

PROGRAMMING LANGUAGES:
AN ACTIVE LEARNING APPROACH

PROGRAMMING
LANGUAGES:
AN ACTIVE LEARNING
APPROACH

Kent D. Lee
Luther College

123

Library of Congress Control Number: 2008924915

ISBN: 978-0-387-79421-1 e-ISBN: 978-0-387-79422-8

Printed on acid-free paper

© 2008 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer soft-
ware, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

DO I: 10.1007/ 978-0-387-79421-1

Kent D. Lee
Luther College
Department of Computer Science
700 College Drive
Decorah, Iowa 52101-1045
leekentd@luther.edu

To Denise.

Preface

Computer Science has matured into a very large discipline. You will not be taught
everything you will need in your career while you are a student. The goal of a
Computer Science education is to prepare you for a life of learning. The creativ-
ity encouraged by a lifetime of learning makes Computer Science one of the most
exciting fields today according to Money Magazine’s Best Jobs in America in 2006.

The words Computer Science don’t really reflect what most computer program-
mers do. The field really should be named something like Computer Program Engi-
neering. It is more of an engineering field than a science. That’s why programmers
are often called Software Engineers. There is science in Computer Science gener-
ally relating to the gathering of empirical evidence pertaining to performance of
algorithms and hardware. There are also theoretical aspects of the discipline, some
of which this text will explore. However, the bulk of what computer scientists do
is related to the creative process of building programs. As computer scientists we
know some things about how to write good programs, but it is still a very creative
process.

Given that programming is such a creative process, it is imperative that we be
able to predict what our programs will do. To predict what a program will do, you
must understand how the program works. The programs of a language execute ac-
cording to a model of computation. A model may be implemented in many different
ways depending on the targeted hardware architecture. However, it is not necessary
to understand all the different architectures out there to understand the model of
computation used by a language.

For several years in the late 1980’s and 1990’s I worked at IBM on the operating
system for the AS/400 (what is now called System i and the i5/OS). My understand-
ing of compilers and language implementation helped me make better decisions
about how to write code and several times helped me find problems in code I was
testing. An understanding of the models of computation used by the languages I pro-
grammed in aided me in predicting what my programs would do. After completing a
course in programming languages, you should understand some of the basics of lan-
guage implementation. This book is not intended to be a complete text on compiler
or interpreter implementation, but there are aspects of language implementation that
are included in it. We are better users of tools when we understand how the tools we
use work.

I hope you enjoy learning from this text and the course you are about to take. The
text is meant to be used interactively. You should read a section and as you read it,
do the practice exercises listed in the gray boxes. Each of the exercises are meant to
give you a goal in reading a section of the text.

The text has a website where code and other support files may be downloaded.
See http://www.cs.luther.edu/˜leekent/ProgrammingLanguages for all support files.

For Teachers

This book was written to fulfill two goals. The first is to introduce students to
three programming paradigms: object-oriented/imperative, functional, and logic
programming. To be ready for the content of this book students should have some
background in an imperative language, probably an object-oriented language like
Python or Java. They should have had an introductory course and a course in Data
Structures as a minimum. While the prepared student will have written several pro-
grams, some of them fairly complex, most probably still struggle with predicting
exactly what their program will do. It is assumed that ideas like polymorphism, re-
cursion, and logical implication are relatively new to the student reading this book.
The functional and logic paradigms, while not the mainstream, have their place and
have been successfully used in interesting applications.

The Object-Oriented languages presented in this book are C++ and Ruby. Teach-
ers may choose between the chapter on Ruby or the chapter on C++, or may assign
both. It might be useful to read both chapters if you wish to compare and contrast
a statically typed, compiled language to a dynamically typed, interpreted language.
The same project is presented in both chapters with the C++ chapter requiring a
little more explanation in terms of the compiler and organization of the code. Ei-
ther language is interesting to choose from and the chapters do cross-reference each
other to compare and contrast the two styles of programming so if you only have
time to cover one or the other, that is possible too.

C++ has many nuances that are worthy of several chapters in a programming lan-
guages book. Notably the pass by value and pass by reference mechanisms in C++
create considerable complexity in the language. Polymorphism is another interest-
ing aspect of Object-Oriented languages that is studied in this text.

Ruby is relatively new to the programming language arena, but is widely ac-
cepted and is a large language when compared to Python and Java. In addition, its
object-centered approach is very similar to Smalltalk. Ruby is also interesting due
to the recent development of “Ruby on Rails” as a code generation tool.

The text uses Standard ML as the functional language. ML has a polymorphic
type inference system to statically type programs of the language. In addition, the
type inference system of ML is formally proven sound and complete. This has some
implications in writing programs. While ML’s cryptic compiler error messages are
sometimes hard to understand at first, once a program compiles it will often work
correctly the first time. That’s an amazing statement to make if your past experience
is in a dynamically typed language like Lisp, Scheme, Ruby, or Python.

The logic language is Prolog. While Prolog is an Artificial Intelligence language,
it originated as a meta-language for expressing other languages. The text concen-
trates on using Prolog to implement other languages. Students learn about logical
implication and how a problem they are familiar with can be re-expressed in a dif-
ferent paradigm.

The second goal of the text is to be interactive. This book is intended to be used in
and outside of class. It is my experience that we almost all learn more by doing than
by seeing. To that end, the text encourages teachers to actively teach. Each chapter

Prefaceviii

follows a pattern of presenting a topic followed by a practice exercise or exercises
that encourage students to try what they have just read. These exercises can be used
in class to help students check their understanding of a topic. Teachers are encour-
aged to take the time to present a topic and then allow students time to practice with
the concept just presented. In this way the text becomes a lecture resource. Students
get two things out of this. It forces them to be interactively engaged in the lectures,
not just passive observers. It also gives them immediate feedback on key concepts
to help them determine if they understand the material or not. This encourages them
to ask questions when they have difficulty with an exercise. Tell students to bring
the book to class along with a pencil and paper. The practice exercises are easily
identified. Look for the light gray practice problem boxes.

The book presents several projects to reinforce topics outside the classroom. Each
chapter of the text suggests several non-trivial programming projects that accom-
pany the paradigm being covered to drive home the concepts covered in that chapter.
The projects described in this text have been tested in practice and documentation
and solutions are available upon request.

Finally, it is expected that while teaching a class using this text, lab time will
be liberally sprinkled throughout the course as the instructor sees fit. Reinforcing
lectures with experience makes students appreciate the difficulty of learning new
paradigms while making them stronger programmers, too.

Supplementary materials including sample lecture notes, lecture slides, answers
to exercises, and programming assignment solutions are available to instructors
upon request.

Acknowledgments

I have been fortunate to have good teachers throughout high school, college, and
graduate school. Good teachers are a valuable commodity and we need more of
them. Ken Slonneger was my advisor in graduate school and this book came into
being because of him. He inspired me to write a text that supports the same teaching
style he uses in his classroom. Encouraging students to interact during lecture by
giving them short problems to solve that reflect the material just covered is a very
effective way to teach. It makes the classroom experience active and energizes the
students. Ken graciously let me use his lecture notes on Programming Languages
when I started this book and some of the examples in this text come from those
notes. He also provided me with feedback on this text and I appreciate all that he
did. Thank you very much, Ken!

Other great teachers come to mind as well including Dennis Tack who taught me
the beauty of a good proof, Karen Nance who taught me to write, Alan Macdonald
who introduced me to programming languages as a field of study, Walt Will who
taught me how to write my first assembler, and last but not least Steve Hubbard who
still inspires me with his ability to teach complex algorithms and advanced data
structures to Computer Science majors at Luther College! Thanks to you all.

Preface ix

Preface . vii

1 Introduction . 1
1.1 Historical Perspective . 2
1.2 Models of Computation . 4
1.3 The Origins of a Few Programming Languages 7
1.4 Language Implementation . 12
1.5 Where do we go from here? . 17
1.6 Exercises . 18
1.7 Solutions to Practice Problems . 19
1.8 Additional Reading . 20

2 Specifying Syntax . 21
2.1 Terminology . 21
2.2 Backus Naur Form (BNF) . 23
2.3 The EWE Language . 24
2.4 Context-Free Grammars . 28
2.5 Derivations . 29
2.6 Parse Trees . 30
2.7 Parsing . 31
2.8 Parser Generators . 32
2.9 Bottom-Up Parsers . 33
2.10 Top-Down Parsers . 33
2.11 Other Forms of Grammars . 33
2.12 Abstract Syntax Trees . 37
2.13 Infix, Postfix, and Prefix Expressions . 38
2.14 Limitations of Syntactic Definitions . 38
2.15 Exercises . 40
2.16 Solutions to Practice Problems . 41
2.17 Additional Reading . 46

Contents

3 Object-Oriented Programming with C++ . 47
3.1 Application Development . 48
3.2 The Token Class . 55
3.3 Implementing a Class . 57
3.4 Inheritance and Polymorphism . 59
3.5 A Historical Look at Parameter Passing . 62
3.6 Const in C++. 67
3.7 The AST Classes . 70
3.8 The Scanner . 73
3.9 The Parser . 75
3.10 Putting It All Together . 81
3.11 Exercises . 84
3.12 Solutions to Practice Problems . 87
3.13 Additional Reading . 90

4 Object-Oriented Programming with Ruby . 91
4.1 Designing Calc . 93
4.2 The Token Class . 94
4.3 Parameter Passing in Ruby vs C++ . 95
4.4 Accessor and Mutator methods in Ruby . 96
4.5 Inheritance . 97
4.6 The AST Classes . 97
4.7 Polymorphism in Ruby . 100
4.8 The Scanner . 102
4.9 The Parser . 103
4.10 Putting It All Together . 107
4.11 Static vs Dynamic Type Checking . 109
4.12 Exercises . 112
4.13 Solutions to Practice Problems . 114
4.14 Additional Reading . 116

5 Functional Programming in Standard ML . 117
5.1 Imperative vs Functional Programming . 118
5.2 The Lambda Calculus . 119
5.3 Getting Started with Standard ML . 122
5.4 Expressions, Types, Structures, and Functions 123
5.5 Recursive Functions . 125
5.6 Characters, Strings, and Lists . 127
5.7 Pattern Matching . 129
5.8 Tuples . 130
5.9 Let Expressions and Scope . 131
5.10 Datatypes . 133
5.11 Parameter Passing in Standard ML. 136
5.12 Efficiency of Recursion . 136
5.13 Tail Recursion . 138

xii Contents

5.14 Currying . 140
5.15 Anonymous Functions . 141
5.16 Higher-Order Functions . 142
5.17 Continuation Passing Style . 148
5.18 Input and Output . 149
5.19 Programming with Side-effects . 150
5.20 Exception Handling . 152
5.21 Encapsulation in ML . 153
5.22 Type Inference . 155
5.23 Exercises . 158
5.24 Solutions to Practice Problems . 161
5.25 Additional Reading . 168

6 Language Implementation in Standard ML . 169
6.1 Using ML-lex . 170
6.2 The Calculator Abstract Syntax Definition . 172
6.3 Using ML-yacc . 173
6.4 Code Generation . 175
6.5 Compiling in Standard ML . 179
6.6 Extending the Language . 181
6.7 Let Expressions . 182
6.8 Defining Scope in Block Structured Languages 185
6.9 If-Then-Else Expressions . 186
6.10 Functions in a Block-Structured Language . 188
6.11 Sequential Execution . 195
6.12 Exercises . 197
6.13 Solutions to Practice Problems . 199
6.14 Additional Reading . 202

7 Logic Programming . 203
7.1 Getting Started with Prolog . 205
7.2 Fundamentals . 206
7.3 Lists . 208
7.4 Built-in Predicates . 211
7.5 Unification and Arithmetic . 211
7.6 Input and Output . 212
7.7 Structures . 213
7.8 Parsing in Prolog . 215
7.9 Prolog Grammar Rules . 220
7.10 Exercises . 222
7.11 Solutions to Practice Problems . 223
7.12 Additional Reading . 225

xiiiContents

8 Formal Semantics . 227
8.1 Attribute Grammars . 229
8.2 Axiomatic Semantics . 232
8.3 Action Semantics . 234
8.4 Exercises . 245
8.5 Solutions to Practice Problems . 246
8.6 Additional Reading . 246

Appendix A
The C++ Scanner Class Implementation . 247

Appendix B
The Ruby Scanner Class Implementation . 251

Appendix C
Standard ML Basis Library . 255
C.1 The Bool Structure . 255
C.2 The Int Structure . 255
C.3 The Real Structure . 256
C.4 The Char Structure . 258
C.5 The String Structure . 259
C.6 The List Structure . 259
C.7 The TextIO Structure . 260

Appendix D
SML Calculator Compiler . 263

Appendix E
The Factorial Program’s Code . 267

Appendix F
Small Action Semantic Description . 271

References . 277

Index . 279

xiv Contents

Chapter 1

Introduction

The intent of this text is to introduce you to two new programming paradigms that
you probably haven’t used before. As you learn to program in these new paradigms
you will begin to understand that there are different ways of thinking about problem
solving. Each paradigm is useful in some contexts. This book is not meant to be a
survey of lots of different languages. Rather, its purpose is to introduce you to the
three styles of programming languages. These styles are:

• Imperative/Object-Oriented Programming with languages like Java, C++, Ruby,
Pascal, Basic, and other languages you probably have used before.

• Functional Programming with languages like ML, Haskell, Lisp, Scheme, and
others.

• Logic Programming with Prolog.

This book includes examples from C++, Ruby, ML, Pascal, and Prolog while
touching on other languages as well. The book provides an introduction to pro-
gramming in C++, Ruby, ML, and Prolog. Each of these languages deserves at least
a text of their own. In fact, C++ [11], Ruby[34], Standard ML [36], and Prolog [7]
each do have books written about them, many more than are cited here. The goal
of the text is to help you understand how to use the paradigms and models of com-
putation these languages represent to solve problems. You should learn when these
languages are good choices and perhaps when they aren’t good choices. You should
also learn techniques for problem solving that you may be able to apply in the fu-
ture. You might be surprised by what you can do with very little code given the right
language.

To begin you should know something about the history of computing, particularly
as it applies to the models of computation that have been used in implementing many
of the programming languages we use today. All of what we know in Computer
Science is built on the shoulders of those who came before us. To understand where
we are, we really should know something about where we came from in terms of
Computer Science. Many great people have been involved in the development of
programming languages and to learn even a little about who these people are is
really fascinating and worthy of an entire textbook in itself.

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_1,
© Springer Science+Business Media, LLC 2008

2 Introduction

1.1 Historical Perspective

Much of what we attribute to Computer Science actually came from mathemati-
cians. After all, mathematicians are really programmers that have written their
programs using mathematical notation. Sophus Lie found ways of solving Or-
dinary Differential Equations by exploiting properties of symmetry within the
equations[12]. [Sophus was my great-great-grandfather’s first cousin. When Jo-
hann Hermann Sophian Lie, my great-great-grandfather, immigrated from Norway
to the United States the spelling was changed from Lie to Lee but is pronounced
the same either way.] Sophus didn’t have a computer available to him as a tool to
solve problems. He lived from 1842-1899. While the techniques he discovered were
hard for people to learn and use at the time, today computer programs capable of
symbolic manipulation use his techniques to solve these and other equally compli-
cated problems. Sophus discovered a set of groups in Abstract Algebra which have
been named Lie Groups. One such group, the E8 group was too complicated to map
in Lie’s time. In fact, it wasn’t until 2007 that the structure of the E8 group could
be mapped because the solution produced sixty times more data than the human
genome project[10].

Fig. 1.1: John Backus[2]

As mathematicians’ problem solving techniques became
more sophisticated and the problems they were solving be-
came more complex, they were interested in finding auto-
mated ways of solving these problems. Charles Babbage
(1791-1871) saw the need for a computer to do calcula-
tions that were too error-prone for humans to perform. He
designed a difference engine to compute mathematical ta-
bles when he found that human computers weren’t very
accurate[38]. However, his computer was mechanical and
couldn’t be built using engineering techniques known at that
time. In fact it wasn’t completed until 1990, but it worked
just as he said it would over a hundred years earlier.

Charles Babbage’s difference engine was an early at-
tempt at automating a solution to a problem. In the 1940’s
people like Atanasoff and Eckert and Mauchly[39] were in-
terested in automated computing machines. With the dis-
covery of the transistor they were finally able to design the
precursors to today’s modern computers. John von Neumann made one of the great
contributions to the architecture of modern computers when, in 1944, he wrote a
memo suggesting how to encode programs as sequences of numbers resulting in
a stored-program computer. Alan Turing followed in 1946 with a paper describ-
ing a complete design for such a computer. To this day the computers we use are
stored-program computers. The architecture is called the von Neumann architecture
because of John von Neumann’s contributions.

In the early days of Computer Science, many programmers were interested in
writing tools that made it easier to program computers. Much of the program-
ming was based on the concept of a stored-program computer and many early pro-

1.1 Historical Perspective 3

gramming languages were extensions of this model of computation. In the stored-
program model the program and data are stored in memory. The program manipu-
lates data based on some input. It then produces output.

Around 1958, Algol was created and the second revision of this language, called
Algol 60, was the first modern, structured, imperative programming language. While
the language was designed by a committee, a large part of the success of the project
is due to the contributions of John Backus pictured in figure 1.1. He described the
structure of the Algol language using a mathematical notation that would later be
called Backus-Naur Format or BNF. Very little has changed with the underlying
computer architecture over the years. Of course, there have been many changes
in the size, speed, and cost of computers! In addition, the languages we use have
become even more structured over the years. But, the principles that Algol 60 intro-
duced are still in use today.

Fig. 1.2: John McCarthy[22]

Recalling that most early computer scientists were
mathematicians, it shouldn’t be surprising to learn that
there were others that approached the problem of pro-
gramming from a drastically different angle. Much of
the initial interest in computers was spurred by the in-
vention of the stored-program computer and many of
the early languages reflected this excitement. However,
there was another approach developing at the same time.
Alonzo Church was developing a language called the
lambda calculus, usually written as the λ -calculus.

Ideas from the λ -calculus led to the development of
Lisp by John McCarthy, pictured in figure 1.2. The λ -
calculus and Lisp were not designed based on the prin-
ciple of the stored-program computer. In contrast to Al-
gol 60, the focus of these languages was on functions
and what could be computed using functions. The goal
of this work was to arrive at a language mathematicians
and computer scientists could use to formally describe the calculations they pre-
viously had described using informal language. With the λ -calculus and Lisp you
could describe all computable functions. Lisp was developed around 1958, the same
time that Algol 60 was being developed.

Of course, with many of the early computer scientists being mathematicians, it
is reasonable to suspect that many of them were trying to solve problems involv-
ing logic. Languages for logic were well developed in the early twentieth century.
Many problems were being expressed in terms of propositional logic and first order
predicate calculus. It was natural to look for a way to use computers to solve at least
some of these problems.

The foundations of logic are so historic they stretch back to ancient Greece,
China, and India. The logic we use today in Western culture originated with Aristo-
tle in Greece. Prolog is a programming language that grew out of the desire to solve
problems using logic.

4 Introduction

1.2 Models of Computation

The earliest computers were made possible by the concept of a stored program com-
puter. While some controversy exists about this, John von Neumann is generally
given credit for coming up with the concept of storing a program as a string of 0’s
and 1’s in memory along with the data used by the program. The von Neumann
architecture had very little structure to it. It consisted of several registers and mem-
ory. The Program Counter (PC) register kept track of the next instruction to execute.
There were other registers that could hold a value or point to other values stored
in memory. This model of computation was useful when programs were small and
weren’t organized using top-down design. Functions and procedures impose more
structure on programs than the von Neumann model. In fact, in the early days a func-
tion was often called a sub-routine instead of a function. The von Neumann model of
computation is characterized by a simple programming language called RAM[29]
which stands for Random Access Machine. This language has been slightly ex-
tended to provide the language called EWE presented in the next chapter.

The Imperative Model

With the advent of Algol 60 some structure was added to the von Neumann
model, leading to the structured, imperative model of computing. In the impera-

Program

The Run-time Stack

Activation
Record

Activation
Record Heap

Static
Data

Activation
Record

Activation
Record

Fig. 1.3: Conceptual View of the Imperative Model

1.2 Models of Computation 5

tive model, memory is divided into regions which hold the program and the data.
The data area is further subdivided into the static or global data area, the run-time
stack, and the heap pictured in figure 1.3.

When a program executes it uses a special register called the stack pointer (SP)
to point to the top activation record on the run-time stack. The run-time stack con-
tains one activation record for each function or procedure invocation that is currently
unfinished in the program. The top activation record corresponds to the current func-
tion invocation. When a function call is made an activation record is pushed onto the
run-time stack. When a function returns, the activation record is popped by decre-
menting the stack pointer to point to the previous activation record.

An activation record contains information about the currently executing function.
The local variables of the function are stored there. The program counter’s value
before the function call was made is stored there. Other state information may also
be stored there depending on the language and the details of the underlying von
Neumann architecture. For instance, parameters passed to the function may also be
stored there. The return address may also be stored in the activation record.

Static or global data sometimes exists and sometimes does not depending on
the language. Where global data is stored depends on the implementation of the
compiler or interpreter. It might be part of the program code in some instances.
In any case, this area is where constants and global variables are stored. Global
variables are those variables that are available to all functions and not just the current
function.

The heap is an area for dynamic memory allocation. The word dynamic means
that it happens while the program is running. All data that is created at run-time is
located in the heap. The data in the heap has no names associated with the values
stored there. Instead, named variables called pointers or references point to the data
in the heap. In addition, data in the heap may contain pointers that point to other
data in the heap.

The primary goal of the imperative model is to get data as input, transform it
via updates to memory, and then produce output based on this imperatively changed
data. This model of computation parallels the underlying von Neumann architec-
ture. The imperative model of computation can be used by a programming language
to provide a structured way of writing programs. Some variation of this model is
used by languages like Algol 60, C++, C, Java, VB.net, Python, and many other
languages.

Practice 1.1

Find the answers to the following questions.

1. What are the three divisions of data memory called?
2. When does an item in the heap get created?
3. What goes in an activation record?
4. When is an activation record created?
5. When is an activation record deleted?
6. What is the primary goal of imperative, object-oriented programming?

6 Introduction

The Functional Model

In the functional model the goal of a program is slightly different. This slight change
in the way the model works has a big influence on how you program. In the func-
tional model of computation the focus is on function calls. Functions and parameter
passing are the primary means of accomplishing data transformation.

Data is not changed in the functional model. Instead, new values are constructed
from old values. A pure functional model wouldn’t allow any updates to existing
values. However, most functional languages allow limited updates to memory.

The conceptual view presented in figure 1.3 is similar to the view in the functional
world. However, the difference between program and data is eliminated. A function
is data like any other data element. Integers and functions are both first-class citizens
of the functional world.

The static data area may be present, but takes on a minor role in the functional
model. The run-time stack becomes more important because most work is accom-
plished by calling functions. Functional languages are much more careful about how
they allow programmers to access the heap and as a result, you really aren’t aware of
the heap when programming in a functional language. Data is certainly dynamically
allocated, but once data is created on the heap it cannot be modified in a pure func-
tional model. Impure models might allow some modification of storage but this is
the influence of imperative languages creeping into the functional model as a way to
deal with performance issues. The result is that you spend less time thinking about
the underlying architecture when programming in a functional language.

Practice 1.2

Answer the following questions.

1. What are some examples of functional languages?
2. What is the primary difference between the functional and imperative models?
3. Immutable data is data that cannot be changed once created. The presence of

immutable data simplifies the conceptual model of programming. Does the
imperative or functional model emphasize immutable data?

The Logic Model

The logic model of computation, pictured in figure 1.4, is quite different from either
the imperative or functional model. In the logic model the programmer doesn’t ac-
tually write a program at all. Instead, the programmer provides a database of facts
or rules. From this database, a single program tries to answer questions with a yes or
no answer. In the case of Prolog, the program acts in a predictable manner allowing
the programmer to provide the facts in an order that determines how the program
will work. The actual implementation of this conceptual view is accomplished by a

1.3 The Origins of a Few Programming Languages 7

Fig. 1.4: Conceptual View of the Logic Model of Computation

virtual machine, a technique for implementing languages that is covered later in this
book.

There is still the concept of a heap in Prolog. One can assert new rules and retract
rules as the program executes. To dynamically add rules or retract them there must
be an underlying heap. In fact, the run-time stack is there too. However, the run-time
stack and heap are so hidden in this view of the world that it is debatable whether
they should appear in the conceptual model at all.

Practice 1.3

Answer these questions on what you just read.

1. How many programs can you write in a logic programming language like
Prolog?

2. What does the programmer do when writing in Prolog?

1.3 The Origins of a Few Programming Languages

This book explores language implementation using several small languages and ex-
ercises that illustrate each of these models of computation. In addition, exercises
within the text will require implementation in four different languages: C++, Ruby,
Standard ML, and Prolog. But where did these languages come from and why are
we interested in learning how to use them?

Database of
Rules

A Single
Program

Heap

8 Introduction

A Brief History of C++

Fig. 1.5: Bjarne Stroustrup[32]

C++ was designed by Bjarne Stroustrup, pictured in fig-
ure 1.5, between 1980 and 1985 while working at Bell
Labs. C++ was designed as a superset of C which was an
immensely popular language in the seventies and eight-
ies and still is today. In C, the ++ operator is called the
increment operator. It adds one to the variable that pre-
cedes it. C++ was the next increment after C.

In 1972, the Unix operating system was written in
C, which was the reason the language was created. Ken
Thompson was working on the design of Unix with Den-
nis Ritchie. It was their project that encouraged Ritchie
to create the C language. C was more structured than the
assembly language most operating systems were written
in at the time and it was portable and could be com-
piled to efficient machine code. Thompson and Ritchie
wanted an operating system that was portable, small, and
well organized.

While C was efficient, there were other languages that had either been devel-
oped or were being developed that encouraged a more structured approach to pro-
gramming. For several years there had been ideas around about how to write code
in Object-Oriented form. Simula, created by Ole-Johan Dahl and Kristen Nygaard
around 1967, was an early example of a language that supported Object-Oriented
design and Modula-2, created by Niklaus Wirth around 1978, was also taking ad-
vantage of these ideas. Smalltalk, an interpreted language, was object-oriented and
was also developed in the mid 1970’s and released in 1980.

Around 1980, Bjarne Stroustrup began working on the design of C++ as a lan-
guage that would allow C programmers to keep their old code while allowing new
code to be written using these Object-Oriented concepts. In 1983 he named this
new language C++ and with much anticipation, in 1985 the language was released.
About the same time Dr. Stroustrup released a book called The C++ Programming
Language which described the language. The language was still evolving for a few
years. For instance, templates, an important part of C++ were first described by
Stroustrup in 1988[31] and it wasn’t until 1998 that it was standardized as ANSI
C++. Today an ANSI committee oversees the continued development of C++ al-
though changes to the standard have slowed in recent years.

A Brief History of Ruby

Ruby is a relatively new addition as a programming language. Yukihiro Matsumoto
(Matz for short) created Ruby in 1993 and released it to the public in 1995. In recent
years it has gained wide acceptance. Ruby is an object-oriented scripting language.

1.3 The Origins of a Few Programming Languages 9

Scripting languages are languages that are interpreted and allow the programmer to
quickly build a program and test it as it is written. Prototyping, testing, and revis-
ing the prototype is a very effective way to program. People like Matz have seen the
benefits of this style of programming. Ruby is based on several other interpreted lan-
guages like Smalltalk, Python, Perl, and Lisp that are also very popular languages.
As Matz was developing Ruby he “wanted a scripting language that was more pow-
erful than Perl, and more object-oriented than Python.”[28]

In Ruby, all data are called objects. Every function that is written is a method
that operates on an object. The syntax of the language is very large. In contrast,
languages like Java are quite small in size. This shouldn’t be confused with the
availability of classes written in Ruby and Java. Java and Ruby both have large
libraries of available classes. Unlike Java, the Ruby language itself is also large.
Matz created a large language on purpose because one of his goals was to relieve
the programmer from menial tasks in programming.

Fig. 1.6: Robin Milner[23]

Ruby is an interesting language to study because it
has a large following in Japan and the rest of the world.
It is also gaining support among those people develop-
ing database applications (which is how a good deal of
recent programs store data). The Ruby framework for
developing database applications is often referred to as
“Ruby on Rails” and again asserts the desire for pro-
grammers to be relieved of menial tasks, in this case re-
ferring to writing code to interact with a database.

A Brief History of Standard ML

Standard ML originated in 1986, but was the follow-on
of ML which originated in 1973[24]. Like many other
languages, ML was implemented for a specific purpose. The ML stands for Meta
Language. Meta means above or about. So a metalanguage is a language about lan-
guage. In other words, a language used to describe a language. ML was originally
designed for a theorem proving system. The theorem prover was called LCF, which
stands for Logic for Computable Functions. The LCF theorem prover was devel-
oped to check proofs constructed in a particular type of logic first proposed by Dana
Scott in 1969 and now called Scott Logic. Robin Milner, pictured in figure 1.6,
was the principal designer of the LCF system. Milner designed the first version of
LCF while at Stanford University. In 1973, Milner moved to Edinburgh University
and hired Lockwood Morris and Malcolm Newey, followed by Michael Gordon and
Christopher Wadsworth, as research associates to help him build a new and better
version called Edinburgh LCF[13].

For the Edinburgh version of LCF, Dr. Milner and his associates created the ML
programming language to allow proof commands in the new LCF system to be
extended and customized. ML was just one part of the LCF system. However, it

10 Introduction

quickly became clear that ML could be useful as a general purpose programming
language. In 1990 Milner, together with Mads Tofte and Robert Harper, published
the first complete formal definition of the language; joined by David MacQueen,
they revised this standard to produce the Standard ML that exists today[24].

ML was influenced by Lisp, Algol, and the Pascal programming languages. In
fact, ML was originally implemented in Lisp. There are now two main versions of
ML: Moscow ML and Standard ML. Today, ML’s main use is in academia in the
research of programming languages. But, it has been used successfully in several
other types of applications including the implementation of the TCP/IP protocol
stack and a web server as part of the Fox Project. A goal of the Fox Project is the
development of system software using advanced programming languages[14].

An important facet of ML is the strong type checking provided by the language.
The type inference system, commonly called Hindley-Milner type inference, stati-
cally checks the types of all expressions in the language. In addition, the type check-
ing system is polymorphic, meaning that it handles types that may contain type
variables. The polymorphic type checker is sound. It will never say a program is
typed correctly when it is not. Interestingly, the type checker has also been proven
complete, which means that all correctly typed programs will indeed pass the type
checker. No correctly typed program will be rejected by the type checker. We expect
soundness out of type checkers but completeness is much harder to prove and it has
been proven for Standard ML. Important ML features include:

• ML is higher-order supporting functions as first-class values. This means func-
tions may be passed as parameters to functions and returned as values from func-
tions.

• The strong type checking means it is pretty infrequent that you need to debug
your code. What a great thing!

• Pattern-matching is used in the specification of functions in ML. Pattern-matching
is convenient for writing recursive functions.

• The exception handling system implemented by Standard ML has been proven
type safe, meaning that the type system encompasses all possible paths of execu-
tion in an ML program.

ML is a very good language to use in learning to implement other languages. It
includes tools for automatically generating parts of a language implementation in-
cluding components called a scanner and a parser which are introduced in chapter 2.
These tools, along with the polymorphic strong type checking provided by Standard
ML, make implementing a compiler or interpreter a much easier task. Much of the
work of implementing a program in Standard ML is spent in making sure all the
types in the program are correct. This strong type checking often means that once a
program is properly typed it will run the first time. This is quite a statement to make,
but nonetheless it is often true.

1.3 The Origins of a Few Programming Languages 11

A Brief History of Prolog

Fig. 1.7: Alain Colmerauer[8]

Prolog was developed in 1972 by Alain Colmerauer with
Philippe Roussel. Colmerauer and Roussel and their re-
search group had been working on natural language
processing for the French language and were studying
logic and automated theorem proving[9] to answer sim-
ple questions in French. Their research led them to invite
Robert Kowalski (pictured in figure 1.8), who was work-
ing in the area of logic programming and had devised an
algorithm called SL-Resolution, to work with them in
the summer of 1971[15][40].

Colmerauer and Kowalski, while working together in
1971, discovered a way formal grammars could be writ-
ten as clauses in predicate logic. Colmerauer soon de-
vised a way that logic predicates could be used to ex-
press grammars that would allow automated theorem
provers to parse natural language sentences efficiently.
We’ll see how this is done in chapter 7.

Fig. 1.8: Robert Kowalski[16]

In the summer of 1972, Kowalski and Colmerauer
worked together again and Kowalski was able to de-
scribe the procedural interpretation of what are known
as Horn Clauses. Much of the debate at the time re-
volved around whether logic programming should focus
on procedural representations or declarative represen-
tations. The work of Kowalski showed how logic pro-
grams could have a dual meaning, both procedural and
declarative.

Colmerauer and Roussel used this idea of logic pro-
grams being both declarative and procedural to devise
Prolog in the summer and fall of 1972. The first large
Prolog program, which implemented a question and an-
swering system in the French language, was written in
1972 as well.

Later, the Prolog language interpreter was rewritten
at Edinburgh to compile programs into DEC-10 machine code. This led to an ab-
stract intermediate form that is now known as the Warren Abstract Machine or
WAM. WAM is a low-level intermediate representation that is well-suited for rep-
resenting Prolog programs. The WAM can be (and has been) implemented on a
wide variety of hardware. This means that Prolog implementations exist for most
computing platforms.

12 Introduction

Practice 1.4

Answer the following questions.

1. Who invented C++? C? Standard ML? Prolog? Ruby?
2. What do Standard ML and Prolog’s histories have in common?
3. What language or languages was Ruby based on?

1.4 Language Implementation

There are three ways that languages can be implemented. They can either be

• Interpreted
• Compiled
• Somewhere in between

The goal of each implementation method is to translate a source program into a
low-level representation. In other words, to be executable a program must be trans-
lated from an English-like format to a format more suitable for a computer to under-
stand. In the case of a compiled language the low-level format is the native machine
language of the machine they are going to be executed on. In the case of an inter-
preted language the low-level representation of a program is a data structure in the
memory of the interpreter. The internal data structure representing the program is
used by the interpreter to control the execution of the interpreter on the data of the
program. The next sections present these implementations in more detail.

Compilation

One method of translating a program to machine language is called compilation.
The process is shown in figure 1.9. A compiler is a tool that translates a source pro-
gram to an assembly language program. Then a tool called an assembler translates
the assembly language program to the final machine language program. Machine
language is the only type of language that a Central Processing Unit (CPU) under-
stands. The CPU is the brain of the computer.

Anyone can write a bad compiler. Good compilers are written using systematic
methods that have been developed the last fifty years or so. C, C++, Pascal, Fortran,
COBOL and many others are typically compiled languages. On the Linux operating
system the C compiler is called gcc and the C++ compiler is called g++. The g in
both names reflects the fact that both compilers come out of the GNU project and
the Free Software Foundation. Linux, gcc, and g++ are freely available to anyone
who wants to download them. The best way to get these tools is to buy or download

1.4 Language Implementation 13

Fig. 1.9: The Compilation Process

a Linux distribution and install it on a computer. The gcc and g++ compilers come
standard with Linux.

There are also implementations of gcc and g++ for many other platforms. The
web site gcc.gnu.org contains links to source code and to prebuilt binaries for the
compiler. You can get versions of the compiler for Windows and many versions of
Unix. Since Mac OS is really a Unix platform as well, the gcc compiler is available
for Macs too. Use fink to get the compiler for Mac OS. Fink is a tool for download-
ing many free Unix applications for Mac OS.

Interpretation

Interpreted programs are usually smaller than compiled programs but this is not
always true. They can be useful for writing smaller, short programs that you want to
try out quickly. Many scripting languages are interpreted. These languages include
Ruby, older versions of Basic, Bash, Csh, and others.

When you run a program with an interpreter (see figure 1.10), you are actually
running the interpreter. Your program is not running because your program is never
translated to machine language. The interpreter is the one big program that all the
programs you write in the interpreted language execute. The source program you
write controls the behavior of the interpreter program.

One advantage of interpretation is that it encourages programmers to write some-
thing and quickly try it out before proceeding. It is often easier to try a piece of a
program in an interpreter without writing the entire program. This is called proto-
typing and it is easier to do with an interpreted language.

Source
Program

Compiler

Assembly
Language

Machine
Language

Assembler

CPU

14 Introduction

Fig. 1.10: The Interpretation Process

Another advantage is that your source program is portable to different platforms.
If you write a program in Ruby you can be pretty sure it will run on Linux, Win-
dows, or Mac OS without any changes. Unless you use a platform specific package
in Ruby, a Ruby program will run regardless of the platform. This may be true of
compiled programs as well, but they must typically be recompiled for the new plat-
form.

Part of the portability problem revolves around the use of libraries in compiled
programs. Libraries are often platform dependent. To move a program from one plat-
form to another the same libraries must exist in a version that is compiled for the
new target platform. While POSIX is a standard set of libraries that deals with some
of these issues, there are still platform specific libraries that are frequently used.
Interpreters generally have a standard set of libraries that come with the system. By
standardizing the libraries or implementing them using the interpreted language, de-
velopers can be assured that a program implemented using an interpreted language
will run the same regardless of the underlying architecture of the machine.

The interpreter itself isn’t platform independent. There must be a version of an
interpreter for each platform/language combination. So there is a Ruby interpreter
for Linux, another for Windows, and yet another for Macs. In fact, with the intro-
duction of Intel based Macs there must be different versions of the Ruby interpreter:
one for the PowerPC Macs and another for the Intel based Macs. So, the definition of
a platform is an Operating System/CPU Architecture combination. Thankfully, the
same Ruby interpreter code can be compiled (with some small changes) for each
platform.

Yes, you read that last sentence right. The interpreter is a compiled program.
There is some piece of every language implementation that is compiled because
only programs translated into machine language can run on a CPU.

Machine Language

Source
Program

CPU

Ruby
Interpreter

1.4 Language Implementation 15

A huge problem that has driven research into interpreted languages is the prob-
lem of heap memory management. Recall that the heap is the place where memory is
dynamically allocated. Large C and C++ programs are notorious for having memory
leaks. Every time a C++ programmer reserves some space on the heap he/she must
remember to free that space. If they don’t free the space when they are done with
it the space will never be available again while the program continues to execute.
The heap is a big space, but if a program runs long enough and continues to allocate
and not free space, eventually the heap will fill up and the program will terminate
abnormally. In addition, even if the program doesn’t terminate abnormally, the per-
formance of the system will degrade as more and more time is spent managing the
large heap space.

Many interpreted languages don’t require programmers to free space on the heap.
Instead, there is a special task or thread that runs periodically as part of the inter-
preter to check the heap for space that can be freed. This task is called the garbage
collector. Programmers can allocate space on the heap but don’t have to be worried
about freeing that space. For a garbage collector to work correctly space on the heap
has to be allocated and accessed in the right way. Many interpreted languages are
designed to insure that a garbage collector will work correctly.

The disadvantage of an interpreted language is in speed of execution. Interpreted
programs typically run slower than compiled programs. In addition, if an application
has real-time dependencies then having the garbage collector running at more or
less random intervals may not be desirable. Some language implementations do
allow you to control when the garbage collector runs in certain situations, but if the
developer is managing when the garbage collector runs in some ways they might
as well manage the heap themselves. As you’ll read in the next section some steps
have been taken to reduce the difference in execution time between compiled and
interpreted languages.

Hybrid Language Implementations

The advantages of interpretation over compilation are pretty significant. It turns out
that one of the biggest advantages is the portability of programs. It’s nice to know
when you invest the time in writing a program that it will run the same on Linux,
Windows, Mac OS, or some other operating system. This portability issue has driven
a lot of research into making interpreted programs run as fast as compiled languages.

Programs written using hybrid languages are compiled. However, the compiled
hybrid language program is interpreted. Source programs in the language are not
interpreted directly. They are first translated (i.e. compiled) to a lower level lan-
guage often called a byte-code representation reflecting the fact that it is a low-level
representation of the program. This intermediate byte-code form is what is actually
interpreted (see figure 1.11). By adding this intermediate step the interpreter can
be smaller and faster than traditional interpreters. Sometimes this intermediate step

16 Introduction

Fig. 1.11: Hybrid Language Implementation

is hidden from the programmer by the programming environment. Sometimes the
programmer is required to perform this intermediate step themselves.

Languages that fall into this hybrid category include Java, ML, Python, C#, Vi-
sual Basic .NET, JScript, and other .NET platform languages. Both ML and Python
include interactive interpreters as well as the ability to compile and run low-level
byte-code programs. The byte-code files are named .pyc files in the case of Python.
In, ML the compiled files are named with a -platform as the last part of the compiled
file name.

The Java and the .NET programming environments do not include interactive in-
terpreters. The only way to execute programs with these platforms is to compile the
program and then run the compiled program using the interpreter. The interpreter
is called the Java Virtual Machine in the case of Java. The Java Virtual Machine
program is named java on all platforms. Programs written for the .NET platform
run under Microsoft Windows and in some cases Linux. Microsoft submitted some
of the .NET specifications to the ISO to allow third party software companies to
develop support for .NET on other platforms. In theory all .NET programs are
portable like Java, but so far implementations of the .NET framework are not as
generally available as Java. The Java platform has been implemented and released
on all major platforms. In fact, in November 2006 Sun, the company that created
Java, announced they were releasing the Java Virtual Machine and related software
under the GNU Public License to encourage further development of the language
and related tools.

The intermediate form under Java is called a Java byte-code file. Byte-code files
in Java have a .class extension. Under the .NET Framework a byte-code file is called
a managed module which includes the Intermediate Language (IL) and metadata.
These files are produced by the compilers for each platform and read by their inter-
preter or virtual machine.

Source
Program

Compiler

Intermediate
Form

Interpreter

CPU

1.5 Where do we go from here? 17

1.5 Where do we go from here?

The next chapter starts by introducing a low-level language called EWE which is
an extended version of the RAM language[29]. The chapter will introduce syntax
of languages through examples with the EWE language and a small calculator lan-
guage.

When learning a new language, which you will do many times in your career,
it is very helpful to understand something about language implementation. Subse-
quent chapters in the book will look at language implementation to better under-
stand the languages you are learning, their strengths and weaknesses. While learn-
ing these languages you will also be implementing interpreters and/or compilers for
some simple languages. This will give you insight into language implementation
and knowledge of how to use these languages to solve problems.

While learning new languages and studying programming language implementa-
tion it becomes important to understand models of computation. A compiler trans-
lates a high-level programming language into a lower level computation. These low-
level computations are usually expressed in terms of machine language but not al-
ways. More important than the actual low-level language is the model of computa-
tion. Some models are based on register machines. Some models are based on stack
machines. Still other models may be based on something entirely different. You’ll
be exploring these models of computation in more detail as you read this text.

18 Introduction

1.6 Exercises

1. What are the three ways of thinking about programming, often called program-
ming paradigms?

2. Name at least one language for each of the three methods of programming de-
scribed in the previous question?

3. Name one person who had a great deal to do with the development of the im-
perative programming model. Name another who contributed to the functional
model. Finally, name a person who was responsible for the development of the
logic model of programming?

4. What are the primary characteristics of each of the imperative, functional, and
logic models?

5. Who are the main people involved in each of the four languages this text covers:
C++, Ruby, Standard ML, and Prolog?

6. Where are the people you mentioned in the previous question today? What do
they do now?

7. Why is compiling a program preferred over interpreting a program?
8. Why is interpreting a program preferred over compiling a program?
9. What benefits do hybrid languages have over interpreted languages?

1.7 Solutions to Practice Problems 19

1.7 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 1.1

1. The run-time stack, global memory, and the heap are the three divisions of
data memory.

2. Data on the heap is created at run-time.
3. An activation record holds information like local variables, the program

counter, the stack pointer, and other state information necessary for a func-
tion invocation.

4. An activation record is created each time a function is called.
5. An activation record is deleted when a function returns.
6. The primary goal of imperative, object-oriented programming is to update

memory by updating variables and/or objects as the program executes. The
primary operation is memory updates.

Solution to Practice Problem 1.2

1. Functional languages include Standard ML, Lisp, Haskell, and Scheme.
2. In the imperative model the primary operation revolves around updating mem-

ory (the assignment statement). In the functional model the primary operation
is function application.

3. The functional model emphasizes immutable data. However, some imperative
languages have some immutable data as well. For instance, Java strings are
immutable.

Solution to Practice Problem 1.3

1. You never write a program in Prolog. You write a database of rules in Prolog
that tell the single Prolog program (depth first search) how to proceed.

2. The programmer provides a database of facts and predicates that tell Prolog
about a problem. In Prolog the programmer describes the problem instead of
programming the solution.

20 Introduction

Solution to Practice Problem 1.4

1. C++ was invented by Bjourne Stroustrup. C was created by Dennis Ritchie.
Standard ML was primarily designed by Robin Milner. Prolog was designed
by Alain Colmerauer and Philippe Roussel with the assistance of Robert
Kowalski. Ruby was created by Yukihiro Matsumoto (Matz for short).

2. Standard ML and Prolog were both designed as languages for automated theo-
rem proving first. Then they became general purpose programming languages
later.

3. Ruby has many influences, but Smalltalk and Perl stand out as two of the
primary influences on the language.

1.8 Additional Reading

The history of languages is fascinating and a lot more detail is available than was
covered in this chapter. There are many great resources on the web where you
can get more information. Use Google or Wikipedia and search for ”History of
your favorite language” as a place to begin. However, be careful. You can’t believe
everything you read on the web and that includes Wikipedia. While the web is a
great source, you should always research your topic enough to independently verify
the information you find there.

Chapter 2

Specifying Syntax

Once you’ve learned how to program in some language, learning a new program-
ming language isn’t all that hard. When learning a new language you need to know
two things. First, you need to know what the keywords and constructs of the lan-
guage look like. In other words, you need to know the mechanics of putting a pro-
gram together in the programming language. Are the semicolons in the right places?
Do you use begin...end or do you use curly braces (i.e. { and }). Learning how a pro-
gram is put together is called learning the syntax of the language. Syntax refers to
the words and symbols of a language and how to write the symbols down in the
right order.

Semantics is the word that is used when deriving meaning from what is written.
The semantics of a program refers to what the program will do when it is executed.
Informally, it may be much easier to say what a program does than to describe
the syntactic structure of the program. However, syntax is a lot easier to describe
formally than semantics. In either case, if you are learning a new language, you
need to learn something about the syntax of the language first.

2.1 Terminology

Once again, syntax of a programming language determines the well-formed or
grammatically correct programs of the language. Semantics describes how or
whether such programs will execute.

• Syntax is how things look
• Semantics is how things work (the meaning)

Many questions we might like to ask about a program either relate to the syntax
of the language or to its semantics. It is not always clear which questions pertain to
syntax and which pertain to semantics. Some questions may concern semantic issues
that can be determined statically, meaning before the program is run. Other semantic
issues may be dynamic issues, meaning they can only be determined at run-time.
The difference between static semantic issues and syntactic issues is sometimes a
difficult distinction to make.

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_2,
© Springer Science+Business Media, LLC 2008

22 Specifying Syntax

Example 2.1

Apparently

a=b+c;

is correct C++ syntax. But is it really a correct statement?

1. Have b and c been declared as a type that allows the + operation?
2. Is a assignment compatible with the result of the expression b+c?
3. Do b and c have values?
4. Does the assignment statement have the proper form?

There are lots of questions that need to be answered about this assignment state-
ment. Some questions could be answered sooner than others. When a C++ pro-
gram is compiled it is translated from C++ to machine language as described in
the previous chapter. Questions 1 and 2 are issues that can be answered when
the C++ program is compiled. However, the answer to the third question above
might not be known until the C++ program executes. The answers to questions 1
and 2 can be answered at compile-time and are called static semantic issues. The
answer to question 3 is a dynamic issue and is probably not determinable until
run-time. In some circumstances, the answer to question 3 might also be a static
semantic issue. Question 4 is definitely a syntactic issue.

Unlike the dynamic semantic issues discussed above, the correct syntax of a pro-
gram is definitely statically determinable. Said another way, determining a syntacti-
cally valid program can be accomplished without running the program. The syntax
of a programming language is specified by something called a grammar. But before
discussing grammars, the parts of a grammar must be defined. A terminal or token
is a symbol in the language.

• C++ terminals: while, const, (, ;, 5, b
• Terminal types are keywords, operators, numbers, identifiers, etc.

A syntactic category or nonterminal is a set of objects (strings) that will be defined
in terms of symbols in the language (terminal and nonterminal symbols).

• C++ nonterminals: <statement>, <expression>, <if-statement>, etc.
• Syntactic categories define parts of a program like statements, expressions, dec-

larations, and so on.

A metalanguage is a higher-level language used to specify, discuss, describe,
or analyze another language. English is used as a metalanguage for describing pro-
gramming languages, but because of the ambiguities in English, more formal met-
alanguages have been proposed. The next section describes a formal metalanguage
for describing programming language syntax.

2.2 Backus Naur Form (BNF) 23

2.2 Backus Naur Form (BNF)

Backus Naur Format (i.e. BNF) is a formal metalanguage for describing language
syntax. The word formal is used to indicate that BNF is unambiguous. Unlike En-
glish, the BNF language is not open to our own interpretations. There is only one
way to read a BNF description.

BNF was used by John Backus to describe the syntax of Algol in 1963. In 1960,
John Backus and Peter Naur, a computer magazine writer, had just attended a con-
ference on Algol. As they returned from the trip it became apparent that they had
very different views of what Algol would look like. As a result of this discussion,
John Backus worked on a method for describing the grammars of languages. Pe-
ter Naur slightly modified it. The notation is called BNF, or Backus Naur Form or
sometimes Backus Normal Form. BNF consists of a set of rules that have this form:

<syntactic category> ::= a string of terminals and nonterminals
”::=” means ”is composed of ” (sometimes written as →)

Often, multiple rules defining the same syntactic category are abbreviated using
the ”|” character which can be read as ”or” and means set union. That is the entire
language. It’s not a very big metalanguage, but it is powerful. Consider the following
examples.

Example 2.2

BNF Examples from Java

<primitive type> ::= boolean
<primitive type> ::= char

Abbreviated

<primitive type> ::= boolean | char | byte | short | int | long | float | ...
<argument list> ::= <expression> | <argument list> , <expression>
<selection statement> ::=

if (<expression>) <statement>
| if (<expression>) <statement> else <statement>
| switch (<expression>) <block>
<method declaration> ::=

<modifiers> <type specifier> <method declarator>
throws <method body>

| <modifiers> <type specifier> <method declarator> <method body>
| <type specifier> <method declarator> throws <method body>
| <type specifier> <method declarator> <method body>

The above description can be described in English as the set of method dec-
larations is the union of the sets of method declarations that explicitly throw an
exception with those that don’t explicitly throw an exception with or without mod-
ifiers attached to their definitions. The BNF is much easier to understand and is
not ambiguous like this English description.

24 Specifying Syntax

2.3 The EWE Language

EWE is an extension of a primitive language called RAM designed by Sethi[29] as a
teaching language. RAM stands for Random Access Machine. You might ask, “Did
you intentionally name this language EWE?”. “Yes!”, I’d sheepishly respond. You
can think of the EWE language as representing the language of a simple computer.
EWE is an interpreter much the way the Java Virtual Machine is an interpreter of
Java byte codes. EWE is much simpler than the language of the Java Virtual Ma-
chine.

Example 2.3

Consider the C++ program fragment.

1 i n t a=0;
2 i n t b=5;
3 i n t c=b+1;
4 a=b*c;
5 cout << a;

The EWE code below implements the C++ program fragment above.

1 a := 0
2 b := 5
3 one := 1
4 c := b + one
5 a := b * c
6 writeInt(a)
7 halt
8 equ a M[0] b M[1] c M[2] one M[3]

As you can see, there is a very close correspondence between the C++ program
and the EWE program. You can’t write c=b+1 in EWE directly. That required a little
extra work. Of course, that’s not the only program that might implement the C++
program fragment given above.

Example 2.4

Here’s another EWE program that computes the same thing as the C++ program
fragment given above. This EWE program isn’t quite as straightforward as the
last one, but they do the same thing.

1 # int a=0;
2 R0:=0 # load 0 into R0
3 M[SP+12]:=R0
4 # int b = 5;
5 R1:=5 # load 5 into R1
6 M[SP+13]:=R1
7 # int c = b+1;
8 R2:=SP # b+1
9 R2:=M[R2+13] # load b into R2

2.3 The EWE Language 25

10 R3:=1 # load 1 into R3
11 R2:=R2+R3
12 M[SP+14]:=R2
13 # a = b*c;
14 R4:=SP # b*c
15 R4:=M[R4+13] # load b into R4
16 R5:=SP
17 R5:=M[R5+14] # load c into R5
18 R4:=R4*R5
19 R6:=SP
20 M[R6+12]:=R4
21 R7:=M[SP+12]
22 writeInt(R7)
23 halt
24 equ SP M[10] equ R0 M[0] equ R1 M[0]
25 equ R2 M[0] equ R3 M[1] equ R4 M[0]
26 equ R5 M[1] equ R6 M[1] equ R7 M[0]

The EWE language’s interpreter recognizes one statement per line. Comments
begin with a # and extend to the end of the line. The statements are followed by
equates that equate identifiers to memory locations. The EWE computation model
consists of:

• data memory locations specified by M[...]
• an instruction memory containing statements

Statements in a EWE program are executed in sequence unless a goto statement is
executed. Statement execution terminates when an error occurs or the halt statement
is executed.

EWE BNF

The syntax of the EWE language is completely specified by the BNF given on
page 26. The semantics of the interpreter is not. The null symbol is there to draw
attention to the fact that the equates part may be empty (there might not be any
equates in a program). Keywords are not case sensitive. Strings are delimited by
single or double quotes.

The readStr function reads a string and places the first character in the first mem-
ref location. It continues putting characters of the string in successive memory lo-
cations until either the string ends or the string surpasses the length stored in the
second memref minus 1. Strings are terminated with a null (i.e. 0) character. Note
that while a single memory location is big enough to hold four characters, only one
character is placed in each memory location.

The writeStr function writes a string starting at the memref location and extend-
ing in successive memory locations until a null character is encountered. If a null
character does not terminate the string, the interpreter will raise an illegal memory
reference exception.

26 Specifying Syntax

1 <eweprog> ::= <executable> <equates> EOF
2

3 <executable> ::=
4 <labeled instruction>
5 | <labeled instruction> <executable>
6

7 <labeled instruction> ::=
8 Identifier ":" <labeled instruction>
9 | <instr>

10

11 <instr> ::=
12 <memref> ":=" Integer
13 | <memref> ":=" String
14 | <memref> ":=" "PC" "+" Integer
15 | "PC" ":=" <memref>
16 | <memref> ":=" <memref>
17 | <memref> ":=" <memref> "+" <memref>
18 | <memref> ":=" <memref> "-" <memref>
19 | <memref> ":=" <memref> "*" <memref>
20 | <memref> ":=" <memref> "/" <memref>
21 | <memref> ":=" <memref> "%" <memref>
22 | <memref> ":=" "M" "[" <memref> "+" Integer "]"
23 | "M" "[" <memref> "+" Integer "]" ":=" <memref>
24 | "readInt" "("<memref> ")"
25 | "writeInt" "(" <memref> ")"
26 | "readStr" "("<memref> "," <memref> ")"
27 | "writeStr" "(" <memref> ")"
28 | "goto" Integer
29 | "goto" Identifier
30 | "if" <memref> <condition> <memref> "then" "goto" Integer
31 | "if" <memref> <condition> <memref> "then" "goto" Identifier
32 | "halt"
33 | "break"
34

35 <equates> ::=
36 null
37 | "equ" Identifier "M" "[" Integer "]" <equates>
38

39 <memref> ::=
40 "M" "[" Integer "]"
41 | Identifier
42

43 <condition> ::= ">=" | ">" | "<=" | "<" | "=" | "<>"

Listing 2.1: The EWE BNF

2.3 The EWE Language 27

Practice 2.1

The following program is not a valid EWE program. Using the BNF for EWE
list the problems with this program.

