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Preface

In this book | present classical quantitative finance. The book is suitable for students on
advanced undergraduate finance and derivatives courses, MBA courses, and graduate
courses that are mainly taught, as opposed to ones that are based on research. The
text is quite self-contained, with, | hope, helpful sidebars (‘Time Out’) covering the more
mathematical aspects of the subject for those who feel a little bit uncomfortable. Little prior
knowledge is assumed, other than basic calculus, even stochastic calculus is explained
here in a simple, accessible way.

By the end of the book you should know enough quantitative finance to understand
most derivative contracts, to converse knowledgeably about the subject at dinner parties,
to land a job on Wall Street, and to pass your exams.

The structure of the book is quite logical. Markets are introduced, followed by the
necessary math and then the two are melded together. The technical complexity is never
that great, nor need it be. The last three chapters are on the numerical methods you will
need for pricing. In the more advanced subjects, such as credit risk, the mathematics
is kept to a minimum. Also, plenty of the chapters can be read without reference to
the mathematics at all. The structure, mathematical content, intuition, etc., are based on
many years’ teaching at universities and on the Certificate in Quantitative Finance, and
training bank personnel at all levels.

The accompanying CD contains spreadsheets and Visual Basic programs implementing
many of the techniques described in the text. The CD icon will be seen throughout the
book, indicating material to be found on the CD, naturally. There is also a full list of its
contents at the end of the book.

You can also find an Instructors Manual at www.wiley.com/go/pwigf2 containing
answers to the end-of-chapter questions in this book. The questions are, in general, of a
mathematical nature but suited to a wide range of financial courses.

This book is a shortened version of Paul Wilmott on Quantitative Finance, second
edition. It's also more affordable than the ‘full’ version. However, | hope that you’ll
eventually upgrade, perhaps when you go on to more advanced, research-based studies,
or take that job on The Street.

PWOQF is, | am told, a standard text within the banking industry, but in Paul Wilmott
Introduces Quantitative Finance | have specifically the university student in mind.

The differences between the university and the full versions are outlined at the end of
the book. And to help you make the leap, we’ve included a form for you to upgrade,
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preface

giving you a nice discount. Roughly speaking, the full version includes a great deal of
non-classical, more modern approaches to quantitative finance, including several non-
probabilistic models. There are more mathematical techniques for valuing exotic options
and more markets are covered. The numerical methods are described in more detail.

If you have any problems understanding anything in the book, find errors, or just want
a chat, email me at paul@wilmott.com. I'll do my very best to respond as quickly as
possible. Or visit www .wilmott .com to discuss quantitative finance, and other subjects,
with other people in this business.

I would like to thank the following people. My partners in various projects: Paul and
Jonathan Shaw and Gil Christie at 7city, unequaled in their dedication to training and
their imagination for new ideas. Also Riaz Ahmad, Seb Lleo and Siyi Zhou who have
helped make the Certificate in Quantitative Finance so successful, and for taking some
of the pressure off me. Everyone involved in the magazine, especially Aaron Brown, Alan
Lewis, Bill Ziemba, Caitlin Cornish, Dan Tudball, Ed Lound, Ed Thorp, Elie Ayache, Espen
Gaarder Haug, Graham Russel, Henriette Prast, Jenny McCall, Kent Osband, Liam Larkin,
Mike Staunton, Paula Soutinho and Rudi Bogni. | am particularly fortunate and grateful
that John Wiley & Sons have been so supportive in what must sometimes seem to them
rather wacky schemes. | am grateful to James Fahy for his work on my websites, and
apologies for always failing to provide a coherent brief. Thanks also to David Epstein
for help with the exercises, again; to Ron Henley, the best hedge fund partner a quant
could wish for: “It’s just a jump to the left. And then a step to the right”; to John Morris
of Fulcrum, interesting times; to all my lawyers for keeping the bad people away, Jared
Stamell, Richard Schager, John Crow, Harry Issler, David Price and Kathryn van Gelder;
and, of course, to Nassim Nicholas Taleb for entertaining chats.

Thanks to John, Grace, Sel and Stephen, for instilling in me their values. Values which
have invariably served me well. And to Oscar and Zachary who kept me sane throughout
many a series of unfortunate events!

Finally, thanks to my number one fan, Andrea Estrella, from her number one fan, me.

ABOUT THE AUTHOR

Paul Wilmott’s professional career spans almost every aspect of mathematics and
finance, in both academia and in the real world. He has lectured at all levels, and founded
a magazine, the leading website for the quant community, and a quant certificate program.
He has managed money as a partner in a very successful hedge fund. He lives in London,
is married, and has two sons. Although he enjoys quantitative finance his ideal job would
be designing Kinder Egg toys.
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CHAPTER |
products and markets:

equities, commodities,
exchange rates,
forwards and futures

The aim of this Chapter. ..

...is to describe some of the basic financial market products and conventions, to
slowly introduce some mathematics, to hint at how stocks might be modeled using
mathematics, and to explain the important financial concept of ‘no free lunch.’ By the
end of the chapter you will be eager to get to grips with more complex products
and to start doing some proper modeling.

In this Chapter...

an introduction to equities, commodities, currencies and indices
the time value of money

fixed and floating interest rates

futures and forwards

no-arbitrage, one of the main building blocks of finance theory



2 Paul Wilmott introduces quantitative finance

l.I' INTRODUCTION

This first chapter is a very gentle introduction to the subject of finance, and is mainly
just a collection of definitions and specifications concerning the financial markets in
general. There is little technical material here, and the one technical issue, the ‘time
value of money,’ is extremely simple. | will give the first example of ‘no arbitrage.’” This is
important, being one part of the foundation of derivatives theory. Whether you read this
chapter thoroughly or just skim it will depend on your background.

2 EQUITIES

The most basic of financial instruments is the equity, stock or share. This is the ownership
of a small piece of a company. If you have a bright idea for a new product or service
then you could raise capital to realize this idea by selling off future profits in the form of
a stake in your new company. The investors may be friends, your Aunt Joan, a bank,
or a venture capitalist. The investor in the company gives you some cash, and in return
you give him a contract stating how much of the company he owns. The shareholders
who own the company between them then have some say in the running of the business,
and technically the directors of the company are meant to act in the best interests of the
shareholders. Once your business is up and running, you could raise further capital for
expansion by issuing new shares.

This is how small businesses begin. Once the small business has become a large
business, your Aunt Joan may not have enough money hidden under the mattress to
invest in the next expansion. At this point shares in the company may be sold to a wider
audience or even the general public. The investors in the business may have no link with
the founders. The final point in the growth of the company is with the quotation of shares
on a regulated stock exchange so that shares can be bought and sold freely, and capital
can be raised efficiently and at the lowest cost.

Figures 1.1 and 1.2 show screens from Bloomberg giving details of Microsoft stock,
including price, high and low, names of key personnel, weighting in various indices, etc.
There is much, much more info available on Bloomberg for this and all other stocks. We’ll
be seeing many Bloomberg screens throughout this book.

In Figure 1.3 | show an excerpt from The Wall Street Journal Europe of 14th April 2005.
This shows a small selection of the many stocks traded on the New York Stock Exchange.
The listed information includes highs and lows for the day as well as the change since the
previous day’s close.

The behavior of the quoted prices of stocks is far from being predictable. In Figure 1.4
| show the Dow Jones Industrial Average over the period January 1950 to March 2004.
In Figure 1.5 is a time series of the Glaxo—Wellcome share price, as produced by
Bloomberg.

If we could predict the behavior of stock prices in the future then we could become very
rich. Although many people have claimed to be able to predict prices with varying degrees
of accuracy, no one has yet made a completely convincing case. In this book | am going
to take the point of view that prices have a large element of randomness. This does not
mean that we cannot model stock prices, but it does mean that the modeling must be
done in a probabilistic sense. No doubt the reality of the situation lies somewhere between
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Figure 1.3 The Wall Street Journal Europe of 14th April 2005.

complete predictability and perfect randomness, not least because there have been many

cases of market manipulation where large trades have moved stock prices in a direction

that was favorable to the person doing the moving. Having said that, | will digress slightly

in Appendix B where | describe some of the popular methods for supposedly predicting

future stock prices.

To whet your appetite for the mathematical modeling later, | want to show
you a simple way to simulate a random walk that looks something like a

stock price. One of the simplest random processes is the tossing of a coin.

| am going to use ideas related to coin tossing as a model for the behavior
of a stock price. As a simple experiment start with the number 100 which

you should think of as the price of your stock, and toss a coin. If you throw

SN
\. \\
Y

o~

6
Kf_

a head multiply the number by 1.01, if you throw a tail multiply by 0.99.

0.99 x 1.01 x 100 or

0.992 x 100. Continue this process and plot your value on a graph each
time you throw the coin. Results of one particular experiment are shown

a head multiply your new number by 1.01 or by 0.99 if you throw a tail. You

After one toss your number will be either 99 or 101. Toss again. If you get
will now have either 1.012 x 100, 1.01 x 0.99 x 100

See the simulation
on the CD

, the series used in this

plot was generated on a spreadsheet like that in Figure 1.7. This uses the

Excel spreadsheet function RAND () to generate a uniformly distributed random number

in Figure 1.6. Instead of physically tossing a coin

between 0 and 1. If this number is greater than one half it counts as a ‘head’ otherwise

a ‘tail.’
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Figure 1.6 A simulation of an asset price path?

Tome Ot

More about coin tossing

Notice how in the above experiment I've chosen to
multiply each ‘asset price’ by a factor, either 1.01 or 0.99.
Why didn’t | simply add a fixed amount, 1 or —1, say? This
is a very important point in the modeling of asset prices;
as the asset price gets larger so do the changes from one day to the next. It
seems reasonable to model the asset price changes as being proportional to
the current level of the asset, they are still random but the magnitude of the
randomness depends on the level of the asset. This will be made more precise
in later chapters, where we’ll see how it is important to model the return on the
asset, its percentage change, rather than its absolute value. And, of course, in
this simple model the ‘asset price’ cannot go negative.
If we use the multiplicative rule we get an approximation to what is called a
lognormal random walk, also geometric random walk. If we use the additive
rule we get an approximation to a Normal or arithmetic random walk.




products and markets Chapter |

7

As an experiment, using Excel try to simulate both the arithmetic and geo-
metric random walks, and also play around with the probability of a rise in asset
price; it doesn’t have to be one half. What happens if you have an arithmetic
random walk with a probability of rising being less than one half?

J

1.2.1 Dividends

The owner of the stock theoretically owns a piece of the company. This ownership can
only be turned into cash if he owns so many of the stock that he can take over the
company and keep all the profits for himself. This is unrealistic for most of us. To the
average investor the value in holding the stock comes from the dividends and any growth
in the stock’s value. Dividends are lump sum payments, paid out every quarter or every
six months, to the holder of the stock.

The amount of the dividend varies from time to time depending on the profitability
of the company. As a general rule companies like to try to keep the level of dividends
about the same each time. The amount of the dividend is decided by the board of
directors of the company and is usually set a month or so before the dividend is
actually paid.

When the stock is bought it either comes with its entitlement to the next dividend
(cum) or not (ex). There is a date at around the time of the dividend payment when
the stock goes from cum to ex. The original holder of the stock gets the dividend
but the person who buys it obviously does not. All things being equal a stock that
is cum dividend is better than one that is ex dividend. Thus at the time that the
dividend is paid and the stock goes ex dividend there will be a drop in the value of
the stock. The size of this drop in stock value offsets the disadvantage of not getting
the dividend.

This jump in stock price is in practice more complex than | have just made out. Often
capital gains due to the rise in a stock price are taxed differently from a dividend, which
is often treated as income. Some people can make a lot of risk-free money by exploiting
tax ‘inconsistencies.’
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A | B | C D E

1 |Initial stock price 100 Stock

2 |Up move 1.01 100
3 |Down move 0.99 i 101
4 |Probability of up 0.5 99.99
5 98.9901
6 ,—4 99.98
7 [=B1 | 989802
8 _ 99.97
9 [=D6*IF(RAND()>1-$B$4,$B$2,$B$3) >
10 99.96001
11 98.96041
12 _ 99.95001
13 100.9495
14 99.94001
15 _ 98.94061
16 97.95121
17 98.93072
18 97.94141
19 _ 98.92083
20 99.91004
21 98.91094
22 _ 97.92183
23 98.90104
24 97.91203
25 98.89115
26 99.88007
27 100.8789
28 101.8877
29 _ 100.8688
30 101.8775
31 100.8587

Figure 1.7 Simple spreadsheet to simulate the coin-tossing experiment.
1.2.2 Stock splits

Stock prices in the US are usually of the order of magnitude of $100. In the UK they are
typically around £1. There is no real reason for the popularity of the number of digits, after
all, if | buy a stock | want to know what percentage growth | will get, the absolute level of
the stock is irrelevant to me, it just determines whether | have to buy tens or thousands of
the stock to invest a given amount. Nevertheless there is some psychological element to the
stock size. Every now and then a company will announce a stock split. For example, the
company with a stock price of $90 announces a three-for-one stock split. This simply
means that instead of holding one stock valued at $90, | hold three valued at $30 each.’

"In the UK this would be called a two-for-one split.
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Figure 1.8 Stock split info for Microsoft. Source: Bloomberg L.P.

.3 COMMODITIES

Commodities are usually raw products such as precious metals, oil, food products, etc.
The prices of these products are unpredictable but often show seasonal effects. Scarcity
of the product results in higher prices. Commodities are usually traded by people who
have no need of the raw material. For example they may just be speculating on the
direction of gold without wanting to stockpile it or make jewelry. Most trading is done
on the futures market, making deals to buy or sell the commodity at some time in the
future. The deal is then closed out before the commodity is due to be delivered. Futures
contracts are discussed below.
Figure 1.9 shows a time series of the price of pulp, used in paper manufacture.

.4 CURRENCIES

Another financial quantity we shall discuss is the exchange rate, the rate at which one
currency can be exchanged for another. This is the world of foreign exchange, or Forex
or FX for short. Some currencies are pegged to one another, and others are allowed
to float freely. Whatever the exchange rates from one currency to another, there must
be consistency throughout. If it is possible to exchange dollars for pounds and then
the pounds for yen, this implies a relationship between the dollar/pound, pound/yen and
dollar/yen exchange rates. If this relationship moves out of line it is possible to make
arbitrage profits by exploiting the mispricing.
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Figure 1.9 Pulp price. Source: Bloomberg L.P.
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Figure 1.10 The Wall Street Journal Europe of 22nd August 2006, currency exchange rates.

Figure 1.10 is an excerpt from The Wall Street Journal Europe of 22nd August 2006.
At the bottom of this excerpt is a matrix of exchange rates. A similar matrix is shown in

Figure 1.11 from Bloomberg.

Although the fluctuation in exchange rates is unpredictable, there is a link between
exchange rates and the interest rates in the two countries. If the interest rate on dollars
would expect to see
sterling depreciating against the dollar for a while. Central banks can use interest rates as

is raised while the interest rate on pounds sterling stays fixed we

a tool for manipulating exchange rates, but only to a degree.
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Figure 1.11 Key cross currency rates. Source: Bloomberg L.P.

At the start of 1999 Euroland currencies were fixed at the rates shown in Figure 1.12.

.5 INDICES

For measuring how the stock market/economy is doing as a whole, there have been
developed the stock market indices. A typical index is made up from the weighted sum
of a selection or basket of representative stocks. The selection may be designed to
represent the whole market, such as the Standard & Poor’s 500 (S&P500) in the US or
the Financial Times Stock Exchange index (FTSE100) in the UK, or a very special part of
a market. In Figure 1.4 we saw the DJIA, representing major US stocks. In Figure 1.13 is
shown JP Morgan’s Emerging Market Bond Index.

The EMBI+ is an index of emerging market debt instruments, including external-
currency-denominated Brady bonds, Eurobonds and US dollar local markets instruments.
The main components of the index are the three major Latin American countries, Argentina,
Brazil and Mexico. Bulgaria, Morocco, Nigeria, the Philippines, Poland, Russia and South
Africa are also represented.

Figure 1.14 shows a time series of the MAE All Bond Index which includes Peso and
US dollar denominated bonds sold by the Argentine Government.

.6 THE TIME VALUE OF MONEY

The simplest concept in finance is that of the time value of money; $1 today is worth
more than $1 in a year’s time. This is because of all the things we can do with $1 over the
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Figure 1.14 A time series of the MAE All Bond Index. Source: Bloomberg L.P.

next year. At the very least, we can put it under the
mattress and take it out in one year. But instead of
putting it under the mattress we could invest it in a
gold mine, or a new company. If those are too risky,
then lend the money to someone who is willing to take
the risks and will give you back the dollar with a little
bit extra, the interest. That is what banks do, they
borrow your money and invest it in various risky ways,
but by spreading their risk over many investments
they reduce their overall risk. And by borrowing money from many people they can invest
in ways that the average individual cannot. The banks compete for your money by offering
high interest rates. Free markets and the ability to quickly and cheaply change banks
ensure that interest rates are fairly consistent from one bank to another.

THIS (S THE
MOST FUNDAMENTAL
CONCEPT IN FINANCE

M,

7

-
Tome Ot

Symbols

It had to happen sooner or later, and the first chapter is as
good as anywhere. Our first mathematical symbol is nigh.
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Please don’t be put off by the use of symbols if you feel more comfortable with

numbers and concrete examples. | know that math is the one academic subject

that can terrify adults, just because of poor teaching in schools. If you fall into

this category, just go with the flow, concentrate on the words, the examples
\ and the Time Outs, and before you know it. . .

| am going to denote interest rates by r. Although rates vary with time | am going to
assume for the moment that they are constant. We can talk about several types of interest.
First of all there is simple and compound interest. Simple interest is when the interest
you receive is based only on the amount you initially invest, whereas compound interest
is when you also get interest on your interest. Compound interest is the only case of
relevance. And compound interest comes in two forms, discretely compounded and
continuously compounded. Let me illustrate how they each work.

Suppose | invest $1 in a bank at a discrete interest rate of r paid once per annum. At
the end of one year my bank account will contain

1x(1+7).
If the interest rate is 10% | will have one dollar and ten cents. After two years | will have
Tx (40 x(1+n=1+rP,

or one dollar and twenty-one cents. After n years | will have (1 + r)". That is an example
of discrete compounding.

Now suppose | receive m interest payments at a rate of r/m per annum. After one year
I will have

(1 +%)m. (1.1)

Now | am going to imagine that these interest payments come at increasingly frequent
intervals, but at an increasingly smaller interest rate: | am going to take the limit m — oo.
This will lead to a rate of interest that is paid continuously. Expression (1.1) becomes?

(14 5)" zemestioi o
m

That is how much money | will have in the bank after

| RELIEVE THAT
997 OF FINANCE
REQURES ONLY
BASIC MATH

one year if the interest is continuously compounded.
And similarly, after a time t | will have an amount

(1+ %)mt ~ et (1.2)

in the bank. Almost everything in this book assumes that interest is compounded
continuously.

2The symbol ~, called ‘tilde,’ is like ‘approximately equal to,” but with a slightly more technical, in a math
sense, meaning. The symbol — means ‘tends to.’
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The math so far

Let’s see m getting larger and larger in an example. |
produced the next figure in Excel.

5 -
4 -
L4
3 q
2 -
These
1 4 functions are
all plotted on
0 T T T T 1 a spreadsheet
0 1 2 3 4 5

As m gets larger and larger, so the curve seems to get smoother and
smoother, eventually becoming the exponential function. We’ll be seeing this
function a lot. In Excel the exponential function €* (also written exp(x)) is EXP().

What mathematics have we seen so far? To get to (1.2) all we needed to
know about are the two functions, the exponential function e (or exp) and the
logarithm log, and Taylor series. Believe it or not, you can appreciate almost all
finance theory by knowing these three things together with ‘expectations.” I'm
going to build up to the basic Black—Scholes and derivatives theory assuming
that you know all four of these. Don’t worry if you don’t know about these
things, in Appendix A | review these requisites.

En passant, what would the above figures look like if interest were simple
rather than compound? Which would you prefer to receive?

\_ J

Another way of deriving the result (1.2) is via a differential equation. Suppose | have an
amount M(t) in the bank at time t, how much does this increase in value from one day to
the next? If | look at my bank account at time t and then again a short while later, time
t + dt, the amount will have increased by

M
Mt +dt) - M(t) ~ ~=dlt + - -,

where the right-hand side comes from a Taylor series expansion. But | also know that the
interest | receive must be proportional to the amount | have, M, the interest rate, r, and
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the time step, dt. Thus

am
—dt = rM(f) dt.
ot rM(t)
\\&\ Dividing by dt gives the ordinary differential equation

A\ dm
— =rM(t
o = ™M

OWR FIRST
(AND SIMPLEST)

DIFFERENTIAL ERQUATION | the solution of which is

Tome Ot

Differential equations

This is our first differential equation; hang on in there, it’ll
become second nature soon.
Whenever you see d something over d something else
you know you’re looking at a slope, or gradient, also
known as rate of change or sensitivity. So here we’ve got the rate of change
of money with time, i.e. rate of growth of money in the bank. You don’t need
to know how | solved this differential equation really. In Appendix A | explain all
about slope, sensitivities and differential equations.

This first differential equation is an example of an ordinary differential
equation, there is only one independent variable t. M is the dependent
variable, its value depends on t. We'll also be seeing partial differential
equations where there is more than one independent variable. And we’ll also
see quite a few stochastic differential equations. These are equations with a
random term in them, used for modeling the randomness in the financial world.
For the next few chapters there will be no more mention of differential equations.
Whew.

\ J

This equation relates the value of the money | have now to the value in the future.
Conversely, if | know | will get one dollar at time T in the future, its value at an earlier time
tis simply

er(:'—t) =e .
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| can relate cashflows in the future to their present value by multiplying by this factor. As
an example, suppose that r is 5%, i.e. r = 0.05, then the present value of $1,000,000 to
be received in two years is

$1,000,000 x e~905%2 — $904,837.

The present value is clearly less than the future value.

Interest rates are a very important factor determining the present value of future
cashflows. For the moment | will only talk about one interest rate, and that will be
constant. In later chapters | will generalize.

.7 FIXED-INCOME SECURITIES

In lending money to a bank you may get to choose for how long you tie your money
up and what kind of interest rate you receive. If you decide on a fixed-term deposit the
bank will offer to lock in a fixed rate of interest for the period of the deposit, a month, six
months, a year, say. The rate of interest will not necessarily be the same for each period,
and generally the longer the time that the money is tied up the higher the rate of interest,
although this is not always the case. Often, if you want to have immediate access to your
money then you will be exposed to interest rates that will change from time to time, since
interest rates are not constant.

These two types of interest payments, fixed and floating, are seen in many financial
instruments. Coupon-bearing bonds pay out a known amount every six months or
year, etc. This is the coupon and would often be a fixed rate of interest. At the
end of your fixed term you get a final coupon and the return of the principal, the
amount on which the interest was calculated. Interest rate swaps are an exchange of
a fixed rate of interest for a floating rate of interest. Governments and companies issue
bonds as a form of borrowing. The less creditworthy the issuer, the higher the interest
that they will have to pay out. Bonds are actively traded, with prices that continually
fluctuate.

.8 INFLATION-PROOF BONDS

A very recent addition to the list of bonds issued by the US Government is the index-
linked bond. These have been around in the UK since 1981, and have provided a very
successful way of ensuring that income is not eroded by inflation.

In the UK inflation is measured by the Retail Price Index or RPI. This index is a
measure of year-on-year inflation, using a ‘basket’ of goods and services including
mortgage interest payments. The index is published monthly. The coupons and principal
of the index-linked bonds are related to the level of the RPIl. Roughly speaking, the
amounts of the coupon and principal are scaled with the increase in the RPI over the
period from the issue of the bond to the time of the payment. There is one slight
complication in that the actual RPI level used in these calculations is set back eight
months. Thus the base measurement is eight months before issue and the scaling of any
coupon is with respect to the increase in the RPI from this base measurement to the level
of the RPI eight months before the coupon is paid. One of the reasons for this complexity
is that the initial estimate of the RPI is usually corrected at a later date.
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Figure 1.15 UK gilts prices from The Financial Times of 22nd August 2006.
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Figure 1.16 The CPI index. Source: Bloomberg L.P.

Figure 1.15 shows the UK gilts prices published in The Financial Times of 22nd August
2006. The index-linked bonds are on the right.
In the US the inflation index is the Consumer Price Index (CPI). A time series of this

index is shown in Figure 1.16.
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I will not pursue the modeling of inflation or index-linked bonds in this book. | would
just like to say that the dynamics of the relationship between inflation and short-term
interest rates is particularly interesting. Clearly the level of interest rates will affect the rate
of inflation directly through mortgage repayments, but also interest rates are often used
by central banks as a tool for keeping inflation down.

.9 FORWARDS AND FUTURES

A forward contract is an agreement where one party
promises to buy an asset from another party at some
specified time in the future and at some specified
price. No money changes hands until the delivery
date or maturity of the contract. The terms of the
contract make it an obligation to buy the asset at the

FORWARDS AND
FUTURE S ARE VERY
[ MPORTANT CONTRACTS

delivery date, there is no choice in the matter. The
asset could be a stock, a commodity or a currency.

The amount that is paid for the asset at the delivery date is called the delivery price.
This price is set at the time that the forward contract is entered into, at an amount that
gives the forward contract a value of zero initially. As we approach maturity the value of
this particular forward contract that we hold will change in value, from initially zero to, at
maturity, the difference between the underlying asset and the delivery price.

In the newspapers we will also see quoted the forward price for different maturities.
These prices are the delivery prices for forward contracts of the quoted maturities, should
we enter into such a contract now.

Try to distinguish between the value of a particular contract during its life and the
specification of the delivery price at initiation of the contract. It’s all very subtle. You might
think that the forward price is the market’s view on the asset value at maturity; this is not
quite true as we’ll see shortly. In theory, the market’s expectation about the value of the
asset at maturity of the contract is irrelevant.

A futures contract is very similar to a forward contract. Futures contracts are usually
traded through an exchange, which standardizes the terms of the contracts. The profit
or loss from the futures position is calculated every day and the change in this value is
paid from one party to the other. Thus with futures contracts there is a gradual payment
of funds from initiation until maturity.

Because you settle the change in value on a daily basis, the value of a futures contract
at any time during its life is zero. The futures price varies from day to day, but must at
maturity be the same as the asset that you are buying.

I’ll show later that provided interest rates are known in advance, forward prices and
futures prices of the same maturity must be identical.

Forwards and futures have two main uses, in speculation and in hedging. If you believe
that the market will rise you can benefit from this by entering into a forward or futures
contract. If your market view is right then a lot of money will change hands (at maturity or
every day) in your favor. That is speculation and is very risky. Hedging is the opposite, it
is avoidance of risk. For example, if you are expecting to get paid in yen in six months’
time, but you live in America and your expenses are all in dollars, then you could enter
into a futures contract to lock in a guaranteed exchange rate for the amount of your yen
income. Once this exchange rate is locked in you are no longer exposed to fluctuations in
the dollar/yen exchange rate. But then you won’t benefit if the yen appreciates.
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1.9.1 A first example of no arbitrage

Although | won’t be discussing futures and forwards very much they do provide us with
our first example of the no-arbitrage principle. | am going to introduce some more
mathematical notation now, it will be fairly consistent throughout the book. Consider a
forward contract that obliges us to hand over an amount $F at time T to receive the
underlying asset. Today’s date is t and the price of the asset is currently $S(f), this is the
spot price, the amount for which we could get immediate delivery of the asset. When
we get to maturity we will hand over the amount $F and receive the asset, then worth
$S(T). How much profit we make cannot be known until we know the value $S(7), and we
cannot know this until time T. From now on | am going to drop the ‘$’ sign from in front
of monetary amounts.

We know all of F, S(t), t and T, but is there any relationship between them? You might
think not, since the forward contract entitles us to receive an amount S(T) — F at expiry
and this is unknown. However, by entering into a special portfolio of trades now we can
eliminate all randomness in the future. This is done as follows.

Enter into the forward contract. This costs us nothing up front but exposes us to the
uncertainty in the value of the asset at maturity. Simultaneously sell the asset. It is called
going short when you sell something you don’t own. This is possible in many markets,
but with some timing restrictions. We now have an amount S(f) in cash due to the sale of
the asset, a forward contract, and a short asset position. But our net position is zero. Put
the cash in the bank, to receive interest.

When we get to maturity we hand over the amount F and receive the asset, this cancels
our short asset position regardless of the value of S(T). At maturity we are left with a
guaranteed —F in cash as well as the bank account. The word ‘guaranteed’ is important
because it emphasizes that it is independent of the value of the asset. The bank account
contains the initial investment of an amount S(f) with added interest, this has a value at
maturity of

St)e .
Our net position at maturity is therefore

SHe" ) —F.

7

~

@\

Since we began with a portfolio worth zero and we
end up with a predictable amount, that predictable
amount should also be zero. We can conclude that

ourR EFIRST
EXAMPLE OF NO
ARRMTRACE

This is the relationship between the spot price and the
forward price. It is a linear relationship, the forward price is proportional to the spot price.
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Table 1.1 Cashflows in a hedged port-
folio of asset and forward.

Holding Worth Worth at
today (t) maturity (T)
Forward 0 S(T)—-F ToDAYE CASHELOW
—Stock =S() —S(T) IS ZEROQ, THE FUTURE
- CASHFLAW IS KNOWN
Cash S(b) S(te’ ™0 LoNrew IS RNOWR,
Total 0 SHe TN —F

The cashflows in this special hedged portfolio are
shown in Table 1.1.

-

Tome Ot

No arbitrage again

Example: The spot asset price S is 28.75, the one-year
forward price F is 30.20 and the one-year interest rate is
4.92%. Are these numbers consistent with no arbitrage?

F —SeT-9 — 30.20 — 28.75¢%9492x1 _ 0.0001.

This is effectively zero to the number of decimal places quoted.

If we know any three out of S, F, r and T — t we can find the fourth, assuming
there are no arbitrage possibilities. Note that the forward price in no way
depends on what the asset price is expected to do, whether it is expected to

increase or decrease in value.

\ J

In Figure 1.17 is a path taken by the spot asset price and its forward price. As long as
interest rates are constant, these two are related by (1.3).

If this relationship is violated then there will be an arbitrage opportunity. To see what is
meant by this, imagine that F is less than S(t)e"" 9. To exploit this and make a riskless
arbitrage profit, enter into the deals as explained above. At maturity you will have S(t)e" 9
in the bank, a short asset and a long forward. The asset position cancels when you hand
over the amount F, leaving you with a profit of S(t)e"” 9 — F. If F is greater than that given
by (1.3) then you enter into the opposite positions, going short the forward. Again you
make a riskless profit. The standard economic argument then says that investors will act
quickly to exploit the opportunity, and in the process prices will adjust to eliminate it.
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Figure 1.17 A time series of a spot asset price and its forward price.

.10 MORE ABOUT FUTURES

Futures are usually traded through an exchange. This means that they are very liquid
instruments and have lots of rules and regulations surrounding them. Here are a few
observations on the nature of futures contracts.

Available assets A futures contract will specify the asset which is being invested in. This
is particularly interesting when the asset is a natural commodity because of non-uniformity
in the type and quality of the asset to be delivered. Most commodities come in a variety of
grades. Qil, sugar, orange juice, wheat, etc. futures contracts lay down rules for precisely
what grade of oil, sugar, etc. may be delivered. This idea even applies in some financial
futures contracts. For example, bond futures may allow a range of bonds to be delivered.
Since the holder of the short position gets to choose which bond to deliver he naturally
chooses the cheapest.

The contract also specifies how many of each asset must be delivered. The quantity
will depend on the market.

Delivery and settlement The futures contract will specify when the asset is to be
delivered. There may be some leeway in the precise delivery date. Most futures contracts
are closed out before delivery, with the trader taking the opposite position before maturity.
But if the position is not closed then delivery of the asset is made. When the asset is
another financial contract settlement is usually made in cash.



products and markets Chapter 1

23

Margin | said above that changes in the value of futures contracts are settled each day.
This is called marking to market. To reduce the likelihood of one party defaulting, being
unable or unwilling to pay up, the exchanges insist on traders depositing a sum of money
to cover changes in the value of their positions. This money is deposited in a margin
account. As the position is marked to market daily, money is deposited or withdrawn
from this margin account.

Margin comes in two forms, the initial margin and the maintenance margin. The initial
margin is the amount deposited at the initiation of the contract. The total amount held as
margin must stay above a prescribed maintenance margin. If it ever falls below this level
then more money (or equivalent in bonds, stocks, etc.) must be deposited. The levels of
these margins vary from market to market.

Margin has been much neglected in the academic literature. But a poor understanding
of the subject has led to a number of famous financial disasters, most notably Metallge-
sellschaft and Long Term Capital Management. We’ll discuss the details of these cases
in Chapter 26, and we’ll also be seeing how to model margin and how to margin hedge.

1.10.1 Commodity futures

Futures on commodities don’t necessarily obey the no-arbitrage law that led to the
asset/future price relationship explained above. This is because of the messy topic of
storage. Sometimes we can only reliably find an upper bound for the futures price. Will
the futures price be higher or lower than the theoretical no-storage-cost amount? Higher.
The holder of the futures contract must compensate the holder of the commodity for his
storage costs. This can be expressed in percentage terms by an adjustment s to the
risk-free rate of interest.

But things are not quite so simple. Most people actually holding the commodity are
benefiting from it in some way. If it is something consumable, such as oil, then the
holder can benefit from it immediately in whatever production process they are engaged
in. They are naturally reluctant to part with it on the basis of some dodgy theoretical
financial calculation. This brings the futures price back down. The benefit from holding
the commodity is commonly measured in terms of the convenience yield c:

F— S(t)e(r+57c)(T7t) )

Observe how the storage cost and the convenience yield act in opposite directions on
the price. Whenever

F < St)e™
the market is said to be in backwardation. Whenever

F > St)e™
the market is in contango.

1.10.2 FX futures

There are no problems associated with storage when the asset is a currency. We need to
modify the no-arbitrage result to allow for interest received on the foreign currency r. The
result is

F = S(t)el -,
The confirmation of this is an easy exercise.
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1.10.3 Index futures

Futures contracts on stock indices are settled in cash. Again, there are no storage
problems, but now we have dividends to contend with. Dividends play a role similar to
that of a foreign interest rate on FX futures. So

F = S(te" 70,

Here g is the dividend yield. This is clearly an approximation. Each stock in an index
receives a dividend at discrete intervals, but can these all be approximated by one
continuous dividend yield?

.1 SUMMARY

The above descriptions of financial markets are enough for this introductory chapter.
Perhaps the most important point to take away with you is the idea of no arbitrage. In the
example here, relating spot prices to futures prices, we saw how we could set up a very
simple portfolio which completely eliminated any dependence on the future value of the
stock. When we come to value derivatives, in the way we just valued a forward, we will
see that the same principle can be applied albeit in a far more sophisticated way.

FURTHER READING

e For general financial news visit www .bloomberg.com and www.reuters.com. CNN
has online financial news at www.cnnfn.com. There are also online editions of The
Wall Street Journal, www.ws7j .com, The Financial Times, www. ft.com and Futures
and Options World, www . fow . com.

e For more information about futures see the Chicago Board of Trade website www . cbot
. com.

e Many, many financial links can be found at Wahoo!, www . i0.com/~gibbonsb/wahoo
.html.

e See Bloch (1995) for an empirical analysis of inflation data and a theoretical discussion
of pricing index-linked bonds.

e In the main, we’ll be assuming that markets are random. For insight about alternative
hypotheses see Schwager (1990, 1992).

e See Brooks (1967) for how the raising of capital for a business might work in practice.

e Cox, et al. (1981) discuss the relationship between forward and future prices.

EXERCISES

1. A company makes a three-for-one stock split. What effect does this have on the share
price?

2. A company whose stock price is currently S pays out a dividend DS, where 0 < D < 1.
What is the price of the stock just after the dividend date?
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The dollar sterling exchange rate (colloquially known as ‘cable’) is 1.83, £1 = $1.83.
The sterling euro exchange rate is 1.41, £1 = €1.41. The dollar euro exchange rate is
0.77, $1 = €0.77. Is there an arbitrage, and if so, how does it work?

You put $1000 in the bank at a continuously compounded rate of 5% for one year.
At the end of this first year rates rise to 6%. You keep your money in the bank for
another eighteen months. How much money do you now have in the bank including
the accumulated, continuously compounded, interest?

A spot exchange rate is currently 2.350. The one-month forward is 2.362. What is the
one-month interest rate assuming there is no arbitrage?

A particular forward contract costs nothing to enter into at time t and obliges the
holder to buy the asset for an amount F at expiry T. The asset pays a dividend DS
at time ty, where 0 <D <1 and t <ty <T. Use an arbitrage argument to find the
forward price F(t).

Hint: Consider the point of view of the writer of the contract when the dividend is
reinvested immediately in the asset.






CHAPTER 2
derivatives

The aim of this Chapter. ..

...is to describe the basic forms of option contracts, make the reader comfortable
with the jargon, explain the relevant pages of financial newspapers, give a basic
understanding of the purpose of options, and to expand on the ‘no free lunch,
or no-arbitrage, idea. By the end of the chapter you will be familiar with the most
common forms of derivatives.

In this Chapter...

the definitions of basic derivative instruments
option jargon

no arbitrage and put-call parity

how to draw payoff diagrams

simple option strategies
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2. INTRODUCTION

The previous chapter dealt with some of the basics of financial markets. | didn’t go into
any detail, just giving the barest outline and setting the scene for this chapter. Here |
introduce the theme that is central to the book, the subject of options, a.k.a. derivatives
or contingent claims. This chapter is non-technical, being a description of some of the
most common option contracts, and explanation of the market-standard jargon. It is in
later chapters that | start to get technical.

Options have been around for many years, but it was only on 26th April 1973 that
they were first traded on an exchange. It was then that The Chicago Board Options
Exchange (CBOE) first created standardized, listed options. Initially there were just calls
on 16 stocks. Puts weren’t even introduced until 1977. In the US options are traded on
CBOE, the American Stock Exchange, the Pacific Stock Exchange and the Philadelphia
Stock Exchange. Worldwide, there are over 50 exchanges on which options are traded.

22 OPTIONS

If you are reading the book in a linear fashion, from start to finish, then the last topics you
read about will have been futures and forwards. The holder of future or forward contracts
is obliged to trade at the maturity of the contract. Unless the position is closed before
maturity the holder must take possession of the commodity, currency or whatever is the
subject of the contract, regardless of whether the asset has risen or fallen. Wouldn't it be
nice if we only had to take possession of the asset if it had risen?

The simplest option gives the holder the right to trade in the future at a previously agreed
price but takes away the obligation. So if the stock falls, we don’t have to buy it after all.

A call option is the right to buy a particular asset for an agreed amount at a

specified time in the future

As an example, consider the following call option on Microsoft stock. It gives the holder
the right to buy one of Microsoft stock for an amount $25 in one month’s time. Today’s
stock price is $24.5. The amount ‘25’ which we can pay for the stock is called the exercise
price or strike price. The date on which we must exercise our option, if we decide to, is
called the expiry or expiration date. The stock on which the option is based is known as
the underlying asset.

Let’s consider what may happen over the next month, up until expiry. Suppose that
nothing happens, that the stock price remains at $24.5. What do we do at expiry? We
could exercise the option, handing over $25 to receive the stock. Would that be sensible?
No, because the stock is only worth $24.5, either we wouldn’t exercise the option or if we
really wanted the stock we would buy it in the stock market for the $24.5. But what if the
stock price rises to $29? Then we’d be laughing, we would exercise the option, paying
$25 for a stock that’s worth $29, a profit of $4.

We would exercise the option at expiry if the stock is above the strike and not if it is
below. If we use S to mean the stock price and E the strike then at expiry the option is worth

max(S — E, 0).
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This function of the underlying asset is called the payoff function. The ‘max’ function
represents the optionality.

Why would we buy such an option? Clearly, if you own a call option you want the stock
to rise as much as possible. The higher the stock price the greater will be your profit. |
will discuss this below, but our decision whether to buy it will depend on how much it
costs; the option is valuable, there is no downside to it unlike a future. In our example
the option was valued at $1.875. Where did this number come from? The valuation of
options is one of the subjects of this book, and I'll be showing you how to find this value
later on.

What if you believe that the stock is going to fall, is there a contract that you can buy to
benefit from the fall in a stock price? Yes, there is.

A put option is the right to sell a particular asset for an agreed amount at a

specified time in the future

The holder of a put option wants the stock price to fall so that he can sell the asset for
more than it is worth. The payoff function for a put option is

max(E — S, 0).

Now the option is only exercised if the stock falls below the strike price.

Figure 2.1 is an excerpt from The Wall Street Journal Europe of 14th April 2005 showing
options on various stocks. The table lists closing prices of the underlying stocks and
the last traded prices of the options on the stocks. To understand how to read this let
us examine the prices of options on Apple. Go to ‘AppleC’ in the list, there are several
instances. The closing price on 13th April 2005 was $41.35 (the LAST column, second
from the right). Calls and puts are quoted here with strikes of $37.50, $40, ..., $47.50,
$50, others may exist but are not included in the newspaper. The expiries mentioned are
April, May and July. Part of the information included here is the volume of the transactions
in each series; we won’t worry about that but some people use option volume as a trading
indicator. From the data, we can see that the April calls with a strike of $40 were worth
$2.40. The puts with same strike and expiry were worth $1.20. The April calls with a strike
of $42.50 were worth $1.20 and the puts with same strike and expiry were worth $2.45.
Note that the higher the strike, the lower the value of the calls but the higher the value
of the puts. This makes sense when you remember that the call allows you to buy the
underlying for the strike, so that the lower the strike price the more this right is worth to
you. The opposite is true for a put since it allows you to sell the underlying for the strike
price.

There are more strikes and expiries available for options on indices, so let’s now look
at the Index Options section of The Wall Street Journal Europe 5th January 2000, this is
shown in Figure 2.2.

In Figure 2.3 are the quoted prices of the March and June DJIA calls against the strike
price. Also plotted is the payoff function if the underlying were to finish at its current value
at expiry, the current closing price of the DJIA was 10,997.93.

This plot reinforces the fact that the higher the strike the lower the value of a call option.
It also appears that the longer time to maturity the higher the value of the call. Is it obvious
that this should be so? As the time to expiry decreases what would we see happen? As
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Figure 2.1 The Wall Street Journal Europe of 14th April 2005, Stock Options. Reproduced by
permission of Dow Jones & Company, Inc.
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Volume, close, net change and open
interest for all contracts. Volume fig-
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reflects previous trading day. p-Put. c-
Call. The totals for call and put volume
and open interest are midday figures.
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Strike Vol.
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3pm Netl. Open

Close Chg, Int,
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3% — 34 9,199
1 — 1% 2,052
+15 373
~ Vs 1,416
32

36,803 Open Int. 820,987
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Figure 2.2 The Wall Street Journal Europe of 5th January 2000, Index Options. Reproduced by
permission of Dow Jones & Company, Inc.
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Figure 2.3 Option prices versus strike, March and June series of DJIA.

there is less and less time for the underlying to move, so the option value must converge
to the payoff function.

N
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Plotting

When plotting using Excel you’ll find it best to use the ‘XY
Scatter’ option. This allows you to get the correct scale on
the horizontal axis without any hassle. Also, don’t use the
smoothing option as it can give spurious wiggles in the plots.

J

One of the most interesting features of calls and puts is that they have a non-linear
dependence on the underlying asset. This contrasts with futures which have a linear
dependence on the underlying. This non-linearity is very important in the pricing of
options, as the randomness in the underlying asset and the curvature of the option value
with respect to the asset are intimately related.

Calls and puts are the two simplest forms of option. For this reason they are often
referred to as vanilla because of the ubiquity of that flavor. There are many, many more
kinds of options, some of which will be described and examined later on. Other terms
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Figure 2.4 Prices for Glaxo—Wellcome calls expiring in October. Source: Bloomberg L.P.

used to describe contracts with some dependence on a more fundamental asset are
derivatives or contingent claims.

Figure 2.4 shows the prices of call options on Glaxo—Wellcome for a variety of strikes.
All these options are expiring in October. The table shows many other quantities that we

will be seeing later on

2.3 DEFINITION OF COMMON

TERMS

The subjects of mathematical finance and derivatives
theory are filled with jargon. The jargon comes from
both the mathematical world and the financial world.
Generally speaking the jargon from finance is aimed
at simplifying communication, and to put everyone on
the same footing.! Here are a few loose definitions to

N

WELL BE usinG
THESE TERMS ALL
THE TlME/THEY ARE
STANDARD THROUGHOUT]
THE INDUSTRY

be going on with, some you have already seen and there will be many more throughout

the book.

e Premium: The amount paid for the contract initially. How to find this value is the
subject of much of this book.

e Underlying (asset): The financial instrument on which the option value depends.
Stocks, commodities, currencies and indices are going to be denoted by S. The option
payoff is defined as some function of the underlying asset at expiry.

"I have serious doubts about the purpose of most of the math jargon.
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e Strike (price) or exercise price: The amount for which the underlying can be bought
(call) or sold (put). This will be denoted by E. This definition only really applies to the
simple calls and puts. We will see more complicated contracts in later chapters and
the definition of strike or exercise price will be extended.

o Expiration (date) or expiry (date): Date on which the option can be exercised or date
on which the option ceases to exist or give the holder any rights. This will be denoted
by T.

e Intrinsic value: The payoff that would be received if the underlying is at its current
level when the option expires.

e Time value: Any value that the option has above its intrinsic value. The uncertainty
surrounding the future value of the underlying asset means that the option value is
generally different from the intrinsic value.

e In the money: An option with positive intrinsic value. A call option when the asset
price is above the strike, a put option when the asset price is below the strike.

e Out of the money: An option with no intrinsic value, only time value. A call option
when the asset price is below the strike, a put option when the asset price is above
the strike.

e At the money: A call or put with a strike that is close to the current asset level.
e Long position: A positive amount of a quantity, or a positive exposure to a quantity.

e Short position: A negative amount of a quantity, or a negative exposure to a quantity.
Many assets can be sold short, with some constraints on the length of time before
they must be bought back.

24 PAYOFF DIAGRAMS

The understanding of options is helped by the visual interpretation of an option’s value
at expiry. We can plot the value of an option at expiry as a function of the underlying in
what is known as a payoff diagram. At expiry the option is worth a known amount. In the
case of a call option the contract is worth max(S — E, 0). This function is the bold line in
Figure 2.5.

Figure 2.6 shows Bloomberg’s standard option valuation screen and Figure 2.7 shows
the value against the underlying and the payoff.

The payoff for a put option is max(E — S, 0); this is the bold line plotted in Figure 2.8.

Figure 2.9 shows Bloomberg’s option valuation screen and Figure 2.10 shows the value
against the underlying and the payoff.

These payoff diagrams are useful since they simplify the analysis of complex strategies
involving more than one option.

Make a mental note of the thin lines in all of these figures. The meaning of these will be
explained very shortly.

2.4.1 Other representations of value

The payoff diagrams shown above only tell you about what happens at expiry, how much
money your option contract is worth at that time. It makes no allowance for how much
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Figure 2.5 Payoff diagram for a call option.
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Figure 2.6 Bloomberg option valuation screen, call. Source: Bloomberg L.P.

premium you had to pay for the option. To adjust for the original cost of the option,
sometimes one plots a diagram such as that shown in Figure 2.11. In this profit diagram
for a call option | have subtracted from the payoff the premium originally paid for the call
option. This figure is helpful because it shows how far into the money the asset must be
at expiry before the option becomes profitable. The asset value marked S* is the point
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which divides profit from loss; if the asset at expiry is above this value then the contract
has made a profit, if below the contract has made a loss.

As it stands, this profit diagram takes no account of the time value of money. The
premium is paid up front but the payoff, if any, is only received at expiry. To be consistent
one should either discount the payoff by multiplying by e "7~ to value everything at the
present, or multiply the premium by €7~ to value all cashflows at expiry.

Figure 2.12 shows Bloomberg’s call option profit diagram. Note that the profit today is
zero; if we buy the option and immediately sell it we make neither a profit nor a loss (this
is subject to issues of transaction costs).

25 WRITING OPTIONS

| have talked above about the rights of the purchaser of
the option. But for every option that is sold, someone
somewhere must be liable if the option is exercised. If
| hold a call option entitling me to buy a stock some
time in the future, who do | buy this stock from?
Ultimately, the stock must be delivered by the person
who wrote the option. The writer of an option is the
person who promises to deliver the underlying asset, if the option is a call, or buy it, if the
option is a put. The writer is the person who receives the premium.

In practice, most simple option contracts are handled through an exchange so that the
purchaser of an option does not know who the writer is. The holder of the option can
even sell the option on to someone else via the exchange to close his position. However,
regardless of who holds the option, or who has handled it, the writer is the person who
has the obligation to deliver or buy the underlying.

The asymmetry between owning and writing options is now clear. The purchaser of the
option hands over a premium in return for special rights, and an uncertain outcome. The
writer receives a guaranteed payment up front, but then has obligations in the future.

WRITING AN
OPTION IS NOT THE
SAME AS SE LLING
T

2.6 MARGIN

\'\)\ D K}

SOME CONTRACTS
HAVE MARGIN
PEQUIREMENTS
OTHERS DO NOT

Writing options is very risky. The downside of buying
an option is just the initial premium, the upside may be
unlimited. The upside of writing an option is limited,
but the downside could be huge. For this reason, to
cover the risk of default in the event of an unfavorable
outcome, the clearing houses that register and settle
options insist on the deposit of a margin by the writers
of options. Clearing houses act as counterparty to each transaction. Margin was described
in Chapter 1.

2./ MARKET CONVENTIONS

Most of the simpler options contracts are bought and sold through exchanges. These
exchanges make it simpler and more efficient to match buyers with sellers. Part of
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this simplification involves the conventions about such features of the contracts as the
available strikes and expiries. For example, simple calls and puts come in series. This
refers to the strike and expiry dates. Typically a stock has three choices of expiries
trading at any time. Having standardized contracts traded through an exchange promotes
liquidity of the instruments.

Some options are an agreement between two parties, often brought together by an
intermediary. These agreements can be very flexible and the contract details do not
need to satisfy any conventions. Such contracts are known as over the counter or OTC
contracts. | give an example at the end of this chapter.

2.8 THE VALUE OF THE OPTION BEFORE EXPIRY

We have seen how much calls and puts are worth at expiry, and drawn these values in
payoff diagrams. The question that we can ask, and the question that is central to this
book, is ‘How much is the contract worth now, before expiry?’ How much would you
pay for a contract, a piece of paper, giving you rights in the future? You may have no
idea what the stock price will do between now and expiry in six months, say, but clearly
the contract has value. At the very least you know that there is no downside to owning
the option, the contract gives you specific rights but no obligations. Two things are clear
about the contract value before expiry: the value will depend on how high the asset price
is today and how long there is before expiry.

The higher the underlying asset today, the higher we might expect the asset to be at
expiry of the option and therefore the more valuable we might expect a call option to be.
On the other hand a put option might be cheaper by the same reasoning.

The dependence on time to expiry is more subtle. The longer the time to expiry, the
more time there is for the asset to rise or fall. Is that good or bad if we own a call option?
Furthermore, the longer we have to wait until we get any payoff, the less valuable will that
payoff be simply because of the time value of money.

| will ask you to suspend disbelief for the moment (it won’t be the first time in the book)
and trust me that we will be finding a “fair value’ for these options contracts. The aspect
of finding the ‘fair value’ that | want to focus on now is the dependence on the asset price
and time. | am going to use V to mean the value of the option, and it will be a function of
the value of the underlying asset S at time t. Thus we can write V(S, t) for the value of the
contract.

We know the value of the contract at expiry. If | use T to denote the expiry date then at
t = T the function V is known, it is just the payoff function. For example if we have a call
option then

V(S,T) = max(S — E, 0).

This is the function of S that | plotted in the earlier payoff diagrams. Now | can tell you
what the fine lines are in Figures 2.5 and 2.8, they are the values of the contracts V(S, t) at
some time before expiry, plotted against S. | have not specified how long before expiry,
since the plot is for explanatory purposes only.
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Functions of two variables

The option value is a function of two variables, asset price
S and time t. If it helps, think of V as being the height of a
mountain with the two variables being distances in the
northerly and westerly directions. Later we’re going to be
looking at the slope of this mountain in each of the two directions. .. these will
be sensitivities of the option price to changes in the asset and in time. These
slopes or gradients are what you experience in your car when you see a sign
such as ‘1-in-10 gradient.’ That is precisely the same as a slope of 0.1.

29 FACTORS AFFECTING DERIVATIVE PRICES

The two most important factors affecting the prices of options are the value of the under-
lying asset S and the time to expiry t. These quantities are variables meaning that they
inevitably change during the life of the contract; if the underlying did not change then the
pricing would be trivial. This contrasts with the parameters that affect the price of options.

Examples of parameters are the interest rate and strike price. The interest rate will have
an effect on the option value via the time value of money since the payoff is received in
the future. The interest rate also plays another role which we will see later. Clearly the
strike price is important, the higher the strike in a call, the lower the value of the call.

If we have an equity option then its value will depend on any dividends that are paid on
the asset during the option’s life. If we have an FX option then its value will depend on the
interest rate received by the foreign currency.
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A

There is one important parameter that | have not
mentioned, and which has a major impact on the
option value. That parameter is the volatility. Volatil-

ity is a measure of the amount of fluctuation in the
/T L | @sset price, ameasure of the randomness. Figure 2.13
AND ELUSIVE shows two simulated asset price paths, the more
QUANTITY IN jagged of the two has the higher volatility. The tech-
DERIVATIVE S nical definition of volatility is the ‘annualized standard

deviation of the asset returns.” | will show how to
measure this parameter in Chapter 4.

Volatility is a particularly interesting parameter because it is so hard to estimate. And
having estimated it, one finds that it never stays constant and is unpredictable.

The distinction between parameters and variables is very important. | shall be deriving
equations for the value of options, partial differential equations. These equations will
involve differentiation with respect to the variables, but the parameters, as their name
suggests, remain as parameters in the equations.

\
Tome Ot

Volatility

Remember our first coin-tossing experiment back in
Chapter 1? Try this again, but instead of multiplying by a
factor of 1.01 or 0.99, use factors of 1.02 and 0.98. Now

plot the time series. This is an example of a more volatile
. 'O; = path. If you're feeling strong, try the following experiment.
N AN Q Play around with different scale factors, 1.01 and 0.99,
\Q‘l‘ g%ﬁ > 1.02 and 0.98, 1.05 and 0.95, keeping them symmetric
@VM/ about 1 to start with. Now try different ‘timescales,’ i.e. toss
~ the coin only once every two units of time, then once every
four units. Would you call a path with large but infrequent
moves as volatile as one with smaller but more frequent

ﬁ moves?

Volatility and
timescales

\- /

2.10 SPECULATION AND GEARING

If you buy a far out-of-the-money option it may not cost very much, especially if there is
not very long until expiry. If the option expires worthless, then you also haven’t lost very
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Figure 2.13 Two (simulated) asset price paths, one is much more volatile than the other.

much. However, if there is a dramatic move in the underlying, so that the option expires
in the money, you may make a large profit relative to the amount of the investment. Let
me give an example.

Example Today’s date is 14th April and the price of Wilmott Inc. stock is $666. The cost
of a 680 call option with expiry 22nd August is $39. | expect the stock to rise significantly
between now and August, how can | profit if | am right?

Buy the stock Suppose | buy the stock for $666. And suppose that by the middle of
August the stock has risen to $730. | will have made a profit of $64 per stock. More
importantly my investment will have risen by

730 — 666

— 0,
6566 x 100 = 9.6%.

Buy the call If | buy the call option for $39, then at expiry | can exercise the call, paying
$680 to receive something worth $730. | have paid $39 and | get back $50. This is a profit
of $11 per option, but in percentage terms | have made

value of asset at expiry — strike — cost of call 730 — 680 — 39

_ U —bsl — 39 _ g0
cost of call x 100 = 39 x 100 = 28%.

This is an example of gearing or leverage. The out-of-the-money option has a high
gearing, a possible high payoff for a small investment. The downside of this leverage is
that the call option is more likely than not to expire completely worthless and you will lose
all of your investment. If Wilmott Inc. remains at $666 then the stock investment has the
same value but the call option experiences a 100% loss.
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Highly leveraged contracts are very risky for the writer of the option. The buyer is only
risking a small amount; although he is very likely to lose, his downside is limited to his
initial premium. But the writer is risking a large loss in order to make a probable small
profit. The writer is likely to think twice about such a deal unless he can offset his risk by
buying other contracts. This offsetting of risk by buying other related contracts is called
hedging.

Gearing explains one of the reasons for buying options. If you have a strong view about
the direction of the market then you can exploit derivatives to make a better return, if you
are right, than buying or selling the underlying.

2.1l  EARLY EXERCISE

The simple options described above are examples of European options because exercise
is only permitted at expiry. Some contracts allow the holder to exercise at any time before
expiry, and these are called American options. American options give the holder more
rights than their European equivalent and can therefore be more valuable, and they
can never be less valuable. The main point of interest with American-style contracts is
deciding when to exercise. In Chapter 3 | will discuss American options, and show how
to determine when it is optimal to exercise, so as to give the contract the highest value.

Note that the terms ‘European’ and ‘American’ do not in any way refer to the continents
on which the contracts are traded.

Finally, there are Bermudan options. These allow exercise on specified dates, or in
specified periods. In a sense they are half way between European and American since
exercise is allowed on some days and not on others.

2.12 PUT=CALL PARITY

Imagine that you buy one European call option with
a strike of E and an expiry of T and that you write a
D Al A E European put option with the same strike and expiry.
Feom now oN | Today’s date is t. The payoff you receive at T for the
THeY wan'T R so  call will look like the line in the first plot of Figure 2.14.
EASY The payoff for the put is the line in the second plot in
the figure. Note that the sign of the payoff is negative,
you wrote the option and are liable for the payoff. The payoff for the portfolio of the two
options is the sum of the individual payoffs, shown in the third plot. The payoff for this
portfolio of options is

ANOTHER EXAMPLE

max(S(T) — E, 0) — max(E — S(T), 0) = S(T) — E,

where S(T) is the value of the underlying asset at time T.

The right-hand side of this expression consists of two parts, the asset and a fixed
sum E. Is there another way to get exactly this payoff? If | buy the asset today it will
cost me S(t) and be worth S(T) at expiry. | don’t know what the value S(T) will be
but | do know how to guarantee to get that amount, and that is to buy the asset.
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Figure 2.14 Schematic diagram showing put-call parity.

What about the E term? To lock in a payment of E at time T involves a cash flow of
Ee—"T-1) at time t. The conclusion is that the portfolio of a long call and a short put
gives me exactly the same payoff as a long asset, short cash position. The equality
of these cashflows is independent of the future behavior of the stock and is model
independent:

C-P=S—-Ee'Y,

where C and P are today’s values of the call and the put respectively. This relationship
holds at any time up to expiry and is known as put-call parity. If this relationship did not
hold then there would be riskless arbitrage opportunities.

In Table 2.1 | show the cashflows in the perfectly hedged portfolio. In this table | have
set up the cashflows to have a guaranteed value of zero at expiry.
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See how this might
work in practice on
the CD

Table 2.1 Cashflows in a hedged portfolio of

options and asset.

Holding Worth Worth at
today (t) expiry (T)

Call C max(S(T) — E, 0)
—Put -P —max(E — S(T),0)
-Stock ) -8

Cash Ee'T-1 E
Total C—P—-S(t)+Ee T 0

<
Tome Ot

A simulation of put-call parity

Below are four plots, all with time along the horizontal axis.
The first is of some asset price. The second is the value of
a call option on that asset. You don’t need to know details
of the contract, such as strike and expiry. Nor do you need
to know how | calculated the value.

The third plot is of a put option (same strike and expiry
as the call, whatever they were). The fourth plot is stock
value minus call value plus put value. Observe how it grows
exponentially, just like cash in the bank. This is a graphical
illustration of put-call parity.
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2.13 BINARIES OR DIGITALS

The original and still most common contracts are the vanilla calls and puts. Increasingly
important are the binary or digital options. These contracts have a payoff at expiry that
is discontinuous in the underlying asset price. An example of the payoff diagram for one
of these options, a binary call, is shown in Figure 2.15. This contract pays $1 at expiry,
time T, if the asset price is then greater than the exercise price E. Again, and as with the
rest of the figures in this chapter, the bold line is the payoff and the fine line is the contract
value some time before expiry.

Why would you invest in a binary call? If you think that the asset price will rise by expiry,
to finish above the strike price then you might choose to buy either a vanilla call or a
binary call. The vanilla call has the best upside potential, growing linearly with S beyond
the strike. The binary call, however, can never pay off more than the $1. If you expect the
underlying to rise dramatically then it may be best to buy the vanilla call. If you believe
that the asset rise will be less dramatic then buy the binary call. The gearing of the vanilla
call is greater than that for a binary call if the move in the underlying is large.

Figure 2.16 shows the payoff diagram for a binary put, the holder of which receives $1
if the asset is below E at expiry. The binary put would be bought by someone expecting
a modest fall in the asset price.

There is a particularly simple binary put-call parity relationship. What do you get at expiry
if you hold both a binary call and a binary put with the same strikes and expiries? The

answer is that you will always get $1 regardless of the level of the underlying at expiry. Thus
Binary call + Binary put = e "7~

What would the table of cashflows look like for the perfectly hedged digital portfolio?

1.2 1

0.8 -

0.6 -

Value

0.4

0.2

O T T 1
0 50 100 150 S 200

Figure 2.15 Payoff diagram for a binary call option.
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Figure 2.16 Payoff diagram for a binary put option.

2.14 BULL AND BEAR SPREADS

A payoff that is similar to a binary option can be made up with vanilla calls. This is our first
example of a portfolio of options or an option strategy.

Suppose | buy one call option with a strike of 100 and write another with a strike of 120
and with the same expiration as the first then my resulting portfolio has a payoff that is
shown in Figure 2.17. This payoff is zero below 100, 20 above 120 and linear in between.
The payoff is continuous, unlike the binary call, but has a payoff that is superficially similar.
This strategy is called a bull spread (or a call spread) because it benefits from a bull, i.e.
rising, market.

The payoff for a general bull spread, made up of calls with strikes E1 and Eo, is given by

E, _F, (max(S — E1, 0) — max(S — Ep, 0)),

where E, > Eq. Here | have bought/sold (E» — E4)~" of each of the options so that the
maximum payoff is scaled to 1.

If | write a put option with strike 100 and buy a put with strike 120 | get the payoff
shown in Figure 2.18. This is called a bear spread (or a put spread), benefiting from a
bear, i.e. falling, market. Again, it is very similar to a binary put except that the payoff is
continuous.

Because of put-call parity it is possible to build up these payoffs using other contracts.

A strategy involving options of the same type (i.e. calls or puts) is called a spread.
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Figure 2.17 Payoff diagram for a bull spread.
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Figure 2.18 Payoff diagram for a bear spread.
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2.15 STRADDLES AND STRANGLES

If you have a precise view on the behavior of the underlying asset you may want to be
precise in your choice of option; simple calls, puts, and binaries may be too crude.

The straddle consists of a call and a put with the same strike. The payoff diagram
is shown in Figure 2.19. Such a position is usually bought at the money by someone
who expects the underlying to either rise or fall, but not to remain at the same level. For
example, just before an anticipated major news item stocks often show a ‘calm before the
storm.” On the announcement the stock suddenly moves either up or down depending
on whether or not the news was favorable to the company. They may also be bought by
technical traders who see the stock at a key support or resistance level and expect the
stock to either break through dramatically or bounce back.

The straddle would be sold by someone with the opposite view, someone who expects
the underlying price to remain stable.

Figure 2.20 shows the Bloomberg screen for setting up a straddle. Figure 2.21 shows
the profit and loss for this position at various times before expiry. The profit/loss is the
option value less the upfront premium.

The strangle is similar to the straddle except that the strikes of the put and the call
are different. The contract can be either an out-of-the-money strangle or an in-the-
money strangle. The payoff for an out-of-the money strangle is shown in Figure 2.22.
The motivation behind the purchase of this position is similar to that for the purchase of
a straddle. The difference is that the buyer expects an even larger move in the underlying
one way or the other. The contract is usually bought when the asset is around the middle
of the two strikes and is cheaper than a straddle. This cheapness means that the gearing

120 -

100 -

80 -

Value

60 -

40 -

20 -

O T T T 1
0 50 100 150 S 200

Figure 2.19 Payoff diagram for a straddle.
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Figure 2.22 Payoff diagram for a strangle.

for the out-of-the-money strangle is higher than that for the straddle. The downside is
that there is a much greater range over which the strangle has no payoff at expiry, for the
straddle there is only the one point at which there is no payoff.

There is another reason for a straddle or strangle trade that does not involve a view
on the direction of the underlying. These contracts are bought or sold by those with a
view on the direction of volatility, they are one of the simplest volatility trades. Because
of the relationship between the price of an option and the volatility of the asset one can
speculate on the direction of volatility. Do you expect the volatility to rise? If so, how can
you benefit from this? Until we know more about this relationship, we cannot go into this
in more detail.

Straddles and strangles are rarely held until expiry.

A strategy involving options of different types (i.e. both calls and puts) is called a
combination.

2.16 RISK REVERSAL

The risk reversal is a combination of a long call, with a strike above the current spot, and
a short put, with a strike below the current spot. Both have the same expiry. The payoff is
shown in Figure 2.23.

The risk reversal is a very special contract, popular with practitioners. Its value is usually
quite small between the strikes and related to the market’s expectations of the behavior
of volatility.
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Figure 2.23 Payoff diagram for a risk reversal.

2.17 BUTTERFLIES AND CONDORS

A more complicated strategy involving the purchase and sale of options with three
different strikes is a butterfly spread. Buying a call with a strike of 90, writing two calls
struck at 100 and buying a 110 call gives the payoff in Figure 2.24. This is the kind of
position you might enter into if you believe that the asset is not going anywhere, either up
or down. Because it has no large upside potential (in this case the maximum payoff is 10)
the position will be relatively cheap. With options, cheap is good.

The condor is like a butterfly except that four strikes, and four call options, are used.
The payoff is shown in Figure 2.25.

2.18 CALENDAR SPREADS

All of the strategies | have described above have involved buying or writing calls and puts
with different strikes but all with the same expiration. A strategy involving options with
different expiry dates is called a calendar spread. You may enter into such a position
if you have a precise view on the timing of a market move as well as the direction of
the move. As always the motive behind such a strategy is to reduce the payoff at asset
values and times which you believe are irrelevant, while increasing the payoff where you
think it will matter. Any reduction in payoff will reduce the overall value of the option
position.
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2.19 LEAPS AND FLEX

LEAPS or long-term equity anticipation securities are longer-dated exchange-traded
calls and puts. They began trading on the CBOE in the late 1980s. They are standardized
so that they expire in January each year and are available with expiries up to three years.
They come with three strikes, corresponding to at the money and 20% in and out of the
money with respect to the underlying asset price when issued.

Figure 2.26 shows LEAPS quoted in The Wall Street Journal Europe.

In 1993 the CBOE created FLEX or FLexible EXchange-traded options on several
indices. These allow a degree of customization, in the expiry date (up to five years), the
strike price and the exercise style.

220 WARRANTS

A contract that is very similar to an option is a warrant. Warrants are call options issued by
a company on its own equity. The main differences between traded options and warrants
are the timescales involved, warrants usually have a longer lifespan, and on exercise the
company issues new stock to the warrant holder. On exercise, the holder of a traded
option receives stock that has already been issued. Exercise is usually allowed any time
before expiry, but after an initial waiting period.

The typical lifespan of a warrant is five or more years. Occasionally perpetual warrants
are issued, these have no maturity.

