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Preface 

Inverse Heat Transfer Problems (IHTP) rely on temperature andlor heat flux 
measurements for the estimation of unknown quantities appearing in the analysis of 
physical problems in thermal engineering. As an example, inverse problems dealing 
with heat conduction have been generally associated with the estimation of an 
unknown boundary heat flux, by using temperature measurements taken below the 
boundary surface. Therefore, while in the classical direct heat conduction problem the 
cause (boundaq heat flux) is given and the effect (temperature field in the body) is 
determined, the inverse problem involves the estimation of the cause f?om the 
knowledge of the effect. An advantage of IHTP is that it enables a much closer 
collaboration between experimental and theoretical researchers, in order to obtain the 
maximum of information regarding the physical problem under study. 

Difficulties encountered in the solution of IHTP should be recognized. IHTP 
are mathematically classified as ill-posed in a general sense, because their solutions 
may become unstable, as a result of the errors inherent to the measurements used in 
the analysis. Inverse problems were initially taken as not of physical interest, due to 
their ill-posedness. However, some heuristic methods of solution for inverse 
problems, which were based more on pure intuition than on mathematical formality, 
were developed in the 50's. Later in the 60's and 70's, most of the methods, which 
are in common use nowadays, were formalized in terms of their capabilities to treat 
ill-posed unstable problems. The basis of such formal methods resides on the idea of 
reformulating the inverse problem in terms of an approximate well-posed problem, 
by utilizing some kind of regularization (stabilization) technique. In this sense, it is 
recognized here the pioneering works of scientists who found different forms of 
overcoming the instabilities of inverse problems, including A. N. Tikhonov, 0. M. 
Alifanov and J. V. Beck. 

The field of inverse heat transfer is wide open and diversified. Therefore, an 



understanding of the subject. This principle has been the basic guideIine in the 
preparation of this book. 

This book is intended for graduate and advanced undergraduate levels of 
teaching, as well as to become a reference for scientists and practicing engineers. We 
have been motivated by the desire to make an application-oriented book, in order to 
address the needs of readers seeking solutions of IHTP, without going through 
detailed mathematical proofs. 

The main objectives of the book can be summarized as follows: 

Introduce the fundamental concepts regarding IHTP; 
Present in detail the basic steps of four techniques of solution of IHTP, as a 
parameter estimation approach and as a h c t i o n  estimation approach; 
Present the application of such techniques to the solution of MTP of practical 
engineering interest, involving conduction, convection and radiation; and 
Introduce a formulation based on generalized coordinates for the solution of 
inverse heat conduction problems in two-dimensional regions. 

The book consists of six chapters. 
Chapter 1 introduces the reader to the basic concepts of IHTP. 
Chapter 2 is concerned with the description of four techniques of solution for 

inverse problems. The four techniques considered in this book include: 

Technique I: The Levenberg-Marquardt Method for Parameter Estimation 
Technique 11: The Conjugate Gradient Method for Parameter Estimation 
Technique III: The Conjugate Gradient Method with Adjoint Problem for 

Parameter Estimation 
Technique N: The Conjugate Gradient Method with Adjoint Problem for 

Function Estimation 

These techniques were chosen for use in this book because, based on the 
authors' experience, they are sufficiently general, versatile, straightforward and 
powerful to overcome the difficulties associated with the solution of IHTP. 

In Chapter 2 the four techniques are introduced to the reader in a systematic 
manner, as appIied to the solution of a simple, but illustrative, one-dimensional 
inverse test-problem, involving the estimation of the transient strength of a plane 
heat-source in a slab. The basic steps of each technique, including the iterative 
procedure, stopping criterion and computational algorithm, are described in detail in 
this chapter. Results obtained by using simulated measurements, as applied to the 
solution of the test-problem, are discussed. The mathematical and physical 
significances of sensitivity coefficients are also discussed in Chapter 2 and three 
different methods are presented for their computation. Therefore, in Chapter 2 the 
reader is exposed to a full inverse analysis involving a simple test-problem, by using 
the four techniques referred to above, which will be applied later in the book to more 
involved physical situations, including Conduction Heat Transfer in Chapter 3, 
Convection Heat Transfer in Chapter 4 and Radiation Heat Transfer in Chapter 5. 



Chapter 6 is concerned with the solution of inverse heat conduction 
problems of estimating the transient heat flux applied on part of the boundary of 
irregular two-dimensional regions, by using Technique IV. The irregular region 
in the physical domain (xy) is transformed into a rectangle in the computational 
domain ( t , ~ ) .  Different quantities required for the solution are formulated in 
terms of the generalized coordinates ( 6 , ~ ) .  Therefore, the present formulation is 
general and can be applied to the solution of boundary inverse heat conduction 
problems over any region that can be mapped into a rectangle. The present 
approach is illustrated with an inverse problem of practical engineering interest, 
involving the cooling of electronic components. 

The pertinent References and sets of Problems are included at the end of 
each chapter. The proposed problems expose the reader to practical situations in a 
gradual level of increasing complexity, so that he(she) can put into practice the 
general concepts introduced in the book. 

We would like to acknowledge the financial support provided by CNPq, 
CAPES and FAPERJ, agencies for science promotion of the Brazilian and Rio de 
Janeiro State governments, as we11 as by NSF-USA, for the visits of M. N. 0zisik to 
the Federal University of Rio de Janeiro (UFRJ) and of H. R. B. Orlande to the North 
Carolina State University (NCSU). The hospitality of the Mechanical Engineering 
Departments at both institutions is greatly appreciated. This text was mainIy typed by 
M. M. Barreto, who has demonstrated extreme dedication to the work and patience in 
understanding our handwriting in the original manuscript. The works of collaborators 
of the authors, acknowledged throughout the text, were essential for transforming an 
idea for a book into a reality. We would like to thank Prof. M. D. Mikhailov for 
invaluable suggestions regarding the contents of Chapter 2 and Prof. R. M. Cotta for 
introducing us to the editorial vice president of Taylor & Francis. We are indebted to 
several students from the Department of Mechanical Engineering of the Federal 
University of Rio de Janeiro, who helped us at different points during the preparation 
of the book. They include E. N. Macedo, R. N. Carvaiho, M. J. Colaqo, M. M. 
Mejias, L. M. Pereira, L. B. Dantas, H. A. Machado, L. F. Saker, L. A. Sphaier, L. S. 
B. Alves, L. R S. Vieira and C. F. T. Matt. H. R. B. Orlande is thankful for the kind 
hospitality of several fiends during his visits to Raleigh, who certainly made the 
preparation of this book more pleasant and joyful. They include the Ferreiras, the 
Gonzalezes and the 0zisiks. Finally, we would like to express our deep appreciation 
for the love, prayers and support of our families. 
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Nomenclature 

volumetric heat capacity 
trial hnction, j = 1,  ..., N 
covariance of X and Y 
specific heat 
direction of descent 
number of transient measurements per sensor 
sensitivity matrix 
sensitivity coefficient 
thermal conductivity 
length 
number of sensors 
number of unknown parameters 
vector of unknown parameters 
jth unknown parameter, j = 1, ..., N 
heat flux 
polar spatial coordinates 
cylindrical spatial coordinates 
objective hnction or objective functional 
time 
final time 
vector of estimated temperatures 
estimated temperature at time t,, i = 1, ..., I 
covariance matrix of estimated parameters 
cartesian spatial coordinates 
vector with measured temperatures 
measured temperature at time ti, i = 1, ..., I 



GREEK SYMBOLS 

thermal diffusivity 
search step size 
conjugation coefficient 
Dirac delta function 
variation 
sensitivity fbnction 
tolerance 
diagonal matrix for the iterative procedure of Technique I 
damping parameter for the iterative procedure of Technique I 
Lagrange Multiplier satisfying the adjoint problem 
density 
standard deviation of the measurements 

chi-square distribution with N degrees of freedom 

gradient direction 

SUBSCRIPTS 

est estimated 
ex exact 
f final 
i P measurement 
j jh parameter 
m sensor number 
meas measurement location for a single sensor 

SUPERSCRIPTS 

k iteration number 
T transpose 
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Chapter 1 
BASIC CONCEPTS 

In recent years interest has grown in the theory and application of Inverse 
Heat Transfer Problems (IHTP); it is encountered in almost every branch of 
science and engineering. Mechanical, aerospace, chemical and nuclear engineers, 
mathematicians, astrophysicists and statisticians are all interested in this subject, 
each group with different applications in mind. 

The space program has played a significant role in the advancement of 
solution techniques for the IHTP in late 50's and early 60's. For example, 
aerodynamic heating of space vehicles is so high during reentry in the atmosphere 
that the surface temperature of the thermal shield cannot be measured directly 
with temperature sensors. Therefore, temperature sensors are placed beneath the 
hot surface of the shield and the surface temperature is recovered by inverse 
analysis. Inverse analysis can also be used in the estimation of thermophysical 
properties of the shield during operating conditions at such high temperatures. 

Direct measurement of heat flux at the surface of a wall subjected to fire 
by using conventional methods is a difficult matter; but it can readily be 
estimated by an inverse analysis utilizing transient temperature recordings taken 
at a specified location beneath the heated surface. 

In situations when the well established classical methods for property 
estimation cannot provide the desired degree of accuracy or become inappiicable, 
the IHTP technique can be used. 

Difficulties associated with the solution of IHTP should also be 
recognized. Mathematically, inverse heat transfer problems belong to a class 
called Ill-posed El-61, whereas standard heat transfer problems are Well-posed. 
The concept of a well-posed problem, originally introduced by Hadarnard [2], 
requires that its solution should satisfy the following three conditions: 
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The solution must exist; 
The solution must be unique; 
The solution must be stable under small changes to the input data (i.e., 
stability condition) 

The existence of a solution for an inverse heat transfer problem may be 
assured by physical reasoning; for example, if there is a change in the values of 
the measured temperature in a transient problem, there exists a causal 
characteristic, say, a boundary heat flux, to be estimated. On the other hand, the 
uniqueness of the solution of inverse problems can be mathematically proved 
only for some special cases [5,6]. Also, the inverse problem is very sensitive to 
random errors in the measured input data, thus requiring special techniques for its 
solution in order to satisfy the stability condition. 

For a long time it was thought that, if any of the conditions required for 
well-posedness were violated, the problem would be unsolvable or the results 
obtained from such a solution would be meaningless, hence would have no 
practical importance. As a result, interest waned by the mathematicians, 
physicists and engineers in the solution of inverse problems [5]. It was 
Tikhonov's regularization procedure [3,7-91, Alifanov's iterative regularization 
techniques [ 1,5,10-241 and Beck's function estimation approach [6,25] that 
revitalized the interest in the solution of inverse heat transfer problems. A 
successful solution of an inverse problem generally involves its reformulation as 
an approximate well-posed problem. In most methods, the solution of inverse 
heat transfer problems are obtained in the feast squares sense. Tikhonov's 
regularization procedure modifies the least squares equation by adding 
smoothing terms in order to reduce the unstable effects of the measurement 
errors. In the iterative regularization principle, a sequential improvement of the 
solution takes place. The stopping criterion for such iterative procedure is chosen 
so that the final solution is stabilized with respect to errors in the input data. 

As a result of such new solution techniques and the availability of high 
speed, large capacity computers, successful solution of inverse heat transfer 
problems has now become feasible. The past three decades have been most active 
in the advancement of solution techniques for the IHTP. One of the earliest 
discussion of thermal inverse problems is due to Giedt [26] who examined the 
heat transfer at the inner surface of a gun barrel. Stolz [27] presented a procedure 
for estimating surface temperature and heat flux from the temperature 
measurements taken within a body being quenched. Several other works on the 
theory and application of inverse heat transfer problems can be found in 
references 128-1 101 and a number of books are also available on the subject 13- 
6,21,111-1201. 

In this chapter, we present a general discussion of inverse heat transfer 
problems, including basic concepts, application areas, classification, an overview 
of various solution techniques and difficulties involved in such solutions. 
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1-1 INVERSE HEAT TRANSFER PROBLEM CONCEPT 

The physical significance of the inverse heat transfer problem concept is 
better envisioned by referring to the following standard, one-dimensional 
transient heat conduction problem in a slab of thickness L. The temperature 
distribution in the slab is initially F(x). For times f > 0, a transient heat fluxf(t) is 
applied on the boundary x = 0, while the boundary x = L is maintained at the 
constant temperature TL. The mathematical formulation of this problem is given 
by: 

aT 
-k-= f (t) 

ax  

in O < x < L ,  for r > 0 (1.l.l.a) 

for r > 0 

T=T at x = L, for t > 0 (1.1.1.c) 
L 

T = F(x)  for t = 0, in O < x < L  (l.l.l.d) 

For the case where the boundary conditions f( t)  and TL, the initial 
condition F(x), and the thermophysical properties p, cp and k are all specified, 
the problem given by equations (1.1.1) is concerned with the determination of the 
temperature distribution T(x, t) in the interior region of the solid, as a function of 
time and position. This is called the Direct Problem. 

We now consider a problem similar to that given by equations (1.1. l), but 
the boundary condition function f ( t )  at the surface x = 0 is unknown, while all 
the other quantities appearing in equations (1.1. l), such as TL, F(x), k, p and cp, 
are known. We then wish to determine the unknown boundary conditionflt). To 
compensate for the lack of information on the boundary condition, measured 
temperatures T(x,,, , ti) s Y, are given at an interior point x,,, at different times 
t .  (i = 1, 2, ..., I), over a specified time interval 0 < t 5 r / ,  where 9 is the final 
i time. This is an Inverse Problem because it is concerned with the estimation of 

the unknown surface condition f ( t )  . Here the terminology estimation is used in 
place of determination. The reason is that the measured temperature data used in 
the inverse analysis contain measurement errors. As a result, the quantity 
recovered by the inverse analysis. (i.e., the boundary condition f (t) in the 
example above) is not exact, but it is only an estimate within the measurement 
errors. 

Then, the mathematical formulation of this Inverse Problem is given by 
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aT -k-= f (t) = ? (unknown) at x = 0, 
a x  

for 0 < t  5 r/ (1.1.2.b) 

T=T 
L 

at x = L, for O < t r q  (1.1.2.c) 

T=F(x) for t = 0, in 0 < x < L  (1.1.2.d) 

and temperature measurements at an interior location x,,, at different times ti are 
given by 

, r ) = Y  at x=x,,,, for t = t i ( i =  1,2  ,..., 1 )  
T(x.yar r 

The main objective of the direct problem is to recover the temperature 
fieId T(x, t )  in the solid, when all the causal characteristics (i.e., boundary 
conditions and their parameters, initial condition, thermophysical properties of 
the medium and energy generation term, if there is any) are specified. On the 
other hand, the objective of the inverse problem is to estimate one or more of 
such unknown causal characteristics, from the knowledge of the measured 
temperature (the eflecr) at some specified section of the medium. In the direct 
problem the causes are given, the erect is determined; whereas in the inverse 
problem the efect is given, the cause (or causes) is estimated. 

In the inverse problem given above, the boundary surface fbnction f ( t )  is 
unknown. Hence, the problem is referred to as a boundary inverse heat transfer 
problem. Analogously, one envisions inverse heat transfer problems of unknown 
initial condition, energy generation, thermophysical properties, and so on. So far 
we considered an inverse heat transfer problem of conduction; similarly, we can 
have inverse problems of convection, body or surface radiation, mixed modes of 
heat transfer and numerous others. 

Inverse problems can be solved either as a parameter estimation or as a 
function estimation approach. If some information is available on the functional 
form of the unknown quantity, the inverse probiem is reduced to the estimation of 
few unknown parameters. Let us consider the boundary inverse problem given by 
equations (1.1.2, 1.1.3) and assume that the unknown function f ( t )  can be 
represented as a polynomial in time in the form 

or in the more general linear form as 
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where P, , j=1 ,..., N , are unknown constants and C,( t )  are known trial functions. 
Therefore, the inverse problem of estimating the unknown function f ( t )  is 
reduced to the problem of estimating ajnite number ofparameters P,, where the 
number N of parameters is supposed to be chosen in advance. Another example 
of parameter estimation is the recovering of unknown constant thermophysical 
properties, such as the thermal conductivity k or the volumetric heat capacity 6, 
appearing in equations (1.1.2). If no prior information is available on the 
functional form of the unknown, the inverse problem can be regarded as a 
function estimation approach in an infinite dimensional space of functions* 
Techniques for the solution of inverse problems as a parameter estimation, as 
well as a hnction estimation approach, will be presented in the following 
chapter. 

1-2 APPLICATION AREAS OF INVERSE HEAT TRANSFER 

With the advent of modern complex materials having thermophysical 
properties strongly varying with temperature and position, the use of conventional 
methods for determining thermophysical properties has become unsatisfactory. 
Similarly, the operation of modem industrial concerns is becoming more and 
more sophisticated, and an accurate in situ estimation of thermophysical 
properties under actual operating conditions is becoming necessary. The inverse 
heat transfer problem approach can provide satisfactory answers for such 
situations. 

The principal advantage of the IHTP is that it  enables to conduct 
experiments as close to the real conditions as possible. Practical applications of 
IHTP techniques include, among others, the following specific areas: 

Estimation of therrnophysical properties of materials [4,6,20- 
23,68,96,103,110]. For example, properties of heat shield material during 
its reentry into the earth's atmosphere, and estimation of temperature 
dependence of thermal conductivity of a cooled ingot during steel 
tempering. 
Estimation of bulk radiation properties and boundary conditions in 
absorbing, emitting and scattering semi-transparent materials [73-79,871. 
Control of the motion of the solid-liquid interface during solidification 
[89-9 11. 
Estimation of inlet condition and boundary heat flux in forced convection 
inside ducts (72,80,8 1,108,109]. 
Estimation of tirnewise varying unknown interface conductance between 
metal solidification and metal mold during casting [82,85]. 
Estimation of interface conductance between periodically contacting 
surfaces ( 831. 
Monitoring radiation properties of reflecting surfaces of heaters and 
cryogenic panels [ 5 ] .  
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Estimation of reaction function (84,971. 
Control and optimization of the curing process of rubber (98,991. 
Estimation of the boundary shapes of bodies [93,94,112]. 

The estimation of such quantities with conventional techniques is an 
extremely difficult or impossible matter. However, with the application of the 
inverse heat transfer analysis, such problems not only can be handled, but the 
information value of the studies is enhanced and the experimental work is 
accelerated. 

1-3 CLASSIFICATION OF INVERSE HEAT TRANSFER PROBLEMS 

Most of the early works on the solution of inverse heat transfer problems 
have been concerned with heat conduction in one-dimensional geometries. The 
application of inverse analysis techniques to multi-dimensional problems, as well 
a s  to problems involving convection and radiation, is more recent. 

Inverse heat transfer problems can be classified in accordance with the 
nature of the heat transfer process, such as: 

IHTP of conduction 
IHTP of convection (forced or natural) 
IHTP of surface radiation 
IHTP of radiation in participating medium 
IHTP of simultaneous conduction and radiation 
IHTP of simultaneous conduction and convection 
IHTP of phase change (melting or solidification) 

Another classification can be one based on the type of causal characteristic 
to be estimated. For example: 

IHTP of boundary conditions 
IHTP of thennophysical properties 
IHTP of initiai condition 
IHTP of source term 
IHTP of geometric characteristics of a heated body 

Inverse heat transfer problems can be one-, two- or three-dimensional. 
Also, IHTP can be linear or nonlinear. The factors affecting the linearity will be 
apparent in the following chapters. 

Dear-User
Highlight
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1-4 DIFFICULTIES IN THE SOLUTION OF INVERSE HEAT 
TRANSFER PROBLEMS 

To illustrate the inherent difficulties in the solution of inverse heat transfer 
problems, we consider a semi-infinite solid (0 < x < a) initially at zero 
temperature. For times t > 0, the boundary surface at x = 0 is subjected to a 
periodically varying heat flux in the form 

where q0 and w are the amplitude and frequency of oscillations for the heat flux, 

respectively, and t is the time variable. After the transients have passed, the 
quasi-stationary temperature distribution in the solid is given by [113,121] 

where a is the thermal difhsivity and k is the thermal conductivity of the solid. 
Equation (1.4.l.a) shows that the temperature response is lagged with 

respect to the heat flux excitation at the surface of the body, and such lagging is 
more pronounced for points located deeper inside the body. The temperature 
lagging indicates the need for measurements taken after the moment that the heat 
flux is applied, if such heat flux is to be estimated. 

The amplitude for the temperature oscillation at any location,l~l(x)l,  is 

obtained by setting cos(-) = 1 in equation (1.4.1 .a). Hence, 

Equation (1.4.1.b) shows that AT(X)( attenuates exponentially with 

increasing depth below the surface and with increasing frequency o .  On the other 
hand, if the amplitude of the surface heat flux, qo, is to be estimated by utilizing 
directly the measured temperatures at an interior point, any measurement error on 
IAT(x)~ will be magnified exponentially with the depth x and with the frequency 

o, as shown below in equation (1.4.1 .c). 

It is easy to notice that, in order to be able to estimate the boundary heat 
flux, a sensor must be located within a depth below the surface where the 
qrnnlitr~d~ n f  t h ~  t ~ m n p r n t i i r p  nccillatinn i c  rnr~rh crrpnt~r thqn t h ~  r n ~ n w i r ~ r n ~ n t  
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errors. Otherwise, it is impossible to distinguish if the measured temperature 
oscillation is due to changes in the boundary heat flux or due to measurement 
errors, thus resulting in the non-uniqueness of the inverse problem solution. 

The foregoing discussion reveals that, depending on the location of the 
sensor and the frequency of oscillations, the solution of the inverse problem may 
become very sensitive to measurement errors in the input data. Since the accuracy 
of the solution obtained by an inverse analysis is affected by the errors involved 
in temperature measurements, it is instructive to present the eight standard 
assumptions proposed by Beck [4,6,86], regarding the statistical description of 
such errors. They are: 

1. The errors are additive, that is 

where Y, is the measured temperature, T, is the actual temperature and ci is 
the random error. 

2. The temperature errors 6; have a zero mean, that is, 

where E(.) is the expected value operator. The errors are then said to be 
unbiased. 

3. The errors have constant variance, that is, 

2 2 02 = E { [ Y  - E (; )I } = a = constant 
I 1 

which means that the variance of Yi is independent of the measurement. 

4. The errors associated with different measurements are uncorrelated. Two 
measurement errors ci and q , where i # j, are uncorrelated if the 
covariance of 8; and cj. is zero, that is, 

COV(E~,E,) - E([ci  - E(&,)][E, - E(E,)]} = 0 for i z j 

Such is the case if the errors .q and 5 have no effect on or relationship to 
the other. 

5 .  The measurement errors have a normal (Gaussian) distribution, By taking 
into consideration the assumptions 2, 3 and 4 above, the probability 
distribution function of 8; is given by 
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6. The statistical parameters describing E,, such as a ,  are known. 

7. The only variables that contain random errors are the measured 
temperatures. The measurement times, measurement positions, dimensions 
of the heated body, and all other quantities appearing in the formulation of 
the inverse problem are all accurately known. 

8. There is no prior information regarding the quantities to be estimated, 
which can be either parameters or functions. If such information exists, it 
can be utilized to obtain improved estimates. 

A11 of the eight assumptions above rarely apply in actual experiments. For 
example, if the magnitudes of the measurement errors are quite unequal, the 
standard deviations q are likely to be different. However, such assumptions are 
assumed to be valid throughout this book. They permit the verification of the 
applicability of a method of solution to a specific inverse problem, as well as of 
the stability of the inverse problem solution with respect to measurement errors, 
number of sensors, sensor locations, experiment duration, etc, by using simulated 
measurements in the inverse analysis. Such type of measurements will be 
described latter in Chapter 2. We have included in NOTE 1 at the end of this 
chapter a brief review of statistical concepts. 

1-5 AN OVERVIEW OF SOLUTION TECHNIQUES FOR INVERSE 
HEAT TRANSFER PROBLEMS 

We present below various techniques used for the solution of IHTP. Such 
techniques generally require the solution of the associated direct problem. 
Therefore, it is difficult to present the techniques of solving inverse problems 
without referring to those associated with the solution of direct problems. Such 
techniques can be loosely classified under the following groups: 

I .  Integral equation approach [26-30,32-351. 
2. Integral transform techniques [36,37, 39-45,106,110j. 
3. Series solution approach 146-491. 
4. Polynomial approach [50-521. 
5. Hyperbolization of the heat conduction equation [53-551. 
6. Numerical methods such as finite differences [56-62,68-70,80-85,105,107- 

1091, finite elements [3 1 $3-67,89-9 1 ] and boundary elements [92- 
95,103,1121. 
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7. Space marching techniques together with filtering of the noisy input data, 
such as in the mollification method [38,69,116]. 

8. Iterative filtering techniques [8 81. 
9. Steady-state techniques [101-I03,112]. 
10. Beck's sequential function specification method[6,25,30,3 1,56,59,86,118]. 
11. Levenberg-Marquardt method for the minimization of the least-squares 

norm [4,73,75,79,96,104,1 10,113,122-1251. 
12. Tikhonov's regularization approach [3,5-9,116- 1 18,126-1 281. 
13. Iterative regularization methods for parameter and h c t i o n  estimations 

[1,5,10-24,68,72,76-85,89-94,97- 100,104- 109,1131. 
14. Genetic algorithms [ 1 1 11. 

The time domain over which measurements are used in the inverse 
analysis may be another way to classify the methods of solution [6]. Consider, as 
an example, the estimation of the boundary heat flux At) in the time domain 
0 < t 5 t as discussed in section 1 - 1, equations (1.1.2, 1.1.3). Three different 

I' 
possible time domains for the measurements used in the estimation of the heat 
flux componentAti) at time t, < t j  include: 

a. up to time t ,  < tl [6,27]. 

b. up to the time ti < t, plus few time steps [6,25,30,31,56,59,86,118]. 

c. the whole time domain 0 c t r t [1,4-6,lO-24,68,72-85,88-94,97- 
f 

Methods based on the time domains (a) and (b) are sequential in nature. 
Methods based on measurements up to time ti (a) permit the exact matching of 
estimated and measured temperatures, if a single sensor is used in the analysis 
(6,271. Although apparently attractive, they have the disadvantage that the 
solution algorithms are extremely sensitive to measurement errors. The use of 
measurements up to time ti plus few time steps, originally proposed by Beck 
[6,25,30,31,56,59,86,118], improves the stability of the sequential algorithms. 
Such an approach is based on the fact that the temperature response is lagged 
with respect to the excitation, as discussed in section 1-4. We note, however, that 
sequential methods based on the time domains (a) and (b) generally become 
unstable as small time steps are used in the analysis [63. The whole time domain 
approach (c) is very powerfbl because very small time steps can be taken for the 
solution. This is quite important in order to estimate, with good resolution, time 
dependent unknown hnctions, such as the boundary heat flux of the example. 
However, methods based on the whole time domain are not as computationally 
efficient as the sequential ones. 

From the foregoing review of the methods, it is apparent that a variety of 
techniques has been used to solve inverse heat transfer problems. Therefore, it is 
useful to list some criteria proposed for the evaluation of IHTP solution 
procedures [5,6,86]: 
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The predicted quantity should be accurate if the measured data are of high 
accuracy. 
The method should be stable with respect to measurement errors. 
The method should have a statistical basis and permit various statistical 
assumptions for the measurement errors. 
The method should not require the input data to be apriori smoothed. 
The method should be stable for small time steps or intervals. This permits 
a better resolution of the time variation of the unknown quantity than is 
permitted by large time steps. 
Temperature measurements from one or more sensors should be permitted. 
The method should not require continuous first derivatives of unknown 
functions. Furthermore, thi method should be able to recover functions 
containing jump discontinuities. 
Knowiedge of the precise starting time of the application of an unknown 
surface heat flux or source term should not be required. 
The method should not be restricted to any fixed number of measurements. 
The method should be able to treat complex physical situations, including, 
among others, composite solids, moving boundaries, temperature 
dependent properties, convective and radiative heat transfer, combined 
modes of heat transfer, multi-dimensional problems and irregular 
geometries. 
The method should be easy for computer programming. 
The computer cost should be moderate. 
The user should not have to be highly skilled in mathematics in order to 
use the method. 
The method should permit extension to more than one unknown. 

Generally, inverse problems are solved by minimizing an objective 
function with some stabilization technique used in the estimation procedure. If 
all of the eight statistical assumptions stated above in section 1-4 are valid, the 
objective function, S, that provides minimum variance estimates is the ordinary 
least squares norm [4,123] (i.e., the sum of the squared residuals) defined as 

where Y and T' are the vectors containing the measured and estimated 
temperatures, respectively, and the superscript T indicates the transpose of the 
vector. The estimated temperatures are obtained from the solution of the direct 
problem with estimates for the unknown quantities. We consider the following 
three particular cases: 

a. When the transient readings Yi taken at times t,, i=1, ... I of a single sensor 
are used in the inverse analysis, the transpose vector of the residuals, 
(Y - T)' , is given by 
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14 INVERSE HEAT TRANSFER 

and the least squares norm, equation (1.5.1), can be written as 

b. When the transient readings of multiple sensors are used in the inverse 
analysis, the transpose vector of the residuals is then given by 

where, for time t, , (p.-F.) is a row vector of length equal to the number of 
I I 

sensors, M, that is, 

In equation (1.5.3.b), the first subscript refers to time ti and the second 
subscript refers to the sensor number. Thus, the ordinary least squares norm, 
equation (1.5. l),  can be written as 

c. If the values of the standard deviations of the measurements are quite 
different, the ordinary least squares method does not yield minimum 
variance estimates[4, 1231. In such a case, the objective function is given 
by the weighted least squares norm, S,, defined as 

where W is a diagonal weighting matrix. Such matrix is usually taken as the 
inverse of the covariance matrix of the measurement errors, in cases where the 
other statistical hypotheses presented in section 1-4 remain valid [4,123]. By 
assuming available the measurements of a single sensor, the weighting matrix W 
is then given by: 
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and SW. given by Equation ( 1  S.4)  can be written in explicit form as: 

where a; is the standard deviation of the measurement Y, at time t,. 
Similarly, for cases involving M sensors equation (1 S.4)  can be written as 

where qm is the standard deviation of the measurement Y,, of sensor m at time t,. 
If the inverse heat transfer problem involves the estimation of only few 

unknown parameters, such as the estimation of a thermal conductivity value from 
the transient temperature measurements in a solid, the use of the ordinary least 
squares norm given by equations ( I .5.2.b) or ( 1  S . 3  .c) can be stable. However, if 
the inverse problem involves the estimation of a large number of parameters, 
such as the recovery of the unknown transient heat flux components f ( t ,  ) = f ,  at 
times t,, +I , . , . ,  I, in equations (1.1.2, 1.I.3), excursion and oscillation of the 
solution may occur. One approach to reduce such instabilities is to use the 
procedure called Tikhonov 's regularization f3,5-9,116- 1 18,126- 1281, which 
modifies the least squares norm by the addition of a term such as 

where a* (> 0) is the regubrizarion parameter and the second summation on the 
right is the whole-domain zeroth-order regularization term. In equation (1.5.7),f, 
is the heat flux at time t, , which is supposed to be constant in the interval 
t, - At/2 < t < t, + At/2, where At is the time interval between two consecutive 
measurements. The values chosen for the regularization parameter a* influence 
the stability of the solution as the minimization of equation (1.5.7) is performed. 
As a*+0 the solution may exhibit oscillatory behavior and become unstable, 

since the summation of I;' terms may attain very large values and the estimated 
temperatures tend to match those measured. On the other hand, with large values 
of a* the solution is damped and deviates from the exact result. 

The whole-domain first-order regularization procedure for a single sensor 
involves the minimization of the following modified least squares norm 
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For a*+ 0, exact matching between estimated and measured temperatures 
is obtained as the minimization of mt)] is performed and the inverse problem 
solution becomes unstable. For large values of a*, when the second summation 
in equation (1.5.8) is dominant, the heat flux components f i  tend to become 
constant for i = 1, 2, ..., I, that is, the first derivative ofJTt) tends to zero. 

lnstabilities on the solution can be alleviated by proper selection of the 
value of a*, as discussed in references [3,5-9,116-118,126-1281. Tikhonov [3] 
suggested that a* should be selected so that the minimum value of the objective 
b c t i o n  would be equal to the sum of the squares of the errors expected for the 
measurements. The cross-validation approach introduced in references [126- 1281 
can also be used to determine the optimum value of a*. Fortunately, in several 
cases a relatively wide range of values for a* can be used. For example, the 
values of a* ranged from 10" to lo4 in reference [126]. 

The regularization method described above can be related to damped least 
squares methods [4,6], such as the one due to Levenberg 11241 and 
Marquardt [125]. The so-called Levenberg-Marquardt Method is a powerful 
iterative technique for nonlinear parameter estimation, which has been applied to 
the solution of various inverse heat transfer problems 
[4,73,75,79,96,104,110,113,122-1251. 

An alternative approach for the regularization scheme described above is 
the use Alifanov's Iterative Regularization Methods [1,5,10-24,68,72,76-85,89- 
94,97- 1 00,104- 1 09,1131. In these methods, the number of iterations plays the role 
of the regularization parameter a* and the stopping criterion is so chosen that 
reasonably stable soiutions are obtained. Therefore, there is no need to modify the 
original objective function, as opposed to Tikhonov's approach. The iterative 
regularization approach is sufficiently general and can be applied to both 
parameter and fbnction estimations, as well as to linear and non-linear inverse 
problems. 

In this book we focus our attention on the application of Levenberg- 
Marquardt 's method of parameter estimation and Alifanov's method of iterative 
regularization for both parameter and function estimations. These methods are 
quite stable, powerful and straightforward and can be applied to the solution of a 
large variety of inverse heat transfer problems. They meet the majority of criteria 
enumerated above in this section regarding the evaluation of inverse problems 
solution procedures. In the following chapters of this book, we shall use these 
methods based on the whole time domain approach. 

Chapter 2 is concerned with the detailed solution of a model inverse heat 
conduction problem by using the Levenberg-Marquardt Method and the 
Conjugate Gradient Method. The Conjugate Gradient Method with a suitable 
stopping criterion belongs to the class of iterative regularization techniques. The 
subsequent Chapters 3-6 are devoted to the application of these methods for the 
solution of a wide class of inverse heat transfer problems, involving conduction, 
convection and radiation. 
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PROBLEMS 

Derive the analytical solution of the direct heat conduction problem given 
by equations ( 1.1.1). 
Use the analytical solution derived above in problem 1-1 to plot the 
transient temperatures at different locations inside a steel slab Ip = 7753 
kg/m3, cp = 0.486 kJ/(kgK) and k = 36 Wl(mK)] of thickness L = 5 cm, 
initially at the uniform temperature of 200 OC. The boundary at x = 0 cm is 
kept insulated while the boundary at x = 5 crn is maintained at the constant 
temperature of 20 "C. 
Repeat problem 1-2 for a slab made of brick [p = 1600 kg/m3, cp = 0.84 
kJ/(kgK) and k = 0.69 W/(mK)] instead of steel. Compare the temperature 
variations in the steel and brick slabs at selected positions, say, x = 0, 2 
and 4 cm. 
Consider a physical problem involving one-dimensional heat conduction in 
a slab of thickness L, with initial temperature distribution F(x). Assume 
constant thermophysical properties. A time-dependent heat flux At) is 
supplied at the surface x=O, while the surface at x=L is kept insulated. 
Energy is generated in the medium at a rate g(x,t) per unit time and per 
unit volume. What is the mathematical formulation of this heat conduction 
probiem? 
Derive the analytical solution of the direct problem associated with the 
above heat conduction problem 1-4. 
Use the solution developed in problem 1-5 to plot the transient 
temperatures at several locations inside an aluminum slab lo = 2707 
kg/m3, c, = 0.896 kJ/(kgK) and k = 204 Wl(mK)] of thickness L = 3 cm, 
initially at the uniform temperature of 20 OC. No heat is generated inside 
the medium and a constant heat flux of 8000 w/m2 is supplied at the 
surface x = 0 cm. 
Consider a physical problem involving one-dimensional heat conduction in 
a slab of thickness 2L, with initial temperature distribution F(x). Assume 
constant thermophysical properties. Heat is lost by convection to an 
ambient at the temperature T with a heat transfer coefficient h, at the 

II 

surfaces x=-L and x=L. Energy is generated in the medium at a rate g(x,t) 
per unit time and per unit volume. What is the mathematical formulation 
of this heat conduction problem? 
Derive the analytical solution of the direct problem associated with the 
above heat conduction problem 1-7. 
Use the solution developed in problem 1-8 to plot the transient 
temperatures at several locations inside an iron slab Lp = 7850 kg/m3, 
c, = 0.460 kJ/(kgK) and k = 60 W/(mK)] of thickness 2L = 5 cm, initially 
at the uniform temperature of 250 OC. No heat is generated inside the slab 
and the ambient temperature is 25 OC. The heat transfer coefficient at both 
slab surfaces is 500 w / ( m 2 ~ ) .  
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Consider a physical problem involving one-dimensional heat conduction in 
a solid cylinder of radius b, with initial temperature distribution F(r). 
Assume constant thermophysical properties. Heat is lost by convection to 
an ambient at the temperature Tm with a heat transfer coefficient h,  at the 

surface r=b. Energy is generated in the medium at a rate g(r,t) per unit 
time and per unit volume. What is the mathematical formulation of this 
heat conduction problem? 
Derive the analytical solution of the direct problem associated with the 
above heat conduction problem 1 - 10. 
Use the solution developed in problem 1 - 1  1 to plot the transient 
temperatures at several locations inside an iron cylinder [p  = 7850 kg/m3. 
c, = 0.460 kJ/(kgK) and k = 60 W/(rnK)] of radius b = 2.5 cm, initially at 
the uniform temperature of 250 OC. No heat is generated inside the 
cylinder and the ambient temperature is 25 O C .  The heat transfer 
coefficient at the cylinder surface is 500 w / ( m 2 ~ ) .  
Repeat problems 1-10, 1-1 1 and 1-12, for a solid sphere of radius r = b, 
instead of a solid cylinder. 
Compare the transient temperature variations at x = r = 0 cm, in problems 
1-9, 1 - 12 and I - 13, for a slab, cylinder and sphere, respectively. w - 
Consider a physical problem involving two-dimensional heat conduction 
in a plate of width a and height b, with initial temperature distribution 
F(x,y). Assume constant thermophysical properties. Heat is lost by 
convection to an ambient at the temperature Tm with a heat transfer 

coefficient h, at all plate surfaces. Energy is generated in the medium at a 
rate g(x,y,t) per unit time and per unit volume. What is the mathematical 
formulation of this heat conduction problem? 
Derive the analytical solution of the direct problem associated with the 
above heat conduction problem 1 - 15. 
Use the solution developed in problein 1-16 to plot the transient 
temperatures for the central point in a square iron plate [p = 7850 kgim3, 
c, = 0.460 kJ/(kgK) and k = 60 W/(mK)] with sides a = b = 5 cm, initially 
at the uniform temperature of 250 O C .  No heat is generated inside the plate 
and the ambient temperature is 25 O C .  The heat transfer coefficient at the 
plate surfaces is 500 w / ( ~ * K ) .  
Consider a physical problem involving a plate with width a and thickness 
6 ,  which moves horizontally along the x direction with a constant velocity 
u. Assume constant physical properties. Also, suppose the plate to be 
infinitely long in the axial (x) direction. The plate looses heat by 
convection through its lateral surfaces, at y = 0 and y = a, to an ambient at 
temperatureT with a heat transfer coefficient h. The bottom surface at 

P 

z = 0 is supposed insulated, while a transient heat flux with distribution 
q(x,y,t) is supplied at the top surface z = b, in the region x > 0. The initial 
temperature in the medium is F(x,y,z) and the plate enters into the heated 
zone (x > 0) with a uniform temperature To at x = 0. Heat is generated jn 
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the rnediuin at rate g(x,y,z,t) per unit time and per unit volume. What is the 
mathematical formulation of this problem? 
Simplify the formulation developed in problem 1-1 8, for the steady-state 
heat transfer problem in a plate with negligible lateral heat losses and no 
heat generation. The heat flux at z = b is a function of x only, say. q(x). 
Derive the analytical solution for the direct problem formulated in problem 
1-19. 
By using the analytical solution derived in problem I-20, find the 
temperature field in a steel plate [p = 7753 kg/m3. c, = 0.486 kJ/(kgK) and 
k = 36 W/(mK)] of thickness b = 2.5 cm, moving with a velocity 0.15 mls, 
for To = 20 O C ,  q(x) = 50x10' w/mi in I < x < 2 cm, and q(x) = 0 ~ / m '  
outside this region. 
Review, in basic Heat Transfer books, the physics and formulation of heat 
transfer by radiation in non-participating and participating media. 
For the heat transfer problems formulated above in problems 1-4, 1-7,l- 10, 
1 - 13, 1 - 15 and 1 - 18, devise inverse problems of: 

(i) Boundary condition; 
(ii) Initial condition; 
(iii) Energy source-term; 
(iv) Thermophysical Properties. 

How would you address the solution of such inverse problems? In terms of 
parameter or of function estimation? 
Plot the temperature variation given by equation (1.4.1.a) in a steel 
semi-infinite solid [p = 7753 kg/m3, c, = 0.486 kJl(kgK) and k = 36 
W/(mK)], at different locations below the surface. for a heat flux with 
amplitude q o = l ~ 4  w/m2 and frequency: (i) w 1 radis, (ii) w l O  radis and 
(iii) ~ 1 0 0  radls. What would be the maximum depth that a temperature 
sensor could be located for the recovery of go in such cases? 
Use equation (1 -4.1 .c) in order to recover the amplitude of the heat flux, 
qo,  by using the readings of a sensor located within the maximum depths 
obtained in problem 1-24. Perturb the maximum amplitude of the 
temperature variation with different levels of random errors. What are the 
effects of the sensor location and random errors on the estimated quantity? 
Repeat problems 1-24 and 1-25 for brick [p = 1600 kg/m3. c, = 0.84 
kJ/(kgK) and k = 0.69 W/(mK)] instead of steel. Compare the results of 
maximum depths and estimated values for qo , obtained with these two 
materials. 
Derive equation (1 S.2.b). 
Derive equation (1.5.3.c). 
Derive equation (1 S.6.a). 
Derive equation (1 -5.6.b). 
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NOTE 1: STATISTICAL CONCEPTS 

The purpose of this note is to present some basic statistical material, 
needed in the analysis and solution of IHCP, that is generally not covered in 
regular courses in engineering. Readers should consult references 
{4,122,123,129,130] for a more in depth discussion of such matters. 

Random Variable 

A random variable is a variable whose value is a numerical outcome of a 
random phenomenon. A phenomenon is denoted random if its individual 
outcomes are unpredictable, although a regular pattern of outcomes emerges in 
many repetitions. 

Let the capital letter X denote a random variabIe. It is called a discrete 
random variable if it can only assume a set of discrete numbers x,, n = 1,2, ..., N. 
On the other hand, Xis called a continuous random variable if it can assume all 
values in an interval of real numbers. 

Probability Distribution 

The assignment of probabilities to the values of a random variable X gives 
the probability distribution of X. Depending on whether the random variable Xis  
discrete or continuous, the probability distributionflx) is a non-negative number 
or function, respectively, satisfjring 

x f ( x n ) = l  when Xis  discrete 

sf ( X I &  =I when Xis  continuous 

Expected Value of X 

Let X be a random variable, discrete or continuous, with the corresponding 
probability distributions f (x ) or f ( x )  , respectively. The expected value of X, 

n 
denoted by E(X), is defined as 



BASIC CONCEPTS 29 

l C x n f c x n )  when Xi s  discrete 

1 [ x f ( x ) h  when X i s  continuous 

The expected value of any random variable X is obtained by multiplying 
its value by the corresponding probability distribution and then summing up the 
results if X is discrete, or integrating the results i f  X is continuous. Clearly, the 
expected value of X is a weighted mean of all possible values with the weight 
factor f ( x )  . If the weights are equal, that is, f (x)  =I, then the expected value 
becomes the arithmetic mean of X Usually, the expected value is simply referred 
to as the mean of the random variable X. 

Expected Value of a Function g(X) 

Consider a random variable X and the probability distribution f ( x )  
associated with it. The expected value of the function g ( X ) ,  denoted by E[g(A)], is 
given by 

(  ) f (  when X is discrete 

I J g ( x )  f ( x )  dr when X is continuous 

Variance of a Random Variable X 

The variance of a random variable X, denoted by o ', is a measure of the 
spread of X around its mean p. It is defined by 

2 2 
a = E [ ( x  - p )  ] where p = E ( x )  (N1.1.4.a) 

or an alternative form is obtained by expanding this expression, that is, 

2 since ~(p') = p . 
The positive square root aof the variance is called the standard deviation. 



30 INVERSE HEAT TRANSFER 

Covariance of Two Random Variables X and Y 

The covariance of two random variables X and Y is a measure of the tinear 
dependence between them. It is defined as: 

where px -- E(x) and j+ = EQ). 
The covariance cov(X, Y) is zero if X and Yare independent. 

Normal Distribution 

The most frequently used continuous probability distribution hnction is 
the normal (Gaussian) distribution, which bas a bell-shaped curve about its mean 
value. The nonnai probability distribution hnction with a mean ,u and variance 
02 is given by 

The area below this function from - oo to x represents the probability 
P(- m < X b x )  that a random variable X with mean p and variance cr assumes a 
value between - a, and x. Therefore, P(- a, < X Sx)  is defined by 

To alleviate the difficulty in the calculation of this integral for each given 
set of values of a, ,u and x, a new independent variable Z was defined as 

Then, the integral in equation (Nl. 1.7) becomes 

The results of this integration were tabulated, as given in Table N 1.1.1. 
Readers should consult references [129- 1301 for more comprehensive tabulation 
of the probability fbnction P(- a, < Z lz). 
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TABLE N1.l.l - Probability P(- w < Z ,<z) given by equation (N1.1.9) for a 
normal distribution function. 

Table N1.l. 1 can be used as follows to determine the normal probability 
P(xl 3 X b x2), of a random variable X having a mean p and variance d, to 
assume a value between x ,  and x2: 
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where P(- a, < Z 3 z2) and P(- co < Z S 2,) are determined from Table N 1.1.1. 
The normal distribution function is useful in obtaining confidence 

intervals for estimated parameters, as will be discussed later in Chapter 2. 

Chi-Square Distribution 

Let Z1, Zz, ..., ZN be independent random variables normally distributed, 
with mean zero and unitary standard deviation. In this case, the summation 

has a chi-square probability distribution with N degrees offreedom, given by 

where r(.) is the gamma function defined as 

-x n-l 
x dx , n>O 

and, for n integer, we have 

The mean and the variance of the chi-square distribution are N and 2N, 
respectively. Such distribution is skewed to the right, but it tends to the normal 
distribution as N +a This behavior is shown in figure N1.l. 1. 

2 The probability of having a value x smaller than X ,  is obtained by 

2 integrating equation (N 1.1.12) from zero to x , that is, 
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2 
Table N 1.1.2 shows the values of Xk for various probabilities F ( x  ) , as 

a function of the number of degrees of freedom N .  The valuer of Xi shown in 

table N1.1.2 are useful in obtaining confidence regions for estimated parameters. 
A discussion on confidence regions and other quantities of importance to assess 
the accuracy of the estimated parameters will be presented in Chapter 2. 

Figure N1.1.1- Chi-Square Probability Distribution Function given by equation 
(N1.1.12). 
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2 TABLE N1.1.2 - Values of X ,  for various degrees of freedom N and 
2 2 probabilities F ( x N  ) = P(0 S x 5 xN ). 



Chapter 2 

TECHNIQUES FOR SOLVING 
INVERSE HEAT TRANSFER 
PROBLEMS 

In the previous chapter we discussed general principles related to the 
formulation and solution of inverse heat transfer problems. The main objective of 
this chapter is to provide the necessary mathematical background needed in the 
use of some powerkl techniques for solving inverse heat transfer problems. The 
following four techniques are considered: 

Technique I: Levenberg-Marquardt Method for Parameter Estimation 
Technique 11: Conjugate Gradient Method for Parameter Estimation 
Tecbnique 111: Conjugate Gradient Method with Adjoint Problem for 

Parameter Estimation 
Technique W :  Conjugate Gradient Method with Adjoint Problem for 

Function Estimation 

Although other techniques are available, the above four are chosen for use 
in this book because they are suficiently general, versatile, straightforward and 
powerful to overcome the dificulties associated with the solution of inverse heat 
transfer problems. 

Technique I is an iterative method for solving nonlinear least squares 
problems of parameter estimation. The technique was first derived by Levenberg 
[ l ]  in 1944, by modifying the ordinary least squares norm. Later, in 1963, 
Marquardt [2] derived basically the same technique by using a different approach. 
Marquardt's intention was to obtain a method that would tend to the Gauss 
method in the neighborhood of the minimum of the ordinary least squares norm, 
and would tend to the steepest descent method in the neighborhood of the initial 
guess used for the iterative procedure [2-41. The so called Levenberg-Marquardt 
Method [I-91 has been applied to the solution of a variety of inverse problems 
involving the estimation of unknown parameters. 
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The solution of inverse parameter estimation problems by Technique I 
requires the computation of the Sensitivity Matrix, J, the elements of which are 
the Sensitivity Coescients, Ju, defined as 

where i = 1,2, ..., 1 
j = 1,2, ..., N 
I - number of measurements 
N = number of unknown parameters 
Ti is the estimated temperature 
P, is t h e y  unknown parameter 

Technique I is quite efficient for solving linear and nonlinear parameter 
estimation problems. However, difficulties may arise in nonlinear estimation 
problems involving a large number of unknown parameters, because of the time 
spent in the computation of the sensitivity matrix. 

Technique I1 utilizes the Conjugate Gradient Method of Minimization to 
solve parameter estimation problems. As with Technique I, it requires the 
computation of the sensitivity matrix, which is a time-consuming process when 
the number of parameters to be estimated becomes large, specially in nonlinear 
problems. 