1 readln(A);
2 readln(B);
3 i f A-B < 0 then
4 writeln(A)
5 e l s e
6 writeln(B);

How could you rewrite this program so that it does what this program intends to
do?

Practice 2.2

Write a EWE program to read a number from the keyboard and print out the
sum of all the numbers from 1 to that number.

Example 2.5

EWE is essentially an assembly language. It contains a few higher-level con-
structs, but very few. The EWE program given below upper cases all the char-
acters in a string read from the keyboard. The simple way to write an assembly
language program is to first write it in a high-level language. For instance, the
program might look something like this in a C-like language.

1 s = input();
2 i = 0;
3 whi le s[i] != 0 {
4 i f ('a' <= s[i] && s[i] <= 'z')
5 s[i] = s[i] - 'a' + 'A';
6 i++;
7 }
8

9 printf("%s",s)

When writing the program in EWE you will want to program the opposite of
any if-then or while loop conditions you wrote in the high-level language. This is
because you are going to use a goto statement to assist in completing the code. If
the condition is false in an if-then statement you will jump around the then part
of the statement by jumping to code that is after the then part. The code below
shows you the EWE code with the appropriate C code intermingled as comments.
Comments in EWE begin with a pound sign (i.e. #).

1 zero:=0
2 one:=1
3 littlea := 97
4 littlez := 122
5 diff:=32

28 Specifying Syntax

6 # s = input();
7 len:=100
8 readStr(s,len)
9 # i=0;

10 i:=100
11 # while s[i]!=0 {
12 loop: tmp:=M[i+0]
13 if tmp = zero then goto end
14 # if ('a' <= s[i] && s[i] <= 'z')
15 if littlea > tmp then goto skip
16 if tmp > littlez then goto skip
17 # s[i] = s[i] - 32;
18 tmp:=tmp-diff
19 M[i+0]:=tmp
20 skip:
21 # i++;
22 i:=i+one
23 goto loop
24 # printf("%s",s)
25 end: writeStr(s)
26 halt
27

28 equ zero M[0] equ one M[1] equ littlea M[2]
29 equ littlez M[3] equ diff M[4] equ len M[5]
30 equ s M[100] equ tmp M[6] equ i M[7]

Practice 2.3

Write a EWE program that reads a list of numbers from the screen and prints
them out in reverse order. In order to do this exercise you need to know some-
thing about indexed addressing (see the example above).
HINT: What kind of data structure lets you reverse the elements of a list?

2.4 Context-Free Grammars

Another name for a BNF grammar is a context-free grammar. The only difference is
in the metalanguage used to write the grammar. A context-free grammar is defined
as a four tuple:

G = (N ,T ,P,S)

where

• N is a set of symbols called nonterminals or syntactic categories.
• T is a set of symbols called terminals or tokens.
• P is a set of productions of the form n→ α where n is a nonterminal and α is a

string of terminals and nonterminals.
• S is a special nonterminal called the start symbol of the grammar.

2.5 Derivations 29

Example 2.6

A grammar for expressions in programs can be specified as G = (N ,T ,P,E)
where

N = {E,T,F}
T = {identi f ier,number,+,−,∗,/,(,)}
P is defined by the set of productions

E → E +T | E−T | T
T → T ∗F | T/F | F
F → (E) | identi f ier | number

2.5 Derivations

A sentence of a grammar is a string of tokens from the grammar. A sentence belongs
to the language of a grammar if it can be derived from the grammar. This process
is called constructing a derivation. A derivation is a sequence of sentential forms
that starts with the start symbol of the grammar and ends with the sentence you are
trying to derive. A sentential form is a string of terminals and nonterminals from
the grammar. In each step in the derivation, one nonterminal of a sentential form,
call it A, is replaced by a string of terminals and nonterminals, β , where A → β is a
production in the grammar.

While the previous paragraph is a bit dense to read the first time it really isn’t
that hard. An example should clear things up.

Example 2.7

Prove that the expression (5*x)+y is a member of the language defined by the
grammar given in example 2.6 by constructing a derivation for it.
The derivation begins with the start symbol of the grammar and ends with the
sentence.

E ⇒E +T ⇒ T +T ⇒F +T ⇒ (E)+T ⇒ (T)+T ⇒ (T ∗F)+T ⇒ (F ∗F)+
T ⇒ (5∗F)+T ⇒ (5∗ x)+T ⇒ (5∗ x)+F ⇒ (5∗ x)+ y

The underlined parts are all examples of sentential forms.

Practice 2.4

Construct a derivation for the expression 4+(a−b)∗ x.

30 Specifying Syntax

Types of Derivations

A sentence of a grammar is valid if there exists at least one derivation for it using
the grammar. There are typically many different derivations for a particular sentence
of a grammar. However, there are two derivations that are of some interest to us in
understanding programming languages.

• Left-most derivation - Always replace the left-most nonterminal when going
from one sentential form to the next in a derivation.

• Right-most derivation - Always replace the right-most nonterminal when going
from one sentential form to the next in a derivation.

Example 2.8

The derivation of the sentence (5 ∗ x) + y in example 2.7 is a left-most deriva-
tion. A right-most derivation for the same sentence is:

E ⇒ E + T ⇒ E + F ⇒ E + y ⇒ T + y ⇒ F + y ⇒ (E)+ y ⇒ (T)+ y ⇒ (T ∗
F)+ y ⇒ (T ∗ x)+ y ⇒ (F ∗ x)+ y ⇒ (5∗ x)+ y

Practice 2.5

Construct a right-most derivation for the expression x∗ y+ z.

2.6 Parse Trees

A grammar for a language can be used to build a tree representing a sentence of the
grammar. This kind of tree is called a parse tree for reasons that will become clear
in the next section. A parse tree is another way of representing a sentence of a given
language. A parse tree is constructed with the start symbol of the grammar at the
root of the tree. The children of each node in the tree must appear on the right hand
side of a production with the parent on the left hand side of the same production. A
program is syntactically valid if there is a parse tree for it using the given grammar.

While there are typically many different derivations of a sentence in a language,
there is only one parse tree. This is true as long as the grammar is not ambiguous.
In fact that’s the definition of ambiguity in a grammar. A grammar is ambiguous if
and only if there is a sentence in the language of the grammar that has more than
one parse tree. See section 2.11 for more information.

Example 2.9

The parse tree for the sentence derived in example 2.7 is depicted in figure 2.1.
Notice the similarities between the derivation and the parse tree.

2.7 Parsing 31

Fig. 2.1: A Parse Tree

Practice 2.6

What does the parse tree look like for the right-most derivation of (5*x)+y?

Practice 2.7

Construct a parse tree for the expression “4+(a-b)*x”.
HINT: What has higher precedence, “+” or “*”? The grammar given above auto-
matically makes “*” have higher precedence. Try it the other way and see why!

2.7 Parsing

Parsing is the process of detecting whether a given string of tokens is a valid sen-
tence of a grammar. Every time you compile a program or run a program in an
interpreter the process described in this section is executed. Sometimes it completes
successfully and sometimes it doesn’t. When it doesn’t you are told there is a syntax
error in your program. A parser is a program that given a sentence, checks to see if
the sentence is a member of the language of the given grammar. It may or may not
construct a parse tree for the sentence at the same time.

• A top-down parser starts with the root of the tree
• A bottom-up parser starts with the leaves of the tree

E

F

E T

E"(" ")"

FT

"+"

"y"

"*"

F

"5"

"x"

FT

T

32 Specifying Syntax

Fig. 2.2: Flow of Data surrounding a Parser

Top-down and bottom-up parsers check to see if a sentence belongs to a grammar
by constructing a derivation for the sentence, using the grammar. A parser either
reports success (and possibly returns the parse tree) or reports failure (hopefully
with a nice error message). The flow of data is pictured in figure 2.2.

2.8 Parser Generators

A parser generator is a program that given a grammar, constructs a parser for the
language specified by the grammar. This is a program that generates a program as
pictured in figure 2.3. Examples of parser generators are yacc and ml-yacc. They
both generate bottom-up parsers.

Fig. 2.3: Flow of Data surrounding a Parser Generator

Source
Program

Parser

Parse
Tree

Assembly
Language

Code
Generator

Source
Program

Parser

Parse
Tree

Parser
Generator

Grammar

2.11 Other Forms of Grammars 33

2.9 Bottom-Up Parsers

As described above, bottom-up parsers are generally generated by a parser generator
like ml-yacc (used by ML programs) or yacc (used by C and C++ programs). Parser
generators construct a parse tree from the bottom up. We can be more specific.
They actually construct a reverse right-most derivation of the sentence (i.e. Source
program).

A parser generator works by (possibly) looking at the next token (i.e. terminal)
in the input and then decides based on that and the partial derivation so far which
production to apply to get the next step in the reverse right-most derivation. This
algorithm uses a particular type of abstract machine called a push-down automaton.
You need a particular kind of grammar to construct a push-down automaton called
an LALR(1) grammar. Many grammars are LALR(1). You can learn more about
push-down automata in a compiler construction text. It is beyond the scope of this
book.

2.10 Top-Down Parsers

Top-down parsers are generally written by hand. They are sometimes called re-
cursive descent parsers because they can be written as a set of mutually recursive
functions. A top-down parser constructs a left-most derivation of the sentence (i.e.
source program).

A top-down parser operates by (possibly) looking at the next token in the source
file and deciding what to do based on the token and where it is in the derivation.
To operate correctly, a top-down parser must be designed using a special kind of
grammar called an LL(1) grammar.

2.11 Other Forms of Grammars

As a computer programmer you will likely learn at least one new language and
probably a few during your career. New application areas frequently cause new lan-
guages to be developed to make programming applications in that area more con-
venient. Java, JavaScript, and ASP.NET are three new languages that were created
because of the world wide web. A recent trend in programming languages is to de-
velop domain specific languages. So if you are designing elevator controllers you
may be programming in a language that was specially designed for that purpose.

Programming language references almost always contain some kind of reference
that describes the constructs of the language. Many of these programming references
give the grammar of the language using a variation of a context free grammar. A few
examples of these grammar variations are given here to make you aware of notation
that is often used in language references.

34 Specifying Syntax

CBL (Cobol-like) Grammars

These were originally used in the description of Cobol. They are not as formal as
BNF.

1. Optional elements are enclosed in brackets: [].
2. Alternate elements are vertically enclosed in braces: { }.
3. Optional alternates are vertically enclosed in brackets.
4. A repeated element is written once followed by an ellipsis: ...
5. Required key words are underlined; optional noise words are not.
6. Items supplied by the user are written as lower case or as syntactic categories

from which an item may be taken.

Example 2.10

Here is the description of the COBOL ADD statement.

<Cobol Add statement> ::=

ADD
{

identifier
number

}[
, identifier
,number

]
... TO

identifier [ROUNDED][, identifier [ROUNDED]] ...
[ON SIZE ERROR <statement>]

One such add statement might be:

ADD A, 5 TO B ROUNDED, D
ON SIZE ERROR PERFORM E-ROUTINE

Extended BNF (EBNF)

Since a BNF description of the syntax of a programming language relies heavily on
recursion to provide lists of items, many definitions use these extensions:

1. item? or [item] means item is optional.
2. item* or {item} means to take zero or more occurrences of an item.
3. item+ means to take one or more occurrences of an item
4. Parentheses are used for grouping

Example 2.11

Here is can example of method declarations in Java.

<method declaration> ::=
<modifiers>? <type specifier>

<method declarator> throws ? <method body>

2.11 Other Forms of Grammars 35

Syntax Diagrams

A syntax diagram is a graph or graphs that have been used to describe Pascal and
other programming languages.

1. A terminal is shown in a circle or oval.
2. A syntactic category is placed in a rectangle.
3. The concatenation of two objects is indicated by a flowline.
4. The aternation of two objects is shown by branching.
5. Repetition of objects is represented by a loop.

Example 2.12

Here are some descriptions of simple expressions in Pascal. Each of these dif-
ferent methods describe the same simple expressions in Pascal. Notice that some
descriptions are more compact than the BNF. Each of them are unambiguous in
their descriptions.
While BNF is less compact, it is the easiest to enter on a keyboard and for com-
puter programs to read. There is a trade-off between computer readability and
human readability that is at the center of many of our decisions about how to
formally define programming languages.

BNF

<simple expr> ::=
<term>

| <sign> <term>
| <simple expr> <adding operator> <term>

<sign> ::= “+” | “-”
<adding operator> ::= “+” | “-” | “or”

CBL

<simple expr> ::=[
+
−

]
<term>

+
−
or

 <term>

...

EBNF

<simple expr> ::= [<sign>] <term> {<adding operator> <term>}

36 Specifying Syntax

Syntax Diagram

Practice 2.8

According to the syntactic specification in example 2.12, which of these terminal
strings are simple expressions, assuming that a, b, and c are legal terms:

1. a+b-c
2. -a or b+c
3. b - - c

Ambiguous Grammars

As stated above, a grammar is ambiguous if there exists more than one parse tree
for a given sentence of the language.

Example 2.13

The classic example is nested if-then-else statements. Consider the following
Pascal statement:

1 i f a<b then
2 i f b<c then
3 writeln("a<c")
4 e l s e
5 writeln("?")

Which if statement does the else go with? It’s not entirely clear. According to
the grammar, it could go with either. This means there is some ambiguity in
the grammar for Pascal. This resolved by deciding the else should go with the
nearest if. In a bottom-up parser this is called a shift/reduce conflict. In this case
it is resolved by shifting instead of reducing.

+

-

term

term

+ - or

2.12 Abstract Syntax Trees 37

Practice 2.9

Consider the expression grammar

<expr> ::= identifier | <expr> <operator> <expr>
<operator>::= “+” | “*”

Consider the terminal string a * b + c.
Give two parse trees for this expression. This ambiguity could be resolved by
specifying a precedence of operators in the grammar. However, there are better
methods than specifying precedence. Precedence of operators can also be spec-
ified by introducing extra productions. See example 2.6 on page 29 for a better
way of writing the grammar for this language.

2.12 Abstract Syntax Trees

There is a lot of information in a parse tree that isn’t really needed to encapsulate
the program that it represents. An abstract syntax tree is like a parse tree except that
non-essential information is removed. More specifically,

• Nonterminal nodes in the tree are replaced by nodes that reflect the part of the
sentence they represent.

• Unit productions in the tree are collapsed.

Example 2.14

For example, the parse tree from figure 2.1 on page 31 can be represented by
the following abstract syntax tree.

This tree eliminates all the unnecessary information and leaves just what is es-
sential for evaluating the expression. Abstract syntax trees are used by compilers
while generating code and by interpreters when running your program. Parse trees
are usually not built by the parser, but the parser still constructs a derivation to check
the syntax of a program. Usually, at the same time the abstract syntax tree is built.

add

"y"mul

5 "x"

38 Specifying Syntax

Practice 2.10

What does the abstract syntax tree of 4+(a-b)*x look like?

2.13 Infix, Postfix, and Prefix Expressions

The abstract syntax tree in example 2.14 represents a computation. We can recover
the infix expression it represents by doing an inorder traversal of the abstract syntax
tree. To recall, an inorder traversal operates as follows:

1 Inorder_traverse(t a tree)
2 If t is an empty tree, do nothing
3 inorder_traverse(left subtree of t)
4 print the data of the root node in the tree t
5 inorder_traverse(right subtree of t)

Practice 2.11

Assume there is a BTNode class in your favorite object-oriented language with
appropriate constructors, and getData, getLeft, and getRight member functions
which return the data at a node, the left subtree, and the right subtree respectively.
Write some code to implement this inorder traversal of a tree. Assume the AST
in example 2.14 is given as input. What is the output? Is there anything wrong?

Practice 2.12

How does this code change to do a postorder traversal? What is the output given
the tree in example 2.14.

2.14 Limitations of Syntactic Definitions

The concrete syntax for a language is almost always an incomplete description. Not
all terminal strings generated are regarded as valid programs. For instance, consider
the EWE BNF on page 26. A memory reference can be an identifier. The identifier
must be defined in an equ statement. But, there is nothing in the grammar specifying
this relationship.

In fact, there is no BNF (or EBNF or Syntax Diagram) grammar that generates
only legal EWE programs. The same is true for C++, Java, ML, and all programming
languages. A BNF grammar defines a context-free language: the left-hand side of
each rules contains only one syntactic category. It is replaced by one of its alternative

2.14 Limitations of Syntactic Definitions 39

definitions regardless of the context in which it occurrs. The set of programs in any
interesting language is not context-free.

Context-sensitive features may be formally described as a set of restrictions or
context conditions. Context-sensitive issues deal mainly with declarations of identi-
fiers and type compatibility.

Example 2.15

These are all context-sensitive issues.

– In an array declaration in C++, the array size must be a nonnegative value.
– Operands for the && operation must be boolean in Java.
– In a method definition, the return value must be compatible with the return

type in the method declaration.
– When a method is called, the actual parameters must match the formal param-

eter types.

40 Specifying Syntax

2.15 Exercises

1. What does the word syntax refer to? How does it differ from semantics?
2. What is a token?
3. What is a nonterminal?
4. What does BNF stand for? What is its purpose?
5. Describe what the rules in lines 35-37 of the EWE BNF on page 26 mean. An-

swer this in some detail. Saying they define equates is not enough.
6. According to the EWE BNF, how many labels can an instruction have?
7. Given the grammar in example 2.6, derive the sentence (4+5)*3.
8. Draw a parse tree for the sentence (4+5)*3.
9. What kind of derivation does a top-down parser construct?

10. What would the abstract syntax tree for (4+5)*3 look like?
11. Describe how you might evaluate the abstract syntax tree of an expression to get

a result? Write out your algorithm in English that describes how this might be
done.

12. List four context-sensitive conditions in your favorite language.
13. Write a EWE program that prompts the user to enter three numbers and prints

the max of the three numbers to the screen. Think about this before attempting
to write it. It might be harder than you think at first.

14. Write a EWE program that prompts the user to enter a string and prints the reverse
of that string to the screen.

15. Write a EWE program that prompts the user to enter a string and prints the string
back to the screen with the first letter of each word upper cased.

16. Write a EWE program that asks the user to enter a number and prints either the
square root of the number if it is an integer or the two integers the square root
falls between if it is not an integer result. EWE does not operate on real numbers.
It only works with integers and strings.

17. Using the EWE interpreter, write a program that prompts the user for a number
and prints the factorial of that number.

2.16 Solutions to Practice Problems 41

2.16 Solutions to Practice Problems

These are solutions to the practice problems. You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 2.1

Here is a correct version of the program. As you can see there are several things
wrong with the original.

1 readInt(A)
2 readInt(B)
3 C := A - B
4 zero := 0
5 if C >= zero then goto pastwrtA
6 writeInt(A)
7 goto end
8 pastwrtA:
9 writeInt(B)

10 end:
11 halt
12 equ A M[0] equ B M[1] equ C M[2] equ zero M[3]

Solution to Practice Problem 2.2

The easiest way to write EWE programs is to write in a language like Java or
Python and then translate the code to EWE. Reverse any relational operators
to make the translation (see the previous exercise). So for instance, a less than
operator becomes greater or equal when translated into EWE. Here is a Python
version of the program.

1 n = input("Enter a postive integer:")
2 sum = 0
3 for x in range(n+1):
4 sum = sum + x
5

6 print "The sum is", sum

And here is a EWE version.

1 readInt(n)
2 sum := 0
3 one := 1
4 x := 1
5 loop:
6 if x > n then goto end
7 sum := sum + x
8 x := x + one

42 Specifying Syntax

9 goto loop
10 end:
11 writeInt(sum)
12 halt
13 equ sum M[0] equ one M[1] equ x M[2] equ n M[3]

If you think hard about this problem there is a simpler version that is about three
lines long. You have to find the formula that computes the sum of the first n
integers, though.

Solution to Practice Problem 2.3

You need to use indexed addressing to create a stack.

1 SP := 100
2 hundred := 100
3 zero := 0
4 one := 1
5 readloop:
6 readInt(x)
7 if x = zero then goto printloop
8 M[SP+0] := x
9 SP := SP + one

10 goto readloop
11 printloop:
12 SP := SP - one
13 if SP < hundred then goto end
14 x := M[SP+0]
15 writeInt(x)
16 goto printloop
17 end:
18 halt
19 equ SP M[0] equ hundred M[1] equ x M[3]
20 equ zero M[4] equ one M[5]

Solution to Practice Problem 2.4

This is a left-most derivation of the expression.
E ⇒ E +T ⇒ T +T ⇒ F +T ⇒ 4+T ⇒ 4+T ∗F ⇒ 4+F ∗F ⇒ 4+(E)∗F ⇒
4 + (E − T) ∗ F ⇒ 4 + (T − T) ∗ F ⇒ 4 + (F − T) ∗ F ⇒ 4 + (a− T) ∗ F ⇒
4+(a−F)∗F ⇒ 4+(a−b)∗F ⇒ 4+(a−b)∗ x

2.16 Solutions to Practice Problems 43

Solution to Practice Problem 2.5

This is a right-most derivation of the expression.
E ⇒ E + T ⇒ E + F ⇒ E + z ⇒ T + z ⇒ T ∗F + z ⇒ T ∗ y + z ⇒ F ∗ y + z ⇒
x∗ y+ z

Solution to Practice Problem 2.6

Exactly like the parse tree for any other derivation of (5*x)+y. There is only one
parse tree for the expression given this grammar.

Solution to Practice Problem 2.7

Fig. 2.4: The parse tree for practice problem 2.7

Solution to Practice Problem 2.8

1. a+b-c is a valid simple expression.

E

E

F

4

T

T F

xF

E()

+

T *

E - T

T

F

a

F

b

44 Specifying Syntax

2. -a or b + c is a valid simple expression.
3. b - - c is not a simple expression.

Solution to Practice Problem 2.9

In this problem we have a choice of putting the * or the + operator closer to
the top of the tree. This will give us two different trees depending on which we
choose.

Solution to Practice Problem 2.10

Fig. 2.5: The parse tree for practice problem 2.10

Solution to Practice Problem 2.11

1 void inordertraverse(BTNode root) {
2 i f (root == nil) then re turn;
3

4 inordertraverse(root.getLeft());
5 System.out.println(root.getData()+ " ");
6 inordertraverse(root.getRight());
7

8 }

The output would be 5 + x * y. The traversal has thrown away the parentheses. If
parens are needed the inorder traversal code could be modified to produce a fully
parenthesized expression.

+

4 *

-

a b

x

2.16 Solutions to Practice Problems 45

Solution to Practice Problem 2.12

The println statement would move to the last line of the function. The postorder
output would be 5 x + y *. No parens are needed in a postfix expression.

46 Specifying Syntax

2.17 Additional Reading

This chapter introduces you to programming language syntax and reading syntactic
descriptions. This is a worthwhile skill since you will undoubtedly come across new
languages in your career as a computer scientist. There is certainly more that can be
said about the topic of syntax of languages. Aho, Sethi, and Ullman [1] have written
the widely recognized book on compiler implementation which includes material on
syntax definition and parser implementation. There are many other good compiler
references as well. The Chomsky hierarchy of languages is also closely tied to this
topic. Many books on Discrete Structures in Computer Science introduce this topic
and a few good books explore the Chomsky hierarchy more deeply including an
excellent text by Peter Linz [21].

Chapter 3

Object-Oriented Programming
with C++

This chapter introduces object-oriented programming using C++ through the de-
velopment of an interpreter for a calculator language. Object-oriented languages
are imperative languages employing the imperative model described in section 1.2.
However, there is some additional structure introduced in the object-oriented model.
Programmers are given tools to organize data and code into objects.

By organizing code and data into objects using classes, code reuse is emphasized.
Ideas such as inheritance enable polymorphism among related objects. These terms
will be illustrated with examples during the implementation of the intepreter.

The ideas behind object-oriented programming date back to the nineteen sev-
enties and earlier. In the late seventies Modula-2 was one of the first object based
languages. However, Modula-2 lacked some of the features of more current object-
oriented languages, such as inheritance.

As mentioned earlier, Bjarne Stroustrup was developing C++ during the early
eighties. He designed the language to be backward compatible with C so there were
some decisions already made for him like the need for separate compilation and the
presence of a macro processor. C++ is one of the most widely used object-oriented
languages today.

The use of C/C++ doesn’t come without some problems though. The main prob-
lem with C/C++ programs are memory leaks. C/C++ programmers must be disci-
plined in their allocation and deallocation of memory. For some projects, this may
be difficult. It is common that programs that run for a long time will have a mem-
ory leak that has to be tracked down, which is a difficult task. The problem is that
a garbage collector cannot safely be included as part of the model of computation
available to C/C++ programs. Both C and C++ were designed to give the program-
mer maximum control over how the code they wrote was compiled. This meant that
more responsibility was left to the programmer and as a result programmers need to
be very disciplined when using C/C++.

Modern languages like Java and Ruby provide garbage collection as part of the
underlying model of computation. They can do this because these languages are
careful about how pointers are exposed to the programmer. In fact pointers are called

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_3,
© Springer Science+Business Media, LLC 2008

48 Object-Oriented Programming with C++

references in these languages to distinguish them from pointers in C and C++. The
trade-off is that these languages take some control away from the programmer.

Garbage collection does have its own problems. Languages like Java and Ruby
aren’t as suited to real-time applications where timing is critical. In these languages
you never know when garbage collection will occur. Of course there is research
into these problems to solve this issue for real-time systems but in general C++ is
probably a better choice for real-time applications.

The interpreter developed in this chapter is not a real-time application. But, C++
is chosen because there are many interesting aspects to C++ that can be explored by
using it. This chapter is not a complete tutorial on using C++, but will cover enough
of the language to develop this project while introducing you to many important
concepts in programming languages. Some of the interpreter’s code is presented as
examples throughout the chapter. While stopping short of a full tutorial on C++,
there is enough C++ presented in the examples in this chapter to show you how
C++ programs are written, structured, and compiled. Parts of the interpreter are
left as a programming project. By the end of this chapter you should have enough
background to finish the implementation.

3.1 Application Development

Before beginning to program using C++ it will be helpful to discuss the application
development process in light of using C++ as the implementation language. The
goal of this chapter is to introduce the design and implementation of a calculator
interpreter. C++ code must be compiled before you can run the resulting program.
Each of the sections below will go into more detail about how to do each of these
tasks using C++ as the implementation language.

Design the Calculator

Let us call the calculator language interpreter calc. After completing the interpreter
it will be invoked by typing calc from a command-line prompt. It should prompt the
user to enter a calculator expression at which point the user can enter an expression
that will be interpreted. Variations on this interpreter can be implemented including
the ability to interpret more than one calculator expression in a session. The calcu-
lator will have a single memory location in which an integer value can be stored
and recalled. As presented in this chapter the calculator is an integer calculator only.
It will do integer division only which means the fractional part is discarded as a
remainder after doing division.

3.1 Application Development 49

Example 3.1

Here is a typical session with the completed calc interpreter.

%>calc
Please enter a calculator expression: (4S+5)*(7-R)
The result is 27
%>

The S represents the store operator. It stores the value that is computed to the left
of it. In this case it stores a 4 in the memory location. The R represents the value
that is stored in the memory location.

Practice 3.1

Evaluate the following calculator expressions.

1. (4+5)S*R
2. 3S + R
3. R + 3S
4. 2S*4 + R

While it is certainly possible to build the interpreter in an ad-hoc fashion, the
goal of this project is to design the interpreter using a structured approach that will
illustrate some of the concepts used in language implementation. In addition, some
of the features of C++ will be highlighted as the application is developed.

Fig. 3.1: Data flow through the Calc Interpreter

The calculator will read an expression from the command-line and process it as
pictured in figure 3.1. The string read from the command-line is fed to a scanner
which produces a tokenized representation of the string. The tokens are given to the
parser which builds an abstract syntax tree. The abstract syntax tree is then evaluated
to produce the result.

The design of the code will closely follow the design in figure 3.1. Because we
are using an object-oriented language, the first step is to identify the objects in the
figure. There is a scanner, a parser, tokens, and an abstract syntax tree. The only

(4S+5) *
(7-R)

Parser

Abstract
Syn. Tree

27 and
Mem=4

EvaluateScanner

Tokens

50 Object-Oriented Programming with C++

thing left out is evaluate. Evaluate is something we do to the abstract syntax tree so
we won’t define that as an object.

There will also be one more object, a Calculator object that will start the evalu-
ation of an expression. The calculator will have the memory location that we store
numbers to and recall numbers from as part of its state.

Each of the objects identified above will be described by a class in C++. The
following sections contain examples of the design and implementations for some
of these classes. Along the way features of C++, and object-oriented languages in
general, are described.

Compiling C++ Programs

C++ is a compiled language. That means we cannot execute a source program di-
rectly. It must be compiled to a target language. Typically, there is a C++ compiler
for each operating system/architecture combination. That means there is a C++ com-
piler for Windows/Intel, Mac OS X/PowerPC, Mac OS X/Intel, Linux/Intel, etc.
Sometimes there is more than one C++ compiler for a particular operating sys-
tem/architecture. For instance, Windows has C++ compilers from Microsoft, Bor-
land, the GNU Project and probably other sources as well. The GNU C++ compiler
is available for many platforms and is free. It is the compiler that the examples in
this book were compiled with.

Separate Compilation

Regardless of which C++ compiler you use, like many modern languages, C++ is
organized so that programs may be separately compiled. Without separate compi-
lation, when a project gets extremely large a small change can cause a recompile
that could take hours to complete. It is extremely desirable to recompile only those
pieces of a project that have been changed while leaving the rest of the compiled
code untouched.

Each piece of a C++ project is stored in a separate file. This allows multiple
programmers to work on different files at the same time. It also isolates each class
in C++ from other class implementations.

The calc interpreter contains six different modules. Five of them, ast.C, calcula-
tor.C, parser.C, scanner.C, and token.C contain the implementations of the classes
defined for the project. The calc.C module contains the code that ties it all together.

Each module can be compiled separately. To compile a C++ module the com-
mand

g++ -g -c module.C

3.1 Application Development 51

is executed. The g++ is the name of the C++ compiler and may differ depending on
the compiler you are using. The -g tells the compiler to include debug information.
The -c option tells the compiler to produce an object file. Object files have a .o
extension. So this command would produce a file called module.o.

When each module has been compiled, then they may be linked together to pro-
duce an executable program. That is done with the compiler again using.

g++ -o executable_program module1.o module2.o module3.o ...

Example 3.2

To completely compile the calc project the following compile commands must
be issued.

1 g++ -g -c calc.C
2 g++ -g -c scanner.C
3 g++ -g -c token.C
4 g++ -g -c ast.C
5 g++ -g -c parser.C
6 g++ -g -c calculator.C
7 g++ -g -o calc calc.o scanner.o token.o ast.o parser.o \
8 calculator.o

A complete compile doesn’t have to be done very often. If only one module
changes, for instance parser.C, then parser.C would be recompiled and the linking
step in the last line would be executed again.

Separate compilation poses some challenges to how a program is organized. For
instance, both the parser and the scanner need access to the Token class so they can
be compiled. That’s the topic of the next section.

Header Files

A header file in C++ is where declarations go that are to be shared between modules.
The Token class declaration is needed by the implementation of the Token class
located in token.C. It is also needed in the Parser and Scanner classes in parser.C
and scanner.C, respectively. The declaration of the Token class does not contain any
code and typically header files do not contain code unless it is a very short snippet.

When a program is compiled, the macro processor runs first to expand any macro
processor directives in the source code as pictured in figure 3.2. The macro processor
looks at all the preprocessor directives and builds the expanded source program that
is actually given to the compiler. Every macro processor directive starts with a pound
sign (i.e. #).

52 Object-Oriented Programming with C++

Fig. 3.2: The Macro Processor

Example 3.3

Including a header file in a module is as simple as writing

i n c l u d e "header_file"

By convention, header files are named with a .h extension. So there is a header
file called scanner.h, token.h, ast.h, parser.h, calculator.h, and a few others in the
calculator project containing the declarations of the classes that are a part of the
calc interpreter.
The parser.C and scanner.C modules include the token.h header file by writing

i n c l u d e "token.h"

Sometimes header files depend on declarations that are in other header files. It is
legal for one header file to include another header file. The include directive works
wherever it is placed.

There are two problems that can result from header files including header files. A
declaration can only appear once in the expanded source when compiling. So if you
write a module that can include a header file a.h and b.h, and b.h includes a.h then
you have the declarations in a.h declared twice. The compiler will signal an error in
that case.

In addition, if a.h includes b.h which includes c.h which includes a.h then there
is a circular reference created and the macro processor would eventually create an
expanded source file that was too large (or some other strange error could occur).

Fortunately, both these problems are solved by using a macro processor directive
called #ifndef. This directive asks if an identifier is NOT defined. Another macro
processor director called #define allows you to define an identifier. Identifiers don’t
need values to be defined. They may be defined or undefined to the macro processor.

Source
Program

Macro
Processor

Expanded
Source

Assembly
Language

Compiler

Header
File

Header
File

Header
File

3.1 Application Development 53

Example 3.4

To solve the problem of circular includes or repeated includes the convention
is adopted to start include files with an #ifndef and then on the next line define
the identifier. So the token.h file begins with

i f n d e f token_h
d e f i n e token_h

// Any declarations go here.

e n d i f

The #ifndef must be terminated at the end of the include with an #endif to end
the #ifndef. The directive says that if token h is not defined, then on the next
line define it and continue including the declarations found in the include file.
However, if token h has already been defined it was becuase the include token.h
was already included in the expanded source earlier. If this is the case, then the
macro processor jumps to the matching #endif at the end of the include which
causes it to skip all declarations found in the header file. The entire token.h header
file is given by taking the code in examples 3.9 and 3.10 and puting the #ifndef
#define macro processor directives before it and the #endif directive after it.

Every header file in a C++ project must follow this convention for it to work.
C++ programmers are religious about this. You won’t see a well written C++ (or C)
header file without these directives.

The Make Utility

Executing all the g++ commands given in example 3.2 would be very tedious if you
had to do it more than once. When working on a project you may have to do these
commands or some subset of them hundreds of times. Even remembering which
subset are required after making a few changes would be a challenge.

Fortunately, there is a utility called make that will take care of our housekeeping
for us. The make utility takes a file, usually called Makefile, as input that specifies
the dependencies of a project. A make file is a list of rules. Rules start with the
output from the rule followed by a colon. After the colon come the rules or files the
output is dependent on. The next line of a rule gives a command to be executed to
bring the output of the rule up to date.

The list of rules specify a directed graph of the dependencies between modules
of a program. There can be as many rules as you like. Typically there is one rule for
each output you expect from the compiler.

54 Object-Oriented Programming with C++

Example 3.5

Here is the Makefile for the calc project.

1 calc: calc.o scanner.o token.o ast.o parser.o \
2 calculator.o
3 g++ -g -o calc calc.o scanner.o token.o \
4 ast.o parser.o calculator.o
5 calc.o: calc.C scanner.h token.h
6 g++ -g -c calc.C
7 calculator.o: calculator.C calculator.h parser.h ast.h
8 g++ -g -c calculator.C
9 scanner.o: scanner.C scanner.h token.h

10 g++ -g -c scanner.C
11 token.o: token.C token.h
12 g++ -g -c token.C
13 ast.o: ast.C ast.h
14 g++ -g -c ast.C
15 parser.o: parser.C parser.h
16 g++ -g -c parser.C
17 clean:
18 rm -f *.o
19 rm -f calc

In lines 1 and 2 (one line in the Makefile) the calc program is dependent on all the
object files. The command to bring calc up to date is the g++ linking command.
Note that the backslash (i.e. \) is used to extend a line in a makefile.

The words up to date have been used pretty liberally in this section. Make actu-
ally uses dates to see if everything is up to date. Every file has a date attribute, the
time the file was last modified. Make looks at dates to determine for instance if the
date of calc is older than calc.o. If it is, then the calc rule must be triggered. But,
before the linking command is executed, the rules corresponding to calc.o and all
the other dependencies listed in the first two lines of the Makefile are examined to
see if they should be triggered. Eventually make will arrive at a file that is up to date
but which is not dependent on anything else.

Example 3.6

To use the make utility you create a file like the one given in example 3.5 and
execute the make command

make

from the directory that contains the Makefile.

Practice 3.2

Assume that you issued the make command to bring everything up to date. Then
you change the ast.h header file. Which compile commands will be executed
given the Makefile in example 3.5?

3.2 The Token Class 55

Example 3.7

Good Makefiles are hard to write. They almost always have errors in them and
the one in example 3.5 is not completely correct. To deal with this there are tools
that will generate make files for you. When all else fails you can add an extra
clean rule to start over. If something isn’t working you can start over by typing

make clean
make

3.2 The Token Class

The calculator language has several types of tokens. The complete list is number,+,-
,*,/,(,),S,and R. The token class will need to allow each of these tokens to be de-
scribed. To begin, the type of token can be desribed using something called an
enum in C++. An enum is a way that integer values can be given names to make
code more readable. Enums are used when you need to enumerate a list of possible
values which have some meaning.

Example 3.8

Here is the enum for the types of tokens in the intepreter’s language.

1 enum TokenType {
2 identifier,keyword,number,add,sub,times,divide,
3 lparen, rparen,eof,unrecognized
4 };

The keyword token type will be used for both S and R. The identifier and unrec-
ognized token will only be used in case of incorrect input. There are no identifiers
in the calculator language. The eof token is returned as the last token. The identi-
fier, keyword, and number tokens each represent a specific identifier, keyword, or
number, respectively. This is described in more detail on page 56.

Practice 3.3

Identify the tokens in these expressions. Refer to the enum above to be sure you
find them all.

1. 3S + R
2. (4+5)S*R

A token has a type. It should also have some extra information that will help
should there be an error in the program or expression being evaluated. The line
and column where the token began will also be stored with the token. The line will

56 Object-Oriented Programming with C++

always be one in this program since the expression is one line long. We have enough
information to specify what a Token object should look like.

Example 3.9

This is the declaration of the Token class.

1 c l a s s Token {
2 p u b l i c:
3 Token();
4 Token(TokenType typ, i n t line, i n t col);
5 v i r t u a l ˜Token();
6 TokenType getType() c o n s t;
7 i n t getLine() c o n s t;
8 i n t getCol() c o n s t;
9

10 p r i v a t e:
11 TokenType type;
12 i n t line,col;
13 };

The code in example 3.9 is a class declaration in C++. A class declaration typi-
cally goes in a header file of the same name. So this class declaration is written in
token.h. The parts of the class declaration are:

1. The class name on line 1.
2. The keyword public identifies a section that contains all public methods and in-

stance variables. Typically instance variables are not public.
3. Line 3 and 4 are the declarations of the Token constructors. Notice that no code

appears in the class declaration.
4. Line 5 is the Token destructor. This is discussed in more detail below.
5. Lines 7-9 declare accessor methods. The getLex() accessor method is declared

constant (i.e. const) and virtual. We’ll discover what those keywords mean soon.
6. The private section is where the instance variables are declared and anything else

that should be hidden from users of the class.

A C++ class declaration contains no code. It only describes what objects of the
class look like. The Token class described above works well for most tokens. How-
ever if a number, keyword, or identifier is discovered in a expression then it is nec-
essary to know what number, keyword, or identifier was found. In this case the
lexeme, or word, of the token is needed. Inheritance is used to extend the Token de-
scription to a LexicalToken description. Both classes contain a getLex() method to
be called to get the lexeme from the token. The Token getLex() method only returns
the empty string since lexeme’s aren’t needed in general, but if the Token is really a
LexicalToken then the getLex() method will return the actual token’s lexeme.

Example 3.10

This is the declaration of the LexicalToken class.

3.3 Implementing a Class 57

1 c l a s s LexicalToken: p u b l i c Token {
2 p u b l i c:
3 LexicalToken(TokenType typ, string* lex,
4 i n t line, i n t col);
5 ˜LexicalToken();
6 v i r t u a l string getLex() c o n s t;
7 p r i v a t e:
8 string* lexeme;
9 };

The first line declares the class and indicates that it inherits from the Token class
through public inheritance. Public inheritance means the derived class, LexicalTo-
ken, has access to the public instance variables and methods of the base class, Token,
but not the private members of Token. This is the usual way inheritance is handled.
The other line to note is line 6. In this line the getLex() method is declared again ex-
cept this time it is not declared virtual. Read section 3.4 to learn more about virtual
methods.

Any code that wishes to use the Token or LexicalToken classes must have these
class declarations within them. The next section will describe how this is accom-
plished. A lot of unexplained information lies in these two class declarations. The
following sections should start to clear up some of the questions you may have.
We’ll begin by looking at separate compilation.

3.3 Implementing a Class

To implement a class you must write a module with the class implementation in it.
Unlike Java, the class declaration and implementation are separate.

Example 3.11

Here is the implementation of the Token and LexicalToken classes contained
in the token.C module.

1 # i n c l u d e "token.h"
2

3 Token::Token() :
4 type(eof), line(0), col(0)
5 {}
6

7 Token::Token(TokenType typ, i n t lineNum, i n t colNum) :
8 type(typ),
9 line(lineNum),

10 col(colNum)
11 {}
12

13 Token::˜Token() {}
14

15 TokenType Token::getType() c o n s t { re turn type; }

58 Object-Oriented Programming with C++

16

17 i n t Token::getLine() c o n s t { re turn line; }
18

19 i n t Token::getCol() c o n s t { re turn col; }
20

21 LexicalToken::LexicalToken(TokenType typ, string* lex,
22 i n t lineNum, i n t colNum) :
23 Token(typ,lineNum,colNum),
24 lexeme(lex)
25 {}
26

27 LexicalToken::˜LexicalToken() {
28 t r y {
29 d e l e t e lexeme;
30 } catch (...) {}
31 }
32

33 string LexicalToken::getLex() c o n s t {
34 re turn *lexeme;
35 }

Each method of a class is implemented as a function in C++. The Token:: and
LexicalToken:: that appear before each method name are scope qualifiers. They say
that the method being defined appears in the Token or LexicalToken classes. The
following sections go into more detail to explain the various parts of the implemen-
tation.

Constructors and Initialization Lists

Lines 3-11 contain the constructor implementations for Token. Between the colon
and the left brace (i.e. {) appears an initialization list. The list initializes instance
variables to values. The value of each instance variable is surrounded by parens.
Initialization lists aren’t needed in this example. The code could have been written
as shown below.

Example 3.12

Another way to write the constructor.

1 Token::Token() {
2 type = eof;
3 line = 0;
4 col = 0;
5 }

The difference between assignment of instance variables presented in exam-
ple 3.12 and the initialization list version presented above is minor. Typically, C++

3.4 Inheritance and Polymorphism 59

programmers use initialization lists for constructors because the C++ compiler can
handle them a little more efficiently when instance variables are themselves objects.

Constructors are never inherited so the LexicalToken constructor calls the Token
constructor in its initialization list to initialize the Token part of the object in line 23
of example 3.11. The additional instance variable, lexeme, stores the pointer to the
string representation of the token.

Destructors

The declaration

string* lexeme;

declares a string pointer called lexeme. The star (i.e. *) tells the compiler this a
pointer to a string. Pointers in C and C++ are similar to references in Java or Python.

When an object like a LexicalToken stores a pointer to another object, in this
case a string, it is likely that the referenced object (the string) is stored on the heap.
When the first object is deleted it must be sure to delete the second from the heap.
This is the purpose of the code in lines 27-31 of example 3.11. A destructor is
named the same as the class with a tilde (i.e. ˜) in front. The ˜ means not in some
logic notations, so ˜LexicalToken means not LexicalToken or in other words the
destructor. Right before a LexicalToken is deleted the destructor will be called to
delete the storage it refers to on the heap. It’s a good idea to enclose the deletion
code in a try catch block to avoid terminating the program if the data is already
deleted for some reason. The ... in the try catch block will catch all exceptions that
might occur.

3.4 Inheritance and Polymorphism

When a token is discovered by the scanner it is created and returned as a Token
object. The getToken method of the scanner class returns a Token* (see below).
However, some tokens are Tokens and some are LexicalTokens. Inheritance enables
the scanner to simply return either type of token as a Token*. However, later when
the parser is done with the token it will want to delete the token from the heap. Here
lies the problem. Is the token being deleted a Token or a LexicalToken? To know, the
parser might look at the type of token its token pointer is pointing at.

But this is bad practice and in this case impossible. The type of an object isn’t
stored anywhere in a C++ program (although Token objects do have a TokenType
field). C++ is statically typed and that means that type information is determined at
compile-time and is not included in the generated code. Writing code in the parser
that relies on some TokenTypes being LexicalTokens and other tokens just Tokens is
a bad idea. What if we change either of the token classes in the future?

60 Object-Oriented Programming with C++

What we want is to be able to call delete to free the token regardless of which
type it is. When we call delete on a Token object then nothing is done. When we call
delete on a LexicalToken then the lexeme is deleted, too. We want the right method
called depending on what the pointer is pointing to and not depending on the type
of the pointer. This is polymorphism in action. To have the right method called
depending on the type of an object the method must be polymorphic, which literally
means many forms. A polymorphic method is actually two or more methods. The
right one gets called depending on what object it is being called on.

The getLex method above is another instance of a polymorphic method. The
right getLex will get called depending on the object it is called on. It is probably
debatable whether the getLex method should be defined on the Token class at all.
However, without it being defined there, we would have to first cast or coerce the
Token object we get back from the scanner to a LexicalToken object so we could
call getLex on it. This is avoided by defining getLex on the base class.

How does polymorphism work? For it to work the object must have control over
which method is to be called because the pointer to the object doesn’t tell the com-
piler anything. In fact, the decision can’t be made until run-time. Polymorphism is
a dynamic, or run-time, problem.

Fig. 3.3: Implementation of Polymorphism

Figure 3.3 shows a picture of the structure involved in making polymorphism
work. While a particular C++ compiler might not follow this structure exactly, the
principle would be the same regardless of compiler. Here are the steps that are taken
to make polymorphism work.

Token * t

lexeme

 v

destructor slot

getLex slot

vtable

LexicalToken R

Heap

LexicalToken Code

~LexicalToken() { ... }

getLex() { ... }

Run-time Stack

Activation Record

3.4 Inheritance and Polymorphism 61

1. An object like a LexicalToken is created in some code. In this example it’s created
in the scanner.

2. When the object is created, it’s created as a LexicalToken. The type is known by
the compiler at this point. The object is initialized by calling the LexicalToken
constructor.

3. The compiler looks at the class description for LexicalToken and sees two virtual
functions. It knows that virtual functions require a vtable to be created. The name
vtable stands for virtual function table. At a given offset in every object there is
a pointer to a vtable. Some objects may not have a vtable if they don’t have any
virtual functions, but the vtable pointer is still there.

4. The compiler finds the vtable associated with the class of the object being cre-
ated. There is only one vtable for a class and the compiler knows where each
vtable is stored. Code is generated to store the pointer to the vtable in the object.

5. When a virtual method like getLex or the destructor is called the compiler looks
at the class and sees that the method is a virtual method. It knows that it must
look up the code in the vtable.

6. The compiler generates code to look in the vtable at a specified offset depending
on the virtual method being called. The destructor is always in the first slot, the
getLex is always in the second slot regardless of whether it is a Token object,
LexicalToken object, or some new object class that inherits from either. New
entries can be added to the end of a vtable for new virtual functions in derived
classes, but existing entries can NEVER be altered. The compiler must be able
to count on the vtable structure remaining the same.

7. The vtable entry chosen contains a pointer to the correct code to be called. At
run-time the program jumps to the correct method and polymorphism has just
occurred.

Given that you understand the process described above, there are some things
that should now be clear about polymorphism.

• A constructor can’t be polymorphic, nor would we want it to be. When we con-
struct an object we always specify the type of object we are creating. Polymor-
phism doesn’t make sense for constructors.

• Once a method is declared polymorphic (i.e. virtual) it may NEVER become
non-polymorphic again. Said another way, once it’s in the vtable it stays in the
vtable. That’s why the destructor and getLex() method in LexicalToken aren’t
declared virtual, yet they still are. Once virtual, always virtual.

• It is permissable for a function to be declared non-virtual in a base class and then
to become virtual in a sub-class since the function can be added to the vtable in a
subclass without any problems. However, this is a bad idea in general. In the base
class the function would not be polymorphic. You can try this out. Get the cppcalc
code and change the definition of token.h so that Token’s getLex method is not
virtual (delete the keyword virtual) but leave the LexicalToken getLex method as
virtual. It should compile but you won’t get the right result. This is because when
getLex is called on a Token pointer the non-polymorphic Token::getLex()

62 Object-Oriented Programming with C++

method will be called and not the polymorphically correct getLex. Be sure to
make clean and then make between trial runs to get everything to recompile.

• Polymorphic method calls are less efficient than normal function calls. There is
some overhead involved in making the function call. It amounts to two extra load
instructions in most CPUs to complete the function call. Some hardware may be
optimized to reduce the overhead of these loads. However, for most applications
this is a small price to pay for code reuse.

3.5 A Historical Look at Parameter Passing

When the C programming language was designed passing parameters to functions
was a fairly new concept. The Algol language designed during the 60’s stressed
the importance of structured programming. Passing parameters allowed code to be
written in a modular way. The same code could be called from multiple points within
a program without worrying about setting global variables to the right values first.

At the time that C was being developed, Niklaus Wirth was developing the Pascal
programming language. He also had a goal of supporting modular programming. In
the Pascal language, the programmer decided when writing a function or procedure
which parameters should be modified and which shouldn’t. Pascal programmers had
to declare parameters to be value or variable parameters.

Example 3.13

Here is an example of a Pascal function with both value and variable parame-
ters.

1 procedure lookup_term(name:ident_type;var found:boolean;
2 var place: i n t e g e r);
3

4 var k: i n t e g e r;
5

6 begin
7 found:= f a l s e;
8 f o r k:=1 to non_term_index do
9 i f terminal[k].ident = name then

10 begin
11 found:= t rue;
12 place:=k;
13 end;
14 end; (*PROCEDURE*)

In the code above the name parameter is a value parameter. That means a copy
of the value is passed to the procedure lookup term. By passing a copy of
the value, the caller of the procedure can be assured that any variable passed as
the first parameter will not be modified since it is a value parameter. To call the
procedure you might write something like:

3.5 A Historical Look at Parameter Passing 63

lookup_term(aName, found, aPlace);

The found and place parameters are declared as variable parameters. These
parameters may be modified and this parameter passing method is often called pass
by reference. That means that after calling the procedure, the original variables
found and aPlace will be changed to the values assigned in the procedure. That
also means the caller of the procedure must pass a variable into the function for the
second and third parameters. Depending on the size of the ident type type, the
procedure may have a large value to copy as the first parameter. However, in the in-
terest of good programming style, Niklaus Wirth ignored such efficiency issues and
developed a programming language that enforced modular-structured programming.

Ritchie, when developing C was developing it for a different purpose. He wanted
a programming language that supported modular programming, but was also effi-
cient, convenient, and concise. In doing so he made some compromises. In C, there
was only one parameter passing mechanism, pass by value.

Example 3.14

Consider the following program:

1 # i n c l u d e <stdio.h>
2

3 s t r u c t Point {
4 i n t x;
5 i n t y;
6 };
7

8 void testit(s t r u c t Point p) {
9 p.x = 0;

10 p.y = 0;
11 }
12

13 i n t main(i n t argc, char* argv[]) {
14 s t r u c t Point myPoint;
15 myPoint.x = 10;
16 myPoint.y = 10;
17 testit(myPoint);
18 printf("x = %d, y = %d\n",myPoint.x,myPoint.y);
19 re turn 0;
20 }

When compiled and run the program creates a structure called myPoint of type
Point. Structures are the C equivalent of a record in Pascal and the equivalent of a
class in C++ without any member functions and public access to all fields within the
structure. The variable myPoint is passed by value and the copy of it is modified
in the function called testit. However, the original value of myPoint is not
changed. The program prints 10,10 as the output. If a C programmer wishes to
pass an argument by reference, he or she must pass a pointer to the original space.

64 Object-Oriented Programming with C++

Practice 3.4

Considering what you learned about the run-time stack and calling functions in
the first chapter, describe in detail what happens in the following program with
regards to the run-time stack and the variables within the program.

1 # i n c l u d e <stdio.h>
2

3 s t r u c t Point {
4 i n t x;
5 i n t y;
6 };
7

8 s t r u c t Point makePoint() {
9 Point aPoint;

10 aPoint.x = 0;
11 aPoint.y = 0;
12 re turn aPoint;
13 }
14

15 void testit(s t r u c t Point p) {
16 p.x = 0;
17 p.y = 0;
18 }
19

20 i n t main(i n t argc, char* argv[]) {
21 s t r u c t Point myPoint = makePoint();
22 myPoint.x = 10;
23 myPoint.y = 10;
24 testit(myPoint);
25 printf("x = %d, y = %d\n",myPoint.x,myPoint.y);
26 re turn 0;
27 }

Example 3.15

To pass the myPoint by reference in C the following code would need to be
written.

1 # i n c l u d e <stdio.h>
2

3 s t r u c t Point {
4 i n t x;
5 i n t y;
6 };
7

8 void testit(s t r u c t Point* p) {
9 p->x = 0;

10 p->y = 0;
11 }
12

13 i n t main(i n t argc, char* argv[]) {

3.5 A Historical Look at Parameter Passing 65

14 s t r u c t Point myPoint;
15 myPoint.x = 10;
16 myPoint.y = 10;
17 testit(&myPoint);
18 printf("x = %d, y = %d\n",myPoint.x,myPoint.y);
19 re turn 0;
20 }

In the version of the code in example 3.15 the variable p is a pointer to a Point
structure. By passing the pointer to the original structure the original structure can
be updated. The output from this version of the program is 0,0. There are some
things to take note of in this version of the program.

First, in the testit function the code that was p.x = 0 is now p->x = 0.
Since p is now a pointer, we must use pointer notation to dereference p. In Java and
many other languages we can dereference a pointer or reference by using the dot
(i.e. a period) notation, but not in C. In C, to dereference a pointer you must either
write an arrow (i.e. ->) or use an asterisk (i.e. *). So, equivalently we could write
(*p).x = 0 to set the x field of the Point pointed to by p to 0.

The second and more important difference is that the caller of the testit func-
tion must now realize that the parameter is a pointer and must pass the address of the
Point to the function. That is why &myPoint is written. The &, called an amper-
sand, is the addressof operator. It passes the address of myPoint to the testit
function. Requiring the caller of a function to remember to write the address of
operator for reference parameters is probably not a good idea to promote modular
programming. Now, the programmer who writes the function does not maintain en-
tire control over how parameters are passed. The caller of the function must also
remember to call it in the right way.

Practice 3.5

What could go wrong in the following version of the code? Carefully trace the
code by hand to see what the mistake is here.

