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Foreword

Designing infrastructure in the presence of uncertainty has been a central
feature of engineering design for many years. The fundamental concepts of
probability and risk have been widely applied, but also well disguised in
what historically has been an essentially deterministic approach to design.
However, in recent years the explicit need to fully recognise risk and its
consequences on the design process has brought about a revolution. An
essentially deterministic approach has made way for the inevitably proba-
bilistic designs that are now current. This book deliberately sets out to target
the application of the important concepts in risk and reliability theory to
the problems of coastal and hydraulic engineering. It is a seminal attempt
to redress the balance in engineering practice, where the tradition of such
concepts being applied in the structural engineering field has been extended
into the coastal domain. The book is targeted at both undergraduate and
postgraduate audiences, and will likely find a significant readership in the
professions. This authoritative text represents a substantial step-change in
the treatment of probabilistic processes in the coastal domain at a time of
such significant climatic uncertainty.

Professor I. D. Cluckie, FREng, FRSA
Pro-Vice Chancellor (Science and Engineering),

Swansea University
Chairman of the EPSRC Flood Risk Management

Research Consortium (FRMRC)

Swansea
March, 2009



Preface

The concept of balancing risk and cost is central to engineering. It is rarely
up to the engineer alone to decide where and how this balance is set. How-
ever, engineers have an important role in quantifying, as clearly as possible,
the facts that inform financial and political decision-making. The subject of
flooding and the design of flood defences is just one such area. Indeed, at
the time this book was written some notable flood events had been in the
national and international headlines:

• The Asian tsunami caused by an undersea earthquake that occurred at
00:58:53 UTC on 26 December 2004, with an epicentre off the west
coast of Sumatra, Indonesia, wreaked death and damage in Indonesia,
Thailand and Sri Lanka. Its effects were felt as far away as the east
coast of Africa and were even detected in tide gauge records around
the UK.

• The village of Boscastle in Devon was the scene of flash flooding result-
ing from a very intense and concentrated cloud burst on 16 August
2004. Damage was made worse due to the damming effect of a low
bridge across the river leading to the sea. As a result of the flooding, the
bridge was reconstructed to allow a greater flow of water. This was
probably what prevented worse flooding than occurred in Boscastle
again on 21 June 2007, when another unusually intense rainfall event
affected the village.

• On 29 August 2005, New Orleans sustained major flooding as
Hurricane Katrina made landfall very close by, causing severe damage
and disruption to the whole of the city. While levees have been rebuilt,
and some of the city has returned towards normal, at the time of writing
in 2008, large segments of the city remain unrepaired.

• On 25 June 2007, the city of Hull and much of South Yorkshire
received over 2 months of average rainfall in 24 hours, leading to
prolonged flooding, damage, disruption and displacement of the pop-
ulace. A similar event affected the county of Gloucester on 20 July
2007, leading to similar results. It has been estimated that over 17,000
people were relocated from their homes as a result of the floods in
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summer 2007, and it took more than two years for many to be able to
return to their homes from temporary accommodation.

The problems arising from flooding are not new, but recent events such
as those above have stimulated public interest in flood defence. In turn, this
has raised the profile of flood engineering within the curricula of undergrad-
uate and postgraduate degree programmes. This book is based, in part, on
modules in coastal and hydraulic engineering developed over several years
in the School of Engineering at the University of Plymouth. It is also influ-
enced by the author’s experience of using probabilistic design methods and
reliability theory in a range of practical engineering design problems.

Probabilistic or risk-based methods allow uncertainties to be quanti-
fied. A probabilistic approach to the design of flood and sea defences has
been promoted in the UK by the Department of Environment, Food and
Regional Affairs through Project Appraisal Guidance Notes, which define
the procedures that applications for grant aid towards flood defence and
erosion protection works must follow. The purpose of such an approach is
twofold. First, it requires planners and designers to consider carefully the
uncertainties inherent in their scheme, and to quantify these as best they
can. Second, where good information about the construction materials and
the loadings that are to be experienced by the structure are available, a
probabilistic approach may assist in reducing uncertainty, thereby lessening
conservatism in design and thus improving cost efficiency. As a result, prob-
abilistic methods appear increasingly in the guidance for coast protection
and flood defence design.

One difficulty for those wishing to learn and use the techniques of relia-
bility analysis is that it involves topics that are often not standard in current
undergraduate engineering courses. This means that the subject can appear
difficult and off-putting to the novice. Inevitably, some level of prior knowl-
edge has to be assumed. In writing this book I have assumed that prospective
readers will have some familiarity with basic probability and statistics. An
understanding of hydraulics (pipe flow, open channel flow and coastal pro-
cesses) is also required for a full appreciation of the applications and worked
examples presented throughout the text and in Chapter 6, although basic
background material is provided in each case. The text is aimed primarily
at final-year undergraduate and MSc postgraduate students, to bridge the
gap between introductory texts and the mainstream literature of academic
papers and specialist guidance manuals. I hope it will also be of inter-
est and assistance to practitioners, both those beginning their careers and
established professionals requiring an introduction to this rapidly growing
discipline.

The motivation for this book arose because, although there are a num-
ber of books on reliability theory, these focus predominantly on structural
rather than hydraulics problems. Thus, those wishing to use the tools of reli-
ability theory in the context of hydraulic and coastal engineering found a
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gap between the theory, on the one hand, and on the other hand the practical
application of these in their area of interest.

Finally, a few words of caution. While reliability theory and probabilistic
methods can help to quantify uncertainty, they should not be thought of as
the solution to all problems. Indeed, one of the largest risks in using these
methods is that they are applied in a mechanical manner without using all
the information that may be available. A good example of this is when there
is a discrepancy between the results of a reliability analysis and experience.
This can occur when either experience has been incorrectly interpreted or
there is an error in one or more elements of the reliability calculations.
An investigation of the causes of such a discrepancy will often lead to an
improved understanding of the nature of the design problem, and thence to
a more satisfactory solution.

The book is divided into seven chapters. A full list of references is given
towards the end of the book, and some additional sources of material are
cited at the end of individual chapters. The book starts with an introduc-
tion to the subject of risk and reliability as it relates to hydraulics and fluid
mechanics. Chapters 2 and 3 contain basic and more advanced background
material, respectively, on probability, statistics and stochastic processes. In
Chapter 4 the subjects of extreme values and the distribution functions of
extreme values are covered. The various levels of reliability theory, and
their variants, are presented in Chapter 5. Chapter 6 is devoted entirely
to worked examples of reliability calculations and problems using the tech-
niques developed in Chapter 5. Problems cover a range of hydraulic and
coastal engineering topics. Towards the end of Chapter 6 there are several
examples that discuss methods which have been adopted to cope with more
‘real-life’ cases where measurements or understanding is less complete, and
take the reader towards some areas of current research. The book concludes
in Chapter 7 with a discussion of the reliability of groups of structures in
the context of flood defence schemes.
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Principal Notation

A, B sets; empirical coefficients (wave overtopping)
c wave celerity (phase speed)
cg group velocity
Cov(x, y) covariance of x and y
C(x1, x2) autocovariance
CHW Hazen–Williams coefficient
CV, CC coefficients of velocity and contraction respectively
Cw width of permeable crest
nCr number of combinations of r objects taken from a set

of n objects
dc depth of closure
D pile or pipe diameter, scour depth at a bridge pier
D50 median grain size
Dn nominal rock diameter
Dn50 nominal rock diameter (50th percentile)
E total wave energy per unit area of ocean, an event
E(.), <.> the mean or expected value
f wave frequency
fX(x) density function of X [= Pr(X = x)]
Fr Froude number
FX(x) cumulative distribution function of X [= Pr(X ≤ x)]
g acceleration due to gravity
G centre of gravity
G(R, S) reliability function
G(f , θ ) directional spreading function
h water depth
h(x) hazard function
h(x, y, t) seabed levels
H wave height
H(x) cumulative hazard function
Hb breaking wave height
Hc mean height between wave crests



xvi Principal notation

Hmax maximum difference between adjacent crest and
trough

Hrms root-mean-square wave height
Hs significant wave height
Hz mean height between zero upward crossing
H1/3 mean height of the highest one-third of the waves
H1/10 mean height of the highest one-tenth of the waves
IR moment of inertia about the roll axis
k wave number (= 2π/L)
ks Nikuradse roughness
K coastal constant for littoral transport
KD Hudson’s non-dimensional stability factor
L wave length
L( . . . , . . . , . . . , . . . ) likelihood function
mn nth spectral moment, nth ordinary moment of a

density function
M metacentre
M(s) moment generating function
Mn nth sample moment, nth central moment of a

density function
n Manning’s n
N number of waves during design storm
N(μ,σ ) normal distribution with mean μ and standard

deviation σ

p pressure, porosity
P permeability coefficient
P(x ≥ X) probability that random variable x takes on a

value greater than or equal to X
P(A|B) conditional probability of event A, given that

event B has occurred
Pf probability of failure
Pf,n probability of failure over n years
nPr number of permutations of r objects taken from a

set of n objects
Q volumetric longshore transport rate
Qm mean wave overtopping rate (m3/m/s)
QT discharge rate from an orifice (m3/m/s)
Q∗ dimensionless overtopping rate
r roughness coefficient
R strength function in reliability analysis, hydraulic

radius
R∗ dimensionless run-up coefficient
Rc crest level relative to still water level (freeboard)
R(x1, x2) autocorrelation function
Re Reynolds number