Techniques HI and IV utilize the Conjugate Gradient Method of 
Minimization with Adjoint Problem [9-211. Technique I11 is specially suitable 
for problems involving the estimation of the coefficients of trial hnctions used to 
approximate an unknown function. The use of the adjoint problem in Technique 
111 results in an expression for the gradient direction involving a Lagrange 
Multiplier, thus alleviating the need for the computation of the sensitivity matrix. 
Technique IV is a function estimation approach and is useful when no a priori 
information is available on the functional form of the unknown quantity. 
Techniques 11, I11 and IV, together with appropriate stopping criteria for their 
iterative procedures, belong to the class of iterative regularization techniques. 

In this chapter we describe the basic steps and present the solution 
algorithms for each of these four techniques, by using a whole time domain 
approach and by assuming that the eight assumptions described previously in 
Section 1-4 remain valid. We also present the solution of a test-problem by using 
Techniques I through IV to illustrate their applications. The sensitivity 
coefficients play an important role in the application of Techniques I, I1 and I11 to 
parameter estimation problems. Hence, we also discuss in this chapter the 
physical and mathematical significance of the sensitivity coefficients and 
describe three different methods for their computation. 
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2-1 TECHNIQUE I: 
THE LEVENBERG-MARQUARDT METHOD 
FOR PARAMETER ESTIMATION 

The Levenberg-Marquardt method, originally devised for application to 
nonlinear parameter estimation problems, has also been successfully applied to 
the solution of linear problems that are too ill-conditioned to permit the 
application of linear algorithms. 

The solution of inverse heat transfer problems with the Levenberg- 
Marquardt method can be suitably arranged in the following basic steps: 

The Direct Problem 
The Inverse Problem 
The Iterative Procedure 
The Stopping Criteria 
The Computational Algorithm 

We present below the details of each of these steps as applied to the 
solution of an inverse heat conduction test-problem, involving the following 
physical situation: 

Consider the linear transient heat conduction in a plate of unitary 
dimensionless thickness. The plate is initially at zero temperature and both 
boundaries at x=O and x=l are kept insulated. For times t > 0, a plane heat 
source of strength g,(t) per unit area, placed in the mid-plane x=0.5, 
releases its energy as depicted in figure 2.1.1. 

The mathematical formulation of this heat conduction problem is given in 
dimensionless form by: 

T(x, 0) = 0 

where S(.) is the Dirac delta function. 

a tx  = 0, fort > 0 
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Figure 2.1.1. Geometry and coordinates for a plane heat source gp(t). 

The Direct Problem 

In the Direct Problem associated with the physical problem described 
above, the time-varying strength g,(t) of the plane heat source is known. The 
objective of the direct problem is then to determine the transient temperature field 
T(x,t) in the plate. 

The Inverse Problem 

For the Inverse Problem considered of interest here, the time-varying 
strength g,(t) of the plane heat source is regarded as unknown. The additional 
information obtained from transient temperature measurements taken at a 
location x=x,,,,, at times ti, i = 1,2, . . ., I, is then used for the estimation of gp(t). 

For the solution of the present inverse problem, we consider the unknown 
energy generation fbnction gp(t) to be parameterized in the following general 
linear form: 

Here, P, are unknown parameters and C,(t) are known trial functions (e.g., 
polynomials, B-Splines, etc). In addition, the total number of parameters, N, is 
specified. 

The problem given by equations (2.1.1) with g,(t) unknown, but 
parameterized as given by equation (2.1.2), is an inverse heat conduction problem 
in which the coefficients P, are to be estimated. The solution of this inverse heat 
conduction problem for the estimation of the N unknown parameters 4, 
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j = 1, ..., N, is based on the minimization of the ordinary least squares norm 
given by (see equation 1 -5.2.b): 

where S = sum of squares error or objective fhction 
pT = [pI,p2, ...pH] = vector of unknown parameters 
T,(P) E TP,  ti) = estimated temperature at time ti 
Yi = Y(ti) = measured temperature at time ti 
N = total number of unknown parameters 
I= total number of measurements, where I I N .  

The estimated temperatures T,(P) are obtained from the solution of the 
direct problem at the measurement location, x,,,, by using the current estimate 
for the unknown parameters Pi, j = 1, ..., N. 

Equation (2.1.3.a) can be written in matrix form as (see equation 1.5.1) 

where the superscript T denotes the transpose, and [Y-T(P)]'~s defined as 

The Iterative Procedure for Technique I 

To minimize the least squares norm given by equations (2.1,3), we need to 
equate to zero the derivatives of S(P) with respect to each of the unknown 
parameters [PI, P2, ..., PN], that is, 

Such necessary condition for the minimization of S(P) can be represented in 
matrix notation by equating the gradient of S(P) witb respect to the vector of 
parameters P to zero, that is, 

where 
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The Sensitivity or Jacobian matrix, J(P), is defined as the transpose of 
equation (2.1.6), that is, 

In explicit form, the sensitivity matrix is written as 

where N = total number of unknown parameters 
I= total number of measurements 

The elements of the sensitivity matrix are called the Sensitiviry 
Coeflcients. The sensitivity coefficient J ,  is thus defined as the first derivative of 
the estimated temperature at time t, with respect to the unknown parameter P, , 
that is, 

By using the definition of the sensitivity matrix given by equation 
(2.1.7.a), equation (2.1.5.b) becomes 
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For linear inverse problems, the sensitivity matrix is not a function of the 
unknown parameters. In such a case, equation (2.1.8) can be solved in explicit 
form for the vector of unknown parameters P as [4]: 

In the case of a nonlinear inverse problem, the sensitivity matrix has some 
functional dependence on the vector of unknown parameters P. The solution of 
equation (2.1.8) for nonlinear estimation problems then requires an iterative 
procedure, which is obtained by linearizing the vector of estimated temperatures, 
T(P), with a Taylor series expansion around the current solution at iteration k. 
Such a linearization is given by 

where T($) and Jk are the estimated temperatures and the sensitivity matrix 
evaluated at iteration k, respectively. Equation (2.1.10) is substituted into 
equation (2.1.8) and the resulting expression is rearranged to yield the following 
iterative procedure to obtain the vector of unknown parameters P[43: 

k T  k - l  k T  P'+'=P'+[(J ) J 1 (J [Y-T(P')J (2.1.1 1) 

The iterative procedure given by equation (2.1.1 1) is called the Gauss 
method. Such method is actually an approximation for the Newton (or Newton- 
Raphson) method [3]. 

We note that equation (2.1.9), as well as the implementation of the 
iterative procedrire given by equation (2.1.1 l), require the matrix JT.J to be non- 
singular, or 

where 1 . ( is the determinant. 
Equation (2.1.12) gives the so called Identifiability Condition, that is, if 

the determinant of JTJ is zero, or even very small, the parameters P, , for 
j = I, ..., N, cannot be determined by using the iterative procedure of equation 
(2.1.1 1). 

Problems satisfying I J ~ J  1 = 0 are denoted ill-conditioned. Inverse heat 

transfer problems are generally very ill-conditioned, especially near the initial 
guess used for the unknown parameters, creating difficulties in the application of 
equations (2.1.9) or (2.1.1 1). The Levenberg-Marquardt Method [l-91 alleviates 
such difficulties by utilizing an iterative procedure in the form: 
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k 
where p is a positive scalar named dampingparameter, and 

k 
i2 is a diagonal matrix. 

k k  
The purpose of the matrix term p R , included in equation (2.1.13), is to 

damp oscillations and instabilities due to the ill-conditioned character of the 
problem, by making its components large as compared to those of J'J if 
necessary. The damping parameter is made large in the beginning of the 
iterations, since the problem is generally ill-conditioned in the region around the 
initial guess used for the iterative procedure, which can be quite far from the 
exact parameters. With such an approach, the matrix J'J is not required to be 
non-singular in the beginning of iterations and the Levenberg-Marquardt Method 
tends to the Steepest Descent Method, that is, a very small step is taken in the 
negative gradient direction. The parameter pk is then gradually reduced as the 
iteration procedure advances to the solution of the parameter estimation problem, 
and then the Levenberg-Marquardt Method tends to the Gauss Method given by 
equation (2.1 .I  1 ) [4]. 

The Stopping Criteria for Technique I 

The following criteria were suggested by Dennis and Schnabel [7] to stop 
the iterative procedure of the Levenberg-Marquardt Method given by equation 
(2.1.13): 

where sl, 5 and s, are user prescribed tolerances and 1 1  . 11 is the vector Euclidean 

norm, i.e., 11 x 11 = (xTx)', where the superscript f denotes transpose. 
The criterion given by equation (2.1.14.a) tests if the least squares norm is 

sufficiently small, which is expected to be in the neighborhood of the solution for 
the problem. Similarly, equation (2.1.14.b) checks if the norm of the gradient of 
S(P) is sufficiently small, since it is expected to vanish at the point where S(P) is 
minimum. Although such a condition of vanishing gradient is also valid for 
maximum and saddle points of S(P), the Levenberg-Marquardt method is very 
unlike to converge to such points. The last criterion given by equation (2.1.14.c) 
results from the fact that changes in the vector of parameters are very small when 
the method has converged. The use of a stopping criterion based on small 
changes of the least squares norm S(P) could also be used, but with extreme 
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caution. It may happen that the method stalls for a few iterations and then starts 
advancing to the point of minimum afienvards[3,4,7]. 

The Computational Algorithm for Technique I 

Different versions of the Levenberg-Marquardt method can be found in 
the literature, depending on the choice of the diagonal matrix d and on the form 
chosen for the variation of tte damping parameter p [l-91. We illustrate here a 
procedure with the matrix Q taken as 

The algorithm described below is available as the subroutine MRQMIN of 
the Numerical Recipes [6] .  The reader should consult the reference for further 
details on the use of such subroutine. 

Suppose that temperature measurements Y=(Y,,Y,, ..., Y]) are given at times 
ti , i=l, ..., I. Also, suppose an initial guess PO is available for the vector of 
unknown parameters P. Choose a value for pO, say, = 0.001 and set k=O [6] .  
Then, 

Step 1. Solve the direct heat transfer problem given by equations (2.1.1) with the 
available estimate P' in order to obtain the temperature vector 
T(P )=(Tl,T' ..., TI). 

Step 2. Compute s(P') fiom equation (2.1.3 .b). 
Step 3. Compute the ~ensitivity matrix J' defined by equation (2.1.7.a) and then 

the matrix 52 given by equation (2.1.19, by using the current values of 
PL. 

Step 4, Solve the following linear system of algebraic equations, obtained from 
the iterative procedure of the Levenberg-Marquardt Method, equation 
(2.1.13); 

k T k  A k [(J ) J +p 0 ]APk =(J~))'Y-T(P~)] 

k k + l  t 
in order to compute AP =P ,+i P 

Step 5. Compute the new estimate P as 

Step 6. Solve the &ect problem (2.1.1) xith the new estimate pktl in order 
to find T(P ). Then compute S(P ), as defined by equation (2.1.3 .b). 

k k k 
Step 7. 1f s(P~")>s(P ), replace ,u by 10p and return to step 4. 

k+ I k k+ I k k 
C t ~ n  8 T f  ,C(P I<  S(P I. acceut the new estimate P and replace u by 0.1 u , 
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Step 9. Check the stopping criteria given by equations (2.1.14.a-c). Stop the 
iterative procedure if any of them is satisfied; otherwise, replace k by 
k+ 1 and return to step 3. 

In moper version of the Levenberg-Marquardt method due to Mord 8 , I ! the matrix R is taken as the identity matrix and the damping parameter p is 
chosen based on the so-called trust region algorithm [7,8]. The subroutines 
UNLSF, UNLSJ, BCLSF and BCLSJ in the IMSL [5] are based on this version 
of the Levenberg-Marquardt Method. 

After computing P I ,  P2, ..., PN with the above computational procedure, a 
Statistical Analysis can be performed in order to obtain estimates for the standard 
deviations and other quantities of interest to assess the accuracy of the estimated 
parameters. The basic steps of such an analysis are included in Note 1 at the end 
of this chapter. 

Sensitivity Coefficient Concept 

The sensitivity matrix (2.1.7.a) plays an important role in parameter 
estimation problems. Therefore, we present below a discussion of the physical 
and mathematical significance of the sensitivity coefficients and the methods for 
their computation. 

The sensitivity coefficient Jv , as defined in equation (2.1.7.c), is a 
measure of the sensitivity of the estimated temperature Ti with respect to changes 
in the parameter P . A small value of the magnitude of J.. indicates that large 
changes in P, yie i d small changes in 7. . It can be edily noticed that the 
estimation of the parameter 5 is extremely dimcult in such a case, because 
basically the same value for temperature would be obtained for a wide range of 
values of P, . In fact, when the sensitivity coefficients are small, we 
have1 J ~ J  / a  0 and the inverse problem is ill-conditioned. It can also be shown 

that J J is null if any column of J can be expressed as a linear combination of I T l  
the other columns [4]. Therefore, it is desirable to have linearly-independent 
sensitivity coeflcients Jij with large magnitudes, so that the inverse problem is 
not very sensitive to measurement errors and accurate estimates of the parameters 
can be obtained. The maximization of I J ~ J  / is generally aimed in order to 

design optimum experiments for the estimation of the unknown parameters, 
because the confidence region of the estimates is then minimized. Some details 
on such an approach are presented in Note 2 at the end of this chapter. 

Generally, the timewise variations of the sensitivig coeficients and of 
I J'J I must be examined before a solution for the inverse problem is attempted. 

Such examinations give an indication of the best sensor location and 
measurement times to be used in the inverse analysis, which correspond to 
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linearly-independent sensitivity coefficients with large absolute values and large 
magnitudes of I J*J I. 

Methods of Determining the Sensitivity Coefficients 

There are several different approaches for the computation of the 
sensitivity coefficients. We present below, with illustrative examples, three such 
approaches, including: (i) The direct analytic solution, (ii) The boundary value 
problem, and (iii) The finite-difference approximation. 

1. Direct Analytic Solution for Determining Sensitivity Coeficients. If the 
direct heat conduction problem is linear and an analytic solution is available for 
the temperature field, the sensitivity coefficient with respect to an unknown 
parameter P. is determined by differentiating the solution with respect to P,. This 
approach is illustrated in the following examples. 

Example 2-1. Consider the test-problem given by equations (2.1. I). The 
analytical solution of this problem at the measurement position is obtained as [9]: 

where P = mn are the eigenvalues. 
m 

The first integral term on the right-hand side of equation (2.1.18.a) is due 
to the fact that both boundary conditions for the problem are homogeneous of the 
second kind. Suppose g&t) is parameterized in the general linear form as 

Find an analytic expression for the sensitivity coeficient J . 
a T  

J 

respect to the parameter P/. 

Solution: By substituting the strength of the source term g,(t) given by 
equation (2.1.18.b) into equation (2.1.18.a) and differentiating the resulting 
expression with respect to PI , we fmd the expression for the sensitivity 
coefficient for the parameter Pi as 
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The above inverse problem is linear because the sensitivity coefficients do 
not depend on P, . 

Figure 2.1.2 presents the timewise variation of the sensitivity coefficients 
given by equation (2.1.18.c), for a sensor located at xme,=l and for a case 
involving N=5 unknown parameters, where the trial functions were taken in the 
form of polynomials as 

0.0 0.2 0.4 0.6 0.8 1 .O 
Dimensionless Time , t 

Figure 2.1.2. Sensitivity coefficients for polynomial trial functions 
given by equation (2.1.18.d) 

Figure 2.1.2 shows that the sensitivity coefficients J 2 ,  Jj , J4 and J5, with 
respect to the parameters P2 , P3 , P4 and PI, respectively, tend to be linearly 
dependent in the time interval 0 < t < 1. Therefore, the estimation of the five 
coefficients of the polynomial used to approximate the unknown source function 
is difficult in such a case. This figure also shows that the sensitivity coefficient JI 
with respect to the parameter PI does not seem to be linearly dependent with the 
others in this time interval. Hence, the estimation of any pair of parameters, 
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which necessarily includes PI as one of them, appears to be feasible with a sensor 
located a x,,,=l and with measurements taken in the time interval 0 < t < 1. In 
fact, for 100 transient measurements taken in this time interval, the determinant 
of J ~ J  assumes the values 7.7 and 3.2x10-", for 2 (PI and PZ) and 5 (PI through 
P5) unknown parameters, respectively, indicating that linearly dependent 

sensitivity coefficients yield small values of I J ~ J  1 .  
Figure 2.1.3 shows the sensitivity coefficients for a sensor located at 

x,,=l and for the first five coefficients of trial functions in the form 

C,( t )=sin  j-t 
J 1 1  for j=2,4,6,. . . 

where the source function was approximated by a Fourier series. 

0.0 0.4 0.8 1.2 1.6 2.0 
Dimensionless Time , t 

Figure 2.1.3. Sensitivity coefficients for the trial fbnctions 
given by equations (2.1.18.e,f) 

We notice in figure 2.1.3 that the sensitivity coefficients are not linearly 
dependent in the time interval 0.3 < t < 2. Some linear-dependence is noticed 
among the sensitivity coefficients J,, J3 and J5 for t < 0.3. Therefore, the 
conditions for the estimation of the five unknown parameters are not adequate if 
measurements taken only in the interval 0 < t < 0.3 are used in the analysis; but it 
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appears that the parameters can be estimated if the measurements are taken up to 
i/ =2.  

Figure 2.14 illustrates the time variation of the determinant of J'J up to a 
final experimental time i/ = 5, by considering I = 100,250 and 500 measurements 
available from a sensor located at x,,,,,= 1. The trial functions are given by 
equations (2.1.18.e,f). For the three number of measurements considered, we 
notice a large increase in the magnitude of I J ~ J  1 up to about 1/ = 2. The 

magnitude of 1 JTJ I continues to grow for larger times, but at a much 

smaller rate. As expected, / J ~ J  ( increases with the number of measurements, 

since more information is available for the estimation of the unknown 
parameters. However, such increase is not as significant as increasing the 
experimental time from t/= 1 to q= 2. In the example, tf= 2 is a suitable duration 
for the experiment, since the value of I J*J I has already approached a reasonably 

large magnitude and the experiment duration is not too long. 

0.0 1 .O 2.0 3.0 4.0 5.0 
Dimensionless Time , t 

Figure 2.1.4. Determinant of J'J for the trial functions given by 
equations (2.1.1 8.e,f) 

Example 2-2. Consider a semi-infinite medium initidly at zero 
temperature, and for times r > 0 the boundary surface at x = 0 is subjected to a 
constant heat flux go, w/m2. Develop an analytic expression for the sensitivity 
coefficient Jqo(O, t) with respect to the applied heat flux go and for the sensitivity 
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coefficient Jcr(O,t) with respect to the thermal diffusivity a, based on the 
temperature at the boundary surface x = 0. 

Solution. The temperature of the boundary surface at x = 0 is given by 
PI: 

Then the sensitivity coefficient with respect to go is determined from its 
definition as 

which is independent of the applied heat flux go. Then, the inverse problem of 
estimating go is linear. 

The sensitivity coefficient with respect to a is determined as 

which depends on a, and, hence the inverse problem of estimating a is nonlinear. 

Example 2-3. Consider the transient heat conduction problem in a plate of 
thickness L, initially at a uniform temperature To. For times t > 0, the boundary 
x=L is maintained at a temperature TO. A constant heat flux q o  is applied on the 
boundary x = 0, during the period 0 < t th .  For t > th this boundary is kept 
insulated. The mathematical formulation of this problem in dimensionless form is 
given by: 

for 0 < 7 5 T h  I at{=O 
for t>th 

8=0 at { = I ,  for t> 0 (2.1 -2O.c) 

8=0  for t = 0 ,  O < r < l  (2.1.20.d) 

where various dimensionless groups are defined as 
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where a = thermal diffusivity 
k = thermal conductivity 
5, = dimensionless heating time 

= dimensionless final time 

The dimensionless sensitivity coefficients with respect to the thermal 
conductivity k and heat capacity 6 = C are defined respectively as 

and 

Develop analytic expressions for the dimensionless sensitivity coefficients 

Jk and Jc , with respect to thermal conductivity and heat capacity, respectively. 

Solution. The transient heat conductior~ problem given by equations 
(2.1.20) has been solved in reference [22] and the resulting expressions for the 
dimensionless temperature field t9 ( { , r )  are given in the form 

for 0 < r <  5i, 

?r 
where An = (217 + 1) - are the eigenvalues. 

2 

Since the temperature field B ( { , r )  is known explicitly, analytic 
expressions can be developed for the dimensionless sensitivity coefficients 
according to equations (2.1.22). We obtain the sensitivity coefficients for the 
thermal conductivity as 
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03 2 
-Anf  

J, = - (1-0 + 2 z G  sin[An (l-{)]e (I+$.) for 0 < 7 < rh 

A 
n 

n=O 

(2.1.24.a) 
and 

for rh < r < tj (2.1.24.b) 

Similar expressions can be developed for the dimensionless sensitivity 
coefficients with respect to the heat capacity as 

OD 2 
-R,r 

J ,  = - 2 x  (- 1)" sin[An(l - c)] r e  for 0 < r <  rh (2.1.25.a) 

and 

Figures 2.1.5.a-c show the plots of, respectively, the dimensionless 
temperature 0, the dimensionless sensitivity coefficients Jk and Jc , as a 
function of the dimensionless time r, for rh = q= 7 and at several different 

X 
dimensionless locations {=-=0, 0.25, 0.5 and 0.75. These figures show that for 

L 
this particular case the magnitude of sensitivity coefficients attain relatively large 
values, i.e., of the order of dimensionless temperature 0. The magnitude of the 
sensitivity coefficients for the volumetric heat capacity are smaller than those for 
the thermal conductivity and they approach zero for r 2. Thus, basically no 
information can be obtained from measurements taken for r > 2 for the 
estimation of C. Also, note that the magnitude of the sensitivity coefficients for k 
and C decrease as the sensor is placed farther from the boundary {=0. For each 
sensor location, the shapes of the sensitivity coefficient curves for Jk and Jc are 
different except at the very early times. In fact, Jk tends to a finite value after the 
steady-state is reached, while Jr becomes zero. Therefore, they are not linearly- 
dependent on each other, and, as a result, the conditions are good for the 
estimation of the unknown parameters with a single sensor. Such sensor should 
be located as close to the boundary (=0 as possible, because the magnitudes of 
the sensitivity coefficients are larger in this region. 
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I I I I I I I I 1 
0.0 2.0 4.0 6.0 8.0 

Dimensionless Time, T 

Figure 2.1.5.a Dimensionless temperature 

-1.2 1, 
0.0 2.0 4.0 6.0 8.0 

Dimensionless Time, T 

Figure 2.1.5.b Dimensionless sensitivity coefficient for thermal conductivity 
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I I I I I I I I I 
0.0 2.0 4.0 6.0 8.0 

Dimensiontess Time, r 

Figure 2.1.5.c Dimensionless sensitivity coefficient for volumetric heat capacity 

In problems involving parameters with different orders of magnitude, the 
sensitivity coefficients with respect to the various parameters may also differ by 
several orders of magnitude, creating difficulties in their comparison and 
identification of linear dependence. These difficulties can be alleviated through 
the analysis of either dimensionless sensitivity coefficients (given in the example 
above by equations 2.1.22.a,b), or relative sensitivity coeficients defined as 

where P, , j = 1, ..., N, are the unknown parameters. Note that the relative 
sensitivity coefficients have the units of temperature; hence, they are compared as 
having the magnitude of the measured temperature as a basis. 

2. The Boundary Value Problem Approach For Determining The Sensitivity 
Coefficients. A boundary value problem can be developed for the determination 
of the sensitivity coeficients by differentiating the original direct problem with 
respect to the unknown coefficients. If the direct heat conduction problem is 
linear, the construction of the corresponding sensitivity problem is a relatively 
simple and straightforward matter. To illustrate this approach, we use the 
following examples. 
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Example 2-4. For the test-problem given by equations (2.1 . l )  with g,(t) 
parameterized by equation (2.1.2), find the boundary value problem for the 
sensitivity coefficient with respect to the parameter P, . 

Solution: By using equation (2.1.2), differentiating equations (2.1.1 ) with 
dT 

respect to the parameter P, and noting that J = - , we obtain the sensitivity 
apj 

problem governing the sensitivity coefficients 4 (x,t )  as 

a 2 ~ j  (x,t) a~ . (x, t )  
+C . (t) 6(x-0.5) = J i n O < x < l ,  f o r t>O  

a x 2  J at 

at x = 0, for t > 0 

Note that problem (2.1.27) is similar to problem (2.1.1). The problem 
(2.1.27) needs to be solved N times, in order to compute the sensitivity 
coefficients with respect to each parameter P, , j = 1, ..., N. For this particular 
case, the analytical solution of problem (2.1.27) can be easily obtained with 
equation (2.1.18.c). For more involved cases, the solution of the boundary value 
problem for determining the sensitivity coefficients may require numerical 
techniques, such as finite-differences. Thus, the computation of the sensitivity 
coeficients may become very time-consuming. 

Example 2-5: Consider the following heat conduction problem 

d L ~  8 T  
k-- -C- i n O < x < L ,  for t > 0 

a x 2  at 

dT -k-= 
ax  '0 

at x = O ,  for t > 0 (2.1.28.b) 

at x - L ,  for r > 0 

T =  Ti for t = 0 , i n O < x < L  (2.1.28.d) 

where pep = C , heat capacity 
q, = applied heat flux 
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k = thermal conductivity 

Construct the sensitivity problem for determining the sensitivity 
coefficients with respect to thermal conductivity, i.e., 

Solution: By differentiating problem (2.1 -28) with respect to k and utilizing 
the definition of Jk, we obtain the following boundary value problem for 
determination of the sensitivity coefficients 

at x = O ,  for r > 0 

at x = L ,  for t > 0 

Jk = 0 for t = 0 , i n O < x < L  (2.1.30.d) 

We note that problem (2.1.30) contains the non-homogeneous terms 

g2 ~ l d x *  and dT/dx in equations (2.1.30.a) and (2.1.30.b), respectively. Also, 
the unknown parameter k appears in these two equations; thus, the problem of 
estimating k is nonlinear. The solution of problem (2.1.30) yields the sensitivity 
coefficients Jk , with respect to thermal conductivity k. By following a similar 
procedure, the sensitivity problem for determining the sensitivity coefficient Jc , 
with respect to heat capacity C, can be developed. 

3. Finite Difference Approximation For Determining Sensitivity Coefficients. 
The first derivative appearing in the definition of the sensitivity coefficient, 
equation (2.1.7.c), can be computed by finite differences. If a forward djflerence 
is used, the sensitivity coefficient with respect to the parameter P, is 
approximated by 
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where E .1; 1 odor 1 04. If the first-order approximation given by equation 
(2.1.31.a) is not sufficiently accurate, the sensitivity coefficients can be 
approximated by using cenfral dzferences in the form 

We note that the approximation of the sensitivity coefficients given by 
equation (2.1.3 I .a) requires the computation of N additional solutions of the 
direct problem, while equation (2.1.3 1 .b) requires 2N additional solutions of the 
problem. Therefore, the computation of the sensitivity coefficients by using 
finite-differences can be very time-consuming. 

The Use of Multiple Se~.sors 

The computational algorithm of the Levenberg-Marquardt Method, as 
given above, can also be used with few modifications in cases involving the 
measurements of multiple sensors. The quantities requiring modifications include 
the explicit forms of the vector [Y-T(P)J, of the objective function S(P) and of 
the sensitivity matrix J. 

In cases where the measurements of M sensors are available for the 
analysis, the vector containing the differences between measured and estimated 
temperatures is written as (see equation 1 S.3.a): 

where G - G ( ~ )  is a row vector which contains the difference between 
measured and estimated temperatures for each of the M sensors at time t i ,  
i = 1, . . ., I. It is given in the form(see equation 1 S.3.b): 

In the vector element [Yim -Tim (P)] , the subscript i refers to time ti , while 
the subscript m refers to the sensor number, where i = 1, . . ., I and m = 1, . . ., M. 

By substituting equations (2.1.32.a,b) into equation (2.1.3 .b), the ieast- 
squares norm can be expressed in the following explicit form (see equation 
1 S.3.c): 
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The sensitivity matrix defined by equation (2.1.7.a) needs also to be 
modified in order to accommodate the measurements of M sensors. The transpose 
of the sensitivity matrix, defined by equation (2.1.6), is then written as 

where i;, =[qI,q2 ,.-.,%] for i =  1 ,... ,I (2.1.33.b) 

Therefore, we can write the sensitivity matrix in the form 

where 

f o r = l , . . ,  I and j = l ,  ..., N (2.I.34.b) 

I = number of transient measurements per sensor 
M = number of sensors 
N = number of unknown parameters 

The elements of the sensitivity matrix, as given by equation (2.1.34.a), can 
be suitably written in the form 
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where the subscripts k and j refer to the row number and to the column number of 
the sensitivity matrix, respectively. The row number k is then related to the 
measurement time ti and to the sensor number m by the expression 

With the modifications above, the computational algorithm for Technique 
1 can be applied to cases involving the measurements of multiple sensors. 

2-2 TECHNIQUE 11: 
THE CONJUGATE GRADIENT METHOD 
FOR PARAMETER ESTIMATION 

We present in this section an alternative techriique for the estimation of 
unknown parameters. Technique 11, the Conjugate Gradient Method, is a 
straightforward and powerful iterative technique for solving linear and nonlinear 
inverse problems of parameter estimation. In the iterative procedure of the 
Conjugate Gradient Method, at each iteration a suitable step size is taken along a 
direction of descent in order to minimize the objective function. The direction of 
descent is obtained as a linear combination of the negative gradient direction at 
the current iteration with the direction of descent of the previous iteration. The 
linear combination is such that the resulting angle between the direction of 
descent and the negative gradient direction is less than 90' and the minimization 
of the objective function is assured. Theorems regarding the convergence of the 
Conjugate Gradient Method can be found in references [14,15,17,19]. The 
Conjugate Gradient Method with an appropriate stopping criterion belongs to the 
class of iterative regularization techniques, in which the number of iterations is 
chosen so that stable solutions are obtained for the inverse problem. 

Similarly to Technique I, the application of Technique I1 to inverse heat 
transfer problems of parameter estimation can be conveniently organized in the 
following steps: 

The Direct Problem 
The Inverse Problem 
The Iterative Procedure 
The Stopping Criterion 
The Computational Algorithm 

We present below the details of each of such steps, as applied to the heat 
conduction test-problem described in section 2-1, involving the estimation of the 
unknown source term function g,(t). 
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The Direct Problem 

In the Direct Problem related to the physical problem described above in 
section 2- 1, which is mathematicaIly formulated by equations (2.1. l), the time- 
varying strength gp(t) of the plane heat source is known. The objective of the 
direct problem is then to determine the transient temperature field T(x,t) in the 
region. 

The Inverse Problem 

In the Inverse Problem considered here, the time-varying strength gp(t) of 
the plane heat source is regarded as unknown and transient temperature 
measurements taken at a location x = x,,,,, , at times t i ,  i = 1 ,  2, ..., I, are 
considered available for the analysis. 

For the solution of such inverse problem, we consider the unknown energy 
generation hc t ion  g,(t) to be parameterized in the general linear form given by 
equation (2.1.2). The estimation of the unknown function g,(t) then reduces to the 
estimation of the N unknown parameters P, , j = 1, . . ., N. Such parameter 
estimation problem is solved by the minimization of the ordinary least squares 
norm: 

The Iterative Procedure for Technique I1 

The iterative procedure of the Conjugate Gradient Method for the 
minimization of the above norm S(P) is given by [9- 19 J 

where pk is the search step sire, d k  is the direction of descent and the superscript 
k is the number of iterations. The direction of descent is a conjugation of the 

k 
gradient direction, VS(P ), and the direction of descent of the previous 
iteration, d"'. It is given as 

k k - l  d k  = V S ( P ~ ) + - ~  d (2.2.3) 

Different expressions are available for the conjugation coefficient $. The 
Polak-Ribiere [12,14] expression is given in the fonn: 
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for k=1,2, ... 

with Y o  = 0 fork=0 

while the Fletcher-Reeves [ 12,14,15] expression is given as 

with 0 y -0 for k=O 

k 
Here, [VS(P )] . is the j" component of the gradient direction evaluated 

I 

at iteration k. The expression for the gradient direction is obtained by 
differentiating equation (2.2.1) with respect to the unknown parameters P, i.e., 

where J~ is the sensitivity matrix defined by equation (2.1.7.a). ~ h e f ~  component 
of the gradient direction can be obtained in explicit form as 

Either expressions (2.2.4.a,b) for the computation of the conjugation 
coefficient yk assure that the angle between the direction of descent and the 
negative gradient direction is less than 90°, so that the function S(P) is minimized 
[14]. They are equivalent on linear estimation problems; but there is some 
evidence that the Polak-Ribiere expression provides improved convergence in 
nonlinear estimation problems [6,14]. 

We note that if y k = ~  for all iterations k, the direction of descent becomes 
the gradient direction in equation (2.2.3) and the steepest-descent method is 
obtained. Although simpler, the steepest descent method does not converge as 
fast as the conjugate gradient method [lo-211. 
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The search step size P k  appearing in equation (2.2.2) is obtained by 
minimizing the function S(Pk+ 1) with respect to p k, that is, 

By substituting Pk+l as given by equation (2.2.2) into equation (2.2.6.a), 
we obtain 

k k  T rnin s(P'") = min [Y -T(P' - P  d )I [Y - T ( P ~  - p k d k ) ]  (2.2.6.b) 
P pk 

The temperature vector T(P~ - p k d k )  can be linearized with a Taylor 
series expansion and then the minimization with respect to /3 k is performed to 
yield the following expression for the search step size 

where 

We note that the vector in equation (2.2.7.b) is the row of the sensitivity matrix 
(see equation 2.1.7.b). Hence, we can write equation (2.2.7.a) in matrix form as 

For further details on the derivation of equations (2.2.7.aYc), the reader 
should refer to Note 3 at the end of this chapter. 

k After computing the sensitivity matrix .Tk, the gradient direction VS(P ), 
the conjugation coefficient yk and the search step size pk , the iterative procedure 
given by equation (2.2.2) is implemented until a stopping criterion based on the 
Discrepancy Principle described below is satisfied. The sensitivity matrix may be 
computed by using one of the appropriate methods described in section 2-1. 
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The Stopping Criterion for Technique I1 

The iterative procedure given by equations (2.2.2-4), with the search step 
size pk given by equation (2.2.7.c), does not provide the conjugate gradient 
method with the stabilization necessary for the minimization of the objective 
function (2.2.1) to be classified as well-posed. Such is the case because of the 
random errors inherent to the measured temperatures. As the estimated 
temperatures approach the measured temperatures containing errors, during the 
minimization of the function (2.2.1), large oscillations may appear in the inverse 
problem solution, resulting in an ill-posed character for the inverse problem. 
However, the conjugate gradient method may become well-posed if the 
Discrepancy Principle [I21 is used to stop the iterative procedure. 

In the discrepancy principle, the iterative procedure is stopped when the 
foilowing criterion is satisfied 

where the value of the tolerance E is chosen so that suficiently stable solutions 
are obtained. In this case, we stop the iterative procedure when the residuals 
between measured and estimated temperatures are of the same order of 
magnitude of the measurement errors, that is, 

where o, is the standard deviation of the measurement error at time ti. For 
constant standard deviations, i.e., 0, = o = constant, we can then obtain the 

following value for E by substituting equation (2.2.9) into equation (2.2.1) 

The above assumption for the temperature residuals in the discrepancy 
principle was also used by Tikhonov [12], in order to find the optimal 
regularization parameter. Such a procedure gives the conjugate gradient method 
an iterative regularization character. If the measurements are regarded as 
errorless, the tolerance E can be chosen as a sufficiently small number, since the 
expected minimum value for the objective function (2.2.1) is zero. 

At this point it is important for the reader to notice that the use of the 
discrepancy principle is not required to provide Technique I, the Levenberg- 
Marquardt method, with the regularization necessary to obtain stable solutions for 
those cases involving measurements with random errors. Computational 
experiments revealed that the Levenberg-Marquardt method, through its 
automatic control of the damping parameter #, reduces drastically the increment 
in the vector of estimated parameters, at the iteration where the measurement 
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errors start to cause instabilities in the inverse problem solution. The iterative 
procedure of the Levenberg-Marquardt method is then stopped by the criterion 
given by equation (2.1.14.c). 

We note that the above stopping criterion approach, based on the 
discrepancy principle, requires the a priori knowledge of the standard deviation 
of the measurement errors. For those cases involving measurements with 
unknown standard deviations, an alternative approach based on an additional 
measurement can be used for the stopping criterion, as described in Note 4 at the 
end of this chapter. The stopping criterion approach based on the additional 
measurement also provides the conjugate gradient method with an iterative 
regularization character. 

The Computational Algorithm for Technique I1 

Suppose that temperature measurements Y=(Yl,Y2, ..., YI) are given at times 
ti, i = 1, ..., I, and an initial guess Po is available for the vector of unknown 
parameters P. Set k = 0 and then 

Step 1. Solve the direct heat transfer problem (2.1.1) by using the available 
estimate pk and obtain the vector of estimated temperatures 
T(PS=(TI,T~,...,TI). 

Step 2. Check the stopping criterion given by equation (2.2.8). Continue if not 
satisfied. 

Step 3. Compute the sensitivity matrix Jk defined by equation (2.1.7.a), by using 
one of the appropriate methods described in section 2-1. 

Step 4. Knowing Jk, Y and T(Pk), compute the gradient direction V S ( P ~ )  from 
equation (2.2.5.a) and then the conjugation coefficient yk from either 
equation (2.2.4.a) or (2.2.4.b). 

Step 5. Compute the direction of descent dk by using equation (2.2.3). 
Step 6. bowing  J k ,  Y, T(Pk) and dk, compute the search step size lk from 

equation (2.2.7.c). 
Step 7. Gowing PA, f l k  and d* , compute the new estimate Pk+l using equation 

(2.2.2). 
Step 8. Replace k by k+l and return to step 1. 

The Use of Multiple Sensors 

As for the case of Technique I, the above computational algorithm for 
Technique .I1 can be applied to cases involving the measurements of multiple 
sensors, with modifications in the explicit forms of few quantities as described 
next. 
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For those cases involving transient measurements of A4 sensors, the vector 
[Y-T(P)] is given by equations (2.1.32.qb). Hence, the objective function or 
least-squares norm S(P) is obtained from equation (2.1.32.c), while the sensitivity 
matrix J is given by equations (2.1.34.4b). 

Since the objective function was modified, the computation of the 
tolerance E for the stopping criterion based on the discrepancy principle needs 
also to be modified; it is now obtained from equation (2.1.32.c) as 

where I = number of transient measurements taken per sensor 
A4 = number of sensors 
o,, = o = constant standard deviation of the measurements 

In cases involving the readings of M sensors, the search step size ,Ok can 
still be obtained from the matrix form given by equation (2.2.7.c). However, the 
explicit form of pk, equation (2.2.7.a), needs to be modified since the sensitivity 
matrix is now given by equations (2.1.34,a,b) instead of equation (2.1.7.b). Then, 
the search step size takes the form 

Similarly, the expression in matrix form for the gradient of the objective 
function, equation (2.2.5.a), remains valid for the case involving multiple sensors; 
but the explicit fonn for the components of the gradient, equation (2.2.5.b), 
becomes 

Continuous Measurements 

So far we have considered the measured data in the time domain to be 
discrete. In cases where the measured data are so many that it can be 
approximated as continuous, some modifications are needed in the expressions of 
the objective function (2.2.1), the gradient vector (2.2.5.a), the search step size 
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(2.2.7) and the tolerance for the discrepancy principle (2.2.10). This matter is 
discussed next. 

We now consider a situation in which the measured temperature data of a 
single sensor located at x,, can be approximated as being continuous. For such a 
case, the objective fbnction involves an integration over the time domain 
0 < t I t , where  is the duration of the experiment. It can be written as 

f 

Thus, the gradient of equation (2.2.14) becomes 

J 

dT 
VS(P)  = -2 I [Y ( t )  - T(xmemt; P)] -dt 

t = O  
BP 

or, more explicitly, each component of the gradient vector is given by 

J 
d T  [vs(P)], = -2 1 [Y( t )  - T(xmemt;P)]-dt for j= 1, ..., W (2.2.15.b) 

t=o 
dP 

j 

In addition, equation (2.2.7.a) for the search step size f l k  should also be 
expressed in the continuous form in the time domain. This is accomplished by 
minimizing the objective function (2.2.14) with respect to P' to obtain 

Note that the expressions for pk given by equations (2.2.7.a) and (2.2.16) 
are very similar. The summation appearing in equation (2.2.7.a) changes into an 
integral for the continuous measurements case of equation (2.2.16). 

The tolerance E for the stopping criterion based on the Discrepancy 
Principle, for cases involving continuous measurements, is obtained from 
equation (2.2.14) as 
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The remaining quantities appearing in the computational algorithm for 
Technique II stay unaltered for cases involving continuous measurements. 

We note that in cases involving continuous measurements of multiple 
sensors, the integral on the right-hand side of equation (2.2.14) is summed-up 
over the number of sensors, that is, 

Thus, the other quantities appearing in equations (2.2.15- 17) also involve 
summations over the number of sensors. The derivations of the expressions for 
the gradient equation, the search step size and the tolerance for the stopping 
criterion, for cases involving continuous measurements of multiple sensors, are 
straightforward. They are left as an exercise to the reader. 

In order to implement the iterative algorithm of the conjugate gradient 
method as presented above, the sensitivity matrix needs to be computed for each 
iteration. For linear problems, it is quite easy to compute such matrix with an 
analytical solution. Indeed, the sensitivity matrix being constant for linear 
problems, it has to be computed only once. On the other hand, for general 
nonlinear inverse problems, the sensitivity matrix needs to be computed most 
likely by finite-differences. This might be very time-consuming when the 
problem involves a large number of parameters and/or measurements. For cases 
involving the estimation of the coefficients of unknown functions parameterized, 
we present below an alternative implementation of the conjugate gradient 
method, which does not require the computation of the sensitivity matrix in order 
to obtain the gradient direction and the search step size. 

2-3 TECHNIQUE 111: 
THE CONJUGATE GRADIENT METHOD 
WITH ADJOINT PROBLEM FOR 
PARAMETER ESTIMATION 

In this section we present an alternative implementation of the conjugate 
gradient method where two auxiliary problems, known as tbe sensitivityproblem 
and the adjoin? problem, are solved in order to compute the search step size pk 
and the gradient equation VS(P'). The technique is specially suitable for 
problems involving the estimation of the coefficients of trial functions used to 
approximate an unknown functional form. 

For convenience in the subsequent analysis, we consider the measured 
data to be continuous, rather than discrete. Thus, the ordinary least squares norm, 
equation (2.1.3.a), is rewritten as 
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where Y(2) is the measured temperature, T ( x m , , t ; P )  is the estimated temperature 
at the single measurement location x,,, and ?is the duration of the experiment. 

The basic steps for the solution of parameter estimation problems, by 
using the conjugate gradient method with adjoint problem, include: 

The Direct Problem 
The Inverse Problem 
The Sensitivity Problem 
The Adjoint Problem 
The Gradient Equation 
The Iterative Procedure 
The Stopping Criterion 
The Computational Algorithm 

We present below the details of each of these basic steps as applied to our 
test-problem. 

The Direct Problem 

For the test-problem considered here, involving the estimation of the 
strength g,(t) of a plane heat source, the direct problem is given by equations 
(2 .1 .1) .  It is rewritten below in order to facilitate the analysis. 

at x = 0, for / > 0 

The direct problem is concerned with the determination of the temperature 
field T(x,r) in the region 0 < x  < 1, when the strength of the source term gp(t)  is 
known. 
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The Inverse Problem 

The inverse problem, on the other hand, is concerned with the estimation 
of the unknown strength of the source term by using the readings taken by a 
sensor located at x=x,,,. We consider the unknown function gp(t) to be 
parameterized in a general linear form given by 

g (t) = C P.c.(I)  
P J J  

j=1 

where C,(t), j = 1, ..., N are known trial functions. Thus, the objective of the 
inverse problem is to estimate the N unknown parameters Pi, j = 1, ..., N. 

The Sensitivity Problem 

The sensitivity function AT(x,t), solution of the sensitivity problem, is 
defined as the directional derivative of the temperature T(x,t) in the direction of 
the perturbation of the unknown function [12,21]. The sensitivity function is 
needed for the computation of the search step size @, as will be apparent later in 
this section. 

The sensitivity problem can be obtained by assuming that the temperature 
T(x,t) is perturbed by an amount AT(x,t), when the unknown strength gp(t) of the 
source term is perturbed by Agp(t). Since the strength was parameterized in the 
form given by equation (2.3.3.a), the hnction Agp(t) is obtained by perturbing 
each of the unknown parameters Pi by an amount Mi, that is, 

By replacing T(x.t) by [ a t )  + AT(x,t)] and gp(t) by igp(t) + Agq(t)] in the 
direct problem given by equations (2.3.2), and then subtracting the original direct 
problem from the resulting expressions, we obtain the following sensitivity 
problem: 

a 2 ~ ~ ( x , r )  + Ag,(t) 6(x-0.5) = aAT(x9r) in 0 < x <I ,  for t>0 (2.3.4.a) 
ax2 at 

a tx  = 0, fort > 0 
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In the sensitivity problem (2.3.4), Agp(t) as given by equation (2.3.3.b) is 
the only forcing function needed for the solution. The computation of L\gp(t) will 
be addressed later in this section. 

The Adjoint Problem 

A Lagrange multiplier A(x,t) comes into picture in the minimization of the 
function (2.3.1) because the temperature T(x,,t;P) appearing in such function 
needs to satisfy a constraint, which is the solution of the direct problem. Such 
Lagrange multiplier, needed for the computation of the gradient equation (as will 
be apparent below), is obtained through the solution of a problem adjoint to the 
sensitivity problem given by equations (2.3.4). For the definition and properties 
of adjoint problems, the reader should consult references [12,2 13. 

In order to derive the adjoint problem, we write the following extended 
function: 

which is obtained by multiplying the partial differential equation of the direct 
problem, equation (2.3.2.a), by the Lagrange multiplier, A(x,t), integrating over 
the time and space domains and adding the resulting expression to the function 
S(P) given by equation (2.3.1). 

An expression for the variation M(P) of the function S(P) can be 
developed by perturbing T(x,t) by Anx,t) and gp(t) by Agp(t) in equation (2.3.5). 
We note that M(P) is the directional derivative of S(P) in the direction of the 
perturbation AP=[API, M2, ...,f&] [ 12,2 11. Then, by replacing T(x, t )  by 
[T(x. t)+ AT(x,O] , gp(t) by kp(t) + Agp(t)l and S(P) by [S(P)+ MU')] in equation 
(2.3.5), subtracting from the resulting expression the original equation (2.3.5), 
and neglecting second order terns, we find 
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where 6(.) is the Dirac delta function. 
The second integral term on the right-hand side of this equation is 

simplified by integration by parts and by utilizing the boundary and initial 
conditions of the sensitivity problem. The integration by parts of the term 
involving the second derivative in the spatial variable yields 

By substituting the boundary conditions (2.3.4.b,c) of the sensitivity 
problem into equation (2.3.7.a), we obtain 

Similarly, the integration by parts of the term involving the time derivative 
in equation (2.3.6) gives 

After substituting the initial condition (2.3.4.d) of the sensitivity problem, 
the equation above becomes 

Equations (2.3.7.b) and (2.3.8.b) are then substituted into equation (2.3.6) 
to obtain 
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+ 2fT(x, t ;P)  - Y ( t ) ]  S(x - x,,, ) AT(x, 1 )  & dt I 

The boundary value problem for the Lagrange multiplier ;l(x,t) is obtained 
by allowing the first four integral terms containing AT(x,t) on the right-hand side 
of equation (2.3.9) to vanish. This leads to the following adjointproblem: 

We note that in the adjoint problem, the condition (2.3.10.d) is the value of 
the function A(x,t) at the final time t = t,. In the conventional initial value 
problem, the value of the function is specified at time r = 0. However, thefinal 
value problem (2.3.10) can be transformed into an initial value problem by 
defining a new time variable given by r = 9- t. 

The Gradient Equation 

After letting the terms containing AT(x,t) vanish, the following integral 
term is left on the right-hand side of equation (2.3.9): 
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By substituting Agp(t) in the parametric form given by equation (2.3.3.b) 
into equation (2.3.1 l), we obtain 

By definition, the directional derivative of S(P) in the direction of a vector 
AP, is given by 

where 

We note that the magnitude of the vector AP was omitted in equation (2.3.13), 
since it is not relevant for the present analysis. Therefore, by comparing equations 
(2.3.12) and (2.3.13), we obtain the f' component of the gradient vector VS(P) 
for the function S(P) as 

J 

[vs(P)],= ~ ( 0 . 5 , t ) ~ , ( r ) d t  for j= l l . . . lN  
l = O  

The use of an adjoint problem for the computation of the gradient vector is 
most useful for problems involving unknown functions that can be parameterized 
in a form similar to equation (2.3.3.a), especially those problems which do not 
have analytical expressions for the sensitivity coeficients and finite-difference 
approximations need to be used. With the present approach, the gradient vector is 
computed with the solution of a single adjoint problem. On the other hand, the 
calculation of the gradient vector in Technique 11, as given by equation (2.2.5.b), 
may require N additional solutions of the direct problem in order to compute the 
sensitivity coefficients by forward finite-differences (see equation 2.1.3 1 .a). 
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The Iterative Procedure for Technique I11 

The iterative procedure of the conjugate gradient method, for the 
computation of the vector of unknown parameters P, is given by equations 
(2.2.2)' (2.2.3) and (2.2.4.a'b). I-fowever, the gradient vector components are now 
computed by using equation (2.3.15), rather than equation (2.2.5.b). 