221 CONVERTIBLE BONDS

Convertible bonds or CBs have features of both bonds and warrants. They pay a stream
of coupons with a final repayment of principal at maturity, but they can be converted into
the underlying stock before expiry. On conversion rights to future coupons are lost. If the

DJ INDUS AVG - CB

Decl W04 p 42 T+ ¥ 475
Decll 140 p 44 224 + 22 106

S & P 100 INDEX - CB
DecOl 140 c 53 +6 105

S & P 500 INDEX — CB
Decll 70 p 60 The + Ye B993
D 90 p 5 1%e + ' 15789
Dec® 100 p 4 11546 + V2 18242
DecOl 110 p 85 234 + Y 15068
DecOl 1122 p 1T 3 + % T4%
D) 115 p 22 3%+ % 19282
Decll 1172 p 10 75e+ 1% 839
Dec0 120 p 52 4%+ % 17787
Dec0 125 p 6 5Ve+ % 5809
Decld 130 p 18 &%+ 7 7322
Dec0 140 p 20 9 4+ 1% 10159
Decl0 145 o 2 a4 Y 935
Call Volume 39 Open Int 6,469,087
Put Volume 20 Open Int 4,671,720

Figure 2.26 The Wall Street Journal Europe of 5th January 2000, LEAPS. Reproduced by permis-
sion of Dow Jones & Company, Inc.
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stock price is low then there is little incentive to convert to the stock, the coupon stream
is more valuable. In this case the CB behaves like a bond. If the stock price is high then
conversion is likely and the CB responds to the movement in the asset. Because the CB
can be converted into the asset, its value has to be at least the value of the asset. This
makes CBs similar to American options; early exercise and conversion are mathematically

the same.

222 OVER THE COUNTER OPTIONS

Not all options are traded on an exchange. Some, known as over the counter or OTC
options, are sold privately from one counterparty to another. In Figure 2.27 is the term

Preliminary and Indicative
For Discussion Purposes Only

Over-the-counter Option linked to the S&P500 Index

Option Type

Option Seller

Option Buyer

Notional Amount

Trade Date

Expiration Date
Underlying Index
Settlement

Cash Settlement Date
Cash Settlement Amount

Initial Premium Amount
Initial Premium Payment
Date

Additional Premium
Amounts

Additional Premium
Payment Dates

Trigger Levels
Documentation
Governing law

This indicative term sheet is neither an offer to buy or sell securities or an OTC derivative product which
includes options, swaps, forwards and structured notes having similar features to OTC derivative transactions,
nor a solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing
is not a complete description of the terms of a particular transaction and is subject to change without limitation.

European put option, with contingent premium

feature

XXXX

[dealing name to be advised]

USD 20MM

[l

I

S&P500

Cash settlement

5 business days after the Expiration Date

Calculated as per the following formula:
#Contracts * max[0, S&Pstrike — S&Pfinal]
where #Contracts = Notional Amount /
S&Pinitial

This is the same as a conventional put option:

S&Pstrike will be equal to 95% of the closing

price on the Trade Date

S&Pfinal will be the level of the Underlying Index

at the valuation time on the Expiration Date

S&Pinitial is the level of the Underlying Index at

the time of execution

[2%] of Notional Amount

5 business days after Trade Date

[1.43%)] of Notional Amount per Trigger Level

The Additional Premium Amounts shall be due only
if the Underlying Index at any time from and
including the Trade Date and to and including the
Expiration Date is equal to or greater than any of
the Trigger Levels.

103%, 106% and 109% of S&P500initial

ISDA

New York

Figure 2.27 Term sheet for an OTC ‘put.’
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sheet for an OTC put option, having some special features. A term sheet specifies the
precise details of an OTC contract. In this OTC put the holder gets a put option on
S&P500, but more cheaply than a vanilla put option. This contract is cheap because
part of the premium does not have to be paid until and unless the underlying index
trades above a specified level. Each time that a new level is reached an extra payment is
triggered. This feature means that the contract is not vanilla, and makes the pricing more
complicated. We will be discussing special features like the ones in this contract in later
chapters. Quantities in square brackets will be set at the time that the deal is struck.

223 SUMMARY

We now know the basics of options and markets, and a few of the simplest trading
strategies. We know some of the jargon and the reasons why people might want to buy
an option. We’ve also seen another example of no arbitrage in put-call parity. This is
just the beginning. We don’t know how much these instruments are worth, how they are
affected by the price of the underlying, how much risk is involved in the buying or writing
of options. And we have only seen the very simplest of contracts; there are many, many
more complex products to examine. All of these issues are going to be addressed in later
chapters.

FURTHER READING

e McMillan (1996) and Options Institute (1995) describe many option strategies used in
practice.

e Most exchanges have websites. The London International Financial Futures Exchange
website contains information about the money markets, bonds, equities, indices and
commodities. See www.liffe.com. For information about options and derivatives
generally, see www.cboe.com, the Chicago Board Options Exchange website. The
American Stock Exchange is on www.amex.com and the New York Stock Exchange
on www.nyse . com.

e Derivatives have often had bad press (and there’s probably more to come). See Miller
(1997) for a discussion of the pros and cons of derivatives.

e The best books on options are Hull (2005) and Cox & Rubinstein (1985), modesty
forbids me mentioning others. (Oh, all right then, PWOQF2.)

EXERCISES

1. Find the value of the following portfolios of options at expiry, as a function of the
share price:

(@) Long one share, long one put with exercise price E,
(b) Long one call and one put, both with exercise price E,
(c) Long one call, exercise price E1, short one call, exercise price Ep, where E1 < E»,
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(d) Long one call, exercise price E1, long one put, exercise price Eo. There are three
cases to consider,

(e) Long two calls, one with exercise price Ey and one with exercise price E», short
two calls, both with exercise price E, where Ey < E < E».

2. What is the difference between a payoff diagram and a profit diagram? lllustrate with
a portfolio of short one share, long two calls with exercise price E.

3. A share currently trades at $60. A European call with exercise price $58 and expiry
in three months trades at $3. The three month default-free discount rate is 5%. A
put is offered on the market, with exercise price $58 and expiry in three months, for
$1.50. Do any arbitrage opportunities now exist? If there is a possible arbitrage, then
construct a portfolio that will take advantage of it. (This is an application of put-call
parity.)

4. A three-month, 80 strike, European call option is worth $11.91. The 90 call is $4.52
and the 100 call is $1.03. How much is the butterfly spread?

5. Using the notation V(E) to mean the value of a European call option with strike E,
P a2 . . . .
what can you say about £ and 2= for options having the same expiration?

Hint: Consider call and butterfly spreads and the absence of arbitrage.



CHAPTER 3
the binomial model

The aim of this Chapter. ..

...is to describe the simplest model for asset prices that can be, and is, used for
pricing derivatives, to introduce the two fundamental building blocks of quantitative
finance and to explain a very important (but very counter-intuitive) financial concept.
By the end of this chapter you will be able to write a program for pricing basic
derivatives. | hope you won't be too confused by the important-but-counter-intuitive
financial concept. .. even if you are, we'll come back to it many more times.

In this Chapter...

a simple model for an asset price random walk

delta hedging

no arbitrage

the basics of the binomial method for valuing options

risk neutrality
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3./ INTRODUCTION

In this chapter I'm going to present a very simple and popular model for the random
behavior of an asset, for the moment think ‘equity.” This simple model will allow us to
start valuing options. Undoubtedly, one of the reasons for the popularity of this model is
that it can be implemented without any higher mathematics (such as differential calculus).
This is a positive point, however the downside is that it is harder to attain greater levels of
sophistication or numerical analysis in this setting.

Later we’ll be seeing a more sophisticated model, but the ideas we first encounter in
this chapter will be seen over and over again. These are the fundamental concepts of
hedging and no arbitrage.

The binomial model is very important because it shows that you don’t need a simple
formula for everything. Indeed, it is extremely important to have a way of valuing options
that only relies on a simple model and fast, accurate numerical methods. Often in real
life a contract may contain features that make analytic solution very hard or impossible.
Some of these features may be just a minor modification to some other, easily-priced,
contract but even minor changes to a contract can have important effects on the value
and especially on the method of solution. The classic example is of the American put.
Early exercise may seem to be a small change to a contract but the difference between the
values of a European and an American put can be large and certainly there is no simple
closed-form solution for the American option and its value must be found numerically.

\
Tome Ot

Simpilicity itself

The math in this chapter is all very straightforward,
addition, subtraction, multiplication and, occasionally,
division.

J

Before | describe this model | want to stress that the binomial model may be thought
of as being either a genuine model for the behavior of equities, or, alternatively, as a
numerical method for the solution of the Black—Scholes equation.’ Or it can be thought
of as a teaching aid to explain delta hedging, risk elimination and risk-neutral valuation.

Having said what is good about the binomial | would like to say what, to my mind, is
bad about it.

First, as a model of stock price behavior it is poor. The binomial model says that the
stock can either go up by a known amount or down by a known amount, there are but
two possible stock prices ‘tomorrow.’ This is clearly unrealistic. This is important because

"In this case, it is very similar to an explicit finite-difference method. We’ll see the famous Black—Scholes
equation and finite-difference methods later.
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from this model follow certain results that hinge entirely on there only being two prices for
the stock tomorrow. Introduce a third state and the results collapse.

Second, as a numerical scheme it is prehistoric compared with modern numerical
methods. We go into these numerical methods in some detail in this book but several
volumes could be written on sophisticated numerical methods alone. | would advise the
reader to study the binomial model for the intuition it gives, but do not rely on it for
numerical calculations.

But as a teaching aid for explaining difficult concepts, the binomial model is fan-
tastic. Indeed, it is said that the binomial model even helps MBA students understand
options. However, | don’t believe in such dumbing down. | don’t think that quantitative
finance should be dumbed down, just like | don’t believe that brain surgery should be
dumbed down.

My advice is that once you have become comfortable with the ideas that come out of
this chapter you should relegate the binomial method to the back of your mind.

32 EQUITIES CAN GO DOWN AS WELL AS UP

The most ‘accessible’ approach to option pricing is the binomial model. This requires
only basic arithmetic and no complicated stochastic calculus. In this model we will see
the ideas of hedging and no arbitrage used. The end result is a simple algorithm for
determining the correct value for an option.

We are going to examine a very simple model for the behavior of a stock, and based
on this model see how to value options.

e We will have a stock, and a call option on that stock expiring tomorrow.
e The stock can either rise or fall by a known amount between today and tomorrow.

e Interest rates are zero.

Figure 3.1 gives an example. The stock is currently worth $100 and can rise to $101 or
fall to $99 between today and tomorrow.

Which of the two prices is realized tomorrow is completely random. There is a certain
probability of the stock rising and one minus that probability of the stock falling. In this
example the probability of a rise to 101 is 0.6, so that the probability of falling to 99 is 0.4.
See Figure 3.2.

Now let’s introduce the call option on the stock. This call option has a strike of $100
and expires tomorrow.

If the stock price rises to 101, what will then be the option’s payoff? See Figure 3.3. It
is just 101 — 100 = 1.

And if the stock falls to 99 tomorrow, what is then the payoff? See Figure 3.4. The
answer is zero, the option has expired out of the money.

If the stock rises the option is worth 1, and if it falls it is worth 0. There is a 0.6 probability
of getting 1 and a 0.4 probability of getting zero. Interest rates are zero. ..

What is the option worth today?

No, the answer is not 0.6. If that is what you thought, based on calculating simple
expectations, then | successfully ‘led you up the garden path’ to the wrong answer.
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Stock 101

100

> 99

One day

Figure 3.1 The stock can rise or fall over the next day, only two future prices are possible.

Stock 101

100

p=0.4
99

One day

Figure 3.2 Probabilities associated with the future stock prices.

Stock
Call option,
strike =100 p=0.6

101
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Figure 3.3 What is the option payoff if the stock rises?

Stock
Call option,
strike =100 p=0.6

101

100
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One day ?

Figure 3.4 What is the option payoff if the stock falls?
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33 THE OPTION VALUE

The correct answer is. ..

N —

Why?

To see how this can be the only correct answer we must first construct a portfolio
consisting of one option and short % of the underlying stock. This portfolio is shown in
Figure 3.7.

101

Stock
Call option,
strike =100 p=0.6

100

p=0.4

One day 0

Figure 3.5 Now we know the option values in both ‘states of the world.’

Stock
Call option,
strike =100 p=0.6

101
1

99
One day 0
Figure 3.6 What is the option worth today?
Stock 101
Call option, 1
strike =100 p=0.6
Portfolio
100
?
? - % x 100
p=04
99
One day 0

Figure 3.7 Long one option, short half of the stock.
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101
1-%x101

100

?

? -1 %100
p=0.4

99
One day 0-% x99

Figure 3.8 The portfolio values at expiration.

If the stock rises to 101 then this portfolio is worth
1 -3 x101;

the one being from the option payoff and the —% x 101 being from a short (—) position (%)
in the stock (now worth 101).
If the stock falls to 99 then this portfolio is worth

0— % x99;

the zero being from the option payoff and the —% x 99 being from a short (—) position (%)
in the stock (now worth 99). See Figure 3.8.
In either case, tomorrow, at expiration, the portfolio takes the value

9%
2

and that is regardless of whether the stock rises or falls.

We have constructed a perfectly risk-free portfolio.

If the portfolio is worth —99/2 tomorrow, and interest rates are zero, how much is this
portfolio worth today?

It must also be worth —99/2 today.

This is an example of no arbitrage: There are two ways to ensure that we have —99/2
tomorrow.

1. Buy one option and sell one half of the stock.

2. Put the money under the mattress.

Both of these ‘portfolios’ must be worth the same today. Therefore, using ‘?’ as in the
figure to represent the unknown option value

? — 3 x 100 = the option value — § x 100 = —1 x 99

and so

y
? = the option value = 5
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34 WHICH PART OF OUR ‘MODEL’ DIDN’T WE NEED?

The value of an option does not depend on the probability of the stock rising or falling.
This is equivalent to saying that the stock growth rate is irrelevant for option pricing. This
is because we have hedged the option with the stock. See Figure 3.9. We do not care

whether the stock rises or falls. See Figure 3.10.
We do care about the stock price range, however. The stock volatility is very important

in the valuation of options.

Three questions follow from the above simple argument:
e Why should this ‘theoretical price’ be the ‘market price’?
e How did | know to sell % of the stock for hedging?

e How does this change if interest rates are non-zero?

35 WHY SHOULD THIS ‘THEORETICAL PRICE’ BE THE
‘MARKET PRICE”?

This one is simple. Because if the theoretical price and the market price are not the same,
then there is risk-free money to be made. If the option costs less than 0.5 simply buy
it and hedge to make a profit. If it is worth more than 0.5 in the market then sell it and
hedge, and make a guaranteed profit.

101

1 -1 x 101
=—% x99
100
?
?-1%x100
p=0.4
99
One day 0-% x99

Figure 3.9 The portfolio is ‘hedged.’

Stock 101

100

p=04

One day

Figure 3.10 Which parameter(s) didn’t we need?
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It’s not quite this simple because it is possible for arbitrage opportunities to exist, and
to exist for a long time. We also really need there to be some practical mechanism for
arbitrage to be ‘removed.’ In practice this means we really need there to be a couple of
agents perhaps undercutting each other in such a way that the arb opportunity disappears:
A sells the option for 0.55, gets all the business and makes a guaranteed 0.05 profit.
Along comes B who sells the option for just 0.53, now he takes away all the business
from A, who responds by dropping his price to 0.52, etc. So really, supply and demand
should act to make the option price converge to the 0.5.

3.5.1 The role of expectations

The expected payoff is definitely 0.6 for this option. It’s just that this has nothing to do
with the option’s value. Let’s take a quick look at the role of this expectation.
Would anyone pay 0.6 or more for the option? No, unless they were risk seeking.
Would anyone pay 0.55? Perhaps, if they liked the idea of an expected return of
0.6 — 0.55
0.55

The person writing the option would be very pleased with the guaranteed profit of 0.05.

~ 9%.

36 HOW DID | KNOW TO SELL % OF THE STOCK FOR
HEDGING?

Introduce a symbol. Use A to denote the quantity of stock that must be sold for hedging.
We start off with one option, — A of the stock, giving a portfolio value of

? — A x 100.
Tomorrow the portfolio is worth
1— A x 101
if the stock rises, or
0—A x99

if it falls.
The key step is the next one; make these two equal to each other:

1-—Ax101=0-— A x99.
Therefore
A(101 —99) =1
A =0.5.
Another example: Stock price is 100, can rise to 103 or fall to 98. Value a call option
with a strike price of 100. Interest rates are zero.

Again use A to denote the quantity of stock that must be sold for hedging.
The portfolio value is

? — A x100.
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Tomorrow the portfolio is worth either
3 — A103
or
0 — A98.
So we must make
3—A103=0- A98.

That is,

3-0 3
103-98 5
The portfolio value tomorrow is then

—0.6 x 98.

With zero interest rate, the portfolio value today must equal the risk-free portfolio value
tomorrow:

?—-0.6 x 100 = —0.6 x 98.

Therefore the option value is 1.2.

3.6.1 The general formula for A

Delta hedging means choosing A such that the portfolio value does not depend on the
direction of the stock.
When we generalize this (using symbols instead of numbers later on) we will find that
_ Range of option payoffs
" Range of stock prices

We can think of A as the sensitivity of the option to changes in the stock.

37 HOW DOES THIS CHANGE IF INTEREST RATES ARE
NON-ZERO?

Simple. We delta hedge as before to construct a risk-free portfolio. (And we use exactly
the same delta.) Then we present value that back in time, by multiplying by a discount
factor.
Example: Same as first example, but now r = 0.1.

The discount factor for going back one day is

]
1+0.1/252

The portfolio value today must be the present value of the portfolio value tomorrow

= 0.9996.

?—-0.5x100 = —0.5 x 99 x 0.9996.
So that
? =0.51963.
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Stock 101

100

p=0.4
99

One day

Figure 3.11 What is the expected stock price?

38 1S THE STOCK ITSELF CORRECTLY PRICED?

Earlier, | tried to trick you into pricing the option by looking at the expected payoff.
Suppose, for the sake of argument, that | had been successful in this. | would then have
asked you what was the expected stock price tomorrow; forget the option.

The expected stock value tomorrow is

0.6 x 101 + 0.4 x 99 = 100.2.

In an expectation’s sense, the stock itself seems incorrectly priced. Shouldn’t it be
valued at 100.2 today? Well, we already kind of know that expectations aren’t the way to
price options, so this is also not the way to price stock. But we can go further than that,
and make some positive statements.

We ought to pay less than the future expected value because the stock is risky. We
want a positive expected return to compensate for the risk. This is an idea we will be
seeing in detail later on, in Chapter 21 on portfolio management.

We can plot the stock (and all investments) on a risk/return diagram, see Figure 3.12.
Risk is measured by standard deviation and return is the expected return. The figure
shows two investments, the stock and, at the origin, the bank investment. The bank
investment has zero risk, and in our first example above, has zero expected return.

We will see in Chapter 21 that we can get to other places in the risk/return space by
dividing our money between several investments. In the present case, if we put half our

Stock e

Expected return

Bank Risk

Figure 3.12 Risk and return for the stock and the risk-free investment.
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Option

Expected return

Stock

Bank Risk

Figure 3.13 Now we have three investments, including the option.

money in the bank and half in the stock we will find ourselves with an investment that
is exactly half way between the two dots in the figure. We can get to any point on the
straight line between the risk-free dot and the stock dot by splitting our money between
these two, we can even get to any place on the extrapolated straight line in Figure 3.13
by borrowing money at the risk-free rate to invest in the stock.

39 COMPLETE MARKETS

The option also has an expected return and a risk. In our example the expected return
and the risk for the option are both much, much greater than for the stock. We can plot
the option on the same risk/return diagram. Where do you think it might be? Above the
extrapolated line, on it, or below it?

It turns out that the option lies on the straight line, see Figure 3.13. This means that
we can ‘replicate’ an option’s risk and return characteristic with stock and the risk-free
investment. Option payoffs can be replicated by stocks and cash. Any two points on
the straight lines can be used to get us to any other point. So, we can get a risk-free
investment using the option and the stock, and this is hedging. And, the stock can be
replicated by cash and the option.

A conclusion of this analysis is that options are redundant in this ‘world,” i.e. in
this model. We say that markets are complete. The practical implication of complete
markets is that options are hedgeable and can therefore be priced without any need
to know probabilities. We can hedge an option with stock to ‘replicate’ a risk-free
investment, Figure 3.14, and we can replicate an option using stock and a risk-free
investment, Figures 3.15 and 3.16. We could also, of course, replicate stock with an
option and risk-free investment.

3.10 THE REAL AND RISK-NEUTRAL WORLDS

In our world, the real world, we have used our statistical skills to estimate the future
possible stock prices (99 and 101) and the probabilities of reaching them (0.4 and 0.6).
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Option
£
=]
[
T
[]
°
[]
Q .
x Stock Hedging
L
Bank Risk
Figure 3.14 Hedging.
Option
Replication
£
=]
[
T
[]
i7]
g Stock
X
1L
Bank Risk

Figure 3.15 Replication.

Some properties of the real world:

e We know all about delta hedging and risk elimination.
e We are very sensitive to risk, and expect greater return for taking risk.

e Itturns out that only the two stock prices matter for option pricing, not the probabilities.

People often refer to the risk-neutral world in which people don’t care about risk. The
risk-neutral world has the following characteristics:

e We don’t care about risk, and don’t expect any extra return for taking unnecessary
risk.
e We don’t ever need statistics for estimating probabilities of events happening.

e We believe that everything is priced using simple expectations.
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1/2 x Stock 1/2 x 101 —99/2 x Cash —99/2
1/2x 100
-99/2
1/2 x99 —99/2
Option 1
I 1/2
——
0

Figure 3.16 1/2 x Stock — 99/2 x Cash = Option.

Imagine yourself in the risk-neutral world, looking at the stock price model. Suppose all
you know is that the stock is currently worth $100 and could rise to $101 or fall to $99.

If the stock is correctly priced today, using simple expectations, what would you deduce
to be the probabilities of the stock price rising or falling?

The symmetry makes the answer to this rather obvious. If the stock is correctly priced
using expectations then the probabilities ought to be 50% chance of a rise and 50%
chance of a fall. The calculation we have just performed goes as follows. ..

On the risk-neutral planet they calculate risk-neutral probabilities p’ from the equation

p' x 101+ (1 — p) x 99 = 100.

From which p’ = 0.5.

Do not think that this p’ is in any sense real. No, the real probabilities are still 60%
and 40%. This calculation assumes something that is fundamentally wrong, that simple
expectations are used for pricing. No allowance has been made for risk.

Stock 101

100

Figure 3.17 What is the probability of the stock rising?
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Stock 101

100

Figure 3.18 Risk-neutral probabilities.

Never mind, let’s stay with this risk-neutral world and see what they think the option
value is. We won’t tell them yet that the calculation they have just done is ‘wrong.’

How would they then value the call option? Since they reckon the probabilities to be
50-50 and they use simple expectations to calculate values with no regard to risk then
they would price the option using the expected payoff with their probabilities, i.e.

05x14+05x0=0.5.

See Figure 3.19. This is called the risk-neutral expectation.

Damn and blast! They have found the correct answer for the wrong reasons! To put it in
a nutshell, they have twice used their basic assumption of pricing via simple expectations
to get to the correct answer. Two wrongs in this case do make a right. First of all they
calculate a probability from a price, and then a price from a probability. The two ‘errors’
were in opposite directions and canceled each other out.

And this technique will always work.

In the risk-neutral world they have exactly the same price for the option (but for different
reasons).

3.10.1 Non-zero interest rates

When interest rates are non-zero we must perform exactly the same operations, but
whenever we equate values at different times we must allow for present valuing.
With r = 0.1 we calculate the risk-neutral probabilities from

0.9996 x (0’ x 101 4 (1 — p’) x 99) = 100.

Call option, 1

strike = 100

p’=05

Figure 3.19 Pricing the option.
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So
p' =0.51984.
The expected option payoff is now
0.51984 x 1 4+ (1 — 0.51984) x 0 = 0.51984.
And the present value of this is
0.9996 x 0.51984 = 0.51963.

And this must be the option value. (It is the same as we derived the ‘other’ way.)

Risk-neutral pricing is a very powerful technique, and we will be seeing a lot more of it.
Just remember one thing for the moment, that the risk-neutral probability p’ that we have
just calculated (the 0.5 in the first example) is not real, it does not exist, it is a mathematical
construct. The real probability of the stock price was always in our example 0.6, it’s just
that this never was used in our calculations.

3.1 AND NOW USING SYMBOLS

Let’s generalize, so that instead of 100, 101, 99, 0.6, etc., we use symbols for everything.
In the binomial model we assume that the asset, which initially has the value S, can,
during a time step §t, either

e risetoavalueu x Sor

e falltoavaluev x S,
withO<v <1 <u.
e The probability of a rise is p and so the probability of a fall is 1 — p.

Note: By multiplying the asset price by constants rather than adding constants, we will
later be able to build up a whole tree of prices. (This will be a discrete-time version of
what you will soon come to know as a lognormal random walk.)

e The three constants u, v and p are chosen to give the binomial walk the same
characteristics as the asset we are modeling.

Probability of rise = p us

vS

ot

Figure 3.20 The model, using symbols.
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Now remember that | said that | don’t want you using the binomial model, other than to
gain intuition? Well, to help you in that | want to wean you off the model starting now. To
that end | am going to use notation that will be important from Chapter 4 onwards, and
is notation we all use in proper quant finance. Instead of using, u, v and p we are going
to write everything in terms of the mean and the standard deviation of the random walk.
That involves writing u, v and p in terms of what are known as the drift and the volatility.
The drift is the average rate at which the asset rises and the volatility is a measure of its
randomness.

In order to do this | have to introduce new symbols to represent the drift and volatility
of the asset: u the drift of the asset and o the volatility. And we still have a time step 6§t
over which the asset move takes place.

I’m going to give some expressions now for u, v and p and then explain where they

come from:
u=1+ost,
v=1—o0+st
and
1 /st
= — . 3.1
p=5+ (3.1)

To see what these mean let’s look at the average change in asset price during the time
step and the standard deviation.

3.101.1 Average asset change

The expected asset price after one time step is

puS+(1—p)vS=<% Mf)<1+ \/_>

+<%—“f> (1-ovat)S=(1+uats.

So the expected change in the asset is uS §t.
e The expected return is p §t.

3.1 1.2 Standard deviation of asset price change
The variance of change in asset price is

2 (p(u 1 p st —p)v—1—p 8t)2)

_ g2 ((2+“‘/_>(~/_ u8t> (%—£>(x/_+u8t>>

= S%(028t — pu2st?).

The standard deviation of asset changes is (approximately) So +/6t.

e The standard deviation of returns is (approximately) o +/st.
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3.12 AN EQUATION FOR THE VALUE OF AN OPTION

Suppose that we know the value of the option at the time t + §t. For example, this time
may be the expiration of the option, say.

Now construct a portfolio at time t consisting of one option and a short position in a
quantity A of the underlying. At time t this portfolio has value

1=V - AS,

where the option value V is for the moment unknown. You’ll recognize this as exactly
what we did before, but now we’re using symbols instead of numbers.

At time t + §t the option takes one of two values, depending on whether the asset rises
or falls

vVt oor V.
At the same time the portfolio becomes either
Vt —AuS or V- —AVS.

Since we know V*, V~, u, v and S the values of both of these expressions are just linear
functions of A.

3.12.1 Hedging

Having the freedom to choose A, we can make the value of this portfolio the same
whether the asset rises or falls. This is ensured if we make

vVt —AuS =V~ — AVS.

This means that we should choose

vVt — V-
A= —— 3.2
(u—-wvS 32
for hedging. This is just the range of option prices divided by the range of asset prices.
The portfolio value is then

vVt — AuS = V/+ — M
u—-v
if the stock rises or
v-—avs=v- - W=V
u—v)

if it falls.
And, of course, these two expressions are the same.
Let’s denote this portfolio value by

IT 4 STI.

This just means the original portfolio value plus the change in value.
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3.12.2 No arbitrage

Since the value of the portfolio has been guaranteed, we can say that its value must
coincide with the value of the original portfolio plus any interest earned at the risk-free
rate; this is the no-arbitrage argument.

Thus

SIT = rIT é6t.

Putting everything together we get

vVt —Vv-
H+51‘I=1‘[+r1‘[8t=1‘[(1+r5t)=v+_u
u—v)
with
vVt —-Vv- vVt —-Vv-
N=V-AS=V—-——_S=V-—
u—-wvS (u—v)

And the end result is

vVt —Vv- vVt —Vv-
Axrsy(vo L=V )y V=V
(u—v) (u—v)
Rearranging as an equation for V we get
« 'O' = ging q g
AN : Vt—Vv- uVvV- —vVt
AN, WY 1 sV =(1 St .
S\ ;?nyw;x (W+roV =0+rs)———+ w—v)
\E y This is an equation for V given V*, and V~, the option values at the next
- time step, and the parameters u and v describing the random walk of the
asset.
But it can be written more elegantly than this.
* This equation can also be written as
1 n/+ Ny /—
On a spreadsheet V= 1 +rot (PVE+(1-p)V7), (3.3)
where
1 rJ/st
= — 4 ——. 3.4
2 + 20 (34)

The right-hand side of Equation (3.3) is just like a discounted expectation; the terms
inside the parentheses are the sum of probabilities multiplied by events.

If only the expression contained p, the real probability of a stock rise, then this
expression would be the expected value at the next time step.

We see that the probability of a rise or fall is irrelevant as far as option pricing is
concerned since p did not appear in Equation (3.3). But what if we interpret p’ as
a probability? Then we could ‘say’ that the option price is the present value of an
expectation. But not the real expectation.
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We are back with risk-neutral expectations again.
Let’'s compare the expression for p’ with the expression for the actual probability p:

.1 /st

=2t %
but

1 u\/ﬁ
p_§+ 20

The two expressions differ in that where one has the interest rate r the other has the
drift u, but are otherwise the same. Strange.

e We call p’ the risk-neutral probability. It's like the real probability, but the real
probability if the drift rate were r instead of .

Observe that the risk-free interest rate plays two roles in option valuation. It’'s used
once for discounting to give present value, and it’s used as the drift rate in the risk-neutral
asset price random walk.

3./13 WHERE DID THE PROBABILITY p GO?

What happened to the probability p and the drift rate ©«?
Interpreting p’ as a probability, (3.3) is the statement that

e the option value at any time is the present value of the risk-neutral expected value at
any later time.

In reading books or research papers on mathematical finance you will often encounter
the expression ‘risk-neutral’ this or that, including the expression risk-neutral probability.
You can think of an option value as being the present value of an expectation, only it’s
not the real expectation.

Don’t worry we’ll come back to this several more times until you get the hang of it.

3.14 COUNTER-INTUITIVE?

e Two stocks A and B.
e Both have the same value, same volatility and are denominated in the same currency.
e Both have call options with the same strike and expiration.
e Stock A is doubling in value every year, stock B is halving.
Therefore both call options have the same value. But which would you buy? That one

stock is doubling and the other halving is irrelevant. That option prices don’t depend on
the direction that the stock is going can be difficult to accept initially.
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3.15 THE BINOMIAL TREE

The binomial model, just introduced, allows the stock to move up or down a prescribed
amount over the next time step. If the stock starts out with value S then it will take either
the value uS or vS after the next time step. We can extend the random walk to the next
time step. After two time steps the asset will be at either 1S, if there were two up moves,
uvS, if an up was followed by a down or vice versa, or v2S, if there were two consecutive
down moves. After three time steps the asset can be at u3S, u?vS, etc. One can imagine
extending this random walk out all the way until expiry. The resulting structure looks like
Figure 3.21 where the nodes represent the values taken by the asset. This structure is
called the binomial tree. Observe how the tree bends due to the geometric nature of the
asset growth. Often this tree is drawn as in Figure 3.22 because it is easier to draw, but
this doesn’t quite capture the correct structure.

The top and bottom branches of the tree at expiry can only be reached by one path
each, either all up or all down moves. Whereas there will be several paths possible for
each of the intermediate values at expiry. Therefore the intermediate values are more
likely to be reached than the end values if one were doing a simulation. The binomial tree
therefore contains within it an approximation to the probability density function for the
lognormal random walk.

3.16 THE ASSET PRICE DISTRIBUTION

The probability of reaching a particular node in the binomial tree depends on the number
of distinct paths to that node and the probabilities of the up and down moves. Since up
and down moves are approximately equally likely and since there are more paths to the
interior prices than to the two extremes we will find that the probability distribution of
future prices is roughly bell shaped. In Figure 3.23 is shown the number of paths to each
node after four time steps and the probability of getting to each. In Figure 3.24 this is
interpreted as probability density functions at a sequence of times.

u*s

u’vS

S u?v2s
uvi3s
V'S

Figure 3.21 The binomial tree.



Figure 3.22 The binomial tree: a schematic version.

Figure 3.23 Counting paths.
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u*s

3vS

225

4p°(1-p)

6p°(1-p)

4p(1-p)°

(1-p)
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Figure 3.24 The probability distribution of future asset prices.

'O = 3.17 VALUING BACK DOWN THE TREE
T
\, \Q We certainly know V' and V~ at expiry, time T, because we know the

S\ ;;
kv\ ﬂ//“w} option value as a function of the asset; this is the payoff function.

If we know the value of the option at expiry we can find the option value
- at the time T — §t for all values of S on the tree. But knowing these values
means that we can find the option values one step further back in time.

q* e Thus we work our way back down the tree until we get to the root.

A few steps in a This root is the current time and asset value, and thus we find the option
tree value today.

This algorithm is shown schematically over the next few pages. In this
example | have used the choices of u, v and p’ described in the appendix to this chapter
with S =100, 6t = 1/12,r = 0.1, and o = 0.2. The option is a European call with a strike
of 100 and four months to expiration.

Using these numbers we have u = 1.0604, v = 0.9431 and p’ = 0.5567. As an example,
after one time step the asset takes either the value 100 x 1.0604 = 106.04 or 100 x
.9431 = 94.31. Working back from expiry, the option value at the time step before expiry
when S = 119.22 is given by

e 01x0083%(0 5567 x 26.42 4 (1 — 0.5567) x 12.44) = 20.05.

Working right back down the tree to the present time, the option value when the asset is
100 is 6.13.
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Tree of asset prices

.m<§

Tree of option prices

==

Figure 3.25 The two trees, asset and option.

Tree of asset prices

Tree of option prices

Figure 3.26 Start building up the stock-price tree.



82 Paul Wilmott introduces quantitative finance

Tree of asset prices

126.42

Tree of option prices

Figure 3.27 The finished stock tree.

Tree of asset prices
126.42

Tree of option prices
26.42

Figure 3.28 The option payoff.
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Tree of asset prices

126.42

Tree of option prices
26.42

Figure 3.29 Work backwards one ‘node’ at a time.

Tree of asset prices
126.42

Tree of option prices
26.42

Figure 3.30 First time step completed.
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Tree of asset prices

126.42

Tree of option prices
26.42

Figure 3.31 Starting on next time step.

Tree of asset prices
126.42

Tree of option prices
26.42

Figure 3.32 The finished option-price tree. Today’s option price is therefore 6.13.
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3.18 PROGRAMMING THE BINOMIAL METHOD

In practice, the binomial method is programmed rather than done on a spreadsheet.
Here is a function that takes inputs for the underlying and the option, using an externally
defined payoff function.? Key points to note about this program concern the building up
of the arrays for the asset s () and the option v (). First of all, the asset array is built up
only in order to find the final values of the asset at each node at the final time step, expiry.
The asset values on other nodes are never used. Second, the argument j refers to how
far up the asset is from the lowest node at that time step.

Function Price(Asset As Double, Volatility _
As Double, IntRate _
As Double, Strike _
As Double, Expiry _
As Double, NoSteps _ ' “_ -
As Integer)

TODE [MPLEMENTING
THE RINOMIAL METHOD
FOR A EUROPE AN
oeTionN

ReDim S(0 To NoSteps)

ReDim V(0 To NoSteps)

time step = Expiry / NoSteps
DiscountFactor = Exp(-IntRate * time step)
templ = Exp((IntRate + Volatility * Volatility)

* time step) 'O; =
temp2 = 0.5 * (DiscountFactor + templ) ‘gé AN “x
u = temp2 + Sqgr(temp2 * temp2 - 1) k@i ¢ly \
d=1/u Q/V%ﬂ/k‘w/
p = (Exp(IntRate * time step) - d) / (u - d) ~
o’
S(0) = Asset
For n = 1 To NoSteps
For j = n To 1 Step -1 v
S(3j) = u * S(j - 1)
Next j
S(0) = d * s(0) Working code
Next n

For j = 0 To NoSteps
V(j) = Payoff(S(j), Strike)
Next j

For n = NoSteps To 1 Step -1

For j = 0 Ton -1

V(i) = (p * V(J + 1) + (1 - p) * V(J)) _
* DiscountFactor

Next j
Next n
Price = V(0)
End Function

2 This parameterization of the binomial method is the one explained in the appendix to this chapter.
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Here is the externally defined payoff function payoff (S, Strike) for a call.

Function Payoff (S, K)

Payoff = 0

If S > K Then Payoff = S - K
End Function

Because | never use the asset nodes other than at expiry | could have used only the
one array in the above, with the same array being used for both S and V. | have kept them
separate to make the program more transparent. Also, | could have saved the values of
V at all of the nodes; in the above | have only saved the node at the present time. Saving
all the values will be important if you want to see how the option value changes with the
asset price and time, if you want to calculate greeks for example.

In Figure 3.33 | show a plot of the calculated option price against the number of time
steps using this algorithm. The inset figure is a close-up. Observe the oscillation. In this
example, an odd number of time steps gives an answer that is too high and an even an
answer that is too low.

3.19 THE GREEKS

The greeks are defined as derivatives of the option value with respect to various variables
and parameters. These greeks will later be very important when we talk about risk
management. It is important to distinguish whether the differentiation is with respect to a
variable or a parameter (it could, of course, be with respect to both). If the differentiation
is only with respect to the asset price and/or time then there is sufficient information in
our binomial tree to estimate the derivative. It may not be an accurate estimate, but it will
be an estimate. The option’s delta, gamma and theta, defined below can all be estimated
from the tree.

On the other hand, if you want to examine the sensitivity of the option with respect to
one of the parameters, then you must perform another binomial calculation.

Let me take these two cases in turn.

From the binomial model the option’s delta is defined by

vVt —Vv-
(T
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Figure 3.33 Option price as a function of number of time steps.
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G
D
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Figure 3.34 Calculating the delta and gamma.

We can calculate this quantity directly from the tree. Referring to Figure 3.34, the delta
uses the option value at the two points marked ‘D,’ together with today’s asset price and
the parameters u and v. This is a simple calculation.

In the limit as the time step approaches zero, the delta becomes

oV

aS’
The gamma of the option is also defined as a derivative of the option with respect to the
underlying, the sensitivity of the delta to the asset.

32V

082’
To estimate this quantity using our tree is not so clear. (It will be much easier when we
use a finite-difference grid.) However, gamma, being the sensitivity of the delta to the
underlying, is a measure of how much we must rehedge at the next time step. But we
can calculate the delta at points marked with a D in Figure 3.34 from the option value one
time step further in the future. The gamma is then just the change in the delta from one of
these to the other divided by the distance between them. This calculation uses the points
marked ‘G’ in Figure 3.34.

The theta of the option is the sensitivity of the option price to time, assuming that the
asset price does not change. (Again, this is easier to calculate from a finite-difference grid.)
An obvious choice for the discrete-time definition of theta is to interpolate between V+ and
V~ to find a theoretical option value had the asset not changed and use this to estimate

ov
Ta
This results in
SV Vo) -V
&t '
As the time step gets smaller and smaller these greeks approach the Black—Scholes
continuous-time values, which we’ll be seeing shortly.

Estimating the other type of greeks, the ones involving differentiation with respect to
parameters, is slightly harder. They are harder to calculate in the sense that you must
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perform a second binomial calculation. | will illustrate this with the calculation of the
option’s vega.
The vega is the sensitivity of the option value to the volatility

1%

o’
Suppose we want to find the option value and vega when the volatility is 20%. The most
efficient way to do this is to calculate the option price twice, using a binomial tree, with two
different values of . Calculate the option value using a volatility of o + ¢, for a small number
¢; call the values you find V... The option value is approximated by the average value

V=3(Vy+ V)
and the vega is approximated by
vV, -V_
2¢

The importance of these greeks in risk management will become increasingly apparent
as you read this book.

320 EARLY EXERCISE

American-style exercise is easy to implement in a binomial setting. The algorithm is
identical to that for European exercise with one exception. We use the same binomial
tree, with the same u, v and p, but there is a slight difference in the formula for V. We
must ensure that there are no arbitrage opportunities at any of the nodes.

For reasons which will become apparent, I'm going to change my notation now, making
it more complex but more informative. Introduce the notation ij’ to mean the asset price
at the nth time step, at the node j from the bottom, 0 <j < n. This notation is consistent
with the code above. In our lognormal world we have

S} = Sulv,
where S is the current asset price. Also introduce V/.” as the option value at the same
node. Our ultimate goal is to find Vg knowing the payoff, i.e. knowing Vj’"’ forall0<j<M
where M is the number of time steps.

Returning to the American option problem, arbitrage is possible if the option value goes
below the payoff at any time. If our theoretical value falls below the payoff then it is time
to exercise. If we do then exercise the option its value and the payoff must be the same.
If we find that

Yyttt 1 VAR Vi
RN ! 1> Payoff(S!
u—v +1+r6t u-—v = Payoff(Sy)
then we use this as our new value. But if
V{7+1 _ Vﬁ+1 1 uvﬁ+1 _ VVn+1
j i

J+1 J+1 n
Payoff(S;
u-—v +1+r8t u-—v < PayofflS))

we should exercise, giving us a better value of

Vi" = Payoff(S).
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We can put these two together to get

Vw+1 Vw+1 1 UV@+1__V n+1

V1 = max [ L 1 payoff(S”
/ u—v +1+r8t u—v Yoff(Sy)

instead of (3.3). This ensures that there are no arbitrage opportunities. This modification
is easy to code, but note that the payoff is a function of the asset price at the node in
question. This is new and not seen in the European problem for which we did not have to
keep track of the asset values on each of the nodes.

Below is a function for calculating the value of an American-style option. Note the
differences between this program and the one for the European-style exercise. The code
is the same except that we keep track of more information and the line that updates the
option value incorporates the no-arbitrage condition.

Function USPrice(Asset As Double, Volatility _
As Double, IntRate As _
Double, Strike As _
Double, Expiry As _
Double, NoSteps _
As Integer)

ReDim S(0 To NoSteps, 0 To NoSteps)

ReDim V(0 To NoSteps, 0 To NoSteps)

time step = Expiry / NoSteps

DiscountFactor = Exp(-IntRate * time step)

templ = Exp((IntRate + Volatility * Volatility) * time step)

CODE FOR A US
OPTION, ITS NOT THAT
MUCH DIFFERENT FROM
THE EURO PROGRAM

temp2 = 0.5 * (DiscountFactor + templ) lO, RSN
u = temp2 + Sgr (temp2 * temp2 - 1) ‘i; AQ
d=1/u ™ 2y \)
p = (Exp(IntRate * time step) - d) / (u - 4) (&/‘“ G%
S
S(0, 0) = Asset </
For n = 1 To NoSteps
For j = n To 1 Step -1
S(j, n) =u * S(j -1, n - 1) .
Next j
S(0, n) =d * S(0, n - 1)
Next n Working code

For j = 0 To NoSteps

V(j, NoSteps) = Payoff(S(j, NoSteps), Strike)
Next j
For n = NoSteps To 1 Step -1

For j = 0 To NoSteps - 1

V(ij, n - 1) =max((p * V(J + 1, n) + (1 - p) * V(F, n)) _
* DiscountFactor, Payoff(S(j, n - 1), Strike))
Next j

Next n
USPrice = V(0, 0)
End Function
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321 THE CONTINUOUS-TIME LIMIT

As | mentioned, the binomial model is useful for explaining delta hedging and risk
neutrality but not so great as a numerical method. But it can also lead us to the
famous Black—Scholes equation. The binomial model is a discrete-time model whereas
Black—Scholes is in continuous time. So let’'s examine (3.3) as §t — 0.

First of all, we have chosen

u~1+o+/st
and
v~1—o+/st.

Next we write
V=VES,t), VH=V@uSt+56t) and V- = V(S,t+ 6t).

Expanding these expressions in Taylor series® for small §t and substituting into (3.2) we
find that

oV
A~— as §t— 0.
0S

Thus the binomial delta becomes, in the limit, the Black—Scholes delta.
Similarly, we can substitute the expressions for V, V*+ and V™ into (3.3) to find

1% 502V 1%

T 882+rSaS rv =0.
This is the Black—Scholes equation. Again, the drift rate u has disappeared from the
equation. We’ll be seeing a better derivation of this equation soon.

This famous equation will be derived later using stochastic calculus rather than via the
binomial model. The stochastic calculus derivation is far more useful than the binomial,
being far easier to generalize. And from the next chapter on there will be no more mention
of u, v and p and the binomial model, everything will be in terms of drift rate and volatility
(and even the drift rate disappears from most basic models, so it’s really only volatility
we’ll be talking about).

+ %0'28

322 SUMMARY

In this chapter | described the basics of the binomial model, deriving pricing equations
and algorithms for both European- and American-style exercises. The method can be
extended in many ways, to incorporate dividends, to allow Bermudan exercise, to value
path-dependent contracts and to price contracts depending on other stochastic variables
such as interest rates. | have not gone into the method in any detail for the simple reason
that the binomial method is just a simple version of an explicit finite-difference scheme.
As such it will be discussed in depth in Chapter 28. Finite-difference methods have an
obvious advantage over the binomial method; they are far more flexible. I've said it a
million times already, it seems, but let me say one more time: The binomial model is
great for getting intuition about delta hedging and risk-neutral pricing but not for real-life
pricing. So we won’t be seeing any more of the binomial model from Chapter 4 on.

3 If you are rusty on Taylor series then Appendix A contains a useful recap.
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FURTHER READING
e The original binomial concept is due to Cox. et al. (1979).

e Almost every book on options describes the binomial method in more depth than | do.
One of the best is Hull (2005) who also describes its use in the fixed-income world.

WELCOME TO MY WORLD

I’d like to introduce you to the inhabitants of planet Risk Neutral, in a distant, imaginary
part of the universe. The people of Risk Neutral are strange, ethereal creatures, with little
care for the pleasures of the flesh. Satisfaction to them comes from the world of the mind,
the world of ideas, concepts, symbols, and especially abstract probability theory. Yes,
they’re very much like UK academics.

Risk Neutrals do not care for money. Their culture has no concept of ‘risk.” Since they
have no concept of risk, they also do not have any need to be compensated for taking
risk. To them value and expectation are identical.

If we were to send a delegation of Earthlings to planet Risk Neutral with our binomial
model and option pricing question they might behave as follows.

‘Gentlemen of Risk Neutral,” we say, ‘please would you put your undoubted mathemat-
ical skills to use on our perplexing problem from the world of finance?’

‘We can but try,’ they reply.

‘We have a stock that is currently valued at $100. Tomorrow it will be worth either $101
or $99. The probability of the stock being at $101 is...” We are just about to say ‘60%),’
the result of many months of painstaking statistical analysis. But before we can finish our
sentence we are interrupted.

‘Do not tell us the probability. We are perfectly capable of working this out for ourselves.’

How is this possible? How can the Risk Neutrals calculate this probability without any
more data than the $100, the $101 and the $99?

Recall that Risk Neutrals do not understand risk, that they ought to have a positive
expectation for a risky investment. Therefore they reckon that the $100 must be the
expected stock price tomorrow, suitably discounted. (They do have interest-bearing bank
accounts on Risk Neutral. But at the time of our visit interest rates were conveniently zero.)

‘What is the probability then?’ we ask.

‘Clearly it is 50%.’

If interest rates are zero then they have solved the simple problem

p’'101 + (1 — p")99 = 100.

The p’ is therefore 0.5.

Now this is wrong. The probability is not 0.5, it is 0.6. However, we Earthlings are far too
polite to disabuse them. After all we have only just met. So we continue with our problem.
We explain to them about the idea of options and payoffs.

‘The option payoff is one dollar if the stock rises and zero otherwise, what is the value
of the option today?’

‘It must be zero point five multiplied by one, plus zero point five multiplied by zero. So
zero point five.” Their answer is 0.5. They have calculated a simple expectation based on
their incorrect probability.

Yet this is correct. They have found the correct answer despite making a fundamental
mistake; they have valued in terms of expectations. But this mistake has been made



92 Paul Wilmott introduces quantitative finance

twice. Once they have calculated probability from price, and the second time price from
probability. The second mistake reverses the first.

This method pricing always works. If interest rates were not zero on Risk Neutral then
they would need to present value twice in the above calculations, in both the stock
expectations calculation that yielded the risk-neutral probability p’ and in the option
valuation calculation. On the Risk Neutral planet they believe, erroneously, that all traded
investments grow on average at the risk-free interest rate.

As we are leaving the planet to return to Earth we overhear two Risk Neutrals talking
about trying their hand* at investing in the options market. They are in for a shock. They
are very rapidly going to learn about risk. They may have successfully priced the option,
but they have yet to discover hedging.

N
Tome Ot

Risk neutrality again

My experience teaching quantitative finance at all levels is
that risk neutrality is a very hard concept to grasp. So let’s
take another look at it.

e Hedging is used to eliminate risk.

e In simple models, hedging can be used to eliminate all risk from an option
position.

e As well as eliminating risk, hedging removes dependence of an option value
on the direction of an asset.

e If we don’t care whether the asset price rises or falls, we shouldn’t care
about the probability of the rise or fall.

e The risk-neutral random walk is one that has the same volatility as the real
asset random walk but a drift rate that is the same as the risk-free interest
rate and not the real drift rate

e The punchline is that the option value is the present value of the option
payoff under a risk-neutral random walk.

\_ J

APPENDIX: ANOTHER PARAMETERIZATION

The three constants u, v and p are chosen to give the binomial walk the same drift and
standard deviation as the stock we are trying to model. Having only these two equations
for the three parameters gives us one degree of freedom in this choice. I’'ve chosen the
parametrization that results in the tidiest math. But this degree of freedom is often used

4 Actually it's more like a paw.
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to give the random walk the further property that after an up and a down movement (or
a down followed by an up) the asset returns to its starting value, S.% This gives us the
requirement that

v(uS) =u(vS) =S

uv=1. (8.5)

For the binomial random walk to have the correct drift over a time period of 5§t we need

]
puS + (1 —p)vS = SE [e("i"z)‘”“’"’ m} =Se" ™,

pu+ (1 —p) =eH,

Where all these exponentials and things come from will be clear after the next chapter,
so you may want to read this appendix again later. Rearranging this equation we
get

el st v
= 3.6
P=—"— (3.6)
Then for the binomial random walk to have the correct variance we need (details
omitted)
pu? + (1 — p2 = g@rtot, (3.7)

Equations (3.5), (3.6) and (3.7) can be solved to give

u=3 (e_“ 4 e‘“*“z)‘”) + %\/ (e—ﬂ 8t | ew+”2)5f)2 — 4,
Approximations that are good enough for most purposes are
ux1+4o 8t'2 4 Jo?st,
val—o 8t + To?st
and
1 (u—302)st"2
2 20 '

Of course, if this is being used for pricing options you must replace the u with r
everywhere.

5 Other choices are possible. For example, sometimes the probability of an up move is set equal to the
probability of a down move, i.e. p = 1/2.
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EXERCISES

1.

Solve the three equations for u, v and p using the alternative condition p = % instead
of the condition that the tree returns to where it started, i.e. uv = 1.

Starting from the approximations for u and v, check that in the limit §t — 0 we recover
the Black—Scholes equation.

A share price is currently $80. At the end of three months, it will be either $84 or $76.
Ignoring interest rates, calculate the value of a three-month European call option with
exercise price $79. You must use both the methods of setting up the delta-hedged
portfolio, and the risk-neutral probability method.

A share price is currently $92. At the end of one year, it will be either $86 or $98.
Calculate the value of a one-year European call option with exercise price $90 using
a single-step binomial tree. The risk-free interest rate is 2% p.a. with continuous
compounding. You must use both the methods of setting up the delta-hedged
portfolio, and the risk-neutral probability method.

A share price is currently $45. At the end of each of the next two months, it will
change by going up $2 or going down $2. Calculate the value of a two month
European call option with exercise price $44. The risk-free interest rate is 6% p.a.
with continuous compounding. You must use both the methods of setting up the
delta-hedged portfolio, and the risk-neutral probability method.

A share price is currently $63. At the end of each three month period, it will change
by going up $3 or going down $3. Calculate the value of a six month American put
option with exercise price $61. The risk-free interest rate is 4% p.a. with continuous
compounding. You must use both the methods of setting up the delta-hedged
portfolio, and the risk-neutral probability method.

A share price is currently $15. At the end of three months, it will be either $13 or
$17. Ignoring interest rates, calculate the value of a three-month European option
with payoff max(S? — 159, 0), where S is the share price at the end of three months.
You must use both the methods of setting up the delta-hedged portfolio, and the
risk-neutral probability method.

A share price is currently $180. At the end of one year, it will be either $203 or $152.
The risk-free interest rate is 3% p.a. with continuous compounding. Consider an
American put on this underlying. Find the exercise price for which holding the option
for the year is equivalent to exercising immediately. This is the break-even exercise
price. What effect would a decrease in the interest rate have on this break-even price?

A share price is currently $75. At the end of three months, it will be either $59 or
$92. What is the risk-neutral probability that the share price increases? The risk-free
interest rate is 4% p.a. with continuous compounding.



CHAPTER 4
the random behavior

of assets

The aim of this Chapter. ..

.. .is to demonstrate mathematical modeling in practice, to take the reader from an
analysis of stock price data towards a probabilistic model for the behavior of asset
prices. The fundamental model we build up will later be used as the starting point for
deriving the famous Black—Scholes model for option prices. By the end of this chapter
the reader will feel comfortable performing a simple analysis of any financial data.

In this Chapter...

more notation commonly used in mathematical finance
how to examine time-series data to model retums
the Wiener process, a mathematical model of randomness

a simple model for equities, currencies, commodities and indices



96 Paul Wilmott introduces quantitative finance

4. INTRODUCTION

In the first few chapters you’ve seen some basic financial instruments, and you’ve seen
some of the important financial concepts such as no arbitrage and hedging. Now we
are going to go right back to first principles with data analysis and modeling. We’ll also
start to see some stochastic calculus. No more of that binomial nonsense, although it
gave us some useful insight at the time. (Do you get the sense that | have a mission
here?) In this chapter | describe a simple continuous-time model for equities and other
financial instruments, inspired by our earlier coin-tossing experiment. This takes us into
the world of stochastic calculus and Wiener processes. Although there is a great deal
of theory behind the ideas | describe, | am going to explain everything in as simple and
accessible manner as possible. We will be modeling the behavior of equities, currencies
and commodities, but the ideas are applicable to the fixed-income world as well.

42 THE POPULAR FORMS OF ‘ANALYSIS’
There are three forms of ‘analysis’ commonly used in the financial world:

e Fundamental
e Technical

e Quantitative

Fundamental analysis is all about trying to determine the ‘correct’ worth of a company
by anin-depth study of balance sheets, management teams, patent applications, competi-
tors, lawsuits, etc. In other words, getting to the heart of the firm, doing lots of accounting
and projections and what-not. This sounds like a really sensible way to model a company
and hence its stock price. There are unfortunately two difficulties with this approach. First
it is very, very hard. You need a degree in accounting and plenty of patience. And even
then all the most important stuff can be hidden ‘off balance sheet.” Second, and more
importantly, ‘The market can stay irrational longer than you can stay solvent’ (Keynes). In
other words, even if you have the perfect model for the value of a firm it doesn’t mean you
can make money. You have to find some mispricing and then hope that the rest of the
world starts to see your point of view. And this may never happen. If fundamental analysis
is hard, then the next form of analysis is the exact opposite, because it is so easy.

Technical analysis is when you don’t care anything about the company other than
the information contained within its stock price history. You draw trendlines, look for
specific patterns in the share price and make predictions accordingly. This is the subject
of Appendix B. Most academic evidence suggests that most technical analysis is bunk.

The final form of analysis is the one we are really concerned with in this book, and is
the form that has been most successful over the last 50 years, forming a solid foundation
for portfolio theory, derivatives pricing and risk management. It is quantitative analysis.
Quantitative analysis is all about treating financial quantities such as stock prices or
interest rates as random, and then choosing the best models for that randomness. Let’s
see why randomness is important and then build up a simple, random, stock price model.
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43 WHY WE NEED A MODEL FOR RANDOMNESS: JENSEN’S
INEQUALITY

Why is ‘randomness’ so crucial to modeling the world of derivatives? Why can’t we just
try to forecast the future stock price as best we can and figure out the option’s payoff?
To best see the importance of randomness in option theory let’s take a look at some very
simple mathematics, called Jensen’s inequality.

The stock price today is 100. Let’s suppose that in one year’s time it could be 50 or
150, with both equally likely. See Figure 4.1. How can we value an option on this stock, a
call option with a strike of 100 expiring in one year, say?

Two ways spring to mind.

With those two possible scenarios we could say that we expect the stock price to be
at 100 in one year, this being the average of the possible future values. The payoff for the
call option would then be 0, since it is exactly at the money. And the present value of this
is zero. Could this be the way to value an option?

Probably not. You expect the value to be greater than zero, since half the time there is
some payoff.

Alternatively we could look at the two possible payoffs and then calculate that expec-
tation. If the stock falls to 50 then the payoff is zero, if it rises to 150 then the payoff is 50.

50 150 S
@

AN

Figure 4.1 Future scenarios.
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The average payoff is therefore 25, which we could present value to give us some idea of
the option’s value.

It turns out that the second calculation is closer to what we do in practice to value
options (although we know that the real probabilities don’t come into the calculation) and
we’ll see lots of this throughout the book. But that calculation also illustrates another
point of great importance, that the order in which we do the payoff calculation and the
expectation matters. In this example we had

Payoff (Expected [Stock price]) = 0
whereas
Expected [Payoff(Stock price)] = 25.

This is an example of Jensen’s inequality. Let’s use some symbols. If we have a convex
function f(S) (in our example the payoff function for a call) of a random variable S (in our
example the stock price) then

E[f(S)] = f (E[SD . (4.1)

We can even get an idea of how much greater the left-hand side is than the right-hand
side by using a Taylor series approximation around the mean of S. Write

S=S+e¢,
where S = E[S], so the E[¢] = 0. Then
E[f(S)] =E [f(§ v e)] —E [f(§) +ef'(S) + 12" (S) + - ]
~ 1(S) + 1f'(SE [62]
= f(EIS) + 37"(EISDE [ 2] .
So the left-hand side of (4.1) is greater than the right by approximately
1f(ES) E [62] .
This shows the importance of two concepts:

e f7(E[S]): The convexity of an option. As a rule this adds value to an option. It also
means that any intuition we may get from linear contracts (forwards and futures) might
not be helpful with non-linear instruments such as options.

e E[€?]: Randomness in the underlying, and its variance. As stated above, modeling
randomness is the key to modeling options.

Now we have seen a hint as to why randomness is so important, let’s start modeling
some assets! The new model we’ll be seeing for assets is not unlike the binomial model
just described, just a lot more realistic.
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44 SIMILARITIES BETWEEN
EQUITIES, CURRENCIES,
COMMODITIES AND INDICES

When you invest in something, whether it is a stock,
commodity, work of art or a racehorse, your main
concern is that you will make a comfortable return
on your investment. By return we tend to mean the
percentage growth in the value of an asset, together
with accumulated dividends, over some period:

R\
\

WE Wit L
LATER BE USING
MATHEMATICAL
MODE LS FOR RETURNS

Change in value of the asset + accumulated cashflows

Return =
Original value of the asset

| want to distinguish here between the percentage or relative growth and the absolute
growth. Suppose we could invest in either of two stocks, both of which grow on average
by $10 per annum. Stock A has a value of $100 and stock B is currently worth $1000.
Clearly the former is a better investment, at the end of the year stock A will probably be
worth around $110 (if the past is anything to go by) and stock B $1010. Both have gone
up by $10, but A has risen by 10% and B by only 1%. If we have $1000 to invest we
would be better off investing in ten of asset A than one of asset B. This illustrates that
when we come to model assets, it is the return that we should concentrate on. In this
respect, all of equities, currencies, commodities and stock market indices can be treated
similarly. What return do we expect to get from them?

Part of the business of estimating returns for each asset is to estimate how much
unpredictability there is in the asset value. In the next section | am going to show that
randomness plays a large part in financial markets, and start to build up a model for asset
returns incorporating this randomness.

-
Tome Ot

Returns

Here is another way of understanding why returns are
more important than actual stock price. Suppose | told
you that one stock had a value of 5 and another 500.
You would think nothing of it. Now suppose | told you that one currency had
an interest rate of 5% and another had an interest rate of 500%. Whoa. . .you’d
be somewhat surprised by the currency with the 500% interest rate, wouldn’t
you? There’s a big clue in such an observation. We don’t care about the
absolute value of a stock price, only its return. So let’s analyze and model
returns. When we come to modeling interest rates we won’t have such a
valuable clue to help us. This makes interest rate modeling harder than equity
modeling.
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On a spreadsheet, |

include some data
for you to play with

L

45 EXAMINING RETURNS

In Figure 4.2 | show the quoted price of Perez Companc, an Argentinian
conglomerate, over the period February 1995 to November 1996. This is
a very typical plot of a financial asset. The asset shows a general upward
trend over the period but this is far from guaranteed. If you bought and
sold at the wrong times you would lose a lot of money. The unpredictabil-
ity that is seen in this figure is the main feature of financial modeling.
Because there is so much randomness, any mathematical model of a
financial asset must acknowledge the randomness and have a probabilistic
foundation.

Remembering that the returns are more important to us than the absolute
level of the asset price, | show in Figure 4.3 how to calculate returns on a
spreadsheet. Denoting the asset value on the jth day by S;, then the return

from day i to day i 4+ 1 is given by

Siy1 —Si

=R
Si '

(I've ignored dividends here, they are easily allowed for, especially since they only get
paid two or four times a year typically.) Of course, | didn’t need to use data spaced at
intervals of a day, | will comment on this later.

In Figure 4.4 |1 show the daily returns for Perez Companc. This looks very much like
‘noise,” and that is exactly how we are going to model it. The mean of the returns

8,,

7,,

0
20-Feb-95

Figure 4.2 Per

31-May-95 08-Sep-95 17-Dec-95 26-Mar-96 04-Jul-96 12-Oct-96

ez Companc from February 1995 to November 1996.
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Date Perez | Return [
01-Mar-95 2.1 Average return Q.002916
02-Mar-95 1.90 -0.1 Standajdyiatio/0.0ZﬁEm
03-Mar-95 2.18/ 0.149906
06-Mar-95 2.16| -0.01081
07-Mar-95 1.91 -0.11258 [ ~AVERAGE(C3:C463) |
08-Mar-95 1.86/ -0.02985 I
09-Mar-95 1.97 0.061538 \
10-Mar-95 2.27 0.15 | =STDEVP(C3:C463)
13-Mar-95 249 0.099874
14-Mar-95 2.76/ 0.108565
15-Mar-95 2.61 -0.05426
16-Mar-95 2.67) 0.021858
17-Mar-95 2.64/ -0.0107
20-Mar-95 260 -0.01622] =(B13-B12)/B12 |
21-Mar-95 2.59 -0.00275
22-Mar-95 2.59| -0.00275
23-Mar-95 255 -0.01232
24-Mar-95 2.73/ 0.069307
27-Mar-95 2.91 0.064815
28-Mar-95 2.92/ 0.002899
29-Mar-95 2.92 0
30-Mar-95 3.12 0.069364
31-Mar-95 3.14 0.005405
03-Apr-95 3.13 -0.00269
04-Apr-95 3.24 0.037736
05-Apr-95 3.25 0.002597
06-Apr-95 3.28 0.007772
07-Apr-95 3.21 -0.02057
10-Apr-95 3.02 -0.06037
11-Apr-95 3.08 0.019553
12-Apr-95 3.19 0.035616
17-Apr-95 3.21 0.007936
18-Apr-95 3.17) -0.01312
19-Apr-95 3.24| 0.021277

Figure 4.3 Spreadsheet for calculating asset returns.

distribution is

|

[
NE
M=

Il
N

and the sample standard deviation is

1 G =
—— Y R-R
M—14

-

IT <0ULDN T
RE EATIER

(4.3)

where M is the number of returns in the sample (one fewer than the number of asset
prices). From the data in this example we find that the mean is 0.002916 and the standard
deviation is 0.024521.

Notice how the mean daily return is much smaller than the standard deviation. This is
very typical of financial quantities over short timescales. On a day-by-day basis you will
tend to see the noise in the stock price, and will have to wait months perhaps before you
can spot the trend.

The frequency distribution of this time series of daily returns is easily calculated, and
very instructive to plot. In Excel use Tools | Data Analysis | Histogram. In Figure 4.5 is
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0.2

0.15

0.1

0.05

oo o’
.f..- .:*n

20-Jan-97

-0.15

Figure 4.4 Daily returns of Perez Companc.

> 0.7

% 06 M Perez returns
2 — Normal

a 05

45 35 25 -15 05 05 15 25 35 45

Return (scaled)

Figure 4.5 Normalized frequency distribution of Perez Companc and the standardized Normal
distribution.
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shown the frequency distribution of daily returns for Perez Companc. This distribution has
been scaled and translated to give it a mean of zero, a standard deviation of one and an
area under the curve of one. On the same plot is drawn the probability density function
for the standardized Normal distribution function

1 e_%¢2

Von ’
where ¢ is a standardized Normal variable.! The two curves are not identical but are fairly
close.

Supposing that we believe that the empirical returns are close enough to Normal for
this to be a good approximation, then we have come a long way towards a model. |
am going to write the returns as a random variable, drawn from a Normal distribution
with a known, constant, non-zero mean and a known, constant, non-zero standard
deviation:

Sit1—Si -
R; = % = mean + standard deviation x ¢.
i

Figure 4.6 shows the returns distribution of Glaxo—Wellcome as calculated by Bloom-

berg. This has not been normalized.

(€] QO] LN GBp | Mid 1687 —14 L 1686/1688 6,330x750 LT Equity HRH
At 12:56 Vol 869,247 Op 1694 L Hi 1703 L Lo 1686 L Prev 1701 XD

GLAXO WELLCOME PLC {GLXO LN) PRICE 1687 L GBp
HISTORICAL RETURN HISTOGRAM Page /2
Range - N = Day
Price Return
Period [ Daily CL Cutoff :

Mean = -.0187 Sigma = 2.2664% Chi2/Ndf = 13.56/ 17 (CL=.30 Normality: Yes

80

64

48

327

nmNzmAACNHNO

[ E 2
-11.50 -9.50 -8.50 -7.50 ~6.50 ~5.50 -4.50 -3.50 -2.50 -1.50 -.5¢ .50 1.50 2.50 3.50 4.50 5.50 6.50

PRICE RETURN (%)

Copyright 1999 BLOOMBERG L.P. Frankfurt:69-920410 Hong Kong:2-977-6000_ London:171-330-7500 New York:212-318-2000
Princeton:609-279-3000 Singapore:226-3000 Sydney:2~9777-8686 Tokyo:3-3201-8900 Sao Paulo:11-3048-4500
I574-414-0 08-Sep-99 11:56:28

lgploqnb-rg
IPRGrESSID AL

Figure 4.6 Glaxo—-Wellcome returns histogram. Source: Bloomberg L.P.

" Think of a number, any number . .. funny, that’s the number | was thinking of.
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The Normal distribution

In Excel the bell-shaped standardized Normal probability
density function curve is, as a function of X,

SN 1/SQRT(2*PI())*EXP(-0.5"X*X).