Principal notation xvii

S load function in reliability analysis, channel slope
Sd damage level parameter
S(f ) spectral energy density
S(f , θ ) directional energy density
S(ω) power spectrum (or spectral density) of a random

process
t time
T wave period
Tc mean period between wave crests
Tm mean wave period
Tp peak period (= 1/fp, where fp is the frequency at

the maximum value of the frequency spectrum)
Ts significant wave period
Tz mean period between zero upward (or

downward) crossings
u, v, w components of velocity in the x, y and z

directions respectively
U universal set, upthrust characteristic velocity
U(a, b) uniform distribution between a and b
Var(.) variance of .
W sediment size parameter (= d84/d50); weight
x, y, z ordinates in horizontal and vertical directions
X, Y random variables
z standard normal variate
Z0 mean water level above (or below) local datum
α angle between wave crest and seabed contour
β reliability index; distribution function parameter
γ wave breaking index
δ GEV distribution function parameter
ϕ(z) standard normal density function
Φ(z) cumulative standard normal distribution function
Φ(ω) characteristic function
Ø empty set
Γ (x) gamma function
ΓS, ΓR, Γ safety factors for load, strength and combined

effects respectively
η water surface elevation above a fixed datum
λ pipe friction factor, distribution function

parameter
μ mean value, distribution function parameter
ν kinematic viscosity
ρ density of water, linear correlation coefficient
ρr density of rock



xviii Principal notation

σ standard deviation; distribution function
parameter

ξ Iribarren number; distribution function
parameter

ξb Iribarren number at wave breaking
ω wave frequency (= 2π/T)



1 Introduction

1.1 Historical context

Engineering, in some shape or form, has always been a central part of
human activity. The construction of shelter from the elements, whether it
be a single-storey shack or a flat in a high-rise tower block; the means for
transporting goods and people by road, rail, ship and air; the provision
of drinking water and hygienic drainage; all require careful design if they
are to be effective and economically feasible. It may come as a surprise to
realise that the coastline of many countries has long been as much engi-
neered as natural. For example, the Port of A-ur was built on the Nile prior
to 3000 BC. Nearby on the open coast, the Port of Pharos was constructed
around 2000 BC, and had a massive breakwater which was over 2.5 km
long. The Romans developed the practice of pile driving for cofferdam foun-
dations, a technique that was used for the construction of concrete sea walls.
Much more recently, the Dutch reclaimed a large area of land from the sea
in the form of polders. In the 1950s, a 70 km long embankment was con-
structed through the sea, turning the South Sea or Zuiderzee into a lake
now known as the Ijsselmeer. In the very recent past, our understanding of
materials and physical processes has extended the concept of engineering to
the design and construction of offshore archipelagos such as those in Dubai,
as shown in Figure 1.1.

Whilst early structures were no doubt built on the basis of trial and error,
this would have been informed by observing what led to both successes
and failures. With Isaac Newton’s development of mechanics, the path to a
rational and quantitative approach to structural design was set. Disciplines
involving the flow of fluids had to wait a bit longer. The Swiss mathemati-
cian Leonhard Euler was invited by Frederick the Great to Potsdam in 1741.
By popular account he was asked to make a water fountain. As a theo-
retician, he began by trying to understand the laws of motion of fluids,
using Newton’s laws for a fluid. This equation predicts velocities that are
much higher than anything observed. In fact, failure was inevitable because
the equations used by Euler omitted important processes, one of which
was viscous dissipation, that is, the dissipation of energy due to friction.
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Figure 1.1 Man-made archipelago in Dubai, United Arab Emirates. Groups of
islands in the shape of palm trees have been constructed by building up
the seabed with material dredged from elsewhere. The palm islands are
called Palm Jebel Ali, Palm Jumeirah and Palm Deira, respectively, from
the south to the north. The largest island, Palm Deira, was just being
started (towards the top right) when this image was taken. Between Palm
Jumeirah and Palm Deira there is ‘The World’, a cluster of 250–300 small
islands in the shape of a world map. The ASTER image was acquired on
18 September 2006, is centred near 25.3◦N, 55.3◦E, and covers an area
of 46.1 × 57 km. This image is reproduced with acknowledgement to
the NASA/GSFC/METI/ERSDAC/JAROS, and US/Japan ASTER Science
Team.

The appropriate term was added by engineer Claude-Louis Navier in 1827
and mathematician Gabriel Stokes in 1845 to develop a theoretical frame-
work for Newtonian fluids. The resulting equations are known as the
‘Navier-Stokes equations’. For flow in a single dimension, the equation may
be written for unit fluid volume as:

∂u
∂t

+ u
∂u
∂x

=−1
ρ

∂p
∂x

+ ν
∂2u
∂x2

(1.1)
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where u is the fluid velocity, t is time, x is the independent direction coor-
dinate, p is pressure, ρ is the density of the fluid and ν is known as the
kinematic viscosity. The detailed derivation of this equation is beyond the
scope of this book. However, it will be helpful to understand the physi-
cal principles behind the terms in the equation. The terms on the left-hand
side of the equation describe the change in the fluid velocity following the
motion of the fluid. If the first term is positive, the fluid velocity at a fixed
point will be increasing with time. If the second term is positive, the fluid
is accelerating in the direction of increasing x, at a fixed time. Figure 1.2
shows two cases where the terms on the left-hand side are positive.

The first term on the right-hand side arises from the force acting on the
fluid due to differences of pressure in space. The negative sign is required
because fluid will tend to flow from regions of high pressure to regions
where the pressure is lower, as illustrated in Figure 1.3. The force due to
the Earth’s gravity is often implicitly included in this term. The second term
on the right-hand side of Equation (1.1) represents the effects of friction.
This is diffusive in nature and has the effect of ‘smoothing’ small-scale spa-
tial variations in velocity. Without this term, kinetic energy is conserved;
whereas, when this term is included, kinetic energy is dissipated.

Simplistic attempts to use Equation (1.1) can lead to very unrealistic
conclusions. For example, consider the flow of water down a river to the
sea. For fresh water, typical values of density and kinematic viscosity are
1000 kg/m3 and 1.5 × 10−5 m2/s respectively. A river such as the Nile drops
hundreds of metres over the course of approximately 100 km. The typical
slope of the river is therefore tan (10−4) ≈ 10−4. Assuming that there is a
balance between the gravitational force and the viscous dissipation leads
to u ≈ 105 m/s, instead of the observed value of approximately 1 m/s. This
result is, of course, ridiculous and points to the inappropriateness of this
assumption. Alternatively, arguing on the lines of energy conservation then,
at best, all the potential energy lost by the fluid in moving from the head
to the base of the river is converted to kinetic energy. The stored potential
energy is ρgH, where H is the change in elevation. In the case of the Nile

x

x

t0

t3

x0

t2
t1

Figure 1.2 Top – acceleration as a velocity gradient in space at a single instant
in time; Bottom – acceleration as a velocity gradient in time at a fixed
location.
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p1

x

p1> p2

u2> u1

u1≈ 0

p2

u2

Figure 1.3 Fluid virtually at rest in a tank is put under pressure, p1, so that it flows
out along a tube open to atmospheric pressure p2. There is a pressure dif-
ference (gradient) in the fluid between the tank and at the end of the tube.
The pressure decreases in the direction of increasing x, and therefore the
gradient is negative. The corresponding gradient in the fluid velocity is
positive, as fluid in the tank is virtually at rest but exits the tube at a large
positive velocity ν2.

H ≈500 m and the potential energy loss is ≈5×106 J. Equating this with the
kinetic energy gain gives u ≈ √

(2gH) ≈ 100 m/s. This is a step in the right
direction, but is still unrealistic.

In 1894, Osborne Reynolds suggested a resolution of these discrepan-
cies. Reynolds performed a series of experiments to investigate the relative
importance of the terms in Equation (1.1). In particular, he noted that the
nature of the flow depended on the relative magnitude of the viscous term
(second term on the right-hand side of Equation 1.1) and the nonlinear term
(second term on the left-hand side of Equation 1.1). The ratio of the nonlin-
ear term to the viscous term can be measured by the quantity UL/ν, where
U is a characteristic value of the velocity and L is a characteristic length
scale such as river width or pipe diameter. This quantity is now known as
the Reynolds Number (Re):

Re = UL
ν

(1.2)

and plays an important role in hydraulic engineering. If Re « 1 then the non-
linear term can be neglected, simplifying the solution of the Navier-Stokes
equations considerably. However, in many natural situations Re » 1 and no
such simplification is possible. The flows are strongly affected by nonlin-
earity, and the flow patterns can be highly complicated and distorted. Such
flows are termed ‘turbulent’. For example, in the case of the river flow dis-
cussed above, the Reynolds number is ∼ 107, and the flow may be expected
to be turbulent. Turbulence generally has a damping effect on the mean flow,
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and is the cause of the discrepancy between the river flow velocities calcu-
lated on simple physical arguments and those observed. It is also likely to
have been a contributory cause to Euler’s problem in designing a fountain.

The examples above serve to illustrate how the process of engineering is
an evolutionary one. Existing understanding is employed in a new design. If
the design works, all well and good; if it does not, then through the sequence
of testing and further scientific research an understanding of why the design
did not work can emerge which, in turn, can lead to an improved design.

1.2 Uncertainty

Hydraulic and coastal engineering design deals with the flow of water and
its effects on the built and natural environment. This involves not just the
physical processes but also an appreciation of the wider interactions with
the environment in terms of ecology, archaeology and socio-economics. In
this regard it is worth considering that any engineering works are initiated
as a result of a human need. For example, this might be for housing, for
a bridge to enable faster communication between communities, for protec-
tion against flooding, for national esteem or to satisfy personal vanity. In all
cases, the engineering works will have an associated cost in terms of money
to pay for the materials and construction, as well as perhaps less tangible
side-effects. In the case of a flood defence this might be restricted access to
a river for tourists, which constrains scope for touristic development of the
site. The funding of an engineering scheme will inevitably involve an assess-
ment of the balance between the costs of the scheme, on the one hand, and
the value and benefits it would bring, on the other. Clearly, it would not be
sensible to proceed with a scheme the costs of which exceeded the expected
benefits. However, the way in which benefits are costed, particularly when
human life is involved, is a difficult and emotive subject.

An additional complication is that all materials deteriorate over time,
reducing the integrity of any structure or engineering scheme. This is
acknowledged in current engineering design philosophy as follows. For the
sake of argument, let us consider the construction of an embankment as a
flood defence. Once built, this will be subject to the vagaries of the weather,
the river flows, progressive consolidation of the embankment material and
possibly subsidence. With some knowledge of the processes of erosion and
consolidation, the rate at which the embankment crest level is likely to
reduce can be estimated and thus included in the original design. In order to
do this, however, it is required to specify a duration over which the structure
is expected to provide protection. This is known as the ‘design life’.