The search step size pk is chosen as the one that minimizes the function 
S(P) at each iteration k, that is, 

i k k 2  
m i n ~ ( ~ ' + ' )  = min [Y (t) - T ( x  r-P' - p d )] dt meas' ' (2.3.16) 
pk pk ,.o 

By linearizing the estimated temperature T(x  t-P' - f l k d k )  with a meas " 
Taylor series expansion and performing the above minimization, we find 

where d ~ ( x . , t ; d $  is the solution of the sensitivity problem given by equations 
(2.3.4), obtained by setting d ~ , = 4 ~  , j= 1, .... N, in the computation of the function 
%(t) given by equation (2.3.3.b). Further details on the derivation of equation 
(2.3.17) can be found in Note 5 at the end of this chapter. The reader should note 
that a single sensitivity problem is solved for the computation of P at each 
iteration, because the unknown function was parameterized in the form given by 
equation (2.3.3.a). Therefore, in the present approach the computation of f l k  does 
not require the computation of the sensitivity matrix as in equation (2.2.7.c). For 
problems not involving the estimation of coefficients of trial functions, as in 
equation (2.3.3.a), the use of Techniques I or I1 may be more appropriate. 

The Stopping Criterion for Technique HI 

As for Technique 11, the stopping criterion for Technique I11 is based on 
the Discrepancy Principle, when the standard deviation a of the measurements is 
a priori known. It is given by 
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where S(P) is now computed with equation (2.3.1). The tolerance 6 is then 
obtained from equation (2.3.1) by assuming 

where a is the standard-deviation of the measurement errors, which is assumed to 
be constant. Thus, the tolerance E is determined as 

For those cases involving measurements with unknown standard deviation, 
the alternative approach based on a additional measurement can be used for the 
stopping criterion, as illustrated in Note 4 at the end of this chapter. 

The Computational Algorithm for Technique I11 

The computational algorithm for the conjugate gradient method with 
adjoint problem for parameter estimation can be summarized as follows. Suppose 
that temperature measurements Y=(Yl ,Y2,...,YI) are given at times ti , i = 1, ..., I, 
and an initial guess Po is available for the vector of unknown parameters P. Set 
k=O and then 

Step 1. Compute gp(t) according to equation (2.3.3.a) and then solve the direct 
problem given by equations (2.3.2) in order to compute T(x, t). 

Step 2. Check the stopping criterion given by equation (2.3.18). Continue if not 
satisfied. 

Step 3. Knowing T(x,,, t) and the measured temperature Y(t), solve the adjoint 
problem (2.3.10) to compute 40.5, t). 

Step 4. Knowing 40.5, t), compute each component of the gradient vector 
VS(P) &om equation (2.3.1 5). 

Step 5. Knowing the gradient VS(P), compute $ from either equation (2.2.4.a) 
or (2.2.4.b), and then the direction of descent dk from equation (2.2.3). 

Step 6. By setting Nk = dk, compute Agp(t) from equation (2.3.3.b) and then 
solve the sensitivity problem given by equations (2.3.4) to obtain 
~T(xmeas,t;d~)- 

Step 7. Knowing AT(x,,,,,t;dk), compute the search step size pk fiom equation 
(2.3.17). 

Step 8. Knowing pk and dk, compute the new estimate Pkil fiom equation 
(2.2.2). Replace k by k+l and return to step 1. 
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The Use of Multiple Sensors 

The above computational algorithm can also be applied, with few 
modifications, to cases where the readings of A4 sensors are available for the 
inverse analysis. In such cases, the objective function (2.3.1) is modified to 

where Y,(t) are the continuous measurements of the sensor located at x,, for 
m=l, .  . .@. 

Since the objective hnction appears in the development of the adjoint 
problem, such a problem needs also to be modified in order to accommodate the 
readings of multiple sensors. It can be easily shown that the differential equation 
for the adjoint problem, equation (2.3.10.a), then becomes 

while the final and boundary conditions, equations (2.3.10.b-d), remain unaltered 
for multiple sensors. 

- .:a 
The objective function also appears in the development of the search step 

size, equation (2.3.17), and of the tolerance for the stopping criterion, equation 
(2.3.20). For the readings of M sensors, such quantities are respectively obtained 
from the following expressions: 

and 

There are many practical situations in which no information is available on 
the functional form of the unknown quantity. Therefore, it should not be 
parameterized as in equation (2.3.3.a), since wrong trial functions can be used in 
such process. Although general trial functions, such as B-Splines, could be used 
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in the parameterization, there would still remain the question of how many trial 
functions need to be used for a correct approximation of the unknown quantity. 
For cases with no prior information on the hctional form of the unknown 
quantity, the minimization of equation (2.3.1) should be preferably performed in 
a space of functions. In other words, in this section the function (2.3.1) was 
minimized in the space of all possible N parameters P,. On the other hand, for a 
function estimation approach, equation (2.3.1) will be minimized in an infinite 
space of functions. In the next section we present the Conjugate Gradient Method 
as applied to the function estimation approach. 

2-4 TECHNIQUE IV: 
THE CONJUGATE GRADIENT METHOD 
WITH ADJOINT PROBLEM FOR 
FUNCTION ESTIMATION 

In this section we present a powerfbl iterative minimization scheme called 
the Conjugate Gradienf Method of Minimization with Adjoint Problem, for 
solving inverse heat transfer problems of function estimation. In this approach, no 
a priori information on the functional form of the unknown function is available 
[9-2 1 j, except for the firnctional space which it belongs to. 

To illustrate Technique IV, we consider the test-problem given by 
equations (2.3.2) for the estimation of the unknown time-varying strength gp(t) of 
a plane energy source, by using the transient readings of a single sensor located at 
x,,,,,,. We assume that the unknown function belongs to the Hilbert space of 
square-integrable functions in the time domain [12,14,2 11, denoted as Lz(O, 9, 
where t/ is the duration of the experiment. Functions in such space satis@ the 
following property: 

For some definitions and properties regarding Hilbert spaces, the reader is 
referred to Note 6 at the end of the chapter. 

In order to solve the present function estimation problem, the functional 
Skp ( t)]  defined as 

is minimized under the constraint specified by the corresponding direct heat 
conduction problem. 
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The basic steps of Technique IV for the solution of function estimation 
problems, obtained through the minimization of functional (2.4.2), are very 
similar to the basic steps of Technique I11 for parameter estimation problems. 
They include: 

The Direct Problem 
The Inverse Problem 
The Sensitivity Problem 
The Adjoint Problem 
The Gradient Equation 
The Iterative Procedure 
The Stopping Criterion 
The Computational Algorithm 

We now present some details for each of these distinct steps. 

The Direct Problem 

The direct problem involves the determination of the temperature field in 
the medium when the source term is known. The formulation of the direct 
problem is given by equations (2.3.2). 

The Inverse Problem 

In the inverse problem considered here, -the source term gp(t) is an 
unknown function of time, while measured transient temperature data Y(t), taken 
at the location x,,,, are available over the time domain 0 <_ t < t,. where 5 i s  the 
final time. However, differently from Technique III where gp(t) was 
parameterized by equation (2.3.3.a), no functional form is now a priori assumed 
for the source-term. The only assumption is that gp(t) belongs to the space 
L2(0, G). The sensitivity function AT(x, t )  and the Lagrange multiplier R(x,t) are 
needed to implement the iterative procedure of Technique IV. Therefore, we need 
to develop two auxiliary problems, i.e., the sensitivity problem and the a4oint  
problem, in order to determine these two functions, as described below. 

The Sensitivity Problem 

The derivation of the sensitivity problem for Technique IV is very similar 
to that for Technique III. It is assumed that when gp(t) undergoes an increment 
Agp(t), the temperature T(x,r) changes by an amount Al"(x,t). Therefore, we 
replace T(x,t) by [T(x,t)+AT(x,t)] and gp(t) by [gp( f )  + Agp(t)J in the direct 
problem (2.3.2) and subtract from it the original problem (2.3.2), in order to 
obtain the sensitiviw problem eiven bv eauations (2.3.4). Uou.ever. in Techniniw 
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IV the variation of the unknown function, Agp(t), is not given in the 
parameterized form of equation (2.3.3.b). Such variation of gp(t) is now a general 
function in the space L2(0,t/), as the unknown fbnction itself. The choice of Agp(t) 
will be described later in the analysis. 

The Adjoint Problem 

As for the sensitivity problem, the derivation procedure of the adjoint 
problem for Technique IV is very similar to the one for Technique 111. To 
develop the adjoint problem, we introduce a Lagrange multiplier A(x,t). We 
multiply equation (2.3.2.a) by ax ,? ) ,  integrate the resulting expression over the 
spatial domain from x = 0 to x = 1, and then over the time domain from t = 0 to 
t = 9.  The expression obtained in this manner is added to the functional S[g (t)] 

P 
given by equation (2.4.2) in order to obtain the following extended hnctional 

which is the equivalent fonn of equation (2.3.5) for parameter estimation. 
An expression for the variation AS[gp(t)] of the functional S[gp(t)] can be 

developed by assuming that T(x,t) is perturbed by AT(x.2) when gp(t) is perturbed 
by Agp(t). The variation AS[gp(t)] gives the directional derivative of S[gp(t)] in 
the direction of the perturbation Agp(t) [12,21]. By replacing T(x,t) by  

[T(x t)+AT(x. t)l,  gp(t) by kp(t)+&p(f)1 and Skp(tl l  by {Skp ( f l l+Amp( t ) l  I in 
equation (2.4.3), subtracting fiom the resulting expression the original equation 
(2.4.3), and neglecting second order terms, we obtain 

where ti(,) is the Dirac delta function. Equation (2.4.4) is analogous to equation 
(2.3.6) for parameter estimation. 
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The second integral term on the right-hand side of equation (2.4.4) is 
simplified with integration by parts, and by utilizing the boundary and initial 
conditions of the sensitivity problem. The integral terms containing AT(x,t) in the 
resulting expression are then allowed to go to zero, in order to obtain the adjoint 
problem given by equations (2.3.10) for the determination of the Lagrange 
Multiplier %x,t). 

The Gradient Equation 

In the limiting process used above to obtain the adjoint problem, the 
following term is left: 

The reader should recall that in Technique III the parameterized form of 
kP(t) ,  equation (2.3.3.b), was substituted into the equation above in order to 
obtain the components of the gradient vector given by equation (2.3.15). Such an 
approach cannot be used here, since we are now dealing with hnction estimation, 
rather than with parameter estimation as in Technique 111. However, by invoking 
the hypothesis that the unknown function gp(t) belongs to the space of square- 
integrable hnctions in the domain 0 < t < @, we can write [12,14,21]: 

where V Slgp(t)] is the gradient of the functional SEgP(t)]. 
From the comparison of equations (2.4.5.a) and (2.4.5.b), we conclude that 

which is the gradient equation for the hnctional. 

The Iterative Procedure for Technique IV 

The mathematical development given above provides three distinct 
problems defined by equations (2.3.2), (2.3.4) and (2.3.10), called the direct, 
sensitivity and adjoint problems, for the computation of the functions T(x,t), 
AT(x,t) and A(x,t), respectively. The measured data Y(t) are considered available 
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from a sensor located at x,, and the gradient VS[gp(t)] is given by equation 
(2.4.6). 

The unknown function gp(t) is estimated through the minimization of the 
functional S[gp(t)] given by equation (2.4.2). This is achieved with an iterative 
procedure by proper selection of the direction of descent and of the step size in 
going from iteration k to k + 1 .  The iterative procedure of the conjugate gradient 
method [9-2 1 1  for the estimation of the function gp(t) is given by: 

where pk is the search step size and dk( t )  is the direction of descent, defined as 

The conjugation coeficient y k  can be computed either from the Polak- 
Ribiere [ I  2,141 expression: 

t 
f 

p s [ g ; ( f ) l ( v ~ k ;  (01 - vs[g;- '  ( t ) l )  
y k =  t=o for k=1,2 ,... (2.4.9.a) 

I { v s [ g k - 1 ( t ) l } 2 d l  P 

I =o 

0 
with y = O  fork=O 

or from the Fletcher-Reeves 1 2  2,14,15] expression: 

k 
Y - r=O - for k = 1 , 2 ,  ... 

I /  

0 
with y = O  fork=O 

The step size pk is determined by minimizing the functional S k  '"(t)] 
P 

given by equation (2.4.2) with respect to pk, that is, 
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2 
r n i n ~ [ ~ ~ + ' ( t ) ]  = min ] { Y ( i )  - T [ i  tegk ((1- -bid (t)]} B 
Bk 

P k meas ' ' p 
P I=O 

Then, by a Taylor series expansion equation (2.4.10.a) takes the form 

where AT [ x , ~ ; d  ' ( f ) ]  is the solution of the sensitivity problem given by 
equations (2.3.4), obtained by setting Agj(r)=dk(r). To minimize equation 
(2.4.10.b), we differentiate it with respect to f lk  and set the resulting expression 
equal to zero. After some manipulations, the following expression is obtained for 
the step size pk 

The reader should refer to Note 7 at the end of this chapter for more 
details on the derivation of the above expression for /? '. We note that equations 
(2.4.7-9) and (2.4.1 1) for function estimation are analogous to equations (2.2.2-4) 
and (2.3.17) for parameter estimation, respectively. 

By examining equations (2.3.10.d) and (2.4.6), it can be noticed that the 
gradient equation is null at the final time 9. Therefore, the initial guess used for 
gp(t) at t= r/ is never changed by the iterative procedure of the conjugate gradient 
method for function estimation, given by equations (2.4.7-9,ll). The estimated 
function can deviate fiom the exact solution in a neighborhood oft/, if the initial 
guess used is too different from the exact gp(9). This apparent drawback of the 
method can be easily overcome by using a final time larger than that of interest, 
so that the effects of the initial guess are not noticeable in the time interval that 
the solution is sought. Another approach to overcome this difficulty is to repeat 
the solution of the inverse problem, by using as initial guess a previously 
estimated value for gp(f) in the neighborhood of r/. Both approaches will be 
illustrated with examples later in the book. 
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The iterative procedure given by equations (2.4.7-9,ll) is applied until a 
stopping criterion based on the Discrepancy Principle is satisfied, as described 
below. 

The Stopping Criterion for Technique IV 

Similarly to Techniques I1 and 111, the stopping criterion based on the 
Discrepancy Principle gives the Conjugate Gradient Method of Function 
Estimation an iterative regularization character. The stopping criterion is given by 

where S[gp(t)] is computed with equation (2.4.2). The tolerance E is chosen so 
that smooth solutions are obtained with measurements containing random errors. 
It is assumed that the solution is sufficiently accurate when 

where a is the standard deviation of measurement errors. 
Thus, is obtained from equation (2.4.2) as 

For cases involving errorless measurements, E can be specified a priori as 
a sufficiently small number. For those cases involving measurements with 
unknown standard deviation, an alternative approach based on an additional 
measurement can be used, as described in Note 4 at the end of this chapter. 

The Computational Algorithm for Technique IV 

Suppose an initial guess g:(t) is available for the function ;,(t). Set k = 0 
and then: 

Step 1. Solve the direct problem (2.3.2) and compute T(x,t), based on ga(t). 
Step 2. Check the stopping criterion (2.4.12). Continue if not satisfied. 
Step 3. Knowing ~x,,,,,?) and measured temperature Y(t), solve the adjoint 

problem (2.3.10) and compute 40.5,  t). 
Step 4. Knowing 40.5, t), compute v ~ k i ( t ) ]  from equation (2.4.6). 
Step 5. Knowing the gradient V~(g:(t)], compute y k  from either equations 

(2.4.9.a) or (2.4.9.b) and the direction of descent d(t) from equation 
(2.4.8). 
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Step 6. Set Ag:(t)= dk(r) and solve the sensitivity problem (2.3.4) to obtain 

AT [xm,,,t;dk ( t ) ] .  
Step 7. Knowing AT [x,,,,t;dk(t)], compute the search step size j3k from equation 

(2.4.11). 
Step 8. Knowing the search step size pk and the direction of descent dk(z), 

compute the new estimate g,k+l(t) fiom equation (2.4.7), and return to 
step 1. 

The extension of the above algorithm to the use of multiple sensors is 
analogous to that described in the previous section for Technique 111. It is a 
straightforward matter and will not be repeated here. 

2-5 SOLUTION OF A TEST-PROBLEM 

In the previous sections of this Chapter, we developed the relevant 
equations and introduced the computational algorithms for Techniques I, 11,111 
and IV. In this section, we present the results obtained with such techniques as 
applied to the solution of our test-problem, involving the estimation of the 
strength of a plane heat source term. 

As apparent fkom the analysis of figure 2.1.2, the problem of estimating 
the coefficients of polynomial trial functions used to approximate the unknown 
source term is quite difficult, due to the linear dependence of the sensitivity 
coefficients. Therefore, we consider here the source term to be approximated by 
Fourier series, where the trial functions are given in the form of equations 
(2.1.18.e,f). The duration of the experiment is taken as t/= 2, since the rate of 
increase in 1 J ~ J  1 is strongly reduced for t > 2, as shown in figure 2.1 A for a cape 

involving 5 unknown parameters. During the time interval 0 < t  I 2, we consider 
available for the inverse analysis 100 transient measurements of a single sensor 
located at x,,=l. Techniques I, I1 and III are applied to the estimation of the 
coefficients of the trial fbnctions (2.1.1 8.e,f), while Technique IV is applied to 
the estimation of the source term function itself, by assuming that no information 
regarding its functional form is available. 

We use simulated measurements in the forthcoming analysis, as descnid  
next. 

Simulated Measurements 

Simulated measurements are obtained &om the solution of the Direct 
Problem at the sensor location, by using a priori prescribed values for the 
unknown parameters or hctions. 

Consider, as an example, that 5 trial functions are to be used in the 
analysis. Hence, the number of parameters to be estimated is W5. Also, consider 
for generating the simulated measurements that the five parameters are equal to 1, 
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that is, P,=P2=P3=P4=P5=l. By using the trial functions (2.1.18.e,f), the source 
term function is then given by 

The solution of the direct problem (2.1.1) at the measurement location 
x,,,=l, by using the source term given by equation (2.5. l), provides the exact 
(errorless) measurements Y,(ti), i = 1, . . . , I. Measurements containing random 
errors are simulated by adding an error term to Ya(ti) in the form: 

where Y(ti) = simulated measurements containing random errors 
Y,(ti) = exact (errorless) simulated measurements 
a = standard deviation of the measurement errors 
w = random variable with normal distribution, zero mean and 

unitary standard deviation. For the 99% confidence level 
we have -2576 < w < 2.576. This variable can be 
generated with the subroutine DRRNOR of the IMSL [ 5 ] .  

With the use of such simulated measurements as the input data for the 
inverse analysis, we expect the solution of the estimation problem to be 
PI=P2=P3=P4=P5=1, if Techniques I, I1 or 111 of parameter estimation are 
utilized; or the function given by equation (2.5.1) itself, if Technique IV of 
function estimation is utilized. We note that the stability of the inverse problem 
solution can be examined for various levels of measurement errors, by generating 
measurements with different standard deviations a and by comparing the 
estimated quantities with those used to generate the simulated measurements. 

Solution 

We now consider the inverse problem of estimating the parameters 
PI=P2=P3=P4=PS=1 of the function (2.5.1) by Techniques I, I1 and 111, and the 
estimation of the function itself by Technique IV. The IMSL [5] version of the 
Levenberg-Marquardt method in the form of subroutine DBCLSJ was used for 
Technique I. The other techniques were programmed in FORTRAN, in 
accordance with the computational algorithms described above. The direct, 
sensitivity and adjoint problems were solved with finite-volumes by using an 
implicit discretization in time. The spatial domain 0 5 x r 1 was discretized with 
100 volumes, while 100 time-steps were used to advance the solutions from t = 0 
to t/= 2. The sensitivity coefficients, needed for the solutions with Techniques I 
and 11, were evaluated with finite-differences by utilizing the forward 
approximation of equation (2.1.3 1 .a) with E=Io*'. 



TECHNIQUES FOR SOLVING INVERSE HEAT TRANSFER PROBLEMS 85 

We note that the computational algorithms of Techniques I and I1 as 
presented above could be simplified, since the present parameter estimation 
problem is linear, as shown by equation (2.1.18.c). In this case, the sensitivity 
matrix could be computed only once because it is constant, instead of being 
recomputed every iteration as suggested in the algorithms. However, for the sake 
of generality we preferred to use the computational algorithms as presented above 
in sections 2.1 and 2.2, instead of their simplified versions for linear cases. For 
the same reason, we preferred to use a numerical method of solution for the 
direct, sensitivity and adjoint problems, as well as for the computation of the 
sensitivity coefficients. 

The initial guesses for the unknown parameters and for the unknown 
h c t i o n  were taken as zero, that is, 

0 0 0 0 0  4 = P2 = P3 = P4 = PS = 0 for Techniques I, I1 and 111 
and 

in 0 5 5 tj. , for Technique IV 

Since the gradient equation is null at the final time for Technique IV, the 
initial guess used for g,(tl) is never changed by the iterative procedure, generating 
instabilities on the solution in the neighborhood of 9 One approach to overcome 
such difficulties is to consider a final time larger than that of interest. We 
illustrate such an approach by considering for Technique IV r /=  2.0,2.2 and 2.4. 
The number of measurements and number of time-steps were increased 
accordingly in such cases. 

Table 2.5.1 presents the results obtained for the estimated parameters, 
RMS errors, CPU time and number of iterations for Techniques I, 11, I11 and IV. 
The computer used was a Pentium 166 Mhz with 32 Mbytes of RAM memory. 
Two different levels of measurement errors considered for the analysis included 
a = 0 (errorless) and o = 0.01T-, where T,, is the maximum measured 
temperature. The RMS error is defined here as 

where ges,(ti) is the estimated source term function at time t i ,  
&ti) is the exact source term function (used to generate the 

simulated measurements) at time ti and 
I is the number of measurements. 
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Table 2.5.1, Results obtained with parameter and function estimation. 
Source term h c t i o n  given by equation (2.5.1). 

Let us consider first in the analysis of table 2.5.1, Techniques I, I1 and I11 
of parameter estimation. Table 2.5.1 shows that the exact values 
PI=PZ=P3=P4=PS=1 were recovered with these 3 techniques, when errorless 
measurements (o = 0) were used. In such cases, we had the smallest number of 
iterations and the smallest computational time for Technique I. For cases 
involving measurement errors (a = O.OITm,), the smallest RMS error was also 
obtained with Technique I; but the smallest CPU time was obtained with 
Technique 11, which had the largest RMS error. 

The foregoing analysis reveals that Technique I, among those examined 
for parameter estimation, provided the best results in the estimation of the five 

Estimated 
Parameters 

PI 9 p2 
P3 , p4 
p5 

1 .ooo, 1 .ooo, 
1,000, 1 .ooo, 

1 .ooo 
0.999, 1.003, 
0.997, 1.004, 

1.009 
1 .OOO, 1 .OOO, 
1 .ooo, 1 ,000, 

1 .ooo 
0.968, 1.020, 
0.918, 1.130, 

0.894 

Technique 

I 

Iterations 

2 

5 

10 

5 

RMS error 

0.0 

0.008 

0.0 

0.139 

0 

0.0 

26 

8 

101 
12 

CPU 
Time (s) 

0.1 1 

0.17 

0.33 

0.1 1 

0.93 

0.28 

1.37 
0.17 

I1 

0.01 T,, 

0.0 

0.0 1 T,,,, 

I11 

rv, t,= 2 

0.0 

O.OITm, 

0.0 
0.01 T,, 

1.000, 1,000, 
1.000, 1.000, 

1.000 
0.981,1.016, 
0.949, 1.065, 

0.916 
- 
- 

" 

IV, t,= 2.2 

IV, q= 2.4 

0.0 

0.087 

0.476 
0.553 

1.48 
0.27 
2.59 
0.17 

0.0 
0.01 T,, 

0.0 
0.01 T,, 

- 
- 
- 
- 

10 1 
17 
10 1 
11 

0.054 
0.157 
0.042 
0.157 
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coefficients of the Fourier series utilized to approximate the source term function. 
Technique I had the smallest CPU time for errorless measurements (a = 0) and 
the smallest RMS error for measurements with random errors ((o = 0.01 T-). The 
reader must be aware that such conclusion is not general and should not be 
extended directly to other problems of parameter estimation. The results may 
depend on the physical character of the problem, number of parameters ta be 
estimated, initial guess, etc [28]. In fact, the computationa1 times and the RMS 
errors shown in table 2.5.1 were quite small for all cases considered, as a result of 
the simplicity of the present test-problem. 

Table 2.5.1 shows that the number of iterations and the CPU time 
decreased for Techniques I1 and 111, when measurements containing randm 
errors were used instead of errorless measurements. This is because of the 
discrepancy principle used to obtain the tolerance for the stopping criterion, when 
measurements with errors were used in the analysis. The value obtained with 
equation (2.2.10) for the tolerance in the stopping criterion of Technique 11 was 
0.032. For Technique 111, the tolerance obtained with equation (2.3.20) was 
0.00064. On the other hand, a much smaller value could be prescribed for the 
tolerance when errorless measurements were used in the analysis, since the 
solution was not affected by the measurement errors. For the results shown in 
table 2.5.1, we prescribed the tolerances of los9 and 2x10'" for techniques I1 and 
111, respectively. Such values were not set identical because of the different 
definitions of the objective function for techniques I1 and III (see equations 2.2-1 
and 2.3.1, respectively). We note that the tolerances &I, E* and 8 3  appearing in 
equations (2.1.14) for Technique I are set internally by the subroutine DBCLSJ of 
the IMSL 151. 

We note in table 2.5.1 the larger number of iterations for Technique 111, as 
compared to Technique 11, for both cases of errorless measurements and 
measurements with random errors. This is probably due to the different 
calculations that are performed with both techniques, in order to compute the 
gradient  equation^$(^') and the search step size pk. While the computation of 
these two quantities with equations (2.2.5.a) and (2.2.7) in Technique I1 involves 
the sensitivity matrix, the expressions for VS(P') and 8' for Technique I n ,  
equations (2.3.15) and (2.3.17), respectively, involve the soIutions of the adjoint 
and sensitivity problems. 

Figures 2.5.1-3 present the results for the source term function, obtained 
with Techniques I, I1 and 111, respectively. These figures clearly show the better 
results obtained with Technique I when measurements with random errors were 
used in the analysis, although the results obtained with techniques I1 and I11 were 
also quite good. 



INVERSE HEAT TRANSFER 

4.0 - 

3.0 - + Estimated, CI = 0 

A Estimated, o = 0.01 Tmax - 
c 2.0 - 
0 .- 
u 
0 - 
C 
3 
LL 1.0-  

8 
5 - 
0 
ul 0.0 - 

- 
-1.0 - 

Figure 2.5.1. Estimation of the source term given by equation (2.5.1) 
with Technique 1 
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Figure 2.5.2. Estimation of the source term given by equation (2.5.1) 
with Technique I1 
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0.0 0.4 0.8 1.2 1.6 2.0 
Time 

Figure 2.5.3. Estimation of the source term given by equation (2.5.1) 
with Technique I11 

After discussing the solution of the inverse problem of estimating the 
source term function- given by equation (2.5.1) as a parameter estimation 
approach, by using techniques I, I1 and 111, let us consider now the results 
obtained with the function estimation approach of Technique IV. Table 2.5.1 
shows a large reduction on the RMS errors for both errorless measurements and 
measurements with random errors, when the final time was increased fiom q= 2 
to r / =  2.2. Such a reduction on the RMS errors is due to the effects of the initial 
guess on the solution, because of the null gradient at the final time. The RMS 
errors were computed for 0 I t 5 2 ,  for both cases involving t/= 2 and r/ = 2.2, 
since this is our time domain of interest. We also note in table 2.5.1 that the RMS 
errors were very little affected when qwas increased fiom 2.2 to 2.4. 

Figures 2.5.4.a-c show the results obtained with Technique IV for final 
times of 2.0, 2.2 and 2.4, respectively. The deviation of the estimated fbnction 
from the exact one in the neighborhood of r / ,  caused by the null gradient at tf , is 
apparent in figure 2.5.4.a. Note in this figure that the estimated function is zero 
for t = tl, which is exactly the initial guess used for the iterative procedure of 
Technique IV. As t/ was increased to 2.2, the effects caused by the null gradient 
at the final time are practically not noticeable in the time domain of interest, 
0 s t i 2, as can be s&n in figure 2.5.4.b. In fact, quite accurate estimates were 
obtained in this case with errorless measurements, as well as with measurements 
containing random errors. The solution in the neighborhood of r/.=2 can be further 
improved by increasing the final time fiom 2.2 to 2.4, as apparent in figure 
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2.5.4.c. However, we notice in this figure a deviation of the estimated function 
from the exact one for small times. 

4.0 

+ Estimated, a = 0 
3.0 A Estimated, a = 0.01 Tmax 

2.0 

1 .o 

0.0 

-1 .o 

0.0 0.4 0.8 1.2 1.6 2.0 
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Figure 2.5.4,s. Estimation of the source term given by equation (2.5.1) 
with Technique TV for t/= 2.0 

3.0 
+ Estimated, a = 0 

A Estimated, o = 0.01 Tmax 

2.0 

1 .o 

0.0 

-1 .o 

Figure 2.5.4.b. Estimation of the source term given by equation (2.5.1) 
with Technique IV for t,= 2.2 
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+ Estimated, o = 0 
A 

A Estimated, o = 0.01 Tmax 

0.0 0.4 0.8 1.2 1.6 2.0 
Time 

Figure 2.5.4.c. Estimation of the source term given by equation (2.5.1) 
with Technique 1V for t r 2 . 4  

It is interesting to note in table 2.5.1 that generally more accurate results 
were obtained with parameter estimation (Techniques I, I1 and 111) rather than 
with function estimation (Technique IV), However, such parameter estimation 
results were based on the a priori available information that the function could be 
exactly approximated by 5 trial functions in the form given by equations 
(2.1.18.e,f). Unfortunately, this is not generally the case. In several applications 
there is no prior information regarding the functional form of the unknown. In 
such cases, the use of parameter estimation approach can yield completely wrong 
solutions, because either wrong trial functions or an insufficient number of them 
can be chosen to approximate the unknown function. As an example, consider a 
step variation for the source term in the form 

1 , for t c 2 / 3  and t > 4 / 3  
g,(l) = 2 , for 2 / 3 S 1 1 4 / 3  

Also, consider for the parameter estimation approach that the unknown 
hnction is approximated by 5 trial functions in the form of equations (2. I .  f 8.e,f), 
that is, 
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Hence, the estimation of the function given by equation (2.5.4) reduces to 
the estimation of the parameters P I ,  P2, P3, Pq and Pj of equation (2.5.5),  when 
Techniques I, I1 and 111 of parameter estimation are applied. 

Figure 2.5.5 illustrates the solutions obtained with Techniques I and IV for 
the step variation of g,(t) given by equation (2.5.4), by using errorless 
measurements in the analysis. The results obtained with Techniques I1 and III 
were identical to those obtained with Technique I and were omitted here for the 
sake of clarity. Figure 2.5.5 shows that the exact functional form was not 
recovered by the parameter estimation approach, with the unknown function 
approximated by equation (2.5.5). On the other hand, the step variation of g,(t) 
was correctly recovered by the function estimation approach of Technique IV, 
when the final time was taken as t ~ 2 . 2 ,  although some oscillations are observed 
near the discontinuities. The RMS error obtained with the function estimation 
approach of Technique IV was 0.085. In order to match such a value for the RMS 
error, 30 trial functions in the form of the Fourier series approximation given by 
equations (2.1.18.e,f) were required in the parameter estimation approach. We 
note that functions containing discontinuities and sharp corners (i.e., 
discontinuities on their first derivatives) are the most difficult to be recovered by 
an inverse analysis. Such functions are usually chosen to test algorithms and 
methods of solution for inverse problems. 

-I - Exact 

Estimated, Technique I 

A Estimated, Technique IV (tf ~ 2 . 2 )  

0.0 0.4 0.8 1.2 1.6 2.0 
Time 

Figure 2.5.5. Inverse problem solutions for a step variation of the source function 
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The foregoing analysis reveals that the parameter estimation approach 
should only be used when there is available sufficient information regarding the 
fictional form of the unknown. If such is not the case, a function estimation 
approach should be applied to the solution of the inverse problem. 

In this chapter we developed the basic steps and algorithms of four 
powerful techniques of solution of inverse problems. The remaining chapters of 
this book are devoted to the application of such techniques to the solution of 
inverse problems involving different heat transfer modes. 

PROBLEMS 

Prove that, for linear parameter estimation problems, the vector of 
estimated temperatures can be written as T = JP, where J is the sensitivity 
matrix and P is the vector of parameters. 
Use the relation T = JP to derive equation (2.1.9) for linear parameter 
estimation problems. 
Show that the linearization of the estimated temperatures T(P) around the 
vector of parameters at iteration k, can be written in the form given by 
equation (2.1.10). 
Derive equation (2.1.1 1). 
Calculate the sensitivity coefficients presented in figures 2.1.2 and 2.1.3 by 
using forward and central finite-difference approximations, instead of 
using the analytical expression given by equation (2.1.18.c). How do the 
sensitivity coefficients calculated numerically by finite-differences 
compare to those calculated analytically in t m s  of accuracy and 
computational time? What is the effect of the factor E, appearing in 
equations (2.1.31.a,b), on the accuracy of the finite-difference 
approximations? 
Derive equation (2.1.34.a). 
Derive the sensitivity problem given by equations (2.3.4). 
Derive equation (2.3.6). 
A semi-infinite medium initially at the zero temperature, has the 
temperature at the surface x = 0 suddenly changed to a constant value To. 
The formulation of such heat conduction problem is given by: 

aT d 2 ~  C - = k -  forx>O and t > O  
at a x 2  

atx=O for t > 0 
fort=O and x>O 

Examine the transient variation of the sensitivity coefficients with respect 
to the volumetric heat capacity C=pP and to the thennal conductivity k, 
for sensors located at different depths below the surface. Is the 
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simultaneous estimation of C and k possible? What is the behavior of 
(J~JI? 

2-10 Repeat problem 2-9 for the surface at x = 0 subjected to a constant heat 
flux go, instead of being maintained at the constant temperature To. In this 
case the formulation of the heat conduction problem is given by: 

a T  a 2 ~  c = k -  forx>O and t>O 
at  8x2 

atx=O for t > 0 

T= 0 fort = 0 and x > 0 

2-1 1 By using the formulation of either problem 2-9 or problem 2-10 
(whichever is more appropriate) estimate simultaneously k and C with 
Techniques I and 11. Use C = k = 1 and To = 1 (or go = l), in order to 
generate the simulated measurements of a single sensor for the analysis. 
Examine the effects of random measurement errors, initial guess and 
sensor location on the estimated parameters. Is such parameter estimation 
problem linear or nonlinear? 

2- 12 For the physical situation of problem 2-10, consider k and C known and go 
unknown. Examine the transient variation of the sensitivity coefficients 
with respect to qo for sensors located at different depths below the surface. 
Use C  = k = go = 1 in order to generate the simulated measurements of a 
single sensor for the analysis. Thus, use such measurements to estimate go 
by using Techniques I and 11. Examine the effects of random measurement 
errors, initial guess and sensor location on the estimated heat flux. Is it 
possible to estimate simultaneously k and/or C together with qo? 

2- 13 Consider the following heat conduction problem in dimensionless form: 

atx=O for t > 0 

a tx=  1 for t > 0 

Formulate all the steps for the solution of the inverse problem of 
estimating the unknown heat flux q(t), by using Techniques I, TI and 111. 
Consider available the transient readings Yi7 i = 1, . . . , I of a single sensor 
located at x,,. Also, assume that q(t) is given in the following general 
linear parametric form 
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where 6 are the unknown parameters and C,(t) are known trial functions. 
2-14 Is the inverse problem involving the estimation of Pj in problem 2-13 

linear or nonlinear? 
2-1 5 Consider q(t) in problem 2-13 to be approximated by 3 trial hnctions in 

the form of a polynomial, as given by equation (2.1.18.d). Examine the 
transient variation of the sensitivity coeficients with respect to the 
parameters P,, j = 1, 2, 3, for a sensor located at x,,,= 0. Is the estimation 
of such parameters possible? What is the behavior of I J~JI?  

2-1 6 Consider q(t) in problem 2- 13 to be approximated by 3 trial functions in 
the form of a Fourier series, as given by equations (2.1.1 8.e,f). Examine 
the transient variation of the sensitivity coefficients with respect to the 
parameters P,, j = 1,2,3, for a sensor located at x,,= 0. Is the estimation 
of such parameters possible? What is the behavior of 1JTJ[? 

2-17 Repeat problem 2-13 by now assuming available the transient readings of 
M sensors located at x = x,, m = 1, . . ., M. 

2-18 Repeat problem 2-13 by using the function estimation approach of 
Technique IV, where no information regarding the functional form of q(t) 
is assumed available for the analysis. 
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NOTE 1. STATISTICAL ANALYSIS FOR PARAMETER ESTIMATION 

By performing a statistical analysis it is possible to assess the accuracy of 
4, j = I ,  ..., N, which are the values estimated for the unknown parameters P,, 

j = 1, . .., N . Assuming that the eight statistical assumptions discussed in section 
1-4 are valid, and using the minimization of the ordinary least-squares norm for 
solving the parameter estimation problem, the covariance matrix, V, of the 
estimated parameters Pj , j = 1, ..., N, is given by [4] 

where J is the sensitivity matrix and a is the standard deviation of the 
measurement errors, which is assumed to be constant. 

The standard deviations for the estimated parameters can thus be obtained 
from the diagonal elements of V as 

where V, is theJh element in the diagonal of V. More explicitly, we can write: 

0 .  =~,/[J'J]-' forj = 1) N 
9. J 

Confidence intervals at the 99% confidence level for the estimated 
parameters are obtained as 

P . - 2 9 7 6 0 .  ~ P . ~ k . + 2 5 7 6 0 .  forj = 1, ..., N (N 1 -2.3) 
1 P, J J 

The factor 2.576 appearing in the expression above comes fiom table 
N1.l.l in Chapter 1 for the normal distribution, so that the probability of the 
actual parameter 4 be in the interval Fj f 2.576a - .  is 99%. For other confidence 

PJ 
levels, this factor is changed accordingly. For example, for the 95% confidence 
level, 2.576 should be replaced by 1.96. 
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Confidence intervals do not provide a good approximation for a joint 
confidence region for the estimated parameters. In fact, the confidence interval is 
obtained for each parameter, regardless the estimation of the other parameters. 
Confidence regions built from confidence intervals may include areas outside the 
actual confidence region and not include areas that belong to the actual 
confidence region [4,23]. 

The joint confidence region for the estimated parameters is given by 
[4,23]: 

where V = covariance matrix of the estimated parameters, 
given by equation (N1.2.1) 

A A 

6 = [PI , P2 , ..., kN] is the vector with the values estimated 

for the parameters 
P = [PI , P2 ,..., PN] is the vector of unknown parameters 

N = the number of parameters 

Xi = value of the chi-square distribution with N degrees 

of freedom for a given probability, obtained from table N 1.1.2. 

The confidence region given by equation (N1.2.4) is thus the interior of a 
hyperellipsoid centered at the origin and with coordinates 
(4 - PI ), (4 - P2 ) ,. . ., (kN - PN ) . The surface of the hyperellipsoid is a constant 
probability density surface, obtained from the chi-square distribution for a chosen 
confidence level (probability). For a case involving the estimation of two 

parameters, the values of Xi obtained from table Nl. 1.2 in Chapter 1 for the 

95% and 99% confidence levels are 5.99 and 9.21, respectively. 

NOTE 2. DESIGN OF OPTIMUM EXPERIMENTS 

a. Parameter Estimation 

Optimum experiments are usually designed by minimizing the 
hypervolume of the confidence region of the estimated parameters, in order to 
ensure minimum variance for the estimates. The minimization of the confidence 
region given by equation ('1.2.4) can be obtained by maximizing the 
determinant of v', in the so called D-optimum design [4,12,22,24,25]. Since the 
covariance matrix V is given by equation (N1.2.1), we can then design optimum 

T experiments by maximizing the determinant of the matrix J J . Therefore, 
experimental variables such as the duration of the experiment, location and 
number of sensors, are chosen based on the criterion 
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By using the definition of the sensitivity matrix for the case involving a 
single sensor, equation (2.1.7.b), each element F,,, , m,n = 1, .. ., N, of the matrix 

T F = J J is given by: 

where I is the number of measurements and N is the number of unknown 
parameters. 

Different particular cases of the genera! criterion (N2.2.1) can now be 
examined. 

Case 1. A large but fixed number of equally spaced measurements is 
available. Then, each element F,, can be written as 

where Q is the duration of the experiment and At is the constant time interval 
between two consecutive measuremenl. Since the number of measurements, I, is 
fixed, we can choose to maximize the determinant of Fl instead of maximizing 
the determinant of F, where the elements of Fl are given by 

Case 2. In addition to a large and fixed number of equally spaced 
measurements, the maximum value for the temperature in the region, T,, 
is known. Thus, equation (N2.2.3.b) can be written as 

Note that the quantities inside parentheses in equation (N2.2.4.a) are 
dimensionless. However, it is possible that T*, and not T,,, is the variabIe 
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suitable for the non-dimensionalization of the temperature T. In such a case, 
equation (N2.2.4.a) can be written as 

and the design of optimum experiments is then based on the maximization of the 
determinant of the dimensionless form of F,, F,', the elements of which are given 
by 

Case 3. Measurements of M sensors are available. Thus, the elements [F;],,, 
become 

We note that for non-linear parameter estimation problems, the sensitivity 
matrix, and thus I J ~ J  I , depend on the unknown parameters Pi, j = 1, . . ., N. In 
such cases, only a local optimum experimental design is possibIe by using some a 
priori information regarding the expected values for the unknown parameters. 

In order to illustrate this approach for the design of optimum experiments, 
we consider the analysis developed in reference [22] for the physical problem 
described in example 2-3, involving the estimation of thermal conductivity, k, and 
volumetric heat capacity, C. It is assumed that a large but fixed number of 
measurements is available from a single sensor. By taking into account the 
maximum temperature in the medium and using the dimensionless temperature 6, 
as defined in equation (2.1.21.a), we can write equation (N2.2.4.c) as 

where the unknown parameters are P1=k and P2=C. The dimensionless 
sensitivity coefficients appearing inside parentheses in equation (N2.2.6) are 
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computed with equations (2.1.24) and (2.1.25). Note that in the present probIem, 
the suitable quantity for the non-dimensionalization of temperature is 

The maximum dimensionless temperature 8,, is obtained from equation 
(2.1 -23.a) for 6 = 0 and t = t~ when s / l  rh , and for { = 0 and r= T , ,  when r / >  rh. 

We can choose different experimental variables, such as the heating and 
final times, Th and zj-, respectively, as well as the sensor position, by plotting the 
time variation of the determinant of the matrix F;, that is, 

Figure N2.2.1 presents the variation of IFI*I for different heating times and 
for a single sensor located at 6 = 0. This figure shows that the maximum value of 
IFI*l is reached with heating and final times of approximately 2.5 and 3.3, 
respectively. Note that a curve joining the peaks for r ,  = 2 and 2.5 is rather flat, 
showing that any value in this range will be very close to the optimum heating 
time. On the other hand, the behavior of (Fl*l is very sensitive to the choice of the 
final time rf . Note that IFISJ decreases very fast after its maximum value is 
reached. Therefore, an analysis of figure N2.2.1 reveals that the heating time for 
an optimum experiment should be chosen in the interval 2 i rh 5 2.5, with final 

time given approximately by z, + 0.8. 
The reader should note that such conclusions are based on the hypothesis 

that a Iarge but fixed number of measurements is available. Thus, the number of 
measurements remain constant when the final time is increased. Different 
conclusions could be obtained if the number of measurements increases with 
increasing final time. As a matter of fact, more accurate estimates for the 
parameters are generally obtained if more measurements are available for the 
inverse analysis. Therefore, the design of optimum experiments requires detailed 
knowledge of the experimental setup and data acquisition system utilized in the 
experiment, in order to choose the correct form of I J'J I to be maximized. 

Figure N2.2.2 presents the transient behavior of lFIel for a single sensor 
located at different positions and for rh = rj , This figure shows that the sensor 
should be located as close to the boundary 6 = 0 as possible, since IFl*/ attains the 
largest values in this region. Such conclusion was also obtained from the analysis 
of the sensitivity coefficients presented in figures 2.1.5. 
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Heating Time 

0.0 2.0 4.0 6.0 8.0 
Dimensionless  time,^ 

Figure N2.2.1. Effect of the heating time on the determinant IFIS[. 

0.0 2.0 4.0 6.0 8.0 
Dimensionless Time, .r: 

Figure N2.2.2. Effect of the sensor position on the determinant IFI*[. 
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b. Function Estimation 

Consider now the case involving the estimation of an unknown hnction 
gp(t), by using the measurements of M sensors and by minimizing the following 
fhctional 

where Y,(t) and Tx, , t )  are the measured and estimated temperatures, 
respectively, at the sensor positions x,, s = 1 ,  . . . , M. 

Consider now that the temperature T(xS1 t) is perturbed by AT(x,,f) and the 
hctional Q p ( t ) l  is perturbed by dS[gp(t)], when the unknown b c t i o n  gp@) is 
perturbed by A@). Then we can write the perturbed form of equation (N2.2.9) 
as 

By subtracting equation (N2.2.9) from equation (N2.2. lo), we find 

In the neighborhood of the minimum of the fimctional, we have 
Y ( t )  = T ( x  , r) . In this case, equation (N2.2.11 .a) can be approximated by 

s S 

As for the problems involving parameter estimation, the optimum design 
of experiments for h c t i o n  estimation involves locating the sensors and choosing 
other experimental variables, so that the measured temperatures are most affected 
by changes in the sought function. This is accomplished by maximizing the 
kctional given by equation (N2.2.11 .b) involving the sensitivity function 
AT(x, f )  for, say, a unitary perturbed function kP( t ) .  This criterion might not 
work properly for nonlinear estimation problems, where the sensitivity function 
depends on the unknown function [26]. 
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For the linear test problem of this chapter, involving the estimation of the 
strength g,(t) of the source function, an analysis of the sensitivity problem given 
by equations (2.3.4) clearly reveals that the sensor should be located as close to 
the unknown source function as possible, in order to maximize equation 
(N2.2.11 .b). Also, note that the use of several sensors (M > 1) may increase the 
value of the functional given by equation (N2.2.11 .b), since more information can 
be available for the inverse analysis. 

NOTE 3. SEARCH STEP-SIZE FOR TECHNIQUE II 

The search step size, pk, for the conjugate gradient method of parameter 
estimation, is obtained as the one that minimizes the least-squares norm given by 
equation (2.2.1) at each iteration, that is, 

k i l  T 
rnin S(Pk") = rnin [Y - T(P )] [Y - T(P ' + ' ) I  
Bk P' 

From the iterative procedure of the conjugate gradient method, we have 

Thus, by substituting df' into equation (N3.2. l), we obtain 

which can be written, for cases involving a single sensor, as 

k k 2  min s(pk4') = min - I;(P' -/? d )] 
B pk i= i  

where I is the number of measurements. 
k k k  We now linearize q(P  - p d ) by using a Taylor series expansion in 

the form 
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or, in vector form, 

where 

By substituting equation (N3.2.4.b) into equation (N3.2.3 .b) and 
performing the minimization with respect to P', we obtain the following 
expression for the search step size for Technique 11: 

or, by using the definition of the sensitivity matrix J given by equation (2.1.7.b), 
the expression above for pk can be written in matrix form as 

NOTE 4. ADDITIONAL MEASUREMENT APPROACH 
FOR THE STOPPING CRITERION OF THE 
CONJUGATE GRADIENT METHOD 

The stopping criterion approach based on the discrepancy principle, 
described above for Techniques 11, 111 and IV involving the conjugate gradient 
method, requires the a priori knowledge of the standard deviation of the 
measurement errors. However, there are several practical situations in which 
scarce information is available regarding this quantity. For such cases, an 
alternative stopping criterion approach based on an additional measurement [12] 
can be used, which also provides the conjugate gradient method with an iterative 
regularization character. 
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In order to illustrate the additional measurement approach for the stopping 
criterion, we take as an example the estimation of the boundary heat flux q(t)  in a 
slab of unitary thickness, by using Technique IV. The formulation of the 
dimensionless heat conduction problem considered here is given by 

at x = O  , for t > 0 (N4.2.1 .b) 

a t x = l  , for t > 0 (N4.2.1 .c) 

The unknown function q(t)  is estimated with Technique IV by minimizing 
the following hnctional 

where Y(t)  are the measured temperatures at the location x,,,, while 
qxmw,t;q(t)] are the estimated temperatures at the same location. 

Consider now that the additional measured data Y,(t) of a sensor located at 
x, are also available for the analysis. The functional Sc[q(t)] based on such data is 
given by 

The examination of the behavior of the fbnctional S,[q(t)], as the 
minimization of S[q(t)] is performed, can be used to detect the point where the 
errors in the measured data Y(t) start to cause instabilities on the estimated 
function q(t) .  Generally, the value of S,[q(t)] passes through a minimum and then 
increases, as a result of such instabilities. The iterative procedure is then stopped 
at the iteration number corresponding to the minimum value of S,[q(t)], so that 
sufficiently stable solutions can be obtained for the inverse problem. 

Results for the estimation of a step variation of the boundary heat flux q(t), 
obtained by using the stopping criterion approaches based on the discrepancy 
principle and on the additional measurement, are illustrated in figure N4.2.1. The 
simulated measured data Y(r) and Yc(t) were generated with a constant standard 
deviation o=O.OlY,,, where Y,, is the maximum value of Y(t). The 
measurements Y(t)  used in the minimization of the hnctional S[q(t)] were 
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considered taken at the position xm,,=0.986. For the case involving the additional 
measurements for the stopping criterion, the additional sensor was supposed to be 
located at x,=0.982. Figure N4.2.1 shows that the two approaches for the stopping 
criterion are equivalent. Both provide quite accurate and stable estimates for the 
step variation of the heat flux, which represents a very strict test function. 

We note that the additional measurement approach for the stopping 
criterion, illustrated above as applied to Technique IV, can be readily modified to 
be applied to Techniques I1 and 111. 