% bution having mean m and standard deviation s is denoted

‘Q'i 8,6\*:\9 M\Q Mathematically this is denoted by N(0O, 1). The Normal distri-
J ﬂ\/‘/ by N(m, s?) and in Excel is

1/SQRT(2*PI())/S*EXP(-0.5*(X-M)*(X-M)/S/S).

The figure below shows a couple of Normal distributions,
* one is the standardized, and the other has a positive mean
and quite a small standard deviation.
The Normal
distribution

1.4

1.2 1

D

—2 -15 -1 -0.5 0 0.5 1 1.5 2

There are a couple more Time Outs on the Normal distribution in this chapter.
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46 TIMESCALES

How do the mean and standard deviation of the returns’ time series, as estimated by (4.2)
and (4.3), scale with the time step between asset price measurements? In the example
the time step is one day, but suppose | sampled at hourly intervals or weekly, how would
this affect the distribution?

Call the time step 8t. The mean of the return scales with the size of the time step.
That is, the larger the time between sampling the more the asset will have moved in the
meantime, on average. | can write

mean = u §t,

for some . which we will assume to be constant. This is the same n as in Chapter 3,
representing the annualized average return or the drift.
Ignoring randomness for the moment, our model is simply

Siy1 = Si
——— = ét.
S; H

Rearranging, we get
Sit1 =Si(1 + u 81).
If the asset begins at Sy at time t = 0 then after one time step t = §t and
Sy = So(1 + u 81).
After two time steps t = 2 §t and
So = S1(1 + 1 8t) = So(1 + . 81)%,
and after M time steps t = M st =T and
Sy = So(1 + ustM.
This is just
Sm =So (14 pu st = SpeM'91H11 30 ~ SpeiM it = SoehT.

In the limit as the time step tends to zero with the total time T fixed, this approximation
becomes exact. This result is important for two reasons.

First, in the absence of any randomness the asset exhibits exponential growth, just like
cash in the bank.

Second, the model is meaningful in the limit as the time step tends to zero. If | had
chosen to scale the mean of the returns distribution with any other power of st it would
have resulted in either a trivial model (St = Sp) or infinite values for the asset.

The second point can guide us in the choice of scaling for the random component
of the return. How does the standard deviation of the return scale with the time step
5t? Again, consider what happens after T /6§t time steps each of size §t (i.e. after a total
time of T). Inside the square root in expression (4.3) there are a large number of terms,
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T /8t of them. In order for the standard deviation to remain finite as we let 6t tend to
zero, the individual terms in the expression must each be of O(5t). Since each term is a
square of a return, the standard deviation of the asset return over a time step §t must be
o(st'/?):

standard deviation = o §t'/?,

where o is some parameter measuring the amount of randomness, the larger this para-
meter the more uncertain is the return. This o is the same o we saw in Chapter 3. It is the
annualized standard deviation of asset returns.
Putting these scalings explicitly into our asset return model
Siv1 —Si

sz_—gf——:u6t+o¢8fm. (4.4)
]

| can rewrite Equation (4.4) as
Sit1 — Si= uSist+oSip st/2. (4.5)

The left-hand side of this equation is the change in the asset price from time step i to time
step i + 1. The right-hand side is the ‘model.” We can think of this equation as a model for
a random walk of the asset price. This is shown schematically in Figure 4.7. We know
exactly where the asset price is today but tomorrow’s value is unknown. It is distributed
about today’s value according to (4.5).

Asset tomorro

—

Asset today

Distribution of asset price change

Figure 4.7 A representation of the random walk.
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Binomial versus Normal

We’ve been considering two models for the asset return,
the binomial and the Normal. The figure below shows
what these two look like. Although completely different,
they both should have the same mean return and standard deviation as the
asset we are modeling.

\ -4 -3 -2 - 0 1 2 3 4 /

4.6.1 The dnft

The parameter . is called the drift rate, the expected return or the growth rate of the
asset. Statistically it is very hard to measure since the mean scales with the usually small
parameter ét. It can be estimated by

1 M
H= Mat;Ri'

The unit of time that is usually used is the year, in which case u is quoted as an annualized
growth rate.
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In the classical option pricing theory the drift plays almost no role. So even though it is
hard to measure, this doesn’t matter too much.?

4.6.2 The volatility

The parameter o is called the volatility of the asset. It can be estimated by

1 M

M=)t Z(Ri —Rp.

i=1
Again, this is almost always quoted in annualized terms.

The volatility is the most important and elusive quantity in the theory of derivatives. |
will come back again and again to its estimation and modeling.

Because of their scaling with time, the drift and volatility have different effects on
the asset path. The drift is not apparent over short timescales for which the volatility
dominates. Over long timescales, for instance decades, the drift becomes important.
Figure 4.8 is a realized path of the logarithm of an asset, together with its expected
path and a ‘confidence interval.’ In this example the confidence interval represents one
standard deviation. With the assumption of Normality this means that 68% of the time
the asset should be within this range. The mean path is growing linearly in time and the
confidence interval grows like the square root of time. Thus over short timescales the
volatility dominates.

One standard
deviation above and
below the mean

Mean

Stock price

Time

Figure 4.8 Path of the logarithm of an asset, its expected path and one standard deviation above
and below.

2|n non-classical theories and in portfolio management, it does often matter, very much.
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4.7 ESTIMATING VOLATILITY

The most common estimate of volatility is simply

1 . =

o

If 5t is sufficiently small the mean return R term can be ignored. For small 5t

y M
m ; (log S(t)) — log S(ti71))2
can also be used, where S(t)) is the closing price on day t;.

It is highly unlikely that volatility is constant for any given asset. Changing economic
circumstances, seasonality, etc. will inevitably result in volatility changing with time. If
you want to know the volatility today you must use some past data in the calculation.
Unfortunately, this means that there is no guarantee that you are actually calculating
today’s volatility.

Typically you would use daily closing prices to work out daily returns and then use the
past 10, 30, 100, ... daily returns in the formula above. Or you could use returns over
longer or shorter periods. Since all returns are equally weighted, while they are in the
estimate of volatility, any large return will stay in the estimate of vol until the 10 (or 30 or
100) days have past. This gives rise to a plateauing of volatility, and is totally spurious.

48 THE RANDOM WALK ON A SPREADSHEET (O, =
X g

The random walk (4.5) can be written as a ‘recipe’ for generating S; ¢ from ‘Qf‘. o Y \Q

Si: < ‘w}
\QJ Y

Siv1 =S (1 Fusttod 5t1/2) . (4.6) J

We can easily simulate the model using a spreadsheet. In this simulation we

must input several parameters, a starting value for the asset, a time step §t, ﬂ.

the drift rate u«, the volatility o and the total number of time steps. Then, at

each time step, we must choose a random number ¢ from a Normal distri-

bution. | will talk about simulations in depth in Chapter 29, for the moment This is very simple
let me just say that an approximation to a Normal variable that is fast in to implement

a spreadsheet, and quite accurate, is simply to add

up twelve random variables drawn from a uniform \\&\
distribution over zero to one, and subtract six: &

! USE THIS ALL

THE TIME, ITS QUIcK
AND EASY AND LooD
. . . ENOAGH FOR NMOST
The Excel spreadsheet function RAND () gives a uni- PURPOSE S

formly distributed random variable.
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A | B | ¢C D E | F G H
Asset 100 Time Asset
Drift 0.15 0 100
Volatility 0.25 0.01) 98.38844
Timestep 0.01 0.02| 94.28005|

__» 0.03] 95.40441

— 0.04) 92.79735
| =D4+5BS4 | 0.05 93.45168
0.06 ,93.99664

007 97.66597

NNRl AR R2319

—E7*(1+$B$2*$B$4+$B$3*SQRT($B$4)*(RAND()+RAND()+RAND()+RAND()
+RAND()+RAND()+RAND()+RAND()+RAND()+RAND()+RAND()+RAND()-6))

0.11]| 99.60075
0.12] 99.01974
0.13| 100.8729
0.14| 101.2378
0.15| 102.4736
0.16]| 102.7694
0.17| 100.7347
0.18| 102.7021
0.19| 107.3493

~[8[zlz]3[ala]z]a]R]2]]ele]N ]|+ ]N]-

22 0.2 109.887
23 0.21] 108.688
24 0.22| 110.7826
25 0.23 112.8932
26 0.24 111.0625
27 0.25 111.6157
28 0.26 112.5443
(29 0.27] 111.9805|
30 0.28  115.6002
31 0.29 117.9831
32 0.3 115.2694
33 0.31] 117.4374

Figure 4.9 Simulating the random walk on a spreadsheet.

In Figure 4.9 | show the details of a spreadsheet used for simulating the asset price
random walk.

Mm%
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Excel and the approximation to the Normal

You can draw Normally distributed random numbers in
Excel using NORMSINV(RAND(). But this is very slow.
Below are the distributions for the real Normal and the

approximate Normal using 10,000 random numbers. Not bad?
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The bold line has been
produced using 10,000
Normally distributed
numbers. The other line
uses the approximation.

-5 -4 4 5
Q 'O; % Why use 12 RANDs? Well, you can use any number,
x Q the more you use the closer the approximation will be to
\& Jw A Normal, but the longer it will take to compute. The general

ﬂ/g‘w/ formula using N uniformly distributed numbers is

FE(E o))

ﬂ. This has been scaled to have a mean of zero and unit
standard deviation.

Useful

\ approximations )

49 THE WIENER PROCESS

So far we have a model that allows the asset to take any value after a time step. This is
a step forward but we have still not reached our goal of continuous time, we still have
a discrete time step. This section is a brief introduction to the continuous-time limit of
equations like (4.4). | will start to introduce ideas from the world of stochastic modeling
and Wiener processes, delving more deeply in Chapter 5.

I am now going to use the notation d- to mean ‘the change in’ some quantity. Thus dS
is the ‘change in the asset price.” But this change will be in continuous time. Thus we
will go to the limit 6t = 0. The first 5t on the right-hand side of (4.5) becomes dt but the
second term is more complicated.

| cannot straightforwardly write dt'/2 instead of §t'/2. If | do go to the zero-time step limit
then any random dt'/2 term will dominate any deterministic dt term. Yet in our problem
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the factor in front of dt'/? has a mean of zero, so maybe it does not outweigh the drift
after all. Clearly something subtle is happening in the limit.

It turns out, and we will see this in Chapter 5, that because the variance of the random
term is O(5t) we can make a sensible continuous-time limit of our discrete-time model.
This brings us into the world of Wiener processes.
| am going to write the term ¢ §t'/2 as

/

\

N

ax.

You can think of dX as being a random variable,
drawn from a Normal distribution with mean zero and

’
YoulLlL SEE
THIS NOTATION IN

ALL DERIVATIVES variance dft:
S;::li DoNT E[dX] 0 and E[dX2] w

This is not exactly what it is, but it is close enough to give the right idea. This is called a
Wiener process. The important point is that we can build up a continuous-time theory
using Wiener processes instead of Normal distributions and discrete time.

/

\

\,\\ 410 THE WIDELY ACCEPTED MODEL

FOR EQUITIES, CURRENCIES,
COMMODITIES AND INDICES
THIS IS IT.....

THE asseT mapey | Our asset price model in the continuous-time limit,
THAT FORMS THE using the Wiener process notation, can be written as
BASIS FoR ALMOST

ALL QUANT FINANCE dS = uS dt+ oS dX. 4.7)

THEORY

This is our first stochastic differential equation. It is a continuous-time model of an
asset price. It is the most widely accepted model for equities, currencies, commodities
and indices, and the foundation of so much finance theory.

N
Tome Ot

Don’t panic!

Stochastic differential equations can be a bit unnerving,

especially to anyone used to ordinary or partial differential

calculus. But do not worry, keep thinking in terms of
simulations and the algorithm we’ve built up in the spreadsheet.

J

We’ve now built up a simple model for equities that we are going to be using quite a lot.
You could ask, if the stock market is so random how can fund managers justify their fee? Do
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100% A

9% 6% 2ig 1%

90% -

80% -

70% -

60% -

50% - 9

) 91% 94% 95% 99%
o

40% +

O Outperforming All Share Index
30% - O Underperforming All Share Index

20% A

10% A

0%
1 year 3 years 5 years 10 years

Figure 4.10 Fund performances compared with UK All Share Index. To end December 1998. Data
supplied by Virgin Direct.

they manage to outsmart the market? Are they clairvoyant or aren’t the markets random?
Well, | won’t swear that markets are random but | can say with confidence that fund
managers don’t outperform the market. In Figure 4.10 is shown the percentage of funds
that outperform an index of all UK stocks. Whether we look at a one-, three-, five- or 10-year
horizon we can see that the vast majority of funds can’t even keep up with the market.
And statistically speaking, there are bound to be a few that beat the market, but only by
chance. Maybe one should invest in a fund that does the opposite of all other funds. Great
idea except that the management fee and transaction costs probably mean that that would
be a poor investment too. This doesn’t prove that markets are random, but it’s sufficiently
suggestive that most of my personal share exposure is via an index-tracker fund.

Mm%
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Why do we like the Normal distribution?

The Normal distribution is a special and wonderful
distribution. It occurs naturally in many walks of life, and
has nice properties. Here’s a little experiment that shows

why it crops up naturally, and after this I'll give you a theorem. I
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Back to coin tossing. Toss one coin, heads you win one dollar, tails you lose
one dollar. Figure 1 shows the probability distribution.

Now toss two coins, same rules, for each head you get one dollar, but lose
one for each tail. The probability density function is shown in Figure 2.

The sequence of figures below shows the probability density function of
winnings/losses after an increasing number of tosses. What do you notice? It’s
starting to look more and more like the bell-shaped Normal distribution.

-16-14-12-10-8 6 4 -2 0 2 4 6 8 10 12 14 16 -32-28-24-20-16-12-8 -4 0 4 8 12 16 20 24 28 32

This is a simple demonstration of the Central Limit Theorem: Let X1, X», ...
be a sequence of independent identically distributed (i.i.d.) random variables
with finite means m and finite non-zero variances s2 then the sum

Sh=X1+Xo+...+ X,
in the limit as n — oo is distributed Normally with mean nm and variance ns2.
Or if we rescale,
_X1 +Xo+ ...+ Xy —nm
/ns

tends to the standardized Normal distribution.

The point is that if we add up enough i.i.d. random variables (with finite mean
and standard deviation) we end up with something that’s Normally distributed.
And that’s why the Normal distribution occurs all over the place.

Sh
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411 SUMMARY

In this chapter | introduced a simple model for the random walk of asset. Initially | built
the model up in discrete time, showing what the various terms mean, how they scale with
the time step and showing how to implement the model on a spreadsheet.

Most of this book is about continuous-time models for assets. The continuous-time

version of the random walk involves concepts such as stochastic calculus and Wiener pro-
cesses. | introduced these briefly in this chapter and will now go on to explain the underly-
ing theory of stochastic calculus to give the necessary background for the rest of the book.

FURTHER READING

Mandelbrot (1963) and Fama (1965) did some of the early work on the analysis of
financial data.

Parkinson (1980) derived the high-low estimator and Garman & Klass (1980) derived
the high-low-close estimator.

For an introduction to random walks and Wiener processes see Jksendal (1992) and
Schuss (1980).

Some high frequency data can be ordered through Olsen Associates, www.olsen. ch.
It’s not free, but nor is it expensive.

The famous book by Malkiel (1990) is well worth reading for its insights into the
behavior of the stock market. Read what he has to say about chimpanzees, blindfolds
and darts. In fact, if you haven’t already got Malkiel’s book make sure that it is the
next book you read after finishing mine.

EXERCISES

1.

A share has an expected return of 12% per annum (with continuous compounding) and
a volatility of 20% per annum. Changes in the share price satisfy dS = uS dt + ¢S dX.
Simulate the movement of the share price, currently $100, over a year, using a time
interval of one week.

What is the distribution of the price increase for the share movement described in
Question 1?

Using daily share price data, find and plot returns for the asset. What are the mean
and standard deviation for the sample you have chosen?

Compare interest rate data with your share price data. Are there any major differences?
Is the asset price model

dS = uSdt+ oS dX

also suitable for modeling interest rates?






CHAPTER §
elementary stochastic

calculus

The aim of this Chapter. ..

... Isto develop the theory behind the manipulation of random quantities, in particular
stochastic differential equations like the one at the end of the previous chapter. This
is very important for a thorough understanding of quantitative finance.

In this Chapter...

all the stochastic calculus you need to know, and no more
the meaning of Markov and martingale

Brownian motion

stochastic integration

stochastic differential equations

[td's lemma in one and more dimensions
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51 INTRODUCTION

Stochastic calculus is very important in the mathematical modeling of financial processes.
This is because of the underlying random nature of financial markets. Because stochastic
calculus is such an important tool | want to ensure that it can be used by everyone. To that
end, | am going to try to make this chapter as accessible and intuitive as possible. By the
end, | hope that the reader will know what various technical terms mean (and rarely are
they very complicated), but, more importantly, will also know how to use the techniques
with the minimum of fuss.

Most academic articles in finance have a ‘pure’ mathematical theme. The mathematical
rigor in these works is occasionally justified, but more often than not it only succeeds in
obscuring the content. When a subject is young, as is mathematical finance (youngish),
there is a tendency for technical rigor to feature very prominently in research. This is due
to lack of confidence in the methods and results. As the subject ages, researchers will
become more cavalier in their attitudes and we will see much more rapid progress.

N
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Aaaaarghhhhhh!

If you don’t feel comfortable with messy algebra, just skip
to the end of the chapter where | outline the intuition
behind stochastic calculus and give you a few rules of
thumb to help you use it in practice. Actually, most of this chapter is just
groundwork for the important mathematical ‘tool’ of [t6’s lemma.

J

52 A MOTIVATING EXAMPLE

Toss a coin. Every time you throw a head | give you $1, every time you throw a tail you give
me $1. Figure 5.1 shows how much money you have after six tosses. In this experiment
the sequence was THHTHT, and we finished even.

If | use R; to mean the random amount, either $1 or —$1, you make on the ith toss then
we have

E[R]=0, E[R]=1 and E[RR]=0.

In this example it doesn’t matter whether or not these expectations are conditional on the
past. In other words, if | threw five heads in a row it does not affect the outcome of the
sixth toss. To the gamblers out there, this property is also shared by a fair die, a balanced
roulette wheel, but not by the deck of cards in blackjack. In blackjack the same deck is
used for game after game, the odds during one game depend on what cards were dealt
out from the same deck in previous games. That is why you can in the long run beat the
house at blackjack but not roulette.
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2 _
1 L
»
g
0 1 1 ¥ 1 »
=
= 0 1 2 3 4 5 6
Number of coin tosses
-1+
S, N

Figure 5.1 The outcome of a coin-tossing experiment.

Introduce S; to mean the total amount of money you have won up to and including the
ith toss so that

i
s=Y"R.
j=1

Later on it will be useful if we have Sy = 0, i.e. you start with no money.

P
Tome Ot

Just like coin tossing or the binomial tree

Very similar, but here we have something like an
arithmetic random walk rather than geometric. .. we are
adding or subtracting a quantity rather than multiplying.

\_ J

If we now calculate expectations of S; it does matter what information we have. If we
calculate expectations of future events before the experiment has even begun then

E[S]1=0 and E[S?| =E[R? + 2R4Ro +---] =i.
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On the other hand, suppose there have been five tosses already, can | use this information
and what can we say about expectations for the sixth toss? This is the conditional
expectation. The expectation of Sg conditional upon the previous five tosses gives

E[S6lR1,...,Rs] = Ss.

53 THE MARKOV PROPERTY

This result is special, the expected value of the ran-
dom variable S; conditional upon all of the past events
MARKOV MEANT only depends on the previous value S;_1. This is the
Ne MeEMoRY BEYond  Markov property. We say that the random walk has
Lﬁei;’:;ff Z;r‘Mﬁv no memory beyond where it is now. Note that it doesn’t
Finance Mopecs | have to be the case that the expected value of the
random variable S; is the same as the previous value.

This can be generalized to say that given information about S; for some values of
1 <j <ithen the only information that is of use to us in estimating S; is the value of S; for
the largest j for which we have information.

Almost all of the financial models that | will show you have the Markov property. This is
of fundamental importance in modeling in finance. | will also show you examples where
the system has a small amount of memory, meaning that one or two other pieces of
information are important. And | will also give a couple of examples where all of the
random walk path contains relevant information.

54 THE MARTINGALE PROPERTY

The toin-cossing experiment possesses another property that can be important in finance.
You know how much money you have won after the fifth toss. Your expected winnings
after the sixth toss, and indeed after any number of tosses if we keep playing, is just the
amount you already hold. That is, the conditional expectation of your winnings at any time
in the future is just the amount you already hold:

E[SilS;,j <i1=S;.
This is called the martingale property.

55 QUADRATIC VARIATION

I am now going to define the quadratic variation of the random walk. This is defined by

i

> (S -S-1)°.

j=1
Because you either win or lose an amount $1 after each toss, |S; — S;_1| = 1. Thus the
quadratic variation is always i:

i

> (S —811)7 =i

=1
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| want to use the coin-tossing experiment for one more demonstration. And that will
lead us to a continuous-time random walk.

56 BROWNIAN MOTION

| am going to change the rules of my coin-tossing experiment. First of all | am going to
restrict the time allowed for the six tosses to a period t, so each toss will take a time t/6.
Second, the size of the bet will not be $1 but /2/6.

This new experiment clearly still possesses both the Markov and martingale properties,
and its quadratic variation measured over the whole experiment is

2
(S/—qu)z =6 x ( é) =t.

| have set up my experiment so that the quadratic variation is just the time taken for the
experiment.

I will change the rules again, to speed up the game. We will have n tosses in the allowed
time t, with an amount ./t/n riding on each throw. Again, the Markov and martingale
properties are retained and the quadratic variation is still

(8= §1)% = n x (\/;)2 .

=

6

j=1

| am now going to make n larger and larger. All | am doing with my rule changes is to
speed up the game, decreasing the time between tosses, with a smaller amount for each
bet. But | have chosen my new scalings very carefully, the time step is decreasing like n~"
but the bet size only decreases by n—1/2,

In Figure 5.2 | show a series of experiments, each lasting for a time 1, with increasing
number of tosses per experiment.

As | go to the limit n = oo, the resulting random walk stays finite. It has an expectation,
conditional on a starting value of zero, of

E[S{#]=0
and a variance
E[S(t?] =t.

| use S(t) to denote the amount you have won or the value of the random variable after
a time t. The limiting process for this random walk as the time steps go to zero is called
Brownian motion, and | will denote it by X(t).

The important properties of Brownian motion are as follows.

e Finiteness: Any other scaling of the bet size or ‘increments’ with time step would have
resulted in either a random walk going to infinity in a finite time, or a limit in which there
was no motion at all. It is important that the increment scales with the square root of
the time step.

e Continuity: The paths are continuous, there are no discontinuities. Brownian motion
is the continuous-time limit of our discrete time random walk.
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15 1

-1+
Figure 5.2 A series of coin-tossing experiments, the limit of which is Brownian motion.

e Markov: The conditional distribution of X(t) given information up until ¢ < t depends
only on X(z).

e Martingale: Given information up until ¢ < t the conditional expectation of X(f) is X(z).

e Quadratic variation: If we divide up the time 0 to t in a partition with n + 1 partition
points t; = it/n then

n
Z (X(t;) — X(t;— 1))2 — t. (Technically ‘almost surely.’)
j=1
e Normality: Over finite time increments t;_¢ to t;, X(t}) — X(ti_1) is Normally distributed
with mean zero and variance t; — tj_1.

Having built up the idea and properties of Brownian motion from a series of experiments,
we can discard the experiments, to leave the Brownian motion that is defined by its
properties. These properties will be very important for our financial models.

57 STOCHASTIC INTEGRATION

| am going to define a stochastic integral by

ff )aX(x nango - 1t5-0) () = X(-1)
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with

jt
=",

Before | manipulate this is any way or discuss its properties, | want to stress that the
function f(tf) which | am integrating is evaluated in the summation at the left-hand point
ti_1. It will be crucially important that each function evaluation does not know about the
random increment that multiplies it, i.e. the integration is non anticipatory. In financial
terms, we will see that we take some action such as choosing a portfolio and only then
does the stock price move. This choice of integration is natural in finance, ensuring that
we use no information about the future in our current actions.

58 STOCHASTIC DIFFERENTIAL
EQUATIONS

Stochastic integrals are important for any theory of
stochastic calculus since they can be meaningfully
defined. (And in the next section | show how the def-
inition leads to some important properties.) However,

e . THE TIME
it is very common to use a shorthand notation for !

WELL RE USING
STOCHASTIC
DIFFERENTIAL

ERUATIONS ALL

expressions such as
t
W(t):/ f(r)dX(z). (5.1)
0

That shorthand comes from ‘differentiating’ (5.1) and is
aw = f(t)dX. (5.2)

Think of dX as being an increment in X, i.e. a Normal random variable with mean zero and
standard deviation dt'/2,

Equations (5.1) and (5.2) are meant to be equivalent. One of the reasons for this
shorthand is that the equation (5.2) looks a lot like an ordinary differential equation. We do
not go the further step of dividing by dt to make it look exactly like an ordinary differential
equation because then we would have the difficult task of defining %.

Pursuing this idea further, imagine what might be meant by

dW = g(t) dt + f(t) dX. (5.3)

This is simply shorthand for

t t
W) = /0 g(r)dr + /O f(r) dX(c).

Equations like (5.3) are called stochastic differential equations. Their precise meaning
comes, however, from the technically more accurate equivalent stochastic integral. In this
book | will use the shorthand versions almost everywhere, no confusion should arise.
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59 THE MEAN SQUARE LIMIT

| am going to describe the technical term mean square limit. This is useful in the precise
definition of stochastic integration. | will explain the idea by way of the simplest example.
Examine the quantity

2
E (Z(X(t,-)—X(tm))"’—t) (5.4)

J=1

where

This can be expanded as

E {Z(xa,-) =Xt +2) Y (X(t) — Xti-1)PX () — X(t-1)?

j=1 i=1 j<i

—2t Y (X(t) — X(t-1)* + tQ} :
j=1

Since X(t;) — X(ti—1) is Normally distributed with mean zero and variance t/n we have
t
E[X@) - X@-1)?] = ~

n

and
3 2
£ - X)) = 2

Thus (5.4) becomes
t t t 1
n3—-|-n(n—1)——2tn—+t2=O —).
n2 n2 n n

As n — oo this tends to zero. We therefore say that
n

Y Xt) = X(t-1)* =t

J=1
in the ‘mean square limit.” This is often written, for obvious reasons, as

/0 t(dX)2 =t

| am not going to use this result, nor will | use the mean square limit technique.
However, when | talk about ‘equality’ in the following ‘proof’ | mean equality in the mean
square sense.

510 FUNCTIONS OF STOCHASTIC VARIABLES AND ITO’S
LEMMA

| am now going to introduce the idea of a function of a stochastic variable. In Figure 5.3
is shown a realization of a Brownian motion X(t) and the function F(X) = X?.
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Figure 5.3 A realization of a Brownian motion and its square.

If F = X2 is it true that dF = 2X dX? No. The ordinary rules of calculus do not generally
hold in a stochastic environment. Then what are the rules of calculus?
| am going to ‘derive’ the most important rule of stochastic calculus, I1t6’s lemma. My
derivation is more heuristic than rigorous, but at least it is transparent. | will do this for an
arbitrary function F(X).
In this derivation | will need to introduce various timescales. The first timescale is very,
very small. | will denote it by
st
=
This timescale is so small that the function F(X(t + h)) can be approximated by a Taylor
series:

h.

daF

L d?F
dX

FX(t + h)) — F(X(1)) = (X(t + h) — X(2)) X2

(X(®) + ZX(t+h) = XO)? 5 (X(@) +

From this it follows that
(FX(t + h)) — FX®)) + (FIX(t + 2h)) — FX(t + h) + ... + (FX(t + nh))
—FX(t + (n — 1h))

. F
= > (X(t+jn) = X(t+( - 1)h))—ZX(X(t+ (' ="1h)
j=1

| dPF Z , , 2
3 oz X(@) D Xt +jh) = Xt + G — D) + ...

=1
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In this | have used the approximation
d’F d’F
—X{t+(—Nh) = —
S X+ = Dh) = —

This is consistent with the order of accuracy | require.
The first line in this becomes simply

F(X(t + nh)) — F(X(t)) = F(X(t + 8t)) — F(X(t)).

The second is just the definition of

(X(®).

t+ot qF
—aX
/t ax

and the last is

d’F
%W(X(t))&,
in the mean square sense. Thus we have
t+5t aF ; t+5t d2F
FXX(t + 8t)) — F(X(t) = /t d—X(X(‘[))dX(t) +3 /r W(X(T»dr'

I can now extend this result over longer timescales, from zero up to t, over which F
does vary substantially to get

This is the integral version of It6’s lemma, which is
usually written as

READ , MARK,
LEARN AND INWARDLY
DIGEST. THIS MUST
RECOME ZND NATURE
TO Yo

We can now answer the question, if F = X2 what stochastic differential equation does
F satisfy? In this example

dF o?F

Therefore 1t6’s lemma tells us that

dF =2XdX + dt.
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This is not what we would get if X were a deterministic variable. In integrated form

t t t
X2=F(X)=F(0)+/ 2de+/ 1df:/ 2X dX +t.
0 0 0

Therefore

t
/ XdX = Ix? - It.
0

511 INTERPRETATION OF ITO’S LEMMA

[td’s lemma is going to be of great importance to us when we start to look at pricing
options. If we can get comfortable with manipulating random quantities via simple rules
of stochastic calculus then we will find most option theory quite straightforward.

To help in that regard, and to give you some insight into the role that 1t6’s lemma will
be playing, take a look at the next figure, Figure 5.4.

In this figure you will see at the top a realization of a stock price, just a basic lognormal
random walk. Below this is the value of an option on this stock.! What you will notice
about these plots is that both have a direction to them (both are rising overall) and both
have a random element (the bouncing around of the values).

Both look stochastic and we know that the stock price satisfies a stochastic differential
equation

dS = uS dt+ oS dX,
so maybe the option value (call it V(S, t)) also satisfies a stochastic differential equation

av = at + ax.

The question is, then, what are the underlined bits? And that is precisely what It6
tells us.

This will be important later when we do the Black—Scholes theory, because knowing
how much randomness there is in an option’s value relative to a stock’s value will give us
a recipe for eliminating that randomness by buying an option and selling short a special
quantity of the stock.

5.2 1ITO AND TAYLOR

Having derived It6’s lemma, | am going to give some intuition behind the result and then
slightly generalize it.

"It doesn’t much matter whether it is a call, a put or something more exotic, the concept is relevant to all
options.
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Figure 5.4 A realization of a stock price and the value of an option on that stock.

If we were to do a naive Taylor series expansion of F, completely disregarding the
nature of X, and treating dX as a small increment in X, we would get

dF a’F
FX +dX)=FX)+ —dX+ 2dX2dX
ignoring higher-order terms. We could argue that F(X + dX) — F(X) was just the ‘change
in’ F and so
aF = 3 ax 41 * aF axe.

aX 2 gx2
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This is very similar to (5.5) (and Taylor series is very similar to 1t6), with the only difference
being that there is a dX? instead of a dt. However, since in a sense

/0 (o2 =t

ax? = dt. (5.6)

Although this lacks any rigor it does give the correct result. However, on a positive
note you can, with little risk of error, use Taylor series with the ‘rule of thumb’ (5.6) and
in practice you will get the right result. Although this is technically incorrect, you almost
certainly won’t get the wrong result. | will use this rule of thumb almost every time | want
to differentiate a function of a random variable.

p
Tome Ot

Intuition behind dX2¢ = ’dt

| could perhaps write

This is subtle. Pay close attention.

We shouldn’t really think of dX? as being the square of a
single Normally distributed random variable, mean zero, variance dt. No, we
should think of it as the sum of squares of lots and lots (an infinite number)
of independent and identically distributed Normal variables, each one having
mean zero and a very, very small (infinitesimal) variance. What happens when
you add together lots of i.i.d. variables? In this case we get a quantity with a
mean of dt and a variance which goes rapidly to zero as the ‘lots’ approach

‘infinity.’

\_ J

To end this section | will generalize slightly. Suppose my stochastic differential equation
is

dS = a(S)dt + b(S)dX, (5.7)

say, for some functions a(S) and b(S). Here dX is the usual Brownian increment. Now
if | have a function of S, V(S), what stochastic differential equation does it satisfy? The
answer is

av ad?v

dV = —=dS+ 1p*°—— dt.

s ¢t ¥ ez
We could derive this properly or just cheat by using Taylor series with dX? = dt. | could,
if | wanted, substitute for dS from (5.7) to get an equation for dV in terms of the pure
Brownian motion X:

av

2
av = (a(S)£ + §b(S)2ﬂ) dt+ b(S)ﬂ dX.

ds? as
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513 ITO IN HIGHER DIMENSIONS

In financial problems we often have functions of one stochastic variable S and a deter-
ministic variable t, time: V(S, 1). If
dS = a(S,t)dt + b(S, ) dX
then the increment dV is given by
av = dt Vs b2— dt. 5.8
+ 35 35 7> T 27 332 ©.8)

Again, this is shorthand notation for the correct integrated form. This result is obvious, as
is the use of partial instead of ordinary derivatives.

Occasionally, we have a function of two, or more, random variables, and time as well:
V(S1, S, ). An example would be the value of an option to buy the more valuable out of
Nike and Reebok. | will write the behavior of S1 and S in the general form

dS1 = ay(S1, So, t)dt + b1(S1, S2, )Xy
and
dSz = ax(S1, Sa, t)dt + ba(S1, Sz, 1)dXo.

Note that | have two Brownian increments dX1 and dX>. We can think of these as being
Normally distributed with variance dt, but they are correlated. The correlation between
these two random variables | will call p. This can also be a function of Sy, S, and t but
must satisfy

-1<p=<1.
The ‘rules of thumb’ can readily be imagined:
dX? =dt, dX5=dt and dX;dX; = padt.

[t0’s lemma becomes

k1% k1% 92V 92V 92V
v = — dt —dS dS b2 dt + pb1b dt+ 1b2—dt. (5.9
+ 35, 1+ 2+ 3 ) S + pb4 235,95, +3 752 (5.9)

514 SOME PERTINENT EXAMPLES

In this section | am going to introduce a few common random walks and talk about their
properties.

Remember that a stochastic differential equation model for variable S is something of
the form

as = at + axX.

The bit in front of the dt is deterministic and the bit in front of the dX tells us how
much randomness there is. Modeling is very much about choosing functions to go
where the underlining is, it is about choosing the functional form for the deterministic
part and the functional form for the amount of randomness. We will now look at some
examples.
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Time

Figure 5.5 A realization of dS = ndt + o dX.
5.14.1 Brownian motion with drift

The first example is like the simple Brownian motion but with a drift:
dS = pndt+ o dX.

A realization of this is shown in Figure 5.5. The point to note about this realization is that
S has gone negative. This random walk would therefore not be a good model for many
financial quantities, such as interest rates or equity prices. This stochastic differential
equation can be integrated exactly to get

S(t) = S(0) + ut + o (X(t) — X(0)).

-
Tome Ot

Spreadsheet simulation

This random walk is simulated on the following spreadsheet.
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A B | ¢ | o [ E T F (O =
1 |Start 100 Time S \ / ~
2 |u 0.1 0 100 X AN \Q
3 |o 0.2 0.01-100.0171 C Y
4 0.02 99.99066 k > (w}
5 |Timestep 0.01 0.03 99.96521 ‘_b ﬂ/k
6 0.04 99.97567 <
7 0.05 99.93592 2
8 0.06 99.95225
9 W 0.07 99.96202
10 - 0.08 99.95202
11 0.09 99.95474 .
21 [FE11+5B52"$BS5SB83"SART(SBS5)" I op o a
a1 |(RANDO+RAND()+RAND()+RAND(+R |, o e
51 [ANDO+RAND()+RAND()+RAND(}+RA |7 99-94825
a1 [NDO+RAND(+RAND(+RAND()-6) 2 99.95995 The
17 0.15 99.95776 spreadsheet
18 0.16 99.95448 is easily
19 0.17 99.93744
20 0.18 99.90828 changed to
21 019 99.9203 model other
22 0.2 99.94772 random walks

\ J

5.14.2 The lognormal random walk

My second example is similar to the above but the drift and randomness scale with S:
dS = uSdt+o0Sdx. (5.10)

A realization of this is shown in Figure 5.6.

How does the time series in Figure 5.6 which was generated on a spreadsheet using
random returns compare qualitatively with the time series in Figure 5.7 which is the real
series for Glaxo—Wellcome?

If S starts out positive it can never go negative; the closer that S gets to zero the smaller
the increments dS. For this reason | have had to start the simulation with a non-zero
value for S. This property of this random walk is clearly seen if we examine the function
F(S) = log S using It0’s lemma. From It6 we have

1
2 2
dF—EdS+2 S@dt (uSdt—i—oSdX)——o at

= (- J0?) dt+ o dX.

This shows us that log S can range between minus and plus infinity but cannot reach
these limits in a finite time, therefore S cannot reach zero or infinity in a finite time.

The integral form of this stochastic differential equation follows simply from the stochas-
tic differential equation for log S:
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Figure 5.6 A realization of dS = uS dt + ¢S dX.
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Figure 5.7 Glaxo—-Wellcome share price (volume below). Source: Bloomberg L.P.
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The stochastic differential equation (5.10) will be particularly important in the modeling
of many asset classes. And if we have some function V(S, t) then from It it follows that

WV v
dV = —dt+_—dS+ }o°S?

92V
— dt.

552 (6.11)

ot S

5.14.3 A mean-reverting random walk

The third example is
dS = (v — uS)dt + o dX.

A realization of this is shown in Figure 5.8.

This random walk is an example of a mean-reverting random walk. If S is large, the
negative coefficient in front of dt means that S will move down on average, if S is small it
rises on average. There is still no incentive for S to stay positive in this random walk. With
r instead of S this random walk is the Vasicek model for the short-term interest rate.

Mean-reverting models are used for modeling a random variable that ‘isn’t going
anywhere.” That’s why they are often used for interest rates; Figure 5.9 shows the yield
on a Japanese Government Bond.

12
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»n 0.6 +

0.4 +

0.2 +

0 1 1 1 1 1
0 0.2 0.4 Time 0.6 0.8 1

Figure 5.8 A realization of dS = (v — uS)dt + o dX.
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Figure 5.9 Time series of the yield on a JGB. Source: Bloomberg L.P.
5.14.4 And another mean-reverting random walk

The final example is similar to the third but | am going to adjust the random term slightly:
dS = (v — uS)dt + 0S"2 dX.

Now if S ever gets close to zero the randomness decreases, perhaps this will stop S
from going negative? Let’s play around with this example for a while. And we’ll see It6 in
practice.
Write F = S'/2, What stochastic differential equation does F satisfy? Since
aF o1 o*F 1q-3/2
15~V -5 /

gs —2° " A g =

we have
4y — 2
dF = (”87; - %MF> dt + JodX.

| have just turned the original stochastic differential equation with a variable coefficient in
front of the random term into a stochastic differential equation with a constant random
term. In so doing | have made the drift term nastier. In particular, the drift is now singular
at F = S = 0. Something special is happening at S = 0.
Instead of examining F(S) = S'/2, can | find a function F(S) such that its stochastic
differential equation has a zero drift term? For this | will need
aF d’F

dS 2028—20.

(v — 1S) =
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This is easily integrated once to give

dF _2v
— =AS +2e? 5.12
oS (5.12)
for any constant A. | won’t take this any further but just make one observation. If

2v

o2

2uS

>1
we cannot integrate (5.12) at S = 0. This makes the origin non attainable. In other words,
if the parameter v is sufficiently large it forces the random walk to stay away from zero.
This particular stochastic differential equation for S will be important later on, it is the
Cox, Ingersoll & Ross model for the short-term interest rate.
These are just four of the many random walks we will be seeing.

515 SUMMARY

This chapter introduced the most important tool of the trade, 1t6’s lemma. 1t0’s lemma
allows us to manipulate functions of a random variable. If we think of S as the value of an
asset for which we have a stochastic differential equation, a ‘model,’” then we can handle
functions of the asset, and ultimately value contracts such as options.

If we use It6 as a tool we do not need to know why or how it works, only how to use it.
Essentially all we require to successfully use the lemma is a rule of thumb, as explained in
the text. Unless we are using It6 in highly unusual situations, then we are unlikely to make
any errors.

FURTHER READING

e Neftci (1996) is the only readable book on stochastic calculus for beginners. It does
not assume any knowledge about anything. It takes the reader very slowly through the
basics as applied to finance.

e Once you have got beyond the basics, move on to @ksendal (1992) and Schuss (1980).

N
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Stochastic calculus for dummies . . .learning
by using

To use stochastic calculus successfully only really
requires a little bit of intuition. Then, with use, familiarity
breeds, if not contempt, sufficient confidence to make you
believe that you understand. (And that’s how I've learned the subject.) So, here
is that intuition.
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e Stochastic differential equations are like recipes for generating random
walks, just as we saw in the previous chapter using Excel.

e If you have some quantity, let’s call it S, that follows such a random walk,
then any function of S is also going to follow a random walk. For example, if
S is moving about randomly, then so is S2.

e The question then becomes ‘What is the random walk for this function of
S§7?’ That is, what is its recipe, or what is its stochastic differential equation?

e The answer to that comes from applying something very like Taylor series
but with two tricks.

e The first trick is that when you do your Taylor series expansion, only keep
terms of size dt or bigger (dt'/?).

e The second trick is that every time you see a dX? term replace it with dt.
Why? Because dX is really made up of lots of Normally distributed random
\ variables, and so dX? becomes its expected value dt.

EXERCISES

In all of these X(t) is Brownian motion.

1. By considering X2(t), show that

/ tX(t)dX(t) = IX3(t) — 1t.
0
2. Show that
t t
/th(r):l‘X(t)—/ X(z)dr.
0 0
3. Show that
t t
/ X2(1)dX(z) = 3X3(t) — / X(z)dx.
0 0

4. Consider a function f(f) which is continuous and bounded on [0, f]. Prove integration
by parts, i.e.
t

/ t f(x)dX () = FEHX(D) — / X(2)df(z).
0

0
5. Find u(W,t) and v(W, t) where

dW(t) = u dt + v dX(t)

and
(@ W) =X2(),
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b) W) =1+t+eX0,
(c) W) =X,

where f is a bounded, continuous function.

6. If Sfollows alognormal random walk, use It6’s lemma to find the differential equations

satisfied by
(@ f(S)=AS+8B,
b) 9(5)=5",

(©) h(S,t)=S"e™,
where A, B, m and n are constants.

7. If dS = uSdt+ oS dX, use Itd6’s lemma to find the stochastic differential equation
satisfied by f(S) = log(S).

8. The change in a share price satisfies
dS = A(S, t)dX + B(S, t) dt,

for some functions A, B, what is the stochastic differential equation satisfied by f(S, t)?
Can A, B be chosen so that a function g(S) has a zero drift, but non-zero variance?

9. Two shares follow geometric Brownian motions, i.e.
dsSq = ,LL1S1 dt + o01S1 dXj,
dSs = oSs dt + 0255 dXo.

The share price changes are correlated with correlation coefficient p. Find the
stochastic differential equation satisfied by a function f(S+, S»).



CHAPTER 6
the Black—Scholes

mode]

The aim of this Chapter...

...Is to explain in as simple and non-technical a manner as possible the original
breakthrough in quantitative finance that led to such a growth in the industry and
the development of the subject. By now you will know all the mathematical tools to
follow this chapter, and by the end of the chapter will be ready to apply the ideas to
new situations.

In this Chapter...

the foundations of derivatives theory: delta hedging and no arbitrage
the derivation of the Black—Scholes partial differential equation
the assumptions that go into the Black—Scholes equation

how to modify the equation for commodity and currency options



140 Paul Wilmott introduces quantitative finance

6./ INTRODUCTION

This is, without doubt, the most important chapter in the book. In it | describe and explain
the basic building blocks of derivatives theory. These building blocks are delta hedging
and no arbitrage. They form a moderately sturdy foundation to the subject and have
performed well since 1973 when the ideas became public.

In this chapter | begin with the stochastic differential equation model for equities and
exploit the correlation between this asset and an option on this asset to make a perfectly
risk-free portfolio. | then appeal to no arbitrage to equate returns on all risk-free portfolios
to the risk-free interest rate, the so-called ‘no free lunch’ argument.

These ideas are identical to those we saw in Chapter 3, it’s just that the math is different.

The arguments are trivially modified to incorporate dividends on the underlying and also
to price commodity and currency options and options on futures.

This chapter is quite theoretical, yet all of the ideas contained here are regularly used
in practice. Even though all of the assumptions can be shown to be wrong to a greater
or lesser extent, the Black—Scholes model is profoundly important both in theory and in
practice.

62 A VERY SPECIAL PORTFOLIO

In Chapter 2 | described some of the characteristics of options and options markets. |
introduced the idea of call and put options, amongst others. The value of a call option
is clearly going to be a function of various parameters in the contract, such as the strike
price E and the time to expiry T — t, T is the date of expiry, and t is the current time. The
value will also depend on properties of the asset itself, such as its price, its drift and its
volatility, as well as the risk-free rate of interest.! We can write the option value as

V(S,t;o, 1, E, T;1).

Notice that the semi-colons separate different types of variables and parameters:

e S andt are variables;
e o and u are parameters associated with the asset price;
e FE and T are parameters associated with the details of the particular contract;

e ris a parameter associated with the currency in which the asset is quoted.

I’m not going to carry all the parameters around, except when it is important. For the
moment I'll just use V(S, t) to denote the option value.

One simple observation is that a call option will rise in value if the underlying asset
rises, and will fall if the asset falls. This is clear since a call has a larger payoff the greater
the value of the underlying at expiry. This is an example of correlation between two
financial instruments, in this case the correlation is positive. A put and the underlying
have a negative correlation. We can exploit these correlations to construct a very special
portfolio.

' Actually, I'm lying. One of these parameters does not affect the option value.
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Use I to denote the value of a portfolio of one long option position and a short position
in some quantity A, delta, of the underlying:

I = V(S, 1) — AS. 6.1)

The first term on the right is the option and the second term is the short asset position.
Notice the minus sign in front of the second term. The quantity A will for the moment
be some constant quantity of our choosing. We will assume that the underlying follows a
lognormal random walk

dS = uSdt+ oS dX.

It is natural to ask how the value of the portfolio changes from time t to t + dt. The
change in the portfolio value is due partly to the change in the option value and partly to
the change in the underlying:

dIll =dV — AdS.

Notice that A has not changed during the time step; we have not anticipated the change
in S. From 1t6 we have

v v 92V
dV = —dt+ —dS + 16282 — dt.
ot T s T e

Thus the portfolio changes by

v k1% 92V
dll = — dt + — dS + 16282— dt — A dS. 6.2
ey S+ 10°S P S 6.2)

-
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Just like the binomial

Many people feel more at home with the binomial analysis
than with the stochastic analysis of the Black—Scholes
model. Well, in principle they are nearly identical, it’s just
that the math is a little bit more abstract with the Black—Scholes model.

For example, all that Equation (6.2) says is that our special portfolio takes
different values depending on what the asset does over the next time step. In
the binomial model there were two different values that the portfolio could take,
represented by the up and down movements of the asset. In the Black—Scholes
model there’s a whole spectrum of possible values represented by the dS
terms...so the dS terms represent the risk in the portfolio. And just as in the
binomial model we’re going to make these terms disappear.

From a technical point of view, in the binomial model we did lots of model-
ing, hedging, etc. first before arriving at the Black—-Scholes partial differential
equation by performing a Taylor series expansion. In the Black—Scholes analysis
the Taylor series expansion, in its stochastic form, comes first and the hedging,

\ etc. comes later.
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63 ELIMINATION OF RISK: DELTA HEDGING

The right-hand side of (6.2) contains two types of terms, the deterministic and the random.
The deterministic terms are those with the dt, and the random terms are those with the dS.
Pretending for the moment that we know V and its derivatives then we know everything
about the right-hand side of (6.2) except for the value of dS. And this quantity we can
never know in advance.

(S
el

These random terms are the risk in our portfolio. Is
there any way to reduce or even eliminate this risk?
This can be done in theory (and almost in practice) by
carefully choosing A. The random terms in (6.2) are

: Vv
THIS IR NOT SUSET -
A THEORETICAL CONCEPT] (88 A) as.
T ISUSED IN REAL.
LIFE AS WELL
If we choose
k1%
A=— 6.3
55 (6.3)

then the randomness is reduced to zero.

Any reduction in randomness is generally termed hedging, whether that randomness
is due to fluctuations in the stock market or the outcome of a horse race. The perfect
elimination of risk, by exploiting correlation between two instruments (in this case an
option and its underlying), is generally called delta hedging.

Delta hedging is an example of a dynamic hedging strategy. From one time step to the
next the quantity % changes, since it is, like V, a function of the ever-changing variables
S and t. This means that the perfect hedge must be continually rebalanced.

Delta hedging was effectively first described by Thorp & Kassouf (1967) but they missed
the crucial (Nobel prize winning) next step. (We will see more of Thorp when we look at
casino blackjack as an investment in Chapter 20.)

64 NO ARBITRAGE

After choosing the quantity A as suggested above, we hold a portfolio whose value
changes by the amount

[V 50007V
dH_<at+2aS -z ) ot (6.4)

This change is completely riskless. If we have a completely risk-free change dIl in the
portfolio value IT then it must be the same as the growth we would get if we put the
equivalent amount of cash in a risk-free interest-bearing account:

dIl = r11 dt. (6.5)

This is an example of the no-arbitrage principle.
To see why this should be so, consider in turn what might happen if the return on
the portfolio were, first, greater and, second, less than the risk-free rate. If we were
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guaranteed to get a return of greater than r from the delta-hedged portfolio then what
we could do is borrow from the bank, paying interest at the rate r, invest in the risk-free
option/stock portfolio and make a profit. If, on the other hand, the return were less than
the risk-free rate we should go short the option, delta hedge it, and invest the cash in the
bank. Either way, we make a riskless profit in excess of the risk-free rate of interest. At
this point we say that, all things being equal, the action of investors buying and selling to
exploit the arbitrage opportunity will cause the market price of the option to move in the
direction that eliminates the arbitrage.

-
Tome Ot

The money-in-the-bank equation

Equation (6.5) is the same as ‘our first differential
equation’ for money in the bank. The notation has
changed from M to I1.

65 THE BLACK-SCHOLES EQUATION 'O’ SN
Substituting (6.1), (6.3) and (6.4) into (6.5) we find that D

S\ c%ﬂ/y/
WV a0 d?V 1% K}’"
— +50°S*— | dt=r|V-S— | dt.
<8t AT r 39S =
On dividing by dt and rearranging we get

A simulation of
delta hedging

This is the Black-Scholes equation. The equation
was first written down in 1969, but a few years passed,
with Fischer Black and Myron Scholes justifying the
model, before it was published. The derivation of
the equation was finally published in 1973, although
the call and put formulae had been published a year
earlier.?

The Black-Scholes equation equation is a lin-
ear parabolic partial differential equation. In fact,
almost all partial differential equations in finance are of a similar form. They are almost

THE FAMbuUs,
NOREL PRIZE -
WINNING EQUATION
THAT < 6T DERIVATINES
THEORY STARTED

2 The pricing formulze were being used even earlier by Ed Thorp to make money.
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always linear, meaning that if you have two solutions of the equation then the sum of
these is itself also a solution. Financial equations are also usually parabolic, meaning that
they are related to the heat or diffusion equation of mechanics. One of the good things
about this is that such equations are relatively easy to solve numerically.

The Black—-Scholes equation contains all the obvious variables and parameters such
as the underlying, time, and volatility, but there is no mention of the drift rate n. Why is
this? Any dependence on the drift dropped out at the same time as we eliminated the dS
component of the portfolio. The economic argument for this is that since we can perfectly
hedge the option with the underlying we should not be rewarded for taking unnecessary
risk; only the risk-free rate of return is in the equation. This means that if you and | agree
on the volatility of an asset we will agree on the value of its derivatives even if we have
differing estimates of the drift.

Another way of looking at the hedging argument is to ask what happens if we hold a
portfolio consisting of just the stock, in a quantity A, and cash. If A is the partial derivative
of some option value then such a portfolio will yield an amount at expiry that is simply
that option’s payoff. In other words, we can use the same Black—Scholes argument
to replicate an option just by buying and selling the underlying asset. This leads to
the idea of a complete market. In a complete market an option can be replicated with
the underlying, thus making options redundant. Why buy an option when you can get the
same payoff by trading in the asset? Many things conspire to make markets incomplete
such as transaction costs.

N
Tome Ot

Slopes, gradients, etc.

The Black—Scholes partial differential equation is a
relationship between the option value, the gradient in the
S and t directions and the gradient of the gradient in the S
direction. This sounds complicated. | can understand why. But it is really very
simple when you actually come to solve the equation numerically. Here’s a
foretaste of what’s in Chapter 28.
Imagine you’re at expiry of a call option. At that time do you know the option
value as a function of the underlying asset S? Yes, of course, it’s just the payoff
function

max(S — E, 0).

So you know one term in Equation (6.6), the last one.

Do you know the slope of the option value in the S direction at expiry?
You certainly do. It’s zero for S < E and one for S > E. (Let’s not worry about
what the value is at S =E, we’ll leave that to others to lose sleep over.)
So you know the second-to-last term in the equation. Mathematically, this is
represented by the Heaviside function, H(-), zero when its argument is negative
and one when it is positive.
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v
— ="H(S - E).
35 (S—E)
What about the slope of the slope in the S direction? Well, if the slope is zero or
one, the slope of the slope is zero. So you know the second term in the equation.
32V
— =0.
052
To recap, we’ve got

oV
i $028% x 0+ rSH(S — E) — rmax(S — E, 0) = 0.
This is an equation for % For example, if S < E we have
oV
— =0
ot
If S > E we have
v
aa_t = —-rS+rS—RE = —rE.

And the significance of this?

If we know % then we know the slope of the option value in the t direction.
If we know this slope then we can find the option value at the time just before
expiry. If we are at time T — 6t, where §t is small, then the option value will be
approximately

V=0 for S<E
and
V=S—-E+rEést for S>E.

See how we have found the option value one time step before expiry? We can
keep repeating this procedure over and over, working backwards in time until
we get to the present. And as the time step gets smaller, so this approximation
to the option value gets more accurate.

One, not-so-minor point. How does the option value ever become non-zero
for S < E? | guess we should worry about what happens at S = E after all. This’ll
sort itself out later on, don’t worry. What I’'ve described here is the basis for
the important numerical method known as the explicit finite-difference method,
which we’ll be seeing lots of later on.

N

J

66 THE BLACK-SCHOLES ASSUMPTIONS

What are the ‘assumptions’ in the Black—Scholes model? Here is a partial list, together

with some discussion.
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e The underlying follows a lognormal random walk: This is not entirely necessary.
To find explicit solutions we will need the random term in the stochastic differential
equation for S to be proportional to S. The ‘factor’ o does not need to be constant to
find solutions, but it must only be time dependent. As far as the validity of the equation
is concerned it doesn’t matter if the volatility is also asset-price dependent, but then
the equation will either have very messy explicit solutions, if it has any at all, or have
to be solved numerically. Then there is the question of the drift term ©S. Do we need
this term to take this form, after all it doesn’t even appear in the equation? There is a
technicality here that whatever the stochastic differential equation for the asset S, the
domain over which the asset can range must be zero to infinity. This is a technicality |
am not going into, but it amounts to another elimination of arbitrage. It is possible to
choose the drift so that the asset is restricted to lie within a range; such a drift would
not be allowed.

e The risk-free interest rate is a known function of time: This restriction is just to
help us find explicit solutions again. If r were constant this job would be even easier. In
practice, the interest rate is often taken to be time dependent but known in advance.
Explicit formulee still exist for the prices of simple contracts. In reality the rate r is
not known in advance and is itself stochastic, or so it seems from data. | will discuss
stochastic interest rates later. We’ve also assumed that lending and borrowing rates
are the same.

e There are no dividends on the underlying: | will drop this restriction in a moment.

e Delta hedging is done continuously: This is definitely impossible. Hedging must
be done in discrete time. Often the time between rehedges will depend on the level
of transaction costs in the market for the underlying; the lower the costs, the more
frequent the rehedging.

e There are no transaction costs on the underlying: The dynamic business of delta
hedging is in reality expensive since there is a bid-offer spread on most underlyings.
In some markets this matters and in some it doesn’t.

e There are no arbitrage opportunities: This is a beauty. Of course there are arbitrage
opportunities, a lot of people make a lot of money finding them.® It is extremely
important to stress that we are ruling out model-dependent arbitrage. This is highly
dubious since it depends on us having the correct model in the first place, and that
is unlikely. | am happier ruling out model-independent arbitrage, i.e. arbitrage arising
when two identical cashflows have different values. But even that can be criticized.

There are many more assumptions but the above are the most important.

6./ FINAL CONDITIONS

The Black—Scholes equation (6.6) knows nothing about what kind of option we are valuing,
whether it is a call or a put, nor what is the strike and the expiry. These points are dealt

3 Life, and everything in it, is based on arbitrage opportunities and their exploitation. Evolution is statistical
arbitrage.
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with by the final condition. We must specify the option value V as a function of the
underlying at the expiry date T. That is, we must prescribe V(S, T), the payoff.
For example, if we have a call option then we know that

V(S,T) =max(S — E, 0).
For a put we have
V(S,T) = max(E — S, 0),
for a binary call
V(S,T)="H(S —E)
and for a binary put
V(S, T)=H(E - S),

where H(-) is the Heaviside function, which is zero when its argument is negative and
one when it is positive.

The imposition of the final condition will be explained in Chapters 7 and 8, and
implemented numerically in later chapters.

As an aside, observe that both the asset, S, and ‘money in the bank,” e, satisfy the
Black—-Scholes equation.

68 OPTIONS ON DIVIDEND-PAYING EQUITIES

The first generalization we discuss is how to value options on stocks paying dividends.
This is just about the simplest generalization of the Black—Scholes model. To keep things
simple let’s assume that the asset receives a continuous and constant dividend yield, D.
Thus in a time dt each asset receives an amount DS dt. This must be factored into the
derivation of the Black—Scholes equation. | take up the Black—Scholes argument at the
point where we are looking at the change in the value of the portfolio:
E1% Vv 32V
dil = —dt + —=dS + ;azszﬁdt— AdS — DAS dt.

The last term on the right-hand side is simply the amount of the dividend per asset, DS dt,
multiplied by the number of the asset held, —A. The A is still given by the rate of change
of the option value with respect to the underlying, but after some simple substitutions we
now get

v

92V 1%
T 3028 —— +(r—D)S— —rV =0. 6.7)

952 9S

69 CURRENCY OPTIONS

Options on currencies are handled in exactly the same way. In holding the foreign currency
we receive interest at the foreign rate of interest rr. This is just like receiving a continuous
dividend. | will skip the derivation but we readily find that

WV a0 d?V 1% B
o t20°8% 0 + =S5 — 1V =0. (6.8)
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6.10 COMMODITY OPTIONS

The relevant feature of commaodities requiring that we adjust the Black—Scholes equation
is that they have a cost of carry. That is, the storage of commaodities is not without cost.
Let us introduce q as the fraction of the value of a commodity that goes towards paying
the cost of carry. This means that just holding the commodity will result in a gradual
loss of wealth even if the commodity price remains fixed. To be precise, for each unit of
the commodity held an amount gS dt will be required during short time dt to finance the
holding. This is just like having a negative dividend and so we get

v

32V v
i n %0282_ +(r+q)3£ —rv=0. (6.9)

08?2

6.1 EXPECTATIONS AND BLACK-SCHOLES

In the Black—Scholes equation there is no mention of the drift rate of the underlying
asset u. It seems that whether the asset is rising or falling in the long run, it doesn’t
affect the value of an option. This is highly counter-intuitive. But we saw exactly the same
thing happening in the binomial model of Chapter 3. At the same time as hedging away
exposure to randomness, we hedge away exposure to direction.

We also saw in Chapter 3 that an option value can be thought of as being an expectation.
But a very special expectation. In words:

The fair value of an option is the
present value of the expected payoff at expiry

under a risk-neutral random walk for the underlying

We can write
option value = e ""~9E [payoff(S)]

provided that the expectation is with respect to the risk-neutral random walk, not the real
one.
But what do ‘real’ and ‘risk neutral’ mean exactly?

Real refers to the actual random walk as seen, as realized. It has a certain volatility o
and a certain drift rate 1. We can simulate this random walk on a spreadsheet very easily,
and calculate expected future option payoffs, for example.

Risk neutral refers to an artificial random walk that has little to do with the path an asset
is actually following. That is not strictly true, both the real and the risk-neutral random
asset paths have the same volatility. The difference is in the drift rates. The risk-neutral
random walk has a drift that is the same as the risk-free interest rate, r. So simulate
risk-free random walks to calculate expectations if you want to work out theoretical option
values. In Chapter 29 we will see how this is done in practice.
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Real and risk neutral

This idea is probably more confusing than anything else
in quantitative finance, but is extremely important. | will
use the phrase ‘risk-neutral (random walk)’ several times
in this book. Watch out for it, and remember that all it means is that you must
pretend that the random walk of the underlying has a drift rate that is the same
as the risk-free interest rate.

But remember also that such risk-neutral valuation is only valid when hedging
can be used to eliminate all risk. If hedging is impossible, risk-neutral valuation
is meaningless.

\ J

6.12 SOME OTHER WAYS OF DERIVING THE
BLACK-SCHOLES EQUATION

The derivation of the Black—Scholes equation above is the classical one, and similar to
the original Black and Scholes derivation. There are other ways of getting to the same
result. Here are a few, without any of the details. The details, and more examples, are
contained in the final reference in the Further reading.

6.12.1 The martingale approach

The value of an option can be shown to be an expectation, not a real expectation but
a special, risk-neutral one. This is a useful result, since it forms the basis for pricing
by simulation, see Chapter 29. The concepts of hedging and no arbitrage are obviously
still used in this derivation. The major drawback with this approach is that it requires a
probabilistic description of the financial world.

6.12.2 The binomial model

The binomial model is a discrete time, discrete asset price model for underlyings and
again uses hedging and no arbitrage to derive a pricing algorithm for options. We have
seen this in detail in Chapter 3. In taking the limit as the time step shrinks to zero we get
the continuous-time Black—Scholes equation.

6.12.3 CAPM/utility

We'll be seeing the Capital Asset Pricing Model later, for the moment you just need to
know that it is a model for the behavior of risky assets and a principle and algorithm
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for defining and finding optimal ways to allocate wealth among the assets. Portfo-
lios are described in terms of their risk (standard deviation of returns) and reward
(expected growth). If you include options in this framework then the possible com-
binations of risk and reward are not increased. This is because options are, in a
sense, just functions of their underlyings. This is market completeness. The risk and
reward on an option and on its underlying are related and the Black—Scholes equation
follows.

6./13 NO ARBITRAGE IN THE BINOMIAL, BLACK~-SCHOLES
AND ‘OTHER’ WORLDS

With the Black—Scholes continuous-time model, as with the binomial discrete-time model,
we have been able to eliminate uncertainty in the value of a portfolio by a judicious choice
of a hedge. In both cases we find that it does not matter how the underlying asset moves,
the resulting value of the portfolio is the same. This is especially clear in the binomial
model. This hedging is only possible in these two simple, popular models. For consider a
trivial generalization: the trinomial random walk.

In Figure 6.1 we see a representation of a trinomial random walk. After a time step 6t
the asset could have risen to uS, fallen to vS or not moved from S.

What happens if we try to hedge an option under this scenario? As before, we can
‘hedge’ with — A of the underlying but this time we would like to choose A so that the value
of the portfolio (of one option and —A of the asset) is the same at time t + §t no matter
to which value the asset moves. In other words, we want the portfolio to have the same
value for all three possible outcomes (see Figure 6.2). Unfortunately, we cannot choose a
value for A that ensures this to be the case: this amounts to solving two equations (first
portfolio value = second portfolio value = third portfolio value) with just one unknown (the
delta). Hedging is not possible in the trinomial world. Indeed, perfect hedging, and thus
the application of the ‘no-arbitrage principle’ is only possible in the two special cases: the
Black—Scholes continuous time/continuous asset world, and the binomial world. And in
the far more complex ‘real’ world, delta hedging is not possible.*

101

99

Figure 6.1 The trinomial tree.

41s it good for the popular models to have such an unrealistic property? These models are at least a good
starting point.
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V- A100 0-A100

0-A99

Figure 6.2 Is hedging possible?

6.14 FORWARDS AND FUTURES

Can we find values for forward and future contracts? How do they fit into the Black-
Scholes framework? With ease. Let’s look at the simpler forward contract first.

6.14.1 Forward contracts

Notation first. V(S, f) will be the value of the forward contract at any time during its life on
the underlying asset S, and maturing at time T. I’ll assume that the delivery price is known
and then find the forward contract’s value. At the end of this section I’ll turn this on its
head to find the forward price. If you can’t remember the differences between all these
terms, take a look at Chapter 1 again.

Set up the portfolio of one long forward contract and short A of the underlying asset:

I1=V(@S,t - AS.
This changes by an amount
dn_——m —4B 2§——m—Ads
T35 95+ 20" 5
from t to t + dt. Choose
s
- 3S

to eliminate risk. By applying the no-arbitrage argument we end up with exactly the
Black—-Scholes partial differential equation again.

The final condition for the equation is simply the difference between the asset price S
and the fixed delivery price S, say. So

V@S, )=S-S.
The solution of the equation with this final condition is

V(S,t) =S —Se 71,
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This is the forward contract’s value during its life.

How does this relate to the setting of the delivery price in the first place, and the
newspaper-quoted forward price?

The delivery price is set initially t = ty as the price that gives the forward contract zero
value. If the underlying asset is Sp at tg then

0=_Sp—Se ")
or
S = Spe'T 1),

And the forward price, as quoted? This (see Chapter 1 for a reminder) is the delivery
price, as varying from day to day. So the forward price for the contract maturing at T is

Forward price = Se"" 9,

6.15 FUTURES CONTRACTS

Emboldened by the above, let’s try to calculate the futures price. This is more subtle,
that’s why | calculate it second. Use F(S, t) to denote the futures price.

Remember that the value of the futures contract during its life is always zero because
the change in value is settled daily. This cashflow must be taken into account in our
analysis.

Set up a portfolio of one long futures contract and short A of the underlying:

IT=-AS.

Where is the value of the futures contract? Is this a mistake? No, because it has no value
it doesn’t appear in the portfolio valuation equation. How does the portfolio change in
value?

dll =dF — A dS.

The dF represents the cashflow due to the continual settlement. Applying 1t6’s lemma,

dl‘[_—dt —dS 232—dt AdS.
tas et 20 952

Choose

_OF

0S
to eliminate risk. Set
dIl =rIl dt
to get
oF oF

9°F
oF 1 2029 o _
8t+208882+r88 0.



the Black—Scholes model Chapter 6 153

Observe that there are only three terms in this, it is not the same as the Black—Scholes
equation.
The final condition is

FS,T)=S,

the futures price and the underlying must have the same value at maturity.
The solution is just

F(S,t) = Se 1.

6.15.1 When interest rates are known, forward prices and futures prices are the same

We’ve just seen that the forward price and the futures price are the same when interest
rates are constant. They are still the same when rates are known functions of time. Matters
are more subtle when interest rates are stochastic. But we’ll have to wait a few chapters
to investigate this problem.