As well as the design life, a designer also needs to know what type of
extreme condition event the structure is required to resist. This is often
expressed in terms of a ‘level of service’, or in other words a statement
such as ‘prevent flooding against all water levels up to and including that
experienced once every 50 years’. This implicitly acknowledges the fact that,
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however high you build the embankment, during the course of the design life
there may be a very large flood that overwhelms the defence. For example, if
water levels of a magnitude that were experienced only once every 100 years
occurred, you could not reasonably expect a defence that had been designed
to protect against the once in 50 year levels to prevent flooding. Of course
you could decide to improve the design to protect against the 1 in 100 year
level. However, this would be more expensive, reducing the benefit–cost
ratio, and would still not guarantee protection against even more severe
conditions.

From this perspective it becomes clear that the design process is a bal-
ance between the level of protection required, the expected lifetime of the
defence, the costs of construction and the value of the benefits. The costs
of construction are determined by purely financial pressures, the benefits
largely by environmental and socio-economic considerations, the design life
and level of service by society’s attitude to the consequences of the failure of
the structure. This latter factor varies from discipline to discipline and from
country to country. An example of this is that, in the UK, sewers are typi-
cally designed to provide a level of service that equates to the 1 in 20 year
flow in urban areas over a design life of 30 years (although this is an area of
active discussion – see e.g., http://www.fwr.org/wapug/wapugdes.pdf), while
river and coastal embankments are designed to a level of 1 in 50 years
or more over a design life of 50 years. In contrast, coastal defences in
Holland are designed to protect against the 1 in 10,000 year storm as
about 50% of the land area of Holland is protected by sea and river flood
defences.

It might seem that once a design life and a level of service have been
specified there should be few problems. However, due to our imperfect
knowledge of the physics of fluid flow, it is not possible to be absolutely
certain how a structure will perform. Unpredictability also arises from the
nature of the materials used in construction. Soils and sands are composed
of an aggregation of individual grains that have varying density, volume,
shape and orientation. The voids between the grains are similarly of dif-
ferent shapes and volumes, and may permit the flow of fluid through the
soil. Quarried stone and concrete contain microcrystalline imperfections or
faults (Radavich 1980), which permit the formation and propagation of
cracks. Indeed, it is impossible to quarry two stones or manufacture two
concrete blocks that are identical at a microscopic level. This fact means
that there is some uncertainty about how any one of, say, 100 concrete
blocks will actually perform.

Uncertainties also arise not just from our imperfect understanding of
environmental processes and materials, but also in the implementation of
the design (e.g., using substitute materials that have different properties,
slipshod construction, reduction/redesign of the level of service during con-
struction due to economic constraints, and so on). A large uncertainty will
often be compensated, through experience, by an appropriate allowance
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for contingency costs and conservatism in the design. Reducing uncertainty
can translate into more cost-efficient engineering solutions. Engineering is
an inherently uncertain and iterative process, with design guidelines chang-
ing according to improvements in our understanding, the introduction of
new materials and our attitude to risk.

1.3 Risk and Reliability

1.3.1 Introduction

We all, consciously or unconsciously, assess risks every day of our lives – at
work, at leisure and in the home. In general, individuals seem to be prepared
to take on greater risks than are commonly permitted for public services and
transport. This is a reflection of society’s consensus that a low level of risk
should be provided to individual members of the public when they entrust
their safety to others. Individuals who choose to engage in more dangerous
activities may do so, but at their own risk.

Table 1.1 summarises the risk of various activities by the rate of fatalities.
Not surprisingly, activities such as skydiving and motorcycling are high risk
in these terms. However, this is only one way of measuring risk, and is
perhaps not the fairest, because even a successful skydiver is unlikely to
spend as much time skydiving as a passenger would spend travelling on
buses or long-haul flights. An alternative measure would be to calculate the
number of fatalities occurring in a unit of time. Table 1.2 presents estimated
figures in this format. Firstly, not all the same activities appear, as some
activities are easier to measure than others.

Secondly, there are some surprising figures. The fact that you are reading
this book means that, according to Table 1.2, you have already succeeded in
surviving the very dangerous process of birth. Also, it appears that climbing
stairs is more dangerous than amateur boxing. Furthermore, travelling by
bus or train is much more dangerous in the UK than in the USA.

Clearly, a simple measure of risk, such as those in Table 1.1 or 1.2, is
open to misinterpretation. For example, there may be a simple reason for
the discrepancies in the risk of travelling by bus or train in the USA and
UK, such as different train speeds, so that in a fixed time trains cover more
distance in one case than in the other, or differences in the passenger density
on trains in the two cases. Nevertheless, when taken in context, such tables
provide the means of a quantitative comparison of the risks associated with
various activities.

1.3.2 What is risk?

As suggested by the previous section, the word ‘risk’ implies a measure of
the likelihood of an event occurring over a particular period of time. In
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slightly more formal language,

Risk = hazard × consequence (1.3)

where ‘hazard’ is the likelihood of an event happening in a given time, and
‘consequence’ is a measure of the damage given that the hazard event occurs.
The hazard will usually be expressed in terms of a probability of occurrence
per unit time, and the consequences measured in fatalities or financial costs.
A formal definition of risk is given in Chapter 2, after the introduction of
the notion of probability.

1.3.3 What is reliability?

To define reliability we return to the idea of a structure designed to with-
stand particular conditions over the design life. Unreliable structures are
often much easier to identify than reliable ones, as failure often captures the
headlines. However, ‘failure’ of a structure is not always straightforward to
assess. If a building collapses or a dam breaches then it is failure. But what
if a flood embankment designed to withstand a 1 in 50 year flood is over-
topped but negligible damage occurs? How much and what kind of damage
must occur before flooding is considered substantive? Was the event a 1 in
50 year or a 1 in 51 year event? Do we have sufficient data and understand-
ing to measure extreme events to this resolution? While determining failure
can be very subjective and qualitative, not to mention emotive and litigious,

Table 1.1 Comparative risk of death for a range of activi-
ties (adapted from Failure Analysis Associates, Inc.,
1993)

Activity Fatalities per
million hours

Skydiving 128.71
General aviation 15.58
On-road motorcycling 8.80
Scuba diving 1.98
Swimming 1.07
Motor cars 0.47
Water-skiing 0.28
Cycling 0.26
Flying (scheduled domestic airlines) 0.15
Cosmic radiation during long-haul flights 0.035
Home living (active) 0.027
Travelling in a school bus 0.022
Home living, active and passive (sleeping) 0.014
Residential fire 0.003
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Table 1.2 Comparative risk of death for a range
of activities, measured in fatalities
per billion per hour of the activity
(adapted from http://zebu.uoregon.edu/
1999/ph161/l20.html) (accessed 24/01/08)

Activity Deaths per billion
with 1 h of risk
exposure

Birth 80,000
Professional boxing 70,000
On-road motorcycling 6,280
Swimming 3,650
Cigarette smoking 2,600
Flying (scheduled airlines) 1,450
Motor cars 1,200
Coal mining 910
Climbing stairs 550
Amateur boxing 450
Travelling in a bus or train (UK) 50
Travelling in a bus or train (USA) 10

its opposite, the measure of success or ‘reliability’, can often be defined and
quantified in an objective manner.

One widespread definition of reliability is: ‘Reliability is the probability
of the structure (or system) performing its required function adequately for
a specified period of time under stated conditions’. This definition is based
on the concept of level of service, and acknowledges that responsibility falls
on the commissioning body and designer to agree what is to be meant by the
‘required function’, ‘adequately’, ‘design life’ and ‘design conditions’. A key
element of the definition of reliability is the word ‘probability’. The forces
experienced by engineering structures are inherently random (e.g., wind,
rain, waves) and the response of the materials to these forces are uncertain.
Describing both the forces and responses in probabilistic terms provides
the basis for objective and quantitative description of the uncertainties in
structural performance. Furthermore, the natural language for bringing the
ideas of uncertainty, risk and reliability together is probability.

The study of risk and reliability of structures, often termed ‘reliability
theory’, has been developed widely in structural engineering and manufac-
turing. Hence, much of the nomenclature is cast in the language of these
disciplines. Thus, a structure is considered to have a certain ‘strength’ to
resist the imposed ‘loads’, whether these are wind stresses acting on a tall
building or water levels approaching the crest of an embankment.

Reliability theory provides a means of assessing the performance of exist-
ing structures and quantifying the uncertainties associated with new ones.
Reliability theory can also be very useful in determining the relative risks
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of failure of a collection of existing structures. For a body responsible
for maintenance of structures such as dams or flood defences, this can
assist in prioritising limited funds to the weakest structures. A final caveat;
although reliability theory allows us to determine the likelihood of failure,
it is important to remember that the calculations of probabilities have them-
selves an associated uncertainty due to the limited accuracy of data and the
approximate nature of many of the equations defining the response of the
structure to loads. The results of reliability calculations should always be
used within the context of engineering experience.

1.4 Scope

Reliability theory is well established in civil engineering in the discipline of
structural engineering. Its uptake into hydraulic and coastal engineering is
more recent, and is leading to new developments of the theory to deal with
the unique problems that arise when flowing water is involved. The theory
requires knowledge in a number of specialist subjects, including hydraulics,
wave mechanics, sediment transport, probability and numerical methods.

An appreciation of the power and limitations of numerical prediction
methods is becoming increasingly important due to the improvements in
computing power and the development of computational methods for
describing hydrodynamics and uncertainty. Indeed, some aspects of relia-
bility analysis, such as Monte Carlo simulation, can be effective only with
numerical methods. The use of some numerical techniques is covered in
this book, and references to more detailed methods are provided where
appropriate.

Within coastal engineering, and also hydraulic engineering, there is a
clear trend towards ‘soft engineering’. Soft engineering does not exclude
hard structures, but promotes strategic design that takes into account the
impact that construction will have on the surrounding environment. In turn,
this requires a much more detailed appreciation of the natural processes
in design, as well as a recognition of those areas where our understand-
ing is lacking. This generally means the use of complex numerical models
for predicting fluid flow, sediment transport and so on, all of which intro-
duce further uncertainty. Some such models are described in this book but,
for clarity, well-known empirical design formulae are used for many of the
examples.