Sensor at x = 0.986 
cr = 0.01 Ymax 

Exact Heat Flux 

@ Disc. Principle 

-0.2 1 I 1 I t I 
0.00 0.20 0.40 0.60 0.80 1 .OO 

Dimensionless Time (t/t 3 

Figure N4.2.1. A comparison of the discrepancy principle and additional 
measurement approaches for the stopping criterion 

NOTE 5. SEARCH STEP-SIZE FOR TECHNIQUE 111 

Similarly to Technique 11, the search step size for Technique 111 is obtained 
as the one that minimizes the objective function given by equation (2.3.1) at each 
iteration, that is, 

min s ( P ~ + ' )  = min [Y(t) - T(xmem , t ; ~ ~ + ' ) f d t  
B~ B~ ,=o i 
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From the iterative procedure of  the conjugate gradient method, we have 

By substituting pk" into equation (N5.2. I), we obtain 

rnin S(P"') = min 1 [ ~ ( t )  - T(xmem,  I 
k k 2  

t + p k  - p  d )] dt (N5.2.3) 
pk pk ,=o 

We now linearize T(P' - p k d k  ) by using a Taylor series expansion in the 
form 

(N5.2.4) 
By making 

the equation above becomes 

where N is the number of parameters. 

I .  

Let d T  M k   AT(^' ) = C - 
J = I  d p k  i 

Then equation (N5.2.6) can be written as 

T(P' - p k d k )  ;4 T ( P ' ) - ~ ~ A T ( ~ ~ )  ( ~ 5 . 2 . 8 )  

By substituting equation (N5.2.8) into equation (N5.2.3), we obtain 
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which is then minimized with respect to P to yield 

where dqx-$d$ is the solution of the sensitivity problem given by equations 
(2.3.4), obtained by setting AP,=c~~ , forj = 1, .... N, in the computation of 

NOTE 6. HIJiBERT SPACES 

We present in this note some definitions and properties regarding Hilbert 
spaces. For W e r  details on the subject, the reader should consult references 
114,271. 

A Hilbert space is a Banach space in which the norm is given by an inner 
(or scalar) product < . , . >, that is, 

where 11 .I designates the norm in the space. 
For u belonging to a linear space V, a norm on this space is a mapping 

h m  Vinto the non-negative real axis, [O,oo), satisfying the following properties: 

(i) 14 = 0 if and only if u = 0; 
(ii) IA 4 = 11 1 ad , where 1 is a scalar; 
(iii) ~ u + ~ < ~ + l l ~  ,forany uandvin Y. 

Property (iii) is the so-called triangle inequality. 
In a Hilbert space V, the inner product is given by the following symmetric 

bilinear form: 
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The vector space R~ with the Euclidean norm 

is a Hilbert space, with inner product given by 

where pT = [ P I ,  P2 ,..., PN] R~ = [Rl,R2 ,..., R N ]  

and the superscript T denotes transpose. 
Similarly, the space of square-integrable real valued functions in a 

domain S Z ,  L2(SZ), satisfying 

I[f(w)12 h < m for w in t2 
n 

is a Hilbert space with norm 

I l f  (w)ll= hf (w)12 dw 
i n  i 

and inner product 

(f (w).g(w)) = I f  (w)g(w)  h, for f ( w )  and g(w) a L2 (a) (N6.2.4.b) 

If 0 refers to the time domain, 0 < t < t/, equations (N6.2.4) become 
respectively 
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lf 
(f (f).g(r)) = If (t)g(t) df ,  for f ( t )  and g(t) in L2 (O.tf ) (N6.2.5.b) 

t=o 

Similarly, if !2 refers to the joint time and spatial domains, 0 < t < t'and 
0 < x < 1, equations (N6.2.4) can be written respectively as: 

and 

for f k t )  and g(x.1) in L2 [(O,tf )x(O,l)] 

Other expressions for the norm and inner product can be developed from 
equations (N6.2.4) for various domains Cl of interest. 

The reader should note that the expressions for the conjugation 
coefficients (2.2.4) and (2.4.9) are analogous. They are given by inner products in 
the R~ and L2(0,1/) spaces, equations (N6.2.3.b) and (N6.2.5.b), respectively. 
Also, expressions (2.3.13) and (2.4.5.b) are inner products of the gradient 
direction with the direction of perturbed parameters AP in p, and with the 
direction of the perturbed function Agp(r) in L2(0,t/), respectively. Therefore, they 
give the directional derivative of S(P) and S[g,(t)J, respectively, in the direction 
of the perturbed unknown quantities. Note that S(P) and S[g,(t)J, given by 
equations (2.1.3.a) and (2.4.2), are the squares of the norms in the R" and L2(0,9) 
spaces, respectively. 

NOTE 7. SEARCH STEP-SIZE FOR TECHNIQUE IV 

Similarly to Techniques I1 and III, the search step size for Technique IV is 
obtained as the one that minimizes the objective functional given by equation 
(2.4.2) at each iteration, that is, 

The iterative procedure of the conjugate gradient method for function 
estimation is given by 
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Thus, equation (N7.2.1) can be written as 

k 
By linearizing T[g ( t )  - pkd ( t ) ]  and making 

P 

d k ( t )  = 4$(0 
we obtain 

Let 

and then equation (N7.2.5) can be written as 

By substituting equation (N7.2.7) into equation (N7.2.3), we obtain 

J 
k k k 2 min ~ [ ~ ~ ~ ' ( t ) ]  = m p  {Y ( t )  - T[xrnem, I ;  g p ( t ) l +  P ATlx,,, t ;  d  ( t ) ] }  dt 

pk P 
f l  ,=o 

By performing the minimization above, we find the following expression 
for the search step size for Technique IV: 

t * d k  ( t ) ]  12dt [ { ~ ~ [ x r n e a s ,  * 

where AT [x,,,t;dk(t)] is the solution of the sensitivity problem given by 
equations (2.3.4), obtained by setting Agi(t)= dk(t ) .  
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Chapter 3 
INVERSE CONDUCTION 

In the previous chapter we presented four powerhl methodologies for 
solving inverse heat transfer problems. This chapter is devoted to the application 
of these techniques to the solution of Inverse Heat Conduction problems. The 
specific examples considered here include the solution of the following problems: 

Estimation of constant thermal conductivity components of an orthotropic 
solid [l-31 
Estimation of initial condition [5] 
Estimation of timewise variation of the strength of a line heat source f6] 
Estimation of timewise and spacewise variation of the strength of a 
volumetric heat source [7] 
Estimation of temperature-dependent properties and reaction hnction [8,9] 
Estimation of thermal diffusivity and relaxation time for a hyperbolic heat 
conduction model [13] 
Estimation of contact conductance between periodically contacting 
surfaces [2 11 
Estimation of contact conductance between a solidifying metal and a metal 
mold [26,27] 

3-1 ESTIMATION OF CONSTANT TfIERMAL CONDUCTIVITY 
COMPONENTS OF AN ORTHOTROPIC SOLID [I-3) 

In nature, several materials have direction-dependent thermal 
conductivities including, among others, woods, rocks and crystals. This is also 
the case for some man-made materials, for example, composites. 
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Such kind of materials is denoted anisotropic, as an opposition to isotropic 
materials, in which the thermal conductivity does not vary with direction. A 
special case of anisotropic materials involve those where a thermal conductivity 
component can be identified along the three mutually orthogonal directions. They 
are referred to as orthotropic materials. 

In this section we illustrate the application of Technique I, the Levenberg- 
Marquardt Method, to the estimation of the three thermal conductivity 
components of orthotropic solids. 

Basic steps of Technique I, including the definitions of the direct and 
inverse problems, are presented below. The reader should refer to section 2.1 for 
the iterative procedure, stopping criteria and computational algorithm of 
Technique I, which are not repeated here. 

Direct Problem 

The physical problem considered here involves the three-dimensional 
linear heat conduction in an orthotropic solid, with thermal conductivity 
components k;, k; and k; in the x*,  y* and z* directions, respectively. The solid 

is considered to be a parallelepiped with sides a*, b* and c*, initially at the 
uniform temperature T; . For times r*>O, uniform heat fluxes q;, qiand q; are 

supplied at the surfaces x* = a*, y* = b* and z* = c*, respectively, while the other 
three remaining boundaries at x* = 0, yS = 0 and z* = 0 are supposed insulated. 
The mathematical formulation of such physical problem is given in dimensionless 
form by 

The superscript * denotes dimensional variables and the foilowing 
dimensionless groups were introduced: 
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* * 
where L* is a characteristic length, while q and k are reference values for 

ref ref 

heat flux and thermal conductivity, respectively. 
In the direct problem associated with the physical problem described 

above, the three thermal conductivity components k t ,  k2 and k3, as well as the 
solid geometry, initial and boundary conditions, are known. The objective of the 
direct problem is then to determine the transient temperature field in the body. 

The solution of the direct problem (3.1.1 ) can be obtained analytically as a 
superposition of three one-dimensional solutions in the form [2,3]: 

where 

Inverse Problem 

For the inverse problem considered here, the thermal conductivity 
components kl, k2 and kj are regarded as unknown, while the other quantities 
appearing in the formulation of the direct problem described above are assumed 
to be known with sufficient degree of accuracy. 

For the estimation of the vector of unknown parameters pT = [kl, k2, k3J we 
assume available the readings of three temperature sensors. Since it is desirable to 
have a non-intrusive experiment, we consider each of the sensors to be located at 
the insulated surfaces x=O, y=O and FO. 



118 INVERSE HEAT TRANSFER 

The solution of the present parameter estimation problem is obtained 
through the minimization of the least-square norm. 

where, for the case involving multiple sensors (see equation 2.1.32.a), we have 

Each element [y .  - T(P)] is a vector of length equal to the number of 
I I 

sensors, M. In the present case &3, so that we can write (see equation 2.1.32.b): 

In equation (3.1.6), Yim, i = 1, ..., I , m = 1, 2, 3, are the measured 
temperatures of the sensor m at time ti. The estimated temperatures T. (P) are 

rm 

obtained fiom the solution of the direct problem given equation (3.1.3.a), by 
using the cument available estimate for the vector of unknown parameters 

pT = [kl,k2,k31. 
The least-squares norm (3.1.4) is minimized here by using Technique 1. 

Results 

We use simulated measurements in the form given by equation (2.5.2) in 
order to examine the accuracy of Technique I, as appIied to the estimation of the 
unknown thermal conductivity components. The simulated measurements were 
generated by solving the direct problem with the exact values kl = 1, k2 = 2 and 
k3 = 3. In this case we considered the solid to be a cube with sides a = b = c = 1, 
with unitary heat fluxes supplied at the boundaries x = a = 1, y = b = 1 and 
z = c = 1, that is, q, = 92 = qj  = 1. However, before proceeding to the solution of 
the present parameter estimation problem, we perform an analysis of the 
sensitivity coefficients and choose experimental variables based on the D-optimal 
design, as discussed in Note 2 of Chapter 2. 

Since the unknown parameters can assume different values, the analysis of 
the sensitivity coefficients is much simplified by using their relative versions 
defined by equation (2.1.26). In the present case, the relative sensitivify 
coeflcients with respect to kl, k2 and kj are given respectively by: 
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Due to the analytical nature of the solution of the direct problem given by 
equation (3.1.3 .a), analytical expressions can also be obtained for the relative 
sensitivity coefficients. We note in equation (3.1.3.a) that, since the solution of 
the direct prciblem is obtained as a superposition of three one-dimensional 
solutions in the x, y and z directions, the relative sensitivity coefficient J I  is a 
hnction of x, but not of y and z. The analytical expression for the relative 
sensitivity coefficient with respect to kl is given by: 

where the fhnction 8(4,z) is obtained from equation (3.1.3.b). Analogous 
expressions can be obtained for the sensitivity coefficients J2 and J3, by making 
appropriate substitutions in equation (3.1.8). We note that the present estimation 
problem is non-linear, since the sensitivity coefficients are functions of the 
unknown parameters. 

Figures 3.1.1 .a-c present the transient behaviour of the relative sensitivity 
coefficients for sensors located at (0, 0.9, 0,9), (0.9, 0, 0.9) and (0.9, 0.9, O), 
respectively. We note in these figures that, for each sensor, the sensitivity 
coefficient for the thermal conductivity in the direction normal to the surface 
where the sensor is located is positive, while the other sensitivity coefficients are 
negative (with the exception for very small times). Such figures show that the 
measurements are immediately affected by the thermal conductivities in the 
directions not normal to the surface where the sensor is located; but a lagging is 
observed in the sensors' response with respect to changes in the thermal 
conductivity in the other direction. As expected, this lagging is reduced as the 
value of such thennal conductivity is increased, which can be clearly noticed by 
comparing the curve for JI in figure 3.1. l .a, with the curve for J2 in figure 3. I .  1 .b 
and with the curve for J3 in figure 3.1.1 .c (recalf that the values kI= l ,  kz=2 and 
k3=3 were used to generate the curves for the sensitivity coefficients). For each 
sensor location, the sensitivity coefficients with respect to the thermal 
conductivities in the directions not normal to the plane where the sensor is 
located tend to be linearly-dependent. The sensitivity coefficient for the thermal 
conductivity in the other direction does not seem to be linearly-dependent to the 
others. We also notice in figures 3.1. l .a-c that, if we consider a pair of sensors, 
the sensitivity coefficients are identical for the thermal conductivity in the 
direction parallel to the surfaces where they are located. Take as an example the 
sensors at (0.9, 0, 0.9) and (0.9, 0.9, O), as shown in figures 3.1. l .b and 3.1.1 .c, 
respectively. We notice that the curves for the sensitivity coefficient J1 are 
identical for these sensors. The reason for this behaviour is because the sensitivity 
coefficient J ,  is a function of x, but not of y and z, as can be observed with the 
analysis of equation (3.1.8). 
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0.20 7 Sensor at ( 0 , 0.9 ,0.9 ) 

0.00 0.10 0.20 0.30 
Time 

Figure 3.1.1.a - Relative Sensitivity Coefficients for a sensor located at 
(0,0.9,0.9). 

0.20 Sensor at ( 0.9 , 0 , 0.9 ) 

0.00 0.10 0.20 0.30 
Time 

Figure 3.1.l.b - Relative Sensitivity Coefficients for a sensor located at 
(0.9,0,0.9). 

The linear-dependence of two sensitivity coefficients at each sensor 
location makes impossible the estimation of the parameters by using the 
measurements of a single sensor, since two columns of the sensitivity matrix 
become linearly-dependent. In fact, difficulties were observed in the convergence 
of Technique I when the measurements of only one sensor were used in the 
analysis. However, the estimation of the three thermal conductivity components is 
possible if the measurements of more than one sensor, located at the positions 
shown in figures 3.1.1 .a-c, are utilized. Such is the case because each row of the 
sensitivity matrix would have two columns proportional; but the proportional 
columns alternate for the rows corresponding to different sensors. Hence, the 
columns of the sensitivity matrix are not linearly-dependent. 



INVERSE CONDUCTION 

Sensor at ( 0.9 , 0.9 , 0  ) 

0.00 0.10 0.20 0.30 
Time 

Figure 3.1.1 .c - Relative Sensitivity Coefficients for a sensor located at 
(0.9,0.9,0). 

Figures 3.1.2.a-c present the transient variation of the sensitivity 
coefficients for sensors located at the positions (0, 0.5, 0.5), (0.5, 0, 0.5) and 
(0.5, 0.5, O), respectively. By comparing figures 3.1.1.a (sensor at 0,0.9, 0.9) and 
3.1.2.a (sensor at 0, 0.5, 0.5) we notice that the curves for J1 are identical for 
these two different sensor locations. This is because the x position of the two 
sensors are the same (see equation 3.1.8). Similar behaviors are noticed for J2 and 
Jj, as can be observed in figures 3.1.1 .b and 3.1.2.b, as well as in figures 3.1 .l.c 
and 3.1.2.c, respectively. We notice in figures 3.1.2.a-c that the sensitivity 
coefficients are positive for the thermal conductivities in the directions not 
normal to the surfaces where the sensors are located, while in figures 3.1. I .a-c 
such sensitivity coefficients are negative. This is in accordance with the physics 
of the problem, since an increase in the thermal conductivities tends to decrease 
the temperature in regions closer to the hottest point in the soIid (point 1, 1, l), 
but tends to increase the temperatures in regions far from such point. At each 
sensor location of figures 3.1.2.a-c, the sensitivity coefficients tend to be more 
linearly-dependent than those of figures 3.1. l .a-c. Also, the sensitivity 
coefficients for the thermal conductivities in the directions not normal to the 
surfaces where the sensors are located attain smaller absolute values in figures 
3.1.2.a-c than in figures 3.1 .l.a-c. As a result, the estimation with sensors located 
at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5,0.5, 0) is more difficult and not as accurate 
as the estimation with sensors located at (0, 0.9, 0.9), (0.9, 0, 0.9) and 
(0.9,0.9,0). This fact will be apparent later in the analysis of the results. 
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Sensor at ( 0 ,0.5 ,0.5 ) 
7 

0.00 0.10 0.20 0.30 
Time 

Figure 3.1.2.a - Relative Sensitivity Coefficients for a sensor located at 
(0, 0.5,O.S). 

Sensor at ( 0.5 , 0 ,0.5 ) 

+ J, 

0.00 0.10 0.20 0.30 
Time 

Figure 3.1.2.b -Relative Sensitivity Coefficients for a sensor located at 
(0.5, 0,O.S). 

0.20 - Sensor at ( 0.5 ,0.5 , 0 ) 
- 
- 

0.15 - + J l  

ki - 
aJ +- J2  

9 0.10 4 
m 
E 

+- 53 - 
0) .. 
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0.00 0.10 0.20 0.30 
Time 

Figure 3.I.2.c - Relative Sensitivity Coefficients for a sensor located at 
(0.5,0.5,0). 
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Based on the concepts described in Note 2 of Chapter 2, we choose the 
optimal duration of the experiment by considering available for the inverse 
analysis a large but fixed number of measurements, of three sensors located at (0, 
0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). We also take into account the maximum 
temperature in the region, T,,,,, which is obtained from equation (3.1.3.a) for the 
point x = y = z = 1 at each final time considered. Hence, we choose to maximize 
the determinant of the matrix F;, the elements of which are defined by (see 

equation N2.2.5): 

where the subscripts p and q refer to the matrix row and column, respectively 
(p,q = 1,293). 

Sensors at 

0.00 0.20 0.40 0.60 0.80 1.00 
Time 

Figure 3.1.3 - Determinant of F; 

Figure 3.1.3 shows the variation of the determinant of F; with time. An 

analysis of this figure reveals that, for three sensors located at (0, 0.9, 0.9), 
(0.9, 0, 0.9) and (0.9, 0.9, O), the duration of the experiment should be taken as 
t/= 0.22 where such determinant is maximum, so that the confidence region of the 
estimated parameters is minimized. A similar analysis involving three sensors 
located at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, 0) yields a maximum 
determinant of 7 x 10 -" for tj = 0.3. Such a value for the determinant is about 
three orders of magnitude smaller than the maximum determinant of figure 3.1.3. 
Similarly to the analvsis of the sensitivi~ coefficients. this ~ i v e s  alsn nn 
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indication that the measurements of sensors located at (0, 0.9, 0.9), (0.9, 0, 0.9) 
and (0.9, 0.9, 0) provide more accurate estimates than the measurements of 
sensors located at (0,0.5,0.5), (0.5,0,0.5) and (0.5, O.S,O). 

We now present the results obtained with the estimation procedure of 
Technique I, by using in the analysis 100 transient measurements of three sensors 
located at (0, 0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). The duration of the 
experiment was taken as k= 0.22, in accordance with the analysis of figure 3.1.3. 
The IMSL [4] version of Technique I in the form of subroutine DBCLSJ was 
used for the estimation of the thermal conductivity components kl, k2 and k3. For 
the results presented below, we have used as initial guesses in the iterative 
procedure of Technique I the values kp = k; = k: = 0.1. 

Table 3.1.1 illustrates the results obtained for the estimated parameters, 
standard deviations and 99% confidence intervals, for different levels of 
measurement errors, including o = 0, o = 0.01 Y,, and o = 0.05Ym,, where Y,, 
is the maximum measured temperature. This table shows that the exact values 
kl = 1, k2 = 2 and k3 = 3 are perfectly recovered when errorless measurements 
(a = 0) are used in the analysis. We observe on table 3.1.1 that quite accurate 
estimates are obtained, even for large measurement errors of CJ = 0.05Ym,. As 
expected, the standard-deviations of the estimates increase when measurements 
with larger errors are used in the analysis. 

Table 3.1.1 - Estimation of the exact parameters kl = 1, k2 = 2 and k3 = 3 by 
using Technique I. 

The standard-deviations and confidence intervals presented in table 3.1 .l 
were computed in accordance with the concepts described in Note 1 of Chapter 2. 
Based on such concepts, we can also obtain expressions for the confidence 
regions at the 99% confidence level. For measurements involving errors of 
0 = 0.01 Y,, and a = 0.05Ym,, the confidence regions are given respectively by 
(see equation N1.2.4 in Chapter 2): 

o 

0 

0.0 1 Y,, 

0.05 Y,, 

Parameters 

kl 
k2 
k3 

kt 
k2 

k3 
k~ 
k2 
k3 

Confidence Intervals 

- 
- 
- 

0.993 < kl 5 1.026 
1.945 I kz 5 2.027 
2.950 I k3 r 3.1 11 
0.972 I k, I 1.146 
1 .845 5 k2 1 2.276 
2.574 I k3 53.348 . 

Estimates 

1 .ooo 
2.000 
3 .ooo 
1.009 
1.986 
3.03 1 
1.059 
2.060 
2.961 

Standard- 
deviations 

0.000 
0.000 
0.000 
0.006 
0.0 16 
0.03 1 
0.034 
0.084 
0.150 
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1822.8 + 873.653 k: + 144.429 k: - k, (535.801 + 16.0212 k,) - 
(3.1.10.b) 

-9 

We note that the exact values kl = 1, k2 = 2 and k3 = 3 fall inside the 
confidence regions given by equations (3.1.10). 

Finally, let us consider in the analysis 100 transient measurements of three 
sensors located at (0, 0.5, 0.5), (0.5, 0, 0.5) and (0.5, 0.5, O), instead of 
(0, 0.9, 0.9), (0.9, 0, 0.9) and (0.9, 0.9, 0). In this case, the duration of the 
experiment was chosen as t'0.3, which yielded the maximum determinant of the 
matrix F,' for the new locations for the sensors. For measurements with 
(r=0.01 Y,,, the estimated parameters were kl  = 1.007, k2 = 2.006 and k3 = 2.873, 
with standard-deviations of okl= 0.01 8, ( J ~ Z  = 0.044 and oyj = 0.078, respectively. 
As expected from the analyses of the sensitivity coefficients and of the maximum 
determinant of F,', we note that the parameters estimated with the sensors located 
at (0, 0.5, 0.5), (0.5,0,0.5) and (0.5,0.5,0) are not as accurate as those shown in 
table 3.1.1, which were estimated with the sensors located at (0, 0.9, 0.9), 
(0.9,0,0.9) and (0.9,0.9,0). 

3-2 ESTIMATION OF INITIAL CONDITION [S] 

In this section we discuss the inverse problem of estimating the unknown 
initial condition in a slab of finite thickness by using Technique IV, the 
conjugate gradient method with adjoint problem for fbnction estimation. The 
solution of inverse problems with Technique IV consists of the following basic 
steps: direct problem, inverse problem, sensitivity problem, adjoint problem, 
gradient equation, iterative procedure, stopping criterion and computational 
algorithm. 

The details of such steps, as applied to the inverse problem considered 
here, are described below. 

Direct Problem 

The mathematical formulation in dimensionless form of the physical 
problem considered here, is given by: 
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at X = O  and X = l ,  for z > O  (3.2.l.b,c) 

The direct problem is concerned with the determination of the temperature 
field w, r), when the initial condition F(X) is known. 

Inverse Problem 

In  the inverse problem, the initial condition F(X) is regarded as unknown 
and is to be estimated by using the transient measurements of two sensors, 
located at the boundaries X = 0 and X = 1, respectively. Figure 3.2.1 shows the 
geometry, coordinates and the locations of the temperature sensors. 

The solution of this inverse heat transfer problem involves the 
minimization of the following hnctional: 

Figure 3.2.1 - Geometry and sensor locations. 

where Z(X, r) and RX,r) are the measured and estimated temperatures, 
respectively. In order to apply the conjugate gradient method for the minimization 
of the functional (3.2.2), we need to develop two auxiliary problems, called the 
sensitivity and adjoint problems, as described next. 
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Sensitivity Problem 

This problem is obtained by replacing in the above direct problem (3.2.1) 
8 ( X ,  r )  by [B(x, r )  + A B ( X ,  r ) ]  and F ( X )  by [F(x)  + A F ( x ) ] ,  and by 
subtracting from the resulting expressions the original direct problem, where 
Ae(X ,  z) and AF(X) are small perturbations. We find: 

AB(X,O) = W ( X )  for r=O, inO< X c1 (3.2.3.d) 

Adjoint Problem 

The adjoint problem is obtained by multiplying equation (3.2.1 .a) by the 
Lagrange Multiplier d(X,r), integrating the resulting expression over time and 
space domains and adding the result to the functional given by equation (3.2.2). 
We obtain: 

Then, the variation AS[F(X)] of the functional S[F(X)] is obtained by 
perturbing F(X) by AF(X) and B(X, r) by A8 (X, r), performing integration by parts 
and utilizing the boundary and initial conditions of the sensitivity problem. Then, 
by requiring that the coefficients of AB(X,r) vanish, the .following adjoint 
problem is obtained 
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8 A  - = o  at X=O and X = l ,  forO<r<.r 
f 

(3.2.5.b,c) ax 

R = O  i n O < X < l ,  for z = q  (3.2.5.d) 

Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 

By using the assumption that F(X) belongs to the space of square 
integrable functions in the domain 0 < X < 1, we can write: 

Thus, by comparing equations (3.2.6.a,b), we obtain the gradient equation 
for the functional as 

Iterative Procedure 

The iterative procedure of the conjugate gradient method, as applied to the 
estimation of the initial function F(X) is given by: 

where the superscript k refers to the number of iterations. The direction of 
descent is obtained as: 

and the conjugation coefficient used here is given by the Fletcher-Reeves 
expression as: 
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By applying the procedure outlined in Note 7 of chapter 2, the search step- 
size is obtained as: 

r f  

[ { [ ~ ( o ,  7) - z(0, r)] A@(O, 7) + [&I, 7) - ~ ( 1 ,  r)] A O ( ~ ,  s)) dr 
pk - - r=O 

r (3.2.9) 
f 

where A8 (X,7) is the solution of the sensitivity problem, equations (3.2.3), 
obtained by setting WX) = d(X). 

Stopping Criterion 

The conjugate gradient method requires the stopping criterion based on the 
Discrepancy Principle in order to pursue an iterative regularization character, as 
discussed in Chapter 2. In the case of the present estimation problem, the 
stopping criterion is given by: 

where S[F(x)] is obtained from equation (3.2.2). 
In order to obtain the tolerance E, we assume 

where a is the constant standard deviation of the measurements. Thus, E is 
obtained from equation (3.2.2) as: 
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The computational algorithm of Technique IV, as applied to the 
estimation of the unknown initial condition F(X), is quite similar to the one 
presented in section 2-4, and is not repeated here for the sake of brevity. 

Results 

The accuracy of the inverse analysis for estimating the initial condition 
was examined by using simulated temperature readings. The simulated 
temperature data containing measurement errors, 2, were generated by solving 
the direct problem for a specified initial condition F(X) and by adding to it an 
error term, as outlined in section 2-5. 

Figures 3.2.2.a and 3.2.2.b show the estimated functions for an exact sine 
variation used in the direct problem to generate the measurements, and for the 
final experimental time of r /  = 0.024 and T /  = 0.040, respectively. The standard 
deviation of measurement errors was taken as a =  0.04, representing an error of 
up to 10% in the input data. An examination of figures 3.2.2.a,b reveals that the 
accuracy of estimation improves as the final time increases. The reason for this 
behaviour is that as time elapses, more information reaches the boundaries 
allowing better estimations. 

Figure 3.2.2.a - Estimated initial condition for final experimental time v= 0.024. 
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Figure 3.2.2.b - Estimated initial condition for final experimental time 
zy= 0.040. 

3-3 ESTIMATION OF TIMEWISE VARIATION OF THE STRENGTH 
OF A LINE HEAT SOURCE 161 

In this section we illustrate the application of Technique IV, the conjugate 
gradient method with adjoint problem, for the estimation of the timewise-varying 
strength of a line-heat source, in a two-dimensional inverse heat conduction 
problem. We assume that no a priori information is available on the functional 
form of such variation of the heat source. The basic steps in the analysis include: 
direct problem, inverse problem, sensitivity problem, adjoint problem, gradient 
equation, iterative procedure, stopping criterion and computational algorithm. We 
present below the details of such basic steps, except for the stopping criterion and 
the computational algorithm. They are very similar to those presented in section 
2-4 and are not repeated here for the sake of brevity. 

Direct Problem 

The physical problem considered here involves two dimensional transient 
heat conduction in a dimensionless square domain 0 < X < 1, 0 < Y < 1, initially 
at zero temperature. For times t > 0, a kine heat source of strength G(r) is 
activated to generate energy while the lateral surfaces are kept insulated. 

The mathematical formulation of this heat conduction problem in 
dimensionless form is given by 
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atX=O and X =  1 , t > O  

at Y = O  and Y =  1 ,  r > 0  

where X* and Y* is the location of the heat source. 
The objective of the direct problem is to determine the temperature field 

B(X,Y,t) in the medium, where the strength G(7) of the heat source is known. 

Inverse Problem 

The inverse problem is concerned with the estimation of the unknown 
timewise varying strength, G(r), of the line heat source, by utilizing the transient 
temperature readings of a temperature sensor. Figures (3.3.l.a,b) show the 
locations of the source and sensor, in two different configurations tested. 

sensor 
(0.25xO.O) 

sensor 
(0.SxO.O) 

Figure 3.3.1 - Locations of the line heat source and temperature sensor. 
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The inverse problem is solved here by the application of Technique IV, 
since no apriori information is available on the functional form of the timewise 
variation of the heat source. 

The inverse problem is solved so that the following functional is 
minimized. 

where Z,(s) and 8,(r) are the measured and estimated temperatures, respectively, 
while M is the total number of sensors, assumed greater than one in the 
formulation for the sake of generality. 

In order to implement the iterative algorithm of the conjugate gradient 
method, we need to develop the sensitivity and adjoint problems, as described 
below. 

Sensitivity Problem 

Suppose that the energy generation rate G(r) is perturbed by a small 
amount AG(s); it results in a small change in temperature by an amount 
At9 (X,Y,t). Then, the sensitivity problem governing A 0  (X,Y,r) is obtained by 
replacing in the direct problem (3.3. I), t9 (X,Y, r) by [B(X,Y, r) + A0 (X,Y, r)], G(t) 
by [G(r) + AG(r)] and subtracting from the resulting expressions the original 
direct problem. We obtain: 

v~[Ao(x ,Y,~) ]+  AG(r)6(X - X*)&(Y  - Y*) = a [ ~ @ ( x ,  Y ,  r)]  
8r  

at X=O and X = l ,  for z > 0  (3.3.3.b,c) 

at Y = O  and Y=I ,  f o r r > O  (3.3.3.d,e) 

where V' is the Laplacian in rectangular coordinates. Equations (3.3.3) give the 
sensitivity problem for the determination of the sensitivity function A@(X,Y,r). 
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Adjoint Problem 

The adjoint problem is developed by multiplying equation (3.3.1 .a) by the 
Lagrange multiplier A(X,Y,z), integrating the resulting expression over the time 
and spatial domains and then adding this result to the functional given by 
equation (3.3.2). We obtain: 

do]dXdYdi iA(X,Y, I)[F2B + G(z)S(X - X*Y(Y - Y*) - - 
a7 

r=O Y = O  X=O 

The variation q G ( z ) ]  of the functional S[G(r)] is obtained by perturbing 
G(r) by AG(r) and 9 (X,Y,z) by A 0  (X,Y,r) in equation (3.3.4) and subtracting 
from it the original equation (3.3.4). By neglecting the second order terms, 
performing integrations by parts and using the boundary and initial conditions of 
the sensitivity problem, we obtain the following adjoint problem for the 
determination of the Lagrange Multiplier A(X,Y, 7): 

6'2 -= 0 at X = O  and X = l ,  for O < z < z  
f 

(3.3.5.b7c) ax 

at Y = O  and Y = l ,  for O < . r < t  
f 

(3.3.5.d,e) 

where the points (X,,, Y,],), m = 1,2, ... M are the locations of the sensors. 

Gradient Equation 

In the process of obtaining the above adjoint problem, the expression for 
the variation of the functional AS[G(t)j reduces to 
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By assuming that G(r) belongs to the space of square integrable functions 
in 0 < r< z/, we can write 

Then, by comparing equations (3.3.6.a,b) we find the gradient equation as 

VS[G(~)] = A(X*,  Y*, r )  (3.3.7) 

Iterative Procedure 

The conjugate gradient method of minimization, as applied to the 
estimation of the unknown fbnction G(r), is written as 

where the superscript k refers to the number of iterations, and the direction of 
descent is taken as 

k k - l  
d k ( r ) = v ~ [ G k ( r ) ] + y  d ( r )  (3.3.8.b) 

The conjugation coefficient $ is given by the Fletcher-Reeves expression 
as 

'j 

[{V.S[G' ( r ) ~ } ~  d r  
y k  - "0 - for k =  1,2, ... with yo = 0 

7 ,  

and the search step-size is determined by the minimization of the objective 
function (3.3.2) as (see Note 7 in Chapter 2): 
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where d8(dk) is the solution of the sensitivity problem (3.3.3), obtained by 
setting AG(r) = dk(r). Note that the only difference between P ,  as given by the 
above expression (3.3.9) and that given by equation (N7.2.9) in Note 7 in Chapter 
2, is that the former contains a summation term due to the presence of multiple 
sensors. 

Results 

The accuracy of the inverse analysis for estimating the timewise varying 
strength of an unknown line heat source G(r), located at a specified position (A?, 
Y*), is now examined by using simulated measured data. Several test cases have 
been run with simulated test data Z,(r) and the estimated values were compared 
with the exact results. 

For a11 the cases considered here, the stopping criterion given by the 
discrepancy principle was used to stop the iterations. The functions exhibiting a 
step change or a sharp corner are generally the most difficult cases to be 
recovered by inverse analysis. In order to perform the tests under most strict 
conditions, functions invoIving abrupt changes in the form of step and triangular 
variations were considered for G(.r). 

A finite difference mesh of 25 x 25 nodes was used for the spatial 
discretization and the value of the dimensionless final time, r /  = 6.9 x lo", was 
divided into 280 time steps for all the results presented here. For a 10 cm thick 
region, this value of final dimensionless time corresponds to a physical final time 
r/ = 69 seconds for a material having thermal diffisivity a = lo-' m2/s and to a 

7 2 physical time r,-= 6900 seconds for an insulating material having a = 10' m Is. 
By examining equations (3.3.5 .f) and (3.3.7), we note that the gradient 

equation is null at the final time r / .  Therefore, the initial guess used for G(r) is 
never changed by the iterative procedure of the conjugate gradient method. In 
order to avoid such difficulty, the catculations were repeated few times by using 
for the initial guess, previously estimated values for G(7) at a time r in the 
neighbourhood of 

Two different iocations of the source and sensor considered in the present 
study included the cases: 

(a) The source G(r) at (0.25,0.25) and the sensor at (0.25,0.0), as shown 
in figure 3.3.1 .a 

(b) The source G(z) at (0.5, 0.5) and the sensor at (0.5, 0.0), as illustrated 
in figure 3.3.1 .b 
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Figure 3.3.2 presents the exact and estimated strength G(r), for the 
configuration shown in figure 3.3.1 .a and for measured data involving a standard 
deviation a = 0.0025. The agreement between exact and estimated functions is 
quite good. 

Figures 3.3.3 illustrate the effect on the inverse problem solution, of 
locating a sensor farther from the source. It can be clearly noticed that the 
estimation deteriorates for the case involving the configuration shown in figure 
3.3.l.b, where the source is located at the center of the region, as compared to 
that obtained with the configuration of figure 3.3.1 .a. 

, 1 1 1  l l l q I , ,  

- - 
I 

- - 
- exact 

-,..... regular CGM 1 
1 iterated 

0 = 0.0025 I 
+ 4  1 1 4.- 

: y .  , , , , , , , , , , 
1 I' 
'4 

Number of time steps 

Figure 3.3.2 - The estimation of the strength of a line heat source varying with 
time as a step function. 

3-4 ESTIMATION OF TIMEWISE AND SPACEWISE VARIATIONS 
OF THE STRENGTH OF A VOLUMETRIC HEAT SOURCE [7] 

In the previous section we presented the estimation of the timewise 
varying strength of a line heat source by the application of Technique IV. We 
now apply this technique for estimating the timewise and spacewise varying 
strength of a volumetric heat source, G(X, r), in a plate. The solution technique 
follows the methodology described previously, which includes the following 
basic steps: direct problem, inverse problem, sensitivity problem, adjoint 
problem, gradient equation, iterative procedure, stopping criterion and 
computational algorithm. 
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(a> (b) 
Figure 3.3.3 - Effects of moving the source to the center of the region. 

(a) - Configuration shown in figure 3.3.1 .a. 
(b) - Configuration shown in figure 3.3.1 .b. 

Direct Problem 

The direct problem is concerned with the determination of the temperature 
field in a one-dimensional plate with time and space varying heat source, G(X, t). 
We assume that the solid is initially at zero temperature. For times t > 0, the 
energy source is activated whife the boundaries at X = 0 and X = 1 are insulated. 
The mathematical formulation of this direct problem in dimensionless form is 
given by 

at X = 0, for r > 0 

at X = 1, for r > 0 

forr=O,  i n O < X < l  
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Inverse Problem 

For the inverse problem, the source function G(X,r) is regarded as 
unknown. In order to estimate G(X,z), we consider available the transient 
readings of M temperature sensors in the region and choose to minimize the 
following functional: 

where Zm(@ is the measured temperature of sensor m (m = 1, ..., M), while Bm(7) 
is the estimated temperature at the sensor location, which is obtained from the 
solution of the direct problem by using an estimate for G(X, z). 

For the solution of the present inverse problem via the conjugate gradient 
method of function estimation, we need to develop the sensitivity and adjoint 
problems as described next. 

Sensitivity Problem 

The sensitivity problem is obtained by replacing in the direct problem 
(3.4.1), O(X,r) by [B(X,t) + AB(X,r)], G(X,r) by [G(X,t) -t AG(X,r)] and 
subtracting from the resulting expression the original direct problem, where 
AB (X, s) and AG(X, r) are small perturbations. We find: 

a' [ A ~ C X ,  r)]  + AG(X, 7) = 
d AB(X 5) - L - d  In O <  X < I ,  for r > O  (3.4.3.a) 

dx2 d r  

at X = O ,  for 7 > 0  (3.4.3.b) 

at X =  1, for r > O  (3.4.3 .c) 

for t = 0, in 0 < X < 1 (3.4.3.d) 

Adjoint Problem 

The adjoint problem is developed by multiplying equation (3.4.1 .a) by the 
Lagrange multiplier A(X,t), integrating the resulting expression over time and 
space domains and then adding the result to the functional given by equation 
(3.4.2). We obtain: 
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The variation AS[G(X,r)] of the functional S[G(X,r)] is obtained by 
perturbing G(X,r) by AG(X,r) and RX,r) by  A@X,r) in equation (3.4.4) and 
subtracting from it the original equation (3.4.4). By neglecting second-order 
terms, performing integration by parts and using the boundary and initial 
conditions of the sensitivity problem, we obtain after some manipulations the 
following adjoint problem: 

Gradient Equation 

In the process used to obtain the adjoint problem, the following integral 
term is left: 

1 

&?[G(x, r ) ]  = I I A ( X ,  r )  AG(X,  r)dX d r  (3.4.6.a) 
r=O X=O 

By using the hypothesis that G(X, r) belongs to the space of square 
integrable functions in the domain 0 < r < s/ and 0 < X < 1, we can write 
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Thus, by comparing equations (3.4.6.a,b) we obtain the gradient equation 

Iterative Procedure 

The iterative procedure of Technique IV, as applied to the estimation of 
the hnction G(X, 7), is given by: 

where the direction of descent at iteration k is obtained as a conjugation of the 
gradient direction and of the previous direction of descent, in the form 

k k - l  d k  (X,r )  = VS[G(X,r)] + y d  ( X , r )  (3.4.8.b) 

The conjugation coefficient is obtained from the Fletcher-Reeves 
expression as 

1 2 J [ { v s [ G ~  (x, dl} dr 
k r=0 X=O 

Y =  fork= 1,2 ,... with = O  (3.4.8s) 
1 2 1 I(VS[G'"(X,~)~) nddr  

and the search step size is determined as (see Note 7 in Chapter 2) 

where A R ~ ' )  is the solution of the sensitivity problem given by equations (3.4.3), 
obtained by setting AG(X, r) = dk(x, r). 



MVERSE HEAT TRANSFER 

Results 

The accuracy of Technique IVY as applied to the estimation of G(X,z) is 
examined by using simulated measured temperature data. The stopping criterion 
was based on the Discrepancy Principle as described in section 2-4. Similarly, 
the computational algorithm presented in section 2-4 can be applied to the present 
estimation problem with few modifications. Hence, they are not repeated here. 

Figures 3.4.1 .a,b show the estimated function G(X,t) by using errorless 
measurements (a= 0) taken by seven equally spaced temperature sensors. Figure 
3.4.l.a shows G as a h c t i o n  of position at different dimensionless times (i.e., 
dz/= 0.1, 0.3 and 0.5), while figure 3.4.1 .b shows G as a function of time t/t/at 
three different locations (ie., X= 0.13, 0.25 and 0.5). Similar results, obtained by 
using 9 equally spaced temperature sensors containing measurement error 
( a  = 0.05), are shown in figure 3.4.2.a9b. The results were good, showing the 
feasibility of such estimates. Reasonably accurate estimates were obtained for 
G(X,t) with standard deviation a = 0.05, corresponding to an error of up to 
13%. 

3-5 ESTIMATION OF TEMPERATURE-DEPENDENT PROPERTIES 
AND REACTION FUNCTION [8,9] 

In the previous sections of this chapter, we considered inverse problems 
involving linear heat conduction. In this section, we illustrate the solution of the 
inverse problems of estimating the temperature-dependent thermal conductivity, 
heat capacity or reaction function. The reaction-diffusion type of problems 
considered here are found in nonlinear heat conduction, chemical reactor 
analysis, combustion, enzyme kinetics, population dynamics and many other 
practical applications. 

Inverse problems of estimating temperature-dependent properties and 
reaction function have been generally solved by using Technique 111 [lo-121. 
However, in situations where no information is available on the functional form 
of the unknown quantity, the inverse problem can be recast as a function 
estimation problem. Here we apply Technique IV, the conjugate gradient 
method with adjoint problem for function estimation, to solve such classes of 
inverse problems. Details on the basic steps of Technique IV are described 
below. Also, a comparison of Techniques 111 and IV is presented for the case of 
estimating the reaction hnction. 
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Figure 3.4.1 - The estimation of  a space and time dependent volumetric heat 
source by using 7 temperature sensors and o= 0. 
(a) Spatial variation. (b) Timewise variation. 
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Figure 3.4.2 - The estimation of a space and time dependent volumetric heat 
source by using 9 temperature sensors and a= 0.05. 
(a) Spatial variation. (b) Timewise variation. 
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Direct Problem 

For the present study, we consider the following nonlinear, one- 
dimensional heat conduction problem with temperature dependent properties and 
reaction fbnction: 

The direct problem defined above by equations (3.5.1) is concerned with 
the determination of the temperature distribution T(x,t) in the medium, when the 
physicaI properties C(T) and k (n ,  the boundary and initial conditions, and the 
reaction function g(T) are known. 

Inverse Problem 

Consider the following three different inverse problems of estimating: 

(i) g(T) unknown, but k(T) and C(T) known 
(ii) k(7)  unknown, but C(7) and g(7J known 
(iii) C(7) unknown, but k(7) and g(T) known 

where g(7)  is the energy generation rate (reaction-function), k(7)  is the thermal 
conductivity and C(T) is the heat capacity. 

For the solution of each of these inverse problems, we consider transient 
temperature readings available from M temperature sensors at the positions x,, 
m = 1, 2, ..., M. To solve these inverse problems, one needs to minimize the 
following objective functional S[P(T)] defined as 

where P(T) E g(T), k(T) or C(Q, unknown quantities, 
Yn,(t) is the measured temperature, and 
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T [x,, t ;  P(T)J is the estimated temperature. 

The estimated temperatures are obtained from the solution of the direct 
problem by using an estimate for the unknown quantity P(7'). 

The development of the sensitivity and adjoint problems, required for the 
implementation of Technique IV, are described next. 

Sensitivity Problem 

In order to develop the sensitivity problem we assume that the unknown 
quantity P(T) is perturbed by an amount cAP(7). Thus, the temperature T(x,t) 
undergoes a variation cAT(x,t), that is, 

T, (x, t )  = T(x ,  t )  + &AT(x,t) (3.5.3.a) 

where E is a real number and, as a subscript, &refers to a perturbed variable. 
Due to the nonlinear character of the problem, the perturbation of 

temperature causes variations on the temperature-dependent properties, as well as 
on the reaction function. The resulting perturbed quantities are linearized as: 

where Ak(T) = AC(T) = 0 for P(7) = g(T) unknown, 
AC(7) = Ag(7) = 0 for P(T) = k(T) unknown, and 
M(T) = Ag(T) = 0 for P(T) = C(T) unknown. 

For convenience in the subsequent analysis, the differential equation 
(3.5.1 .a) of the direct problem is written as 

and the perturbed form of this equation becomes 
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To develop the sensitivity problem we apply a limiting process to the 
differential equations (3.5.4.a,b) in the form: 

lim 
D&CT&) - 

= 0 
~ 3 0  E 

and similar limiting processes are applied for the boundary and initial conditions 
of the direct problem. After some manipulations, the following sensitivity 
problem results for the determination of the sensitivity function AT(x,t): 

where AT= AT(&?), C = C(T), k = k(T), g = g(T), Ak = Ak(T), AC = AC(T) and 
Ag = A& 7'). 

The procedure used here to develop the sensitivity problem for the 
nonlinear case is more general than that given in Chapter 2 for the linear case. 
Since the original problem involves temperature-dependent quantities, it is more 
convenient to use here the limiting process given by equation (3.5.5). A similar 
approach is used for the derivation of the adjoint problem, as described next. 

Adjoint Problem 

In order to derive the adjoint probtem and the gradient equation, we 
multiply equation (3.S.l.a) by the Lagrange multiplier A(x,t) and integrate over 
the time and space domains. The resulting expression is then added to the 
hnctional given by equation (3.5.2) to obtain: 
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where 4.) is the Dirac delta function. 
The above extended functional S[P(T)]  undergoes a variation AS[P(?")] 

when the unknown quantity and the temperature undergo variations &AP(T) and 
&AT(x, t),  respectively. The variation AS[P(?")] can be conveniently obtained by 
applying the following limiting process: 

s[pt ( T, I] - s[P(T)] 
U[P(T)] = lim - 

E+O & 

where the term S[PdTc)J is obtained by writing equation (3.5.7) for the perturbed 
quantities given by equations (3.5.3). We obtain 

The inner integrals in the second, third and fburth terms of equation (3.5.9) 
are integrated by parts and the boundary and initial conditions of the sensitivity 
problem are utilized. In the resulting expression, the terms containing AT(x,t) are 
then allowed to go to zero to obtain the following adjoint problem: 
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Gradient Equation 

In the process used to obtain the adjoint problem (3.5.10) ,  equation (3 .5 .9)  
reduces to 

For a function P(x, t )  belonging to the space of square integrable functions 
in the domain (O,r/) x (OJ), we can write: 

By assuming that there exists one-to-one correspondence between the 
temperature T and the pair (x, t ) ,  that is, P(T)  = P(x,t) and AP(T) r AP(x,t), we can 
transform the minimization of the functional given by equation (3 .5 .2)  from the 
temperature space to the (x , t )  space. Therefore, we can compare equations 
(3.5.1 1) and (3 .5 .12)  to obtain the gradient equations for the cases of unknown 
reaction function, thermal conductivity and volumetric heat capacity, respectively 
as 

V S [ ~ ( T ) ]  = - A ( x , t )  , for P(T)  = g(T) (3.5.13.a) 

dT 
VS[C(T) ]  = - d ( x ,  t )  , for P ( T )  = C(T)  

at 
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We note that the sensitivity and adjoint problems given by equations 
(3.5.6) and (3.5. lo), respectively, are linear, although the direct problem given by 
equations (3.5.1 ) is nonlinear. 

Iterative Procedure 

The following iterative procedure based on the conjugate gradient method 
is applied for the estimation of P ( 0 :  

where the superscript i denotes the number of iterations and the direction of 
descent d i ( ~ )  is given by: 

The expression of Polak and Ribiere is used here for the conjugation 
coefficient ': 

for i = 1,2, ... with yo = 0 

The search step-size pi is obtained by minimizing the functional given by 
equation (3.5.2) with respect to pi.  The following expression results (see Note 7 
in Chapter 2): 

where A%, t; d i )  is the solution of the sensitivity problem at position x,, and 
time r, which is obtained from equations (3.5.6) by setting AP(T) = di (T) .  
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Once di (T )  is computed from equation (3.5.14.b) and pi from equation 
(3.5. I4.d), the iterative process given equation (3.5.14.a) can be applied to 
determine P"'(T), until a specified stopping criterion based on the discrepancy 
principle is satisfied, as described in Chapter 2. 

