chapter:

» Estimation of the Inlet Temperature Profiie in Laminar Flow [1];

+ Estimation of the Transient Inlet Temperature in Laminar Flow [2];

+ Estimation of the Axial Variation of the Wall Heat Flux in Laminar
Flow [3];

» Estimation of the Transient Wall Heat Flux in Turbulent Flow [4];

+ Simultaneous Estimation of the Spacewise and Timewise Variations of
the Wall Heat Flux in Laminar Flow [5].



202 INVERSE HEAT TRANSFER

We use Technique IV for the solution of these inverse problems, where
the unknowns are estimated as a function estimation approach.

The basic steps of Technique IV include: direct problem, inverse problem,
sensitivity problem, adjoint problem, gradient equation, iterative procedure,
stopping criterion and computational algorithm. We present below the details of
such steps of Technique IV, as applied to the solution of the inverse convection
problems considered in this chapter. However, we avoid here the repetition of the
details for the stopping ctiterion and computational algorithms, since they can be
readily found in section 2-4.

4-1 ESTIMATION OF THE INLET TEMPERATURE PROFILE IN
LAMINAR FLOW [1]

Direct Problem

The physical problem considered here involves laminar steady-state forced
convection between parallel plates, located at a distance # from each other. The
plates are subjected to a constant heat flux g, while the inlet temperature profile is
given by f(v), as shown in figure 4.1.1. The physical properties are assumed
constant and viscous dissipation, free convection, and axial conduction effects are
neglected. The mathematical formulation for this steady-state forced convection
problem is given as follows:

2

k-gy-—zz:u(y)pcpg—g- in 0<y<h, 0<x<b (4.1.1.a)

ka—T=q at y=h, 0<x<b (4.1.1.b)
%

—kgz=q at y=0, 0<x<b (4.1.1¢)
o

T =1(y) at x=0, O<y<h (4.1.1.d)

where u(y) = 6um Z[l - %) is the velocity profile in the channel.

h
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T, =f»

Figure 4.1.1 - Geometry and coordinates

By introducing the following dimensionless quantities

u D
G) = L Y - l X = d Re =.1n_¢
T h PeD v
ref e
D =2k Pe=RePr L=
e PeDc
0="14 u)=*2 _era-v) (4.12.a-i)
kT u
ref m

where T, is a reference temperature value, the governing equations (4.1.1) can
be expressed in dimensionless form as

3’0 U(Y) 80 .

= 0<¥Y<l, 0<X<L 4.1.3.
ay’ 4 B8X - ( 2)
7]
i at Y=1, 0<X<L 4.1.3b
or 2 ( )
0
Bt at Y=0, 0<X<L 4.1.3.
oY 0 ( 2
®=F(Y) at X=0, 0<¥Y«] (4.1.3.d)

The problem given by equations (4.1.3) is denoted as a Direct Problem,
when the inlet temperature profile F(Y) and other quantities appearing in
equations (4.1.3) are known. The objective of the Direct Problem is to determine
the temperature field @(X,Y) of the fluid inside the channel.
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Inverse Problem

For the Inverse Problem the inlet temperature profile F(Y) is regarded as
unknown and is to be estimated by using the temperature measurements of M

sensors located at appropriate positions (X ; , Y.,:)’ m=1, ..., M inside the channel,

where X ; > 0. Such measurements may contain random errors, but all the other

quantities appearing in problem (4.1.3) are considered to be known with
sufficient degree of accuracy.

The present inverse problem is solved by the conjugate gradient method as
applied to the minimization of the following functional:

M
slrn)=> e [Fl-z, ¥ (4.1.4)

m=]

where Z,, and ©,[F(Y)] are the measured and estimated temperatures at the
measurement locations, respectively, while M is the number of sensors. The
estimated temperatures ©,[F(Y)] are obtained from the solution of the direct
problem (4.1.3) by using an estimate for the inlet temperature profile F(Y). Note
that we assume in equation (4.1.4) the sensors to be discretely distributed in
space, instead of the usual approach of considering continuous measurements for
Technique IV.

Two auxiliary problems are required for the implementation of the
conjugate gradient method: the Sensitivity Problem and the Adjoint Problem. The
development of such problems is described next.

Sensitivity Problem

To obtain the sensitivity problem, it is assumed in the direct problem that
F(Y) undergoes an increment AF(Y). Then the temperature ©(X,Y) changes by
A®(X,Y). By replacing in the direct problem F(Y) by [F(Y)+AF(Y)} and
O(X,Y) by [@(X,))+ABO(X,Y)], subtracting from the resulting expressions
the original direct problem and neglecting the second-order terms, the following
sensitivity problem is obtained:

8’ A0(x,y) _ U(Y) 8AO(x,y)
oy’ 4 ox

0<¥<l, 0<X<L (4.1.5.a)

OA®
=0 at Y=1, 0<X<L 4.1.5.b
57 ( )
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@9=0 at Y=0, 0<X<L (4.1.5.¢c)

oY

A® = AF(Y) at X=0, 0<¥<l (4.1.5.d)

Adjoint Problem

To obtain the adjoint problem, equation (4.1.3.a) is multiplied by the
Lagrange multiplier A(X,Y). The resulting expression is integrated over the space
domain, and then added to the right-hand side of equation (4.1.4} to yield

M

siFn)=Y (e, -z ) J’ I [f—?—%g—:ld Ydx (4.1.6)

m—l

The variation AS[F(Y)] of the extended functional given by equation

(4.1.6) is obtained and after some algebraic manipulations, the resulting
expression is allowed to go to zero. Such manipulations were described in detail
in Chapter 2 and are not repeated here. The following adjoint problem is then
obtained for the Lagrange Multiplier A(X,Y):

22 A(X.Y) LU aax,y)

M
+ZZ(®—Z)5(X—X;)5(Y—Y;)=O
m=]

in 0<Y<l1l, 0<X<L (4.1.7.a)
% o at Y=1, 0<Xx<L (4.1.7.b)
aY
o3
2 _s at ¥Y=0, 0<X<L 417,
aY (#4.1.7.0)
120 at X=1, 0<¥<1 (4.1.7.4)

where (X m,Y ) gives the measurement location of sensorm, m=1, ..., M.
m

Gradient Equation

In the process of obtaining the adjoint problem, the following integral term
is left:
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1
AS[F(D)] = J'U—iyl A0, N)AF()dY (4.1.8.2)

Y=0

By assuming that F(Y) belongs to the space of square integrable functions
in the domain 0 < ¥ < 1, we can write

ss[F)= [Ws[F(n]aFR(har (4.1.8.b)
=0

By comparing equations (4.1.8.a) and (4.1.8.b), we can obtain the gradient
equation for the functional as

VS[F(1)]= %D—A(O,Y) (4.1.9)

We note that the adjoint problem (4.1.7) involves a condition at the outlet
of the channel at X = L, equation (4.1.7.d), instead of the inlet condition at X =0
of the regular direct problem, equation (4.1.3.d). This is similar to the final

condition encountered in adjoint problems of other transient inverse problems,
that appeared above in the text,

Iterative Procedure

The iterative procedure of Technique IV, as applied to the estimation of
the inlet temperature profile is given by:

F'm=Fm-p'a*m (4.1.10.2)

where the superscript k refers to the number of iterations and the direction of
descent d* () is given by:

d*(¥) = VS[F*(}’)]+y*d""(Y) (4.1.10.b)

o : k. .
The conjugation coefficient »~ is obtained from the Fletcher-Reeves
expression as:
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k l{VS[F* (Y)]}de

yh == for k=12,.. withy°=0 (4.1.10.c)
2
_[{VS[F*"(Y)]} dy

Y=0

The search step size ,Bk is obtained by minimizing the functional given by

equation (4.1.4) with respect to ﬂk. The following expression results:

Mo [F'n]-z,Joo, [0
e |F'w)|-z tae |d*)
pt=m=l mM - : (4.1.10.d)
k
o]

where A@m[d k(Y )] is the solution of the sensitivity problem (4.1.5), obtained

by setting AF(Y) = d* ).

The iterative procedure of Technique 1V given by equations (4.1.10) is
applied until a stopping criterion based on the discrepancy principle is satisfied,
as described in section 2-4, Such iterative procedure can be suitably arranged in a
computational algorithm, which can also be found in the same section.

Results

In order to examine the accuracy of the inverse analysis for estimating the
unknown transversal variation of inlet temperature by the conjugate gradient
method, we examined several strict test conditions including a function with
sharp corners, a step function and a smooth function. The effects of the number
of measurements, M, distribution of the measurements in the transversal
direction, axial locations of the sensors, magnitude of measurement errors, and
functional form of the unknown inlet temperature on the accuracy of estimations
are investigated.

The problem is solved in dimensionless form for a duct with geometry
illustrated in figure 4.1.1. In order to give some idea on the physical significance
of the various dimensionless variables, we consider air flow at a mean velocity
Uy = 2.5 cm/s (Reynolds number = 400) through a duct of height 2= 12.8 cm and
length b = 63.5 cm. The wall heat flux is taken as g = 500 W/m’. Our objective is
to estimate the unknown distribution of inlet temperature from the knowledge of
temperature measurements taken at the downstream locations. To identify the
locations of the temperature sensors, we consider dimensionless step sizes
AX = 0.00025 and AY = 0.025 in the axial and transversal directions, respectively.
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In terms of dimensional quantities, they correspond to Ax = 2.54 ¢m and
4y = 0.32 cm. For M equally spaced sensors in the transversal direction, the
dimensionless distance, DY, between the sensors becomes DY = 1/(M+1).
Simulated measurements obtained in the form given by equation (2.5.2) were
used in the analysis.

Figure 4.1.2 illustrates the effects of the number of measurements on the
accuracy of the estimation, for sensors located at X' = 204X. The number of
transversal measurements considered here includes M = 5, 9, 19 and 39,
corresponding to dimensionless spacings of DY = 0.167, 0.1, 0.05 and 0.025,
respectively. The results show that the accuracy of the estimations improves by
increasing the number of sensors; but, even for a small number of sensors such
as M =35, a quite good estimation is obtained, with the exception for the
point ¥ = 0.667 where exists a discontinuity in the slope of F(I).

Ld —_— —
1.2}
1.0}
0.8}
0.6}

Inlet Temperature,F(Y)

0.4}
0.2

0.0 b . . - . »
0.0 0.2 0.4 0.6 0.8 1.0

Y

Figure 4.1.2 - Effects of number of measurements on the accuracy of inverse
analysis.

Figure 4.1.3 is intended to show the effect of the axial location of the
measurements on the accuracy of the estimation. In this case, five measurements
are taken at each of the different axial locations 5AX, 104X, 154X and 204X from
the inlet, in order to perform the computations. It should be noted that these
locations are all in the thermally developing region. As the measurements are
taken at locations away from the inlet, more heat flux penctrates from both
boundaries into the flow. As a result, the inlet temperature becomes difficult to
recover by the inverse analysis. We also tested several cases in which the
measurements were taken in the thermally fully developed region; but the
measurements taken in such a region provide no information for determining the
inlet temperature.
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Figure 4.1.3 - Effects of axial location of the measurements on the accuracy of
inverse analysis.

In the case of an inlet temperature distribution containing a slope
discontinuity, the accuracy of the estimation improves if the location of the
discontinuity is known a priori and a temperature measurement is taken at such a
location. Figure 4.1.4 illustrates the effects of distribution of measurements in the
transversal location on the accuracy of the estimation, for M = 5, In Case I, the
five measurements were taken at the transversal locations of Y = 0.167, 0.33, 0.5,
0.667 and 0.83, where ¥ = 0.667 corresponds to the location of the slope
discontinuity. The measurement locations for Case II were ¥ = 0.167, 0.33, 0.5,
0.75 and 0.83, which did not include the discontinuity location. The results show
that the accuracy for Case | is better than that for Case II.

Figure 4.1.5 is intended to show the effects of magnitude of the
measurement errors on the accuracy of estimation, for the cases involving
measurement errors of 2.5%, 5% and 10%. As expected, the accuracy of
estimation decreases with increasing the measurement error, especially at the
slope discontinuity.

Figures 4.1.6 and 4.1.7 show the effects of the unknown functional form
of the inlet temperature on the accuracy of the estimation. The step functional
form of inlet temperature shown in figure 4.1.6 presents a very difficult case for
estimation because two discontinuities are involved. Even with 39 measurements,
the exact inlet temperature is not fully recovered by the inverse analysis with
errorless measurements (o= 0). The smooth function shown in figure 4.1.7 poses
no difficulty for estimation by inverse analysis. The estimations using only 5
measurements with 5% and 10% error are still in good agreement with the exact
solution.
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Figure 4.1.4 - Effects of transversal distribution of measurement location on the
accuracy of inverse analysis.
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Figure 4.1.5 - Effects of the measurement error on the accuracy of inverse
analysis.
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Figure 4.1.6 - Effects of the step functional form of the inlet temperature on the
accuracy of inverse analysis.
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Figure 4.1.7 - Effects of the smooth functional form of the inlet temperature on
the accuracy of inverse analysis.
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4-2 ESTIMATION OF THE TRANSIENT INLET TEMPERATURE IN
LAMINAR FLOW [2]

In the previous section 4-1 we examined the solution of the inverse
problem of estimating the inlet temperature profile in a steady-state laminar flow
in a parallel plate duct. We now consider the estimation of the timewise variation
of the inlet temperature in a transient problem. The inlet temperature is assumed
to be uniform along the duct cross section.

The details of the steps of Technique IV, as applied to the solution of the
present inverse problem, are described next.

Direct Problem

We consider here a physical problem involving laminar forced convection
inside a parallel plate duct of half-width h, with a prescribed constant wall
temperature, fully developed flow and constant fluid properties. The
dimensionless inlet temperature ©(0,Y, 1) is suddenly varied at 7= 0 as a function
of time in the form F(7). Figure 4.2.1 describes the geometry and coordinates.

L Tw‘o

Y
(X*,Y*) ‘
- - —— e = O —
] ~\ L X
‘ Sensor Location

TW=O

8(0,Y,7) = F(x)

Figure 4.2.1 - Geometry and coordinates

The velocity profile is given in dimensionless form as
3 2
U(Y)=5(1~Y ) (4.2.1)

By neglecting axial conduction in the flow and free convection, the energy
equation can be written as:

8O(X.Y,7) LU O(X,Y,1) _ 8°O(X,Y,7)

> > pov in0<r<l, 0<X<L,
T

forr>0 (4.2.2.a)
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with boundary conditions taken as

DXL o 4 y=o, 0<X<L, >0 (4.2.2.b)
oY

O(X1,r)=0 at Y=1, 0<X<L,7>0 (4.2.2.c)

©0,Y,7)= F(r) at X=0, 0<¥Y<1 , >0 (4.2.2.d)

and the initial condition as
eX.,Y,0)=0 for 7=0, in 0<Y<l]l, 0<X<L (4.2.2.¢)

where various dimensionless terms are defined as

=T(xsy,t)—T,- T=g-£ Y:Z
d h g
(42320
-~T
_ax v =29 pe=L070
uh u T

] m i

Here « is the thermal diffusivity of the fluid, u,, is the mean velocity and T;
is the initial fluid temperature, which is assumed to be uniform and equal to the
prescribed wall temperature.

We note that equation (4.2.2.b) gives the symmetry condition for the
problem.

The problem (4.2.2) is a Direct Problem when the variation of the inlet
temperature F(7) is known. The solution of the direct problem provides the
temperature field @(X,Y,7) of the fluid inside the channel.

Inverse Problem

Consider now the inlet temperature F(7) as unknown. Such function is
then to be estimated by using the transient temperature measurements of a single
sensor located at an appropriate position (X* Y*) inside the channel and by
minimizing the following functional:

f
S|F(2)]= I (@[x*.r*,;F(n)-2(r)) dz (4.2.4)

=0
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where @[X YR F( r)] and Z(r) are the estimated and measured temperatures,
respectively, at the measurement location (X* Y*). The estimated temperature is
obtained from the solution of the direct problem (4.2.2) by using an estimate for
F(7).

We use Technique IV, the conjugate gradient method of function
estimation, for the minimization of the functional given by equation (4.2.4). The
sensitivity and adjoint problems, required for the implementation of the iterative
procedure of Technique IV, are developed next.

Sensitivity Problem

In order to develop the sensitivity probiem, we assume that the
temperature ©@(X,Y,7) undergoes a variation A®(X,Y,7), when the inlet

temperature undergoes a variation AF(7). By substituting into the direct problem
(42.2) ©(X,Y,r) by [@(X,Y, 7)+AO(X,Y, r)] and F(r) by [F(r)+AF(1)],
and then subtracting from the resulting equations the original direct problem, we
obtain the following sensitivity problem for the sensitivity function A®(X,Y,7):

2

0AO(X,Y,1) +UD) OAB(X,Y,1) _ 0 A@({,Y,r) in0<¥<1,0<X<L

or o0X oY

forr>0 (4.2.5.a)

M: 0 at Y=0, 0<X<L,7>0 (4.2.5.b)

oY
AO(X,1,7)=0 at Y=1, 0<X<L,7>0 (4.2.5.c)
AO(0,Y,7) = AF (1) a X=0, 0<r<l,7z>0 (4.2.5.d)
AG(X,Y,0)=0 for 7=0, 0<¥<l]l, 0<X<L (4.2.5.e)

Adjoint Problem

The adjoint problem is obtained by multiplying equation (4.2.2.a) by the
Lagrange Multiplier A(X.Y,7), integrating the resulting expression over the time
and space domains and adding the result to the functional given by equation
(4.2.4). We obtain:
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T

s
s[F))= I{@[X*, Y+, F()]- Z(0)Y dr +
=0

(4.2.6)
1

S L 2
J' j j Ax.7.0 22 un 22 -2 8 v axar
or ox

2
=0 X=0Y=0 oY

We now perturb F(7) by AF(zr) and @(X,Y,7) by AB(X Y, 7) in equation
(4.2.6) and subtract equation (4.2.6) from the resulting expression to get the
variation AS[F ( r)] of the functional S[F(7)]. By employing integration by parts,
utilizing the initial and boundary conditions of the sensitivity problem and also

requiring that the coefficients of A®(X,Y,7) in the resulting equation should
vanish, the following adjoint problem is obtained:

Aocx.v,r)- 2@ (X - x oy -y -SHELD o OHETT)
or X
2
_.‘?ﬂ’z_}ﬁr_l:o in0<Y<l1, 0<X <L andfor 0<‘[<‘[‘f (4.2.7.a)
oY

where &) is the Dirac delta function, and the boundary conditions become

M:O at Y=0, 0<X<L and O<r<r (4.2.7.b)
oY J

AMX1,7)=0 at Y=1, 0<X<L and 0O<r<gy (42.7.c)

AL,Y,7)=0 at X=L, 0<Y<1l and O0<r<y (4.2.7.d)

A(X,Y,rf)=0 for rzrf, in 0<Y<l and 0<X <L (42.7%¢)

Gradient Equation

In the process of obtaining the adjoint problem, the variation of the
functional reduces to

rf 1
AS|F(7)] = - _[ IA(O,Y,r)U(Y) dY AF (1) dr (4.2.8.2)

r=0Y=0
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By assuming that the function F(7) belongs to the space of square
integrable functions in 0 < 7 < 7; we can write

s
sS|F()]= [VS[F(o)] aF(e)dr (4.2.8)

r=0

Hence, by comparing equations (4.2.8.a) and (4.2.8.b), we can obtain the
gradient equation for the functional as:

1
VS[F(] =~ [AQ..DUmEY (4.2.9)

¥=0

Iterative Procedure

The iterative procedure of Technique IV, as applied to the estimation of
the function F{(7) is given as

F'=F'(-pd' @ (4.2.10.2)
where k is the number of iterations. The direction of descent is obtained from

d* ()= VS[F"(r)]+ y¥d* (o) (4.2.10.b)

The conjugation coefficient is obtained from the Fletcher-Reeves
expression as

4

T{VS[F" (r)]}zdr

y* = 0 for k=12,.. withy’'=0 (4.2.10.)

T

T[{VS[F""' (r)]}zdr

r=0

The search step size is obtained by minimizing S[F ! (7)] with respect to
B*, as described in Note 7 of Chapter 2. The following expression results
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r e|F' (n)|- r(nlaeld* (r)|d
ﬂk='£’{[,r] T} [ f]f (4.2.10.d)

I {A@[d"(r)]}zdr

=0

where A@[d"(r)] is the solution of the sensitivity problem (4.2.5), obtained by
setting AF(7)= d"(r).