This book is intended to provide an introduction to reliability theory in
its application to hydraulic and coastal engineering. It includes elements
of probability theory and the analysis of extremes prior to the description
of reliability theory in Chapter 5. Much design and assessment work now
makes use of mathematical or numerical models, and the use of such mod-
els is a continuing thread throughout the book. Chapter 6 is devoted to the
application of reliability methods in a range of contexts. At the beginning
of each subsection in Chapter 6, a brief discussion of the necessary theory
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and/or empirical design equations are provided. Chapter 7 provides an
introduction to how the methods of reliability theory described in the ear-
lier chapters can be applied to systems containing many linked elements,
and the concept of system reliability.

A key part of the engineer’s repertoire is judgement, based on experi-
ence gained from design and construction projects. While it is not possible
to teach design experience, the examples included in this book have been
selected to expose the reader to a spectrum of problems; from those that
are well defined with good-quality data, to those where the problem is not
so well defined or the data are imperfect. It is hoped that these convey the
element of pragmatism that is often required in practical design problems,
in which one rarely has as much information as one would like, or indeed
needs, to undertake detailed calculations. This is not to say that calculations
are not necessary; a good understanding of basic statistical and reliability
theory is important in making informed and robust judgements.

Further reading

Batchelor, G. K., 1967. An Introduction to Fluid Dynamics, Cambridge University
Press, London.

Chadwick, A. J., Morfett, J. and Borthwick, M., 2007. Hydraulics in Civil and
Environmental Engineering, 4th edition, E. & F. N. Spon, Abingdon.

Melchers, R. E., 1999. Structural Reliability Analysis and Prediction, 2nd edition,
John Wiley & Sons, Chichester, p. 437.

Nakayama, Y. and Boucher, R. F., 1999. Introduction to Fluid Mechanics, Arnold,
London.

Reeve, D. E., Chadwick, A. J. and Fleming, C. A., 2004. Coastal Engineering:
Processes, Theory and Design Practice, SPON Press, Abingdon, p. 461.

Roberson, J. A., Cassidy, J. J. and Chaudry, M. H., 1998. Hydraulic Engineering,
2nd edition, John Wiley & Sons, New York.

Thoft-Christensen, P. and Baker, M. J., 1982. Structural Reliability Theory and Its
Applications, Springer, Berlin.

Versteeg, H. K. and Malalasekera, W., 1995. An Introduction to Computational
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2 Introduction to probability

2.1 Probability

Many statements made in everyday conversation contain descriptions of
uncertainty: ‘It may rain tomorrow’; ‘That embankment should be high
enough to hold against this year’s storms’; ‘I wouldn’t do that if I were
you’. The theory of probability provides a basis for constructing exact mea-
sures of uncertainty. The theory of probability is often considered to have
begun in the mid-sixteenth century, when the Italian mathematician and
gambler Girolamo Cardano wrote his ‘book on games of chance’. Many of
the ideas of probability theory can be illustrated through examples relating
to dice and cards, and some such examples are used in what follows. In this
chapter, a brief introduction is given to some of the concepts underlying reli-
ability theory. The treatment is not intended to be exhaustive, and readers
seeking further detail are referred to the list of further reading at the end of
the chapter.

2.1.1 Sets and relations

In order to understand probability, we need the concept of a set. A set is
a collection of distinguishable objects, for example: the letters a, b, c, x,
y and z; the numerals 1, 2, 3 and 4; the primary colours red, blue and yellow.
A set is usually denoted by a pair of braces, { }, enclosing the elements of the
set. Thus, we might write that A denotes the set {1, 2, 3, 4}, or A={1, 2, 3, 4}.
Note that the order of the elements does not matter.

Two sets A and B are equal if every element of one is an element of the
other. A set A is a subset of a set B if every element of A is also an element
of B. The set that has no elements, the empty set, is denoted by Ø, and is a
subset of all sets. The union of two sets is the set of all elements that belong
to A or B or both A and B. The union of sets A and B is written as A ∪ B.
The intersection of two sets A and B is the set containing elements that are
in both A and B, and is written as A ∩ B. Two sets A and B are said to be
disjoint or mutually exclusive if they have no elements in common, that is,
if A ∩ B = Ø.
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Example 2.1. If A = {2, 3, 4} and B = {3, 4, 5, 6} then A ∪ B = {2, 3, 4, 5, 6}
and A ∩ B ={3, 4}

Example 2.2. If A = {2, 3, 4} and B = {5, 6} then A ∪ B = {2, 3, 4, 5, 6} and
A ∩ B = Ø

In any particular problem or application there will normally be a known
range of outcomes. For example, when rolling a fair die one would expect
to roll one of the integers 1, 2, 3, 4, 5 or 6. The set of all outcomes for a
particular situation is termed the universal set, or U. In the case of a die,
U = {1, 2, 3, 4, 5, 6}. Referring to this set, we may be interested in differ-
ent subsets of U, such as the even integers, or those integers greater than
4. If A and B are two disjoint sets such that A ∪ B = U, they are said to
be complementary (with respect to U). The complement of a set A, that
is, the set containing all elements in the universal set not in A, is often
written as A′.

Example 2.3. If U ={1, 2, 3, 4, 5, 6} and A={1, 3, 5} then A′ = {2, 4, 6}. Note
that A ∩ A′ = Ø and A ∪ A′ = U.

A useful pictorial means of understanding set theory is the Venn diagram.
In this, the elements of a set are represented by points and the set itself by
an aggregate of the points contained within a circle. The universal set is
usually shown as a rectangle. In Figure 2.1 the overlapping section of the
circles A and B represent two intersecting subsets of U. In Figure 2.2 A and
B represent two disjoint sets.

Example 2.4. Suppose that along a river reach there are 50 flood defence
units which are either embankments or vertical walls. Of these, 14 are walls,
27 have crest protection and 8 are walls and have no crest protection. How
many embankments do not have crest protection?

Solution. Writing W for the set of defences that are walls, C for the set
of defences that have crest protection, then we wish to know how many
defences are in W ′ ∩ C′. The steps in the solution are:

Number of walls without crest protection = W ∩ C′ 8
Walls with crest protection = W ∩ C 14 − 8 = 6
Embankments with crest protection = W ′ ∩ C 27 − 6 = 21
Embankments without crest protection = W ′ ∩ C′ 50 − (21 + 6 + 8) = 15

This simple problem may also be solved with the aid of a Venn diagram
(Figure 2.3).

While Venn diagrams are a useful tool when the number of sets is rela-
tively small, they become cumbersome with large numbers of sets. To deal
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Figure 2.3 Venn diagram for Example 2.4. Top left: the two intersecting sets W and
C in the universal set U. Top right: the set C′ (shaded). Lower left: the set
W ′ (shaded). Bottom right: the intersection of W ′ and C′ (shaded).

with this, it is necessary to define rules (or axioms), that define how we can
manipulate sets. The following eight ‘laws’ define the rules governing sets:

1 A ∩ B = B ∩ A and A ∪ B = B ∪ A
2 A ∩ (B ∩ C) = (A ∩ B) ∩ C
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3 A ∪ (B ∪ C) = (A ∪ B) ∪ C
4 A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
5 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)
6 A∩ Ø = Ø and A∪ Ø = A
7 A ∩ U = A and A ∪ U = U
8 A ∩ A′ = Ø and A ∪ A′ = U

where A, B and C are sets, U is the universal set and Ø is the empty set.
Two relations proved by the English mathematician De Morgan will also be
helpful later. They are:

9 (A ∪ B)′ = A′ ∩ B′

10 (A ∩ B)′ = A′ ∪ B′

It is left as an exercise for the reader to convince themselves that De
Morgan’s rules are true. (Hint. Use a Venn diagram with intersecting sets A
and B, inside the universal set U.)

2.1.2 Factorials

For any positive integer n, we define n factorial, denoted by n!, as follows:

n! = n(n − 1)(n − 2) . . .3.2.1 (2.1)

Thus 3! = 3.2.1 = 6 and 8! = 8.7.6.5.4.3.2.1 = 40320.

2.1.3 Permutations and combinations

Let A ={x,y, z}. A permutation of this set is any ordered group of elements,
that is, any subset of the set in which the order of the elements is noted. An
unordered group of elements is termed a combination. The ordered triples
of set A are: (x, y, z), (x, z, y), (y, x, z), (y, z, x), (z, x, y) and (z, y, x). Each of
the six groups contains the same combination of elements, but arranged in
a different order. If we now select two letters from the three in set A we can
make six ordered pairs or permutations: (x, y), (y, x), (x, z), (z, x), (y, z) and
(z, y). But (x, y) and (y, x) are the same combination of elements, and thus,
three combinations are possible, if we take two elements at a time. We will
use two important results regarding permutations and combinations. These
are now given without proof.

The number of distinct permutations of r objects taken from a set of n
objects is:

nPr = n!/(n − r)! (2.2)
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The number of combinations of r objects taken from a set of n objects is:

nCr = n!/[r!(n − r)!] (2.3)

Example 2.5. A design competition awards prizes for 1st, 2nd and 3rd
places. If five engineers enter the competition, in how many ways may the
prizes be won?

Solution. This is a question about permutations, where n = 5 and r = 3.
Hence, by Equation (2.2), 5P3 = 5!/2! = 60.

Example 2.6. A committee of 6 is to be chosen from a group of 14 people.
In how many ways may the committee be chosen?

Solution. This is a combination question, where n = 14 and r = 6. Hence,
from Equation (2.3), 14C6 = 14!/(6!8!) = 14.13.12.11.10.9/6.5.4.3.2.1 =
3003.

2.1.4 Sample space

The set of all possible outcomes of an experiment is termed the sample
space, often denoted by the letter S. Here, the result of an ‘experiment’
is called an ‘outcome’. An ‘experiment’ may well be an experiment in the
everyday sense of the word, such as applying a load to a concrete beam. The
outcomes of such an experiment would be either that the beam supports the
load successfully or that it does not. However, the term ‘experiment’ may
also be applied to rather different situations, such as finding the annual
maximum water level at a tide gauge. In this case, the outcome of the
experiment (the annual maximum water level) is not constrained to take
on discrete values such as 1, 2 or 3, but instead takes one from a continuum
of values. We define an event as a subset of the sample space. Events may
be outcomes, but do not necessarily have to be, as the following example
demonstrates.