Results 

In order to examine the accuracy of Technique IV, as applied to the 
analysis of the inverse problems previously described, we studied test cases by 
using simulated measured temperatures as the input data for the inverse analysis. 
To generate the simulated measurements, the direct problem given by equations 
(3.5.1) was expressed in dimensionless form by introducing the following 
dimensionless variables: 

and by taking the coefficients k(T) and C(T) in the form 

k(T) = ~ , K ( B )  and C(T) = C o ~ ( B )  (3.5.16.a,b) 

where ko and Co are constants with units of k(T) and C(T), respectively; ~ ( 8 )  and 
X(9 are dimensjonless functions of 0 ;  To is the initial temperature in the medium 
which is assumed to be uniform; and #L is the heat flux applied at the boundary 
x = L, which is assumed to be constant. 

The direct, sensitivity and adjoint problems were solved by using finite 
differences with 5 1 mesh points and 100 time steps. These values were chosen by 
comparing the numerical solution of the direct problem with a known analytic 
solution. The agreement between the two solutions was better than 1%. 

The accuracy of the present method of inverse analysis was verified under 
strict conditions by using the measurements of a single sensor. In such a case, the 
requirement of one-to-one correspondence between the temperature T and the 
pair (x,t), used to derive the gradient equations (3.5.13), is automatically satisfied. 

Consider initially the inverse problem of estimating the reaction function, 
i.e. P(7') = g(T), with k(Q and C(T) known. For simplicity, we have assumed 
K(@ = X(9 = 1.  Figures 3.5.1-3 present the results for exponential, triangular and 
step variations for the dimensionless reaction function, respectively, obtained 
with errorless measurements (a= 0) and measurements with random error, 
o = 0.01 Om,, where Q,, is the maximum measured temperature. Note in these 
figures that very accurate results are obtained, even for functions containing 
sharp comers and discontinuities, which are the most difficult to be recovered by 
an inverse analysis. 
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In order to compare the present fhnction estimation approach of Technique 
IV with the traditional approach of Technique 111, we also solved the inverse 
problem of estimating the reaction fbnction parameterized with B-Splines trial 
functions in the form: 

Thus, the inverse problem of estimating the reaction function reduces to 
the problem of estimating the unknown parameters P,, j = I ,  ..., N, where B,{T) 
are the known B-Splines. The number N of trial functions used in the 
parameterization is also considered known. 

The iterative procedure of Technique I11 can be found in section 2-3 and is 
not repeated here. In order to implement such a procedure, the sensitivity and 
adjoint problems given by equations (3.5.6) and (3.5.10) are also required. The 
gradient vector components are shown to be given by: 

0 ESTIMATED , cr=O.O1 Om,, 
- -ESTIMATED , u=O 

8 , TEMPERATURE 

Figure 3.5.1 - Inverse solution with exponential variation for the reaction 
function in the form r(B) = eO.". 
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0 ESTIMATED . u=0.01 Om,, 

- ,ESTIMATED , a=O 

Figure 3.5.2 - Inverse solution with triangular variation for the reaction 
function. 

ESTIMATED , ~=0.01 8,, 

- , ESTIMATED . a=O 

8 , TEMPERATURE 

Figure 3.5.3 - Inverse solution with step variation for the reaction function. 
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Table 3.5.1 presents the number of iterations, the RMS error and the CPU 
times for Technique IV, as applied to the test-cases shown in figures 3.5.1 to 
3.5.3, respectively, for measurements containing random errors. The calculations 
were performed on a Cray Y-MP supercomputer and the RMS error is defined as: 

where the subscripts ex and est denote exact and estimated quantities, 
respectively, and I denotes the number of temperature measurements used in the 
inverse analysis. 

Similarly, table 3.5.2 presents the results obtained with Technique I11 for 
the same functional forms considered above. A comparison of tables 3.5.1 and 
3.5.2 reveals that, for the same order of magnitude of RMS errors, the CPU times 
for the parameter estimation are iarger than those for the function estimation. It 
appears that the evaluation of the B-splines, during each iteration of the conjugate 
gradient method, causes the increase in CPU time for the parameter estimation 
approach. These tables show that the number of iterations is very similar for the 
function and parameter estimation approaches, except for the case of exponential 
variation of the reaction function. The initial guess used for both approaches was 
the exact value of the reaction function at the final temperature measured by the 
sensor, so that the instabilities inherent of Technique IV at the final temperature 
value could be avoided. 

Table 3.5.1 - Results obtained with Technique IV 

Table 3.5.2 - Results obtained with Technique III using cubic B-splines to 
approximate the reaction function 

Function 

Exponential 
Triangular 

Step 

Function 

Exponential 
Triangular 

Step 

CPU Time 
(sec) 
2.13 
2.14 
2.85 

Number of 
Iterations 

5 
6 
8 

RMS 
error 

0.1047 
0.0885 
0.2097 

Number of 
B- Splines 

4 
15 
20 

CPU Time 
(sec) 
3 1.07 
4.52 
4.60 

Number of 
Iterations 

50 
7 
7 

RMS 
error 

0.0989 
0.0923 
0.2080 
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- EXACT 
mrmoe q=O 00000 Q=O 
A A A A A  U = O . O I @ ~ ~ ~  A A A A A  0=O.O1 OmoL 

0 . 5 ~ ~ 1 1 1 1 ~ 1 , r l , ~  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

@ , DIMENSIONLESS TEMPERATURE 

Figure 3.5.4 - Estimation of the dimensionless thermal conductivity K(@. 
Functional forms containing discontinuities. 

- EXACT 
.*.me 0-0 00000 u=o 
A A A A A  ~ = c . 0 1  amax A A A A A  o = O . O l  Bmar 

0 . 5 ~ r 1 1 1 1 1 ~ 1 , 1 , 1  
0.0 0.2 0.4 0.6 0.8 1.0 1.2 

0, DIMENSIONLESS TEMPERATURE 

Figure 3.5.5 - Estimation of the dimensionless volumetric heat capacity a@. 
Functional forms containing discontinuities. 
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The results obtained with Technique IV for the estimation of MI), by 
assuming g(T) and C(T) known, and for the estimation of C(Q for g(T) and k(T) 
known, are also quite accurate. They are illustrated in figures 3.5.4 and 3.5.5 for 
both increasing (open symbols) and decreasing (closed symbols) functions, 
containing discontinuities. 

Simultaneous Estimation of k(T) and C(T) 

The foregoing analysis for the estimation of either k(T), C(T) or g(7) can 
be easily extended for the estimation of several quantities. Consider, as an 
example, that 47') and C(T) are unknown, but g(T) is known. In this case, 
Ag(7) = 0 and the inverse problem is solved by the minimization of the following 
functional. 

The iterative procedures of the conjugate gradient method, for the 
simultaneous estimation of thermal conductivity and volumetric heat capacity, are 
given by 

where the directions of descent are obtained from 

d i ( ~ )  = VS C (T) + y' d i - ' ( ~ )  
C [ i  ] c c  

with conjugation coefficients given by the Polak-Ribiere expression as 
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0 0 
with yc = yk = 0 for i = 0. 

The gradient directions for thermal conductivity, VS[k(T)], and heat 
capacity, VS[C(T)], are given by equations (3.5.13.b,c), respectively. The direct, 
sensitivity and adjoint problems are not changed for the simultaneous estimation 
of k(7)  and C(Q, and they are given by equations (3.5.1), (3.5.6) and (3.5.10), 
respectively. 

The search step sizes ,B; and ,B' are obtained by minimizing the functional 

(3.5.20) with respect to these two quantities. By using equations (3.5.21), we can 
write equation (3.5.20) as 

where the functional dependence of several quantities were omitted above for 
simplicity. 

The estimated temperature 7 k' - ,Bid:, ci - ,Bi d i  ) is linearized by a 
111 C C 

Taylor series expansion in the form: 

n 8T 
T tn ( k '  -,B'di,c' k k -,Bid')= c C T tn (ki,C')-/3; -+dl - ( - ~ d '  (3.5.25) 

2k 8 ~ '  c 

i i 
Let dk = Ak (3.5.26.a) 

and d' = AC' 
C 

Then, equation (3.5.25) can be written as (see Note 7 in Chapter 2) 
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where AT' and AT' are the solutions of the sensitivity problem, equations 
k , m  c,m 

(3.5.6), at the measurement locations x,, rn = 1, ..., M, obtained by setting 

and = di i i 

C 
Ak = Ag = 0 , respectively. 

By substituting equation (3.5.27), we can write the functional (3.5.24) as 

The above equation is minimized with respect to and P' to obtain the 
following expressions for the search step sizes: 

where 

After developing expressions for the directions of descent, equations 
(3.5.22), and for the search step-sizes, equations (3.5.29), the iterative procedure 
of the conjugate gradient method given by equations (3.5.21) can be applied for 
the simultaneous estimation of k(T) and C(T). 
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3-6 ESTIMATION OF THERMAL DlFFUSIVlTY AND RELAXATION 
TIME WITH A HYPERBOLIC HEAT CONDUCTION MODEL [13] 

So far in this chapter, we considered inverse heat conduction problems 
mathematically modeled by the parabolic heat conduction equation. The Fourier's 
Law serves as the constitutive equation relating the heat flux to the temperature 
gradient in the classical theory of diffusion, based on the parabolic heat 
conduction model. In accordance with Fourier's Law, heat propagates with an 
infinite speed in a conducting medium, that is, the effect of a thermal disturbance 
is felt instantaneously, although not homogeneously, in all parts of the medium. 
Despite such an unacceptable notion of energy transport in solids, Fourier's Law 
is accurate in describing heat conduction in most engineering situations 
encountered in daily life. However, there are practical situations in which the 
effects of the finite speed of heat propagation become important. For such 
situations, a constitutive equation which allows a time lag between the heat flux 
vector and the temperature gradient is given by [14] 

where r is the relaxation rime, an intrinsic property of the medium. This equation, 
when combined with the energy equation 

yields the following hyperbolic equation for heat conduction in the medium 
[ I 5 3 1 6 1  

Equation (3 .6 .3 )  predicts a wave behavior for the heat propagation, where 
the thermal wave speed, C,  is related to the relaxation time and to the thermal 
difisivity by 

Equation (3 .6 .3 )  has been applied on the modeling of physical processes 
dealing with extremely short time responses, extremely high-rate change of 
temperature and heat flux, initial conditions involving the time-rate change of 
temperature ( d  T l d t )  and temperatures approaching the absolute zero [ 1 5- 1 71. In 
experiments on the propagation of heat waves in liquid and solid helium, as well 



160 INVERSE HEAT TRANSFER 

as in dielectric crystals at cryogenic temperatures, values of relaxation time of the 
order of 10 .~  seconds and of thermal diffusivity of the order of 10 m2/sec were 
reported [ 1 71. 

In this section we present an inverse analysis for the simultaneous 
estimation of the thermal' difusivity a and the relaxation time r for a hyperbolic 
heat conduction model, by using transient temperature measurements taken in a 
semi-infinite region. The resulting parameter estimation problem is solved with 
Technique I, Levenberg-Marquardt Method, and an analysis of the sensitivity 
coefficients permits the design of an optimum experiment with respect to the heat 
flux boundary condition at the surface of the semi-infinite medium. 

Direct Problem 

The direct problem is concerned with the determination of the temperature 
field in the medium, when the physical properties, the initial and the boundary 
conditions are known. 

Here we consider a semi-infinite medium with no energy generation, 
subjected to a time-dependent heat flux at the boundary x = 0 and to equilibrium 
initial conditions. The mathematical formulation of this problem is given by: 

where 

for x > 0, t > 0 

for t  = 0, x > 0 

fort=O, x > O  

f o r x = O  t > O  

The solution of problem (3.6.5) is obtained by the application of 
Duhamel's Theorem [18,19]. For the case of qo(r) containing N jump 
discontinuities, it is given by 

t N-I 

~ ( x , t )  = 14(x , t  - 1')- d q o ( t ' d t ' + ~ ( ( x , i - l ) A q , H ( t - l , )  dt' I I I (3.6.6) 
f ' = O  i = O  
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where H(.)  is the Heaviside step function, Aqi is the magnitude of the step change 
in the surface heat flux at time Ai, and &x,t) is the solution of problem (3.6.5) for 
qo(t) = 1 w/m2. 

Here we assume that qo(t) is constant in each of the N intervals 
A, t t A,,,, for i = 0, 1, ..., N-1. Thus, the solution of problem (3.6.5) is obtained 
as [19]: 

The corresponding parabofic solution of problem (3.6.5) for r = 0 is also 
obtained via Duhamel's Theorem and is given by [19]: 

where 

Inverse Probtem 

The inverse problem is concerned with the simultaneous estimation of 
thermal difhsivity and relaxation time, fiorn the knowledge of transient 
temperature measurements taken with a single sensor in the medium. The 
boundary and initial conditions of problem (3.6.5), as well as the sensor location, 
are assumed to be known exactly, but the temperature measured data may contain 
random errors. 

The solution of such a .  inverse problem is obtained so that the least 
squares nonn is minimized with respect to each of the unknown parameters. The 
least squares norm is written in matrix form as 
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where 

INVERSE HEAT TRANSFER 

Y(ri) is the measured temperature at time ti and I is the total number of 
measurements. The estimated temperature T(t,;P) at time ti and at the 
measurement location is obtained from the solution of problem (3.6.5) by using 
an estimate for the unknown vector P. 

The Technique I, Levenberg-Marquardt method, was chosen for the 
minimization of the least squares norm (3.6*9.a). Such method requires the 
computation of the sensitivity matrix, which for the present case involving the 
estimation of the thermal diffusivity a and relaxation time r, is given by: 

where the sensitivity coefficients Jia and Jir are given as 

d ~ ( t  I .;P) ;P) 
and Jir = I J,, = for i=l, ...,I (3.6,10.b,c) 

Ba dr  

Details of the Levenberg-Marquardt method are omitted here for the sake 
of brevity, but they can be found in section 2-1 in Chapter 2. The subroutine 
DBCLSJ of the IMSL [43, based on this method, was used here to obtain 
estimates for a and 5: by using simulated experimental data, as described next, 

Results 

Before we proceed to the examination of the accuracy of Technique I, as 
applied to the present inverse problem, we shall determine the timewise variation 
of the heat flux at the boundary x = 0 which provides the most meaningful 
temperature measurements for the estimation of thermal diffusivity and relaxation 
time. This is accomplished by an analysis of the sensitivity coefficients J, and 

1 a 

J, , defined by equations (3.6.10.b,c). The sensitivity coefficients represent the 
IT 

changes in the temperature T(ti; P) with respect to the unknown parameters a and 
T. It is desirable to have large, linearly independent sensitivity coefficients and 
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the sensors should be placed at locations where the temperature readings are most 
sensitive to changes in the values of the unknown parameters. 

Here we consider the following three different timewise variations for the 
boundary heat flux in an experiment of duration 9: 

(i) A constant heatflux of strength qo(r) = q,: For this case we have N = 1 
and Ago(?) = q, at & = 0 .  

(ii) On-OffHeat Flux with period P:  The step changes in the heat flux are 

and the times when the changes Aqi occur are given by: 

A. = ( i l2)P for i=O, ..., N- I 
I 

(3.6.1 1 .b) 

where N = ( 2 p ) .  The durations of nonzero and zero heat fluxes were 
considered to be equal. 

(iii) Single-Pulse Heat Flux of duration A]:  For this case we have N = 2 with 

t I 
! f Aq, = -q at 2, = 0 and Aql = --q at A, 

A ' 
1 

A 
I 

We note that the magnitude of the nonzero heat flux was chosen so that the 
total energy input during the experiment would be the same for the three cases 
considered. 

For the sake of generality and simplicity in the comparison, the sensitivity 
coefficients are determined in dimensionless form by introducing the following 
dimensionless variables: 

where the characteristic length L is defined as 

Figures 3.6.1 .a-c present the dimensionless temperature variation for 
constant, on-off and single-pulse boundary heat fluxes, respectively, at a position 
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q~ = 0.5 and for an experiment of duration &- = 1. For sake of comparison, the 
dimensionless temperatures obtained from the solution of the parabolic problem 
are also included in these figures. 

6 , DIMENSIONLESS TIME 

- Constant Heat Flux 

8 i 
- - - - 

Figure 3.6.1.a - Temperature distribution at position T,I = 0.5 for a constant heat 
flux applied at q = 0. 

6 l 
- 

4 -, / 
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/ 

1 
/ 

2 1 / 
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/ - 
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/ 

0 - , , , I , ,  , 1 1 1  

Figures 3.6.2.a-c present the dimensionless sensitivity coefficients 
corresponding to the three cases shown in figures 3.6.1 .a-c, respectively. The 
behaviors of the sensitivity coefficients for the hyperbolic problem are quite 
different for each case considered; they took like their corresponding temperature 
profiles shown in figures 3.6.l.a-c. For times 6 < 0.5, the sensitivity coefficients 
are zero because the thermal wave has not yet reached the point = 0.5. For the 
cases of on-off and single-pulse heat fluxes and for 5 > 0.5, the sensitivity 
coefficients become very small and practically linearly-dependent during those 
periods that correspond to a zero boundary heat flux, as seen in figure 3.6.2.b,c. 
Such fact indicates that the simultaneous estimation of a and 7 is very difficult 
for these two cases. For the on-off heat flux, the measurements would have to be 
synchronized with the nonzero boundary heat flux, and for the single-pulse heat 
flux, all the measurements would have to be taken during the very short period 
when the temperature wave passes through the measurement point. On the other 
hand, for the constant heat flux boundary condition for times < > 0.5, the 
sensitivity coefficients are not linearly dependent and attain relatively large 
values, as seen in figure 3.6.2.a. Therefore, the foregoing analysis of the 
sensitivity coefficients reveals that constant heat flux is the best boundary 

/' 
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/ 
/ 

/ 
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l r l l , l r , , l l l l , l , l l , l , , , I I j , , , , , , , l ,  

0.0 0.2 0.4 0.6 0.8 1.0 1.2 



Figure 3.6.1.b - Temperature distribution at position 7 = 0.5 for on-off heat 
flux of period P = 0.1 applied at 7 = 0. 
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Figure 3.6.l.c - Temperature distribution at position 7 = 0.5 for a single- 
pulse heat flux of duration RI = 0.1 applied at 7 = 0. 
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condition among those examined, for simultaneous estimation of thermal 
diffusivity and relaxation time in the case of hyperbolic heat conduction model. 
In addition, temperature measurements taken before the wave reaches the 
measurement point are useless for the inverse analysis, since the sensitivity 
coefficients are null during this time. 

The sensitivity coefficients for the estimation of a in parabolic heat 
conduction are also included in figures 3.6.2.a-c. The magnitude of the sensitivity 
coefficients changes much slower for the parabolic than for the hyperbolic case, 
for the on-off and single-pulse heat fluxes. Also, the sensitivity coefficients for 
the parabolic model begin to increase at very small times for all three cases 
considered. These results are due to the diffusive behavior of the parabolic 
solution. It is interesting to note that in the very popular Flash method [20] of 
estimating thermal diffisivity, a semi-infinite medium is heated by a single-pulse 
heat flux from a flash lamp or a laser, and one single temperature 
measurement corresponding to half of the maximum temperature measured by the 
sensor is used to estimate a. Indeed, figures 3.6.l.c and 3.6.2.c show that such 
value of temperature corresponds to a sensitivity coefficient very close to its 
maximum, which yields an accurate estimate for the thermal difhsivity. 
However, such is not the case for the hyperbolic heat conduction model. 

Constant Heat Flux 

0, , Hyperbol ic  e - - -  R, , Hyperbol ic  , R -----.-- R, , Parabo l ic  , ' 
I 

( , DIMENSIONLESS TIME 

Figure 3.6.2.a - Dimensionless sensitivity coefficients for a sensor at 7 = 0.5 for 
a constant heat flux applied at q = 0. 
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Figure 3.6.2.b - Dimensionless sensitivity coefficients for a sensor at = 0.5 
for on-off heat flux of period P = 0.1 applied at q = 0. 

1 Single-Pulse Heat Flux 

- R, , Hyperbolic 
- - - R, , Hyperbolic 
--- ----- II, , Parabolic 

0 0.5 T,,, 

-0.4 ~ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  , i i l l l T l l ~ . ~ m  

0.0 0.2 0.4 0.6 0.8 1 .O 1.2 
, DIMENSIONLESS TIME 

Figure 3.6.2.c - Dimensionless sensitivity coefficients for a sensor at q = 0.5 
for a sin~le-nulse heat flux o f  di~ratinn 1, = O 1 annlied at  n = f l  
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We present below the results obtained for the simultaneous estimation of a 
and z, by using simulated measurements containing random errors with standard 
deviations of a = 0.01 T,, and a = 0.03 T,,, where T,,, is the maximum 
measured temperature. Exact values of r = 1 0 ~  sec and a = 0.1, 1 and 10 m2/sec 
were used in the direct problem, in order to generate such simulated measured 
data. Values in this range were reported in an experimental work involving 
crystals at cryogenic temperatures [17]. Table 3.6.1 shows the estimated values 
for a, r and for the 99% confidence interval of the parameters, as well as the 
initial guess used for the Levenberg-Marquadt Method. For the inverse analysis 
we used 46 transient measurements obtained with one single sensor located at 
x = 0.005 m below the boundary surface. These measurements were obtained 
after the heat wave reached the measurement point and the duration of the 
simulated experiments was taken as twice the time that the heat wave took to 
reach such a location. 

Table 3.6.1 - Results for .r = 1 om6 seconds. 
1 

The results shown in table 3.6.1 reveal that Technique I provides accurate 
estimates for both the thermal diffusivity and relaxation time. Generally, 
convergence was achieved with initial guesses of one order of magnitude smaller 
than the exact value for a, and two orders of magnitude smaller for r ; but there 
are cases for which convergence was obtained even with initial guesses of two 
orders of magnitude smaller than the exact values for both a and r. On the other 
hand, convergence difficulties were observed when initial guesses larger than the 
exact values were used, since the sensitivity coefficients are shown to be very 
small in such cases. 

3-7 ESTIMATION OF CONTACT CONDUCTANCE BETWEEN 
PERIODICALLY CONTACTING SURFACES 1213 

Problems involving periodically contacting surfaces have different 
practical appiications, including, among others, the contact between a valve and 
its seat in internal combustion engines. We illustrate the application of 
Technique IV to the estimation of the timewise variation of contact conductance 
between two one-dimensional solids with periodic contact. Small periods are 
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usually the most difficult to perform an inverse analysis. The present approach is 
found to be accurate and stable, even for situations involving very small periods. 

As discussed previously, the solution of this inverse problem by Technique 
IV requires the development of the direct, inverse, sensitivity and adjoint 
problems as well as the gradient equation. These basic steps to solve the problem 
are described next. Details on the other steps of Technique IV can be found in 
section 2-4. 

Direct Problem 

Figure 3.7.1 shows the geometry and the coordinates for the one- 
dimensional physical problem considered here. Two rods, referred to as regions 1 
and 2, are contacting periodically with period r and with a contact conductance 
F ( f )  at the interface. The non-contacting ends are kept at constant, but different 
temperatures To, and T2. It is assumed that sufficient number of contacts has 
been made, so that the quasi-steady-state condition is established for the 
temperature distribution in the solids, that is, the temperature distribution in the 
regions during one period is identical to that in the following period. 

The mathematical formulation of this heat conduction problem is given in 
dimensionless form as: 

Region 1 (0 5 x  I 1): 

a2r 87; 
1 - -- in O < x < l  , for t > O  

dx2 

q = O  at x = O  , for f > O  

m; 
--=h(t) [T,-s] at x = l  , for 1 2 0  

8x 

Region 2 (1 I x  I 1 + L): 

in l < x < l + L ,  for t > 0  (3.7.2.a) 

at x = l ,  f o r t > O  
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at x = l + L  , for t > O  (3.7.2.c) 

(3.7.2.d) 

where the following dimensionless quantities were defined 

and the superscript "-" above indicates dimensional variables. 

- - 
Reglon 1 h(t)., Region 2 

Figure 3.7.1 - Periodically contacting solids. 

The direct problem considered here is concerned with the determination of 
the temperature field in the regions when the thermophysical properties, interface 
conductance, h(t), and the boundary conditions at the outer ends of the regions 
are known. 

Inverse Problem 

For the inverse problem, the interface conductance, h(t), is regarded as 
unknown, but everything else in the system of equations (3.7.1-2) is known and 
temperature readings taken at some appropriate locations within the medium are 
available. 

Referring to the nomenclature shown in figure 3.7.1, we assume that Nl 
sensors are located in Region 1 and N2 sensors are located in Region 2. The first 
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sensors are located at distances 4 and g2 from the interface, while the remaining 

sensors are located with equal spacing of XI in Region 1 and B2 in Region 2. 
Let the temperature recordings taken with these sensors over the period s 

to be denoted by: 

Y l i ( t )  E Y l i  , i = 1 , 2  ,..., N 1  in Region 1 and 
Ya ( t )  = Y2, , j = I ,  2 ,..., N2 in Region 2 .  

Then, the inverse problem can be stated as: By utilizing the above 
mentioned measured temperature data Yli  ( i  = 1 ,  2, ..., N 1 )  and Y2 (j = 1 ,  2,  ..., N2), 
estimate the unknown interface conductance h(t) over the period z. 

It is assumed that no prior information is available on the functional form 
of h(t), except that the period .r is known. We are after the function h(t) over the 
whole time domain (0, T), with the assumption that h(t) belongs to the space of 
square integrable functions in this domain, i.e., 

The solution of the present inverse problem is to be obtained in such a way 
that the following functional is minimized: 

where Tl i  5 Tli( t )  and T2, = T2,{t) are the estimated temperatures at the 
measurement locations in regions 1 and 2, respectively. 

Sensitivity Problem 

The sensitivity problem is obtained from the direct problem defined by 
equations (3.7.1) and (3.7.2) in the following manner. It is assumed that when 
h(t) undergoes a variation Ah(,), Tl(x,t) is perturbed by ATl(x,t) and T2(x,t) is 
perturbed by AT2(x,t). Then, by replacing in the direct problem h(t) by 

+ G ( t ) l ,  T I ( x , ~ )  by ETl(x7t) + ATl(x,t)l and T2(x7t) by IT2(x9t) + ATz(x,t)l, 
subtracting fiom the resulting expressions the original direct problem and 
neglecting second-order terms, the following Sensitivity Problem for the 
sensitivity functions ATl(x,f) and AT2(x,t) is obtained: 
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Region 1 (0 5 x I 1): 

in O < x < l ,  for t > O  (3.7.5.a) 

AT, = O  at x = O  , for t >O (3.7.5.b) 

at x = l  , for t > O  

 AT^ (x,0) = ATl (x ,  r )  

Region 2 (1 I x I 1 + L): 

&AT  AT^ 
2- _-- in l < x < l + L ,  for t > O  (3.7.6.a) 

ax2 a 

AT, = 0 

at x = l ,  for t > O  (3.7.6. b) 

at x = l + L ,  for t > O  (3.7.6.c) 

Adjoint Problem 

In the present inverse problem, the estimated temperatures need to satisfy 
two constraints, which are the heat conduction problems for regions 1 and 2, 
given by equations (3.7.1) and (3.7.2), respectively. Therefore, two Lagrange 
multipliers come into picture here. To obtain the adjoint problem, equation 
(3,7.I.a) is multiplied by the Lagrange multiplier Ill(x,t), equation (3.7.2.a) is 
multiplied by the Lagrange multiplier ;lz(x,t) and the resulting expressions are 
integrated over the time and space domains. Then, the results are added to the 
right-hand side of equation (3.7.4) to yield the following expression for the 
hnctional S[h(t)]: 
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The variation AS[h(t)] is obtained by perturbing T,(x,t) by AT)(x,t), T2(x,t) 
by  AT2(x,t) in equation (3.7.7), subtracting from the resulting expression the 
original equation (3.7.7)  and neglecting second-order terms. We find 

In equation (3.7.8), the last two integral terms are integrated by parts; the 
initial and boundary conditions of the sensitivity problem given by equations 
(3.7.5.b-d) and (3.7.6.b-d) are utilized and then AS[h(t)] is allowed to go to zero. 
The vanishing of the integrands containing ATl(x,t) and AT2(x,f) leads to the 
following odioinr problem for the determination of the Lagrange multipliers 
n,(x , t )  and & ( ~ , t > :  

Region 1 (0 5 x I 1): 

d22, d l ,  N~ - + - + ~ Z ( T , ~ - Y ~ ~ ) ~ ( X - X , ) = O  i n O < x < I , f o r t > O  (3.7.9.a) 
dx2 at i=t 
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Region 2 (1 I x I 1 + L): 

in I c x c l + L ,  for t > 0  (3.7.10.a) 

at x = l  , for t>O 

a t x = l + L  , for t>O (3.7. I0,c) 

where 6(,) is the Dirac delta function. 

Gradient Equation 

In the limiting process used to obtain the adjoint problem above, the 
following integral term is left: 

From the assumption that h(t) E Lz(O,r), AS[h(t)] is related to the gradient 
VS[h(t)] by: 

Thus, a comparison of equations (3.7.11) and (3.7.12) leads to the 
following expression for the gradient VS[h(t)j of the functional S[h(t)]: 
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Iterative Procedure 

The following iterative procedure of Technique IV is used for the 
estimation of h(t): 

where pk is the Search Step Size in going from iteration k to iteration k+ I ,  and 
dk( t )  is the Direction ofDsscent given by: 

d k ( t ) = V S h  ( I )  + y  d (r) I k  1 
which is a conjugation of the gradient direction ~ ~ [ h ' ( t ) ]  at iteration k and the 
direction of descent dk- '  ( t )  at iteration k-1 .  The Conjugation Coeflcient f l  is 
determined from the Fletcher-Reeves expression as 

j { v s [ h k  ( t ) 1 2  dt 
y k  = t=o for k = 1,2 ,... with = 0 for k = 0 (3.7.14.c) 

j { v s [ h k - l  ( t l ~ } 2  dt 
r=O 

The step size @ is determined by minimizing the functional S[h(t)] defined by 
equation (3.7.4) in the following manner. By utilizing the expression for hk"(t) 
given by equation (3.7.14.a), the functional given by equation (3.7.4) takes the 
form: 

By linearizing the temperatures ~],(h'  - @ d k )  and ~ ~ , { h ~  - @ d k )  and 
minimizing the resulting expression with respect to 4,  we obtain the following 
expression for the search step size (see Note 7 in Chapter 2): 
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where T, ,  and T2, are the solutions of the direct problem (3.7.1) and (3.7.2), 
obtained by using the current estimate for h(t); while the sensitivity functions AT!, 
and AT2/ are the solutions of the sensitivity problem (3.7.5) and (3.7.6), obtained 
by setting M(t) = dk(t) .  

Results 

The problems of periodically contacting surfaces involving very smaI1 
periods are the most difficult to perfom an inverse analysis. Therefore, to 
illustrate the accuracy of Technique IV under very strict conditions, we examine 
the problems for very small periods. 

Consider M.O identical regions each of length = E 2  = 0.lm 
-5 2 

and made of brass (El = k2 = 106.1 Wlm K; Zl = Z2 = 3.4 x 10 m Is)  studied 

experimentally in reference [22] and theoretically by solving the inverse problem 
using B-Splines in reference [23]. Each region contains four sensors and 18 
measurements are made per sensor per period. Figure 3.7.1 shows the notation for 
the geometry, while Table 3.7.1 lists typical dimensional and dimensionless 
sensor locations, as well as periods of variation of h(t). 

Let h(t) vary in the form 

for the contact period 
h(t) = 

for the non - contact period 

This dimensionless value of h(t) = 2 corresponds to a dimensional contact 
conductance of 2122 w / ~ * K ,  which is encountered in the contact of metallic 
wavy surfaces [24]. Both exact and inexact simulated temperature measurements 
are considered, but all the other quantities used in the inverse analysis are 
assumed to be errorless. 
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Table 3.7.1 - Periods and sensor locations 

Due to the periodic characteristic of the problem, it is shown [25] that 
under the quasi-steady-state condition, the temperature distribution in the regions 
vary only within a finite depth of JT below the surface. The temperature 
distributions in each region at the end of the contact (Tn) and non-contact (T,) 
periods are presented in figure 3.7.2 for r = 10". Therefore, if the sensors are 
located outside this thermal layer ST, no difference can be detected between the 
temperature measurements for the contact and non-contact periods. Thus, to 
obtain meaninghl results from the temperature measurements, the sensors must 
be located within the thennal layer JT. Here we define 6T as the depth below the 
surface such that 

Period 

Sensor 
Locations 

where hg is a fixed tolerance. 

Figure 3.7.3 shows the effects of the period rand the contact conductance 
h during the contact period, on the dimensionless thickness ST of the thermal 
layer, for a tolerance ~6 = 10". We note that the value of the contact conductance 
has negligible effect on ST; on the other hand, ST is strongly dependent on the 
period t, such that becomes very small for short periods. As an example, for 
the physical case considered here, for r= 10" (i.e., 0.029 s) the thermal layer is of 
the order of which corresponds to tenths of millimeter. The results presented 
in figure 3.7.3 are obviously dependent on the tolerance ~ 6 ,  which is directly 
related to the accuracy of the sensors used. Therefore, these results are just a 
qualitative indication of the behavior of the thermal layer, with respect to 
variations in h and r. 

Dimensionless 
lo-] 
1 om2 
10" 

S= A = 0.005 
6=  A = 0.01 

S= 0.05; A = 0.1 

Dimensional 1 
29.41 s 
2.94 s 
0.29 s 

6 = E = 0 5 m m  
8 = x = l m m  

8 = 5 m m ;  z = 1 0 m m  
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x , POSlTlON 

Figure 3.7.2 - Temperature distribution on the regions. 

, PERIOD 

Figure 3.7.3 - Effects of rand h on the thermal layer. 
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Figures 3.7.4 to 3.7.6 show the results obtained with simulated errorless 
measurements for the periodically varying contact conductance in the form of a 
step function. Note that for the 3 cases considered, the solutions obtained with the 
conjugate gradient method (CGM) are more accurate than those obtained with 
h(t) parameterized with B-Splines in reference [23]. As a matter of fact, the B- 
Splines solutions exhibit oscillations near the discontinuities, which increase with 
decreasing period. On the other hand, the solutions with the Conjugate Gradient 
Method are very stable and do not exhibit oscillations, even for very small 
periods, 

Similarly, the estimation of h(t) with 3-Splines become unstable when 
measurements with random errors are utilized in the analysis; but reasonably 
accurate results can be obtained with the conjugate gradient method of function 
estimation. This is illustrated in figure 3.7.7 for the period r = 1 0 ' ~  and for a 
standard-deviation of the measurement errors of u= 0.0065. 

We define the root mean square (RMS) error as 

where I is the number of transient measurements per sensor, while the subscripts 
ex and est refer to the exact and estimated contact conductance, respectively. 

' , " "  I " "  
6 = 0.05 E X A C T  

. . ... . B-SPLINE ] 

0 0.05 0.1 0.15 0.2 

TIME 

Figure 3.7.4 - Inverse solution for exact measurements and r = 10". 
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Figure 3.7.5 - Inverse solution for exact measurements and 7= f 0". 

W 

I " " L " " [ ' ' ' s  

6 = 0.005 

A = 0.005 

. . . . 
8 .  - . . 
8 .  . . EXACT 1 
. . .. - ,CGM 

1 L  

- ~ ~ ~ ~ ~ ~ 8 ~ ~ l ~ ~ ~ ~ i , , , , ~  
A 

. . . &.. . 6-SPLINE : 

0 5 x 1 0 - ~  1 . 5 ~ 1 0 ~ ~  2 x 1 0 ~ '  

I ~ ~ ~ ~ ~ ~ - ~ ~ I ~ ~ ~ -  
d = 0.01 E X A C T  
A = 0.01 , + .CGM 

. . . r . .  8-SPLINE 

TIME 

Figure 3.7.6 - Inverse solution for exact measurements and 7= 

- 
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TIME 

o 
r 

Figure 3.7.7 - Inverse solution for u= 0.0065 and t= lo5. 

L 1 8 n # , , , , ,  
I " " 1  

, 6 = 0.005 E X A C T  - 
- A = 0.005 - , .CGM 
0 = 0.0065 . . .... B-SPLINE 

Table 3.7.2 shows the vaiues of ems for cases involving measurements 
with standard-deviation CJ = 0.0065. Clearly, the R M S  error increases as the 
period decreases and, for r= the RMS error for the B-spline method is much 
higher than that for the conjugate gradient method. The increase in the RMS error 
with decreasing period is expected. This is due to the fact that for shorter periods, 
the measurement error increases relatively to the maximum temperature variation 
in the regions. This maximum variation occurs at the contacting interface (see 
figure 3.7.2) and gives the upper limit of the temperature variations the sensors 
will measure. The ratio between the measurement error e at the 99% confidence 
level for o= 0.0065 and the maximum temperature variation in the regions T,,, is 
presented in the last column of table 3.7.2. 

W 
0 A z 9. 
a 
I- 
u l n -  * .. 
2 

- 
a .  

A a , . 
z . a . . 

, . . .'i 0 , . 

' I 

% A 

4 , , . , , , , , ,  4 , , , ,  

0 5x10-* lom3 1.5~10-' ~ X I O - '  

Table 3.7.2 - Total rms error and relative error 

Period 

10" 

1 o - ~  
0.15 

0.42 

1.67 

~ R M S  

B-spline 

0.36 

0.60 

2.90 

CGM 

0.36 

0.43 

0.58 
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3-8 ESTIMATION OF THE CONTACT CONDUCTANCE BETWEEN 
A SOLIDIFYING METAL AND A METAL MOLD [26,27] 

Heat transfer problems involving melting or solidification have different 
practical applications in engineering, including, among others, the solidification 
of metals, thermal storage of heat, cooling of electronic equipment, production of 
ice, etc. [18]. 

Phase-change problems involving melting or solidification of pure 
substances or of eutectic alloys are characterized by the existence of a sharp 
interface between the solid and liquid phases. The temperature of this interface 
remains constant and equal to the melting temperature (T,) of the material. On 
the other hand, when the phase-change phenomena takes place in mixtures, non- 
eutectic alloys or impure materials, there exists a two-phase (mushy) region 
between the solid and liquid phases, and the phase-change takes place over an 
extended temperature range. In such cases, it is considered to exist an interface 
between the solid and mushy phases at the constant solidus temperature T, and an 
interface between the mushy and liquid phases at the constant liquidus 
temperature TI. 

The one-dimensional solidification of pure and impure materials is 
illustrated in figure 3.8.1. The material, initially at a temperature Ti larger than the 
melting temperature (figure 3.8.l.a) or liquidus temperature (figure 3.8.l.b), is 
put into contact with the boundary surface at x = 0, which is maintained at a 
temperature To below the melting temperature (figure 3.8.1.a) or solidus 
temperature (figure 3.8.1 .b). As a result, solidification takes place and the solid- 
liquid interface in the case of pure materials (figure 3.8.1 .a), as well as both the 
solid-mushy and mushy-liquid interfaces in the case of impure materials (figure 
3.8.1 .b), move towards the x > 0 direction. The location of such interfaces is not 
known a priori and, hence, phase-change problems are non-linear. Therefore, 
analytical solutions for phase-change problems are available only for simple 
geometries, such as one-dimensional semi-infinite medium, and for cases 
involving simple boundary conditions, such as the prescribed temperature at the 
boundary surface [18]. For general cases, phase-change problems need to be 
solved numerically. 

Different numerical techniques for the solution of phase-change problems 
were developed in the past, including single-region and multiple-region methods 
[18,26-361. Single-region methods involve one single general formulation that is 
valid for the solid, liquid and mushy phases, as well as for the interfaces between 
phases [26-3 1,35,36]. On the other hand, in multiple-region methods each phase 
is modeled by a different governing equation and interface conditions are used to 
couple the formulations of adjacent regions [18,32-341. Single-region methods 
are advantageous because of their simplicity; but they cannot be extended to take 
into account the coupling between microscopic and macroscopic phenomena, as 
multiple-region methods can [32-351. 
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1 SOLID ( MUSHY I LIQUID 

Figure 3.8.1 - One dimensional solidification of pure substances (a) and of 
impure substances or alloys (b). 

If the effects of fluid flow in the liquid phase are negligible, convection 
heat transfer can be neglected and the phase-change problem can be formulated 
only in terms of heat conduction. 

In this section we present the solution of an inverse phase-change 
problem, involving the estimation of the contact conductance between a 
solidifying metal and a metal mold [26,27]. Convective effects on the liquid 
phase are neglected. The transient contact conductance is estimated by using 
Technique IV, the conjugate gradient method of hnction estimation. The direct 
problem involving the solidification of the metal is solved with the Implicit 
Enthalpy Method, which is a very straightforward single-region method [26- 
31,361. Both simulated and actual experimental data were used in the analysis. 
Such experimental data were obtained with an apparatus based on unidirectional 
solidification. 

The details of the experimental apparatus and of Technique IV, as applied 
to the estimation of the unknown transient contact conductance, are described 
next. 

Direct Problem 

A bottom filling solidification apparatus based on the unidirectional 
solidification principle, as illustrated in figure 3.8.2, was constructed to study 
experimentally the air gap conductance between the mold and the casting. It 
consists of a pouring sprue, a runner and a slightly tapered rectangular mold. 
Molten metal poured into the sprue gradually fills the space and eventually comes 
into contact with the chill-plate, through which heat is extracted from the 
solidifying ingot. The determination of the air gap conductance between the 
chill-plate and the solidifying ingot is the subject of this investigation. The chill- 
plate, which can be made of copper, steel or any other material, is clamped to the 
open face of the apparatus and cooled uniformly by a water jet. 
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To ensure unidirectional solidification, as well as to avoid premature 
freezing of the melt and the moisture-induced oxidation of the melt during 
pouring, the entire unit is preheated to above the liquidus temperature of the 
metal, prior to pouring. 

- 1 mm from chlll-plrto 
5 mm irom chill-plrlm 
10 mm from chlll-plrlo 

, Pouring 
nprue 

Figure 3.8.2 - Experimental solidification apparatus. 

Transient temperature recordings were taken with 28 gauge (0.012") 
chromel-alumel thermocouples placed at pertinent locations in the chill-plate and 
casting region and the temperature-time data were obtained with computer 
controIled data acquisition system at a rate of 6 readings per second. 

The transient temperature data taken as a function of time in the casting 
and in the metal mold are used in the inverse analysis in order to estimate the 
timewise variation of the unknown interface conductance. 

For the present study, the direct problem is the mathematical formulation 
of the following solidification problem: Suppose a molten metal suddenly comes 
into contact with a cold chilI-plate and the timewise variation of the contact 
conductance h,(t) between the chill-plate and the solidifying casting is known. 
Assuming constant properties, the mathematical formulation of such a problem is 
given by: 

The Chill-Plate (0 I x 5 b): 

in O< x < b , for I >  0 (3.8.l.a) 

at x = 0, fort>O (3.8.1.b) 
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T =TpO in 0 < x <  b, for t = O  (3.8.1.d) 
P 

where C = p c is the heat capacity per unit volume, while p and c are the 
P P P  P P 

density and the specific heat of the plate, respectively. Boundary condition 
(3.8.1 .b) implies that the temperature of the outer surface of the chill-plate is 
available from temperature measurements by a thermocouple. This eliminates the 
necessity to know the convection heat transfer coefficient between the chill-plate 
and the cooling fluid. 

The Casting Region ( b  I x 5 a): 

To alleviate the tracking of the moving interface, the enthaipy form of the 
energy equation is used for the casting region. 

in b < x < a ,  for r > O  (3.8.2.a) 

at x = b, fort  > 0 (3.8.2.b) 

Tc = Tco in b < x < a, for t = 0 (3.8.2.d) 

where dH = c dT is the enthalpy change of the casting material; cc and p, are 
C C 

respectively the specific heat and density of the casting, which initial temperature 
is Td. 

The objective of the Direct Problem is the determination of the 
temperature field inside the chill-plate and the casting region. 

Inverse Problem 

For the inverse problem considered here, the contact conductance hdt) is 
regarded as unknown and is to be estimated by using the temperature 
measurements of N I  sensors located inside the chill-plate and of N2 sensors 
located inside the casting region. The function h,(t) is estimated through the 
minimization of the following functional 



INVERSE HEAT TRANSFER 

where T i  5 T ( x  ,t) and Y are the estimated and measured temperatures, 
p l i  l i 

respectively, at a location x in the chill-plate. Similarly, T = T ( x  , t)  and Y 
li 2 j  e 2 j  2i 

are the estimated and measured temperatures, respectively, at a location x in the 
2 j  

casting region. If an estimate is available for hc(t), the temperatures T and T 
i i  21 

can be computed from the solution of the direct problem defined by equations 
(3.8.1)  and (3.8.2). 

The minimization of the functional (3.8.3)  with Technique IV requires the 
solution of the sensitivity and adjoint problems. The development of such 
auxiliary problems is described next. 

Sensitivity Problem 

Suppose h,(t) undergoes a variation Ahc(t). Then let AT, , AT, and AZic be 
the corresponding variations of the plate temperature, casting temperature and 
casting enthalpy, respectively. To construct the sensitivity problem we replace T' 
by [T' + AT,], T, by [Tc + AT,], H, by [H, + A&] and h, by [h, + Ahc] in the direct 
problem given by equations (3.8.1)  and (3.8.2) and then subtract equations (3.8.1) 
and (3.8.2) from the resulting equations. The following sensitivity problem is 
obtained for the determination of the functions AT, and AT, in the chill-plate and 
casting, respectively. 

The Chill-Plate (0 I x I b): 

dA T 
k P- - h ( t )  (AT - AT ) + Ah ( t )  ( T  - T ) at x = b, for r > 0 (3.8.4.c)  
P dx P C P  
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The Casting Region (b  5 x 5 a): 

in b < x < a  , for t > 0 (3.8.5.a) 

dA T 
- h (t) (AT - AT ) + Ah (1) (T - T ) at x = b, for t > 0 (3.8.5.b) k -- 

dx C P C C P  

at x = a, for t > 0 (3.8.5.c) 

In equation (3.8.5.a) we replaced AHc by its equivalent cJTc, since this is 
not a phase change problem. Therefore it can be solved with standard finite 
difference techniques. 

Adjoint Problem 

To derive the adjoint problem, we multiply equations (3.8.1 .a) and 
(3.8.2.a) by the Lagrange Multipliers 1 P (x,t) and A c (x,t) , respectively; 

integrate the resulting expressions over the time and correspondent space 
domains; and then add the resultant equation to the functional given by equation 
(3.8.3). The following expression results: 

The variation of the extended functional (3.8.6) is obtained and allowed to 
go to zero. After some manipulations, as outlined in section 2-4, we obtain the 
following adjoint problem for the Lagrange Multipliers A P (x,?) and A (x,t) . 
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The Chill-Plate (0 I x I b): 

d2,1 (x,t) d l  (x,t) "1 
k + C  2 + X Z ( T , ~  - Y ~ ~ ) G ( X  - x i ) =  0 

a x  P at 
i= l 

in 0 < x < b, for 0 < t < (3.8.7.a) 

;I = O  atx=O, for O < t < t /  (3.8.7.b) 
P 

dA 
k L = h  ( ! ) ( A  - 2  ) a t x = b ,  for O < r < r /  

C P  
(3.8.7.c) 

p a x  

l = O  i n O < x < b ,  for t s t /  (3.8.7.d) 
P 

The Casting Region (b 5 x I a): 

i n b < x < a ,  for O < t < t /  (3.8.8.a) 
d R  

k --I = hc(O (Ac - A p )  a t x = b ,  for O < t < t /  (3.8.8.b) 
Bx 

a t x = a ,  for O < t < t /  (3 -8.8.~)  

R = O  i n b < x < a ,  for t = t /  (3.8.8.d) 

Note that the adjoint problem defined by equations (3.8.7) and (3.8.8) is 
not a phase change problem and can be solved with standard finite difference 
techniques. 

Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 
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By assuming that h,(t) belongs to the space of square integrable functions 
in the time domain 0 < t < t/, we can write 

Therefore, by comparing equations (3 -8.9.a) and (3.8.9.b), we can obtain 
the gradient equation for the hnctional as 

Iterative Procedure 

The following iterative procedure of Technique IV is used for the 
estimation of the contact conductance h,(t): 

where the superscript k refers to the number of iterations and the direction of 
descent is given by 

k k-1 
d k  ( t )  = vS[hr  ( t ) ]  + d ( I )  (3.8.1 1 .b) 

The conjugation coefficient is obtained from the Fletcher-Reeves 
expression as 

for P1,2,3 ,... with = 0 (3.8.1 1.c) 

An expression for the search step size is obtained by minimizing the 
functional given by equation (3.8.3) with respect to 4.. We obtain (see Note 7 in 
Chapter 2): 
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k k 
whereAT (d  ) = A < , ( x l , , t ) , i = l  ,..., N ,  and AT (d  A T  (x , t ) , j=l , . . . ,  N2, 

I I 21 21 21 

are the solutions of the sensitivity problem given by equations (3.8.4) and (3.8.5), 
for the chill-plate and casting regions, respectively, obtained by setting 

Ah (!)=dk(t) .  

Results 

In order to examine the accuracy of the conjugate gradient method, as 
applied to the analysis of the inverse solidification problem previously described, 
we studied test cases by considering a fictitious interface conductance and using 
simulated temperatures as the input data for the inverse analysis. The simulated 
temperature data were generated by solving the direct solidification problem for 
aluminum, on a geometry similar to that of the experimental rig and for a 
specified hnctional form of the interface conductance. 

A proper choice for the locations of the temperature sensors is important 
for the success of the inverse analysis. The temperature readings taken with one 
thennocouple located near the cooled side of the plate served as the boundary 
condition for the solidification problem. The temperature readings from another 
thermocouple located in the chill-plate near the casting side and from one more 
thermocouple placed in the casting region near the plate, were used for the 
inverse analysis, Inverse calculations were performed by using simulated 
temperature data with and without measurement errors. The effects of errors in 
the thermocouple locations on h,(t) were also examined. These matters are 
discussed below. 