1 # i n c l u d e <stdio.h>
2

3 s t r u c t Point {
4 i n t x;
5 i n t y;
6 };
7

8 s t r u c t Point* makePoint() {
9 Point aPoint;

10 aPoint.x = 0;
11 aPoint.y = 0;
12 re turn &aPoint;
13 }
14

15 void testit(s t r u c t Point* p) {
16 p->x = 0;
17 p->y = 0;

66 Object-Oriented Programming with C++

18 }
19

20 i n t main(i n t argc, char* argv[]) {
21 s t r u c t Point* myPoint = makePoint();
22 myPoint->x = 10;
23 myPoint->y = 10;
24 testit(myPoint);
25 printf("x = %d, y = %d\n",myPoint->x,myPoint->y);
26 re turn 0;
27 }

Around 1980, Bjarne Stroustrup was working on the C++ programming lan-
guage. This idea of passing parameters by reference by passing in a pointer to the
data had long been a criticism of the C language. So, when Dr. Stroustrup designed
C++ he included the idea of passing parameters by reference.

Example 3.16

The code in this example passes the Point data by reference.

1 # i n c l u d e <stdio.h>
2

3 c l a s s Point {
4 p u b l i c:
5 i n t x;
6 i n t y;
7 };
8

9 void testit(Point& p) {
10 p.x = 0;
11 p.y = 0;
12 }
13

14 i n t main(i n t argc, char* argv[]) {
15 Point myPoint;
16 myPoint.x = 10;
17 myPoint.y = 10;
18 testit(myPoint);
19 printf("x = %d, y = %d\n",myPoint.x,myPoint.y);
20 re turn 0;
21 }

It may be somewhat confusing to the person just learning C++. Pay close atten-
tion if you are one of those people. First, the struct Point is replaced with a class
Point since C++ supports classes. All fields within the class are declared public in
this example, generally a bad thing to do. Then, in this example, the ampersand
moves from the caller of the function to the function definition. When a formal pa-
rameter of a function in C++ has an ampersand after the type it means the parameter
is passed by reference. A reference is like a pointer in C, but the caller of the function
does not need to pass the address of the data to the function. C++ does this under
the covers. In addition, when a parameter is declared as a reference parameter, C++

3.6 Const in C++ 67

also dereferences the reference automatically when it is evaluated. So, instead of
writing p->x = 0 we may once again write p.x = 0 which is more consistent
with other modern programming languages.

So, there are two parameter passing mechanisms in C++, but because pointers
may be passed as parameters there are for all practical purposes three ways of pass-
ing parameters in C++. Pass by value copies the value, pass by pointer reference
passes a copy of the pointer but the pointer and its copy both point to the original
data, and pass by reference.

In contrast to C++, the Java programming language passes built-in types like
int, double, float, and char by value. All objects in Java are passed by refer-
ence. Java is less flexible in its parameter passing, but this simplifies many aspects
of the language.

In fact, passing objects by value leads to a lot of complexity in C++. Because
objects can and regularly do have pointers to other objects within them, making a
copy of an object when it is passed by value is too complicated for C++ to do by
itself. Programmers must write special a special method as part of the class decla-
ration to make pass by value work correctly. The special pass by value method is
called a copy constructor. A copy constructor makes a copy of the object in the way
dictated by the programmer. It would be the equivalent of the clone method in Java.
Copy constructors are not discussed here.

3.6 Const in C++

The keyword const in C++ can be used in a variety of situations. Perhaps the sim-
plest situation is where you want to declare a constant. You can, for instance, write

const int maxVal = 100;

to declare a constant value maxVal. Declaring constants can save time when chang-
ing the value of a constant. They can also help you avoid introducing errors when
changing constant values by requiring you to change fewer lines of code. More im-
portantly, they can help make your code self-documenting.

The const keyword can also be used in other circumstances in C++. Perhaps
the most important use of const is to solve the problem of pass by value copying
large objects in C++. The problem is that objects, when passed by value, are copied.
Passing by reference would seem an obvious solution to this and it is why objects
are passed by reference in languages like Java. Pass by reference is more efficient.
However, passing a parameter by reference means that the called function or method
may alter the parameter. Languages like Java ignore this possibility. It is up to the
programmer to know whether an object is altered by a function or not. Usually,
the programmers relies on documentation in Java to tell them whether or not the
parameter is modified.

In C++, it is possible to declare that a parameter is not modified by a method
by either declaring the parameter is passed by value or by declaring the parameter

68 Object-Oriented Programming with C++

is passed by constant reference. Declaring it as a constant reference means that we
wish to pass the parameter efficiently (without making a copy) but we promise not
to alter the values of any fields within the object.

Example 3.17

In this code, the Point example has been rewritten to call a method called
printPoint to print the point data. However, the printPoint method will
not modify the point so the parameter is declared to be a constant reference to a
point.

1 # i n c l u d e <stdio.h>
2

3 c l a s s Point {
4 p u b l i c:
5 Point(i n t x, i n t y);
6 i n t getX() c o n s t;
7 i n t getY() c o n s t;
8 void setX(i n t x);
9 void setY(i n t y);

10

11 p r i v a t e:
12 i n t x;
13 i n t y;
14

15 };
16

17 Point::Point(i n t x, i n t y) {
18 t h i s ->x = x;
19 t h i s ->y = y;
20 }
21

22 i n t Point::getX() c o n s t {
23 re turn x;
24 }
25

26 i n t Point::getY() c o n s t {
27 re turn y;
28 }
29

30 void Point::setX(i n t x) {
31 t h i s ->x = x;
32 }
33

34 void Point::setY(i n t y) {
35 t h i s ->y = y;
36 }
37

38 void testit(Point& p) {
39 p.setX(0);
40 p.setY(0);
41 }
42

3.6 Const in C++ 69

43 void printPoint(c o n s t Point & p) {
44 printf("Point(%d,%d)\n",p.getX(),p.getY());
45 }
46

47 i n t main(i n t argc, char* argv[]) {
48 Point myPoint(10,10);
49 testit(myPoint);
50 printPoint(myPoint);
51 re turn 0;
52 }

In the example above you may notice that the methods getX() and getY() of
the Point class are declared as const methods. This is an example of how constness
may creep into your program. When the printPoint method was declared to
take a constant reference to a Point object, it meant that printPoint could not
call any methods on the Point class that could potentially modify the Point object.
That meant that the getX() and getY() methods now need to be declared to be
const themselves. When const appears after a method declaration it means that the
method is an accessor method of the class and will not modify the object data in any
way. Once you start using constant references to pass parameters efficiently, it will
creep into your program and require other parts of your program to be declared const
as well. This isn’t necessarily bad. When used correctly it can help programmers
avoid illegal memory references and other subtle problems.

Notice the getType, getCol, getLine, and getLex member functions of Token are
all declared as const member functions. These functions are accessor functions of
the Token class and therefore may be declared as const functions. This might be
useful if the programmer wishes to write some code that passes Token objects as
constant references at some point.

One interesting nuance of this discussion is worth taking note of. If a class con-
tains all const member functions, if there are no mutator methods on the class, then
whether an object of that class is passed by value or passed by reference becomes
a moot point. The idea of a constant reference can go away since all objects of that
class must be constant references. This would certainly simplify matters.

In addition, if a language were to only support immutable objects, then the idea
of pass by value and pass by reference could go away entirely along with all the
complexity of the parameter passing system. Immutable objects are objects that once
created cannot be altered. If you want to modify an object, you create a new object
with the modified fields instead. Standard ML is one such language. In fact, many
functional languages only support immutable data.

One other way to eliminate the complexity of parameter passing is to support
only pass by value or pass by reference. Java only supports pass by value of primitive
types because they are small in size and may be passed by value efficiently. It only
supports pass by reference for objects as stated earlier. This simplifies the language
support for parameter passing and presents a clear and consistent model for the
programmer. Java programmers know that all objects are passed by reference.

70 Object-Oriented Programming with C++

3.7 The AST Classes

According to the diagram in figure 3.1 the parser must build an abstract syntax tree
of the expression to be evaluated. To do this a collection of classes must be declared.
The AST classes can be designed as a hierarchy of classes where each type of AST
class represents one type of node in an abstract syntax tree.

Fig. 3.4: Abstract Syntax Tree of expression in figure 3.1

Consider the abstract syntax tree in figure 3.4. There are mul, add, sub, store,
recall, and number nodes within the tree. If we abstract away from the details a bit
we also see there are some nodes which have no children, some with one child, and
some with two children.

The tree could be evaluated to produce the value of the expression. A postfix
traversal of the tree would yield the value. For instance consider the steps in the
postfix traversal given here.

1. The traversal begins by recursively descending the left side of the tree down to
the 4 node. Visiting that node returns 4.

2. The store node takes the 4 and stores it in the calculator’s memory. It also returns
the 4.

3. The add can’t be visited yet since it has a right child (the 5). The 5 node is visited
and returns the 5.

4. The add node can now be visited. It takes the 4 and the 5, adds them together and
returns the 9.

5. The mul node can’t be visited until its right child is visited. Postorder traversal
of the sub node calls the traversal on the 7 node, which returns 7.

6. The sub node still can’t be visited yet. The recall node is traversed and returns
the value in the calculator memory, the 4.

7. The 7-4 is computed by visiting the sub node and returns 3.
8. Visiting the mul node computes 9*3 or 27.

mul

subadd

store 5

4

7 recall

3.7 The AST Classes 71

This evaluate procedure can be accomplished by writing a polymorphic evaluate
method for an abstract syntax tree. First, we’ll define an abstract base class for the
AST. We’ll call this class AST. An abstract base class never has any objects of its
type created. Its purpose is to serve as a base class for other classes. The AST class
is abstract because the two virtual functions have a 0 representation. However, the
destructor must still be written because it must have a slot in the vtable.

Because an abstract syntax tree consists of null-ary, unary, and binary nodes, the
AddNode, SubNode, MulNode, DivNode, StoreNode, NumNode, and RecallNode
classes can inherit from one of the three classes below. Each class will implement
its own destructor and evaluate method. The polymorphic evaluate methods will
implement the postorder traversal of the tree described above.

Example 3.18

Here is the AST header file containing three AST class declarations.

1 # i f n d e f ast_h
2 # d e f i n e ast_h
3

4 us ing namespace std;
5

6 c l a s s AST {
7 p u b l i c:
8 AST();
9 v i r t u a l ˜AST() = 0;

10 v i r t u a l i n t evaluate() = 0;
11 };
12

13 c l a s s BinaryNode : p u b l i c AST {
14 p u b l i c:
15 BinaryNode(AST* left, AST* right);
16 ˜BinaryNode();
17 AST* getLeftSubTree() c o n s t;
18 AST* getRightSubTree() c o n s t;
19 p r i v a t e:
20 AST* leftTree;
21 AST* rightTree;
22 };
23

24 c l a s s UnaryNode : p u b l i c AST {
25 p u b l i c:
26 UnaryNode(AST* sub);
27 ˜UnaryNode();
28 AST* getSubTree() c o n s t;
29 p r i v a t e:
30 AST* subTree;
31 };
32

33 # e n d i f

72 Object-Oriented Programming with C++

Example 3.19

The implementation of three AST classes is provided here.
1 # i n c l u d e "ast.h"
2 # i n c l u d e <iostream>
3 # i n c l u d e "calculator.h"
4

5 //uncomment the next line to see the destructor calls
6 //#define debug
7

8 AST::AST() {}
9

10 AST::˜AST() {}
11

12 BinaryNode::BinaryNode(AST* left, AST* right):
13 AST(), leftTree(left), rightTree(right)
14 {}
15

16 BinaryNode::˜BinaryNode() {
17 # i f d e f debug
18 cout << "In BinaryNode destructor" << endl;
19 # e n d i f
20 t r y {
21 d e l e t e leftTree;
22 } catch (...) {}
23 t r y {
24 d e l e t e rightTree;
25 } catch(...) {}
26 }
27

28 AST* BinaryNode::getLeftSubTree() c o n s t {
29 re turn leftTree;
30 }
31

32 AST* BinaryNode::getRightSubTree() c o n s t {
33 re turn rightTree;
34 }
35

36 UnaryNode::UnaryNode(AST* sub):
37 AST(), subTree(sub)
38 {}
39

40 UnaryNode::˜UnaryNode() {
41 # i f d e f debug
42 cout << "In UnaryNode destructor" << endl;
43 # e n d i f
44 t r y {
45 d e l e t e subTree;
46 } catch (...) {}
47 }

The destructors are provided above. The evaluate methods are not. The UnaryN-
ode and BinaryNode classes inherit the abstract definition of evaluate from AST.

3.8 The Scanner 73

AddNode, SubNode, MulNode, DivNode, NumNode, StoreNode, and RecallNode
must be derived from the appropriate class and the evaluate method must be over-
ridden to implement the correct function.

Practice 3.6

Write the declaration of the AddNode class.

Practice 3.7

Write the implementation of the AddNode class. When writing the evaluate
method for the AddNode class don’t worry about how you get the right values.
Just assume that those values are available if you call evaluate on the right object
or objects. How it’s done is unimportant in this exercise.

The implementation of the SubNode, MulNode, DivNode, NumNode, StoreN-
ode, and RecallNode classes is left as an exercise for the reader.

3.8 The Scanner

Referring back to figure 3.1 the scanner reads characters from the input and builds
Token objects that are used by the parser. To accomplish this, the scanner needs
to read characters from a stream and decide how to group them into tokens. The
parser will get tokens from the scanner by calling a getToken method. Sometimes
the parser gets a token and needs to put it back. In that case a putBackToken method
will put back the last token that was returned by getToken.

Example 3.20

Here is the declaration of the scanner in the header file scanner.h.

1 # i f n d e f scanner_h
2 # d e f i n e scanner_h
3

4 # i n c l u d e <iostream>
5 # i n c l u d e "token.h"
6

7 c l a s s Scanner {
8 p u b l i c:
9 Scanner(istream* in);

10 ˜Scanner();
11

12 Token* getToken();
13 void putBackToken();
14

15 p r i v a t e:
16 Scanner();

74 Object-Oriented Programming with C++

17

18 istream* inStream;
19 i n t lineCount;
20 i n t colCount;
21

22 bool needToken;
23 Token* lastToken;
24 };
25

26 # e n d i f

In line 16 above the default constructor for the Scanner class is declared private.
By making the default constructor private a Scanner object can never be constructed
that way. A Scanner should always be constructed over an input stream, so this is
what we want.

Fig. 3.5: A Finite State Machine for the Scanner

Internally, the scanner object is a finite state machine. A finite state machine
(fsm) consists of a set of states and a set of transitions from one state to another
based on the current character in the input. Figure 3.5 defines the Scanner’s finite
state machine. The fsm starts in state zero, reads one character and transitions to
one of the eight states depending on the character. In state one there is a transition
that stays in state one as long as a letter or digit is read. The fsm continues to read
characters and make transtions until a character appears that has no transition from

01

3

2 4

6

5

7

8

letter

digit
'+'

'-'

'*'

'/'
'('

')'
Start State

1

2

3

4

5

6

7

8

digit

letter|digit

3.9 The Parser 75

the current state. At that point, if the state is an accepting state (i.e. a double circle
state) the string of characters is recognized as a token.

This fsm reads a token and returns it. The eof and keyword tokens are handled as
special cases. Eof is handled in state zero when the end of stream is reached. State
one compares the identifier to a list of keywords to see if it should return a keyword
or identifier token. The complete implementation can be found in appendix A.

Whitespace is read and thrown away by the scanner. Whitespace consists of
blanks, tabs, and newline characters. When a character is read that is not recog-
nized by a transition from the current state, the fsm returns the current token (since
states 1-8 are all accepting states) saving the current character for later. The next call
to getToken resumes with the current character. If there is no valid transition from
state zero on the current character the fsm returns the character as an unrecognized
token.

An fsm is a model of computation for recognizing strings of characters. An fsm
is easily implemented using a while loop, a switch statement, and one variable to
record the current state. Fsm’s are used in many contexts including network proto-
col implementations, pattern recognition, simulations, and of course language im-
plementation. There are tools to build powerful fsm’s. However, it’s good to see a
hand-written one to aid in understanding some of the theory behind fsm’s, too.

3.9 The Parser

Figure 3.1 shows the parser reading tokens and producing an abstract syntax tree as
its output. In section 2.7 on page 31 a parser was defined as a program that given a
sentence (i.e. a string of tokens), checks to see if the sentence is in the language of
a given grammar. The parser that is discussed in this section is a top-down parser.
The parser will build the AST from the top-down. In reality, top-down is a bit of
a misnomer. While the construction of the tree starts at the top, the tree is actually
built bottom-up by a recursive descent of the tree. That’s why top-down parsers are
also called recursive descent parsers.

To begin to design a parser there must be a grammar to model it after.

Example 3.21

This is the Calculator language’s grammar.

Prog → Expr EOF
Expr → Expr +Term | Expr−Term | Term
Term → Term∗Storable | Term/Storable | Storable
Storable → Factor S | Factor
Factor → number | R | (Expr)

A recursive descent parser is, believe it or not, recursive. The implementation of
the parser is given to us by its grammar. In the implementation, each nonterminal

76 Object-Oriented Programming with C++

becomes a function in the parser. Each rule in the grammar is part of a function that
is named by the nonterminal on the left side of the arrow in the rule. In the grammar
above each line would correspond to a function in the parser. Each appearance of a
nonterminal on the right hand side of a production is a function call. Each appear-
ance of a token on the right hand side of a production is a call to the scanner to get
a token. From this definition, writing the parser is pretty straightforward.

A First Attempt at Writing the Parser

The parser will read the tokens and build an abstract syntax tree like the one fig-
ure 3.4. To write the top-down parser of these expressions each nonterminal be-
comes a function. The grammar dictates how to write the parser. The body of each
function is given by the right hand side of its corresponding production.

Example 3.22

The Prog and Expr functions for the Parser

1 AST* Parser::Prog() {
2 AST* result = Expr();
3 Token* t = scan->getToken();
4

5 i f (t->getType() != eof) {
6 cout << "Syntax Error: Expected EOF, found token "
7 << " at column " << t->getCol() << endl;
8 throw ParseError;
9 }

10

11 re turn result;
12 }
13

14 AST* Parser::Expr() {
15 AST* e = Expr();
16 Token* t = scan->getToken();
17 ...
18 }

There is a big problem with the Expr function given above. It is recursive and there
is no base case. This means if you call the Expr function, it will go into infinite
recursion resulting in run-time stack overflow. The grammar given above isn’t suited
for top-down parsing.

3.9 The Parser 77

A Better Attempt at Writing a Top-Down Parser

The problem in the previous section is that the grammar is not LL(1). For a grammar
to be LL(1) means that the choice of which production to apply next in a left-most
derivation of a sentence can be made by looking ahead at the next token. The number
one in LL(1) means that only one token of lookahead is needed to decide which
production to use. Although the grammar above is LALR(1), it is not appropriate
for constructing a recursive descent parser. An LL(1) grammar is needed to build a
recursive descent or top-down parser. An LALR(1) grammar is a grammar that can
be given to a program to construct a reverse right-most derivation of a sentence in
the grammar looking ahead at only the next token in the sentence. This is what a
bottom-up parser does and bottom-up parser generators can take a grammar like the
one above and automatically construct a parser for it. Because bottom-up parsers are
harder to write, we usually rely on a parser generator program to write the parser for
us when generating a bottom-up parser.

Top-down parsers are much simpler to write and are typically written by hand.
However, to create a top-down parser you have to have an LL(1) grammar. Fortu-
nately, it is relatively easy to convert an LALR(1) grammar to an LL(1) grammar.
There are two steps involved.

1. Eliminate left recursion.
2. Perform left factorization where appropriate.

Eliminate Left Recursion

Eliminating left recursion means eliminating rules like Expr→ Expr+Term. Rules
like this are left recursive because the Expr function would first call the Expr func-
tion in a recursive descent parser as in example 3.22 above. Without a base case first,
we are stuck in infinite recursion (a bad thing). To eliminate left recursion we look
to see what Expr can be rewritten as when deriving a sentence. In this case, Expr
can only be replaced by a Term so we replace Expr with Term in the productions.
Then, we add a new nonterminal to represent the rest of the production from the
LALR(1) grammar. In this case, the + Term and the - Term are left after we replace
the initial Expr in the productions in the grammar above. The usual way to eliminate
left recursion is to introduce a new nonterminal to handle all but the left recursive
nonterminal. Two rules in the grammar are left recursive and must be rewritten.

78 Object-Oriented Programming with C++

Example 3.23

An LL(1) Calculator Language Grammar

Prog → Expr EOF
Expr → Term RestExpr
RestExpr →+ Term RestExpr | − Term RestExpr |<null>
Term → Storable RestTerm
RestTerm →∗ Storable RestTerm | / Storable RestTerm |<null>
Storable → Factor S | Factor
Factor → number | R | (Expr)

In this example the Expr → Expr + Term | Expr−Term | Term is replaced by
the second and third lines of the grammar given above. Likewise, the left recursion
in Term→ Term∗Storable | Term/Storable | Storable is rewritten as the fourth and
fifth lines of the grammar above.

Perform Left Factorization

Left factorization isn’t needed on this grammar so this step is skipped. Left factor-
ization is needed when the first part of two or more productions are the same and
the rest of the similar productions are different. Left factorization is important in
languages like Prolog because without it the parser may have to backtrack. Since
backtracking won’t work when reading something from an input stream you must
perform left factorization by writing a new rule that handles the common prefix
of the two offending rules. However, it isn’t needed in C++ if you recognize the
common prefix and code the function appropriately.

Translating the LL(1) Grammar to C++

Once you have an LL(1) grammar you use it to build a parser as follows. The follow-
ing construction causes the parser to return an abstract syntax tree for the sentence
being parsed.

1. Construct a function for each nonterminal. Each of these functions should return
a node in the abstract syntax tree.

2. Depending on your grammar, some nonterminal functions may require an input
parameter of an abstract syntax tree (ast) to be able to complete a partial ast that
is recognized by the nonterminal function.

3. Each nonterminal function should call getToken on the scanner to get the next
token as needed. If after getting the token, the code determines it didn’t need the
token after all, the nonterminal function should call the scanner’s putBackToken
function to put the token back. If the parser is based on an LL(1) grammar, it
should never have to put back more than one token at a time.

3.9 The Parser 79

4. The body of each nonterminal function is a series of if statements that choose
which production to expand upon depending on the value of the next token. The
body of the function is determined by the productions of the grammar with the
given nonterminal on the left hand side of the arrow.

Example 3.24

This is the Parser’s header file, “parser.h”.

1 # i f n d e f parser_h
2 # d e f i n e parser_h
3

4 # i n c l u d e "ast.h"
5 # i n c l u d e "scanner.h"
6

7 c l a s s Parser {
8 p u b l i c:
9 Parser(istream* in);

10 ˜Parser();
11

12 AST* parse();
13

14 p r i v a t e:
15 AST* Prog();
16 AST* Expr();
17 AST* RestExpr(AST* e);
18 AST* Term();
19 AST* RestTerm(AST* t);
20 AST* Storable();
21 AST* Factor();
22

23 Scanner* scan;
24 };
25 # e n d i f

The construction described here leads to a class declaration for the Parser class
as given in example 3.24. The only public function of the parser is the parse func-
tion which returns an AST of the expression that was parsed. The private functions
correspond to the nonterminals of the grammar. These functions are private because
the user of a parser doesn’t need to know the details of how the parser works. You
do, however!

The construction above is very simple, but can be confusing without an example.
Consider the LL(1) grammar given above. Assume that you have two classes called
AddNode and SubNode that are derived from the BinaryNode class.

80 Object-Oriented Programming with C++

Example 3.25

The Parser’s Prog and Expr Functions

1 AST* Parser::Prog() {
2 AST* result = Expr();
3 Token* t = scan->getToken();
4

5 i f (t->getType() != eof) {
6 cout << "Syntax Error: Expected EOF, found token "
7 << "at column " << t->getCol() << endl;
8 throw ParseError;
9 }

10

11 re turn result;
12 }
13

14 AST* Parser::Expr() {
15 re turn RestExpr(Term());
16 }

The code in example 3.25 throws an exception if an error is discovered during
parsing. You would normally take appropriate action during error conditions, but
throwing an exception is a legitimate way to deal with a parsing problem. The Prog
function returns a reference to an AST, which is the abstract syntax tree representing
the expression that was parsed.

The Expr function in lines 14-16 corresponds to the Expr rules in the grammar
in example 3.23. The rule says to first call the Term function. The result of calling
this function is an AST (as all nonterminal functions return an AST).

Practice 3.8

The RestExpr function is slightly different from the Prog and Expr functions.
The RestExpr function has an AST parameter which we’ll call e. The RestExpr
function first gets a token and then decides what to do based on that token. If it
is an add token it builds a new AST AddNode with the part of the tree given to it
(i.e. e) as the left subtree and the result of calling Term as the right subtree. The
subtract AST nodes are handled similarly. Otherwise, there wasn’t a token that
the RestExpr knows about so the token is put back and the AST e is returned as
its AST.

Write the RestExpr function described here. Remember you can refer to the
grammar in example 3.23.

The remainder of the parser implementation can be patterned after the code in
example 3.25 using the grammar in example 3.23 as a guide. The remainder of the
code is left as an exercise.

3.10 Putting It All Together 81

3.10 Putting It All Together

One more class is required to tie together the pieces that have been developed in
this chapter. The Calculator class contains a memory location that can hold a stored
value. The value can also be retrieved on demand. The calculator can evaluate an
expression that is given to it as a string.

Example 3.26

The Calculator’s header file, “calculator.h”

1 # i f n d e f calculator_h
2 # d e f i n e calculator_h
3

4 # i n c l u d e <string>
5

6 us ing namespace std;
7

8 c l a s s Calculator {
9 p u b l i c:

10 Calculator();
11

12 i n t eval(string expr);
13 void store(i n t val);
14 i n t recall();
15

16 p r i v a t e:
17 i n t memory;
18 };
19

20 e x t er n Calculator* calc;
21

22 # e n d i f

The extern statement above means that someplace in the project a calc pointer
will be declared as a global variable. This global variable is needed in the abstract
syntax tree implementation so the AST can have access to the calculator’s memory
location. By declaring calc extern we tell the compiler that calc is a global variable
that can be accessed from any module that includes this declaration. Global vari-
ables are generally a bad idea. This is one case where it is justified. Without it just
about every object presented in this chapter would have to keep a reference to the
calculator. That’s a lot of overhead to have access to one little memory location.

82 Object-Oriented Programming with C++

Example 3.27

The Calculator class implementation

1 # i n c l u d e "calculator.h"
2 # i n c l u d e "parser.h"
3 # i n c l u d e "ast.h"
4 # i n c l u d e <string>
5 # i n c l u d e <iostream>
6 # i n c l u d e <sstream>
7

8 Calculator::Calculator():
9 memory(0)

10 {}
11

12 i n t Calculator::eval(string expr) {
13

14 Parser* parser = new Parser(new istringstream(expr));
15

16 AST* tree = parser->parse();
17

18 i n t result = tree->evaluate();
19

20 d e l e t e tree;
21 d e l e t e parser;
22

23 re turn result;
24 }
25

26 void Calculator::store(i n t val) {
27 memory = val;
28 }
29

30 i n t Calculator::recall() {
31 re turn memory;
32 }

The Calculator evaluates an expression by creating an istringstream over the
string containing the expression. An istringstream is an input stream constructed
from a string. This stream is passed to the Parser constructor. The Parser in turn
constructs a Scanner object over the stream to get the tokens from the string.

If all goes well, the string is parsed and the parser returns an AST. The tree is
then evaluated (polymorphically) to yield the result. The result is returned to the
main program to be printed. This flow of data is depicted in the dataflow diagram
shown in figure 3.1.

3.10 Putting It All Together 83

Example 3.28

The main function from “calc.C”

1 # i n c l u d e <iostream>
2 # i n c l u d e <sstream>
3 # i n c l u d e <string>
4 # i n c l u d e "calcex.h"
5 # i n c l u d e "calculator.h"
6 us ing namespace std;
7

8 Calculator* calc;
9

10 i n t main(i n t argc, char* argv[]) {
11 string line;
12

13 t r y {
14

15 cout << "Please enter a calculator expression: ";
16

17 getline(cin, line);
18

19 calc = new Calculator();
20

21 i n t result = calc->eval(line);
22

23 cout << "The result is " << result << endl;
24

25 d e l e t e calc;
26

27 }
28 catch(Exception ex) {
29 cout << "Program Aborted due to exception!" << endl;
30 }
31 }

The global variable is declared in this last module. The main function gets the
input line from the user, creates the calculator, and calls eval on the calculator giving
it the input line. The result is printed to the screen.

84 Object-Oriented Programming with C++

3.11 Exercises

1. What’s the value of (R+7)/4S if the memory contained 4 prior to evaluating this
expression?

2. What is the value of the memory location after evaluating the previous expres-
sion?

3. What does the abstract syntax tree look like for the expression (R+7)/4S?
4. How could the calculator language be modified to allow more than one memory

location like modern calculators? Discuss what changes would be required to
implement this enhanced calculator language.

5. Complete the calculator interpreter by downloading the code given in this chapter
and finishing the implementation in parser.C, ast.C, and ast.h. The rest of the
project is provided.
When you download the code you will want to unzip the package with some sort
of unzip program. On Linux you can issue the command,

unzip cppcalc.zip

Then you can make the program and run it. Here is an example of making and
running you can use to get started.

1 $ unzip cppcalc.zip
2 $ cd cppcalc
3 $ make
4 make: `calc' is up to date.
5 $ make clean
6 rm -f *.o
7 rm -f calc
8 $ make
9 g++ -g -c calc.C

10 g++ -g -c scanner.C
11 g++ -g -c token.C
12 g++ -g -c ast.C
13 g++ -g -c parser.C
14 g++ -g -c calculator.C
15 g++ -g -o calc calc.o scanner.o token.o ast.o parser.o \
16 calculator.o
17 $ calc
18 Please enter a calculator expression: 5 + 4
19 The result is 9
20 $

Commands that you enter are preceded by a dollar sign. The make clean above
tells make to use the clean rule to erase all compiled files and make the project
from scratch. See the file Makefile for the clean rule or look in the chapter at the
section on the make utility.

The program will compile and add two integers together as provided. Your job is
to extend the project to the full calculator language. This requires changes to the
parser.C and ast.C modules. The parser.C changes are highlighted in section 3.9.

3.11 Exercises 85

You can complete the parser by completing the functions that are incomplete in
the parser.C file. These functions can be patterned after the code presented in the
chapter.

The parser code will require that you build AST nodes for storing values and
for recalling values from the calculator’s memory. You will also need multiply
and divide nodes in the abstract syntax tree. These new node types can be added
to the ast.C and ast.h files using the existing code as a pattern.

The store and recall nodes in the AST will need to access the memory loca-
tion of the calculator. The global variable called calc can be used to access the
calculator’s memory. The line

calc->store(6)

will store 6 in the calculator’s memory. Similarly, the expression calc->recall()
will retrieve the value stored in the memory of the calculator.

6. Once you have completed the project described above extend the calculator lan-
guage to allow more than one memory location to hold a value.

7. Modify the project to be a compiler instead of an interpreter. Instead of evaluat-
ing the expression, generate EWE code for it instead.

In addition, to make this interesting, add a new keyword to the language, called
I, that when executed waits for user input before proceeding. The value returned
by the call to I is the value entered at the keyboard.

This project can be implemented with a few modifications. First, the evaluate
function of the abstract syntax tree will print code to a file called “a.ewe” in-
stead of directly evaluating the expression. To print to a file in C++ you create
an ofstream object. The changes can be made in several places but it will work
if you create the ofstream in the main function and pass it to the constructor of
the Calculator object. The object can be passed as an ostream which ofstream
inherits from. Pass the ofstream by reference to try out references in C++. De-
clare the ostream as a reference in your Calculator object as well. For ofstream
to be defined you must add the <fstream> include statement in your code. The
Calculator object should have an additional method to return the ostream refer-
ence when asked so the evaluate functions in your abstract syntax tree can get
the ofstream when printing code. The code that should be printed is EWE code.
You will want to employ a correct model of computation when generating EWE
code so you can systematically generate the required code for the expression.

To write to an ostream is just like writing to cout. See the cout write statements
in calc.C for examples of how this is done.

8. C++ allows parameters to be passed by value, reference, or pointer. Modify the
calculator program to pass Tokens by reference instead of by pointer.

9. Modify the calculator program to pass Tokens by value instead of by pointer.

86 Object-Oriented Programming with C++

10. Start with a fresh copy of the C++ calculator code. See exercise 5 for directions
on downloading and unzipping the files. Compile it with the make clean and
make commands. Run the program to verify that it does correctly add two inte-
gers together.

Then change the token.h file and remove virtual keyword from the getLex method
of theToken class but leave the LexicalToken . Run the program again and it will
likely not add two integers together correctly. Explain why this happens. What
happened to the C++ code that removing the keyword

3.12 Solutions to Practice Problems 87

3.12 Solutions to Practice Problems

These are solutions to the practice problems . You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 3.1

1. 81
2. 6
3. Depends on the initial value of memory. It could be an error. Assuming the

calculator starts with 0 in memory the answer would be 3. If the calculator
is written to evaluate more than one expression in a session then the memory
might contain the last value stored.

4. 10

Solution to Practice Problem 3.2

Below are to commands the make file would execute. The Makefile should prob-
ably have included a dependency of parser.C on the ast.h as well. But, if you get
into trouble, type make clean to start over.

1 g++ -g -c ast.C
2 g++ -g -c calculator.C
3 g++ -g -o calc calc.o scanner.o token.o ast.o parser.o
4 calculator.o

Solution to Practice Problem 3.3

1. There are number, keyword, add, keyword tokens in this one.
2. The tokens are: lparen, number, add, number, rparen, keyword, times, key-

word.

Solution to Practice Problem 3.4

The program uses pass by value so the Point data is copied between each of the
function calls.

1. An activation record is pushed on the stack for the main function containing
the variabie called myPoint.

88 Object-Oriented Programming with C++

2. Immediately the makePoint method is called pushing a new activation
record on the stack. The new activation record has its own copy of a point
called aPoint. The aPoint variable is initialized to (0,0) and then when
aPoint is returned the activation record is popped from the run-time stack
and the data is copied back into the myPoint variable.

3. The myPoint variable is changed to (10,10).
4. When testit is called another copy of a point is made in the run-time

stack’s new activation for the call to testit and that variabie is initialized
to (0,0). This does not change the value of the myPoint variable.

5. Finally, the activation record for the call to testit is popped returning to
main to finish the program by printing the (10,10) to the screen.

Solution to Practice Problem 3.5

In this example, the makePoint function returns a pointer to the aPoint vari-
able. However that variable lies within the makePoint activation record. That
is generally a bad idea. When makePoint returns, the main function will now
have a pointer to memory on the run-time stack that may be reused in the not
too distant future. This will almost certainly be true once the program calls the
testit function. The outcome of this program is not well-defined. It may work
and it may not. The outcome of the program depends on the underlying architec-
ture of the target platform and the code generated by the compiler.

This is precisely the reason Java does not contain an addressof operator. Prob-
lems like this occur all the time in C++ when inexperienced C++ programmers
start writing code. It is a bad idea to get the address of a variable, yet this hap-
pens all the time in C++, especially when using arrays. In Java, the only address
ever provided is when a programmer uses the new keyword to create an object.
However, the address returned by new is a reference, which itself is not a pointer
and is safer to use than a pointer. A reference must point to an object and may
not be a pointer to just anywhere in memory. In addition, the only references in
Java are references into the heap. No pointers into the run-time stack are allowed
in the language or its underlying implementation.

Solution to Practice Problem 3.6

Here is the AddNode declaration.

1 c l a s s AddNode : p u b l i c BinaryNode {
2 p u b l i c:
3 AddNode(AST* left, AST* right);
4

5 i n t evaluate();
6 };

3.12 Solutions to Practice Problems 89

Solution to Practice Problem 3.7

Here is the AddNode implementation.

1 AddNode::AddNode(AST* left, AST* right):
2 BinaryNode(left,right)
3 {}
4

5 i n t AddNode::evaluate() {
6 re turn getLeftSubTree()->evaluate() +
7 getRightSubTree()->evaluate();
8 }

Solution to Practice Problem 3.8

Here is the RestExpr solution.

1 AST* Parser::RestExpr(AST* e) {
2 Token* t = scan->getToken();
3

4 i f (t->getType() == add) {
5 re turn RestExpr(new AddNode(e,Term()));
6 }
7

8 i f (t->getType() == sub)
9 re turn RestExpr(new SubNode(e,Term()));

10

11 scan->putBackToken();
12

13 re turn e;
14 }

90 Object-Oriented Programming with C++

3.13 Additional Reading

Time and space constraints prevent further discussion of C++. There are many inter-
esting and important aspects of C++ that have not been covered here. These include,
but are not limited to:

• Namespaces
• Copy constructors
• Type conversion operators
• Streams and stream operators
• Operator overloading

An excellent reference on the whole language is given in [11]. There are also
plenty of C++ programming guides available both online and in book form. If you
know how to program in Java another excellent reference is Timothy Budd’s book,
C++ for Java Programmers[5].

Chapter 4

Object-Oriented Programming
with Ruby

This chapter introduces you to the Ruby language through the development of an
interpreter for the calculator language like the C++ version presented in chapter 3.
Unlike C++, Ruby is an interpreted language. All data in Ruby are objects which
is different than C++ and Java. Ruby is also dynamically typed. This also is un-
like C++ and Java. C++ and Java are object-oriented languages, but are statically
typed. C++ is also a compiled language, not interpreted. While there are many dif-
ferences between the two languages, there are also many similarities. Using Ruby
and C++ to develop the same project can give you some insight into the differences
and similarities of the two languages. This chapter will point out those similarities
and differences.

Ruby was influenced by several older (relative to Ruby anyway) programming
languages including Smalltalk and Perl. Being object-oriented, Ruby allows the pro-
grammer to declare his or her own classes. A class is a way of describing a set of
objects with similar attributes. A class also contains the code to manipulate objects
of the class.. The attributes of an object are called instance variables. The manipu-
lation of objects is through special functions called methods. Every method in Ruby
is a function and returns a value. This is the way Smalltalk was designed as well so
Ruby gets this idea of methods returning values from Smalltalk.

Ruby is an interpreted language with garbage collection. It doesn’t have the prob-
lem of memory leaks like C++ programs because you don’t have to free memory
yourself. Ruby is not a hybrid language implementation like Java. In other words,
it is not compiled to an intermediate form and then interpreted. It is truly inter-
preted from an abstract representation of the source program. As a result, Ruby
programs can run significantly slower than their C++ counterparts. Some work is
being done with Ruby to transform it into a hybrid language implementation like
Java and Python because of this performance difference.

That being said, most Ruby programs are not noticeably slower than their C++
counterparts. Instead of being worried about performance, “Matz” (the designer of
Ruby), was more interested in making the programming activity less tedious. He

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_4,
© Springer Science+Business Media, LLC 2008

92 Object-Oriented Programming with Ruby

Fig. 4.1: Interpreting Ruby Programs

developed a language that allows programmers to program at a higher level and
relieve themselves of many of the details of programming.

To write a Ruby program you write your code in a file or files of your choosing.
In Linux you can run an interpreted program by naming the interpreter on the first
line and making the file executable.

Example 4.1

In Linux and Unix there is a simple command called echo that will echo back
to the screen the text you type. To write a similar tool, we can create a file called
recho and enter this into the file.

#!/usr/local/bin/ruby
s = gets
puts s

The first line of the program may change slightly depending on where the Ruby
interpreter is located. If you are not sure, you can type which ruby and Linux will
tell you where the interpreter is located. After creating the file called recho, Linux
needs to be told that the file is executable. To do this you enter the command

chmod +x recho

which tells Linux that echo is eXecutable. Then you can run this program by
typing recho at the command line. That’s it, you’ve written your first Ruby pro-
gram. It doesn’t work exactly like the Linux echo command, but it’s close. You
only have to make the file executable once. If you make more changes to the file,
the program is still executable and you can change and try your program to your
heart’s content.

Machine Language

Source
Program

CPU

Ruby
Interpreter

4.1 Designing Calc 93

4.1 Designing Calc

As with the C++ version, we’ll call the calculator interpreter calc. It will be invoked
from the command-line as described in example 4.2. The interpreter will evaluate
exactly the same expressions that the C++ version does.

Example 4.2

Here is a typical session with the completed calc interpreter.

%>calc
Please enter a calculator expression: (4S+5)*(7-R)
The result is 27
%>

The S represents the store operator. It stores the value that is computed to the left
of it. In this case it stores a 4 in the memory location. The R represents the value
that is stored in the memory location.

Practice 4.1

Evaluate the following calculator expressions by hand.

1. (4+5)S*R
2. 3S + R
3. R + 3S
4. 2S*4 + R

While it is certainly possible to build the interpreter in an ad-hoc fashion, the
goal of this project is to design the interpreter using a structured approach that will
illustrate some of the concepts used in language implementation. In addition, some
of the features of Ruby will be highlighted as this application is developed.

Fig. 4.2: Data flow through the Calc Interpreter

The calculator will read an expression from the command-line and process it as
pictured in figure 4.2. The string read from the command-line is fed to a scanner

(4S+5) *
(7-R)

Parser

Abstract
Syn. Tree

27 and
Mem=4

EvaluateScanner

Tokens

94 Object-Oriented Programming with Ruby

which produces a tokenized representation of the string. The tokens are given to the
parser which builds an abstract syntax tree (i.e. AST). The abstract syntax tree is
then evaluated to produce the result.

The design of the code will closely follow the design in figure 4.2. Because we
are using an object-oriented language, the first step is to identify the objects in the
figure. There is a scanner, a parser, tokens, and an abstract syntax tree. The only
thing left out is evaluate. Evaluate is something we do to the abstract syntax tree so
we won’t define that as an object.

There will also be one more object, a Calculator object that will start the evalu-
ation of an expression. The calculator will have the memory location that we store
numbers to and recall numbers from as part of its state.

Each of the objects identified above will be described by a class in Ruby. The
following sections will cover the design and implementation for these classes. Along
the way features of Ruby, and object-oriented languages in general, are described.

4.2 The Token Class

Each part of an expression that is read by the scanner becomes a token in the in-
terpreter. The calculator language has several types of tokens. The complete list is
number,+,-,*,/,(,),S,and R.

Practice 4.2

Identify the tokens in these expressions. Refer to the paragraph above to be sure
you find them all.

1. 3S + R
2. (4+5)S*R

The token class will need to allow each of these tokens to be described. While in
C++ an enumeration was used to describe the type of the tokens, Ruby provides a
nice mechanism for defining symbols or atoms which are names that may be used
within a program. A symbol is just a name preceded by a colon. So the names of the
tokens are :number, :add, :sub, :times, :divide, :lparen, :rparen,
:store, and :keyword. The :keyword token type will be used for S and R.

A token has a type. It should also have some extra information that will help
should there be an error in the program or expression being evaluated. The line and
column where the token began should also be stored with the token. The line will
always be one in this program since the expression is one line long. GIven these
requirements, we have enough information to specify what a Token object should
look like.

4.3 Parameter Passing in Ruby vs C++ 95

Example 4.3

Here is the Ruby code representing token objects in the project. A Ruby class
starts with the class keyword and ends with the keyword end. The construc-
tor of a class is called initialize. Instance variables are preceded with @
when used in an expression or statement. The keyword attr reader is some-
thing you likely haven’t seen before. It is syntactic sugar. Ruby is designed as a
language for programmers to relieve them of menial tasks. The attr reader
keyword will create accessor methods for the list of instance variables that follow
it.

1 c l a s s Token
2 attr_reader :type, :line, :col
3

4 def initialize(type,lineNum,colNum)
5 @type = type
6 @line = lineNum
7 @col = colNum
8 end
9 end

If you compare this code with the code for the C++ Token class given in ex-
amples 3.9 and 3.11 you will notice that there is already significantly less code in
the Ruby version. There are several reasons for this. The lack of a garbage collec-
tor in C++ puts more burden on the programmer. A C++ programmer must write
a destructor for a class when an object of that type points to a value that is heap
allocated. Ruby is garbage collected, and therefore destructors are not relevant.

The Token class declaration and implementation must be written separately to al-
low for separate compilation. Since Ruby isn’t compiled, it isn’t necessary to write
header files in Ruby to declare classes separately for use in other modules. In gen-
eral, there will be significantly less code in the Ruby version of the interpreter.

The @ sign in the code above is used to distinguish a local variable from an
instance variable. Instance variables in Ruby must be preceded by the @ to tell the
Ruby interpreter that it is an instance variable. It is similar to the this pointer in C++
and Java and the self reference in the Python programming language.

4.3 Parameter Passing in Ruby vs C++

Because C++ allows parameters to be passed by value, pointer, or reference, it is
sometimes necessary to declare functions to be const or constant, meaning that the
function is an accessor method. Having more control over parameter passing re-
quires the programmer do more of the work managing parameter passing. In Ruby
there is only one way to pass parameters. They may only be passed by reference
which is the way Java passes object parameters. Many interpreted, object-oriented
languages implement only pass by reference since it is an efficient parameter pass-

96 Object-Oriented Programming with Ruby

ing mechanism. However, that also requires the programmer to remember that an
object passed as a parameter may be mutated by the called function (if the object is
mutable at all).

It should be noted that some of the objects in Ruby are immutable. For example,
the integer class is immutable. When a class of objects are immutable it means
that there are no methods to modify the data in the object once the object has been
created. You can create new integer objects using other integer objects, but you can’t
change an integer object once it has been created.

When an object, or all objects of a class, are immutable, then the distinction of
passing parameters by reference or by value is irrelevant. Either method has exactly
the same outcome in terms of the output from the program. However, passing by
reference is more efficient than passing by value because when passing by value the
parameter must be copied. When the parameter is a large object, this may be quite a
large amount of memory that has to be copied.

Practice 4.3

Why doesn’t the following code mutate the integer from 5 to 6?

x = 5
x = x + 1

4.4 Accessor and Mutator methods in Ruby

Given the attr reader declaration in example 4.3 you can access the type
instance variable of a token, t, by writing t.type. Accessor methods are all the
same anyway, so letting Ruby provide the code for them is fine and certainly less
tedious. Don’t be tricked by this syntax. You cannot change an instance variable
from outside the class using an attr reader. If you intend to let code outside the
class change an instance variable you must declare an attr writer.

Each accessor function had to be written in the C++ version. The attr reader
and attr writer syntactic sugar is not available in C++. Another difference in-
volves the absence of the getLex method on the Token class. In the C++ version,
the Token class included a getLex function even though there was no lexeme to re-
turn for general Tokens. In C++ it was necessary to write a getLex method for the
Token class to avoid having to cast from a Token type to a LexicalToken type each
time we wanted to call getLex. The reason we don’t have to do this in Ruby will be
explained in the next section.

In most languages an object is immutable if there exist no methods that mutate
the object. For instance, the String class in Java is immutable. The String class
in Ruby is not immutable. However, Ruby contains an interesting method defined
on all objects called freeze that takes no parameters. When this method is called
on an object it is frozen at run-time making any mutator method calls on the object

4.6 The AST Classes 97

throw an exception. By including a freeze method as part of the language im-
plementation, objects can be made thread-safe. An immutable object can be safely
accessed from more than one thread without the worry of a race condition between
threads improperly updating the object.

4.5 Inheritance

In general the scanner will return tokens as described in the previous section. But,
for a small number of tokens, numbers and keywords in particular, we need to know
what number or keyword was found in the input. For these tokens we’ll define a new
LexicalToken class.

Example 4.4

Here is the code for the LexicalToken class. The < Token indicates that the
class LexicalToken inherits from Token. Line 2 adds a lex accessor func-
tion. Line 5 calls the super class’ constructor to initialize the inherited part of the
object, while line 7 initializes the new part of the object.

1 c l a s s LexicalToken < Token
2 attr_reader :lex
3

4 def initialize(type,lex,lineNum,colNum)
5 super(type,lineNum,colNum)
6

7 @lex = lex
8 end
9 end

Inheritance allows us to define a new class in terms of an already defined class.
In this case the LexicalToken class adds a lexeme to the Token class. Inheritance
means that we don’t have to write code again. In other words, inheritance helps with
code reuse. Anywhere we write code that works with Tokens it will also work with
LexicalTokens because a LexicalToken is a Token.

4.6 The AST Classes

According to the diagram in figure 4.2 the parser must build an abstract syntax tree
of the expression to be evaluated. To do this a collection of classes must be declared.
The AST classes can be designed as a hierarchy of classes where each type of AST
class represents one type of node in an abstract syntax tree. If an evaluate method
is defined for each type of node in an AST as well, then the evaluate methods can
recursively compute the value associated with a calculator expression’s AST.

98 Object-Oriented Programming with Ruby

Fig. 4.3: Abstract Syntax Tree of expression in figure 3.1

Consider the abstract syntax tree in figure 4.3. There are mul, add, sub, store,
recall, and number nodes within the tree. If we abstract away from the details a bit
we also see there are some nodes which have no children, some with one child, and
some with two children.

The tree in figure 4.3 can be evaluated to produce the value of the expression.
By recursively calling the evaluate method associated with each node in the AST,
the tree is traversed. A postfix traversal of the tree yields the value where the postfix
operation is the calculation associated with the AST node being visited. For instance
consider the steps in the postfix traversal given here.

1. The traversal begins by recursively descending the left side of the tree down to
the 4 node. Visiting that node returns 4.

2. The store node takes the 4 and stores it in the calculator’s memory. It also returns
the 4.

3. The add can’t be visited yet since it has a right child (the 5). The 5 node is visited
and returns the 5.

4. The add node can now be visited. It take the 4 and the 5, adds them together and
returns the 9.

5. The mul node can’t be visited until its right child is visited. Postorder traversal
of the sub node calls the traversal on the 7 node, which returns 7.

6. The sub node still can’t be visited yet. The recall node is traversed and returns
the value in the calculator memory, the 4.

7. The 7-4 is computed by visiting the sub node and returns 3.
8. Visiting the mul node computes 9*3 or 27.

The evaluation procedure can be accomplished by writing a polymorphic evalu-
ate method for an abstract syntax tree. In the C++ version of this code we first had
to define an abstract base class called AST that defined the methods that would be
common to all the subclasses. This isn’t necessary in Ruby. Using Ruby it is never
necessary to create an abstract base class because Ruby is dynamically typed in-
stead of being statically typed like C++. The next section describes the difference
between dynamic and static typing when it comes to polymorphism.

mul

subadd

store 5

4

7 recall

4.6 The AST Classes 99

The AST classes still use inheritance to take advantage of code reuse. Some
nodes in the tree are unary nodes while others are binary nodes. To avoid rewriting
the code to manage the subtrees, a UnaryNode and BinaryNode class are defined
along with the accessor methods for accessing their subtrees and constructors for
constructing unary and binary nodes.

Example 4.5

Here is the code for the two base classes, UnaryNode and BinaryNode.

1 c l a s s BinaryNode
2 attr_reader :left, :right
3

4 def initialize(left,right)
5 @left = left
6 @right = right
7 end
8 end
9

10 c l a s s UnaryNode
11 attr_reader :subTree
12

13 def initialize(subTree)
14 @subTree = subTree
15 end
16 end

The code from the UnaryNode and BinaryNode classes can be reused in defining
AST nodes involving unary and binary operations. For instance, the addition, sub-
traction, multiplication, and division operations are all binary operations and hence
their AST classes inherit from the BinaryNode class. The store operation is a unary
operation so its class should inherit from the UnaryNode class.

Example 4.6

Here is the code for the AddNode and SubNode classes. The other classes are
left as an exercise.

1 c l a s s AddNode < BinaryNode
2 def initialize(left, right)
3 super(left,right)
4 end
5

6 def evaluate()
7 re turn @left.evaluate() + @right.evaluate()
8 end
9 end

10

11 c l a s s SubNode < BinaryNode
12 def initialize(left, right)
13 super(left,right)
14 end

100 Object-Oriented Programming with Ruby

15

16 def evaluate()
17 re turn @left.evaluate() - @right.evaluate()
18 end
19 end

Practice 4.4

Write the NumNode class for AST nodes that contain numbers.

After looking at the code in examples 4.5 and 4.6 you may have noticed that
there is no common ancestor class containing an evaluate method. The evaluate
method had to be defined in a common ancestor class in C++ for polymorphism to
work. This is not true in Ruby. Polymorphism works differently in Ruby. This is the
topic of the next section.

4.7 Polymorphism in Ruby

Ruby is a dynamically typed language. This means that types are not determined
at compile-time, since Ruby is not compiled. In fact, the type of an expression in
Ruby is not determined until the program is run. This has some consequences for the
way we write code in Ruby. There are two problems with run-time type checking.
Checking types at run-time slows down the execution of the program, although not
significantly for most applications. The second problem relates to testing code. If a
program has a type error, run-time type checking doesn’t detect it until the program
evaluates the offending expression in the code. Since some errors may be on obscure
paths through the code, you have to test your code very thoroughly to be sure you
have found all the type errors in your program.

There are advantages to dynamic type checking. The biggest advantage may be in
the way polymorphism works. Polymorphism is the ability to pick the right method
to invoke depending on the object the method is being invoked upon. The project
presented in this chapter makes use of polymorphism when an abstract syntax tree
(AST) is evaluated.

Consider the abstract syntax tree in figure 4.3 on page 98. To evaluate the tree, the
evaluate method is called on the root’s MulNode object. The MulNode evaluate
method polymorphically calls the evaluate method on the left and right subtrees like
the AddNode’s evaluate method shown on page 99. How does the correct evaluate
get called? There isn’t anything in the MulNode class that says the call to the left
subtree’s evaluate method should be a call to the AddNode’s evaluate. Of course,
many times the left subtree of a MulNode won’t be an AddNode. The information
about which evaluate method is called must be in the object.

Figure 4.4 depicts the organization of objects and classes within Ruby. Each
object in Ruby contains a pointer to its corresponding class (the bold dashed lines in

4.7 Polymorphism in Ruby 101

Fig. 4.4: Ruby object organization

the figure). Within each object is a field called iv tbl. This field points to a hash
table, one per object, that points to the instance variables of the object. A hash table
is a data structure that can map one object to another object. Each iv tbl maps
strings representing the names of the instance variables (hence the iv tbl name)
to the values stored in those instance variables. Only one instance variable hash table
was shown in figure 4.4 because the picture would be too cluttered otherwise, but
there is one instance variable hash table per object. On average, a hash table can
be used to look up a mapped value in constant time so having to look up instance
variables each time they are accessed isn’t too bad.

Each object also has a pointer to its class. Likewise, each class has a hash table
mapping method names to the code that implements them. Each time evaluate is
called on an object, the m tbl hash table maps the name "evaluate" to the code
that implements it. This is all done at run-time. Polymorphism works in Ruby by
dynamically looking up the right method in the hash table. If the method is not
found in the hash table then there is a type error.

Since hash tables have an amortized lookup complexity of constant time, all the
lookups of methods and instance variables in Ruby is not a huge penalty. Looking up
each instance variable and method when it is used means that objects are completely
dynamically typed in Ruby.

Practice 4.5

Recalling that every value in Ruby is an object, draw a picture of the store node
object shown in figure 4.4 given what you now know about objects in the Ruby
model. In your picture draw all the objects that the store node refers to in this
example. Be careful when you do this. Remember that every value is an object
in Ruby.

mul

add

store 5

MulNode Class

AddNode Class

NumNode Class

StoreNode Class

Method
Hashtable Map

Method
Hashtable Map

Method
Hashtable Map

Method
Hashtable Map

iv_tbl

iv_tbliv_tbl

iv_tbl

iv_tbl

evaluate code

evaluate code

evaluate code

evaluate code

evaluate

evaluate

evaluate

evaluate

m_tbl

m_tbl

m_tbl

m_tbl
Instance Variable
Hashtable Map4

num

102 Object-Oriented Programming with Ruby

4.8 The Scanner

Referring back to figure 4.2 the scanner reads characters from the input and builds
Token objects that are used by the parser. To accomplish this the scanner needs
to read characters from a stream and decide how to group them into tokens. The
parser will get tokens from the scanner by calling a getToken method. Sometimes
the parser gets a token and needs to put it back to get again later. In that case a
putBackToken method will put back the last token that was returned by getToken.