6.16 OPTIONS ON FUTURES

The final modification to the Black—Scholes model in this chapter is to value options on
futures. Recalling that the future price of a non-dividend paying equity F is related to the
spot price by

F =eTr g

where Tr is the maturity date of the futures contract. We can easily change variables, and
look for a solution V(S, t) = V(F, t). We find that

GAY 3%y
T %”QFZW —ry=0. (6.10)

The equation for an option on a future is actually simpler than the Black—Scholes equation.

6.17 SUMMARY

This was an important but not too difficult chapter. In it | introduced some very powerful
and beautiful concepts such as delta hedging and no arbitrage. These two fundamental
principles led to the Black—Scholes option pricing equation. Everything from this point on
is based on, or is inspired by, these ideas.

FURTHER READING

e The history of option theory, leading up to Black—Scholes is described in Briys et al.
(1998).

e The story of the derivation of the Black—Scholes equation, written by Bob Whaley, can
be found in the 10th anniversary issue of Risk Magazine, published in December 1997.

e Of course, you must read the original work, Black & Scholes (1973) and Merton (1973).
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See Black (1976) for the details of the pricing of options on futures, and Garman &
Kohlhagen (1983) for the pricing of FX options.

For details of other ways to derive the Black—Scholes equation see Andreasen et al.
(1998).

EXERCISES

1.

Check that the following are solutions of the Black—Scholes equation:
@ ViS)=S,
(b) V(S =¢e"

Why are these solutions of particular note?

What is the most general solution of the Black—Scholes equation with each of the
following forms?

@ V(S,1)=AS),
(b) V(S,1t)=B(S)C(H).

Prove the following bounds on European call options C(S, t), with expiry at time T, on
an underlying share price S, with no dividends:

(@)
C<S,
(b)
C > max(S — Ee "9, 0),
©
0<Ci—Co<(Er—Eq)e,
where C4 and C» are calls with exercise prices E1 and E» respectively, and E1 < Eo.

Prove the following bounds on European put options P(S, t), with expiry at time T, on
an underlying share price S, with no dividends:

@
P <Ee T,
(b)
P>Ee -0 _s,
(©
0<Py—Py < (Ex—Eq)e0,

where P1 and P, are calls with exercise prices E1 and E» respectively, and E1 < Eo.
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Prove the following bounds on European call options C(S, t), on an underlying share
price S, with no dividends:

(@
Ca = Cg,

where C4 and Cg are calls with the same exercise price E and expiry dates T4 and Tg
respectively, and T4 > Tg.
(b)

Es —E> E> — E;4

C C Cs,
2SE3—E1 1+E3—E1 3

where C1, C» and Cj3 are calls with the same expiry T, and have exercise prices E1, Eo
and Ej respectively, where Ey < E» < Ej.

Hint: Consider Eo = AE1 + (1 — A)Ea.

C(S,t) and P(S, t) are the values of European call and put options, with exercise price
E and expiry at time T. Show that a portfolio of long the call and short the put
satisfies the Black-Scholes equation. What boundary and final conditions hold for this
portfolio?

Consider an option which expires at time T. The current value of the option is V(S, f).
It is possible to synthesize the option using vanilla European calls, all with expiry at
time T. We assume that calls with all exercise prices are available and buy f(E) of
the call with exercise price E, which has value C(S, t; E). The value of the synthesized
option is then

V(S t) = /OOO f(E')C(S, t; E')dE’.

Find the density of call options, f(E), that we must use to synthesize the option.
Hint: Synthesize the option payoff to find f(E).

Find the random walk followed by a European option, V(S, t). Use Black—Scholes to
simplify the equation for dV.

Compare the equation for futures to Black—Scholes with a constant, continuous
dividend yield. How might we price options on futures if we know the value of an
option with the same payoff with the asset as underlying?

Hint: Consider Black—Scholes with a constant, continous dividend yield D =r.






CHAPTER 7

partial differential
equations

The aim of this Chapter...

...Is to compare the Black—Scholes equation with mathematical models in other
walks of life and so instill in the reader confidence in the relevance of partial differential
equations, and to demonstrate some of the more useful solution methods. . . although
we won't really be needing any of them.

In this Chapter...

properties of the parabolic partial differential equation
the meaning of terms in the Black—Scholes equation

some solution techniques
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/.1 INTRODUCTION

The analysis and solution of partial differential equations is a BIG subject. We can only
skim the surface in this book. If you don’t feel comfortable with the subject, then the
list of books at the end should be of help. However, to understand finance, and even
to solve partial differential equations numerically, does not require any great depth of
understanding. The aim of this chapter is to give just enough background to the subject
to permit any reasonably numerate person to follow the rest of the book; | want to keep
the entry requirements to the subject as low as possible.

72 PUTTING THE BLACK~-SCHOLES EQUATION INTO
HISTORICAL PERSPECTIVE

The Black—-Scholes partial differential equation is in two dimensions, S and t. It is a
parabolic equation, meaning that it has a second derivative with respect to one variable,
S, and a first derivative with respect to the other, t. Equations of this form are more
colloquially known as heat or diffusion equations.

The equation, in its simplest form, goes back to almost the beginning of the 19th
century. Diffusion equations have been successfully used to model

e diffusion of one material within another, smoke particles in air;

e flow of heat from one part of an object to another;

e chemical reactions, such as the Belousov—-Zhabotinsky reaction which exhibits fasci-
nating wave structure;

e celectrical activity in the membranes of living organisms, the Hodgkin—Huxley model;
e dispersion of populations, individuals move both randomly and to avoid overcrowding;
e pursuit and evasion in predator—prey systems;

e pattern formation in animal coats, the formation of zebra stripes;

e dispersion of pollutants in a running stream.

In most of these cases the resulting equations are more complicated than the Black-
Scholes equation.
The simplest heat equation for the temperature in a bar is usually written in the form
wu  u
at  ax2
where u is the temperature, x is a spatial coordinate and t is time. This equation comes
from a heat balance. Consider the flow into and out of a small section of the bar. The flow
of heat along the bar is proportional to the spatial gradient of the temperature

au
0x

and thus the derivative of this, the second derivative of the temperature, is the heat
retained by the small section. This retained heat is seen as a rise in the temperature,
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represented mathematically by

ou
at’
The balance of the second x-derivative and the first t-derivative results in the heat equa-

tion. (There would be a coefficient in the equation, depending on the properties of the
bar, but | have set this to one.)

73 THE MEANING OF THE TERMS IN THE BLACK-SCHOLES
EQUATION

The Black—Scholes equation can be accurately interpreted as a reaction-convection-
diffusion equation. The basic diffusion equation is a balance of a first-order t derivative
and a second-order S derivative:

v 32V

at 082"
If these were the only terms in the Black—Scholes equation it would still exhibit the
smoothing-out effect, that any discontinuities in the payoff would be instantly diffused
away. The only difference between these terms and the terms as they appear in the
basic heat or diffusion equation is that the diffusion coefficient is a function of one of the

variables S. Thus we really have diffusion in a non-homogeneous medium.
The first-order S-derivative term

+ %0282

v
S
can be thought of as a convection term. If this equation represented some physical
system, such as the diffusion of smoke particles in the atmosphere, then the convective

term would be due to a breeze, blowing the smoke in a preferred direction.
The final term

rS

—rV

is a reaction term. Balancing this term and the time derivative would give a model for
decay of a radioactive body, with the half-life being related to r. (A better description, for
which | am indebted to a delegate on a training course but whose name I’ve forgotten, is
that this term is a ‘passive smoking’ effect.)

Putting these terms together and we get a reaction-convection-diffusion equation. An
almost identical equation would be arrived at for the dispersion of pollutant along a flowing
river with absorption by the sand. In this, the dispersion is the diffusion, the flow is the
convection, and the absorption is the reaction.

/4 BOUNDARY AND INITIAL/FINAL CONDITIONS

To uniquely specify a problem we must prescribe boundary conditions and an initial or
final condition. Boundary conditions tell us how the solution must behave for all time
at certain values of the asset. In financial problems we usually specify the behavior of
the solution at S=0 and as S — oco. We must also tell the problem how the solution
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begins. The Black—Scholes equation is a backward equation, meaning that the signs of
the t derivative and the second S derivative in the equation are the same when written on
the same side of the equals sign. We therefore have to impose a final condition. This is
usually the payoff function at expiry.

The Black—Scholes equation in its basic form is linear and satisfies the superposition
principle; add together two solutions of the equation and you will get a third. This is not
true of non-linear equations. Linear diffusion equations have some very nice properties.
Even if we start out with a discontinuity in the final data, due to a discontinuity in the payoff,
this immediately gets smoothed out; this is due to the diffusive nature of the equation.
Another nice property is the uniqueness of the solution. Provided that the solution is not
allowed to grow too fast as S tends to infinity the solution will be unique. This precise
definition of ‘too fast’ need not worry us, we will not have to worry about uniqueness for
any problems we encounter.

75 SOME SOLUTION METHODS

We are not going to spend much time on the exact solution of the Black—Scholes equation.
Such solution is important, but current market practice is such that models have features
which preclude the exact solution. The few explicit, closed-form solutions that are used
by practitioners will be covered in the next chapter.

\
Tome Ot

Do I need to know this?

No. You probably won’t need to find explicit solutions in
practice. Indeed, very rarely can explicit solutions be
found to realistic financial problems. That’s why | focus
more on numerical methods in this book. Unless you are doing a heavily math
orientated course, you can safely skip the rest of this chapter.

J

7.5.1 Transformation to constant coefficient diffusion equation

It can sometimes be useful to transform the basic Black—Scholes equation into something
a little bit simpler by a change of variables. If we write

V(S,t) = e* P Ux, 1),

where



partial differential equations Chapter 7

161

then U(x, 7) satisfies the basic diffusion equation

U 22U

. 7.1
at x> (7.1)

This simpler equation is easier to handle than the Black—Scholes equation. Sometimes
that can be important, for example when seeking closed-form solutions, or in some simple
numerical schemes. We shall not pursue this any further.

7.5.2 Green's functions
One solution of the Black—Scholes equation is

o-r(T-1 ef(Iog(S/S’)Jr(rf%62>(T*f)>2/202(T*t)
0S'\/2n(T —1)

for any S’. (You can verify this by substituting back into the equation, but we’ll also be
seeing it derived in the next chapter.) This solution is special because ast — T it becomes
zero everywhere, except at S = S'. In this limit the function becomes what is known as
a Dirac delta function. Think of this as a function that is zero everywhere except at
one point where it is infinite, in such a way that its integral is one. How is this of help
to us?

Expression (7.2) is a solution of the Black—Scholes equation for any S’. Because of
the linearity of the equation we can multiply (7.2) by any constant, and we get another
solution. But then we can also get another solution by adding together expressions of the
form (7.2) but with different values for S’. Putting this together, and thinking of an integral
as just a way of adding together many solutions, we find that

V/(S, 8 = (7.2)

T 1 2
i - - (Iog(S /s) +(,»_§(72>(T—t)> J202(T—1) £S)) as’
o27(T -1 Jo i

is also a solution of the Black—Scholes equation for any function f(S’). (If you don’t believe
me, substitute it into the Black—Scholes equation.)

Because of the nature of the integrand as t — T (i.e. that it is zero everywhere except at
S’ and has integral one), if we choose the arbitrary function f(S’) to be the payoff function
then this expression becomes the solution of the problem:

—r(T—t) 0o / 7102 _ 2 o2(T— ’
__¢© o (Iog(S/S )+<r 3 )(T t)) /202(T ﬂPayof‘f(S’)ﬁ '
o/27x(T —1t) Jo S

The function V'(S, ) given by (7.2) is called the Green’s function.

V(S, b

7.5.3 Series solution

Sometimes we have boundary conditions at two finite (and non-zero) values of S, S, and
Sq, say (we see examples in Chapter 13). For this type of problem, we postulate that
the required solution of the Black—Scholes equation can be written as an infinite sum of
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special functions. First of all, transform to the nicer basic diffusion equation in x and .
Now write the solution as

e 7Y " ai(r) sin(iwx) + bj(t) cos(iwx),
i=0

for some w and some functions a and b to be found. The linearity of the equation suggests
that a sum of solutions might be appropriate. If this is to satisfy the Black—Scholes
equation then we must have

o = —i“wcaj(r) and o

You can easily show this by substitution. The solutions are thus

= —Pw’bj(7).

ai(t) = Ae"** and bi(t) = Bie T
The solution of the Black—Scholes equation is therefore
o
e 7 3" e PPt (A; sin(iwx) + B cos(iwx)). (7.3)
i=0

We have solved the equation, all that we need to do now is to satisfy boundary and
initial conditions.

Consider the example where the payoff at time 7 =0 is f(x) (although it would be
expressed in the original variables, of course) but the contract becomes worthless if ever
X =Xg0rx =x,.!

Rewrite the term in brackets in (7.3) as

. ., X=X X =X
C;sin (/w’ d ) + D;jcos </a)’7d> )
Xy — Xg Xu — Xd
To ensure that the option is worthless on these two x values, choose D; = 0 and o' = 7.

The boundary conditions are thereby satisfied. All that remains is to choose the C; to
satisfy the final condition:

e > "Cjsin (ia)’;( —Xd > = f(x).

—X
i=0 u—"d

This also is simple. Multiplying both sides by

. ( , X — Xqd )
sin [ jo'——— |,
Xy — Xd
and integrating between x4 and x, we find that

2
Xu — Xd Xd

Ci= f(x)e~**sin <ja)’ X~ Xd ) adx.

Xu — Xd

This technique, which can be generalized, is the Fourier series method. There are
some problems with the method if you are trying to represent a discontinuous function
with a sum of trigopnometrical functions. The oscillatory nature of an approximate solution
with a finite number of terms is known as Gibbs phenomenon.

" This is an example of a double knock-out option, see Chapter 13.
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/7.6 SIMILARITY REDUCTIONS

Apart from the Green’s function, we’re not going to use any of the above techniques in
this book; rarely will we even find explicit solutions. But one technique that we will find
useful is the similarity reduction. | will demonstrate the idea using the simple diffusion
equation, we will later use it in many other, more complicated problems.
The basic diffusion equation

ou  d%u

—=— 7.4

ot ox? (7.4)
is an equation for the function u which depends on the two variables x and t. Sometimes,
in very, very special cases, we can write the solution as a function of just one variable. Let
me give an example. Verify that the function

satisfies (7.4). But in this function x and t only appear in the combination
X
72"
Thus, in a sense, u is a function of only one variable.

A slight generalization, but also demonstrating the idea of similarity solutions, is to look
for a solution of the form

u=t12f(g) (7.5)
where
X
&= Az
Substitute (7.5) into (7.4) to find that a solution for f is
1
f= e’ZEz,
so that
1,2
t—12e 2t

is also a special solution of the diffusion equation.

Be warned, though. You can’t always find similarity solutions; not only must the equation
have a particularly nice structure but also the similarity form must be consistent with any
initial condition or boundary conditions.

/77 OTHER ANALYTICAL TECHNIQUES

The other two main solution techniques for linear partial differential equations are Fourier
and Laplace transforms. These are such large and highly technical subjects that | really
cannot begin to give an idea of how they work, space is far too short. But be reassured
that it is probably not worth your while learning the techniques, since in finance they can
be used to solve only a very small number of problems. If you want to learn something
useful then move on to the next section.
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/7.8 NUMERICAL SOLUTION

Even though there are several techniques that we can use for finding solutions, in the
vast majority of cases we must solve the Black—Scholes equation numerically. But we
are lucky. Parabolic differential equations are just about the easiest equations to solve
numerically. Obviously, there are any number of really sophisticated techniques, but if
you stick with the simplest then you can’t go far wrong. | want to stress that | am going
to derive many partial differential equations from now on, and | am going to assume you
trust me that we will at the end of the book see how to solve them.

79 SUMMARY

This short chapter is only intended as a primer on partial differential equations. If you want
to study this subject in depth, see the books and articles mentioned below.

FURTHER READING

e Grindrod (1991) is all about reaction-diffusion equations, where they come from and
their analysis. The book includes many of the physical models described above.

e Murray (1989) also contains a great deal on reaction-diffusion equations, but concen-
trating on models of biological systems.

e Wilmott & Wilmott (1990) describe the diffusion of pollutant along a river with convection
and absorption by the river bed.

e The classical reference works for diffusion equations are Crank (1989) and Carslaw
& Jaeger (1989). But also see the book on partial differential equations by Sneddon
(1957) and the book on general applied mathematical methods by Strang (1986).

N
Tome Ot

The main solution methods

We have seen, and will be seeing more of, the three main
mathematical approaches to derivative pricing: differential
equations; binomial trees; expectations. All of these
methods are based on pretty much the same assumptions. All of them will
therefore give the same values for a contract, if all parameter values are the
same. This is, of course, subject to the accuracy of numerical methods.
Speaking of numerical methods, each of the three approaches has its own
associated numerical method. Differential equations, and the Black—Scholes
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equation, in particular, can be solved by finite-difference methods. The whole of
Chapter 28 is devoted to this subject. The binomial tree model is, interestingly,
also its own numerical method, and we’ve seen that in some detail already in
Chapter 3. Finally, pricing by calculating risk-neutral expectations is one of the
subjects in Chapter 29 on Monte Carlo simulations.

EXERCISES

1.

Consider an option with value V(S, f), which has payoff at time T. Reduce the Black—
Scholes equation, with final and boundary conditions, to the diffusion equation, using
the following transformations:

(@

27

SZEeX, tZT——Z,
o

V(S, t) = Ev(x, 7),

(b)
v =e*tPTy(x, 1),

for some o and B. What is the transformed payoff? What are the new initial and
boundary conditions? lllustrate with a vanilla European call option.

The solution to the initial value problem for the diffusion equation is unique (given cer-
tain constraints on the behavior, it must be sufficiently smooth and decay sufficiently
fast at infinity). This can be shown as follows:

Suppose that there are two solutions u1(x, ) and uz(x, 7) to the problem

au  9cu

a_zﬁ’ on —o0 <X <09,
T

with
u(x, 0) = up(x).

Set v(x, t) = u1 — u». This is a solution of the equation with v(x, 0) = 0. Consider

E(r) = / - v2(x, 7) dx.

—00
Show that
E(xr) = 0, E(0)=0,
and integrate by parts to find that
dE
— <
dr —
Hence show that E(r) = 0 and, consequently, u1(x, 7) = us(x, 7).

0.
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3. Suppose that u(x, ) satisfies the following initial value problem:

wu  d%u
—=—,0n —m<x<m, >0,
ot X2

with
u(—m,t)=u(r, ) =0, ulx,0)=ugx).
Solve for u using a Fourier sine series in x, with coefficients depending on <.
4. Check that u; satisfies the diffusion equation, where
1 X2
e 4r.
2t

5. Solve the following initial value problem for u(x, r) on a semi-infinite interval, using a
Green’s function:

Us =

u  9cu

a_zﬁ, OI’IX>0, T>0,
T

with
u(x,0) = up(x) forx > 0, u(0,7) =0 forz > 0.
Hint: Define v(x, t) as
vix, ) = ulx, 1) if x > 0,
vix,7) = —u(—x, 1) if x < 0.
Then we can show that v(0, ) = 0 and

y
2./t

6. Reduce the following parabolic equation to the diffusion equation.

ux, 7) = / " Uo(s)e -S4 _ gtetsPrany g,
0

wu 02u +a8u b
at  ax? ax

where a and b are constants.
7. Using a change of time variable, reduce
o )au 92u
T)— = —,
at X2

to the diffusion equation when c(z) > 0.

Consider the Black—Scholes equation, when o and r can be functions of time, but
k = 2r/o? is still a constant. Reduce the Black—Scholes equation to the diffusion
equation in this case.
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Show that if
u  du
— =—, 0N —oc0o<Xx<oo, >0,
ot ox?2
with
u(x,0) = ug(x) > 0,
then u(x, r) > 0 for all 7.

Use this result to show that an option with positive payoff will always have a positive
value.

If f(x, ) > 0 in the initial value problem

u  9u

8_=ﬁ—|-f(x,t), on —oco<x<o00, T>0,
T

with
u(x,0)=0, andu — 0 as x| — oo,

then u(x, t) > 0. Hence show that if C1 and C» are European calls with volatilities o4
and o, respectively, but are otherwise identical, then C1 > C5 if o1 > oo.

Use put-call parity to show that the same is true for European puts.






CHAPTER 8
the Black—Scholes

formulae and the
‘greeks’

The aim of this Chapter. ..

...is to show how the basic Black—Scholes formulae are derived from the Black—
Scholes equation, and to introduce more sophisticated hedging strategies. The chapter
contains lots of useful formulae which are also summarized at the end.

In this Chapter...

the derivation of the Black—Scholes formulee for calls, puts and simple digitals
the meaning and importance of the ‘greeks,’ delta, gamma, theta, vega and rho

the difference between differentiation with respect to variables and to param-
eters

formula for the greeks for calls, puts and simple digitals
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8. INTRODUCTION

The Black—-Scholes equation has simple solutions for calls, puts and some other contracts.
In this chapter I’'m going to walk you through the derivation of these formulae step by step.
This is one of the few places in the book where | do derive formulee. The reason that | don’t
often derive formuleze is that the majority of contracts do not have explicit solutions for
their theoretical value. Instead much of my emphasis will be placed on finding numerical
solutions of the Black—Scholes equation.

We've seen how the quantity ‘delta,’ the first derivative of the option value with respect
to the underlying, occurs as an important quantity in the derivation of the Black—Scholes
equation. In this chapter | describe the importance of other derivatives of the option price,
with respect to the variables (the underlying asset and time) and with respect to some
of the parameters. These derivatives are important in the hedging of an option position,
playing key roles in risk management. It can be argued that it is more important to get the
hedging correct than to be precise in the pricing of a contract. The reason for this is that
if you are accurate in your hedging you will have reduced or eliminated future uncertainty.
This leaves you with a profit (or loss) that is set the moment that you buy or sell the
contract. But if your hedging is inaccurate, then it doesn’t matter, within reason, what you
sold the contract for initially, future uncertainty could easily dominate any initial profit. Of
course, life is not so simple, in reality we are exposed to model error, which can make
a mockery of anything we do. However, this illustrates the importance of good hedging,
and that’s where the ‘greeks’ come in.

N
Tome Ot

Close your eyes until I tell you to open them

Unless you are doing a highly mathsy course, you won’t
need to know all the manipulations that follow.

J

82 DERIVATION OF THE FORMULZL FOR CALLS, PUTS AND
SIMPLE DIGITALS

The Black—Scholes equation is

1 e 14 1%

— 4+ 5 — — —rvV=0. 8.1

8t+268 aS2+I’S88 r (8.1)
This equation must be solved with final condition depending on the payoff: each contract
will have a different functional form prescribed at expiry t = T, depending on whether it
is a call, a put or something more fancy. This is the final condition that must be imposed
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to make the solution unique. We’ll worry about final conditions later, for the moment
concentrate on manipulating (8.1) into something we can easily solve.

The first step in the manipulation is to change from present value to future value terms.
Recalling that the payoff is received at time T but that we are valuing the option at time ¢
this suggests that we write

V(S,t) = e T0U(S, 1.
This takes our differential equation to
WU | ,03%U U
— 4+ — — =0.
T +50°S 552 +rS88

The second step is really trivial. Because we are solving a backward equation, discussed
in Chapter 7, we’ll write

t=T-1t
This now takes our equation to
AU | ,09%U U
— =50°8"— +rS—.
ot 27 ° 552 758

When we first started modeling equity prices we used intuition about the asset price
return to build up the stochastic differential equation model. Let’s go back to examine the
return and write

& =logS.
With this as the new variable, we find that
B] B 92 92 ]
— _ a2 —2¢
—=e *— and —s =6 “— —e “°—.
aS dE 332 982 9§

Now the Black—Scholes equation becomes

U 4 ,0%U 1 2\ U
o9t 27 g2 ( ‘i")g-
What has this done for us? It has taken the problem defined for 0 < S < oo to one
defined for —co < & < oo. But more importantly, the coefficients in the equation are now
all constant, independent of the underlying. This is a big step forward, made possible by
the lognormality of the underlying asset. We are nearly there.
The last step is simple, but the motivation is not so obvious. Write

X=§+<r—%o2>r,

and U = W(x, ). This is just a ‘translation’ of the coordinate system. It’s a bit like using
the forward price of the asset instead of the spot price as a variable. After this change of
variables the Black—Scholes becomes the simpler

W 5 02W

B e ®2)

-1
=50
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To summarize,

VS, =e T UGS, ) =e UG, T—1)=e "UE, T —1)
_(r=1,2),
—e U (ex (~-2°) T— f> — e WX, 7).

To those of you who already know the Black—Scholes formulee for calls and puts the
variable x will ring a bell:

X=§+(r—%62>T=IOQS+(I’—%02)(T—1‘).

Having turned the original Black—Scholes equation into something much simpler, let’s
take a break for a moment while | explain where we are headed.

I’'m going to derive an expression for the value of any option whose payoff is a
known function of the asset price at expiry. This includes calls, puts and digitals. This
expression will be in the form of an integral. For special cases, I'll show how to rewrite
this integral in terms of the cumulative distribution function for the Normal distribution.
This is particularly useful since the function can be found on spreadsheets, calculators
and in the backs of books. But there are two steps before | can write down this
integral.

The first step is to find a special solution of (8.2), called the fundamental solution. This
solution has useful properties. The second step is to use the linearity of the equation and
the useful properties of the special solution to find the general solution of the equation.
Here we go.

I’m going to look for a special solution of (8.2) of the following form

Wi, 1) = t°f <(X —X) ) , 8.3)

P

where X’ is an arbitrary constant. And I'll call this special solution Wk(x, t; x’). Note that the
unknown function depends on only one variable (x — x’)/z#. As well as finding the function
f we must find the constant parameters « and 8. We can expect that if this approach
works, the equation for f will be an ordinary differential equation since the function only
has one variable. This reduction of dimension is an example of a similarity reduction,
discussed in Chapter 7.

Substituting expression (8.3) into (8.2) we get

df a?f
7o <af — ,377d—> = %621“_2’3— (8.4)
n

where

n= oy

Examining the dependence of the two terms in (8.4) on both t and n we see that we can
only have a solution if

a—1=a—-28 ie B=

N =
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| want to ensure that my ‘special solution’ has the property that its integral over all £ is
independent of z, for reasons that will become apparent. To ensure this, | require

/Oo T%f((x — x)/7P) dx

o0

to be constant. | can write this as

o0
| ety
and so | need
The function f now satisfies
df d?f
—f—p— 2-
ndr} 7 dn?

This can be writte
2f
> d d(nf)

=0,
dn? dn
which can be integrated once to give
df
2
— +nf =a,
o an +n

where a is a constant. For my special solution I’'m going to choose a = 0. This equation
can be integrated again to give
2
f(n) = be 202,

| will choose the constant b such that the integral of f from minus infinity to plus infinity is
one:

) = o 57
n) = e 20°,
V2ro
This is the special solution | have been seeking:'
1 _(X—X/)z
W(x, t) = e 202c
2nto

Now | will explain why it is useful in our quest for the Black—Scholes formulee.

In Figure 8.1 is plotted W as a function of x’ for several values of r. Observe how
the function rises in the middle but decays at the sides. As © — 0 this becomes more
pronounced. The ‘middle’ is the point X’ = x. At this point the function grows unboundedly

"It is just the probability density function for a Normal random variable with mean zero and standard
deviation o.
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451
4 4
2
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25+

15 +

-2 -1 0 1\ , 2 3 4
Figure 8.1 The fundamental solution.

and away from this point the function decays to zero as  — 0. Although the function is
increasingly confined to a narrower and narrower region its area remains fixed at one.
These properties of decay away from one point, unbounded growth at that point and
constant area, result in a Dirac delta function §(x’ — x) as  — 0. The delta function has
one important property, namely

/ 50¢ — X)g () dx’ = glx)

where the integration is from any point below x to any point above x. Thus the delta
function ‘picks out’ the value of g at the point where the delta function is singular, i.e. at
x" = x. Inthe limit as © — 0 the function W becomes a delta function at x = x’. This means
that

1 o0 7(/7)()2
lim / e 22 g(x')dx’ = g(x).
Lyl gix) gx)

This property of the special solution, together with the linearity of the Black—Scholes
equation, are all that are needed to find some explicit solutions.
Now is the time to consider the payoff. Let’s call it

Payoff(S).

This is the value of the option at time t = T. It is the final condition for the function V,
satisfying the Black—Scholes equation:

V(S, T) = Payoff(S).
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In our new variables, this final condition is
W(x, 0) = Payoff(e”). (8.5)
| claim that the solution of this for ¢ > O is

Wix, 1) = / ” We(x, T; x')Payoff(e’) dx’. (8.6)

To show this, | just have to demonstrate that the expression satisfies Equation (8.2) and
the final condition (8.5). Both of these are straightforward. The integration with respect to
X' is similar to a summation, and since each individual component satisfies the equation
so does the sum/integral. Alternatively, differentiate (8.6) under the integral sign to see
that it satisfies the partial differential equation. That it satisfies condition (8.5) follows from
the special properties of the fundamental solution Ws.

Retracing our steps to write our solution in terms of the original variables, we get

e~ oo —(Iog(S/S’)+ <r—%02)(T—t))2 / 202(T—1) ds’
VSt) = ——— / e Payoff(S’) 8.7)
0

o/2n(T — 1) s’

where | have written X’ = log S'.
This is the exact solution for the option value in terms of the arbitrary payoff function.
In the next sections | will manipulate this expression for special payoff functions.

8.2.1 Formula fora call

The call option has the payoff function
Payoff(S) = max(S — E, 0).

Expression (8.7) can then be written as

2
e e e—(Iog(S/S/)+(r—%02>(T—l‘)> / 2800 o gy 9S
o /2a(T =1 Je o

Return to the variable x’ = log S’, to write this as

2
e 1T 00 —(7x’+log S+ (rf %ﬁ)(ﬁt)) / 202(T7t)(ex, E)dx

E—— e
0‘\/27[(7— - t) logE

2
e T 00 —(7x’+logs+(r7%o2)(Tft)> / 202(T—1) X oy’
e e e" dx
U‘/ZH(T - t) logE
2

c o7 o0 —<—X’+IogS+(r—%az>(T—t)> / 202(T—t)d /

—-E——— e X',
U,/ZIT(T—t) logE

Both integrals in this expression can be written in the form

* 71)(’2
/ e 2" dx
d
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for some d (the second is just about in this form already, and the first just needs a
completion of the square).

N
Tome Ot

You can open your eyes now

From now on | just quote formulae without giving
derivations.

/

Apart from a couple of minor differences, this integral is just like the cumulative
distribution function for the standardized Normal distribution® defined by

N(x) = \/%/X e 2% dp.

This function, plotted in Figure 8.2, is the probability that a Normally distributed variable
is less than x.

0.6 -

¢

Ta)
1%

=28 24 -2 -16 -12 -08 04 0 04 08 12 16 2 24 28

Figure 8.2 The cumulative distribution function for a standardized Normal random variable, N(x).

2 ].e. having zero mean and unit standard deviation.



the Black—Scholes formulae and the ‘greeks’ Chapter 8 177

Thus the option price can be written as two separate terms involving the ,O =
cumulative distribution function for a Normal distribution: A ' : Q
Ny AN \
Call option value = SN(d+) — Ee """ "IN(d)) Q QY 0
where \E ﬂ/t

1

T -t
and ﬁ"
’

log(S/E) + (r — 302) (T — 1)
do =

e — log(S/E) + (r + 302) (T — 1)

oT —1 ' Excel
representation of
call value

When there is continuous dividend yield on the
underlying, or it is a currency, then

Call option value
SeDT-ON(dy) — Ee"T-IN(d))

J log(S/E) + (r — D + $02) (T — 1)
| =

YoulL RE
USING THIS SO

ovT —t MUcH THAT (THELPS
gy — log(S/E) + (r — D — 302) (T — 1) IF\,(_?(AVE MEMORIZED
oJT —t
=dy—oT -t

In Excel

In Excel the cumulative distribution function for the
standardized Normal distribution is NORMSDIST(). The
natural logarithm is LN().

The option value is shown in Figure 8.3 as a function of the underlying asset at a fixed
time to expiry. In Figure 8.4 the value of the at-the-money option is shown as a function
of time, expiry is t = 1. In Figure 8.5 is the call value as a function of both the underlying
and time.

When the asset is ‘at-the-money forward,’ i.e. S = Ee~D7-0then there is a simple
approximation for the call value (Brenner & Subrahmanyam, 1994):

Call ~0.4Se PT-05/T —t.
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Figure 8.3 The value of a call option as a function of the underlying asset price at a fixed time to
expiry.
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Figure 8.4 The value of an at-the-money call option as a function of time.
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Value

Figure 8.5 The value of a call option as a function of asset and time. (O, =

8.2.2 Formula for a put S\ \:ﬂy/t"w/
The put option has payoff \é

-
Payoff(S) = max(E — S, 0).
The value of a put option can be found in the same way as above, or using
put-call parity Y
Put option value = —SN(—d) + Ee " T-IN(—d>),
with the same dq and db. rEeX:rilsentation of
When there is continuous dividend yield on the put value

underlying, or it is a currency, then

Put option value

—Se DT-ON(—dy) + Ee"TON(—d>)

Yot MEMORIZED

THE CALL VALUE,
[ HOPE, Now/

MEMORIZE THE PUT

The option value is shown in Figure 8.6 against the
underlying asset and in Figure 8.7 against time. In

Figure 8.8 is the option value as a function of both the underlying asset and time.
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Figure 8.6 The value of a put option as a function of the underlying asset at a fixed time to expiry.
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Figure 8.7 The value of an at-the-money put option as a function of time.



the Black—Scholes formulae and the ‘greeks’ Chapter 8 181

Value

Figure 8.8 The value of a put option as a function of asset and time.

When the asset is at-the-money forward the simple approximation for the put value
(Brenner & Subrahmanyam, 1994) is

Put ~ 0.4 Se PT-05./T —t.

8.2.3 Formula for a binary call ()
(),

The binary call has payoff

. 8
Payoff(S) = H(S — E), ) k@ﬂ/{w}

where H is the Heaviside function taking the value one when its argument <
is positive and zero otherwise.
Incorporating a dividend yield, we can write the option value as ﬁ

2
e 1T o _ (x’flog S- (rfoécrz)(Tft)) / 202(T—1) a
S e X .
G,/QJT(T — t) logE Excel

This term is just like the second term in the call option equation and so  representation of
binary values

Binary call option value

efr(Tft)N(dz)

The option value is shown in Figure 8.9.
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Figure 8.9 The value of a binary call option.
8.2.4 Formula fora binary put

The binary put has a payoff of one if S < E at expiry. It has a value of

Binary put option value

e "U=0(1 — N(d2))

since a binary call and a binary put must add up to the present value of $1 received at
time T. The option value is shown in Figure 8.10.

\\&\ 83 DELTA
N\

C

The delta of an option or a portfolio of options is the
sensitivity of the option or portfolio to the underlying.
Tue peELTA = | It is the rate of change of value with respect to the

SUR FIRST , AND asset:
MoST | MPoRTANT,
‘arEsK
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Figure 8.10 The value of a binary put option.

Here V can be the value of a single contract or of a whole portfolio of contracts. The
delta of a portfolio of options is just the sum of the deltas of all the individual positions.

The theoretical device of delta hedging, introduced in Chapters 3 and 6, for eliminating
risk is far more than that, it is a very important practical technique.

Roughly speaking, the financial world is divided up into speculators and hedgers. The
speculators take a view on the direction of some quantity such as the asset price (or more
abstract quantities such as volatility) and implement a strategy to take advantage of their
view. Such people may not hedge at all.

Then there are the hedgers. There are two kinds of hedger: the ones who hold a position
already and want to eliminate some very specific risk (usually using options) and the ones
selling (or buying) the options because they believe they have a better price and can
make money by hedging away all risk. It is the latter type of hedger that is delta hedging.
They can only guarantee to make a profit by selling a contract for a high value if they can
eliminate all of the risk due to the random fluctuation in the underlying.

Delta hedging means holding one of the option and short a quantity A of the underlying.
Delta can be expressed as a function of S and t, I'll give some formulee later in this section.
This function varies as S and t vary. This means that the number of assets held must
be continuously changed to maintain a delta-neutral position, this procedure is called
dynamic hedging. Changing the number of assets held requires the continual purchase
and/or sale of the stock. This is called rehedging or rebalancing the portfolio.
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This delta hedging may take place very frequently in highly liquid markets where it is
relatively costless to buy and sell. Thus the Black—Scholes assumption of continuous
hedging may be quite accurate. In less liquid markets, you lose a lot on bid-offer spread
and will therefore hedge less frequently. Moreover, you may not even be able to buy or
sell in the quantities you want. Even in the absence of costs, you cannot be sure that your
model for the underlying is accurate. There will certainly be some risk associated with the
model. These issues make delta hedging less than perfect and in practice the risk in the
underlying cannot be hedged away perfectly.

Some contracts have a delta that becomes very large at special times or asset values.
The size of the delta makes delta hedging impossible; what can you do if you find yourself
with a theoretical delta requiring you to buy more stock than exists? In such a situation
the basic foundation of the Black—Scholes world has collapsed and you would be right to
question the validity of any pricing formula. This happens at expiry close to the strike for
binary options. Although I’'ve given a formula for their price above and a formula for their
delta below, I’d be careful using them if | were you.

Here are some formulae for the deltas of common contracts (all formulae
J] 'O/ = assume that the underlying pays dividends or is a currency):

A\ .
&Y M\\
Q"’* ﬂ/‘} Deltas of common contracts
~ </
-

Call e PT-0N(d4)
Put e PU-9(N(d4) — 1)
7r(T7t)N/

v Binary call e Nid2)
oSV/T —t
e—r(T—t)N/(dz)

Bina ut —————
Excel ' e oSJT —t
representation of
delta values

Examples of these functions are plotted in Figure 8.11, with some scaling of the binaries.

/

\'\\ 84 GAMMA

The gamma, I', of an option or a portfolio of options
is the second derivative of the position with respect
to the underlying:

\

THE GAMMA IS
IMPoRTANT WHEN
EXAMINING THE
HIGHER - ORDER
REHAVIOR OF A
CONTRACT

Since gamma is the sensitivity of the delta to the underlying it is a measure of how much
or how often a position must be rehedged in order to maintain a delta-neutral position.
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Delta

—-Call delta
-= Put delta
-+ Binary call delta
-=—Binary put delta

Figure 8.11 The deltas of a call, a put, a binary call and a binary put option. (Binary values scaled
to a maximum value of one.)

Although the delta also varies with time this effect is dominated by the Brownian nature
of the movement in the underlying.

In a delta-neutral position the gamma is partly responsible for making the return on the
portfolio equal to the risk-free rate, the no-arbitrage condition of Chapter 6. The rest of
this task falls to the time-derivative of the option value, discussed below. Actually, the
situation is far more complicated than this because of the necessary discreteness in the
hedging, there is a finite time between rehedges. In any delta-hedged position you make
money on some hedges and lose some on others. In a long gamma position (I" > 0) you
make money on the large moves in the underlying and lose it on the small moves. The net
effect is to get the risk-free rate of return on the portfolio.

Gamma also plays an important role when there is a mismatch between the market’s
view of volatility and the actual volatility of the underlying.

Because costs can be large and because one wants to reduce exposure to model
error it is natural to try to minimize the need to rebalance the portfolio too frequently.
Since gamma is a measure of sensitivity of the hedge ratio A to the movement in the
underlying, the hedging requirement can be decreased by a gamma-neutral strategy. This
means buying or selling more options, not just the underlying. Because the gamma of the
underlying (its second derivative) is zero, we cannot add gamma to our position just with
the underlying. We can have as many options in our position as we want, we choose the
quantities of each such that both delta and gamma are zero. The minimal requirement is
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to hold two different types of option and the underlying. In practice, the option position is
not readjusted too often because, if the cost of transacting in the underlying is large, then
the cost of transacting in its derivatives is even larger.

Here are some formuleze for the gammas of common contracts:

@) =
A &N, \Q Gammas of common contracts
L Q‘l‘ \‘%ﬁw} Call efD(Tft)N/(d_I)
\E </ oSVT —t
- Ut e—D(T—t)N/(d1)
oSJT —t
~ ] e—r(T—t)d1 N/(dg)
ﬁ Binary call — m
Excel Bi " e "T-0d;N'(d2)
representation of inary pu 02S2(T —t)
gamma values

Examples of these functions are plotted in Figure 8.12, with some scaling for the
binaries.

——Call and put gamma
-+ Binary call gamma
—»— Binary put gamma

Gamma

Figure 8.12 The gammas of a call, a put, a binary call and a binary put option.
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85 THETA

Theta, O, is the rate of change of the option price with time.

(F THE ASSET
DOESNT movE,
THE OPTION WILL
ZHANGE BY THE
THETA WITH TIME

The theta is related to the option value, the delta and
the gamma by the Black—Scholes equation. In a delta-
hedged portfolio the theta contributes to ensuring that
the portfolio earns the risk-free rate. But it contributes in a completely certain way, unlike
the gamma which contributes the right amount on average.

Here are some formulae for the thetas of common contracts:

Thetas of common contracts AN

oSePT-ON/(dy) SN Y
Call 222 TV L DSN(dy)e T — rEeT-ON(d > Y

~DT—HNp(_ ~
JﬁezTN:dﬁ—mwemw$“”+ffwwM*@

. d4 r—D
Binary call re"T-IN(d5) + e"T-IN'(d>) < - ) ﬂ"
2T—-1t oJT—-t

d1 r—D )

Put

Excel
representation of
theta values

Binary put re"T-9(1 — N(db)) — e "T-IN'(dy) <

2T —1) oJT -t

These functions are plotted in Figure 8.13.

8.6 SPEED

The speed of an option is the rate of change of the gamma with respect to the stock
price.

3V
d = —
Spee P

Traders use the gamma to estimate how much they will have to rehedge if the stock
moves. The stock moves by $1 so the delta changes by whatever the gamma is. But
that’s only an approximation. The delta may change by more or less than this, especially
if the stock moves by a larger amount, or the option is close to the strike and expiration.
Hence the use of speed in a higher-order Taylor series expansion.
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——Call theta
-= Put theta
—+ Binary call theta
—=-Binary put theta

Theta

Figure 8.13 The thetas of a call, a put, a binary call and a binary put option.

Here are some formulee for the speed of common contracts:

Speed of common contracts

—D(T-t)p\y
Call _e N(dy) (d1 —i—o\/T—t)

UZ}STQ(J -1
Put _760282(TN—((1)1) (d1 + o\/T——l‘)
Binary call —% (—2d %)
Binary put % <—2d1 + %)

87 VEGA

Vega, a.k.a. zeta and kappa, is a very important but
confusing quantity. It is the sensitivity of the option
price to volatility.

WE DoNT know
THE VOLATILITY

DRECISELY. VEGA
MELSURES SENSITIVITY 4
oF VALUE To VoL. Vega = —
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This is completely different from the other greeks® since it is a derivative with respect
to a parameter and not a variable. This makes something of a difference when we come
to find numerical solutions for such quantities.

In practice, the volatility of the underlying is not known with certainty. Not only is it very
difficult to measure at any time, it is even harder to predict what it will do in the future.
Suppose that we put a volatility of 20% into an option pricing formula, how sensitive is
the price to that number? That’s the vega.

As with gamma hedging, one can vega hedge to reduce sensitivity to the volatility. This
is a major step towards eliminating some model risk, since it reduces dependence on a
quantity that, to be honest, is not known very accurately.

There is a downside to the measurement of vega.
It is only really meaningful for options having single-
signed gamma everywhere. For example, it makes
sense to measure vega for calls and puts but not binary
calls and binary puts. | have included the formulae for
the vega of such contracts below, but they should
be used with care, if at all. The reason for this is
that call and put values (and options with single-
signed gamma) have values that are monotonic in the
volatility: increase the volatility in a call and its value increases everywhere. However,
contracts with a gamma that changes sign may have a vega measured at zero because
as we increase the volatility the price may rise somewhere and fall somewhere else.
Such a contract is very exposed to volatility risk but that risk is not measured by
the vega.

Here are some formulee for the vegas of common contracts:

THE VEGA (S ONLY THEORETICALL
MEANING FUL 1N & SMALL
NUMBER oF SITUATIONS. BEWARE

N () /%
Vegas of common contracts & '&v \Q
Call ST —te DTN/ (dy) @ﬂ/&‘w/
\C
Put SJT — te PT-ON/(dy) 2
d
Binary call —e"T-ON'(dp)—
o
d L4
Binary put e~"T-IN/(do) > ﬁ
o
Excel

. . . representation of
In Figure 8.14 is shown the value of an at-the-money call option as a yega values

function of the volatility. There is one year to expiry, the strike is 100, the
interest rate is 10% and there are no dividends. No matter how far in or out

31t’s not even Greek. Among other things it is an American car, a star (Alpha Lyrse), the real name of Zorro,
there are a couple of 16th century Spanish authors called Vega, an op art painting by Vasarely and a character
in the computer game ‘Street Fighter.” And who could forget Vincent, and his brother, and his ‘cousin’?
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Figure 8.14 The value of an at-the-money call option as a function of volatility.

of the money this curve is always monotonically increasing for call options and put
options, uncertainty adds value to the contract. The slope of this curve is the vega.

88 RHO

Rho, p, is the sensitivity of the option value to the interest rate used in the Black—Scholes
formulee:

In practice one often uses a whole term structure of interest rates, meaning a time-
dependent rate r(t). Rho would then be the sensitivity to the level of the rates assuming
a parallel shift in rates at all times. Again, you must be careful for which contracts you
measure rho.
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Here are some formulae for the rhos of common contracts: ,O’ =
\\ / _'\ \%‘
Rhos of common contracts k&l«“’“ **%igw;
Call E(T — t)e"T-IN(d>) N\
-/
Put —E(T — t)e"T-IN(—dy)
VT —t
Binary call —(T — tle~"T-IN(dy) + e "T-IN'(dy) ﬁ
o
VT —t
Binary put —(T — e "T-9(1 — N(d»)) — e "T=IN'(dy)

o

Excel

The sensitivities of common contract to the dividend yield or foreign rho values

interest rate are given by the following formulee:

Sensitivity to dividend for common contracts
Call —(T — )Se PT-IN(d4)
Put (T — )Se PT-IN(—dy)

ST —t
Binary call —~——e""-IN/(d,)

o

/T —

Binary put #e*r(T*t)N’(dg)
o

89 IMPLIED VOLATILITY

The Black—Scholes formula for a call option takes as input the expiry, the strike, the
underlying and the interest rate together with the volatility to output the price. All but the
volatility are easily measured. How do we know what volatility to put into the formulae? A
trader can see on his screen that a certain call option with four months until expiry and a
strike of 100 is trading at 6.51 with the underlying at 101.5 and a short-term interest rate
of 8%. Can we use this information in some way?

Turn the relationship between volatility and an option price on its head, if we can see the
price at which the option is trading, we can ask ‘What volatility must | use to get the correct
market price?’ This is called the implied volatility. The implied volatility is the volatility of
the underlying which when substituted into the Black—Scholes formula gives a theoretical
price equal to the market price. In a sense it is the market’s view of volatility over the life
of the option. Assuming that we are using call prices to estimate the implied volatility then
provided the option price is less than the asset and greater than zero then we can find

representation of
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a unique value for the implied volatility. (If the option price is outside these bounds then
there’s a very extreme arbitrage opportunity.) Because there is no simple formula for the
implied volatility as a function of the option value we must solve the equation

Vs(So, to; o, r; E, T) = known value

for o, where Vs is the Black—Scholes formula. Today’s asset price is Sy, the date is tg
and everything is known in this equation except for o. Below is an algorithm for finding the
implied volatility from the market price of a call option to any required degree of accuracy.
The method used is Newton-Raphson which uses the derivative of the option price with
respect to the volatility (the vega) in the calculation. This method is particularly good for
such a well-behaved function as a call value.

‘Qslol S Function ImpVolCall (MktPrice As Double, _
Vs Strike As Double, Expiry As _
k{u \qp A Double, Asset As Double, _

(&/”\ 4\/39 IntRate As Double, error _

As Double)
Volatility = 0.2
dv = error + 1
While Abs(dv) > error
ﬂv dl = Log(Asset / Strike) + (IntRate _
+ 0.5 * Volatility * Volatility) _

* Expiry
VB implementation dl = dl / (Volatility * Sqgr (Expiry))
d2 = dl - Volatility * Sqr (Expiry)
PriceError = Asset * cdf(dl) - Strike _
* Exp(-IntRate * Expiry) _

(-
* cdf (d2) - MktPrice
Vega = Asset * Sgr (Expiry / 3.1415926 _

/ 2) * Exp(-0.5 * dl1 * dl)
dv = PriceError / Vega

A < IMPLE VB FUNCTION Volatility = Volatility - dv
FOR CALCULATINCG Wend
IMPLED VOL FROM ImpVolCall = Volatility

CALL PRICES

End Function
In this we need the cumulative distribution function for the Normal distribution. The
following is a simple algorithm which gives an accurate, and fast, approximation to the
cumulative distribution function of the standardized Normal:
For x>0 Nx)~1— \/%e 272 <a1d + a,d? + asd® + asd* + a5d5)
where
1

T 1+0.02316419x

and
al =0.31938153, a2 = —0.356563782, a3 = 1.781477937,
a4 = —1.821255978 and ab5 = 1.330274429.

For x < 0 use the fact that N(x) + N(—x) = 1.



Func
Dim
Dim
Dim
Dim
Dim
Dim
Dim
d
al
a2
a3
ad
ab
temp
temp
temp
temp
temp

temp =

cdf
If x
End
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tion cdf (x As Double) As Double
d As Double
temp as Double
al As Double
a2 As Double
a3 As Double
a4 As Double
a5 As Double

1/ (1 + 0.2316419 * Abs(x))
0.31938153

-0.356563782

1.781477937

-1.821255978

1.330274429

ab
ad
a3
a2
al d
d * temp
1 -1 / Sgr(2 * 3.1415926)
< 0 Then cdf 1 - cdf
Function

*

temp
temp
temp
temp

*

*

+ o+ o+ o+
[oTgyeTgyen

*

= * Exp(-0.5 * x * x) * temp

N @ =
\Q’“&ﬂ/k/
-

VB implementation

In practice if we calculate the implied volatility for many different strikes and expiries
on the same underlying then we find that the volatility is not constant. A typical result is
that of Figure 8.15 which shows the implied volatilities for the S&P500 on 9th September

Figure 8.15
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1999 for options expiring later in the month. The implied volatilities for the calls and puts
should be identical, because of put-call parity. The differences seen here could be due to
bid-offer spread or calculations performed at slightly different times.

This shape is commonly referred to as the smile, but it could also be in the shape of
a frown. In this example it’s a rather lopsided wry grin. Whatever the shape, it tends to
persist with time, with certain shapes being characteristic of certain markets.

The dependence of the implied volatility on strike and expiry can be interpreted in many
ways. The easiest interpretation is that it represents the market’s view of future volatility
in some complex way.

\

D

8.10 A CLASSIFICATION OF
HEDGING TYPES

8.10.1 Why hedge?

HEDGING MEANS |« i i
AN THIMCS, HERE Hedging’ in its broadest sense means the reduction of

ARE A FEW Exampres sk by exploiting relationships or correlation between
various risky investments (or bets). The concept is
used widely in horse racing, other sports betting and,
of course, high finance. The reason for hedging is that it can lead to an improved
risk/return. In the classical Modern Portfolio Theory framework (Chapter 21), for example,
it is usually possible to construct many portfolios having the same expected return but
with different variance of returns (‘risk’). Clearly, if you have two portfolios with the same
expected return the one with the lower risk is the better investment.

8.10.2 The two main classifications

Probably the most important distinction between types of hedging is between model-
independent and model-dependent hedging strategies.

Model-independent hedging: An example of such hedging is put-call parity. There is
a simple relationship between calls and puts on an asset (when they are both European
and with the same strikes and expiries), the underlying stock and a zero-coupon bond
with the same maturity. This relationship is completely independent of how the underlying
asset changes in value. Another example is spot-forward parity. In neither case do we
have to specify the dynamics of the asset, not even its volatility, to find a possible hedge.
Such model-independent hedges are few and far between.

Model-dependent hedging: Most sophisticated finance hedging strategies depend on
a model for the underlying asset. The obvious example is the hedging used in the
Black—Scholes analysis that leads to a whole theory for the value of derivatives. In pricing
derivatives we typically need to at least know the volatility of the underlying asset. If the
model is wrong then the option value and any hedging strategy will also be wrong.
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8.10.3 Delta hedging

One of the building blocks of derivatives theory is delta hedging. This is the theoretically
perfect elimination of all risk by using a very clever hedge between the option and its
underlying. Delta hedging exploits the perfect correlation between the changes in the
option value and the changes in the stock price. This is an example of ‘dynamic’ hedging;
the hedge must be continually monitored and frequently adjusted by the sale or purchase
of the underlying asset. Because of the frequent rehedging, any dynamic hedging strat-
egy is going to result in losses due to transaction costs. In some markets this can be
very important.

8.10.4 Gamma hedging

To reduce the size of each rehedge and/or to increase the time between rehedges, and
thus reduce costs, the technique of gamma hedging is often employed. A portfolio that is
delta hedged is insensitive to movements in the underlying as long as those movements
are quite small. There is a small error in this due to the convexity of the portfolio with
respect to the underlying. Gamma hedging is a more accurate form of hedging that
theoretically eliminates these second-order effects. Typically, one hedges one, exotic,
say, contract with a vanilla contract and the underlying. The quantities of the vanilla and
the underlying are chosen so as to make both the portfolio delta and the portfolio gamma
instantaneously zero.

8.10.5 Vega hedging

As | said above, the prices and hedging strategies are only as good as the model for
the underlying. The key parameter that determines the value of a contract is the volatility
of the underlying asset. Unfortunately, this is a very difficult parameter to measure or
even estimate. Nor is it usually a constant as assumed in the simple theories. Obviously,
the value of a contract depends on this parameter, and so to ensure that our portfolio
value is insensitive to this parameter we can vega hedge. This means that we hedge
one option with both the underlying and another option in such a way that both the
delta and the vega, the sensitivity of the portfolio value to volatility, are zero. This is
often quite satisfactory in practice but is usually theoretically inconsistent; we should
not use a constant volatility (basic Black—Scholes) model to calculate sensitivities to
parameters that are assumed not to vary. The distinction between variables (underlying
asset price and time) and parameters (volatility, dividend yield, interest rate) is extremely
important here. It is justifiable to rely on sensitivities of prices to variables, but usually
not sensitivity to parameters. To get around this problem it is possible to independently
model volatility, etc. as variables themselves. In such a way it is possible to build up a
consistent theory.

8.10.6 Static hedging

There are quite a few problems with delta hedging, on both the practical and the theore-
tical side. In practice, hedging must be done at discrete times and is costly. Sometimes
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one has to buy or sell a prohibitively large number of the underlying in order to follow
the theory. This is a problem with barrier options and options with discontinuous payoff.
On the theoretical side, the model for the underlying is not perfect, at the very least we
do not know parameter values accurately. Delta hedging alone leaves us very exposed
to the model; this is model risk. Many of these problems can be reduced or eliminated if
we follow a strategy of static hedging as well as delta hedging: buy or sell more liquid
traded contracts to reduce the cashflows in the original contract. The static hedge is put
into place now, and left until expiry. In the extreme case where an exotic contract has all
of its cashflows matched by cashflows from traded options then its value is given by the
cost of setting up the static hedge; a model is not needed.

8.10.7 Margin hedging

Often what causes banks, and other institutions, to suffer during volatile markets is not
the change in the paper value of their assets but the requirement to suddenly come up
with a large amount of cash to cover an unexpected margin call. Recent examples where
margin has caused significant damage are Metallgesellschaft and Long Term Capital
Management. Writing options is very risky. The downside of buying an option is just the
initial premium, the upside may be unlimited. The upside of writing an option is limited, but
the downside could be huge. For this reason, to cover the risk of default in the event of
an unfavorable outcome, the clearing houses that register and settle options insist on the
deposit of a margin by the writers of options. Margin comes in two forms, the initial margin
and the maintenance margin. The initial margin is the amount deposited at the initiation of
the contract. The total amount held as margin must stay above a prescribed maintenance
margin. If it ever falls below this level then more money (or equivalent in bonds, stocks,
etc.) must be deposited. The amount of margin that must be deposited depends on the
particular contract. A dramatic market move could result in a sudden large margin call
that may be difficult to meet. To prevent this situation it is possible to margin hedge. That
is, set up a portfolio such that margin calls on one part of the portfolio are balanced by
refunds from other parts. Usually over-the-counter contracts have no associated margin
requirements and so won’t appear in the calculation.

8.10.8 Crash (Platinum) hedging

The final variety of hedging that we discuss is specific to extreme markets. Market crashes
have at least two obvious effects on our hedging. First of all, the moves are so large
and rapid that they cannot be traditionally delta hedged. The convexity effect is not
small. Second, normal market correlations become meaningless. Typically all correlations
become one (or minus one). Crash or Platinum hedging exploits the latter effect in such
a way as to minimize the worst possible outcome for the portfolio. The method, called
CrashMetrics (Chapter 25), does not rely on difficult to measure parameters such as
volatilities and so is a very robust hedge. Platinum hedging comes in two types: hedging
the paper value of the portfolio and hedging the margin calls.

8.1 SUMMARY

In this chapter we went through the derivation of some of the most important formulze.
We also saw the definitions and descriptions of the hedge ratios. Trading in derivatives
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would be no more than gambling if you took away the ability to hedge. Hedging is all
about managing risk and reducing uncertainty.

FURTHER READING

See Taleb (1997) for a lot of detailed analysis of vega.

See Press etal. (1992) for more routines for finding roots, i.e. for finding implied
volatilities.

There are many ‘virtual’ option pricers on the internet. See, for example, www . cboe
. com.

I’m not going to spend much time on deriving or even presenting formulae. There are
1001 books that contain option formulae, there is even one book with 1001 formulae
(Haug, 2007).

See the series of articles by Thorp (2002) on how he derived the correct option pricing
formulze in the late 1960s.

Haug (2003) discusses the sophisticated trader use of the simple equations.

For the definitions of even more greeks see Wilmott (2006).

-
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Another look at Black—-Scholes

Let’s take another look at the Black—Scholes equation:
WV a0 d2V

v

50°8°—— +rS—

ot 27 552 T3

The option value V(S,t) depends on (or ‘is a function of’) the asset price S
and the time t.

The first derivative of the option value with respect to time is called the theta:

aVv
0=—.
ot
Notice that this is a partial derivative and so theta is the gradient of the option
value in the direction of changing time, asset price fixed. It measures the rate of
change of the option value with time if the asset price doesn’t move, hence the
other name ‘time decay.’

The first derivative of the option value with respect to the asset price is called
the delta:

—rvV =0.
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This is the slope in the S direction with time fixed. Asset prices change very
rapidly and so the dominant change in the option value from moment to moment
is the delta multiplied by the change in the asset price. This is just a simple
application of Taylor series; the difference between the option price at time ¢t
when the asset is at S and a later time t 4 6t when the asset price is S + 8S is
given by

V(S +48S,t+8t)—V(S,t)=A8S+---.

The - - - are terms which are, generally speaking, smaller than the leading term.
They are still important, as we’ll see in a moment.

Because the change in option value and the change in asset price are so
closely linked we can see that holding a quantity A of the underlying asset short
we can eliminate, to leading order, fluctuations in our net portfolio value. This is
the basis of delta hedging.

The second derivative of the option value with respect to the asset price is
called the gamma:

. 32V
- 9S82’
This is also just the S derivative of the delta. If the asset changes by an amount
3S then the delta changes by an amount I" §S. Thus the gamma is a measure of
how much one might to have to rehedge, and gives a measure of the amount of
transaction costs from delta hedging.

Now we can interpret all the terms in the Black—Scholes equation, but what
does the equation itself mean?

Written in terms of the greeks, the Black—-Scholes equation is

© + 302S?T +rSA —rV = 0.
Reordering this we have
® =rV —rSA — J02S?T =r(V — SA) — $o2S°T.

When we have a delta-hedged position we hold the option with value V
and are short A of the underlying asset. Thus our portfolio value is at any
time

V — SA.
So we can write the Black—Scholes equation in words as
Time decay = interest received on cash equivalent of portfolio value
— 102S%gamma.

The option value grows by an equivalent of interest that would have been
received by a riskless pure cash position. But the delta-hedged option is not a
cash position. That’s where the final, gamma, term comes in.
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Ignoring the interest on the cash equivalent, the theta and gamma terms add
up to zero. Of course, you can’t ignore this interest unless the portfolio has zero
value or rates are zero.

The delta hedge is only accurate to leading order. If one is hedging with finite
time intervals between rehedges then there is inevitably a little bit of randomness
that we can’t hedge away. We can see this if we go to higher order in the Taylor
series expansion of V(S + §S,t + §t):

V(S +68S,t+6t) — V(S,t) = A 8S + © 6t + [ §S?.- ..

The ® term is predictable if we know the time §t between hedges (and it has
already appeared in the Black—-Scholes equation). But the I' term is multiplied
by the random §S2. We can’t hedge this away perfectly. It is, in practice, the
source of hedging errors. However, if we rehedge sufficiently frequently (i.e. 5t
is very small) then the combined effect of the gamma terms is via an average
of the §S2. And this average is 62S? §t. Why is it the average that matters? It's
like betting on the toss of a biased coin. If you have an advantage then you can
exploit it by betting a small amount but very, very often. In the long run you
will certainly win. (In terms of standard deviations, as the time between hedges
decreases so does the standard deviation of the hedging error accumulated
over the life of the option.)

We can now see that the gamma term in the Black—-Scholes equation is to
balance the higher-order fluctuations in the option value. Naturally, it there-
fore depends on the magnitude of these fluctuations, the volatility of the
underlying asset.
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EXERCISES

1. Find the explicit solution for the value of a European option with payoff A(S) and
expiry at time T, where

S ifS>E
A(S)z{ 0 ifS<E.

2. Find the explicit solution for the value of a European supershare option, with expiry
at time T and payoff

A(S) = H(S — E1) — H(S — Ea),
where E1 < Es.

3. Consider the pay-later call option. This has payoff A(S) = max(S — E,0) at time T.
The holder of the option does not pay a premium when the contract is set up, but
must pay Q to the writer at expiry, only if S > E. What is the value of Q?

4. Find the implied volatility of the following European call. The call has four months
until expiry and an exercise price of $100. The call is worth $6.51 and the underlying
trades at $101.5, discount using a short-term risk-free continuously compounding
interest rate of 8% per annum.

5. Consider a European call, currently at the money. Why is delta hedging self-financing
in the following situations?

(@) The share price rises until expiry,
(b) The share price falls until expiry.

6. Using the explicit solutions for the European call and put options, check that put-call
parity holds.

7. Consider an asset with zero volatility. We can explicitly calculate the future value of
the asset and hence that of a call option with the asset as the underlying. The value
of the call option will then depend on the growth rate of the asset, u. On the other
hand, we can use the explicit formula for the call option, in which  does not appear.
Explain this apparent contradiction.

8. Therange forward contract is specified as follows: at expiry, the holder must buy the
asset for E1 if S < Eq, for Sif E1 < S < E» and for E» if S > E». Find the relationship
between E1 and E> when the initial value of the contract is zero and E1 < Eo.

9. A forward start call option is specified as follows: at time T4, the holder is given a
European call option with exercise price S(T1) and expiry at time T1 + To. What is
the value of the optionfor0 <t < T1?

10. Consider a delta-neutral portfolio of derivatives, I1. For a small change in the price
of the underlying asset, S, over a short time interval, §t, show that the change in
the portfolio value, 811, satisfies

8T = O5t + 3T §S?,

9=l — 21
where ® = F and I' = 7.
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11.

12.

13.

14.

15.

Show that for a delta-neutral portfolio of options on a non-dividend paying stock, IT,
© + 202S?T =rIl.
Show that the vega of an option, v, satisfies the differential equation
2
— + 30282 +rS— —+0S’I' =0,
where I' = 3%‘; What is the final condition?

Find the partial differential equation satisfied by p, the sensitivity of the option value
to the interest rate.

Use put-call parity to find the relationships between the deltas, gammas, vegas,
thetas and rhos of European call and put options.

The fundamental solution, us, is the solution of the diffusion equationon —oco < x < o0

and t > 0 with u(x, 0) = §(x). Use this solution to solve the more general problem:
u  dcu
— =—, 0N —0c0o<X<o0, T>0,
ot 9x?

with u(x, 0) = up(x).



CHAPTER 9
overview of volatility

modeling

The aim of this Chapter...

...Isto give a hint towards the possible ways to model volatility, the most important
parameter in derivatives pricing.

In this Chapter...

a look at the joys of volatility modeling
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9. INTRODUCTION

In the main, the Black—Scholes model is very robust and does a decent job of pricing
derivatives, including exotics. One of the most important flaws in the model concerns the
behavior of volatility. Quite frankly, we do not know what volatility currently is, never mind
what it may be in the future. And the correct pricing of derivatives requires us to know
what the volatility is going to be.

For this reason, volatility analysis and modeling takes a prominent role in the working
life of a quant.

\

A

9.2 THE DIFFERENT TYPES
OF VOLATILITY

We can’t see volatility in the same way we can see

stock prices or interest rates. The best we can hope
THE DITERENCES | to do is to measure it statistically. But such a measure
IMPORTANT is necessarily backwards looking, and we really want
to know what volatility is going to be in the future.’
For this reason people talk about different volatilities, as proxies for the real thing. Here
are a few adjectives you can use with ‘volatility.’

e Actual
e Historical/realized
e Implied

e Forward

9.2.1 Actual volatility

This is the measure of the amount of randomness in an asset return at any particular time.
It is very difficult to measure, but is supposed to be an input into all option pricing models.
In particular, the actual (or ‘local’) volatility goes into the Black—Scholes equation.

e There is no ‘timescale’ associated with actual volatility, it is a quantity that exists at
each instant, possibly varying from moment to moment.

Example: The actual volatility is now 20% ...now itis 22%...now itis 24% . ..

9.2.2 Historical or realized volatility

This is a measure of the amount of randomness over some period in the past. The period
is always specified, and so is the mathematical method for its calculation. Sometimes this
backward-looking measure is used as an estimate for what volatility will be in the future.

e There are two ‘timescales’ associated with historical or realized volatility: one short
and one long.

"You can see | am already assuming that volatility is not the nice constant that earlier chapters may have led
you to believe.
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Example: The 60-day volatility using daily returns. Perhaps of interest if you are pricing
a 60-day option, which you are hedging daily.

In pricing an option we are making an estimate of what actual volatility will be over the
lifetime of the option. After the option has expired we can go back and calculate what the
volatility actually was over the life of the option. This is the realized volatility.

Example: | sold a 30-day option for a 30% volatility, | hedged it every day. Did | make
money?

9.2.3 Implied volatility

The implied volatility is the volatility which when input into the Black—Scholes option
pricing formulae gives the market price of the option. It is often described as the market’s
view of the future actual volatility over the lifetime of the particular option.

However, it is also influenced by other effects such as supply and demand.

e There is one ‘timescale’ associated with implied volatility: expiration.

Example: A stock s at 100, a call has strike 100, expiration in one year, interest rate 5%
and the option market price is $10.45. What volatility are traders using?

9.2.4 Forward volatility

The adjective ‘forward’ can be applied to many forms of volatility, and refers to the
volatility (whether actual or implied) over some period in the future.

e Forward volatility is associated with either a time period, or a future instant.

93 VOLATILITY ESTIMATION BY STATISTICAL MEANS

9.3.1 The simplest volatility estimate: constant volatility/moving window

If we believe that volatility is constant or slowly varying, and we have N days’ data, we
can use

1N
2 _ 1 ZR;
o = i
N
where
Si — Si—1
Ri =
I Si_1

and is the return on the jith day. Note that | haven’t annualized quantities yet.