Results

To illustrate the accuracy of Technique IV in predicting F(7), we
examined three functional test cases; a triangular ramp, a double step and a sine
curve, as illustrated in figure 4.2.2. The first two represent very difficult functions
to predict, due to the discontinuities in the first derivative and in the function. As
the sine curve is smooth and continuous, its estimation should not pose difficulty.
Over the total experimental time of 3.6x10” in dimensionless terms, 200 equal
time steps were considered, corresponding to a sampling frequency of 1.8x107.
The total dimensionless length of the duct taken as 8.2x10°, with 60 equal
divisions corresponding to AX = 1.367x10™, was long enough for all test
locations to lay in the thermally developing region. Representative values for the
total time and total length in dimensional terms are 30 seconds and 1.64 meters,
respectively, for air with a mean velocity of 2.4 cm/s, in a duct with half
width of 0.5 meters. The sensor was considered to be located at the centerline
(Y* = 0) and two different axial positions were studied here: X* = 5AX and
X*=204X. The centerline was chosen for all measurements in order to minimize
the effects of the wall temperature on the readings of the sensor at the
measurement location.

We use here simulated measurements in the form given by equation
(2.5.2).

The time dependent inlet condition for a triangular ramp function,
illustrated in figure 4.2.2.a, was assumed to vary in the form

111117 for  0<r<9xl0™
F(r)={-83333(r-0x10"")+1 for  9x10'<r<lsx10™ (@211
0.5 for  15x107° <r<r

s
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A A F'y
G G G \/
s 23 i3
4 > P
Time, t Time, t Time, 1
(a) (b) (©)

Figure 4.2.2 - Three test cases considered for the inlet temperature:
(a) triangular ramp, (b) double step and (c) sine curve.

Figure 4.2.3 shows typical measured temperatures at two different
downstream locations for a standard-deviation of o =0.01. These curves show
that the steady measured value was achieved after a certain time period. The
inverse problem was based on all data taken before the steady temperature has
been reached. Also, we chose the steady value of the measured temperature as the
initial guess for the computational algorithm. This choice alleviates one of the
difficulties associated with the conjugate-gradient method, that is, the final time
value of the estimation is the same as the initial guess.

1.00

o

~

o
—

i

0. 00 P et
00 05 10 15 20 25 3.0 35107
Time, 1

Figure 4.2.3 - Simulated measured temperatures at downstream locations 54X
and 20AX for triangular ramp pulse, with o= 0.01.
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Figure 4.2.4 illustrates the effects of the standard deviations o =0.01 and
¢ =0.03, on the accuracy of the estimates. Here the solid lines represent the exact
solution. These standard deviations represent 3% and 10% measurement error
based on the maximum temperature. It is clear that, as the error increases, the
accuracy of the prediction decreases. However, even for 6=0.03 the estimate is
quite good. Figure 4.2.5 shows the effects of measurement location on the
accuracy of the estimation. The 54X location, which is close to the entrance,
produces more accurate results as expected. The 20AX location shows a marked
decrease in accuracy, particularly near the discontinuity in slope, with the
estimate oscillating around the exact function elsewhere.

0‘00’ PP e PR & 4
0.0 0.5 1.0 1.5 2.0 2.5(x107)

Time, t©

Figure 4.2.4 - The effects of standard deviation for o= 0.01 and &= 0.03 on the
accuracy of the estimate for triangular ramp pulse. Measurements taken at
downstream location 5AX.

The inlet condition for a double step function illustrated in figure 4.2.2.b
was assumed in the form

1 for 0<r<82x107*
F(r)=105 for 8.2x10™" <7<1.22x107° (42.12)

0 for 122x10 2 <7<t ;
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which represents a very strict test for the inverse analysis. Figure 4.2.6 compares
the results of the inverse solutions at X *=54X and 204X downstream locations.
For the 5AX location the inverse solution tends to follow the discontinuities,
including the second step; however, the solution oscillates after the first jump.
The results for the 204X location follow the pulse but cannot predict the sharp
corners at all.

1.00 F
0.75 -
if 0.50 -
0.25F

o S5AX .

- o 20AX '

0.00""l-n--l....l...‘|...|.‘

0.0 0.5 1.0 1.5 2.0 2.5 (x10%)
Time, 1

Figure 4.2.5 - The effects of sensor locations 54X and 20AX on the accuracy of
the estimate for triangular ramp pulse, with o= 0.01.

The inlet condition for the sine curve illustrated in figure 4.2.2.c is
assumed in the form

sin(1111.1177)  for ~ 0<7<18x10”

F(r)=
() 0 for 1.8x10° <7 <71

(4.2.13)

Since the function is smooth over the whole time domain, the inverse
analysis is quite accurate for both locations 5AX and 204X, as apparent from
figure 4.2.7.
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. .

e Exact
0.75¢ | o 5AX A
Qo o 20AX '

(o)
= 0.50} Bo ]
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. ]
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Figure 4.2.6 - The effects of sensor locations SAX and 204X on the accuracy of
the estimate for double step pulse, with o= 0.01.

1.0

0.5

F(7)

1.0 | ~ Pged _ o
0.0 0.5 1.0 1.5 2.0 2.5(x107)
Time, T

Figure 4.2.7 - The effects of sensor locations 54X and 204X on the accuracy of
the estimate for a sine curve pulse, with o= 0.01.
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The effect of the sampling frequency on the accuracy of estimations was
also tested. Very high sampling rates (i.e., five times the value used in figures
4.2.4-7) produced generally the same results, but with slightly more oscillations
around the discontinuities and a much larger computational time. A smaller
sampling rate produced nearly identical results; however, one should not choose
too large of a time step, since the inverse analysis would not be able to resolve
any change in the function, which did not have a large enough period to allow for
more than a few time readings.

4-3 ESTIMATION OF THE AXIAL VARIATION OF THE WALL HEAT
FLUX IN LAMINAR FLOW [3]

In sections 4-1 and 4-2 we considered the solution of inverse problems
involving the estimation of the inlet condition, by taking measurements
downstream inside the channel. In this section, we examine the inverse problem
of estimating the boundary heat flux axial variation in a steady state convection
problem. The details of Technique IV, as applied to the solution of the present
inverse problem, are described next.

Direct Problem

We consider here hydrodynamically developed, thermally developing
laminar forced convection of a constant property fluid flowing inside a parallel
plate duct. One of the duct walls is subjected to a spacewise varying heat flux,
while the other wall is kept insulated. Fluid enters the duct at a uniform
temperature T, and the plates are separated by a distance k. Figure 4.3.]
illustrates the geometry and the coordinates.

Unknown heat supply q(x)

R N

] [ ] L ] L] [ ] ] L] *
Y* ‘\Thcrmocoupkes

1 Fluid
0 K\\K\\\é\\\\ T N > X

Insulated

Figure 4.3.1 - Geometry, coordinates and sensors locations.
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The mathematical formulation for this problem is given by

2

ka T(Jg,}’) ___u(y)pc aT(xay) in0<y<h, 0<x<b (431&)
ay P Ox

0”T(x,0)=0 at y=0, 0<x<b (4.3.1.b)
3y

ké’T(x,h):q(x) at y=h, 0<x<b (43.1.¢)
Jy

T0,)=T, at x=0, 0<y<h (4.3.1.d)

where g(x) is the wall heat flux. The fully developed velocity u(y) is given by

u(y) = bu_ ;‘11(1 - %) (4.3.2)

where u,, is the mean velocity.

The problem given by equations (4.3.1) is a direct problem when the wall
heat flux g(x), as well as the other quantities appearing in equations (4.3.1) are
known. The objective of the direct problem is to determine the temperature field
T(x,y) of the fluid inside the channel.

Inverse Problem

For the inverse problem considered here, the wall heat flux g(x) is
regarded as unknown. Such a function is to be estimated by using the readings of
M sensors located inside the channel at a transversal position y,, as illustrated in
figure 4.3.1. The following functional is then minimized in order to estimate g(x).

b

Sla]= [{rfrr90]- 1} e (433)

x=0

where Y(x) are the measured temperatures at the transversal position y = y;. A
sufficiently large number of measurements is considered available in the axial

direction, so that they can be treated as a continuous function. T[x, yl;q(x)] are
the estimated temperatures at y = y), obtained from the solution of the direct

problem (4.3.1) by using an estimate for g(x), while b is the length of the channel
containing measurements, where the wall heat flux is to be estimated.
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Technique IV, the conjugate gradient method of function estimation, is
applied for the minimization of the functional (4.3.3). The sensitivity and adjoint
problems, required to obtain expressions for the search step size and gradient
direction, are developed next.

Sensitivity Problem

It is assumed that when g¢(x) undergoes an increment Ag(x), the
temperature T(x,) changes by an amount AT(x;y). Then, to construct the
sensitivity problem defining the function AT(x,y), we replace T(xy) by
T(x,y) + AT(x,y), and g(x) by g(x) + Ag(x) in the direct problem (4.3.1) and
subtract from it the problem (4.3.1) to yield

2

ka AT(:’y)=u(y)pC OAT(x,y) in0<y<h, 0<x<b (4.3.4.a)
ay P Ox

SAT(x,0) -0 at y=0, 0<x<b (4.3.4.b)

Jy

oy

AT(O,y) =0 at x=0, 0<y<h (4.3.4.d)

Adjoint Problem

To derive the adjoint problem we multiply equation (4.3.1.a) by the
Lagrange multiplier A(x,y), integrate the resulting expression over the space
domain and then add this result to the functional given by equation (4.3.3). The
following expression results:

b
Slal= [Tty a0 - ()Y de+

x=0

(43.5)

The variation of the extended functional (4.3.5) is developed and allowed
to go to zero. After some straightforward manipulations, which are left as an
exercise to the reader, the following adjoint problem results:
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2

uy) pC f’i+ka—f+2r(x,y)—Y(x)]=o n0<x<bh0<y<h (4364
? Ox ay !
oMx0) at y=0, 0<x<b (43.6b)
Jy
oAxR) _ at y=h, 0<x<b (43.6c)
dy
Ab,y)=0 at x=b, 0<y<h (43.6.d)
Gradient Equation

In the process of obtaining the adjoint problem, the following integral term
is left:

b
AS[q(x)] = j' A(x, k) Ag(x) dx (43.7.2)
x=0

By assuming that g(x) belongs to the space of square integrable functions
in 0 < x < b, we can write

b
AS[g(x)] = J'vs[q(x)] Ag(x) dx (4.3.7.b)
x=0

Therefore, by comparing equations (4.3.7.a) and (4.3.7.b), we can obtain
the gradient equation as

VS[q(x)] = A(x,h) (4.3.8)

Iterative Procedure

The following iterative procedure of Technique IV is applied to the
estimation of the wall heat flux g(x):

"' (x)=q"(x)-p'd* (%) (4.3.9.2)

where the superscript & refers to the number of iterations and the direction of
descent is given by
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d*(x) = vs[q"‘(x)] +y¥d* (x) (4.3.9.)

We use here the Fletcher-Reeves expression for the conjugation
coefficient, given in the form

2
VS[qk(x)]} dx
yt = for #=12,. withy’=0 (43.9.¢)

ool

1 ¢ o
S

B
4

Gy,

1
<

x

The step size is obtained by minimizing the functional (4.3.3) with respect
to B*. The following expression results (see Note 7 in Chapter 2):

b

I [T(x, y)- Y(x)]AT(d* ) dx
pr=x=r (4.3.9.d)

12
x;[)[AT(d )] dx

where AT(d*) is the solution of the sensitivity problem (4.3.4), obtained by
setting Ag(x) = d*(x).

Results

In order to illustrate the use of Technique IV, as applied to the estimation
of the wall heat flux, we considered different functional forms to generate the
simulated measurements, such as a triangular and a sinusoidal variation.

As a test-case, consider that a fluid at a temperature T; = 20°C enters a
parallel plate duct of length 4=1.6m, with walls separated by a distance
h = 0.01 m. The sensors are located at the position y; = 0.009 m from the lower
wall and separated by 0.10 m intervals along the x direction. The fluid properties
are taken as: p = 840 kg/m’, k = 0.137 W/m°C) and C, = 2200 J/(kg"C), which
refer to an engine oil. The mean velocity is taken as u,, = 0 04 m/s.

The direct, sensitivity and adjoint problems were solved by finite
differences with the following grid spacing: 4x = 0.01m and 4y = 0.0002 m.

Let us consider now a triangular variation for the heat flux in the form

3000 + 8750x for 0<x<0.8m
q (4.3.10)

~ 110000 - 8750(x-08) for 08<x<16m
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Figure 4.3.2 shows the results of the inverse amalysis for the case with no
measurement error (i.e., o = 0) while figure 4.3.3 grves the results of the same
calculation with a measurement error of ¢ = 0.5 These figures show that
increasing the measurement errors decreases the accuracy of the inverse solution;
but the results are still quite good.

The second example involves a sinusoidal variation for the wall heat flux
in the form

q(x)= 7000+ 3000 sin[%n‘} (4.3.11)

The results obtained with measurements with no error (o = 0), as well as
measurements with random error (o = 0.5), are very good, as can be seen in
figures 4.3.4 and 4.3.5, respectively. As expected. it is easier to recover a
continuous function, such as the one given by equation (4.3.11), than a function
containing discontinuities in its first derivative, like the triangular variation given
by equation (4.3.10).

c=0.0

Wall heat flux , g(x)

=== Exact wall hear flux

2000 = T==®=="  Estimated wall heat flux

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Figure 4.3.2 - Triangular variation for the heat flux obtained with errorless
measurements.
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Figure 4.3.3 - Triangular variation for the heat flux obtained with measurements
containing random errors.
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Wall heat flux , q(x)

Exact wall heat flux

2000 - .
{ ~°°"°7" Estimated wall heat flux

]
R e — s e ——

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.8
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Figure 4.3.4 - Sinusoidal variation for the heat flux obtained with errorless
measurements.
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Wall heat flux

[ 4 4

—— Exact wall heat flux

~7==="*  Estimated wall heat flux

0 t=—r—r — Y
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0.0 6.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
X , m

Figure 4.3.5 - Sinusoidal variation for the heat flux obtained with measurements
containing random errors.

4-4 ESTIMATION OF THE TRANSIENT WALL HEAT FLUX IN
TURBULENT FLOW [4]

After examining the solution of the inverse problem of estimating the axial
variation of the wall heat flux in a steady-state problem in laminar flow, we now
present the estimation of the transient wall heat flux in a channel with turbulent
flow. A similar problem, involving the estimation of the transient wall heat flux
in a channel with laminar flow, was solved in reference [7], where the effects of
non-newtonian behavior of the fluid were also addressed.

The basic steps of Technique IV, as applied to the solution of the present
inverse problem, are discussed next.

Direct Problem

We consider hydrodynamically developed, thermally developing transient
heat transfer for an incompressible turbulent flow inside a parallel-plate duct,
subjected to timewise varying wall heat flux at both boundaries. Axial
conduction, viscous dissipation, free convection and wall conjugation effects are
neglected. Flow properties are assumed constant. Figure 4.4.1 illustrates the
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geometry and coordinates. Because of symmetry, only half of the region is

considered.

The mathematica! formulation of this problem is given in the

dimensionless form as

0(X,Y,1) 0(X,Y,r) © 20(X,Y,7)
A SAL R AL § 1 'a Yl Sl Ll A AP bl S LR LY
R s 2
in 0<¥Y<l, 0<X<L,t>0
g—?=Q(r) at Y=1, O0<X<L, >0
o0 _
gj}'——-o at Y—O, 0<X<L,T>0
0=1 at X=0, 0<Y<1l, >0
0=1 for =0, 0<Y<1l,0<X<L

where the following dimensionless groups were defined:

T y
@:_ Y ==
To h
D =4h Pr=
e
=X =%
u h
m

16x/De
RePr
u D
- Re=-2_¢£
v
£
Q=ﬂ £ =l+-2
Tok ! a

(4.4.1.2)

(4.4.1b)

(44.1.c)

(44.1.4)
(44.1e)

(4.4.2.2-)

Here, T is the initial and inlet temperature of the fluid, 4 is the half
distance between the plates and u,, is the mean fluid velocity, while v and « are
the fluid kinematic viscosity and thermal diffusivity, respectively. The fully
developed turbulent velocity profile, U(Y), and the total diffusivity, &, were

determined with the same turbulence model used in reference [18].

The problem given by equations (4.4.1) is denoted as a direct problem if
the heat flux Q(7) is known. The objective of the direct problem is to determine
the temperature field ©(X Y, 7) of the fluid inside the channel.
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d®/dy = 0(1)
R S T T N T
: TCO— >
t— x*-——-p-l T !
e T iy é ’
— y iU=U®)
— 1, "
y=0i " l ™ |
T x=0 B - - -4
89/8y=0 X=

Inverse Problem

For the inverse problem considered here, the wall heat flux QO(7) is
regarded as unknown, and is to be estimated by minimizing the following
functional

T

sjom)= fle[xe.rnow)- 20} ar (44.3)

r=0

where @[X *Y *,r;Q(r)] is the estimated temperature at the sensor position

(X*, ¥*), which can be obtained from the solution of the direct problem (4.4.1) by
using an estimate for the unknown heat flux. Z(7) 1s the measured temperature.

The sensitivity and adjoint problems, required for the implementation of
the iterative procedure of Technique IV, are developed next.

Sensitivity Problem

When the wall heat flux O(7) undergoes an increment AQ(7), the
temperature ©(X,Y,7) also changes by the amount A©(X,Y,7). To construct the
sensitivity problem we replace ©(X,Y,7) and Q(7) in the direct problem (4.4.1) by
[OX.Y,D+AX Y, 1)] and [Q(D)+AQ(1)), respectively, and then subtract from the
resulting equations the original direct problem. We obtain

or oX oY oY
in 0<Y<l, 0<X<L >0 (4.4.4.2)

OAOXY,T) 1y FROLKTSD) _01{6 (1) BOXY, r)}
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é‘A@ = AQ(7) at Y=1|, 0<X<L, >0 (4.44.b)

040 =0 at Y=, 0<X<L, >0 (4.4.4.0)

2

AO=0 a X=0, 0<¥Y<1,r>0 (4.4.4.d)

A®=0 for =0, 0<¥Y<1,0<X<L (4.44.¢)
Adjoint Problem

To derive the adjoint problem we multiply equation (4.4.1.a) by the
Lagrange multiplier A(XY,7), integrate the resulting expression over the space
and time domains and then add it to equation (4.4.3) to yield

r Lo
Sem)= fe-2'ar+ [ [ | l{aY(,-ﬁJ—%?—Uﬁ}dede
=0 r=0 X=0V¥=0

(4.4.5)

The variation of the extended functional (4.4.5) is obtained and after some
algebraic manipulations it is allowed to go to zero. The following adjoint problem
results:

is left:

[z c(
=t € —|+20-2)F(X-XEY-Y*)=0

or max ar(g a"YJ+ (O=2oX - X5r-1)

in 0<FY<l, 0<X<L0<r<yg (4.4.6.a)
oA
—=0 at Y=1, 0<X<L,0<r<gy (4.4.6b)
oY
1z
-a,,—Y=O at Y=, 0<X<L,O<r<rf (4.4.6.c)
A=0 at X=1L, 0<¥<1,0<r<y (4.4.6.d)
A=0 for =1 0<¥Y<1,0<X<L (44.6.€)

Gradient Equation

In the process of obtaining the adjoint problem, the following integral term
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oL
AS[Q(r)]:—I JIA(X,I,r)gl(l)AQ(r)dXdr (4.4.7.2)

r=0 X=0

For (1) belonging to the space of square integrable functions in the time
domain 0 < 7< z; we can write

°f
AS|Q(7)] = J'V.s*[Q(r)]AQ(r)dr (4.4.7b)
r=0
Hence, by comparing equations (4.4.7.a) and (4.4.7.b), we can obtain the

gradient equation in the form

L
vs[o()] =~ J' MXLD)e ()X (4.4.8)
X=0
Iterative Procedure

The iterative procedure of Technique IV, as applied to the estimation of
the unknown function J(7), is given by

oMy =0 () -p'd" () (4.4.9.2)

The direction of descent d* (1), used to advance from iteration & to k+1, is
obtained as

d* (1) = VS[Q* (r)]+ S d" (1) (4.4.9b)
The Fletcher-Reeves expression for the conjugation coefficient is given
by:
Tf 2
I{VS[Qk(r)]} dr |
y' = for k=12,.. withy =0 (44.9c)
k-1 2
{VS[Q (z‘)]} dr
r=0

An expression for the search step size B is obtained by minimizing the
functional given by equation (4.4.3) with respect to B*. The following expression
resnlts (see Note 7 in Chanter 2):
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| (0" (|- z(n}a6|d" ()] d
ﬁkz,i” r] TJ [ T]T (4.4.9.d)

T

J' {A@[d"(r)]}2 dr

r=0

where A®[d*(7)] is the solution of the sensitivity problem (4.4.4), obtained by
setting AQ(r) = dk(r).