Fig. 4.5: A Finite State Machine for the Scanner

Internally, the scanner object is a finite state machine. A finite state machine
(fsm) consists of a set of states and a set of transitions from one state to another
based on the current character in the input. Figure 4.5 defines the Scanner’s finite
state machine. The fsm starts in state zero, reads one character and transitions to
one of the eight states depending on the character. In state one there is a transition
that stays in state one as long as a letter or digit is read. The fsm continues to read
characters and make transitions until a character appears that has no transition from
the current state. At that point, if the state is an accepting state (i.e. a double circle
state) the string of characters is recognized as a token.

This fsm reads a token and returns it. The EOF and keyword tokens are handled
as special cases. EOF is handled in state zero when the end of stream is reached.
State one compares the identifier to a list of keywords to see if it should return

01

3

2 4

6

5

7

8

letter

digit
'+'

'-'

'*'

'/'
'('

')'
Start State

1

2

3

4

5

6

7

8

digit

letter|digit

4.9 The Parser 103

a keyword or identifier token. The complete implementation can be found in ap-
pendix B.

Whitespace is read and thrown away by the scanner. Whitespace consists of
blanks, tabs, and newline characters. When a character is read that is not recog-
nized by a transition from the current state, the fsm returns the current token (since
states 1-8 are all accepting states) saving the current character for later. The next call
to getToken resumes with the current character. If there is no valid transition from
state zero on the current character the fsm returns the character as an unrecognized
token.

An fsm is a model of computation for recognizing strings of characters. An fsm
is easily implemented using a while loop, a case statement, and one variable to
record the current state. Fsm’s are used in many contexts including network proto-
col implementations, pattern recognition, simulations, and of course language im-
plementation. There are tools to build powerful fsm’s. However, it’s good to see a
hand-written one to aid in understanding some of the theory behind fsm’s, too.

4.9 The Parser

Figure 4.2 shows the parser reading tokens and producing an abstract syntax tree as
its output. In section 2.7 on page 31 a parser was defined as a program that given a
sentence (i.e. a string of tokens), checks to see if the sentence is in the language of
a given grammar. The parser that is discussed in this section is a top-down parser.
The parser will build the AST from the top-down. In reality, top-down is a bit of
a misnomer. While the construction of the tree starts at the top, the tree is actually
built bottom-up by a recursive descent of the tree. That’s why top-down parsers are
also called recursive descent parsers.

To begin to design a parser there must be a grammar to model it after.

Example 4.7

This is the Calculator language’s grammar.

Prog → Expr EOF
Expr → Expr +Term | Expr−Term | Term
Term → Term∗Storable | Term/Storable | Storable
Storable → Factor S | Factor
Factor → number | R | (Expr)

A recursive descent parser is recursive as the name suggests. The implementation
of the parser is given to us by its grammar. In the implementation, each nonterminal
becomes a function in the parser. Each rule in the grammar is part of a function that
is named by the nonterminal on the left side of the arrow in the rule. In the grammar
above each line would correspond to a function in the parser. Each appearance of a

104 Object-Oriented Programming with Ruby

nonterminal on the right hand side of a production is a function call. Each appear-
ance of a token on the right hand side of a production is a call to the scanner to get
a token. From this definition, writing the parser is pretty straightforward.

A First Attempt at Writing the Parser

The parser will read the tokens and build an abstract syntax tree like the one fig-
ure 4.3. To write the top-down parser of these expressions each nonterminal be-
comes a function. The grammar dictates how to write the parser. The body of each
function is given by the right hand side of its corresponding production.

Example 4.8

The Prog and Expr functions for the Parser.

1 def Prog()
2 result = Expr()
3 t = @scan.getToken()
4

5 i f t.type != :eof then
6 print "Expected EOF. Found ", t.type, ".\n"
7 raise "Parse Error"
8 end
9

10 re turn result
11 end
12

13 def Expr()
14 ast = Expr()
15 t = @scan.getToken()
16 ...
17 end

There is a big problem with the Expr function given above. It is recursive and there
is no base case. This means if you call the Expr function, it will go into infinite
recursion resulting in run-time stack overflow. The grammar given above isn’t suited
for top-down parsing.

A Better Attempt at Writing a Top-Down Parser

The problem in the previous section is that the grammar is not LL(1). For a grammar
to be LL(1) means that the choice of which production to apply next in a left-most
derivation of a sentence can be made by looking ahead at the next token. The number
one in LL(1) means that only one token of lookahead is needed to decide which
production to use. Although the grammar above is LALR(1), it is not appropriate

4.9 The Parser 105

for constructing a recursive descent parser. An LL(1) grammar is needed to build a
recursive descent or top-down parser. An LALR(1) grammar is a grammar that can
be given to a program to construct a reverse right-most derivation of a sentence in
the grammar looking ahead at only the next token in the sentence. This is what a
bottom-up parser does and bottom-up parser generators can take a grammar like the
one above and automatically construct a parser for it. Because bottom-up parsers are
harder to write, we usually rely on a parser generator program to write the parser for
us when generating a bottom-up parser.

Top-down parsers are much simpler to write and are typically written by hand.
However, to create a top-down parser you have to have an LL(1) grammar. Fortu-
nately, it is relatively easy to convert an LALR(1) grammar to an LL(1) grammar.
There are two steps involved.

1. Eliminate left recursion.
2. Perform left factorization where appropriate.

Eliminate Left Recursion

Eliminating left recursion means eliminating rules like Expr→ Expr+Term. Rules
like this are left recursive because the Expr function would first call the Expr func-
tion in a recursive descent parser as in example 4.8 above. Without a base case
first, we are stuck in infinite recursion (a bad thing). To eliminate left recursion we
look to see what Expr can be rewritten as when deriving a sentence. In this case,
Expr can only be replaced by a Term so we replace Expr with Term in the produc-
tions. Then, we add a new nonterminal to represent the rest of production from the
LALR(1) grammar. In this case, the + Term and the - Term are left after we replace
the initial Expr in the productions in the grammar above. The usual way to eliminate
left recursion is to introduce a new nonterminal to handle all but the left recursive
nonterminal. Two rules in the grammar are left recursive and must be rewritten.

Example 4.9

An LL(1) Calculator Language Grammar

Prog → Expr EOF
Expr → Term RestExpr
RestExpr →+ Term RestExpr | − Term RestExpr |<null>
Term → Storable RestTerm
RestTerm →∗ Storable RestTerm | / Storable RestTerm |<null>
Storable → Factor S | Factor
Factor → number | R | (Expr)

In this example the Expr → Expr + Term | Expr−Term | Term is replaced by
the second and third lines of the grammar given above. Likewise, the left recursion
in Term→ Term∗Storable | Term/Storable | Storable is rewritten as the fourth and
fifth lines of the grammar above.

106 Object-Oriented Programming with Ruby

Perform Left Factorization

Left factorization isn’t needed on this grammar so this step is skipped. Left factor-
ization is needed when the first part of two or more productions is the same and
the rest of the similar productions are different. Left factorization is important in
languages like Prolog because without it the parser may have to backtrack. Since
backtracking won’t work when reading something from an input stream you must
perform left factorization by writing a new rule that handles the common prefix
of the two offending rules. However, it isn’t needed in Ruby if you recognize the
common prefix and code the function appropriately.

Translating the LL(1) Grammar to Ruby

Once you have an LL(1) grammar you use it to build a parser as follows. The follow-
ing construction causes the parser to return an abstract syntax tree for the sentence
being parsed.

1. Construct a function for each nonterminal. Each of these functions should return
a node in the abstract syntax tree.

2. Depending on your grammar, some nonterminal functions may require an input
parameter of an abstract syntax tree (ast) to be able to complete a partial ast that
is recognized by the nonterminal function.

3. Each nonterminal function should call getToken on the scanner to get the next
token as needed. If after getting the token the code determines it didn’t need the
token after all, the nonterminal function should call the scanner’s putBackToken
function to put back the token. If the parser is based on an LL(1) grammar, it
should never have to put back more than one token at a time.

4. The body of each nonterminal function is a series of if statements that choose
which production to expand upon depending on the value of the next token. The
body of the function is determined by the productions of the grammar with the
given nonterminal on the left hand side of the arrow.

The construction above is very simple, but can be confusing without an example.
Consider the LL(1) grammar given above. Assume that you have two classes called
AddNode and SubNode that are derived from the BinaryNode class.

Example 4.10

The Parser’s Prog and Expr Functions

1 def Prog()
2 result = Expr()
3 t = @scan.getToken()
4

5 i f t.type != :eof then
6 print "Expected EOF. Found ", t.type, ".\n"

4.10 Putting It All Together 107

7 raise "Parse Error"
8 end
9

10 re turn result
11 end
12

13 def Expr()
14 re turn RestExpr(Term())
15 end

The code in example 4.10 raises an exception if an error is discovered during
parsing. You would normally take appropriate action during error conditions, but
raising an exception is a legitimate way to deal with a parsing problem. The Prog
function returns a reference to an AST, which is the abstract syntax tree representing
the expression that was parsed.

The Expr function corresponds to the Expr rules in the grammar in example 4.9.
The rule says to first call the Term function. The result of calling this function is an
AST (as all nonterminal functions return an AST).

Practice 4.6

The RestExpr function is slightly different from the Prog and Expr functions.
The RestExpr function has an AST parameter which we’ll call e. The RestExpr
function first gets a token and then decides what to do based on that token. If it
is an add token it builds a new AST AddNode with the part of the tree given to it
(i.e. e) as the left subtree and the result of calling Term as the right subtree. The
subtract AST nodes are handled similarly. Otherwise, there wasn’t a token that
the RestExpr knows about so the token is put back and the AST e is returned as
its AST.

Write the RestExpr function described here. Remember you can refer to the
grammar in example 4.9.

The remainder of the parser implementation can be patterned after the code in
example 4.10 using the grammar in example 4.9 as a guide. The remainder of the
code is left as an exercise.

4.10 Putting It All Together

One more class is required to tie together the pieces that have been developed in
this chapter. The Calculator class contains a memory location that can hold a stored
value. The value can also be retrieved on demand. The calculator can evaluate an
expression that is given to it as a string.

There is only one calculator object in this program and it will be useful if it is
declared as a global variable. The $calc global variable is needed in the abstract

108 Object-Oriented Programming with Ruby

syntax tree implementation so the AST can have access to the calculator’s memory
location. By declaring $calc with a dollar sign we tell Ruby that calc is a global
variable that can be accessed from any class and method. Global variables are gen-
erally a bad idea. This is one case where it is justified. Without it just about every
object presented in this chapter would have to keep a reference to the calculator.
That’s a lot of overhead to have access to one little memory location.

Example 4.11

The Calculator class implementation

1 c l a s s Calculator
2 attr_reader :memory
3 attr_writer :memory
4

5 def initialize()
6 @memory = 0
7 end
8

9 def eval(expr)
10 parser = Parser.new(StringIO.new(expr))
11 ast = parser.parse()
12 re turn ast.evaluate()
13 end
14 end

The Calculator evaluates an expression by creating a StringIO object over the
string containing the expression. A StringIO is an input stream constructed from a
string. This stream is passed to the Parser constructor. The Parser in turn constructs
a Scanner object over the stream to get the tokens from the string.

If all goes well, the string is parsed and the parser returns an AST. The tree is
then evaluated (polymorphically) to yield the result. The result is returned to the
main program to be printed. This flow of data is depicted in the dataflow diagram
shown in figure 4.2.

Example 4.12

The code to start it all.

1 text = gets
2 $calc = Calculator.new()
3

4 puts "The result is " + $calc.eval(text).to_s

The global variable is declared in the top-level code. This code gets the input
line from the user, creates the calculator, and calls eval on the calculator giving it
the input line. The result is printed to the screen.

4.11 Static vs Dynamic Type Checking 109

4.11 Static vs Dynamic Type Checking

In this chapter we have learned how to design and implement a calculator in Ruby.
In the last chapter the same project was tackled in C++. While the two projects
have many similarities, there are important differences between them as well. The
primary difference between the two projects stems from the way type checking is
handled in the two languages and how polymorphism is implemented.

These differences can be highlighted if we examine the AST code for the two cal-
culator implementations. In C++, the AST classes must all inherit from a common
ancestor, the AST class.

Example 4.13

Here is the AST, BinaryNode, UnaryNode, and AddNode class declarations in
C++.

1 c l a s s AST {
2 public:
3 AST();
4 virtual ˜AST() = 0;
5 virtual int evaluate() = 0;
6 };
7

8 c l a s s BinaryNode : public AST {
9 public:

10 BinaryNode(AST* left, AST* right);
11 ˜BinaryNode();
12

13 AST* getLeftSubTree() const;
14 AST* getRightSubTree() const;
15 private:
16 AST* leftTree;
17 AST* rightTree;
18 };
19

20 c l a s s UnaryNode : public AST {
21 public:
22 UnaryNode(AST* sub);
23 ˜UnaryNode();
24

25 AST* getSubTree() const;
26 private:
27 AST* subTree;
28 };
29

30 c l a s s AddNode : public BinaryNode {
31 public:
32 AddNode(AST* left, AST* right);
33

34 int evaluate();
35 };

110 Object-Oriented Programming with Ruby

The inheritance is required so the right evaluate method will be called polymor-
phically. When the AST node is actually an AddNode the AddNode evaluate will be
called. When the node is a SubNode the SubNode evaluate will be called because
of polymorphism. This is what we would like when a AST is evaluated. The right
evaluate methods get called depending on the types of nodes that make up the tree.

For this code to compile in C++ all nodes must inherit from a common ancestor.
This is because the parser returns an AST node and C++ checks the types of each
possible AST node to be sure it inherits from AST either directly or indirectly. C++
requires this because for polymorphism to work the compiler needs to be able to
locate the evaluate method in the vtable for each possible node in a tree. By requir-
ing a common ancestor, the compiler can guarantee that the evaluate method will
always be at the same location in the vtable.

Contrast this to the way Ruby works. In the Ruby AST implementation there is
no common ancestor. Inheritance is used a little, but only for code reuse. Inheritance
is not needed for polymorphism.

Example 4.14

Here is the equivalent code in Ruby. Notice there is no common ancestor of
the AST classes.

1 c l a s s BinaryNode
2 attr_reader :left, :right
3

4 def initialize(left,right)
5 @left = left
6 @right = right
7 end
8 end
9

10 c l a s s UnaryNode
11 attr_reader :subTree
12

13 def initialize(subTree)
14 @subTree = subTree
15 end
16 end
17

18 c l a s s AddNode < BinaryNode
19 def initialize(left, right)
20 super(left,right)
21 end
22

23 def evaluate()
24 re turn @left.evaluate() + @right.evaluate()
25 end
26 end

Ruby does not check the types of expressions in the program before executing
the code. This isn’t necessary in Ruby because all methods are looked up via a hash

4.11 Static vs Dynamic Type Checking 111

table at run-time as described in this chapter. Since no type checking is done prior
to executing the code, when evaluate is called to compute the value represented by
an AST, the right evaluate methods are looked up at run-time and the correct code
gets called. When evaluate is called on an AddNode the AddNode evaluate code is
looked up and executed.

The difference in how polymorphism is implemented in C++ and Ruby has some
pretty big consequences. The Ruby code is substantially shorter than the C++ code
and it is certainly more convenient to write the Ruby program since all the extra
classes and syntax aren’t required. However, errors in type won’t show up in a Ruby
program until the program executes the code with the error in it. In C++, if we
forget to implement an evaluate method for one of the AST classes we’ll find out
when we compile the program. In Ruby we wouldn’t find out until we actually tried
to evaluate a tree containing one of those nodes.

Static typing insures that most type errors are found when the program is com-
piled. Static typing requires more work to maintain the type hierarchies. Dynamic
typing requires less coding but means that errors may not be found until run-time.

112 Object-Oriented Programming with Ruby

4.12 Exercises

1. What’s the value of (R+7)/4S if the memory contained 4 prior to evaluating this
expression?

2. What is the value of the memory location after evaluating the previous expres-
sion?

3. What does the abstract syntax tree look like for the expression (R+7)/4S?
4. How could the calculator language be modified to allow more than one memory

location like modern calculators? Discuss what changes would be required to
implement this enhanced calculator language.

5. Complete the calculator interpreter by downloading the code given in this chap-
ter and finishing the implementation of the parser and the AST in the calc file.
The rest of the project is provided.

When you download the code you will want to unzip the package with some sort
of unzip program. On Linux you can issue the command,

unzip rubcalc.zip

Then you can make the program and run it. Here is an example of making and
running you can use to get started.

$ unzip cppcalc.zip
$ cd rubycalc
$ calc
Please enter a calculator expression: 5 + 4
The result is 9
$

Commands that you enter are preceded by a dollar sign. The program will add
two integers together as provided. Your job is to extend the project to the full
calculator language. This requires changes to the parser and ast modules. The
parser changes are highlighted in section 4.9. You can complete the parser by
completing the functions that are incomplete in the parser class. These functions
can be patterned after the code presented in the chapter.

The parser code will require that you build AST nodes for storing values and for
recalling values from the calculator’s memory. You will also need multiply and
divide nodes in the abstract syntax tree. These new node types can be added to
the AST code using the existing code as a pattern.

The store and recall nodes in the AST will need to access the memory location
of the calculator. The global variable called $calc can be used to access the
calculator’s memory. The line

$calc.memory = 6

will store 6 in the calculator’s memory. Similarly, the expression $calc.memory
will retrieve the value stored in the memory of the calculator.

4.12 Exercises 113

6. Once you have completed the project described above extend the calculator lan-
guage to allow more than one memory location to hold a value.

7. Modify the project to be a compiler instead of an interpreter. Instead of evaluat-
ing the expression, generate EWE code for it instead.

In addition, to make this interesting, add a new keyword to the language, called
I, that when executed waits for user input before proceeding. The value returned
by the call to I is the value entered at the keyboard.

This project can be implemented with a few modifications. First, the eval func-
tion of the abstract syntax tree will print code to a file called a.ewe instead of
directly evaluating the expression. The web page for the text contains a link to
code to start this modified project. Remember, you are now printing code in this
project and not evaluating. The EWE interpreter is evaluating the code.

For this project to work well you should decide on a model of computation for the
generated EWE code to follow. A stack makes a nice model. When you generate
EWE code for an expression, the resulting value should always be left on the
top of a stack that you simulate using the EWE interpreter. That way, you can
always find a value when you need it. Consult the code provided on the web site
to see how this stack is simulated. The code provided has enough of the compiler
implemented to add two integers together.

114 Object-Oriented Programming with Ruby

4.13 Solutions to Practice Problems

These are solutions to the practice problems . You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 4.1

1. 81
2. 6
3. Depends on the initial value of memory. It could be an error. Assuming the

calculator starts with 0 in memory the answer would be 0. If the calculator
is written to evaluate more than one expression in a session then the memory
might contain the last value stored.

4. 10

Solution to Practice Problem 4.2

1. There are number, keyword, add, keyword tokens in this one.
2. The tokens are: lparen, number, add, number, rparen, keyword, times, key-

word.

Solution to Practice Problem 4.3

The integer object that x refers to (i.e. the 5) is not mutated. The reference x is
changed to point to a new object, the result of adding 5 and 1.

Solution to Practice Problem 4.4

This is the NumNode implementation. Notice it does not inherit from anything
because it is a leaf node and not a UnaryNode or BinaryNode. Inheritance is only
used for code reuse in Ruby. It is not needed for polymorphic type checking.

c l a s s NumNode
def initialize(num)

@num = num
end

def evaluate()
re turn @num

end
end

4.1 115

Solution to Practice Problem 4.5

This is how Ruby objects are organized in memory. This is still only a sampling
of the memory organization. There are details omitted because there is too much
to display the complete organization of even these two objects. It should give you
a good idea of the organization with Ruby though.

Fig. 4.6: Ruby object organization

Solution to Practice Problem 4.6

This is the RestExpr implementation.

def RestExpr(e)
t = @scan.getToken()

i f t.type == :add then
return RestExpr(AddNode.new(e,Term()))

end

i f t.type == :sub then
return RestExpr(SubNode.new(e,Term()))

end

@scan.putBackToken()

re turn e
end

3 Solutions to Practice Problems

store

NumNode Class

StoreNode Class

Method
Hashtable Map

Method
Hashtable Map

iv_tbl

iv_tbl

evaluate code

evaluate code

evaluate

evaluate

m_tbl

m_tbl
Instance Variable
Hashtable Map

num

Instance Variable
Hashtable Map

subTree

iv_tbl

Instance Variable
Hashtable Map

UnaryNode
Class

super
Method

Hashtable Map

m_tbl

subTree code subTree attr_reader

4
iv_tbl

Instance Variable
Hashtable Map

Integer Class
details omitted

116 Object-Oriented Programming with Ruby

4.14 Additional Reading

There is a lot of excellent material on Ruby on the web. The web site www.ruby-
doc.org is a good place to start. Programming Ruby[35] is a good reference for both
learning and looking up information if you prefer a book to the web. There are many
other good reference books that are available as well. Ruby on Rails is a useful tool
for quickly prototyping database code. When properly configured, rails will provide
you with a web page front-end to a database application. Generated code is easy to
understand and easy to modify to suit your needs.

Chapter 5

Functional Programming in
Standard ML

As you might guess by the title, functional programming has something to do with
programming with functions. However, what the title, Functional Programming,
doesn’t say is what functional programming languages lack. Specifically, pure func-
tional languages lack assignment statements and iteration. Iteration relates to the
ability to iterate or repeat code as in a loop of some sort. It is impossible in a pure
functional language to declare a variable that gets updated as your program exe-
cutes! If you think about it, if there are no variables, then there isn’t any reason for a
looping construct in the language. Iteration and variables go hand in hand. But, how
do you get any work done without variables? The primary mode of programming in
a functional language is through recursion.

Functional languages also contain a feature that other languages don’t. They al-
low functions to be passed to functions as parameters. We say that these functions
are higher-order. Higher-order functions take other functions as parameters and use
them. There are many useful higher order functions that are derived from common
patterns of computation. Particular instances of these patterns commonly have one
small difference between them. If that small difference is left as a function to be
defined later, we have one function that requires another function to complete its
implementation. Higher-order functions may be customized by providing some of
their functionality later. In some ways this is the functional equivalent of what in-
heritance or interfaces provide us in object-oriented languages.

These two features, lack of variables and higher-order functions, drastically
change the way in which you think about programming. Programming recursively
takes some time to get used to, but in the end it is a very nice way to program.
Programming recursively is more declarative. Writing imperative programs is pre-
scriptive. When programming declaratively we can focus on what we want to say
about a problem instead of exactly how to solve a problem.

But why would we want to get rid of variables in a programming language?
The problem is that variables often make it hard to reason about our programs.
Functional languages are more mathematical in nature and have certain rules like

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_5,
© Springer Science+Business Media, LLC 2008

118 Functional Programming in Standard ML

commutativity and associativity that they follow. Rules like associativity and com-
mutativity can make it easier to reason about our programs.

Practice 5.1

Is addition commutative in C++, Pascal, or Java? Will write(a+b) always pro-
duce the same value as write(b+a)? Consider the follow Pascal program (or
almost a Pascal program, anyway).

1 program P;
2 var b : i n t e g e r;
3

4 f u n c t i o n a() : i n t e g e r;
5 begin
6 b:=b+2;
7 return 5
8 end;
9 begin

10 b:=10;
11 w r i t e(a()+b) (* or write(b+a()) *)
12 end.

What does this program produce? What would it produce if the statement were
write(b+a())?

5.1 Imperative vs Functional Programming

You are probably familiar with at least one imperative language. Languages like
C, C++, Java, Python, and Ruby are considered imperative languages because the
fundamental construct is the assignment statement. In each of these languages we
declare variables and assign them values, updating those variables as a program’s
execution progresses.

Imperative languages are heavily influenced by the von Neumann architecture of
computers that includes a store and an instruction counter; the computation model
has control structures that iterate over instructions that make incremental modifi-
cations of memory. Assignment of values to variables, for loops, and while loops
are all part of imperative languages. The principal operation is the assignment of
values to variables. Programs are statement oriented, and they carry out algorithms
with statement level sequential control. In other words, computing is done by side-
effects.

Sometimes problems with imperative programs stem from these side-effects. It is
difficult to reason about a program that relies on side-effects. If we wish to reuse the
code of an imperative program then we must be sure that the same conditions are
true before the reused code executes since imperative code relies on a certain ma-
chine state. As programmers we sometimes forget which preconditions are required

5.2 The Lambda Calculus 119

and what the postconditions of executing a segment of code might be and that can
lead to bugs in our programs.

Functional languages are based on the mathematical concept of a function and
do not reflect the underlying von Neumann architecture. These languages are con-
cerned with data objects and values instead of variables. The principal operation is
function application. Functions are treated as first-class objects that may be stored
in data structures, passed as parameters, and returned as function results. Primitive
functions are generally supplied with the language implementation. Functional lan-
guages allow new functions to be defined by the programmer.

Functional program execution consists of the evaluation of an expression, and
sequential control is replaced by recursion. There is no assignment statement. Val-
ues are communicated primarily through the use of parameters and return values.
Without variables, loop statements don’t have a purpose and so they also don’t exist
in pure functional languages.

Pure functional languages have no side-effects. If input and output are considered
side-effects then the only pure functional programs are those that read no input and
produce no output. In other words, according to this definition, the only pure func-
tional programs are those that do nothing! Realistically, side-effects are avoided.

Scheme is generally considered a pure functional language even though it does
include input and output as part of its definition. In general, pure functional lan-
guages like Scheme avoid or at least isolate code that performs input and output
operations. More importantly, input and output operations in functional languages
do not update the state of variables within a program. The only state update relates
to the state of the stream of characters being read from or written to.

What is amazing is that it has been proven that exactly the same things can be
computed with functional languages as can be computed with imperative languages.
This is known because a Turing machine, the theoretical basis for imperative pro-
gramming and the design of the computer, have been proven equivalent in power to
the Lambda Calculus, the basis for all functional programming languages.

5.2 The Lambda Calculus

All functional programming languages are derived either directly or indirectly from
the work of Alonzo Church and Stephen Kleene. The lambda calculus was defined
by Church and Kleene in the 1930’s, before computers existed. At the time, mathe-
maticians were interested in formally expressing computation in some written form
other than English or other informal language. The lambda calculus was designed
as a way of expressing those things that can be computed. It is a very small, func-
tional programming language. In the lambda calculus, a function is a mapping from
the elements of a domain to the elements of a codomain given by a rule. Consider
the function cube(x) = x3. What is the value of the identifier cube in the definition
cube(x) = x3? Can this function be defined without giving it a name?

120 Functional Programming in Standard ML

λx.x3 defines the function that maps each x in the domain to x3. We can say that
this definition or lambda abstraction, λx.x3, is the value bound to the identifier cube.
We say that x3 is the body of the lambda abstraction. Every lambda abstraction in
lambda notation is a function of one identifier. However, lambda expressions may
contain more than one identifier.

Example 5.1

The expression y2 + x can be expressed as a lambda abstraction in one of two
ways:

λx.λy.y2 + x
λy.λx.y2 + x

In the first lambda abstraction the x is the first parameter to be supplied to the
expression. In the second lambda abstraction the y is the parameter to get a value
first. In either case, the abstraction is often abbreviated by throwing out the ex-
tra λ . In abbreviated form the two abstractions would become λxy.y2 + x and
λyx.y2 + x.

Normal Form

To say the lambda calculus, or any language, has a normal form means that each
expression that can be reduced has a simplest form. It means that we can reduce
more complex expressions to simpler expressions in some mechanical way. The
lambda calculus exhibits a property called confluence.

Confluence means that one or more reduction strategies (or intermixing them)
always leads to the same normal form of an expression, assuming the expression
can be reduced by the reduction strategy. This property of confluence was proven in
the Church-Rosser theorem.

Function application (i.e. calling a function) in lambda notation is written with a
lambda abstraction followed by the value to call the abstraction with. Such a com-
bination is called a redex.

Example 5.2

To call λx.x3 with the value 2 for x we would write

(λx.x3)2

This combination of lambda abstraction and value is called a redex.

A redex is a lambda expression that may be reduced. Typically a lambda expres-
sion contains several redexes that may be chosen to be reduced. Function applica-
tion is left-associative meaning that if more than one redex is available at the same

5.3 The Lambda Calculus 121

level of parenthetical nesting, the left-most redex must be reduced first. If the left-
most outer-most redex is always chosen for reduction first, the order of reduction
is called normal order reduction. When a redex is reduced by applying the lambda
calculus equivalent of function application it is called a β -reduction (pronounced
beta-reduction).

Example 5.3

This is the normal order reduction of (λxyz.xz(yz))(λx.x)(λxy.x). The redex to
be β -reduced at each step is underlined.
(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ λ z.(λx.x)z((λxy.x)z)
⇒ λ z.z((λxy.x)z)
⇒ λ z.z(λy.z)2

Practice 5.2

Another reduction strategy is called applicative order reduction. Using this strat-
egy, the left-most inner-most redex is always reduced first. Use this strategy to
reduce the expression in example 5.3. Be sure to parenthesize your expression
first so you are sure that you left-associate redexes.

In practice problem 5.2 you should have reduced the lambda expression to
the same reduced lambda expression seen in example 5.3. If you didn’t, you did
something wrong. If you want more experience with reducing lambda expres-
sions you may wish to consult a lambda expression interpreter. One excellent in-
terpreter was written by Peter Sestoft and is available on the web. It is located at
http://www.dina.dk/ sestoft/lamreduce/.

Problems with Applicative Order Reduction

Sometimes, applicative order reduction can lead to problems. For instance, consider
the expression (λx.y)((λx.xx)(λx.xx)).

Practice 5.3

Reduce the expression (λx.y)((λx.xx)(λx.xx)) with both normal order and ap-
plicative order reduction. Don’t spend too much time on this!

This practice problem shows why the definition of confluence above includes
the phrase, assuming the expression can be reduced by the reduction strategy. Ap-
plicative order may not always result in the expression being reduced. No fear, if

122 Functional Programming in Standard ML

that happens we are free to use normal order reduction for a while since intermix-
ing reduction strategies will not affect whether we arrive at the normal form for the
expression or not.

5.3 Getting Started with Standard ML

Standard ML (or just SML) is a functional language based on Lisp which in turn is
based on the lambda calculus. Important ML features are listed below.

• SML is higher-order supporting functions as first-class values.
• It is strongly typed like Pascal, but more powerful since it supports polymorphic

type checking. With this strong type checking it is pretty infrequent that you need
to debug your code!! What a great thing!!!

• Exception handling is built into Standard ML. It provides a safe environment for
code development and execution. This means there are no traditional pointers in
ML. Pointers are handled like references in Java.

• Since there are no traditional pointers, garbage collection is implemented in the
ML system.

• Pattern-matching is provided for conveniently writing recursive functions.
• There are built-in advanced data structures like lists and recursive data structures.
• A library of commonly used functions and data structures is available called the

Basis Library.

There are several implementations of Standard ML. Standard ML of New Jersey
and Moscow ML are the most complete and certainly the most popular. There is also
a SML.NET implementation that targets the Microsoft .NET run-time library and
can be integrated with other .NET languages. There is an MLj implementation that
targets the Java Virtual Machine. Poly/ML is another implementation that includes
support for Windows programming. While many implementations exist, they all
support the same definition of SML. If you write a Standard ML program that runs
in one environment, it’ll run on any other implementation as long as you are not
using platform specific functions.

SML has been successfully used on a variety of large programming projects. It
was used to implement the entire TCP protocol [3] on the FOX Project. It has been
used to implement server side scripting on web servers. It was originally designed as
a language to write theorem provers and has been used extensively in this area. It has
been used in hardware design and verification. It has also been used in programming
languages research.

The rest of this chapter will introduce you to SML. By the end of the chapter you
should understand and be able to use many of the important features of the language.
This text is based on the Standard ML of New Jersey implementation. You can
download SML of New Jersey from http://smlnj.org. SML of New Jersey
is available for most platforms so you should be able to find an implementation for
your needs. You’ll want to get the latest working version.

5.4 Expressions, Types, Structures, and Functions 123

Once you’ve installed SML you can open a terminal window and start the in-
terpreter. Typing sml at the command-line will start the interactive mode of the
interpreter. Typing ctl-d will terminate the interpreter. You can type expressions
and programs directly in at the interpreter’s prompt or you can type them in a file
and use that file within SML. To do this you type the word use as follows:

Standard ML of New Jersey v110.59
- use "myfile.txt";

SML will take whatever you have typed in the file and evaluate it just as if you
had typed it directly into the interpreter.

You should use the examples and practice problems in this chapter to learn SML.
The following sections will introduce you to important aspects of SML and will get
you ready to write more complicated programs in the next chapter.

5.4 Expressions, Types, Structures, and Functions

Functional programming focuses on the evaluation of expressions. In SML you can
evaluate expressions right in the intepreter. When evaluating an expression you will
notice that type information is displayed along with the result of the expression
evaluation.

Example 5.4

Here are some expression evaluations in SML.

- 6;
val it = 6 : int
- 5*3;
val it = 15 : int
- ˜1;
val it = ˜1 : int
- 5.0 * 3.0;
val it = 15.0 : real
- true;
val it = true : bool
- 5 * 3.0;
stdIn:6.1-6.8 Error: operator and operand don't agree [literal]

operator domain: int * int
operand: int * real
in expression:
5 * 3.0

-

In SML the identifier it is bound to the result of the last successfully evaluated ex-
pression. This is convenient if you want to use the result in a subsequent expression.
You can refer to the previous result as it.

124 Functional Programming in Standard ML

You might notice that a negative one is written as ˜1 in SML. While a little
unconventional, ˜ is the unary negation operator in SML, distinguishing it from the
binary subtraction operator.

SML has a very rigorous type system. In fact, the type system for SML has been
proved sound. That means that any correctly typed program will be free of type
errors. In addition, SML is statically typed. That means that all type errors are de-
tected at compile-time and not at run-time. Robin Milner proved this for Standard
ML. ML is the only widely distributed language whose type system has been for-
mally defined[6].

While being formally defined and rigorous, the type system of ML is remarkably
flexible. It is polymorphic. We’ll see what this means for us soon. Many of the types
in ML are also implicitly expressed. You may notice in the example above that the
programmer never entered any types for the expressions given there. This frees the
programmer from having to key in most of the types in a program since they are
mostly determined automatically.

You should have also noticed that there is a type error in example 5.4. ML is
polymorphic but it is also strongly typed. Since 5 is an integer in SML and 3.0 is a
real, the two cannot be multiplied together. If you should have the need to multiply
an integer and a real it can be done, but you must explicitly convert one of the types.

Example 5.5

Here is some code to multiply an integer and a real, producing a real number.

- Real.fromInt(5) * 3.0;
[autoloading]
[library $SMLNJ-BASIS/basis.cm is stable]
[autoloading done]
val it = 15.0 : real
-

The integer 5 is converted to 5.0 by calling a function called fromInt in the struc-
ture called Real. A Structure in SML is a grouping of functions and types. It begins
with structure name = struct and ends with the keyword end. Everything after the
struct and before the end is part of the structure. See appendix D for an example of
this.

There are several structures that are part of the basis library of SML. The basis
library is available in SML when the interpreter is started. Some of these struc-
tures are listed in appendix C. The structures in the basis library include Bool, Int,
Real, Char, String, and List. By referring to appendix C or looking on the web at
http://standardml.org/Basis you can see what functions are included in
each of these structures.

A function in SML takes one or more arguments and returns a value. The signa-
ture of a function is the type of the function. In other words, a function’s type is its
signature.

5.5 Recursive Functions 125

Example 5.6

The signature of the function fromInt in the Real structure is

val fromInt : int -> real

The signature of fromInt tells us that it takes an int as an argument and
returns a real. From the name of the function, and the fact that it is part of the
Real structure, we can ascertain that it makes a real number from an int.

The type on the left side of the arrow (i.e. the ->) is the type of the arguments
given to the function. The type on the right side of the arrow is the type of the value
returned by the function. The fromInt function takes an int as an argument and
returns a real.

Practice 5.4

Write expressions that compute the values described below. Consult the basis
library in appendix C as needed.

1. Divide the integer bound to x by 6.
2. Multiply the integer x and the real number y giving the closest integer as the

result.
3. Divide the real number 6.3 into the real number bound to x.
4. Compute the remainder of dividing integer x by integer y.

5.5 Recursive Functions

Recursion is the way to get things done in a functional language. Recursion happens
when a function calls itself. Because of the principle of referential transparency a
function must never call itself with the same arguments. If it were to do that, then
the function would do exactly what it did the last time, call itself with the same
arguments, which would then.... Well, you get the picture!

To spare ourselves from this problem we insist on two things happening. First,
every recursive function must have a base case. A base case is a simple subproblem
that we are trying to solve that doesn’t require recursion. We must write some code
that checks for the simple problem and simply returns the answer in that case.

The second rule of recursive functions requires them to call themselves on some
simpler or smaller subproblem. In some way each recursive call should take a step
toward the base case of the problem. If each recursive call advances toward the base
case then by the mathematical principle of induction we can conclude the function
will work for all values on which the function is defined! The trick is not to think
about this too hard. The recursive case is often referred to as the inductive case.

To define a function in SML we write the keyword fun followed by a function
name, parameters, an equal sign, and the body of the function. The syntax is quite

126 Functional Programming in Standard ML

similar to defining functions in other languages. The main difference is the body of
the function. Instead of being a sequence of statements with variable assignment,
the body of the function will be an expression.

One important expression in SML is the if-then-else expression. This is not an
if-then-else statement. Instead, it’s an if-then-else expression. An if-then-else ex-
pression gives one of two values and those values must be type compatible. The
easiest way to understand if-then-else expressions is to see one in practice.

Example 5.7

The Babylonian method of computing square root of a number, x, is to start
with an arbitrary number as a guess. If guess2 = x we are done. If not, then let
the next guess be (guess+x/guess)/2.0. To write this as a recursive function we
must find a base case and be certain that our successive guesses will approach the
base case. Since the Babylonian method of finding a square root is a well-known
algorithm, we can be assured it will converge on the square root. The base case
has to be written so that when we get close enough, we will be done. Let’s let the
close enough factor be one millionth of the original number.
The recursive function then looks like this:

1 fun babsqrt(x,guess) =
2 i f Real.abs(x-guess*guess) < x/1000000.0 then
3 guess
4 e l s e
5 babsqrt(x,(guess + x/guess)/2.0);

Looking back at this example there are two things to observe. The base case
comes first. If the guess is within one millionth of the right value then the function
returns the guess as the square root. The other observation is the recursive call brings
us closer to the solution.

Practice 5.5

n! is called the factorial of n. It is defined recursively as 0! = 1 and n! =
n∗ (n−1)!. Write this as a recursive function in SML.

Practice 5.6

The Fibonacci sequence is a sequence of numbers 0,1,1,2,3,5,8,13, Subse-
quent numbers in the sequence are derived by adding the previous two numbers
in the sequence together. This leads to a recursive definition of the Fibonacci
sequence. What is the recursive definition of Fibonacci’s sequence? HINT: The
first number in the sequence can be thought of as the 0th element, the second the
1st element and so on. So, f ib(0) = 0. After arriving at the definition, write a
recursive SML function to find the nth element of the sequence.

5.6 Characters, Strings, and Lists 127

5.6 Characters, Strings, and Lists

SML has separate types for characters and strings. A character literal begins with
a pound sign (i.e. #). The character is then surrounded by double quotes. So, the
first character in the alphabet is represented as #"a" in SML. There are several
functions available in the Char structure for testing and converting characters. The
signature of the functions in the Char structure is given in appendix C.4.

Strings in SML are not simply sequences of characters as they are in some lan-
guages. A string in SML is its own primitive type. There are functions for converting
between strings and characters of course. You can consult appendix C, sections C.4
and C.5 for a list of those functions. A string literal is text surrounded by double
quotes. The backslash character (i.e. \) is an escape character in strings. This means
to include a double quote in a string you can write \" as part of the string. A \n
is the newline character in a string and \t is the tab character as they are in many
languages.

Perhaps the most powerful data structure in SML is the list. A list is polymorphic
meaning that there are many list types in SML. However, the list functions all work
on any type of list. Since it is impossible to determine all the types in SML (because
programmers may define their own types), a list’s type is parameterized by a type
variable. A list’s type is written as ’a list. When the type of the list is known,
the type variable ’a is replaced by the type it represents. So, a list of integers has
type int list. You may have figured this out already, but lists in SML must be
homogeneous. This means all the elements of a list must have the same type. This
is not like some languages, but there is a good reason for this restriction. Requiring
lists to be homogeneous makes static checking of the types in SML possible and the
type checker sound and complete.

A list is constructed in one of several ways. First, an empty list is represented as
nil or by the empty list (i.e. []). A list may be represented as a literal by putting
a left bracket and a right bracket around the list contents, as in [1,4,9,16]. A
list may also be constructed using the list constructor which is written ::. The list
constructor takes an element on the left side of it and a list on the right side and con-
structs a new list of its two arguments. A list may be constructed by concatenating
two lists together. List concatenation is represented with the @ symbol.

Example 5.8

The following are all valid list constructions in SML.

[1,4,9,16]
1::[4,9,16,25]
#"a"::#"b"::[#"c"]
1::2::3::nil
["hello","how"]@["are","you"]

The third example works because the :: constructor is right-associative. So the
right-most constructor is applied first, then the one to its left, and so on.

128 Functional Programming in Standard ML

Example 5.9

The signatures of the list constructor and some list functions are given here.
:: : 'a * 'a list -> 'a list
@ : 'a list * 'a list -> 'a list
hd : 'a list -> 'a
tl : 'a list -> 'a list

Practice 5.7

The following are NOT valid list constructions in SML. Why not? Can you fix
them?

#"a"::["beautiful day"]
"hi"::"there"
["how","are"]::"you"
[1,2.0,3.5,4.2]
2@[3,4]
[]::3

You can select elements from a list using the hd and tl functions. The hd (pro-
nounced head) of a list is the first element of the list. The tl is the tail or all the
rest of the elements of the list. Calling the hd or tl functions on the empty list will
result in an error. Using these two functions and recursion it is possible to access
each element of a list.

Example 5.10

Here is a function called implode that takes a list of characters as an argument
and returns a string comprised of those characters.
fun implode(lst) =

i f lst = [] then ""
e l s e str(hd(lst))ˆimplode(tl(lst))

So, implode([#"H",#"e",#"l",#"l",#"o"])would yield "Hello".

When writing a recursive function the trick is to not think too hard about how it
works. Think of the base case or cases and the recursive cases separately. So, in the
function above the base case is when the list is empty (since a list is the parameter).
When the list is empty, the string the function should return would also be empty,
right?

The recursive case is when when the list is not empty. In that case, there is at least
one element in the list. If that is true then we can call hd to get the first element and
tl to get the rest of the list. The head of the list is a character and must be converted
to a string. The rest of the list is converted to a string by calling some function that
will convert a list to a string. This function is called implode! We can just assume
it will work. That is the nature of recursion. The trick, if there is one, is to trust that
recursion will work. Later, we will explore exactly why we can trust recursion.

5.7 Pattern Matching 129

Practice 5.8

Write a function called explode that will take a string as an argument and
return a list of characters in the string. So, explode("hi") would yield
[#"h",#"i"]. HINT: How do you get the first character of a string?

Example 5.11

Here are a couple more examples of list functions.

1 fun length(x) =
2 i f null x then 0
3 e l s e 1+length(tl(x))
4 fun append(L1, L2) =
5 i f null L1 then L2 e l s e hd(L1)::append(tl(L1),L2)

Practice 5.9

Use the append function to write reverse. The reverse function reverses the el-
ements of a list. Its signature is

reverse = fn: 'a list -> 'a list

5.7 Pattern Matching

Frequently, recursive functions rely on several recursive and several base cases.
SML includes a nice facility for handling these different cases in a recursive defini-
tion by allowing pattern matching of the arguments to a function. Pattern matching
works with literal values like 0, the empty string, and the empty list. Generally, you
can use pattern matching if you would normally use equality to compare values.
Real numbers are not equality types. The real type only approximates real numbers.
Example 5.7 shows how to compare real numbers for equality.

You can also use constructors in patterns. So the list constructor :: works in
patterns as well. Functions like the append function (i.e. @) and string concatenation
(i.e. ˆ) don’t work in patterns. These functions are not constructors of values and
cannot be efficiently or deterministically matched to patterns of arguments.

Example 5.12

Append can be written using pattern-matching as follows. The extra parens
around the recursive call to append are needed because the :: constructor has
higher precedence than function application.

fun append(nil,L2) = L2
| append(h::t,L2) = h::(append(t,L2))

130 Functional Programming in Standard ML

Practice 5.10

Rewrite reverse using pattern-matching.

5.8 Tuples

A tuple type is a cross product of types. A two-tuple is a cross product of two types,
a three-tuple is a cross product of three types, and so on.

Example 5.13

(5,6) is a two-tuple of int * int.
The three tuple (5,6,"hi") is of type int * int * string.

You might have noticed the signature of some of the functions in this chapter.
For instance, consider the signature of the append function. Its signature is

val append : 'a list * 'a list -> 'a list

This indicates it’s a function that takes as its argument an ’a list * ’a
list tuple. In fact, every function takes a single argument and returns a single
value. The sole argument might be a tuple of one or more values, but every function
takes a single argument as a parameter. The return value of a function may also be a
tuple.

In many other languages we think of writing function application as the function
followed by a left paren, followed by comma separated arguments, followed by a
right paren. In Standard ML (and most functional languages) function application is
written as a function name followed by the value to which the function is applied.
This is just like function application in the lambda calculus. So, we can think of
calling a function with zero or more values, but in reality we are passing one value
to a every function in ML which may be a tuple.

Example 5.14

In Standard ML rather than writing

append([1,2],[3])

it is more appropriate to write

append ([1,2],[3])

because function application is a function name followed by the value it will be
applied to. In this case append is applied to a tuple of ’a list * ’a list.

5.9 Let Expressions and Scope 131

5.9 Let Expressions and Scope

Let expressions are simply syntax for binding a value to an identifier to later be
used in an expression. They are useful when you want to document your code by
assigning a meaningful name to a value. They can also be useful when you need the
same value more than once in a function definition. Rather than calling a function
twice to get the same value, you can call it once and bind the value to an identifier.
Then the identifier can be used as many times as the value is needed. This is more
efficient than calling a function multiple times with the same arguments.

Example 5.15

Consider a function that computes the sum of the first n integers.

1 fun sumupto(0) = 0
2 | sumupto(n) =
3 l e t v a l sum = sumupto(n-1)
4 in
5 n + sum
6 end

Let expressions let us define identifiers that are local to functions. The identi-
fier called sum in the example above is not visible outside the sumupto function
definition. We say the scope of sum is the body of the let expression (i.e. the expres-
sion given between the in and end keywords). Let expressions allow us to declare
identifiers with limited scope.

Limiting scope is an important aspect of any language. Function definitions also
limit scope in SML and most languages. The formal parameters of a function defi-
nition are not visible beyond the body of the function.

Binding values to identifiers should not be confused with variable assignment.
A binding of a value to an identifier is a one time operation. The identifier’s value
cannot be updated like a variable. A practice problem will help to illustrate this.

Practice 5.11

What is the value of x at the various numbered points within the following ex-
pression? Be careful, it’s not what you think it might be if you are relying on
your imperative understanding of code.

1 l e t v a l x = 10
2 in
3 (* 1. Value of x here? *)
4 l e t v a l x = x+1
5 in
6 (* 2. Value of x here? *)
7 x
8 end;
9 (* 3. Value of x here? *)

10 x
11 end

132 Functional Programming in Standard ML

Bindings are not the same as variables. Bindings are made once and only once
and cannot be updated. Variables are meant to be updated as code progresses. Bind-
ings are an association between a value and an identifier that is not updated.

SML and many modern languages use static or lexical scope rules. This means
you can determine the scope of a variable by looking at the structure of the program
without considering its execution. The word lexical refers to the written word and
lexical or static scope refers to determining scope by looking at how the code is
written and not the execution of the code. Originally, LISP used dynamic scope
rules. To determine dynamic scope you must look at the bindings that were active
when the code being executed was called. The difference between dynamic and
static scope can be seen when functions may be nested in a language and may also
be passed as parameters or returned as function results.

Example 5.16

The difference between dynamic and static scope can be observed in the fol-
lowing program.

1 l e t fun a() =
2 l e t v a l x = 1
3 fun b() = x
4 in
5 b
6 end
7 v a l x = 2
8 v a l c = a()
9 in

10 c()
11 end

In this program the function a, when called, declares a local binding of x to 1 and
returns the function b. When c, the result of calling a, is called it returns a 1, the
value of x in the environment where b was defined, not a 2. This result is what
most people expect to happen. It is static or lexical scope. The correct value of
x does not depend on the value of x when it was called, but the value where the
function b was written.

While static scope is used by many programming languages including Standard
ML, Python, Lisp, and Scheme, it is not used by all languages. The Emacs version of
Lisp uses dynamic scope and if the equivalent Lisp program is evaluated in Emacs
Lisp it will return a value of 2 from the code in example 5.16.

It is actually harder to implement static scope than dynamic scope. In dynami-
cally scoped languages when a function is returned as a value the return value can
include a pointer to the code of the function. When the function b from example 5.16
is executed in a dynamically scoped language, it simply looks in the current envi-
ronment for the value of x. To implement static scope, more than a pointer to the
code is needed. A pointer to the current environment is needed which contains the
binding of x to the value at the time the function was defined. This is needed so
when the function b is evaluated, the right x binding can be found. The combination

5.10 Datatypes 133

of a pointer to a function’s code and its environment is called a closure. Closures
are used to represent function values in statically scoped languages where functions
may be returned as results and nested functions may be defined.

5.10 Datatypes

The word datatype is often loosely used in computer science. In ML, a datatype is a
special kind of type. A datatype is a tagged structure that can be recursively defined.
This type is powerful in that you can define enumerated types with it and you can
define recursive data structures like lists and trees.

Datatypes are user-defined types and are generally recursively defined so there
are infinitely many datatypes in Standard ML. This would be something like creating
a class in C++ except that classes define both data and methods. In a functional
language a set of functions is defined to work with a type of data through pattern-
matching as described in section 5.7.

Example 5.17

In C/C++ we can create an enumerated type by writing

1 enum TokenType {
2 identifier,keyword,number,add,sub,times,divide,lparen,
3 rparen,eof,unrecognized
4 };

This defines a type called TokenType of eleven values: identifier==0, key-
word==1, number==2, etc. You can declare a variable of this type as follows:

TokenType t = keyword;

However, there is nothing preventing you from executing the statement

t = 1; //this is the keyword value.

In this example, even though t is of type TokenType, it can be assigned an
integer. This is because the TokenType type is just another name for the integer
type in C++. Assigning t to 1 doesn’t bother C++ in the least. In fact, assigning
t to 99 wouldn’t bother C++ either. In ML, we can’t use integers and datatypes
interchangeably.

- data type TokenType = Identifier | Keyword | Number |
Add | Sub | Times | Divide | LParen | RParen | EOF |
Unrecognized;

data type TokenType = Identifier | Keyword | Number | ...
- v a l x = Keyword;
x = Keyword : TokenType

Datatypes allow programmers to define their own types. Normally, a datatype
includes other information. They are used to represent structured data of some sort.

134 Functional Programming in Standard ML

By adding the keyword of, a datatype value can include a tuple of other types as
part of its definition. A datatype can represent any kind of recursive data structure.
That includes lists, trees, and other structures that are related to lists and trees. In
the example below a tree definition with a mix of unary and binary nodes is defined.

Datatypes allow a programmer to write a recursive function that can traverse the
data given to it. Functions can use pattern matching to handle each case in a datatype
with a pattern match in the function.

Example 5.18

In this datatype the add’ value can be thought of as a node in an AST that
has two children, each of which are ASTs. The datatype is recursive because it is
defined in terms of itself.

1 data type
2 AST = add' of AST * AST
3 | sub' of AST * AST
4 | prod' of AST * AST
5 | div' of AST * AST
6 | negate' of AST
7 | integer' of int
8 | store' of AST
9 | recall';

Example 5.18 is the entire definition of abstract syntax trees for expressions in
the calculator language. In addition to the nodes you’ve seen before, the negate’
node represents unary negation of the value we get when evaluating its child. So
now -6 is a valid expression.

Example 5.19

The abstract syntax tree for -6S+R would be as shown below.

add’(store’(negate’(integer’(6))), recall’) is the value of the tree
given above as an SML datatype. A function can be written to evaluate an ab-
stract synatx tree based on the patterns in a value like this.

add

store recall

negate

6

5.10 Datatypes 135

You can use pattern matching on datatypes. For instance, to evaluate an expres-
sion tree you can write a recursive function using pattern-matching. Each pattern
that is matched in such a function corresponds to processing one node in the tree.
Each subtree can be processed by a recursive call to the same function. In the func-
tion below, the parameter min is the value of the memory before evaluating the
given node in the abstract syntax tree. The value mout is the value of memory after
evaluating the node in the abstract syntax tree.

Example 5.20

This example illustrates how to use pattern-matching with datatypes and patterns
in a let construct.

1 fun evaluate(add'(e1,e2),min) =
2 l e t v a l (r1,mout1)= evaluate(e1,min)
3 v a l (r2,mout) = evaluate(e2,mout1)
4 in
5 (r1+r2,mout)
6 end
7

8 | evaluate(sub'(e1,e2),min) =
9 l e t v a l (r1,mout1)= evaluate(e1,min)

10 v a l (r2,mout) = evaluate(e2,mout1)
11 in
12 (r1-r2,mout)
13 end

mout1 is the value of memory after evaluating e1. This is passed to evaluating
e2 as the value of the memory before evaluating e2. The value of memory after
evaluating e2 is the value of memory after evaluating the sum/difference of the
two expressions. This pattern of passing the memory through the evaluation of
the tree is called single-threading the memory in the computation.

Practice 5.12

Define a datatype for integer lists. A list is constructed of a head and a tail.
Sometimes this constructor is called cons. The empty list is also a list and is
usually called nil. However, in this practice problem , to distinguish from the
built-in nil you could call it nil’.

Practice 5.13

Write a function called maxIntList that returns the maximum integer found
in one of the lists you just defined in practice problem 5.12. You can consult
appendix C for help with finding the max of two integers.

136 Functional Programming in Standard ML

5.11 Parameter Passing in Standard ML

The types of data in Standard ML include integers, reals, characters, strings, tuples,
lists, and the user-defined datatypes presented in section 5.10. If you look at these
types in this chapter and in appendix C you may notice that there are no functions
that modify the existing data. The substring function defined on strings returns a new
string as do all functions on the types of data available in Standard ML. All data in
Standard ML is immutable. That’s quite a statement. It’s true of some functional
languages, but not all. Every type of data in Standard ML is immutable.

Well, almost. There is one type of data that is mutable in ML. A reference is a
reference to a value of a determined type. References may be mutated to enable the
programmer to program using the imperative style of programming. References are
discussed in more detail in section 5.19.

The absence of mutable data, except for references, has some impact on the
implementation of the language. Values are passed by reference in Standard ML.
However, the only time that matters is when a reference is passed as a parameter.
Otherwise, the immutability of all data means that how data is passed to a function
is irrelevant. This is nice for programmers as they don’t have to be concerned about
which functions mutate data and which construct new data values. There is only
one operation that mutates data, the assignment operator (i.e. :=) as described in
section 5.19 and the only data it can mutate is a reference. In addition, because all
data is immutable and passed by reference, parameters are passed efficiently in ML
like constant references of C++.