There are obvious major problems associated with this volatility measure, because the
returns are equally weighted you will get a plateauing effect associated with a large return.
If there is a large one-day return in will increase the volatility instantaneously, but the
estimate of volatility will stay raised until N days later when that return drops out of the
sample. This is a totally spurious effect. This effect can be seen in Figure 9.1.
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Figure 9.1 Moving-window volatility, observe the plateauing.
9.3.2 Incorporating mean reversion

Now let’s consider time-varying volatility. We don’t just have one o but must consider o,
our estimate of the volatility on the nth day, using data available up to that point. If we
believe that volatility tends to vary about a long-term mean &, then we could use

1 n
2 —2 2
O'n = o +(1 —O[)EZRI
i=1
Here there is a weighting assigned to each long-run volatility estimate and the current
estimate based on the last n returns.

This is called an ARCH model, for Autoregressive Conditional Heteroscedasticity
But why should each of the last n returns be equally important?

9.3.3 Exponentially weighted moving average

Consider this estimate for volatility:
g .
i=1

The parameter A must be greater than zero and less than one. This is an example of
an exponentially weighted moving average estimate. The more recent the return, the
more weight is attached. The sum extends back to the beginning of time.
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Figure 9.2 Exponentially weighted volatility, no plateauing.

The coefficient of 1 — & ensures that the weights all add up to one.
This expression can be simplified to

02 =102 4+ (1 — MR2.

Note that this uses the most recent return and the previous estimate of the volatility. This
is RiskMetrics volatility measure.

Figure 9.2 uses the same stock price data as in Figure 9.1 but now there is no
plateauing.?

9.3.4 A simple GARCH model
Put the preceeding models together to get
02 =a5?+(1—a) (Aana +(1- A)R,z,) .

This is a Generalized Autoregressive Conditional Heteroscedasticity or GARCH
model.

9.3.5 Expected future volatility

We are currently at day n and we want to estimate the volatility k days into the future, i.e.
on day n + k.

2You could say that the obvious exponential decay in the volatility estimate is just as spurious as the
discontinuity in the equally weighted case.
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Expected future volatility: EWMA

Recall
Opik = Ao 1+ (1 = MRS
Take expectations of this. ..
Elof ] = AElop 11+ (1 = NEIRZ ],
But, of course,
E[R ikl = oz n+k-
Therefore
Elog,] = 2E[07 41+ (1 — ME[o7 4]
or, on rearranging,
Elof] = Elog 1]

In other words, the expected future value of the variance is the same as the previous
day’s value. Working backwards to the present, the expected future variance is the same
as today’s.

Expected future volatility: GARCH

Recall
of =05 +(1 -0 (M’ ket (1 - )‘)Rr27+k) :
Taking expectations of this results in

Elof i = o002 + (1 =) (1[0 1]+ (1 = VE[0Z)
On rearranging, we get

ac? A1 —a)
Elond = =g i T T — e E et

The next expected value of the variance is a weighting between the most recent value
and the long-term mean. Looking further into the future

Elo2 ] =72 + (Elo2) - 72) (1 - v)f

where
o
1—(1—a)(1=2)

Yy =
The path of expected future volatility® is shown in Figure 9.3.

3 Actually variance, of course, which is anyway more important that volatility.
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Figure 9.3 Expected future volatility for EWMA and GARCH models.

9.3.6 Beyond close-close estimators: range-based estimation of volatility

The problem with estimating volatility is that you need lots and lots of data to avoid
sampling-error problems.

But then if you use too many days’ worth of data you will be trying to estimate a
parameter during a period when that parameter is almost certainly varying.

A catch-22 situation.

Orisit?

Why not use more information contained within a single day? That is, go down to finer
timescales for the data. The problem with that is the behavior of returns over very short
timescales, such as minutes, does not appear to be Normally distributed . . . there is even
some evidence that the returns do not have a finite standard deviation.

Setting aside such worries(!), let’s look at very simple ways of better estimating volatility
using readily available price data, and not just closing prices.

Traditional close-to-close measure

When drift is small
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Here there is a slight change of notation from before; C; is the closing price on the ith day.
Note also that we are looking at logarithms.
To adjust this for the drift take

(Don’t forget to annualize: multiply by the square root of the number of trading days in a
year.)

Parkinson (1980)

This estimator uses extreme value, the highs H and the lows L during the day.

= o 2 (=5 (2)

This is five times more efficient than the close-to-close estimate. (That means, for the
same amount of data the variance of the data is one fifth that of the close-to-close
measure.)

Garman & Klass (1980)

At 7.4 times more efficient than close to close, we have

: 1&(0511009('4"))2
Ok = : T
n3 Li
Ci) HiL; <Hi) (Li>
—0.019log|{ = Jlog| — ) —2log| = Jlog|{ =} | .
g<oi g(O,?’) o) \o

Here O; is the opening price.
Rogers & Satchell (1991)

Parkinson and Garman & Klass are not independent of the drift. Our final simple volatility

estimate is
1 H; H; L; L
2=->"(log(=)log( =) +log(=)log(=)]).
o5 ni;(og(q og(g ) +log( g )los (g
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94 MAXIMUM LIKELIHOOD

ESTIMATION (\(\‘G‘3

A large part of statistical modeling concerns finding

model parameters. Two popular ways of doing this
are regression and Maximum Likelihood Estimation
(MLE). We look at the second method here.

|
e e
~
A TECHNIQUuE
WITH MANY USES

9.4.1 A simple motivating example: taxi numbers

You are attending a math conference. You arrive by train at the city hosting the event.
You take a taxi from the train station to the conference venue. The taxi number is 20,922.
How many taxis are there in the city?

This is a parameter estimation problem. Getting into a specific taxi is a probabilistic
event. Estimating the number of taxis in the city from that event is a question of
assumptions and statistical methodology.

The assumptions:

Taxi numbers are strictly positive integers.
Numbering starts at one.

No number is repeated.

P 0o b~

No number is skipped.

The statistical methodology We will look at the probability of getting into taxi number
20,922 when there are N taxis in the city. This couldn’t be simpler, the probability of
getting into any specific taxi is

1
N
This is shown in Figure 9.4.
Which N maximizes the probability of getting into taxi number 20,9227
N = 20,922.

This example explains the concept of MLE: choose parameters that maximize the
probability of the outcome actually happening.

9.4.2 Three hats

You have three hats containing Normally distributed random numbers. One hat’s numbers
have mean of zero and standard deviation 0.1. This is hat A. Another hat’s numbers have
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Figure 9.4 Probability of getting into the Nth taxi.

mean of zero and standard deviation 1. This is hat B. The final hat’s numbers have mean
of zero and standard deviation 10. This is hat C.

You don’t know which hat is which.

You pick a number out of one hat, it is —2.6. Which hat do you think it came from?

The ‘probability’ of picking the number —2.6 from hat A (having a mean of zero and a
standard deviation of 0.1) is

2.62

;
- 27 V=6 x1074,
V27 0.1 exD( 2 x 012) )

Very, very unlikely!

(N.B. The word ‘probability’ is in inverted commas to emphasize the fact that this is
the value of the probability density function, not the actual probability. The probability of
picking exactly —2.6 is, of course, zero.)

The ‘probability’ of picking the number —2.6 from hat B (having a mean of zero and a
standard deviation of 1) is

1 2.6°
—== ) =0014,
(o)

and from hat C (having a mean of zero and a standard deviation of 10)

1 2.62
——— ) = 0.039.
V27 10 exp( 2 x 102)
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We would conclude that hat C is the most likely, since it has the highest probability for
picking the number —2.6.

We now pick a second number from the same hat, it is 0.37. This looks more likely to
have come from hat B. We get the following table of probabilities.

Hat —2.6 0.37 Joint
A 6 x 107147 0.004 2 x 107149
B 0.014 0.372 0.005
C 0.039 0.040 0.002

The second column represents the probability of drawing the number —2.6 from each
of the hats, the third column represents the probability of drawing 0.37 from each of the
hats, and the final column is the joint probability, that is, the probability of drawing both
numbers from each of the hats.

Using the information about both draws, we can see that the most likely hat is now B.

9.4.3 The math behind this: find the standard deviation

You have one hat containing Normally distributed random numbers, with a mean of zero
and a standard deviation of ¢ which is unknown. You draw N numbers ¢; from this hat.
Estimate o.

Q. What is the ‘probability’ of drawing ¢; from a Normal distribution with mean zero and
standard deviation ¢ ?

A ltis

i

e 202,

Vero

Q. What is the ‘probability’ of drawing all of the numbers ¢+, ¢2, . . ., ¢ from independent
Normal distributions with mean zero and standard deviation o ?
A. ltis

...choose the o that maximizes this quantity. This is easy...
Differentiate with respect to o (take logarithms first) and set result equal to zero:

d 1

= =ni - ¢ | =0

= ( og(0) = 5 gcﬁ,) 0
(A multiplicative factor has been ignored here.) l.e.

N
N 1 5
6~|-0_32 o

i=1
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Therefore our best guess for o is given by

1

O'2=

Z|

N

> g2,
i=1
This should be a familiar expression!

9.4.4 Quants' salaries

In Figure 9.5 are the results of a 2004 survey on www.wilmott.com concerning the
salaries of quants using the Forum?*.
This distribution looks vaguely lognormal, with distribution

1 log E — log Ep)?®
exp | — (log ;’Jg 0) ,
VeroE 20
where E is annual earnings, o is the standard deviation and Eg the mean. Using MLE find
o and Ep.

The MLE solution is shown in Figure 9.6.
The mean Ey = $133, 284, with o = 0.833.

If you are a professional 'quant,’
how much do you earn?

Last year I earned:

'$0-50k
=i 8.51 (%)

$50-100k
1

28.37 (%)

$100-200k

J 40.43 (%)
$200-500k
= 14.18 (%)
$500k-1MM
0 5.67 (%)
‘More than $1MM
_] 2.84 (%)

Figure 9.5 Distribution of quants’ salaries.

4The respondents were self selecting so the numbers will be biased towards the more forthcoming, that is,
less well paid, quant.
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Figure 9.6 Distribution of quants’ salaries and MLE fit.

95 SKEWS AND SMILES

We have briefly already mentioned skews and smiles, but here is a reminder of what they
are about.

For a series of options that all expire at the same date, plot the value of implied volatility
against strike. If actual volatility were constant, and if the Black—Scholes model were
correct and if people priced options correctly then that plot would be flat, all options would
have the same implied volatility. Of course, none of those assumptions is correct, and so
there is plenty of scope for that plot to be curved, or skewed. If there is an appreciable
slant to that curve, for example if it goes from top left to bottom right, then we have
what is called a skew. A negative skew is downward sloping and a positive skew upward
sloping. If there is curvature so that the curve has a minimum in the middle then we have
a smile. Skews and smiles are the market’s way of telling us that either they don’t believe
in the Black—Scholes model or its assumptions or that they don’t care.

‘They don’t care’? If out-of-the-money puts are expensive, does it matter? Perhaps not
if they still cost only pennies and they are the easiest or cheapest way of getting downside
protection. To not buy needed downside protection because implied volatility seems a bit
high would be a foolish economy. ‘Penny wise, pound foolish.’

So smiles and skews may give us information about future volatility or they may give us
information about people’s expectation of future volatility or they may give us an idea of
how desperately they need to hedge. All very useful stuff.

You can speculate on what you think implied volatility might be going to do in the future
by buying or selling specific portfolios of vanilla options. If you want to speculate on level
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of implied volatility you may buy or sell a straddle, and if you want to speculate on skew
then you would consider a risk reversal. Let’s see how this works.

9.5.1 Sensitivity of the straddle to skews and smiles

The straddle is a portfolio made up of a long position in a call and a put, both having
the same strike and expiration. Because of put-call parity the market will price these two
contracts with the same volatility (bid-offer spread aside) and so there is really only one
implied volatility to consider. Figure 9.7 shows the Black-Scholes value of this simple
portfolio using three different levels of volatility. The strike is 100, the interest rate is 5%
and there is one year to expiration. The Black—Scholes value of this portfolio is monotonic
in the volatility; increase the volatility and the value rises. Such a portfolio is therefore
ideal when it comes to speculating on implied volatility.

9.5.2 Sensitivity of the risk reversal to skews and smiles

The risk reversal is made up of a long call and a short put, the call having a higher strike
than the put. Now that there are two strikes to consider we can see that the implied
volatility skew is important. Figure 9.8 shows how the value of the risk reversal varies
with the skew. In the case of the negative skew we have used a 25% volatility for the
put, having strike 80, and a 15% volatility for the call, having a strike of 120. In the
positive skew example these quantities are reversed and with the no-skew example both

50 -

45 +

— Vol =15%
— Vol =20%
Vol = 25%

40 -

35 A

30 -

25

20 -

Straddle value

15
10

5 - S

O T T T T 1
50 70 90 110 130 150

Figure 9.7 How the value of a straddle varies with level of volatility.
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Figure 9.8 How the value of a risk reversal varies with volatility skew.

options have a strike of 20%. The risk reversal’s sensitivity to skew makes it perfect for
speculation on that skew.®

If you want to speculate on the smile what contract would you buy? Simple, you need
a payoff with three kinks in it, a butterfly spread.

9.6 DIFFERENT APPROACHES TO MODELING VOLATILITY

For the rest of this chapter | want to provide a brief overview of what is possible in terms
of volatility modeling, and to put it all into context. Please see PWOQF2 for all the details.

9.6.1 To calibrate or not?

Perhaps the biggest question to face is that of how
much information should we take from the prices of
options in the markets. Given that we can’t see what
volatility is at any instant, and given that forecasting
volatility is not easy (see just a small subset of pos-
sibilities above), we might be tempted to use implied
volatility as an estimate of future volatility. What we

HEOW CAN THE MARKET KkNOW
SOMUCH ABOAT™ THE FUTURE P

5 At a meeting of The Committee on 15th September 2005 it was unanimously voted that sensitivity to skew
be henceforward called ‘Xena.” Present were Dominic Connor, Mike Weber and the author.
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might say is that implied volatility is the market’s best estimate of what volatility will do in
the future. In this sense, the implied volatility of a three-month option can be thought of
as containing information about actual volatility over the next three months.

Well, yes and no. In some sense, perhaps. But | personally don’t believe that the market
is that statistically sophisticated. If people want to spend too much buying an option, or
charge too little when selling it that is their business, it doesn’t mean that their prices
are right. It is no different from the pricing of a liter of milk in your corner shop. Has the
shopkeeper done some detailed analysis of the utility of individual customers, pricing in
the opportunity cost of going to the corner shop versus the cheaper supermarket, allowing
for the future price of gas or bus fares, etc.? No, he knows what it costs to buy the milk
and he just tries to sell it for as much above that as he possibly can. Out-of-the-money
puts are expensive, due to demand, otherwise known as ‘fear.” Out-of-the-money calls
are cheap, due to supply, otherwise known as ‘greed.’

Yes, there is arbitrage. Every business is based on arbitrage, so it is to be expected that
arbitrage (or mispricing as theoreticians call it, or earning a living, as sensible people call
it) exists. So | wouldn’t be too keen on accepting that there is a great deal of information
about volatility within option prices.

Anyway, whether to accept prices as containing information is part of the subject of
calibration. If you have an option pricing model, should it output theoretical prices that
are exactly the same as quoted market prices?

The subject of calibration will crop up a lot from now on.

9.6.2 Deterministic volatility surfaces

The most straightforward modeling approach that leads to theoretical prices that match
market prices is to work in the classical Black—Scholes world, with the one exception
that actual volatility is not a constant but a function of stock price and time, o(S, ).
This is the simplest model that is consistent with the market prices of options. Stock-
and time-dependent actual volatility are still entirely consistent with the Black—Scholes
partial differential equation, you just have o(S, ) in the coefficient of the gamma term.
The big difference from the constant-volatility world is just that we cannot generally find
closed-form solutions for option prices anymore.

The way that this idea works is that you have enough freedom in the function o (S, {)
to make the theoretical option values (found numerically, say) consistent with all option
values in the market, or, totally equivalently, consistent with all implied vols. Now normally
you would specify the actual volatility, work out the option prices and so the implied vols.
This is the natural forward problem. Not so with this form of calibration. Here we specify
the implied vols and ask what actual volatilities are consistent with them. This is what is
known to mathematicians as an inverse problem.

Inverse problems are notoriously tricky to solve. One reason is the sensitivity of the
result (actual volatilities) to the input (implied volatilities). If you specify actual volatilities
and work out implied, then this is a smoothing operation; implied volatilities are averages
of actuals. But going the other way does the opposite of smoothing. Make a very small
change to implied volatilities and this can have an enormous effect on o (S, 1).

If our problem were a diffusion equation from a nice physical problem, this might not
matter. Having faith in the diffusion model, finding the parameters (actual volatilities) is a
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matter of ‘regularization.” Unfortunately, we cannot have faith in our model, it is financial
not physical, and so the sensitivity to initial input is something we have to live with.

One reason is that common sense says it cannot be right, the financial world is too
complicated to obey the rather simplistic (S, t) model. A second reason is that it is very,
very easy to test scientifically. Do the following. Find (S, t) using option data one day.
Then come back a week later, when stock prices and option prices have all changed. Now
recalibrate to find o (S, f) again. If the model is right then the first and second calculations
will give exactly the same actual volatilities. Do they? No. Never.®

9.6.3 Stochastic volatility

Without a doubt it is impossible to accurately forecast future actual volatility so it makes
sense to treat that quantity as being random. After all, modeling stock prices as random
was the great breakthrough in pricing derivatives based on stocks, so perhaps modeling
volatility as random is also a great breakthrough since options are really all about future
volatility.

Although stochastic volatility models are commonly used in practice they do suffer
from two major problems. First, what model should we choose? What is the volatility
of volatility? Given that we can’t even measure volatility at any moment particularly
accurately, how on earth can we measure the volatility of that immeasurable volatility?

The second problem concerns hedging. When only the stock price is random we have
only one source of randomness. This randomness can be hedged away from an option by
using a position in the underlying stock. One source of randomness, one traded quantity
for hedging that randomness, end result no randomness at all. Now, when volatility is
stochastic we have two sources of randomness, the stock and volatility. But we still only
have the one traded quantity to hedge with, the stock. We can’t hedge with volatility to
remove volatility risk because that isn’t traded. We can, sort of, get rid of the volatility risk
in one option by hedging with another option, an exchange-traded vanilla. End result is
a hedged portfolio, but now we have one equation for two unknowns, the value of the
original option and the value of the option used for hedging. Oh dear. To get out of that
one requires the introduction of a concept known as the market price of volatility risk.

9.6.4 Uncertain parameters

First deterministic volatility, then random volatility. That just about covers the possibilities,
no? No. There is also ‘uncertain’ volatility. This is subtly, but importantly, different from
random. Random is when you have a probabilistic description, perhaps even a probability
density function, for the random variable. Uncertainty is when you have no such concept.
Models using uncertainty are therefore far more vague than models using randomness.
(And | mean ‘vague’ in a good way.)

6 Phlogiston theory: hypothesis regarding combustion. The theory, advanced by J. J. Becher late in the
17th century, and extended and popularized by G. E. Stahl, postulates that in all flammable materials there is
present phlogiston, a substance without color, odor, taste, or weight that is given off in burning. ‘Phlogisticated’
substances are those that contain phlogiston and, on being burned, are ‘dephlogisticated.” The ash of the
burned material is held to be the true material. Source: The Columbia Electronic Encyclopedia, 6th ed. 2004.
Many financial theories seem very phlogiston-like to me. It is time for some debunking!
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The simplest such model allows volatility to lie within a range. But there is no mention
made of how likely the volatility is to be at any point in that range, it is a genuine model of
uncertainty not of randomness. Given a range of possible values for volatility, we find that
there is a range of possible values for an option. Furthermore, long and short positions
take different values, and the whole business of pricing derivatives becomes non linear.

9.6.5 Static hedging

Hedging is used to reduce or, if possible, to eliminate risk. In options theory and practice
we dynamically delta hedge to eliminate the stock-price risk in an option. Such theory we
have seen several times in this book. But there are other, perhaps more obscure, risks
that we are only just starting to worry about here. One of those risks is caused by volatility.
The plain and simple fact is that we don’t know what volatility is going to be in the future
therefore when we price an option we will be exposed to the input volatility being wrong,
we therefore have volatility risk.

In practice, instead of just dynamically hedging with vanilla options, we also statically
hedge. To see how this works, imagine that we want to price and hedge some exotic
contract. Suppose that the payoff from that exotic contract can somehow be closely
matched by the payoff from a portfolio of vanillas. If it can, then you hedge with those
vanillas leaving only a small residual payoff which needs delta hedging. The original
contract may have been very difficult to delta hedge, and so very exposed to your
volatility input. But after statically hedging with the vanillas the delta-hedging task is
much easier. And, of course, you know exactly what the portfolio is worth (the contracts
are exchange traded) so you know almost exactly what the exotic should be worth. In
practice, you won'’t be able to get a perfect match between the exotic and the vanillas
because if you could then the exotic wasn’t exotic at all.

9.6.6 Stochastic volatility and mean-variance analysis

As mentioned above, one of the drawbacks with stochastic volatility models is that when
you build up the governing equation you assume that you can dynamically hedge with
options. And the equation you end up with contains the market price of volatility risk,
a wonderful concept in theory but rather too unreliable for practice. There are ways of
tidying this all up without these two problems, and that is to accept that not all risk can
be dynamically hedged away, and then to assign a value to that risk.

9.6.7 Asymptotic analysis of volatility

When deciding which stochastic volatility model to choose we often face the dilemma
of whether to pick an easy-to-compute model that might not be so accurate, or a
slower but more scientifically precise model. Practitioners almost always go for fast
and inaccurate. However, by exploiting a little known applied math concept known as
asymptotic analysis’ you can actually get the best of both worlds. Asymptotic analysis

7 Little known in finance, at least. To applied mathematicians asymptotic analysis is a very commonly used
tool in their toolbox. Prior to succumbing to the lure of finance almost every mathematical model | worked on
used asymptotic analysis at some stage, mainly because they would otherwise have been far too complicated
to solve or understand.
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is all about finding approximate solutions to differential equations, models, whatever, by
exploiting the relative largeness or smallness of a parameter in the model. If some terms
in a complicated equation are multiplied by a small number then perhaps those terms
don’t matter so we can ignore them, leaving us with a simpler equation that we may be
able to solve. Of course, it is nowhere near as simple as that, but it gives you the flavor of
the technique.

9.7 THE CHOICES OF VOLATILITY MODELS

Model Math Popularity

Constant vol o = constant, Very, especially for vanillas
Black—-Scholes formulae

Deterministic vol (S, t), Black—Scholes pde Very, for exotics

Stochastic vol do = ..., higher dimensions, Very, for exotics
transforms

Jump diffusion Poisson processes, jumps in Increasing
stock and/or vol.

Uncertain vol 0~ <o <o, non-linear pde Not at all, unfortunately

Stoch vol and mean-variance do = ..., higher dimensions, Not at all, unfortunately
non-linearity

9.8 SUMMARY

Derivatives are all about volatility. You can’t price or hedge derivatives without a decent
model for volatility. And if your volatility model is better than the market’s you could make
money by speculating on volatility. We will see this in the next chapter. One point to
watch out for is how much information we back out from vanilla option prices into our
volatility model. Never forget that volatility is a property of the stock and would still be
present even if there weren’t any derivatives! Indeed, how on earth can markets possibly
have perfect knowledge of the future, and the future volatility of the stock? Of course
they can’t. Option prices may be governed to some extent by what people expect to
happen in the future in some rational sense, but they are also governed by fear and greed
as interpreted by option prices through simple supply and demand. Option prices, and
hence volatility, will rise when people panic and rush to buy those OTM puts, regardless
of whether this panic is rational. And if you do have to pay 10 cents for an option that may
only be worth 7 cents, well so what? It’s still pennies after all. However, translate those
pennies into implied volatility numbers and suddenly it looks like the market is expecting
volatility to rise.

FURTHER READING

e Natenberg (1994), of course.

e Shu Zhang (2003) look at data for SP500 index option volatility and compare with
realized volatility.
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e And for something more (much more) quanty, see Rebonato (2004).
e Javaheri (2005) on volatility arbitrage is a must read.

e A survey of stochastic volatility models, their calibration and how very differently they
price the same contracts is given in Schoutens, et al. (2004).

e All of the models discussed above are described in great detail in PWOQF2.

APPENDIX: HOW TO DERIVE BS
PDE, MINIMUM FUSS

Here is how to derive the Black—Scholes equation,
with the minimum fuss and the minimum (explicit)
assumptions. This derivation also shows the special,
almost arbitrary role, played by volatility.

Working with any Brownian-motion type model for

. A NEAT
DERIVATION"

stock price dynamics will give you a linear diffusion equation for pretty much every-
thing, including option values. If V(S,t) is the option’s value then the general linear
diffusion equation (and homogeneous, since the value of an empty portfolio should be
zero) is

1V L VAR 17

—4+a—5+b—+cV=0

ot %552 TP T
where a, b and c are, for the moment, arbitrary.

A solution of this equation must be cash, i.e. e "7~ Plug this function into the partial

differential equation to find that

c=—r.

Another solution is the stock, S. Plug this function in and you will find
b=rS.

This gives you the risk-neutral pricing equation

v 2V 1%
—+a—+rS— —-rV=0.
at 552 V%8
The only remaining ‘real’ or ‘arbitrary’ parameter left to determine or fudge/calibrate is
a. And we know (from what we’ve done before) that this is related to volatility. So, this
shows us a couple of things:

e Basic considerations pin down the coefficients of most of the terms in the pricing
equation, and are clearly risk neutral as well.

e To determine or model the diffusion coefficient you will need to go to greater lengths.
Or more simply, just use this function as the only one you can arguably calibrate.
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EXERCISES

1. Using real, daily data, for several stocks, plot a time series of volatility using several
models.
(@) Divide the data into yearly intervals and estimate volatility during each year.
(b) Use a fixed-length, moving window.
(c) Use an exponentially weighted estimate.

2. Collect real option data from the Wall Street Journal, the Financial Times or elsewhere,
calculate implied volatilities and plot them against expiration, against strike, and, in a
three-dimensional plot, against strike and expiration.






CHAPTER 10

how to delta hedge

The aim of this Chapter. ..

...Is to show how classical calculus can be used to model situations in which you
believe that there is arbitrage, and want to study risk and return.

In this Chapter...

how to make money if your volatility forecast is more accurate than the market's
different ways of delta hedging

how much profit should you expect to make
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0. INTRODUCTION

In this chapter | am going to boldly assert that there is money to be made from options,
because options may be mispriced by the market. In simple terms, there are arbitrage
opportunities. Shock, horror! | know that the whole of Chicago University has just thrown
down this book in disgust. However, | hope the rest of you will enjoy the contents of this
chapter for it puts into concrete mathematics some ideas that are most important, and
frighteningly under-explained in the literature. This is the subject of how to delta hedge
when your estimate of future actual volatility differs from that of the market as measured
by the implied volatility.

As | hinted above, to some people, saying that actual volatility and implied volatility can
be inconsistent with each other is a heresy, for it implies arbitrage and hence free money.
Well, it’s only as free as the model is accurate, that is, not at all. But even so, if there is
such a difference (and vol arb hedge funds certainly think there is) then we can only get
at that money by hedging, and if we have two estimates of volatility, which one goes into
the famous Black—Scholes delta formula?

We’ll see how you can hedge using a delta based on either actual volatility or on implied
volatility. Neither is wrong, they just have different risk/return profiles.

If you do doubt that implied volatility and actual volatility can be in disagreement then
take a look at Figure 10.1. This is simply a plot of the distributions of the logarithms of the
VIX and of the rolling realized SPX volatility. The VIX is an implied volatility measure based
on the SPX index and so you would expect it and the realized SPX volatility to bear some
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Figure 10.1 Distributions of the logarithms of the VIX and the rolling realized SPX volatility, and
the Normal distributions for comparison.
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resemblance. Not quite, as can be seen in the figure. The implied volatility VIX seems to be
higher than the realized volatility. Both of these volatilities are approximately lognormally
distributed (since their logarithms appear to be Normal), especially the realized volatility.
The VIX distribution is somewhat truncated on the left. The mean of the realized volatility,
about 15%, is significantly less than the mean of the VIX, about 20%, but its standard
deviation is greater.

102 WHAT IF IMPLIED AND
ACTUAL VOLATILITIES
ARE DIFFERENT?

Actual volatility is the amount of ‘noise’ in the stock
price, it is the coefficient of the Wiener process in the LETS MAKE
stock returns model, it is the amount of randomness LOTS OF MONEY
that ‘actually’ transpires. Implied volatility is how the
market is pricing the option currently. Since the market
does not have perfect knowledge about the future these two numbers can and will be
different.

Actual volatility being different from implied volatility is the heart of this chapter. Let’s
look at the simple case of exploiting such a difference by buying or selling options, but
not delta hedging them.

Imagine that we have a forecast for volatility over the remaining life of an option, this
volatility is forecast to be constant, and, crucially, our forecast turns out to be correct.

If you believe that actual volatility is higher than implied you might want to buy a straddle
because there is then a good chance that the stock will move so far before expiry that
you will get a payoff of more than the premium you paid, even after allowing for the time
value of money. This is a very simple strategy, requiring no maintenance. There is one big
problem with this however. It is risky. Sometimes you’ll win, sometimes you’ll lose. Unless
you can do this strategy many, many times you could end up losing a great deal. Even if
you are right about the actual volatility being large the stock might end up at the money,
and you lose out. The relationship between actual volatility and the range over which an
asset moves is a probabilistic one, there are no guarantees that a high volatility results in
large moves.

If you buy an at-the-money straddle close to expiry the profit you expect to make from
this strategy is approximately

2(T —1)

(c —6)S.

The expression uses the close to expiry and ATM approximation we saw in Chapter 8.
The notation is obvious; o is the actual volatility, assumed constant, and ¢ is the implied
volatility. Note that this is an expectation. It is also a real expectation, however the real
drift doesn’t appear in this expression because it is an approximation valid only when
close to expiration.

The standard deviation of the profit (the risk) is approximately

‘I—E oSy T —t.
T
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Observe how this depends on the actual volatility and not on the implied volatility. This
standard deviation is of the same order of magnitude as the expected profit. That is a lot
of risk. We can improve the risk-reward profile by delta hedging as we shall see next. The
main purpose of writing down the above expressions is to show how they are linear in the
two volatilities.

|0.3 IMPLIED VERSUS ACTUAL, DELTA HEDGING BUT
USING WHICH VOLATILITY?

Let’s buy an underpriced option, or portfolio as above, but now, to improve risk and
reward, we will delta hedge to expiry. This is a less risky strategy.

But which delta do you choose? Delta based on actual or implied volatility? This is one
of those questions that people always ask, and one that no one seems to know the full
answer to.

Scenario: Implied volatility for an option is 20%, but we believe that actual volatility is
30%.

Question: How can we make money if our forecast is correct?

Answer: Buy the option and delta hedge. But which delta do we use? We know that

A = N(d1)
where
1 O
NXx) = E 7ooe ds
and

e — INS/E) + (r + 02) (T — 1)
' oT —t ‘

We can allagree on S, E, T — t and r (almost), but not on o, should we use o = 0.2 or 0.3,
implied volatility or actual? In this example,

o = actual volatility, 30%
and
6 = implied volatility, 20%.

Which of these goes into the d{?

104 CASE I: HEDGE WITH ACTUAL VOLATILITY, o

By hedging with actual volatility we are replicating a short position in a correctly priced
option. The payoffs for our long option and our short replicated option will exactly cancel.
The profit we make will be exactly the difference in the Black—Scholes prices of an
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option with 30% volatility and one with 20% volatility. (Assuming that the Black—Scholes
assumptions hold.) If V(S, t; o) is the Black—Scholes formula then the guaranteed profit is

V(S,t;0) — V(S, t; 5).

But how is this guaranteed profit realized? Let’s do the math on a mark-to-market
basis.

In the following, superscript ‘@’ means actual and ‘i’ means implied, these can be
applied to deltas and option values. For example, A? is the delta using the actual volatility
in the formula. V' is the theoretical option value using the implied volatility in the formula.
Note also that V, A, T and @® are all simple, known, Black—Scholes formulae.

The model is as usual

dS = uSdt+oSdX.

Now, set up a portfolio by buying the option for V' and hedge with A2 of the stock. The
values of each of the components of our portfolio are shown in Table 10.1.

Leave this hedged portfolio overnight, and come back to it the next day. The new values
are shown in Table 10.2. (I have included a continuous dividend yield in this.)

Therefore we have made, mark to market,

dV' — A?dS — (V' — A? S)dt — A?DS dit.
Because the option would be correctly valued at V2 then we have
dv® — A?dS —r(V? — A? S)dt — A?DS dt = 0.

So we can write the mark-to-market profit over one time step as

dVi — dV2 4 r(V3 — A% S)dt — r(Vi — A? S)dit

— Vi —dV3 —r(V — VAt =e d (e‘”(V’ - va)) .

Table 10.1 Portfolio composition
and values, today.

Component Value
Option Vi
Stock —A%S
Cash —ViyA?s

Table 10.2 Portfolio composition and values,

tomorrow.

Component Value
Option VigaVi
Stock —A?S - A%dS

Cash (=V/ 4 A% S)(1 4 r dt) — A?DS dit
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That is the profit from time t to t + dt. The present value of this profit at time tj is
o006 o (V7 - v2)) =™ d (e (V! - V4)).
So the total profit from tg to expiration is

T . .
o / d (e*'f(v' - va)) —Vva_y.
1

0

This confirms what | said earlier about the guaranteed total profit by expiration.
We can also write that one time step mark-to-market profit (using It6’s lemma) as

©'dt + A'dS + 02S?I" dt — A?dS — r(V' — A%S)dt — A’DS dit
= 0 dt + uS(A’ — A% dt + Fo2S?Tdt — r(V' — V3 dt + (A" — A%eSdX — A°DS dt
= (A= A%oSdX + (1 + D)S(A' - A%)dt + § (o2 — 52) ST ot
(using Black—-Scholes with o = 5)
=1 (0% = %) S dt + (A" = A%) (u—r + D) S dt +0SAX).

The conclusion is that the final profit is guaranteed (the difference between the theoret-
ical option values with the two volatilities) but how that is achieved is random, because
of the dX term in the above. On a mark-to-market basis you could lose before you gain.
Moreover, the mark-to-market profit depends on the real drift of the stock, w. This is
illustrated in Figure 10.2. The figure shows several realizations of the same delta-hedged
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Figure 10.2 P&L for a delta-hedged option on a mark-to-market basis, hedged using actual
volatility.
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position. Note that the final P&L is not exactly the same in each case because of the effect
of hedging discretely.

When S changes, so will V. But these changes do not cancel each other out. From a
risk management point of view this is not ideal.

There is a simple analogy for this behavior. It is similar to owning a bond. For a
bond there is a guaranteed outcome, but we may lose on a mark-to-market basis in the
meantime.

105 CASE 2: HEDGE WITH IMPLIED VOLATILITY, ¢

Compare and contrast now with the case of hedging using a delta based on implied
volatility. By hedging with implied volatility we are balancing the random fluctuations in
the mark-to-market option value with the fluctuations in the stock price. The evolution of
the portfolio value is then ‘deterministic’ as we shall see.

Buy the option today, hedge using the implied delta, and put any cash in the bank
earning r. The mark-to-market profit from today to tomorrow is

dV' — A'dS — r(V' — A'S)dt — A'DS dt
=0 dt + 102S%1" dt — r(V' — A'S)dt — A'DS dt

1 2 ~2 2 i
=3 (cr o )S I dt. (10.1) THIS (S How
MUAZH Yo
SHOULD MAKE
EACH DAY

This is a far nicer way to make money. Observe
how the daily profit is deterministic, there aren’t
any dX terms. From a risk management perspec-
tive this is much better behaved. There is another,
rather wonderful, advantage of hedging using implied volatility . . . we don’t even need to
know what actual volatility is. And to make a profit all we need to know is that actual is
always going to be greater than implied (if we are buying) or always less (if we are selling).
This takes some of the pressure off forecasting volatility accurately in the first place.

Add up the present value of all of these profits to get a total profit of

-
1 (02 - &2) / e t-10g2 i gt

2
to

This is always positive, but highly path dependent. Being path dependent it will depend on
the drift . If we start off at the money and the drift is very large (positive or negative) we
will find ourselves quickly moving into territory where gamma and hence (10.1) is small, so
that there will be not much profit to be made. The best that could happen would be for the
stock to end up close to the strike at expiration, this would maximize the total profit. This
path dependency is shown in Figure 10.3. The figure shows several realizations of the
same delta-hedged position. Note that the lines are not perfectly smooth, again because
of the effect of hedging discretely.

The simple analogy is now just putting money in the bank. The P&L is always increasing
in value but the end result is random.
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Mark-to-market P&L
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Figure 10.3 P&L for a delta-hedged option on a mark-to-market basis, hedged using implied
volatility.

Peter Carr (2005) and Henrard (2001) show that if you hedge using a delta based on a
volatility o, then the PV of the total profit is given by

.
V(S,t;on) — V(S, ;6) + % (a2 — oﬁ) / e t-t 52N gt (10.2)

to

where the superscript on the gamma means that it uses the Black—Scholes formula with
a volatility of op.

10.5.1 The expected profit after hedging using implied volatility

When you hedge using delta based on implied volatility the profit each ‘day’ is deterministic
but the present value of total profit by expiration is path dependent, and given by

;
30 —52) / e Ms-S217 gs.
to

The details of the analysis of this expression are found in PWOQF2. Anyway, after
some manipulations we end up with the expected profit initially being the single
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integral (O, Y
N =
EeT-t)(g2 _ 52) (T 1 4y ’:\4 Q
221 to /o2(s — to) + 62(T —9) Q’“%ﬂ/z
 (log(S/E) + (1 — 302) (s — to) + (r — D — 16°) (T - s)° e 2
P 2(0%(s — to) + (T — 3)) |
Results are shown in Figures 10.4-10.6. ﬂ"

In Figure 10.4 is shown the expected profit versus the growth rate .
Parameters are S = 100, 0 = 0‘.4’ r =0.05, D =0,E = 110, T=16=02. 5.4 complicated,
Observe that the expected profit has a maximum. This will be at the growth ) + im0l ted

. plemente

rate that ensures, roughly speaking, that the stock ends up close to at the p, the CD
money at expiration, where gamma is largest. In the figure is also shown
the profit to be made when hedging with actual volatility. For most realistic parameters
regimes the maximum expected profit hedging with implied is similar to the guaranteed
profit hedging with actual.

In Figure 10.5 is shown expected profit versus E and . You can see how the higher
the growth rate the larger the strike price at the maximum. The contour map is shown in
Figure 10.6.

10.5.2 The variance of profit after hedging using implied volatility

Once we have calculated the expected profit from hedging using implied volatility we can
calculate the variance in the final profit. Again, all details may be found in PWOQF2.

Expected profit

14

o
r T T O T T 1

-1.5 -1 -0.5 0 0.5 1 1.5
Growth

Figure 10.4 Expected profit, hedging using implied volatility, versus growth rate u; S = 100,
0=04,r=005 D=0, E=110,T =1, 6 = 0.2. The dashed line is the profit to be made when
hedging with actual volatility.
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Figure 10.5 Expected profit, hedging using implied volatility, versus growth rate . and strike E;
S§$=100,0 =0.4,r=0.05D=0,T=1,6 =0.2.
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Figure 10.6 Contour map of expected profit, hedging using implied volatility, versus growth rate
w and strike E; S =100, 0 =0.4,r=0.05D0=0,T=1,6 =0.2.

The initial variance is G(So, to) — F(So, to)?, where

E2(s2 _ 522e-2T—to) T /T
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droo 0
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where Q 10, AN

_ Q)2 2 N )

p(u,s; So, to) = —%(X Tza(T ) =5 (X+a(T~2u)) ‘& 2 N
62(T — ) o%(u—38)+%(T —u) v Eﬂ/‘
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o2s—tg) (2T —s) | o2u—s)+52T —0) ﬁ
and
IN(So/E) + ( - 502) (T—to), and a=pu—yo? —r+D+ 152  Evenmore

complicated, but
In Figure 10.7 is shown the standard deviation of profit versus growth rate, still implemented
S=100, 0 =0.4, r=005, D=0, E=110, T=1, 6 = 0.2. Figure 10.8 ©ontheCD
shows the standard deviation of profit versus strike, S =100, o = 0.4,
r=005D=0,u=01,T=1,6 =0.2.
Note that in these plots the expectations and standard deviations have not been scaled
with the cost of the options.

106 HEDGING WITH DIFFERENT VOLATILITIES

We will briefly examine hedging using volatilities other than actual or implied, using the
general expression for profit given by (10.2).
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Figure 10.7 Standard deviation of profit, hedging using implied volatility, versus growth rate ;
S$=100,0 =04,r=0.05,D=0,E=110, T =1, 6 = 0.2. (The expected profit is also shown.)
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Figure 10.8 Standard deviation of profit, hedging using implied volatility, versus strike E; S = 100,
0=04,r=005D=0,u=0,T=1,6 =0.2. (The expected profit is also shown.)

The expressions for the expected profit and standard deviations now must allow for
the V(S, t; o) — V(S, t; 6), since the integral of gamma term can be treated as before if one
replaces ¢ with oy, in this term. Results are presented in the next sections.

10.6.1 Actual volatility = Implied volatility

For the first example let’s look at hedging a long position in a correctly priced option, so
that o = &. We will hedge using different volatilities, o". Results are shown in Figure 10.9.
The figure shows the expected profit and standard deviation of profit when hedging with
various volatilities. The chart also shows minimum and maximum profit. Parameters are
E=100,S=100,u=0,0=02,r=01,D=0,T=1,andG =0.2.

With these parameters the expected profit is small as a fraction of the market price of
the option ($13.3) regardless of the hedging volatility. The standard deviation of profit is
zero when the option is hedged at the actual volatility. The upside, the maximum profit
is much greater than the downside. Crucially all of the curves have zero value at the
actual/implied volatility.

10.6.2 Actual volatility > Implied volatility

In Figure 10.10 is shown the expected profit and standard deviation of profit when hedging
with various volatilities when actual volatility is greater than implied. The chart again also
shows minimum and maximum profit. Parameters are E = 100, S = 100, u = 0, 0 = 0.4,
r=01,D=0,T =1, and 6 = 0.2. Note that it is possible to lose money if you hedge at
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Figure 10.9 Expected profit, standard deviation of profit, minimum and maximum, hedging with
various volatilities. E =100,S =100, « =0,0 =02,r=01,D=0,T =1, =0.2.
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Figure 10.10 Expected profit, standard deviation of profit, minimum and maximum, hedging with
various volatilities. E=100,S =100, « =0,0 =04,r=01,D=0,T =1, =0.2.
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Figure 10.11 Expected profit, standard deviation of profit, minimum and maximum, hedging with
various volatilities. E =100, S =100, « =0,0 =02,r=01,D=0,T=1,6 =0.4.

below implied, but hedging with a higher volatility you will not be able to lose until hedging
with a volatility of approximately 75%. The expected profit is again insensitive to hedging
volatility.

10.6.3 Actual volatility < Implied volatility

In Figure 10.11 is shown properties of the profit when hedging with various volatilities
when actual volatility is less than implied. We are now selling the option and delta hedging
it. Parameters are E =100, S =100, u =0,0 =04,r=01,D=0,T =1,and 6 = 0.2.
Now it is possible to lose money if you hedge at above implied, but hedging with a lower
volatility you will not be able to lose until hedging with a volatility of approximately 10%.
The expected profit is again insensitive to hedging volatility. The downside is now more
dramatic than the upside.

0.7 PROS AND CONS OF HEDGING WITH EACH VOLATILITY

Given that we seem to have a choice in how to delta hedge it is instructive to summarize
the advantages and disadvantages of the possibilities.

10.7.1 Hedging with actual volatility

Pros: The main advantage of hedging with actual volatility is that you know exactly what
profit you will get at expiration. So in a classical risk/reward sense this seems to be the
best choice, given that the expected profit can often be insensitive to which volatility you
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choose to hedge with whereas the standard deviation is always going to be positive away
from hedging with actual volatility.

Cons: The P&L fluctuations during the life of the option can be daunting, and so less
appealing from a ‘local’ as opposed to ‘global’ risk management perspective. Also, you
are unlikely to be totally confident in your volatility forecast, the number you are putting
into your delta formula. However, you can interpret the previous two figures in terms of
what happens if you intend to hedge with actual but don’t quite get it right. You can see
from those that you do have quite a lot of leeway before you risk losing money.

10.7.2 Hedging with implied volatility

Pros: There are three main advantages to hedging with implied volatility. The first is that
there are no local fluctuations in P&L, you are continually making a profit. The second
advantage is that you only need to be on the right side of the trade to profit. Buy when
actual is going to be higher than implied and sell if lower. Finally, the number that goes
into the delta is implied volatility, and therefore easy to observe.

Cons: You don’t know how much money you will make, only that it is positive.

10.7.3 Hedging with another volatility

You can obviously balance the pros and cons of hedging with actual and implied by
hedging with another volatility altogether. See Dupire (2005) for work in this area.

In practice which volatility one uses is often determined by whether one is constrained
to mark to market or mark to model. If one is able to mark to model then one is not
necessarily concerned with the day-to-day fluctuations in the mark-to-market profit and
loss and so it is natural to hedge using actual volatility. This is usually not far from optimal
in the sense of possible expected total profit, and it has no standard deviation of final
profit. However, it is common to have to report profit and loss based on market values.
This constraint may be imposed by a risk management department, by prime brokers, or
by investors who may monitor the mark-to-market profit on a regular basis. In this case
it is more usual to hedge based on implied volatility to avoid the daily fluctuations in the
profit and loss.

For the remainder of this chapter we will only consider the case of hedging using a
delta based on implied volatility.

108 PORTFOLIOS WHEN HEDGING WITH IMPLIED
VOLATILITY

A natural extension to the above analysis is to look at portfolios of options, options with
different strikes and expirations. Since only an option’s gamma matters when we are
hedging using implied volatility, calls and puts are effectively the same since they have
the same gamma.
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The profit from a portfolio is now

Tk )
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where k is the index for an option, and gy is the quantity of that option.

10.8.1 Expectation

The solution for the present value of the expected profit (t = ty, S = Sp, I = 0) is simply
the sum of individual profits for each option
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10.8.2 Variance

The variance is more complicated, obviously, because of the correlation between all of
the options in the portfolio. Nevertheless, we can find an expression for the initial variance
as G(So, to) — F(So, to)? where
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and

— 1.2 = 1~2
m=p—50% f[=r—D—50

= _ 1~2
] and rx=r—D— 30%.

10.8.3 Portfolio optimization possibilities

There is clearly plenty of scope for using the above formulae in portfolio optimization
problems. Here | give one example.

The stock is currently at 100. The growth rate is zero, actual volatility is 20%, zero
dividend yield and the interest rate is 5%. Table 10.3 shows the available options,
and associated parameters. Observe the negative skew. The out-of-the-money puts are
overvalued and the out-of-the-money calls are undervalued. (The ‘Profit total expected’
row assumes that we buy a single one of that option.)

Using the above formulae we can find the portfolio that maximizes or minimizes target
quantities (expected profit, standard deviation, ratio of profit to standard deviation). Let
us consider the simple case of maximizing the expected return, while constraining the
standard deviation to be one. This is a very natural strategy when trying to make a
profit from volatility arbitrage while meeting constraints imposed by regulators, brokers,
investors, etc. The result is given in Table 10.4.

The payoff function (with its initial delta hedge) is shown in Figure 10.12. This optimiza-
tion has effectively found an ideal risk reversal trade. This portfolio would cost —$0.46 to
set up, i.e. it would bring in premium. The expected profit is $6.83.

109 HOW DOES IMPLIED VOLATILITY BEHAVE?

Now is the natural time to talk a little bit about how implied volatility behaves in practice.
As the stock price goes up and down randomly we often see that the implied volatility
of each option will also vary. This may or may not be consistent with certain models, and

Table 10.3 Available options.

A B C D E

Type Put Put Call Call Call
Strike 80 90 100 110 120
Expiration 1 1 1 1 1
Volatility, implied 0.250 0.225 0.200 0.175 0.150
Option price, market 1.511 3.012 10.451 5.054 1.660
Option value, theory 0.687 2.310 10.451 6.040 3.247
Profit total expected —0.933 —-0.752 0.000 0.936 1.410

Table 10.4 An optimal portfolio.

A B C D E
Type Put Put Call Call Call
Strike 80 90 100 110 120

Quantity -2.10 —2.25 0 1.46 1.28
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Figure 10.12 Payoff with initial delta hedge for optimal portfolio; S = 100, © = 0,0 = 0.2,r = 0.05,
D =0, T =1. See text for additional parameters and information.

may or may not be consistent with no arbitrage. But more importantly, what does it mean
for making money if we think that the market is wrong? Below are a couple of ‘models’
for how implied volatility might change as the market moves.

10.9.1 Sticky strike

In this model implied volatility remains constant for each option (i.e. each strike and
expiration). Effectively each option inhabits its own little Black—Scholes world of constant
volatility. This behavior seems to be most common in the equity markets. As far as making
a profit if the implied volatility is different from actual volatility then the first half of this
chapter is clearly very relevant.

10.9.2 Sticky delta

Since the delta of an option is a function of its moneyness, S/E, the sticky delta behavior
could also be called the sticky moneyness rule. This behavior is commonly seen in
the FX markets, possibly because there it is usual to quote option prices/volatilities for
options with specific deltas rather than specific strike. (There is, of course, a one-to-one
correspondence for vanillas.)

In this model we have

& = g(S/E, 1.
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Therefore

. (a9 Sag 4 ,S%d%g S ag
da_<E+ME¥+20 £ 952 dt + o —=—— dXj,

where & = S/E. The most important point about this expression is that it is perfectly
correlated with dS, p =1, so that perfect hedging (in the mark-to-market sense) is
possible.

A variation on this theme is to have implied volatility at different strikes being proportional
to the ATM volatility and a function of the moneyness, such as

o =UATMQ<%> .

See Natenberg (1994) for details of this. Of course, this then requires a model for the
behavior of the ATM volatility.

10.9.3 Time-periodic behavior

Just to make matters even more interesting, there appears to be a day-of-the-week effect
in implied volatility. The next few figures show how the VIX volatility index (a measure of
the implied volatility of the ATM SPX adjusted to always have an expiration of 30 days)

0.5 -
Average of VIX changes

0.4
0.3 A
0.2

0.1 4

Monday Tuesda: \/\J[dnesd‘ay l hursdal/ Friday
-0.1 4

-0.2 1

-0.3 -

Figure 10.13 Average change in level of VIX versus day of week.
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Figure 10.14 Standard deviation of change in level of VIX versus day of week.
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Figure 10.15 Average change in level of VIX versus days before next expiration.
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Figure 10.16 Standard deviation of change in level of VIX versus days before next expiration.

changes with day of the week and number of days to next expiration. Both average
changes and standard deviation are shown.’

10.10 SUMMARY

In this chapter we have seen some hints at how we can start to move away from the
Black-Scholes world, and perhaps even profit from options.

FURTHER READING

e See Derman (1999) for a description of sticky strike and delta, and other volatility
regimes.

e Natenberg’s book (Natenberg, 1994) is still the classic reference for volatility trading.

e See Carr’s (Carr, 2005) excellent FAQs paper for further insight into which volatility to
use for hedging. Also Henrard (2001), who examined the role of the real drift rate.

e Ahmad & Wilmott (2005) delve even deeper into the subject of hedging with different
volatilities.

T Of course, some of this is no doubt related to the role of weekends in the calculation of volatility. There is a
lot of ‘potential’ for volatility over weekends in the sense that there is plenty of news that comes out that will
impact on market prices when markets open on the Monday.
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EXERCISES

1.

Take the How to Hedge spreadsheet on the CD and rewrite using VB, C++, or other
code. Now modify the code to do the following.

(@) Allow for arbitrary fixed period between rehedges. Observe how the hedging
error varies with this period.

(b) Incorporate bid-offer spread on each transaction in the underlying.

(c) As above but now for the delta hedging of an entire portfolio of vanilla options of
varying type, strikes and expiration.

Write the code so that you can perform many thousands of simulations, and output
statistical properties of the hedging error.



CHAPTER |11
an introduction to

exotic and
path-dependent options

The aim of this Chapter. ..

...is to give an overview of many of the exciting derivatives above and beyond the
basic vanillas. By the end of the chapter you should be able to compare and contrast
different sorts of derivative contracts.

In this Chapter...

how to classify options according to important features

how to think about derivatives in a way that makes it easy to compare and
contrast different contracts

the names and contract details for many basic types of exotic options
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1. INTRODUCTION

The contracts we have seen so far are the most basic, and most important, derivative
contracts but they only hint at the features that can be found in the more interesting
products. Some of these contracts will be explored in following chapters, the more
complex ones are covered in PWOQF2.

Exotic options are interesting for several reasons. They are harder to price, sometimes
being very model dependent. The risks inherent in the contracts are usually more obscure
and can lead to unexpected losses. Careful hedging becomes important, whether delta
hedging or some form of static hedging to minimize cashflows. Actually, how to hedge
exotics is all that really matters. A trader may have a good idea of a reasonable price for
an instrument, either from experience or by looking at the prices of similar instruments.
But he may not be so sure about the risks in the contract or how to hedge them away
successfully.

It is an impossible task to classify all options. The best that we can reasonably achieve
is a rough characterization of the most popular of the features to be found in derivative
products. | list some of these features in this chapter and give several examples. In the
following few chapters | go into more detail in the description of the options and their
pricing and hedging. The features that | describe now are time dependence, cashflows,
weak path dependence and strong path dependence, dimensionality, the ‘order’ of an
option, and finally options with embedded decisions.

One approach that | will not really be taking is to try to decompose an exotic into
a portfolio of vanillas. If such a decomposition is exact then the contract was not
exotic in the first place. (Riddle: When can you decompose an exotic into a portfolio of
vanillas? Answer: When it isn’t exotic.) You may get an idea for an approximate price
and how to possibly statically hedge an exotic by such a means but ultimately you will
probably have to face a full and proper mathematical analysis of the exotic features in a
contract.

1.2 OPTION CLASSIFICATION

In order to figure out how to price and hedge exotic options | have found it incredibly
helpful to classify them according to six criteria or features. | can’t overemphasize
how useful this has been to me. These six features are unashamedly mathematical in
nature, having nothing whatsoever to do with what the name of the option is or what
is the underlying. Being mathematical in nature they very quickly give you the following
information.

e What kind of pricing method should best be used.
e Whether you can reuse some old code.

e How long it will take you to code it up.

e How fast it will eventually run.
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Figure 11.1 Option classification chart.

The six features to look out for are

—

Time dependence
Cashflows

Path dependence
Dimensionality
Order

Embedded decisions

o o M 0D

Some of these classes can be broken down further, as shown in Figure 11.1.
Let’s now look at these features one by one, in
increasing order of interest.

1.3 TIME DEPENDENCE

Time dependence in the present context means that
certain specifications within a term sheet vary with
time. For example, early exercise might only be per-
mitted on certain dates or during certain periods.

How Dol THE
CotlTRACTS SPEC

DEPEND ON TIMEP
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This intermittent early exercise is a characteristic of Bermudan options. Such contracts
are referred to as time-inhomogeneous.

Time dependence is first on our list of features, since it is not all that earth shattering.
Probably the only reason for the importance of time dependence at all is that it requires
us to be a little bit careful with any numerical method we employ. Inevitably when solving
for an option price via numerical methods we end up needing to do some discretization
of time. If the contract has time dependence then we may have restrictions imposed on
our discretization.

e Time dependence in an option contract means that our numerical discretization may
have to be lined up to coincide with times at, or periods during, which something
happens.

e This means that our code will have to keep track of time, dates, etc. This is not difficult,
just annoying.
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Tome Ot

In terms of the binomial model?

If we have time-dependent interest rate or volatility then

this just changes the structure of the tree and the
discounting. Time dependence in the term sheet means that some nodes might
have to be treated differently from others.

J

14 CASHFLOWS

Imagine a contract that pays the holder an amount g at
time tp. The contract could be a bond and the payment
LEAbe SREIERGE a coupon. If we use V(t) to denote the cont_ract value
JAMP € oD ON (ignoring any dependence on any underlying asset)
WHEN MONEY cHaNGES]  and t; and tar to denote just before and just after the
RANDS cashflow date then simple arbitrage considerations
lead to

Vity) = V() +q.

No ARRITRAGE

This is a jump condition. The value of the contract jumps by the amount of the cashflow.
If this were not the case then there would be an arbitrage opportunity. The behavior of
the contract value across the payment date is shown in Figure 11.2.

If the contract is contingent on an underlying variable so that we have V(S, ) then we
can accommodate cashflows that depend on the level of the asset, S, i.e. we could have
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Figure 11.2 A discrete cashflow and its affect on a contract value.

q(S). Furthermore, this also allows us to lump all our options on the same underlying into
one large portfolio. Then, across the expiry of each option, there will be a jump in the
value of our whole portfolio of the amount of the payoff for that option.

There is one small technical requirement here, the cashflow must be a deterministic
function of time and the underlying asset. For example, the contract holder could receive
a payment of S?, for some asset with price S. However, the above argument would not be
valid if, for example, the cashflow depended on the toss of a coin; one dollar is received
if heads is thrown and nothing otherwise. The jump condition does not necessarily apply,
because the cashflow is not deterministic.

If the cashflow is not deterministic the modeling is not so straightforward. There is no
‘no-arbitrage’ argument to appeal to, and the result could easily depend on an individual’s
risk preferences. Nevertheless, we could say, for example, that the jump condition would
be that the change in value of the contract would be the expected value of the cashflow:

V(ty) = V(t}) + Elql.

Such a condition would not, however, allow for the risk inherent in the uncertain cashflow.

That was an example of a discrete cashflow. You may also see continuous cashflows
in option contracts. The term sheet may specify something, for example, along the lines of
‘the holder receives $1 every day that the stock price is below $80.” That would effectively
be a continuous cashflow. When the cashflow is paid continuously then we no longer
have jump conditions, instead we modify the basic Black—Scholes equation to add a
source term. We’ll see examples later.

e When a contract has a discretely paid cashflow you should expect to have to apply
jump conditions. This also means that the contract has time dependence, see above.
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e Continuously paid cashflows mean a modification, although rather simple, to the
governing equation.

Tome Ot

In terms of the binomial model?

When you work back down the tree you must add in the
relevant cashflow to the option value on those nodes
where the payment is received.

J

1.5 PATH DEPENDENCE

Many options have payoffs that depend on the path taken by the underlying asset, and
not just the asset’s value at expiration. These options are called path dependent. Path
dependency comes in two varieties, strong and weak.

\\&\ 11.5.1 Strong path dependence
|\$ Of particular interest, mathematical and practical, are
C the strongly path-dependent contracts. These have
ep égfgz’g E”/\:‘;“,‘; ¢| Payoffs that depend on some property of the asset
THAT WE HONE T6 price path in addition to the value of the underlying
KEEP TRACK OF at the present moment in time; in the equity option
ANOTHER VARIARLE | |anguage, we cannot write the value as V/(S,1). The
contract value is a function of at least one more
independent variable. This is best illustrated by an example.

The Asian option has a payoff that depends on the average value of the underlying asset
from inception to expiry. We must keep track of more information about the asset price
path than simply its present position. The extra information that we need is contained in the
‘running average.’ This is the average of the asset price from inception until the present,
when we are valuing the option. No other information is needed. This running average is
then used as a new independent variable, the option value is a function of this as well as the
usual underlying and time, and a derivative of the option value with respect to the running
average appears in the governing equation. There are many such contracts in existence.

Strong path dependency comes in two forms, discretely sampled and continuously
sampled, depending on whether a discrete subset of asset prices is used or a continuous
distribution of them.

e Strong path dependency means that we have to work in higher dimensions. A
consequence of this is that our code may take longer to run.
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-
Tome Ot

In terms of the binomial model?

This is rather outside the scope of this book. But what
you’ll have to do is introduce a multi-dimensional tree.
There will be branches orthogonal to the S branches to keep track of the
path-dependent quantity.

g

11.5.2 Weak path dependence

A simple example of a contract with weak path depen-
dence is the barrier. Barrier (or knock-in, or knock-out)
options are triggered by the action of the underlying
hitting a prescribed value at some time before expiry.
For example, as long as the asset remains below 150,
the contract will have a call payoff at expiry. However,
should the asset reach this level before expiry then
the option becomes worthless; the option has ‘knocked out.” This contract is clearly path
dependent. Consider the two paths in Figure 11.3; one has a payoff at expiry because
the barrier was not triggered, the other is worthless, yet both have the same value of the
underlying at expiry.

WEAK PATH
DEPENDENCE MEANS
THAT THE OPTION
DEPERNDS ONLY oN
ASSET AND TIME

-
Tome Ot

In terms of the binomial model?

This is usually quite straightforward to implement. But not
necessarily very accurate though. For example, with a
knock-out barrier option the simplest way to price this is to set all option values
to zero beyond the barrier.

\-

We shall see in Chapter 13 that such a contract is only weakly path dependent: we
still solve a partial differential equation in the two variables, the underlying and time.
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Figure 11.3 Two paths, having the same value at expiry, but with completely different payoffs.

And that is the difference, mathematically speaking, between strong and weak path
dependency. A weakly path-dependent contract does not require us to introduce an extra
variable to handle the path dependency. Again, we can imagine discrete and continuous
versions.

e Weak path dependency means that we don’t have to work in higher dimensions, so
our code should be pretty fast.

\\&\ 1.6 DIMENSIONALITY

Dimensionality refers to the number of underlying
independent variables. The vanilla option has two
DlM";”;";’ii’z OIFS independent variables, S and t, and is thus two
IMPORTANT . THE dimensional. The weakly path-dependent contracts
MORE THERE ARE,THE| have the same number of dimensions as their non-
HARDER To SoLVE | nath-dependent cousins, i.e. a barrier call option has
the same two dimensions as a vanilla call. The roles
of the asset dimension and the time dimension are quite different from each other, as
discussed in Chapter 7 on the diffusion equation. This is because the governing equation,
the Black—Scholes equation, contains a second asset-price derivative but only a first time
derivative.

\
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We can have two types of three-dimensional problem. The first type of problem that is
three dimensional is the strongly path-dependent contract. Typically, the new independent
variable is a measure of the path-dependent quantity on which the option is contingent.
The new variable may be the average of the asset price to date, say. In this case,
derivatives of the option value with respect to this new variable are only of the first order.
Thus the new variable acts more like another time-like variable. This topic is covered in
detail in PWOQF2.

The second type of three-dimensional problem occurs when we have a second source
of randomness, such as a second underlying asset. We might, for example, have an
option on the maximum of two equities. Both of these underlyings are stochastic, each
with a volatility, and there will be a correlation between them. In the governing equation
we will see a second derivative of the option value with respect to each asset. We say
that there is diffusion in both S1 and S».

e Higher dimensions means longer computing time.

e The number of dimensions we have also tells us what kind of numerical method to
use. High dimensions mean that we probably want to use Monte Carlo, low means
finite difference.

-
Tome Ot

In terms of the binomial model?

As with path dependency you will have to have a
higher-dimensional tree structure to model the new

\ dependent variables. J

1.7 THE ORDER OF AN OPTION

The next classification that we make is the order of
an option. Not only is this a classification but the idea
also introduces fundamental modeling issues.

The basic vanilla options are of first order. Their
payoffs depend only on the underlying asset, the
quantity that we are directly modeling. Other, path-

AFFECT THE

ORDER WILL.

SENSITIVITY OF
THE THEORETI<AL
PRICE To THE MODEL-

dependent, contracts can still be of first order if the
payoff depends only on properties of the asset price path. ‘Higher order’ refers to options
whose payoff, and hence value, is contingent on the value of another option. The obvious
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second-order options are compound options, for example a call option giving the holder
the right to buy a put option. The compound option expires at some date T1 and the option
on which it is contingent, expires at a later time T». Technically speaking, such an option
is weakly path dependent. The theoretical pricing of such a contract is straightforward as
we shall see.

From a practical point of view, the compound option raises some important modeling
issues: the payoff for the compound option depends on the market value of the underlying
option, and not on the theoretical price. If you hold a compound option and want to
exercise the first option then you must take possession of the underlying option. If that
option is worth less than you think it should (because your model says so) then there is
not much you can do about it. High-order option values are very sensitive to the basic
pricing model and should be handled with care.

e When an option is second or higher order we have to solve for the first-order option,
first. We thus have a layer cake, we must work on the lower levels and the results of
those feed into the higher levels.

e This means that computationally we have to solve more than one problem to price our
option.
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In terms of the binomial model?

You will need one tree structure to model the ‘underlying
option’ and this will feed into the tree for the higher-order
option.

J

1.8 EMBEDDED DECISIONS

We have seen early exercise in the American option problem. Early exercise is a common
feature of other contracts, perhaps going by other names. For example, the conversion of
convertible bonds is mathematically identical to the early exercise of an American option.
The key point about early exercise is that the holder of this valuable right should ideally
act optimally, i.e. they must decide when to exercise or convert. In the partial differential
equation framework that has been set up, this optimality is achieved by solving a free
boundary problem, with a constraint on the option value, together with a smoothness
condition. It is this smoothness condition, that the derivative of the option value with
respect to the underlying is continuous, that ensures optimality, i.e. maximization of the
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option value with respect to the exercise or conversion strategy. It is perfectly possible
for there to be more than one early-exercise region."

Holding an American option you are faced with the decision whether and when to
exercise your rights. The American option is the most common contract that contains
within it a decision feature. Other contracts require more subtle and interesting decisions
to be made.

When a contract has embedded decisions you need
an algorithm for deciding how that decision will be
made. That algorithm amounts to assuming that the
holder of the contract acts to make the option value
as high as possible for the delta-hedging writer. The
pricing algorithm then amounts to searching across
all possible holder decision strategies for the one that
maximizes the option value. That sounds hard, but

DOES THE HOLDER
OR WRITER HAVE
T MAKE DECHSIONS
DURIN G THE LIFE
OF THE CONTRALT P

approached correctly is actually remarkably straight-
forward, especially if you use the finite-difference method. The justification for seeking
the strategy that maximizes the value is that the writer cannot afford to sell the option for
anything less, otherwise he would be exposed to ‘decision risk.’

When the option writer or issuer is the one with the decision to make then the value is
based on seeking the strategy that minimizes the value.

e Decision features mean that we’d really like to price via finite differences.

e The code will contain a line in which we seek the best price, so watch out for > or <
signs.

-
Tome Ot

In terms of the binomial model?

You've seen this already in Chapter 3. Just make sure that
the option value stays above the payoff at all times that
exercise is allowed.

For other contracts, whether this is easy or not depends on the nature of the
contract. But as with the American option, decision making requires a process
for ensuring optimality. Mathematically this usually boils down to a > sign

\ somewhere.

" One rarely mentioned aspect of American options, and, generally speaking, contracts with early exercise-
type characteristics, is that they are path dependent. Whether the owner of the option still holds the option at
expiry depends on whether or not he has exercised the option, and thus on the path taken by the underlying.
For American-type options this path dependence is weak, in the sense that the partial differential equation to be
solved has no more independent variables than a similar, but European, contract.
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1.9 CLASSIFICATION TABLES

| find tables like the following very useful for the
classification of special contracts.

I USE THESE
CLASSIFICATION
TARLES TOHELP ME
TueN TERMSHEETS INTO

MATH

Classiﬁcation

Opkiss \jgne,,
° Jd-.ni(s ch W fne?

€5 Mone T
durey (f, , ,

Path dependence

t’ halder and for wora,
£ b wmake elisig.s?,

[1.10 EXAMPLES OF EXOTIC OPTIONS

There now follow some basic examples, just to get you into the swing of things.