Results

We use simulated measurements in the form given by equations (2.5.2), in
order to evaluate the accuracy of the inverse analysis for estimating Q(7) with

Technique IV.
In the present study, we investigated the following three different timewise

variations of the wall heat flux Q(z), with functional forms illustrated in figure
4.4.2 and specified as given below:

80 0<7r<03
N _ 4.4.10.
Case(A): Q(7) {50 03<7<0.6 ( K

2 3
Case(B):Q(r)={23+(2~228T-0-1175T +0.001677)/2.5 0<7r<0.35

0.35<7<0.6
(4.4.10.b)
Case(C): O(7) 50+1007 0<7<03 (4.4.10.0)
ase(C): O(r) = 4.10.c
50+10000.6-7) 03<r<0.6
100 100 100
90 Case (A) 90 Case (B) 90 Case (C)
ﬁ:g . 80 80
8 " 8,70 gm
50 60 50
40 50 50
v oo g U506 v Ur Ty U U™ s 0TTTUTUTTTUS
T T T

Figure 4.4.2 - Different functional forms tested for the wall heat flux (7).
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We consider here a turbulent flow with Re = 10" and Pr=1.

Let us consider initially the functional form given by case (A). Figure
4.4.3 illustrates the effects of the transversal sensor location on the inverse
problem solution, for measurements with a standard deviation of o= 0.005 which
corresponds to an error of up to 1.25%, obtained with a sensor located at
X* = 5D,. Different transversal locations were examined, including ¥* = 1,0.9,
0.8 and 0.7. The location ¥* = 1 would correspond to a sensor located at the wall.
As apparent from figure 4.4.3, the accuracy of the estimation decreases as the
sensor is moved away from the boundary. In fact, for ¥* < 0.7 the sensor is
located outside the thermal boundary layer. Hence, temperature measurements
taken in the region Y* < 0.7 for X* = 5D, bring no useful information for the
estimation of Q(7).

Figure 4.4.4 shows the effect of axial location of the sensor on the
accuracy of the estimation. In this figure we examine three axial locations
X* = 5D,, 7D, and 9D, with the transversal position taken as Y* = 0.9 and the
standard deviation o = 0.01 (which corresponds to 2.5% measurement error).
Clearly, increasing the axial location X* of the sensor decreases the accuracy of
the estimation, because the sensor location moves to the fully developed region.

90.0¢ , 1 A - ' ‘
- exact |
r y*::l .
- 80.0% - oem-- y*=0.9 ;
X 70.0f y*=0.7 ]
E )("‘:SDe 0=0.005
S 60.0f ]
= [
=
® 500}
400 . l ‘ J Y

Figure 4.4.3 - Effect of the transversal location Y'* of the sensor on the accuracy
of estimations for case (A).
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€xact
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..... PO x*:SDe .
© 80.0%Neriietadt A0 R e .oe-e x*=7De-:
S | I

£ 700} y*=0.9 6=0.01

: E
S 60.0f ]
= { . . ]
g 1!5 2ag o %90, ’:° g r'!" 2]
3 50-0 :' X .’ ., ' ;
| 59 ¢ ) AN :
40.0F ]

00 01 02 03 04 05 56

Figure 4.4.4 - Effect of the axial location X* of the sensor on the accuracy of
estimations for case (A).

Figures 4.4.5 and 4.4.6 illustrate the effects of the measurement error on
the inverse problem solution for the functional forms of cases (B) and (O),
respectively. The sensor is considered to be located at X* = 5D, and Y* = 0.9,
Different levels of measurement error were considered in the analysis, including
o=0.01, 0.02 and 0.04. These two figures show that quite accurate results can be
obtained, even with large measurement errors such as for o= 0.04.

exact

90.0} -‘
0.0 . 0=001]

. o°°° L] 0=0.02

"o0 o 0'=004"

80.0}

70.0 -

wall heat flux, Q(1)

W

b

ow)
r_'r“..

00 01 02 03 07 53 0.6

Figure 4.4.5 - Effect of the measurement errors on the accuracy of estimations
for case (B).
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Figure 4.4.6 - Effect of the measurement errors on the accuracy of estimations
for case (C).

4-5 ESTIMATION OF THE SPACEWISE AND TIMEWISE
VARIATIONS OF THE WALL HEAT FLUX IN
LAMINAR FLOW (5]

In this section we present the solution of the inverse problem of estimating
the wall heat flux in a parallel plate channel, by using Technique IV, the
conjugate gradient method with adjoint problem. The unknown heat flux is
supposed to vary in time and along the channel flow direction. We examine the
accuracy of the present function estimation approach by using transient simulated
measurements of several sensors located inside the channel. The inverse problem
is solved for different functional forms of the unknown wall heat fiux, including
those containing sharp corners and discontinuities, which are the most difficult to
be recovered by an inverse analysis. The effects on the inverse problem solution
of the number of sensors, as well as their locations, are also addressed.

Direct Problem

The physical problem considered here is the laminar hydrodynamically
developed flow between parallel plates of a fluid with constant properties. The
inlet temperature is maintained at a constant value T, which is also assumed to
be the initial fluid temperature. For times greater than zero, the plates are
subjected to a time and space-dependent heat flux, as illustrated in Figure 4.5.1.
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Figure 4.5.1 - Physical Problem

By taking into account the symmetry with respect to the x-axis and
neglecting conduction along the flow direction, the mathematical formulation of
this problem in dimensionless form is given by:

2
29+U(Y)E~Q=é—® in 0<¥Y<1, 0<X<L, for >0 (4.5.1.a)
or X py?
ﬁ.D-:O at Y=0, 0<X<L, for >0 (4.5.1.b)
aY
20
;=00 at v=1, 0<X<L, for r>0 (4.5.1.)
O=0 at X=40, 0<X<L, for t>0 (4.5.1.d)
=0 for r=0, in 0<¥Y<I, 0<X<L (4.51.e)

where the following dimensionless groups were introduced:

(4.5.2.a-d)

P4
U(r =42 _ 3[1 -{Z) J (4.5.2.)
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a and k are the fluid thermal diffusivity and conductivity, respectively, 4 is the
channel half-width and u,, is the mean fluid velocity. The wall heat flux is written
as

g(x,t)= qu(X, 7) (4.5.3)

where g is a constant reference value with units of heat flux and Q(X,7) is a
dimensionless function of X and 7.

The direct problem given by equations (4.5.1) is concerned with the
determination of the temperature field of the fluid inside the channel, when the
boundary heat flux Q(X,7) at Y =1 is known.

Inverse Problem

For the inverse problem, the heat flux Q(X,7) at ¥ = 1 is considered to be
unknown and is to be estimated by using the transient readings of M temperature
sensors located inside the channel. We assume that no information is available
regarding the functional form of the unknown wall heat flux, except that it
belongs to the space of square integrable functions in the domain 0 < 7< 7 and
0 < X < L, where 7 is the duration of the experiment and L is the length of the
test-section in the channel.

The solution of such inverse problem is obtained by minimizing the
following functional

f M )
slo(x, )= j' Z{@[X;,Y”:,r;Q(X,r)]—Zm(r)} dr 459

=0 m=1

where Z,(7) is the measured temperature at the sensor location (X ;,Y;) inside

the channel and ©[.X ;,Y;,:;Q(X ,7)] is the estimated temperature at the same

location. Such estimated temperature is obtained from the solution of the direct
problem given by equations (4.5.1), by using an estimate for the unknown heat
flux O(X, 7).

The development of the sensitivity and adjoint problems, required for the
implementation of the iterative procedure of Technique IV, are described next.

Sensitivity Problem

The sensitivity problem is obtained by assuming that the heat flux O(X,7)
is perturbed by an amount AQ(X,7). Such perturbation in the heat flux causes a
perturbation A@(X,Y,7) in the temperature ©(X.Y,7). By substituting @(X,Y,7) by
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[O(X.Y,7)}+AO(X,Y,7)] and O(X,7) by [Q(X,7)+AQ(X,7)] in the direct
problem given by equations (4.5.1), and then subtracting from the resulting
expressions the original direct problem, we obtain the following sensitivity
problem for the determination of the sensitivity function A®( XY, .

PINC) SA® 740 .
o +U(Y)-E)?=—a?' in 0<¥Y<l1, 0<X<L,forr>0 (4.5.5.a)
—ﬁA—®= 0 at Y=0, O0<X<L,forr>0 (4.5.5.b)
17} 4
ég;@—:AQ(X,r) at Y=1, 0<X<L,forz>0 (4.5.5.c)
A® =0 at X=0, O0<Y<Lfor r>0 (4.55.d)
AG =0 for =0, in 0<¥Y<1,0<X<L (4.55.)

Adjoint Problem

In order to obtain the adjoint problem, we multiply the differential
equation (4.5.1.a) of the direct problem by the Lagrange multiplier AX,Y,7) and
integrate over the time and space domains. The resulting expression is then added
to equation (4.5.4) to obtain the following extended functional:

slocx, )= jf Lj ]I{i[@(X,Y,r)wZ(r)]zé(X—X;)J(Y—Y;)+
r=0 X=0Y=0 | m=l
20 5’0

o0
—+U¥)—-— (A X,Y,0)VdY dX d
[ﬁr+ ( )ﬁX ‘9)/2] ( T)} 4

(4.5.6)

where &) is the Dirac delta function.

The variation of the extended functional (4.5.6) is obtained and, after some
manipulations, the resulting expression is allowed to go to zero in order to obtain
the following adjoint problem for the Lagrange multiplier A(X,Y,2):

2 oA FA & . ‘
-2 U(nﬁh?uZ(e-zw(){- X )6(r-Y)=0

in 0<Y<1, 0<X<L, for >0 (4.5.7.a)



INVERSE CONVECTION 241

é/l=0 at Y=0, 0<X<L, for >0 (4.5.7.h)

aY

o4 at Y=1, 0<X<L, for 7>0 (4.5.7.¢)

7} 4

A=0 at X=1, 0<Y<l, for >0 (4.5.7.d)

A=0 for =17, in0<Y<1l 0<X<L (4.5.7.¢)
Gradient Equation

In the process of obtaining the adjoint problem, the following integral term
is left:

ff L
aslox, )= - j J'/I(X,l,z')AQ(X,r)dXdr (4.5.8.2)
r=0X=0

From the hypothesis that Q(X,7) belongs to the space of square integrable
functions in 0 < X< L and 0 < 7< 75 we can write

Tf L
aslocx,n)= [ [vslowr.mager, dxds (4.5.8)

r=0X=0

Therefore, by comparing equations (4.5.8.a) and (4.5.8.b), we obtain the
gradient equation for the functional as

vS[O(X,7)] = -A(X L,7) 4.5.9)

Iterative Procedure

The iterative algorithm of Technique IV, as applied to the estimation of
the unknown heat flux Q(X, 1), is given by

0"'(x,0=0"(X,n-g'd" (X,7) (4.5.10.0)
where the superscript  denotes de number of iterations.

The direction of descent d"(X,r) is obtained as a conjugation of the
gradient direction and of the previous direction of descent as
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d"(x,r)= VS[Q"(X, r)]+7"d""(x, 1) (4.5.10.b)

where the conjugation coefficient is obtained from the Fletcher-Reeves
expression as:

k 1{VS[Q* (r)”dedr

}/:

5

for 4=12,. withy’=0 (4.5.10.)

~

D R,

t~

&=

{VS[Q"" (r)]}dedr

r=0 X

An expression for the search step size #* is obtained by minimizing the
functional given by equation (4.5.4) with respect to #* (see Note 7 in Chapter 2).
We obtain

T

S M
(S, e
ﬂk _ r=0 m=l (4.5.10.d)

where A®,(d") is the solution of the sensitivity problem (4.5.5), obtained by
setting AQ(X, 1) = dk(X, 7).

Results

We use transient simulated measurements in order to assess the accuracy
of the present approach of estimating the unknown wall heat flux O(X,7). The
simulated temperature measurements were obtained from equation (2,5.2).

For the cases considered below, we have taken the total experiment
duration 7 as 0.08 and the channel test-length L as 0.004, while the heat flux at
the boundary ¥ = 1 was assumed in the form:

0(X,7)= 0 (X)+0 (v) (4.5.11)

The direct, sensitivity and adjoint problems were solved with finite-
differences by using an upwind discretization for the convection term and an
implicit discretization in time. The domain was discretized by using 101 and 81
points in the X and Y directions, respectively, while using 41 time steps. Such
number of points was chosen by comparing the solution of the direct problem for
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the local Nusselt number obtained by finite-differences, with a known analytical
solution [19].

By examining equations (4.5.7.d) and (4.5.7.¢), we note that the gradient
of the functional given by equation (4.5.9) is null at the final time 7, and the final
axial position L. Therefore, the initial guess used for the iterative process remains
unchanged at z7and at L. In the examples shown below, we use as an initial guess
for the final time and for the final position the exact values for O(X,7), which are
assumed available. For other times and axial positions, we take O(X,7) null as the
initial guess for the conjugate gradient method. We lose no generality with such
an approach, since we can always choose 7 and L sufficiently larger than the
respective experimental time and test section length of interest, so that the initial
guess has no influence on the solution, as illustrated in section 2-5.

Figures 4.5.2.a-c present the results obtained for a boundary heat flux
containing a triangular variation in X and a step variation in time, in the form:

1, for X<0.001 and X 2>0.003
QX(X) =<1000X, for 0.001< X <0.002 (4.5.12)
-1000X +4, for 0.002< X <0.003

1, for 7<0.02 and 720.06

= 4.5.13
0, (%) {2, for 0.02<7<0.06 (#>.13)

For such case, we have used in the inverse analysis 21 sensors located at
Y =0.95. The first sensor was located at X,” = 0.00004 and the last one at
X" =0.00396. The others were equally spaced, so that X, = 0.0002(m-1), for
m =2, .., 20. Figures 4.5.2 show the results for errorless measurements (dashed
lines), as well as for measurements with a standard deviation o = 0.010 4,
(symbols), where ©,,,, is the maximum temperature measured by the sensors. In
Figure 4.5.2.a, we have the results for the axial variation for 3 different times,
where 0,0.002) = 0£0.07) = 1 and Q,(0.04) = 2 from equation (4.5.13). The
unknown heat fluxes for such times were accurately predicted, so that the results
for r=0.002 and 7= 0.07 fall in the curve at the bottom, while those for 7= 0.04
fall in the curve at the top of Figure 4.5.2.a. The predicted heat flux is in good
agreement with the exact one for both errorless measurements and measurements
with random error. Figures 4.5.2.b-c show the results obtained for the flux
variation in time for different axial positions. The results for X = 0.0004 and
X = 0.0036 fall on the same curve in Figure 4.5.2.b as -expected, since
0x(0.0004) = 04(0.0036) = 1 from equation (4.5.12). The results shown in Figure
4.5.2.c for X = 0.002, where Q(X,7) has a peak in X, are also in good agreement
with the exact functional form assumed for O(X, 7).

The RMS error (egys) for the results shown in Figures 4.5.2 obtained with
errorless measurements, is 0.014. We define the RMS error here as:
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%\/Z[Q“(X’, F)-g, (X, )]2

N

(4.5.14)

i=]

where N is the total number of measurements used in the inverse analysis, while
ex and O, are the exact and estimated heat fluxes, respectively.

Dimensionless Heat Flux, Q(X, )

7 Estimated:
c=0 o=001+0Q ., D
1 — °
- ~ 150002 &
- — 1=004 @
- — =007 QA
0 T I T I T I T ‘]
0.000 0.001 0.002 0,003 0.004

Dimensionless position, X

Figure 4.5.2.a - Inverse problem solution for different times obtained with 21
sensors. Triangular variation in the axial direction given by equation (4.5.12).

Dimensionless Heat Flux, Q(X 1)

5 —

EXACT

1 Estimated: ?
c=0 0=0.01+0,,,,
| — — X=00004 [
--- X=00036 O
L I A E
0.00 0.02 0.04 0.06 0.08

Dimensionless time,

Figure 4.5.2.b - Inverse problem solution for different axial positions obtained
with 21 sensors. Step variation in time given by equation (4.5.13).
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Dimensionless Heat Flux, Q(X,t)

2 — EXACT
] Estimated:
1 - o=0 0=0.01#0,,,
————— X=0002 €
0 T I T [ ¥ l ¥ l
0.00 0.02 0.04 0.06 0.08

Dimensionless time, t

Figure 4.5.2.c - Inverse problem solution for X = 0.002 obtained with 21 sensors.
Step variation in time given by equation (4.5.13).

Figures 4.5.3.a-c present the results obtained for a heat flux with a step
variation in X and with a triangular variation in time, in the form:

1, for X <0.001 and X =20.003
Q (X)= (4.5.15)

2, for 0.001 < X <0.003

1, for 7<0.02 and r>0.06
Qr(r) =<¢507, for 0.02<7<0.04 (4.5.16)
—-50r+4, for 0.04 <7<0.06

where the dashed lines show the results obtained with errorless measurements
and the symbols show the results obtained with measurements with a standard
deviation of o= 0.01 ®,,. The 21 sensors used for this case are located at
Y' = 0.95 and at the same axial positions as for the case shown in Figures 4.5.2.
Figure 4.5.3.2 shows the axial variation of Q(X,7) for different times that
correspond to Q4 7) = 1, as given by equations (4.5.16). Similarly, Figure 4.5.3.b
shows the axial variation of Q(X,7) for 7= 0.04, when Q{7 has a peak, i.e.,
QL 7) = 2 as given by equation (4.5.16). In figure 4.5.3.c, we have the results for
the variation of Q(X,7) in time for three different axial positions, so that, in
accordance with equations (4.5.15) we have 0x0.0004) = 0,{(0.0036) = | and
0(0.002) = 2. As for the case presented in figures 4.5.2, figures 4.5.3 show that
the present function estimation approach is capable of recovering the unknown
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heat flux Q(X,7) quite accurately for errotless measurements, as well as for
measurements containing random errors. The RMS error is 0.045 for the results
shown in figures 4.5.3, obtained with errorless measurements,

——— EXACT

.0 * . o
2 —'ﬁ‘;vaf- Estimated:

° 6=0  ¢=0.01%0,,
— — 1 =0002 ¢
---- t1=002 0O
— - T1=006 ¢

0 — 12007 @

L T
I I I

Dimensionless Heat Flux, Q(X,1)
f
o8

0.000 0.001 0.002 0.003 0.004
Dimensionless position, X

Figure 4.5.3.a - Inverse problem solution for different times obtained with 21
sensors. Step variation in the axial direction given by equation (4.5.15).
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Q9 2
&
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@ = = *
E ] - o 0 (0] 001 (")max
B ---- 1=004 @

0 ; T ]\ T I T i T '[

0.000 0.001 0.002 0.003 0.004

Dimensionless position, X

Figure 4.5.3.b - Inverse problem solution for 7= 0.04 obtained with 21 sensors.
Step variation in the axial direction given by equation (4.5.15).
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— - x=0003% EJ
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Figure 4.5.3.c - Inverse problem solution for different axial positions obtained
with 21 sensors. Triangular variation in time given by equation (4.5.16).