5.12 Efficiency of Recursion

Once you get used to it, writing recursive functions isn’t too hard. In fact, it can be
easier than writing iterative solutions. But, just because you find a recursive solution
to a problem, doesn’t mean it’s an effficient solution to a problem. Consider the Fi-
bonacci numbers. The recursive definition leads to a very straightforward recursive
solution. However, as it turns out, the simple recursive solution is anything but effi-
cient. In fact, given the definition in example 5.21, fib(43) took twenty-four seconds
to compute on a 1.5 GHz G4 PowerBook with 1GB of RAM.

Example 5.21

The Fibonacci numbers can be computed with the function definition given be-
low.

fun fib(0) = 0
| fib(1) = 1
| fib(n) = fib(n-1) + fib(n-2)

5.12 Efficiency of Recursion 137

Fig. 5.1: Calls to calculate fib(5)

This is a very inefficient way of calculating the Fibonacci numbers. The number
of calls to fib increases exponentially with the size of n. This can be seen by looking
at a tree of the calls to fib as in figure 5.1. The number of calls required to calculate
fib(5) is 15. If we were to enumerate the calls required to calculate fib(6)
it would be everything in the fib(5) call tree plus the number of nodes in the
fib(4) call tree, 15+9 = 25. The number of calls grows exponentially.

Practice 5.14

One way of proving that the fib function given above is exponential is to show
that the number of calls for fib(n) is bounded by two exponential functions.
In other words, there is an exponential function of n that will always return less
than the number of calls required to compute fib(n) and there is another expo-
nential function that always returns greater than the number of required calls to
compute fib(n) for some choice of starting n and all values greater than it. If
the number of calls to compute fib(n) lies in between then the fib function
must have exponential complexity. Find two exponential functions of the form
cm that bound the number of calls required to compute fib(n).

From this analysis you have probably noticed that there is a lot of the same work
being done over and over again. It may be possible to eliminate a lot of this work
if we are smarter about the way we write the Fibonacci function. In fact it is. The
key to this efficient version of fib is to recognize that we can get the next value
in the sequence by adding together the previous two values. If we just carry along
two values, the current and the next value in the sequence, we can compute each
Fibonacci number with just one call. Example 5.22 shows you how to do this. With
the new function, computation of fib(43) is instantaneous.

fib(5)

fib(4)

fib(2)

fib(1) fib(0)

fib(3)

fib(1)fib(2)

fib(1) fib(0)

fib(3)

fib(1)fib(2)

fib(1) fib(0)

138 Functional Programming in Standard ML

Example 5.22

Using a helper function may lead to a better implementation in some situations.
In the case of the fib function, the fibhelper function turns an exponentially
complex function into a linear time function.

1 fun fib(n) =
2 l e t fun fibhelper(count,current,previous) =
3 i f count = n then previous
4 e l s e fibhelper(count+1,previous+current,current)
5 in
6 fibhelper(0,1,0)
7 end

In example 5.22 we used a helper function that was private to the fib func-
tion because we don’t want other programmers to call the fibhelper function
directly. It is meant to be used by the fib function. We also wouldn’t want to have
to remember how to call the fibhelper function each time we called it. By hiding
it in the fib function we can expose the same interface we had with the original
implementation, but implement a much more efficient function.

The helper function uses a pattern called an accumulator pattern. The helper
function makes use of an accumulator to reduce the amount of work that is done. The
work is reduced because the function keeps track of the last two values computed
by the helper function to aide in computing the next number.

Practice 5.15

Consider the reverse function you wrote in practice problem 5.9. The append
function is called n times, where n is the length of the list. How many cons oper-
ations happen each time append is called? What is the overall complexity of the
reverse function?

5.13 Tail Recursion

One criticism of functional programming centers on the heavy use of recursion that
is seen by some critics as overly inefficient. The problem is related to the use of
caches in modern processors. Depending on the block size of an instruction cache,
the code surrounding the currently executing code may be readily available in the
cache. However, when the instruction stream is interrupted by a call to a function,
even the same function, the cache may not contain the correct instructions. Retriev-
ing instructions from memory is much slower than finding them in the cache. How-
ever, cache sizes continue to increase and even imperative languages like C++ and
Java encourage many calls to small functions or methods given their object-oriented
nature. So, the argument in favor of fewer function calls has certainly diminished in
recent years.

5.13 Tail Recursion 139

It is still the case that a function call takes longer than executing a simple loop.
When a function call is made, extra instructions are executed to create a new activa-
tion record. In addition, in pipelined processors the pipeline is disrupted by function
calls. Standard ML of New Jersey, Scheme, and some other functional languages
have a mechanism where they optimize certain recursive functions by reducing the
storage on the run-time stack and eliminating calls. In certain cases, recursive calls
can be automatically transformed to code that can be executed using jump or branch
instructions. For this optimization to be possible, the recursive function must be tail
recursive. A tail recursive function is a function where the very last operation of the
function is the recursive call to itself.

Example 5.23

This is the factorial function.

fun factorial 0 = 1
| factorial n = n * factorial (n-1);

Is factorial tail recursive? The answer is no. Tail recursion happens when the very
last thing done in a recursive function is a call to itself. The last thing done above
is the multiplication.

When factorial 6 is invoked, activation records are needed for seven invocations
of the function, namely factorial 6 through factorial 0. Without each of these stack
frames, the local values of n, n=6 through n=0, will be lost so that the multiplication
at the end can not be carried out correctly.

At its deepest level of recursion all the information in the expression,

(6∗ (5∗ (4∗ (3∗ (2∗ (1∗ (f actorial 0)))))))

is stored in the run-time execution stack.

Practice 5.16

Show the run-time execution stack at the point that factorial 0 is executing when
the original call was factorial 6.

The factorial function can be written to be tail recursive. The solution is to
use a technique similar to the fib function improvement made in example 5.22. An
accumulator is added to the function definition. An accumulator is an extra param-
eter that can be used to accumulate a value, much the way you would accumulate a
value in a loop. The accumulator value is initially given the identity of the operation
used to accumulate the value. In example 5.24 the operation is multiplication. The
identity provided as the initial value is 1.

140 Functional Programming in Standard ML

Example 5.24

This is the tail recursive version of the factorial function. The tail recursive
function is the tailfac helper function.

1 fun factorial n =
2 l e t fun tailfac(0,prod) = prod
3 | tailfac(n,prod) = tailfac(n-1,prod*n)
4 in
5 tailfac(n,1)
6 end

Note that although tailfac is recursive, there is no need to save it’s local
environment when it calls itself since no computation remains after the call. The
result of the recursive call is simply passed on as the result of the current function
call. A function is tail recursive if its recursive call is the last action that occurs
during any particular invocation of the function.

Practice 5.17

Use the accumulator pattern to devise a more efficient reverse function. The ap-
pend function is not used in the efficient reverse function. HINT: What are we
trying to accumulate? What is the identity of that operation?

5.14 Currying

A binary function, for example, + or @, takes both of its arguments at the same time.
a+b will evaluate both a and b so that values can be passed to the addition operation.
There can be an advantage in having a binary function take its arguments one at a
time. Such a function is called curried after Haskell Curry. In fact, ML functions
can take their parameters one at a time.

The preceding paragraph may be a bit misleading. Every ML function takes one
and only one parameter. So a curried function takes one argument as well. However,
that function of one parameter may in turn return a function that takes a single
argument. This is probably best illustrated with an example.

Example 5.25

Here is a function that takes a pair of arguments as its input.

- fun plus(a:int,b) = a+b;
v a l plus = fn : int * int -> int

The function plus takes one argument that just happens to be a tuple. It is ap-
plied to a single tuple.

5.15 Anonymous Functions 141

- plus (5,8);
v a l it = 13 : int

ML functions can be defined with what looks like more than one parameter:

fun cplus(a:int) b = a+b;
v a l cplus = fn : int -> (int -> int)

Observe the signature of the function cplus. It takes two arguments, but takes
them one at a time. Actually, cplus takes only one argument. The cplus function
returns a function that takes the second argument. The second function has no
name.

cplus 5 8;
v a l it = 13 : int

Function application is left associative. The parens below show the order of op-
erations.

(cplus 5) 8;
v a l it = 13 : int

The result of (cplus 5) is a function that adds 5 to its argument.

- cplus 5;
v a l it = fn : int -> int

We can give this function a name.

- v a l add5 = cplus 5;
v a l add5 = fn : int -> int
- add5 8;
v a l it = 13 : int

Practice 5.18

Write a function that given an uncurried function of two arguments will return a
curried form of the function so that it takes its arguments one at a time.
Write a function that given a curried function that takes two arguments one at a
time will return an uncurried version of the given function.

Curried functions allow partial evaluation, a very interesting topic in functional
languages, but beyond the scope of this text. It should be noted that Standard ML of
New Jersey uses curried functions extensively in its implementation.

5.15 Anonymous Functions

Section 5.2 describes the lambda calculus. In that section we learned that functions
can be characterized as first class objects. Functions can be represented by a lambda
abstraction and don’t have to be assigned a name. This is also true in SML. Func-
tions in SML don’t need names.

142 Functional Programming in Standard ML

Example 5.26

The anonymous function λx,y.y2 + x can be represented in ML as

- fn x => fn y => y*y + x;

The anonymous function can be applied to a value in the same way a named
function is applied to a value. Function application is always the function first,
followed by the value.

- (fn x => fn y => y*y + x) 3 4;
val it = 19 : int

We can define a function by binding a lambda abstraction to an identifier:

- v a l f = fn x => fn y => y*y + x;
v a l f = fn: int -> int -> int
- f 3 4;
v a l it = 19 : int

This mechanism provides an alternative form for defining functions as long as
they are not recursive; in a val declaration, the identifier being defined is not visible
in the expression on the right side of the arrow. For recursive definitions, use val
rec.

Example 5.27

To define a recursive function using the anonymous function form you must use
val rec to declare it.

- v a l rec fac = fn n => i f n=0 then 1 e l s e n*fac(n-1);
v a l fac = fn: int -> int
- fac 7;
v a l it = 5040:int

The form of function definition presented in example 5.27 is the way all functions
are defined in SML. The functional form used when the keyword fun is used to
define a function is translated into the form show in example 5.27. The fun form
of function definition is syntactic sugar. Syntactic sugar refers to another way of
writing something that gets treated the same way in either case.

5.16 Higher-Order Functions

The unique feature of functional languages is that functions are treated as first-class
objects with the same rights as other objects, namely to be stored in data structures,
to be passed as a parameter, and to be returned as function results. Functions can be
bound to identifiers using the keywords fun, val, and val rec and may also be
stored in structures:

5.16 Higher-Order Functions 143

Example 5.28

These are examples of functions being treated as values.

- v a l fnlist = [fn (n) => 2*n, abs, ˜, fn (n) => n*n];
v a l fnlist = [fn,fn,fn, fn] : (int -> int) list

Notice each of these functions takes an int and returns an int. An ML function
can be defined to apply each of these functions to a number.

Example 5.29

The construction function applies a list of functions to a value.

fun construction nil n = nil
| construction (h::t) n = (h n)::(construction t n);

v a l construction = fn : ('a -> 'b) list -> 'a -> 'b list

construction [op +, op *, fn (x,y) => x - y] (4,5);
v a l it = [9,20,˜1] : int list

Construction is based on a functional form found in FP, a functional language
developed by John Backus. It illustrates the possibility of passing functions as argu-
ments. Since functions are first-class objects in ML, they may be stored in any sort
of structure. It is possible to imagine an application for a stack of functions or even
a tree of functions.

A function is called higher-order if it takes a function as a parameter or returns a
function as its result. Higher-order functions are sometimes called functional forms
since they allow the construction of new functions from already defined functions.

The usefulness of functional programming comes from the use of functional
forms that allow the development of complex functions from simple functions using
abstract patterns. The construction function is one of these abstract patterns of
computation. These functional forms, or patterns of computation, appear over and
over again in programs. Programmers have recognized these patterns and have ab-
stracted out the details to arrive at several commonly used higher-order functions.
The next sections introduce you to several of these higher-order functions.

Composition

Composing two functions is a naturally higher-order operation that you have prob-
ably used in algrebra. Have you ever written something like f(g(x))? This operation
can be expressed in ML. In fact, ML has a built-in operator called o which repre-
sents composition. Example 5.30 shows you how composition can be written and
used.

144 Functional Programming in Standard ML

Example 5.30

- fun compose f g x = f (g x);
v a l compose = fn : ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
- fun add1 n = n+1;
- fun sqr n:int = n*n;
- v a l incsqr = compose add1 sqr;
v a l incsqr = fn : int -> int
- v a l sqrinc = compose sqr add1;
v a l sqrinc = fn : int -> int

Observe that these two functions, incsqr and sqrinc, are defined without the
use of parameters.

- incsqr 5;
v a l it = 26 : int
- sqrinc 5;
v a l it = 36 : int

ML has a predefined infix function o that composes functions. Note that o is
uncurried.

- op o;
v a l it = fn : ('a -> 'b) * ('c -> 'a) -> 'c -> 'b
- v a l incsqr = add1 o sqr;
v a l incsqr = fn : int -> int
- incsqr 5;
v a l it = 26 : int
- v a l sqrinc = op o(sqr,add1);
v a l sqrinc = fn : int -> int
- sqrinc 5;
v a l it = 36 : int

Map

In SML, applying a function to every element in a list is called map and is prede-
fined. It takes a unary function and a list as arguments and applies the function to
each element of the list returning the list of results.

Example 5.31

- map;
v a l it = fn : ('a -> 'b) -> 'a list -> 'b list
- map add1 [1,2,3];
v a l it = [2,3,4] : int list
- map (fn n => n*n - 1) [1,2,3,4,5];

5.16 Higher-Order Functions 145

v a l it = [0,3,8,15,24] : int list
- map (fn ls => "a"::ls) [["a","b"],["c"],["d","e","f"]];
v a l it = [["a","a","b"],["a","c"],["a","d","e","f"]] :

string list list
- map real [1,2,3,4,5];
v a l it = [1.0,2.0,3.0,4.0,5.0] : real list

map can be defined as follows:

fun map f nil = nil
| map f (h::t) = (f h)::(map f t);

Practice 5.19

Describe the behavior (signatures and output) of these functions:

map (map add1)
(map map)

Invoking (map map) causes the type inference system of SML to report

stdIn:12.27-13.7 Warning: type vars not generalized
because of value restriction are instantiated to
dummy types (X1,X2,...)

This warning message is OK. It is telling you that to complete the type inference
for this expression, SML had to instantiate a type variable to a dummy variable.
When more type information is available, SML would not need to do this. The
warning message only applies to the specific case where you created a function
by invoking (map map). In the presence of more information the type inference
system will interpret the type correctly without any dummy variables.

Reduce or Foldright

Higher-order functions are developed by abstracting common patterns from pro-
grams. For example, consider the functions that find the sum or the product of a list
of integers. In this pattern the results of the previous invocation of the function are
used in a binary operation with the next value to be used in the computation.

In other words, to add up a list of values you start with either the first or last
element of the list and then add it together with the value next to it. Then you add
the result of that computation to the next value in the list and so on. When we start
with the end of the list and work our way backwards through the list the operation
is sometimes called foldr (i.e. foldright) or reduce.

146 Functional Programming in Standard ML

Example 5.32

fun sum nil = 0
| sum ((h:int)::t) = h + sum t;

v a l sum = fn : int list -> int
sum [1,2,3,4,5];
v a l it = 15 : int

fun product nil = 1
| product ((h:int)::t) = h * product t;

v a l product = fn : int list -> int
product [1,2,3,4,5];
v a l it = 120 : int

Each of these functions has the same pattern. If we abstract the common pat-
tern as a higher-order function we arrive at a common higher-order function called
foldr or reduce. foldr is an abbreviation for foldright.

Example 5.33

This function is sometimes called foldr. In this example it is called reduce.

fun reduce f init nil = init
| reduce f init (h::t) = f(h, reduce f init t);

v a l reduce = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
reduce op + 0 [1,2,3,4,5];
v a l it = 15 : int
reduce op * 1 [1,2,3,4,5];
v a l it = 120 : int

Now sum and product can be defined in terms of reduce.

v a l sumlist = reduce (op +) 0;
v a l sumlist = fn : int list -> int
v a l mullist = reduce op * 1;
v a l mullist = fn : int list -> int
sumlist [1,2,3,4,5];
v a l it = 15 : int
mullist [1,2,3,4,5];
v a l it = 120 : int

SML includes two predefined functions that reduce a list, foldr and foldl
which stands for foldleft. They behave slightly differently.

5.16 Higher-Order Functions 147

Example 5.34

foldr;
v a l it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
foldl;
v a l it = fn : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
- fun abdiff (m,n:int) = abs(m-n);
v a l abdiff = fn : int * int -> int
- foldr abdiff 0 [1,2,3,4,5];
v a l it = 1 : int
- foldl abdiff 0 [1,2,3,4,5];
v a l it = 3 : int

Practice 5.20

How does foldl differ from foldr? Determine the difference by looking at
the example above. Then, describe the result of these functions invocations.

foldr op :: nil ls
foldr op @ nil ls

Filter

A predicate function is a function that takes a value and returns true or false depend-
ing on the value. By passing a predicate function, it is possible to filter in only those
elements from a list that satisfy the predicate. This is a commonly used higher-order
function called filter.

Example 5.35

If we had to write filter ourselves, this is how it would be written. This exam-
ple also shows how it might be used.

fun filter bfun nil = nil
| filter bfun (h::t) = i f bfun h then h::filter bfun t

e l s e filter bfun t;

v a l it = fn : ('a -> bool) -> 'a list -> 'a list
even;
v a l it = fn : int -> bool
filter even [1,2,3,4,5,6];
v a l it = [2,4,6] : int list
filter (fn n => n > 3) [1,2,3,4,5,6];
v a l it = [4,5,6] : int list

148 Functional Programming in Standard ML

Practice 5.21

Use filter to select numbers from a list that are

1. divisible by 7
2. greater than 10 or equal to zero

5.17 Continuation Passing Style

Continuation Passing Style (or CPS) is a way of writing functional programs where
control is made explicit. In other words, the continuation represents the remaining
work to be done. This style of writing code is interesting because the style is used
in the SML compiler.

Example 5.36

To understand cps it’s best to look at an example. Let’s consider the len func-
tion for computing the length of a list.

fun len nil = 0
| len (h::t) = 1+(len t);

To transform this to cps form we represent the rest of the computation explicitly
as a parameter called k. In this way, whenever we need the continuation of the
calculation, we can just write the identifier k. Here’s the cps form of len.

fun cpslen nil k = k 0
| cpslen (h::t) k = cpslen t (fn v => (k (1 + v)));

And here’s how cpslen would be called.

cpslen [1,2,3] (fn v => v);

Practice 5.22

Trace the execution of cpslen to see how it works and how the continuation is
used.

Notice that the recursive call to cpslen is the last thing that is done. This function
is tail recursive. However, tail recursion elimination cannot be applied because the
function returns a function and recursively calls itself with a function as a parameter.
CPS is still important because it can be optimized by a compiler. In addition, since
control flow is explicit (passed around as k), function calls can be implemented with
jumps and many of the jumps can be eliminated if the code is organized in the right
way.

Eliminating calls and jumps is important since calls have the effect of interrupt-
ing pipelines in RISC processors. Since functional languages make lots of calls, one

5.18 Input and Output 149

of the criticisms of functional languages is that they were inefficient. With the op-
timization of CPS functions, functional languages get closer to being as efficient as
imperative languages. In addition, as cache sizes and processor speeds increase the
performance difference becomes less and less of an issue.

Practice 5.23

Write a function called depth that prints the longest path in a binary tree. First
create the datatype for a binary tree. You can use the Int.max function in your
solution, which returns the maximum of two integers.
First write a non-cps depth function, then write a cps cpsdepth function.

5.18 Input and Output

SML contains a TextIO structure as part of the basis library. The signature of the
functions in the TextIO structure is given in appendix C.7. It is possible to read and
write strings to streams using this library of functions. The usual standard input,
standard output, and standard error streams are predefined.

Example 5.37

Here is an example of reading a string from the keyboard. Explode is used on
the string to show the vector type is really the string type. It also shows how to
print something to a stream.

- v a l s = TextIO.input(TextIO.stdIn);
hi there
v a l s = "hi there\n" : vector
- explode(s);
v a l it = [#"h",#"i",#" ",#"t",#"h",#"e",

#"r",#"e",#"\n"] : char list
- TextIO.output(TextIO.stdOut,sˆ"How are you!\n");
hi there
How are you!
v a l it = () : unit

Since streams can be directed to files, the screen, or across the network, there
really isn’t much more to input and output in SML. Of course if you are opening
your own stream it should be closed when you are done with it. Program termination
will also close any open streams.

There are some TextIO functions that may or may not return a value. In these
cases an option is returned. An option is a value that is either NONE or SOME
value. An option is SML’s way of dealing with functions that may or may not suc-
ceed. Functions must always return a value or end with an exception. To prevent
the exception handling mechanism from being used for input operations that may

150 Functional Programming in Standard ML

or may not succeed, this idea of an option was created. Options fit nicely into the
strong typing the SML provides.

Example 5.38

The input1 function of the TextIO structure reads exactly one character from
the input and returns an option as a result. The reason it returns an option
and not the character directly is because the stream might not be ready for read-
ing. The valOf function can be used to get the value of an option that is not
NONE.

- v a l u = TextIO.input1(TextIO.stdIn);
hi there
v a l u = SOME #"h" : elem option
- =
= ˆC
Interrupt
- u;
v a l it = SOME #"h" : elem option
- v a l v = valOf(u);
v a l v = #"h" : elem

5.19 Programming with Side-effects

Standard ML is not a pure functional language. It is possible to write programs
with side effects, such as reading from and writing to streams. To write imperative
programs the language should support sequential execution, variables, and possibly
loops. All three of these features are available in SML. The following sections show
you how to use each of these features.

Variable Declarations

There is only one kind of variable in Standard ML. Variables are called references. It
is interesting to note that you cannot update an integer, real, string, or any other type
of value in SML. All values are immutable. They cannot be changed once created.
That is a nice feature of a language because then you don’t have to worry about the
distinction between a reference to a value and the value itself.

A reference in Standard ML is typed. It is either a reference to an int, or a string,
or some other type of data. References can be mutated. So a reference can be updated
to point to a new value as your program executes. Declaring and using a reference
variable is described in the example below.

5.19 Programming with Side-effects 151

Example 5.39

In SML a variable is declared by creating a reference to a value of a particu-
lar type.

- v a l x = ref 0;
v a l x = ref 0 : int ref

The exclamation point is used to refer to the value a reference points to. This is
called the dereference operator. It is the similar to the star (i.e. *) in C++.

- !x;
v a l it = 0 : int
- x := !x + 1;
v a l it = () : unit
- !x;
v a l it = 1 : int

The assignment operator (i.e. :=) operator updates the reference variable to point
to a new value. The result of assignment is the empty tuple which has a special type
called unit. Imperative programming in SML will often result in the unit type.
Unlike ordinary identifiers you can bind to values using a let val id = Expr in
Expr end, a reference can truly be updated to point to a new value.

it should be noted that references in Standard ML are typed. When a reference
is created it can only point to a value of the same type it was originally created to
refer to. This is unlike references in Python, but is similar to references in Java. A
reference refers to a particular type of data.

Sequential Execution

If a program is going to assign variables new values or read from and write to
streams it must be able to execute statements or expressions sequentially. There
are two ways to write a sequence of expressions in SML. When you write a let
val id = Expr in Expr end expression, the Expr in between the in and end may
be a sequence of expressions. A sequence of expressions is semicolon separated.

Example 5.40

This demonstrates how to write a sequence of expressions.

l e t v a l x = ref 0
in
x:= !x + 1;
TextIO.output(TextIO.stdOut,"The new value of x is "ˆ

Int.toString(!x)ˆ"\n");
!x

end

Evaluating this expression produces the following output.

152 Functional Programming in Standard ML

The new value of x is 1
v a l it = 1 : int

In example 5.40 semicolons separate the expressions in the sequence. Notice
that semicolons don’t terminate each line as in C++ or Java. Semicolons in SML are
expression separators, not statement terminators. The last expression in a sequence
of expressions is the return value of the expression. The !x is the last expression in
the sequence above so 1 is returned as the value.

There are times when you may wish to evaluate a sequence of expressions in
the absence of a let expression. In that case the sequence of expressions may be
surrounded by parens. A left paren can start a sequence of expressions terminated
by a right paren. The sequence of expressions is semicolon separated in either case.

Example 5.41

Here is some code that prints the value of x to the screen and then returns x
+ 1.

(TextIO.output(TextIO.stdOut,"The value of x is " ˆ
Int.toString(x);
x+1)

Iteration

Strictly speaking, variables and iteration are not needed in a functional language.
Parameters can be passed in place of variable declarations. Recursion can be used in
place of iteration. However, there are times when an iterative function might make
more sense. For instance, when reading from a stream it might be more efficient to
read the stream in a loop, especially when the stream might be large. A recursive
function could overflow the stack in that case unless the recursive function were tail
recursive and could be optimized to remove the recursive call.

A while loop in SML is written as while Expr do Expr. As is usual with while
loops, the first Expr must evaluate to a boolean value. If it evaluates to true then
the second Expr is evaluated. This process is repeated until the first Expr returns
false.

5.20 Exception Handling

An exception occurs in SML when a condition occurs that requires special handling.
If no special handling is defined for the condition the program terminates. As with
most modern languages, SML has facilities for handling these exceptions and for
raising user-defined exceptions.

5.21 Encapsulation in ML 153

Example 5.42

Consider the maxIntList function you wrote in practice problem 5.13. You prob-
ably had to figure out what to do if an empty list was passed to the function. One
way to handle this is to raise an exception.

1 e x c e p t i o n emptyList;
2

3 fun maxIntList [] = r a i s e emptyList
4 | maxIntList (h::t) = Int.max(h,maxIntList t) handle
5 emptyList => h

Invoking the maxIntList on an empty list can be handled using an exception
handling expression. The handle clause uses pattern matching to match the right
exception handler. To handle any exception the pattern can be used. The underscore
matches anything. Multiple exceptions can be handled by using the vertical bar (i.e.
|) between the handlers.

5.21 Encapsulation in ML

ML provides two language constructs that enable programmers to define new
datatypes and hide their implementation details. The first of these language con-
structs we’ll look at is the signature. The other construct is the structure.

Signatures

A signature is a means for specifying a set of related functions and types without
providing any implementation details. This is analogous to an interface in Java or a
template in C++. Consider the datatype consisting of a set of elements. A set is a
group of elements with no duplicate values. Sets are very important in many areas of
Computer Science and Mathematics. Set theory is an entire branch of mathematics.
If we wanted to define a set in ML we could write a signature for it as follows.

Example 5.43

This is the signature of a group of set functions and a set datatype. Notice this
datatype is parameterized by a type variable so this could be a signature for a set
of anything. You’ll also notice that while the type parameter is ′a there are type
variables named ′′a within the signature. This is because some of these functions
rely on the equals operator. In ML the equals operator is polymorphic and cannot
be instantiated to a type. When this signature is used in practice the ′a and ′′a
types will be correctly instantiated to the same type.

154 Functional Programming in Standard ML

1 s i g n a t u r e SetSig =
2 s i g
3 e x c e p t i o n Choiceset
4 e x c e p t i o n Restset
5 data type 'a set = Set of 'a list
6 v a l emptyset : 'a set
7 v a l singleton : 'a -> 'a set
8 v a l member : ''a -> ''a set -> bool
9 v a l union : ''a set -> ''a set -> ''a set

10 v a l intersect : ''a set -> ''a set -> ''a set
11 v a l setdif : ''a set -> ''a set -> ''a set
12 v a l card : 'a set -> int
13 v a l subset : ''a set -> ''a set -> bool
14 v a l simetdif : ''a set -> ''a set -> ''a set
15 v a l forall : ''a set -> (''a -> bool) -> bool
16 v a l forsome : ''a set -> (''a -> bool) -> bool
17 v a l forsomeone : 'a set -> ('a -> bool) -> bool
18 end

Before a signature can be used, each of these functions must be implemented in
a structure that implements the signature. This encapsulation allows a programmer
to write code that uses these set functions without regards to their implementation.
An implementation must be provided before the program can be run. However, if a
better implementation comes along later it can be substituted without changing any
of the code that uses the set signature.

Implementing a Signature

To implement a signature we can use the struct construct that we’ve seen before. In
this case it is done as follows.

Example 5.44

Here is an implementation of the set signature.

1 (***** An Implementation of Sets as a SML datatype *****)
2

3 s t r u c t u r e Set : SetSig =
4 s t r u c t
5

6 e x c e p t i o n Choiceset
7 e x c e p t i o n Restset
8

9 data type 'a set = Set of 'a list
10

11 v a l emptyset = Set []
12

13 fun singleton e = Set [e]
14

5.22 Type Inference 155

15 fun member e (Set []) = false
16 | member e (Set (h::t)) = (e = h) o r e l s e member e (Set t)
17

18 fun notmember element st = not (member element st)
19

20 fun union (s1 as Set L1) (s2 as Set L2) =
21 l e t fun noDup e = notmember e s2
22 in
23 Set ((List.filter noDup L1)@(L2))
24 end
25

26 ...
27 end

Of course, the entire implementation of all the set functions in the signature is
required. Some of these functions are left as an exercise.

Practice 5.24

1. Write the card function. Cardinality of a set is the size of the set.
2. Write the intersect function. Intersection of two sets are just those elements

that the two sets have in common. Sets do not contain duplicate elements.

5.22 Type Inference

Perhaps Standard ML’s strongest point is the formally proven soundness of its type
inference system. ML’s type inference system is guaranteed to prevent any run-
time type errors from occurring in a program. This turns out to prevent many run-
time errors from occurring in your programs. Projects like the Fox Project[14] have
shown that ML can be used to produce highly reliable large software systems.

The origins of type inference include Haskell Curry and Robert Feys who in 1958
devised a type inference algorithm for the simply typed lambda calculus. In 1969
Roger Hindley worked on extending this type inference algorithm. In 1978 Robin
Milner independently from Hindley devised a similar type inference system proving
its soundness. In 1985 Luis Damas proved Milner’s algorithm was complete and
extended it to support polymorphic references. This algorithm is called the Hindley-
Milner type inference algorithm or the Milner-Damas algorithm. The type inference
system is based on a very powerful concept called unification.

Unification is the process of using type inference rules to bind type variables to
values. The type inference rules look something like this.

(IF-THEN)

ε ` e1 : bool, ε ` e2 : α, ε ` e3 : β , α = β

ε ` i f e1 then e2 else e3 : α

156 Functional Programming in Standard ML

This rule says that for an if-then expression to be correctly typed, the type of the
first expression must be a bool and the types of the second and third expression
must be unifiable. If those preconditions hold, then the type of the if-then expression
is given by the type of either of the second two expressions (since they are the same).
Unification happens when α = β in the rule above. The ε is the presence of type
information that is used when determining the types of the three expressions and is
called the type environment.

Here are two examples that suggest how the type inference mechanism works.

Example 5.45

In this example we determine the type of the following function.

fun f(nil,nil) = nil
| f(x::xs,y::ys) = (x,y)::f(xs,ys);

The function f takes one parameter, a pair.

f: 'a * 'b -> 'c

From the nature of the argument patterns, we conclude that the three unknown
types must be lists.

f: ('p list) * ('s list) -> 't list

The function imposes no constraints on the domain lists, but the codomain list
must be a list of pairs because of the cons operation (x,y)::. We know x:’p
and y:’s. Therefore ’t=’p*’s.

f: 'p list * 's list -> ('p * 's) list

where ’p and ’s are any ML types.

Example 5.46

In this example the type of the function g is inferred.

1 fun g h x = i f null x then nil
2 e l s e
3 i f h (hd x) then g h (tl x)
4 e l s e (hd x)::g h (tl x);

The function g takes two parameters, one at a time.

g: 'a -> 'b -> 'c

The second parameter, x, must serve as an argument to null, hd, and tl; it
must be a list.

g: 'a -> ('s list) -> 'c

The first parameter, h, must be a function since it is applied to hd x, and its
domain type must agree with the type of elements in the list. In addition, h must
produce a boolean result because of its use in the conditional expression.

5.22 Type Inference 157

g: ('s -> bool) -> ('s list) -> 'c

The result of the function must be a list since the base case returns nil. The re-
sult list is constructed by the code (hd x)::g h (tl x), which adds items
of type ’s to the resulting list.
Therefore, the type of g must be:

g: ('s -> bool) -> 's list -> s list

158 Functional Programming in Standard ML

5.23 Exercises

In the exercises below you are encouraged to write other functions that may help you
in your solutions. You might have better luck with some of the harder ones if you
solve a simpler problem first that can be used in the solution to the harder problem.

You may wish to put your solutions to these problems in a file and then

- use "thefile";

in SML. This will make writing the solutions easier. You can try the solutions out
by placing tests right within the same file. You should always comment any code
you write. Comments in SML are preceded with a (* and terminated with a *).

1. Reduce (λ z.z + z)((λx.λy.x + y) 4 3) by normal order and applicative order re-
duction strategies. Show the steps.

2. How does the SML interpreter respond to evaluating each of the following ex-
pressions? Evaluate each of these expression in ML and record what the response
of the ML interpreter is.

a. 8 div 3;
b. 8 mod 3;
c. "hi""̂there";
d. 8 mod 3 = 8 div 3 orelse 4 div 0 = 4;
e. 8 mod 3 = 8 div 3 andalso 4 div 0 = 4;

3. Describe the behavior of the orelse operator in exercise 2 by writing an equiv-
alent if then expression. You may use nested if expressions. Be sure to try
your solution to see you get the same result.

4. Describe the behavior of the andalso operator in exercise 2 by writing an
equivalent if then expression. Again you can use nested if expressions.

5. Write an expression that converts a character to a string.
6. Write an expression that converts a real number to the next lower integer.
7. Write an expression that converts a character to an integer.
8. Write an expression that converts an integer to a character.
9. What is the signature of the following functions? Give the signature and an ex-

ample of using each function.

a. hd
b. tl
c. explode
d. concat
e. :: - This is an infix operator. Use the prefix form of op :: to get the signature.

10. The greatest common divisor of two numbers, x and y, can be defined recursively.
If y is zero then x is the greatest common divisor. Otherwise, the greatest common
divisor of x and y is equal to the greatest common divisor of y and the remainder
x divided by y. Write a recursive function called gcd to determine the greatest
common divisor of x and y.

5.23 Exercises 159

11. Write a recursive function called allCaps that given a string returns a capital-
ized version of the string.

12. Write a recursive function called firstCaps that given a list of strings, returns
a list where the first letter of each of the original strings is capitalized.

13. Using pattern matching, write a recursive function called swap that swaps every
pair of elements in a list. So, if [1,2,3,4,5] is given to the function it returns
[2,1,4,3,5].

14. Using pattern matching, write a function called rotate that rotates a list by n
elements. So, rotate(3,[1,2,3,4,5]) would return [4,5,1,2,3].

15. Use pattern matching to write a recursive function called delete that deletes the
nth letter from a string. So, delete(3,"Hi there") returns "Hi here".
HINT: This might be easier to do if it were a list.

16. Again, using pattern matching write a recursive function called power that com-
putes xn. It should do so with O(log n) complexity.

17. Rewrite the rotate function of exercise 14 calling it rotate2 to use a helper
function so as to guarantee O(n) complexity where n is the number of positions
to rotate.

18. Rewrite exercise 14’s rotate(n,lst) function calling it rotate3 to guar-
antee that less than l rotations are done where l is the length of the list. How-
ever, the outcome of rotate should be the same as if you rotated n times. For
instance, calling the function as rotate3(6,[1,2,3,4,5]) should return
[2,3,4,5,1] with less than 5 recursive calls to rotate3.

19. Rewrite the delete function from exercise 15 calling it delete2 so that it is
curried.

20. Write a function called delete5 that always deletes the fifth character of a
string.

21. Use a higher-order function to find all those elements of a list of integers that are
even.

22. Use a higher-order function to find all those strings that begin with a lower case
letter.

23. Use a higher-order function to write the function allCaps from exercise 11.
24. Write a function called find(s,file) that prints the lines from the file named

file that contain the string s. You can print the lines to TextIO.stdOut. The
file should exist and should be in the current directory.

25. Write a higher-order function called transform that applies the same function
to all elements of a list transforming it to the new values. However, if an exception
occurs when transforming an element of the list, the original value in the given
list should be used. For instance,

- transform (fn x => 15 div x) [1,3,0,5]
v a l it = [15,5,0,3] : int list

26. The natural numbers can be defined as the set of terms constructed from 0 and
the succ(n) where n is a natural number. Write a datatype called Natural that
can be used to construct natural numbers like this. Use the capital letter O for
your zero value so as not to be confused with the integer 0 in SML.

160 Functional Programming in Standard ML

27. Write a convert(x) function that given a natural number like that defined in
exercise 26 returns the integer equivalent of that value.

28. Define a function called add(x,y) that given x and y, two natural numbers as
described in exercise 26, returns a natural number that represents the sum of x
and y. For example,

- add(succ(succ(O)),succ(O))
v a l it = succ(succ(succ(O))) : Natural

You may NOT use convert or any form of it in your solution.
29. Define a function called mul(x,y) that given x and y, two natural numbers as

described in exercise 26, returns a natural that represents the product of x and y.
You may NOT use convert or any form of it in your solution.

30. Using the add function in exercise 28, write a new function hadd that uses the
higher order function called foldr to add together a list of natural numbers.

5.24 Solutions to Practice Problems 161

5.24 Solutions to Practice Problems

These are solutions to the practice problems . You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 5.1

Addition is not commutative in Pascal or Java. The problem is that a function
call, which may be one or both of the operands to the addition operator, could
have a side-effect. In that case, the functions must be called in order. If no order
is specified within expression evaluation then you can’t even reliably write code
with side-effects within an expression.
Here’s another example of the problem with side-effects within code. In the code
below, it was observed that when the code was compiled with one C++ compiler
it printed 1,2 while with another compiler it printed 1,1. In this case, the language
definition is the problem. The C++ language definition doesn’t say what should
happen in this case. The decision is left to the compiler writer.

i n t x = 1;
cout << x++ << x << endl;

The practice problem writes 17 as written. If the expression were b+a() then 15
would be written.

Solution to Practice Problem 5.2

With either normal order or applicative order function application is still left-
associative. There is no choice for the initial redex.
(λxyz.xz(yz))(λx.x)(λxy.x)
⇒ (λyz.(λx.x)z(yz))(λxy.x)
⇒ (λyz.z(yz))(λxy.x)
⇒ λ z.z((λxy.x)z)
⇒ λ z.z(λy.z)2

Solution to Practice Problem 5.3

Normal Order Reduction
(λx.y)((λx.xx)(λx.xx))
⇒ y
Applicative Order Reduction
(λx.y)((λx.xx)(λx.xx))
⇒ (λx.y)((λx.xx)(λx.xx))

162 Functional Programming in Standard ML

⇒ (λx.y)((λx.xx)(λx.xx))
⇒ (λx.y)((λx.xx)(λx.xx))
...
You get the idea.

Solution to Practice Problem 5.4

x div 6
Real.round(Real.fromInt(x) * y)
x / 6.3
x mod y

Solution to Practice Problem 5.5

fun factorial(n) = i f n=0 then 1 e l s e n*factorial(n-1)

Solution to Practice Problem 5.6

The recursive definition is f ib(0) = 0, f ib(1) = 1, f ib(n) = f ib(n−1)+ f ib(n−
2). The recursive function is:

fun fib(n) = i f n = 0 then 1 e l s e
i f n = 1 then 1 e l s e
fib(n-1) + fib(n-2)

Solution to Practice Problem 5.7

The solutions below are example solutions only. Others exist. However, the prob-
lem with each invalid list is not debatable.

1. You cannot cons a character onto a string list.
"a"::["beautiful day"]

2. You cannot cons two strings. The second operand must be a list.
"hi"::["there"]

3. The element comes first in a cons operation and the list second.
"you"::["how","are"]

4. Lists are homogeneous. Reals and integers can’t be in a list together.
[1.0,2.0,3.5,4.2]

5. Append is between two lists.
2::[3,4] or [2]@[3,4]

5.24 Solutions to Practice Problems 163

6. Cons works with an element and a list, not a list and an element.
3::[]

Solution to Practice Problem 5.8

fun explode(s) =
i f s = "" then []
e l s e String.sub(s,0)::

(explode(String.substring(s,1,String.size(s)-1)))

Solution to Practice Problem 5.9

fun reverse(L) =
i f null L then []
e l s e append(reverse(tl(L)),[hd(L)])

Solution to Practice Problem 5.10

fun reverse([]) = []
| reverse(h::t) = reverse(t)@[h]

Solution to Practice Problem 5.11

1 l e t v a l x = 10
2 in
3 (* 1. Value of x = 10 *)
4 l e t v a l x = x+1
5 in
6 (* 2. Value of x = 11 (hidden x still is 10) *)
7 x
8 end;
9 (* 3. Value of x = 10 (hidden x is visible again) *)

10 x
11 end

164 Functional Programming in Standard ML

Solution to Practice Problem 5.12

data type intlist = nil' | cons of int * intlist;

Solution to Practice Problem 5.13

fun maxIntList nil' = valOf(Int.minInt)
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

or

fun maxIntList (cons(x,nil')) = x
| maxIntList (cons(x,xs)) = Int.max(x,maxIntList xs)

The second solution will cause a pattern match nonexhaustive warning. That
should be avoided, but is OK in this case. The second solution will raise a pat-
tern match exception if an empty list is given to the function. See the section on
exception handling for a better solution to this problem.

Solution to Practice Problem 5.14

The first step in the solution is to determine the number of calls required for
values of n. Consulting figure 5.1 shows us that the number of calls are 1, 1, 3, 5,
9, 15, 25, etc. The next number in the sequence can be found by adding together
two previous plus one more for the initial call.
The solution is that for n≥ 3 the function 1.5n bounds the number of calls on the
lower side while 2n bounds it on the upper side. Therefore, the number of calls
increases exponentially.

Solution to Practice Problem 5.15

The cons operation is called n times where n is the length of the first list when
append is called. When reverse is called it calls append with n− 1 elements in
the first list the first time. The first recursive call to reverse calls append with
n− 2 elements in the first list. The second recursive call to reverse calls append
with n−3 elements in the first list. If we add up n−1+n−2+n−3+... we end
up with ∑

n−1
i=1 i = ((n− 1)n)/2. Multiplying this out leads to an n2 term and the

overall complexity of reverse is O(n2).

5.24 Solutions to Practice Problems 165

Solution to Practice Problem 5.16

Fig. 5.2: The run-time stack when factorial(6) is called at its deepest point

Solution to Practice Problem 5.17

This solution uses the accumulator pattern and a helper function to implement a
linear time reverse.

1 fun reverse(L) =
2 l e t fun helprev (nil, acc) = acc
3 | helprev (h::t, acc) = helprev(t,h::acc)
4 in
5 helprev(L,[])
6 end

Solution to Practice Problem 5.18

This solution is surprisingly hard to figure out. In the first, f is certainly an un-
curried function (look at how it is applied). The second requires f to be curried.

- fun curry f x y = f(x,y)
v a l curry = fn : ('a * 'b -> 'c) -> 'a -> 'b -> 'c

- fun uncurry f (x,y) = f x y
v a l uncurry = fn : ('a -> 'b -> 'c) -> 'a * 'b -> 'c

n=6

n=5

n=4

n=3

n=2

n=1

n=0

Activation Record of
function calling
factorial(6)

AR of factorial(6)

AR of factorial(5)

AR of factorial(4)

AR of factorial(3)

AR of factorial(2)

AR of factorial(1)

AR of factorial(0)

166 Functional Programming in Standard ML

Solution to Practice Problem 5.19

The first takes a list of lists of integers and adds one to each integer of each list
in the list of lists.

The second function takes a list of functions that all take the same type argu-
ment, say a’. The function returns a list of functions that all take an a’ list
argument. The example below might help. The list of functions that is returned
by (map map) is suitable to be used as an argument to the construction
function discussed earlier in the chapter.

- map (map add1);
v a l it = fn : int list list -> int list list

(map map);
stdIn:63.16-64.10 Warning: type vars not generalized because
of value restriction are instantiated to dummy types
(X1,X2,...)
v a l it = fn : (?.X1 -> ?.X2) list ->

(?.X1 list -> ?.X2 list) list
- fun double x = 2 * x;
v a l double = fn : int -> int
- v a l flist = (map map) [add1,double];
v a l flist = [fn, fn] : (int list -> int list) list
- construction flist [1,2,3];
v a l it = [[2,3,4],[2,4,6]] : int list list

Solution to Practice Problem 5.20

foldl is left-associative and foldr is right-associative.

- foldr op :: nil [1,2,3];
v a l it = [1,2,3] : int list
- foldr op @ nil [[1],[2,3],[4,5]];
v a l it = [1,2,3,4,5] : int list

Solution to Practice Problem 5.21

- List.filter (fn x => x mod 7 = 0) [2,3,7,14,21,25,28];
v a l it = [7,14,21,28] : int list
- List.filter (fn x => x > 10 o r e l s e x = 0)

[10, 11, 0, 5, 16, 8];
v a l it = [11,0,16] : int list

5.24 Solutions to Practice Problems 167

Solution to Practice Problem 5.22

cpslen [1,2,3] (fn v => v)
= cpslen [2,3] (fn w => ((fn v => v) (1 + w)))
= cpslen [3]

(fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x)))
= cpslen []

(fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y)))

= (fn y => ((fn x => ((fn w => ((fn v => v)
(1 + w)))(1 + x)))(1 + y))) 0

= (fn x => ((fn w => ((fn v => v) (1 + w)))(1 + x))) 1
= (fn w => ((fn v => v) (1 + w))) 2
= (fn v => v) 3
= 3

Solution to Practice Problem 5.23

1 data type bintree = termnode of int
2 | binnode of int * bintree * bintree;
3

4 v a l tree = (binnode(5,binnode(3,termnode(4),binnode(8,
5 termnode(5),termnode(4))), termnode(4)));
6

7 fun depth (termnode _) = 0
8 | depth (binnode(_,t1,t2)) = Int.max(depth(t1),depth(t2))+1
9

10 fun cpsdepth (termnode _) k = k 0
11 | cpsdepth (binnode(_,t1,t2)) k =
12 Int.max(cpsdepth t1 (fn v => (k (1 + v))),
13 cpsdepth t2 (fn v => (k (1 + v))))

Solution to Practice Problem 5.24

1 fun card (Set L) = List.length L;
2

3 fun intersect (Set L1) S2 =
4 Set ((List.filter (fn x => member x S2) L1))

168 Functional Programming in Standard ML

5.25 Additional Reading

Jeffrey Ullman’s book on functional programming in Standard ML [36] is a very
good introduction and reference for Standard ML. It is more thorough than the top-
ics provided in this text and contains many topics not covered here including dis-
cussion of arrays, functors, and sharings along with a few of the Basis structures.
The topics presented here and in the next chapter give you a good introduction to
the ideas and concepts associated with functional programming. Given the online
resources available for the Standard ML Basis library, Jeffrey Ullman’s book, and
the information present here, there should be enough for you to become a very pro-
ficient ML programmer.

Chapter 6

Language Implementation in
Standard ML

The ML in the name Standard ML stands for meta-language. SML was designed as
a language for describing languages when it was used as part of the Logic for Com-
putable Functions (LCF) system. That tradition remains in place today. Standard
ML is an excellent language choice for implementing interpreters and compilers.
There are two very nice tools for SML that will generate a scanner and a parser
given a description of the tokens and grammar of a language. The scanner generator
is called ML-lex and the parser generator is called ML-yacc. This chapter introduces
these two tools through a case study involving the development of a simple compiler
for the calculator language presented in previous chapters.

Fig. 6.1: Structure of the Calculator Compiler implemented in ML

Figure 6.1 depicts all the relevant pieces in constructing and using the expression
compiler. The compiler begins by calling a function which calls the parser. The

(4S+5) *
(7-R)

Parser

Abstract
Syn. Tree

a.ewe

CodeGenScanner

Tokens

ML-lex ML-yacc

calc.lex calc.grm

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_6,
© Springer Science+Business Media, LLC 2008

170 Language Implementation in Standard ML

parser returns an abstract syntax tree of the expression being evaluated. The parser
gets tokens from the scanner to parse the input and build the AST. The scanner reads
characters from the input file and groups them together as tokens. When an AST is
returned by the parser, the compiler calls the code generator to evaluate the tree and
produce the target code. The target code for this project will be EWE code. In this
chapter the scanner and the parser won’t have to be written by hand. ML-lex and
ML-yacc will be used to generate these parts of the compiler from specifications
that are provided to these tools.

There are two main parts to a compiler, the front end and back end. The front end
reads the tokens and builds an AST of a program. The back end generates the code
given the AST representation of the program. As presented in earlier chapters, the
front end consists of the scanner and the parser. ML-lex is a tool that given a defini-
tion of the tokens of a language will generate a scanner. ML-yacc is a tool that given
a grammar will generate a parser. This chapter discusses a partial implementation
of the front end and back end for a calculator language compiler. In this case study,
ML-lex and ML-yacc use the following files to generate the front end.

1. The tokens of the language are defined in a file called calc.lex.
2. The datatype for expression ASTs is defined in a file called calcast.sml.
3. The grammar of the language is defined in a file called calc.grm. This file also

contains a mapping from productions in the grammar to nodes in an AST. The
parser reads tokens and builds an AST of the expression being compiled.

The next sections will introduce ML-lex and ML-yacc. By the end of the chapter
you will have enough information to complete the compiler using SML. Later you
will be given the opportunity to extend the calculator language and compiler.

6.1 Using ML-lex

ML-lex is a scanner generator. ML-lex generates a function that can be used to get
tokens from the input. It is based on a similar tool called lex that generates scanners
for C programs. The input to the two tools is similar but not exactly the same. The
input to ML-lex is a file consisting of three sections, where each section is separated
by %%. The format of an ML-lex input file is:

User declarations %% ML-lex definitions %% Rules

The user declarations are any ML code that will assist you in defining the tokens.
Typically, a reference variable is used to keep track of the line of input being read.
There might also be some functions for converting strings to other values like inte-
gers. An error function that handles bad tokens is a common function for this section
to get the scanner and the parser to work together.

The ML-lex declarations follow the user declarations. Sets of characters are de-
clared in this section. In addition a functor must be declared. A functor is a module

6.1 Using ML-lex 171

that takes a structure as a parameter and returns a new structure as a result. A functor
is used by ML-lex and ML-yacc to create the scanner.

The last section of an ML-lex definition is composed of a set of rules that define
the tokens of the language. Each rule has the form:

{reg_exp} => (return_value);

The reg exp is a regular expression. The language of regular expressions can
be used to define tokens. Every regular expression can be expressed as a finite state
machine. Finite state machines can be used to recognize tokens. The set of reg exp
is eventually translated into a finite state machine that can be used to recognize
tokens in the language. When a string of characters is recognized as a token, its
matching return value is constructed from the rules and that value is returned by the
scanner to the parser. Seeing an example will help make some sense of this.

Example 6.1

Here is an ML-lex specification for the calculator language.

1 type pos = int
2 type svalue = Tokens.svalue
3 type ('a, 'b) token = ('a, 'b) Tokens.token
4 type lexresult = (svalue, pos) token
5 v a l pos = ref 1
6 v a l error = fn x => TextIO.output(TextIO.stdErr, x ˆ "\n")
7 v a l eof = fn () => Tokens.EOF(!pos, !pos)
8 fun sval([], r) = r
9 | sval(a::s, r) = sval (s, r*10+(ord(a) - ord(#"0")));

10 %%
11 %header (f u n c t o r calcLexFun(s t r u c t u r e Tokens : calc_TOKENS));
12 alpha=[A-Za-z];
13 alphanumeric=[A-Za-z0-9_];
14 digit=[0-9];
15 ws=[\ \t];
16 %%
17 \n => (pos := (!pos) + 1; lex());
18 {ws}+ => (lex());
19 "(" => (Tokens.LParen(!pos,!pos));
20 ")" => (Tokens.RParen(!pos,!pos));
21 "+" => (Tokens.Plus(!pos,!pos));
22 "*" => (Tokens.Times(!pos,!pos));
23 "/" => (Tokens.Div(!pos,!pos));
24 "-" => (Tokens.Minus(!pos,!pos));
25 {digit}+ => (Tokens.Int(sval(explode yytext,0),!pos,!pos));
26 {alpha}{alphanumeric}* =>
27 (l e t v a l tok = String.implode (List.map (Char.toLower)
28 (String.explode yytext))
29 in
30 i f tok="s" then Tokens.Store(!pos,!pos)
31 e l s e i f tok="r" then Tokens.Recall(!pos,!pos)
32 e l s e (error ("error: bad token "ˆyytext); lex())
33 end);
34 . => (error ("error: bad token "ˆyytext); lex());

172 Language Implementation in Standard ML

The svalue type must be defined in the user declarations. The token type also has
to be defined. The lexresult variable defines tokens as having both an svalue
and an integer position. These three declarations are required to define the signature
of the scanner which is called the lexer by ML-lex.

In the ML-lex declarations the functor is declared as required by the parser. The
alpha declaration declares a class of characters called alpha that consists of letters
a to z in lower and upper case. The alphanumeric characters include letters and
digits and underscores. The digit declaration defines the class of digits as being
0 to 9. The ws stands for whitespace. It defines blanks and tabs as whitespace.

Finally, the rules define all the tokens. The first two rules discard whitespace in
the input. The \n matches the newline character and adds one to the line position
when it is found. Instead of returning a value, if a newline is found the scanner
calls lex (the scanner’s getToken function) recursively to get another token. Single
character tokens are defined in double quotes. Character classes may be used to
define tokens. When a character class is used it is placed inside braces (i.e. digit).
The + sign means one or more of the preceding class of characters. the * means zero
or more of the preceding class of characters. So a keyword is an alpha character
followed by zero or more alphanumeric characters.

In the last line the period matches any character, so anything that gets through to
that rule must be a bad character. When yytext is referenced in the code that is the
actual lexeme of the token.

From a definition like the calc.lex file shown here the ML-lex tool has enough
information to generate a scanner for the tokens of the language. The parser will get
tokens and build an AST for the expression. The SML definition of calculator ASTs
is given in the next section.

Practice 6.1

Given the ML-lex specification in example 6.1, what more would have to be
added to allow expressions like this to be correctly tokenized by the scanner?
What new tokens would have to be recognized? How would you modify the
specification to accept these tokens?

1 l e t v a l x = 6
2 in
3 x + 6
4 end

6.2 The Calculator Abstract Syntax Definition

The parser reads tokens and builds an abstract syntax tree of a calculator expres-
sion. In SML, the abstract syntax definition is given by an SML datatype. Each type
of node in the tree is tagged with its type. Some nodes in the tree include the sub-
trees such as the addition, subtraction, multiplication, division, and store nodes. The

6.3 Using ML-yacc 173

negation node is added to support unary negation in expressions. Now -5 is a valid
expression. The recall and integer nodes are leaf nodes in any AST. They have no
subtrees. The integer node keeps track of its integer value.

Example 6.2

This is the abstract syntax definition for calculator ASTs.