11.10.1 Compounds and choosers

Compound and chooser options are simply options on options. The compound option
gives the holder the right to buy (call) or sell (put) another option. Thus we can imagine
owning a call on a put, for example. This gives us the right to buy a put option for a
specified amount on a specified date. If we exercise the option then we will own a put
option which gives us the right to sell the underlying. This compound option is second
order because the compound option gives us rights over another derivative. Although
the Black—Scholes model can theoretically cope with second-order contracts it is not so
clear that the model is completely satisfactory in practice; when we exercise the contract
we get an option at the market price, not at our theoretical price.

In the Black—Scholes framework the compound option is priced as follows. There are
two steps: first price the underlying option and then price the compound option. Suppose
that the underlying option has a payoff of F(S) at time T, and that the compound option
can be exercised at time Tg, < T to get G(V(S, Tco)) Where V(S, 1) is the value of the
underlying option. Step one is to price the underlying option, i.e. to find V(S,). This
satisfies

2\/ V4

v
ot
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Solve this problem so that you have found V(S, T¢,). This is the (theoretical) value of the
underlying option at time T¢,, which is the time at which you can exercise your compound
option. Now comes the second step, to value the compound option. The value of this is
Co(S, t) which satisfies

a Co
ot

92 Co 3 Co .
2 -so +rS—g —rCo=0 with Co(S,Tco) = GV(S, Tco).

As an example, if we have a call on a call with exercise prices E for the underlying and
Ec, for the compound option, then we have

+ %028

F(S) = max(S — E,0) and G(V)= max(V — Eco, 0).

In Figure 11.4 is shown the value of a vanilla call option at the time of expiry of a put
option on this call. This is obviously some time before the expiry of the underlying call. In
the same figure is the payoff for the put on this option. This is the final condition for the
Black—Scholes partial differential equation.

It is possible to find analytical formulae for the price of basic compound options in
the Black—-Scholes framework when volatility is constant. These formulae involve the
cumulative distribution function for a bivariate Normal variable. However, because of
the second-order nature of compound options and thus their sensitivity to the precise
nature of the asset price random walk, these formulae are dangerous to use in practice.
Practitioners use either a stochastic volatility model or an implied volatility surface.

50 T
45 +
40 +

3T — Vanilla call

30 | — Put on call
> 25 +
20 +
15 +

10

Figure 11.4 The value of a vanilla call option some time before expiry and the payoff for a put on
this option.
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Chooser options are similar to compounds in that they give the holder the right to buy
a further option. With the chooser option the holder can choose whether to receive a call
or a put, for example. Generally, we can write the value of the chooser option as Ch(S, )
and the value of the underlying options as V4(S, f) and V»(S, t) (or more). Now

9 Ch 92 Ch 9 Ch
ar T20S g t1S5g —rch=0,
V. 92V V.
—a; + ;0232—38; +I’S—as1 —rVy =0
and
Vo 4 5 282V2 oVo
2415282 =4S 1V, =0.
ot + 50 752 + 35 rvo

Final conditions are the usual payoffs for the underlying options at their expiry dates and
Ch(S, Tcn) = max(V4(S, Ten) — E1, Va(S, Ten) — E2, 0),

with the obvious notation.
The practical problems with pricing choosers are the same as for compounds.

Classiﬁcation

Time dependence «
Path dependence .

In Figure 11.5 is shown the values of a vanilla call and a vanilla put some time before
expiry. In the same figure is the payoff for a call on the best of these two options (less
an exercise price). This is the final condition for the Black—Scholes partial differential
equation.

Figures 11.6 and 11.7 show the Bloomberg screens for valuing chooser options.



an introduction to exotic and path-dependent options Chapter 11

261

100

90 -
—— Vanilla call
-= Vanilla put
— Chooser

80 -

20 +

10 +

D
<+

-20 30 80

Figure 11.5 The value of a vanilla call option and a vanilla put option some time before expiry and

the payoff for the best of these two.
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<HELP> for explanation.
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Hit MEMU for exotic option tupes

o919

Hit PAGE for scenario graph
Call Strike: IR  (USD)Rat:: EMAX/ESeniannual
Put Strike: 11150. 00|
Trade Date: Choice Date:
Settlement Dates Fxercise Type of chosen option: [§ European
Daus to Exp, of Call: BER Daus to Exp. af Putt
Expir, Date of Call: [WEBIYEE Expir. Date of Put: 12/16/99
Sertle Date of Call: IFEYEE] Settle Date of Put: 10/29/99)
Exercice Delay of Chosen Option:
Option Valuation and Risk Parameters Dividends

Value Percent  Time Value: 571.19519
Price: BEWVE 7-Day Decay: 29.86389
Volatility: EREEE Premium: 5.12283
Delta: 0.08757 Parity: 0.00000
Gamma : 0.00112 Gearings: 19,52047
Vega: 38.44012
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1741-53-0 11-Sep-93 14:23:34

Figure 11.6 Bloomberg chooser option valuation screen. Source: Bloomberg L.P.
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mberg

Figure 11.7 Bloomberg scenario analysis for a chooser. Source: Bloomberg L.P.

Extendible options are very, very similar to compounds and choosers. At some
specified time the holder can choose to accept the payoff for the original option or to
extend the option’s life and even change the strike. Sometimes it is the writer who has
these powers of extension. The reader has sufficient knowledge to be able to model these
contracts in the Black—Scholes framework.

11.10.2 Range notes

Range notes are very popular contracts, existing on the ‘lognormal’ assets such as
equities and currencies, and as fixed-income products. In its basic, equity derivative, form
the range note pays at a rate of L all the time that the underlying lies within a given range,
S < S < S,. Thatis, for every dt that the asset is in the range you receive L dt. Introducing
Z(S) as the function taking the value 1 when S; < S < S, and zero otherwise, the range
note satisfies

/

\

N av

a2V 1%
— + 10282 +rS— —rV +LZ(S) = 0.
ot T27 S g TS5~V HLIE)
IF WE RECENE/ In Figure 11.8 is shown the term sheet for a range
PAY MoNEY note on the Mexican peso, US dollar exchange rate.

CONTINUOUSLY THEN|  Thjg contract pays out the positive part of the differ-
ITWILL APPEAR AS .
A SOWRCE TERM ence between number of days the exchange rate is
inside the range less the number of days outside the

range. This payment is received at expiry. (This contract is subtly different, and more

complicated than the basic range note described above. Why?)
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Classiﬁcation

Time dependence “

Path dependence

Preliminary and Indicative
For Discussion Purposes Only

6 Month In-Out Range Accrual Option on MXN/USD FX Rate

Settlement Date One week from Trade Date

Maturity Date 6 months from Trade Date

Option Premium USD 50,000+

Option Type In MINUS Out Range Accrual on MXN/USD FX
rate

Option Payment Date 2 business days after Maturity Date

Option Payout USD 125,000 * Index

Where Index
FX daily In MINUS FX daily Out

(subject to a minimum of zero)
Total Business Days

FX daily In The number of business days Spot MXN/USD
Exchange Rate is within Range

FX daily Out The number of business days Spot MXN/USD
Exchange Rate is outside Range

Range MXN/USD 7.7200-8.1300

Spot MXN/USD Exchange Official spot exchange rate as determined by the

Rate Bank of Mexico as appearing on Reuters page

“BNMX” at approximately 3:00 p.m. New York time.
Current Spot MXN/USD 7.7800

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which
includes options, swaps, forwards and structured notes having similar features to OTC derivative transactions,

nor a solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the

foregoing is not a complete description of the terms of a particular transaction and is subject to change without
limitation.

Figure 11.8 Term sheet for an in-out range accrual note on MXN/USD.
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11.10.3 Barrier options

Barrier options have a payoff that is contingent on the underlying asset reaching some
specified level before expiry. The critical level is called the barrier, there may be more than
one. Barrier options are weakly path dependent. Barrier options are discussed in depth
in Chapter 13.

Barrier options come in two main varieties, the ‘in’ barrier option (or knock-in) and the
‘out’ barrier option (or knock-out). The former only have a payoff if the barrier level is
reached before expiry and the latter only have a payoff if the barrier is not reached before




an introduction to exotic and path-dependent options Chapter 11

265

expiry. These contracts are weakly path dependent, meaning that the price depends only
on the current level of the asset and the time to expiry. They satisfy the Black—Scholes
equation, with special boundary conditions as we shall see.

11.10.4 Asian options

Asian options have a payoff that depends on the average value of the underlying asset
over some period before expiry. They are the first strongly path-dependent contract we
examine. They are strongly path dependent because their value prior to expiry depends
on the path taken and not just on where they have reached. Their value depends on
the average to date of the asset. This average to date will be very important to us, we
introduce something like it as a new state variable. (In PWOQF?2 it is shown how to derive
a partial differential equation for the value of this Asian contract, but now the differential
equation will have three independent variables.)

The average used in the calculation of the option’s payoff can be defined in many
different ways. It can be an arithmetic average or a geometric average, for example.
The data could be continuously sampled, so that every realized asset price over the
given period is used. More commonly, for practical and legal reasons, the data is usually
sampled discretely; the calculated average may only use every Friday’s closing price, for
example.

Classificatl’on

Time dependence Zfr— i alisa-ck
“ -
Path dependence m

11.10.5 Lookback options

Lookback options have a payoff that depends on the realized maximum or minimum
of the underlying asset over some period prior to expiry. An extreme example, which
captures the flavor of these contracts, is the option that pays off the difference between
that maximum realized value of the asset and the minimum value over the next year. Thus
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it enables the holder to buy at the lowest price and sell at the highest, every trader’s
dream. Of course, this payoff comes at a price. And for such a contract that price would

be very high.

Again the maximum or minimum can be calculated continuously or discretely, using
every realized asset price or just a subset. In practice the maximum or minimum is

measured discretely.

[ o ]

Classiﬁcation

Time dependence

Path dependence

Yer- 1 .

/—a(is'ad(

“% N

e ]

SUMMARY OF MATH/CODING CONSEQUENCES

Classification

Examples

Consequences

Time dependence
Cashflow

Path dependence
Dimension

Order

Decisions

Bermudan exercise, discrete
sampling, ...

Swap, instalments, ...
Barrier, Asian, lookback, ...
Strongly path dependent,
multi asset, . ..

Compounds, in barriers, ...

American, passport, chooser,

Must keep track of time in
code

Jump in option value/Source
term in pde

If strong path dependency
need extra dimension

Monte Carlo may be better
than finite difference

Solve lower-level option(s)
first and input into higher

Finite difference better than
Monte Carlo, ‘optimize’
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.12 SUMMARY

This chapter suggests ways to think about derivative contracts that make their analysis
simpler. To be able to make comparisons between different contracts is a big step forward
in understanding them.

FURTHER READING

e Geske (1979) discusses the valuation of compound options.

e See Taleb (1997) for more details of classifications of the type | have described. This
book is an excellent and entertaining read.

e The book by Zhang (1997) is a discussion of many types of exotic options, with many
formulae.

e See Kyprianou et al. (2005) for Lévy processes and exotic option pricing.

e PWOQF2 has many chapters on exotics and the mathematics used for pricing them.

SOME FORMULZ FOR ASIAN OPTIONS

There are very few nice formulae for the values of Asian options. The most well known are
for average rate calls and puts when the average is a continuously sampled, geometrical
average.

The geometric average rate call This option has payoff
max(A — E, 0),

where A is the continuously sampled geometric average. This option has a Black—Scholes
value of

e—(T-1) <G exp (( -D- 0'2/2)(7— - t)z + 02(7- - t)3> N(d+) — EN(C/Q))

2T 672
where .
| = / log(S(z))dz,
G= e(l)/Ts(T—t)/T’
ds Tlog(G/E) + (r — D — 02/2)(T — t)2/2 4+ o%(T — 1)3/3T
o /(T —13/3
and

_ TI0g(G/E) + (r —D — o2/2)(T — t)?/2

d>
o /(T —1)3/3
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The geometric average of a lognormal random walk is itself lognormally distributed, but
with a reduced volatility.

The geometric average rate put This option has payoff

max(E — A, 0),
where A is the continuously sampled geometric average. This option has a Black—Scholes
value of
—D—0o?/2)(T —1° o%T—1t°
T (EN(—db) — ( N(d1) ) -
e 70 (EN(-02) ~ Gexp - + T ) N

SOME FORMULZL FOR LOOKBACK OPTIONS

Floating strike lookback call The continuously sampled version of this option has a
payoff

max(S — M,0) =S — M,

where M is the realized minimum of the asset price. In the Black—Scholes world the value

1S
Se PT-IN(dy) — Me~"T-IN(d,)
o2 s\ > o — D)WT =1
-r-9_ % [ (2 ° _ APV 7Y o-DIT=t)p
+Se 5 =D (M) N( di + = ) e N(—dy) |,

where

g log(S/M) + (r — D + 3o?)(T —t)

= oT —t
and

do=di —oyT -t

Floating strike lookback put The continuously sampled version of this option has a
payoff

max(M — S,0) =M — S,
where M is the realized maximum of the asset price. The value is
Me—"T-ON(—d,) — Se~PT-IN(—dy)

5 _2r-D)
7r(Tft) o . § 2 N . 2([' — D) T — t (rfD)(Tft)N
+Se T ( () o - 202ONTEE) @,
where
g. _ 109(S/M) +(r—D+ 1o?)(T — 1)
1T o T —t
and

do=di —oyT -1t
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Fixed strike lookback call This option has a payoff given by
max(M — E, 0)
where M is the realized maximum. For E > M the fair value is

Se~PT-0N(d;) — Ee~"T-IN(dy)

2(r—D)
2 S\ 2 2(r —D)JT —t
where
g _ 109(S/E) +(r—D+ 1o?)(T - 1)
1= o T —t
and

do=di—o/T—t.
When E < M the value is
(M — E)e~"T-8 4 Se=DT-N(d) — Me~"T-N(d>)

5 _2(r-D)
—rT- 9 . E a2 . 2([‘ - D) T—t (r—D)(T—1t)
+Se 20 —D) ( <M> N (d1 — +e N(d4) |,
where
g, — 09E/M + D+ 30T — 1)
= o T —t
and

do=di —oy/T—t.
Fixed strike lookback put This option has a payoff given by
max(E — M, 0)
where M is the realized minimum. For E < M the fair value is

Ee"T-ON(—d,) — Se PT-IN(—dy)

2(r—D)
2 S\ .2 2r—D)WT —t
-rr-_ 9 | (= _ S AL TN (o) () PN
+Se 2¢ D) ((E) N< dy + > ) e N( d1)),

where

e — log(S/E) + (r — D + o2)(T — 1)
T oT —t

and

dr=dy —oyT -t
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When E > M the value is

(E — M)e~"T-0 — Se=PT-IN(—d) + Me~"T-IN(—d>)

5 _2r-D)
Ty SY 7 (g £ AC=DVT Y eninpg
+se T T ((M) N( o 2022 e DT-ON(-ay) |,

where
di = log(S/M) + (r — D + $o?)(T — t)
oNT —t
and
do=dy —oyT—t.
EXERCISES

1.

A chooser option has the following properties:

At time T¢g < T, the option gives the holder the right to buy a European call or put
option with exercise price E and expiry at time T, for an amount Ec. What is the value
of this option when E¢c = 0?

Hint: Write down the payoff of the option and then use put-call parity to simplify the
result.

How would we value the chooser option in the above question if Ec was non-zero?
Prove put-call parity for European compound options:
Cc+Pp—Cp—Pc=S-— Ege_r(Tz_t),

where C¢ is a call on a call, Cp is a call on a put, P¢ is a put on a call and Pp is a put
on a put. The compound options have exercise price £E1 and expiry at time T1 and the
underlying calls and puts have exercise price E» and expiry at time T».

Find the value of the power European call option. This is an option with exercise price
E, expiry at time T, when it has a payoff:

A(S) = max(S? — E, 0).

Hint: Note that if the underlying asset price is assumed to be lognormally distributed
then the square of the price is also lognormally distributed.



CHAPTER 12
multi-asset options

The aim of this Chapter. ..

...is to introduce the idea of correlation between many different assets and so
develop atheory for derivatives that depend on several different assets simultaneously.

In this Chapter...

how to model the behavior of many assets simultaneously
estimating correlation between asset price movements

how to value and hedge options on many underlying assets in the Black—Scholes
framework

the pricing formula for European non-path-dependent options on dividend-
paying assets
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2. INTRODUCTION

In this chapter | introduce the idea of higher dimensionality by describing the Black-
Scholes theory for options on more than one underlying asset. This theory is per-
fectly straightforward; the only new idea is that of correlated random walks and the
corresponding multifactor version of It6’s lemma.

Although the modeling and mathematics is easy, the final step of the pricing and
hedging, the ‘solution,” can be extremely hard indeed. | explain what makes a problem
easy, and what makes it hard, from the numerical analysis point of view.

122 MULTIDIMENSIONAL LOGNORMAL RANDOM WALKS

The basic building block for option pricing with one underlying is the lognormal random
walk

dS = uSdt+oSadxX.
This is readily extended to a world containing many assets via models for each underlying
as; = [L,'S,' dt + 0;S;dX.

Here S; is the price of the ith asset,i = 1,...,d, and u; and o; are the drift and volatility of
that asset respectively and dX; is the increment of a Wiener process. We can still continue
to think of dX; as a random number drawn from a Normal distribution with mean zero and
standard deviation dt'/2 so that

EldX]=0 and E[dX?]=dt
but the random numbers dX; and dX; are correlated:
E[dX; dXj] = pjdt.

here pj is the correlation coefficient between the ith and jth random walks. The symmetric
matrix with p; as the entry in the jth row and jth column is called the correlation matrix.
For example, if we have seven underlyings d = 7 and the correlation matrix will look like
this:

1 pi2 p13 P14 P15 Pi6 P17
p21 1 p23 p2a p2s P26 por
P31 p32 1 p3s p3s p3s par
Y= | ps1 pa2 paz 1  pas pas par
P51 ps2 ps3 psa 1 psg  ps7
P61 Pe2 P63 Pes pPes 1 per
P71 pr2 P73 pra P75 P76 1

Note that p; = 1 and pjj = pji. The correlation matrix is positive definite, so that yT):y > 0.
The covariance matrix is simply

MXM,

where M is the matrix with the o; along the diagonal and zeros everywhere else.
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To be able to manipulate functions of many random variables we need a multidimen-
sional version of It6’s lemma. If we have a function of the variables S1,...,Sy and t,
V(S1,...,Sq, 1), then

W L 22V
ot i=1 j=1 93 09 i=1

We can get to this same result by using Taylor series and the rules of thumb:
dX? =dt and dXidX; = pj dt.

-
Tome Ot

Correlation

Correlation is a measure of the relationship or
dependence between two or more random quantities.
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This is most easily explained by reference to the above
= series of figures. In the first figure we see two random walks
N Q that are perfectly correlated, p = 1. They may be moving
\Q‘l‘ g%ﬁ A apart overall, but that is a long-term phenomenon. In the
@VM/ short term, and correlation is a characteristic of random
s walks over small periods of time, you can see that each up
~ move in one random walk is matched by an up move in the
other.
In the second figure we see a correlation p of —1. Now
ﬂv each up move in one walk is matched by a down in the
other. The third figure shows two uncorrelated random
walks, there is no relationship between the up and down
Excel simulation moves in the two walks.
The correlation can be anywhere between —1 and +1.
What would two random walks with a correlation of 0.5 look like?
\ P.S. | don’t believe in correlations among financial assets. J

123 MEASURING CORRELATIONS

If you have time series data at intervals of 6t for all d assets you can calculate the
correlation between the returns as follows. First, take the price series for each asset and
calculate the return over each period. The return on the jth asset at the kth data point in
the time series is simply

Si(tx + 8t) — Si(t)
Si(tk) '

Ri(tx) =

The historical volatility of the ith asset is

M
oj = Z (Ri(tx) —
k=1

where M is the number of data points in the return series and R; is the mean of all the
returns in the series.

The covariance between the returns on assets i and

Jj is given by
1 = _
———— % (Ri(tx) — R)(R;(tx) — Ry).
sHA =) 2 i)~ PNt — )
The correlation is then
R ISR LG P e
N ON ... . . B .
NGT THAT SURE OF VOL,EITHER SHM — )oi; Z(R/(tk) — Ri)(Rj(tx) — R))-
k=1

In Excel correlation between two time series can be found using the CORREL worksheet
function, or Tools | Data Analysis | Correlation.
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Figure 12.1 shows the correlation matrix for Marks & Spencer, Tesco, Sainsbury
and IBM.

Correlations measured from financial time series data are notoriously unstable. If you
split your data into two equal groups, up to one date and beyond that date, and calculate
the correlations for each group you may find that they differ quite markedly. You could
calculate a 60-day correlation, say, from several years’ data and the result would look
something like Figure 12.2. You might want to use a historical 60-day correlation if you
have a contract of that maturity. But, as can be seen from the figure, such a historical
correlation should be used with care; correlations are even more unstable than volatilities.

The other possibility is to back out an implied correlation from the quoted price of an
instrument. The idea behind that approach is the same as with implied volatility, it gives
an estimate of the market’s perception of correlation.

w4,

-
Tome Ot

On a spreadsheet

The following spreadsheet shows how to simulate two
correlated random walks on a spreadsheet. Both of these
random walks are lognormal, but notice the correlation
between them.

A1 B [ ¢ [ b [ E [ F [ G [ H ] ifs =
| 1| Assetl Asset2 Time Randomi1 Random2 Assetl  Asset2 / -~
2| 100 80 0 0.046223 -1.59903 100 80 % .
3] 0.01-0.158143 -0.960557 99.78371 77.97375 A Q
| 4 |Driftt  Drift2 0.02-0.540749 0.340648 98.80434 78.18732 kQ‘l< RYSV/
[ 5| 0.1 0.2 .os 0.859933 -1.754755 100.6024 75.78769 v\ M (W/
6] 0.04 -0.268174 0.896078 100.1635 77.3988 ﬂ/k
[ 7 |voit Vol2 0.05-0,810562 —2.361049  98.63986 71.86476 N\

[ 8] 0.2 0.3 [CRAND() + RAN 20974247 0.569597 96.81651 72.02177 <
[ 9] D() + RAND() + R["0.576045 1.016849 98.02874 74.69084
[ 10]Correl. 05 | AND() + RAND() [B-0°989892 -0.409346 96.18601 72.93684
[11] + RAND() + RAN [0 ~0.839258.<1.013799 94.66771 70.24342
| 12 [Timestep 0.01 |p()+ RAND() + R|! 0.372974 -0.209777 95.46855 70.02906
| 13| AND() + RAND() [1 -0.542291 -0.597359 94.52858 68.51264
[ 14 |Sqrt(1-correl*2) +RAND() + RAN P 0.248432 -0.643216 95.09279 67.76004 v
[ 15| 0.866025 D() -6 B 0.963828 1.237832 97.02094 71.05435
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Figure 12.1 Some correlations. Source: Bloomberg L.P.
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124 OPTIONS ON MANY UNDERLYINGS

Options with many underlyings are called basket options, options on baskets or
rainbow options. The theoretical side of pricing and hedging is straightforward, following
the Black—Scholes arguments but now in higher dimensions.

Set up a portfolio consisting of one basket option and short a number A; of each of the
assets S;:

d
=V(S1,...,Sa, 1) = Y _AS;.

The change in this portfolio is given by

1 SR 32V d rav
If we choose
A — 1%
' aS;

for each i, then the portfolio is hedged and is risk-free. Setting the return equal to the
risk-free rate we arrive at

=1 j=1 8 195 i=1

This is the multidimensional version of the Black—Scholes equation. The modifications
that need to be made for dividends are obvious. When there is a dividend yield of D; on
the jth asset we have

W RS 92V
E‘FEZZUIWPI]SS]&S aS/‘I’Z DISI 3S,; —rV:O

i=1 j=1 i=1

-
Tome Ot

Here we go again

Risk neutrality means that the drift rates of the assets do
not appear in the pricing equation.
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125 THE PRICING FORMULA FOR EUROPEAN

NON-PATH-DEPENDENT OPTIONS ON
DIVIDEND-PAYING ASSETS

Because there is a Green’s function for this problem (see Chapter 7) we can write down

the value of a European non-path-dependent option with payoff of Payoff(S1,...,Sg) at
time T:
V =e"T-0 27T — )92 (Detx) "2(01 ... 0q)"
Payoff S/ S/) 1 o 31 , /
/ / xp( 7% x oc)dS1-~-de. (12.2)

1 Si o,-z

This has included a constant continuous dividend yield of D; on each asset.

N

Tome Ot

Ouch! But don’t worry

This formula looks horrible. But it has a simple
interpretation as the present value of an expectation of the
payoff. Part of the integrand (the bit inside the integral) is
the payoff, and part represents the probability density function. The numerical
integration of this expression is actually quite straightforward as we’ll see in
Chapter 30.
As always, it’s the risk-neutral expectation that matters. Do you see any us
anywhere in the formula? No.

~

J

126 EXCHANGING ONE ASSET FOR ANOTHER:

A SIMILARITY SOLUTION

An exchange option gives the holder the right to exchange one asset for another, in
some ratio. The payoff for this contract at expiry is

max(g1S1 — g2S», 0),

where g1 and g, are constants.
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The partial differential equation satisfied by this option in a Black—Scholes world is

2 2

v 2V & 1%
—rtz ;;mo,p,,s,s, 75,35, Z;(r - D,-)s,-a—& —rV =0.

A dividend yield has been included for both assets. Since there are only two underlyings
the summations in these only go up to two.

This contract is special in that there is a similarity reduction. Let’s postulate that the
solution takes the form

V(S1,S2,1) = q1S2H(E, 1),
where the new variable is
S4
&= S
2
If this is the case, then instead of finding a function V of three variables, we only need find
a function H of two variables, a much easier task.

-
Tome Ot

Similarity reductions

If you skipped much of Chapter 7, as | advised some of
you to do, you won’t have read about similarity reductions.
This is just a useful trick, not one you can often use, but when you can, you
should.

Sometimes it is possible to reduce the number of dimensions in a problem by
exploiting the ‘nice’ form of the problem. The example here is typical.

\_

Changing variables from S1, Sz to &€ we must use the following for the derivatives.
a 19 0 &0

95 598 15~ 5,08

192 97 §20% 260 ¢ __§9# 13
0S7  S5082° 9S5;  S308%2  S308’ 0S10S,  S30£2 S 0E

The time derivative is unchanged. The partial differential equation now becomes

M1,
E

2,00°H oH

0%§ 55z + (D2 D)5 ~DoH =0
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where

o' = \/0'12 — 20120102 + 05.

You will recognize this equation as being the Black—Scholes equation for a single stock
with Dy in place of r, D1 in place of the dividend yield on the single stock and with a
volatility of 0.

From this it follows, retracing our steps and writing the result in the original variables,
that

V(S1,S2,t) = q1S1e P1T-IN(d}) — g2Soe P27 -IN(d))

where

109(q1S1/G2S2) + (D2 — D1 + 30"?)(T — ¢
n 9(q1S1/92 2)0/(72__t1 50" )T —1) and d)=d, —o'VT—t

127 TWO EXAMPLES

In Figure 12.3 is shown the term sheet for ‘La Tricolore’ Capital-guaranteed Note. This
contract pays off the second best performing of three currencies against the French
franc, but only if the second-best performing has appreciated against the franc, otherwise

Preliminary and Indicative
For Discussion Purposes Only

‘La Tricolore’ Capital-quaranteed Note

Issuer XXXX

Principal Amount FRF 100,000,000

Issue Price 98.75%

Maturity Date Twelve months after Issue Date

Coupon Zero

Redemption Amount If at least two of the following three appreciation

indices, namely:
USD/FRF -6.0750 GBP/FRF -10.2000_ JPY/FRF -0.05120

6.0750 ' 10.2000 ' 0.05120

are positive at Maturity, the Note will redeem in that
currency whose appreciation index is the second
highest of the three; in all other circumstances the
Note will redeem at Par in FRF. If the Note
redeems in a currency other than FRF, the amount
of that currency shall be calculated by dividing the
FRF Principal Amount by the spot Currency/FRF
exchange rate prevailing on the Issue Date.

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes

options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a

solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 12.3 Term sheet for ‘La Tricolore’ Capital-guaranteed Note.
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it pays off at par. This contract does not have any unusual features, and has a value
that can be written as a three-dimensional integral, of the form (12.2). But what would
the payoff function be? You wouldn’t use a partial differential equation to price this
contract. Instead you would estimate the multiple integral directly by the methods of
Chapter 29.

The next example, whose term sheet is shown in Figure 12.4, is of basket equity swap.
This rather complex, high-dimensional contract, is for a swap of interest payment based
on three-month LIBOR and the level of an index. The index is made up of the weighted
average of 20 pharmaceutical stocks. To make matters even more complex, the index
uses a time averaging of the stock prices.

Preliminary and Indicative
For Discussion Purposes Only

International Pharmaceutical Basket Equity Swap

Indicative terms

Trade Date [1

Initial Valuation Date [1

Effective Date []

Final Valuation Date 26™ September 2002

Averaging Dates The monthly anniversaries of the Initial
Valuation Date commencing 26" March 2002
and up to and including the Expiration Date

Notional Amount US$25,000,000

Counterparty floating
amounts (US$ LIBOR)

Floating Rate Payer [1

Floating Rate Index USD-LIBOR

Designated Maturity Three months

Spread Minus 0.25%

Day Count Fraction Actual/360

Floating Rate Payment Each quarterly anniversary of the Effective Date
Dates

Initial Floating Rate Index [1

The Bank Fixed and
Floating Amounts (Fee,

Equity Option)

Fixed Amount Payer XXXX

Fixed Amount 1.30% of Notional Amount

Fixed Amount Payment Effective Date

Date

Basket A basket comprising 20 stocks and constructed
as described in attached Appendix

Initial Basket Level Will be set at 100 on the Initial Valuation Date

Floating Equity Amount XXXX

Payer

Figure 12.4 Term sheet for a basket equity swap.
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Floating Equity Amount Will be calculated according to the performance
of the basket of stocks in the following way:

. BASKET 144, —100
Notional Amount *max | 0, T

where

P
BASKET, . .,.=100* X, (Weight*MJ

average
20 stocks initial

And for each stock the Weight is given in the
Appendix
P_initial is the local currency price of each stock
on the Initial Valuation Date
P_average is the arithmetic average of the local
currency price of each stock on each of the
Averaging Dates
Floating Equity Amount Termination Date
Payment Date
Appendix
Each of the following stocks are equally weighted (5%):
Astra (Sweden), Glaxo Wellcome (UK), Smithkline Beecham (UK), Zeneca Group (UK),
Novartis (Switzerland), Roche Holding Genus (Switzerland), Sanofi (France), Synthelabo
(France), Bayer (Germany), Abbott Labs (US), Bristol Myers Squibb (US), American
Home Products (US), Amgen (US), Eli Lilly (US), Medtronic (US), Merck (US), Pfizer
(US), Schering-Plough (US), Sankyo (Japan), Takeda Chemical (Japan).

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 12.4 (continued)

2.8 REALITIES OF PRICING BASKET OPTIONS

The factors that determine the ease or difficulty of pricing and hedging multi-asset options
are

e existence of a closed-form solution;

e number of underlying assets, the dimensionality;
e path dependency;

e early exercise.

We have seen all of these except path dependency.
The solution technique that we use will generally be one of

o finite-difference solution of a partial differential equation;
e numerical integration;
e Monte Carlo simulation.

These methods are the subjects of later parts of the book.
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12.8.1 Easy problems

If we have a closed-form solution then our work is done; we can easily find values and
hedge ratios. This is provided that the solution is in terms of sufficiently simple functions
for which there are spreadsheet functions or other libraries. If the contract is European
with no path dependency then the solution may be of the form (12.2). If this is the
case, then we often have to do the integration numerically. This is not difficult. Several
methods are described in Chapter 30, including Monte Carlo integration and the use of
low-discrepancy sequences.

12.8.2 Medium problems

If we have low dimensionality, lower than three or four, say, the finite-difference methods
are the obvious choice. They cope well with early exercise and many path-dependent
features can be incorporated, though usually at the cost of an extra dimension.

For higher dimensions, Monte Carlo simulations are good. They cope with all path-
dependent features. Unfortunately, they are not very efficient for American-style early
exercise.

12.8.3 Hard problems

The hardest problems to solve are those with both high dimensionality, for which we
would like to use Monte Carlo simulation, and with early exercise, for which we would like
to use finite-difference methods. There is currently no numerical method that copes well
with such a problem.

129 REALITIES OF HEDGING BASKET OPTIONS

Even if we can find option values and the greeks, they are often very sensitive to the level
of the correlation. But as | have said, the correlation is a very difficult quantity to measure.
So the hedge ratios are very likely to be inaccurate. If we are delta hedging then we need
accurate estimates of the deltas. This makes basket options very difficult to delta hedge
successfully.

When we have a contract that is difficult to delta hedge we can try to reduce sensitivity
to parameters, and the model, by hedging with other derivatives. This was the basis of
vega hedging, mentioned in Chapter 8. We could try to use the same idea to reduce
sensitivity to the correlation. Unfortunately, that is also difficult because there just aren’t
enough contracts traded that depend on the right correlations.

1210 CORRELATION VERSUS COINTEGRATION

The correlations between financial quantities are notoriously unstable. One could easily
argue that a theory should not be built up using parameters that are so unpredictable. |
would tend to agree with this point of view. One could propose a stochastic correlation
model, but that approach has its own problems.

An alternative statistical measure to correlation is cointegration. Very loosely speaking,
two time series are cointegrated if a linear combination has constant mean and standard
deviation. In other words, the two series never stray too far from one another. This is
probably a more robust measure of the linkage between two financial quantities but as
yet there is little derivatives theory based on the concept.
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1211 SUMMARY

The new ideas in this chapter were the multifactor, correlated random walks for assets,
and Itdé’s lemma in higher dimensions. These are both simple concepts, and we will use
them often, especially in interest rate-related topics.

FURTHER READING

See Hamilton (1994) for further details of the measurement of correlation and cointe-
gration.

The first solution of the exchange option problem was by Margrabe (1978).

For analytical results, formulae or numerical algorithms for the pricing of some other
multifactor options see Stulz (1982), Johnson (1987), Boyle et al. (1989), Boyle & Tse
(1990), Rubinstein (1991) and Rich & Chance (1993).

See Emanuel Derman’s autobiography for discussion of quantos (Derman, 2004).

For details of cointegration, what it means and how it works see the papers by
Alexander & Johnson (1992, 1994).

Krekel et al. (2004) compare different pricing methods for basket options.

EXERCISES

1.

N shares follow geometric Brownian motions, i.e.
asS; = ,u,-S,- dt + 0;S; dX;,

for 1 </ < N. The share price changes are correlated with correlation coefficients pj.
Find the stochastic differential equation satisfied by a function f(S4, So, . .., Sn).

Using tick data for at least two assets, measure the correlations between the assets
using the entirety of the data. Split the data in two halves and perform the same
calculations on each of the halves in turn. Are the correlation coefficients for the first
half equal to those for the second? If so, do these figures match those for the whole
data set?

Check that if we use the pricing formula for European non-path-dependent options
on dividend-paying assets, but for a single asset (i.e. in one dimension), we recover
the solution found in Chapter 8:

—r(T— 00 / 2 /
Vs = S0 [ g (ess{e) ) / T payoffi$) 2.
o/27(T =1 Jo SO’

Set up the following problems mathematically (i.e. what equations do they satisfy and
with what boundary and final conditions?) The assets are correlated.

(@ An option that pays the positive difference between two share prices Sy and Sp
and which expires at time T.
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(b) An option that has a call payoff with underlying S and strike price E at time T
only if S1 > Sy attime T.

(c) An option that has a call payoff with underlying Sy and strike price E1 at time T if
S1 > Sy at time T and a put payoff with underlying S» and strike price E» at time
TifS, > Sy attimeT.

What is the explicit formula for the price of a quanto which has a put payoff on
the Nikkei Dow index with strike at E and which is paid in yen. Sg is the yen-dollar
exchange rate and Sy is the level of the Nikkei Dow index. We assume

dSg = ugSg dt + 0§Sg dXsg
and
dSy = /LNSN dt + onSy dXn,

with a correlation of p.






CHAPTER 13
barrier options

The aim of this Chapter. ..

...is to describe and classify barrier options, to show how they can easily be put
into a partial differential equation framework for later solution by numerical methods.
Such a framework is ideal for pricing barrier options with complex modermn volatility
models.

In this Chapter...

the different types of barrier options

how to price many barrier contracts in the partial differential equation frame-
work

some of the practical problems with the pricing and hedging of barriers
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3. INTRODUCTION

| mentioned barrier options briefly in an earlier chapter. In this chapter we study them
in detail, from both a theoretical and a practical perspective. Barrier options are path-
dependent options. They have a payoff that is dependent on the realized asset path via
its level; certain aspects of the contract are triggered if the asset price becomes too
high or too low. For example, an up-and-out call option pays off the usual max(S — E, 0)
at expiry unless at any time previously the underlying asset has traded at a value S,
or higher. In this example, if the asset reaches this level (from below, obviously) then it
is said to ‘knock out,” becoming worthless. Apart from ‘out’ options like this, there are
also ‘in’ options which only receive a payoff if a level is reached, otherwise they expire
worthless.

Barrier options are popular for a number of reasons. Perhaps the purchaser uses them
to hedge very specific cashflows with similar properties. Usually, the purchaser has very
precise views about the direction of the market. If he wants the payoff from a call option
but does not want to pay for all the upside potential, believing that the upward movement
of the underlying will be limited prior to expiry, then he may choose to buy an up-and-out
call. It will be cheaper than a similar vanilla call, since the upside is severely limited. If
he is right and the barrier is not triggered he gets the payoff he wanted. The closer that
the barrier is to the current asset price then the greater the likelihood of the option being
knocked out, and thus the cheaper the contract.

Conversely, an ‘in’ option will be bought by someone who believes that the barrier level
will be realized. Again, the option is cheaper than the equivalent vanilla option.

132 DIFFERENT TYPES OF BARRIER OPTIONS

~

\

\&\ There are two main types of barrier option:

e The out option, which only pays off if a level is not
reached. If the barrier is reached then the option is
said to have knocked out.

THERE ARE
MANY TYPES OF

BARRIER OPTIONS. | o The in option, which pays off as long as a level
TESE ARE e is reached before expiry. If the barrier is reached
then the option is said to have knocked in.

Then we further characterize the barrier option by the position of the barrier relative to
the initial value of the underlying:

e If the barrier is above the initial asset value, we have an up option.

e If the barrier is below the initial asset value, we have a down option.
Finally, we describe the payoff received at expiry:
e The payoffs are all the usual suspects, call, put, binary, etc.

The above classifies the commonest barrier options. In all of these contracts the position
of the barrier could be time dependent. The level may begin at one level and then rise,
say. Usually the level is a piecewise-constant function of time.
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Preliminary and Indicative
For Discussion Purposes Only

USD/MXN Double Knock-Out Note

Principal Amount USD 10,000,000

Issuer XXXX

Maturity 6 months from Trade Date

Issue Price 100%

Coupon If the USD/MXN spot exchange rate trades above

the Upper Barrier orbelow the Lower Barrier at any
time during the term of the Note:

Zero
Otherwise:
400%xmax OM
FX

where FX isthe USD/MXN spot exchage rate at

Maturity
Redemption Amount 100%
Upper Barrier Level 8.2500
Lower Barrier Level 7.4500

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 13.1 Term sheet for a USD/MXN double knock-out note.

Another style of barrier option is the double barrier. Here there is both an upper and a
lower barrier, the first above and the second below the current asset price. In a double
‘out’ option the contract becomes worthless if either of the barriers is reached. In a double
‘in” option one of the barriers must be reached before expiry, otherwise the option expires
worthless. Other possibilities can be imagined, one barrier is an ‘in’ and the other an ‘out,’
at expiry the contract could have either an ‘in’ or an ‘out’ payoff.

Sometimes a rebate is paid if the barrier level is reached. This is often the case for ‘out’
barriers in which case the rebate can be thought of as cushioning the blow of losing the rest
of the payoff. The rebate may be paid as soon as the barrier is triggered or not until expiry.

In Figure 13.1 is shown the term sheet for a double knock-out option on the Mexican
peso, US dollar exchange rate. The upper barrier is set at 8.25 and the lower barrier at
7.45. If the exchange rate trades inside this range until expiry then there is a payment.
This is a very vanilla example of a barrier contract.

[3.3 PRICING METHODOLOGIES
13.3.1 Monte Carlo simulation

Pricing via Monte Carlo simulation is simple in principle:

e The value of an option is the present value of the expected payoff under a risk-neutral
random walk.
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The pricing algorithm:
1. Simulate the risk-neutral random walk starting at today’s value of the asset over the
required time horizon. This gives one realization of the underlying price path.
For this realization calculate the option payoff.
Perform many more such realizations over the time horizon.

Calculate the average payoff over all realizations.

o > Db

Take the present value of this average, this is the option value.
Advantages of Monte Carlo pricing

e Itis easy to code.

e Itis hard to make mistakes in the coding.
Disadvantages of Monte Carlo pricing

e More work is needed to get the greeks.

e It can be slow since tens of thousands of simulations are needed to get an accurate
answer.

13.3.2 Partial differential equations

Barrier options are path dependent. Their payoff, and therefore value, depends on the
path taken by the asset up to expiry.

e Yet that dependence is weak. We only have to know whether or not the barrier has
been triggered, we do not need any other information about the path.

134 PRICING BARRIERS IN THE PARTIAL DIFFERENTIAL
EQUATION FRAMEWORK

[ use V(S, t) to denote the value of the barrier contract before the barrier has been triggered.
This value still satisfies the Black—Scholes equation

8V o2 50
— rvV =0.
at S 882JrrS S 0

The details of the barrier feature come in through the specification of the boundary
conditions.
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The framework

Partial differential equations are the natural framework for
pricing barrier options. When combined with the kind of
numerical method described in Chapter 28 the solution is
relatively straightforward. Indeed, in many cases it is easier to solve a barrier
option numerically than a vanilla option.

Once you are working in this framework it is very easy to incorporate modern
volatility models. As hinted at later in this chapter, barrier options can be very
sensitive to the assumptions made about volatility and very rarely are such
options priced using the assumption of constant volatility. In such a situation it’s
nice to have a framework that can be easily adapted to sophisticated volatility
models. This is that framework.

However, in the following | will also give a few pointers to valuing via trees.

/

13.4.1 ‘Out barriers

If the underlying asset reaches the barrier in an ‘out’ barrier option then the contract
becomes worthless. This leads to the boundary condition

V(S,,H)=0 fort<T,

for an up-barrier option with the barrier level at S = S,,. We must solve the Black—Scholes
equation for 0 < S < S, with this condition on S = S, and a final condition correspond-
ing to the payoff received if the barrier is not triggered. For a call option we would
have

V(S,T) = max(S — E, 0).

If we have a down-and-out option with a barrier at Sy then we solve for Sg < S < o0
with

V(Sq,t) =0,

and the relevant final condition at expiry.
The boundary conditions are easily changed to accommodate rebates. If a rebate of R
is paid when the barrier is hit then

V(Sq,t) = R.
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In terms of the binomial model?

To price out barrier options in the binomial framework you
have to specify on which nodes the option becomes
valueless. The option value is then set to zero on these
nodes, and the usual algorithm is used for all other nodes. (Of course, there is
no need to find option values beyond the barrier, so the tree is usually smaller
than for a vanilla option.)

J

13.4.2 ‘In’ barriers

An ‘in’ option only has a payoff if the barrier is triggered. If the barrier is not triggered then
the option expires worthless

V(S,T) = 0.

The value in the option is in the potential to hit the barrier. If the option is an up-and-in
contract then on the upper barrier the contract must have the same value as a vanilla
contract:

V(Sy, t) = value of vanilla contract, a function of t.

Using the notation V,(S, t) for value of the equivalent vanilla contract (a vanilla call, if we
have an up-and-in call option) then we must have

V(Su,t) = Vi(Su,t) fort<T.

A similar boundary condition holds for a down-and-in option.

The contract we receive when the barrier is triggered is a derivative itself, and therefore
the ‘in’ option is a second-order contract.

In solving for the value of an ‘in’ option completely numerically we must solve for the
value of the vanilla option first, before solving for the value of the barrier option. The
solution therefore takes roughly twice as long as the solution of the ‘out’ option.

When volatility is constant we can solve for the theoretical price of many types of barrier
contract. Some examples are given at the end of the chapter.

" And, of course, the vanilla option must be solved for 0 < S < cc.
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In terms of the binomial model?

The ‘in’-barrier option can be thought of as a
second-order contract. So you would need one tree for
pricing the underlying option and the results of this will be
passed to the ‘in’-barrier tree. To make things simple, make sure that the two
trees have the same structure.

\-

135 EXAMPLES

Down-and-out call option As the first example, consider the down-and-out call option
with barrier level Sy below the strike price E. The value of this option is shown as a
function of S in Figure 13.2.

Down-and-in call option In the absence of any rebates the relationship between an
‘in’-barrier option and an ‘out’-barrier option (with same payoff and same barrier level) is

80
70 |
60 |
50 |

S 40 |
30 |
20 -

10 +

O T T T T T T T T
0 20 40 60 80 100 s 120 140 160

Figure 13.2 Value of a down-and-out call option.
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very simple:

in + out = vanilla.
If the ‘in’ barrier is triggered then so is the ‘out’ barrier, so whether or not the barrier is
triggered we still get the vanilla payoff at expiry.

The value of this option is shown as a function of S in Figure 13.3. Also shown is the
value of the vanilla call. Note that the two values coincide at the barrier.

Up-and-out call option The barrier S, for an up-and-out call option must be above the
strike price E (otherwise the option would be valueless).

The value of this option is shown as a function of S in Figure 13.4. In Figure 13.5 is
shown the delta.

Figure 13.6 shows the Bloomberg barrier option calculator and Figure 13.7 shows the
option profit/loss against asset price.

13.5.1 Some more examples

The following figures are all taken from Bloomberg, who use the formulee below, for the
pricing.

45 -
40

35 — Down-and-in call

— Vanilla call
30 -

25
20 A
15 -

10 -

0 20 40 60 80 100 120 140

Figure 13.3 Value of a down-and-in call option.
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0 20 40 60 80 100 120 140

Figure 13.4 Value of an up-and-out call option.
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Figure 13.5 Delta of an up-and-out call option.
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Figure 13.6 An up-and-out call again. Source: Bloomberg L.P.
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Figure 13.7 Profit/loss for an up-and-out call. Source: Bloomberg L.P.
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Figure 13.9 Value of an up-and-in call. Source: Bloomberg L.P.
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Figure 13.11 Value of an up-and-out put. Source: Bloomberg L.P.
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Figure 13.12 Calculator for an up-and-out put with a rebate on the upper barrier. Source:
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136 OTHER FEATURES IN BARRIER-STYLE OPTIONS

Not so long ago barrier options were exotic, the market for them was small and few
people were comfortable pricing them. Nowadays they are heavily traded and it is only
the contracts with more unusual features that can rightly be called exotic. Some of these
features are described below.

13.6.1 FEarly exercise

It is possible to have American-style early exercise. The contract must specify what the
payoff is if the contract is exercised before expiry. As always, early exercise is a simple
constraint on the value of the option.

In Figure 13.14 is the term sheet for a knock-out installment premium option on the
US dollar, Japanese yen exchange rate. This knocks out if the exchange rate ever goes
above 140. If the option expires without ever hitting this level there is a vanilla call payoff.
I mention this contract in the section on early exercise because it has a similar feature.
To keep the contract alive the holder must pay in instalments, every month another
payment is due. The question is when to stop paying the instalments. This can be done

optimally.
Preliminary and Indicative
For Discussion Purposes Only
USD/JPY KO Instaliment-Premium Option
Notional Amount USD 50,000,000
Option Type 133.25 (ATMS) USD Put/JPY Call with KO and
Installment Premium
Maturity 6 months from Trade Date
Knockout Mechanism If, at any time from Trade Date to Maturity, the
USD/JPY spot rate trades in the interbank market
at or above JPY 140.00per USD, the option will
automatically be cancelled, with no further rights or
obligations arising for the parties thereto.
Upfront Premium JPY 1.50 per USD
Installments JPY 1.50 per USD,payable monthly from Trade

Date (5 installments)

Installment Mechanism As long as the installments continue to be paid, the
option will be kept alive, but the Counterparty has
the right to cease paying the installments and to
thereby let the option becancelled at anytime.

Spot Reference JPY 133.25 per USD

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 13.14 Term sheet for a USD/JPY knock-out installment premium option.
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13.6.2 Repeated hitting of the barrier

The double barrier that we have seen above can be made more complicated. Instead of
only requiring one hit of either barrier we could insist that both barriers are hit before the
barrier is triggered.

This contract is easy to value. Observe that the first time that one of the barriers is
hit the contract becomes a vanilla barrier option. Thus on the two barriers we solve the
Black—Scholes equation with boundary conditions that our double barrier value is equal
to an up-barrier option on the lower barrier and a down-barrier option on the upper barrier.

13.6.3 Resetting of barrier

Another type of barrier contract that can be priced by the same two- (or more) step
procedure as ‘in’ barriers is the reset barrier. When the barrier is hit the contract turns into
another barrier option with a different barrier level. The contract may be time dependent
in the sense that if the barrier is hit before a certain time we get a new barrier option, if it
is hit after a certain time we get the vanilla payoff.

Related to these contracts are the roll-up and roll-down options. These begin life
as vanilla options, but if the asset reaches some predefined level they become a barrier
option. For example, with a roll-up put if the roll-up strike level is reached the contract
becomes an up-and-out put with the roll-up strike being the strike of the barrier put. The
barrier level will then be at a prespecified level.

13.6.4 Outside barrier options

Outside or rainbow barrier options have payoffs or a trigger feature that depends on
a second underlying. Thus the barrier might be triggered by one asset, with the payoff
depending on the other. These products are clearly multi-factor contracts.

13.6.5 Soft barriers

The soft barrier option allows the contract to be gradually knocked in or out. The contract
specifies two levels, an upper and a lower. In the knock-out option a proportion of the
contract is knocked out depending on the distance that the asset has reached between
the two barriers. For example, suppose that the option is an up and out with a soft barrier
range of 100 to 120. If the maximum asset value reached before expiry is 105 then 5/20
or 25% of the payoff is lost.

13.6.6 Parisian options

Parisian options have barriers that are triggered only if the underlying has been beyond
the barrier level for more than a specified time. This additional feature reduces the
possibility of manipulation of the trigger event and makes the dynamic hedging easier.
However, this new feature also increases the dimensionality of the problem.
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137 MARKET PRACTICE: WHAT
VOLATILITY SHOULD | USE?

Practitioners do not price contracts using a single,
constant volatility. Let us see some of the pitfalls with
this, and then see what practitioners do.

DETERMINING V OL IS TRICKY, In Figure 13.15 we see a plot of the value of an
AND MANY BARRIER OPTIONS |\ n_and-out call option using three different volatilities,

] .’Qk
oo

ARE SENSITIVE To VoL REHAVIOR

15%, 20% and 25%. | have chosen three very different
values to make a point. If we are unsure about the value of the volatility (as we surely are)
then which value do we use to price the contract? Observe that at approximately S = 100
the option value seems to be insensitive to the volatility, the vega is zero. If S is greater
than this value perhaps we should only sell the contract for a volatility of 15% to be on
the safe side. If S is less than this, perhaps we should sell the contract for 25%, again
to play it safe. Now ask the question: Do | believe that volatility will be one of 15%, 20%
or 25%, and will be fixed at that level? Or do | believe that volatility could move around
between 15% and 25%7? Clearly the latter is closer to the truth. But the measurement
of vega and the plots in Figure 13.15 assume that volatility is fixed until expiry. If we are
concerned with playing it safe we should assume that the behavior of volatility will be
that which gives us the lowest value if we are buying the contract. The worst outcome for
volatility is for it to be low below the strike price and high around the barrier. Financially,
this means that if we are near the strike we get a small payoff, but if we are near the
barrier we are likely to hit it. Mathematically, the ‘worst’ choice of volatility path depends
on the sign of the gamma at each point. If gamma is positive then low volatility is bad,

14 +
12 4
15% volatility
10 4
8 -
N 20% volatility
6 -
4 -
25% volatility.
2 - \
0 T T T T T T 1
0 20 40 60 80 100 120 140

S

Figure 13.15 Theoretical up-and-out call price with three different volatilities. Source:
Bloomberg L.P.
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if gamma is negative then high volatility is bad. When
the gamma is not single signed, the measurement
of vega can be meaningless. Barrier options with
non-single-signed gamma include the up-and-out call,
down-and-out put and many double-barrier options. / LIKEMODELS

. . THAT DONT MAKE TO0

Figures 13.16 through 13.19 show the details of @ | yany assumperion <
double knockout put contract, its price versus the | ARduT VoraTiLiTY
underlying, its gamma versus the underlying and its
price versus volatility. This is a contract with a gamma that changes sign as can be seen
from Figure 13.18. You must be very careful when pricing such a contract as to what
volatility to use. Suppose you wanted to know the implied volatility for this contract when
the price was 3.2, what value would you get? Refer to Figure 13.19.

To accommodate problems like this, practitioners have invented a number of ‘patches.’
One is to use two different volatilities in the option price. For example, one can calculate
implied volatilities from vanilla options with the same strike, expiry and payoff as the barrier
option and also from American-style one-touch options with the strike at the barrier level.
The implied volatility from the vanilla option contains the market’s estimate of the value
of the payoff, but includes all the upside potential that the call has but which is irrelevant
for the up-and-out option. The one-touch volatility, however, contains the market’s view
of the likelihood of the barrier level being reached. These two volatilities can be used to
price an up-and-out call by observing that an ‘out’ option is the same as a vanilla minus
an ‘in’ option. Use the vanilla volatility to price the vanilla call and the one-touch volatility
to price the ‘in’ call.
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Figure 13.16 Details of a double knockout put. Source: Bloomberg L.P.
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Figure 13.17 Price of the double knockout put. Source: Bloomberg L.P.
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Figure 13.18 Gamma of the double knockout put. Source: Bloomberg L.P.
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Figure 13.19 Option price versus volatility for the double knockout put. Source: Bloomberg L.P.

138 HEDGING BARRIER OPTIONS

Barrier options have discontinuous delta at the barrier. For a knock-out, the option value is
continuous, decreasing approximately linearly towards the barrier then being zero beyond
the barrier. This discontinuity in the delta means that the gamma is instantaneously infinite
at the barrier. Delta hedging through the barrier is virtually impossible, and certainly very
costly. This raises the issue of whether there are improvements on delta hedging for
barrier options.

There have been a number of suggestions made for ways to statically hedge barrier
options. These methods try to mimic as closely as possible the value of a barrier option
with vanilla calls and puts, or with binary options. A very common practice for hedging a
short up-and-out call is to buy a long call with the same strike and expiry. If the option
does knock out then you are fortunate in being left with a long call position.

I now describe another simple but useful technique, based on the reflection principle
and put-call symmetry. This technique only really works if the barrier and strike lie in the
correct order, as we shall see. The method gives an approximate hedge only.

The simplest example of put-call symmetry is actually put-call parity. At all asset levels
we have

Ve—Vp=S—Ee T,

where E is the strike of the two options, and C and P refer to call and put. Suppose
we have a down-and-in call, how can we use this result? To make things simple for
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the moment, let’s have the barrier and the strike at the same level. Now hedge our
down-and-in call with a short position in a vanilla put with the same strike. If the barrier is
reached we have a position worth

Vo — Vp.

The first term is from the down-and-in call and the second from the vanilla put. This is
exactly the same as

S—Ee -0 = E(1 —eT7Y),

because of put-call parity and since the barrier and the strike are the same. If the
barrier is not touched then both options expire worthless. If the interest rate were zero
then we would have a perfect hedge. If rates are non-zero what we are left with is
a one-touch option with small and time-dependent value on the barrier. Although this
leftover cashflow is non-zero, it is small, bounded and more manageable than the original
cashflows.

Now suppose that the strike and the barrier are distinct. Let us continue with the
down-and-in call, now with barrier below the strike. The static hedge is not much more
complicated than the previous example. All we need to know is the relationship between
the value of a call option with strike E when S = Sy and a put option with strike Sg/E.
It is easy to show from the formulae for calls and puts that if interest rates are zero, the
value of this call at S = Sy is equal to a number E/Sy of the puts, valued at Sy. We
would therefore hedge our down-and-in call with E/Sy puts struck at Sg/E. Note that the
geometric average of the strike of the call and the strike of the put is the same as the
barrier level, this is where the idea of ‘reflection’ comes in. The strike of the hedging put
is at the reflection in the barrier of the call’s strike. When rates are non-zero there is some
error in this hedge, but again it is small and manageable, decreasing as we get closer to
expiry. If the barrier is not touched then both options expire worthless (the strike of the
put is below the barrier remember).

If the barrier level is above the strike, matters are more complicated since if the barrier
is touched we get an in-the-money call. The reflection principle does not work because
the put would also be in the money at expiry if the barrier is not touched.

13.8.1 Slippage costs

The delta of a barrier option is discontinuous at the barrier, whether it is an in or an out
option. This presents a particular problem to do with slippage or gapping. Should the
underlying move significantly as the barrier is triggered it is likely that it will not be possible
to continuously hedge through the barrier. For example, if the contract is knocked out then
one finds oneself with a —A holding of the underlying that should have been offloaded
sooner. This can have a significant effect on the hedging costs.

It is not too difficult to allow for the expected slippage costs, and all that is required is
a slight modification to the apparent barrier level.

At the barrier we hold —A of the underlying. The value of this position is —AX, since
S = X is the barrier level. Suppose that the asset moves by a small fraction k before
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Figure 13.20 Incorporating slippage.

we can close out our asset position, or equivalently, that there is a transaction charge
involved in closing. We thus lose

—kAX

on the trigger event.
Now refer to Figure 13.20 where we’ll look at the specific example of a down-and-out
option. Because we lose —kAX we should use the boundary condition

VX, 1) = —kAX.
After a little bit of Taylor series we find that this is approximately the same as
V(1 + k)X, t)=0.

In other words, we should apply the boundary condition at a slightly higher value of S and
so slightly reduce the option’s value.

139 SUMMARY

In this chapter we have seen a description of many types of barrier option. We have
seen how to put these contracts into the partial differential equation framework. Many of
these contracts have simple pricing formulee. Unfortunately, the extreme nature of these
contracts make them very difficult to hedge in practice and in particular, they can be
very sensitive to the volatility of the underlying. Worse still, if the gamma of the contract
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changes sign we cannot play safe by adding a spread to the volatility. Practitioners seem
to be most comfortable statically hedging as much of the barrier contract as possible
using traded vanillas.

,O/ = SOME FORMULZA
% Q’\}, \Q In the following | use N(-) to denote the cumulative distribution function for
¢ £y ‘w} a standardized Normal variable. The dividend yield on stocks or the foreign
(f‘ ﬂ/‘ interest rate for FX are denoted by q. Also
_qy 2=
= (%)
S
- 1+2(r7_2q)
ﬂ b= <§> o
S

Allimplmented on  where S, is the barrier position (whether S, or Sy should be obvious from
the CD the example),

_1og(S/E) + (r— q + 302) (T —1)

d1 )
o T —t
_ log(S/E)+ (r—q—30°) (T —1)
N o T —t ’
g l0g(S/Sp) + (r — q + 302) (T — 1)
8= o T —1t ’
- log(S/Sp) + (r — q — 302) (T — 1)
‘T oJT 1 ’
_ 109(S/Sp) ~ (r—q — 30°) (T ~ 1
o ovT -t ’
4o _ 109(5/Sp) - (r—q+ 302 (T -1
6= ovT —1t ’
v log(SE/S2) — (r —q — 202) (T — 1)
T ovT —t ’
_ log(SE/S) — (r—q + $02) (T —1)
oT —t

Up-and-out call

Se~9T0(N(d+) — N(d3) — b(N(ds) — N(ds))) — Ee """ I(N(d>2) — N(ds) — a(N(ds) — N(d7))).

Up-and-in call

Se~T9(N(ds) + b(N(de) — N(dg))) — Ee """ (N(ds) + a(N(ds) — N(d7))).
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Down-and-out call
1. E>Sp:

Se~97(N(ds) — b(1 — N(dg)) — Ee "~ I(N(d2) — a(1 — N(c7)).
2. E<Sp:

Se~IT(N(d3) — b(1 — N(ds))) — Ee~""~(N(dl) — a(1 — N(d))-
Down-and-in call
1. E> Sp:

Se~ 9" p(1 — N(dg)) — Ee~""Ya(1 — N(d7)).
2. E<Sp:
Se~9T(N(d1) — N(da) + b(1 — N(de))) — Ee~"T~I(N(d2) — N(da) +a(1 — N(ds)).

Down-and-out put

—Se 9T(N(d3) — N(d1) — b(N(ds) — N(de))-+Ee""I(N(ds) — N(d2) — a(N(d7) — N(d5))).

Down-and-in put

—Se~9T0(1 — N(ds) + b(N(ds) — N(de))) + Ee~"T9(1 — N(d) + a(N(d7) — N(ds).
Up-and-out put
1. E> Sp:

~Se~IT0(1 — N(ds) — bN(de)) + Ee~""(1 — N(ds) — aN(ds)).
2. E<Sp:

—Se~9T9(1 — N(d) — bN(dg)) + Ee""~0(1 — N(dp) — aN(d7)).
Up-and-in put
1. E> Sp:

—Se~9T=(N(d3) — N(d1) + bN(de)) + Ee " T=(N(ds) — N(d>) + aN(ds)).
2. E<Sp:
—Se~9T-9pN(dg) + Ee"T-aN(dy).

The following charts show each of the above types of barrier option, as well as the

underlying vanilla option.

Note that with out options the value of the barrier option ‘hugs’ the vanilla, except that
it must be zero at the barrier. With in options, the barrier value hugs zero except that it

becomes the vanilla value at the barrier.
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Figure 13.21 Up-and-outcall. 0 =0.2,r =0.05,g=0,E =100, T =1 and S, = 120.
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Figure 13.22 Up-and-incall. 6 =0.2,r=0.05,q=0,E=100,T =1and S, = 120.
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Figure 13.283 Down-and-out call. 0 =0.2,r =0.05,g=0,E =100,7T =1 and Sp = 80.
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Figure 13.24 Down-and-outcall. 0 =0.2,r=0.05,g=0,E =100, T =1 and Sp = 120.
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Figure 13.256 Down-and-incall. 0 =0.2,r =0.05,g=0,E =100,T =1 and Sp = 80.
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Figure 13.26 Down-and-incall. 0 =0.2,r =0.05,q=0,E =100,7T =1 and S, = 120.
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Figure 13.27 Down-and-out put. 0 =0.2,r =0.05,g=0,E =100, T =1 and S, = 80.
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Figure 13.28 Down-and-in put. c =0.2,r =0.05,q=0,E =100, 7 =1 and Sy = 80.
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Figure 13.29 Up-and-out put.c =0.2,r =0.05,q=0,E =100,T =1 and S, = 80.
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Figure 13.30 Up-and-out put.c =0.2,r =0.05,q=0,E =100,T =1 and Sy, = 120.
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Figure 13.31 Up-and-input.c =0.2,r=0.05,9q=0,E =100,T7 =1 and Sy = 80.
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Figure 13.32 Up-and-in put.c =0.2,r =0.05,q=0,E =100,T7T =1 and S, = 120.
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FURTHER READING

\ J

Many of the original barrier formulee are due to Reiner & Rubinstein (1991).

The formulae above are explained in Taleb (1997) and Haug (2007). Taleb discusses
barrier options in great detail, including the reality of hedging that | have only touched
upon.

The article by Carr (1995) contains an extensive literature review as well as a detailed
discussion of protected barrier options and rainbow barrier options.

See Derman et al. (1997) for a full description of the static replication of barrier options
with vanilla options.

See Carr (1994) for more details of put-call symmetry.

See Haug & Haug (2002) for the pricing of barrier options that depend on two underlying
assets.

More closed-form solutions can be found in Banerjee (2003).

~
Tome Ot

Binomial model revisited

Using trees to price barrier options can be a bit of a chore.
This is because it is tedious to line up nodes with the
barrier level. You can be faced with the question of on
which node to set the option value to zero. Interpolation methods make the most
sense. Those fond of trees will go to extraordinary lengths to justify various ad
hoc tree modifications. In the finite-difference method the barrier is trivial — the
mathematician’s favorite word — to incorporate.

EXERCISES

1.

Checkthat the solution for the down-and-out call option, Vp 0, satisfies Black—Scholes,
where

_2r

S o2
Vp/o(S, 1) = C(S, 1) - (S—) C(S5/S.1),
d
and C(S, 1) is the value of a vanilla call option with the same maturity and payoff as
the barrier option.
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2r
Hint: Show that S' o2 V(X?/S,t) satisfies Black—Scholes for any X, when V(S, 1)
satisfies Black—Scholes.

Why do we need the condition Sy < E to be able to value a down-and-out call by
adding together known solutions of the Black—Scholes equation (as in question 1)?
How would we value the option in the case that Sy > E?

Check the value for the down-and-in call option using the explicit solutions for the
down-and-out call and the vanilla call option.

Formulate the following problem for the accrual barrier option as a Black—Scholes
partial differential equation with appropriate final and boundary conditions:

The option has barriers at levels S, and Sy, above and below the initial asset price,
respectively. If the asset touches either barrier before expiry then the option knocks
out with an immediate payoff of ®(T — t). Otherwise, at expiry the option has a payoff
of max(S — E, 0).

Formulate the following barrier option pricing problems as partial differential equations
with suitable boundary and final conditions:

(@) The option has barriers at levels S, and Sy, above and below the initial asset
price, respectively. If the asset touches both barriers before expiry, then the
option has payoff max(S — E, 0). Otherwise the option does not pay out.

(b) The option has barriers at levels S, and Sy, above and below the initial asset
price, respectively. If the asset price first rises to S, and then falls to Sy before
expiry, then the option pays out $1 at expiry.

Price the following double knockout option: the option has barriers at levels S, and
Sy, above and below the initial asset price, respectively. The option has payoff $1,
unless the asset touches either barrier before expiry, in which case the option knocks
out and has no payoff.

Prove put-call parity for simple barrier options:
Cpjo + Cpyi — Pojo — Ppj =S — Ee "7,

where Cp,o is a European down-and-out call, Cp, is a European down-and-in call,
Pp,o is a European down-and-out put and Pp, is a European down-and-in put, all
with expiry at time T and exercise price E.

Why might we prefer to treat a European up-and-out call option as a portfolio of a
vanilla European call option and a European up-and-in call option?






CHAPTER 14
fixed-iIncome products

and analysis: yield,
duration and convexity

The aim of this Chapter. ..

...is to introduce the most common contracts of the fixed-income world and to
show simple ways for their analysis. The big assumption of this chapter is that interest
rates are deterministic. Greater levels of sophistication are needed for pricing more
complex fixed-income contracts such as derivatives, but these will be reached in later
chapters.

In this Chapter...

the names and properties of the basic and most important fixed-income
products

the definitions of features commonly found in fixed-income products

simple ways to analyze the market value of the instruments: yield, duration and
convexity

how to construct yield curves and forward rates
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4.1 INTRODUCTION

This chapter is an introduction to some basic instruments and concepts in the world of
fixed income, that is, the world of cashflows that are in the simplest cases independent
of any stocks, commodities, etc. | will describe the most elementary of fixed-income
instruments, the coupon-bearing bond, and show how to determine various properties of
such bonds to help in their analysis.

This chapter is self contained, and does not require any knowledge from earlier chapters.
A lot of it is also not really necessary reading for anything that follows. The reason for
this is that, although the concepts and techniques | describe here are used in practice
and are useful in practice, it is difficult to present a completely coherent theory for more
sophisticated products in this framework.