Figure 3.8.3.a shows the estimated values of the contact conductance h, 
plotted as a hnction of time, obtained by using simulated temperature data 
containing no measurement errors, for the case of a 6mm thick steel plate with 2 
thermocouples embedded into the plate at a distance 4mm apart, in the direction 
normal to the surface of the plate. A third thermocouple was located in the 
casting at a distance 1 mm from the surface of the chill-plate. A comparison of 
the exact and the estimated values of the contact conductance h, shown in figure 
3.8.3.a reveals that they are in excellent agreement. In the solution of inverse heat 
conduction problems with the conjugate gradient method, the value of h, at the 
final time is the same as the initial guess for h, used to start the calculation. This 
difficulty was alleviated by repeating the calculations with an initial guess chosen 
as the value of h, at several time steps before the final time. Figure 3.8.3.b shows 
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the estimated and the exact temperatures at the plate thermocouple located at the 
casting side of the plate. 

Figure 3.8.3.a - Estimated contact conductance obtained from simulated 
experimental data with no measurement error (6 mm thick steel chill-plate). 

Figure 3.8.3.b - Estimated and exact simulated temperatures for the 
thermocouple in the chill-plate (6 mm thick steel chill-plate). 

Figure 3.8.4 shows the estimated and the exact values of the contact 
conductance h, for the same thermocouple configuration used before, but for a 
6mm copper chill-piate. We note that during the first 5 or 6 seconds, the 
estimated values of the contact conductance h, are not accurate. This is because 
of the small value of the temperature difference between the readings of the two 
thermocouples embedded in the plate, resulting from the high thermal 
conductivity of the copper chill-plate. Since the readings of one of the plate 
thermocouples are used as the boundary condition for the solidification problem 
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and the readings of the other are used for the inverse problem, the accuracy of the 
estimation is impaired if the temperature difference between them becomes small. 
After a few seconds from the initiation of the solidification, the solid-liquid 
interface reaches the thermocouple located in the casting at a distance lrnm from 
the plate surface. Then, the thermocouple in the casting provides usehl 
information to perform the inverse analysis and the agreement between the 
estimated and the exact values of the contact conductance begins to improve. 
Such behavior was also observed in simulations using thinner plates, with one 
thermocouple placed inside the chill-plate and one thermocouple in the casting 
region. The former served as the boundary condition for the solidification 
problem and the later to perform the inverse analysis. 

Figure 3.8.4 - Estimated contact conductance obtained from simulated 
experimental data with no measurement error (6 mrn thick copper chill-plate). 

Figure 3.8.5 shows the exact and estimated contact conductances by using 
a 6mm thick copper chill-plate with two thermocouples embedded into the plate 
at a distance 4mm apart. The only difference between figures 3.8.4 and 3.8.5 is 
that in the later, the contact conductance is larger, thus allowing larger heat flux 
across the plate. As a result, the temperature difference between the two 
thermocouples is larger and the accuracy of the inverse analysis is significantly 
improved. 

Figure 3.8.6 is prepared in order to iIlustrate the effects of the input data 
containing measurement errors on the estimation of h, with the present inverse 
analysis. For this case it is assumed that the standard deviation of the 
measurement errors is a = 0.5 for the mold region and a = 1 for the casting 
region. These values are based on the actual calibration data for the thermo- 
couples. Since the measured data contains measurement errors, the discrepancy 
principle was used to terminate the iterations. The results shown in figure 3.8.6 
are for a 6rnm thick steel chill-plate with two thermocouples embedded into the 
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plate at a distance 4mm apart. The agreement between the exact and the estimated 
contact conductance is good. 

Figure 3.8.5 - Estimated contact conductance obtained from simulated 
experimental data with no measurement error (6 mm thick copper chill-plate). 

Figure 3.8.6 - Estimated contact conductance obtained from simulated 
experimental data with measurement errors (6 mm thick steel chill-plate). 

To examine the errors associated with the misplacement of the 
thermocouple located in the casting region, lmm error was assumed in the exact 
location of this thermocouple. The contact conductance was insensitive to such 
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an error in the thermocouple location. For example, the contact conductance was 
overestimated (or underestimated) by less than two percent when the 
thermocouple junction in the casting was shifted towards (or away from) the 
chill-plate. 

Finally, in figures 3.8.7.a-c we present the correlation of the actual 
experimental data for the solidification of aluminum on a 2.5 mm thick, 
substantiality smooth (i.e., 0.125 to 0.25 pm roughness) copper chill-plate. Figures 
3.8.7.a and 3.8.7.b show the estimated contact conductance and heat flux, 
respectively, while figure 3.8.7.c gives the estimated and the measured 
temperatures of sensor # 1 (see figure 3.8.2) located in the casting at a distance 
1 mm from the chill-plate. Clearly, the estimated and the measured temperatures 
are in very good agreement. Figure 3.8.7.a shows that the contact conductance 
increases to a peak value of about 3500 w/m2 OC within I8 seconds after the start 
of the solidification and then decreases to the steady-state value of about 
2200 w/m2 *C. The increase of the contact conductance is probably due to the 
increasing number of asperities of the chill-plate surface coming into contact with 
the solidifLing metal during the initial stages of the solidification. After this 
period, thermal stresses on both the plate and the solidified region of the casting 
tend to break the intimate contact at the interface, resulting in the decrease of the 
contact conductance until a steady-state value is approached. The interface heat 
flux shown in figure 3.8.7.b exhibits almost the same functional behavior of the 
contact conductance. 

TIME . B 

Figure 3.8.7.a - Contact conductance estimated from the actuat experimental 
data. 
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Figure 3.8.7.b - Estimated interface heat flux obtained from the actual 
experimental data. 

TIME . t 

Figure 3.8.7.c - Estimated and actual experimental temperature for sensor 
number 1. 

PROBLEMS 

3-1 Consider the inverse problem studied in section 3.1, involving the 
estimation of the thermal conductivity components of a 3D orthotropic 
solid. By using the transient measurements of three sensors optimally 
located as described in section 3.1, solve this inverse problem by utilizing 
Technique 11. Compare the results obtained with Technique I1 to those 
obtained with Technique I, for the estimated parameters, CPU time, 
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number of iterations and standard-deviations for the parameters. Study also 
the effect of the initial guess on the results. 

3-2 For the inverse problem studied in section 3.1, consider the boundary heat 
fluxes to be in the form 

1 for 0 c t  < rh 
o for t h < t < t  

I 
for j= 1,2,3 

where th is the heating time and 1/ is the final time. For such boundary heat 
fluxes, design optimum experiments with respect to the variables t h  and r/. 
Consider for the analysis the values for the parameters and the sensors 
locations shown in section 3-1. Estimate the thermal conductivity 
components with the optimal values of th and ~j. Does the accuracy of the 
estimated parameters improve, as compared to the values estimated in 
section 3-l? Why? 

3-3 Solve the inverse problem of estimating the initial condition of section 3-2 
by using Technique IV and measurements of sensors located inside the 
region, in addition to the measurements taken at the boundary. Does the 
accuracy of the estimated functions shown in figures 3.2.2.a,b improve? 

3-4 Consider the following heat conduction problem in dimensionless form: 

i n O < x < l ,  for r > O  

at x = 0, for t > 0 

a t x = l ,  for t  > O  

Assume q(t)  varies linearly with time, i.e., 

Then, set a = b = 1 in the direct problem to generate 100 equally spaced 
transient simulated measurements in the time interval 0 < t  I 1, for a 
sensor located at x,,,, = 0. Use such simulated measured data to estimate 
the parameters a and b with Techniques I, I1 and 111. Examine the effects 
of initial guess and random measurement errors on the final estimates. 
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3-5 Solve the inverse problem of estimating the boundary heat flux q(t) 
described in problem 3-4, by using Technique IV of b c t i o n  estimation. 
Assume that no information is available on the hct ional  form of q(t), 
except that it belongs to the space of square integrable functions in the 
domain 0 < t < 1. Use for the inverse analysis 100 equally spaced transient 
measurements in 0 < t I I ,  of a sensor located at x,,,,, = 0. 
In order to generate the simulated measurements, utilize the fol~owing 
functional forms: 

(i) q(t) = 1 + r 
(ii) q(t) = 1 + t +?  

1 , t 10.3 and t 2 0.7 
(iii) g ( t )  = 

, 0.3 < t < 0.7 

I 1 , t 5 0.3 and t 2 0.7 
(iv) q(t) = 5t - 0.5 , 0.3 < r 1 0.5 

Use as initial guess a constant function q(t) = 0 and examine the effects of 
random measurement errors on the solution. 

3-6 Try to improve the estimated functions of problem 3-5 in the time interval 
0 < r I 1, by using the following approaches: 
(i) Use q(t) = 0 as initial guess, but consider a time interval larger than 

that of interest. For example, use for the final time t/ = 1.1, 1.25, 
1.5, etc. Does the quality of the estimated h c t i o n s  in the time 
domain 0 < t 5 1 improve? Remember to increase the number of  
measurements accordingly, so that 100 measurements appear in the 
interval 0 < t 5 1. 

(ii) Repeat the calculations with t/= 1 and with an initial guess for q(t) 
equal to the value estimated in problem 3-5, for a time in the 
neighborhood of r/. Let's say, use now as initial guess the value 
estimated in problem 3-5 for q(0.9). Repeat this procedure until 
suficiently accurate estimates are obtained in the interval 0 < f ,< I .  

3-7 Repeat problems 3-4 and 3-5 by using fewer transient measurements in the 
inverse analysis. Take, as an example, 20 measurements of the sensor 
located at x,,,, = 0 in the time interval 0 < ? <, 1 .  Are the final solutions 
sensitive to the number of measurements? 

3-8 By examining the sensitivity coefficients fbr problem 3-4 and the 
sensitivity problem for problem 3-5, show that more accurate estimates can 
be obtained by Iocating the sensor closer to the boundary x = I .  Do the 
estimates actually improve if you locate the sensor at x,,,, = 0.5, instead of 
Xme,, = O? 

3-9 Repeat problems 3-4 and 3-5, by using in the inverse analysis the transient 
readings of two sensors located at x = 0 and x = 0,s. Compare the results 
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obtained with two sensors to the results obtained in problems 3-4 and 3-5 
with a single sensor. 

3-10 Repeat problem 3-5 by using the Steepest Descent Method (the 
conjugation coefficient y' is null for all iterations), instead of Technique 
IV. How do the two methods compare with respect to the number of 
iterations required for convergence? 

3-1 1 Repeat problem 3-5 by using a very small number for the tolerance s in  the 
stopping criterion, instead of using the discrepancy principle, for cases 
involving measurements with random errors. What happens to the stability 
of the estimated functions? Why? 

3-12 Repeat problem 3-5 by using the additional measurement approach for the 
stopping criterion, for cases involving measurements with random errors. 
Compare the results obtained with this stopping criterion approach to those 
obtained by using the discrepancy principle. 

3- 13 Derive equations (3.5.29.a,b). 
3-14 Use the approach developed in section 3-5 in order to estimate 

simultaneous~y the temperature dependencies of thermal conductivity and 
volumetric heat capacity. 
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Chapter 4 
INVERSE CONVECTION 

So far in this book we have considered problems involving conduction, 
which is the heat transfer mode that received most of the attention of the 
community dealing with inverse problems. More recently, inverse problems in 
which convection is the dominant heat transfer mode started to appear in the 
literature [l-133. 

In this chapter we present the solution of inverse problems involving the 
estimation of inlet and boundary conditions in forced convection in paraIlel plate 
channels. For all the problems considered here we assumed the flow to be 
hydrodynamically developed, that is, the region of interest is sufficiently far from 
the inlet of the channel, so that the velocity profile does not vary with the axial 
direction. Analytic expressions for hydrodynamically developed velocity profiles 
for newtonian and non-newtonian fluids in laminar and turbulent flows can be 
found in standard textbooks 114-171. Hence, such velocity profiles are considered 
to be known for the analysis, so that the solutions of the inverse problems to be 
considered here only involve the energy equation. 

The solutions of the following inverse problems are considered in this 
chapter: 

Estimation of the Inlet Temperature Profile in Laminar Flow [I]; 
Estimation of the Transient InIet Temperature in Laminar Flow [2]; 
Estimation of the Axial Variation of the Wail Heat Flux in Laminar 
Flow [3]; 
Estimation of the Transient Wall Heat Flux in Turbulent Flow [4]; 
Simultaneous Estimation of the Spacewise and Timewise Variations of 
the Wall Heat Flux in Laminar Flow [ 5  1. 
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We use Technique IV for the solution of these inverse problems, where 
the unknowns are estimated as a fbnction estimation approach. 

The basic steps of Technique IV include: direct problem, inverse problem, 
sensitivity problem, adjoint problem, gradient equation, iterative procedure, 
stopping criterion and computational algorithm. We present below the details of 
such steps of Technique IV, as applied to the solution of the inverse convection 
problems considered in this chapter. However, we avoid here the repetition of the 
details for the stopping criterion and computational algorithms, since they can be 
readily found in section 2-4. 

4-1 ESTIMATION OF THE INLET TEMPERATURE PROFILE IN 
LAMINAR FLOW (11 

Direct Problem 

The physical problem considered here involves laminar steady-state forced 
convection between parallel plates, located at a distance h from each other. The 
plates are subjected to a constant heat flux q, while the inlet temperature profile is 
given by m), as shown in figure 4.1.1. The physical properties are assumed 
constant and viscous dissipation, fiee convection, and axial conduction effects are 
neglected. The mathematical formulation for this steady-state forced convection 
problem is given as follows: 

To = f (Y) at x = 0, O < y < h  (4.1.1.d) 

where u(y) = 624 - Y (  1 - - i) is the velocity profile in the channel. 
mh 
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Figure 4.1.1 - Geometry and coordinates 

By introducing the foIlowing dimensionless quantities 

T Y x u D 
@=- y = -  x=- Re = - m e 

T h PeD 
e 

v 
ref 

where Td is a reference temperature value, the governing equations (4.1 . I )  can 
be expressed in dimensionless form as 

The problem given by equations (4.1.3) is denoted as a Direct Problem, 
when the inlet temperature profile F ( n  and other quantities appearing in 
equations (4.1.3) are known. The objective of the Direct Problem is to determine 
the temperature field O(X,Y) of the fluid inside the channel. 
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Inverse Problem 

For the Inverse Problem the inlet temperature profile F(Y) is regarded as 
unknown and is to be estimated by using the temperature measurements of M 
sensors located at appropriate positions , rn = 1, ..., M inside the channel, 

where X* > 0. Such measurements may contain random errors, but all the other 
m 

quantities appearing in problem (4.1.3) are considered to be known with 
sufficient degree of accuracy. 

The present inverse problem is solved by the conjugate gradient method as 
applied to the minimization of the following functional: 

where 2, and O,[F(Y)] are the measured and estimated temperatures at the 
measurement locations, respectively, while M is the number of sensors. The 
estimated temperatures O,[F(Y)] are obtained from the solution of the direct 
problem (4.1.3) by using an estimate for the inlet temperature profile F(Y). Note 
that we assume in equation (4.1.4) the sensors to be discretely distributed in 
space, instead of the usual approach of considering continuous measurements for 
Technique IV. 

Two auxiliary problems are required for the implementation of the 
conjugate gradient method: the Sensitivity Problem and the Adjoint Problem. The 
development of such problems is described next. 

Sensitivity Problem 

To obtain the sensitivity problem, it is assumed in the direct problem that 
F(Y) undergoes an increment @(Y). Then the temperature O(X,Y) changes by 
AO(X,Y). By replacing in the direct problem F(Y) by [ F(Y)+ AF(Y)] and 
O(X, Y)  by [O(X,Y) + A@(X, Y)  1, subtracting from the resulting expressions 
the original direct problem and neglecting the second-order terms, the following 
sensitivity problem is obtained: 
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Adjoint Problem 

To obtain the adjoint problem, equation (4.1.3.a) is multiplied by the 
Lagrange multiplier A(X,Y). The resulting expression is integrated over the space 
domain, and then added to the right-hand side of equation (4.1.4) to yield 

The variationAS[~(Y)] of the extended functional given by equation 
(4.1.6) is obtained and after some algebraic manipulations, the resulting 
expression is allowed to go to zero. Such manipulations were described in detail 
in Chapter 2 and are not repeated here. The following adjoint problem is then 
obtained for the Lagrange Multiplier A ( X ,  Y) : 

where X , Y gives the measurement location of sensor m, m = 1, ..., M. ( : :) 
Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 
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By assuming that F(Y) belongs to the space of square integrable hnctions 
in the domain 0 < Y < 1, we can write 

By comparing equations (4.1.8.a) and (4.1.8.b), we can obtain the gradient 
equation for the functional as 

We note that the adjoint problem (4.1.7) involves a condition at the outlet 
of the channel at X = L, equation (4.1.7.d), instead of the inlet condition at X = 0 
of the regular direct problem, equation (4.1.3.d). This is similar to the final 
condition encountered in adjoint problems of other transient inverse problems, 
that appeared above in the text. 

Iterative Procedure 

The iterative procedure of Technique IV, as applied to the estimation of 
the inlet temperature profile is given by: 

where the superscript k refers to the number of iterations and the direction of 
descent dk (Y) is given by: 

k 
The conjugation coefficient y is obtained from the Fletcher-Reeves 

expression as: 
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j{VS[Fk (qj2 dY 
k Y=O 0 

Y = for k=1,2 ,... with y = O  (4.1.10.c) 

j[BS[Fk-1(Y)]}2 dY 
Y=O 

The search step size P' is obtained by minimizing the functional given by 
k 

equation (4.1.4) with respect to ,O . The following expression results: 

is the solution of the sensitivity problem (4,1.5), obtained 
m 

by setting W ( Y )  = d k  (Y)  . 
The iterative procedure of Technique IV given by equations (4.1.10) is 

applied until a stopping criterion based on the discrepancy principle is satisfied, 
as described in section 2-4. Such iterative procedure can be suitably arranged in a 
computational algorithm, which can also be found in the same section. 

Results 

in order to examine the accuracy of the inverse analysis for estimating the 
unknown transversal variation of inlet temperature by the conjugate gradient 
method, we examined several strict test conditions including a function with 
sharp comers, a step function and a smooth function. The effects of the number 
of measurements, M, distribution of the measurements in the transversal 
direction, axial locations of the sensors, magnitude of measurement errors, and 
functional form of the unknown inlet temperature on the accuracy of estimations 
are investigated. 

The problem is solved in dimensionless form for a duct with geometry 
illustrated in figure 4.1.1. In order to give some idea on the physical significance 
of the various dimensionless variables, we consider air flow at a mean velocity 
u,,, = 2.5 crnis (Reynolds number = 400) through a duct of height h = 12.8 cm and 
length b = 63.5 cm. The wall heat flux is taken as q = 500 wlm2. Our objective is 
to estimate the unknown distribution of inlet temperature from the knowledge of 
temperature measurements taken at the downstream locations. To identify the 
locations of the temperature sensors, we consider dimensionless step sizes 
AX= 0.00025 and AY = 0.025 in the axial and transversal directions. respectively. 
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In terms of dimensional quantities, they correspond to Ax = 2.54 cm and 
Ay = 0.32 cm. For M equally spaced sensors in the transversal direction, the 
dimensionless distance, DY, between the sensors becomes DY = l / (M+l) .  
Simulated measurements obtained in the form given by equation (2.5.2) were 
used in the analysis. 

Figure 4.1.2 illustrates the effects of the number of measurements on the 
accuracy of the estimation, for sensors located at X' = 2OAX 'Ihe number of 
transversal measurements considered here includes M = 5, 9, 19 and 39, 
corresponding to dimensionless spacings of DY = 0.167, 0.1, 0.05 and 0.025, 
respectively. The results show that the accuracy of the estimations improves by 
increasing the number of sensors; but, even for a small number of sensors such 
as M = 5, a quite good estimation is obtained, with the exception for the 
point Y = 0.667 where exists a discontinuity in the slope of fir). 

I x'=2oax exact : 
1.2 : --- - - - - - -  M=5 : 

--.- M=9 
. . . . . . . . . . . . . . . . . . . . . M=19: 

Figure 4.1.2 - Effects of number of measurements on the accuracy of inverse 
analysis. 

Figure 4.1.3 is intended to show the effect of the axial location of the 
measurements on the accuracy of the estimation. In this case, five measurements 
are taken at each of the different axial locations 5 M ,  1 O M ,  15dX and 20dX from 
the inlet, in order to perform the computations. It should be noted that these 
locations are all in the thermally developing region. As the measurements are 
taken at locations away fiom the inlet, more heat flux penetrates from both 
boundaries into the flow. As a result, the inlet temperature becomes difficult to 
recover by the inverse anatysis. We also tested several cases in which the 
measurements were taken in the thermally fully developed region; but the 
measurements taken in such a region provide no information for determining the 
inlet temperature. 
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1.4, I , . . . , "  + 

M=5 exact : 
1.2 ! ----- - - - -  5 A X  1 

----.-. 1oAx 
1.0 L . . . . . . . . . . . . . . . . . . , . ISAX : 

I . . . . I . .  . .  I . . .  

0.0 0.2 0.4 0.6 0.8 1 .O 

Figure 4.1.3 - Effects of axial location of the measurements on the accuracy of 
inverse analysis. 

In the case of an inlet temperature distribution containing a slope 
discontinuity, the accuracy of the estimation improves if the location of the 
discontinuity is known apriori and a temperature measurement is taken at such a 
location. Figure 4.1.4 illustrates the effects of distribution of measurements in the 
transversal location on the accuracy of the estimation, for M = 5. In Case I, the 
five measurements were taken at the transversal locations of Y = 0.167, 0.33, 0.5, 
0.667 and 0.83, where Y = 0.667 corresponds to the location of the slope 
discontinuity. The measurement locations for Case I1 were Y = 0.167, 0.33, 0.5, 
0.75 and 0.83, which did not include the discontinuity location. The results show 
that the accuracy for Case I is better than that for Case 11. 

Figure 4.1.5 is intended to show the effects of magnitude of the 
measurement errors on the accuracy of estimation, for the cases involving 
measurement errors of 2.5%, 5% and 10%. As expected, the accuracy of 
estimation decreases with increasing the measurement error, especially at the 
slope discontinuity. 

Figures 4.1.6 and 4.1.7 show the effects of the unknown functional form 
of the inlet temperature on the accuracy of the estimation. The step hct ional  
form of inlet temperature shown in figure 4.1.6 presents a very difficult case for 
estimation because two discontinuities are involved. Even with 39 measurements, 
the exact inlet temperature is not htly recovered by the inverse analysis with 
errorless measurements (a= 0). The smooth function shown in figure 4.1.7 poses 
no difficulty for estimation by inverse analysis. The estimations using only 5 
measurements with 5% and 10% error are still in good agreement with the exact 
solution. 
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1.2 
exact 

--------- Case I . 

0.0 0.2 0.4 0.6 0.8 1 .O 

Figure 4.1.4 - Effects of transversal distribution of  measurement location on the 
accuracy of  inverse analysis. 

Figure 4.1.5 - Effects of  the measurement error on the accuracy of inverse 
analysis. 
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Figure 4.1.6 - Effects of the step functional form of the inlet temperature on the 
accuracy of inverse analysis. 

Figure 4.1.7 - Effects of the smooth hnctional form of the inlet temperature on 
the accuracy of inverse analysis. 
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4-2 ESTIMATION OF THE TRANSIENT INLET TEMPERATURE IN 
LAMINAR FLOW [2] 

In the previous section 4-1 we examined the solution of the inverse 
problem of estimating the inlet temperature profile in a steady-state laminar flow 
in a parallel plate duct. We now consider the estimation of the timewise variation 
of the inlet temperature in a transient problem. The inlet temperature is assumed 
to be uniform along the duct cross section. 

The details of the steps of Technique IV, as applied to the solution of the 
present inverse problem, are described next. 

Direct Problem 

We consider here a physical problem involving laminar forced convection 
inside a parallel plate duct of half-width h, with a prescribed constant waIl 
temperature, fully developed flow and constant fluid properties. The 
dimensionless inlet temperature O(O,Y, r) is suddenly varied at r = 0 as a hnction 
of time in the form F(r). Figure 4.2.1 describes the geometry and coordinates. 

Figure 4.2.1 - Geometry and coordinates 

The velocity profile is given in dimensionless form as 

By neglecting axial conduction in the flow and free convection, the energy 
equation can be written as: 

for r > 0 (4.2.2.a) 
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with boundary conditions taken as 

and the initial condition as 

O(X,Y,O)=O for 7 = 0 ,  in O<Y<1, O < X < L  (4.2.2.e) 

where various dimensionless terms are defined as 

Here a is the thermal diffusivity of the fluid, u, is the mean velocity and Ti 
is the initial fluid temperature, which is assumed to be uniform and equal to the 
prescribed wall temperature. 

We note that equation (4.2.2.b) gives the symmetry condition for the 
problem. 

The problem (4.2.2) is a Direct Problem when the variation of the inlet 
temperature F(r) is known. The solution of the direct problem provides the 
temperature field O(X,Y, r) of the fluid inside the channel. 

inverse Problem 

Consider now the inlet temperature F(z) as unknown. Such function is 
then to be estimated by using the transient temperature measurements of a single 
sensor located at an appropriate position (X*,Y*) inside the channel and by 
minimizing the following functional: 
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where O[x*,Y*, r; F(r)]and Z(r )  are the estimated and measured temperatures, 
respectively, at the measurement location (X*, Y*). The estimated temperature is 
obtained from the solution of the direct problem (4.2.2) by using an estimate for 
F( 7). 

We use Technique IV, the conjugate gradient method of function 
estimation, for the minimization of the functional given by equation (4.2.4). The 
sensitivity and adjoint problems, required for the implementation of the iterative 
procedure of Technique IV, are developed next. 

Sensitivity Problem 

In order to develop the sensitivity problem, we assume that the 
temperature O(X,Y,r) undergoes a variation A O ( X , Y , t ) ,  when the inlet 
temperature undergoes a variation AF(z). By substituting into the direct problem 
(4.2.2) O ( X ,  Y, r )  by [@(x,Y, r )  + AO(X,Y, r)] and F ( r )  by [ ~ ( r )  + AF(7)], 
and then subtracting from the resulting equations the original direct problem, we 
obtain the following sensitivity problem for the sensitivity function AQ(X, Y, r )  : 

A@(X,Y ,0) = 0  for r = 0, O < Y < l ,  O < X < L  (4.2.5s) 

Adjoint Problem 

The adjoint problem is obtained by multiplying equation (4.2.2.a) by the 
Lagrange Multiplier A(X,Y,r). integrating the resulting expression over the time 
and space domains and adding the result to the functional given by equation 
(4.2.4). We obtain: 
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We now perturb F(z) by AF(r) and O(X Y ,  z) by A@(X Y, r) in equation 
(4.2.6) and subtract equation (4.2.6) from the resulting expression to get the 
variation AS[F(~)] of the hrnctional S[F(r)]. By employing integration by parts, 
utilizing the initial and boundary conditions of the sensitivity problem and also 
requiring that the coefficients of AO(X,K r) in the resulting equation should 
vanish, the following adjoint problem is obtained: 

- aL; l (x ,y , r )  = 0 in 0 < Y < 1, 0 < X < L and for 0 < t < r (4.2.7.a) 
a y 2  I 

where 4.) is the Dirac delta function, and the boundary conditions become 

dA(X,O, 7) = O  at Y=O, O < X < L  and O < r < r  (4.2.7.b) 
dY f 

A(X,I, r) = 0 at Y=1, O < X < L  and O < r < t /  (4.2.7.c) 

R(L,  Y, r) = 0 a t X = L ,  O < Y < l  and 0 < r < q  (4.2.7.d) 

L(X,Y,rf)=O for r = r  in O<Y < 1  and O< X < L (4.2.7.e) 
f ' 

Gradient Equation 

In the process of obtaining the adjoint problem, the variation of the 
functional reduces to 
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By assuming that the fbnction F(7) belongs to the space of square 
integrable functions in 0 < 7 < sj, we can write 

Hence, by comparing equations (4.2.8.a) and (4.2.8.b), we can obtain the 
gradient equation for the functional as: 

Iterative Procedure 

The iterative procedure of Technique IV, as applied to the estimation of 
the function F(r) is given as 

where k is the number of iterations. The direction of descent is obtained from 

d k ( r ) = v s  ~ ' ( 7 )  + y  d  ( r )  I I k-' 

The conjugation coefficient is obtained from the Fletcher-Reeves 
expression as 

The search step size is obtained by minimizing S[Fh* ' ( r ) ]  with respect to 
pk, as described in Note 7 of Chapter 2. The following expression results 
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where A@[dk(t)] is the solution of the sensitivity problem (4.2.5), obtained by 
setting AF(r)= dk( r ) .  

Results 

To illustrate the accuracy of Technique IV in predicting F(r), we 
examined three functional test cases; a triangular ramp, a double step and a sine 
curve, as illustrated in figure 4.2.2. The first two represent very difficult functions 
to predict, due to the discontinuities in the first derivative and in the function. As 
the sine curve is smooth and continuous, its estimation should not pose difficulty. 
Over the total experimental time of 3.6~10" in dimensionless terms, 200 equal 
time steps were considered, corresponding to a sampling frequency of 1 .8~10 '~ .  
The total dimensionless length of the duct taken as 8 . 2 ~ 1 0 ' ~ ~  with 60 equal 
divisions corresponding to AX = 1 . 3 6 7 ~ 1 0 ~ ~  was long enough for all test 
locations to lay in the thermally developing region. Representative values for the 
total time and total length in dimensional terms are 30 seconds and 1.64 meters, 
respectively, for air with a mean velocity of 2.4 cmls, in a duct with half 
width of 0.5 meters. The sensor was considered to be located at the centerline 
(Y* = 0) and two different axial positions were studied here: X* = 5 M  and 
X* = 20M: The centerline was chosen for all measurements in order to minimize 
the effects of the wall temperature on the readings of the sensor at the 
measurement location. 

We use here simulated measurements in the form given by equation 
(2.5.2). 

The time dependent inlet condition for a triangular ramp function, 
illustrated in figure 4.2.2.a, was assumed to vary in the form 

1 l l l . l l r  for 0 < r r 9x 1 0-4 

F ( r )  = - 833.33(r - 9 x 1 0 ~ ~ )  + 1 for 9 x 1 0 - ~  < r 2 1 . S X I O ' ~  (4.2.1 1) 

I 0.5 for 1.5xl0" < r  l r  
f 
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Time, r Time, r Time, 7 

(a) (b) (4 

Figure 4.2.2 - Three test cases considered for the inlet temperature: 
(a) triangular ramp, (b) double step and (c) sine curve. 

Figure 4.2.3 shows typical measured temperatures at two different 
downstream locations for a standard-deviation of o =0.01. These curves show 
that the steady measured value was achieved after a certain time period. The 
inverse problem was based on all data taken before the steady temperature has 
been reached. Also, we chose the steady value of the measured temperature as the 
initial guess for the computational algorithm. This choice alleviates one of the 
difficulties associated with the conjugate-gradient method, that is, the final time 
value of the estimation is the same as the initial guess. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
Time, z 

Figure 4.2.3 - Simulated measured temperatures at downstream locations 5dX 
and 2 0 M  for triangular ramp pulse, with a= 0.01. 
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Figure 4.2.4 illustrates the effects of the standard deviations a =0.01 and 
a=0.03, on the accuracy of the estimates. Here the solid lines represent the exact 
solution. These standard deviations represent 3% and 10% measurement error 
based on the maximum temperature. It is clear that, as the error increases, the 
accuracy of the prediction decreases. However, even for ~ 0 . 0 3  the estimate is 
quite good. Figure 4.2.5 shows the effects of measurement location on the 
accuracy of the estimation. The 5M location, which is close to the entrance, 
produces more accurate results as expected. The 2 0 M  location shows a marked 
decrease in accuracy, particularly near the discontinuity in slope, with the 
estimate oscillating around the exact function elsewhere. 

Time, z 

Figure 4.2.4 - The effects of standard deviation for a= 0.01 and a= 0.03 on the 
accuracy of the estimate for triangular ramp pulse. Measurements taken at 

downstream location 5M. 

The inlet condition for a double step hnction iilustrated in figure 4.2.2.b 
was assumed in the form 

1  for O <  r i 8 . 2 x 1 0 - ~  

t 1 . 2 ~ 1 0 - ~  < 2 1  .22x1~-3 

o for 1.22x10-' < r <_ r 
f 
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which represents a very strict test for the inverse analysis. Figure 4.2.6 compares 
the results of the inverse solutions at Xf=5AX and 2 0 M  downstream locations. 
For the SAX location the inverse solution tends to follow the discontinuities, 
including the second step: however, the solution oscillates after the first jump. 
The results for the 2 0 M  location follow the pulse but cannot predict the sharp 
corners at all. 

Time, z 

Figure 4.2.5 - The effects of sensor locations S A X  and 20dX on the accuracy of 
the estimate for triangular ramp pulse, with a= 0.01. 

The inlet condition for the sine curve illustrated in figure 4.2.2.c is 
assumed in the form 

[sin(] 1 1  1 .l lnr)  for 0 c r 5 1.8~10~~ 

for 1.8x10-~ < z < r  
1 

Since the function is smooth over the whole time domain, the inverse 
analysis is quite accurate for both locations SAX and 20M; as apparent from 
figure 4.2.7. 



INVERSE CONVECTION 

1 .oo 

0.75 

-- C, 0.50 
ir 

0 -25 

0.00 
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Figure 4.2.6 - The effects of sensor locations 5M and 20dX on the accuracy of 
the estimate for double step pulse, with a= 0.01. 

1 .O 1.5 
Time, T 

Figure 4.2.7 - The effects of sensor locations S A X  and 20dX on the accuracy of 
the estimate for a sine curve pulse. with a= 0.01. 
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The effect of the sampling frequency on the accuracy of estimations was 
also tested. Very high sampling rates (i.e., five times the value used in figures 
4.2.4-7) produced generally the same results, but with slightly more oscillations 
around the discontinuities and a much larger computational time. A smaller 
sampling rate produced nearly identical results; however, one should not choose 
too large of a time step, since the inverse analysis would not be able to resolve 
any change in the function, which did not have a large enough period to allow for 
more than a few time readings. 

4-3 ESTIMATION OF THE AXIAL VARIATION OF THE WALL HEAT 
FLUX IN LAMINAR FLOW [3] 

In sections 4-1 and 4-2 we considered the solution of inverse problems 
involving the estimation of the inlet condition, by taking measurements 
downstream inside the channel. In this section, we examine the inverse problem 
of estimating the boundary heat flux axial variation in a steady state convection 
problem. The details of Technique IV, as applied to the solution of the present 
inverse problem, are described next. 

Direct Problem 

We consider here hydrodynamically developed, thermally developing 
laminar forced convection of a constant property fluid flowing inside a parallel 
plate duct. One of the duct walls is subjected to a spacewise varying heat flux, 
while the other wall is kept insulated. Fluid enters the duct at a uniform 
temperature To and the plates are separated by a distance h. Figure 4.3.1 
illustrates the geometry and the coordinates. 

Y Unknown heat supply q(x) 

i Y 
Fluid ~ T h ~ r r n o c o * u p l e r  c 

Insulated 
" 

Figure 4.3.1 - Geometry, coordinates and sensors locations. 
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The mathematical formulation for this problem is given by 

where q(x) is the wail heat flux. The hily developed velocity uCy) is given by 

where u, is the mean velocity. 
The problem given by equations (4.3.1) is a directproblem when the wall 

heat flux q(x), as well as the other quantities appearing in equations (4.3.1) are 
known. The objective of the direct problem is to determine the temperature field 
T ( x y )  of the fluid inside the channel. 

Inverse Problem 

For the inverse problem considered here, the wall heat flux q(x) is 
regarded as unknown. Such a hnction is to be estimated by using the readings of 
M sensors located inside the channel at a transversal position yl ,  as illustrated in 
figure 4.3.1. The following functional is then minimized in order to estimate q(x). 

where Y(x) are the measured temperatures at the transversal position y = y , .  A 
sufficiently large number of measurements is considered available in the axial 
direction, so that they can be treated as a continuous function. f l ~ , ~ ~ ; q ( x ) ]  are 

the estimated temperatures at y = yl, obtained fiom the solution of the direct 
problem (4.3.1) by using an estimate for q(x), while b is the length of the channel 
containing measurements, where the wall heat flux is to be estimated. 
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Technique IV, the conjugate gradient method of function estimation, is 
applied for the minimization of the functional (4.3.3). The sensitivity and adjoint 
problems, required to obtain expressions for the search step size and gradient 
direction, are developed next. 

Sensitivity Problem 

It is assumed that when q(x )  undergoes an increment 4 ( x ) ,  the 
temperature T ( x j )  changes by an amount A v x y ) .  Then, to construct the 
sensitivity problem defining the fimction A w j ) ,  we replace T(x,y) by 
q x y )  -t AT(xq), and q(x )  by q(x)  + 4 ( x )  in the direct problem (4.3.1) and 
subtract from it the problem (4.3.1) to yield 

Adjoint Problem 

To derive the adjoint problem we multiply equation (4.3.l.a) by the 
Lagrange multiplier R(xa), integrate the resulting expression over the space 
domain and then add this result to the hctional given by equation (4.3.3). The 
following expression results: 

The variation of the extended hnctional (4 .3 .5)  is developed and allowed 
to go to zero. After some straightforward manipuiations, which are left as an 
exercise to the reader, the following adjoint problem results: 



INVERSE CONVECTION 225 

Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 

By assuming that q ( x )  belongs to the space of square integrable functions 
in 0 < x < b, we can write 

Therefore, by comparing equations (4.3.7.a) and (4.3.7.b), we can obtain 
the gradient equation as 

Iterative Procedure 

The following iterative procedure of Technique IV is applied to the 
estimation of the wall heat flux q(x) :  

where the superscript k refers to the number of iterations and the direction of 
descent is given by 
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We use here the Fletcher-Reeves expression for the conjugation 
coefficient, given in the form 

b 

I(vs[q ' (X)]l2 

y k  = ;=o for 1 2 , .  with y o = 0 (4.3.9.c) 

jjvs[q '-'(X)]J2 'h 
x=O 

The step size is obtained by minimizing the functional (4.3.3) with respect 
to Q' . The following expression results (see Note 7 in Chapter 2): 

where  AT(^^) is the solution of the sensitivity problem (4.3.4), obtained by 
setting Aq(x) = dk ( x ) .  

Results 

In order to illustrate the use of Technique IV, as applied to the estimation 
of the wall heat flux, we considered different functional forms to generate the 
simulated measurements, such as a triangular and a sinusoidal variation. 

As a test-case, consider that a fluid at a temperature To = 20°C enters a 
parallel plate duct of length b = 1.6m, with walls separated by a distance 
h = 0.01 m. The sensors are located at the position yl = 0.009 m from the lower 
wall and separated by 0.10 m intervals along the x direction. The fluid properties 
are taken as: p = 840 kg/m3, k = 0.137 W/(m°C) and C, = 2200 J/(kg°C), which 
refer to an engine oil. The mean velocity is taken as u,, = 0.04 m/s. 

The direct, sensitivity and adjoint problems were solved by finite 
differences with the following grid spacing: Ax = 0.01m and Ay = 0.0002 m. 

Let us consider now a triangular variation for the heat flux in the form 

3000 -1- 8750x for O 5 x I 0 . 8 m  
(4.3.10) 

10000 - 8750(x - 0.8) for 0.8 < x 5 1.6m 
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Figure 4.3.2 shows the results of the inverse analysis for the case with no 
measurement error (i.e., a = 0) while figure 4.3.3 gwes the results of the same 
calculation with a measurement error of s = 0.5 These figures show that 
increasing the measurement errors decreases the accuracy of the inverse solution; 
but the results are still quite good. 

The second example involves a sinusoidal vari.ation for the wall heat flux 
in the form 

q ( x )  = 7000 + 3000 sin - [;3] 
The results obtained with measurements with no error (o= 0), as well as 

measurements with random error (a = 0.5), are very good, as can be seen in 
figures 4.3.4 and 4.3.5, respectively. As expected it is easier to recover a 
continuous function, such as the one given by equation (4.3.1 I), than a function 
containing discontinuities in its first derivative, like the triangular variation given 
by equation (4.3.10). 

Figure 4.3.2 - Triangular variation for the heat flux obtained with errorless 
measurements. 
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Figure 4.3.3 - Triangular variation for the heat flux obtained with measurements 
containing random errors. 

- Exact walI heat flux 

Estimated wall heat flux 

Figure 4.3.4 - Sinusoidal variation for the heat flux obtained with errorless 
measurements. 
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Figure 4.3.5 - Sinusoidal variation for the heat flux obtained with measurements 
containing random errors. 

4-4 ESTIMATION OF THE TRANSIENT WALL HEAT FLUX IN 
TURBULENT FLOW [4] 

After examining the solution of the inverse problem of estimating the axial 
variation of the wall heat flux in a steady-state problem in laminar flow, we now 
present the estimation of the transient wall heat flux in a channel with turbulent 
flow. A similar problem, involving the estimation of the transient wall heat flux 
in a channel with laminar flow, was solved in reference j7], where the effects of 
non-newtonian behavior of the fluid were also addressed. 

The basic steps of Technique IV, as applied to the solution of the present 
inverse problem, are discussed next. 

Direct Problem 

We consider hydrodynamically developed, thermally developing transient 
heat transfer for an incompressible turbulent flow inside a parallel-plate duct, 
subjected to timewise varying wall heat flux at both boundaries. Axial 
conduction, viscous dissipation, free convection and wall conjugation effects are 
neglected. Flow properties are assumed constant. Figure 4.4.1 illustrates the 
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geometry and coordinates. Because of symmetry, only half of the region is 
considered. 

The mathematical formulation of this problem is given in the 
dimensionless form as 

0=1 for 7-0, O < Y < l , O < X < L  (4.4.1 .e) 

where the following dimensionless groups were defined: 

Here, To is the initial and inlet temperature of the fluid, h is the half 
distance between the plates and urn is the mean fluid velocity, while v and a are 
the fluid kinematic viscosity and thermal diffusivity, respectiveIy. The fdly 
developed turbulent velocity profile, U(Y),  and the total diffusivity, 4, were 
determined with the same turbulence model used in reference [18]. 

The problem given by equations (4.4.1) is denoted as a direct problem if 
the heat flux Q(r) is known. The objective of the direct problem is to determine 
the temperature field O(X Y, z) of the fluid inside the channel. 
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Inverse Problem 

For the inverse problem considered here, the wall heat flux Q(z) is 
regarded as unknown, and is to be estimated by minimizing the following 
functional 

where O [ X * ,  Y*, r; ~ ( r ) ]  is the estimated temperature at the sensor position 
(X*, Y*), which can be obtained from the solution of the direct problem (4.4.1) by 
using an estimate for the unknown heat flux. Z(7)  is the measured temperature. 

The sensilivity and adjoint problems, required for the implementation of 
the iterative procedure of Technique IV, are developed next. 

Sensitivity Problem 

When the wall heat flux Q(r) undergoes an increment AQ(r), the 
temperature O(X Y,r) also changes by the amount AO(X Y,  t). To construct the 
sensitivity problem we replace O(X, Y,t) and Q(r) in the direct problem (4.4.1) by 
[O(X, Y, r)+AO(X, Y, r)] and [Q(T)+ AQ( 5)). respectively, and then subtract from the 
resulting equations the original direct problem. We obtain 
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A@ = 0 at X=O, O < Y < l , r > O  (4.4.4.d) 

A 0  = 0 for r=O, O<Y<l,O<X<L (4.4.4.e) 

Adjoint Problem 

To derive the adjoint problem we multiply equation (4.4.1 .a) by the 
Lagrange multiplier A(X Y,z), integrate the resulting expression over the space 
and time domains and then add it to equation (4.4.3) to yield 

The variation of the extended functional (4.4.5) is obtained and afier some 
algebraic manipulations it is allowed to go to zero. The following adjoint problem 
results: 

A=O for .r= z/, O <  Y <  l,O<X<L (4.4.6.e) 

Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 
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For Q(r) belonging to the space of square integrable functions in the time 
domain 0 < r < 3 we can write 

Hence, by comparing equations (4.4.7.a) and (4.4.7.b), we can obtain the 
gradient equation in the form 

Iterative Procedure 

The iterative procedure of Technique IVY as applied to the estimation of 
the unknown function Q(z), is given by 

The direction of descent dk(r),  used to advance from iteration k to k + l ,  is 
obtained as 

The Fletcher-Reeves expression for the conjugation coefficient is given 
by: 

]{VS[Q* (r)]J2 d T  

y k  = r=O for 1 2 ,  . with y o = 0 (4.4.9.~) 
r C 

An expression for the search step size pk is obtained by minimizing the 
functional given by equation (4.4.3) with respect to ,Bk. The following expression 
r ~ s i l l t ~  (see Note 7 in Chanter 2): 
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where A@[dk(r)] is the solution of the sensitivity problem (4.4.4), obtained by 
setting AQ(r) = d ( r )  . 

Results 

We use simulated measurements in the form given by equations (2.5.2), in 
order to evaluate the accuracy of the inverse analysis for estimating Q(r) with 
Technique IV. 

In the present study, we investigated the following three different tirnewise 
variations of the wall heat flux Q(r), with hnctional forms illustrated in figure 
4.4.2 and specified as given below: 

Case (A) 

50 
40 

901 Case (I 

Figure 4.4.2 - Different functional forms tested for the wall heat flux Q(t). 
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We consider here a turbulent flow with Re = 10' and Pr = 1. 
Let us consider initially the functional form given by case (A). Figure 

4.4.3 illustrates the effects of the transversal sensor location on the inverse 
problem solution, for measurements with a standard deviation of a= 0.005 which 
corresponds to an error of up to 1.25%, obtained with a sensor located at 
X* = 5De. Different transversal locations were examined, including Y* = 1,0.9, 
0.8 and 0.7. The location Y* = 1 would correspond to a sensor located at the wall. 
As apparent from figure 4.4.3, the accuracy of the estimation decreases as the 
sensor is moved away from the boundary. In fact, for Y* < 0.7 the sensor is 
located outside the thermal boundary layer. Hence, temperature measurements 
taken in the region Y* < 0.7 for X* = 5De bring no usefhl information for the 
estimation of Q((z). 

Figure 4.4.4 shows the effect of axiaI location of the sensor on the 
accuracy of the estimation. In this figure we examine three axial locations 
X* = 5D,, 70, and 9De with the transversal position taken as Y* = 0.9 and the 
standard deviation a = 0.01 (which corresponds to 2.5% measurement error). 
Clearly, increasing the axial location X* of the sensor decreases the accuracy of 
the estimation, because the sensor location moves to the fully developed region. 

Figure 4.4.3 - Effect of the transversal location Y* of the sensor on the accuracy 
of estimations for case (A). 
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Figure 4.4.4 - Effect of the axial location X* of the sensor on the accuracy of 
estimations for case (A). 

Figures 4.4.5 and 4.4.6 illustrate the effects of the measurement error on 
the inverse problem solution for the functional forms of cases (B) and (C), 
respectively. The sensor is considered to be located at X* = 5D, and Y* = 0.9. 
Different levels of measurement error were considered in the analysis, including 
o= 0.01,0.02 and 0.04. These two figures show that quite accurate results can be 
obtained, even with large measurement errors such as for cr= 0.04. 

Figure 4.4.5 - Effect of the measurement errors on the accuracy of estimations 
for case (B). 
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Figure 4.4.6 - Effect of the measurement errors on the accuracy of estimations 
for case (C). 

4-5 ESTIMATION OF THE SPACEWISE AND TIMEWISE 
VARIATIONS OF THE WALL HEAT FLUX IN 
LAMINAR FLOW [S] 

In this section we present the solution of the inverse problem of estimating 
the wall heat flux in a parallel plate channel, by using Technique IV, the 
conjugate gradient method with adjoint problem. The unknown heat flux is 
supposed to vary in time and along the channel flow direction. We examine the 
accuracy of the present function estimation approach by using transient simulated 
measurements of several sensors located inside the channel. The inverse problem 
is solved for different functional forms of the unknown wall heat flux, including 
those containing sharp comers and discontinuities, which are the most difficult to 
be recovered by an inverse analysis. The effects on the inverse problem solution 
of the number of sensors, as well as their locations, are also addressed. 

Direct Problem 

The physical problem considered here is the laminar hydrodynamically 
developed flow between parallel plates of a fluid with constant properties. The 
inlet temperature is maintained at a constant value To, which is also assumed to 
be the initial fluid temperature. For times greater than zero, the plates are 
subjected to a time and space-dependent heat flux, as illustrated in Figure 4.5.1. 
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Figure 4.5.1 - Physical Problem 

By taking into account the symmetry with respect to the x-axis and 
neglecting conduction along the flow direction, the mathematical formulation of 
this problem in dimensionless form is given by: 

dO d O  3% - + U ( Y ) -  =- in O < Y <  1, O<X<L, for r>0 (4.5.1 .a) 
dt ax 8 y 2  

dO -=o at Y=O, O<X<L, for r > O  (4.5.1 .b) 
dY 

d O  
- = Q < x , ~ )  at Y =  1, O<X<L, for ~ > 0  (4.5. l .c) 
dY 

0 = 0  at X =  0, O<X<L, for t>O (4.5.1 .d) 

0 = 0  for .t= 0, in O < Y <  I, O < X < L  (4.5.l.e) 

where the following dimensionless groups were introduced: 
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a and k are the fluid thermal difhsivity and conductivity, respectively, h is the 
channel half-width and u, is the mean fluid velocity. The wall heat flux is written 
as 

where qo is a constant reference value with units of heat flux and Q(X,r) is a 
dimensionless function of X and z. 

The direct problem given by equations (4.5.1) is concerned with the 
determination of the temperature field of the fluid inside the channel, when the 
boundary heat flux Q(X, r) at Y = 1 is known. 

Inverse Problem 

For the inverse problem, the heat flux Q(X,r) at Y = 1 is considered to be 
unknown and is to be estimated by using the transient readings of M temperature 
sensors located inside the channel. We assume that no information is available 
regarding the functional form of the unknown wall heat flux, except that it 
belongs to the space of square integrable functions in the domain 0 < t < .r/ and 
0 < X < L, where q is the duration of the experiment and L is the length of the 
test-section in the channel. 