Example 2.7. A die is thrown. The outcomes are {1, 2, 3, 4, 5, 6}. The
following are events:

I The number 5 is thrown;
II An even number is thrown;

III A number greater than 3 is thrown.

In I the event is one of the outcomes. In II and III the event occurs if any
one of three outcomes occurs: {2, 4, 6} and {4, 5, 6}, respectively.

Two events E1 and E2 are called mutually exclusive if they are disjoint,
i.e., if E1 ∩ E2 = Ø.
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2.1.5 Random variables and probability

A random variable X is a function defined over a sample space S =
{a1, a2,a3, . . . , an}. This means that X takes on a unique value for each
element ai of S. The outcome ai determines a single value of the function,
which we denote by xi. An example may help to clarify this rather formal
definition.

Example 2.8. Two dice are thrown. The sample space consists of 36 ordered
pairs: {(1, 1), (1, 2), . . . , (1, 6), (2, 1), (2, 2), . . . , (6, 1), (6, 2), . . . , (6,6)}.
Now define a random variable X as the sum of the numbers appearing on
the two dice. Then: X(1, 1) = 2, X(1, 2) = X(2, 1) = 3, X(1, 3) = X(2, 2) =
X(3, 1) = 4, and so on.

Note that each outcome determines a single value of the random variable
X, but a given value of X may correspond to more than one outcome.

In Example 2.8 it is clear that, although (with fair dice) each of the out-
comes would be expected to be equally likely, the same does not apply to
the values of the random variable X. Thus, we can throw ‘2’=1 + 1 in only
one way, but we can get a ‘3’=1+2=2+1 in two ways. Thus, purely from
a consideration of the number of ways in which the random variable can
take on the same value, we might expect that in a long sequence of throws
of two dice that X would take the value 3 twice as many times as it takes the
value 2. Slightly more formally, the probability of an event is the number of
times the event occurs in N repeated experiments divided by the number of
experiments. As N increases in magnitude, our experience of most scientific
experimentation indicates that this ratio tends to a constant value. In more
abstract terms, one may think of the process of assigning a probability to an
event as a function defining a non-negative value to that event in the sample
space.

Example 2.9. A hand of 5 cards is dealt from a well-shuffled, stan-
dard 52-card deck. What is the probability that it contains 3 spades and
2 clubs?

Solution. The number of possible hands (combinations) of 5 cards is 52C5 =
52!/(5!47!)=2, 598, 960. Any combination of 5 cards is as likely to be dealt
as any other, so the probability of any particular 5-card hand is 1/2,598,960.
Now, the number of ways in which a combination of 3 spades can arise from
13 spades (the total number of spades in the deck) is 13C3 = 13!/(3!10!) =
286. Similarly, for the clubs we have 13C2 = 13!/(2!11!) = 78. The event,
‘three spades and two clubs’ can occur in 13C3 × 13C2 ways. The required
probability is thus 13C3 ×13C2/2, 598, 960=0.00858, or approximately once
in every 100 deals.
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2.1.6 Axioms of probability

By convention, there are certain desirable properties for probabilities to
have, termed ‘axioms’. Writing S as the sample space and P(E) as the prob-
ability of an event E occurring in an experiment we define the following
characteristics for probabilities:

1 For any event E, 0 ≤ P(E) ≤ 1
2 If Ei are mutually exclusive events then

P(E1 ∪ E2 ∪ . . . ∪ En) ≡ P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei) (2.4)

3 If E = Ø, then P(E) = 0, and the event is said to be impossible
4 If E = S, then P(S) = 1, and the event E is said to be certain

Equation (2.4) is often known as the theorem of total probability. By con-
sidering the two events E and its complement E′, we know that E ∪ E′ = S.
So P(E ∪ E′) = 1. But P(E ∪ E′) = P(E) + P(E′) because E and E′ are mutually
exclusive. Thus,

P(E′) = 1 − P(E) (2.5)

Equations (2.4) and (2.5) are very important as they will be used repeatedly
in later chapters.

2.2 Elementary results from probability theory

2.2.1 Conditional probability

Consider the experiment of throwing two dice. For the sake of argument,
let us suppose one die is red and the other blue. The outcomes of the
experiment can be represented as a square array of 36 points, as shown
in Figure 2.4.

What if we now ask the question, ‘If the pair of dice show an odd sum,
what is the probability that this sum is greater than 7?’ This question is
rather more complicated than those we have come across so far. It can be
broken into two parts. First, we are told that the dice show an odd sum.
This automatically restricts the number of outcomes of interest to only 18
out of the total of 36 possible outcomes. Then, of these outcomes we are
asked which have a sum greater than 7. There are 6 points out of the 18
which satisfy this criterion, {(6, 3), (5, 4), (4, 5), (3, 6), (6, 5) and (5, 6)},
each having an equal probability. Thus, the answer to the question is that
the probability is 6/18 = 1/3. This is an example of what is termed condi-
tional probability. The probability of an event B occurring, given that event
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Figure 2.4 The possible outcomes of throwing two dice are shown in a tabular for-
mat. The odd sums are circumscribed with a dotted line. The odd sums
that are greater than 7 are, in addition, shaded.

A has already occurred, is denoted P(B|A). The conditional probability is
defined as

P(B|A) = P(A ∩ B)
P(A)

(2.6)

The events A and B are called statistically independent if

P(A ∩ B) = P(A)P(B) (2.7)

Example 2.10. A coin is tossed twice. What is the probability that both
tosses are ‘heads’, given that at least one of the tosses is a head?

Solution. There are four possible outcomes: {HH, HT, TH, TT}, where H
denotes ‘heads’ and T denotes ‘tails’. Each outcome has equal probability =
1/4. Thus,

P(HH|one H at least) = P(HH|HT ∪ TH ∪ HH)

= P(HH ∩ (HT ∪ TH ∪ HH))
P(HT ∪ TH ∪ HH)

= P(HH)
P(HT ∪ TH ∪ HH)

= 1
3
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Many people are surprised by this answer, thinking that it should be 1/2.
However, that is the answer to a similar but distinct question: ‘When a coin
is tossed twice what is the probability that both are heads given that the
second toss is a head?’ (Exercise).

2.2.2 Conditional independence

The events A and B are conditionally independent given C if

P(A ∩ B|C) = P(A|C)P(B|C) (2.8)

Example 2.11. There are two drains from site A to site B, (D1 and D2), and
two drains from site B to site C, (D3 and D4). Each of the four drains has
an equal probability P of becoming blocked, independently of the others.
What is the probability of there being unblocked drainage from site A to
site C?

Solution. The situation is shown in Figure 2.5. The probability of there
being an unblocked drain from site A to site C is equal to the probability
of there being an unblocked drain from site A to site B and there being
an unblocked drain from site B to site C. As the blocking of each of the
drains is independent, this is simply the product of the probabilities of there
being unblocked drains from A to B and from B to C. However, blockages
preventing drainage from A to C can occur in several different ways, {D1

and D2 blocked, and neither or only one of D3 and D4 blocked; D3 and D4

blocked, and neither or one of D1 and D2 blocked; all four drains blocked}.
Rather than count these and evaluate probabilities for each case we can use
Equation (2.5). Now,

P(unblocked
drainage)

= 1 − P(blocked drain from A to C)

= [1 − P(drains from A to B blocked)]×
[1 − P(drains from B to C blocked)]

= [1 − P(drains from A to B blocked)]2

= [1−P(drain D1 blocked and drain D2 blocked)]2

= [1−P(drain D1 blocked)×P(drain D2 blocked)]2

= (1 − p2)2

As the probabilities of each drain becoming blocked are equal, the
probability that the drains from A to B are blocked is the same as
the probability that the drains from B to C are blocked. Thus, we can
substitute expressions for the first whenever the second occurs – as in
going from line 2 to line 3 in the above solution. As the blocking of
each of the drains is independent, the probability of both D1 and D2

becoming blocked is simply the product of the probabilities, according
to Equation (2.7). If we take p = 1/10 in the above, the probability of
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Figure 2.5 Diagram for Example 2.11.

unblocked drainage from A to C is 0.98. Suppose now that drains D2 and
D4 were not installed. Then the probability of unblocked drainage from
A to C = [1 − P(D1 blocked)]·[1 − P(D3 blocked)] = (1 − p)2 = 0.81. The
benefit of having some redundancy in the drainage system (an increase in
the probability of functioning drainage of 0.17 in this case) is clear, but in
practice would have to be set against the cost of duplicating the drainage
routes.

2.2.3 Partitions and Bayes’ rule

Consider a sample space S. If this is divided into mutually exclusive events
E1, E2, . . . , En such that

n⋃
i=1

Ei = S (2.9)

then the Ei are said to form a partition of S. If {E1, E2, . . . , En} is a partition
of the sample space S and E is any event, (which may be a subset of one of
the Ei, or may include elements of several of the Ei, see Figure 2.6), then

P(E) =
n∑

i=1

P(Ei)P(E|Ei) (2.10)

Using Equations (2.9) and (2.10) we may derive Bayes’ law:

P(Ei|A) = P(A|Ei)P(Ei)
n∑

j=1
P(A|Ej)P(Ej)

(2.11)

The use and power of this law may not be immediately obvious, but it
underlies a large discipline of statistical literature known as Bayesian infer-
ence, which is beyond the scope of this book. This section concludes with a
few examples that illustrate how Bayes’ law can be used in some practical
situations.
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Figure 2.6 Sample space containing six mutually exclusive events E1, E2, . . ., E6 and
an event E that includes some elements of events E3, E4 and E5.

Example 2.12. Concrete units for an embankment protection scheme are
manufactured by four suppliers. A supplier will be selected at random to
provide the units. It is known from past experience that not all units are
perfect. 5%, 40%, 10% and 10% of the units provided by Suppliers 1, 2, 3
and 4, respectively, are deficient. Furthermore, Supplier 1 can provide 2000
units, Supplier 2 can provide 500 units and Suppliers 3 and 4 can provide
1000 units each. (i) If a supplier is chosen at random, and a unit selected
from their stock at random, what is the probability that the unit is defective?
(ii) The selected unit is found to be defective, what is the probability that it
came from Supplier 2?