142 SIMPLE FIXED-INCOME CONTRACTS AND FEATURES

14.2.1 The zero-coupon bond

The zero-coupon bond is a contract paying a known fixed amount, the principal, at
some given date in the future, the maturity date T. For example, the bond pays $100
in 10 years’ time, see Figure 14.1. We’re going to scale this payoff so that in future all
principals will be $1.

This promise of future wealth is worth something now. It cannot have zero or negative
value. Furthermore, except in extreme circumstances, the amount you pay initially will be
smaller than the amount you receive at maturity.

We discussed the idea of time value of money in Chapter 1. This is clearly relevant here
and we will return to this in a moment.

$100

Figure 14.1 The zero-coupon bond.
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14.2.2 The coupon-bearing bond

A coupon-bearing bond is similar to the above except that as well as paying the principal
at maturity, it pays smaller quantities, the coupons, at intervals up to and including the
maturity date. See Figure 14.2.

These coupons are usually prespecified fractions of the principal. For example, the
bond pays $1 in 10 years and 2%, i.e. 2 cents, every six months. This would be called a
4% coupon. This bond is clearly more valuable than the bond in the previous example
because of the coupon payments. We can think of the coupon-bearing bond as a portfolio
of zero-coupon bearing bonds; one zero-coupon bearing bond for each coupon date with
a principal being the same as the original bond’s coupon, and then a final zero-coupon
bond with the same maturity as the original.

Figure 14.3 is an excerpt from The Wall Street Journal Europe of 14th April 2005
showing US Treasury bonds, notes and bills. Observe that there are many different ‘rates’
or coupons, and different maturities. The values of the different bonds will depend on the
size of the coupon, the maturity and the market’s view of the future behavior of interest
rates.

14.2.3 The money market account

Everyone who has a bank account has a money market account. This is an account
that accumulates interest compounded at a rate that varies from time to time. The rate
at which interest accumulates is usually a short-term and unpredictable rate. In the
sense that money held in a money market account will grow at an unpredictable rate,
such an account is risky when compared with a one-year zero-coupon bond. On the
other hand, the money market account can be closed at any time but if the bond is
sold before maturity there is no guarantee how much it will be worth at the time of the
sale.

$100

Figure 14.2 The coupon-bearing bond.
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Figure 14.3 The Wall Street Journal Europe of 14th April 2005 Treasury bonds, notes and bills.

14.2.4 Floating rate bonds

In its simplest form a floating interest rate is the amount that you get on your bank
account. This amount varies from time to time, reflecting the state of the economy and
in response to pressure from other banks for your business. This uncertainty about
the interest rate you receive is compensated by the flexibility of your deposit, it can
be withdrawn at any time. We often represent floating payments by wiggly lines as in

Figure 14.4.
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Figure 14.4 The floating-rate bond.

The most common measure of interest is London Interbank Offer Rate or LIBOR.
LIBOR comes in various maturities, one month, three month, six month, etc., and is the
rate of interest offered between Eurocurrency banks for fixed-term deposits.

Sometimes the coupon payment on a bond is not a prescribed dollar amount but
depends on the level of some ‘index,” measured at the time of the payment or before.
Typically, we cannot know at the start of the contract what level this index will be at when
the payment is made. We will see examples of such contracts in later chapters.

14.2.5 Forward rate agreements

A forward rate agreement (FRA) is an agreement between two parties that a prescribed
interest rate will apply to a prescribed principal over some specified period in the future.
The cashflows in this agreement are as follows: party A pays party B the principal at
time T¢1 and B pays A the principal plus agreed interest at time T, > T;. The value of this
exchange at the time the contract is entered into is generally not zero and so there will be
a transfer of cash from one party to the other at the start date.

14.2.6 Repos

A repo is a repurchase agreement. It is an agreement to sell some security to another
party and buy it back at a fixed date and for a fixed amount. The price at which the security
is bought back is greater than the selling price and the difference implies an interest rate
called the repo rate. The commonest repo is the overnight repo in which the agreement
is renegotiated daily. If the repo agreement extends for 30 days it is called a term repo.
Areverse repo is the borrowing of a security for a short period at an agreed interest rate.
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Repos can be used to lock in future interest rates. For example, buy a six-month
Treasury bill today and repo it out for three months. There is no cash flow today since the
bond has been paid for (money out) and then repoed (same amount in). In three months’
time you will have to repurchase the bill at the agreed price, this is an outflow of cash. In
six months you receive the principal. Money out in three months, money in in six months,
for there to be no arbitrage the equivalent interest rate should be that currently prevailing
between three and six months’ time.

14.2.7 STRIPS

STRIPS stands for Separate Trading of Registered Interest and Principal of Securities.
The coupons and principal of normal bonds are split up, creating artificial zero-coupon
bonds of longer maturity than would otherwise be available.

14.2.8 Amortization

In all of the above products | have assumed that the principal remains fixed at its initial
level. Sometimes this is not the case, the principal can amortize or decrease during the
life of the contract. The principal is thus paid back gradually and interest is paid on the
amount of the principal outstanding. Such amortization is arranged at the initiation of
the contract and may be fixed, so that the rate of decrease of the principal is known
beforehand, or can depend on the level of some index, if the index is high the principal
amortizes faster, for example. We see an example of a complex amortizing structure in
Chapter 18.

14.2.9 Call provision

Some bonds have a call provision. The issuer can call back the bond on certain dates
or at certain periods for a prescribed, possibly time-dependent, amount. This lowers the
value of the bond. The mathematical consequences of this are discussed in Chapter 16.

143 INTERNATIONAL BOND MARKETS

14.3.1 United States of America

In the US, bonds of maturity less than one year are called bills and are usually zero
coupon. Bonds with maturity 2—10 years are called notes. They are coupon bearing with
coupons every six months. Bonds with maturity greater than 10 years are called bonds.
Again they are coupon bearing. In this book | tend to call all of these ‘bonds,” merely
specifying whether or not they have coupons.

Bonds traded in the United States foreign bond market but which are issued by non-US
institutions are called Yankee bonds.

Since the beginning of 1997 the US government has also issued bonds linked to the
rate of inflation.
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14.3.2 United Kingdom

Bonds issued by the UK government are called gilts. Some of these bonds are callable,
some are irredeemable, meaning that they are perpetual bonds having a coupon but
no repayment of principal. The government also issues convertible bonds which may
be converted into another bond issue, typically of longer maturity. Finally, there are
index-linked bonds having the amount of the coupon and principal payments linked to a
measure of inflation, the Retail Price Index (RPI).

14.3.3 Japan

Japanese government bonds (JGBs) come as short-term treasury bills, medium-term,
long-term (10-year maturity) and super long-term (20-year maturity). The long- and super
long-term bonds have coupons every six months. The short-term bonds have no coupons
and the medium-term bonds can be either coupon-bearing or zero-coupon bonds.

Yen denominated bonds issued by non-Japanese institutions are called Samurai
bonds.

144 ACCRUED INTEREST

The market price of bonds quoted in the newspapers are clean prices. That is, they are
quoted without any accrued interest. The accrued interest is the amount of interest that
has built up since the last coupon payment:

accrued interest = interest due in full period

number of days since last coupon date
X .
number of days in period between coupon payments

The actual payment is called the dirty price and is the sum of the quoted clean price and
the accrued interest.

145 DAY=-COUNT CONVENTIONS

Because of such matters as the accrual of interest between coupon dates there naturally

arises the question of how to accrue interest over shorter periods. Interest is accrued

between two dates according to the formula

number of days between the two dates
number of days in period

x interest earned in reference period.

There are three main ways of calculating the ‘number of days’ in the above expression.

e Actual/Actual Simply count the number of calendar days.
e 30/360 Assume there are 30 days in a month and 360 days in a year.

e Actual/360 Each month has the right number of days but there are only 360 days in
ayear.
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146 CONTINUOUSLY AND DISCRETELY COMPOUNDED
INTEREST

To be able to compare fixed-income products we must decide on a convention for the
measurement of interest rates. So far, we have used a continuously compounded rate,
meaning that the present value of $1 paid at time T in the future is

e x $1

for some r. We have seen how this follows from the cash-in-the-bank or money market
account equation
adM = rM dt.

This is the convention used in the options world.
Another common convention is to use the formula

1
1+mT

for present value, where r’' is some interest rate. This represents discretely com-
pounded interest and assumes that interest is accumulated annually for T years. The
formula is derived from calculating the present value from a single-period payment, and
then compounding this for each year. This formula is commonly used for the simpler
type of instruments such as coupon-bearing bonds. The two formulee are identical, of
course, when

x $1,

r=log(1+r).

This gives the relationship between the continuously compounded interest rate r and the
discrete version r'. What would the formula be if interest was discretely compounded
twice per year?

In this book we tend to use the continuous definition of interest rates.

Mm%

3
NN
Z

Tome Ot

Which is better?

Would you rather get 10% once a year or 5% twice a
year? With the former $1 would be worth $1.10 at the end
of the year, whereas the two installments of 5% would give you

(1 +0.05)° = 1.1025.

It is very important to know what kind of interest payment you are getting.
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What interest rate paid continuously is equivalent to a one-off 10%7? The
answer is the r which satisfies
e =11

r =1log(1.1) = 0.09531018... .

So, about 9.53% on an annualized basis. Remember this logarithm is the natural
logarithm, also denoted (as in Excel) by In(-).

/

147 MEASURES OF YIELD

There is such a variety of fixed-income products, with different coupon structures,
amortization, fixed and/or floating rates, that it is necessary to be able to consistently
compare different products. Suppose you have to choose between a 10-year zero-coupon
bond and a 20-year coupon-bearing bond. One has no income for 10 years but then gets
a big lump sum, the other has a trickle of income but you have to wait much longer for
the big amount.

One way to do this is through measures of how much each contract earns, there are
several measures of this all coming under the name yield.

14.7.1 Current yield
The simplest measurement of how much a contract earns is the current yield. This
measure is defined by

annual $ coupon income
bond price

current yield =

For example, consider the 10-year bond that pays 2 cents every six months and $1 at
maturity. This bond has a total income per annum of 4 cents. Suppose that the quoted
market price of this bond is 88 cents. The current yield is simply

0.04

—— =4.5%.

0.88 &
This measurement of the yield of the bond makes no allowance for the payment of the
principal at maturity, nor for the time value of money if the coupon payment is reinvested,
nor for any capital gain or loss that may be made if the bond is sold before maturity. It is
a relatively unsophisticated measure, concentrating very much on short-term properties
of the bond.

14.7.2 The yield to maturity (YTM) or intermal rate of retumn (IRR)

Suppose that we have a zero-coupon bond maturing at time T when it pays one dollar. At
time t it has a value Z(t; T). Applying a constant rate of return of y between t and T, then
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one dollar received at time T has a present value of Z(t; T) at time t, where
Z(t;T)=e Y70,

It follows that

logZ

T—t

Let us generalize this. Suppose that we have a
coupon-bearing bond. Discount all coupons and the

principal to the present by using some interest rate y.
The present value of the bond, at time t, is then

N
V=pPe 704 %" Cie Vi, (14.1)

i=1

A VERY BASIC
AND USEFUL
DEFINITION

where P is the principal, N the number of coupons, C;
the coupon paid on date ;.

If the bond is a traded security then we know the price at which the bond can be
bought. If this is the case then we can calculate the yield to maturity or internal rate of
return as the value y that we must put into Equation (14.1) to make V equal to the traded
price of the bond. This calculation must be performed by some trial and error/iterative
procedure. For example, in the bond in Table 14.1 we have a principal of $1 paid in five
years and coupons of three cents (three percent) paid every six months.

Suppose that the market value of this bond is 96 cents. We ask ‘What is the internal
rate of return we must use to give these cash flows a total present value of 96 cents?’
This value is the yield to maturity. In the fourth column in this table is the present value
(PV) of each of the cashflows using a rate of 6.8406%: since the sum of these present
values is 96 cents the YTM or IRR is 6.8406%.

This yield to maturity is a valid measure of the return on a bond if we intend to hold it to
maturity.

Table 14.1 An example of a coupon-bearing bond.

Time Coupon Principal PV (discounting
repayment at 6.8406%)

0 0

0.5 .03 0.0290
1.0 .03 0.0280
15 .03 0.0270
2.0 .03 0.0262
2.5 .03 0.0253
3.0 .03 0.0244
3.5 .03 0.0236
4.0 .03 0.0228
4.5 .03 0.0220
5.0 .03 1.00 0.7316

Total 0.9600
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To calculate the yield to maturity of a portfolio of bonds simply treat all the cashflows
as if they were from the one bond and calculate the value of the whole portfolio by adding
up the market values of the component bonds.

148 THE YIELD CURVE

The plot of yield to maturity against time to maturity is called the yield curve. For the
moment assume that this has been calculated from zero-coupon bonds and that these
bonds have been issued by a perfectly creditworthy source.

If the bonds have coupons then the calculation of the yield curve is more complicated
and the ‘forward curve,” described below, is a better measure of the interest rate pertaining
at some time in the future. Figure 14.5 shows the yield curve for US Treasuries as it was
on 9th September 1999.

-
Tome Ot

Discount factors

Once you’ve calculated the yield curve you can use the
results to work out the present value of any fixed-rate
cashflows. All you have to do is work out the discount factor for each cashflow
and multiply the cashflow by that amount. Typically, you’ll find yourself in the
situation of having a cashflow on a certain date but no yield associated with
that maturity. Then you’ll have to interpolate between the two yields either side
to get an estimate for the required maturity.

\-

149 PRICE/YIELD RELATIONSHIP

From Equation (14.1) we can easily see that the rela-
tionship between the price of a bond and its yield is
of the form shown in Figure 14.6 (assuming that all
cash flows are positive). On this figure is marked the
current market price and the current yield to maturity.
Since we are often interested in the sensitivity of
instruments to the movement of certain underlying
factors it is natural to ask how does the price of a bond vary with the yield, or vice versa.
To a first approximation this variation can be quantified by a measure called the duration.
Figure 14.7 shows the price/yield relationship for a specific five-year US Treasury.

YIELD GOES Uup,
PRICE GOES
DowWnN
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Figure 14.5 Yield curve for US Treasuries. Source: Bloomberg L.P.
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Figure 14.6 The price/yield relationship.
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Figure 14.7 Bloomberg’s price/yield graph. Source: Bloomberg L.P.

1410 DURATION

From Equation (14.1) we find that

DURATION IS A
SENSITIVITY To
A YIELD, A BITLKE
DELTA

av

N
3 —(T = Pe T — " Ci(t; — t)e ™.

i=1

This is the slope of the price/yield curve. The quantity

is called the Macaulay duration. (The modified duration is similar but uses the discretely
compounded rate.) In the expression for the duration the time of each coupon payment is
weighted by its present value. The higher the value of the present value of the coupon the
more it contributes to the duration. Also, since y is measured in units of inverse time, the
units of the duration are time. The duration is a measure of the average life of the bond.
It is easily shown that the Macaulay duration for a zero-coupon bond is the same as its
maturity.

Let’s take alook at the idea of average time. Suppose we asked what zero-coupon bond
is our (coupon-bearing) bond equivalent to? That is, what maturity would an ‘equivalent’
bond have? Take the actual bond’s value and equate it to a zero-coupon bond, having
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N

g N V=Pe V701 Y ettt = x T,
i=1

Differentiate both sides with respect to y:

, ,, SN the same yield but an unknown maturity (and unknown quantity!):
\,

N
4 _ _
ﬂ, Z—y =—(T-tPe?T 0> "Ci(t; —t)e "0 = X (T ) e,
i=1

~ Finally, divide both sides by —V:
All of this is
implemented on 1adv 7
the CD N2

Hence the statement about the bond’s average life, or effective maturity.

For small movements in the yield, the duration gives a good measure of the change in
value with a change in the yield. For larger movements we need to look at higher order
terms in the Taylor series expansion of V(y).

One of the most common uses of the duration is in plots of yield versus duration for
a variety of instruments. An example is shown in Figure 14.8. Look at the bond marked
‘CPU.’ This bond has a coupon of 4.75% paid twice per year, callable from June 1998
and maturing in June 2000. We can use this plot to group together instruments with the
same or similar durations and make comparisons between their yields. Two bonds having
the same duration but with one bond having a higher yield might be suggestive of value
for money in the higher-yielding bond, or of credit risk issues. However, such indicators of
relative value must be used with care. It is possible for two bonds to have vastly different
cashflow profiles yet have the same duration; one may have a maturity of 30 years but an

12 -

@ FNEN 5/1/05-98

10 A @ HCNA110.750110/15/03-98
® FNRI 9.75 10/1/06-01
O NVR 11 4/15/03-98
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Figure 14.8 Yield versus duration: measuring the relative value of bonds.
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average life and hence a duration of seven years, whereas another may be a seven-year
zero-coupon bond. Clearly, the former has 23 years more risk than the latter.

P
Tome Ot

Duration = Average life. Why?

The figure below shows a lot of ‘cashflows’ balancing over
a fulcrum. On the right-hand side the arrows are the
cashflows associated with the bond we are analyzing. The height of each arrow
represents the present value of the cashflow, its distance along the balance
from the fulcrum represents the time to the cashflow. The sum of all the heights
will therefore represent the known value of the bond. Question, where should
an arrow be placed on the left-hand side, having the same height as the sum
of all the right-hand arrows, to make a perfect balance? Answer, the distance
along from the fulcrum representing the duration of the bond. So, it’s rather like
an average distance of all the bond’s cashflows, or its average life.

N _J

4.1l CONVEXITY

The Taylor series expansion of V gives

Qv _dv, 1PV
v vay? Tawge

CTONMVEXITY X
LIKE cAMMA A
SECOND-ORDER
EFFE<CT

Gy?+...,

where 3y is a change in yield. For very small move-
ments in the yield, the change in the price of a bond
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can be measured by the duration. For larger movements we must take account of the
curvature in the price/yield relationship.
The dollar convexity is defined as

a2V A
@7 = (T —1?Pe™T-0 1 " Cifty — tiPe V.

i=1
and the convexity is

1d?v
Vdy?’
To see how these can be used, examine Figure 14.9.

In this figure we see the price/yield relationship for two bonds having the same value
and duration when the yield is around 8%, but then they have different convexities. Bond
A has a greater convexity than bond B. This figure suggests that bond A is better value
than B because a small change in the yields results in a higher value for A. When we
develop a consistent theory for pricing bonds when interest rates are stochastic we will
see how the absence of arbitrage will lead to relationships between such quantities as
yield, duration and convexity, not unlike the Black—Scholes equation.

The calculation of yield to maturity, duration and convexity are shown in the simple
spreadsheet in Figure 14.10. Inputs are in the gray boxes.

4,

3.5 ~
—Bond A
3 —Bond B

2.5 1

2,

Price

1.5

1,

0.5 -

0 T T 1
0% 5% 10% 15%

Yield

Figure 14.9 Two bonds with the same price and duration but different convexities.
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Figure 14.10 A spreadsheet showing the calculation of yield, duration and convexity.

14.12 AN EXAMPLE

Figure 14.11 shows the yield analysis screen from
Bloomberg. The yield, duration and convexity have
been calculated for a specific US Treasury. Figures
14.12 and 14.13 show time series of the price and
yield respectively.

FOR SIMPLE
INSTRUMENTE (T§ EASY
TO CALCALATE YIELD,
DURATION AND CONVEXITY

14.13 HEDGING

In measuring and using yields to maturity, it must be remembered that the yield is the rate
of discounting that makes the present value of a bond the same as its market value. A
yield is thus identified with each individual instrument. It is perfectly possible for the yield
on one instrument to rise while another falls, especially if they have significantly different
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Figure 14.11 Yield analysis. Source: Bloomberg L.P.

Monitaoring enabled.
EX8)-0AY CHART HE T 6 08/15/04 | 0H30g22H30]
5

Govt GIP

18:07

9 + 03+

Hi101-00 Lol00-20+ Dpl00-26 #Ticks 753 18:05 4 100-2
T
|
|

oper g . FranKfurt 6o o0y Fong 2= =i ondon: 1/ T-300—
Princeton:602-275-3000 Singapore : 226-3000 Sgdney: 2-9777-2686 Tokyo: 3~3201-3200

l;Bloomberg

102-00

101-24

101-1e

101-08

101-00

100-16

100-08

100-00

99-24

B _TorK < ~3T8-2000
Suo Poulo:11-3043-4500

1741~53-0 08-Sep-99 13-

07:36

Figure 14.12 Price time series. Source: Bloomberg L.P.
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Figure 14.13 Yield time series. Source: Bloomberg L.P.

maturities or durations. Nevertheless, one often wants to hedge movements in one bond
with movements in another. This is commonly achieved by making one big assumption
about the relative movements of yields on the two bonds. Bond A has a yield of y4, bond
B has a yield of yg, they have different maturities and durations but we will assume that
a move of x% in A’s yield is accompanied by a move of x% in B’s yield. This is the
assumption of parallel shifts in the yield curve. If this is the case, then if we hold A bonds
and B bonds in the inverse ratio of their durations (with one long position and one short)
we will be leading-order hedged:

IT = Va(ya) — AVB(ys),

with the obvious notation for the value and yield of the two bonds. The change in the
value of this portfolio is

av, aV
ST = —2x — A Bx + higher-order terms.
YA ayB
Choose
_ aVy s0Vp
~ oyal oys

to eliminate the leading-order risk. The higher-order terms depend on the convexity of the
two instruments.
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Of course, this is a simplification of the real situation; there may be little relationship
between the yields on the two instruments, especially if the cash flows are significantly
different. In this case there may be twisting or arching of the yield curve.

[4.14 TIME-DEPENDENT INTEREST RATE

In this section we examine bond pricing when we have an interest rate that is a known
function of time. The interest rate we consider will be what is known as a short-term
interest rate or spot interest rate r(t). This means that the rate r(t) is to apply at time
t: interest is compounded at this rate at each moment in time but this rate may change;
generally we assume it to be time dependent.

If the spot interest rate r(t) is a known function of time, then the bond price is also a
function of time only: V = V(t). (The bond price is, of course, also a function of maturity
date T, but | suppress that dependence except when it is important.) We begin with a
zero-coupon bond example. Because we receive 1 at time t = T we know that V(T) = 1.
I now derive an equation for the value of the bond at a time before maturity, t < T.

Suppose we hold one bond. The change in the value of that bond in a time-step dt
(fromttot+df)is

av

T at.
Arbitrage considerations again lead us to equate this with the return from a bank deposit
receiving interest at a rate r(f):

av
— =rt)V.
o =0
The solution of this equation is
V(t; T) = e~ e (14.2)

Now let’s introduce coupon payments. If during the period t to t + dt we have received
a coupon payment of K(t)dt, which may be either in the form of continuous or discrete
payments or a combination, our holdings including cash change by an amount

av
<E + K(t)) at.

Again setting this equal to the risk-free rate r(T) we conclude that
av
at

The solution of this ordinary differential equation is easily found to be, dropping the

parameter T,

+K(t) = r@)V. (14.3)

t

. T "
f=e K (14 [ Kt)el 0 gt ) ; (14.4)
Vi) =e"/

the arbitrary constant of integration has been chosen to ensure that V(T) = 1.
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14.15 DISCRETELY PAID COUPONS

Equation (14.4) allows for the payment of a coupon. But what if the coupon is paid
discretely, as it is in practice, for example, every six months, say? We can arrive at
this result by a financial argument that will be useful later. Since the holder of the bond
receives a coupon, call it K., at time t. there must be a jump in the value of the bond
across the coupon date. That is, the values before and after this date differ by K¢:

V) = V() + Ke.

This will be recognized as a jump condition. This time the realized bond price is not
continuous. After all, there is a discrete payment at the coupon date. This jump condition
will still apply when we come to consider stochastic interest rates.

Having built up a simple framework in which interest rates are time dependent | now
show how to derive information about these rates from the market prices of bonds.

BOOTSTRAPPING

The main problem with the use of yield to maturity as
a measure of interest rates is that it is not consistent
across instruments. One five-year bond may have a
different yield from another five-year bond if they have
different coupon structures. It is therefore difficult to
say that there is a single interest rate associated with
a maturity.

One way of overcoming this problem is to use forward rates.

Forward rates are interest rates that are assumed to apply over given periods in the
future for all instruments. This contrasts with yields which are assumed to apply up to
maturity, with a different yield for each bond.

Let us suppose that we are in a perfect world in which we have a continuous distribution
of zero-coupon bonds with all maturities T. Call the prices of these at time t Z(t; T). Note
the use of Z for zero coupon.

The implied forward rate is the curve of a time-dependent spot interest rate that is
consistent with the market price of instruments. If this rate is r(r) at time t then it satisfies

1416 FORWARD RATES AND \@

FORWARD RATES
ARE SUPPOSED To
TELL USSoMETHING
AROUT THE FUTURE

2(:7) = o~ i roke

On rearranging and differentiating this gives
9
f(7) = =09 Z(t; T).

This is the forward rate for time T as it stands today, time t. Tomorrow the whole curve
(the dependence of r on the future) may change. For that reason we usually denote the
forward rate at time t applying at time T in the future as F(t; T) where

F6T) = — (09 Z(t:T)
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Figure 14.14 The yields and the forward rates.

Writing this in terms of yields y(t; T) we have
Z(t, T) — efy(t;T)(Tft)

and so
STV (e oy
Ft;T)=y(t;T) + a7

This is the relationship between yields and forward rates when everything is nicely
differentiable. See Figure 14.14.

14.16.1 Discrete data

In the less-than-perfect real world we must do with only a discrete set of data points. We
continue to assume that we have zero-coupon bonds but now we will only have a discrete
set of them. We can still find an implied forward rate curve as follows.
Rank the bonds according to maturity, with the shortest maturity first. The market prices
of the bonds will be denoted by Z,M where i is the position of the bond in the ranking.
Using only the first bond, ask the question: ‘What interest rate is implied by the market
price of the bond?’ The answer is given by y1, the solution of

qu — e 11T *f),
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log(Z)
Ty —t°

y1=

This rate will be the rate that we use for discounting between the present and the maturity
date T7 of the first bond. And it will be applied to all instruments whenever we want to
discount over this period.

Now move on to the second bond having maturity date T,. We know the rate to apply
between now and time T4, but at what interest rate must we discount between dates T
and T, to match the theoretical and market prices of the second bond? The answer is y»
which solves the equation

Zg” = e V1(M~tg=ya(T2=T1),

_log (Z3'/2')

2= To — T4

By this method of bootstrapping we can build up the forward rate curve. Note how the
forward rates are applied between two dates, for which period we have assumed they are
constant. Figure 14.21 gives an example.

This method can easily be extended to accommodate coupon-bearing bonds. Again
rank the bonds by their maturities, but now we have the added complexity that we may
only have one market value to represent the sum of several cashflows. Thus one often
has to make some assumptions to get the right number of equations for the number of
unknowns. See Figures 14.15-14.20.

Figure 14.15 The universe of bonds.
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14.16.2 On a spreadsheet

Given the market price of zero-coupon bonds it is very easy to calculate yields and
forward rates, as shown in the spreadsheet (Figure 14.21). Inputs are in the gray

boxes.

Figure 14.16 The universe of bonds, ranked in order of maturity.

Figure 14.17 The first-maturing bond gives us a forward rate from now until its maturity.
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Figure 14.18 The second-maturing bond gives us a forward rate from maturity of the previous
bond until its own maturity.

Figure 14.19 The third-maturing bond gives us a forward rate from maturity of the previous bond
until its own maturity.

The yields and forward rates for this data are shown in Figures 14.22 and 14.23. Note
that in each case the yield begins at zero maturity and extends up to the maturity of each
bond. The forward rates pick up where the last forward rates left off.

There are far more swaps of different maturities than there are bonds, so that in practice
swaps are used to build up the forward rates by bootstrapping. Fortunately, there is
a simple decomposition of swaps prices into the prices of zero-coupon bonds so that
bootstrapping is still relatively straightforward. Swaps are discussed in more detail in
Chapter 15.
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Figure 14.20 And so on.

AN A [ B [ ¢ ] D J E
(‘ h Y | | 1| Timeto Market  Yieldto Forward
Qf©© | 2 | maturity price z-c b maturity rate

~ | 3] 0.25 0.9809 7.71%  7.71%
- | 4] 0.5 0.9612 7.91%  8.12%
5 1 0.9194  8.40%  8.89%
EASY ENOUGH [ 6 2 0.8436  8.50%  8.60%
PR (EERo-CouraN 7] 3 07772 840%  8.20%
| 8] 5 0.644  8.80%  9.40%
9] 7 05288  9.10%  9.85%
110} 10 0.3985 _9.20%  9.43%
11
12| [=-LN(B10)/ A0 |
13
| 14 ]
- [= (C10°A10-C9*A9)/ (A10-A9) ]

Figure 14.21 A spreadsheet showing the calculation of yields and forward rates from zero-coupon
bonds.

4.7 INTERPOLATION

We have explicitly assumed in the previous section that the forward rates are piecewise
constant, jumping from one value to the next across the maturity of each bond. Other
methods of ‘interpolation’ are also possible. For example, the forward rate curve could
be made continuous, with piecewise constant gradient. Some people like to use cubic
splines. The correct way of ‘joining the dots’ (for there are only a finite number of market
prices) has been the subject of much debate. If you want to know what rate to apply to a
two-and-a-half-year cashflow and the nearest bonds are at two and three years then you
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Figure 14.22 Yield to maturities.
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Figure 14.23 Forward rates.
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will have to make some assumptions; there is no ‘correct’ value. Perhaps the best that
can be done is to bound the rate.

1418 SUMMARY

There are good and bad points about the interest rate model of this chapter. First, |
mention the advantages.

Compare the simplicity of the mathematics in this chapter with that in previous chapters
on option pricing. Clearly there is benefit in having models for which the analysis
is so simple. Computation of many values and hedging can be performed virtually
instantaneously on even slow computers. Moreover, it may be completely unnecessary
to have a more complex model. For example, if we want to compare simple cashflows it
may be possible to directly value one bond by summing other bonds, if their cashflows
can be made to match. Such a situation, although uncommon, is market-independent
modeling. Even if exact cashflow matches are not possible, there may be sufficiently close
agreement for the differences to be estimated or at least bounded; large errors are easily
avoided.

On the other hand, it is common experience that interest rates are unpredictable,
random, and for complex products the movement of rates is the most important factor in
their pricing. To assume that interest rates follow forward rates would be financial suicide
in such cases. Think back to Jensen’s inequality. There is therefore a need for models
more closely related to the stochastic models we have seen in earlier chapters.

In this chapter we saw simple yet powerful ways to analyze simple fixed-income
contracts. These methods are used very frequently in practice, far more frequently than
the complex methods we later discuss for the pricing of interest rate derivatives. The
assumptions underlying the techniques, such as deterministic forward rates, are only
relevant to simple contracts. As we have seen in the options world, more complex
products with non-linear payoffs require a model that incorporates the stochastic nature
of variables. Stochastic interest rates will be the subject of later chapters.

FURTHER READING

e The work of Macaulay (1938) on duration wasn’t used much prior to the 1960s, but
now it is considered fundamental to fixed-income analysis.

e See Fabozzi (1996) for a discussion of yield, duration and convexity in greater detail.
He explains how the ideas are extended to more complicated instruments.

e The argument about how to join the yield curve dots is as meaningless as the argument
between the Little-Endians and Big-Endians of Swift (1726).

e See Walsh (2003) for issues concerning curve building.

EXERCISES

1. A coupon bond pays out 3% every year, with a principal of $1 and a maturity of five
years. Decompose the coupon bond into a set of zero-coupon bonds.
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2. Construct a spreadsheet to examine how $1 grows when it is invested at a
continuously compounded rate of 7%. Redo the calculation for a discretely com-
pounded rate of 7%, paid once per annum. Which rate is more profitable?

3. A zero-coupon bond has a principal of $100 and matures in four years. The market
price for the bond is $72. Calculate the yield to maturity, duration and convexity for
the bond.

4. A coupon bond pays out 2% every year on a principal of $100. The bond matures in
six years and has a market value of $92. Calculate the yield to maturity, duration and
convexity for the bond.

5. Zero-coupon bonds are available with a principal of $1 and the following maturities:

(@ 1 year (market price $0.93),
(b) 2 years (market price $0.82),
(c) 3 years (market price $0.74).

Calculate the yield to maturities for the three bonds. Use a bootstrapping method to
work out the forward rates that apply between 1-2 years and 2-3 years.

6. What assumption do we make when we duration hedge? Is this a reasonable
assumption to make?

7. Solve the equation

PTE 6 Year Non-Call 2 Year Fixed Rate Step-up Note

Aggregate Principal PTE 10,000,000,000
Amount
Trade Date 4 November 1997
Issue Date 25 November 1997
Settlement Date 25 November 1997
Maturity Date 25 November 2003
Issue Price 100%
Coupon Years 1-2: 5.75%
Years 3-6: 6.25%
Issuer Optional The issuer has the right, but not the obligation, to
Redemption redeem the Notes at 100% of Nominal, in whole

but not in part, on 25 November 1999 with 10
Business Days Prior notice.

Payment Frequency Annual
Daycount Convention 30/360
Governing Law English

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product
which includes options, swaps, forwards and structured notes having similar features to OTC
derivative transactions, nor a solicitation to buy or sell securities or an OTC derivative product.
The proposal contained in the foregoing is not a complete description of the terms of a particular
transaction and is subject to change without limitation.

Figure 14.24 A PTE six-year non-call two-year fixed rate step-up note.
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with final data V(T) = 1. This is the value of a coupon bond when there is a known
interest rate, r(t). What must we do if interest rates are not known in advance?

8. Figure 14.24 is a term sheet for a step-up note paying a fixed rate that changes during
the life of the contract. Plot the price/yield curve for this product today, ignoring the
call feature. What effect will the call feature have on the price of this contract?
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CHAPTER 15
SWaps

The aim of this Chapter...

...is to introduce the reader to the important world of swaps, one of the most
important and fundamental financial contracts. We will also be seeing the simple
relationship between swaps and bonds.

In this Chapter...

the specifications of basic interest rate swap contracts
the relationship between swaps and zero-coupon bonds

exotic swaps
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5./ INTRODUCTION

A swap is an agreement between two parties to exchange, or swap, future cashflows. The
size of these cashflows is determined by some formulae, decided upon at the initiation of
the contract. The swaps may be in a single currency or involve the exchange of cashflows
in different currencies.

The swaps market is big. The total notional principal amount is, in US dollars, currently
comfortably in 74 figures. This market really began in 1981 although there were a small
number of swap-like structures arranged in the 1970s. Initially the most popular contracts
were currency swaps, discussed below, but very quickly they were overtaken by the
interest rate swap.

52 THE VANILLA INTEREST RATE SWAP

In the interest rate swap the two parties exchange cashflows that are represented by the
interest on a notional principal. Typically, one side agrees to pay the other a fixed interest
rate and the cashflow in the opposite direction is

~

\&\ a floating rate. The parties to a swap are shown

N\

schematically in Figure 15.1. One of the commonest
floating rates used in a swap agreement is LIBOR,
London Interbank Offer Rate.

Commonly in a swap, the exchange of the fixed and
INCREDIBLY floating interest payments occur every six months. In
PaPULAR conTRACTS | this case the relevant LIBOR rate would be the six-
month rate. At the maturity of the contract the principal
is not exchanged.

Let me give an example of how such a contract works.

Example Suppose that we enter into a five-year swap on 7th July 2007, with semi-
annual interest payments. We will pay to the other party a rate of interest fixed at 6% on
a notional principal of $100 million, the counterparty will pay us six-month LIBOR. The
cashflows in this contract are shown in Figure 15.2. The straight lines denote a fixed rate
of interest and thus a known amount, the curly lines are floating rate payments.

The first exchange of payments is made on 7th January 2008, six months after the
deal is signed. How much money changes hands on that first date? We must pay
0.03 x $100,000,000 = $3,000,000. The cashflow in the opposite direction will be at six-
month LIBOR, as quoted six months previously, i.e. at the initiation of the contract. This is
a very important point. The LIBOR rate is set six months before it is paid, so that in the first
exchange of payments the floating side is known. This makes the first exchange special.

The second exchange takes place on 7th July 2008. Again we must pay $3,000,000,
but now we receive LIBOR, as quoted on 7th January 2008. Every six months there is an

fixed rate
A pays _— B pays
fixed and floating and
receives AN receives
floating LIBOR fixed

Figure 15.1 The parties to an interest rate swap.
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Figure 15.2 A schematic diagram of the cashflows in an interest rate swap.

exchange of such payments, with the fixed leg always being known and the floating leg
being known six months before it is paid. This continues until the last date, 7th July 2012.

Why is the floating leg set six months before it is paid? This ‘minor’ detail makes a
large difference to the pricing of swaps, believe it or not. It is no coincidence that the time
between payments is the same as the maturity of LIBOR that is used, six months in this
example. This convention has grown up because of the meaning of LIBOR, it is the rate
of interest on a fixed-term maturity, set now and paid at the end of the term. Each floating
leg of the swap is like a single investment of the notional principal six months prior to the
payment of the interest. Hold that thought, we return to this point in a couple of sections
to show the simple relationship between a swap and bonds.

There is also the LIBOR in arrears swap in which the LIBOR rate paid on the swap
date is the six-month rate set that day, not the rate set six months before.

153 COMPARATIVE ADVANTAGE

Swaps were first created to exploit comparative advantage. This is when two companies
who want to borrow money are quoted fixed and floating rates such that by exchanging
payments between themselves they benefit, at the same time benefiting the intermediary
who puts the deal together. Here’s an example.

Two companies A and B want to borrow $50MM, to be paid back in two years. They
are quoted the interest rates for borrowing at fixed and floating rates shown in Table 15.1.

Note that both must pay a premium over LIBOR to cover risk of default, which is
perceived to be greater for company B.

Ideally, company A wants to borrow at floating and B at fixed. If they each borrow
directly then they pay the following:

The total interest they are paying is

six-month LIBOR + 30 bps + 8.2% = six-month LIBOR + 8.5%.

Table 15.1 Borrowing rates for companies A
and B.

Fixed Floating

A 7% six-month LIBOR + 30 bps
B 8.2% six-month LIBOR + 100 bps
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Table 15.2 Borrowing rates with no swap
involved.

A six-month LIBOR + 30 bps (floating)
B 8.2% (fixed)

If only they could get together they’d only be paying
six-month LIBOR + 100 bps + 7% = six-month LIBOR + 8%.

That’s a saving of 0.5%.

Let’s suppose that A borrows fixed and B floating, even though that’s not what they
want. Their total interest payments are six-month LIBOR plus 8%. Now let’s see what
happens if we throw a swap into the pot.

* Ais currently paying 7% and B six-month LIBOR plus 1%. They enter into a swap in
which A pays LIBOR to B and B pays 6.95% to A. They have swapped interest payments.

Looked at from A’s perspective they are paying 7% and LIBOR while receiving 6.95%, a
net floating payment of LIBOR plus 5 bps. Not only is this floating, as A originally wanted,
but it is 25 bps better than if they had borrowed directly at the floating rate. There’s still
another 25 bps missing, and, of course, B gets this. B pays LIBOR plus 100 bps and
also 6.95% to A while receiving LIBOR from A. This nets out at 7.95%, which is fixed, as
required, and 25 bps less than the original deal.

Where did | get the 6.95% from? Let’s do the same calculation with ‘x’ instead of 6.95.

Go back to *. A is currently paying 7% and B six-month LIBOR plus 1%. They enter
into a swap in which A pays LIBOR to B and B pays x% to A. They have swapped interest
payments.

Looked at from A’s perspective they are paying 7% and LIBOR while receiving x’%, a
net floating payment of LIBOR plus 7 — x%. Now we want A to benefit by 25 bps over the
original deal, this is half the 50 bps advantage. (I’ve just unilaterally decided to divide the
advantage equally, 25 bps each.) So...

LIBOR + 7 —x + 0.25 = LIBOR + 0.3,

X =6.95%.

Not only does A now get floating, as originally wanted, but it is 25 bps better than if
they had borrowed directly at the floating rate. There’s still another 25 bps missing, and,
of course, B gets this. B pays LIBOR plus 100 bps and also 6.95% to A while receiving
LIBOR from A. This nets out at 7.95%, which is fixed, as required, and 25 bps less than
the original deal.

In practice the two counterparties would deal through an intermediary who would take
a piece of the action.

Although comparative advantage was the original reason for the growth of the swaps
market, it is no longer the reason for the popularity of swaps. Swaps are now very vanilla
products existing in many maturities and more liquid than simple bonds.

Given the ubiquity of swaps you would expect the comparative advantage argument
to have been arbed away. This is true. However, the arbitrage still exists in special
circumstances. For example, floating loans usually come with provision for reviewing the
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spread over LIBOR every few months. If the company has become less creditworthy
between reviews the spread will be increased. This is difficult to model or anticipate and
S0 is outside the no-arbitrage concept.

154 THE SWAP CURVE

When the swap is first entered into it is usual for the deal to have no value to either party.
This is done by a careful choice of the fixed rate of interest. In other words, the ‘present
value,’ let us say, of the fixed side and the floating side both have the same value, netting
out to zero. Consider the two extreme scenarios, very high fixed leg and very low fixed
leg. If the fixed leg is very high the receiver of fixed has a contract with a high value. If the
fixed leg is low the receiver has a contract that is worth a negative amount. Somewhere
in between is a value that makes the deal valueless. The fixed leg of the swap is chosen
for this to be the case.

Such a statement throws up many questions: How is the fixed leg decided upon? Why
should both parties agree that the deal is valueless?

There are two ways to look at this. One way is to observe that a swap can be
decomposed into a portfolio of bonds (as we see shortly) and so its value is not open
to question if we are given the yield curve. However, in practice the calculation goes the
other way. The swaps market is so liquid, at so many maturities, that it is the prices of
swaps that drive the prices of bonds. The fixed leg of a par swap (having no value) is
determined by the market.

The rates of interest in the fixed leg of a swap are quoted at various maturities. These
rates make up the swap curve, see Figure 15.3.

<HELP> for explanation. DL18 Govt IYC
Hit <PAGE> for more info or <HENU> for a list of curves
YIELD CURVE - US $ SWAP 30/360 1/2

Currency  HH RANGE - DATE 9/ 8/99

7.0

3MEM 1Y 2y 3Y 4Y SY &Y 7Y 8Y SY 10

15 20 30
Copgrz%ht 1999 BLOOMBERE L.P. Fronkfurt:69-920410 Hong Kong:2—29??—5000 London:171-330-7500 Hew York:212-318-2000
Princeion:£09-279~3000 Singapore:226-3000 Sydney:2-9777-8686 Tokyo : 3-3201-8300 Sao Poulo:11-3048-4500

1741-53-0 08-Sep-99 18:26:35
ﬁBloomberg

Figure 15.3 The swap curve. Source: Bloomberg L.P.
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155 RELATIONSHIP BETWEEN SWAPS AND BONDS

There are two sides to a swap, the fixed-rate side and the floating-rate side. The fixed
interest payments, since they are all known in terms of actual dollar amount, can be
seen as the sum of zero-coupon bonds. If the fixed
rate of interest is rs then the fixed payments add up to

ANOTHER MODEL-
INDEPENDENT NO -ARR

RELATIONSHIP

N
I's Zz(t; Ti).
i=1

This is the value today, time t, of all the fixed-rate pay-

ments. Here there are N payments, one at each T;. Of
course, this is multiplied by the notional principal, but assume that we have scaled this
to one.

To see the simple relationship between the floating leg and zero-coupon bonds | draw
some schematic diagrams and compare the cashflows. A single floating leg payment is
shown in Figure 15.4. At time T; there is payment of r, of the notional principal, where r,
is the period 7 rate of LIBOR, set at time T; — 7. | add and subtract $1 at time T; to get
the second diagram. The first and the second diagrams obviously have the same present
value. Now recall the precise definition of LIBOR. It is the interest rate paid on a fixed-term
deposit. Thus the $1 + r, at time T; is the same as $1 at time T; — r. This gives the third
diagram. It follows that the single floating rate payment is equivalent to two zero-coupon
bonds. A single floating leg of a swap at time T; is exactly equal to a deposit of $1 at time
T, — = and a withdrawal of $1 at time <.

Now add up all the floating legs as shown in Figure 15.5, note the cancelation of all $1
(dashed) cashflows except for the first and last. This shows that the floating side of the
swap has value

1—Z(t; Tw).
$1 +
LIBOR
Period t
LIBOR
T
| _ |
| - |
Ti-7 T; ‘
$1

| .

Figure 15.4 A schematic diagram of a single floating leg in an interest rate swap and equivalent
portfolios.
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Figure 15.5 A schematic diagram of all the floating legs in a swap.

Bring the fixed and floating sides together to find that the value of the swap, to the

receiver of the fixed side, is

N
rst Y Z(tT) — 1+ Z(t; Th).

i=

1

This result is model independent. This relationship is independent of any mathematical

model for bonds or swaps.

At the start of the swap contract the rate rs is usually chosen to give the contract par

value, i.e. zero value initially. Thus

This is the quoted swap rate.

156 BOOTSTRAPPING

Swaps are now so liquid and exist for an enormous
range of maturities that their prices determine the yield
curve and not vice versa. In practice one is given rs(T))
for many maturities T; and one uses (15.1) to calculate
the prices of zero-coupon bonds and thus the yield
curve. For the first point on the discount-factor curve

we must solve

rs(T4) =

rs_

1-Z(t,Tn)

-t ,
>z (15.1)
i=1

USED IN PRACTICE
ALLTHE TIME

1—Z(t;T1)
Z(t; T1)
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Figure 15.6 Forward rates derived from the swap curve by bootstrapping. Source: Bloomberg L.P.

i.e.

1
R T

After finding the first j discount factors the j + 1th is found from

i
1-rs(T)e Y Z(t Ti)
i=1

Z(t;Tj) =

1+r5(Tj1)T

Figure 15.6 shows the forward curve derived from the data in Figure 15.3 by bootstrap-
ping.

157 OTHER FEATURES OF SWAPS CONTRACTS

The above is a description of the vanilla interest rate swap. There any many features
that can be added to the contract that make it more complicated, and most importantly,
model dependent. A few of these features are mentioned here.
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Callable and puttable swaps A callable or puttable swap allows one side or the other
to close out the swap at some time before its natural maturity. If you are receiving fixed
and the floating rate rises more than you had expected you would want to close the
position. Mathematically we are in the early exercise world of American-style options. The
problem is model dependent and is discussed in Chapter 18.

Extendible swaps The holder of an extendible swap can extend the maturity of a
vanilla swap at the original swap rate.

Index amortizing rate swaps The principal in the vanilla swap is constant. In some
swaps the principal declines with time according to a prescribed schedule. The index
amortizing rate swap is more complicated still with the amortization depending on the
level of some index, say LIBOR, at the time of the exchange of payments. We will see this
contract in Chapter 18.

158 OTHER TYPES OF SWAP

15.8.1 Basis rate swap

In the basis rate swap the floating legs of the swap are defined in terms of two distinct
interest rates. For example, the prime rate versus LIBOR. A bank may have outstanding
loans based on this prime rate but itself may have to borrow at LIBOR. It is thus exposed
to basis risk and can be reduced with a suitable basis rate swap.

15.8.2 Equity swaps

The basic equity swap is an agreement to exchange two payments, one being an agreed
interest rate (either fixed or floating) and the other depending on an equity index. This
equity component is usually measured by the total return on an index, both capital gains
and dividend are included. The principal is not exchanged.

The equity basis swap is an exchange of payments based on two different indices.

15.8.3 Currency swaps

A currency swap is an exchange of interest payments in one currency for payments in
another currency. The interest rates can be both fixed, both floating or one of each. As
well as the exchange of interest payments there is also an exchange of the principals (in
two different currencies) at the beginning of the contract and at the end.

To value the fixed-to-fixed currency swap we need to calculate the present values of
the cashflows in each currency. This is easily done, requiring the discount factors for the
two currencies. Once this is done we can convert one present value to the other currency
using the current spot exchange rate. If floating interest payments are involved we first
decompose them into a portfolio of bonds (if possible) and value similarly.
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159 SUMMARY

The need and ability to be able to exchange one type of interest payment for another
is fundamental to the running of many businesses. This has put swaps among the most
liquid of financial contracts. This enormous liquidity makes swaps such an important
product that one has to be very careful in their pricing. In fact, swaps are so liquid that
you do not price them in any theoretical way, to do so would be highly dangerous. Instead
they are almost treated like an ‘underlying’ asset. From the market’s view of the value
we can back out, for example, the yield curve. We are helped in this by the fine detalil
of the swaps structure, the cashflows are precisely defined in a way that makes them
exactly decomposable into zero-coupon bonds. And this can be done in a completely
model-independent way. To finish this chapter | want to stress the importance of not using
a model when a set of cashflows can be perfectly, statically and model-independently
hedged by other cashflows. Any mispricing, via a model, no matter how small could
expose you to large and risk-free losses.

FURTHER READING

e Two good technical books on swaps are by Das (1994) and Miron & Swannell (1991).

e The pocketbook by Ungar (1996) describes the purpose of the swaps market, how it
works and the different types of swaps, with no mathematics.

EXERCISES

1. Consider a swap with the following specification:

The floating payment is at the six-month rate, and is set six months before the
payment (swaplet) date. The swap expires in five years, and payments occur every six
months on a principal of $1. Zero-coupon bond prices are known for all maturities up
to 10 years. What is the ‘fair’ level for the fixed rate side of the swap, so that initially
the swap has no value?

2. Anindex amortizing rate swap has a principal which decreases at a rate dependent on
the interest rate at settlement dates. Over a payment date, the principal changes from
P to g(r)P, where g(r) is a function specified in the swap contract, and 0 < g(r) < 1.
How will this affect the level of the fixed rate if the swap initially has no value?

3. A swap allows the side receiving floating to close out the position before maturity.
How does the ‘fair’ value for the fixed rate side of the swap compare to that for a
swap with no call/put features?



CHAPTER 16
one-factor interest

rate modeling

The aim of this Chapter...

...Is to model interest rates as random walks and bring together the instruments of
the fixed-income world and the modeling ideas of Black and Scholes. You will see
many familiar ideas and a few new ones that are not seen in the context of equity
derivatives.

In this Chapter...

stochastic models for interest rates
how to derive the bond pricing equation for many fixed-income products

the structure of many popular interest rate models
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LATER YoULL SEE THAT
THE MODELS DONT MATCH
THE DATA

6. INTRODUCTION

Until now | have assumed that interest rates are either
constant or a known function of time. This may be a
reasonable assumption for short-dated equity con-
tracts. But for longer-dated contracts the interest
rate must be more accurately modeled. This is not
an easy task. In this chapter | introduce the ideas
behind modeling interest rates using a single source of

randomness. This is one-factor interest rate modeling. The model will allow the short-
term interest rate, the spot rate, to follow a random walk. This model leads to a parabolic
partial differential equation for the prices of bonds and other interest rate derivative

products.

The ‘spot rate’ that we will be modeling is a very loosely defined quantity, meant to
represent the yield on a bond of infinitesimal maturity. In practice one should take this

rate to be the yield on a liquid finite-

maturity bond, say one of one month. Bonds with one

day to expiry do exist but their price is not necessarily a guide to other short-term rates. |
will continue to be vague about the precise definition of the spot interest rate. We could
argue that if we are pricing a complex product that is highly model dependent then the

exact definition of the independent
the choice of model.

variable will be relatively unimportant compared with
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Figure 16.1

One-month interest rate time series. Source: Bloomberg L.P.
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162 STOCHASTIC INTEREST RATES

Since we cannot realistically forecast the future course of an interest rate, it is natural to
model it as a random variable. We are going to model the behavior of r, the interest rate
received by the shortest possible deposit. From this we will see the development of a
model for all other rates. The interest rate for the shortest possible deposit is commonly
called the spot interest rate.

Figure 16.1 shows the time series of a one-month US interest rate. We will often use
the one-month rate as a proxy for the spot rate.

Earlier | proposed a model for the asset price as a stochastic differential equation, the
lognormal random walk. Now let us suppose that the interest rate r is governed by another
stochastic differential equation of the form

ar = u(r,t)dt + w(r, t) dX. (16.1)

The functional forms of u(r, t) and w(r, t) determine the behavior of the spot rate r. For the
present | will not specify any particular choices for these functions. We use this random
walk to derive a partial differential equation for the price of a bond using similar arguments
to those in the derivation of the Black—Scholes equation. Later | describe functional forms
for u and w that have become popular with practitioners.

-
Tome Ot

Intuition behind stochastic interest rates

Equation (16.1) is just another recipe for generating
random numbers. Until now we’ve concentrated on
the lognormal random walk as the model for asset prices. But there’s no reason
why interest rates should behave like stock prices, there’s no reason why we
should use the same model for interest rates as for equities. In fact, such a
model would be a very poor one; interest rates certainly do not exhibit the
long-term exponential growth seen in the equity markets.

So, we need another model. But we’re going to use the same mathematical,
stochastic framework, with subtly and suitably different forms. Modeling interest
rates in this framework amounts to choosing functional forms for the dt and dX
coefficients in our random walk recipe.

From a model for the short-term interest rate r will follow a model for bonds
of all maturities and hence interest rates for all maturities. In other words, the
spot interest rate model leads to a model for the whole forward curve.

I’ll be taking the stochastic calculus and differential equation approach to the
pricing of interest rate products. But it can all be done in a binomial or trinomial
setting. Actually, trinomial is the more popular for interest rate products. The

\ principle is the same as in the equity tree model. I'll give some details shortly.

J
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163 THE BOND PRICING
EQUATION FOR THE
GENERAL MODEL

SUBTLY When interest rates are stochastic a bond has a price
DIFFERENT FROM ot the form V/(r,t; T). The reader should think for the
THE DERIVATION , , .
oF 2<.... oNE EQN  Moment in terms of simple bonds, but the governing
TWO UNKNOWN S equation will be far more general and may be used to
price many other contracts. That’s why I’m using the
notation V rather than our earlier Z for zero-coupon bonds.

Pricing a bond presents new technical problems, and is in a sense harder than pricing
an option since there is no underlying asset with which to hedge. We are therefore not
modeling a traded asset; the traded asset (the bond, say) is a derivative of our independent
variable r. The only way to construct a hedged portfolio is by hedging one bond with a
bond of a different maturity. We set up a portfolio containing two bonds with different
maturities T1 and T». The bond with maturity 71 has price Vi(r,t; T1) and the bond with
maturity T» has price Va(r, t; T2). We hold one of the former and a number —A of the latter.
We have

In=Vy—AVs. (16.2)
The change in this portfolio in a time dt is given by

v V. 2y, V. V.
vy oV ,0 1dt—A<82 Vo

92Vs
dll = —dt + —ar + Iw?—— —Sdt+ —<dr+ twP—=dt), 16.3
ot + ar TV ar2 ot + ar T ar2 (16:3)

where we have applied It6’s lemma to functions of r and t. Which of these terms are
random? Once you’ve identified them you’ll see that the choice
V. V.
AoV [oVe
ar ar

eliminates all randomness in dI1. This is because it makes the coefficient of dr zero. We
then have
V4 82V1 V4 Vo Vo 32\/2
drl = W — —(— /=) ==+ IwP—=))at
(8t T2 e <8r or ot 2" e

vy JaV.
=r1‘ldt=r<V1 - (—1/—2)Vg>dt,
ar or

where we have used arbitrage arguments to set the return on the portfolio equal to the
risk-free rate. This risk-free rate is just the spot rate.

Collecting all V4 terms on the left-hand side and all V> terms on the right-hand side we
find that

V4 1 232V1 Vo 232V2
I vy 2wt 2y
T T I A T
V4 Vo
ar or

At this point the distinction between the equity and interest rate worlds starts to become
apparent. This is one equation in two unknowns. Fortunately, the left-hand side is a
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function of T1 but not T, and the right-hand side is a function of T, but not T¢. The
only way for this to be possible is for both sides to be independent of the maturity date.
Dropping the subscript from V, we have

£1% 92V

O iwrl

Jt 3[’2 =a(r t)
aV ’
ar

for some function afr, t). | shall find it convenient to write

a(r,t) = wir, Or(r, t) — u(r, t);

for a given u(r,t) and non-zero wir,t) this is always possible. The function A(r,t) is as
yet unspecified. A is ‘universal’ in that through this function all interest rate products are
linked.

The bond pricing equation is therefore

Is this like Black-Scholes?

Pretty much, yes. Mathematically, it's of the same form as
the Black—Scholes equation, but with different coefficients

in front of two of the partial derivative terms. That’s why | like to teach people
about BS before interest rates. . .the math is almost identical but there are no
problems with one equation for two unknowns.

The downside of this kind of modeling for interest rates is rather severe.
Finding the best (correct?) form for w and u — Aw is not easy. And it’s not even
possible to determine u — Aw from observing time series for r, since that time
series depends on u and w not on .

\ J

To find a unique solution of (16.4) we must impose one final and two boundary
conditions. The final condition corresponds to the payoff on maturity and so for a
zero-coupon bond

Vi, T;T) = 1.

Boundary conditions depend on the form of u(r, f) and w(r, t) and are discussed later for a
special model.
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It is easy to incorporate coupon payments into the model. If an amount K{r,t) dt is
received in a period dt then

% % %
a__|_1W T+(u—kw)%—f—rV-|—K(r,t)=0.

When this coupon is paid discretely, arbitrage considerations lead to jump condition

V(R t2;T) = V(r, t5; T) + K(r, te),

where a coupon of K(r, t;) is received at time t..
%

~
Tome Ot

Pricing by binomial and trinomial trees

Remember how we built up the binomial tree in Chapter 3
for equities? The process is the same for interest rate
products, after all, the pricing differential equation is mathematically very similar
to the Black—Scholes equation.
Here’s how the binomial model works. There are several stages.

Stage 1: Build your tree There are several possibilities for this, just as there

were when building up the equity tree. The simplest is to put all the diffusion

into the up and down moves. For example, the interest rate r goes to
r+wst'/?

on an up move, or
r—wst'/?

on a down move. See the figure below.

1/2
r+ wdt

r—wdt”2
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Stage 2: Define the risk-neutral probabilities Simple. The probability of an
up move is

1 ust?

2 2w

But the risk-neutral probability is

1 (u— aw)st!/?
2 2w
It’s the risk-neutral probability you will use when working out expected values.

Stage 3: Discounting Discount at the rate r at the base of the two branches.
Now you just follow the same procedure as in Chapter 3 to work out contract
values. You could even modify the VB code in that chapter for interest rate
products.
Often trinomial models are used because of the extra degree of freedom they
allow in choosing parameters —you are still only going to fit the volatility and
risk-neutral drift.

N _J

164 WHAT IS THE MARKET PRICE
OF RISK?
| now give an interpretation of the function A(r,1).

Imagine that you hold an unhedged position in one
bond with maturity date T. In a time-step dt this bond

changes in value by MARKET PRICE

) OF RISK..... YEUGHR
v v 7V 1%
dV =w—dX — + Iwr— — ) dt.
e +<8t T e +Uar>
From (16.4) this may be written as
v v
dvV =w—adX + (WA— + rV) at,
or ar
or
v
av —rVdt= WW(dX + A dht). (16.5)

The right-hand side of this expression contains two terms: a deterministic term in dt and a
random term in dX. The presence of dX in (16.5) shows that this is not a riskless portfolio.
The deterministic term may be interpreted as the excess return above the risk-free rate
for accepting a certain level of risk. In return for taking the extra risk the portfolio profits
by an extra A dt per unit of extra risk, dX. The function A is therefore called the market
price of risk.
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165 INTERPRETING THE MARKET PRICE OF RISK,
AND RISK NEUTRALITY

The bond pricing equation (16.4) contains references to the functions u — Aw and w. The
former is the coefficient of the first-order derivative with respect to the spot rate, and the
latter appears in the coefficient of the diffusive, second-order derivative. The four terms
in the equation represent, in order as written, time decay, diffusion, drift and discounting.
We can interpret the solution of this bond pricing equation as the expected present value
of all cashflows, just like we could with equity derivatives.

Suppose that we get a ‘Payoff’ at time T then the value of that contract today would be

E [e‘ ) ) de Payof'f] .

Notice that the present value (exponential) term goes inside the expectation since it is
also random when interest rates are random.

We exploit this relationship in Chapter 29, and see exactly how to price via simulations.

As with equity options, this expectation is not with respect to the real random variable,
but instead with respect to the risk-neutral variable. There is this difference because the
drift term in the equation is not the drift of the real spot rate u, but the drift of another rate,
called the risk-neutral spot rate. This rate has a drift of u — Aw. When pricing interest
rate derivatives (including bonds of finite maturity) it is important to model, and price,
using the risk-neutral rate. This rate satisfies

ar=(u — aw)dt +wadX.

We need the new market-price-of-risk term because our modeled variable, r, is not traded.

Because we can’t observe the function A, except possibly via the whole yield curve (see
Chapter 17), | tend to think of it as a great big carpet under which we can brush all kinds
of nasty, inconvenient things.

6.6 NAMED MODELS

There are many interest rate models associated with
the names of their inventors. The stochastic differ-
ential equation (16.1) for the risk-neutral interest rate
Yoo MUUsTienow  Process incorporates the models of Vasicek, Cox,

ALLTHESEMoDELS  Ingersoll & Ross, Ho & Lee, and Hull & White.
OFF RY HEART

16.6.1 Vasicek

The Vasicek model takes the form
ar = (n — yndt + p/2dX.

This model is so ‘tractable’ that there are explicit formulae for many interest rate derivatives.
The value of a zero-coupon bond is given by

eA(t;T)—rB(t;T)
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where
B = 1(1 _ e—y(T—l‘))
14
and 1 B(t; T)?
t;
A= BET) T+ 00y — 10— 22T
14 14

The model is mean reverting to a constant level, which is a good property,
but interest rates can easily go negative, which is a very bad property.

In Figure 16.2 are shown three types of yield curves predicted by the
Vasicek model, each uses different parameters. (It is quite difficult to get
the humped yield curve with reasonable numbers.)

16.6.2 Cox, Ingersoll & Ross

The CIR model takes the form
dr = (n — yr dt + ar dX.

The spot rate is mean reverting and if n > «/2 the spot rate stays positive.
There are some explicit solutions for interest rate derivatives, although
typically involving integrals of the non-central chi-squared distribution. The

0.1 ¢
0.09 -
0.08 ~
0.07
0.06 -
0.05 ~

Yield

Vasicek
simulations and
yield curves

0.04
0.03 +
0.02 +
0.01 +

Figure 16.2 Three types of yield curve given by the Vasicek model.
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value of a zero-coupon bond is
eABT)—rBET)
where A and B are given by

%A = ayrp log(@a — B) + yoblog((B + b)/b) — ayr loga,

and
2170 1)

(v + 1)1 70 — 1) + 2y
—Jy2 42 d —
a y2 4+ 20 and o ™
(¢ < @

+ Vy2+2
&\ ba= Y TVY tex
S\ ;;élﬁ N o
Q/"* ﬂ/y/ In Figure 16.3 are simulations of the Vasicek and CIR models using the

same random numbers. The parameters have been chosen to give similar
mean and standard deviations for the two processes.

B(t;T)=

where

ﬂ" 16.6.3 Ho & Lee

Ho & Lee takes the form

CIR simulations dr = n(t)dt + g2 dX.
and yield curves

0.08 +
0.07 +
0.06 +
0.05 +

s 0.04 +

0.03 + — Vasicek

—CIR
0.02 +

0.01 +

Figure 16.3 A simulation of the Vasicek and CIR models using the same random numbers.
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Note the function of time in this. The value of zero-coupon bonds is given by

eA(t;T)—rB(t;T)

where
B=T-t

and -
A= _/ n(S)(T —s)ds + §(T —t)°.
t

This model was the first ‘no-arbitrage model’ of the term structure of interest rates. By
this is meant that the careful choice of the function n(t) will result in theoretical zero-coupon
bonds prices, output by the model, which are the same as market prices. This technique
is also called yield curve fitting. This careful choice is

82
n(t) = — 5109 Zu(t™; 0) + plt — 1)

where today is time t = t*. In this Z(t*; T) is the market price today of zero-coupon bonds
with maturity T. Clearly this assumes that there are bonds of all maturities and that the
prices are twice differentiable with respect to the maturity. We’ll see the mathematics of
this in the next chapter.

16.6.4 Hull & White

Hull & White have extended both the Vasicek and the CIR models to incorporate time-
dependent parameters. This time dependence again allows the yield curve (and even a
volatility structure) to be fitted.

6./ EQUITY AND FX FORWARDS AND FUTURES WHEN
RATES ARE STOCHASTIC

Recall from Chapter 6 that forward prices and futures prices are the same if rates are
constant. How does this change, if at all, when rates are stochastic? We must repeat the
analysis of that chapter but now with

dS = uS dt + oS dX;

and
ar =u(r,t) dt + w(r,t) dXs.

We are in the world of correlated random walks, as described in Chapter 12. The
correlation coefficient is p.

16.7.1 Forward contracts

V(S, r, t) will be the value of the forward contract at any time during its life on the underlying
asset S, and maturing at time T. As in Chapter 6, I'll assume that the delivery price is
known and then find the forward contract’s value.
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Set up the portfolio of one long forward contract and short A of the underlying asset,

and A4 of a risk-free bond:
IMI=V(S,t)— AS - A Z

I won’t go through all the details, because the conclusion is the obvious one:

R 92V % % k1% £1\%
— — wr— — — W) — —rV =0
ot 982 taW ar2+rsas+(u W)ar r

The final condition for the equation is simply the difference between the asset price S
and the fixed delivery price S. So

+ %6282

V(S,r,T)=S-S.
The solution of the equation with this final condition is
V@S, r,t)=S - SZ.

At this point Z is not just any old risk-free bond, it is a zero-coupon bond having the same
maturity as the forward contract. This is the forward contract’s value during its life.

Remember that the delivery price is set initially t = ty as the price that gives the forward
contract zero value. If the underlying asset is Sg at tp then

0=S,-SZ

or
S=

N|&

The quoted forward price is therefore
S
F d price = =.
orward price >

Remember that Z satisfies
aZ  ,9°Z

0Z
m: +(u—)»w)§—r2=0

with
Zr, T)=1.

6.8 FUTURES CONTRACTS

Use F(S, r, t) to denote the futures price.
Set up a portfolio of one long futures contract and short A of the underlying, and A of

a risk-free bond:
IM1=-AS - A+Z
(Remember that the futures contract has no value.)

dIll =dF — AdS — A1dZ.
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Following the usual routine we get

aF 9°F PF | ,0%F oF aF

1 _2a2

50°S
t20 or? 39S or
The final condition is

F@S,r,T)=S.

Let’s write the solution of this as

FS,r,t)= .
p(r,1)
Why? Two reasons. First, a similarity solution is to be expected, the price should be
proportional to the asset price. Second, | want to make a comparison between the futures
price and the forward price. The latter is

S
>
So it’s natural to ask, how similar are Z and p?
It turns out that p satisfies
op 2
p 4 L% ap o\ ar EJo)
— + W — — AW)— — mp—w*"—~—"—4— = =0. 16.6
at T2V gz UM GE — oW pofon (16.6)

(Just plug the similarity form into the equation to see this.)
The final condition is

p(r,T)=1.

The differences between the p and Z equations are in the underlined terms in Equation
(16.6).

16.8.1 The convexity adjustment

There is clearly a difference between the prices of forwards and futures when interest
rates are stochastic. From Equation (16.6) you can see that the difference depends on
the volatility of the spot interest rate, the volatility of the underlying and the correlation
between them. Provided that p > 0 the futures price is always greater than the equivalent
forward price. Should the correlation be zero then the volatility of the stock is irrelevant.
If the interest rate volatility is zero then rates are deterministic and forward and futures
prices are the same.