The solution of such inverse problem is obtained by minimizing the 
following functional 

where Z,,,(r) is the measured temperature at the sensor location ( x * , Y * )  inside 
m m 

* 
the channel and O[X , Y  ,t;Q(X,r)] is the estimated temperature at the same 

m m 

location. Such estimated temperature is obtained from the solution of the direct 
problem given by equations (4.5.1), by using an estimate for the unknown heat 
flux ax,?) .  

The development of the sensitivity and adjoint problems, required for the 
implementation of the iterative procedure of Technique IV, are described next. 

Sensitivity Problem 

The sensitivity problem is obtained by assuming that the heat flux Q(X,t) 
is perturbed by an amount AQ(X,t). Such perturbation in the heat flux causes a 
perturbation AO(X,Y, 7) in the temperature O(X,Y, r). By substituting O(X,Y, t) by 
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[@(X,Y,z)+A@(X,Y,r)] and Q(X,t) by [Q(X,r)+AQ(X,r)] in the direct 
problem given by equations (4.5.1), and then subtracting h m  the resulting 
expressions the original direct problem, we obtain the following sensitivity 
problem for the determination of the sensitivity b c t i o n  A@( X,Y, z): 

at Y = 0, 0 < X <  L, for r>  0 (4.5.5.b) 

dA@ -= be(& T I  at Y = 1, 0 < X < L, for s> 0 (4.5.5.c) 
JY 

at X=O, O < Y < l , f o r r > O  (4.5.5.d) 

for r = 0 9 i n O < Y < 1 , 0 < X < L  (4.5.5.e) 

Adjoint Problem 

In order to obtain the adjoint problem, we multiply the differential 
equation (4.5.1 .a) of the direct problem by the Lagrange multipIier A(X,Y,r) and 
integrate over the time and space domains. The resulting expression is then added 
to equation (4.5.4) to obtain the following extended functional: 

where 8.) is the Dirac delta function. 
The variation of the extended functional (4.5.6) is obtained and, after some 

manipulations, the resulting expression is allowed to go to zero in order to obtain 
the following adjoint problem for the Lagrange multiplier A(X,Y,r): 

in O < Y < l ,  O<X<L,  for r > O  (4.5.7.a) 
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6'A - = o  at Y =  0, O < X < L ,  for t > O  (4.5.7.b) 
dY 

82 - = O  at Y = l ,  O < X < L ,  for z > 0  
dY 

(4.5.7.c) 

A=O at X=L, O < Y < 1 ,  for r>O (4.5.7.d) 

R  = 0 for z = q ,  in O < Y < I  O < X < L  (4.5.7.e) 

Gradient Equation 

In the process of obtaining the adjoint problem, the following integral term 
is left: 

rf L 

A@(x, r ) ]  = - 5 P(x,~,  ~)AQ(x,  dr (4.5.8.a) 
r=O X=O 

From the hypothesis that Q(X,z) belongs to the space of square integrable 
hnctions in 0 < X < L and 0 < z< s/, we can write 

Therefore, by comparing equations (4.5.8.a) and (4.5.8.b), we obtain the 
gradient equation for the functional as 

Iterative Procedure 

The iterative algorithm of Technique IV, as applied to the estimation of 
the unknown heat flux Q(X,r), is given by 

where the superscript k denotes de number of iterations. 
The direction of descent dk(x,r)  is obtained as a conjugation of the 

gradient direction and of the previous direction of descent as 
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where the conjugation coefficient is obtained fiom the Fletcher-Reeves 
expression as: 

' I  L 1 ~ ( v s [ ~ ~ ( i ) ] } ~ d ~ d r  
y k  = '-0 x=o for k=1,2 ,... with y o = 0 (4.5.10.c) 

f L 1 ~ ( v s [ ~ ' - ' ( r ) ] ) ~ d ~ d r  
r=O X=O 

An expression for the search step size @ is obtained by minimizing the 
functional given by equation (4.5.4) with respect to @ (see Note 7 in Chapter 2). 
We obtain 

where AO,,,(~') is the solution of the sensitivity problem (4 .54 ,  obtained by 

setting AQ(X, r )  = d k  (X, r )  . 

Results 

We use transient simulated measurements in order to assess the accuracy 
of the present approach of estimating the unknown wall heat flux Q(X,r). The 
simuiated temperature measurements were obtained from equation (2.5.2). 

For the cases considered below, we have taken the total experiment 
duration r /  as 0.08 and the channel test-length L as 0.004, while the heat flux at 
the boundary Y = 1 was assumed in the form: 

The direct, sensitivity and adjoint problems were solved with finite- 
differences by using an upwind discretization for the convection term and an 
implicit discretization in time. The domain was discretized by using 101 and 81 
points in the X and Y directions, respectively, while using 41 time steps. Such 
number of points was chosen by comparing the solution of the direct oroblem for 
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the local Nusselt number obtained by finite-differences, with a known analytical 
solution [19]. 

By examining equations (4.5.7.d) and (4.5.7.e), we note that the gradient 
of the functional given by equation (4.5.9) is null at the final time qand the final 
axial position L. Therefore, the initial guess used for the iterative process remains 
unchanged at vand at L. In the examples shown below, we use as an initial guess 
for the final time and for the final position the exact values for Q(X,t), which are 
assumed available. For other times and axial positions, we take Q(X,t) null as the 
initial guess for the conjugate gradient method, We lose no generality with such 
an approach, since we can always choose t/ and L sufficiently larger than the 
respective experimental time and test section length of interest, so that the initial 
guess has no influence on the solution, as illustrated in section 2-5. 

Figures 4.5.2.a-c present the results obtained for a boundary heat flux 
containing a triangular variation in X and a step variation in time, in the form: 

1, for X 1 0.001 and X 2 0.003 

lOOOX, for 0.001 < X 10.002 

- 1000X + 4, for 0.002 < X < 0.003 

1, for r 10.02 and t r 0.06 

2, for 0.02 < t < 0.06 

For such case, we have used in the inverse analysis 21 sensors located at 
f = 0.95. The first sensor was located at x,' = 0.00004 and the last one at 
x,** = 0.00396. The others were equally spaced, so that x,' = 0.0002(m-I), for 
m = 2, ..., 20. Figures 4.5.2 show the results for errorless measurements (dashed 
lines), as well as for measurements with a standard deviation a = 0.010,, 
(symbols), where Om, is the maximum temperature measured by the sensors. In 
Figure 4.5.2.a, we have the results for the axial variation for 3 different times, 
where QX0.002) = QX0.07) = 1 and QX0.04) = 2 from equation (4.5.13). The 
unknown heat fluxes for such times were accurately predicted, so that the results 
for r= 0.002 and t=  0.07 fail in the curve at the bottom, while those for t=  0.04 
fall in the curve at the top of Figure 4.5.2.a. The predicted heat flux is in good 
agreement with the exact one for both errorless measurements and measurements 
with random error. Figures 4.5.2.b-c show the results obtained for the flux 
variation in time for different axial positions. The results for X = 0.0004 and 
X = 0.0036 fall on the same curve in Figure 4.5.2.b as expected, since 
Qk(0.0004) = Qx(0.0036) = 1 from equation (4.5.12). The results shown in Figure 
4.5.2.c for X = 0.002, where Q(X, s) has a peak in X, are also in good agreement 
with the exact functional form assumed for Q(X,7). 

The RMS error (eRMs) for the results shown in Figures 4.5.2 obtained with 
errorless measurements, is 0.014. We define the RMS error here as: 
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where N is the total number of measurements used in the inverse analysis, while 
Qex and Q,, are the exact and estimated heat fluxes, respectively. 

Estimated: 

0.000 0,001 0.002 0,003 0.004 
Dimensionless position, X 

Figure 4.5.2.1 - Inverse problem solution for different times obtained with 2 1 
sensors. Triangular variation in the axial direction given by equation (4.5.12). 

1 -  EXACT 
h 

0 
Estimated: W 

0=0.01 *om, 

0.00 0.02 0.04 0.06 0.08 
Dimensionless time,r 

Figure 4.5.2.b - Inverse problem solution for different axial positions obtained 
with 2 1 sensors. Step variation in time given bv eauation (4.5.13). 
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EXACT 

Estimated: 
a=0.01*0,, 

-..--. x = 0.002 0 

0.00 0.02 0.04 0.06 0.08 
Dimensionless time, 't 

Figure 4.5.2.c - Inverse problem solution for X = 0.002 obtained with 21 sensors. 
Step variation in time given by equation (4.5.13). 

Figures 4.5.3.a-c present the results obtained for a heat flux with a step 
variation in X and with a triangular variation in time, in the form: 

1, for X < 0.00 1 and X 2 0.003 

2, for 0.00 1 < X < 0.003 

1, for r10.02 and r20.06 

501, for 0.02 < r i 0.04 (4.5.16) 

- 505 + 4, for 0.04 < 7 < 0.06 

where the dashed lines show the results obtained with errorless measurements 
and the symbols show the results obtained with measurements with a standard 
deviation of a = 0.01 em,. The 2 1 sensors used for this case are located at 
Y' = 0.95 and at the same axial positions as for the case shown in Figures 4.5.2. 
Figure 4.5.3.a shows the axial variation of ax,?) for different times that 
correspond to QXr) = 1,  as given by equations (4.5.16). Similarly, Figure 4.5.3.b 
shows the axial variation of Q(X,r) for r = 0.04, when QXr) has a peak, i.e., 
Q,(r) = 2 as given by equation (4.5.16). In figure 4.5.3.c, we have the results for 
the variation of Q(X,r) in time for three different axial positions, so that, in 
accordance with equations (4.5.15) we have Q,,(0.0004) = Q,\(0.0036) = 1 and 
Q,1(0.002) = 2. As for the case presented in figures 4.5.2, figures 4.5.3 show that 
the present function estimation approach is capabfe of recovering the unknown 
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heat flux Q(X,,r) quite accurately for errorless measurements, as well as for 
measurements containing random errors. The RMS error is 0.045 for the results 
shown in figures 4.5.3, obtained with errorless measurements. 

- 1 -  I- EXACT 

0.000 0.001 0.002 0.003 0.004 
Dimensionless position, X 

Figure 4.5.3.a - Inverse problem solution for different times obtained with 21 
sensors. Step variation in the axial direction given by equation (4.5.15). 

EXACT 

0 
U, Estimated: 

0 000 0.001 0.002 0.003 0.004 
Dimensionless position, X 

Figure 4.5.3.b - Inverse problem solution for r = 0.04 obtained with 2 1 sensors. 
Step variation in the axial direction given by equation (4.5.15). 
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1 - EXACT 

0.00 0.02 0.04 006  0 08 

Dimension less time, r 

Figure 4.5.3.c - Inverse problem solution for different axial positions obtained 
with 21 sensors. Triangular variation in time given by equation (4.5.16). 

The results shown above in figures 4.5.2 and 4.5.3 can be generally 
improved by using more measurements in the inverse analysis. Let's consider, for 
example, the estimation of the axial variation of Q(X,.r) shown in Figure 4.5.3.a. 
In Figure 4.5.4, we present the estimation of Q(X,.r) for the same case studied in 
Figure 4.5.3.a, but using the errorless measurements of 10 1 sensors instead of 2 1. 
The sensors were equally spaced along the channel length and at Y = 0.95. The 
time frequency of measurements was considered to be the same as for Figure 
4.5.3.a. By comparing figures 4.5.3.a and 4.5.4, we can clearly notice the 
improvement in the estimation of Q(X,r) by using more sensors along the 
channel. The RMS error obtained with 101 sensors is 0.013 as compared to 0.045 
obtained by using 2 1 sensors. 

For inverse heat conduction problems dealing with the estimation of a 
boundary condition, the sensors should be located as close to the boundary with 
the unknown condition as possible, in order to improve the estimation. Such is 
also the case for inverse convection problems, We have estimated Q(X, r) for 
QA{x> and QAr) given by equations (4.5.15) and (4.5.16), respectively, and by 
using the errorless measurements of 2 1 sensors located at the same axial positions 
as for Figures 4.5.3, but at Y = 0.9, instead of at Y = 0.95. The RMS error has 
increased to 0.238, as compared to 0.045 obtained with the sensors located at 
Y = 0.95. 

We note in figures 4.5.2-4 that generally the agreement between the 
estimated solutions and the exact functional form assumed for Q(X,r) tends to 
deteriorate near the final axial position and near the final time. This is due to the 
very small values of the gradient of the functional, equation (4.5.9). in such 
regions, as can be noticed by examining equations (4.5.7.d,e). 
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The effects of non-Newtonian behavior of the fluid over the inverse 
problem solution were examined in reference [6] .  The results do not appear to be 
sensitive to the power-law index of the fluid flowing inside the channel. 

EXACT 

0.000 0.001 0.002 0.003 0.004 
Dimensionless position, X 

Figure 4.5.4 - Inverse problem solution for different times obtained with 10 1 
sensors. Step variation in the axial direction given by equation (4.5.15). 

PROBLEMS 

4-1 Solve the inverse problem examined in section 4-1, by using a parameter 
estimation approach, instead of the function estimation approach. In order 
to do so, approximate the unknown inlet temperature profile as 

where Pj are unknown coefficients and Cj(Y) are known trial functions, 
given in the form of a Fourier series as 

for j=2,4,6,. . . 
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Try to reproduce the results shown in figure 4.1.6 by using the parameter 
estimation approach of Technique I. Examine the effects of number of trial 
hnctions, number of sensors, sensor locations and measurement errors on 
the estimated function. 

4-2 Make a comparison of Techniques I and IV, as applied to the estimation of 
the inlet temperature profile shown in figure 4.1.6. 

4-3 Consider the physical problem involving laminar hydrodynamically 
developed flow in a parallel plate channel. The plates, located at a distance 
2h from each other, are maintained at a constant temperature T i ,  which is 
also the initial temperature of the fluid inside the channel. For times t > 0 ,  
the inlet temperature profilef(y,t) varies in time and across the channel. 
Formulate this forced convection problem in dimensionless form, by using 
the dimensionless variables given by equations (4.2.3). 

4-4 Use Technique IV for the estimation of the unknown dimensionless inlet 
temperature profile F(Y, r) in problem 4-3, by using measurements taken 
downstream. Generate the simulated measurements by assuming the 
unknown function to be written as the product of a function of Y by a 
hnction of 5, i.e., F(Y,z-)=FL(Y)Fdz). Test the following functions for 
FY( Y) and Frt r)  : 

1 for O< Y 10 .3  and 0 .75  Y < l 

for 0.3 < Y < 0.7 

1 for O < Y I 0 . 3  and 0 . 7 I Y < l  

5Y - 0.5 for 0.3 < Y 50 .5  

-5Y+4.5 for 0 .5<Y ~ 0 . 7  

1 for 0 < s 5 0.0006 and 0.0014 5 t c 0.0020 

for 0.0006 < r < 0.0014 

1 for 0 < r 5 0.0006 and 0.0014 5 r < 0.0020 

2500r - 0.5 for 0.0006 < r I 0.00 10 

- 25002 + 4.5 for 0.0010 < r < 0.0014 

Examine the effects of number of sensors, sensor locations and 
measurement errors on the estimated fbnctions. 

4-5 Solve the inverse problem examined in section 4-3, by using a parameter 
estimation approach, instead of the hnction estimation approach. 
Approximate the unknown boundary heat flux by a Fourier series, 
similarly to the estimation of the inlet temperature profile in problem 4-1 
above. Make a comparison of Techniques I and IV, as applied to the 
hnctional forms shown in figures 4.3.2 and 4.3.4. Examine the effects of 
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number of sensors, sensor locations and measurement errors on the 
estimated functions. 

4-6 For the hydrodynamically developed flow of Non-Newtonian fluids 
following the power-law model for the shear stress [14], the velocity 
profile in a parallel plate channel of half-width h is given by: 

where u, is the mean fluid velocity and n is the fluid power-law index. 
Solve the inverse problem of estimating the transient wall heat flux 
(supposed uniform along the channel) by using Technique IV. Consider 
available the transient readings of a single sensor for the inverse analysis. 
By using functional forms containing sharp comers and discontinuities to 
generate the simulated measured data, examine the effects of sensor 
location and measurement errors on the inverse problem solution. Also, 
verify if such solution is affected by the fluid power-law index n. 

4-7 Repeat problem 4-6 by considering now the unknown boundary heat flux 
to be a function of time and of the axial position x, that is, q I q(x,t), as in 
section 4-5. Examine the number and position of sensors required to obtain 
accurate estimates for the unknown function. 

4-8 Is it possible to use temperature measurements to estimate the power-law 
index n? Consider as the physical problem the hydrodynamically 
developed flow of a power-law fluid in a parallel plate channel of half- 
width h, subjected to constant heat flux go on both walls. Assume the 
initial temperature of the fluid to be To, which is also the uniform inlet 
temperature. 

4-9 Repeat problem 4-8 by assuming the walls to be maintained at the constant 
temperature To ,  instead of being supplied the heat flux qo. 

4-10 Use Techniques f and I1 to estimate a uniform inlet temperature To , by 
using transient temperature measurements taken downstream in a parallel 
plate channel. Assume hydrodynamically develop laminar flow of a 
Newtonian fluid inside the channel, which is subjected to a constant wall 
heat flux go on both boundaries. Utilize the concepts of design of optimum 
experiments discussed in Note 2 of Chapter 2, for determining 
experimental variables, such as the sensor location and duration of the 
experiment, for the estimation of To. 

4-1 1 Is the solution of forced convection inverse problems, in which the flow is 
not hydrodynamically developed, more involved than those inverse 
convection problems considered so far? Why? 

4-12 Consider the heating of a fluid in the entry region of a parallel plate 
channel of width 2h, subjected to the flux distribution q(x,f) on both walls. 
The inlet and initial fluid temperature is To. The velocity profile at the 
channel inlet is uniform and parallel to the walls. Give the mathematical 
formulation of such physical problem. 
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Derive all the basic steps for the estimation of the boundary heat flux q(x,t) 
in problem 4- 12, by using Technique IV. 
Why are inverse free convection problems difficult to solve? 
Consider a fluid inside a square cavity of side a.  The boundaries at y = 0 
and y = a are supposed insulated, while the boundary at x = a is supposed 
to be maintained at the constant temperature To, which is also the initial 
temperature of the fluid. The heat flux distribution at x = 0 is given by 
q(y, t). Give the mathematical formulation of such physical problem. 
Derive all the basic steps for the estimation of the boundary heat flux q(y,t) 
in problem 4- 15, by using Technique IV. 
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Chapter 5 
INVERSE RADIATION 

In the study of radiation heat transfer, a distinction is made between 
radiation transfer as a surface phenomenon and as a bulk phenomenon. For 
opaque materials such as metals, woods, rocks, etc, the radiation emitted or 
absorbed by the body is said to originate fiom the immediate vicinity of the 
surface (i.e., within about 1 m), hence the radiation transport is regarded as a 
surface phenomenon. In the case of semi-transparent materials such as glass, salt, 
crystals and gases at elevated temperatures, the emission or absorption of 
radiation occurs at all depths within the medium. Hence the radiation problem is 
considered as a bulk phenomenon. 

A semi-transparent medium may scatter radiation in addition to absorbing 
and emitting it. That is, when a beam of radiation strikes a semi-transparent body, 
some of the incident beam is reflected from the surface, the remaining portion 
penetrates into the medium, where part of the radiation energy is absorbed by the 
body, and the remaining portion passes out through the medium, if the medium is 
not a strong absorber. The scattering of radiation is important in porous 
particulate media, like powders and foams, which are widely used in industrial 
high technology applications and in thermal insulation. The radiation scattering 
properties of such materials are characterized by a spectral scattering coeflcient 
or and a phase function ~ ~ ( h s h ' ) ,  where h and h' denote the directions of the 

incident and scattered radiation beams, respectively. Then, the dot product h.h9 
is the cosine of the angle between the scattered and the incident rays. To 
characterize the radiation absorption characteristics of the medium, a spectral 
radiation absorption coeflcient K A  is introduced. When the medium is in local 
thermodynamic equilibrium and Kirchoff law is valid, the spectral absorptian 
coefficient also characterizes the spectral emission coefficient. The sum of the 
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spectral scattering and absorption coefficients is called the spectral extinction 
coeflcient , i.e. 

a, = K, +g, 

and the ratio of the scattering to extinction coefficient, i.e., 

0 =- , for 0 5 w~ _< 1 
* 4 

is called the spectral single scattering albedo. 
The limiting case of w~ = 0 characterizes a medium that completely 

absorbs the incident radiation at the wavelength A, whereas = 1 characterizes a 
medium which completely scatters radiation of the wavelength A. 

A fundamental quantity in the study of radiation transfer in participating 
media is the spectral radiation intensity, I ~ (  s , h ) , where h is the direction of 

propagation and s is the path of propagation. It represents the flow of radiation 
energy per unit area normal to the direction of propagation of the radiation beam, 
per unit wavelength, per unit solid angle, per unit time. If the energy per unit time 
is measured in Watt, the wavelength R is measured in p, and the solid an le in 
steradian, sr, then the dimension of the spectral radiation intensity, 1 &,*), 

I 
becomes 

where the area is measured perpendicular to the direction of propagation of the 
radiation beam. 

In the study of radiation transfer, the radiation intensity is the fundamental 
quantity, which is obtained from the solution of the Equation of Radiative 
Transfer (ERT). In the study of conduction or convection, the temperature T of 
the body is the hndamental quantity, which is obtained from the solution of the 
standard energy equation. The radiation intensity being a directional quantity, its 
determination from the solution of the equation of radiative transfer is a much 
more difficult matter than the determination of temperature T from the solution of 
the standard energy equation. Therefore, a considerable amount of effort has been 
devoted to the solution of ERT. During the past three decades a variety of 
numerical, exact analytic, approximate analytic solutions of ERT have been 
reported in literature. The reader should consult references [I-73 for in-depth 
discussion of the derivation of ERT and its solution with various techniques. In 
the solution of an inverse problem of radiation in participating media, the 
solution of the direct radiation problem is needed; it is most important that such 
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solution be highly accurate. Here we present a brief discussion of the commonly 
used techniques for the solution of the Equation of Radiative Transfer. 

Methods for Solving the Equation of Radiative Transfer 

The Discrete Ordinates Method: This method, first proposed by Chandrasekhar 
[6] ,  was adapted by Hyde and Truelove [8] and Fiveland [9j for solving radiation 
problems of participating media. Since then, numerous applications of this 
method have appeared in the literature [8-201. The method appears to be very 
promising for solving complex radiation transfer problems encountered in 
combustors, heaters and hrnaces [7,14] 
The Spherical Harmonics Method (PN approximation): This method, 
originally proposed by Jeans [21] in connection with radiation transfer in stars, 
transforms the equation of radiative transfer into a set of simultaneous partial 
differential equations. A detailed description of this method can be found in 
references [1,22-261, A shortcoming of the method is that low order 
approximations are accurate only for optically thick media. 
The Galerkin Method: This method is specially suitable for solving one- 
dimensional radiation problems of absorbing, emitting and isotropically scattering 
media. The method can accommodate problems of spatially varying albedo, dx) ,  
and anisotropic medium. The applications of the method can be found in 
references [27-331. 
Simple Differential Approximations: The equation of radiative transfer can be 
transformed into a simple ordinary differential equation for the determination of 
the net radiation heat flux; but the accuracy of such simple solutions is generally 
very poor and is not recommended for use in the inverse analysis. One such 
approximation is the Schuster-Schwarzchild (or the two-flux) approximation and 
the other is the Eddington approximation [1,3,5]. To improve the accuracy of the 
differential approximation, Modest [5] proposed a modified differential 
approximation. However, when applying such approximations, care must be 
exercised in order to stay within the range of validity of the model. 
The Zonal Method: Developed by Hottel [43 for heat transfer in furnaces, it 
approximates the spatial behavior by separating the medium into a finite number 
of isothermal sub-volumes and surface area zones. An energy balance is then 
performed for radiative exchange between any two zones. The procedure leads to 
a set of simultaneous equations for the determination of unknown temperatures or 
heat fluxes. 

One-Dimensional Equation of Radiative Transfer 

In this chapter we present inverse radiation problems for an absorbing, 
emitting, isotropically scattering plane-parallel medium and for a medium with 
spherical symmetry. Therefore, we first present here the governing equations of 
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radiative transfer applicable for such situations invoIving gray media. For the 
plane-parallel medium it is given by: 

F i 2 ~ ~ 4  ( r )  
g(d = (1 - 0) 

i'r 

and for the case of spherical symmetry we have: 

Here, I is the radiation intensity, T is the temperature, ii is the refractive 
index, 5 is the Stefan-Boltmann constant, w is the single scattering albedo, z 
and r are the optical variables and p is the cosine of the angle between the 
direction of the radiation intensity and the positive r axis. 

Inverse radiation problems of participating media arise in a variety of 
engineering applications, including, among others, remote sensing of the 
atmosphere, estimation of the temperature profile in combustion systems, and the 
estimation of radiation properties K, P, a or w of the participating medium. In 
most cases, it is desirable to avoid the use of detectors within the medium. In 
such cases, inverse analysis allows the use of exit radiation intensities for 
estimating the unknown radiation properties or the radiation source term in the 
medium. Typical applications of the estimation of radiation properties of porous 
materials, such as fiberglass and foam insulation, as well as the estimation of the 
phase function for packed sphere systems, can be found in the references [34-381. 

To illustrate the applications of the inverse radiation technique, we 
consider in this chapter the solution of the following three distinct radiation 
problems: 

Estimation of unknown temperature profile in an absorbing, emitting, 
isotropically scattering plane-parallel medium by utilizing the measured exit 
intensities [39]. 
Simultaneous estimation of temperature profile and surface reflectivity by 
utilizing the measured exit radiation intensities f40]. 
Estimation of radiation source term in a solid semi transparent gray sphere, 
from the measured exit radiation intensities [4 1 1 .  
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We present the solutions of such inverse problems by using a parameter 
estimation approach. Therefore, the sensitivity coefficients are required for the 
sotution procedures. We illustrate here the computation of the sensitivity 
coefficients through the solution of sensitivity problems, as outlined in section 
2.1. 

The solution of other inverse radiation problems of interest can be found in 
references [42-461. 

5-1 IDENTIFICATION OF THE TEMPERATURE PROFILE 
IN AN ABSORBING, EMITTING AND ISOTROPICALLY 
SCATTEFUNG MEDIUM [39] 

The inverse radiation problem considered here is concerned with the 
estimation of the unknown temperature source term g(r) = g[~(r ) ]  in an 
absorbing, emitting, isotropically scattering plane-parallel gray plate of optical 
thickness 70, fiom the knowledge of the measured exit radiation intensities Y(p) 
at the boundary surface z = 0 and Z(p) at the boundary surface .r = TO, as 
illustrated in figure 5.1.1. 

Technique 11, the conjugate gradient method of minimization, is used for 
solving the present inverse radiation problem. The basic steps in the solution 
include the followings: direct problem, inverse problem, sensitivity problem, 
iterative procedure, stopping criterion and computational algorithm. Details of 
such steps are described next. 

Transparent Boundaries 

Figure 5.1.1 - Geometry and coordinates. 
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Direct Problem 

The mathematical formulation of the direct problem associated with the 
inverse problem considered here is given by 

where 

with boundary conditions 

W , P )  = 0 P O  

and 

Such boundary conditions represent transparent boundary surfaces with no 
incident radiation. 

The source term involving the fourth power of the temperature is 
represented by a polynomial in the optical variable r as 

This problem is referred to as the direct radiation problem when the 
source term g(7), optical thickness ro, single scattering albedo w and other 
radiation properties are all known, so that the radiation intensity I(r,p) is to be 
determined. In this work highly accurate solutions of the direct radiation problem 
are obtained by using high-order PN method [1,21-261. 

Inverse Problem 

We now consider a problem similar to that given by equations (5.1.1) but 
the source term g(r) is unknown and is to be estimated by utilizing the measured 
exit radiation intensities. 

The problem defined by equations (5.1.1) with the source term or the 
temperature unknown, but measured exit intensities known, is an inverse problem 
which can be solved by the minimization of the following objective function: 
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where Y@) and Z(p) are the measured exit radiation intensities at the surfaces 
r = 0 and t = TO, respectively, while I(O,p,P) and l(rO,p,P) are the estimated exit 
radiation intensities at the surfaces t = 0 and z = TO, respectively, obtained from 
the solution of the direct problem (5.1. l), by using an estimate for the vector of 
unknown parameters P. Since the unknown source term g( ir) is approximated by 
equation (5.1.2), the inverse radiation problem is reduced to an estimation 
problem in ( N + l )  dimensional space. We note that a sufficiently large number of 
measurements is considered available, so that they are assumed as continuous 
functions Y(p) at r = 0 and 201) at t= 70. 

The objective function given by equation (5.1.3) is minimized by 
differentiating S(P) with respect to each of the unknown coefficients P,, 
j = O,., .JV. Then, the resulting expression for dS(P) l  dP, contains the sensitivity 
coefjicients dIldP,, which can be determined from the solution of the sensitivity 
problem developed as described below. 

Sensitivity Problem 

The differentiation of the direct problem given by equations (5.1 .I) with 
respect to P, results in the following sensitivity problem for the determination of 
the sensitivity coefficients dl1 dP, : 

for j = 0, 1, ..., N. The vector 
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is the sensitivity coefficient vector which can be determined from the solution of 
the sensitivity problem. Clearly, the solution procedure for this problem is the 
same as that for the direct problem (5.1 .I),  with g(r) replaced by i. We note that 
the present parameter estimation problem is linear, since the sensitivity problem 
is independent of the unknown parameters P,,.i = 0, ...J. Therefore, it only needs 
to be solved once, as it will be apparent later in the computational aigorithrn. 

Now, we develop an expression for the components of the gradient 
aS(P)/dPj, by differentiating S(P) given by equation (5.1.3) with respect to P,. 
We obtain 

(5.1.6.a) 
for j = 0, I ,..., N, where the vector 

is the gradient of the objective function. 

Iterative Procedure 

To determine the unknown vector P, we consider the iterative procedure of 
Technique 11, and write 

where pk is the step size and d k  is the direction of descent at the ICh iteration. 
Here, dk is determined from 

where the conjugation coefficient yk is computed here with the Fletcher-Reeves 
expression 
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The step size pk in going from iteration k to k+l is determined from the 
condition r n i n ~ ( ~ ' " )  or mins(pk - p k d k  ), that is, 

pk lk 

By using a Taylor series expansion and performing the minimization, as 
described in Note 3 in Chapter 2, we obtain the following expression for the 
search step size 

where 

Stopping Criterion 

Once dk is calculated from equation (5.1.8) and pk from equation 
(5.1 . I  1 .a), we can use the iterative procedure given by equation (5.1.7) to obtain 
new estimates PI, until a stopping criterion based on the discrepancy principle 
is satisfied. Such stopping criterion is given by 

where c i s  the standard deviation of the measurement errors. 
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Computational Algorithm 

The computationaI algorithm for Technique 11, as applied to the present 
inverse radiation problem, can be summarized as fotlows: Assume P' is known at 
the Ph iteration, then 

Step 1. Solve the sensitivity problem given by equations (5.1.4) and compute 
the sensitivity coefficient vector El, given by equation (5.1.5). 

Step 2. Solve the direct problem given by equations (5.1 . l )  and compute the 
k k exit intensities I(0,p;P ) and I ( r O , ~ P  ) at the surfaces r = 0 and 

r = r , respectively 
0 

Step 3. Check the stopping criterion given by equation (5.1.12). Continue if 
not satisfied. 

k k 
Step 4. Knowing , ( 0 ,  ) I(r, ,p;P ) and the measured exit 

intensities Y(p) and Z(p), compute the gradient RT(P') from equation 
(5.1.6.b). 

Step 5. Knowing c~(P'), compute y' from equation (5.1.9); then compute 
the direction of descent d from equation (5.1.8). 

k 
Step 6. Knowing 9 I(0,p;P ), I ( ~ ~ , ~ P ' ) ,  Y b ) ,  Z(p) and dk, compute 

the step size pk from equation (5.1.1 1). 
Step 7. Knowing pk and dk, compute P ~ '  from equation (5.1.7) and return to 

step 2. 

The reader should notice that the sensitivity probiem is only solved once in 
Step 1 of the above algorithm, since the present parameter estimation problem is 
linear. 

Results 

Numerical results are now presented in order to illustrate that the 
computational procedure used here works wet1 and produces results which are 
exact when the simulated measured data contain no measurement errors. The 
results become less accurate as the standard deviation of the measured data is 
increased. 

To illustrate the feasibility of this approach under conditions encountered 
in fires and furnaces, we considered temperatures ranging from 800 K to 1800 K 
[7] and single scattering albedo varying from o = 0.2 to o = 0.35. Also, we  
represented the source term g(r) as a polynomial of degree four in the optical 
variable .r in the form 
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as well as in a sinusoidal variation in the form 

Simulated measured exit intensities Y ( p )  and Z(p)  containing errors 
were generated by adding random errors of standard deviation a to the exact exit 
intensities, computed from the solution of the direct problem. 

Figures 5.1.2 and 5.1.3 show the results obtained with errorless 
measurements (a = 0) and measurements containing random errors (a = 0.03), 
respectively, for the polynomial variation of the source term. We note in figure 
5.1.2 that the exact function is perfectly recovered when errorless measurements 
are used in the analysis. The results obtained with measurements containing 
random errors are also quite accurate, as illustrated in figure 5.1.3. 

2 3 
Figure 5.1.2 - Estimation of the source term g ( r )  = 1 + 20r + 442 - 1282 + 
642 w/cm2 for w = 0.3,ro = l ,R = 1, using simulated exact measurement data 

with a= 0. 
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2 3 Figure 5.1.3 - Estimation of the source term g ( r )  = 1 + 20r + 4 4 ~  - 128r + 
64r' w/cm2 for o = 0.3,r0 = l,R = 1, using simulated measurement data with 

a=: 0.03. 

2 Figure 5.1.4 - Estimation of the source term g ( r )  = 5 +  3sin(2rrr) W 1 cm for 
w = 0 . 3 , ~  = l,E = 1, using simulated exact measurement data with a= 0. 

0 
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The results obtained for the sinusoidal variation of the source term are 
similar to those obtained for the polynomial variation, as presented in figures 
5.1.4 and 5.1.5. 

2 Figure 5.1.5 - Estimation of the source term g(t) = 5 + 3sin(2m) W 1 cm for 
w = 0 . 3 , ~ ~  = 1.R = 1, using simulated measurement data with o= 0.03. 

5-2 SIMULTANEOUS ESTIMATION OF TEMPERATURE PROFILE 
AND SURFACE REFLECTIVITY 1401 

This section is concerned with simultaneous estimation of the unknown 
temperature distribution T(r) and the diffuse reflectivity p of the boundary 
surface at r = 0, of an absorbing, emitting, isotropically scattering plane parallel 
slab of optical thickness 70, We assume that the exit radiation intensities at the 
boundary surfaces r = 0 and r = ro can be measured experimentally. Various 
mathematical approaches have been applied to solve the inverse radiation 
problems of participating media. Here we consider Technique 11, the conjugate 
gradient method of minimization, to solve the inverse radiation problem and use 
high-order PN method to solve the corresponding direct radiation problem [1,2 1 - 
261. The basic steps in the analysis with this approach consists of the followings: 
direct problem, inverse problem, sensitivity problems, iterative procedure, 
stopping criterion and computational algorithm. We summarize below the 
pertinent details of each of these basic steps. 
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Direct Problem 

The mathematical formulation of the direct problem, associated with the 
inverse problem considered here, consists of the equation of radiation transfer 
and its two boundary conditions. Then we write 

with 

Fi25 T~ ( r )  
g(r> = (1 - 0) - 

For the case considered here, we assume that the boundary surface at t = 0 
is a diffuse reflector and has negligible emission; the boundary surface at r= to is 
transparent and there is no externally incident radiation. Then, the boundary 
conditions become 

and 

where p, 0 p d 1, is the reflectivity of the boundary surface at r = 0. 
The source term involving the fourth power of the temperature is 

approximated by a polynomial in the optical variable ras 

Figure 5.2.1 shows the geometry and coordinates. Here N is the degree of 
the polynomial utilized in the approximation. 
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Reflecting Boundary 
P Transparent Boundary 

Figure 5.2.1 - Geometry and coordinates. 

Inverse Problem 

For the inverse problem considered here, the source term g(r), as well as 
the surface reflectivity p, are regarded unknown. Since the source term was 
written in the form given by equation (5.2.2), such inverse problem involves the 
estimation of (N+2) parameters, that is, (Nt-1) coefficients a,, n = 0, ..., N, of the 
source function and the reflectivity p a t  the surface r = 0.  The vector of unknown 
parameters is then given by 

Such vector is to be estimated by using measurements of the exit 
intensities at the surfaces r = 0 and r = ro .  

The estimation of the unknown source term g(r) and the boundary surface 
reflectivity p, from the knowledge of the exit intensities measured at different 
directions, can be recast as a problem of minimization of the following objective 
function S(P): 

where Y(p) and Z(p) are the measured exit radiation intensities at the surfaces 
t = 0 and r = to, respectively, while I (0 ,p ;P)  and I ( ro ,p ;P)  are the estimated 
exit radiation intensities at the surfaces z = 0 and r = so, respectively, obtained 
C r a m  tho rnlvltinn nf the A i r ~ r t  nrnhl~rn /< 3 1 )  h\l i i c i n o  ~ q t i r n l t ~ d  \ , n l r ~ ~ r  fnr the 
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parameters = [ a , ,  a , ] .  We note that a sufficiently large number of 
measurements is considered available, so that the measured data can be assumed 
as continuous functions Y(p)  and 201). 

The gradient of the objective function is obtained by differentiating S(P) 
given by equation (5.2.3.b) with respect to each of the unknown coefficients a, 
and p, respectively. Then the resulting expressions for dSlda, and 8Sldp 
contain the sensitivity coefficients dl1 da, and dl1 dp, respectively, which can 
be determined from the solution of the sensitivity problems developed as 
described below. 

Sensitivity Problems 

By differentiating the direct problem given by equations (5.2.1) with 
respect to a, and p, the sensitivity problems are obtained for the determination of 
the sensitivity coefficients dIl da, (n=O, 1 ,...,A') and 311 dp, respectively. By 
differentiating (5.2. I )  with respect to a, gives 

with boundary conditions 

for n = O,1, ...JV. The differentiation of (5.2.1) with respect to p gives 

(5.2.5.a) 

with boundary conditions 
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The row vector 

is the sensitivity coefficient vector which can be determined from the solution of 
the above sensitivity problems. We note that the reflectivity p is unknown and it 
appears in the formulations of both sensitivity problems (5.2.4) and (5.2.5). 
Therefore, the present estimation problem is nonlinear. If the reflectivity were 
known, the estimation problem would be linear, as illustrated in section 5.1. 

Next, we develop expressions for the components of the gradient, i.e., 
dSlda, and dSldp,  by differentiating S(P) given by equation (5.2.3.b) with 
respect to a, and p to obtain, respectively, 

(5.2.7.a) 
for n = O,1, ...JV, and 

where the row vector [vs(P)]~, defined by 

is the gradient of the objective function, 

Iterative Procedure 

To determine the unknown vector P defined above, we consider the 
following iterative minimization procedure of Technique I1 
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where pk is the step sire and dk is the direction of descent at the P iteration, 
determined fiom 

k k - l  d k  = V S ( P ' ) + ~  d (5.2.9) 

The conjugation coefticient 4 is computed from the Fletcher-Reeves expression 

k for k = 1,2,3 ... with 0 (5.2.10) 

Here, the step size p in going from pk to pk*' is determined h m  the condition 

By using a Taylor series expansion and performing the minimization as 
described in Note 3 in Chapter 2, we obtain the following expression for the 
search step size 

where 

and 
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Stopping Criterion 

Once d k  is calculated from equation (5.2.9) and 4 from equation 
(5.2.12.a), the iterative process defined by equation (5 .2 .8)  can be used to obtain 
new estimates pk', until a stopping criterion based on the discrepancy principle 
is satisfied. Hence, the stopping criterion is given by 

where a is the standard deviation of the measurement errors. 

Computational Algorithm 

The computational algorithm of Technique 1 1 ,  as applied to the present 
parameter estimation problem, can be summarized as follows. Assume pk is 
known at the klh iteration, then 

Step 1. Solve the direct problem given by equations (5.2.1) and compute the 
k k 

exit radiation intensities I ( 0 , p ; P  ) and I ( r o , p ; P  ) at the surfaces 

r = 0 and r = ro,  respectively. 

Step 2. Check the stopping criterion given by equation (5.2.13). Continue if 
not satisfied. 

Step 3. Solve the sensitivity problems given by equations (5 .2 .4)  and (5.2.5),  
and compute the sensitivity coefficient vector VI defined by equation 
(5.2.6) .  

k k 
Step 4. Knowing I ( 0 , p ; P  ), I ( r O  ,p;P ) and the measured exit 

radiation intensities Y(p) and Z@), compute the gradient !7T(pk) from 
equation (5.2.7.c) .  

Step 5. Knowing m(P'), compute the conjugation coefficient $ from 
equation (5.2.10).  Then compute the direction of descent dk from 
equation (5.2.9). 

Step 6. Knowing Vi', I ( 0 , p ; p k ) ,  l ( r o , p ; ~ ? ,  Y b ) ,  Z b )  and dk,  compute 

the step size 4 from equation (5.2.12.a). 
Step 7. b o w i n g  ,# and dk,  cornpule ph' from equation (5 .2 .8)  and return to 

step 1. 
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Numerical results are now presented, in order to give some idea of the 
accuracy of the conjugate gradient method of minimization in the sotution of the 
inverse problem of simultaneous estimation the source term g(t) and the diffise 
reflectivity p of the boundary surface at r = 0, for absorbing, emitting, 
isotropically scattering gray plate of optical thickness TO. The temperatures 
considered lie between 800 K to 1800 K, which is encountered in fires and 
hmaces. The single scattering albedo was chosen as o = 0.3, which is 
encountered in coal flames. In order to simulate the measured exit intensities Y ( p )  
and Z b )  containing measurement errors, random errors of standard deviation a 
were added to the exact exit intensities, computed from the solution of the direct 
problem. The source term was expressed as a polynomial of degree four in the 
optical variable t. The two different forms of such representation considered here 
include 

Figure 5.2.2 shows simultaneous estimation of the source term g(r) (or 
temperature distribution T(t)) and the reflectivity p, by choosing the source term 
g( t )  in the form given by equation (5.2.14.a), for to = 1 .O, w = 0.3, p = 0.9 
and a = 0.05. The agreement between the exact and the estimated results for both 
the source term g(t) and reflectivity is good. For the case of no measurement 
errors (i.e., a = O), the estimated results agreed with the exact ones within the 
accuracy of the graphical representation. 

Figure 5.2.3 presents results similar to those shown by figure 5.2.2, except 
for the presence of errors with standard deviation a = 0.1. The agreement 
between the estimated and the exact results is still quite good. 

Figures 5.2.4 and 5.2.5 are for a plate of optical thickness z, = 5 and a 
source term g(t) given by equation (5.2.14.b). Figure 5.2.5, for a standard 
deviation s= 0.1, does not seem to be in good agreement with the exact results. 
The estimation of reflectivity is not good because a very low value (i.e. p = 0.1) is 
to be estimated, and because the optical thickness is too large. 
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Figure 5.2.2 - Simultaneous estimation of source term and surface reflectivity 
with measurement mor o= 0.05, g(r) = 1 + l o r +  7 5 2  - 170? + 853,  

w=0,3 , r  = l , E = l .  
0 

Figure 5.2.3 - Simultaneous estimation of source term and surface reflectivity 
withmeasurement error a=O. l ,g( r )= 1 + l o r +  7 5 2  - 170r3 + 85P, 

w=0.3,r  o = l , E = l .  
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Figure 5.2.4 - Simultaneous estimation of source term and surface reflectivity 
with measurement error o= 0.05, m= 0.3, ro = 5,ii = I, 

dr)= 1 + 0.12 +0.01~~. 

- - - Estimated 

- 

, 1 1 1  i l l , j , , ) , ~ , , ,  I , , , ,  

Figure 5.2.5 - Simultaneous estimation of source term and surface reflectivity 
with measurement error a= 0.1, m = 0.3, ro = 5 , i i  = 1, 

1 +o.ir2 +O.OIT~. 
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5-3 ESTIMATION OF THE RADIATION SOURCE TERM IN A 
SEMITRANSPARENT SOLID SPHEm [41] 

The inverse radiation problem of estimating the unknown temperature 
distribution and radiation properties in an absorbing, emitting and scattering 
medium has received a good deal of attention [34-40, 42-46]. However, such 
works have been limited to the plane-parallel medium. In this section we examine 
the inverse problem of estimating the unknown temperature field in an absorbing, 
emitting, isotropically scattering semi-transparent solid sphere, by utilizing the 
measured exit radiation intensities. 

The inverse analysis utilizes Techniques I and 11, the Levenberg- 
Marquardt method and the conjugate gradient method, respectively. Both 
methods require the solution of the direct problem and the determination of the 
sensitivity coeficients, which are obtained here by solving sensitivity problems. 
The solution methodologies for the conjugate gradient method and Levenberg- 
Marquardt method of minimization are discussed below, after the formulation of 
the direct, inverse and sensitivity problems. 

Direct Problem 

For an absorbing, emitting, isotropically-scattering gray solid sphere of 
optical radius R with transparent boundary, the equation of radiative transfer can 
be expressed as [30]: 

in 0 < r < R,-1 I p 5 I .  For transparent boundary at r = R, with no externally 
incident radiation, the boundary condition is taken as 

The geometry and coordinates of this spherical system is illustrated in 
figure 5.3.1. The source term is related to the temperature T(r) in the medium by 

i i 2 ~ ~ 4  ( r )  
g ( r )  = (1 - 0) 

72 

where ii is the refractive index of the medium and 5 is the Stefan-Boltzmann 
constant. 
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Figure 5.3.1 - Geometry, coordinates and measurement location. 

When the source term g(r), optical radius R, single scattering albedo w and 
the boundary condition at r = R are all specified, the problem defined above by 
equations (5.3.1) for determination of the radiation intensity I(r,,u) is called a 
direct problem. However, when the source term g(r) is unknown and needs to be 
estimated from the knowledge of the measured exit intensities taken at the outer 
surface of the sphere, the problem becomes an inverseproblem. 

Pomraning and Siewert 1471 developed the integral form of the above 
radiation problem in terms of incident radiation I(r) as 

where E,(x)  is the exponential integral function. The incident radiation, I(r), is 
defined as 

where it(r,P) and 1-(r , - ,u) ,  for ,u 2 0, are the forward and backward 
intensities, respectively. 

Thynell and 0zisik [30] solved this integral equation for I(r), by 
representing g(r) and I(r) in a power series in the optical variable r as 
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and 

where the expansion coefficients P, are considered known in the case of the 
direct problem. The coeflcients C, are computed by using the Galerkin method; 
since the method is well documented [27-331, it will not be repeated here. 
However, we note that the accuracy of the solution of the resulting algebraic 
equations can be improved if the iterative improvement scheme suggested in 
reference [48] utilizing the L.U. decomposition is used. The scheme allows for 
many more terms to be included in the power series expansion given in equation 
(5.3.6). The iterative improvement scheme is found to be specially important 
when the system of equations tend to become ill-conditioned, as the optical radius 
R becomes large. 

Once the coefficients C,,, are determined, the incident radiation I(r) is 
calculated from equation (5.3.6) and the angular distribution of the exit intensity 

I i(r,p) is computed from 

where P,, are the expansion coefficients specified by equation (5.3.5). Since we 
are interested only in the forward exit intensity at the outer radius, equation 
(5.3.7) will suffice for the solution of the direct problem with r = R. Here 

x + (r ,p)  and x + ( r , l )  are definite integrals defined by 
I I 

-w 

and 
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for which explicit expressions are. also available [49]. In addition, ,Ii (i=1,2) are 
defined as 

By substituting equations (5.3.8) and (5.3.9) along with the calculated 

values of C, into equation (5.3.7), we can calculate the exit intensities if (R,,u) 
at any angle p. 

Inverse Problem 

The problem defined by equations (5.3.1) with the source term g(r) 
unknown and with measured exit intensities available is an inverse problem, 
which can be solved by minimizing the following objective fitnction 

where Y@) is the measured exit intensity and I ' ( R , ~ ; P )  is the estimated exit 
intensity at the outer surface, obtained by using the current estimate for the 

T 
parameters P = [P~, PI PN of equation (5.3.5). A sufficiently large number I 
of measurements is assumed available, so that it can be considered as continuous. 

Sensitivity Problem 

Equation (5.3.10) is minimized by differentiating S(P) with respect to each 
of the unknown coefficients P,, giving 

The resulting equation for dS/ dPn contains the sensitivity coefficients 
31'/3Pn , which are determined from the solution of the sensitivity problems, as 
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now considered. Differentiating the direct problem given by equations (5.3.1) 
with respect to P, generates the sensitivity problems for the determination of the 
sensitivity coefficients dl'/ dP, , n=O, 1,. . .,N, that is, 

The solution of equations (5.3.12) for each n, n = O,I, ..., N, produces the 
sensitivity coefficient vector, 

The procedure for solving equations (5.3,12.a,b) is the same as that 
described previously for the solution for the direct problem, with g(r) replaced by 
rn. 

It is noted that the sensitivity problem given by equations (5.3.12.a,b) is 
independent of the parameters P,,. Hence, the estimation problem is linear. The 
sensitivity coefficients are solved only once and need not be recalculated for each 
estimate of P,. 

The Solution with Technique I1 

As stated above, the inverse problem requires the minimization of the 
objective function, equation (5.3. lo), by differentiating it with respect to 
P,, n = 0,1,2 ,... A. In vector form, dSldP, can be written as 

which can easily be computed with equation (5.3.1 1). 
To estimate the unknown vector P, we consider here the iterative 

procedure of Technique I1 given in the form: 
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k k k  pk"=p  - p  d for k = 0,1,2,... (5.3.14) 

where pk is the step size, in going from iteration k to k + l .  The direction of 
descent dk is given by 

k k-1 
d k  = v s ( P ~ ) + ~  d for k = O,I,2,... (5.3.15) 

where the conjugation coefficient yk is computed from the Fletcher-Reeves 
expression 

k for k-1,2, ... with y O = ~  (5.3.16) [ k ]'[ k - I  ] 
VS(P ) VS(P ) 

The step size pk is determined by minimizing the objective function 
s(pk"), that is 

By using a Taylor series expansion, the following expression is obtained 
for the determination of 4 (see equation 2.2.16): 

Once dk is calculated from Equation (5.3.15) and f lk  from equation 
(5.3.18), the iterative process given by equation (5.3.14) is applied until a 
specified stopping criterion is satisfied. 