1 s t r u c t u r e calcAS =
2 s t r u c t
3

4 data type
5 AST = add' of AST * AST
6 | sub' of AST * AST
7 | prod' of AST * AST
8 | div' of AST * AST
9 | negate' of AST

10 | integer' of int
11 | store' of AST
12 | recall';
13 end;

Practice 6.2

How would you modify the abstract syntax so expressions like the one below
could be represented?

1 l e t v a l x = 6
2 in
3 x + 6
4 end

6.3 Using ML-yacc

ML-yacc is a parser generator. The name stands for Yet Another Compiler Compiler
(i.e. yacc). yacc is a tool that generates parsers for C programs to use. ML-yacc is
the SML version of this tool. ML-yacc is a little different than yacc but provides
mostly the same functionality. ML-yacc’s input format is similar to ML-lex’s input
format. An ML-yacc specification consists of three parts.

User declarations %% ML-yacc definitions %% Rules

Another example will assist in understanding the format of an ML-yacc specifica-
tion.

174 Language Implementation in Standard ML

Example 6.3

This is the ML-yacc specification for the calculator language. The file is called
calc.grm.

1 open calcAS;
2

3 %%
4 %name calc (* calc becomes a prefix in functions *)
5 %verbose
6 %eop EOF
7 %pos int
8 %nodefault
9 %pure (* no side-effects in actions *)

10 %term EOF
11 | LParen
12 | RParen
13 | Plus
14 | Minus
15 | Times
16 | Div
17 | Store
18 | Recall
19 | Int of int
20 %nonterm Prog of Expr
21 | Expr of Expr
22 | Term of Expr
23 | StoreIt of Expr
24 | NegFactor of Expr
25 | Factor of Expr
26

27 %%
28 Prog : Expr (Expr)
29

30 Expr : Expr Plus Term (add'(Expr,Term))
31 | Expr Minus Term (sub'(Expr,Term))
32 | Term (Term)
33

34 Term : Term Times StoreIt (prod'(Term,StoreIt))
35 | Term Div StoreIt (div'(Term,StoreIt))
36 | StoreIt (StoreIt)
37

38 StoreIt : NegFactor Store (store'(NegFactor))
39 | NegFactor (NegFactor)
40

41 NegFactor : Minus NegFactor (negate'(NegFactor))
42 | Factor (Factor)
43

44 Factor : Int (integer'(Int))
45 | LParen Expr RParen (Expr)
46 | Recall (recall')

The user declarations consist of one line. The open calcAS opens the struc-
ture called calcAS so the parser can access the AST definition without having to

6.4 Code Generation 175

precede the name with the structure name each time. Without the open statement,
each time an AST node was referred to the fully qualified name would be required.
For instance calcAS.add’ would have to be written instead of writing add’
each time an add AST node was referred to in the code.

The ML-yacc declarations include a name to prefix functions in the scanner with,
in this case calc. The verbose helps in debugging. eop says that EOF is the last
token returned. This helps in terminating the parser. eop stands for end of parse.
The pos type is redeclared here for use with the scanner.

The nodefault tells the parser not to insert tokens it thinks might have been
left out. This helps in finding syntax errors earlier than they would be otherwise.
If this were omitted the parser would insert a token when it is reasonably sure the
program being parsed is missing a token.

The pure declarations says that the parser has no side-effects. It simply builds a
tree and returns it. This means that ML-yacc can undo certain parsing operations if
it needs to without fear of a side-effect not being undone. Finally, and most impor-
tantly the terminals and nonterminals of the language are declared.

In the rules section of the ML-yacc specification the productions are declared on
the left. To the right of each production is a return value that is returned when that
production is used in parsing. ML-yacc generates a bottom-up parser, so productions
are used in the reverse order they would be used in a right-most derivation.

When you see a production like this:

Expr : Expr Plus Term (add'(Expr,Term))

it means when the production for addition is used an AST with add’ at the root
is returned where the left and right subtrees are the ASTs that were returned from
parsing the two subexpressions.

Example 6.3 is typical of an ML-yacc parser definition. The next section shows
you how to use the scanner and the parser to build an AST and generate code for it.

Practice 6.3

What modifications would be required in the calc.grm specification to parse
expressions like the one below?

1 l e t v a l x = 6
2 in
3 x + 6
4 end

6.4 Code Generation

Code generation is essential to any compiler. The code generator translates the ab-
stract syntax tree into a language that may either be executed directly or interpreted
by some low-level interpreter like the Java Virtual Machine (i.e. JVM). In this case

176 Language Implementation in Standard ML

study, the code generator generates code for a register machine that is emulated
using the EWE interpreter.

The code generator’s code for addition and subtraction of integers is given in
Appendix D. Lines 6-35 are required to create the parser and the scanner and tie
them together. The compile function at the bottom of the code calls the parser
and generates a little of the target program’s code, which will be explained shortly.
The compile function creates a file called a.ewe while will contain the compiled
program.

The run function is required so the SML program (i.e. the compiler) can itself
be compiled. The run function is exported from SML so it can be called from
the command-line. The run function invokes the compile function passing it the
name of the file containing the program to be compiled.

Most of the work in the compiler is performed by the codegen function. This
function is responsible for generating EWE code for every possible calculator ex-
pression. This is accomplished by a postfix traversal of an expresssion’s AST. In a
postfix traversal of an AST the code is first generated for the left subtree (if there
is one), then code is generated for the right subtree (again, if there is one). Finally,
code is generated for the root node of the AST. This is a recursive definition so we
can start by considering a very simple case. In fact, consider just the simplest case,
an expression containing just one number, say 5.

Example 6.4

As presented in this chapter, the calculator compiler will compile some sim-
ple expressions. For instance, 5 is an expression that will compile. Compiling a
program containing 5 yields the following EWE code.

1 SP:=100
2 R0:=5
3 writeInt(R0)
4 halt
5

6 equ MEM M[12]
7 equ SP M[13]
8 equ R0 M[0]

The goal when this program runs is to print 5 to the screen. This EWE program
does that.

Because codegen is necessarily a recursive function, the result of generating
code for an AST must be left someplace where it can be found. It’s not good enough
to just store the value in some variable because codegen is recursive. If code is
generated for a left and right subtree in a postfix traversal of the tree and the code
leaves the two values in the same location then the first result will be left in the same
place as the second result.

You’ve likely dealt with this postfix traversal problem before. The solution is to
use a stack. You can push the result of executing the code in the left subtree on a
stack. The value of the right subtree can also be pushed. After executing the code

6.4 Code Generation 177

for both subtrees, the top two values on the stack will be the two values needed to
complete the calculation of the expression. Another example will clear things up.

Example 6.5

Consider generating code for 5 + 4. If we were to blindly follow the example
above the EWE code would look something like this:

1 SP:=100
2 R0:=5
3 R0:=4
4 R0:=R0+R0
5 writeInt(R0)
6 halt
7

8 equ MEM M[12]
9 equ SP M[13]

10 equ R0 M[0]

Obviously this program would print 8 as a result, not the 9 that we want. The
problem is that we can’t leave the 5 and the 4 in the same place. That suggests
we want something like this to be generated instead.

1 SP:=100
2 R0:=5
3 R1:=4
4 R0:=R0+R1
5 writeInt(R0)
6 halt
7

8 equ MEM M[12]
9 equ SP M[13]

10 equ R0 M[0]
11 equ R1 M[1]

The code in the example above suggests that the stack used to generate code
somehow exists in R0, R1, R2, R3, and so on. When we want to push something
on the stack we can just store it in the next Rn. In fact it’s a little more complicated
than that, but not much.

Most machine languages (or assembly languages, if you prefer) are register
based. Temporary values are stored in registers so they can be accessed again
quickly. Registers are simply named memory locations that exist inside the CPU
of the computer. The EWE language can be used to simulate a register machine.
The registers in EWE will be called R0, R1, R2, etc.

However, a stack seems to be the structure we want when generating code. It
would be nice if somehow registers could be made to look like a stack. They can.
Register allocation is a complex topic that goes beyond what is covered in a pro-
gramming languages course, but with a little structure, it isn’t too hard to allocate
registers so they resemble pushing and popping from a stack. Thankfully, there is a
register allocation framework that does just that, it emulates a stack.

178 Language Implementation in Standard ML

There are four functions defined by this register allocation framework. When a
temporary location is needed to store a value, a register can be allocated using the
getReg function. When a register needs to be pushed on the stack the pushReg
function is used. To get a register off the register stack the popReg function is used.
Finally, to delete a register that is no longer needed the delReg function is used.

Example 6.6

Here is the register allocation framework in action. This example, taken from
Appendix D, shows how code is generated to add two values together.

1 fun codegen(add'(t1,t2),outFile,bindings,offset,depth) =
2 l e t v a l _ = codegen(t1,outFile,bindings,offset,depth)
3 v a l _ = codegen(t2,outFile,bindings,offset,depth)
4 v a l reg2 = popReg()
5 v a l reg1 = popReg()
6 in
7 TextIO.output(outFile,reg1ˆ":="ˆreg1ˆ"+"ˆreg2ˆ"\n");
8 delReg(reg2);
9 pushReg(reg1)

10 end
11

12 | codegen(integer'(i),outFile,bindings,offset,depth) =
13 l e t v a l r = getReg()
14 in
15 TextIO.output(outFile, rˆ":="ˆInt.toString(i)ˆ"\n");
16 pushReg(r)
17 end

Generating code for 5 + 4 first generates code for the 5. Above, the code genera-
tion for 5 gets a register using getReg, writes some code to the EWE program to
put the 5 in the register, and then pushes the register on the stack using pushReg.

Next, code for 4 is generated in the same way resulting in R0 holding the 5 and
R1 holding the 4. The register stack has R0 on the bottom with R1 on top of it. The
bindings, offset, and depth parameters will be discussed later.

The code generation for adding the two values together first generates the code
for the two subtrees. When that is completed, R0 and R1 are on the register stack
with R1 on top. The popReg function is called twice to get those registers off the
stack. EWE code is generated to add the two values together. R0 is used again to
store the value since it is no longer needed to hold the 5. The R1 register is not
needed anymore so it is deleted with a call to delReg. Finally, R0 is pushed on the
stack since that value needs to be saved for later.

Practice 6.4

How can code be generated to multiply two numbers together? How can code
be generated to negate a value as in unary negation? Refer back to the AST defi-
nition to see what these nodes in an AST would look like. You can also refer back
to the EWE language definition. Follow the pattern in example 6.6 to generate
the correct code for expressions containing multiplication and unary negation.

6.5 Compiling in Standard ML 179

There are a few things that should be pointed out about the register allocation
framework. First, all registers that are allocated with getReg must eventually be
freed with delReg. If this is not done, the framework will signal an error telling
the programmer that an unfreed register still exists. In the compiler presented in this
chapter, the very last register, containing the result of the expression, is freed by the
compile function.

The register allocation framework insists that all registers are allocated and freed
in a first in/first out fashion. This means that if R0 is allocated before R1 then R0
should be freed after R1. This isn’t too restrictive since the allocation framework is
mimicking a stack anyway.

Finally, it should be noted that this framework is a compile-time simulation of
a run-time stack. When registers are allocated and freed, this occurs at compile
time. The registers being allocated or freed are usually called symbolic registers.
Symbolic registers are mapped to real registers (memory locations in EWE) by con-
structing a register interference graph and through a process called graph coloring.
Thankfully, the register allocation framework presented here does this work for us.

6.5 Compiling in Standard ML

The SML Calculator compiler presented in this chapter can be compiled and run
to add and subtract integers without any modifications. The rest of the compiler
implementation is left as an exercise. A tool called the compiler manager (CM)
is used to compile code in Standard ML. The compiler manager looks at the date
of source files and compiled files to determine which ML source files need to be
compiled, much like the Unix Make tool. A file called sources.cm tells CM the
name of your source files. In this case study, the standard Unix Make tool is used to
get everything started. To compile the project you enter the command make at the
command-line.

Example 6.7

This is the Makefile for the compiler project. It invokes the Makefile.gen
script to start the SML compilation process. The CM does the rest. The clean rule
erases all files generated during compilation of the project.

1 all:
2 Makefile.gen;
3

4 clean:
5 rm calccomp*
6 rm calc.lex.sml
7 rm calc.grm.sml
8 rm calc.grm.desc
9 rm calc.grm.sig

10 rm -Rf CM
11 rm -Rf .cm

180 Language Implementation in Standard ML

The Makefile says to invoke the Makefile.gen Unix script. A Unix script
is a text file where the first line indicates an interpreter that should be used to run
the program contained in the file. Unix provides this ability to run interpreters by
invoking a text file containing the name of the interpreter to run.

Example 6.8

Makefile.gen is a Unix script. The C Shell interpreter called csh is used to
run this file. The second line of the script says to start SML and read subsequent
lines as if they were typed directly into the SML shell until the EOF token is
encountered.

1 #!/bin/csh
2 sml << EOF
3 CM.make "sources.cm";
4 SMLofNJ.exportFn("calccomp",calc.run);
5 EOF

To invoke the SML compiler manager a function called CM.make is called with
the name of a text file containing the names of the SML modules to compile. When
invoked, the SMLofNJ.exportFn function tells SML to build a binary represen-
tation of the exported function and all code that the exported function is dependent
on. The ability to export only the code needed by a program is unique among com-
pilers. To know which modules to compile, the SML compiler manager must know
which modules contain the code to compile.

Example 6.9

The sources.cm file is used by the SML compiler manager to know which
modules to compile. TheGroup is line is always the first line. The$/basis.cm
and the $/ml-yacc-lib.cm are required to tell the compiler manager that
these two built-in libraries are to be included in the compilation. The rest of the
lines are the modules of the compiler.

1 Group is
2 $/basis.cm
3 $/ml-yacc-lib.cm
4 calc.lex
5 calc.grm
6 calc.sml
7 calcast.sml
8 registers.sml

A second Unix script is used to start the compiler. The script is called calc.
Typing calc at the command-line and pressing enter will prompt for a filename
containing a calculator expression.

6.6 Extending the Language 181

Example 6.10

This is the calculator compiler startup script, called calc. It reads the name
of a text file from the user and then invokes SML by loading the binary image of
the program created when the compiler was compiled by the compiler manager.

1 #!/bin/bash
2 set -f
3 echo -n "Enter an file name: "
4 read file
5 sml @SMLload=calccomp $file

6.6 Extending the Language

The calculator language can be extended in a variety of ways with very few changes.
For instance, consider adding the ability to read input from the keyboard when the
program runs. The addition of the keyword get could read an integer from the
keyboard.

Example 6.11

To read a value from the keyboard while evaluating a calculator expression the
lexical specification in calc.lex must be modified to add the get keyword to
the list of keyword tokens. Keywords are added to the alpha followed by zero
or more alphanumeric characters rule. That rule would be modified as shown
here.

1 {alpha}{alphanumeric}* =>
2 (l e t v a l tok = String.implode (List.map (Char.toLower)
3 (String.explode yytext))
4 in
5 i f tok="s" then Tokens.Store(!pos,!pos)
6 e l s e i f tok="r" then Tokens.Recall(!pos,!pos)
7 e l s e i f tok="get" then Tokens.Get(!pos,!pos)
8 e l s e (error ("error: bad token "ˆyytext); lex())
9 end);

The Get token must be added to the terminal section of the calc.grm file and
a production must be added to the rules in calc.grm to allow get to appear as
a Factor in an expression.

Factor : Get (get')

The AST definition in calcast.sml must be modified so get’ can appear
as an AST node. Finally, the code generator in calc.grm must be modified to
generate code for a get’ node.

182 Language Implementation in Standard ML

1 | codegen(get',outFile,bindings,offset,depth) =
2 l e t v a l r = getReg()
3 in
4 TextIO.output(outFile, "readInt("ˆrˆ")\n");
5 pushReg(r)
6 end

In this short example, the language was extended to allow input to be read from
the keyboard. Implementing this makes it possible for a programmer to write a short
program to read values from the keyboard and use them in an expression. This was
accomplished by changing the scanner, parser, AST definition, and the code gener-
ator. Other more interesting extensions to the language are also possible.

6.7 Let Expressions

In chapter 5 let expressions were introduced as part of Standard ML. Let expressions
enable a programmer to bind identifiers to values. The scope of an identifier is the
body of its let expression.

Example 6.12

Consider the let expression given here. The scope of the identifier x is limited
to the let expression’s body.

1 l e t v a l x = 6
2 in
3 x + 5
4 end

The general format of a let expression is

let val id = {Expr}
in

{Expr}
end

The goal is to generate code for both expressions in the let construct. The result of
evaluating the first expression must be stored someplace where it can be referred to
in the second expression.

As in the previous example the scanner, parser, AST definition, and code gener-
ator must be altered to support compilation of this type of expression. Code gener-
ation is the most difficult change. The change to the scanner is perhaps the second
most difficult change. New tokens must be recognized by the scanner.

One of the new tokens is an identifier. An identifier is any string of characters
that is not a keyword of the language. To recognize ID tokens the calc.lex file
must be altered to return a Token.ID token when a string of characters is not a
keyword rather than printing an error message.

6.7 Let Expressions 183

Example 6.13

Currently the scanner specification in calc.lex checks for keywords and re-
turns an error if a string of characters is not a keyword.

1 {alpha}{alphanumeric}* =>
2 (l e t v a l tok = String.implode (List.map (Char.toLower)
3 (String.explode yytext))
4 in
5 i f tok="s" then Tokens.Store(!pos,!pos)
6 e l s e i f tok="r" then Tokens.Recall(!pos,!pos)
7 e l s e (error ("error: bad token "ˆyytext); lex())
8 end);

The else clause needs to be modified so an identifier is returned instead of an
error message. An appropriate replacement line for calc.lex would be

e l s e Tokens.ID(yytext,!pos,!pos)

The yytext field is included with the ID token because the compiler will need
to know what identifier was found. The yytext field in example 6.12 is "x", the
lexeme of the identifier. The other changes required to the scanner are straightfor-
ward and follow the patterns presented earlier.

There are other changes to calc.lex. These changes are outlined in the so-
lution to practice problem 6.1 at the end of the chapter. The AST definition must
change so let expressions can be represented in the abstract syntax.

Example 6.14

The additional AST node types required for let expressions are as follows. The
valref’ node occurs when a bound value is referred to in a program.

| letval' of string * AST * AST
| valref' of string

The parser changes are also similar to past examples and are given in the solution
to practice problem 6.3 at the end of the chapter. A let expression is just another
Factor of an expression in the grammar. Code generation is where things get
interesting. Obviously, code needs to be generated for the two expressions that make
up a let expression. The result of the first expression must be stored in a location
that can be referred to when the identifier is used in the second expression. This
constitutes the need for something called an activation record. An activation record
is a piece of memory pointed to by a special register called the stack pointer (SP).
Earlier examples in this chapter have included an SP register that is assigned to
location 100 in memory. Now it is time to use the SP register.

The result of the first expression can be stored relative to the SP register. The
compiler can keep track of the location of the value from the first expression and
pass that along to the evaluation of the second expression. That is the purpose of a
binding in a compiler. A binding is a pairing of an identifier and a location where
the value represented by the identifier can be found.

184 Language Implementation in Standard ML

Example 6.15

Consider the let expression given in example 6.12. The code that should be gen-
erated to evaluate that let expression is given here.

1 SP:=100
2 R0:=6
3 M[SP+0]:=R0
4 R1:=M[SP+0]
5 R2:=5
6 R1:=R1+R2
7 writeInt(R1)
8 halt
9

10 equ MEM M[12]
11 equ SP M[13]
12 equ R0 M[0]
13 equ R1 M[0]
14 equ R2 M[1]

Line 1 initiallizes the stack pointer (SP). Line 2 loads the 6 into a register. Line 3
stores the 6 in the activation record at offset 0. This is done so the value x is bound
to can be loaded back into a register and used. Line 4 is the beginning of the body
of the let expression’s code. It loads the 6 back into a register again. Line 7 loads
the 5. Line 8 adds the two together.

Nowhere in example 6.15 does the identifier x appear. The identifier is not di-
rectly bound to the value in the EWE code. The identifier is bound in the compiler to
a location where the value can be found. In this way bindings are eliminated from the
target program. Bindings only exist in the compiler, not in the generated code. The
compiler generates code that evaluates the identifier’s expression and then stores
that value in the activation record. This location in the activation record is bound
to the identifier in the compiler. The binding is then used by the compiler when it
comes time to generate code that refers to the bound value.

A binding is a triple of (identifier, offset, depth). The identifier
is tagged with its type. In example 6.12 the binding contains constant’("x")
as the identifier portion. The constant’ tag differentiates it from a function iden-
tifier which is allowed in other versions of the compiler. The offset portion of the
binding is a string. In exampe 6.12 the offset portion is "0", the amount to add to
the SP register to find the bound value in the activation record. The depth is not used
in this version of the compiler and can just remain depth.

The bindings are a list of the binding values with the latest or newest bindings
added to the front of the list. If a binding should be visible in a piece of code,
the bindings passed when that code is generated should include the binding. The
boundTo function looks up a binding in the list of bindings and returns its offset if
found.

6.8 Defining Scope in Block Structured Languages 185

Example 6.16

Here is the code of the boundTo function.
1 e x c e p t i o n unboundId;
2

3 data type Type = function' of string
4 | constant' of string;
5

6 fun boundTo(name,[]) =
7 l e t v a l idname = (case name of
8 function'(s) => s
9 | constant'(s) => s)

10 in
11 TextIO.output(TextIO.stdOut, "Unbound identifier "ˆ
12 idnameˆ" referenced or type error!\n");
13 r a i s e unboundId
14 end
15

16 | boundTo(name,(n,ol,depth)::t) = i f name=n
17 then ol e l s e boundTo(name,t);

Many languages implement bindings in this way. C++, C, Pascal, Standard ML,
and to some extent Java all implement bindings in this fashion. Generally, a statically
typed language is more likely to be implemented in such a way that bindings are a
compile-time entity and don’t appear in the target program.

Practice 6.5

What is the list of bindings in the body of the let expression presented in ex-
ample 6.12?

Not every language is implemented in this way. For example, in chapter 4 the
implementation of polymorphism in Ruby is dependent on a run-time lookup of
bindings in a hash table. This is true for both function and value bindings. Run-time
lookup of bindings has its advantages and disadvantages as described in that chapter.
In general though, the earlier an error in a program can be found the more reliable
the program will be. At the same time, dynamic binding as implemented in Ruby,
gives the programmer a lot of flexibility in the way he or she writes code. The trade-
off of flexibility versus safety is one of the fundamental conflicts language designers
deal with.

6.8 Defining Scope in Block Structured Languages

The previous section described how let expressions can be added to the calculator
language. Let expressions allow the programmer to define identifiers with limited
scope. Upon completing the code generation to implement let expressions in the
compiler it should be clear how scope is defined.

186 Language Implementation in Standard ML

The scope of an identifier is where that identifier is bound to a value or location in
the target program. In the case of the calculator language presented in this chapter,
the binding is of an identifier to a location on the run-time stack.

Because the scope of variables in the extended calculator language can be deter-
mined at compile-time, the bindings don’t have to appear in the compiled program.
In other words, in a statically scoped language bindings don’t have to be passed
around and therefore can be eliminated in the target program.

It is interesting to examine scope as it relates to the visibility of identifiers. While
more than one value may be bound to an identifier, only one (identifier, value) pair
is visible at a time. After completing the extension of the language to include let
expressions it should be clear why this is the case. It has to do with the list of
bindings that are passed around in the code generator.

Practice 6.6

Consider the following program.

1 l e t v a l x = 5
2 in
3 l e t v a l y = 10
4 in
5 l e t v a l x = 7
6 in
7 x + y
8 end
9 +x

10 end
11 end

Label the program by showing all bindings (both visible and invisible) that exist
at all appropriate points in the program.
What is the result of executing this program?

This example shows that the scope of a binding determines where a bound value
can be accessed. However, not all bindings are necessarily visible at all points in a
program. Visibility may be limited by binding two or more values to the same iden-
tifier. Many programming languages include the ability to bind the same identifier
to multiple values. However, binding an identifier multiple times is not the same
as updating a variable with multiple values. Bindings can be undone at a later time
while variable assignment is permanent.

6.9 If-Then-Else Expressions

If-then-else expressions allow expressions to be calculated dependent on some con-
dition. The ability to select from one of two choices is often called selection in
programming language circles. Selection isn’t very interesting unless the language
supports some sort of interactive input. See example 6.11 for a description of how to

6.9 If-Then-Else Expressions 187

add this functionality to the calculator language. The general format of an if-then-
else expression is

if {Expr} {RelOp} {Expr} then {Expr} else {Expr}

where a RelOp is one of >, <. >=, <=, =, and <>. To implement this it is perhaps
easiest to define a RelOp token that includes a string with the relational operator’s
lexeme in it (i.e. like an identifier token). The complete implementation requires
changes to the scanner, parser, AST definition, and the code generator. To change
the parser a new production should be added to the Factor rules resembling the
general format for if-then-else expressions given above.

Code generation is probably the most difficult part of adding selection to the lan-
guage, but isn’t too hard. An example will help in understanding how to generate
code for these expressions. Code generation is much simpler if the opposite of the
relational operator in the source is used in the target program. For instance, if check-
ing that x > y then generate code to see if x <= y. This will be much clearer in
the examples below.

Example 6.17

Here is a program that prints the maximum of two numbers.

1 l e t v a l x = get
2 in
3 l e t v a l y = get
4 in
5 i f x > y then x e l s e y
6 end
7 end

Code generation begins by generating code for the two expressions in the rela-
tional expression. The results of the two expressions are left on the register stack.
The two results are popped off and used in the if-then expression that appears below.
Two labels are needed in the generated code. Typically, a code generator will have
a function called nextLabel that returns a new label each time it is called.

Example 6.18

Here is the target EWE code for the program in example 6.17.

1 SP:=100
2 readInt(R0)
3 M[SP+0]:=R0
4 readInt(R1)
5 M[SP+1]:=R1
6 R2:=SP
7 R2:=M[R2+0]
8 R3:=SP
9 R3:=M[R3+1]

10 if R2<=R3 then goto L0
11 R4:=SP

188 Language Implementation in Standard ML

12 R4:=M[R4+0]
13 goto L1
14 L0:
15 R5:=SP
16 R5:=M[R5+1]
17 L1:
18 writeInt(R5)
19 halt
20

21 equ MEM M[12]
22 equ SP M[13]
23 equ R0 M[0]
24 equ R1 M[0]
25 equ R2 M[0]
26 equ R3 M[1]
27 equ R4 M[0]
28 equ R5 M[0]

The label L0 marks the start of the else part of the expression. The label L1
marks the end of the if-then expression. The opposite of the relational operator is
used in the target code so if the condition is false then the code will go to the else
clause. Otherwise, the then clause is executed. In line 13 (the end of the then clause),
the code jumps past the else clause to the end of the if-then expression so only the
then or else code is executed, but not both.

There is one subtle problem in if-then-else expression code generation. Where is
the resulting value when the expression is evaluated? Because register allocation is
done at compile-time, knowing which register will hold the result when the program
executes is not possible at compile-time. Presumably the choice depends on some
input that will not be provided until run-time. However, due to the way register
allocation is implemented, it is safe to assume that the else clause result register
will always hold the result. This is due to the fact that registers that are pushed and
popped from the register stack are symbolic registers. Symbolic registers occupy
the same physical memory location when possible. Both the then clause and else
clause results are physically stored in the same memory location. In example 6.18
the then clause result is in register R4 and the else clause result is in register R5.
But, both R4 and R5 occupy memory location M[0] so using either register name
as the result of the whole if-then expression is safe. In example 6.18 line 18, R5 is
used as the if-then expression result.

6.10 Functions in a Block-Structured Language

Implementing a language with functions poses some interesting problems. Func-
tions have two aspects. They are first implemented and then invoked. Implementing
a compiler for a language with functions means that code must be generated for the
function implementation and the function invocation.

6.10 Functions in a Block-Structured Language 189

Block structured languages like Pascal and Standard ML allow the programmer
to create local bindings with limited scope. In SML, let expressions are used to
define local bindings. However, when local bindings include function declarations
some new challenges must be overcome. Section 1.2 describes how an activation
record exists for each function invocation. When a function is called an activation
record is pushed onto the run-time stack. When a function returns, its activation
record is popped from the stack. The primary problem concerns what happens when
a function, which has its own activation record, tries to access a value that is in
its scope, but bound outside the function’s body. That value exists in a different
activation record. The example below will help make more sense out of this.

Example 6.19

Consider this program that computes the factorial of n. The base case of the
function accesses a value bound to the identifier called base which is not local
to the function.

1 l e t v a l base = 1
2 in
3 l e t fun fact(n) =
4 i f n = 0 then base e l s e n * fact(n-1)
5 in
6 fact(get)
7 end
8 end

To keep things simple let’s assume that all functions are functions of one param-
eter. Then, the general format of function definition is

let fun id(id) = {Expr} in {Expr} end

A function call is denoted by id(Expr). Adding function definitions and function
calls to the language greatly increases its power.

Let’s assume that 5 is entered at the keyboard. When the function in example 6.19
executes it will push one activation record for the main invocation, and one activa-
tion record for each invocation of the fact function. That function will be invoked
6 times. On the sixth invocation the function will need to access the value bound to
base which is all the way back in the first activation record. Figure 6.2 depicts the
run-time stack at its deepest point while computing fact(5).

The problem comes from the fact that the stack pointer (SP) points at the cur-
rent activation record and bound values are usually referenced relative to the stack
pointer. But, the location bound to base is not in that activation record. In fact,
the distance to the correct activation record is unknown since fact(3) might be
computed by the program instead of fact(5). There is nothing in the program
or data that prevents the fact function from being called with different values of
n. If called with a different value, then base is a different distance from the stack
pointer. More information is needed if base is to be found.

Block structured languages are languages where the declaration of local vari-
ables, constant bindings, and functions may be arbitrarily nested in a block. Blocks

190 Language Implementation in Standard ML

Fig. 6.2: The Run-time Stack

Fig. 6.3: Depth Changes in a Program

are delimited in varying ways depending on the language. C uses { ... } for
blocks. Pascal uses begin ... end. SML uses let ... in ... end. Lan-
guages like C, C++, and Java don’t allow nested function declarations. These lan-
guages are not truly block structured according to the definition of block structured
languages used in this text. Some might argue otherwise. Languages like C, C++ and
Java do allow local variables declarations in functions, but since nested function dec-
laration is not allowed to arbitrary depths, the implementation of those languages is
simplified while limiting the expressiveness of the language. It should be noted that
while the ANSI Standard definition of C does not support nested functions, some
implementations do support them as an extension to the language. For instance, the
GNU C compiler does support them.

Languages like Algol, Pascal, and SML support nested function declaration.
These languages must have additional information available to them to be able to
find non-local variables or constant values. One method of providing this informa-

Activation Record for Main
1 (base's value)

Activation Record for fact
5 (n's value)

Activation Record for fact
4 (n's value)

Activation Record for fact
3 (n's value)

Activation Record for fact
2 (n's value)

Activation Record for fact
1 (n's value)

Activation Record for fact
0 (n's value)

SP

let val base = 1
in

 let fun fact (n) =

 if n = 0 then base else n * fact(n-1)

 in
 fact(get)
 end
end

Depth 1

Depth 0

6.10 Functions in a Block-Structured Language 191

Fig. 6.4: The Run-time Stack with Access and Control Links

tion is to keep track of access links, the depth of each bound identifier, and the
current depth. The current depth is depicted in figure 6.3. The depth changes when
a function is declared. At the outermost scope the depth is 0. When a function is
declared it remains at the depth of the outer scope. The parameter to the function
and all local variables or constant values declared inside the function take on the
next deeper level’s depth. In figure 6.3, the body of the fact function is at depth
1. The base identifier, declared at depth 0, is assigned a depth of 0. The parameter
n is assigned depth 1, the depth of the body of the function where it is declared.
The depth of a function’s body is one more than the depth where the function was
declared. The depth of an identifier is the same as the depth where the identifier was
declared.

Access links are created in each activation record to enable finding values that
are in scope, but not in the current activation record. An access link is a pointer
that points to the enclosing block’s activation record. The difference between the
current depth and the depth of a bound value tells the compiler how many access
links must be followed to find a value. For instance, consider the code in figure 6.3.
The constant value base is declared at depth 0 and is located in the main activation
record as depicted in figure 6.4. Recall that an access link points to its enclosing
block’s activation record. So each call to the fact function will have an access link
pointing back to the main activation record. When base is referenced in the body
of fact the current depth is 1. The depth of base is 0 so the compiler must follow
one access link to find the activation record containing base’s value. The access

172: 0 n
171: 50 return addr
...
162: 149 control
161: 100 access

160: 1 n
159: 50 return addr
...
150: 137 control
149: 100 access

148: 2 n
147: 50 return addr
...
138: 125 control
137: 100 access

136: 3 n
135: 50 return addr
...
126: 113 control
125: 100 access

124: 4 n
123: 50 return addr
...
114: 101 control
113: 100 access

112: 5 n
111: 73 return addr
...
102: 100 control
101: 100 access

100: 1 base

Access Links
Control
Links

SP

192 Language Implementation in Standard ML

link is the first field in each activation record. In any of the calls to fact the access
link points to the main activation record, where the value of base is stored.

Offset Purpose
0 Access Link
1 Control Link
2 Saved PR0
3 Saved PR1
4 Saved PR2
5 Saved PR3
6 Saved PR4
7 Saved PR5
8 Saved PR6
9 Saved PR7

10 Saved PR8 (return address)
11 Saved PR9 (function argument)

12+ Local Variables and Constants

Fig. 6.5: Activation Record Format

The activation record is also used to store a control link. When a function is called
an activation record is pushed on the run-time stack. When it returns the activation
record is popped. This pushing and popping happens when the value of the stack
pointer (SP) is changed. Just before a function returns, the old SP value must be
restored to effectively pop the activation record. The control link is the old value of
the SP. It is saved in the activation record by the caller of the function so it can be
restored later just before the function returns.

Register allocation works great in the absence of function calls. But, when a
function is invoked the registers that were in use are unknown in the function’s
code. A function can’t know from where it was called so it can’t figure out what
registers were being used. When code is generated for the body of a function the
compiler doesn’t know which registers can be used and which cannot. To solve this
problem the function must save the contents of all registers it might use. To keep
things simple, in this text all registers are saved when a function is called. The ten
locations immediately following the control link are used to save the registers of the
EWE machine. The symbolic registers of the register allocation framework are all
mapped to memory locations M[0] to M[9]. The identifiers PR0 through PR9 can
be equated to these memory locations. For instance, PR0 represents physical register
0 which is always equated to M[0]. In this way, a function can save the contents
of PR0 to PR9 when the function is called. Then, before the function returns, the
physical registers are restored. When the function returns, the code that called it
won’t know that registers were used by the body of the function. The contents of the
registers will have been preserved across the function call.

When a function call is made the program counter is changed to point at the first
instruction of the function. When a function returns it must return to wherever it was

6.10 Functions in a Block-Structured Language 193

called. Since a function doesn’t know where it was called from, this information
must be stored someplace by the calling code so the function can find it. The return
address is passed to the function in physical register eight so the function can find it.
In addition, the argument’s value must also be stored someplace where the function
can find it. It is stored in physical register nine by convention. Figure 6.5 shows
physical registers PR8 and PR9 are used for these two purposes.

Call/Return Conventions

In any language implementation, function calls only work if the calling and called
code cooperate. These rules of cooperation are often called call/return conventions.
Some conventions are required to always be the same. But, not every language im-
plementation uses all the same conventions. In fact, even different implementations
of the same language may use different conventions. Often the call/return conven-
tions are affected by the architecture the compiled programs will run on. In the case
study being examined in this chapter the following conventions are followed. In the
conventions below the calling code is the code that is calling the function. The called
code is the body of the function.

1. The access link is set by the calling code. This means the new activation record is
accessed by the calling code. The next activation record starts at the next available
offset after the current activation record.

2. The current SP is stored as the control link by the calling code. This value is
stored in the called function’s activation record. The location to store the SP
register is at the next available offset plus one relative to the current activation
record.

3. The argument is stored in PR9 by the calling code during a function call.
4. The Stack pointer is incremented by the calling code to push an activation record

on the stack.
5. The return address is stored in PR8 by the calling code.
6. The function is called by the calling code.
7. The called function immediately stores the contents of the registers PR0 to PR9

in its activation record to preserve them across function calls.
8. After generating the code for the body of the function, the result of the body is

stored in PR9 so the calling code can find it after the function has returned.
9. The compiler must generate code to restore the registers PR0 to PR8 to their

original values before returning from the function.
10. The contents of the stack pointer is restored by the called function to the value

stored in the control link field of the activation record.
11. The function returns by restoring the program counter (PC) to the return address

(located in PR8).
12. The calling code then places the result of the function call, located in PR9 in the

symbolic register designated to hold the result of the function call.

194 Language Implementation in Standard ML

An example of these conventions applied to the factorial program is given in
appendix E. The example is labeled with comments to make the code easier to un-
derstand.

Setting Access Links

When a function is called, the access link must be set in the next activation record
before the call to the function. The access link is set to point to the enclosing block’s
activation record. When fact is called from the main expression the access link
points to the current activation record. So the code

PR8:=SP # set the access link
M[SP+1]:=PR8 # save the access link

is generated. However, when fact is called recursively then the following code is
generated to set the access link.

PR8:=SP # set the access link
PR8:=M[PR8+0] # follow the access link
M[SP+12]:=PR8 # save the access link

The code that follows the access link is repeated zero or more times depending
on the current depth and the depth of the function. The depth of fact is 0. The
depth of the main expression is 0 so there are 0-0=0 access links followed to set the
access link when fact is called from the main expression.

When called recursively, the depth of the body of fact is 1 and fact’s depth is
still 0. The difference 1-0=1 says how many access links are followed before setting
the new access link when called recursively.

Calling a Function

The program counter, PC, always points at the next instruction to be executed. At
the instruction before the function call the PC will be pointing at the function call
instruction. The PC+1 will be the return address. In the factorial example the code
in example 6.20 is generated when the function is called.

Example 6.20

This code is generated by the compiler when a function is called.

1 PR8:=SP # set the access link
2 M[SP+1]:=PR8 # save the access link
3 M[SP+2]:=SP # save the stack pointer
4 PR9:=R9 # put the parameter in reg 9
5 PR8:=1 # increment the stack pointer
6 SP:=SP+PR8

6.11 Sequential Execution 195

7 PR8:=PC+1 # save the return address
8 goto L1 # make the fact function call
9 R9:=PR9 # put the function result in the result

10 # symbolic register

PC+1 is stored in PR8 and the next line calls the function by going to the label
that denotes the start of the function. The line after the goto statement is the first
line after the function call. The address of this instruction was stored in PR8 on the
line before the function call. After the function call, symbolic register R9 receives
the result of the function which was returned in physical register PR9.

Non-local Access

When accessing a value that is not local to the current activation record, some num-
ber of access links must be followed. The number of access links to follow is given
by the difference of the current depth and the depth of the identifier whose value is
being referenced. In the factorial example, when the value bound to base is refer-
enced in the body of the function the following code is generated.

R3:=SP # point to the base of the current activation record
R3:=M[R3+0] # follow one access link
R3:=M[R3+0] # load the value into a symbolic register

The first line sets the symbolic register to point to the base of the current acti-
vation record. The second line follows one access link, the difference between the
current depth and the depth of base. The third line accesses the value bound to
base.

This new way of referencing values in a program can be used when accessing a
local value as well. In that case, zero access links would be followed. This represents
a change in the way values were accessed before implementing function calls.

6.11 Sequential Execution

Sequential execution is interesting when a language has side effects. Assuming that
the calculator language is extended to allow functions, adding the ability to print
values to the screen is trivial (see appendix E to see how a writeln function can
be added to the language). A sequence of one or more statements can be defined as:

ExprSeq : Expr (Expr)
| Expr Semicolon ExprSeq (seq'(Expr,ExprSeq))

Once a sequence of expressions like this is defined the code generation for a
sequence is straightforward. Expression sequences appear in the body of let ex-
pressions and within parens. For example, the LParen Expr RParen rule can
be replaced by LParen ExprSeq RParen.

196 Language Implementation in Standard ML

Defining sequences in this way allows the programmer to write a sequence of
statements anywhere an expression can be written. Just as in SML you can write a
sequence either in the body of a let expression or by placing parens around the
sequence.

6.12 Exercises 197

6.12 Exercises

1. The language of regular expressions can be used to define the tokens of a lan-
guage. Give an example for a regular expression from the chapter and indicate
what kind of tokens it represents.

2. What does ML-lex do? What input does it require? What does it produce?
3. What does ML-yacc do? What input does it require? What does it produce?
4. How can an abstract syntax tree be expressed in ML?
5. The code generator presented in this chapter does a postfix traversal of an AST.

Write an AST representing the expression 5S+R and write some EWE code that
represents the compiled version of this expression. Consider the examples pre-
sented in this chapter and how similar code could be used to produce your answer.
Write some justification for why you are convinced your answer is correct.

6. Given the code presented in example 6.18, consider generating code for a while
loop. A while loop has the following general form

while {Expr} RelOp {Expr} do {Expr}

What code would be generated for this construct? Be as specific as possible. You
may indicate the code generated for the various expressions as codegen(Expr1),
codegen(Expr2), and codegen(Expr3).

7. Complete the basic calculator language compiler. Finish the code generation for
multiplication, division, unary negation, store, and recall. Consult calcast.sml
and write the part of the code generation function to handle the AST nodes that
do not yet have code generated for them. Write the code incrementally. Do just
one operator at a time and test it.

8. Write the code given in example 6.11 to implement the get operator in the cal-
culator. Be sure to test your program. When you test it, the generated code will
display a question mark each time it is waiting for input.

9. Implement let expressions following the information presented in section 6.7 on
page 182. When implementing this code be sure to use the boundTo function
to look up the binding when required. Remember that when code is generated
for an expression, the result is left on the top of the register stack. If that result
is not needed, the register must still be popped and deleted using popReg and
delReg.

10. Add if-then-else expressions to the calculator language as described in sec-
tion 6.9. Make use of the opposite function in the code to find the opposite
of a relational operator when generating the target code. Recall from that section
that the final result of the if-then expression will be in the register pushed on the
register stack by the else clause, even if the else clause code was not executed at
run-time. See the last paragraph in section 6.9 if you haven’t yet read why this is
the case.

11. Implement functions as described in section 6.10 starting on page 188. When
writing code to follow access links the forloop function in calc.sml may
come in handy. The function will repeatedly invoke some function a given num-
ber of time. To print ”hello” 5 times you could write

198 Language Implementation in Standard ML

forloop(5,TextIO.output,(TextIO.stdOut,"hello\n");

Think carefully about what the bindings and other parameters to codegen should
be each time you call it.

12. Add the ability to print values to the screen by examining the code in appendix E.
Then add sequential execution to the calculator language as described in sec-
tion 6.11.

13. Add assignment statements to the language. To do this, add a reference type to
the language. Now bindings can have either constant, function, or reference type.
A variable is declared by writing

let val id = ref {Expr} in {Expr} end

The variable given by the identifier is updated by writing an expression like this

id := {Expr}

This should be declared as a new type of expression in the grammar, not a factor.
The variable is dereferenced by writing the identifier preceded by an exclamation
point. If x were declared as an integer variable then to add one to x you would
write

x := !x + 1

14. Assuming that variable assignment in the previous exercise has been imple-
mented it is possible to implement iteration in the language. Implement a while
loop. A while loop has the form

while {Expr} RelOp {Expr} do {Expr}

6.13 Solutions to Practice Problems 199

6.13 Solutions to Practice Problems

These are solutions to the practice problems . You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 6.1

The keywords let, val, in, end, and the symbol = must be added as tokens.
Identifiers must also be added as a token. The last section of the specification
would look like this.

1 %%
2 \n => (pos := (!pos) + 1; lex());
3 {ws}+ => (lex());
4 "(" => (Tokens.LParen(!pos,!pos));
5 ")" => (Tokens.RParen(!pos,!pos));
6 "+" => (Tokens.Plus(!pos,!pos));
7 "*" => (Tokens.Times(!pos,!pos));
8 "/" => (Tokens.Div(!pos,!pos));
9 "-" => (Tokens.Minus(!pos,!pos));

10 "=" => (Tokens.Equals(!pos,!pos));
11 {digit}+ => (Tokens.Int(sval(explode yytext,0),!pos,!pos));
12 {alpha}{alphanumeric}* =>
13 (l e t v a l tok = String.implode (List.map (Char.toLower)
14 (String.explode yytext))
15 in
16 i f tok="s" then Tokens.Store(!pos,!pos)
17 e l s e i f tok="r" then Tokens.Recall(!pos,!pos)
18 e l s e i f tok = "let" then Tokens.Let(!pos,!pos)
19 e l s e i f tok = "val" then Tokens.Val(!pos,!pos)
20 e l s e i f tok = "in" then Tokens.In(!pos,!pos)
21 e l s e i f tok = "end" then Tokens.End(!pos,!pos)
22 e l s e Tokens.ID(yytext,!pos,!pos)
23 end);
24 . => (error ("error: bad token "ˆyytext); lex());

Solution to Practice Problem 6.2

You need to add two new AST node types. One node must contain the important
let information including the identifier (a string) and the two expressions which
are AST nodes themselves. The other type of node is for referring to the bound
value.

| letval' of string * AST * AST
| valref' of string

200 Language Implementation in Standard ML

Solution to Practice Problem 6.3

The grammar changes required for let expressions are as follows. The ID is
needed when a bound value is referred to in an expression.

Factor : ...
| ID (valref'(ID))
| Let Val ID Equal Expr In Expr End

(letval'(ID, Expr1,Expr2))

Solution to Practice Problem 6.4

Code is generated in a postfix fashion in general. The code generation for multi-
plication and unary negation is similar to addition.

1 | codegen(prod'(t1,t2),outFile,bindings,offset,depth) =
2 l e t v a l _ = codegen(t1,outFile,bindings,offset,depth)
3 v a l _ = codegen(t2,outFile,bindings,offset,depth)
4 v a l reg2 = popReg()
5 v a l reg1 = popReg()
6 in
7 TextIO.output(outFile,reg1ˆ":="ˆreg1ˆ"*"ˆreg2ˆ"\n");
8 delReg(reg2);
9 pushReg(reg1)

10 end
11

12 | codegen(negate'(t1),outFile,bindings,offset,depth) =
13 l e t v a l _ = codegen(t1,outFile,bindings,offset,depth)
14 v a l reg1 = popReg()
15 v a l reg2 = getReg()
16 in
17 TextIO.output(outFile,reg2 ˆ ":= 0\n");
18 (* uses registers, rather than specifying a
19 memory location *)
20 TextIO.output(outFile,reg1ˆ":="ˆreg2ˆ" - "ˆreg1ˆ"\n");
21 delReg(reg2);
22 pushReg(reg1)
23 end

Solution to Practice Problem 6.5

The bindings in the body of the let are [(constant’("x"),0,0)]. There
is only one binding of "x" to offset 0 and depth 0.

6.13 Solutions to Practice Problems 201

Solution to Practice Problem 6.6

1 l e t v a l x = 5
2 in bindings = [(constant'("x"),0,0)]
3 l e t v a l y = 10
4 in bindings = [(constant'("y"),1,0),
5 (constant'("x"),0,0)]
6 l e t v a l x = 7
7 in bindings = [(constant'("x"),2,0),
8 (constant'("y"),1,0),
9 (constant'("x"),0,0)]

10 x + y
11 end
12 +x
13 end
14 end

Recall that bindings are a triple of identifier (with some type information), offset
from the SP (i.e. Stack Pointer), and depth which was described in the section on
implementing functions. The first x is bound to SP+0 which supposedly holds the
value 5. The y is bound to SP+1 which holds 10. Finally, the second x is bound
to SP+2 which hold 7.
In the third version of the bindings the first x is not visible even though it is in
the bindings. The scope of the first x extends through the body of the expression
but it is not always visible since the innermost scope includes another x binding.
The result of executing the program is 22.

202 Language Implementation in Standard ML

6.14 Additional Reading

The case study in this chapter illustrated several features of programming languages.
The implementation of functions in block structured languages is perhaps the most
difficult of the concepts presented. More information on block structured languages
can be found in most programming languages texts. The use of ML-lex and ML-
yacc is presented on the web in several formats, but to my knowledge is not docu-
mented using such a large case study elsewhere.

The implementation of the register allocation framework presented in this text is
described in several papers[18, 19, 20]. The development of this framework evolved
over several years and works well in practice while simplifying code generation.

The goal of the chapter is to provide an introduction to language features by
studying the implementation of a small toy language. Those wishing to learn more
about compiler construction may want to consult a full text on the subject. For in-
stance Aho, Sethi, and Ullman’s dragon book[1]. There are many other good texts
on compiler writing as well.

Chapter 7

Logic Programming

Imperative programming languages reflect the architecture of the underlying von
Neumann stored program computer: Programs update memory locations under the
control of instructions. Execution is (for the most part) sequential. Sequential ex-
ecution is governed by a program counter. Imperative programs are prescriptive.
They dictate precisely how a result is to be computed by means of a sequence of
statements to be performed by the computer.

Example 7.1

Consider this program using the language developed in chapter 6.

l e t v a l m = ref 0
v a l n = ref 0

in
read(m);
read(n);
whi le !m >= !n do m:=!m-!n;
writeln(!m)

end

What do we want to know about this program? Are we concerned with a detailed
decription of what happens when the computer runs this? Do we want to know what
the PC is set to when the program finishes? Are we interested in what is in memory
location 13 after the second iteration of the loop? These questions are not ones that
need to be answered. They don’t tell us anything about what the program does.

Instead, if we want to understand the program we want to be able to describe
the relationship between the input and the output. The output is the remainder af-
ter dividing the first input value by the second input. If this is what we are really
concerned about then why not program by describing relationships rather than pre-
scribing a set of steps. This leads to an alternative approach to programming called
Logic Programming. In Logic Programming the programmer describes the logical
structure of a problem rather than prescribing how a computer is to go about solving
it. Languages for Logic Programming are called:

• Descriptive languages: Programs are expressed as known facts and logical rela-
tionships about a problem. Programmers assert the existence of the desired result

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_7,
© Springer Science+Business Media, LLC 2008

204 Logic Programming

and a logic interpreter then uses the computer to find the desired result by making
inferences to prove its existence.

• Nonprocedural languages: The programmer states only what is to be accom-
plished and leaves it to the interpreter to determine how it is to be accomplished.

• Relational languages: Desired results are expressed as relations or predicates
instead of as functions. Rather than define a function for calculating a square
root, the programmer defines a relation, say sqrt(x,y), that is true exactly when
y2 = x.

While there are many application specific logic programming languages, there
is one language that stands out as a general purpose logic programming language.
Prolog is the language that is most commonly associated with logic programming.
The model of computation for Prolog is not based on the Von Neumann architecture.
It’s based on the mechanism in logic called unification. Unification is the process
where variables are unified to terms.

This text has explored a variety of languages from the EWE assembly language,
to C++ and Ruby, to Standard ML, and now Prolog. These languages explore a
continuum from very prescriptive languages to descriptive languages.

• Assembly language is a very prescriptive language, meaning that you must think
in terms of the particular machine and solve problems accordingly. Program-
mers must think in terms of the von Neumann machine stored program computer
model.

• C++ and Ruby are high-level languages and hence allows you to think in a more
descriptive way about a problem. However, the underlying computational model
is still the von Neumann machine.

• ML is a high-level language too, but allows the programmer to think in a mathe-
matical way about a problem. This language gets away from the traditional von
Neumann model in some ways.

• Prolog takes the descriptive component of languages to the maximum and allows
programmers to write programs based solely on describing relationships.

Prolog was developed in 1972. Alain Colmerauer, Phillipe Roussel, and Robert
Kowalski were key players in the development of the Prolog language. It is a sur-
prisingly small language with a lot of power. The Prolog interpreter operates by
doing a depth first search of the search space while unifying terms to try to come
to a conclusion about a question that the programmer poses to the interpreter. The
programmer describes relationships and then asks questions.

This simple model of programming has been used in a wide variety of applica-
tions including automated writing of real estate advertisements, an application that
writes legal documents in multiple languages, another that analyzes social networks,
and a landfill management expert system. This is only a sampling of the many, many
applications that have been written using this simple but powerful programming
model.

7.1 Getting Started with Prolog 205

7.1 Getting Started with Prolog

If you don’t already have a Prolog interpreter, you will want to download one and
install it. There are many versions of Prolog available. Some are free and some are
not. The standard free implementation is available at http://www.swi-prolog.org.
There are binary distributions available for Windows, Mac OS X, and Linux, so
there should be something to suit your needs.

Unlike SML, there is no way to write a program interactively with Prolog. In-
stead, you write a text file, sometimes called a database, containing a list of facts
and predicates. Then you start the Prolog interpreter, consult the file, and ask yes or
no questions that the Prolog interpreter tries to prove are true.

To start the Prolog interpreter you type either pl or swipl depending on your
installation of SWI Prolog. To exit the interpreter type a ctl-d. A Prolog program
is a database of facts and predicates that can be used to establish further relationships
among those facts. A predicate is a function that returns true or false.

Example 7.2

Prolog programs describe relationships. A simple example is a database of facts
about several people in an extended family and the relationships between them.

1 parent(fred, sophusw). parent(fred, lawrence).
2 parent(fred, kenny). parent(fred, esther).
3 parent(inger,sophusw). parent(johnhs, fred).
4 parent(mads,johnhs). parent(lars, johan).
5 parent(johan,sophus). parent(lars,mads).
6 parent(sophusw,gary). parent(sophusw,john).
7 parent(sophusw,bruce). parent(gary, kent).
8 parent(gary, stephen). parent(gary,anne).
9 parent(john,michael). parent(john,michelle).

10 parent(addie,gary). parent(gerry, kent).
11 male(gary). male(fred).
12 male(sophus). male(lawrence).
13 male(kenny). male(esther).
14 male(johnhs). male(mads).
15 male(lars). male(john).
16 male(bruce). male(johan).
17 male(sophusw). male(kent).
18 male(stephen). female(inger).
19 female(anne). female(michelle).
20 female(gerry). female(addie).
21 father(X,Y):-parent(X,Y),male(X).
22 mother(X,Y):-parent(X,Y), female(X).

Questions we might ask are (1) Is Gary’s father Sophus? (2) Who are Kent’s
fathers? (3) For who is Lars a father? These questions can all be answered by
Prolog given this database.

206 Logic Programming

7.2 Fundamentals

Prolog programs (databases) are composed of facts. Facts describe relationships
between terms. Simple terms include numbers and atoms. Atoms are symbols like
sophus that represent an object in our universe of discourse. Atoms MUST start
with a small letter. Numbers start with a digit and include both integers and real
numbers. Real numbers are written in scientific notation. For instance, 3.14159e0 or
just 3.14159 when the exponent is zero.

A predicate is a function that returns true or false. Predicates are defined in prolog
by recording a fact or facts about them. For instance, example 7.2 establishes the fact
that Johan was the parent of Sophus. parent is a predicate representing a true fact
about the relationship of johan and sophus.

Frequently terms include variables in predicate definitions to establish relation-
ships between groups of objects. A variable starts with a capital letter. Variables are
used to establish relationships between classes of objects. For instance, to be a fa-
ther means that you must be a parent of someone and be male. In example 7.2 the
father predicate is defined by writing

father(X,Y):-parent(X,Y), male(X).

which means X is the father of Y if X is the parent of Y and X is male. The symbol
:- is read as if and the comma in the predicate definition is read as and. So X is a
father of Y if X is a parent of Y and X is male.

Practice 7.1

What are the terms in example 7.2? What is the difference between an atom
and a variable? Give examples of terms, atoms, and variables from example 7.2.