The results shown above in figures 4.5.2 and 4.5.3 can be generally
improved by using more measurements in the inverse analysis. Let’s consider, for
example, the estimation of the axial variation of Q(X,7) shown in Figure 4.5.3.a.
In Figure 4.5.4, we present the estimation of Q(X,7) for the same case studied in
Figure 4.5.3.a, but using the errorless measurements of 101 sensors instead of 21.
The sensors were equally spaced along the channel length and at ¥ = 0.95. The
time frequency of measurements was considered to be the same as for Figure
4.53.a. By comparing figures 4.53.a and 4.5.4, we can clearly notice the
improvement in the estimation of Q(X.,r) by using more sensors along the
channel. The RMS error obtained with 101 sensors is 0.013 as compared to 0.045
obtained by using 21 sensors.

For inverse heat conduction problems dealing with the estimation of a
boundary condition, the sensors should be located as close to the boundary with
the unknown condition as possible, in order to improve the estimation. Such is
also the case for inverse convection problems. We have estimated Q(X,7) for
OX) and QA7) given by equations (4.5.15) and (4.5.16), respectively, and by
using the errorless measurements of 21 sensors located at the same axial positions
as for Figures 4.5.3, but at ¥ = 0.9, instead of at ¥ = 0.95. The RMS error has
increased to 0.238, as compared to 0.045 obtained with the sensors located at
Y =0.95.

We note in figures 4.5.2-4 that generally the agreement between the
estimated solutions and the exact functional form assumed for Q(X,7) tends to
deteriorate near the final axial position and near the final time. This is due to the
very small values of the gradient of the functional, equation (4.5.9). in such
regions, as can be noticed by examining equations (4.5.7.d.e).
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The effects of non-Newtonian behavior of the fluid over the inverse
problem solution were examined in reference [6]. The results do not appear to be
sensitive to the power-law index of the fluid flowing inside the channel.

EXACT

Estimated, 5=0 l'
- — -1 =0.002 !

Dimensionless Heat Flux, Q(X,t)
4]

0 T I T !’ T ] J I
0.000 0.001 0.002 0.003 0.004
Dimensionless position, X

Figure 4.5.4 - Inverse problem solution for different times obtained with 101
sensors. Step variation in the axial direction given by equation (4.5.15).
PROBLEMS
4-1  Solve the inverse problem examined in section 4-1, by using a parameter

estimation approach, instead of the function estimation approach. In order
to do so, approximate the unknown inlet temperature profile as

N
F(¥)= ZPJ_CJ,(Y)
j=1

where P; are unknown coefficients and C(¥) are known trial functions,
given in the form of a Fourier series as

Cj(Y)zcos[(j—l)—;{Y} for j=1,3,5,...

Cj(Y)=sin[j-Z~Y} for j=2,4.,6....
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4-2

4-3

4-4

4-5

Try to reproduce the results shown in figure 4.1.6 by using the parameter
estimation approach of Technique 1. Examine the effects of number of trial
functions, number of sensors, sensor locations and measurement €rrors on
the estimated function.

Make a comparison of Techniques I and 1V, as applied to the estimation of
the inlet temperature profile shown in figure 4.1.6.

Consider the physical problem involving laminar hydrodynamically
developed flow in a parallel plate channel. The plates, located at a distance
2h from each other, are maintained at a constant temperature 7;, which is
also the initial temperature of the fluid inside the channel. For times ¢ > 0,
the inlet temperature profile f(y,?) varies in time and across the channel.
Formulate this forced convection problem in dimensionless form, by using
the dimensionless variables given by equations (4.2.3).

Use Technique IV for the estimation of the unknown dimensionless inlet
temperature profile F(¥,7) in problem 4-3, by using measurements taken
downstream. Generate the simulated measurements by assuming the
unknown function to be written as the product of a function of ¥ by a
function of 7, i.e., F(Y,D=Fy{(Y)F{1). Test the following functions for
Fy(Y)and F(7):

1 for 0<¥<03 and 0.7<Y<l
F (Y)=
Y 2 for 03<Y<07
I for 0<Y<03 and 07<Y <l
F,(Y)={ 5Y-05  for 03<Ys<05
_sY+45  for 05<Y<07

1 for 0<7<0.0006 and 0.0014<7<0.0020

F (r)=
v 2 for 0.0006 <7 <0.0014

1 for 0<1<0.0006 and 0.0014<7<0.0020
F(1)= 25007 -0.5 for 0.0006 <7<0.0010
-25007 +4.5 for 0.0010<7<0.0014

Examine the effects of number of sensors, sensor locations and
measurement errors on the estimated functions.

Solve the inverse problem examined in section 4-3, by using a parameter
estimation approach, instead of the function estimation approach.
Approximate the unknown boundary heat flux by a Fourier series,
similarly to the estimation of the inlet temperature profile in problem 4-1
above. Make a comparison of Techniques 1 and IV, as applied to the
functional forms shown in figures 4.3.2 and 4.3.4. Examine the effects of
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4-6

4-7

4-8

4-9

4-10

4-11

4-12

INVERSE HEAT TRANSFER

number of sensors, sensor locations and measurement errors on the
estimated functions.

For the hydrodynamically developed flow of Non-Newtonian fluids
following the power-law model for the shear stress [14], the velocity
profile in a parallel plate channel of half-width 4 is given by:

n+l

u(}))zum(l-ﬂn 1_(z)7

1+n h

where u,, is the mean fluid velocity and » is the fluid power-law index.
Solve the inverse problem of estimating the transient wall heat flux
(supposed uniform along the channel) by using Technique IV. Consider
available the transient readings of a single sensor for the inverse analysis.
By using functional forms containing sharp comers and discontinuities to
generate the simulated measured data, examine the effects of sensor
location and measurement errors on the inverse problem solution. Also,
verify if such solution is affected by the fluid power-law index .

Repeat problem 4-6 by considering now the unknown boundary heat flux
to be a function of time and of the axial position x, that is, ¢ = g(x,/), as in
section 4-5. Examine the number and position of sensors required to obtain
accurate estimates for the unknown function.

Is it possible to use temperature measurements to estimate the power-law
index n? Consider as the physical problem the hydrodynamically
developed flow of a power-law fluid in a parallel plate channel of half-
width 4, subjected to constant heat flux gy on both walls. Assume the
initial temperature of the fluid to be T,, which is also the uniform inlet
temperature.

Repeat problem 4-8 by assuming the walls to be maintained at the constant
temperature 7, instead of being supplied the heat flux g,.

Use Techniques I and II to estimate a uniform inlet temperature 7y , by
using transient temperature measurements taken downstream in a parallel
plate channel. Assume hydrodynamically develop laminar flow of a
Newtonian fluid inside the channel, which is subjected to a constant wall
heat flux go on both boundaries. Utilize the concepts of design of optimum
experiments discussed in Note 2 of Chapter 2, for determining
experimental variables, such as the sensor location and duration of the
experiment, for the estimation of T,

Is the solution of forced convection inverse problems, in which the flow is
not hydrodynamically developed, more involved than those inverse
convection problems considered so far? Why?

Consider the heating of a fluid in the entry region of a parallel plate
channel of width 24, subjected to the flux distribution g(x,) on both walls.
The inlet and initial fluid temperature is 7;. The velocity profile at the
channel inlet is uniform and parallel to the walls. Give the mathematical
formulation of such physical problem.
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4-13

4-14
4-15

4-16

10.

1.

Derive all the basic steps for the estimation of the boundary heat flux g(x,?)
in problem 4-12, by using Technique IV.

Why are inverse free convection problems difficult to solve?

Consider a fluid inside a square cavity of side a. The boundaries at y = 0
and y = a are supposed insulated, while the boundary at x = a is supposed
to be maintained at the constant temperature Tp, which is also the initial
temperature of the fluid. The heat flux distribution at x = 0 is given by
g(»,1). Give the mathematical formulation of such physical problem.
Derive all the basic steps for the estimation of the boundary heat flux g(y,f)
in problem 4-15, by using Technique IV.
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Chapter 5

INVERSE RADIATION

In the study of radiation heat transfer, a distinction is made between
radiation transfer as a surface phenomenon and as a bulk phenomenon. For
opaque materials such as metals, woods, rocks, etc, the radiation emitted or
absorbed by the body is said to originate from the immediate vicinity of the
surface (i.e., within about 1 um), hence the radiation transport is regarded as a
surface phenomenon. In the case of semi-transparent materials such as glass, salt,
crystals and gases at elevated temperatures, the emission or absorption of
radiation occurs at all depths within the medium. Hence the radiation problem is
considered as a bulk phenomenon.

A semi-transparent medium may scatter radiation in addition to absorbing
and emitting it. That is, when a beam of radiation strikes a semi-transparent body,
some of the incident beam is reflected from the surface, the remaining portion
penetrates into the medium, where part of the radiation energy is absorbed by the
body, and the remaining portion passes out through the medium, if the medium is
not a strong absorber. The scattering of radiation is important in porous
particulate media, like powders and foams, which are widely used in industrial
high technology applications and in thermal insulation. The radiation scattering
properties of such materials are characterized by a spectral scattering coefficient

o; and a phase function p(f)f.?'), where £ and €’ denote the directions of the

incident and scattered radiation beams, respectively. Then, the dot product Q.0
is the cosine of the angle between the scattered and the incident rays. To
characterize the radiation absorption characteristics of the medium, a spectral
radiation absorption coefficient x5 is introduced. When the medium is in local
thermodynamic equilibrium and Kirchoff law is valid, the spectral absorption
coefficient also characterizes the spectral emission coefficient. The sum of the
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spectral scattering and absorption coefficients is called the spectral extinction
coefficient 3 1 ie.

,6/1 =K, +t0,

and the ratio of the scattering to extinction coefficient, i.e.,

o3
0, =24
A,

is called the spectral single scattering albedo.
The limiting case of @; = 0 characterizes a medium that completely
absorbs the incident radiation at the wavelength A, whereas w; = 1 characterizes a

medium which completely scatters radiation of the wavelength A.
A fundamental quantity in the study of radiation transfer in participating

media is the spectral radiation intensity, J 3 (s,f!), where €2 is the direction of

propagation and s is the path of propagation. It represents the flow of radiation
energy per unit area normal to the direction of propagation of the radiation beam,
per unit wavelength, per unit solid angle, per unit time. If the €nergy per unit time
is measured in Watt, the wavelength A is measured in zm, and the solid angle in

steradian, sr, then the dimension of the spectral radiation intensity, J A s,fl),

becomes
2
W/ (m um. sr]

where the area is measured perpendicular to the direction of propagation of the
radiation beam.

In the study of radiation transfer, the radiation intensity is the fundamental
quantity, which is obtained from the solution of the Equation of Radiative
Transfer (ERT). In the study of conduction or convection, the temperature T of
the body is the fundamental quantity, which is obtained from the solution of the
standard energy equation. The radiation intensity being a directional quantity, its
determination from the solution of the equation of radiative transfer is a much
more difficult matter than the determination of temperature T from the solution of
the standard energy equation. Therefore, a considerable amount of effort has been
devoted to the solution of ERT. During the past three decades a variety of
numerical, exact analytic, approximate analytic solutions of ERT have been
reported in literature. The reader should consult references [1-7] for in-depth
discussion of the derivation of ERT and its solution with various techniques. In
the solution of an inverse problem of radiation in participating media, the
solution of the direct radiation problem is needed; it is most important that such
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solution be highly accurate. Here we present a brief discussion of the commonly
used techniques for the solution of the Equation of Radiative Transfer.

Methods for Solving the Equation of Radiative Transfer

The Discrete Ordinates Method: This method, first proposed by Chandrasekhar
[6], was adapted by Hyde and Truelove [8] and Fiveland [9] for solving radiation
problems of participating media. Since then, numerous applications of this
method have appeared in the literature [8-20]. The method appears to be very
promising for solving complex radiation transfer problems encountered in
combustors, heaters and furnaces {7,14]

The Spherical Harmonics Method (Py approximation): This method,
originally proposed by Jeans [21] in connection with radiation transfer in stars,
transforms the equation of radiative transfer into a set of simultaneous partial
differential equations. A detailed description of this method can be found in
references [1,22-26]. A shortcoming of the method is that low order
approximations are accurate only for optically thick media.

The Galerkin Method: This methed is specially suitable for solving one-
dimensional radiation problems of absorbing, emitting and isotropically scattering
media. The method can accommodate problems of spatially varying albedo, a(x),
and anisotropic medium. The applications of the method can be found in
references [27-33].

Simple Differential Approximations: The equation of radiative transfer can be
transformed into a simple ordinary differential equation for the determination of
the net radiation heat flux; but the accuracy of such simple solutions is generally
very poor and is not recommended for use in the inverse analysis. One such
approximation is the Schuster-Schwarzchild (or the two-flux) approximation and
the other is the Eddington approximation [1,3,5]. To improve the accuracy of the
differential approximation, Modest [5] proposed a modified differential
approximation. However, when applying such approximations, care must be
exercised in order to stay within the range of validity of the model.

The Zonal Method: Developed by Hottel [4] for heat transfer in furnaces, it
approximates the spatial behavior by separating the medium into a finite number
of isothermal sub-volumes and surface area zones. An energy balance is then
performed for radiative exchange between any two zones. The procedure leads to
a set of simultaneous equations for the determination of unknown temperatures or
heat fluxes.-

One-Dimensional Equation of Radiative Transfer
In this chapter we present inverse radiation problems for an absorbing,

emitting, isotropically scattering plane-parallel medium and for a medium with
spherical symmetry. Therefore, we first present here the governing equations of
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radiative transfer applicable for such situations involving gray media. For the
plane-parallel medium it is given by:

51(1”’+1(ru) g(r)+—f’(“‘)d” Ocr<r, ~l<p<l

_2_..4
g(r)=(1 _Q)M
T

and for the case of spherical symmetry we have:

1

LY S P ‘91(:‘)+1(r W =g +? jf(r w)du’

o )

—2_r4
8=~y
4

Here, 7 is the radiation intensity, T is the temperature, 77 is the refractive
index, & is the Stefan-Boltzmann constant, w is the single scattering albedo, 7
and r are the optical variables and u is the cosine of the angle between the
direction of the radiation intensity and the positive 7 axis.

Inverse radiation problems of participating media arise in a variety of
engineering applications, including, among others, remote sensing of the
atmosphere, estimation of the temperature profile in combustion systems, and the
estimation of radiation properties k', 5, o or @ of the participating medium. In
most cases, it is desirable to avoid the use of detectors within the medium. In
such cases, inverse analysis allows the use of exit radiation intensities for
estimating the unknown radiation properties or the radiation source term in the
medium. Typical applications of the estimation of radiation properties of porous
materials, such as fiberglass and foam insulation, as well as the estimation of the
phase function for packed sphere systems, can be found in the references [34-38].

To illustrate the applications of the inverse radiation technique, we
consider in this chapter the solution of the following three distinct radiation
problems:

e Estimation of unknown temperature profile in an absorbing, emitting,
isotropically scattering plane-parallel medium by utilizing the measured exit
intensities [39].

o Simultaneous estimation of temperature profile and surface reflectivity by
utilizing the measured exit radiation intensities {40].

o Estimation of radiation source term in a solid semi transparent gray sphere,
from the measured exit radiation intensities [41].
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We present the solutions of such inverse problems by using a parameter
estimation approach. Therefore, the sensitivity coefficients are required for the
solution procedures. We illustrate here the computation of the sensitivity
coefficients through the solution of sensitivity problems, as outlined in section
2.1.

The solution of other inverse radiation problems of interest can be found in
references [42-46].

5-1 IDENTIFICATION OF THE TEMPERATURE PROFILE
IN AN ABSORBING, EMITTING AND ISOTROPICALLY
SCATTERING MEDIUM ([39]

The inverse radiation problem considered here is concerned with the
estimation of the unknown temperature source term g(7)=g[T(r)] in an
absorbing, emitting, isotropically scattering plane-parallel gray plate of optical
thickness 7, from the knowledge of the measured exit radiation intensities Y(u)
at the boundary surface 7 = 0 and Z(x) at the boundary surface 7 = 7, as
illustrated in figure 5.1.1.

Technique II, the conjugate gradient method of minimization, is used for
solving the present inverse radiation problem. The basic steps in the solution
include the followings: direct problem, inverse problem, sensitivity problem,
iterative procedure, stopping criterion and computational algorithm. Details of
such steps are described next.

Transparent Boundaries

@ CATY)
BT
Y(p) /'

v

To

Figure 5.1.1 - Geometry and coordinates.
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Direct Problem

The mathematical formulation of the direct problem associated with the
inverse problem considered here is given by

5](1”)+I(r u)= g(r)+—j](r wuHdy' 0<1‘<z'0 —-l<pux<l
ot
(5.1.1.a)
2 b
where g(ry=(1- )21 (D) (5.1.1.b)
/4
with boundary conditions
I0,u)=0 u>0 (5.1.1.¢)
and
I(ro, -u)=0 u>0 (5.1.1.d)

Such boundary conditions represent transparent boundary surfaces with no
incident radiation.

The source term involving the fourth power of the temperature is
represented by a polynomial in the optical variable 7 as

N
gr)= Pt (5.1.2)
j=0

This problem is referred to as the direct radiation problem when the
source term g(7), optical thickness 7, single scattering albedo @ and other
radiation properties are all known, so that the radiation intensity X(z,u) is to be
determined. In this work highly accurate solutions of the direct radiation problem
are obtained by using high-order Py method [1,21-26].

Inverse Problem

We now consider a problem similar to that given by equations (5.1.1) but
the source term g(7) is unknown and is to be estimated by utilizing the measured
exit radiation intensities.

The problem defined by equations (5.1.1) with the source term or the
temperature unknown, but measured exit intensities known, is an inverse problem
which can be solved by the minimization of the following objective function:
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0 ]

S(P) = I[I(O,;U;P)‘Y(ﬂ)]zdy'{* j[](ro,y;P)—Z(p)]zdy (5.1.3)
-1 0

where Y(u) and Z(u) are the measured exit radiation intensities at the surfaces
=0 and 7= 7, respectively, while (0,.,P) and I( 7,/ P) are the estimated exit
radiation intensities at the surfaces = 0 and 7 = 7, respectively, obtained from
the solution of the direct problem (5.1.1), by using an estimate for the vector of
unknown parameters P. Since the unknown source term g(7) is approximated by
equation (5.1.2), the inverse radiation problem is reduced to an estimation
problem in (N+1) dimensional space. We note that a sufficiently large number of
measurements is considered available, so that they are assumed as continuous
functions Y(u) at 7=0 and Z(u) at 7= 7.

The objective function given by equation (5.1.3) is minimized by
differentiating  S(P) with respect to each of the unknown coefficients P,
j =0,...,N. Then, the resulting expression for IS(P)/SP; contains the sensitivity
coefficients 81/ OP;, which can be determined from the solution of the sensitivity
problem developed as described below.

Sensitivity Problem
The differentiation of the direct problem given by equations (5.1.1) with

respect to P; results in the following sensitivity problem for the determination of
the sensitivity coefficients &1/ JP;:

1
#i[ﬁl(r,y)]+[é’1(f,#)}zr1+£‘l J{M]af#' 0<r<r ,~le<p<l

It an a"PJ_ 2 . o"Pj
(5.1.4.a)
(0"1(0 )
, 4
2P =0 >0 5.1.4.b
2P ] U ( )
\ J
(61(r_~p)
A M ) >0 5.1.4.
\ 51’, } J7 ( c)

forj=0,1, ..., N. The vector

Wi = ol 81 2l 5.15)
o”PO’ﬁPI’ ’5PN o
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is the sensitivity coefficient vector which can be determined from the solution of
the sensitivity problem, Clearly, the solution procedure for this problem is the
same as that for the direct problem (5.1.1), with g(7) replaced by 7. We note that
the present parameter estimation problem is linear, since the sensitivity problem
is independent of the unknown parameters P, j = 0,...,N. Therefore, it only needs
to be solved once, as it will be apparent later in the computational algorithm.

Now, we develop an expression for the components of the gradient
dS(P)/dP;, by differentiating S(P) given by equation (5.1.3) with respect to P;.
We obtain

,,U,P)

AS(P) IO, u;P)
2010, 11 P) - Y(u)) L) yr -0
7 j[( 5 P) - ¥ ()] 5 dﬂ+f2u<r P - 20 f;. dy
(5.1.6.)
for j = 0,1,...,N, where the vector
38 S 35
vsP)l . 5.1.6.b
s®l = oP ' oP’ é’PNJ ( )

is the gradient of the objective function.