Solution. (i) The sample space, S, of this experiment consists of 4000 good
(g) units and 500 bad (b) units arranged as follows: Supplier 1, 1900g, 100b;
Supplier 2, 300g, 200b; Supplier 3, 900g, 100b; Supplier 4, 900g, 100b. Let
Bi denote the event consisting of all units from the ith supplier and D the
event consisting of all defective units. Evidently, P(Bi) = 1/4 for all i, as the
suppliers are selected at random. The conditional probabilities of selecting
a defective unit, given a particular supplier, are determined directly from
the ratios of defective units to the total number of units in stock at each
supplier. Thus:

P(D|B1) = 100/2000 = 0.05; P(D|B2) = 200/500 = 0.4; P(D|B3)

= P(D|B4) = 100/1000 = 0.1.

Since the Bi form a partition of S we have

P(D) = 0.05 × 1/4 + 0.4 × 1/4 + 0.1 × 1/4 + 0.1 × 1/4 = 0.1625.
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(ii) We require the conditional probability P(B2|D). As P(D) = 0.1625,
P(D|B2) = 0.4 and P(B2) = 0.25 we find from Equations (2.10) and (2.11),
P(B2|D) = 0.4 × 0.25/0.1625 = 0.615.

This result may seem rather strange at first. The chance of selecting a defec-
tive unit from Supplier 2 is 1/4. But if we have selected a defective unit then
the chance that it came from Supplier 2 more than doubles to 0.615. The
frequency interpretation is as follows: if the experiment is repeated n times
then Supplier 2 will be selected 0.25n times. If nD experiments result in a
defective unit being selected, then the number of times the unit is taken from
Supplier 2 equals 0.615nD.

Example 2.13. A court is investigating the occurrence of a damaging flood.
It is alleged that this was due to inappropriate design of a flood defence
structure. Let F be the event that inappropriate design occurred. Two
independent expert witnesses, Bill and Ben, are advising the court. The
court knows the reliability of both: Bill tells the truth with probability p1

and Ben with probability p2, and their statements may be taken as being
independent. Let B1 and B2, respectively, be the events that Bill and Ben
maintain that F occurred, and let q = P(F). What is the probability that F
occurred given that both Bill and Ben state that F occurred?

Solution. In symbols, we must evaluate P(F|B1 ∩ B2). From Equation (2.6)
this is equivalent to P(F ∩ B1 ∩ B2)/P(B1 ∩ B2). However, P(F ∩ B1 ∩ B2) =
P(B1 ∩ B2|F) × P(F) and from Equation (2.10)

P(B1 ∩ B2) = P(B1 ∩ B2|F)P(F) + P(B1 ∩ B2|F′)P(F′)

We have from the independence of the expert witnesses that B1 and B2 are
conditionally independent given either F or F′. Thus,

P(B1 ∩ B2|F) = P(B1|F)P(B2|F) = p1p2

P(B1 ∩ B2|F′) = P(B1|F′)P(B2|F′) = (1 − p1)(1 − p2)

so that, from Equation (2.11),

P(F|B1 ∩ B2) = p1p2q
p1p2q + (1 − p1)(1 − p2)(1 − q)

With values of p1 = 0.95, p2 = 0.8 and q = 0.02 we find the probability that
F occurred given that both Bill and Ben state that F occurred as 0.61, which
is perhaps not as large as one might have thought at the outset.
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2.3 Random variables

A random variable, X, is a variable whose value is determined by the
result of an experiment involving unpredictable or chance causes. Random
variables fall into two categories: discrete and continuous.

2.3.1 Discrete random variables

A variable is discrete if the set of all values it may take is countable, that is,
the number of values is finite or can be put into one-to-one correspondence
with the positive integers. An example of a discrete random variable is the
sequence of values obtained by repeatedly throwing a die. Another example
would be the readings of a tide board recorded to the nearest 0.1 m with
readings limited between a and b, where a is the lowest recordable level (at
or near the point where the tide board enters the seabed) and b is the (finite)
upper limit on the tide board, probably Highest Astronomical Tide plus a
couple of metres to account for any surge component. An example of such
a tide board is shown in Figure 2.7.

Figure 2.7 Tide boards either side of lock gates at Silloth, UK, used for record-
ing water levels. This board, plus another on the other side of the lock
gate, were the first metric boards to be installed in the UK. (Photograph
courtesy of Dr Dominic Hames.)
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Table 2.1 A frequency table of water-level measurements

Water level (m) Frequency Probability (to 2 decimal places
in brackets)

Cumulative
distribution

0.5 2 0.011494 (0.01) 0.011494
0.6 4 0.022989 (0.02) 0.034483
0.7 3 0.017241 (0.02) 0.051724
0.8 7 0.040230 (0.04) 0.091954
0.9 6 0.034483 (0.03) 0.126437
1.0 5 0.028736 (0.03) 0.155173
1.1 8 0.045977 (0.05) 0.201150
1.2 15 0.086207 (0.09) 0.287357
1.3 14 0.080460 (0.08) 0.367817
1.4 18 0.103448 (0.10) 0.471265
1.5 17 0.097701 (0.10) 0.568966
1.6 16 0.091954 (0.09) 0.660920
1.7 14 0.080460 (0.08) 0.741380
1.8 11 0.063218 (0.06) 0.804598
1.9 8 0.045977 (0.05) 0.850575
2.0 11 0.063218 (0.06) 0.913793
2.1 7 0.040230 (0.04) 0.954023
2.2 6 0.034483 (0.03) 0.988506
2.3 2 0.011494 (0.01) 1.000000

Total 174 Total 1.000000 (0.99)

Although one might consider that water levels vary continuously, the
practical limits on the range of measurable water levels mean that the values
recorded will be in a finite range, and the resolution of the recordings means
the set of possible recorded values will be discrete. Given a sequence of val-
ues of a discrete random variable, X, one may construct a frequency table
summarising the number of times each value occurred during the course of
the sequence. Table 2.1 is just such a tabulation of 174 water-level mea-
surements constrained to lie between +0.5 m and +2.3 m, in intervals of
0.1 m.

The first column shows the water levels, the second the number of times
that water level occurred in the sequence, and the third column shows the
probability determined by dividing the number of occurrences by the total
number of observations. The sample space is the set of values in the first
column, and the events of these values being recorded at any time are
mutually exclusive. Thus, from Equation (2.4), we would expect the sum
of the probabilities to be 1. Column 3 shows one of the practical prob-
lems that can be encountered when deriving probabilities from a set of
measurements. The probabilities are shown to six decimal places as cal-
culated in a spreadsheet. Also shown (in brackets) are the probabilities
obtained by rounding the more accurate probabilities to two decimal places.
In this case, the probabilities do not sum to 1 exactly. Equation (2.4) is
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Figure 2.8 Probability function (or frequency chart) for the water levels given in
Table 2.1.

obeyed approximately, and will approach fulfilment as the accuracy of the
calculation of the probabilities increases. Discrepancies can arise because
calculations (whether done by hand, by desk calculator or on a computer)
are performed to a finite accuracy.

Table 2.1 defines the probability function of the random variable, X.
The probability function of a discrete random variable, X, is defined
as the set of pairs {xi, f (xi)}, where xi is a real number, i = 1, 2, . . . , n,
f (xi) is the probability that X = xi, and

∑n
i=1 f (xi) = 1. Figure 2.8 shows

the graph of the probability function of the random variable defined by
Table 2.1.

The probability function is sometimes referred to as the probability mass
function to distinguish it from the probability density function used for
continuous random variables. In Table 2.1, if we now consider not the
frequency that a particular value occurs, but the frequency that X takes
on a value less than or equal to a particular value, we derive a cumula-
tive probability table that defines the cumulative distribution function of X.
The fourth column in Table 2.1 contains the cumulative probabilities. We
write F(xi) = P(X ≤ xi), and f (xi) = P(X = xi). Thus, F(x1) = f (x1), F(x2) =
f (x1) + f (x2), . . . , and F(xn) = P(X ≤ xn) =∑n

i=1 f (xi) = 1. Figure 2.9 shows
the graph of the cumulative frequency function. This can be converted into
the cumulative distribution function by dividing all the frequencies by the
total number of observations (174).

Note that this is an increasing function for obvious reasons. The value
of the cumulative distribution function F(xi) gives the probability of the
random variable, X, being less than or equal to xi. This turns out, perhaps
surprisingly at this stage, often to be a more helpful quantity to deal with
than the probability function f (xi).



Introduction to probability 27

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3

Water level (m)

0

20

40

60

80

100

120

140

160

180

200

C
u

m
u

la
ti

ve
 f

re
q

u
en

cy

Figure 2.9 Cumulative frequency function of the water level data in Table 2.1.

Examples of discrete variables

1 Bernoulli trials: X takes values 0 or 1 with probabilities p and q, respec-
tively. The probability function is f (0)=p, f (1)=q=1−p. An example
is tossing a fair coin where p = q = 1/2.

2 Binomial distribution: If n independent Bernoulli trials X1, X2, . . . , Xn

are performed and the total number of 1s are counted so that Y = X1 +
X2 + . . . + Xn then the probability function of Y is

f (k) = nCkpk(1 − p)n−k, k = 0, 1, . . . ,n (2.12)

This is sometimes described in shorthand as ‘Y is a B(n, p) variable’.
3 Poisson distribution: A Poisson variable is a random variable that has

the mass function

f (k) = λk

k! e−λ, k = 0, 1, . . . , (2.13)

for some λ > 0. This is a limiting case of the Bernoulli function when n
becomes very large and p becomes very small. It gives the probability
of a number of occurrences of a random event in a given time interval,
given the mean rate of occurrence, λ.