To program in Prolog the programmer first writes a database like the one in ex-
ample 7.2. Then the programmer consults the database so the Prolog interpreter
can internally record the facts that are written there. Once the database has been
consulted, questions can be asked about the database. Questions asked of Prolog
are limited to yes or no questions that are posed in terms of the predicates in the
database. A question posed to Prolog is sometimes called a query.

Example 7.3

To discover if Johan is the father of Sophus you start Prolog using pl or swipl,
then consult the database, and pose the query.

$ pl
?- c o n s u l t('family.prolog').
?- father(johan,sophus).
Yes
?-

7.2 Fundamentals 207

Queries may also contain variables. If we want to find out who the father of
sophus is we can ask that of Prolog by replacing the father position in the predicate
with a variable.

Example 7.4

When using a variable in a query Prolog will answer yes or no. If the answer
is yes, Prolog will tell us what the value of the variable was when the answer
was yes. If there is more than one way for the answer to be yes then typing a
semicolon will tell Prolog to look for other values where the query is true.

?- father(X, sophus).
X = johan
Yes
?- parent(X,kent).
X = gary ;
X = gerry ;
No
?-

The final No is Prolog telling us there are no other ways for parent(X,kent) to
be true.

The Prolog Program

Prolog performs something called unification to search for a solution. Unification
is simply a list of substitutions of terms for variables. A query of the database is
matched with its predicate definition in the database. Terms in the query are matched
when a suitable pattern is found among the parameters of a predicate in the database.
If the matched predicate is dependent on other predicates being true, then those
queries are posed to the Prolog interpreter. This process continues until either Prolog
finds that no substitution will satisfy the query or it finds a suitable substitution.

Prolog uses depth first search with backtracking to search for a valid substitution.
In its search for truth it will unify variables to terms. Once a valid substitution is
found it will report the substitution and wait for input. In example 7.4 the interpreter
reports that X = gary is a substitution that makes parent(X,kent) true. Prolog
waits until either return is pressed or a semicolon is entered. When the semicolon is
entered, Prolog undoes the last successful substitution it made and continues search-
ing for another substitution that will satisfy the query. In example 7.4 Prolog reports
that X = gerry will satisfy the query as well. Pressing semicolon one more time
undoes the X = gerry substitution, Prolog continues its depth first search looking
for another substitution, finds none, and reports No indicating that the search has
exhausted all possible substitutions.

Unification finds a substitution of terms for variables or variables for terms. Uni-
fication is a symmetric operation. It doesn’t work in only one direction. This means

208 Logic Programming

(among other things) that Prolog predicates can run backwards and forwards. For
instance, if you want to know who Kent’s dad is you can ask that as easily as who
is Gary the father of.

Example 7.5

In the following example we find out that gary is the father of kent. We also
find out who gary is the father of.

?- father(X,kent).
X = gary ;
No
?- father(gary,X).
X = kent ;
X = stephen ;
X = anne ;
No

Practice 7.2

Write predicates that define the following relationships.

1. brother
2. sister
3. grandparent
4. grandchild

Depending on how you wrote grandparent and grandchild there might be some-
thing to note about these two predicates. Do you see a pattern? Why?

7.3 Lists

Prolog supports lists as a data structure. A list is constructed the same as in ML. A
list may be empty which is written as [] in Prolog. A non-empty list is constructed
from an element and a list. The construction of a list with head, H, and tail, T, is
written as[H | T]. So, [1,2,3] can also be written as [1| [2 | [3 | []]]]. The list [
a | []] is equivalent to writing [a]. Unlike ML, lists in Prolog do not need to be
homogeneous. So [1, hi, 4.3] is a valid Prolog list.

By virtue of the fact that Prolog’s algorithm is depth first search combined with
unification, Prolog naturally does pattern matching. Not only does [H | T] work to
construct a list, it also works to match a list with a variable.

Example 7.6

Append can be written as a relationship between three lists. The result of ap-
pending the first two lists is the third argument to the append predicate. The first

7.3 Lists 209

fact below says appending the empty list to the front of Y is just Y. The second
fact says that appending a list whose first element is H to the front of L2 results
in [H|T3] when appending T1 and L2 results in T3.

append([],Y,Y).
append([H|T1], L2, [H|T3]) :- append(T1,L2,T3).

Try out append both backwards and forwards!

Example 7.7

The definition of append can be used to define a predicate called sublist as
follows:

sublist(X,Y) :- append(_,X,L), append(L,_,Y).

Stated in English this says that X is a sublist of Y if you can append something on
the front of X to get L and something else on the end of L to get Y. The underscore
is used in the definition for values we don’t care about.
To prove that sublist([1],[1,2]) is true we can use the definition of sublist
and append to find a substitution for which the predicate holds. Here is an exam-
ple of using sublist to prove that [1] is a sublist of [1,2].

rule 1: sublist(X,Y) :- append(_,X,L), append(L,_,Y)
rule 2: append([], Y, Y).
rule 3: append([H | T], Y, [H | L]) :- append(T,Y,L).

sublist([1],[1,2])

append(A,[1],L)

append([],[1],[1])

append(L,R,[1,2])

append([1],R,[1,2])

append([],R,[2])

append([],[2],[2])

Rule 1

Rule 2, A = [], L =[1] Rewrite using L = [1]

Rule 3Fact

Rule 2, R = [2]

Fact

210 Logic Programming

Practice 7.3

What is the complexity of the append predicate? How many steps does it take
to append two lists?

Practice 7.4

Write the reverse predicate for lists in Prolog using the append predicate. What
is the complexity of this reverse predicate?

The Accumulator Pattern

The slow version of reverse from practice problem 7.4 can be improved upon. The
accumulator pattern can be applied to Prolog as it was in SML. Looking back at the
solution to practice problem 5.17 on page 165 the ML solution can be rewritten to
apply to Prolog as well. In the ML version an accumulator argument was added to
the function that allowed the helprev helper function to accumulate the reversed
list without the use of append.

fun reverse(L) =
l e t fun helprev (nil, acc) = acc

| helprev (h::t, acc) = helprev(t,h::acc)
in
helprev(L,[])

end

Unlike SML, Prolog does not have any facility for defining local functions with
limited scope. If using helper predicates in a Prolog program the user and/or pro-
grammer must be trusted to invoke the correct predicates in the correct way.

Applying what we learned from the ML version of reverse to Prolog results in
a helprev predicate with an extra argument as well. In many ways this is the same
function rewritten in Prolog syntax. The only trick is to remember that you don’t
write functions in Prolog. Instead, you write predicates. Predicates are just like
functions with an extra parameter. The extra parameter establishes the relationship
between the input and the output.

Sometimes in Prolog it is useful to think of input and output parameters. For in-
stance, with append defined as a predicate it might be useful to think of the first two
parameters as input values and the third as the return value. While as a programmer
it might sometimes be useful to think this way, this is not how Prolog works. As was
shown in example 7.6, append works both backwards and forwards. But, thinking
about the problem in this way may help identifying a base case or cases. When the
base cases are identified, the problem may be easier to solve.

7.5 Unification and Arithmetic 211

Practice 7.5

Write the reverse predicate using a helper predicate to make a linear time reverse
using the accumulator pattern.

7.4 Built-in Predicates

Prolog offers a few built in predicates. The relational operators (<, >, <=, >=,
and \=) all works on numbers and are written in infix form. Notice that not equals
is written as \= in Prolog.

To check that a predicate doesn’t hold, the not predicate is provided. Preceding
any predicate with not insists the predicate returns false. For instance, not(5 > 6)

returns true because 5 > 6 returns false.
The atom predicate returns true if the argument is an atom. So atom(sophus)

returns true but atom(5) does not. The number predicate returns true if the argument
is a number. So number(5) returns true but number(sophus) does not.

7.5 Unification and Arithmetic

The Prolog interpreter does a depth first search of the search space while unifying
variables to terms. The primary operation that Prolog carries out is unification. Uni-
fication can be represented explicitly in a Prolog program by using the equals (i.e.
=) operator. When equals is used, Prolog attempts to unify the terms that appear
on each side of the operator. If they can be unified, Prolog reports yes and contin-
ues unifying other terms to try to find a substitution that satisfies the query. If no
substitution is possible, Prolog will report no.

You might have caught yourself wanting to write something like X=Y in some of
the practice problems . This is normal, but is the sign of a novice Prolog program-
mer. Writing X=Y in a predicate definition is never necessary. Instead, everywhere Y
appears in the predicate, write X instead.

Unification has one other little nuance that most new Prolog programmers miss.
There is no point in unifying a variable to a term if that variable is used only once
in a predicate definition. Unification is all about describing relationships. Unifica-
tion doesn’t mean much when a variable is not used in more than one place in a
definition. In terms of imperative programming its kind of like storing a value in a
variable and then never using the variable. What’s the point? Prolog warns us when
we do this by saying

Singleton variables: [X]

If this happens, look for a variable called X (or whatever the variable name is) that
is used only once in a predicate definition and replace it with an underscore (i.e. _).

212 Logic Programming

An underscore indicates the result of unification in that position of a predicate isn’t
needed by the current computation. Prolog warns you of singleton variables because
they are a sign that there may be an error in a predicate definition. If an extra vari-
able exists in a predicate definition it may never be instantiated. If that is the case,
the predicate will always fail to find a valid substitution. While singleton variables
should be removed from predicate definitions, the message is only a warning and
does not mean that the predicate is wrong.

The use of equality for unification and not for assignment statements probably
seems a little odd to most imperative programmers. The equals operator is not the
assignment operator in Prolog. It is unification. Assignment and unification are dif-
ferent concepts. Writing X = 6*5 in Prolog means that the variable X must be equal
to the term 6*5, not 30. The equals operator doesn’t do arithmetic in Prolog. Instead,
a special Prolog operator called is is used. To compute 6*5 and assign the result to
the variable X the Prolog programmer writes X is 6*5 as part of a predicate. Using
the is operator succeeds when the variable on the left is unbound and the expres-
sion on the right doesn’t cause an exception when computed. All values on the right
side of the is predicate must be known for the operation to complete successfully.
Arithmetic can only be satisfied in one direction, from left to right. This means that
predicates involving arithmetic can only be used in one direction, unlike the append
predicate and other predicates that don’t involve arithmetic.

Practice 7.6

Write a length predicate that computes the length of a list.

7.6 Input and Output

Prolog programs can read from standard input and write to standard output. Reading
input is a side-effect so it can only be satisfied once. Once read, it is impossible to
unread something. The most basic predicates for getting input are get_char(X)

which instantiates X to the next character in the input (whatever it is) and get(X)

which instantiates X to the next non-whitespace character. The get_char predicate
instantiates X to the character that was read. The get predicate instantiates X to the
ASCII code of the next character.

There is also a predicate called read(X) which reads the next term from the
input. When X is uninstantiated, the next term is read from the input and X is instan-
tiated with its value. If X is already instantiated, the next term is read from the input
and Prolog attempts to unify the two terms.

Example 7.8

As a convenience, there are certain libraries that also may be provided with Pro-
log. The readln predicate may be used to read an entire line of terms from the

7.7 Structures 213

keyboard, instantiating a variable to the list that was read. The readln predicate
has several arguments to control how the terms are read, but typically it can be
used by writing

? - readln(L,_,_,_,lowercase).

Reading input from the keyboard, no matter which predicate is used, causes Pro-
log to prompt for the input by printing a |: to the screen. If the readln predicate
is invoked as shown above, entering the text below will instantiate L to the list as
shown.

|: + 5 S R
L = [+, 5, s, r] ;
No
?-

The print(X) predicate will print a term to the screen in Prolog. The value of its
argument must be instantiated to print it. Print always succeeds even if the argument
is an uninstantiated variable. However, printing an uninstantiated variable results in
the name of the variable being printed which is probably not what the programmer
wants.

Example 7.9

When a query is made in Prolog, each variable is given a unique name to avoid
name collisions with other predicates the query may be dependent on. Prolog
assigns these unique names and they start with an underscore character. If an
uninstantiated variable is printed, you will see it’s Prolog assigned unique name.

?- p r i n t(X).
_G180
X = _G180 ;
No

The print predicate is satisfied by unifying the variable with the name of Pro-
log’s internal unique variable name which is almost certainly not what was intended.
The print predicate should never be invoked with an uninstantiated variable.

7.7 Structures

Prolog terms include numbers, atoms, variables and one other important type of
term called a structure. A structure in Prolog is like a datatype in SML. Structures
are recursive data structures that are used to model structured data. Computer scien-
tists typically call this kind of structured data a tree because they model recursive,
hierarchical data. A structure is written by writing a string of characters preceding a
tuple of some number of elements.

214 Logic Programming

Example 7.10

Consider implementing a lookup predicate for a binary search tree in Prolog. A
tree may be defined recursively as either nil or a btnode(Val,Left,Right)

where Val is the value stored at the node and Left and Right represent the left
and right binary search trees. The recursive definition of a binary search tree
says that all values in the left subtree must be less than Val and all values in the
right subtree must be greater than Val. For this example, let’s assume that binary
search trees don’t have duplicate values stored in them.
A typical binary search tree structure might look something like this:
btnode(5,

btnode(3,
btnode(2, nil, nil),
btnode(4, nil, nil)),

btnode(8,
btnode(7, nil, nil),
btnode(9, nil,

btnode(10, nil, nil))))

which corresponds to the tree shown graphically here.

Items may be inserted into and deleted from a binary search tree. Since Prolog
programmers write predicates, the code to insert into and delete from a binary search
tree must reflect the before and after picture. Because a binary search tree is recur-
sively defined, each part of the definition will be part of a corresponding case for
the insert and delete predicates. So, inserting into a search tree involves the value to
insert, the tree before it was inserted, and the tree after it was inserted. Similarly, a
delete predicate involves the same three arguments.

Looking up a value in a binary search tree results in a true or false response,
which is the definition of a predicate. Writing a lookup predicate requires the value
and the search tree in which to look for the value.

Practice 7.7

Write a lookup predicate that looks up a value in a binary search tree like the
kind defined in example 7.10.

5

3 8

2 4 7 9

10

7.8 Parsing in Prolog 215

7.8 Parsing in Prolog

As mentioned earlier in the text, Prolog originated out of Colmerauer’s interest in us-
ing logic to express grammar rules and to formalize the parsing of natural language
sentences. Kowalski and Comerauer solved this problem together and Colmerauer
figured out how to encode the grammar as predicates so sentences could be parsed
efficiently. The next sections describe the implementation of parsing Colmerauer
devised in 1972.

Example 7.11

Consider the following context-free grammar for English sentences.

Sentence ::= Subject Predicate .
Subject ::= Determiner Noun
Predicate ::= Verb | Verb Subject
Determiner ::= a | the
Noun ::= professor | home | group
Verb ::= walked | discovered | jailed

Given a sequence of tokens like “the professor discovered a group.”, chapter 2
showed that a parse tree can be used to demonstrate that a string is a sentence in the
language and at the same time displays its syntactic structure.

Practice 7.8

Construct the parse tree for “the professor discovered a group.”

Prolog is especially well suited to parse sentences like the one in practice problem
7.8. The language has built in support for writing grammars and will automatically
generate a parser given the grammar of a language. How Prolog does this is not
intuitively obvious. The grammar is taken through a series of transformations that
produce the parser. The next few pages present these transformations to provide
insight into how Prolog generates parsers.

Parsing in Prolog requires the source program, or sentence, be scanned as in
the parser implementations presented in chapters 3 and 6. The readln predicate
discussed on page 212 will suffice to read a sentence from the keyboard and scan
the tokens in it. Using the readln predicate to read the sentence, “the professor
discovered a group.”, produces the list [the, professor, discovered, a, group,‘.’].

A Prolog parser is a top-down or recursive-descent parser. Because the con-
structed parser is top-down, the grammar must be LL(1). There cannot be any left-
recursive productions in the grammar. Also, because Prolog uses backtracking, there
cannot be any productions in the grammar with common prefixes. If there are any
common prefixes, left factorization must be performed. Fortunately, the grammar
presented in example 7.11 is already LL(1).

The Prolog parser will take the list of tokens and produce a Prolog structure.
The structure is the Prolog representation of the abstract syntax tree of the sentence.

216 Logic Programming

For instance, the sentence, “the professor discovered a group.”, when parsed by
Prolog, yields the term sen(sub(det(the), noun(professor)), pred(verb(discovered),
sub(det(a), noun(group)))).

The logic programming approach to analyzing a sentence in a grammar can be
viewed in terms of a graph whose edges are labeled by the tokens or terminals in
the language.

Example 7.12

This is a graph representation of a sentence. Two terminals are contiguous in
the original string if they share a common node in the graph.

A sequence of contiguous labels constitutes a nonterminal if the sequence corre-
sponds to the right-hand side of a production rule in the grammar. The contiguous
sequence may then be labeled with the nonterminal. In the diagram below three
nonterminals are identified.

To facilitate the representation of this graph in Prolog the nodes of the graph are
given labels. Positive integers are convenient labels to use.

The graph for the sentence can be represented in Prolog by entering the following
facts. These predicates reflect the end points of their corresponding labeled edge
in the graph.

the(1,2).
professor(2,3).
discovered(3,4).
a(4,5).
group(5,6).
period(6,7).

Using the labeled graph above, nonterminals in the grammar can be represented
by predicates. For instance, the subject of a sentence can be represented by a
subject predicate. The subject(K,L) predicate means that the path from node
K to node L can be interpreted as an instance of the subject nonterminal.

the professor discovered a group .

the professor

Determiner Noun

Subject

the professor discovered a group .

1 2 3 4 5 6 7

7.8 Parsing in Prolog 217

For example, subject(4,6) should return true because edge (4,5) is labeled by a
determiner “a” and edge (5,6) is labeled by the noun “group”. To define a sentence
predicate there must exist a determiner and a noun. The rule for the sentence predi-
cate is

subject(K,L) :- determiner(K,M), noun(M,L).

The common variable M insures the determiner immediately precedes the noun.

Practice 7.9

Construct the predicates for the rest of the grammar.

Example 7.13

The syntactic correctness of the sentence, “the professor discovered a group.”
can be determined by either of the following queries

?- sentence(1,7).
yes
? - sentence(X,Y).
X = 1
Y = 7

The sentence is recognized by the parser when the paths in the graph correspond-
ing to the nonterminals in the grammar are verified. If eventually a path for the
sentence nonterminal is found then the sentence is valid.

Example 7.14

These are the paths in the graph of the sentence.

Note the similarity of the structure exhibited by the paths in the graph with the
tree of the sentence.

the professor discovered a group .

1 2 3 4 5 6 7
determiner noun verb determiner noun period

subject

predicate

subject

sentence

218 Logic Programming

Difference Lists

There are a couple of problems with the development of the parser above. First,
entering the sentence as facts like the(1,2) and professor(2,3) is impractical
and awkward. There would have to be some preprocessing on the list to get it in
the correct format to be parsed. While this could be done, a better solution exists.
The other problem concerns what the parser does. So far the parser only recognizes
a syntactically valid sentence and does not produce a representation of the abstract
syntax tree for the sentence.

Labeling the nodes of the graph above with integers was an arbitrary decision.
The only requirement of labeling nodes in the graph requires that it be obvious when
two nodes in the graph are connected. Both problems above can be solved by letting
sublists of the sentence label the graph instead of labeling the nodes with integers.
These sublists are called difference lists. A difference list represents the part of the
sentence that is left to be parsed. The difference between two adjacent nodes is the
term which labels the intervening edge.

Example 7.15

This is the difference list representation of the graph.

Using difference lists, two nodes are connected if their difference lists differ by
only one element. This connection relationship can be expressed as a Prolog predi-
cate.

Example 7.16

This is the connect predicate and the grammar rewritten to use the connect pred-
icate.

c([H|T],H,T).

The c (i.e. connect) predicate says that the node labeled [H|T] is connected to the
node labeled T and the edge connecting the two nodes is labeled H. This predicate
can be used for the terminals in the grammar in place of the facts given above.

determiner(K,L) :- c(K,a,L).
determiner(K,L):- c(K,the,L).

noun(K,L) :- c(K,professor,L).
noun(K,L) :- c(K,home,L).

[the,professor,discovered,a,group,'.']

[discovered,a,group,'.']

[professor,discovered,a,group,'.']

the professor discovered a .

[a,group,'.']

[group,'.']

['.']

[]

group

219

noun(K,L) :- c(K,group,L).

verb(K,L) :- c(K,walked,L).
verb(K,L) :- c(K,discovered,L).
verb(K,L) :- c(K,jailed,L).

The graph need not be explicitly created when this representation is employed.
The syntactic correctness of the sentence, “the professor discovered a group.” can
be recognized by the following query.

?- sentence([the,professor,discovered,a,group,'.'], []).
yes

The parsing succeeds because the node labeled with [the, professor, discovered, a,
group, ’.’] can be joined to the node labeled with [] via the intermediate nodes
involved in the recursive descent parse of the sentence. Because Prolog predicates
work backwards as well as forward, it is just as easy to explore all the sentences of
this grammar by posing this query to the Prolog interpreter.

?- sentence(S,[]).

This reveals that there are 126 different sentences defined by the grammar. Some
of the sentences are pretty non-sensical like “the group discovered a group.”. Some
of the sentences like “the group jailed the professor.” have some truth to them. So-
phus Lie used to walk to many of the places he visited partly because he liked
to walk and partly because he had little money at the time. He also liked to draw
sketches of the countryside when hiking. He was jailed in France when France and
Germany were at war because the French thought he was a German spy. It was
understandable since he was walking through the countryside talking to himself in
Norwegian (which the French thought might be German). When they stopped to
question him, they found his notebook full of Mathematical formulas and sketch-
ings of the French countryside. He spent a month in prison until they let him go.
While in prison he read and worked on his research in Geometry. Of his prison
stay he later commented, ”I think that a Mathematician is comparatively well suited
to be in Prison.”[33]. Other mathematicians may not agree with his assessment of
the mathematical personality. At least it was better than being shot, which is what
happened to at least a few suspected spies at the time.

Some care must be taken when asking for all sentences of a grammar. If the
grammar contained a recursive rule, say

Subject ::= Determiner Noun | Determiner Noun ``and'' Subject

then the language would allow infinitely many sentences, and the sentence generator
will get stuck with ever lengthening subject phrases.

7.8 Parsing in Prolog

220 Logic Programming

7.9 Prolog Grammar Rules

Most implementations of Prolog have a preprocessor which translates grammar
rules into Prolog predicates that implement a parser of the language defined by the
grammar.

Example 7.17

The grammar of the English language example takes the following form as a
logic grammar in Prolog:

sentence --> subject, predicate,['.'].
subject --> determiner, noun.
predicate --> verb, subject.
determiner --> [a].
determiner --> [the].
noun --> [professor]; [home]; [group].
verb --> [walked]; [discovered]; [jailed].

Note that terminal symbols appear inside brackets exactly as they look in the
source text. Since they are Prolog atoms, tokens starting with characters other than
lower case letters must be placed within apostrophes. The Prolog interpreter auto-
matically translates these grammar rules into normal Prolog predicates identical to
those defining the grammar presented in the previous section.

Building an AST

The grammar given above is transformed by a preprocessor to generate a Prolog
parser. However, in its given form the parser will only answer yes or no, indicating
the sentence is valid or invalid. Programmers also want an abstract syntax tree if the
sentence is valid. The problem of producing an abstract syntax tree as a sentence is
parsed can be handled by using parameters in the logic grammar rules.

Predicates defined using Prolog grammar rules may have arguments in addition
to the implicit ones created by the preprocessor. These additional arguments are
inserted by the translator to precede the implicit arguments.

Example 7.18

For example, the grammar rule

sentence(sen(N,P)) --> subject(N), predicate(P), ['.'].

will be translated into the Prolog rule

sentence(sen(N,P),K,L) :- subject(N,K,M),
predicate(P,M,R),c(R,'.',L).

A query with a variable representing a tree produces that tree as its answer.

7.9 Prolog Grammar Rules 221

?- sentence(Tree, [the,professor,discovered,a,group,'.'],[]).
Tree = sen(sub(det(the),noun(professor)),

pred(verb(discovered),sub(det(a),noun(group))))

Practice 7.10

Write a grammar for the subset of English sentences presented in this text to
parse sentences like the one above. Include parameters to build abstract syntax
trees like the one above.

Writing an interpreter or compiler in Prolog is relatively simple given the gram-
mar for the language. Once the AST has been generated for an expression in the
language the back end of the interpreter or compiler proceeds much like it does in
other languages.

222 Logic Programming

7.10 Exercises

1. In these exercises you should work with the relative database presented at the
beginning of this chapter.

a. Write a rule (i.e. predicate) that describes the relationship of a sibling. Then
write a query to find out if Anne and Stephen are siblings. Then ask if Stephen
and Mike are siblings. What is Prolog’s response?

b. Write a rule that describes the relationship of a brother. Then write a query to
find the brothers of SophusW. What is Prolog’s response?

c. Write a rule that describes the relationship of a niece. Then write a query to
find all nieces in the database. What is Prolog’s response?

d. Write a predicate that describes the relationship of cousins.
e. Write a predicate that describes the relationship of distant cousins. Distant

cousins are cousins that are cousins of cousins but not cousins. In other words,
your cousins are not distant cousins, but second cousins, third cousins, and so
on are distant cousins.

2. Write a predicate called odd that returns true if a list has an odd number of ele-
ments.

3. Write a predicate that checks to see if a list is a palindrome.
4. Show the substitution required to prove that sublist([a,b],[c,a,b]) is true. Use the

definition in example 7.7 and use the same method of proving its true.
5. Write a predicate that computes the factorial of a number.
6. Write a predicate that computes the nth fibonacci number in exponential time

complexity.
7. Write a predicate that computes the nth fibonacci number in linear time complex-

ity.
8. Write a predicate that returns true if a third list is the result of zipping two others

together. For instance,

zipped([1,2,3],[a,b,c],[pair(1,a),pair(2,b),pair(3,c)])

should return true since zipping [1,2,3] and [a,b,c] would yield the list of pairs
given above.

9. Write a predicate that counts the number of times a specific atom appears in a
list.

10. Write a predicate that returns true if a list is three copies of the same sublist. For
instance, the predicate should return true if called as

threecopies([a, b, c, a, b, c, a, b, c]).

It should also return true if it were called like

threecopies([a,b,c,d,a,b,c,d,a,b,c,d]).

7.11 Solutions to Practice Problems 223

7.11 Solutions to Practice Problems

These are solutions to the practice problems . You should only consult these answers
after you have tried each of them for yourself first. Practice problems are meant to
help reinforce the material you have just read so make use of them.

Solution to Practice Problem 7.1

Terms include atoms and variables. Atoms include sophus, fred, sophusw, kent,
johan, mads, etc. Atoms start with a lowercase letter. Variables start with a capital
letter and include X and Y from the example.

Solution to Practice Problem 7.2

1. brother(X,Y) :- father(Z,X), father(Z,Y), male(X).

2. sister(X,Y) :- father(Z,X), father(Z,Y), female(X).

3. grandparent(X,Y) :- parent(X,Z), parent(Z,Y).

4. grandchild(X,Y) :- grandparent(Y,X).

Grandparent and grandchild relationships are just the inverse of each other.

Solution to Practice Problem 7.3

The complexity of append is O(n) in the length of the first list.

Solution to Practice Problem 7.4

reverse([],[]).
reverse([H|T],L) :- reverse(T,RT), append(RT,[H],L).

This predicate has O(n2) complexity since append is called n times and append
is O(n) complexity.

Solution to Practice Problem 7.5

reverseHelp([],Acc,Acc).
reverseHelp([H|T], Acc, L) :- reverseHelp(T,[H|Acc],L).
reverse(L,R):-reverseHelp(L,[],R).

224 Logic Programming

Solution to Practice Problem 7.6

len([],0).
len([H|T],N) :- len(T,M), N i s M + 1.

Solution to Practice Problem 7.7

lookup(X,btNode(X,_,_)).
lookup(X,btNode(Val,Left,_)) :- X < Val, lookup(X,Left).
lookup(X,btNode(Val,_,Right)) :- X > Val, lookup(X,Right).

Solution to Practice Problem 7.8

Solution to Practice Problem 7.9

sentence(K,L) :- subject(K,M), predicate(M,N), period(N,L).
subject(K,L) :- determiner(K,M), noun(M,L).
predicate(K,L) :- verb(K,M), subject(M,L).
determiner(K,L) :- a(K,L); the(K,L).
verb(K,L) :- discovered(K,L); jailed(K,L); walked(K,L).
noun(K,L) :- professor(K,L); group(K,L); home(K,L).

Sentence

Subject Predicate

Determiner Noun Verb Subject

Determiner Nounthe professor

.

discovered

a group

7.12 Additional Reading 225

Solution to Practice Problem 7.10

sentence(sen(N,P)) --> subject(N), predicate(P), ['.'].
subject(sub(D,N)) --> determiner(D), noun(N).
predicate(pred(V,S)) --> verb(V), subject(S).
determiner(det(the)) --> [the].
determiner(det(a)) --> [a].
noun(noun(professor)) --> [professor].
noun(noun(home)) --> [home].
noun(noun(group)) --> [group].
verb(verb(walked)) --> [walked].
verb(verb(discovered)) --> [discovered].
verb(verb(jailed)) --> [jailed].

7.12 Additional Reading

There are several good books on Prolog programming. The Prolog presented in this
chapter is enough to get a flavor of the language and a good start programming in
the language. Things left out of the discussion include the cut operator and some
nuances of how unification is done (i.e. the difference between = and ==). Reading
from and writing to files was also left out. The definitive book for more information
is Clocksin and Mellish[7]. This book lacks exercises but contains many examples
and is a good reference once you understand something about how to program in
Prolog (which I hope you do now that you’ve read the chapter and worked through
the problems).

Chapter 8

Formal Semantics

Describing the syntax of a language, as was discussed in chapter 2, is not sufficient
for describing the complete meaning of the language. Syntax descriptions say what a
program should look like, but not what a program means. The meaning of a language
is called the semantics of the language by computer scientists. Language designers
have long struggled to find the best way to describe the meaning of a language. Most
language descriptions rely on English or some other informal language to describe
their meaning. Because technical sentences in English can often be interpreted in
more than one way, English (or any other informal language) is not necessarily the
best choice for a precise definition of a programming language.

Computer scientists have long sought a formal language for describing the mean-
ing of other languages. This area of computer science is referred to as Formal
Semantics of Language Description or sometimes just Formal Semantic Methods.
Most formal semantic methods relate the formal syntax of a language to a formal
mathematical description of its meaning.

Up to this point the semantics of the languages we have implemented have been
described in English and implemented as compilers and interpreters. We have relied
on the compiler or interpreter and your own intuitive understanding of programming
languages in general to give meaning to the languages you have implemented. This
isn’t always a good idea.

Why a Formal Method?

For a language to be formally defined means there is no room for interpretation of
how programs written in the language should behave. This may seem like an obvi-
ous goal of programming languages, but you might be surprised by how differently
languages will behave depending on their implementation. Some aspects of a lan-
guage may be very subtle. Subtle differences may not show up in most programs,
but when they do appear it can be difficult to figure out exactly what is going on.
This happened to me a few years ago when compiling and running some C++ code.

K.D. Lee, Programming Languages, DOI: 10.1007/978-0-387-79421-1_8,
© Springer Science+Business Media, LLC 2008

228 Formal Semantics

Example 8.1

Consider this example of C++ code.

int x = 1;
cout << x++ << " " << x << endl;

The expression x++ is the postfix increment operator. It yields the value stored
in x and then increments the x variable. You might expect this code to print “1
2” to the screen. However, the English description of the C++ language, called the
Annotated C++ Reference Manual[11], doesn’t specify in which order expressions
are evaluated within one statement. Therefore, the code could also print “2 1” and
that would be just as valid according to the language description. When this code
was compiled with two different compilers, the GNU g++ compiled program printed
“1 2” while a MIPS C++ compiled version of the program printed “2 1”. When you
write a program in a modern programming language you expect to get the same
results regardless of the compiler or interpreter that you use to compile or run it.
Unfortunately, this isn’t always the case with programs in many languages.

In another example the language designer tried to be as explicit as possible about
the language semantics. But, because English sentences are sometimes ambiguous,
different people can read the same text and associate different meanings to it. The
originator of Pascal, Niklaus Wirth, described type checking of Pascal programs
like this (a paraphrase):

In Pascal assignment of one variable to another is allowed if the types of the two variables
are equivalent.

It appears to be straightforward, but is it?

Example 8.2

This is a very simple Pascal program involving two records that have the same
type of fields but different names.

program types;
type A = record

g:integer;
h:string;

end;
B = record

i:integer;
j:string;

end;
var x : A;

y : B;
begin
x.g := 5;
x.h := "hi";
y := x

end.

8.1 Attribute Grammars 229

Is it a valid program? Well, yes and no. The variables x and y have two different
types. One is type A the other type B. A group of grad students under Niklaus Wirth
decided that his description of types meant they must be name equivalent. They im-
plemented a compiler that rejected this program. However, Dr. Wirth was fostering
competition between his research students and two groups were working on sepa-
rate compilers for Pascal. The other group read the same description and decided
that the program was valid because the types are structurally equivalent. Two dif-
ferent groups of bright people interpreted the same text description in drastically
different ways.

Finally, one of the bigger projects in recent years was the development of the
Java programming language. Java was designed with the goal of being a cross plat-
form programming environment. This portability hinged on implementations of the
Java Virtual Machine for each platform that Java should run on. Early in the devel-
opment of Java, Sun relied on an English description of the JVM and a very large
set of compatibility tests called the JCK (i.e. Java Compatibility Kit). These tests
and the English language description of the JVM were supposed to insure that the
JVM would work exactly the same independent of the underlying operating system
and hardware. The problem was that developers still had trouble implementing the
JVM and therefore needed additional help. This help ended up being found in the
licensing of the Java Virtual Machine software from Sun. The actual software was
needed as a formal description of how the program worked. In November of 2006,
Sun announced the release of the JVM source code under the GPL (GNU Public
License) to encourage further development of Java and products relating to Java.

The rest of this chapter introduces three methods of formally specifying pro-
gramming language semantics. This area of Computer Science is still very much a
research area. While three methods are presented, none of them are developed well
enough to be used by everyone, although Action Semantics has the potential to be
used in a wide variety of language descriptions.

8.1 Attribute Grammars

Consider a prefix version of the Calculator expression language first presented in
chapter 3. The contents of the memory location after evaluating an expression is
not specified by the grammar of the language. In fact, the purpose of any of the
operators is not made explicit in the grammar. Even though we know that * stands
for multiplication, there is nothing in the grammar itself that insists this be the case.
Other means are necessary to convey that meaning. One such method of conveying
the semantics of a language is called an attribute grammar. An attribute grammar
adds attributes to each node of an abstract syntax tree for sentences in the language.

The attributes tell us how a program would be evaluated in terms of its abstract
syntax tree. In other words, an attribute grammar provides a mapping of the syntax
of a program into a set of attributes that describe the semantics of the program.

230 Formal Semantics

Fig. 8.1: Annotated AST for + S 4 R

Example 8.3

Here is the grammar for prefix calculator expressions. The grammar represents
prefix expressions because the operation is written before its arguments. So,
+ 5 * 6 4 results in 29 when evaluated. Notice that when written in prefix no-
tation, the expression S 5 stores 5 in the memory location. S is now a prefix
operator and not a postfix operator as it was previously defined.

Prog→ Expr EOF
Expr→ op Expr Expr | S Expr | number | R

where op is one of +,−,∗,/

The Prog production in the abstract syntax below was added to assist in the
definition of the attribute grammar. Notice that parenthesis have disappeared in
the concrete syntax as well as practically all the nonterminals. They aren’t needed
in a prefix expression grammar. The precedence of operators is determined by the
order of operations within the expression. The concrete syntax of the language
shown above leads to the abstract syntax description below. Since the precedence
of operations is determined by the order they appear, the concrete and abstract
syntax are nearly identical.

AST → Prog AST | op AST AST | Store AST | Recall | number
where op is one of +,−,∗,/

+

S R

4

min = 0

mout = 0

val = 4

min = 0

mout = 4

val = 8

Prog

val = 8

min = 0

mout = 4

val = 4

min = 4

mout = 4

val = 4

8.1 Attribute Grammars 231

An attribute grammar attaches assignment statements for the attributes to each
node in the abstract syntax tree. To distinguish between parts of the abstract syn-
tax tree, let AST0 denote the AST on the left hand side of a production and ASTi

where i>0 represent an AST on the right hand side of the production. The attribute
grammar for the calculator language is given in example 8.4. Semantics rules are
attached to each of the productions in the AST’s grammar. These rules govern the
assignment of the attributes in the AST. The small numbers to the left of each rule
are there simply to number the rules and are not part of the attribute grammar. By
deriving an AST for a sentence and then applying the semantic rules the tree is dec-
orated with attributes that describe the meaning of the sentence, or program, in the
language.

Example 8.4

Here is the attribute grammar of calculator expressions.

AST → Prog AST

(1) AST1.min = 0

(2) AST0.val = AST1.val
AST → op AST AST

(3) AST1.min = AST0.min

(4) AST2.min = AST1.mout

(5) AST0.mout = AST2.mout

(6) AST0.val = AST1.val op AST2.val
where op is one of +,−,∗,/

AST → Store AST

(7) AST1.min = AST0.min

(8) AST0.mout = AST1.val

(9) AST0.val = AST1.val
AST → Recall

(10) AST0.val = AST0.min

(11) AST0.mout = AST0.min
AST → number

(12) AST0.mout = AST0.min

(13) AST0.val = number

The attribute grammar given in example 8.4 can be used to convey the meaning
of evaluating an expression like + S 4 R. Figure 8.1 depicts the annotated AST
according to the attribute grammar given in example 8.4.

Practice 8.1

Justify the annotation of the tree given in figure 8.1 by stating which rule was
used in assigning each of the attributes annotating the tree.

232 Formal Semantics

Attribute Types

Attributes in an attribute grammar come in two flavors. Some attributes are inherited
which means they are derived from values that are above or to the left in the AST.
Some attributes are synthesized meaning they are derived from values that are below
or to the right in the tree. The val attribute is a synthesized attribute in the attribute
grammar presented in example 8.4.

Practice 8.2

Is the min attribute synthesized or inherited? Is the mout attribute synthesized
or inherited?

Attribute grammars work great for small languages. When a language is larger,
the number of attributes can grow exponentially, resulting in a very large annotated
tree. In addition, attribute grammars don’t deal well with things like control flow
and values that aren’t determined until run-time. There are many aspects of pro-
gramming languages that are difficult to assign as attributes in an AST. Typically,
attribute grammars work well for small interpreted languages with little or no un-
known information.

8.2 Axiomatic Semantics

The goal in Axiomatic Semantics is to prove the correctness of code. This goal is
accomplished through logic considering preconditions and postconditions of state-
ments within a program. The meaning of a program is given in terms of axioms and
rules of inference. Each statement in the language is given an inference rule that
describes its meaning.

For instance, the meaning of an assignment statement can be given in terms of

{PV
E }V := E{P} (8.1)

where the meaning of PV
E is that E is substituted for every free occurrence of V

in P. Sequential execution of statements has a rule of inference. It is called the
Composition rule:

{P}S1{Q} and {Q}S2{R}
{P}S1;S2{R}

(8.2)

Logic is a very precise language. In logic if P implies Q then something stronger
than P also implies Q. This is the rule of strengthening preconditions

P ⊃ Q and {Q}S{R}
{P}S{R}

(8.3)

and likewise there is a weakening postconditions rule

8.2 Axiomatic Semantics 233

{P}S{Q} and Q ⊃ R
{P}S{R}

(8.4)

If-then-else statements can be descrribed by the the If-Then-Else rule

{P∧B}S1{Q} and {P∧B}S2{Q}
{P}i f B then S1 else S2{Q}

(8.5)

and If-then statements by the If-Then rule

{P∧B}S{Q} and P∧B ⊃ Q
{P}i f B then S{Q}

(8.6)

Example 8.5

Consider the following Pascal code to find the maximum of three numbers:

m:= i; //statement S1
if m < j then m:=j; //statement S2
if m < k then m:=k; //statement S3

Assume we would like to prove that m is equal to the maximum of i, j, and k (i.e.
m ≥ i and m ≥ j and m ≥ k) after the sequence of statements above is executed.
To prove this we will need to use the rules of inference that have been defined and
the assignment axiom. The assignment axiom is easier to use if used backwards.
Starting with the last statement, S3, the proof begins by working through the
statements in reverse order.

{ m<k and m>=i and m>=j }
implies { k>=i and k>=j and k=k }

m:=k;
{ m>=i and m>=j and m=k }

implies { m>=i and m>=j and m>=k }

This was derived by applying inference rules 8.4, 8.2, and 8.3 in that order by
working backward through the assignment statement. The precondition of the
assignment statement in S3 is now { m<k and m>=i and m>=j }. If the condi-
tion in S3 is false (i.e. m>=k) then we automatically have

{ m>=i and m>=j and m>=k }

which is the post condition of the whole if-then statement. Therefore, according
to the If-Then rule, inference rule 8.2, we have

{ m>=i and m>=j } if m < k then m:=k;
{ m>=i and m>=j and m>=k }

Similarily, for S2 if m<j we find that

{ m<j and m=i } implies { j>=i and j=j }
m:=j;
{ m>=i and m=j } implies { m>=i and m>=j }

234 Formal Semantics

by rules 8.4, 8.3, and 8.2. In S2, if m>=j we get

{ m=i and m>=j } implies { m>=i and m>=j }

Finally, to finish the proof

{ t rue } implies { i=i } m:=i { m=i }

Putting it all together results in the following proof.

{ t rue } implies { i=i and j=j and k=k }
m:=i;
{ m=i and j=j and k=k } implies { m>=i and j=j and k=k }
if m < j then m:= j;
{ m>=i and m>=j and k=k }
if m < k then m := k;
{ m>=i and m>=j and m>=k }

Axiomatic Semantics has been used for two purposes. Proving properties of spe-
cific programs as was done here is one purpose. The other purpose of Axiomatic
Semantics centers on formal language definition. The problems associated with Ax-
iomatic Semantics are due to the complexity of finding a proof in a proof system.
Fully automated theorem proving is not possible. Proofs must be constructed by
a human being using proof techniques and sometimes intuition into how to solve
a problem. Proofs get especially complicated when looping structures and other
higher level concepts, like exception handling, are added to a language. Loop con-
structs require the identification of a loop invariant which typically takes some prac-
tice to get good at. The inability to automate the proving of program properties
means that Axiomatic Semantics will remain a largely academic effort.

8.3 Action Semantics

Action semantics was first proposed by Peter Mosses [25] with the collaboration of
David Watt [37]. Several motivations lie behind the design of action semantics. First
and foremost, Mosses and Watt wanted a formal language for specifying program-
ming language semantics that was accessible and useful to a wide range of computer
scientists, from programmers to language designers.

Action semantics had its roots in another formal semantic method called de-
notational semantics, so the two meta-languages share many characteristics. Both
denotational semantics and action semantics rely on semantic functions to compo-
sitionally map an abstract syntax tree representing a program to its semantic equiv-
alent, either a denotation or an action, respectively. Both denotational semantics
and action semantics make use of an environment that holds information about the
state of the computation. However, the two formal methods define the environment
differently.

8.3 Action Semantics 235

The Small Language

The Small language is a subset of ML lacking higher order functions but including
some of the imperative features of the language. There are also a couple of non-
standard functions for input and output which were added to the language. The
complete language and its action semantics are presented in appendix F. Many of
these language features and their implementation were discussed in chapter 6. The
language includes:

• Variables with assignment
• Iteration - while loops
• Selection - if then else statements
• Functions with zero or more parameters
• Input of ints
• Output of ints and bools

Example 8.6

Here is an example Small program which computes the factorial of a number
entered at the keyboard and then prints the result to the screen.

let fun fact(x) =
if x=0 then 1
else
(output(x);
x*fact(x-1))

in
output(fact(input()))

end

Running the program produces the following interaction.

? 5
5
4
3
2
1
120

The Action of Factorial

The formal semantics of this program is given by an action. An action describes the
meaning of a program by describing how three things (the transients, bindings, and
storage) are modified by the program. Here is the action for the factorial program.

236 Formal Semantics

||bind "output" to native abstraction of an action
||[using the given (i n t e g e r|truth-value)][giving ()]
|before
||bind "input" to native abstraction of an action
||[using the given ()][giving an i n t e g e r]
hence
||furthermore
|||recursively
||||bind "fact" to closure of the abstraction of
||||||furthermore
|||||||bind "x" to the given (i n t e g e r|truth-value)\#1
|||||thence
||||||||||give (i n t e g e r|truth-value) bound to "x"
|||||||||or
||||||||||give [(i n t e g e r|truth-value)]cell bound to "x"
||||||||and then
|||||||||give 0
|||||||then
||||||||give the given ((i n t e g e r|truth-value)|
|||||||| [(i n t e g e r|truth-value)]cell)\#1
|||||||| i s the given ((i n t e g e r|truth-value)|
|||||||| [(i n t e g e r|truth-value)]cell)\#2
||||||then
||||||||give 1
|||||||else
|||||||||||give (i n t e g e r|truth-value) bound to "x"
||||||||||or
|||||||||||give [(i n t e g e r|truth-value)]cell bound to "x"
|||||||||then
||||||||||enact application of the abstraction of an action
||||||||||bound to "output" to the given data
||||||||then
||||||||||||give (i n t e g e r|truth-value) bound to "x"
|||||||||||or
||||||||||||give [(i n t e g e r|truth-value)]cell bound to "x"
||||||||||and then
|||||||||||||||give (i n t e g e r|truth-value) bound to "x"
||||||||||||||or
|||||||||||||||give [(i n t e g e r|truth-value)]cell bound to "x"
|||||||||||||and then
||||||||||||||give 1
||||||||||||then
|||||||||||||give the difference of
|||||||||||||(the given i n t e g e r\#1, the given i n t e g e r\#2)
|||||||||||then
||||||||||||enact application of the abstraction of an action
||||||||||||bound to "fact" to the given data
|||||||||then
||||||||||give the product of the given data
|hence
|||||complete
||||then
|||||enact application of the abstraction of an action bound to
|||||"input" to the given data

8.3 Action Semantics 237

|||then
||||enact application of the abstraction of an action bound to
||||"fact" to the given data
||then
|||enact application of the abstraction of an action bound to
|||"output" to the given data

Data and Sorts

Meta-languages such as action semantics manipulate semantic objects, called data,
that model the data types of the programming languages they describe. Several sorts
of data are available in action semantics, including integers, lists, maps, characters,
and strings among others. Notice that they were referred to as sorts of data, not
types of data. Action semantics is defined using unified algebras [25]. In this con-
text, sorts represent a unified approach to data types. The sort datum contains all
individuals. Subsorts of datum include the integer, character, and string sorts. The
action above contains sorts called variable, value, cell, and 10. Each of these sorts,
except the singleton sort 10, have members that are themselves sorts. For instance,
the integer 10 is a singleton sort and is also a subsort of the integer and datum sorts.
Sorts that contain more than one individual are called proper sorts. A type system
requires a distinction be made between elements of a type and the type itself. In a
sort system there is no distinction; elements of a sort are simply subsorts.

data is a sort that consists of tuples of datum. Tuples in action semantics are
flat. They cannot be nested. So, the tuple (10,(5,3)) is equivalent to (10,5,3).

There are two operators in action semantics for constructing sorts from other
sorts, the join and meet operators. The join operator, written using the vertical bar,
is a binary sort operator that constructs a new sort consisting of all individuals of the
two sorts. The meet operator, written using an ampersand, is also a binary operator
that constructs a new sort consisting of all individuals that were contained in both
sorts. For example,

integer truth-value = {false,true,0,-1,1,-2,2,...}
integer & truth-value = nothing
false true = truth-value

The vacuous sort nothing is a special sort that represents the sort containing
no individuals. Sort operators are strict in nothing. For any sort s, the following
equations hold

s & nothing = nothing
s | nothing = s

While action semantics defines sorts like integer, character, string, and data,
nothing prevents the user of action semantics from extending it to include whatever
sort may be needed for the language he or she is describing. Since action semantics

238 Formal Semantics

is defined using unified algebras, a new sort may be added to an action semantic
definition by providing an algebraic specification of its properties.

The Current Information

Action semantics, as the name implies, was designed to provide a means to define
programming languages in terms of actions. Actions represent computational enti-
ties that may be performed to modify the current information embodied in the form
of storage, bindings, and transients. Every action accepts the current information
and possibly generates new information that becomes the current information after
the performance of the action. An action semantic definition of a programming lan-
guage describes how the current information is modified as a program is executed.
The current information is composed of:

• Transients
Transients represent intermediate, or short-lived, values that are given when eval-
uating actions. Transients are represented as data, a tuple of datum. For instance,
the primitive action ‘give 10’ produces the transient tuple (10).

• Bindings
Bindings, represented by a finite mapping sort called map, record the binding
of identifiers to a sort called bindable data. bindable data, called denotable val-
ues in denotational semantics, usually includes cells, values, and abstractions
representing procedures and functions in programming languages. Bindings are
created through the use of primitive actions like ‘bind “n” to the given value’,
which produces a map of the identifier “n” to the bindable value.

• Storage
Storage represents stable information and is a map of locations, called cells to
storable data. Storage is persistent: Once the contents of a cell have been altered,
it retains that value until it is changed again. Storage, like bindings, is modified
by primitive actions. For instance, the primitive action ‘store the given value#2
in the given variable#1’ stores the datum 10 in the cell bound to the identifier
“m” given the appropriate transients and bindings. Note that the sort variable is
just another name for the sort cell in this example.

Yielders

Yielders are evaluated to yield information based on the current information. Yield-
ers can access a value in the current information, either in the transients, bindings, or
store, and return the value as a transient. For instance, ‘given value#2’ gives a new
transient value from the current transient tuple’s second element, if it is a value. A
few yielders are:

8.3 Action Semantics 239

• given S
Assumes that the current transient consists of datum d, which is a subsort of S,
and yields d. If d is not a subsort of S, then the yielder yields nothing.

• given S#n
Assumes that the current transient tuple includes a datum d, a subsort of S, at
position n in the tuple. It yields d, if d is a subsort of S and nothing otherwise.

• S bound to id
Expects that the current bindings includes a mapping of id to d, a subsort of S. If
it does, then the yielder yields d. If d is not a subsort of S or there is no binding
of id in the bindings, then it yields nothing.

• S stored in C
Assumes that the current storage maps location C to a storable datum d, where
d is a subsort of S, and yields d. Otherwise, it yields nothing.

Primitive Actions

Transients, bindings, and storage make up the current information of an action. In
the language of action semantics, primitive actions give new transient values, pro-
duce new bindings, or alter storage.

For instance, the primitive action ‘give 10’ gives the transient tuple (10). Prim-
itive actions may use a yielder to interrogate the current information. For instance,
the primitive action ‘give the given integer’ gives the integer in the current tran-
sients. Likewise, the primitive actions ‘bind to ’, and ‘store in ’ produce
bindings and alter storage, respectively.

Yielders such as those shown above are used to interrogate the current informa-
tion. Primitive actions use this information to form new transients and bindings and
to alter storage. Yielders themselves do not effect the transients or bindings or alter
storage. Primitive actions, used in conjunction with yielders, do the work of giving
transients, producing bindings, and altering storage.

Two special actions, fail and complete, are the actions that always fail and com-
plete when performed, respectively. These actions are of little interest except in
serving as units in action semantics. The complete action represents the action
that gives no transients,produces no bindings, and does not alter storage when per-
formed.

Example 8.7

Here are some examples of primitive actions.

– allocate a cell
· sets aside a new cell in storage and gives it as a transient

– bind M to 5
· produces the new binding in the outgoing bindings

240 Formal Semantics

– store 6 in the given cell
· stores 6 by mapping the given cell to the value 6.

Combinators and Facets

Action semantics would not be very interesting if primitive actions could not
be combined to produce more complex actions. Combinators are used to con-
struct compound actions from subactions. Examples of combinators are and, then,
hence, and furthermore. The current information is not explicitly propagated in
action semantics (unlike denotational semantics). Combinators are defined to prop-
agate parts of the current information and are also responsible for controlling the
order of performance of their subactions. Action semantics contains a wealth of
combinators, each with slightly different semantics. When learning action semantics
it is difficult to remember how each combinator propagates the current information.

It is useful to study combinators with respect to their facets. There are five facets
of action semantics, but only three are considered here. They correspond to the
three components of the current information: the functional facet for transients, the
declarative facet for bindings, and the imperative facet for storage. Every combina-
tor affects these facets in different ways. Remember that every action accepts current
information and generates new information. The same is true for compound actions.
A combinator affects how the current information is passed to each of its subactions,
and how the information generated by each subaction is combined. Most combina-
tors are binary, combining two subactions into one compound action. For instance,
consider the action

give 10
then
bind “n” to the given value

In the functional facet the then combinator propagates the transients given by the
first subaction to the transients used by the second subaction. So, in this example,
10 is given as the outgoing transient of the first subaction and the second subaction
uses the singleton tuple 10 as its incoming transient value.

The behavior of the then combinator is described by figure 8.2. Combinator
diagrams were first introduced by Slonneger [30] and help in understanding the
properties of combinators with respect to each facet. The diagrams show the flow
of transients and bindings through a compound action with respect to a specific
combinator. Transients flow from top to bottom, while bindings flow from left to
right. For instance, the then combinator propagates the incoming transients to A.
The transients given by A are passed to B, the second subaction. The transients given
by the compound action are the transients given by B. The bindings received by the
compound action, A then B, are propagated to each of the subactions. Bindings
produced by the compound action are the merged bindings produced by subactions

8.3 Action Semantics 241

Fig. 8.2: The then Diagram

A and B. The dashed line in figure 8.2 indicates control flow. The then combinator
requires that A completes first, followed by the performance of B. Since storage is
part of the imperative facet, changes made to storage by A are seen by B when it is
performed.

The verb complete also has special meaning in action semantics. Actions may
be classified according to their outcomes. Possible outcomes include completing,
failing, diverging, escaping, and committing. So, not only does the dashed line in
figure 8.2 indicate control flow, it also indicates that subaction A must complete
when it is performed.

The behavior of a couple other combinators is shown in figures 8.3 and 8.4. The
hence combinator operates like the and combinator on transients and passes the
bindings from the first subaction to the second subaction. The unary combinator
furthermore overlays the incoming bindings with the bindings produced by subac-
tion A, which is indicated by the broken line in the diagram. furthermore is used
by block structured languages to create a new level of scoped identifiers.

The else combinator is a special case. It is used to implement deterministic
choice in action semantics. In the action A else B action A is executed if the
transients contain true and action B if the transients contain false. The transients,
bindings, and storage are modified only by the subaction that is performed.

Mosses showed great insight in the way he defined articles in action semantics,
allowing actions to be read more like English. For instance the action ‘allocate cell
then bind “m” to given variable’ does not read nearly as well as ‘allocate a cell
then bind “m” to the given variable’. Yet, in action semantics both actions have
precisely the same meaning because articles, like a and the, are defined as yielders
that operate as the identity yielder on data. This definition of articles is convenient
and unobtrusive, while making actions much easier to read.

A then B

A

B

transients

bindings

transients

bindings
complete

242 Formal Semantics

Fig. 8.3: The and Diagram

Fig. 8.4: The hence Diagram

Incomes and Outcomes

Recall that actions manipulate the current information (i.e. the transients, bindings,
and storage that are provided to an action). It is possible to restrict actions to a
subsort of action by the use of incomes and outcomes. Incomes say something
about what the current information must contain before performance of an action.