Iterative Procedure

To determine the unknown vector P, we consider the iterative procedure of
Technique I1, and write

Pt - p* - g*d (5.1.7)

where f* is the step size and d* is the direction of descent at the ¥ iteration.
Here, d is determined from

Fovsetyspiat! (5.1.8)

where the conjugation coefficient ¥ is computed here with the Fletcher-Reeves
expression

T
7k =[ [VS(:i )%T%VS(PI:] :l for k=1,2,... with °=0 (5.1.9)
VS(P™ )| |VS(PT )
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The step size #* in going from iteration k to k+1 is determined from the
condition m}lcnS(PM) or m}tnS(Pk - p*d"), that is,
¥l il

0
minS@* ) =min{ 170, P" - £ a*) - Y du+

x

6 £

i
k k .k 2
+ [l mP* - 540" - 2 du
0
(5.1.10)
By using a Taylor series expansion and performing the minimization, as

described in Note 3 in Chapter 2, we obtain the following expression for the
search step size

g =§L (5.1.11.3)
2
where
0
8, = Jlr0.mP") - Y10, P d' s
| (5.1.11.b)
(LGS S RAT LZLCHNS 2
0
0 1
A, = I{[VI(O,#;P")]Td"}sz I{[V{(ro,p;P*)]Td*}zdy (5.1.11.¢)
-l

0

Stopping Criterion
Once d* is calculated from equation {5.1.8) and [)”‘ from equation
(5.1.11.a), we can use the iterative procedure given by equation (5.1.7) to obtain

new estimates P**', until a stopping criterion based on the discrepancy principle
is satisfied. Such stopping criterion is given by

S(P**‘Jdaz (5.1.12)

where ois the standard deviation of the measurement errors.
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Computational Algorithm

The computational algorithm for Technique II, as applied to the present
inverse radiation problem, can be summarized as follows: Assume P* is known at
the ¥" iteration, then

Step 1. Solve the sensitivity problem given by equations (5.1.4) and compute
the sensitivity coefficient vector VI, given by equation (5.1.5).
Step 2. Solve the direct problem given by equations (5.1.1) and compute the

exit intensities ](O,,u;Pk) and ](ro,,u;Pk) at the surfaces 7 =0 and

T =1, respectively.

0’
Step 3. Check the stopping criterion given by equation (5.1.12). Continue if
not satisfied.

Step 4. Knowing VI, I(O,p;Pk), ](ro,y;Pk) and the measured exit

intensities ¥(x) and Z(), compute the gradient VS(P*) from equation
(5.1.6.b).

Step5.  Knowing VS(P*), compute »* from equation (5.1.9); then compute
the direction of descent d ¥ from equation (5.1.8).

Step 6. Knowing VI, I(0, ,u;Pk), I(ro, ,u;Pk), Y(u), Z(y) and d*, compute

the step size #* from equation (5.1.11).
Step 7. Knowing £* and d*, compute P**! from equation (5.1.7) and return to
step 2.

The reader should notice that the sensitivity problem is only solved once in
Step 1 of the above algorithm, since the present parameter estimation problem is
linear.

Results

Numerical results are now presented in order to illustrate that the
computational procedure used here works well and produces results which are
exact when the simulated measured data contain no measurement errors. The
results become less accurate as the standard deviation of the measured data is
increased.

To illustrate the feasibility of this approach under conditions encountered
in fires and furnaces, we considered temperatures ranging from 800 K to 1800 K
[7] and single scattering albedo varying from @ = 0.2 to @ = 0.35. Also, we
represented the source term g(7) as a polynomial of degree four in the optical
variable 7in the form

(r)=14207 +447° —1287° +647°  W/em® (5.1.13)
g
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as well as in a sinusoidal variation in the form

g(r)=5+3sin(2zr) Wiem® (5.1.14)

Simulated measured exit intensities Y(u) and Z(u) containing errors
were generated by adding random errors of standard deviation & to the exact exit
intensities, computed from the solution of the direct problem.

Figures 5.1.2 and 5.1.3 show the results obtained with errorless
measurements (o = 0) and measurements containing random errors (o = 0.03),
respectively, for the polynomial variation of the source term. We note in figure
5.1.2 that the exact function is perfectly recovered when errorless measurements
are used in the analysis. The results obtained with measurements containing
random errors are also quite accurate, as illustrated in figure 5.1.3.

11.0 7 T T T T T T T T T Y T T T T

o
i

g(1), W/em?
o

27

0-0 [ L 1 1 l I 1 1 } 1 1 A | 1 H L [ L ], I
0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.1.2 - Estimation of the source term g(r) =1+20r +44r:Z -~ 128r3 +
647" Wiem? for w = 03,7 0= 1,7 = 1, using simulated exact measurement data

with o= 0.
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Figure 5.1.3 - Estimation of the source term g(r) = 1+ 207 +447° — 1287° +
647 W/em? for w = 03,7 0= 1,7 =1, using simulated measurement data with

o=0.03.
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Figure 5.1.4 - Estimation of the source term g(7) = 5+ 3sin(277) W/ cm® for
@ = O.3,r0 = 1,7 =1, using simulated exact measurement data with o= 0.
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The results obtained for the sinusoidal variation of the source term are
similar to those obtained for the polynomial variation, as presented in figures
5.1.4 and 5.1.5.
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Figure 5.1.5 - Estimation of the source term g(7) =5+ 3sin(277) W/ cm” for
W= 0.3,1'0 = |,/ = 1, using simulated measurement data with o= 0.03.

5-2 SIMULTANEOUS ESTIMATION OF TEMPERATURE PROFILE
AND SURFACE REFLECTIVITY [40]

This section is concerned with simultaneous estimation of the unknown
temperature distribution 7{(7) and the diffuse reflectivity p of the boundary
surface at 7= 0, of an absorbing, emitting, isotropically scattering plane parallel
slab of optical thickness 7. We assume that the exit radiation intensities at the
boundary surfaces 7= 0 and 7 = 75 can be measured experimentally. Various
mathematical approaches have been applied to solve the inverse radiation
problems of participating media. Here we consider Technique I, the conjugate
gradient method of minimization, to solve the inverse radiation problem and use
high-order Py method to solve the corresponding direct radiation problem [1,21-
26). The basic steps in the analysis with this approach consists of the followings:
direct problem, inverse problem, sensitivity problems, iterative procedure,
stopping criterion and computational algorithm. We summarize below the
pertinent details of each of these basic steps.
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Direct Problem

The mathematical formulation of the direct problem, associated with the
inverse problem considered here, consists of the equation of radiation transfer
and its two boundary conditions. Then we write

0"](1' #)+1(r )= g(r)+-—j](z- wHdu' O0<r<rt -l<pu<l
or 0
(5.2.1.2)
with
-
¢0)=(1-0) 2L O (52.1b)
T

For the case considered here, we assume that the boundary surface at 7= 0
is a diffuse reflector and has negligible emission; the boundary surface at 7= 1z, is
transparent and there is no extemnally incident radiation. Then, the boundary
conditions become

!
100,10 =2p If (0,-p) 'y #>0 (3.2.1.¢)

and

I(ro, -u)=0 u>0 (5.2.1.d)

where p, 0 <p <1, is the reflectivity of the boundary surface at 7= 0.
The source term involving the fourth power of the temperature is
approximated by a polynomial in the optical variable 7 as

N

gr)=Y az" (5.2.2)

n=0

Figure 5.2.1 shows the geometry and coordinates. Here N is the degree of
the polynomial utilized in the approximation.
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Reflecting Boundary
P Transparent Boundary

I(r,1)
Y(u)

g(v) To

/\_/

Figure 5.2.1 - Geometry and coordinates.

Inverse Problem

For the inverse problem considered here, the source term g(7), as well as
the surface reflectivity p, are regarded unknown. Since the source term was
written in the form given by equation (5.2.2), such inverse problem involves the
estimation of (N+2) parameters, that is, (N+1) coefficients a,, n = 0,...,N, of the
source function and the reflectivity p at the surface 7 = 0. The vector of unknown
parameters is then given by

T
P’ =[a,a,a,,P] (5.2.3.2)

Such vector is to be estimated by using measurements of the exit
intensities at the surfaces 7=0and r=71 0
The estimation of the unknown source term g(7) and the boundary surface
reflectivity p, from the knowledge of the exit intensities measured at different
directions, can be recast as a problem of minimization of the following objective

function S(P):
0 ]
S®) = [U10.uP)- Y@l du+ [l P) - ZGo) i (5.23)
-1 0

where Y(1) and Z(u) are the measured exit radiation intensities at the surfaces
r=0 and 7= 1, respectively, while J(0,x;P) and I(zo,4;P) are the estimated
exit radiation intensities at the surfaces = 0 and 7= 1, respectively, obtained

frmmn tha cnlitinn af tha direct neahlem (5 2 1) hye ncina petimated values far the
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parameters P’ = [ag.ai,-..an,p]. We note that a sufficiently large number of
measurements is considered available, so that the measured data can be assumed
as continuous functions ¥{u) and Z(u).

The gradient of the objective function is obtained by differentiating S(P)
given by equation (5.2.3.b) with respect to each of the unknown coefficients a,
and p, respectively. Then the resulting expressions for &S/Ja, and 3S/Jp
contain the sensitivity coefficients &I/ Ja, and &I/ 6p, respectively, which can
be determined from the solution of the sensitivity problems developed as
described below.

Sensitivity Problems

By differentiating the direct problem given by equations (5.2.1) with
respect to a, and p, the sensitivity problems are obtained for the determination of
the sensitivity coefficients &I/ da, (n=0,1,...,.N) and &I/Jp, respectively. By
differentiating (5.2.1) with respect to a,, gives

2\ él(r, ol n ol
e o) v o

(5.24.3)
with boundary conditions
I

{M}zp [[M]ﬂ,d#, >0 5248

é‘ah ; 0"a’1

61(1-0 s :U)
— =0 u>0 (5.2.4.c)

&zn

for n=0,1,...,N. The differentiation of (5.2.1) with respect to p gives

1
é ( 8z, ol ol
’ug;( (Tﬂ))+( (T,U)J _;?_.!'[ (Tﬂ)) du’ ()<r<1'0 -l<uxl

ap
(5.2.5.a)

with boundary conditions

1 1
p 0 0 op
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(51(10,—;1)]
e g 23>0 (5.2.5.0)
ap

The row vector

ﬁao’o”al’ ’é’aN’o”p o

is the sensitivity coefficient vector which can be determined from the solution of
the above sensitivity problems. We note that the reflectivity p is unknown and it
appears in the formulations of both sensitivity problems (5.2.4) and (5.2.5).
Therefore, the present estimation problem is nonlinear. If the reflectivity were
known, the estimation problem would be linear, as illustrated in section 5.1.

Next, we develop expressions for the components of the gradient, i.e.,
d8/8a, and 85/5p, by differentiating S(P) given by equation (5.2.3.b) with
respect to a, and p to obtain, respectively,

i
AI0, ;P JI(z,, 1;P)
jzuo,u,m PN s i g0 - 20—
n n 0 n
(5.2.7.a)
forn=0,1,....N, and
1
210, ;P al(r ,u;P)
jzmo i)=Y N OB s [of1e 5Py - 20—
op ap
(5.2.7.b)
where the row vector [VS(P)]T, defined by
r | 85 85 85 &8
vsp))T = 22 22 52.7.
[vs(P)] [ﬁao e " 7 ap] (5.2.7.c)

is the gradient of the objective function.

Iterative Procedure

To determine the unknown vector P defined above, we consider the
following iterative minimization procedure of Technique II

SR L LE (52.8)
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where f* is the step size and d* is the direction of descent at the ¥ iteration,
determined from

d = vs@hy+y at! (5.2.9)

The conjugation coefficient ¥* is computed from the Fletcher-Reeves expression

T
7k =[ [VS(ii)%%VS(P:i:II ] for k= 1,2,3... with y°=0 (5.2.10)
VS(P™ )| |VS(P )

Here, the step size #° in going from P* to P**! is determined from the condition

0
mi’rnS(P“]):min I[I(O,#;Pk—ﬂkdk)-Y(#)lzdﬂ'F
£ L

(5.2.11)

1
+ [y P - gy - Z(o)
0

By using a Taylor series expansion and performing the minimization as
described in Note 3 in Chapter 2, we obtain the following expression for the
search step size

g = 4 (5.2.12.2)
AZ
where
0
8, = [L10.uP") - YT, P ' ds+
N (5.2.12.b)
(SN TR (L2 (NP ST o7
0
and

A = jl[{[W(o,y;P")]’"d"}zauur J{[V!(ro, y;P*)]’"d"}zdp (52.12.c)
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Stopping Criterion

Once d* is calculated from equation (5.2.9) and B* from equation
(5.2.12.a), the iterative process defined by equation (5.2.8) can be used to obtain
new estimates P*"', until a stopping criterion based on the discrepancy principle
is satisfied. Hence, the stopping criterion is given by

S(P“’ j< 257 (5.2.13)

where & is the standard deviation of the measurement errors.

Computational Algorithm

The computational algorithm of Technique II, as applied to the present
parameter estimation problem, can be summarized as follows. Assume Pt is
known at the & iteration, then

Step 1. Solve the direct problem given by equations (5.2.1) and compute the
exit radiation intensities /(0, ,u;Pk) and / (ro, y;Pk) at the surfaces
r=0andr= Ty respectively.

Step 2. Check the stopping criterion given by equation (5.2.13). Continue if
not satisfied.

Step 3. Solve the sensitivity problems given by equations (5.2.4) and (5.2.5),

and compute the sensitivity coefficient vector V7 defined by equation
(5.2.6).

Step 4. Knowing VI, I(O,y;Pk), I(To,ﬂ;Pk) and the measured exit

radiation intensities ¥(u) and Z(u), compute the gradient VS(PY) from
equation (5.2.7.c).

Step S. Knowing VS(P*), compute the conjugation coefficient ¥ from
equation (5.2.10). Then compute the direction of descent d* from
equation (5.2.9).

Step6.  Knowing V7, 1(0,.:P"), I(r.uP"), Y(u), Z(k) and ¢, compute
the step size 8* from equation (5.2.12.a).

Step 7. Knowing S and d*, compute P**! from equation (5.2.8) and return to
step 1.
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Results

Numerical results are now presented, in order to give some idea of the
accuracy of the conjugate gradient method of minimization in the solution of the
inverse problem of simultaneous estimation the source term g(7) and the diffuse
reflectivity p of the boundary surface at r=0, for absorbing, emitting,
isotropically scattering gray plate of optical thickness z,. The temperatures
considered lie between 800 K to 1800 K, which is encountered in fires and
furnaces. The single scattering albedo was chosen as @ = 0.3, which is
encountered in coal flames. In order to simulate the measured exit intensities Y(w)
and Z(4) containing measurement errors, random errors of standard deviation o
were added to the exact exit intensities, computed from the solution of the direct
problem. The source term was expressed as a polynomial of degree four in the
optical variable 7. The two different forms of such representation considered here
include

g(r)=1+107+757° —1707° + 85  W/em?, in0<r<l (5.2.14.a)

g(r)=1+017° +0017°  W/em’, in0<7<5 (5.2.14.b)

Figure 5.2.2 shows simultaneous estimation of the source term g(7) (or
temperature distribution T(z)) and the reflectivity p, by choosing the source term
g(7) in the form given by equation (5.2.14.a), for = 1.0, w=0.3, p=09
and o = 0.05. The agreement between the exact and the estimated results for both
the source term g(7) and reflectivity is good. For the case of no measurement
errors (i.e., o= 0), the estimated results agreed with the exact ones within the
accuracy of the graphical representation.

Figure 5.2.3 presents results similar to those shown by figure 5.2.2, except
for the presence of errors with standard deviation o = 0.1. The agreement
between the estimated and the exact results is still quite good.

Figures 5.2.4 and 5.2.5 are for a plate of optical thickness 7, = 5 and a
source term g(7) given by equation (5.2.14.b). Figure 5.2.5, for a standard
deviation o= 0.1, does not seem to be in good agreement with the exact results.
The estimation of reflectivity is not good because a very low value (ie. p=0.1)1is
to be estimated, and because the optical thickness is too large.
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Figure 5.2.2 - Simultaneous estimation of source term and surface reflectivity
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5.3 ESTIMATION OF THE RADIATION SOURCE TERM IN A
SEMITRANSPARENT SOLID SPHERE [41]

The inverse radiation problem of estimating the unknown temperature
distribution and radiation properties in an absorbing, emitting and scattering
medium has received a good deal of attention [34-40, 42-46]. However, such
works have been limited to the plane-paralle]l medium. In this section we examine
the inverse problem of estimating the unknown temperature field in an absorbing,
emitting, isotropically scattering semi-transparent solid sphere, by utilizing the
measured exit radiation intensities.

The inverse analysis utilizes Techniques I and II, the Levenberg-
Marquardt method and the conjugate gradient method, respectively. Both
methods require the solution of the direct problem and the determination of the
sensitivity coefficients, which are obtained here by solving sensitivity problems.
The solution methodologies for the conjugate gradient method and Levenberg-
Marquardt method of minimization are discussed below, after the formulation of
the direct, inverse and sensitivity problems.

Direct Problem

For an absorbing, emitting, isotropically-scattering gray solid sphere of
optical radius R with transparent boundary, the equation of radiative transfer can
be expressed as {30]:

1
ﬁ](f,ﬂ) +l(l_#2)ﬁl(r"u) +I(I‘,,U) = g(r)+_a3. J.](r,ﬂ')dy' (5313)
or r 6# 2 -1

u

in 0<r<R~1<u<1. For transparent boundary at r = R, with no externally
incident radiation, the boundary condition is taken as

IR-u)=0  p20 (5.3.1.b)

The geometry and coordinates of this spherical system is illustrated in
figure 5.3.1. The source term is related to the temperature T(r) in the medium by

_2_.4
o(r)=(1-0)= 2 ) (53.2)

where 77 is the refractive index of the medium and & is the Stefan-Boltzmann
constant.
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@, n

IR, W), Y (1)

Figure 5.3.1 - Geometry, coordinates and measurement location.

When the source term g(r), optical radius R, single scattering albedo @ and
the boundary condition at » = R are all specified, the problem defined above by
equations (5.3.1) for determination of the radiation intensity /(r,u) is called a
direct problem. However, when the source term g(r) is unknown and needs to be
estimated from the knowledge of the measured exit intensities taken at the outer
surface of the sphere, the problem becomes an inverse problem.

Pomraning and Siewert [47] developed the integral form of the above
radiation problem in terms of incident radiation I(r) as

R

rl(r) = jx[%f(xng(x)}[lf,(lr—xI)*E.(Ith)]a& (5:3.3)

0

where Ej(x) is the exponential integral function. The incident radiation, I(r), is
defined as

I 1 I
I(r)= j I(r, p)du = I I'(r,p)du + I1"(r,— w)dy (5.3.4)
=i 0 0

where I"(r,u) and I (r,—p), for u > 0, are the forward and backward
intensities, respectively.

Thynell and Ozisik [30) solved this integral equation for I(r), by
representing g(») and /(r) in a power series in the optical variable r as
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N
g(r) = ZPnr" (5.3.5)
=0
and
M
1(r) = Zcmr”’ (5.3.6)
m=0

where the expansion coefficients P, are considered known in the case of the
direct problem. The coefficients C,, are computed by using the Galerkin method,;
since the method is well documented [27-33], it will not be repeated here.
However, we note that the accuracy of the solution of the resulting algebraic
equations can be improved if the iterative improvement scheme suggested in
reference [48] utilizing the L.U. decomposition is used. The scheme allows for
many more terms to be included in the power series expansion given in equation
(5.3.6). The iterative improvement scheme is found to be specially important
when the system of equations tend to become ill-conditioned, as the optical radius

R becomes large.
Once the coefficients C, are determined, the incident radiation I(r) is
calculated from equation (5.3.6) and the angular distribution of the exit intensity

I +(r,,u) is computed from

M
I = %zgﬂ[ll)(; (ro)+ 2. X (r,l)]
) "0 for >0 (5.3.7)
+ ZP"[AIX: (r+ i X (r,l)]
n=0

where P, are the expansion coefficients specified by equation (5.3.5). Since we
are interested only in the forward exit intensity at the outer radius, equation
(5.3.7) will suffice for the solution of the direct problem with r = R. Here

X*(r.p) and "X (r.1) are definite integrals defined by

1/2
[ 22,2 (1-,,2)]

X' (rp) = J [r2+r2(1- yz)]mexp[—(t+r;1)]dt £<1  (53.8a)

—ru
and
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r R
X ()= J'x’ exp(-r +x)dx + [x' exp(-r ~x)dx =1 (5.3.8.b)
0 0

for which explicit expressions are also available [49]. In addition, A, (=1,2) are
defined as

A =1, A.=0 foru<l, (5.3.9.a)
A=0, A =1 foru=1 (5.3.9.b)

By substituting equations (5.3.8) and (5.3.9) along with the calculated

values of C,, into equation (5.3.7), we can calculate the exit intensities 7 +(R, 1)
at any angle g.