4 Geometric distribution: Suppose independent Bernoulli trials are per-
formed at times 1, 2, . . . . Let Z be the time that elapses before the first
success. Z may be considered the ‘waiting time’. Then

P(Z = k) = f (k) = p(1 − p)k−1 (2.14)
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2.3.2 Continuous random variables

A random variable is continuous if its cumulative distribution function
F(x) = P(X ≤ x) can be written as

F(x) =
x∫

−∞

f (u)du (2.15)

where f is called the probability density function of X. This does not define
F uniquely; however, if F is differentiable, then it is customary to write

f (u) = dF
du

(2.16)

Note that there is a correspondence between the cumulative distribution
functions for both discrete and continuous cases. Indeed, it is nowadays
customary to refer to F(x) as the distribution function. The correspondence
between the probability mass function and the probability density function
is rather more complicated. The probability of a continuous random vari-
able having a value between x and x + δx is F(x + δx) − F(x) ≈ f (x)δx, not
f (x), as in the discrete case. The numerical value f (x) is not a probability.
In fact, for a continuous variable P(X = x) = 0. This may seem nonsensi-
cal, since X needs to take some value. Broadly speaking, for a continuous
variable there is an uncountable number of values it can take, and this num-
ber is so large that the probability of X taking any particular value is zero.
This difference is emphasised by referring to the probability mass function
in the discrete case and the probability density function for continuous vari-
ables. To convert the ‘density’ into a ‘mass’ it is necessary to multiply by
a length δx. The crucial point is, that for continuous random variables, to
obtain a probability it is necessary to consider a small range of values, (say
x to x + δx), and multiply the probability density function value at x by the
range δx to obtain the probability that X lies in the range [x, x + δx].

In practice, the types of variables encountered in hydraulic and coastal
engineering are generally considered to be continuous. However, when they
are measured this can only be to a finite accuracy. For analytical manipu-
lation it is much more convenient to work with continuous distributions.
Thus, the discrete measured values are treated as though they were truly
continuous. As an example consider Table 2.1, which contains a discrete
distribution of values of an essentially continuous process. These values
define a discrete distribution. [The value of the probability function is the
probability of the random variable taking that value; so f (0.5)=P(x=0.5)=
0.011494]. This discrete distribution can be ‘transformed’ into a continuous
distribution by equating the probability of the discrete variable f (x) to the
product of a probability density function and a length. In this case the length
will be the resolution of the measurements (= 0.1 m). This process is often
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Figure 2.10 Illustration of fitting a smooth function to the discrete cumulative
distribution function with the data in Table 2.1.

referred to as ‘binning’. It is common practice to centre the bins about the
discrete values. Thus, f (x) = P(x − δx/2 ≤ x < x + δx/2), where δx is the bin
size and so, for example, the discrete distribution that has P(x=0.5) is inter-
preted as a continuous distribution with P(0.45 ≤ x < 0.55). The resulting
probability density function has a step-like appearance. Although continu-
ous, this form is not very convenient because the vertical steps give rise to
a stepped cumulative distribution function. It is then very difficult to obtain
the probability density function from this via Equation (2.16). Very often a
further step is taken whereby a smoothly varying probability density func-
tion (with a convenient analytical form) will be fitted to the continuous step
function. The process is illustrated in Figure 2.10.

The difference between discrete and continuous variables and between
probability mass functions, probability density functions and cumulative
distribution functions may have been laboured somewhat, but an incom-
plete understanding of the concepts and terms is the source of many
errors.

Examples of continuous variables

1 Uniform or rectangular distribution (Figure 2.11): X is uniformly
distributed on the range [a, b] if

F(x) =

⎧⎪⎨
⎪⎩

0 if x ≤ a
(x − a)/(b − a) if a < x ≤ b
1 if x > b

(2.17)
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Figure 2.11 Plot of the rectangular or uniform density and distribution functions.

2 Exponential distribution (Figure 2.12): X is exponential with parameter
λ( > 0) if

F(x) = 1 − e−λx, x ≥ 0 (2.18)

This distribution is the continuous version of the waiting time or dis-
crete geometric distribution. It often appears in practice to describe
the time elapsing between unforeseeable events such as storms or
earthquakes.
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Figure 2.12 Plots of the exponential density and distribution functions for three
values of the parameter λ.

3 Normal or Gaussian distribution (Figure 2.13): The normal or Gaussian
distribution arises as a limiting case of other probability distributions
and as the probability distribution of a sum of random processes (see
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Section 3.4). The probability density function and cumulative distribu-
tion is given by

f (x) = 1√
2πσ 2

exp

[
−1

2

(
x −μ

σ

)2
]

−∞< x <∞ (2.19)

and

P(X ≤ x) = F(x) = 1√
2π

z∫
−∞

e− t2
2 dt −∞< x <∞ (2.20)

where z = (x − μ)/σ and t is a dummy integration variable. There is
no simple expression for F(x). The standard normal distribution, writ-
ten N(0, 1), has zero mean and unit variance. An N(μ,σ ) variate is
standardised as z = (x − μ)/σ ; and f (z) and F(z) are commonly denoted
by ϕ(z) and Φ(z), respectively. Tables of values of Φ(z) can be found
in standard texts (e.g., Abramowitz & Stegun 1964). Tabulated values
of Φ(z), ϕ(z) and 1 − Φ(z) are provided in Appendix A. The normal
distribution has the following useful properties:

Φ( − y) = 1 −Φ(y)

y =Φ−1(p) =−Φ−1(1 − p) (2.21)

P(a < x ≤ b) =Φ

(
b −μ

σ

)
−Φ

(
a −μ

σ

)
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Figure 2.13 Plots of the normal density and distribution functions, for zero mean
and different values of the variance.
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Example 2.14. Illustrative calculations using the normal distribution tables
(Appendix A). From the tables in Appendix A find:

(a)

∞∫
0.50

ϕ(z)dz, (b)

∞∫
2.17

ϕ(z)dz, (c)

2.0∫
1.50

ϕ(z)dz, (d)

∞∫
−1.50

ϕ(z)dz, (e)

2.13∫
−1.32

ϕ(z)dz

Solution.

a From Table A we find Φ(0.5) = Φ(0.5) =
0.5∫

−∞
ϕ(z)dz = 0.69146. Thus

∞∫
0.50

ϕ(z)dz = 1 −Φ(0.5) = 0.3085.

b We can use Table A as in part (a) or use Table D directly to find
∞∫

2.17

ϕ(z)dz = 0.0150.

c Note that

2.0∫
1.50

ϕ(z)dz =
2.0∫

−∞

ϕ(z)dz −
1.5∫

−∞

ϕ(z)dz =Φ(2.0) −Φ(1.5)

= 0.97724 − 0.93319 = 0.04405.

d Table D does not extend to negative arguments (otherwise we could use
this directly), so we note that

∞∫
−1.50

ϕ(z)dz = 1 −
−1.50∫
−∞

ϕ(z)dz = 1 −
∞∫

1.50

ϕ(z)dz = 1 − 0.0668 = 0.9332.

e Note that

2.13∫
−1.32

ϕ(z)dz = 1 −
⎡
⎣ −1.32∫

−∞

ϕ(z)dz +
∞∫

2.13

ϕ(z)dz

⎤
⎦

= 1 −
⎡
⎣ ∞∫

1.32

ϕ(z)dz +
∞∫

2.13

ϕ(z)dz

⎤
⎦

= 1 − (0.0934 + 0.0166) = 0.8900, using Table D.
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4 Rayleigh distribution (Figure 2.14): X follows a Rayleigh distribution
with parameter b if

F(x) = 1 − exp
[
− x2

2b2

]
, 0 ≤ x (2.22)

Under suitable conditions, the distribution of wave heights can be described
with a Rayleigh distribution.
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Figure 2.14 Plot of the Rayleigh density and distribution functions for three values
of the parameter b.

5 Gamma distribution (Figure 2.15): X follows a Gamma distribution
with parameters λ and r if

F(x) =
x∫

0

λrwr−1e−λw

�(r)
dw, 0 ≤ x,λ > 0, r > 0 (2.23)
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parameter values.
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where w is a dummy variable, and Γ (r) is the complete Gamma function
defined as (r − 1)! when r is an integer. Where r is not an integer

�(r) =
⎧⎨
⎩

∞∫
0

tr−1e−tdt r > 0

0 otherwise

When r is an integer this distribution is known as the Erlang distribution,
after the Danish engineer who derived it in his study of congestion on tele-
phone lines. The Erlang distribution describes the distribution of the rth

arrival of a Poisson process with parameter λ, which is usually termed the
‘scale parameter’.

2.3.3 Moments of a distribution

The shape of a distribution may be described quantitatively by its moments.
The mean, or expected value or first moment of a random variable is defined
as:

E(X) ≡μ=
∞∫

−∞

xfX(x)dx ≈
∑

i

xipX(xi) (2.24)

The integral expression is for continuous random variables and the sum-
mation expression is for discrete ones. The name ‘first moment’ arises
because it is the first moment of ‘area’ of the probability density function
about the origin.

If n is a positive integer, then the nth central moment, M1, of X is

Mn = E[(X − M1)n] (2.25)

where M1 = μ. The central moments that are most widely used are the first
and second, which are the mean and the variance, respectively. The positive
square root of the variance is called the standard deviation, and is often
written as σ . Moments may also be defined without respect to the mean.
Thus, the ordinary moments, mi, of X are calculated as:

mn = E(Xn) (2.26)
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The central moments may be written in terms of the ordinary moments.
As an example,

M2 = E[(X − m1)2]

= E(X2) − E(2m1X) + E(m2
1)

= m2 − 2m1E(X) + E(m2
1) (2.27)

= m2 − m2
1

In passing, it should be noted that variances can never be negative.
Higher moments are sometimes calculated as a test of normality. The two

most commonly used are the third and fourth central moments. A measure
of the asymmetry about the mean of a distribution is given by the skewness.
This is defined as:

Skewness = E[(X −μ)3]
σ 3

(2.28)

A normal distribution is symmetric about the mean and has zero skew-
ness. A positive value of skewness indicates that the density function has
a longer ‘tail’ in the positive direction. A measure of the ‘peakedness’ of a
distribution is given by the kurtosis, defined as:

Kurtosis = E[(X −μ)4]
σ 4

(2.29)

A standard normal distribution has kurtosis equal to 3.0. A kurtosis less
than 3 indicates a density function that is more sharply peaked than a
normal density function, while values greater than 3 are symptomatic of
a broader peak than that of a normal density function.