Since the difference in price between forwards and futures depends on the spot rate
volatility, market practitioners tend to think in terms of convexity adjustments to get from
one to the other. Clearly, the convexity adjustment will depend on the precise nature of
the model. For the popular models, described above, the p equation (16.6) still has simple
solutions.
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169 SUMMARY

In this chapter | introduced the idea of a random interest rate. The interest rate that we
modeled was the ‘spot rate,” a short-term interest rate. Several popular spot rate models
were described. These models were chosen because simple forms of the coefficients
make the solution of the basic bond pricing equation straightforward analytically.

FURTHER READING

See the original interest rate models by Vasicek (1977), Dothan (1978), Cox et al.
(1985), Ho & Lee (1986) and Black et al. (1990).

For details of the general affine model see the papers by Pearson & Sun (1989), Duffie
(1992), Klugman (1992) and Klugman & Wilmott (1994).

The comprehensive book by Rebonato (1996) describes all of the popular interest rate
models in detail.

Multi-factor models and some very new ideas are discussed in PWOQF2.

EXERCISES

1.

Substitute
Z(r, t, T) — eA(t;T)frB(t;T)’
into the bond pricing equation
v

92V oV
2
— +iwt— —aw)— —rV =0.
ot taW ar2 +U—aw) ar

What are the explicit dependencies of the functions in the resulting equation?

Simulate random walks for the interest rate to compare the different named models
suggested in this chapter.

What final condition (payoff) should be applied to the bond pricing equation for a
swap, cap, floor, zero-coupon bond, coupon bond and a bond option?

What form does the bond pricing equation take when the interest rate satisfies the
Vasicek model

dr = (n — ynadt + g2dx?

Solve the resulting equations for A and B in this case, to find

and
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7. INTRODUCTION

One-factor models for the spot rate build up an entire yield curve from a knowledge of
the spot rate and the parameters in the model. In using a one-factor model we have to
decide how to choose the parameters and whether to believe the output of the model.
If we choose parameters using historical time series data then one of the outputs of the
model will be a theoretical yield curve. Unless we are very, very lucky this theoretical
curve will not be the same as the market yield curve. Which do we believe? Do we believe
the theoretical yield curve or do we believe the prices trading in the market? You have
to be very brave to ignore the market prices for such liquid instruments as bonds and
swaps. Even if you are pricing very complex products you must still hedge with simpler,
more liquid, traded contracts for which you would like to get the price right.

Because of this need to correctly price liquid instruments, the idea of yield curve fitting
or calibration has become popular. When one-factor models are used in practice they
are almost always fitted. This means that one or more of the parameters in the model is
allowed to depend on time. This functional dependence on time is then carefully chosen to
make an output of the model, the price of zero-coupon bonds, exactly match the market
prices for these instruments. Yield curve fitting is the subject of this chapter.

172 HO & LEE

The Ho & Lee spot interest rate model is the simplest that can be used to fit the yield
curve. It will be useful to examine this model in detail to see one way in which fitting is
done in practice.

In the Ho & Lee model the process for the risk-neutral spot rate is

dr = nt)dt + c dX.

The standard deviation of the spot rate process, c, is constant, the drift rate n is time
dependent.
In this model the solution of the bond pricing equation for a zero-coupon bond is simply

Z(r,t;T) = AtD=rT=0

where
.
AtT)=— / n(S)(T — s)ds + §c*(T —t)°.
t

If we know n(f) then the above gives us the theoretical value of zero-coupon bonds of
all maturities. Now turn this relationship around and ask the question: ‘What functional
form must we choose for n(f) to make the theoretical value of the discount rates for all
maturities equal to the market values?’ Call this special choice for n, n*(t). The yield curve
is to be fitted today, t = t*, when the spot interest rate is r* and the discount factors in
the market are Zy(t*; T). To match the market and theoretical bond prices, we must solve

ZM(t*, T) — eA(t*;T)—r*(T—t*).
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Taking logarithms of this and rearranging slightly we get
T
/ n*(S)(T — s)ds = — log@u(t*; T)) — r*(T — t*) + §c*(T — t*)°. (17.1)
t*

Observe that | am carrying around in the notation today’s date t*. This is a constant but |
want to emphasize that we are doing the calibration to today’s yield curve. If we calibrate
again tomorrow, the market yield curve will have changed.

Differentiate (17.1) twice with respect to T to get

2
7' = Pt~ )~ 1 loglZu(t's 1)

With this choice for the time-dependent parameter 1(t) the theoretical and actual market
prices of zero-coupon bonds are the same. It also follows that

LTy ZM(t*§T)__ﬁ wogy 120 g 2
A(t;T) =log <7ZM(t*;t)> (T t)at log(Zm(t*; 1)) — zc=(t — t)T — t)".

73 THE EXTENDED VASICEK MODEL OF HULL & WHITE

The Ho & Lee model isn’t the only one that can be calibrated, it’s just the easiest. Most
one-factor models have the potential for fitting, but the more tractable the model the
easier the fitting. If the model is not at all tractable, having no nice explicit zero-coupon
bond price formula, then we can always resort to numerical methods.

The next easiest model to fit is the Vasicek model. The Vasicek model has the following
stochastic differential equation for the risk-neutral spot rate

ar = (n — yndt + cadX.
Hull & White extend this to include a time-dependent parameter
ar = (n(t) — ynNdt + cdX.

Assuming that y and ¢ have been estimated statistically, say, we choose n = n*(t) at time
t* so that our theoretical and the market prices of bonds coincide.
Under this risk-neutral process the value of a zero-coupon bonds

Z(r, t, T) — eA(t;T)frB(t;T)’
where
T 2 2 1 3
Al;T) = — / 1B T)s + 5 (T —t4+ =T — —e 2T _ —) :
t 2y Y 2y 2y

and

B(t;T) = % (1-e77).
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To fit the yield curve at time t* we must make »*(f) satisfy

T c? 2 o 1 5 3
At T) = — / n"(S)B(s; T)ds + 5 (T —t+ =T — 72 (-1) _ —)
t* 2y Y 2y 2y
= log(Zm(t*; T)) + r'B(t*,T). (17.2)

This is an integral equation for n*(t) if we are given all of the other parameters and
functions, such as the market prices of bonds, Zy,(t*; T).

Although (17.2) may be solved by Laplace transform methods, it is particularly easy to
solve by differentiating the equation twice with respect to T. This gives

) = — 2o logZu(t's ) — y-2- log@ut's ) + ¢ (1- e*zﬂf*f*)) (17.3)
ot2 ’ ot ’ 2y ' '
From this expression we can now find the function A(t; T),
Zy(t*;T) d
At;T) =1 ——— | = B(t; T)= log(Zm(t*; t
6:7) =log (S04 ) — BT loatZuts0)
c? . N2 .
_ = (e r(T-t) _ g—v(t-t) 2y(t—t7) _
1,3 (e e ) (e 1) .

174 YIELD-CURVE FITTING: FOR AND AGAINST

17.4.1 For

The building blocks of the bond pricing equation are delta hedging and no arbitrage. If
we are to use a one-factor model correctly then we must abide by the delta-hedging
assumptions. We must buy and sell instruments to remain delta neutral. The buying and
selling of instruments must be done at the market prices. We cannot buy and sell at a
theoretical price. But we are not modeling the bond prices directly; we model the spot
rate and bond prices are then derivatives of the spot rate. This means that there is a real
likelihood that our output bond prices will differ markedly from the market prices. This
is useless if we are to hedge with these bonds. The model thus collapses and cannot
be used for pricing other instruments, unless we can find a way to generate the correct
prices for our hedging instruments from the model; this is yield curve fitting.

Once we have fitted the prices of traded products we then dynamically or statically
hedge with these products. The idea being that even if the model is wrong so that we
lose money on the contract we are pricing then we should make that money back on the
hedging instruments.

17.4.2 Against

If the market prices of simple bonds were correctly given by a model, such as Ho & Lee
or Hull & White, fitted at time t* then, when we come back a week later, t* + one week,
say, to refit the function n*(t), we would find that this function had not changed in the
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meantime. This never happens in practice. We find that the function n* has changed out
of all recognition. What does this mean? Clearly the model is wrong.’

By simply looking for a Taylor series solution of the bond pricing equation for short
times to expiry, we can relate the value of the risk-adjusted drift rate at the short end
to the slope and curvature of the market yield curve. This is done as follows. Look for a
solution of (16.4) of the form

ZrtT)~14+al)(T =8 +br)(T —t2 +cir)(T -3+ ...

Substitute this into the bond pricing equation:

ow d?a a?b
—a—2b(T —t)—3c(T -t + % <w2 = 2T —tw—> ) ((T —t) 7+ - t)? <7 )
ou — aw) da ,db
+ ((U—Aw)—(T— ) )(T— )(—dr +(T -1 —dr>

_r(1 +a(T—t)—|—c(T—t)2)~|—...=0.

Note how | have expanded the drift and volatility terms about t = T, in the above these
are evaluated at r and T. By equating powers of (T — t) we find that

alr)=—r, b(r)=1r* — 3u—aw)

and
1,28 2 1 d 2
c(r) = zw ﬁ(r —ru —aw)) — U — Aw)g(r —r(u — aw))
- %%(u — W) + 2r2(r — (U — Aw)).

In all of these u — Aw and w are evaluated atrand T.

From the Taylor series expression for Z we find that the yield to maturity is given by
log(Z(r, ;7)) 1,2 1.3 2
—— 7 —a+(§a —b)(T—t)+(ab—c—§a>(T—t) +...

for short times to maturity.
The yield curve takes the value —a(r) = r at maturity, obviously. The slope of the yield
curve is

a’—b= %(u—kw),

N[ —

i.e. one half of the risk-neutral drift. The curvature of the yield curve at the short end is
proportional to

1,3
ab —c — za°,

" This doesn’t mean that it isn’t useful, or profitable. This is a much more subtle point.



378 Paul Wilmott introduces quantitative finance

which contains a term that is the derivative of the risk-neutral drift with respect to time
via c. Let me stress the key points of this analysis. The slope of the yield curve at the
short end depends on the risk-neutral drift, and vice versa. The curvature of the yield
curve at the short end depends on the time derivative of the risk-neutral drift, and vice
versa.

If we choose time-dependent parameters within the risk-adjusted drift rate such that
the market prices are fitted at time t* then we have

Z(r,t5T) = Zu(t*; T)

which is one equation for the time-dependent parameters.

Thus, for Ho & Lee, for example, the value of the function »*(f) at the short end, t = t*,
depends on the slope of the market yield curve. Moreover, the slope of n*(t) depends on
the curvature of the yield curve at the short end. Results such as these are typical for all
fitted models. These, seemingly harmless, results are actually quite profound.

It is common for the slope of the yield curve to be quite large and positive, the difference
between very short and not quite so short rates is large. But then for longer maturities
typically the yield curve flattens out. This means that the yield curve has a large negative
curvature. If one performs the fitting procedure as outlined here for the Ho & Lee or
extended Vasicek models, one typically finds the following:

e The value of n*(f) at t = t* is very large. This is because the yield curve slope at the
short end is often large.

e The slope of n*(t) at t = t* is large and negative. This is because the curvature of the
yield curve is often large and negative.

A typical plot of n*(f) versus t is shown in Figure 17.1. This shows the high value for
the fitted function and the large negative slope.? So far, so good. Maybe this is correct,
maybe this is really what the fitted parameter should look like. But what happens when
we come back in a few months to look at how our fitted parameter is doing? If the model
is correct then we would find that the fitted curve looked like the bold part of the curve in
the figure. The previous data should have just dropped off the end, the rest of the curve
should remain unchanged. We would then see a corresponding dramatic flattening of the
yield curve. Does this in fact happen? No. The situation looks more like that in Figure 17.2,
which is really just a translation of the curve in time. Again we see the high value at
the short end, the large negative slope and the oscillations. The recalibrated function in
Figure 17.2 looks nothing like the bold line in Figure 17.1. This is because the yield curve
has not changed that much in the meantime. It still has the high slope and curvature. In
fact, we don’t even have to wait for a few months for the deviation to be significant, it
becomes apparent in weeks or even days.

We can conclude from this that yield curve fitting is an inconsistent and dangerous
business. The results presented here are by no means restricted to the models | have
named; no one-factor model will capture the high slope and curvature that is usual for
yield curves; they ‘may’ give reasonable results when the yield curve is fairly flat.

2 The strange oscillation of the function n* beyond the short end is usually little more than numerical errors.
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Figure 17.1 Typical fitted function n*(t).

— Original fitted function
— Re-fitted function

Figure 17.2 Typical re-fitted function n*(f), a short time later.
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175 OTHER MODELS

Other models for the short-term interest rate have been proposed. One of the most
popular (but for which there are no explicit solutions) is the Black, Derman & Toy (BDT)
model where the risk-neutral spot interest rate satisfies

o'(t)
a(t)

The two functions of time o and 6 allow both zero-coupon bonds and their volatilities to
be matched. An even more general model is the Black & Karasinski model

d(logr) = (H(t) — log r) at + o (t)dX.

d(logr) = (6(t) — a(t) logr) dt + o (t)dX.

These models are popular because fitting can be done quite simply by a numerical
scheme.
Any criticisms of yield curve fitting in general, of course, apply to these models.

176 SUMMARY

| have outlined why the yield curve is fitted, and how it is fitted in some simple models.
From a practical perspective it is hard to argue against calibration, you cannot hedge
with something if your theoretical price is very different from its traded price. But from
a modeling and empirical perspective it is hard to argue in its favor, the data shows
how inconsistent the concept is. This is always going to be a problem with one-factor
Brownian motion models, unless yield curves suddenly decide not to be so steep. There
is not a great deal that can be done theoretically.

On the other hand, people seem to make money using these models and | guess that
is the correct test of a model. Unless you are speculating with an interest rate derivative,
you will have to delta hedge and therefore have to calibrate. Practitioners go much further
than | have shown here, they fit as many market prices and properties as they can. Put
in another time-dependent parameter and you can fit interest rate volatilities of different
maturities, yet another parameter and you can fit the market prices of caps. By fitting
more and more data, are you digging a deeper and deeper grave or are you improving
and refining the accuracy of your model?

As an aside, suppose we are not interested in hedging but want to speculate with some
fixed-income instruments. It is common knowledge that the yield curve is a poor predictor
of real future interest rates. In this case it could be unnecessary or even dangerous to fit
the yield curve. In this situation one could ‘value’ the instrument using the real spot rate
process. This would give a ‘value’ for the instrument that was the expected present value
of all cashflows under the real random walk. To do this one needs a model for the real
drift u.

FURTHER READING

e A more sophisticated choice of time-dependent parameters is described by Hull &
White (1990a).
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e Klugman & Wilmott (1994) consider the fitting of the general affine model.
e Baker (1977) gives details of the numerical solution of integral equations.
e See Black et al. (1990) for details of their popular model.
e Rebonato (1996) discusses calibration in depth for many popular models.
e See Derman (2004) for the story behind the BDT model.

e In PWOQF2 is shown a non-linear interest rate model that completely sidesteps the
issue of calibration.

EXERCISES

1. Substitute the fitted function for A(t; T), using the Ho & Lee model, back into the
solution of the bond pricing equation for a zero-coupon bond,

Z(r, t;T) = eAtT)—rT-0),

What do you notice?

2. Differentiate Equation (17.2) twice to solve for the value of n*(t). What is the value of a
zero-coupon bond with a fitted Vasicek model for the interest rate?

3. Use market data for the price of zero-coupon bonds to fit a Ho & Lee model. Refit the
model with data for a week later in time. Compare the two curves for n*(t).

Note: The second curve for n* starts a week after the first curve. They should not be
plotted starting at the same point in time.

4. Use market data for zero-coupon bond prices to fit a Vasicek model for the interest
rate.






CHAPTER I8
iInterest rate derivatives

The aim of this Chapter. ..

...is to examine some of the more important fixed-income products and to explain
various ways in which to approach their pricing. You will see how it is common
market practice to use simple Black—Scholes pricing formulae in novel ways.

In this Chapter...

common fixed-income contracts such as bond options, caps and floors

how to price interest rate products in the consistent partial differential equation
framework

how to price contracts the market way

path dependency in interest rate products, such as the index amortizing rate
swap
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8. INTRODUCTION

So far in this book | derived a theory for pricing and hedging many different types
of options on equities, currencies and commodities. In Chapter 16 | presented the
theory for zero-coupon bonds, boldly saying that the model may be applied to other
contracts.

In the equity options world we have seen different degrees of complexity. The simple
contracts have no path dependency. These include the vanilla calls and puts and
contracts having different final conditions such as binaries or straddles. At the next stage
of complexity we find the path-dependent contracts such as American options or barriers
for which, technically speaking, the path taken by the underlying is important. Many of
these ideas are mirrored in the theory of interest rate derivatives.

In this chapter we delve deeper into the subject of fixed-income contracts by considering
interest rate derivatives such as bond options, caps and floors, swaptions, captions and
floortions, and more complicated and path-dependent contracts such as the index
amortizing rate swap.

N
Tome Ot

Pricing methodologies

I’m going to give you some insight into the two main
methods for pricing interest rate derivatives. One way is
consistent across all instruments but not necessarily
accurate, the other is the exact opposite.

The former method is to price contracts using the same stochastic differential
equation model for the spot rate and the resulting partial differential equation.
Different contracts have different final and boundary conditions. The problem
with this approach is that the basic model may not be that accurate. It can
therefore be highly dangerous to use this method for pricing popular, highly
liquid contracts.

The other approach is to bend and squeeze the instrument so as to make
the ‘underlying’ (suitably defined) look like a lognormal asset. From then on,
just apply the basic Black—Scholes formulee. The main positive point about this
rather artificial method is that it is common practice in the market.

J

182 CALLABLE BONDS

As a gentle introduction to more complex fixed-income products, consider the callable
bond. This is a simple coupon-bearing bond, but one that the issuer may call back on
specified dates for a specified amount. The amount for which it may be called back may
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be time dependent. This feature reduces the value of the bond; if rates are low, so that
the bond value is high, the issuer will call the bond back.
The callable bond satisfies
vy

92V £1%
I 7Y _ -7 —
T + W o2 + (U — Aw) o rv =0,

with
Vi, T)=1,
and
Vir t) = Vir, td) + Ke,

across coupon dates. If the bond can be called back for an amount C(t) then we have the
constraint on the bond’s value

V(r, 1) < C(),

together with continuity of 9V /ar.

183 BOND OPTIONS

The stochastic model for the spot rate presented in Chapter 16 allows us to value contin-
gent claims such as bond options. A bond option is identical to an equity option except
that the underlying asset is a bond. Both European and American versions exist.

As a simple example, we derive the differential equation satisfied by a call option, with
exercise price E and expiry date T, on a zero-coupon bond with maturity date Tg > T.
Before finding the value of the option to buy a bond we must find the value of the bond
itself.

Let us write Z(r, t; Tg) for the value of the bond. Thus, Z satisfies

0Z 4 ,9°Z 9Z
o W WJr(u_xw)W—rzzo (18.1)
with
Z(r,Tg; Tg) =1

and suitable boundary conditions. Now write V(r, t) for the value of the call option on this
bond. Since V also depends on the random variable r, it too must satisfy Equation (18.1).
The only difference is that the final value for the option is

V(r,T) = max{Z(r,t; Tg) — E, Q).

This payoff is shown in Figure 18.1.
Figure 18.2 shows the Bloomberg option calculator for bond options. In this case the
model used is Black, Derman & Toy.
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Figure 18.1 Zero-coupon bond price as a function of spot, and the payoff for a call option on the
bond.
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Figure 18.2 Bond option valuation. Source: Bloomberg L.P.
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-
Tome Ot

Must we really solve the partial differential
equation?

No. There are lots of other things you can do. Here’s a
brief summary of your choices.

e Ifthere’s no ‘optionality’ in the contract, and all cashflows are fixed or floating
as in swaps, you should price by discounting using the yield curve. But first
convert floating cashflows to fixed as described in Chapter 15.

e Use the above pde approach if you feel comfortable with such concepts,
and are happy to solve numerically by finite-difference methods. | hope you
will feel happy with this by the end of the book.

e You can use trees, as hinted at in the previous chapter. Easy to understand,
but not very sophisticated from a numerical point of view.

e Risk-neutral expectations are always there for you to fall back on. All the
details are covered in Chapter 29.

e Finally, perhaps most popular and robust, fudge. This means pretend that
you’ve got an equity derivative and not a fixed-income derivative and use a
Black—Scholes-type formula. Some examples are given below.

\- /

18.3.1 Market practice

The above is all well and good, but suffers from the problem that any inaccuracy in
the model is magnified by the process of solving once for the bond and then again for the
bond option. This makes the contract second order, see Chapter 11. When the time
comes to exercise the option the amount you receive will, for a call, be the difference
between the actual bond price and the exercise price, not the difference between the
theoretical bond price and the exercise price. So the model had better be correct for
the bond price. Of course, this model can never be correct, and so we must treat the
pricing of bond options with care. Practitioners tend to use an approach that is internally
inconsistent but which is less likely to be very wrong. They use the Black—Scholes equity
option pricing equation and formulee assuming that the underlying is the bond. That is,
they assume that the bond behaves like a lognormal asset. This requires them to estimate
a volatility for the bond, either measured statistically or implied from another contract, and
an interest rate for the lifetime of the bond option. This will be a good model provided that
the expiry of the bond option is much shorter than the maturity of the underlying bond.
Over short time periods, well away from maturity, the bond does behave stochastically,
with a measurable volatility.
This method is called ‘Black 76’ after the famous paper by that author.
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The price of a European bond call option in this model is

e "0 (FN(d}) — EN(db)) ,

\

\\g\ and the put has value

e "0 (EN(—dy) — FN(=d})),

INCONSISTENT where F is the forward price of the bond at expiry of
WITH OTHER PRICING the Optlon and

MODELS, BUT THE
SAFEST WAY To

PRICE log(F/E) + 3o*(T — 1)
d, = and d, =d, —o/T —t.
! oT —t 179

This model should not be used when the life of the option is comparable to the maturity
of the bond, because then there is an appreciable pull to par, that is, the value of the
bond at maturity is the principal plus last coupon; the bond cannot behave lognormally
close to maturity because we know where it must end up, this contrasts greatly with the
behavior of an equity for which there is no date in the future on which we know its value
for certain. This pull to par is shown in Figure 18.3.

Another approach used in practice is to model the yield to maturity of the underlying
bond. The usual assumption is that this yield follows a lognormal random walk. By
modeling the yield and then calculating the bond price based on this yield, we get a bond
that behaves well close to its maturity; the pull to par is incorporated.

0.95 4

0.9 ~

0.85 4

0.8 T T T T )
t

Figure 18.3 The pull to par for a zero-coupon bond.
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There is one technical point about the definition of the bond option concerning the
meaning of ‘price.” One must be careful to use whichever of the clean or dirty price
is correct for the option in question. This amounts to knowing whether or not accrued
interest should be included in the payoff, see Chapter 14.

184 CAPS AND FLOORS

A cap is a contract that guarantees to its holder that otherwise floating rates will not
exceed a specified amount; the variable rate is thus capped.

A typical cap contract involves the payment at times t;, each quarter, say, of a variable
interest on a principal with the cashflow taking the form

max(r. — re, 0),

multiplied by the principal. Here r; is the basic floating rate, for example three-month
LIBOR if the payments are made quarterly, and r. is the fixed cap rate. These payments
continue for the lifetime of the cap. The rate r; to be paid at time t; is set at time t;_1. Each
of the individual cashflows is called a caplet; a cap is thus the sum of many caplets.

The cashflow of a caplet is shown in Figure 18.4.

If we assume that the actual floating rate is the spot rate, i.e. r, = r (and this approxi-
mation may not be important), then a single caplet may be priced by solving

v o, L%V 1%
o taw W+(u—kw)§—rV=0, (18.2)
with

V(r,T) = max(r —re, 0).

Mathematically, this is similar to a call option on the floating rate r.

Figure 18.5 shows the Bloomberg calculator for caps.

A floor is similar to a cap except that the floor ensures that the interest rate is bounded
below by r¢. A floor is made up of a sum of floorlets, each of which has a cashflow of

max(rs — rg, 0).

We can approximate r; by r again, in which case the floorlet satisfies the bond pricing
equation but with

V(r,T) = max(rs — r,0).

A floorlet is thus a put on the spot rate.

18.4.1 Cap/floor parity

A portfolio of a long caplet and a short floorlet (with r. = r¢) has the cashflow
max(rp — re,0) — max(rc —r.,0) =r. —re.

This is the same cashflow as one payment of a swap. Thus there is the model-independent
no-arbitrage relationship

cap = floor + swap.
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Figure 18.4 The dependence of the payment of a caplet on LIBOR.
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Figure 18.5 Cap/floor/collar calculator. Source: Bloomberg L.P.
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18.4.2 The relationship between a caplet and a bond option

A caplet has the following cashflow
max(r. — re, 0).

This is received at time t; but the rate r; is set at t;_1. This cashflow is exactly the same as
the cashflow

max(rp —re,0
1+rL (L c )

received at time t;_4, after all, that is the definition of r,. We can rewrite this cashflow as
1+,
max<1 s C,O).
1+n

1+r.
1+

But

is the price at time ti_y of a bond paying 1 + r¢ at time t;. We can conclude that a caplet
is equivalent to a put option expiring at time t,_1 on a bond maturing at time t;.

18.4.3 Market practice

Again, because the Black—Scholes formulae are so simple to use, it is common to use
them to price caps and floors. This is done as follows. Each individual caplet (or floorlet) is
priced as a call (or put) on a lognormally distributed interest rate. The inputs for this model
are the volatility of the interest rate, the strike price r; (or r¢), the time to the cashflow t; — t,
and two interest rates. One interest rate takes the place of the stock price and will be
the current forward rate applying between times t;_1 and t;. The other interest rate, used
for discounting to the present is the yield on a bond maturing at time t;. For a caplet the
relevant formula is

e "0 (F(t, tioq, HN(d)) — reN(db)) -

Here F(t, ti_1, t;) is the forward rate today between t;_1 and t;, r* is the yield to maturity for
a maturity of t; — t,

/ Iog(F/rC) + 102t'—1 " 7
dy = Uﬁ " and dh=d —oy/tiq.

o is the volatility of the (t; — t;_4) interest rate. The floorlet value is

e "G (F(t, b1, t)N(—d;) + roN(—d)) .

18.4.4 Collars

A collar places both an upper and a lower bound on the interest payments. It can be
valued as a long cap and a short floor.
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18.4.5 Step-up swaps, caps and floors

Step-up swaps, etc. have swap (cap, etc.) rates that vary with time in a prescribed
manner.

185 RANGE NOTES

The range note pays interest on a notional principal for every day that an interest rate
lies between prescribed lower and upper bounds. Let us assume that the relevant interest
rate is our spot rate r. In this case we must solve

Vo L%V

v
— 4+ Iwt— —W)— —rV+Z() =0,
at+2W ar2+(u W)ar +Z0

with
V(r,T)=0,
where
Z(r)=r if n<r<r, andiszero otherwise.

This is only an approximation to the correct value since in practice the relevant interest
rate will have a finite (not infinitesimal) maturity.

186 SWAPTIONS, CAPTIONS AND FLOORTIONS

A swaption has a strike rate, rg, that is the fixed rate that will be swapped against floating
if the option is exercised. In a call swaption or payer swaption the buyer has the right
to become the fixed rate payer; in a put swaption or receiver swaption the buyer has the
right to become the payer of the floating leg.

Captions and floortions are options on caps and floors respectively. These contracts
can be put into the partial differential equation framework with little difficulty. However,
these contracts are second order, meaning that their value depends on another, more
basic, contract, see Chapter 11. Although the partial differential equation approach is
possible, and certainly consistent across instruments, it is likely to be time consuming
computationally and prone to serious mispricings because of the high order of the
contracts.

18.6.1 Market practice

With some squeezing the Black—Scholes formulee can be used to value European
swaptions. Perhaps this is not entirely consistent, but it is certainly easier than solving a
partial differential equation.

The underlying is assumed to be the fixed leg of a par swap with maturity Tg; call this
rs. It is assumed to follow a lognormal random walk with a measurable volatility. If at time
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T the par swap rate is greater than the strike rate rg then the option is in the money. At
this time the value of the swaption is

max(rs — re, 0) x present value of all future cashflows.

It is important that we are ‘modeling’ the par rate because the par rate measures the rate
at which the present value of the floating legs is equal to the present value of the fixed
legs. Thus in this expression we only need worry about the excess of the par rate over
the strike rate. This expression looks like a typical call option payoff, all we need to price
the swaption in the Black—Scholes framework are the volatility of the par rate, the times
to exercise and maturity and the correct discount factors. The payer swaption formula in
this framework is

y

o7 (1 —(1+ %F)*WS*”) (FN(d}) — EN(db))

and the receiver swaption formula is

1 _ _
Lo (1 — (14 1R T’) (EN(—dj) — FN(—d))

where F is the forward rate of the swap, Ts is the maturity of the swap and

log(F/E) + 3o%(T — 1)
d) = and d, =d} —o/T —t.
! oT —t 2 !
These formulae assume that interest payments in the swap are exchanged every six
months.
Figure 18.6 shows the Bloomberg swaption valuation page. They use the Black model
for pricing.
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Figure 18.6 Swaption valuation. Source: Bloomberg L.P.
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18/ SPREAD OPTIONS

Spread options have a payoff that depends on the difference between two interest rates.
In the simplest case the two rates both come from the same yield curve, more generally
the spread could be between rates on different but related curves (yield curve versus
swap curve, LIBOR versus Treasury bills), risky and riskless curves or rates in different
currencies.

Can we price this contract in the framework we have built up? No. The contract crucially
depends on the tilting of the yield curve. In our one-factor world all rates are correlated
and there is little room for random behavior in the spread. One way to price such a
contract is to use a two-factor interest rate model that captures both the overall rising
and falling of the yield curve and also any titling.

Another method for pricing this contract is to squeeze it into the Black—Scholes-type
framework. This amounts to modeling the spread directly as a lognormal (or Normal)
variable and choosing suitable rates for discounting. This latter method is the market
practice and although intellectually less satisfying it is also less prone to major errors.

188 INDEX AMORTIZING RATE SWAPS

A swap is an agreement between two parties to exchange interest payments on some
principal, usually one payment is at a fixed rate and the other at a floating rate. In an
index amortizing rate (IAR) swap the amount of this principal decreases, or amortizes,
according to the behavior of an ‘index’ over the life of the swap; typically, that index is a
short-term interest rate. The easiest way to understand such a swap is by example, which
| keep simple.

Example Suppose that the principal begins at $10,000,000 with interest payments being
at 5% from one party to the other, and r%, the spot interest rate, in the other direction.
These payments are to be made quarterly.! At each quarter, there is an exchange
of (r —5)% of the principal. However, at each quarter the principal may also amortize
according to the level of the spot rate at that time. In Table 18.1 we see a typical amortizing
schedule.

Table 18.1 Typical amor-
tizing schedule.

Spot rate Principal
reduction
less than 3% 100%
4% 60%
5% 40%
6% 20%
8% 10%
over 12% 0%

"In which case r would, in practice, be a three-month rate and not the spot rate. The IAR swap is so path
dependent that this difference will not be of major importance.
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We read this table as follows. First, on a reset date, each quarter, there is an exchange
of interest payments on the principal as it then stands. What happens next depends on
the level of the spot rate. If the spot interest rate (or whatever index the amortization
schedule depends on) is below 3% on the date of the exchange of payments then the
principal on which future interest is paid is then amortized 100%; in other words, this new
level of the principal is zero and thus no further payments are made. If the spot rate is 4%
then the amortization is 60%, i.e. the principal falls to just 40% of its level before this reset
date. If the spot rate is 8% then the principal amortizes by just 10%. If the rate is over
12% there is no amortization at all and the principal remains at the same level. For levels
of the rate between the values in the first column of the table the amount of amortization
is a linear interpolation. This interpolation is shown in Figure 18.7 and the function of r
that it represents | call g(r).

So, although the principal begins at $10,000,000, it can change after each quarter. This
feature makes the index amortizing rate swap path dependent.

The party receiving the fixed rate payments will suffer if rates rise because he will pay
out a rising floating rate while the principal does not decrease. If rates fall the principal
amortizes and so his lower floating rate payments are unfortunately on a lower principal.
Again, he suffers. Thus the receiver of the fixed rate wants rates to remain steady and is
said to be selling volatility.

In Figure 18.8 is shown the term sheet for a USD IAR swap. In this contract there is
an exchange every six months of a fixed rate and six-month LIBOR. This is a vanilla IAR

100% A

80% -

60% -

40% -

20% -

00/0 T T T T T T T
0% 2% 4% 6% 8% 10% 12% 14%

r

Figure 18.7 A typical amortizing schedule.



396 Paul Wilmott introduces quantitative finance

swap with no extra features and can be priced in the way described above. Terms in
square brackets would be set at the time that the deal was made.

Tome Ot

Is there a simple math model?

Not exactly simple, but then not too difficult. This is
beyond the scope of this book since it involves path
dependency. Let me just say that there is a differential
equation formulation, and a tree formulation, and it can
also be valued by simulation.

18.8.1 Other features in the index amortizing rate swap

Lockout period There is often a ‘lockout’ period, usually at the start of the contract’s
life, during which there are no reductions in the principal. During this period the interest
payments are like those of a vanilla swap. Mathematically, we can model this feature by
allowing the amortizing schedule, previously g(r), to be time dependent: g(r, /). In this case
the amount of amortizing depends on the reset date, t;, as well as the spot interest rate.
Such a model can be used for far more sophisticated structures than the simple lockout
period.
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Preliminary and Indicative
For Discussion Purposes Only

USD Index Amortizing Swap

Counterparties XXXX
The Customer
Notional Amount USD 50 millions, subject Amortization Schedule
Settlement Date Two days after Trade Date
Maximum Maturity Five years after Trade Date
Date
Early Maturity Date On any Fixing Date leading to a Notional Amount
equal to 0

Payments made by USD 6m LIBOR paid semiannually, A/360
Customer
Payments made by In USD X% p.a. paid semiannually, 30/360
XXXX
Index Rate USD 6ém LIBOR
Base Rate [1%
gg;,%r;':iaetl(‘;?t or 1 USD 6m LIB_OSIZ{/— Base Rate Amo_r{ti;)ztion
coupon period) oo 1%

1% 1%

0 1%
1% 0%
2% 0%

NB If the observed difference falls between two entries
of this schedule, the amortization amount is

interpolated
Fixing Dates 2 business days before each coupon period
USD 6m LIBOR The USD 6m LIBOR rate as seen on Telerate page
3750 at noon, London time, on each Fixing Date
Documentation ISDA
Governing Law English

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options, swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product. The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 18.8 Term sheet for a USD index amortizing swap.

Clean up Some contracts have that if the principal ever falls to a specified percentage
of the original principal then it is reduced all the way to zero.

189 CONTRACTS WITH EMBEDDED DECISIONS

The following contract is interesting because it requires the holder to make a complex
series of decisions on whether to accept or reject cashflows. The contract is path
dependent.

This contract, called a flexiswap, is a swap with M cashflows of floating minus fixed
during its life. The catch is that the holder must choose to accept exactly m < M of these
cashflows. At each cashflow date the holder must say whether they want the cashflow or
not, they cannot later change their mind. When they have taken m of them they can take
no more.
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18.10 SOME EXAMPLES

The term sheet in Figure 18.9 shows details of a Sterling/Deutschemark deconvergence
swap. This contract allows the counterparty to express the view that rates between
Germany and the UK will widen. Pricing this contract requires models for both UK and
German interest rates and the correlation between them.

Preliminary and Indicative
For Discussion Purposes Only

Sterling/Deutschemark Deconvergence Swap

Start Date 10" March 1999

Maturity Date 10™ March 2003
Counterparty 1

payments

Floating rate 3m DEM LIBOR plus SPREAD
SPREAD 2.35%

Counterparty 2

payments

Floating rate 3m GBP LIBOR

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options,swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product.The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 18.9 Term sheet for a Sterling/Deutschemark deconvergence swap.
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Preliminary and Indicative
For Discussion Purposes Only

USD 1YR Fixed Rate Note with Redemption linked to World
Bank Zero-Coupon Bonds

The note either redeems at par or the investor is delivered World Bank zero-
coupon bonds maturing on either 1t March 2009, 15" April 2009 or 15" July
2009. The choice of redemption is at the Issuer’s option. If World Bank bonds ar
delivered, this will be at effective prices of 57.24% for the March bond, 56.85%
for the April bond and 56.05% for the July bond.

Issue Date 15 April 2002
Maturity Date 15 April 2003
Issue price 100%
Coupon 7.00%

This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options,swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product.The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 18.10 Term sheet for a USD fixed rate note.

Figure 18.10 shows a one-year USD fixed rate note with redemption linked to World
Bank bonds. The interesting point about this contract is that the issuer of the bond gets
to choose whether to redeem at par or to redeem using a choice of three World bank
bonds. Obviously the issuer chooses whichever will be cheapest to deliver at the time of
redemption. Hence this is an example of a cheapest-to-deliver bond.

The term sheet in Figure 18.11 is of a GBP two-year chooser range accrual note linked
to GBP LIBOR. The contract pays a daily coupon equivalent to an annual six-month

Preliminary and Indicative
For Discussion Purposes Only

GBP 2YR Chooser Range Accrual Note Linked to 6 month GBP LIBOR

The note pays a coupon based on the number of days that 6-month LIBOR sets within
an 80 bps range. The range is chosen by the buyer at the beginning of each coupon
period.

Issue Date 24" March 2000

Maturity Date 24" March 2002

Issue Price  100%

Coupon [6 month LIBOR + 1.00%] x N/D

N Number of business days that 6-month LIBOR is within the RANGE
D Number of business days in the OBSERVATION PERIOD

RANGE Determined by the buyer two days prior to the beginning of each

OBSERVATION PERIOD
OBSERVATION Period 1: 24" March 2000-24" September 2000
PERIOD Period 2: 24" September 2000-24" March 2001

Period 3: 24™ March 2001-24™ September 2001

Period 4: 24" September 2001-24™" March 2002
This indicative termsheet is neither an offer to buy or sell securities or an OTC derivative product which includes
options,swaps, forwards and structured notes having similar features to OTC derivative transactions, nor a
solicitation to buy or sell securities or an OTC derivative product.The proposal contained in the foregoing is not
a complete description of the terms of a particular transaction and is subject to change without limitation.

Figure 18.11 Term sheet for a chooser range accrual note.
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LIBOR + 100 bps. But this is only paid while LIBOR is within an 80 bps range. The novel
feature about this range note is that the holder chooses the 80 bps range at the start of
each coupon period.

8.1 MORE INTEREST RATE DERIVATIVES...

The following require a stochastic interest rate model for their pricing, they are model
dependent.

Accordion swap: A swap (fixed-income instrument, see Chapter 15) whose maturity
can be lengthened or shortened at the wish of the holder.

Barrier cap/floor: An interest rate cap or floor with a barrier feature.

Basis swap: A swap in which both legs are floating, of different maturities or currencies,
say.

Bermudan swaptions: Bermudan swaptions are like vanilla swaptions in that they give
the holder the right to pay (payer swaption) or receive (receiver swaption) the fixed leg of
a swap. The Bermudan characteristic allows the holder to exercise into this at specified
dates.

Bounded cap or floor: An interest rate cap or floor whose total payout is bounded.
Callable swap: A swap which may be called back by the fixed rate payer.

Constant maturity swap: A swap in which one leg is itself a swap rate of constant tenor
(rather than the more standard LIBOR rate).

LIBOR-in-arrears swap: LIBOR-in-arrears swap is an interest rate swap in which the
floating payment is made at the same time that it is set. In the plain vanilla swap the rate
is fixed prior to the payment, so that a swap with six-monthly payments of six-month
LIBOR has the floating rate set six months before it is paid. This subtle difference means
that the LIBOR-in-arrears swap cannot be decomposed into bonds and the pricing is
not model independent. There will be a slight difference between the vanilla swap and
the LIBOR-in-arrears swap. Because the difference depends on the slope of the forward
curve, the LIBOR-in-arrears swap is often thought of as a play on the steepening or
flattening of the yield curve.

Moving average cap/floor: An interest rate cap/floor with payout determined by an
average interest rate over a period.

Puttable swap: A swap which may be called back by the floating rate payer.

Ratchets and one-way floaters: Ratchets and one-way floaters are floating rate notes
where the amount of the periodic payments is reset, usually in a monotonically increasing
(or decreasing) manner. The amount of the reset will depend on a specified floating
interest rate.
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Reflex cap/floor: As a cap or floor but with payments depending on a trigger being
reached.

Reverse floater: A floating rate note with coupon that rises as the underlying rate falls
and vice versa.

Rolling cap/floor: A cap or floor in which the out-of-the-money portion of each payment
is carried forward into the next period.

Triggers: Triggers are just like barrier options in that payments are received until (or
after) a specified financial asset trades above or below a specified level. For example, the
trigger swap is like a plain vanilla swap of fixed and floating until the reference LIBOR rate
fixes above/below a specified rate. You can imagine that they come in and out and up
and down varieties.

18.12 SUMMARY

There are a vast number of contracts in the fixed-income world. It is an impossible task
to describe and model any but a small quantity of these. In this chapter | have tried
to show two of the possible approaches to the modeling in a few special cases. These
two approaches to the modeling are the consistent way via a partial differential equation
or the practitioner way via the Black—Scholes equity model and formulze. The former is
nice because it can be made consistent across all instruments, but is dangerous to use
for liquid and high-order contracts. Save this technique for the more complex, illiquid
and path-dependent contracts. The alternative approach is, as everyone admits, a fudge,
requiring a contract to be squeezed and bent until it looks like a call or a put on something
vaguely lognormal. Although completely inconsistent across instruments it is far less likely
to lead to serious mispricings.

The reader is encouraged to find out more about the pricing of products in these two
distinct ways. Better still, the reader should model new contracts for himself as well.

FURTHER READING

e Black (1976) models the value of bond options assuming the bond is a lognormal
asset.

e See Hull & White (1996) for more examples of pricing index amortizing rate swaps.

e Everything by Jamshidian on the pricing of interest rate derivatives is popular with
practitioners. See the bibliography for some references.

e The best technical book on interest rate derivatives, their pricing and hedging, is by
Rebonato (1998).

e See http://my.dreamwiz.com/stoneq/products for a comprehensive list of interest rate
derivatives.

e Hagan (2002) explains how to express the volatility risk of exotics in terms of their
natural vanilla hedging instruments.
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For an explanation of convexity corrections for several instruments see Hagan (2003).
See Jackel (2003) for cap pricing.
See Berrahoui (2004) for CMS pricing.

Jackel & Kawai (2005) present formulae for the prices of interest rate futures contracts
allowing for volatility skew.

EXERCISES

Write down the problem we must solve in order to value a puttable bond.
Derive a relationship between a floorlet and a call option on a zero-coupon bond.

How would a collar be valued practically? What is the explicit solution for a single
payment?

When an index amortizating rate swap has a lockout period for the first year, we must
solve

with jump condition
V(r,P,t7) = V(r,g(r, )P, t") + (r — r)P,

where

gr,y=1 if ti <1,
and with final condition

V(r,P,T)=(r—r)P.
In this case, reduce the order of the problem using a similarity reduction of the form

V(r,P,t) = PH(r,1).

Find the approximate value of a cashflow for a floorlet on the one-month LIBOR, when
we use the Vasicek model.



CHAPTER 19

the Heath, Jarrow &
Morton and Brace,
Gatarek & Musiela
models

The aim of this Chapter. ..

...is to explain in as simple a way as possible the breakthroughs in interest rate
modeling known as the Heath, Jarrow & Morton model and the Brace, Gatarek &
Musiela model. Unfortunately, even the simplest explanation is tough going and |
would understand if you skipped all the math in this chapter.

In this Chapter...

the Heath, Jarrow & Morton forward rate model
the relationship between HJM and spot rate models
the advantages and disadvantages of the HJM approach

how to decompose the random movements of the forward rate curve into its
principal components

the Brace, Gatarek & Musiela model
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9. INTRODUCTION

The Heath, Jarrow & Morton approach to the modeling of the whole forward rate
curve was a major breakthrough in the pricing of fixed-income products. They built up a
framework that encompassed all of the models we have seen so far (and many that we
haven’t). Instead of modeling a short-term interest rate and deriving the forward rates (or,
equivalently, the yield curve) from that model, they boldly start with a model for the whole
forward rate curve. Since the forward rates are known today, the matter of yield curve
fitting is contained naturally within their model, it does not appear as an afterthought.
Moreover, it is possible to take real data for the random movement of the forward rates
and incorporate them into the derivative pricing methodology.

192 THE FORWARD RATE EQUATION

The key concept in the HIM model is that we model the evolution of the whole forward
rate curve, not just the short end. Write F(t; T) for the forward rate curve at time t. Thus
the price of a zero-coupon bond at time t and maturing at time T, when it pays $1, is

2(t;T) = e Fltds, (19.1)
Let us assume that all zero-coupon bonds evolve according to
aZt;T) =, T)Z(E;T)dt+ o(t, T)Z(t; T)dX. (19.2)

This is not much of an assumption, other than to say that it is a one-factor model, and |
will generalize that later. In this d- means that time t evolves but the maturity date T is
fixed. Note that since Z(t; ) = 1 we must have o(t,f) = 0. From (19.1) we have

F(t;T)= —% logZ(t; T).

Differentiating this with respect to t and substituting from (19.2) results in an equation for
the evolution of the forward curve:

dF(t;T) = z;ir (%UZ(t, T) — ult, T)) dt — %_a(t, T)dX. (19.3)

In Figure 19.1 is shown the forward rate curve today, time t*, and a few days later. The
whole curve has moved according to (19.3).

Where has this got us? We have an expression for the drift of the forward rates in terms of
the volatility of the forward rates. There is also a u term, the drift of the bond. We have seen
many times before how such drift terms disappear when we come to pricing derivatives,
to be replaced by the risk-free interest rate r. Exactly the same will happen here.

19.3 THE SPOT RATE PROCESS

The spot interest rate is simply given by the forward rate for a maturity equal to the current
date, i.e.

r(t) = F(t; t).
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——Today

8 — Later

Forward rates
(6]
L

Figure 19.1 The forward rate curve today and a few days later.

In this section | am going to manipulate this expression to derive the stochastic differential
equation for the spot rate. In so doing we will begin to see why the HIM approach can be
slow to price derivatives.
Suppose today is t* and that we know the whole forward rate curve today, F(t*; T). We
can write the spot rate for any time t in the future as
t

rit) = F(t;t) = F(t5;t) + | dF(s; ).
t*

From our earlier expression (19.3) for the forward rate process for F we have
t do(s,t)  aul(s,i) tdo(s, 1)

t) = F(t*;t ,t LA ’ ds — | —2=dX(s).

) = Fs ) + /t (O(S T ot ) S /t TR

Differentiating this with respect to time t we arrive at the stochastic differential equation
forr

* . 2
g — <8F(t ) dults) » +/f (U(S,t)azo(s,t) . (80(3,1‘))  2uls, )) s
t

ot 0s * ot2 ot ot2

_ / : 820(S’t)dX(s)> at— 2769 ax.
t

« of? 0s
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N
Tome Ot

Eeeek!

This is not a pretty sight. The idea is simple but the

math is not. Hold the thought that in the HIM model we

move/model the whole of the forward rate curve, and not

just one end of it. Since we start with today’s forward rate

curve we don’t have to worry about getting discount factors correct initially,
they are automatically correct.

If you find the math daunting, just read the words for the rest of this chapter.

/

19.3.1 The non-Markov nature of HM

The details of this expression are not important. | just want you to observe one point.
Compare this stochastic differential equation for the spot rate with any of the models in
Chapter 16. Clearly, it is more complicated, there are many more terms. All but the last
one are deterministic, the last is random. The important point concerns the nature of these
terms. In particular, the term underlined depends on the history of o from the date t* to
the future date t, and it depends on the history of the stochastic increments dX. This term
is thus highly path dependent. Moreover, for a general HIM model it makes the motion of
the spot rate non-Markov. In a Markov process it is only the present state of a variable
that determines the possible future (albeit random) state. Having a non-Markov model
may not matter to us if we can find a small number of extra state variables that contain
all the information that we need for predicting the future. Unfortunately, the general HIM
model requires an infinite number of such variables to define the present state; if we were
to write the HIM model as a partial differential equation we would need an infinite number
of independent variables.

At the moment we are in the real world. To price derivatives we need to move over to
the risk-neutral world. The first step in this direction is to see what happens when we hold
a hedged portfolio.

194 THE MARKET PRICE OF RISK

In the one-factor HIM model all stochastic movements of the forward rate curve are
perfectly correlated. We can therefore hedge one bond with another of a different
maturity. Such a hedged portfolio is

I =Z{tT1) — AZ({t; T»).
The change in this portfolio is given by
dll = dZ(t; T1) — AdZ(t; T>)
= Z(t; T1) (n(t, T1)dt + o (t, T1)dX) — AZ(t; T2) (u(t, To)dt + o (t, T2)dX) .
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If we choose
_o(t, T)Z(tTH)
T ot TO)Z(t; To)

then our portfolio is hedged, is risk free. Setting its return equal to the risk-free rate r(t)
and rearranging we find that

ult, T1) —r(t) _ wult, T2) — r(t)

U(t, T1) B O’(t, T2)

The left-hand side is a function of T1 and the right-hand side is a function of T,. This is
only possible if both sides are independent of the maturity date T

wt, T)=r)+r{t)o(t, T).

As before, A(t) is the market price of risk (associated with the one factor).

195 REAL AND RISK NEUTRAL

We are almost ready to price derivatives using the HIM model. But first we must discuss
the real and risk-neutral worlds, relating them to the ideas in previous chapters.

All of the variables | have introduced above have been real variables. But when we
come to pricing derivatives we must do so in the risk-neutral world. In the present HIM
context, risk-neutral ‘means’ u(t, T) = r(t). This means that in the risk-neutral world the
return on any traded investment is simply r(t). We can see this in (19.2). The risk-neutral
zero-coupon bond price satisfies

azZt; T) =r(®Z(t; T)dt + o(t, T)Z(t; T)dX.

The deterministic part of this equation represents
exponential growth of the bond at the risk-free rate.
The form of the equation is very similar to that for a
risk-neutral equity, except that here the volatility will
be much more complicated.

NO ARR ITRAGE
RESULTS IN A
RELATION SHIP BETIWEEA
RisSic ~NEUTRA L
DRIFTAND VOL

19.5.1 The relationship between the risk-neutral forward rate drift and volatility

Let me write the stochastic differential equation for the risk-neutral forward rate curve as
dF(t; T) =m(t, T)dt + v(t, T)aX.

From (19.3)
(t.T) = ——a(t,T)
=TT
is the forward rate volatility and, from (19.3), the drift of the forward rate is given by

0

.
8_T(%a?(t, T) = ult,T)) = v(t, T) /t v(t,s)d —%Mt 7).
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where we have used o (t, t) = 0. In the risk-neutral world we have u(t, T) = r(f), and so the
drift of the risk-neutral forward rate curve is related to its volatility by

-
m(t, T) = v(t, T)/ v(t, s)ds. (19.4)
t
And so

-
dF(t;T)=v(t,T) (/ v(t, s)ds) dt +v(t, T)dX. (19.5)
t

19.6 PRICING DERIVATIVES

Pricing derivatives is all about finding the expected present value of all cashflows in a
risk-neutral framework. This was discussed in Chapter 6, in terms of equity, currency
and commodity derivatives. If we are lucky then this calculation can be done via a
low-dimensional partial differential equation. The HIM model, however, is a very general
interest rate model and in its full generality one cannot write down a finite-dimensional
partial differential equation for the price of a derivative.

Because of the non-Markov nature of HIM in general a partial differential equation
approach is infeasible. This leaves us with two alternatives. One is to estimate directly
the necessary expectations by simulating the random evolution of, in this case, the
risk-neutral forward rates. The other is to build up a tree structure.

19.7 SIMULATIONS

If we want to use a Monte Carlo method, then we must simulate the evolution of the
whole forward rate curve, calculate the value of all cashflows under each evolution and
then calculate the present value of these cashflows by discounting at the realized spot
rate, r(t).

To price a derivative using a Monte Carlo simulation, perform the following steps. | will
assume that we have chosen a model for the forward rate volatility, v(t, T). Today is t*
when we know the forward rate curve F(t*; T).

1. Simulate a realized evolution of the whole risk-neutral forward rate curve for the
necessary length of time, until T*, say. This requires a simulation of

dF(t; T) =m(t, T)dt + v(t, T)dX,

where
-
m(t, T) = v(t, T)/ v(t, s)ds.
t

After this simulation we will have a realization of F(t;T) fort* <t <T*and T > t. We
will have a realization of the whole forward rate path.

2. Atthe end of the simulation we will have the realized prices of all maturity zero-coupon
bonds at every time up to T*.
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3. Using this forward rate path calculate the value of all the cashflows that would have
occurred.

4. Usingthe realized path for the spot interest rate r(f) calculate the present value of these
cashflows. Note that we discount at the continuously compounded risk-free rate, not
at any other rate. In the risk-neutral world all assets have an expected return of r(t).

5. Return to Step 1 to perform another realization, and continue until you have a
sufficiently large number of realizations to calculate the expected present value as
accurately as required.

-
Tome Ot

Evolution of the forward curve

In this figure we see how the forward curve may have
evolved during one set of simulations.
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The disadvantage of the HIM model is that a Monte Carlo simulation such as this can
be slow. On the plus side, because the whole forward rate curve is calculated the bond
prices at all maturities are trivial to find during this simulation.
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198 TREES

If we are to build up a tree for a non-Markov model then we find ourselves with the
unfortunate result that the forward curve after an up move followed by a down is not the
same as the curve after a down followed by an up. The equivalence of these two paths
in the Markov world is what makes the binomial method so powerful and efficient. In the
non-Markov world our tree structure becomes ‘bushy,” and grows exponentially in size
with the addition of new time steps.

If the contract we are valuing is European with no early exercise then we don’t need to
use a tree, a Monte Carlo simulation can be immediately implemented. However, if the
contract has some American feature then to correctly price in the early exercise we don’t
have much choice but to use a tree structure. The exponentially large tree structure will
make the pricing problem very slow.

N
Tome Ot

Trees for the whole forward rate curve

The figures below show how the forward rate curve might
evolve in a tree-like version of the HIM model.
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199 THE MUSIELA PARAMETERIZATION

Often in practice the model for the volatility structure of the forward rate curve will be of
the form

Wt T) =5(t, T —t),

meaning that we will model the volatility of the forward rate at each maturity, one, two,
three years, and not at each maturity date, 2006, 2007, ... .. If we write  for the maturity
period T — t then it is a simple matter to find that F(t; t) = F(t,t + 1) satisfies

dF(t; ) = m(t, t)dt + B(t, 7)dX,
where

T

mit, t) = v(t, 7) /0 v(t, s)ds + %I?(t, 7).

It is much easier in practice to use this representation for the evolution of the risk-neutral
forward rate curve.

19.10 MULTI-FACTOR HIM

Often a single-factor model does not capture the subtleties of the yield curve that are
important for particular contracts. The obvious example is the spread option that pays
off the difference between rates at two different maturities. We then require a multi-factor
model. The multi-factor theory is identical to the one-factor case, so we can simply write
down the extension to many factors.
If the risk-neutral forward rate curve satisfies the N-dimensional stochastic differential

equation

N

dF(t; T) = m(t; T)at + > vi(t; T)aX,

=1

where the dX; are uncorrelated, then

N T
mt,T)= Zv, / vi(t, s)ds.
i=1

And so

N T
(Z vi(t / vilt, s)ds) at + Zv,t T)dX;. (19.6)
i=1

i=1

9.1 SPREADSHEET IMPLEMENTATION

The HIM model is very easy to implement on a spreadsheet. Figure 19.2 shows the results
of such a simulation for a two-factor model. In this example the Musiela parameterization
has been used and v is a function of t =T —t only. This means that the function m
contains the first volatility term which is just a function of time to maturity (this is row 3
in the figure) and the slope of the forward curve term (this latter is calculated in each of
the cells from row 11 down). In this example there are two volatility factors, the first is
constant and the second is linear in t.
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B [ ¢ [ E F G H | ] | J K L M | N [
[ 3]
[4] m 000000 000008 000021 000032  0.00064 0.00734
[s| voll 000800  0.00800  0.00800  0.00800  0.00800 0.00800
6 vol2 000425 0.00340  0.00170  0.00000 -0.00425 -0.02125
7
g Maturities and Forward rates
[9] Timestep  0.05 Time 0 1 5 10 30 years Random #s Random #s
[0 0 00895 0075 0078 00797 0082 0086
[11] 005 0068989 00742626 0.0771761 0.0788016 0.0809532  0.086 -0.524004 0.15931345
2] 0.1 00670497 0.0721327 0.0750135 0.0766185 0.0787597  0.086 1.2413664 0.01849228
3] 0.15 00682422 0072891 00752344 0.0763144 0.0771883  0.086 -0.1909072 134681007
4] 02 00708242 0078101 00770156 0.0776792 0.0775728  0.086 074907776 1.06227036
15 012 ) D1 00770383 0.0756844  0.086 -0.3666114 1.35286622
6] Evolution of forward rates 1 0074224 00725775  0.086 15746343 0.36608874
[17] b7 00776636 0.0748122  0.086 1.92309396 1.33744642
(18] B2 0.0
(o] Bt 0079 0% Forwards rates at various times
[20] B5 0.07 b
[21] b oog o 4
[22] 77 0.08 - b
[23] 79 0.08] 0081 ——
= g 00 e 4
[25] 67 00§ 006 b
[26] b1 0.08
[27] b7 0.08] 004
28] 124 008 b
29 B7 0.08] o002 b
[30] 1 0.0833008 0.0846174 0.0839836 0.
[31] 1.05 0.0854112 0.0866896 0.0861336 0.08{ o 4
[32] 1.1 0.0839206 0.0852346  0.08488 0.08 0 4 8 10
[33] 1.15 0.0832747 0.0844076 0.0838152 0.08 b
[34] 1.2 0.0868456 0.0876725 0.0865866 0.0845902 0.0704308  0.086 129626761 1.25419499
[35] 125 00837279 0.084447 0.0832584 0.0811796 0.0758884  0.086 -1.886669 0.22718112
[36] 1.3 0.0816207 0.0820813 0.0804836 0.0780162 0.0718358  0.086 -1.7477864 1.03474961
[a7] 1.35 00841381 0.084404 0.0825199 0.0797868 0.0730416  0.086 1.0154099 071347272
[38] 14 0085834 0.0858747 0.0836386 0.0805746 0073102  0.086 046919352 0.88735003
[39] 1.45 0.0840615 0.0841169 00820044 0.0790857 0.0720804  0.086 -0.7995153 -0.3623901
[40] 15 0083327 0.0831298 0.0806016 0.0772895 0.0694001  0.086 -0.9738995 1.05747176
4 1.55 0.0833301 0.0827943 0.0796749 0.0757942 0.0665958 _0.086 -0.8007558 1.52094375

Figure 19.2 Spreadsheet showing results of a two-factor HIJM simulation.

19.12 A SIMPLE ONE-FACTOR EXAMPLE: HO & LEE

In this section we make a comparison between the spot rate modeling of Chapter 16
and HJM. One of the key points about the HIM approach is that the yield curve is fitted
by default. The simplest yield curve fitting spot rate model is Ho & Lee, so we draw a
comparison between this and HIM.

In Ho & Lee the risk-neutral spot rate satisfies

ar = n(t)dt + cdX,
for a constant c. The prices of zero-coupon bonds, Z(r, t; T), in this model satisfy

0Z

1) —
8r2+n()8r

—rZ=0
with
Z(r, T;T)=1.

The solution is easily found to be
;
Z(rt;T)=exp | §c*(T —1)° - / n(S)T — s)ds — (T — tr
t

In the Ho & Lee model 5(t) is chosen to fit the yield curve at time t*. In forward rate terms
this means that

-
F(t*;T) = r(t*) — %C2(T — )2 + / n(s)ds,

*
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and so
aF(t*; 1)
ot

n(t) = + c2(t — t).

At any time later than t*

;
F(t;T) = r(t) — 2c3(T — 1) + / n(s)ds.
t

From this we find that
dF(t; T) = (T — t)dt + cdX.

In our earlier notation, o(t,T) = —c(T —t) and v(t, T) = c. This is the evolution equation
for the risk-neutral forward rates. It is easily confirmed for this model that Equation (19.4)
holds. This is the HIM representation of the Ho & Lee model. Most of the popular models
have HJM representations.

19.13 PRINCIPAL COMPONENT ANALYSIS

There are two main ways to use HJM. One is to choose the volatility structure vj(t, T) to
be sufficiently ‘nice’ to make a tractable model, one that is Markov. This usually leads us
back to the ‘classical’ popular spot-rate models. The other way is to choose the volatility
structure to match data. This is where principal component analysis (PCA) comes in.

In analyzing the volatility of the forward rate curve one usually assumes that the volatility
structure depends only on the time to maturity, i.e.

v="o(T —1).

| will assume this but examine a more general multi-factor model:

N
dF(t;T) = m(t, T)at + ) vi(T — tdX;.
i=1

From time series data we can determine the functions v; empirically, this is principal
components analysis. | will give a loose description of how this is done, with more details
in the spreadsheets.

If we have forward rate time series data going back a few years we can calculate
the covariances between the changes in the rates of different maturities. We may have,
for example, the one-, three-, six-month, one-, two, three-, five-, seven-, 10- and 30-
year rates. The covariance matrix would then be a 10 x 10 symmetric matrix with the
variances of the rates along the diagonal and the covariances between rates off the
diagonal.

In Figure 19.3 is shown a spreadsheet of daily one-, three- and six-month rates, and
the day-to-day changes. The covariance matrix for these changes is also shown.

PCA is a technique for finding common movements in the rates, for essentially finding
eigenvalues and eigenvectors of the matrix. We expect to find, for example, that a large
part of the movement of the forward rate curve is common between rates, that a parallel



414 Paul Wilmott introduces quantitative finance

A [ B c | D E | F G H ] | [0 T K
Forward rates: Changes in rates:
1 month | 3 month | 6 month |1 month |3 month|6 month
22-Sep-88| 8.25000| 8.31250  8.56250
23-Sep-88| 8.25000| 8.31250 8.56250| 0,00000| 0.00000| 0.00000 |=COVAR(E4:E1721,F4:F1721) |
26-Sep-88| 8.31250| 8.37500 8.62500 }&OBZSO 0.06250| 0.06250
27-Sep-88| 8.31250 8.43750 8.6[=B4-B3 |0000 0.06250| 0.06250 1 month/| 3 month | 6 month

28-Sep-88| 8.42188 8.50000 8.8T250] 0.10938 0.06250 0.12500| 1 month| 0.007501
29-Sep-88| 8.37500 8.68750 8.81250|-0.04688 0.18750] 0.00000| 3 month| 0.003831 0.004225
30-Sep-88| 8.31250| 8.62500 8.75000|-0.06250 -0.06250-0.06250| 6 month | 0.003628 0.004020  0.004997
3-Oct-88| 8.31250| 8.62500 8.68750| 0.00000| 0.00000|-0.06250|
4-Oct-88| 8.31250| 8.56250 8.68750| 0.00000|-0.06250| 0.00000|Scaled covariance matrix: |

5-Oct-88| 8.31250| 8.56250 8.68750| 0.00000/ 0.00000| 0.00000 1 month | 3 month | 6 month
13| 6-Oct-88| 8.31250 856250, 8.68750| 0.00000 0.00000| 0.00000| 1 month [ 0.000189

14| 7-Oct-88| 8.31250 8.62500 8.75000( 0.00000  0.06250| 0.06250| 3 month| 0.000Q97 0.000106

15| 10-Oct-88| 8.25000| 8.56250 8.56250(-0.06250-0.06250 -0.18750| 6 month OAOOOQ91 0.000101/ 0.000126

|o<ooo\na>o1|:>mma

B

16| 11-Oct-88| 8.25000 8.56250 8.62500| 0.00000| 0.00000| 0.06250 \
[17 ] 12-Oct-88| 8.31250, 8.62500 8.68750| 0.06250| 0.06250  0.06250, _
18] 13-Oct-88| 8.31250 8.64063 8.68750| 0.00000) 0.01563] 0.00000 =18"252/10000

19 | 14-Oct-88| 8.31250| 8.62500 8.62500( 0.00000 -0.01563 -0.06250
20 [ 17-Oct-88| 8.31250| 8.62500 8.62500| 0.00000, 0.00000| 0.00000
| 21 [ 18-Oct-88| 8.31250| 8.62500 8.62500( 0.00000, 0.00000| 0.00000|
221 19-Oct-88| 8.31250, 8.62500| 8.62500| 0.00000| 0.00000| 0.00000;
23 [ 20-Oct-88| 8.37500| 8.68750 8.68750| 0.06250  0.06250| 0.06250
24 | 21-Oct-88| 8.37500| 8.68750| 8.68750| 0.00000, 0.00000| 0.00000
| 25 | 24-Oct-88| 8.37500| 8.68750 8.75000( 0.00000| 0.00000| 0.06250
26 | 25-Oct-88| 8.37500| 8.68750 8.75000| 0.00000, 0.00000| 0.00000
27 | 26-Oct-88| 8.37500| 8.68750 8.75000| 0.00000, 0.00000| 0.00000
28 | 27-Oct-88| 8.37500| 8.68750  8.68750| 0.00000, 0.00000)-0.06250

Figure 19.3 One-, three- and six-month rates and the changes.

shift in the rates is the largest component of the movement of the curve in general. The
next most important movement would be a twisting of the curve, followed by a bending.

Suppose that we have found the covariance matrix, M, for the changes in the rates
mentioned above. This 10 by 10 matrix will have 10 eigenvalues, A;, and eigenvectors, v;,
satisfying

Myv; = Ajv;;

v; is a column vector.

The eigenvector associated with the largest eigenvalue is the first principal component.
It gives the dominant part in the movement of the forward rate curve. Its first entry
represents the movement of the one-month rate, the second entry is the three-month
rate, etc. Its eigenvalue is the variance of these movements. In Figure 19.4 we see the
entries in this first principal component plotted against the relevant maturity. This curve
is relatively flat when compared with the other components. This indicates that, indeed, a
parallel shift of the yield curve is the dominant movement. Note that the eigenvectors are
orthogonal, there is no correlation between the principal components.

In this figure are also plotted the next two principal components. Observe that one
gives a twisting of the curve and the other a bending.

The result of this analysis is that the volatility factors are given by

V() = VA

Here 7; is the maturity, i.e. 1/12, 1/4, etc. and (v;); is the jth entry in the vector v;. To get
the volatility of other maturities will require some interpolation.

The calculation of the covariance matrix is simple, discussed in Chapter 12. The
calculation of the eigenvalues and vectors is also simple if you use the following algorithm.
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—o—1st PC
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A—3rd PC

L 4

Maturity

8

Figure 19.4 The first three principal components for the US forward rate curve. The data run from

1988 until 1996.

19.13.1 The power method

| will assume that all the eigenvalues are distinct, a reasonable assumption given the
empirical nature of the matrix. Since the matrix is symmetric positive definite (it is a
covariance matrix) we have all the nice properties we need. The eigenvector associated
with the largest eigenvalue is easily found by the following iterative procedure. First, make
an initial guess for the eigenvector, call it x°. Now iterate using

fork=0,...,and

p¥+1 = element of y**! having largest modulus

followed by

x/+1

’
= B

v

Yy = Mxk,

A SIMPLE AND
USEFUL TESHNIQUE
FOR pP<A

As k — 0o, x¥ tends to the eigenvector and ¥ to the eigenvalue A. In practice you would
stop iterating once you have reached some set tolerance. Thus we have found the first
principal component. It is standard to normalize the vector, and this is our vj.
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To find the next principal component we must define a new matrix by
N=M-— vy V;r.

Now use the power method on this new matrix N to find 