Inverse Problem

The problem defined by equations (5.3.1) with the source term g(r)
unknown and with measured exit intensities available is an inverse problem,
which can be solved by minimizing the following objective function

1

. 2
S(P) = j[l (R,y;P)—Y(m] du (53.10)
0

where ¥{y) is the measured exit intensity and / +(R, #;P) is the estimated exit
intensity at the outer surface, obtained by using the current estimate for the

parameters ) - [Po, Pl,-'-, PN] of equation (5.3.5). A sufficiently large number

of measurements is assumed available, so that it can be considered as continuous.

Sensitivity Problem

Equation (5.3.10) is minimized by differentiating S(P) with respect to each
of the unknown coefficients P, giving

a1t (R, P
5P

n

_"2[1 (R, 1;P) ~ ¥ (1) (5.3.11)

The resulting equation for 85/5P, contains the sensitivity coefficients
AI"/ 6P, , which are determined from the solution of the sensitivity problems, as
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now considered. Differentiating the direct problem given by equations (5.3.1)
with respect to P, generates the sensitivity problems for the determination of the
sensitivity coefficients 81"/ 6P ,, n=0,1,...,N, that is,

|
Jofaem) 1 a0 Aew) (AR 0 e,
or\ 6P | r ou| OP oP. 23 op,

(5.3.12.a)
for0<r<R,-1<u<1,and
aI(R’_y)
——= foru>0 5.3.12.b
P H ( )

n

The solution of equations (5.3.12) for each n, # = 0,1,...,N, produces the
sensitivity coefficient vector,

T + + +
[w*] _|gr_ a1 . 21 (53.12.¢)
' op 0P "GP,

The procedure for solving equations (5.3.12.a,b) is the same as that
described previously for the solution for the direct problem, with g(r) replaced by

n

r.

It is noted that the sensitivity problem given by equations (5.3.12.a,b) is
independent of the parameters P,. Hence, the estimation problem is linear. The
sensitivity coefficients are solved only once and need not be recalculated for each
estimate of P,,.

The Solution with Technique II
As stated above, the inverse problem requires the minimization of the

objective function, equation (5.3.10), by differentiating it with respect to
P, n=0,12,..,N. In vector form, &5/ JP, can be written as

oS o5 88 ] 5319

[Vs(p)]r{ 22
51’0 0"PI é’PN

which can easily be computed with equation (5.3.11).
To estimate the unknown vector P, we consider here the iterative
procedure of Technique II given in the form:
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P =Pt - gtd! for k=0,1,2,.- (5.3.14)

where S is the step size, in going from iteration k to k+1. The direction of
descent d* is given by

d' =VS(P )+ p*d" fork=012, - (5.3.15)

where the conjugation coefficient ¥ is computed from the Fletcher-Reeves
expression

T
k“[[v‘“k‘i)ﬁvsﬂﬂ] for k=12, with 7°=0 (53.16)
VS(P™ )| |VS(P" )

The step size §* is determined by minimizing the objective function
S(P**Y), that is

minS(P**")=minS(P* - g'd") (5.3.17)
pk pk

By using a Taylor series expansion, the following expression is obtained
for the determination of /)’k (see equation 2.2.16):

1
[ R P - ¥ (VI (R P d¥
ﬁk _ u=0

(5.3.18)

1
Jor @ wph !y

H=0

Once d* is calculated from Equation (5.3.15) and ,B" from equation
(5.3.18), the iterative process given by equation (5.3.14) is applied until a
specified stopping criterion is satisfied.

If there is no measurement error, the conventional stopping criterion
defined as

S(P"*')< P (5.3.19)

where ¢ is a small positive number, can be used to terminate the iteration process.
On the other hand, if the exit intensity measurements contain errors, the
discrepancy principle is required to obtain the tolerance ¢ from equation (5.3.10)
in the form
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£=0 (5.3.20)

so that the resulting solution is stable, where o is the standard deviation of the
measurement errors.

The computational algorithm for Technique II, as applied to the present
inverse radiation problem, can be summarized as follows.

Assume P* is known at the & iteration.Then,

Step 1. Solve the sensitivity problem given by equations (5.3.12.a,b) and
compute the sensitivity coefficient vector VI* given by equation

(5.3.12.c).

Step 2. Given the current estimate of P*, compute the exit intensities
I +(R, ,u;Pk) for the outer radius R, from equation (5.3.7).

Step 3. Terminate the iterations when the stopping criterion given by

equation (5.3.19) is satisfied. Continue otherwise.

Step4.  Knowing VI', / *(R, ,u;Pk) and the measured exit intensities Y{u),
compute the gradient VS(PY) from equation (5.3.13).

Step 5. Knowing VS(P*), compute ¥* from equation (5.3.16) and then the
direction of descent d* from equation (5.3.15).

Step6.  Knowing VI*, J (R, ,u;Pk ), Y(5) and d*, compute the step size '
from equation (5.3.18).

Step 7. Knowing A8* and d’, estimate P**! from equation (5.3.14) and return
to step 2.

The Solution with Technique I

Technique I, the Levenberg-Marquardt method, is also applied to the
solution of the present inverse radiation problem, for the sake of comparison with
Technique II. It also employs the direct and the sensitivity problems given above.
The objective function is re-written in the following form for Technique I:

I

S(P) = Z[l:(R, y,P)—Yi(p)]z (5.3.21)

i=]

where 7 is the total number of measurements. To estimate the unknown parameter
vector P by the Levenberg-Marquardt method, the following iterative procedure
is used (see equation 2.1.13):

-1
prt! - pt +[JTJ +p"Q"] JT[Y 1R, pu,P* )] (53.22)
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Figure 5.3.2.a - Temperature distribution for R = 1, @= 0.3 and
g(r)=1+3r~- O.lr2 +r3 +01r" - 4’ using conjugate gradient method.

Next, we consider another source term expressed as a fifth degree
polynomial in the optical variable r as

g(r) = 1+ 0.6r - 00047 + 0008 +00016-" ~0.00128r", (5.3.24)

for 0 < r <5, @= 0.3 and using measurement data of o= 0 and o= 0.1. The test
source term was chosen such that the magnitude of the intensity would be of the
same order as that of the case with R = 1, in figures 5.3.2.a,b. Figure 5.3.3.a
illustrates the results obtained for such a test-case by using the conjugate gradient
method. This figure shows that for R = 5 the solution deviates from the exact
function even with errorless measurements. This is expected, since the majority
of the information for the estimation comes from the radii closer to the outer
radius. Although the agreement between exact and estimated temperatures is still
quite good, the inverse problem becomes more sensitive to errors when a larger
radius is used. As only one measurement location can be used at the outer radius,
the problem is one of physics and not of the solution method. Figure 5.3.3.b
presents the estimate of the source term given by equation 5.3.24 by using the
Levenberg-Marquardt method. As was shown in the R =1 case, the Levenberg-
Marquardt method produced more accurate solutions, but once again the starting
parameter guess had to be close to the exact solution. Inverse analysis for optical



284 INVERSE HEAT TRANSFER

radii larger than R = 5 showed marked decrease in accuracy. Hence, it is
suggested that the present scheme be used only for R < 5.

125 r T T

120
115 |

110

T(r)
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95 &/

90 1 1 1
0 0.25 0.5 0.75 1

Optical Radius, r

Figure 5.3.2.b - Temperature distribution for R = 1, = 0.3 and
glry=1+3r- 01+ + 01" — 4 using Levenberg-Marquardt method.

We also considered the estimation of the temperature source term for a
small optical radius using the following fourth degree polynomial

g(r)=1+42r++° —10,000¢* (5.3.25)

with 0<r<0.1, =03 and using measurement data with o= 0.003 and
o = 0.006. Figure 5.3.4.2 shows that the estimation utilizing the conjugate
gradient method is quite good. However, the error is greatest toward the center of
the sphere even for small optical radii. Figure 5.3.4.b is the Levenberg-Marquardt
solution. Again it was found to be more accurate, but needing an initial guess
close to the exact solution.



285

INVERSE RADIATION
130 r T T

120

100

2 3

0 1
Optical Radius, r
Figure 5.3.3.a - Temperature dlstrlbutlon forR=5 0=023 and
g(r)=1+0.6r —0.004r> +0.0087" +0.0016r° ~0.00128°
using the conjugate gradient method.
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Figure 5.3.3.b - Temperature dlstnbutlon forR=5,0=0.3 and
g(r)=1+06r - 0.004r> + 00087 +0. 0016r" - 0.00128¢°
using the Levenberg-Marquardt method.
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Figure 5.3.4.a - Temperature distribution for R=0.1, = 0.3 and
glry=1+2r+ P 10,000~ using the conjugate gradient method.
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Figure 5.3.4.b - Temperature distribution for R =0.1, = 0.3 and
g(ry=1+2r+ P 10,000r4 using the Levenberg-Marquardt method.
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Finally, we considered the variation of the temperature field with albedo,
w, for the source term given by equation (5.3.23). For the results presented
below, we utilized initially the conjugate gradient method with a starting guess
far from the exact solution and then, after several iterations, the current estimate
was used as the starting guess for the Levenberg-Marquardt method. Results
obtained with such an approach are shown in figure 5.3.5, for different values for
the albedo w. The use of the combination of Levenberg-Marquardt and conjugate
gradient methods appears to yield more accurate results and allows one to
perform the calculations with starting guesses far from the converged result.
Figure 5.3.5 shows that, for a given source term, the temperature increases as
albedo increases. This is expected, since the higher albedo scatters more energy
back into the interior and, hence, produces a higher temperature.

200

150

T(r)

100 + w =0.01

R=1
Exact
~ —— Estimated
50 : —— :
0 0.25 0.5 0.75 1
Optical Radius, r

Figure 5.3.5 - Temperature distribution for R = 1 and

g(r)=1+3r- 0.17° + »* +0.1r* = 4" for different values of @ utilizing
combined conjugate gradient and Levenberg-Marquardt methods.

PROBLEMS

5-1  Derive the Equation of Radiative Heat Transfer for an absorbing, emitting,
isotropically scattering plane-parallel gray medium.

5-2  Derive the Equation of Radiative Heat Transfer for an absorbing, emitting,
isotropically scattering gray medium with spherical symmetry.

5-3  Derive the Equation of Radiative Heat Transfer for an absorbing, emitting,

icntranimalle crattering arav madinm wwith A~vlindrical crmmetry
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54
5.5
5-6

5-8

5-9

5-10

10.

11.

INVERSE HEAT TRANSFER

Derive the sensitivity problem given by equations (5.1.4).

Derive equation (5.1.11.a) for the search step size in section 5-1.

Show all the basic steps for the solution of the inverse radiation problem
described in section S-1, by using Technique 1.

Use Technique I to estimate the coefficients of the polynomial given by
equation (5.1.13). Utilize in the inverse analysis the measurements of exit
intensities at 7= 0 and 7= g = 1, with standard-deviations o = 0 and
o= 0.03. Examine the effects of the initial guess on the solution. How the
results obtained with Technique I compare to those shown in figures
5.1.2,3, obtained with Technique II?

Show all the basic steps for the solution of the inverse radiation problem
described in section 5-2, by using Technique 1.

Solve the inverse radiation problem described in section 5-2 by using
Technique I instead of Technique II. Compare the results obtained with
these two techniques, for the cases shown in figures 5.2.2-5. How are the
estimates affected by the initial guess of the iterative procedure?

Formulate an inverse problem similar to that considered in section 5-3, but
in a cylindrical geometry. Show all the basic steps for the solution of such
inverse radiation problem by using Techniques I and II.
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Chapter 6

A GENERAL FORMULATION FOR
INVERSE HEAT CONDUCTION

6-1 INTRODUCTION

As apparent from the material in the previous chapters, the solution of
inverse problems involving different heat transfer modes generally requires the
solution of their associated direct problems. Therefore, the ability of a method of
solution of inverse problems to handle complex physical situations is closely
related to the direct problem method of solution.

Several practical engineering applications involve geometries irregularly
shaped, that is, geometries with boundaries not coinciding with surfaces of
constant coordinates in the system where they are referred to. The traditional
finite difference methods have computational simplicity when they are applied
for the solution of problems involving a regular geometry, with uniformly
distributed grids over the region. However, their major drawbacks include their
inability to handle effectively the solution of problems over arbitrarily shaped
complex geometries. When the geometry is irregular, difficulty arises from the
boundary conditions because interpolation is needed between the boundaries and
the interior points, in order to develop finite-difference expressions for nodes
next to the boundaries. Such interpolations produce large errors in the vicinity of
strong curvatures and sharp discontinuities. Therefore, it is difficult and
inaccurate to solve problems with traditional finite difference methods over
regions having irregular geometries.

Consider, for example, the annular region depicted in figure 6.1.1. It is
impossible to discretize such a region in the Cartesian system of coordinates with
constant grid spacing Ax and 4y, since the boundaries of the region do not
coincide with surfaces of constant x or constant y. However, such difficulty can
be easily overcome by using the polar system of coordinates (r, &), instead of the
Cartesian system (x,y). The polar system of coordinates (r,6) is the natural one for
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the annular region, because its boundaries are surfaces of constant radius; hence,
a uniform grid with constant increments A and 486, in the r and @ directions,
respectively, can be generated over the region. Such an example involving the
annular region reveals important aspects that will be extended later for general
regions: (i) The annular region, irregularly shaped in the Cartesian system of
coordinates, was transformed (or mapped) into a rectangle in the polar system of
coordinates, as shown in figure 6.1.2; (ii) Governing equations for the physical
problem of interest for the annular region shall be written in terms of polar
coordinates. Therefore, they can be discretized and solved over the regular region
on the polar systemn of coordinates; (iii) Since the transformation from Cartesian
to polar coordinates is one-to-one, the solution developed over the uniform grid
on the polar system can be easily transformed backwards to the physical annular
region in the Cartesian system of coordinates.

"1

Figure 6.1.1 - Annular region in the Cartesian system of coordinates.

CARTESIAN SYSTEM \ POLAR SYSTEM
A 4
y r
b~ 77T
gttt
X 27! 9

Figure 6.1.2 - Transformation of the annular region in the Cartesian system into a
rectangle in the polar system of coordinates.

Many transformations are available in which the physical and
computational coordinates (the Cartesian and polar coordinates, respectively, in
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the example above) are related with algebraic expressions. But such
transformations are difficult to construct for general multidimensional cases. The
coordinate transformation technique advanced by Thompson [1] alleviates such
difficulties, because the transformation is obtained automatically from the
numerical solution of partial differential equations. In this approach, a curvilinear
mesh is generated over the physical domain, such that one member of each family
of curvilinear coordinate lines is coincident with the boundary contour of the
region. Therefore, it is also called boundary fitted coordinates method. The use of
numerical grid generation has provided finite difference methods with the
geometrical capabilities of treating irregular geometries of the finite element
method, but maintaining their intrinsic simplicity of discretization.

To illustrate the basic concepts in the implementation of Thompson’s
technique of numerical grid generation, we consider a two-dimensional region,
with (x,y) being the coordinates in the physical domain and (&,77) the generalized
coordinates in the computational domain. The basic steps in Thompson’s
approach can be summarized as follows:

1. The transformation relations, for mapping the irregular region in the
physical domain (x,) into a regular region in the computational domain
(£7) (or vice versa), are determined automatically from the numerical
solution of two elliptic partial differential equations of the Laplace or
Poisson type. The parabolic and hyperbolic type differential equations
have also been used for numerical grid generation; but elliptic equations
are preferred because of their smoothing effect in spreading out the
boundary slope irregularities. Customarily, the Cartesian coordinate
system is used both in the (x,y) physical and (&77) computational
domains. It is also possible to use other coordinate systems, such as the
(r,6) polar coordinates in the physical domain and (7,5) polar
coordinates in the computational domain. In either case, the irregular
physical region is mapped into the computational domain as a regular
region.

2. The partial differential equations governing the physical phenomena are
transformed from the (x,y) independent variables of the physical domain
to the (£,77) independent variables of the computational domain. Hence,
traditional finite difference methods can be used to solve the governing
equations in the computational domain.

3. Once the transformed field equations are solved in the computational
domain, the solution is transformed from the (&,77) computational
domain to the (x,) physical domain, by using the transformation
relations developed previously.

An extensive review of numerical grid generation is available in the book
by Thompson et al. [1] and the application of this technique to the solution of
various engineering problems can be found in references [2-12].
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In this chapter, we solve the inverse heat conduction problem of
estimating the transient heat flux, applied on part of the boundary of an irregular
two-dimensional region, by using Technique IV, the conjugate gradient method
with adjoint problem for function estimation. The irregular region in the physical
domain (x,y) is transformed into a rectangle in the computational domain (&,7).
The direct, sensitivity and adjoint problems, as well as the gradient equation, are
formulated in terms of the generalized coordinates (&, 7). Therefore, the present
formulation is general and can be applied to the solution of boundary inverse
heat conduction problems over any region that can be mapped into a rectangle.

Chapter 6 is organized as follows. An overview of coordinate
transformation relations, required to transform the heat conduction equation and
boundary conditions into the computational domain, is presented. We then
discuss some basic ideas for mappings and present the boundary value problem of
numerical grid generation. After developing the appropriate background, the
auxiliary problems and expressions required for the solution of inverse problems
with Technique IV over irregular geometries are derived in terms of generalized
coordinates. The present approach is then illustrated with an inverse problem of
practical engineering interest.

6-2 COORDINATE TRANSFORMATION RELATIONS

Consider a partial differential equation given in the (x,y) independent
variables in the physical domain. We seek the transformation of this partial
differential equation from the (x,y) to the (&7) independent variables. The
transformation from the (x,p) to the (£ ) variables can be expressed as

E=¢(xy) . m=En(xy) (6.2.1.a,b)
and the inverse transformation as
x=x(&n) ., y=yén) (6.2.2.a,b)

The transformation of governing equations requires relations for the
transformation of various differential operators, such as the first derivative,
gradient, Laplacian, etc. Therefore, in this section we present such relations for
use as ready reference in later sections.

The Jacobian of the inverse transformation J is given by:

PR 54 N I
/D

no°n
where the subscripts denote differentiation with respect to the variable
considered, i.e.,

=x§y —x,]y‘f (6.2.3)

n
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ox 9 e (6.2.4)

X, =—,
3 o& y’? on

The Jacobian is required to be different from zero in order o obtain one-
to-one transformations. This is accomplished by requiring that coordinate lines of
the same family do not cross and lines of different families do not cross more

than once.
The transformation relations can be developed by application of the chain

rule of differentiation. Consider, for example, the first derivatives J7/Jx and
OT/ dy. By the chain rule of differentiation, we write

AT , 8T 3T

Pl ¢ 5 +7 on (6.2.5.2)

% =3 .g_g.+ ,,y_g_: (6.2.5.b)
Interchanging x and & as well as y and 7 we obtain

% -3, .‘Z__ii +y, % (6.2.6.2)

or_, o or (6.2.6.b)

on nax Tnay

The solution of equations (6.2.6.a,b) for T/ 5x and &T/ 5y with Cramer’s
rule gives the transformation relations for the first derivatives as

T 1 er er

— ==y —-y,— 6.2.7.
x J(yri EARS: an] (6.2.7)
?_Izl(_x ar . ﬂ) (6.2.7.b)
Sy J\ n13& <Oy

A comparison of equations (6.2.5) and (6.2.7) gives
£ -1 & ——lx (6.2.8.a,b)
x T 7Y 5y T Ty -5,
1 1
n.= —7}’5, 77y =-jx§ (6.2.8.c,d)
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Example 6-1. Transform the continuity equation

ﬁ.'._él’.—o
dx By

from the (x,y) coordinates of the physical domain to the (£,7) coordinates of the
computational domain.