A and B

A

B

bindings
bindings

transients

transients

A hence B

A

B

complete

transients

transients

bindings

bindings

8.3 Action Semantics 243

Providing an income or outcome for an action further restricts the sort of the action.
For instance, the action below refers to the action that expects to regive an integer.
Since it will regive it, it must be given an integer in the first place.

give the given data [using a given integer]

An outcome describes what the current information must look like after the perfor-
mance an action. So, the action below

give the given data [giving an integer]

is another action that expects to be given an integer and will regive it. Incomes
and outcomes may be used to describe any of the facets of action semantics. The
incomes and outcomes given above are over the functional facet. The declarative
and imperative facets have incomes and outcomes, too. For instance,

bind “m” to the given integer [binding]

is an action that is expected to bind an identifier to something. Over the imperative
facet there are outcomes like completing or failing. Incomes and outcomes may
also be combined. So, it is possible to describe the action

give the given data [giving an integer] [using an integer] [completing]

Incomes and outcomes can also be applied to yielders and data. It is legal to write

sum (the given integer#1, the given integer#2) [an integer]

for instance. This says that the sum function yields an integer when evaluated.

Action Semantic Descriptions

An Action Semantic Description maps the syntax of a programming language to its
action semantics. The mapping is given by a set of semantic functions and equations.
From this information it’s possible to map an entire source program to its action. Ac-
tion Semantic Descriptions are modular. It’s easy to extend a language definition by
adding new semantic equations. Action Semantic Descriptions have the added ad-
vantage that they read like a reference manual for a programming language. Action
semantics is not only useful to language designers, but also to programmers (once
they’ve learned a little about Action Semantics) and those implementing compilers
and interpreters. Action Semantics may be understood on many different levels and
therefore used by many different groups of people.

244 Formal Semantics

Semantic Functions and Equations

A semantic function is a function from a syntactic category to an action. A syntac-
tic category is just another name for a nonterminal in the grammar. So a semantic
description is a mapping from the concrete (or sometimes abstract) syntax of a lan-
guage to its actions. Consider the evaluation of expressions in the Small language.
Expressions may take many forms. To evaluate an expression means to generate
the action that corresponds to its evaluation. Here is the declaration of a semantic
function. It maps an expression in the Small language to its action.

• evaluate :: Expr → action

Semantic functions are defined by providing one or more semantic equations that
enumerate the possible instances of the semantic function. In the semantic equation
below, an if-then expression is one possible Expr (i.e. expression) in the Small lan-
guage. The action semantics of an if-then expression is given be first evaluating the
SExpr which yields a boolean value. The boolean value is provided as the transients
to the rest of the action which enacts the action generated by the call to evaluate E1
if the boolean value is true and enacts the action generated by the call to evaluate E2
otherwise. The appearance of evaluateSExpr and evaluate in the semantic equation
are both calls to semantics functions which generate actions when mapping a source
program to its action.

(7) evaluate [[“if” S:SExpr “then” E1:Expr “else” E2:Expr]] =
evaluateSExpr S

then
evaluate E1

else
evaluate E2

Sometimes abstract syntax is chosen as the source of the mapping to eliminate
extra equations that do little or nothing. However, by using the concrete syntax of
a language, the grammar can be extracted directly from the semantic description.
More importantly, the semantic description can be given to a tool to generate a
compiler from the description. All the necessary information is contained within the
description.

Appendix F contains the complete Action Semantic Description of the Small
language. Because the description of Small is formally defined as a mapping from
the concrete syntax to its action semantics, it is possible to automatically generate a
compiler or interpreter from the description. Several projects including Actress[4],
Oasis[27], and Genesis[17] have done just that.

8.4 Exercises 245

8.4 Exercises

1. Using the attribute grammar, construct a decorated abstract syntax tree for the
expression + * S 6 5 R. Justify the assignment of attributes by referring to each
rule that governed the assignment of a value in the annotated tree.

2. In this exercise you are to construct an interpreter for prefix expressions with the
addition of a single memory location (like the interpreter you previously con-
structed, but implemented in Prolog this time). Your grammar should contain
parameters that build an abstract syntax tree of the expression. Then, you should
write Prolog rules that evaluate the abstract syntax tree to get the resulting expres-
sion. The grammar for prefix expressions is given in example 8.3. The grammar
is LL(1) so no modifications of it are necessary to generate a parser for it in Pro-
log.

To complete this project you will want to use the readln predicate described in
section 7.6. However, to make things easier while parsing, you should preprocess
the list so that an expression like “+ S 5 R”, which readln returns as [+,s,5,r], will
look like [+,s,num(5),r] after preprocessing. The num structure for numbers will
help you when you write the parser.

HINT: This assignment is very closely related to the attribute grammar given in
example 8.4. The main predicate for the interpreter should approximate this:

calc :- read a line, preprocess the line, parse the expression,
evaluate the AST, print the result.

3. Download the Genesis compiler generator and use it to generate the Small com-
piler. Then use the compiler to compile a Small program. The Small Action Se-
mantic Description is provided with the downloadable Genesis compiler genera-
tor. Complete instructions for using Genesis are available on the text’s web page.

4. Using Genesis, write an action semantics for the simple calculator expression
language. You may use either the prefix version of the grammar given in this
chapter or the infix version of the grammar presented in previous chapters. Cre-
ate the semantic functions that map the concrete syntax of the language directly
to their actions. Test your creation to be sure it works. Remember, Genesis is a re-
search project and no guarantees are made regarding appropriate error messages.
However, it should be pretty stable as it is written in SML.

246 Formal Semantics

8.5 Solutions to Practice Problems

Solution to Practice Problem 8.1

Solution to Practice Problem 8.2

The val attribute is synthesized. The min value is inherited. The mout value is
synthesized.

8.6 Additional Reading

Many good resources are available for learning more about formal semantics of pro-
gramming languages. Slonneger and Kurtz’s text[30] is an excellent choice as it cov-
ers the topics presented here plus several other formal methods in much more detail
than this text. The definitive text for Action Semantics was written by Mosses[26].
Several resources are available on the internet for Action Semantics as well.

+

S
R

4

min = 0 (8)

mout = 0 (13)

val = 4 (14)

min = 0 (1)

mout = 4 (5)

val = 8 (6)

Prog

val = 8 (2)

min = 0 (3)

mout = 4 (9)

val = 4 (10)

min = 4 (4)

mout = 4 (12)

val = 4 (11)

Appendix A
The C++ Scanner Class
Implementation

1 # i n c l u d e "scanner.h"
2 # i n c l u d e "calcex.h"
3 # i n c l u d e <iostream>
4 # i n c l u d e <string>
5

6 us ing namespace std;
7

8 //Uncomment this to get debug information
9 //#define debug

10

11 c o n s t i n t numberOfKeywords = 2;
12

13 c o n s t string keywd[numberOfKeywords] = {
14 string("S"), string("R")
15 };
16

17 i n t isLetter(char c) {
18 re turn ((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z'));
19 }
20

21 i n t isDigit(char c) {
22 re turn (c >= '0' && c <= '9');
23 }
24

25 i n t isWhiteSpace(char c) {
26 re turn (c == ' ' || c == '\t' || c == '\n');
27 }
28

29 Scanner::Scanner(istream* in):
30 inStream(in),
31 lineCount(1),
32 colCount(-1),
33 needToken(t rue),
34 lastToken(0)
35 {}
36

37 Scanner::˜Scanner() {
38 t r y {
39 d e l e t e inStream;
40 } catch (...) {}
41 }

248 Appendix A The C++ Scanner Class Implementation

42

43 void Scanner::putBackToken() {
44 needToken = f a l s e;
45 }
46

47 Token* Scanner::getToken() {
48 i f (!needToken) {
49 needToken= t rue;
50 re turn lastToken;
51 }
52

53 Token* t;
54 i n t state=0;
55 bool foundOne= f a l s e;
56 char c;
57 string lex;
58 TokenType type;
59 i n t k;
60 i n t column, line;
61

62 c = inStream->get();
63

64 whi le (!foundOne) {
65 colCount++;
66 sw i t ch (state) {
67 case 0 :
68 lex = "";
69 column=colCount;
70 line = lineCount;
71 i f (isLetter(c)) state=1;
72 e l s e i f (isDigit(c)) state=2;
73 e l s e i f (c=='+') state=3;
74 e l s e i f (c=='-') state=4;
75 e l s e i f (c=='*') state=5;
76 e l s e i f (c=='/') state=6;
77 e l s e i f (c=='(') state=7;
78 e l s e i f (c==')') state=8;
79 e l s e i f (c=='\n') {
80 colCount=-1;
81 lineCount++;
82 }
83 e l s e i f (isWhiteSpace(c));
84 e l s e i f (inStream->eof()) {
85 foundOne= t rue;
86 type=eof;
87 }
88 e l s e {
89 cout << "Unrecognized Token found at line " <<
90 line << " and column " << column << endl;
91 throw UnrecognizedToken;
92 }
93 break;
94 case 1 :
95 i f (isLetter(c) || isDigit(c)) state=1;

96 e l s e {
97 f o r (k=0;k<numberOfKeywords;k++)
98 i f (lex == keywd[k]) {
99 foundOne = t rue;

100 type = keyword;
101 }
102 i f (!foundOne) {
103 type = identifier;
104 foundOne = t rue;
105 }
106 }
107 break;
108 case 2 :
109 i f (isDigit(c)) state=2;
110 e l s e {
111 type = number;
112 foundOne= t rue;
113 }
114 break;
115 case 3 :
116 type = add;
117 foundOne = t rue;
118 break;
119 case 4 :
120 type = sub;
121 foundOne = t rue;
122 break;
123 case 5 :
124 type = times;
125 foundOne= t rue;
126 break;
127 case 6 :
128 type = divide;
129 foundOne= t rue;
130 break;
131 case 7 :
132 type = lparen;
133 foundOne= t rue;
134 break;
135 case 8 :
136 type = rparen;
137 foundOne= t rue;
138 break;
139 }
140

141 i f (!foundOne) {
142 lex = lex + c;
143 c = inStream->get();
144 }
145 }
146

147 inStream->putback(c);
148 colCount--;
149 i f (type == number || type == identifier || type == keyword) {

249Appendix A The C++ Scanner Class Implementation

250 Appendix A The C++ Scanner Class Implementation

150 t = new LexicalToken(type,new string(lex), line, column);
151 }
152 e l s e {
153 t = new Token(type,line,column);
154 }
155

156 # i f d e f debug
157 cout << "just found " << lex << " with type " << type << endl;
158 # e n d i f
159

160 lastToken = t;
161 re turn t;
162

163 }

Appendix B
The Ruby Scanner Class
Implementation

1 c l a s s Scanner
2 def initialize(inStream)
3 @istream = inStream
4 @keywords = Set.new(["S","R"])
5 @lineCount = 1
6 @colCount = -1
7 @needToken = t rue
8 @lastToken = n i l
9 end

10

11 def putBackToken()
12 @needToken = f a l s e
13 end
14

15 def getToken()
16 i f !@needToken
17 @needToken = t rue
18 re turn @lastToken
19 end
20

21 state = 0
22 foundOne = f a l s e
23 c = @istream.getc()
24

25 i f @istream.eof() then
26 @lastToken = Token.new(:eof,@lineCount,@colCount)
27 re turn @lastToken
28 end
29

30 whi le !foundOne
31 @colCount = @colCount + 1
32 case state
33 when 0
34 lex = ""
35 column = @colCount
36 line = @lineCount
37 i f isLetter(c) then state=1
38 e l s i f isDigit(c) then state=2
39 e l s i f c == ?+ then state = 3
40 e l s i f c == ?- then state = 4
41 e l s i f c == ?* then state = 5

252 Appendix B The Ruby Scanner Class Implementation

42 e l s i f c == ?/ then state = 6
43 elsif c == ?(then state = 7
44 elsif c == ?) then state = 8
45 elsif c == ?\n then
46 @colCount = -1
47 @lineCount = @lineCount+1
48 elsif isWhiteSpace(c) then state = state
49 #ignore whitespace
50 elsif @istream.eof() then
51 @foundOne = true
52 type = :eof
53 else
54 puts "Unrecognized Token found at line ",line,
55 " and column ",column,"\n"
56 raise "Unrecognized Token"
57 end
58 when 1
59 if isLetter(c) or isDigit(c) then state = 1
60 else
61 if @keywords.include?(lex) then
62 foundOne = true
63 type = :keyword
64 else
65 foundOne = true
66 type = :identifier
67 end
68 end
69 when 2
70 if isDigit(c) then state = 2
71 else
72 type = :number
73 foundOne = true
74 end
75 when 3
76 type = :add
77 foundOne = true
78 when 4
79 type = :sub
80 foundOne = true
81 when 5
82 type = :times
83 foundOne = true
84 when 6
85 type = :divide
86 foundOne = true
87 when 7
88 type = :lparen
89 foundOne = true
90 when 8
91 type = :rparen
92 foundOne = true
93 end
94

95 if !foundOne then

96 lex.concat(c)
97 c = @istream.getc()
98 end
99

100 end
101

102 @istream.ungetc(c)
103 @colCount = @colCount - 1
104 if type == :number or type == :identifier or
105 type == :keyword then
106 t = LexicalToken.new(type,lex,line,column)
107 else
108 t = Token.new(type,line,column)
109 end
110

111 @lastToken = t
112 return t
113 end
114

115 private
116 def isLetter(c)
117 return ((?a <= c and c <= ?z) or (?A <= c and c <= ?Z))
118 end
119

120 def isDigit(c)
121 return (?0 <= c and c <= ?9)
122 end
123

124 def isWhiteSpace(c)
125 return (c == ?\ or c == ?\n or c == ?\t)
126 end
127 end

253Appendix B The Ruby Scanner Class Implementation

Appendix C
Standard ML Basis Library

The Standard ML Basis Library is available at http://standardml.org/Basis in
its entirety. This is a subset of the signatures of functions in the basis library. You
can use this to quickly look up a function name and its signature. From both the
name and the signature you can probably derive the meaning of most functions.

You can also open a structure in the interactive environment of SML to see the
contents of it. However, once you open a structure it is open at the top-level and may
override some of the functions that are already defined at the top-level. In particular,
infix operators on int and real types may no longer be visible at the top-level. Once
you open a structure it is probably best to exit and restart the interactive environ-
ment.

C.1 The Bool Structure

This is the signature of the functions Bool structure. In addition to the not operator
described below, SML defines the andalso and orelse operators which implement
short-circuit logic.

1 data type bool = false | true
2 v a l not : bool -> bool
3 v a l toString : bool -> string
4 v a l fromString : string -> bool option
5 v a l scan : (char,'a) StringCvt.reader ->
6 (bool,'a) StringCvt.reader

C.2 The Int Structure

This is the signature of the functions in the Int structure.

1 type int = ?.int
2 v a l precision : Int31.int option
3 v a l minInt : int option
4 v a l maxInt : int option
5 v a l toLarge : int -> IntInf.int
6 v a l fromLarge : IntInf.int -> int
7 v a l toInt : int -> Int31.int
8 v a l fromInt : Int31.int -> int

256 Appendix C Standard ML Basis Library

9 v a l ˜ : int -> int
10 v a l + : int * int -> int
11 v a l - : int * int -> int
12 v a l * : int * int -> int
13 v a l div : int * int -> int
14 v a l mod : int * int -> int
15 v a l quot : int * int -> int
16 v a l rem : int * int -> int
17 v a l min : int * int -> int
18 v a l max : int * int -> int
19 v a l abs : int -> int
20 v a l sign : int -> Int31.int
21 v a l sameSign : int * int -> bool
22 v a l > : int * int -> bool
23 v a l >= : int * int -> bool
24 v a l < : int * int -> bool
25 v a l <= : int * int -> bool
26 v a l compare : int * int -> order
27 v a l toString : int -> string
28 v a l fromString : string -> int option
29 v a l scan : StringCvt.radix ->
30 (char,'a) StringCvt.reader -> (int,'a) StringCvt.reader
31 v a l fmt : StringCvt.radix -> int -> string

C.3 The Real Structure

This is the signature of the functions in the Real structure.

1 type real = ?.real
2 s t r u c t u r e Math :
3 s i g
4 type real = real
5 v a l pi : real
6 v a l e : real
7 v a l sqrt : real -> real
8 v a l sin : real -> real
9 v a l cos : real -> real

10 v a l tan : real -> real
11 v a l asin : real -> real
12 v a l acos : real -> real
13 v a l atan : real -> real
14 v a l atan2 : real * real -> real
15 v a l exp : real -> real
16 v a l pow : real * real -> real
17 v a l ln : real -> real
18 v a l log10 : real -> real
19 v a l sinh : real -> real
20 v a l cosh : real -> real
21 v a l tanh : real -> real
22 end
23 v a l radix : int

C.3 The Real Structure 257

24 v a l precision : int
25 v a l maxFinite : real
26 v a l minPos : real
27 v a l minNormalPos : real
28 v a l posInf : real
29 v a l negInf : real
30 v a l + : real * real -> real
31 v a l - : real * real -> real
32 v a l * : real * real -> real
33 v a l / : real * real -> real
34 v a l *+ : real * real * real -> real
35 v a l *- : real * real * real -> real
36 v a l ˜ : real -> real
37 v a l abs : real -> real
38 v a l min : real * real -> real
39 v a l max : real * real -> real
40 v a l sign : real -> int
41 v a l signBit : real -> bool
42 v a l sameSign : real * real -> bool
43 v a l copySign : real * real -> real
44 v a l compare : real * real -> order
45 v a l compareReal : real * real -> IEEEReal.real_order
46 v a l < : real * real -> bool
47 v a l <= : real * real -> bool
48 v a l > : real * real -> bool
49 v a l >= : real * real -> bool
50 v a l == : real * real -> bool
51 v a l != : real * real -> bool
52 v a l ?= : real * real -> bool
53 v a l unordered : real * real -> bool
54 v a l isFinite : real -> bool
55 v a l isNan : real -> bool
56 v a l isNormal : real -> bool
57 v a l class : real -> IEEEReal.float_class
58 v a l fmt : StringCvt.realfmt -> real -> string
59 v a l toString : real -> string
60 v a l fromString : string -> real option
61 v a l scan : (char,'a) StringCvt.reader ->
62 (real,'a) StringCvt.reader
63 v a l toManExp : real -> {exp:int, man:real}
64 v a l fromManExp : {exp:int, man:real} -> real
65 v a l split : real -> {frac:real, whole:real}
66 v a l realMod : real -> real
67 v a l rem : real * real -> real
68 v a l nextAfter : real * real -> real
69 v a l checkFloat : real -> real
70 v a l floor : real -> int
71 v a l ceil : real -> int
72 v a l trunc : real -> int
73 v a l round : real -> int
74 v a l realFloor : real -> real
75 v a l realCeil : real -> real
76 v a l realTrunc : real -> real
77 v a l realRound : real -> real

258 Appendix C Standard ML Basis Library

78 v a l toInt : IEEEReal.rounding_mode -> real -> int
79 v a l toLargeInt : IEEEReal.rounding_mode -> real -> IntInf.int
80 v a l fromInt : int -> real
81 v a l fromLargeInt : IntInf.int -> real
82 v a l toLarge : real -> Real64.real
83 v a l fromLarge : IEEEReal.rounding_mode -> Real64.real -> real
84 v a l toDecimal : real -> IEEEReal.decimal_approx
85 v a l fromDecimal : IEEEReal.decimal_approx -> real

C.4 The Char Structure

This is the signature of the functions in the Char structure.

1 type char = ?.char
2 type string = ?.string
3 v a l chr : int -> char
4 v a l ord : char -> int
5 v a l minChar : char
6 v a l maxChar : char
7 v a l maxOrd : int
8 v a l pred : char -> char
9 v a l succ : char -> char

10 v a l < : char * char -> bool
11 v a l <= : char * char -> bool
12 v a l > : char * char -> bool
13 v a l >= : char * char -> bool
14 v a l compare : char * char -> order
15 v a l scan : (char,'a) StringCvt.reader ->
16 (char,'a) StringCvt.reader
17 v a l fromString : String.string -> char option
18 v a l toString : char -> String.string
19 v a l fromCString : String.string -> char option
20 v a l toCString : char -> String.string
21 v a l contains : string -> char -> bool
22 v a l notContains : string -> char -> bool
23 v a l isLower : char -> bool
24 v a l isUpper : char -> bool
25 v a l isDigit : char -> bool
26 v a l isAlpha : char -> bool
27 v a l isHexDigit : char -> bool
28 v a l isAlphaNum : char -> bool
29 v a l isPrint : char -> bool
30 v a l isSpace : char -> bool
31 v a l isPunct : char -> bool
32 v a l isGraph : char -> bool
33 v a l isCntrl : char -> bool
34 v a l isAscii : char -> bool
35 v a l toUpper : char -> char
36 v a l toLower : char -> char

C.6 The List Structure 259

C.5 The String Structure

This is the signature of the functions in the String structure.

1 type char = ?.char
2 type string = ?.string
3 v a l maxSize : int
4 v a l size : string -> int
5 v a l sub : string * int -> char
6 v a l extract : string * int * int option -> string
7 v a l substring : string * int * int -> string
8 v a l ˆ : string * string -> string
9 v a l concat : string list -> string

10 v a l concatWith : string -> string list -> string
11 v a l str : char -> string
12 v a l implode : char list -> string
13 v a l explode : string -> char list
14 v a l map : (char -> char) -> string -> string
15 v a l translate : (char -> string) -> string -> string
16 v a l tokens : (char -> bool) -> string -> string list
17 v a l fields : (char -> bool) -> string -> string list
18 v a l isPrefix : string -> string -> bool
19 v a l isSubstring : string -> string -> bool
20 v a l isSuffix : string -> string -> bool
21 v a l compare : string * string -> order
22 v a l collate : (char * char -> order) ->
23 string * string -> order
24 v a l < : string * string -> bool
25 v a l <= : string * string -> bool
26 v a l > : string * string -> bool
27 v a l >= : string * string -> bool
28 v a l fromString : String.string -> string option
29 v a l toString : string -> String.string
30 v a l fromCString : String.string -> string option
31 v a l toCString : string -> String.string

C.6 The List Structure

This is the signature of the functions in the List structure.

1 data type 'a list = :: of 'a * 'a list | nil
2 e x c e p t i o n Empty
3 v a l null : 'a list -> bool
4 v a l hd : 'a list -> 'a
5 v a l tl : 'a list -> 'a list
6 v a l last : 'a list -> 'a
7 v a l getItem : 'a list -> ('a * 'a list) option
8 v a l nth : 'a list * int -> 'a
9 v a l take : 'a list * int -> 'a list

10 v a l drop : 'a list * int -> 'a list

260 Appendix C Standard ML Basis Library

11 v a l length : 'a list -> int
12 v a l rev : 'a list -> 'a list
13 v a l @ : 'a list * 'a list -> 'a list
14 v a l concat : 'a list list -> 'a list
15 v a l revAppend : 'a list * 'a list -> 'a list
16 v a l app : ('a -> unit) -> 'a list -> unit
17 v a l map : ('a -> 'b) -> 'a list -> 'b list
18 v a l mapPartial : ('a -> 'b option) -> 'a list -> 'b list
19 v a l find : ('a -> bool) -> 'a list -> 'a option
20 v a l filter : ('a -> bool) -> 'a list -> 'a list
21 v a l partition : ('a -> bool) -> 'a list -> 'a list * 'a list
22 v a l foldr : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
23 v a l foldl : ('a * 'b -> 'b) -> 'b -> 'a list -> 'b
24 v a l exists : ('a -> bool) -> 'a list -> bool
25 v a l all : ('a -> bool) -> 'a list -> bool
26 v a l tabulate : int * (int -> 'a) -> 'a list
27 v a l collate : ('a * 'a -> order) -> 'a list * 'a list -> order

C.7 The TextIO Structure

This is the signature of the functions in the TextIO structure used for input and
output in SML programs.

1 type vector = string
2 type elem = char
3 type instream
4 type outstream
5 v a l input : instream -> vector
6 v a l input1 : instream -> elem option
7 v a l inputN : instream * int -> vector
8 v a l inputAll : instream -> vector
9 v a l canInput : instream * int -> int option

10 v a l lookahead : instream -> elem option
11 v a l closeIn : instream -> unit
12 v a l endOfStream : instream -> bool
13 v a l output : outstream * vector -> unit
14 v a l output1 : outstream * elem -> unit
15 v a l flushOut : outstream -> unit
16 v a l closeOut : outstream -> unit
17 s t r u c t u r e StreamIO :
18 s i g
19 type vector = string
20 type elem = char
21 type reader = reader
22 type writer = writer
23 type instream
24 type outstream
25 type pos = pos
26 type out_pos
27 v a l input : instream -> vector * instream
28 v a l input1 : instream -> (elem * instream) option

29 v a l inputN : instream * int -> vector * instream
30 v a l inputAll : instream -> vector * instream
31 v a l canInput : instream * int -> int option
32 v a l closeIn : instream -> unit
33 v a l endOfStream : instream -> bool
34 v a l mkInstream : reader * vector -> instream
35 v a l getReader : instream -> reader * vector
36 v a l filePosIn : instream -> pos
37 v a l output : outstream * vector -> unit
38 v a l output1 : outstream * elem -> unit
39 v a l flushOut : outstream -> unit
40 v a l closeOut : outstream -> unit
41 v a l setBufferMode : outstream * buffer_mode -> unit
42 v a l getBufferMode : outstream -> buffer_mode
43 v a l mkOutstream : writer * buffer_mode -> outstream
44 v a l getWriter : outstream -> writer * buffer_mode
45 v a l getPosOut : outstream -> out_pos
46 v a l setPosOut : out_pos -> unit
47 v a l filePosOut : out_pos -> pos
48 v a l inputLine : instream -> (string * instream) option
49 v a l outputSubstr : outstream * substring -> unit
50 end
51 v a l mkInstream : StreamIO.instream -> instream
52 v a l getInstream : instream -> StreamIO.instream
53 v a l setInstream : instream * StreamIO.instream -> unit
54 v a l getPosOut : outstream -> StreamIO.out_pos
55 v a l setPosOut : outstream * StreamIO.out_pos -> unit
56 v a l mkOutstream : StreamIO.outstream -> outstream
57 v a l getOutstream : outstream -> StreamIO.outstream
58 v a l setOutstream : outstream * StreamIO.outstream -> unit
59 v a l inputLine : instream -> string option
60 v a l outputSubstr : outstream * substring -> unit
61 v a l openIn : string -> instream
62 v a l openString : string -> instream
63 v a l openOut : string -> outstream
64 v a l openAppend : string -> outstream
65 v a l stdIn : instream
66 v a l stdOut : outstream
67 v a l stdErr : outstream
68 v a l print : string -> unit
69 v a l scanStream : ((elem,StreamIO.instream) StringCvt.reader
70 -> ('a,StreamIO.instream) StringCvt.reader)
71 -> instream -> 'a option

261C.7 The TextIO Structure

Appendix D
SML Calculator Compiler

This is the listing of the calc structure in the calc.sml file.
1 s t r u c t u r e calc =
2 s t r u c t
3 open RegisterAllocation;
4 open calcAS;
5

6 s t r u c t u r e calcLrVals =
7 calcLrValsFun(s t r u c t u r e Token = LrParser.Token)
8

9 s t r u c t u r e calcLex =
10 calcLexFun(s t r u c t u r e Tokens = calcLrVals.Tokens)
11

12 s t r u c t u r e calcParser =
13 Join(s t r u c t u r e Lex= calcLex
14 s t r u c t u r e LrParser = LrParser
15 s t r u c t u r e ParserData = calcLrVals.ParserData)
16

17 v a l input_line =
18 fn f =>
19 l e t v a l sOption = TextIO.inputLine f
20 in
21 i f isSome(sOption) then
22 Option.valOf(sOption)
23 e l s e
24 ""
25 end
26

27 v a l calcparse =
28 fn filename =>
29 l e t v a l instrm = TextIO.openIn filename
30 v a l lexer =
31 calcParser.makeLexer(fn i => input_line instrm)
32 v a l _ = calcLex.UserDeclarations.pos := 1
33 v a l error = fn (e,i:int,_) =>
34 TextIO.output(TextIO.stdOut," line " ˆ
35 (Int.toString i) ˆ ", Error: " ˆ e ˆ "\n")
36 in
37 calcParser.parse(30,lexer,error,())
38 before TextIO.closeIn instrm
39 end
40

41 e x c e p t i o n IdNotBound;
42

43 fun lookup(id, nil) =

264 Appendix D SML Calculator Compiler

44 (TextIO.output(TextIO.stdOut,"Identifier "ˆidˆ
45 " not declared!\n");
46 r a i s e IdNotBound)
47 | lookup(id,(x,offset)::L) =
48 i f id = x then offset e l s e lookup(id,L)
49

50 fun codegen(add'(t1,t2),outFile,bindings,nextOffset) =
51 l e t v a l _ = codegen(t1,outFile,bindings,nextOffset)
52 v a l _ = codegen(t2,outFile,bindings,nextOffset)
53 v a l reg2 = popReg()
54 v a l reg1 = popReg()
55 in
56 TextIO.output(outFile,reg1 ˆ ":="ˆreg1ˆ"+"ˆreg2ˆ"\n");
57 delReg(reg2);
58 pushReg(reg1);
59 ([],nextOffset)
60 end
61

62 | codegen(sub'(t1,t2),outFile,bindings,nextOffset) =
63 l e t v a l _ = codegen(t1,outFile,bindings,nextOffset)
64 v a l _ = codegen(t2,outFile,bindings,nextOffset)
65 v a l reg2 = popReg()
66 v a l reg1 = popReg()
67 in
68 TextIO.output(outFile,reg1 ˆ ":="ˆreg1ˆ"-"ˆreg2ˆ"\n");
69 delReg(reg2);
70 pushReg(reg1);
71 ([],nextOffset)
72 end
73

74 | codegen(integer'(i),outFile,bindings,nextOffset) =
75 l e t v a l r = getReg()
76 in
77 TextIO.output(outFile, r ˆ ":=" ˆ
78 Int.toString(i) ˆ "\n");
79 pushReg(r);
80 ([],nextOffset)
81 end
82

83

84 fun compile filename =
85 l e t v a l (ast, _) = calcparse filename
86 v a l outFile = TextIO.openOut("a.ewe")
87 in
88 TextIO.output(outFile,"SP:=100\n");
89 l e t v a l s = codegen(ast,outFile,[],0)
90 v a l reg1 = popReg()
91 in
92 TextIO.output(outFile,"writeInt("ˆreg1ˆ")\nhalt\n\n");
93 delReg(reg1);
94 TextIO.output(outFile,"equ MEM M[12]\n");
95 printRegs(!regList,outFile);
96 TextIO.output(outFile,"equ SP M[13]\n");
97 TextIO.closeOut(outFile)

98 end
99 end

100

101 fun run(a,b::c) = (compile b; OS.Process.success)
102 | run(a,b) = (TextIO.print("usage: sml @SMLload=calc\n");
103 OS.Process.success)
104 end

265Appendix D SML Calculator Compiler

Appendix E
The Factorial Program’s Code

Here is the compiled EWE code for the program presented in example 6.19. The
code is commented to aid in understanding the call/return conventions presented in
the text.

1 SP:=100
2 PR0 := 0
3 PR1 := 0
4 PR2 := 0
5 PR3 := 0
6 PR4 := 0
7 PR5 := 0
8 PR6 := 0
9 PR7 := 0

10 PR8 := 0
11 PR9 := 0
12 cr := 13
13 nl := 10
14 nullchar:=0
15 R0:=1
16 M[SP+0]:=R0
17 goto L0 # jump around the function body
18 ###### function fact(n) ######
19 # function prolog
20 L1: M[SP+2]:=PR0 # save the registers in the run-time stack
21 M[SP+3]:=PR1
22 M[SP+4]:=PR2
23 M[SP+5]:=PR3
24 M[SP+6]:=PR4
25 M[SP+7]:=PR5
26 M[SP+8]:=PR6
27 M[SP+9]:=PR7
28 M[SP+10]:=PR8
29 M[SP+11]:=PR9
30 # body of the function
31 R1:=SP
32 R1:=M[R1+11]
33 R2:=0
34 if R1<>R2 then goto L2
35 R3:=SP
36 R3:=M[R3+0]
37 R3:=M[R3+0]
38 goto L3
39 L2:
40 R4:=SP

268 Appendix E The Factorial Program’s Code

41 R4:=M[R4+11]
42 R5:=SP
43 R5:=M[R5+11]
44 R6:=1
45 R5:=R5-R6
46 PR8:=SP # set the access link
47 PR8:=M[PR8+0] # follow the access link
48 M[SP+12]:=PR8 # save the access link
49 M[SP+13]:=SP # save the stack pointer
50 PR9:=R5 # put the parameter in reg 9
51 PR8:=12 # increment the stack pointer
52 SP:=SP+PR8
53 PR8:=PC+1 # save the return address
54 goto L1 # make the fact function call
55 R5:=PR9 # put the function result in the
56 # result symbolic register
57 R4:=R4*R5
58 L3:
59 # end of the function body
60 # function epilog
61 PR9:=R4 # save the function result
62 PR0:=M[SP+2] # restore the registers
63 PR1:=M[SP+3]
64 PR2:=M[SP+4]
65 PR3:=M[SP+5]
66 PR4:=M[SP+6]
67 PR5:=M[SP+7]
68 PR6:=M[SP+8]
69 PR7:=M[SP+9]
70 PR8:=M[SP+10]
71 SP:=M[SP+1] # restore the stack pointer
72 PC:=PR8 # return from the function
73 L0:
74 readInt(R9)
75 PR8:=SP # set the access link
76 M[SP+1]:=PR8 # save the access link
77 M[SP+2]:=SP # save the stack pointer
78 PR9:=R9 # put the parameter in reg 9
79 PR8:=1 # increment the stack pointer
80 SP:=SP+PR8
81 PR8:=PC+1 # save the return address
82 goto L1 # make the fact function call
83 R9:=PR9 # put the function result in the
84 # result symbolic register
85 writeInt(R9)
86 halt
87

88 ###### input function ######
89 input: readInt(PR9)
90 # read an integer into
91 # function result register
92 SP:=M[SP+1] # restore the stack pointer
93 PC:=PR8 # return from whence you came
94 ###### output function ######

95 output: writeInt(PR9)
96 # write the integer in function
97 # parameter register
98 writeStr(cr)
99 SP:=M[SP+1] # restore the stack pointer

100 PC:=PR8 # return from whence you came
101 equ PR0 M[0]
102 equ PR1 M[1]
103 equ PR2 M[2]
104 equ PR3 M[3]
105 equ PR4 M[4]
106 equ PR5 M[5]
107 equ PR6 M[6]
108 equ PR7 M[7]
109 equ PR8 M[8]
110 equ PR9 M[9]
111 equ MEM M[12]
112 equ SP M[13]
113 equ cr M[14]
114 equ nl M[15]
115 equ nullchar M[16]
116 equ R0 M[0]
117 equ R1 M[0]
118 equ R2 M[1]
119 equ R3 M[0]
120 equ R4 M[0]
121 equ R5 M[1]
122 equ R6 M[2]
123 equ R7 M[2]
124 equ R8 M[3]
125 equ R9 M[0]
126 equ R10 M[1]
127 equ R11 M[2]

269Appendix E The Factorial Program’s Code

Appendix F
Small Action Semantic Description

Sorts

(1) function = an abstraction of an action [producing the empty-map]
(2) value = integer truth-value
(3) bindable = value [value]cell function

Semantics

• run :: Prog → action
(1) run [[E:Expr]] =

bind “output” to the native abstraction of an action
[using a given value] [giving ()]

before
bind “input” to the native abstraction of an action
[giving an integer] [using the given ()]

hence
evaluate E .

• evaluateSeq :: ExprSeq → action
(2) evaluateSeq [[E:Expr “;” Es:ExprSeq]] =

evaluate E
then
evaluateSeq Es

(3) evaluateSeq [[E:Expr]] =
evaluate E

• evaluate :: Expr → action
(4) evaluate [[Lv:Expr “:=” E:Expr]] =

evaluate Lv
and then
evaluate E

then
store the given value#2 in the given cell#1

(5) evaluate [[“while” B:Expr “do” E:Expr]] =
unfolding

evaluate B
then

evaluate E
and then
unfold

else
complete

(6) evaluate [[“let” Ds:DecSeq “in” Es:ExprSeq “end”]] =
furthermore elaborateDecSeq Ds

hence
evaluateSeq Es

(7) evaluate [[“if” S:SExpr “then” E1:Expr “else” E2:Expr]] =
evaluateSExpr S

then
evaluate E1

else
evaluate E2

(8) evaluate [[S:SExpr]] =
evaluateSExpr S

• elaborateDecSeq :: DecSeq → action
(9) elaborateDecSeq [[D:Decl Ds:DecSeq]] =

elaborate D before elaborateDecSeq Ds
(10) elaborateDecSeq [[D:Decl]] =

elaborate D
• elaborate :: Decl → action

(11) elaborate [[“fun” Fs:FunSeq]] =
recursively elaborateFunSeq Fs

(12) elaborate [[“val” I:Identifier “=” E:Expr]] =
evaluate E

then
bind I to the given (value [value]cell)

• elaborateFunSeq :: FunSeq → action
(13) elaborateFunSeq [[F :FunDecl “and” Fs:FunSeq]] =

elaborateFun F and then elaborateFunSeq Fs
(14) elaborateFunSeq [[F :FunDecl]] =

elaborateFun F
• elaborateFun :: FunDecl → action

(15) elaborateFun [[Id:Identifier “(” “)” “=” E:Expr]] =
bind I to the closure of the abstraction of
evaluate E

272 Appendix F Small Action Semantic Description

(16) elaborateFun [[I:Identifier “(” Ps:FormalParmSeq “)” “=” E:Expr]] =
bind I to the closure of the abstraction of

furthermore
bindParameters Ps

thence
evaluate E

• bindParameters :: FormalParmSeq → action
(17) bindParameters [[I:Identifier]] =

bind I to the given value
(18) bindParameters [[I:Identifier “:” “int”]] =

bind I to the given integer
(19) bindParameters [[I:Identifier “:” “bool”]] =

bind I to the given truth-value
(20) bindParameters [[P:FormalParm “,” Ps:FormalParmSeq]] =

bindParameter P
and then
give the rest of the given data

then
bindParameters Ps

• bindParameter :: FormalParm → action
(21) bindParameter [[I:Identifier]] =

bind I to the given value#1
(22) bindParameter [[I:Identifier “:” “int”]] =

bind I to the given integer#1
(23) bindParameter [[I:Identifier “:” “bool”]] =

bind I to the given truth-value#1
• evaluateSExpr :: SExpr → action

(24) evaluateSExpr [[“ref” E:SExpr]] =
allocate a cell

and then
evaluateSExpr E

then
store the given value#2 in the given cell#1

and then
give the given cell#1

(25) evaluateSExpr [[E:SExpr “orelse” T :Term]] =
evaluateSExpr E

then
give true

else
evaluateTerm T

273Appendix F Small Action Semantic Description

(26) evaluateSExpr [[E:SExpr “+” T :Term]] =
evaluateSExpr E

and then
evaluateTerm T

then
give the sum of the given data

(27) evaluateSExpr [[E:SExpr “-” T :Term]] =
evaluateSExpr E

and then
evaluateTerm T

then
give the difference of (the given integer#1, the given integer#2)

(28) evaluateSExpr [[T :Term]] =
evaluateTerm T

• evaluateTerm :: Term → action
(29) evaluateTerm [[T :Term “andalso” N:Neg]] =

evaluateTerm T
then

evaluateNeg N
else
give false

(30) evaluateTerm [[T :Term “*” N:Neg]] =
evaluateTerm T

and then
evaluateNeg N

then
give the product of the given data

(31) evaluateTerm [[T :Term “/” N:Neg]] =
evaluateTerm T

and then
evaluateNeg N

then
give the (quotient of (the given integer#1, the given integer#2))
[yielding an integer]

(32) evaluateTerm [[T :Term “mod” N:Neg]] =
evaluateTerm T

and then
evaluateNeg N

then
give remainder of (the given integer#1, the given integer#2)

(33) evaluateTerm [[N:Neg]] =
evaluateNeg N

• evaluateNeg :: Neg → action

274 Appendix F Small Action Semantic Description

(34) evaluateNeg [[“not” N:Neg]] =
evaluateNeg N

then
give not of the given truth-value

(35) evaluateNeg [[“-” N:Neg]] =
evaluateNeg N

then
give (difference of (0, the given integer)) [yielding an integer]

(36) evaluateNeg [[C:Comparison]] =
evaluateComparison C

• evaluateComparison :: Comparison → action
(37) evaluateComparison [[F1:Factor “<” F2:Factor]] =

evaluateFactor F1
and then
evaluateFactor F2

then
give the given integer#1 is less than the given integer#2

(38) evaluateComparison [[F1:Factor “>” F2:Factor]] =
evaluateFactor F1

and then
evaluateFactor F2

then
give the given integer#1 is greater than the given integer#2

(39) evaluateComparison [[F1:Factor “=” F2:Factor]] =
evaluateFactor F1

and then
evaluateFactor F2

then
give the given (value [value]cell) #1 is
the given (value [value]cell)#2

(40) evaluateComparison [[F1:Factor “<>” F2:Factor]] =
evaluateFactor F1

and then
evaluateFactor F2

then
give not (the given (value [value]cell)#1 is
the given (value [value]cell)#2)

(41) evaluateComparison [[F1:Factor “>=” F2:Factor]] =
evaluateFactor F1

and then
evaluateFactor F2

then
give not (the given integer#1 is less than the given integer#2)

275Appendix F Small Action Semantic Description

(42) evaluateComparison [[F1:Factor “<=” F2:Factor]] =
evaluateFactor F1

and then
evaluateFactor F2

then
give not (the given integer#1 is greater than the given integer#2)

(43) evaluateComparison [[F :Factor]] =
evaluateFactor F

• evaluateFactor :: Factor → action
(44) evaluateFactor [[I:Integer]] =

give I
(45) evaluateFactor [[“true”]] =

give true
(46) evaluateFactor [[“false”]] =

give false
(47) evaluateFactor [[“!” F :Factor]] =

evaluateFactor F
then
give the value stored in the given cell

(48) evaluateFactor [[I:Identifier]] =
give the value bound to I

or
give the [value]cell bound to I

(49) evaluateFactor [[I:Identifier “(” A:ArgSeq “)”]] =
evaluateArgs A

then
enact the application of the function bound to I to the given data

(50) evaluateFactor [[I:Identifier “(” “)”]] =
complete

then
enact the application of the function bound to I to the given data

(51) evaluateFactor [[“(” S:ExprSeq “)”]] =
evaluateSeq S

• evaluateArgs :: ArgSeq → action
(52) evaluateArgs [[E:Expr]] =

evaluate E
(53) evaluateArgs [[E:Expr “,” A:ArgSeq]] =

evaluate E
and then
evaluateArgs A

276 Appendix F Small Action Semantic Description

References

1. Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and
tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

2. John Backus. [Photograph]. Photograph provided courtesy of IBM and used with permission.,
2008.

3. Edoardo Biagioni. A structured tcp in standard ml. In SIGCOMM ’94: Proceedings of the
conference on Communications architectures, protocols and applications, pages 36–45, New
York, NY, USA, 1994. ACM Press.

4. D.F. Brown, H. Moura, and D.A. Watt. Actress: an action semantics directed compiler gener-
ator. In Proceedings of the Workshop on Compiler Construction, Paderborn, Germany, 1992.

5. Timothy A. Budd. C++ for Java Programmers. Addison-Wesley Publishing Co., Inc., Boston,
MA, USA, 1999.

6. L. Cardelli. Handbook of Computer Science and Engineering. CRC Press - Digital Equipment
Corporation, 1997.

7. W. Clocksin and C. Mellish. Programming in Prolog. Springer, 2003.
8. Alain Colmerauer. [Photograph]. Photograph provided courtesy of Alain Colmerauer and

used with his permission., 2008.
9. Alain Colmerauer and Philippe Roussel. The birth of prolog. In HOPL-II: The second ACM

SIGPLAN conference on History of programming languages, pages 37–52, New York, NY,
USA, 1993. ACM.

10. British Broadcasting Corporation. 248-dimension math puzzle solved, 2007. [Online; ac-
cessed 3-March-2008].

11. M. Ellis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-Wesley Profes-
sional, 1990.

12. R. Girvan. Partial differential equations. Scientific-Computing.com, 2006. http://www.
scientific-computing.com/review4.html.

13. Mike Gordon. From lcf to hol: a short history. pages 169–185, 2000.
14. Robert Harper and Peter Lee. Advanced languages for systems software: The Fox project

in 1994. Technical Report CMU-CS-94-104, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, January 1994. (Also published as Fox Memorandum CMU-CS-
FOX-94-01).

15. Robert Kowalski. An interview with robert kowalski, 2008. Details of events provided by
Robert Kowalski through an exchange of email from 12-February-2008 to 14-February-2008.

16. Robert Kowalski. [Photograph]. Photograph provided courtesy of Robert Kowalski and used
with his permission., 2008.

17. K.D. Lee. Action Semantics-based Compiler Generation. PhD thesis, Department of Com-
puter Science, University of Iowa, 1999.

18. K.D. Lee. Minimal register allocation. Technical Report 99-06, University of Iowa, Depart-
ment of Computer Science, Iowa City, IA, 1999.

19. K.D. Lee and H. Zhang. Formal development of a minimal register allocation algorithm.
Technical Report 99-07, University of Iowa, Department of Computer Science, Iowa City, IA,
1999.

20. Kent Lee. A formally verified register allocation framework. Electr. Notes Theor. Comput.
Sci., 82(3), 2003.

21. Peter Linz. An Introduction to Formal Languages and Automata. Jones and Bartlett, Sudbury,
MA 01776, 2006.

22. John McCarthy. [Photograph]. Photograph provided courtesy of John McCarthy and used
with his permission., 2008.

23. Robin Milner. [Photograph]. Photograph provided courtesy of Robin Milner and used with
his permission., 2008.

24. Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition of Standard
ML - Revised. The MIT Press, May 1997.

25. P.D. Mosses. Unified algebras and action semantics. In Proceedings of STACS ’89. Springer-
Verlag, 1989.

26. P.D. Mosses. Action Semantics: Cambridge Tracts in Theoretical Computer Science 26. Cam-
bridge University Press, 1992.

27. P. Ørbæk. Oasis: An optimizing action-based compiler generator. In Proceedings of the
International Conference on Compiler Construction, Volume 786, Edinburgh, Scotland, 1994.
LNCS.

28. Ruby Home Page. About ruby, 2006. [Online; accessed 22-September-2006].
29. R. Sethi. Programming Languages: Concepts and Constructs. Addison-Wesley, New York,

NY, 1996.
30. K. Slonneger and B.L. Kurtz. Formal Syntax and Semantics of Programming Languages.

Adisson Wesley Publishing Company, Inc., New York, NY, 1995.
31. Bjarne Stroustrup. A history of c++: 1979–1991. pages 699–769, 1996.
32. Bjarne Stroustrup. [Photograph]. Photograph provided courtesy of Bjarne Stroustrup and

used with his permission., 2006.
33. Arild Stubhaug. The Mathematician Sophus Lie. Springer, Berlin, Germany, 2002.
34. D. Thomas. Programming Ruby. The Pragmatic Programmers, LLC, Raleigh, North Carolina,

2005.
35. Dave Thomas. Programming Ruby: The Pragmatic Programmers’ Guide. The Pragmatic

Programmers, LCC, United States, 2005.
36. J. Ullman. Elements of ML Programming. Prentice Hall, 1997.
37. D. Watt. Programming Language Syntax and Semantics. Prentice-Hall, Inc., Englewoods

Cliffs, New Jersey 07632, 1991.
38. Wikipedia. Charles babbage, 2006. [Online; accessed 14-January-2006].
39. Wikipedia. John vincent atanasoff, 2006. [Online; accessed 14-January-2006].
40. Wikipedia. Prolog, 2008. [Oline; accessed 13-February-2008].

278 References

Index

.NET, 16
#ifndef, 52

abstract syntax tree, see AST
accumulator pattern, 138, 210
action semantic description, 243
action semantics, 234

bindings, 239
combinator, 240
storage, 239
transients, 239
yielder, 238

activation record, 5, 192
Algol, 3, 10, 23
application

real-time, 48
architecture

von Neumann, 118
Aristotle, 3
assembly language program, 12
associative, 118
AST, 37, 49, 70, 79, 80, 94, 97, 98, 100, 103,

107, 170
traversal, 176

Atanasoff, 2
attribute

inherited, 232
synthesized, 232

attribute grammar, 229
automated theorem proving, 234
axiomatic semantics, 232

Babbage
Charles, 2

Babylonian method, 126
Backus

John, 3, 23
Backus Naur Format, see BNF
bash, 13
bindings, 184
BNF, 3, 23–24, 38, see grammar

EWE, 25
Extended, 34

byte-code, 15

C, 12, 15
C++, 1, 7, 12, 15, 24, 47–83, 91

ANSI, 8
class declaration, 56
constructor, 58
extern, 81
initialization list, 58

C#, 16
calculator, 50
Central Processing Unit, 12
Church

Alonzo, 3, 119
Church-Rosser theorem, 120
class

abstract base, 98
BinaryNode, 99
declaration, 51
LexicalToken, 96, 97
Parser, 79
Token, 96
UnaryNode, 99

COBOL, 12
code generator, 176
Colmerauer

Alain, 11, 204
commutative, 118
compile-time, 22, 100

compiler, 12, 50
compiling

function call, 194
let expressions, 182

Computer Science, 2
confluence, 120
constructor, 58
context-sensitive, 39
continuation passing style, see CPS
CPS, 148
csh, 13
Curry

Haskell, 140, 155

Damas
Luis, 155

data structure, 101
denotational semantics, 234
depth first search, 207
derivation, 29

left-most, 30
right-most, 30

destructor, 59, 72, 95
difference list, 218
dynamic, 22
dynamical allocation, 15

EBNF, 34
Edinburgh, 11
EWE, 4, 24

BNF, 25
exception handling, 122
expression

infix, 38

Feys
Robert, 155

Fibonacci sequence, 126
finite state machine, 74, 102
Fortran, 12
FOX Project, 122
Free Software Foundation, 12
function

anonymous, 142
curried, 140
higher-order, 117, 143
nested, 190
predicate, 147, 206

functional language
pure, 117

functional programming, 117–157

g++, 50, 53
garbage collection, 15, 47, 91, 95, 122

getToken, 78
global variable, 108
grammar, 22, 103, see BNF

ambiguous, 30, 36
CBL, 34
context-free, 28
Extended BNF, 34
LALR(1), 33, 77, 104, 105
LL(1), 77, 78, 104–106
start symbol, 29
syntax diagram, 35

hash table, 101
header file, 51
heap, 5, 15, 59
Hindley

Roger, 155

if-then-else expressions
compiling, 186

induction, 125
Inheritance, 97
inheritance, 56, 97, 117

public, 57
initialization list, 58
instance variable, 58
interface, 117
interpreter, 13, 24, 48
istringstream, 82
iteration, 117
iv tbl, 101

Java, 16, 47
Java Virtual Machine, 16, 24, 122
JScript, 16

keyword, 55, 103
Kleene

Stephen, 119
Kowalski

Robert, 11, 204

lambda abstraction, 120
lambda calculus, 3, 119
language

C++, 47–83, 228
compiled, 50, 91
dynamically typed, 100
formal, 227
hybrid, 15, 91
imperative, 118
interpreted, 13, 15, 91
object-oriented, 94
Perl, 91

280 Index

Smalltalk, 91
target, 50

LCF, 9, 169
left factorization, 77, 78, 106
left recursion, 77, 105
Lie

Sophus, 2
Lisp, 3, 10, 122
logic

propositional, 3

m tbl, 101
macro processor, 51
make, 53
Makefile, 54
Matsumoto

Yukihiro, 8
Matz, 9
Mauchly, 2
McCarthy

John, 3
memory leak, 91
memory leaks, 15
memory management, 15
meta-language, 169
metalanguage, 22
method, 91

accessor, 96, 99
Milner

Robin, 9, 124, 155
ML, 1, 16

compiler manager, 179
datatype, 133
exception handling, 152, 153
hd, 128
let expression, 131, 182
list, 127
pattern matching, 129
signature, 153
structure, 124
tl, 128
type inference, 155

ML-lex, 170
ML-yacc, 173
ml-yacc, 32
model of computation, 17

functional, 6
imperative, 47
logic, 6

models of computation, 1
Modula-2, 47
Moscow ML, 10, 122

natural language

parsing, 11, 215
Naur

Peter, 23
nonterminal, 22, 29, 37, 77, 103, 106, 107
normal form, 120

paradigm, 1
parse tree, 30
parser, 31, 49, 75, 103

bottom-up, 32
generator, 32
recursive descent, 33, 75, 103
shift/reduce conflict, 36
top-down, 32, 103

construction, 103
top-down construction, 107

parser generator, 33
Pascal, 1, 10, 12, 35, 228
pass by

pointer, 67, 95
reference, 63, 66, 67, 95, 136
value, 63, 67, 95

pattern-matching, 122
Perl, 9, 91
Poly/ML, 122
polymorphism, 60, 98, 100, 124
portability, 15
precedence, 37
predicate, 206
preprocessor directives, 51
production, 29, 79, 106
programming

declarative, 117
functional, 1, 117–157
logic, 1, 203
object-oriented, 1, 47
prescriptive, 117

programming language
Ruby, 91–108

Prolog, 1, 7, 11, 203–221
arithmetic, 212
atom, 206
grammar specification, 220
list, 208
parser implementation using, 215
query, 207
structure, 213
term, 206
variable, 206

Python, 9, 16

RAM, 24
readStr, 25
recursion, 117, 125

281Index

base case, 125
efficiency, 136
inductive case, 125

recursive descent parser, 33
recursive functions, 10
redex, 120
reduction strategy

applicative order, 121
normal order, 121

register allocation, 178, 192
register machine, 17
right-most derivation

reverse, 77, 105
Ritchie

Dennis, 8
Roussel

Philippe, 11
Phillipe, 204

Ruby, 1, 7, 8, 13, 14, 47, 91–108
Ruby on Rails, 9
run-time, 22
run-time stack, 5

scanner, 49, 73, 78, 93, 103
scope, 131

dynamic, 132
static, 132

semantics, 21
action, 234
attribute grammar, 229
axiomatic, 232
denotational, 234
formal, 227–243

sentence, 29
valid, 30

sentential form, 29
Sethi, 24
Small language, 235
Smalltalk, 91
SML.NET, 122
square root, 126
stack machine, 17
stack pointer, 5, 183
Standard ML, 1, 7, 9, 10, 122
Standard ML of New Jersey, see ML or

Standard ML
state machine

finite, 102

statement
assignment, 117

static, 22
StringIO, 108
Stroustrup

Bjarne, 8, 47
syntactic category, 22
syntax, 21–39

definitions, 21–24
formal, 227

tail recursion, 139
terminal, 22
Thompson

Ken, 8
token, 22, 49, 94, 102, 107
tokens, 55
traversal

inorder, 38
Turing

Alan, 2
type checking, 100

dynamic, 100
polymorphic, 10, 122
strong, 124

type inference
Hindley-Milner, 155

typed
dynamically, 91
statically, 91

unification, 207

variable
global, 81, 107, 108
instance, 101

Visual Basic .NET, 16
von Neumann

John, 2
vtable, 61

Warren Abstract Machine, 11
whitespace, 103
Wirth

Niklaus, 8, 228
writeStr, 25

yacc, 32

282 Index