If there is no measurement error, the conventional stopping criterion 
defined as 

where E is a small positive number, can be used to terminate the iteration process. 
On the other hand, if the exit intensity measurements contain errors, the 
discrepancy principle is required to obtain the tolerance t. from equation (5.3.10) 
in the form 
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so that the resulting solution is stable, where a is the standard deviation of the 
measurement errors. 

The computational algorithm for Technique 11, as applied to the present 
inverse radiation problem, can be summarized as follows. 

Assume pk is known at the th iteration.Then, 

Step 1. Solve the sensitivity problem given by equations (5.3.12.a,b) and 
compute the sensitivity coefficient vector VI' given by equation 
(5.3.12.c). 

Step 2. Given the current estimate of P', compute the exit intensities 
k 

I + ( R , ~ ; P  ) for the outer radius R, from equation (5.3.7). 
Step 3. Terminate the iterations when the stopping criterion given by 

equation (5.3.19) is satisfied. Continue otherwise. 
k 

Step 4. Knowing VI', I+(R,,u;P ) and the measured exit intensities Y(p),  
compute the gradient PS(P') from equation (5.3.13). 

Step 5. Knowing vs(pk)), compute from equation (5.3.16) and then the 
direction of descent dk from equation (5.3.15). 

k 
Step 6. Knowing VI' , I + ( R , ~ P  ), Y(p)  and dk, compute the step size pk 

from equation (5.3.18). 
Step 7. Knowing pk and dk, estimate P"' from equation (5.3.14) and return 

to step 2. 

The Solution with Technique I 

Technique I, the Levenberg-Marquardt method, is also applied to the 
solution of the present inverse radiation problem, for the sake of comparison with 
Technique 11. It also employs the direct and the sensitivity problems given above. 
The objective function is re-written in the following form for Technique I: 

where I is the total number of measurements. To estimate the unknown parameter 
vector f by the Levenberg-Marquardt method, the following iterative procedure 
is used (see equation 2.1.13): 
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I00 --d.-• Estimate a = 0.03 

Estimate a = 0.1 

0 0.25 0.5 0.75 1 
Optical Radius, r 

Figure 5.3.2.a - Temperature distribution for R = 1, w = 0.3 and 
2 3 4 5 

g ( r )  = 1 + 3r - 0.lr + r + O.lr - 4r using conjugate gradient method. 

Next, we consider another source term expressed as a fifth degree 
polynomial in the optical variable r  as 

for 0 5 r I 5 ,  w = 0.3 and using measurement data of a= 0 and a= 0.1. The test 
source term was chosen such that the magnitude of the intensity wouid be of the 
same order as that of the case with R = 1, in figures 5.3.2.a,b. Figure 5.3.3.a 
illustrates the results obtained for such a test-case by using the conjugate gradient 
method. This figure shows that for R = 5 the solution deviates from the exact 
function even with errorless measurements. This is expected, since the majority 
of the information for the estimation comes from the radii closer to the outer 
radius. Although the agreement between exact and estimated temperatures is still 
quite good, the inverse problem becomes more sensitive to errors when a larger 
radius is used. As only one measurement location can be used at the outer radius, 
the problem is one of physics and not of the solution method. Figure 5.3.3.b 
presents the estimate of the source term given by equation 5.3.24 by using the 
Levenberg-Marquardt method. As was shown in the R = I case, the Levenberg- 
Marquardt method produced more accurate solutions, but once again the starting 
parameter guess had to be close to the exact solution. Inverse analysis for optical 
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radii larger than R = 5 showed marked decrease in accuracy. Hence, it is 
suggested that the present scheme be used only for R 5 5 .  

n 
L. 

F 

90 
0 0.25 0.5 0.75 1 

Optical Radius, r 

Figure 5.3.2.b - Temperature distribution for R = 1, w = 0.3 and 
2 3 4 

g(r)  = I + 3r - O.lr + r + O.lr - 4r using Levenberg-Marquardt method. 

We also considered the estimation of the temperature source term for a 
small optical radius using the following fourth degree polynomial 

with 0 r 5 0.1, w = 0.3 and using measurement data with o= 0.003 and 
o = 0.006. Figure 5.3.4.a shows that the estimation utilizing the conjugate 
gradient method is quite good. However, the error is greatest toward the center of 
the sphere even for small optical radii. Figure 5.3.4.b is the Levenberg-Marquardt 
solution. Again it was found to be more accurate, but needing an initial guess 
close to the exact solution. 
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R = 5 ,  o = 0.3 
- Exact 

Optical Radius, r 
Figure 5.3.3.a - Temperature distribution for R = 5, o = 0.3 and 

g ( r )  = 1 + 0.6r - 0.004r2 + 0.008r3 + 0.00 16r4 - 0.00 128r5 
using the conjugate gradient method. 

130 I I I 

120 - 

0 1 2 3 4 5 
Optical Radius, r 

Figure 5.3.3.b - Temperature distribution for R = 5, w = 0.3 and 

g(r) = 1 + 0.6r - 0.004r2 + 0.008r3 + 0.001 6r4 - 0.001 28r5 
using the Levenberg-Marquardt method. 
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5.3.4.8 - Temperature distribution for R = 0.1, o = 0.3 and 

g ( r )  = 1 + 2r + r 2  - 10,000r4 using the conjugate gradient method. 
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Figure 5.3.4.b - Temperature distribution for R = 0.1, w = 0.3 and 
2 g ( r )  = I + 21 + r - 10,000r4 using the Levenberg-Marquardt method. 
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Finally, we considered the variation of the temperature field with albedo, 
u, for the source term given by equation (5,3,23). For the results presented 
below, we utilized initially the conjugate gradient method with a starting guess 
far from the exact solution and then, after several iterations, the current estimate 
was used as the starting guess for the Levenberg-Marquardt method. Results 
obtained with such an approach are shown in figure 5.3.5, for different values for 
the albedo w. The use of the combination of Levenberg-Marquardt and conjugate 
gradient methods appears to yield more accurate results and allows one to 
perform the calculations with starting guesses far from the converged result. 
Figure 5.3.5 shows that, for a given source term, the temperature increases as 
albedo increases. This is expected, since the higher albedo scatters more energy 
back into the interior and, hence, produces a higher temperature. 

n 
b 

F 

- Exact 
--- Estimated 

50 . . 
1 . . - . 9 . - . . t .  

0 0.25 0.5 0.75 1 

Optical Radius, r 

Figure 5.3.5 - Temperature distribution for R = 1 and 
2 3 5 

g( r )  = 1 + 3r - O.lr + r + 0.lr4 - 4r for different values of w utilizing 
combined conjugate gradient and Levenberg-Marquardt methods. 

PROBLEMS 

5- 1 Derive the Equation of Radiative Heat Transfer for an absorbing, emitting, 
isotropicaliy scattering plane-parallel gray medium. 

5-2 Derive the Equation of Radiative Heat Transfer for an absorbing, emitting, 
isotropicafly scattering gray medium with sphericaI symmetry. 

5-3 Derive the Equation of Radiative Heat Transfer for an absorbing, emitting, 
irntrnn;r.rll~r c r ~ t t ~ r ; n n  or?,. rnrdirrm 111;th r ~ , l ; n r l r i c ~ l  r \ r m m p t n r  



288 INVERSE HEAT TRANSFER 

5-4 Derive the sensitivity problem given by equations (5.1.4). 
5-5 Derive equation (5.1.1 1 .a) for the search step size in section 5-1. 
5-6 Show all the basic steps for the solution of the inverse radiation problem 

described in section 5-1, by using Technique I. 
5-7 Use Technique I to estimate the coefficients of the polynomial given by 

equation (5.1.13). Utilize in the inverse analysis the measurements of exit 
intensities at I = 0 and z = zo = 1, with standard-deviations a = 0 and 
a= 0.03. Examine the effects of the initial guess on the solution. How the 
results obtained with Technique I compare to those shown in figures 
5.1.2,3, obtained with Technique II? 

5-8 Show all the basic steps for the solution of the inverse radiation problem 
described in section 5-2, by using Technique I. 

5-9 Solve the inverse radiation problem described in section 5-2 by using 
Technique I instead of Technique 11. Compare the results obtained with 
these two techniques, for the cases shown in figures 5.2.2-5. How are the 
estimates affected by the initial guess of the iterative procedure? 

5-10 Formulate an inverse problem similar to that considered in section 5-3, but 
in a cylindrical geometry. Show aH the basic steps for the solution of such 
inverse radiation problem by using Techniques I and 11. 
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Chapter 6 
A GENERAL FORMULATION FOR 
INVERSE HEAT CONDUCTION 

6-1 INTRODUCTION 

As apparent fiom the material in the previous chapters, the solution of 
inverse problems involving different heat transfer modes generally requires the 
solution of their associated direct problems. Therefore, the ability of a method of 
solution of inverse problems to handle compiex physical situations is closely 
related to the direct problem method of solution. 

Several practical engineering applications involve geometries irregularly 
shaped, that is, geometries with boundaries not coinciding with surfaces of 
constant coordinates in the system where they are referred to. The traditional 
finite difference methods have computational simplicity when they are applied 
for the solution of problems involving a regular geometry, with uniformly 
distributed grids over the region. However, their major drawbacks include their 
inability to handle effectively the solution of problems over arbitrarily shaped 
compiex geometries. When the geometry is irregular, difficulty arises from the 
boundary conditions because interpolation is needed between the boundaries and 
the interior points, in order to develop finite-difference expressions for nodes 
next to the boundaries. Such interpolations produce large errors in the vicinity of 
strong curvatures and sharp discontinuities. Therefore, it is difficult and 
inaccurate to solve problems with traditional finite difference methods over 
regions having irregular geometries. 

Consider, for example, the annular region depicted in figure 6.1 .l .  It is 
impossible to discretize such a region in the Cartesian system of coordinates with 
constant grid spacing Ax and Ay, since the boundaries of the region do not 
coincide with surfaces of constant x or constant y. However, such difficulty can 
be easily overcome by using the polar system of coordinates (r, B), instead of the 
Cartesian system (x,y). The polar system of coordinates (r,@ is the natural one for 
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the annular region, because its boundaries are surfaces of constant radius; hence, 
a uniform grid with constant increments dr and do, in the r and 6 directions, 
respectively, can be generated over the region. Such an example involving the 
annular region reveals important aspects that will be extended later for general 
regions: (i) The annular region, irregularly shaped in the Cartesian system of 
coordinates, was transformed (or mapped) into a rectangle in the polar system of 
coordinates, as shown in figure 6.1.2; (ii) Governing equations for the physical 
problem of interest for the annular region shalt be written in terns of polar 
coordinates. Therefore, they can be discretized and solved over the regular region 
on the polar system of coordinates; (iii) Since the transformation from Cartesian 
to polar coordinates is one-to-one, the solution developed over the uniform grid 
on the polar system can be easily transformed backwards to the physical annular 
region in the Cartesian system of coordinates. 

X 

Figure 6.1.1 - Annular region in the Cartesian system of coordinates. 

CARTESIAN SYSTEM 
L 

POLAR SYSTEM 

Figure 6.1.2 - Transformation of the annular region in the Cartesian system into a 
rectangle in the polar system of coordinates. 

Many transformations are available in which the physical and 
computational coordinates (the Cartesian and polar coordinates, respectively, in 
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the example above) are related with algebraic expressions. But such 
transformations are difficult to construct for general multidimensional cases. The 
coordinate transformation technique advanced by Thompson [ l ]  alleviates such 
difficuities, because the transformation is obtained automatically from the 
numerical solution of partial differential equations. In this approach, a curvilinear 
mesh is generated over the physical domain, such that one member of each family 
of curvilinear coordinate lines is coincident with the boundary contour of the 
region. Therefore, it is also called boundaryfitted coordinates method. The use of 
numerical grid generation has provided finite difference methods with the 
geometrical capabilities of treating irregular geometries of the finite element 
method, but maintaining their intrinsic simplicity of discretization. 

To illustrate the basic concepts in the implementation of Thompson's 
technique of numerical grid generation, we consider a two-dimensional region, 
with (xy) being the coordinates in the physical domain and (&q) the generalized 
coordinates in the computational domain. The basic steps in Thompson's 
approach can be summarized as follows: 

1. The transformation relations, for mapping the irregular region in the 
physical domain ( x j )  into a regular region in the computational domain 
( c , ~ )  (or vice versa), are determined automatically from the numerical 
solution of two elliptic partial differential equations of the Laplace or 
Poisson type. The parabolic and hyperbolic type differential equations 
have also been used for numerical grid generation; but elliptic equations 
are preferred because of their smoothing effect in spreading out the 
boundary slope irregularities. Customarily, the Cartesian coordinate 
system is used both in the (xa) physical and (&q) computational 
domains. It is also possible to use other coordinate systems, such as the 
( r , 9  polar coordinates in the physical domain and (77,n polar 
coordinates in the computational domain. In either case, the irregular 
physical region is mapped into the computational domain as a regular 
region. 

2. The partial differential equations governing the physical phenomena are 
transformed from the (xa) independent variables of the physical domain 
to the ({,TI) independent variables of the computational domain. Hence, 
traditional finite difference methods can be used to solve the governing 
equations in the computational domain. 

3. Once the transformed field equations are solved in the computational 
domain, the solution is transformed from the (&q) computational 
domain to the (xy) physical domain, by using the transformation 
relations developed previously. 

An extensive review of numerical grid generation is available in the book 
by Thompson et al. [ I ]  and the application of this technique to the solution of 
various engineering problems can be found in references [2- 121. 
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In this chapter, we solve the inverse heat conduction problem of 
estimating the transient heat flux, applied on part of the boundary of an irregular 
two-dimensional region, by using Technique IV, the conjugate gradient method 
with adjoint problem for function estimation. The irregular region in the physical 
domain (xy) is transformed into a rectangle in the computational domain ( 6 , ~ ) .  
The direct, sensitivity and adjoint problems, as well as the gradient equation, are 
formulated in terms of the generalized coordinates (4, rl). Therefore, the present 
formulation is general and can be applied to the solution of boundary inverse 
heat conduction problems over any region that can be mapped into a rectangle. 

Chapter 6 is organized as follows. An overview of coordinate 
transformation relations, required to transform the heat conduction equation and 
boundary conditions into the computational domain, is presented. We then 
discuss some basic ideas for mappings and present the boundary value problem of 
numerical grid generation. After developing the appropriate background, the 
auxiliary problems and expressions required for the solution of inverse problems 
with Technique IV over irregular geometries are derived in terms of generalized 
coordinates. The present approach is then illustrated with an inverse problem of 
practical engineering interest. 

6-2 COORDINATE TRANSFORMATION RELATIONS 

Consider a partial differential equation given in the ( x j )  independent 
variables in the physical domain. We seek the transformation of this partial 
differential equation from the (xy) to the (<,r)) independent variables. The 
transformation from the (x,y) to the (6, 7) variables can be expressed as 

and the inverse transformation as 

The transformation of governing equations requires relations for the 
transformation of various differential operators, such as the first derivative, 
gradient, Laplacian, etc. Therefore, in this section we present such relations for 
use as ready reference in later sections. 

The Jacobian of the inverse transformation J is given by: 

where the subscripts denote differentiation with respect to the variable 
considered, i.e., 
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The Jacobian is required to be different from zero in order to obtain one- 
to-one transformations. This is accomplished by requiring that coordinate lines of 
the same family do not cross and lines of different famiIies do not cross more 
than once. 

The transformation relations can be developed by application of the chain 
rule of differentiation. Consider, for example, the first derivatives dTl& and 
dTldy . By the chain rule of differentiation, we write 

Interchanging x and 6, as well as y and 77 we obtain 

The solution of equations (6.2.6.a,b) for dT/& and dTl* with Cramer's 
rule gives the transformation relations for the first derivatives as 

A comparison of equations (6.2.5) and (6.2.7) gives 
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Example 6-1. Transform the continuity equation 

fiom the ( x j )  coordinates of the physical domain to the (c,:,tt) coordinates of the 
computational domain. 

Solution. The transformations of the first derivatives are given by 
equations (6.2.7.a,b). Then the transformation of the above continuity equation 
from the ( x j )  to the ( 4 , ~ )  coordinates becomes 

The transformation of second derivatives can be obtained by utilizing the 
transformation relations for the first derivatives and the chain rule of 
differentiation. Thompson et al. [ I ]  presented extensive relations for the 
transformation of the divergence, gradient, Laplacian, etc., for both conservative 
and non-conservative forms, fiom the Cartesian coordinates to general curvilinear 
coordinates. Here we present, for ready reference, some of these transformation 
relations from the (xy), to the ((,t)) coordinates in both the conservative and non- 
conservative forms. It is to be noted that the non-conservative forms can be 
obtained from the conservative forms, by expanding ail derivatives and 
cancelling the identity terms. 

Gradient 

Consider the gradient of the scalar quantity T given in the form 
VT = T i +  T j, where i and j are the unit vectors in the x and y directions, 

X Y 

respectively. The components T, and T, of the gradient vector can be written in 
the computational domain as: 

Conservative form: 



A GENERAL FORMULATION FOR INVERSE HEAT CONDUCTION 299 

Non-conservative form: 

where the Jacobian J is defined by equation (6.2.3). Note that when the product 
derivative terms in the conservative form are expanded, the identity terms cancel 
out and equations (6.2.9) reduce to the non-conservative form given by equations 
(6.2.10). 

Divergence 

We now consider the vector quantity T, that is, 

The divergence of T is written in the computational domain (S;q), in the 
conservative and non-conservative forms, respectively, by: 

Conservative form: 

Non-conservative form: 

Laplacian 

We consider the Laplacian of a scalar quantity T in the physical domain 
(xg), that is, 

This operator in the computational domain ({,q) is given in the 
conservative and non-conservative forms, respectively, by: 
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Conservative form: 

Non-conservative form: 

where 

Normal Derivatives 

Conservative form: 

The normal derivatives of T to the &constant line along the normal n(" shown in 
figure 6.2.1 is given by 

and to the 11 - constant line along the normal n"' shown in figure 6.2.1 is given by 

Non-conservative form: 

The normal derivatives of T to the {-constant line along the normal d3) is 
given by 
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and to the q- constant line along the normal n'4' is given by 

where a, j?, yand J are defined by equations (6.2.17). 

Figure 6.2.1 - Outward drawn unit normal vectors to 6 = constant and 
7 = constant lines 

The derivative along the normal vectors n") and n") are obtained by 
switching signs in equations (6.2.1 8.a,b), respectively, for the conservative fonn, 
or in equations (6.2.19.a,b), respectively, for the non-conservative form. 

The reader should consult Thompson et al [ I ]  for the transformation 
relations for other partial derivative operators such as for a2iaray.  

Example 6.2. Consider the two-dimensional transient heat conduction 
equation in the physical domain (x,y,t) given by 

where a, is the thermal diffusivity. Transform this equation from the (x,y,t )  
independent variables of the physical domain to the ({,q,t) independent variables 
of the computational domain. 

Solution. By utilizing the non-conservative form of the Laplacian given by 
equation (6.2.16), we can write the heat conduction equation in terms of the 
generalized variables (6, q,t) as 

where a, #3, y and J are defined by equations (6.2.17). 
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6-3 SIMPLE TRANSFORMATIONS 

A variety of approaches has been reported in the literature for the 
transformation of irregularly shaped regions into simple regular regions such as a 
square, rectangle, etc. The basic theory behind such transformations is quite old. 
For example, conformal transformation has been widely used in classical 
analysis. Schwarz-Christoffel transformation is we11 known for conformal 
mapping of regions with polynomial boundaries onto an upper-half plane. A 
dictionary of conformal transformations was compiled by Kober [13]. Details of 
application of conformal transformation with complex variable technique can be 
found in the standard texts by Milne-Thompson [14] and Churchill [IS]. 

Before presenting the numerical grid generation technique, we iIlustrate 
the basic concepts in grid generation and mapping by considering one- 
dimensional simple transformation utilizing algebraic relations. 

Consider two-dimensional, steady, boundary layer flow over a flat plate 
mathematically modeled in the physical domain using (xy) Cartesian coordinates. 
To solve such flow problem with finite-differences, customarily a rectangular 
grid is constructed over the solution domain and the nodes are concentrated near 
the wall where the gradients are large, as illustrated in figure 6.3.1 .a. A uniform 
grid is constructed in the x-direction, but a nonunifom grid is used in the 
y-direction. To alleviate the difficulties associated with the use of nonuniform 
grids, the problem can be transformed from the physical (xa) domain to the 
computational ( 4 , ~ )  domain, with a coordinate transformation that will allow the 
use of uniform grids in both the cand q directions, as illustrated in figure 6.3.1 .b. 

A coordinate transformation that maps a nonuniform grid spacing in they 
direction into a uniform grid spacing in the 7 direction, but allows the grid 
spacing in the x direction to remain unchanged, is given by Roberts [16] in the 
form 

where 

Here p is the stretching parameter, which assumes values 1 < P < m. As j? 
approaches unity, more grid points are clustered near the wall in the physical 
domain. The inverse transform is given by 
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(a) Physical plane x,y (b) Computational 6.q 

Figure 6.3.1 - One dimensional stretching transformation 

To illustrate the grid concentration as P -+ 1, we set, for example, q = 0.4 
and calculate y for different values of p, as shown below. 

Once the relations for the coordinate transformation are established, the 
differential equations governing the physical phenomena must be transformed 
from the (xy) independent variables of the physical domain to the (<,q) 
independent variables of the computational domain under the same 
transformation, since all numerical computations will be performed on the ( 4 , ~ )  
computational domain. To illustrate the transformation of the governing partial 
differential equations, we consider, say, the continuity equation given by 

The transformation of this equation from the (xa) to the (6,~) variables 
under the general transformation defined by equations (6.2.l.a,b) was given in 
Example 6.1 by 
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The computational derivatives y, , yg , x, and x4 are expressed in terms of 
the metrics G, , {, , 21, and tt,, according to equations (6.2.8). Then, the 
transformed equation (6.3.5) takes the form 

For the specific problem considered here, the transformation relations are 
given by equations (6.3.1). Then, the rnetrics 5, , a, 4, and 77, become 

By introducing equations (6.3.7) into equation (6.3.6), the transformed 
continuity equation takes the form 

where t7, is defined by equation (6.3.7.d). 
We note that the transformed continuity equation (6.3.8) retains its original 

general form, except for the coefficient q,, accompanying the hlaq term. 
Therefore, the transformed equation (6.3.8) is slightly more complicated than its 
original form given by equation (6.3.4); but it will be solved over a uniform grid 
both in the 6 and 7 directions in the computational domain, using the ( 6 , ~ )  
rectangular coordinates. Clearly, the finite-difference solution in the ( 6 , ~ )  
computational domain with a uniform grid is much easier and more accurate than 
solving the problem in the original physical domain with nonuniform grid. If the 
problem involves other partial differential equations, they also need to be 
transformed into the (Xq) computational domain in a similar manner. 

Once the problem is solved in the computational domain, the results are 
transformed backwards into the physical domain from each ( 4 , ~ )  location to the 
corresponding ( x j )  location, by using the inverse transformation given by 
equations (6.3.3). 

Roberts [16] and other investigators have proposed numerous other simple 
stretching transformations. However, it is difficult to develop analytic 
transformations capable of clustering grids around arbitrary locations, whereas 
the numerical grid generation technique provides a unified approach for 
developing transformations capable of dealing with more general situations. 
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6-4 BASIC IDEAS IN NUMERICAL GRID GENERATION AND 
MAPPING 

In finite difference solutions of partial differential equations over regions 
having regular shapes, such as a rectangle, cylinder or sphere, the discretization 
can be made to conform to the boundaries of the region. As a result, the boundary 
interpolation is avoided. For regions having an arbitrary irregular shape, this is 
not possible. One way to overcome such difficulty is to map the region, with a 
suitable transformation, into the computational domain where the geometry 
becomes regular, say, rectangular. The problem is then solved over the 
rectangular region with a square grid by using conventional finite-differences. 
The solution developed in the computational domain is then transformed 
backwards into the physical domain. 

To illustrate the basic concepts in the mapping and development of 
curvilinear coordinates, we consider a two dimensional physical domain in the 
( x j )  Cartesian coordinates and a computational domain in the (2,~) Cartesian 
coordinates. The transformation between ( x q )  and (&,@ coordinates should be 
such that the boundaries of the physical domain must be coincident with the 
curvilinear coordinates (&,v); thus there will be no need for boundary node 
interpolation. 

Consider an irregular region ABCDA in the physical domain in the (xa) 
Cartesian coordinates, as illustrated in figure 6.4.1 .a. The region is called simply 
connected because it contains no obstacles in its interior. This region is to be 
mapped into a rectangle in the computational domain (c,q), in the following 
manner: 

Set 7 constant and let {to vary monotonically along the boundary segments 
AB and DC of the physical region, and 
Set 2 constant and let to vary monotonically along the boundary segments 
AD and BC of the physical region. 

Clearly, with such requirements on the values of 6 and q along the 
boundaries of the physical region, the segments AB and DC are mapped into the 
computational domain as horizontal lines, while the segments AD and BC are 
mapped into the computational domain as vertical lines, as illustrated in figure 
6.4.1 .b. Notice that each boundary segment of the irregular region in the physical 
domain is mapped into the sides of the rectangular region in the computational 
domain. Without loss of generality, we can choose A{ = A7 = 1 in the 
computational domain, so that M and N are the number of 4 and grid lines in 
the region, respectively. 
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Physical Domain Computational Domain 

Figure 6.4.1 - Mapping an irregular simply connected region into the 
computational domain as a rectangle. 

In the previous illustration of mapping, an irregular region in the physical 
domain is mapped as a rectangular region into the computational domain. 
Depending on the choice of the values of ( 4 , ~ )  along the boundary segments of 
the physical region, a variety of other acceptable configurations can be generated 
in the computational domain. To illustrate this matter, we consider an L-shaped 
irregular region ABCDEFA in the physical domain as shown in figure 6.4.2.a. 
One possibility is to map the region into an L-shaped regular region, as illustrated 
in figure 6.4.2.b. Another possibility is to map the L-shaped irregular region as a 
rectangle in the computational domain, as shown in figure 6.4.3. 

Figure 6.4.2 - Mapping of an L-shaped irregular region into an 
L-shaped regular region 
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Figure 6.4.3 - Mapping of an L-shaped irregular region into a rectangle 

The example presented in figures 6.4.2 and 6.4.3 shows that different 
possible mappings can be envisioned to transform the same irregular region in the 
physical domain into a regular region in the computational domain. The analyst 
must exercise his expertise in order to devise the most suitable mapping for each 
physical region of interest. 

The mappings illustrated in figures 6.4.1-3 involved simply-connected 
regions in the physical domain. Similarly, irregular multiply-connected regions in 
the physical domain can be transformed into regular multiply-connected regions 
in the computational domain; or, alternatively, branch-cuts can be used so that the 
transformed region becomes a rectangle. The reader should consult references [ I ]  
and 1121 for possible mappings involving multiply-connected regions, as well as 
simply-connected regions containing reentrant boundary surfaces. 

6-5 BOUNDARY VALUE PROBLEM OF NUMERICAL GRID 
GENERATION 

We present here the numerical grid generation and mapping technique 
advanced by Thompson [ I ] ,  involving the solution of two elliptic partial 
differential equations in the form 
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where the non-homogeneous terms P({,Y) and Q(6,q) are called the grid 

control functions. By proper selection of the P((, 7) and e(6, q) functions, the 

coordinate lines 6 and q can be concentrated towards a specified coordinate line 
or about a specific grid point. In the absence of these functions, i.e., P = Q = 0, 
the coordinate lines will tend to be equally spaced in the regions away from the 
boundaries, regardless of the concentration of grid points along the boundaries. In 
fact, elliptic equations do not propagate the boundary shape discontinuities into 
the coordinate field and generally provide smooth grids. 

Equations (6.5.1) are written in terms of the independent variables (x,y) in 
the irregular physical domain. However, it is more convenient for computational 
purposes to solve the grid generation equations in the regular domain ( 5 , ~ ) .  
Transforming equations (6.5.1) by using equation (6.2.16) and then interchanging 
the roles of dependent and independent variables, we obtain the following two 
elliptic equations for the determination of the unknowns x and y, in terms of the 
independent variables 5 and 77 in the computational domain: 

where the geometric coefficients a, p, y and the Jacobian J are obtained from 
equations (6.2.17). 

The mathematical problem defined by equations (6.5.2), subjected to 
appropriate boundary conditions, constitutes the boundary value problem of 
numerical grid generation. Generally, such a problem is solved by finite- 
differences, by utilizing either first-kind or second-kind boundary conditions, as 
described next. 

Boundary Conditions 

(i) Boundary Condition of the First Kind. In most applications, the 
values of the (x,y) coordinates of the boundaries of the physical domain are 
known, for each grid point ( 6 , ~ ) .  Then, the grid generation problem becomes one 
of solving equations (6.5.2) over the regular computational domain, with 
prescribed values of (x,y) at the boundaries. 

(ii) Homogeneous Boundary Condition of the Second Kind: 
Orthogonality of Grid Lines. There are situations in which (or 77) grid lines 
are required to intersect some portion of the boundary segment in the physical 
domain at a specified angle, #, as illustrated in figure 6.5.1. A commonly imposed 
condition is that 4 (or q) grid lines intersect some segment of the physical 
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boundary normally, that is # = ;rr / 2 .  In fact, it has been shown that the numerical 
discretization error increases when the intersection angle departures from # = 7r/2 
[ I ] .  

Figure 6.5.1 - The angle of intersection of grid lines. 

To establish the mathematical expression to implement the requirement of 
orthogonality of grid lines, we consider the gradients of and defined 
respectively by 

where i and j are the unit direction vectors. The dot product of V t  and Vq, i.e., 

represents the cosine of the angle (6. By introducting r,, G, c,,, and 77y from 
equations (6.2.8) into equation (6.5.4) we obtain 

In the case of orthogonality, we have # = ~r 1 2  or cos # = 0. Then equation 
(6.5.5) reduces to 

This is the criterion to be implemented in the computatjonal domain, 
whenever the 6 (or q) constant grid lines are required to intersect the physical 
boundary normal ty. 
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Grid Control Functions 

The user-specific grid control functions P(t,v) and Q(6,q) are usehl to 
concentrate the interior grid lines in regions where large gradients occur. For 
example, in problems of natural convection large gradients occur near the walls, 
hence grid points need to be concentrated in such locations. Thompson El] 
specified the P({, 7) and Q({, q) hct ions  in the form 

and 

We note that the P({, 7) and Q(5,v) functions are similar, except that t and 
q are interchanged. Due to the form of the Poisson equations (6.5.1), the control 
function P({,q) acts on the attraction of 4: = constant lines, while the hnction 
Q(t,q) acts on the attraction of r f  = constant lines. The physical significance of 
various terms in equations (6.5.7) are as follows. 

In the first summation of equation (6.5.7.a), the amplitude ai attracts 
4 = constant lines towards the { = ti line; and in the second summation the 
amplitude bi attracts 5 = constant lines towards the point (ti,qi). Figure 6.5.2 
illustrates such effects. Similar effects are obtained on the q = constant lines with 
the Q((,q) grid control fbnction. 

The summation indexes n and m (or n* and m*) denote the number of line 
and point concentrations, respectively. The sign function, sign ({-ti), ensures that 
attraction of 5 lines occurs on both sides of the Ci line or (ti, qi) point. Without 
the sign function, the attraction occurs only on the side towards increasing {, with 
repulsion occurring on the other side. The coefficients c , ,  ci* and d, , di* control 
the decay of attraction with the distance, while ai , ai* and bi , bi* give the 
amplitude of the attraction. 
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Figure 6.5.2 - The attraction of lj = constant lines towards (a) the coordinate line 
{ = ti and (b) the point (ti, qi). 

For other grid control approaches, the reader is referred to references 
[ I ,  121. 

6-6 A GENERALIZED COORDINATES APPROACH FOR INVERSE 
HEAT CONDUCTION [l 11 

In the previous sections of this chapter we presented the formulation and 
discussed aspects relevant for the numerical grid generation and domain 
transformation approach. We now use such an approach aHied with Technique 
IV, for the estimation of the transient heat flux applied on part of the boundary of 
a general two-dimensional region. 

The direct, inverse, sensitivity and adjoint problems, as well as the 
gradient equation, all required for the solution of inverse problems with 
Technique IV, are derived in terms of the generalized coordinates ( 5 , ~ )  in the 
computational domain, as described next. 

Direct Problem 

The physical problem considered here involves the linear heat conduction 
in a two-dimensional general region Q(x,y), in the Cartesian coordinates system 
(x,y). The initial temperature distribution in the region is F(xJ). For times t > 0, 
the boundary T(x,y) of the region is subjected to a second kind boundary 
condition. The mathematical formulation of this problem is given by: 

1 d -- d 2 f  d 2 ~  
T(x,y,t) = ~ c -  in Q(x, y), for t > 0 (6.6.1 .a) 

a, a t  dx dy2  
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8T 
k - = q(x, y,t) at r (x ,  y), fort > 0 (6.6.1 .b) 

a n  

T(x~ , t )  = F ( ~ J )  for t = 0, in R(x,y) (6.6.1 .c) 

where a, and k, denote the thermal diffusivity and conductivity, respectively. 
Since the problem (6.6.1) can involve an irregular region, it is transformed 

into a rectangle in the computational domain (c,q), as illustrated in figure 6.4.1. 
By using the transformation relations presented in section 6.2, more specifically 
equations (6.2.16) and (6.2.19), and using the fact that v2{ = P(g,q) and 
v 2 q  = Q(6,q) in accordance with equations (6.5.1), the problem (6.6.1) can be 
written as: 

k 
at 7 = N , 1 < c < M , for t > 0 (6.6.2.e) 

where the subscripts 6 and q above denote partial derivatives and F*(c,q) is the 
initial condition F(xy) rewritten in terms of the independent variables 5 and q. 

For the Direct Problem, the thermophysical properties a, and k,, the initial 
condition F*({,q), the heat fluxes ql(t), q2(t), q3(t) and q4(t) applied on the 
boundary of the region, as well as the transformation from the physical domain 
into the computational domain, defined by a, P, y, J, P(4,q) and Q((,q), are 
considered known. The direct problem is concerned with the determination of the 
temperature field T(4, q, t) in the region. 
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Inverse Problem 

For the inverse problem considered here, the heat flux q3(t) at the 
boundary 5 = M is regarded as unknown, while all the other quantities appearing 
in equations (6.6.2) are assumed to be known with sufficient degree of accuracy. 
The heat flux q3(t) is to be estimated by using the transient readings of NS 
temperature sensors located at the positions (tm,vm), m = 1, ..,, NS, during the 
time interval 0 < t < tf. Such temperature measurements may contain random 
errors. The present inverse problem is solved as a function estimation approach 
by using Technique IV, that is, no information regarding the functional form of 
the unknown is considered available for the inverse anaiysis, except that it 
belongs to the Hilbert space La in 0 < t < i) 

The ill-posed inverse problem stated above is re-formulated as a well- 
posed minimization problem. Hence, an estimation for the function q3(t) is 
obtained by minimizing the following hnctional 

where Y,(t) and T({,, vm, t; 93) are the measured and estimated temperatures at 
the measurements positions (cm,qm), m = 1, ..., NS. The estimated temperatures 
are obtained from the solution of the direct problem (6.6.2) by using an estimate 
for the heat flux q3(t). 

We note that the inverse probiem, as stated above, can also be used for the 
estimation of the heat transfer coefficient at the boundary { = M, if the cooling 
fluid temperature is known. In fact, it has been shown that the computational time 
for the estimation of the heat flux and posterior estimation of the heat transfer 
coefficient, by using the estimated heat flux and known fluid temperature, is 
smaller than that for the solution of the inverse problem involving the heat 
transfer coefficient as unknown 1171. Such behavior is due to the fact that the 
functional given by equation (6.6.3) is quadratic and the inverse problem of 
estimating the boundary heat flux is linear. On the other hand, the estimation of 
the heat transfer coefficient involves the minimization of a non-quadratic 
functional. 

In order to apply Technique IV for minimizing the functional given by 
equation (6.6.3), we need to develop the sensitivity and adjaint problems, as 
described next. 

Sensitivity Problem 

In order to develop the sensitivity probiem, we assume that the 
temperature T({,q,t) undergoes a variation AT({,q,t), when the unknown 
boundary heat flux q3(t) undergoes a variation Aq3(t). By substituting into the 
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direct problem given by equations (6.6.2), T({,v,t) by [T(dq,t) + A17(c,q,t)] and 
q3(t) by [q3(t) + dg3(t)],  and subtracting from the resulting expressions the 
original direct problem, we obtain the following sensitivity problem for the 
determination of the sensitivity function AT({, 7,t): 

1 d -- 1 
AT(& tl,t) =  AT^^ - 2pAT + yAT ) + [PAT< + Q~~ ) 

a, ,J2 '1'4 'I"? "6.6.4.a) 

k  AT^ - PAT ) = Aq, ( t  ) at !$ = M , 1 < q < N , for r > 0 (6.6.4.6) 
J& 'I' 

AT(& ~ , o )  = 0 for t = 0 , in 1 < 4: < A4 , 1 < q < N (6.6.4.f) 

We note that the sensitivity problem is independent of the unknown heat 
flux q3(t). Hence the present estimation problem is linear. 

Adjoint Problem 

In order to develop the adjoint problem, we multiply the differential 
equation of the direct problem, equation (6.6.2.a) by the Lagrange multiplier 
R(<,q,t), integrate over the time and space domains and add the resulting 
expression to the functional (6.6.3). The foIlowing extended functional is 
obtained: 
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where 4.) is the Dirac delta function. 
We assume that the functional S[q3(t)] is perturbed by dS[g3(t)] when the 

boundary heat flux q3(t) undergoes a variation dg3(t). By substituting into 
equation (6.6.5), T({,q,t) by [T(5,v,t)+AT(5,v,t>l and S[q3(t)] by 
(S[q3(t)+dS[q3(t)] ) , and subtracting from the resulting expressions the original 
equation (6.6.5), we obtain the following expression for the variation of the 
extended functional: 

The second integral term in equation (6.6.6) is integrated by parts. By 
substituting the initial and boundary conditions of the sensitivity problem, 
equations (6.6.4.b-f), and then letting the terms containing AT({, q,t) to vanish, we 
obtain after some lengthy but straightforward algebraic manipulations the 
following adjoint problem for the determination of the Lagrange multiplier 
4 v,t) 
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Gradient Equation 

In the limiting process described above for obtaining the adjoint problem, 
the fol!owing integral term is left: 

By assuming that the unknown heat flux belongs to the Hilbert space L2 in 
the time domain 0 < t < t/, that is, 

we can write 

Therefore, by comparing equations (6.6.8) and (6.6.9.b), we obtain the 
gradient equation for the functional as: 

Iterative Procedure 

The iterative procedure of the Technique IV, as applied to the estimation 
of the heat flux q3(t), can be written as 

qi + I  ( l )  = q: ( l )  - flkd (I) (6.6.1 1 .a) 
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where pk is the search step-size used to advance the estimation from iteration k to 
k - t  1. 

The direction of descent d k ( t )  is given by: 

d k  ( t )  = V S  q ( t )  + *d ( r )  I: I 
The conjugation coefficient f l  is obtained from the Fletcher-Reeves expression 
as: 

j {v+: ( t ) ] )2  dt 
k r = O  

Y = for k = 1,2, ... with = 0 (6.6.1 1 .c) 

The search step size pk is obtained by minimizing the fknctional given by 
equation (6.6.3) with respect to 4, in the same manner as described in Note 7 of 
Chapter 2. The following expression results: 

where AT({,,,, %,t;dk)  is the solution of the sensitivity problem given by equations 
k k 

(6.6.4) at the measurement point (5.. q,,,), obtained by setting Aq3 ( t )  = d ( t )  . 

Stopping Criterion 

The iterative procedure of the conjugate gradient method, given by 
equations (6.6.11-12), is applied to the estimation of q3(t) until a stopping 
criterion based on the Discrepancy Principle is satisfied. In such principle, as 
described in Chapter 2, we assume that the inverse problem solution is 
sufficiently accurate when the difference between estimated and measured 
temperatures is of the order of the standard deviation (a) of the measurements. 
Thus, the value of the toferance E is obtained from equation (6.6.3) as 
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The value of the functional (6.6.3) is then compared to the tolerance E at 
k+ l  

each iteration. The iterative procedure is stopped when S[q3 ( r ) ]  becomes 

smaller than E. 

Computational Algorithm 

k 
We suppose available an estimate q3 ( t )  for the unknown heat flux q3(t) at 

iteration k. Thus: 

Step 1: Solve the direct problem given by equations (6.6.2) ta obtain the 
estimated temperatures T(t ,  q,t). 

Step 2: Check the stopping criterion given by the discrepancy principle with 
E determined from equation (6.6.13). Continue if not satisfied. 

Step 3: Solve the adjoint problem given by equations (6.6.7) to obtain the 
Langrange multiplier 12(4, q,t). 

Step 4: Compute the gradient of the functional VS from equation 

(6.6.10). 
Step 5: Compute the conjugation coefficient from equation (6.6.1 1 .c) and 

then the direction of descent dk(t )  from equation (6.6.1 I .b). 
Step 6: Solve the sensitivity problem given by equations (6.6.4) to obtain 

k 
AT({, q,t), by setting Aq, ( t )  = d k  ( t )  . 

Step 7: Compute the search step size @ from equation (6.6.12). 
k + 1 

Step 8: Compute the new estimate q, ( f )  from equation (6.6.1 1 .a) and go 

to step 1 .  

Results 

We illustrate below the present approach for solving inverse problems 
based on generalized coordinates, with a practical example involving the cooling 
of an electronic component. Figure 6.6.1 .a shows a module used for the cooling 
of thyristors [IS, f 91. In such a module, a fluid in convective boiling is forced 
through channels to remove the heat released by the thyristor. The heat flux to the 
boiling fluid may vary depending on the two-phase flow regime and is to be 
estimated by using transient temperature measurements taken at appropriate 
locations inside the module. We consider for the analysis a single central channel 
with a half-circle cross section and take into account the symmetry of the 
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channel. The geometry and relevant dimensions are shown in figure 6.6.1 .b. The 
half-circle cross section is utilized because it permits more flexibility in the 
design of the condensing system [i9]. The module is made of copper with 
dimensions a = 5mm, r = I Omrn, H = Smm, d = 5mm and e = 1 5 m .  

(a) (b) 
Figure 6.6.1 - (a) Module for the cooling of thyristors. 

(b) Geometry in the physical domain with relevant dimensions. 

The transformation of the irregular region in the physical domain into a 
rectangle in the computational domain is presented in figure 6.6.2. We note in 
this figure that the channel surface (E-F-G), with unknown boundary heat flux, is 
mapped into the boundary 4 = M in the computational domain. 

For simplicity in the analysis, we solve the present inverse problem in 
dimensionless form by introducing the following dimensionless groups 

where To, qo and Pare reference values for temperature, heat flux and length, 
respectively. The bars denote dimensionless variables in equations (6.6.14) and 
will be omitted hereafter. 
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Figure 6.6.2 - Transformation of the physical domain into the computational 
domain. 

For the results presented below, we assumed for the initial condition a 
uniform unitary temperature. A condition of symmetry was used for the 
boundaries q = 1 (A-E) and 7 = N @-G), while the boundary 6 = 1 (A-B-C-D) 
was supposed insulated. No generality is lost with this last assumption, since the 
heat flux at such boundary is considered known for the inverse analysis. The 
characteristic length was taken as ! = d 12 + t / 2  = 7.5mm, while the final 
dimensionless time was taken as 5.6, which corresponds to a dimensional time of 
10 seconds. During this time interval, 50 measurements per sensor were 
considered available for the inverse analysis. 

The direct, sensitivity and adjoint problems were solved with finite- 
differences by using the Alternating-Direction-Implicit (ADI) method 120, 211. 
The resultant tri-diagonal systems were solved with a vector version of Thomas 
algorithm [22j. 

The domain shown in figure 6.6.2 was discretized with M = 30 and 
N = 100 points in the 5 and q directions, respectively. The time step was 
taken as 3.33 x lo4. Such time step and number of points were chosen based on a 
grid convergence analysis. The maximum difference between the results obtained 
with the above discretization for the direct problem and those obtained by 
doubling the number of points on both {and q directions, and using a time step 4 
times smaller was less than 0.51%. The code for the direct problem was also 
validated by comparing the numerical results with known analytical solutions for 
cases involving regular geometries [23]. 

We used simulated measurements in order to assess the accuracy of the 
present approach of estimating the unknown boundary heat flux. Figures 6.6.3 
and 6.6.4 present the results obtained for triangular and step variations for the 
heat flux respectively, and for two different levels of measurement errors, a = 0 
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and a = 0.01 T,, , where T,, is the maximum measured temperature. Such 
results were obtained with the measurements of a single sensor located at the 
position A, as shown in figure 6.6.2. The agreement between exact and estimated 
functions, obtained with errorless measurements (a = 0), is excellent for both 
fbnctional forms tested. The triangular variation shown in figure 6.6.3 is exactly 
recovered and basically no smoothness is noticed in the comers. Also, very little 
oscillations are observed in the neighborhood of the discontinuities in figure 
6.6.4. Similarly, the results obtained with measurements containing random errors 
(a= 0.01 T,,) are in very good agreement with the exact functional forms. 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
Dimensionless Time 

Figure 6.6.3 - Inverse problem solution for a triangular variation for q3(t)  

The effects of number and location of the sensors on the inverse problem 
solution were examined. Different configurations were tested, including: a single 
sensor (NS = I )  located at the position A, B, C, or D; two sensors (NS = 2) 
located at positions A and B; and four sensors (NS = 4 )  located at positions A, B, 
C and D. Figure 6.6.5 presents the solutions obtained with such configurations 
for the step variation of q3(t), by considering errorless measurements (a= 0). The 
inverse problem solution appears to be insensitive to the location and number of 
sensors for the configurations tested. This is probably due to the reduced 
dimensions of the module studied. Similar behavior was also observed with the 
triangular variation, as well as with measurements containing random errors. 
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Exact 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
Dimensionless Time 

Figure 6.6.4 - Inverse problem solution for a step variation for q3(r) 

NS=l, Position A A US=+, Position D 

NS=l, Position B + N%2, Pos. A and B 

NSd, Position C * N W ,  Pas. A, 6, C and D 

Oms - o=O.O Exact 

0.0 ~ ' I ~ I ~ I ' J ~ ~ ~ ~  

0.0 1.0 2.0 3.0 4.0 5.0 6.0 
Dimensionless Time 

Figure 6.6.5 - Inverse problem solution for different sensor configurations 
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Although the solution of boundary inverse problems in irregular 
geometries as presented above is general, the preceding analysis of the number 
and location of sensors depends on the geometry under study, and should be 
performed for each case of interest. The present approach can be extended with 
few modifications to the analysis of problems involving multiply-connected 
regions. 

Other numerical techniques, such as finite elements [ 17,24271 and 
boundary elements [28-311, have also been applied to the solution of inverse 
problems involving irregular regions. 

PROBLEMS 

Derive the expressions given by equations (6.2.9,10), for the gradient in 
terms of the generalized coordinates (t, 7). 
Derive the expressions given by equations (6.2.12,13), for the divergence 
in terms of the generalized coordinates ( 5 , ~ ) .  
Derive the expressions given by equations (6.2.15,16), for the Laplacian in 
terms of the generalized coordinates (Q q). 
For a square region in the physical domain with sides of unitary length, so 
that h=L=l in figure 6.3.1, consider the discretization with 11 points in the 
x and y directions. Plot the grid lines on the region in the physical domain 
for different values of P, say, P= 1.5, 1.1 and 1.01, by using the 
transformation given by equations (6.3.3 .a,b). 
Derive the elliptic grid generation equations (6.5.2.a,b). 
Write a computer program for grid generation, by using the elliptic scheme 
given by equations (6.5.2.a,b) with first kind boundary conditions. Use 
such a program to generate grids on the region presented in figure 6.6. I .b. 
Examine the effects of the control functions P(5,q) and Q({,q) on the 
grids generated. 
Moditjl the program developed in problem 6-6 in order to allow the use of 
homogeneous second kind (orthogonality) boundary conditions. 
Derive the sensitivity problem given by equations (6.6.4). 
Derive the adjoint problem given by equations (6.6.7). 
Consider the following heat conduction problem in a general two- 
dimensional region R(x,y): 

I dT(x,y,t) d 2 ~  d 2 ~  g(x,y,t) - =- +- i- in C2(x,y), for t > 0 
d t  dx2 dy2 k t 

at T(x, y) ,  for t > 0 

~ J , O )  = 0 in R(x,y), for t = 0 

where T(x,y) is the boundary of Q(x,y). 
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By using the approach described in this chapter, derive all the basic steps 
of Technique IV in terms of generalized coordinates for the solution of 
the inverse problem of estimating the timewise variation of the heat 
source term g(xy,t). Assume the spatial distribution of g(x9,t) as known 
for the analysis. 

6-11 Repeat problem 6.10 for the estimation of both the timewise and 
spacewise variations of g(xy,t). 

6-12 In the heat conduction problem given by equations (6.6.2), assume that the 
heat flux at the boundary = M is a function of time as well as of the 
spatial position. Therefore, equation (6.6.2.d) needs to be replaced by 

k 
=g, (q , t )  at { = M ,  l < q < N  , for t>O 

Derive all the basic steps of Technique IV in terms of generalized 
coordinates, for the estimation of the unknown function q3(f7,t). 
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