Solution. The transformations of the first derivatives are given by
equations (6.2.7.a,b). Then the transformation of the above continuity equation
from the (x,y) to the (&, 7) coordinates becomes

_1_[ @_ iu.).{.l(_x ﬂ.{,x _a.KJ—O
T e Yeqn) I\ e e ag) T

The transformation of second derivatives can be obtained by utilizing the
transformation relations for the first derivatives and the chain rule of
differentiation. Thompson et al. [1] presented extensive relations for the
transformation of the divergence, gradient, Laplacian, etc., for both conservative
and non-conservative forms, from the Cartesian coordinates to general curvilinear
coordinates. Here we present, for ready reference, some of these transformation
relations from the (x,y), to the (£,7) coordinates in both the conservative and non-
conservative forms. It is to be noted that the non-conservative forms can be
obtained from the conservative forms, by expanding all derivatives and
cancelling the identity terms.

Gradient

Consider the gradient of the scalar quantity T given in the form
VT = ]; i+ Ty j, where i and j are the unit vectors in the x and y directions,

respectively. The components 7, and T, of the gradient vector can be written in
the computational domain as:

Conservative form:
1
T = -j[(yqr)é —(ygT)J (6.2.9.2)

} (6.2.9.b)
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Non-conservative form:

1

T _7(}»"1"5 —yéTq) (6.2.10.)
1

Ty = 7(—an§ + ngq) (6.2.10.b)

where the Jacobian J is defined by equation (6.2.3). Note that when the product
derivative terms in the conservative form are expanded, the identity terms cancel
out and equations (6.2.9) reduce to the non-conservative form given by equations
(6.2.10).
Divergence
We now consider the vector quantity T, that is,

T=T,i+T3j (6.2.11)

The divergence of T is written in the computational domain (1), in the
conservative and non-conservative forms, respectively, by:

Conservative form:

1
V.T_j[(yqz;_x”rz);(-ygq +x§T2)n:| (6.2.12)
Non-conservative form:
1
V.T= 7[%(;@)‘f —XU(TZ)g -yé(T])q +x¢(T2)q] (6.2.13)
Laplacian

We consider the Laplacian of a scalar quantity T in the physical domain
(x,), that is,

2 é'zT 0"2T
=—=t—3

VT (6.2.14)
ox" Oy

This operator in the computational domain (&7) is given in the
conservative and non-conservative forms, respectively, by:
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Conservative form:

(6.2.15)
Non-conservative form:
vir="L[or -28T +yT +[(v2¢)r +(v2 )T} (6.2.16)
S e T e T ¢\ Ty -

where

2 2 _ - 2 2 - _ )
a=x +y, ﬁ_x;x,,“Ly,;J’,,’ 7EX Y J Xy, XY, (6.2.17.a-d)

Normal Derivatives

Conservative form:

3

The normal derivatives of T to the &-constant line along the normal n*’ shown in

figure 6.2.1 is given by
:l— x”|:— (qu) + (ng) }} (6.2.18.2)

ST atllz{yq[(ynr) ..(y:T) . i

ﬁn(‘;) J ¢ n

and to the 7 - constant line along the normal n® shown in figure 6.2.1 is given by

oT L {_ yg[(y,,T)é -(yfT),,}+x‘f[-(va)§ +(X§T)J} (6.2.18.5)

ﬁn(") Jy

Non-conservative form:

The normal derivatives of T to the &-constant line along the normal n? is

given by

or 1
= al - pT (6.2.19.3)
é,n(é) Jall?. ( & n)
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and to the 77- constant line along the normal n® is given by

o7 1
- ~BT,+yT (6.2.19.b)
PR J}/nz ( & n)

where ¢, f, yand J are defined by equations (6.2.17).

n® T

n®
n®

Figure 6.2.1 - Outward drawn unit normal vectors to ¢ = constant and
n = constant lines

The derivative along the normal vectors n' and n® are obtained by
switching signs in equations (6.2.18.a,b), respectively, for the conservative form,
or in equations (6.2.19.a,b), respectively, for the non-conservative form.

The reader should consult Thompson et al [1] for the transformation
relations for other partial derivative operators such as for 8%/0xdy.

Example 6.2. Consider the two-dimensional transient heat conduction
equation in the physical domain (x,y,t) given by

L (6.2.20.2)

where ¢, is the thermal diffusivity. Transform this equation from the (x;.r)
independent variables of the physical domain to the (¢, 7,/) independent variables
of the computational domain.

Solution. By utilizing the non-conservative form of the Laplacian given by
equation (6.2.16), we can write the heat conduction equation in terms of the

generalized variables (£,7,f) as

1 3T 1 ( ) ( 2 ) ( 2 ) ]
— = ~ \% 2.20.
— = aT‘fg 2ﬁT§n+yT’m +[ & Té_, +[Vn T,7 (6.2.20.b)

where a, 8, yand J are defined by equations (6.2.17).
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6-3 SIMPLE TRANSFORMATIONS

A variety of approaches has been reported in the literature for the
transformation of irregularly shaped regions into simple regular regions such as a
square, rectangle, etc. The basic theory behind such transformations is quite old.
For example, conformal transformation has been widely used in classical
analysis. Schwarz-Christoffel transformation is well known for conformal
mapping of regions with polynomial boundaries onto an upper-half plane. A
dictionary of conformal transformations was compiled by Kober [13]. Details of
application of conformal transformation with complex variable technique can be
found in the standard texts by Milne-Thompson [14] and Churchill [15].

Before presenting the numerical grid generation technique, we illustrate
the basic concepts in grid generation and mapping by considering one-
dimensional simple transformation utilizing algebraic relations.

Consider two-dimensional, steady, boundary layer flow over a flat plate
mathematically modeled in the physical domain using (x,)) Cartesian coordinates.
To solve such flow problem with finite-differences, customarily a rectangular
grid is constructed over the solution domain and the nodes are concentrated near
the wall where the gradients are large, as illustrated in figure 6.3.1.a. A uniform
grid is constructed in the x-direction, but a nonuniform grid is used in the
y-direction. To alleviate the difficulties associated with the use of nonuniform
grids, the problem can be transformed from the physical (x,y) domain to the
computational (£,77) domain, with a coordinate transformation that will allow the
use of uniform grids in both the £ and 7 directions, as illustrated in figure 6.3.1.b.

A coordinate transformation that maps a nonuniform grid spacing in the y
direction into a uniform grid spacing in the 7 direction, but allows the grid
spacing in the x direction to remain unchanged, is given by Roberts [16] in the
form

=x (6.3.1.a)
o] A(y)
=1- 6.3.1b
n B ( )
where
Y
yij +(1 - —)
N k) R Bl (6.3.2.3,b)

Here S is the stretching parameter, which assumes values | < § <. As 8
approaches unity, more grid points are clustered near the wall in the physical
domain. The inverse transform is given by
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x=¢ (6.3.3.a)
(B+D-(B-DB""
y= -7 h (6.3.3.b)
1+B
y n
] 1
h | = I
% ====
0 L X 0 — L §
(a) Physical plane x,y {b) Computational plane E,n

Figure 6.3.1 - One dimensional stretching transformation

To illustrate the grid concentration as §— 1, we set, for example, n = 0.4
and calculate y for different values of S, as shown below.

B I 1.5 1.1 1.01

y I 0.327 0.205 0.0705

Once the relations for the coordinate transformation are established, the
differential equations governing the physical phenomena must be transformed
from the (x,y) independent variables of the physical domain to the (&)
independent variables of the computational domain under the same
transformation, since all numerical computations will be performed on the (&,7)
computational domain. To illustrate the transformation of the governing partial
differential equations, we consider, say, the continuity equation given by

MLy (6.3.4)
Ox Oy

The transformation of this equation from the (x,y) to the (&, 7) variables
under the general transformation defined by equations (6.2.1.a,b) was given in
Example 6.1 by

1 1 ov ov
Ay gu_, g4l 220 Vg 6.3.
J[ymg yéan)+J( xvag”ffanJ (6.35)
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The computational derivatives yy,, y¢ , X, and x; are expressed in terms of
the metrics & , &, 7 and 7),, according to equations (6.2.8). Then, the
transformed equation (6.3.5) takes the form

Su Ju av ov
[5{5_5* 1, -35] +(§y-0,,—5+ n, —5—”] =0 (6.3.6)

For the specific problem considered here, the transformation relations are
given by equations (6.3.1). Then, the metrics &, 7,, &, and 7, become

&=1, §&=0 (6.3.7.a,b)
28 1
=0, 7 = 63.7.c.d
=0 T mE , (Y (6.3.7.c.d)
s

By introducing equations (6.3.7) into equation (6.3.6), the transformed
continuity equation takes the form

Ju ov
Zin Z2=0 6.3.8
o 7, g (6.3.8)

where 7, is defined by equation (6.3.7.d).

We note that the transformed continuity equation (6.3.8) retains its original
general form, except for the coefficient 7, accompanying the dv/0n term.
Therefore, the transformed equation (6.3.8) is slightly more complicated than its
original form given by equation (6.3.4); but it will be solved over a uniform grid
both in the & and 7 directions in the computational domain, using the (£,7)
rectangular coordinates. Clearly, the finite-difference solution in the (£n)
computational domain with a uniform grid is much easier and more accurate than
solving the problem in the original physical domain with nonuniform grid. If the
problem involves other partial differential equations, they also need to be
transformed into the (£,7) computational domain in a similar manner.

Once the problem is solved in the computational domain, the results are
transformed backwards into the physical domain from each (£,7) location to the
corresponding (x,y) location, by using the inverse transformation given by
equations (6.3.3).

Roberts {16] and other investigators have proposed numerous other simple
stretching transformations. However, it is difficult to develop analytic
transformations capable of clustering grids around arbitrary locations, whereas
the numerical grid generation technique provides a unified approach for
developing transformations capable of dealing with more general situations.
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6-4 BASIC IDEAS IN NUMERICAL GRID GENERATION AND
MAPPING

In finite difference solutions of partial differential equations over regions
having regular shapes, such as a rectangle, cylinder or sphere, the discretization
can be made to conform to the boundaries of the region. As a result, the boundary
interpolation is avoided. For regions having an arbitrary irregular shape, this is
not possible. One way to overcome such difficulty is to map the region, with a
suitable transformation, into the computational domain where the geometry
becomes regular, say, rectangular. The problem is then solved over the
rectangular region with a square grid by using conventional finite-differences.
The solution developed in the computational domain is then transformed
backwards into the physical domain.

To illustrate the basic concepts in the mapping and development of
curvilinear coordinates, we consider a two dimensional physical domain in the
(x,) Cartesian coordinates and a computational domain in the (&,7) Cartesian
coordinates. The transformation between (x,) and (£,7) coordinates should be
such that the boundaries of the physical domain must be coincident with the
curvilinear coordinates (&,7); thus there will be no need for boundary node
interpolation.

Consider an irregular region ABCDA in the physical domain in the (x,y)
Cartesian coordinates, as illustrated in figure 6.4.1.a. The region is called simply
connected because it contains no obstacles in its interior. This region is to be
mapped into a rectangle in the computational domain (&,77), in the following
manner:

o Set 7 constant and let £ to vary monotonically along the boundary segments
AB and DC of the physical region, and

e Set £ constant and let 7 to vary monotonically along the boundary segments
AD and BC of the physical region.

Clearly, with such requirements on the values of & and 7 along the
boundaries of the physical region, the segments AB and DC are mapped into the
computational domain as horizontal lines, while the segments AD and BC are
mapped into the computational domain as vertical lines, as illustrated in figure
6.4.1.b. Notice that each boundary segment of the irregular region in the physical
domain is mapped into the sides of the rectangular region in the computational
domain. Without loss of generality, we can choose A& = 4n = 1 in the
computational domain, so that M and N are the number of & and 7 grid lines in
the region, respectively.
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Physical Domain Computational Domain
(1,N) (M,N)
n A ‘D C'
An=l

A B !

(L1) (M,1) (LD AE=1 M,1)

» X » g
(2) (b)

Figure 6.4.1 - Mapping an irregular simply connected region into the
computational domain as a rectangle.

In the previous illustration of mapping, an irregular region in the physical
domain is mapped as a rectangular region into the computational domain.
Depending on the choice of the values of (£,77) along the boundary segments of
the physical region, a variety of other acceptable configurations can be generated
in the computational domain. To illustrate this matter, we consider an L-shaped
irregular region ABCDEFA in the physical domain as shown in figure 6.4.2.a.
One possibility is to map the region into an L-shaped regular region, as illustrated
in figure 6.4.2.b. Another possibility is to map the L-shaped irregular region as a
rectangle in the computational domain, as shown in figure 6.4.3.

y4 E na F E
5 c D ¢
> X » &
(2) (b)

Figure 6.4.2 - Mapping of an L-shaped irregular region into an
L-shaped regular region
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y4 F E
n4
D
D C E T C
|
» X »
(a) (b)

Figure 6.4.3 - Mapping of an L-shaped irregular region into a rectangle

The example presented in figures 6.4.2 and 6.4.3 shows that different
possible mappings can be envisioned to transform the same irregular region in the
physical domain into a regular region in the computational domain. The analyst
must exercise his expertise in order to devise the most suitable mapping for each
physical region of interest.

The mappings illustrated in figures 6.4.1-3 involved simply-connected
regions in the physical domain. Similarly, irregular multiply-connected regions in
the physical domain can be transformed into regular multiply-connected regions
in the computational domain; or, alternatively, branch-cuts can be used so that the
transformed region becomes a rectangle. The reader should consult references [1]
and [12] for possible mappings involving multiply-connected regions, as well as
simply-connected regions containing reentrant boundary surfaces.

6-5 BOUNDARY VALUE PROBLEM OF NUMERICAL GRID
GENERATION

We present here the numerical grid generation and mapping technique
advanced by Thompson f[1], involving the solution of two elliptic partial
differential equations in the form

532._? = P(¢.n) (6.5.1.2)
oy

2 I &
s

ox- Oy

V2.§=éz~—§—+
ﬁ.

X

v = Q&) (6.5.1.b)
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where the non-homogeneous terms P(£,7) and Q(&,7) are called the grid
control functions. By proper selection of the P(&,7) and Q(£,n) functions, the

coordinate lines & and 7 can be concentrated towards a specified coordinate line
or about a specific grid point. In the absence of these functions, i.e., P = 0 =0,
the coordinate lines will tend to be equally spaced in the regions away from the
boundaries, regardless of the concentration of grid points along the boundaries. In
fact, elliptic equations do not propagate the boundary shape discontinuities into
the coordinate field and generally provide smooth grids.

Equations (6.5.1) are written in terms of the independent variables (x,y) in
the irregular physical domain. However, it is more convenient for computational
purposes to solve the grid generation equations in the regular domain (&,7).
Transforming equations (6.5.1) by using equation (6.2.16) and then interchanging
the roles of dependent and independent variables, we obtain the following two
elliptic equations for the determination of the unknowns x and y, in terms of the
independent variables & and 7 in the computational domain:

o”zx 0"2x o”zx 2[ ox ox |

“ ! pe +J _P(én)ng(é, ")Er}_ =0 (6.5.2.2)
0"2y 52}’ é'zy of oy 3y |

g “213555,7*7&”2 +J LP(é,ﬂ)a—gQ(ﬁ,n)Ea =0 (652b)

where the geometric coefficients o, £, y and the Jacobian J are obtained from
equations (6.2.17).

The mathematical problem defined by equations (6.5.2), subjected to
appropriate boundary conditions, constitutes the boundary value problem of
numerical grid generation. Generally, such a problem is solved by finite-
differences, by utilizing either first-kind or second-kind boundary conditions, as
described next.

Boundary Conditions

(i) Boundary Condition of the First Kind. In most applications, the
values of the (x,) coordinates of the boundaries of the physical domain are
known, for each grid point (£ 7). Then, the grid generation problem becomes one
of solving equations (6.5.2) over the regular computational domain, with
prescribed values of (x,y) at the boundaries.

(ii) Homogeneous Boundary Condition of the Second Kind:
Orthogonality of Grid Lines. There are situations in which & (or 7) grid lines
are required fo intersect some portion of the boundary segment in the physical
domain at a specified angle, ¢, as illustrated in figure 6.5.1. A commonly imposed
condition is that & (or n) grid lines intersect some segment of the physical
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boundary normally, that is ¢ = #/2 . In fact, it has been shown that the numerical
discretization error increases when the intersection angle departures from ¢ = 7/2

[1.

constant

Figure 6.5.1 - The angle of intersection of grid lines.
To establish the mathematical expression to implement the requirement of

orthogonality of grid lines, we consider the gradients of £ and 7 defined
respectively by

VE=EitE ] (6.5.3.2)
Vp=mn i+ qyj (6.5.3.b)
where i and j are the unit direction vectors. The dot product of V£and Vi, ie,,

VEVn=¢n e, (6.5.4)

represents the cosine of the angle ¢. By introducting &, 7. &, and 7, from
equations (6.2.8) into equation (6.5.4) we obtain

1
V§-Vn=—}—2—(x¢xq+y¢yﬂj (6.5.5)

In the case of orthogonality, we have ¢ = 7 /2 or cos ¢ = 0. Then equation
(6.5.5) reduces to

X%, 4y, =0 (6.5.6)

This is the criterion to be implemented in the computational domain,
whenever the & (or 1) constant grid lines are required to intersect the physical
boundary normally.
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Grid Control Functions

The user-specific grid control functions P(&,7) and Q(&,7) are useful to
concentrate the interior grid lines in regions where large gradients occur. For
example, in problems of natural convection large gradients occur near the walls,
hence grid points need to be concentrated in such locations. Thompson {1]

specified the P(&,7) and Q(&, 7)) functions in the form

4]

P(Em=-3 asign§- ¢, Jexp(c |- £ )
i:l (6.5.7.2)
- Zbi sign(f— §i)exp[—di\/(§_ é:i)z +(77— . )2J
i=1
and
Q(&,n) = W”Z a: sign(n— ni)exp(—c: n- 77,-‘)
i=1 (6.5.7.b)

. g b’ sign(n- qi)exp{—di*ﬂf“ :i)z +(n- n,.)zJ

We note that the P(&,77) and Q(&,77) functions are similar, except that £ and
7 are interchanged. Due to the form of the Poisson equations (6.5.1), the control
function P(&,7) acts on the attraction of & = constant lines, while the function
O(&,7) acts on the attraction of 7 = constant lines. The physical significance of
various terms in equations (6.5.7) are as follows.

In the first summation of equation (6.5.7.a), the amplitude g; attracts
& = constant lines towards the £ = & line; and in the second summation the
amplitude 5, attracts & = constant lines towards the point (¢;,7;). Figure 6.5.2
illustrates such effects. Similar effects are obtained on the 77 = constant lines with
the Q(& 1) grid control function.

The summation indexes n and m (or n* and m*) denote the number of line
and point concentrations, respectively. The sign function, sign (§~¢;), ensures that
attraction of & lines occurs on both sides of the & line or (&, 7)) point. Without
the sign function, the attraction occurs only on the side towards increasing &, with
repulsion occurring on the other side. The coefficients ¢;, ¢;* and d;, d;* control
the decay of attraction with the distance, while a;, a/* and b;, b* give the
amplitude of the attraction.
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A g
> N

E=E, (&mi)

(a) (b)

Figure 6.5.2 - The attraction of £ = constant lines towards (a) the coordinate line
¢ = ¢; and (b) the point (5, 7).

For other grid control approaches, the reader is referred to references
(1, 12].

6-6 A GENERALIZED COORDINATES APPROACH FOR INVERSE
HEAT CONDUCTION [11]

In the previous sections of this chapter we presented the formulation and
discussed aspects relevant for the numerical grid generation and domain
transformation approach. We now use such an approach allied with Technique
IV, for the estimation of the transient heat flux applied on part of the boundary of
a general two-dimensional region.

The direct, inverse, sensitivity and adjoint problems, as well as the
gradient equation, all required for the solution of inverse problems with
Technique IV, are derived in terms of the generalized coordinates (£,7) in the
computational domain, as described next.

Direct Problem

The physical problem considered here involves the linear heat conduction
in a two-dimensional general region Q(x,y), in the Cartesian coordinates system
(x,y). The initial temperature distribution in the region is F(x,y). For times ¢ > 0,
the boundary I'(x,)) of the region is subjected to a second kind boundary
condition. The mathematical formulation of this problem is given by:

2 2
L2 pyn=2Ls0T inQ(x,y), fort>0  (6.6.1.2)
a, ot dx° By
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k: -‘Z—Z =qg(x,y,t) atI'(x,y), fort>0 (6.6.1.b)
n
T(x,t) = F(xy) fort=0, inQ(xy) (6.6.1.c)

where a; and k, denote the thermal diffusivity and conductivity, respectively.

Since the problem (6.6.1) can involve an irregular region, it is transformed
into a rectangle in the computational domain (&,7), as illustrated in figure 6.4.1.
By using the transformation relations presented in section 6.2, more specifically
equations (6.2.16) and (6.2.19), and using the fact that V’; = P(&n) and
V25 = Q(&7) in accordance with equations (6.5.1), the problem (6.6.1) can be
written as:

1 7 1
ZET(@"")_?[ Tfé_zﬂTné+7Tnn)+(PT¢+QT”) (6.6.2.2)

inl<é<M,1<np<N ,fort>0

k
Jjg(mq‘aT;)“?l(’) atg=1, 1<p<N, fort>0  (6.6.2b)

k

- -T |=q.(t atn=1, 1<E< M, fort>0 6.6.2.c
AR ¢ (662.0)
k

S - = =

J\/;(QT/; ﬁT,J q3(t) até=M, I<n< N, fort>0 (6.6.2.d)

k
! —_ -
H—;(}’Trzhﬁré)_%(t) atnp=N, 1<&< M, fort>0 (6.6.2.€)

T(&,n0)=F*(&n fort=0, inl<é< M, I<y<N (6.6.2.1)

where the subscripts & and 7 above denote partial derivatives and F*(&,7) is the
initial condition F(x,y) rewritten in terms of the independent variables £ and 7.

For the Direct Problem, the thermophysical properties ¢, and £, the initial
condition F*(& 1), the heat fluxes gi(f), g2(f), g3(f) and g4(f) applied on the
boundary of the region, as well as the transformation from the physical domain
into the computational domain, defined by a, £, 5 J, P(&n) and Q(&n), are
considered known. The direct problem is concerned with the determination of the
temperature field 7(&,7.¢) in the region.
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Inverse Problem

For the inverse problem considered here, the heat flux g;(f) at the
boundary &£ = M is regarded as unknown, while all the other quantities appearing
in equations (6.6.2) are assumed to be known with sufficient degree of accuracy.
The heat flux g¢3(f) is to be estimated by using the transient readings of NS
temperature sensors located at the positions (&,,7,), m =1, ..., NS, during the
time interval 0 < ¢ < s Such temperature measurements may contain random
errors. The present inverse problem is solved as a function estimation approach
by using Technique IV, that is, no information regarding the functional form of
the unknown is considered available for the inverse analysis, except that it
belongs to the Hilbert space L in 0 <t <1y

The ill-posed inverse problem stated above is re-formulated as a well-
posed minimization problem. Hence, an estimation for the function g3(f) is
obtained by minimizing the following functional

] f NS 2
S[q3(t)]=-ij [7(¢,m,59,)- 7, 0] @ (6.6.3)

F m=1

where Y,,(1) and T(&,, 7, t; g3) are the measured and estimated temperatures at
the measurements positions (&, 7m), m = 1, ..., NS. The estimated temperatures
are obtained from the solution of the direct problem (6.6.2) by using an estimate
for the heat flux ¢s(1).

We note that the inverse problem, as stated above, can also be used for the
estimation of the heat transfer coefficient at the boundary £ = M, if the cooling
fluid temperature is known. In fact, it has been shown that the computational time
for the estimation of the heat flux and posterior estimation of the heat transfer
coefficient, by using the estimated heat flux and known fluid temperature, is
smaller than that for the solution of the inverse problem involving the heat
transfer coefficient as unknown [17]. Such behavior is due to the fact that the
functional given by equation (6.6.3) is quadratic and the inverse problem of
estimating the boundary heat flux is linear. On the other hand, the estimation of
the heat transfer coefficient involves the minimization of a non-quadratic
functional.

In order to apply Technique IV for minimizing the functional given by
equation (6.6.3), we need to develop the sensitivity and adjoint problems, as
described next.

Sensitivity Problem

In order to develop the sensitivity problem, we assume that the
temperature T{&,7,f) undergoes a variation AT(,n,f), when the unknown
boundary heat flux g;(f) undergoes a variation Ag;(f). By substituting into the
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direct problem given by equations (6.6.2), T{(&,7,¢) by [TN&n,f) + AT(,n,0)] and
g3() by [g:(f) + A4g3(H)), and subtracting from the resulting expressions the
original direct problem, we obtain the following sensitivity problem for the
determination of the sensitivity function AT(&,n,1):

1 & : '

— 2 AT n0) = —5{aAT,, - 288T +1T ) +( PAT, +0AT,

a, o ( ) ( g 'f) (6.6.4.2)
inl<é<M,1<np<N ,fort>0

————(ﬁAT aAT):O at&=1, 1<n<N, fort>0  (6.64b)

T

——-J:(ﬂAT yATn)=O atn=1, 1<E<M, fort>0  (6.6.4.)

k .
! - = - <n<«< > .0.4.
JJE(“ATé ﬁATn) Bqy(t) atE=M, 1<p<N, fort>0  (664.d)

AT, - ﬂAT) atp=N, 1<E<M, fort>0  (6.64.)

J\/_(
AT(£,7,0)=0 fort=0, in1<¢<M, 1<p<N (664

We note that the sensitivity problem is independent of the unknown heat
flux g3(¢). Hence the present estimation problem is linear.

Adjoint Problem

In order to develop the adjoint problem, we multiply the differential
equation of the direct problem, equation (6.6.2.a) by the Lagrange multiplier
A& n,t), integrate over the time and space domains and add the resulting
expression to the functional (6.6.3). The following extended functional is
obtained:

G5

;M N
S[q3(t)]=%j [ [ Yirensay-v, wils-¢ Jolo-n, Jande ars

———z—(afﬁ -24T, +qu”)— (PTg +QTq)}A(§,n,t)qu dEdt

(6.6.5)
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where &.) is the Dirac delta function.

We assume that the functional S[g;(r)] is perturbed by AS[g;(r)] when the
boundary heat flux g;(f) undergoes a variation Ags(f). By substituting into
equation (6.65), T(En:) by [MEnO+ATEnN] and  Slgi()] by
{S[g3()+4S[g3(n]}, and subtracting from the resulting expressions the original
equation (6.6.5), we obtain the following expression for the variation of the
extended functional:

'f M N

sdo,0]= | | | Ylrlensa)-v0]arcnia)

=0 &=1 p=t m=

8(n-n, )5(: —5,,.) dnde dt +

+:f 11{; a;tr (aAT ~2AT , +7AT ) (PAT;, +QA7;)}

1=0 {=1n
ME, 1) Jdndédt
(6.6.6)

The second integral term in equation (6.6.6) is integrated by parts. By
substituting the initial and boundary conditions of the sensitivity problem,
equations (6.6.4.b-f), and then letting the terms containing AT(&,7,!) to vanish, we
obtain after some lengthy but straightforward algebraic manipulations the
following adjoint problem for the determination of the Lagrange multiplier

A& 1)

-—{-M-(ﬁ) ;2(%’3) {-[%j +(PIR), +(00), +

m

+§[T(§,n,t;q3)— Ym(r)]ﬁ(rr- 77,,,)5(5 - é‘,,,) =

inl<é<M,l<p<N ,fort>0

(6.6.7.2)
TJ;(’M -ali )=0 até=1, I<p< N, fort>0 (6.6.7.b)
I/_;.(p,z 7,1) 0  atp=1, 1<&<M, fort>0 (6.6.7.¢)
7\1/_5((1/1:-%):0 até=M, 1<p<N , fort>0 (6.6.7.4)
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1
H—r—(yﬂu”-ﬁﬂg)»o atnp=N, 1<f{< M, fort>0 (6.6.7.¢)
l(f,rz,rf)=0 fort=¢ , inl<f<M, 1<p<N (667

Gradient Equation

In the limiting process described above for obtaining the adjoint problem,
the following integral term is left:

Aq3 ()dndt (6.6.8)
E=M

. ﬂfrr,
sfoo]- | |- AentE

1=0 p=1 ’

By assuming that the unknown heat flux belongs to the Hilbert space L, in
the time domain 0 <t <, that is,

)

la, 0] ar <o (6.69.2)
t=0
we can write
‘y
AS[q3(t)] - va[q3(f)]Aq3(t)d: (6.6.9.b)
=0

Therefore, by comparing equations (6.6.8) and (6.6.9.b), we obtain the
gradient eguation for the functional as:

dn (6.6.10)
E=M

N
o e

n=1 !

Iterative Procedure

The iterative procedure of the Technique 1V, as applied to the estimation
of the heat flux g;(r), can be written as

"*'(x) q3(t) gtat o (6.6.11.2)
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where B is the search step-size used to advance the estimation from iteration & to
k+ 1.
The direction of descent d*(¢) is given by:

d () = vs[q;‘ (:)]+ v a* (6.6.11.b)

The conjugation coefficient " is obtained from the Fletcher-Reeves expression
as:

f

J{elao) o

0 for k=12,.. withy’=0 (6.6.11.c)
k=12
{V’S[q3 (t)}} dt

The search step size B* is obtained by minimizing the functional given by
equation (6.6.3) with respect to [3" , in the same manner as described in Note 7 of
Chapter 2. The following expression results:

'ét.——.\ n

!

t

S NS
k :[on;[:r(g’"'n””t;q:)-Ys(t)]Ar(émv’?mJ;dk)dz
i ‘s N : (6.6.12)
jZ[AT(fm,ﬂm,t;dk)] dr
(=gm=1

where AT{&,, mt3d ¥} is the solution of the sensitivity problem given by equations
(6.6.4) at the measurement point (&, 77.), obtained by setting Aq; (= d* 0.

Stopping Criterion

The iterative procedure of the conjugate gradient method, given by
equations (6.6.11-12), is applied to the estimation of g(s) until a stopping
criterion based on the Discrepancy Principle is satisfied. In such principle, as
described in Chapter 2, we assume that the inverse problem solution is
sufficiently accurate when the difference between estimated and measured
temperatures is of the order of the standard deviation (o) of the measurements.
Thus, the value of the tolerance £ is obtained from equation (6.6.3) as
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1 2
s—ENSa tf (6.6.13)
The value of the functional (6.6.3) is then compared to the tolerance £ at

N o . k+l
each iteration. The iterative procedure is stopped when S[q3+ ()] becomes

smaller than &

Computational Algorithm

We suppose available an estimate g : (1) for the unknown heat flux g4(¢) at

iteration k. Thus:

Step 1: Solve the direct problem given by equations (6.6.2) to obtain the
estimated temperatures 7(&,n,1).

Step 2: Check the stopping criterion given by the discrepancy principle with
¢ determined from equation (6.6.13). Continue if not satisfied.

Step 3: Solve the adjoint problem given by equations (6.6.7) to obtain the
Langrange multiplier A(£n,?).

Step 4: Compute the gradient of the functional VS
(6.6.10).

Step 5: Compute the conjugation coefficient ¥* from equation (6.6.11.c) and

then the direction of descent d"(t) from equation (6.6.11.b).
Step 6: Solve the sensitivity problem given by equations (6.6.4) to obtain

AT( 1), by setting Ay (0 =d" (1)
Step 7: Compute the search step size 8* from equation (6.6.12).

q: (r)] from equation

Step 8: Compute the new estimate q:H(t) from equation (6.6.11.a) and go
to step 1.

Results

We illustrate below the present approach for solving inverse probiems
based on generalized coordinates, with a practical example involving the cooling
of an electronic component. Figure 6.6.1.a shows a module used for the cooling
of thyristors [18, 19]. In such a module, a fluid in convective boiling is forced
through channels to remove the heat released by the thyristor. The heat flux to the
boiling fluid may vary depending on the two-phase flow regime and is to be
estimated by using transient temperature measurements taken at appropriate
locations inside the module. We consider for the analysis a single central channel
with a half-circle cross section and take into account the symmetry of the



A GENERAL FORMULATION FOR INVERSE HEAT CONDUCTION 319

channel. The geometry and relevant dimensions are shown in figure 6.6.1.b. The
half-circle cross section is utilized because it permits more flexibility in the
design of the condensing system [19). The module is made of copper with
dimensions @ = 5Smm, ¢ = 10mm, H = 5mm, ¢ = Smm and ¢ = 15mm.

Cooling Channels S
] Cooling, H'e
Channel;

a2 12
(a) (b)

Figure 6.6.1 - (2) Module for the cooling of thyristors.
(b) Geometry in the physical domain with relevant dimensions.

The transformation of the irregular region in the physical domain into a
rectangle in the computational domain is presented in figure 6.6.2. We note in
this figure that the channel surface (E-F-G), with unknown boundary heat flux, is
mapped into the boundary = M in the computational domain.

For simplicity in the analysis, we solve the present inverse problem in
dimensionless form by introducing the following dimensionless groups

_x .y . % = Emt)-T, g
=— - [ = —— T )= — H=22
k

(6.6.14.a-¢)

where Ty, o and ¢ are reference values for temperature, heat flux and length,
respectively. The bars denote dimensionless variables in equations (6.6.14) and
will be omitted hereafter.
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Figure 6.6.2 - Transformation of the physical domain into the computational
- domain,

For the results presented below, we assumed for the initial condition a
uniform unitary temperature. A condition of symmetry was used for the
boundaries 7 = 1 (A-E) and 5 = N (D-G), while the boundary £=1 (A-B-C-D)
was supposed insulated. No generality is lost with this last assumption, since the
heat flux at such boundary is considered known for the inverse analysis. The
characteristic length was taken as {=d/2+t/2="7.5mm,while the final

dimensionless time was taken as 5.6, which corresponds to a dimensional time of
10 seconds. During this time interval, 50 measurements per sensor were
considered available for the inverse analysis.

The direct, sensitivity and adjoint problems were solved with finite-
differences by using the Alternating-Direction-Implicit (ADI) method [20, 21].
The resultant tri-diagonal systems were solved with a vector version of Thomas
algorithm [22].

The domain shown in figure 6.6.2 was discretized with M = 30 and
N =100 points in the £ and #5 directions, respectively. The time step was
taken as 3.33 x 10, Such time step and number of points were chosen based on a
grid convergence analysis. The maximum difference between the results obtained
with the above discretization for the direct problem and those obtained by
doubling the number of points on both & and # directions, and using a time step 4
times smaller was less than 0.51%. The code for the direct problem was also
validated by comparing the numerical results with known analytical solutions for
cases involving regular geometries [23].

We used simulated measurements in order to assess the accuracy of the
present approach of estimating the unknown boundary heat flux. Figures 6.6.3
and 6.6.4 present the results obtained for triangular and step variations for the
heat flux respectively, and for two different levels of measurement errors, o= 0
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and o = 0.01 T,. , where T, is the maximum measured temperature. Such
results were obtained with the measurements of a single sensor located at the
position A, as shown in figure 6.6.2. The agreement between exact and estimated
functions, obtained with errorless measurements (o = 0), is excellent for both
functional forms tested. The triangular variation shown in figure 6.6.3 is exactly
recovered and basically no smoothness is noticed in the comers. Also, very little
oscillations are observed in the neighborhood of the discontinuities in figure
6.6.4. Similarly, the results obtained with measurements containing random errors
(o= 0.01 T,,,;) are in very good agreement with the exact functional forms.

6.5 .
6.0
5.5 1
5.0 1
4.5 “
4.0 7]
3.5
3.0
2.5
2.0 .
1.5
1_0.5 et At

Exact e

Dimensionless Heat Flux

0.0 | =00
-0.5 - @ =001,
'1 .0 l L ] T I T ‘ L] ‘{ 1 l T '
0.0 1.0 2.0 3.0 4.0 5.0 6.0
Dimensionless Time

Figure 6.6.3 - Inverse problem solution for a triangular variation for g3(¢)

The effects of number and location of the sensors on the inverse problem
solution were examined. Different configurations were tested, including: a single
sensor (NS = 1) located at the position A, B, C, or D; two sensors (NS = 2)
located at positions A and B; and four sensors (NS = 4) located at positions A, B,
C and D. Figure 6.6.5 presents the solutions obtained with such configurations
for the step variation of g3(f), by considering errorless measurements (6=0). The
inverse problem solution appears to be insensitive to the location and number of
sensors for the configurations tested. This is probably due to the reduced
dimensions of the module studied. Similar behavior was also observed with the
triangular variation, as well as with measurements containing random errors.
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Dimensionless Heat Flux
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Figure 6.6.4 - Inverse problem solution for a step variation for g3(7)
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Figure 6.6.5 - Inverse problem solution for different sensor configurations
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Although the solution of boundary inverse problems in irregular

geometries as presented above is general, the preceding analysis of the number
and location of sensors depends on the geometry under study, and should be
performed for each case of interest. The present approach can be extended with
few modifications to the analysis of problems involving multiply-connected
regions,

Other numerical techniques, such as finite elements {17,24-27] and

boundary elements [28-31], have also been applied to the solution of inverse
problems involving irregular regions.

6-2

6-3

6-4

6-10

PROBLEMS

Derive the expressions given by equations (6.2.9,10), for the gradient in
terms of the generalized coordinates (& 7).

Derive the expressions given by equations (6.2.12,13), for the divergence
in terms of the generalized coordinates (&, 7).

Derive the expressions given by equations (6.2.15,16), for the Laplacian in
terms of the generalized coordinates (&, 7).

For a square region in the physical domain with sides of unitary length, so
that h=L=1 in figure 6.3.1, consider the discretization with 11 points in the
x and y directions. Plot the grid lines on the region in the physical domain
for different values of g, say, = 1.5, 1.1 and 1.0l, by using the
transformation given by equations (6.3.3.a,b).

Derive the elliptic grid generation equations (6.5.2.a,b).

Write a computer program for grid generation, by using the elliptic scheme
given by equations (6.5.2.a,b) with first kind boundary conditions. Use
such a program to generate grids on the region presented in figure 6.6.1.b.
Examine the effects of the control functions P(&,77) and Q(<,77) on the
grids generated.

Modify the program developed in problem 6-6 in order to allow the use of
homogeneous second kind (orthogonality) boundary conditions.

Derive the sensitivity problem given by equations (6.6.4).

Derive the adjoint problem given by equations (6.6.7).

Consider the following heat conduction problem in a general two-
dimensional region Q(x,y):

2 2
_L&T(x,y,t)=5 T+ﬁ T+g(x’y’t) in Q(X,y). fOI' 1>0

a, ot 5x2 5},2 ,

£7—“=0 at I'(x,y), for t>0
on
T(x,y,0)=0 in Q(x,y), for =0

where I'(x,y) is the boundary of Q(x,y).
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6-11

6-12

INVERSE HEAT TRANSFER

By using the approach described in this chapter, derive all the basic steps
of Technique IV in terms of generalized coordinates for the solution of
the inverse problem of estimating the timewise variation of the heat
source term g(x,y,¢). Assume the spatial distribution of g(x,y,f) as known
for the analysis.
Repeat problem 6.10 for the estimation of both the timewise and
spacewise variations of g(x,y.f).
In the heat conduction problem given by equations (6.6.2), assume that the
heat flux at the boundary & = M is a function of time as well as of the
spatial position. Therefore, equation (6.6.2.d) needs to be replaced by

‘ (a )
— - = =
e T; ﬂTﬂ q3(n,t) a {=M, 1<n<N , for t>0

Derive all the basic steps of Technique IV in terms of generalized
coordinates, for the estimation of the unknown function g;(7,?).
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Graduate students of all levels, scientists and engineers will find this body of
work extremely useful as a reference textbook. Unlike other books on the sub-
ject, the focus is on applications to help the reader solve problems in inverse
heat transfer without going through detailed mathematical proofs. Through
many illustrated examples and problems at the end of each chapter. the read-
er is exposed to practical situations with a gradually increasing degree of
complexity.

« Presents four powerful techniques for the solution of inverse heat
transfer problems

* Includes problems with practical engineering interest involving
conduction, convection and radiation

* Emphasizes the physics of the problems with simplified mathematics

» Contains a set of proposed problems involving the formulation of physical
problems. mathematical derivations and numerical computations in
each chapter
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