Example 2.15. Calculate the mean and variance of the uniform variate X
that takes values between a and b inclusive.

Solution. The density function for X is 1/(b − a) for a ≤ X ≤ b. Thus

E(X) =
∞∫

−∞

x
b − a

dx =
b∫

a

x
b − a

dx = b + a
2

Var(X) =
b∫

a

x2

b − a
dx − [E(X)]2 = (b − a)2

12
(2.30)
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More generally, the mean of the random variable Y = g(X), where g is an
arbitrary function of x, is given by:

E[g(X)] =
∞∫

−∞

g(x)fX(x)dx (2.31)

2.3.4 Percentiles, quartiles and quantiles

A concept that can be very useful is that of a percentile. The mth quantile of
a random variable X is the variate that corresponds to the cumulative dis-
tribution function value m. The mth quantile is also known as the 100mth
percentile. Quartiles are a special case of percentiles: the first quartile, Q1,
is the 25th percentile or the value of the variable for which FX(x)=0.25; the
second quartile, Q2, is the 50th percentile or median; and the third quartile,
Q3, is the 75th percentile. Quartiles and percentiles are of particular use
when applied to symmetric distributions such as the normal distribution.
For the N(0, 1) distribution, the area under the curve from z = 1 to z =∞ is
0.1587. [By symmetry this area is the same as the area under the curve from
z = −∞ to z = −1. This area is equal to Φ( − 1). From Equation (2.21),
Φ( − 1) = 1 − Φ(1), giving the result as Φ(1) = 0.8413 from Table A in
Appendix A.] Therefore, the area under the curve between z=−1 to z=+1
is 1 − 2 × 0.1587 = 0.6826, that is, about 68% of normal variates deviate
from their mean by less than one standard deviation. Repeating the calcula-
tions for z = ±2 and ±3 we find that 95.4% and 99.7% of the area under
the curve is included between the respective limits, as shown in Figure 2.16.
The quartiles divide the area under the curve into quarters. The values of
z corresponding to the 1st and 3rd quartiles can be found by reverse inter-
polation from Table A2 to be ±0.6745, respectively. Thus, 50% of the area
under the curve lies in the interval −0.6745 ≤ z ≤ 0.6745.

–4σ –3σ –2σ –1σ +4σ+3σ+2σ+1σ0

0.1% 2.3% 15.9% 50% 84.1% 97.7% 99.9%

Percentage of
cases in 8 portions

of the curve

Standard deviations

Cumulative
percentages

Percentiles 999590807060504030201051

0.13%2.14%13.59%34.13%34.13%13.59%2.14%0.13%

Figure 2.16 Illustration of the standard normal quantiles. The ‘x-axis’ denotes
values of z.
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2.3.5 Transformation of continuous distributions

If g( ) is a monotonic function and has an inverse, so that if Y = g(X) and
X = g−1(Y), and X and Y are random variables, then the probability density
function of Y is given by

fY(y) = fX(x)∣∣ dg
dx

∣∣ (2.32)

Note that subscripts on the functions have been used to distinguish which
probability density function is meant. Thus, fY(y) is the value of the prob-
ability density function for Y taken when the value y is used. If g is not
monotonic Equation (2.32) is no longer applicable. The probability den-
sity function of the transformed variable may still be found, but must be
determined on a case-by-case basis (see Section 3.1).

Example 2.16.

1 Y = aX + b. The equation y = g(x) = ax + b has a single solution x =
(y − b)/a for each y. Hence

fY(y) = fX

(
y − b

a

)∣∣∣∣1a
∣∣∣∣ (2.33)

2 In case 1, if X is uniform in the interval x1 < x < x2, then Y is uniform
in the interval ax1 + b < y < ax2 + b.

3 If we take y = g(x) = FX(x), 0 ≤ y ≤ 1. Assuming FX is differentiable,
dg/dx = dFX(x)/dx = fX(x). Substituting into Equation (2.32) gives

fY(y) = fX(x)
∣∣∣∣ 1
fX(x)

∣∣∣∣ 0 ≤ y ≤ 1 (2.34)

This is a rectangular distribution, irrespective of the form of FX(x).

2.3.6 Numerical generation of random variables

It is reasonable to ask: ‘How do you go about actually creating a sequence
of random numbers or random variables?’. We start by considering how
to generate random numbers that lie uniformly in the interval [0, 1], and
then discuss how these can be used to generate random variables with other
distributions.

One of the more usual methods is to use a ‘pseudo’ random number gen-
erator, or PRNG. These routines are available on most computers either as
part of specialist software packages or as part of more everyday software. It
is important to recognise that such routines do not produce a truly random
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sequence of numbers. As a digital computer works to a fixed precision, there
is in fact a finite number of different values that it can represent. A good
PRNG will sample this finite set of numbers randomly. However, repetition
will occur eventually. Indeed, most standard PRNGs cycle through a pre-
determined sequence of numbers. The initial starting point on a sequence
is determined by the ‘seed’ value given to the routine when it is first called.
A well-designed PRNG can have a very long sequence before repetition, of
the order of tens of millions of elements. The algorithm at the core of many
PRNGs is the linear congruential generator. A brief outline of the method
is given here. For a further discussion of the advantages and disadvantages
of this technique the reader is referred to Press et al. (2007) and references
therein.

A linear congruential generator is determined by three positive integers a,
b and m, where a is the multiplier, b the increment and m the modulus. It
produces its pseudo-random sequence of integers {nk}(0≤nk <m) as follows:

• specify n0 (the seed); and
• generate the rest by

nk+1 = ank + b (mod m) (2.35)

• then set xk = nk/m so that 0 ≤ x < 1.

In practice, m is usually something like

232 = 4, 294, 967, 296

and a is chosen carefully to give good results. (The choice of a is critical; the
choice of b is less important.)

In order to have a good generator the following conditions should be
satisfied (Knuth 1981):

• The modulus m should be large (not a major obstacle for computer
arithmetic).

• Taking m to be a power of 2, pick a such that a mod 8 = 5. This
will have the effect of maximising the period of the necessarily cyclic
sequence produced. The choice of value for a is the most delicate part
of the whole design.

• The increment b should be co-prime to m.

An acceptable choice of values would be: m = 232, a = 1, 664, 525 and
b = 1. In the above, if b = 0 in Equation (2.33), the algorithm is called a
multiplicative linear congruential generator.
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Example 2.17. As a simple example, let m = 23, a = 5 and b = 1. Taking
n0 = 1 we find

n1 = 5×1 + 1 (mod8)

= 6 (mod8)

= 6

The seed for the next random number is n1 and the random number is
n1/8 = 0.750. The first nine terms of this sequence are given in Table 2.2.

With such a small value of m the cycle of random numbers will be very
small and the coverage of all the random numbers between 0 and 1 will be
very coarse (at intervals of 1/8). Indeed, the cycle repeats after only 8 steps.
If we chose a different starting seed, say n0 =2, then we just start the process
at a different point in the cycle. A good algorithm will make full use of the
bit-length of a particular computer, thereby maximising the length of the
cycle.

Most applications involve variables that do not obey a uniform distri-
bution. In order to generate sequences of values that obey non-uniform
distributions we can use some of the earlier results. The most general
technique is the ‘inverse transformation’ method. The method is as fol-
lows. Given a random variable Xi, its cumulative distribution function,
FXi(xi), lies in the range [0, 1]. Given a sequence of uniformly distributed
random numbers between 0 and 1, ri, we can generate a corresponding
sequence of transformed variates by setting Xi = F−1

Xi (ri). Figure 2.17 illus-
trates how the ‘inverse transformation’ method works. For cases where F−1

Xi

can be expressed in closed analytical form the inverse transform can be
a very efficient means of generating nonuniformly distributed variables.
For cases where no closed form exists, the method still works, but the

Table 2.2 Illustration of the linear congruential
random number generation algorithm

Term (k) nk xk

0 1 –
1 6 0.750
2 7 0.875
3 4 0.500
4 5 0.625
5 2 0.250
6 3 0.375
7 0 0.000
8 1 0.125
9 6 0.750
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0

1

r

X = FX
–1(r )

FX(x)

x

Figure 2.17 Illustration of the ‘inverse transformation’ technique for generating
random numbers with a specified distribution. Uniformly distributed
random numbers r, lying between 0 and 1, are generated and then con-
verted to variates with distribution FX through inverse transformation.

inverse function has to be evaluated graphically, by numerical integration,
by tables and interpolation, or by fitting an approximating function to
tabulated values.

Example 2.18. Find the inverse transform function for the exponential
distribution.

Solution. We set the random number r = F(x) and solve for x:

F(x) = 1 − e−λx

∴ r = 1 − e−λx

∴ 1 − r = e−λx (2.36)

∴ ln (1 − r) =−λx

∴ x =− ln (1 − r)
λ

Example 2.19. Find the inverse transform function for the Rayleigh distri-
bution.

Solution. As in the previous example, we solve for x:

F(x) = 1 − e−x2/(2b2)

∴ r = 1 − e−x2/(2b2)

∴ 1 − r = e−x2/(2b2) (2.37)

∴ ln (1 − r) =−x2/(2b2)

∴ x =
√

−2b2 ln (1 − r)
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For 0 ≤ r < 1, the expression under the root sign is positive. The required
value of x is obtained by taking the positive square root as the Rayleigh
distribution is defined only for x ≥ 0.

2.4 Reliability and hazard functions

We conclude this chapter with a short section on some functions of
probability density and cumulative distribution functions. These appear suf-
ficiently frequently in some reliability problems that they have been defined
in their own right. The first is the survival function, which, for a random
variable, X, is defined as:

G(x) = P(X > x) = 1 − F(x) (2.38)

This terminology has arisen because if X is considered to be the strength
of an object subjected to loading, then the survival function is simply the
probability that the strength of the object is greater than the imposed load,
i.e., the probability that the object survives the loading. The survival func-
tion is also termed the reliability function, for obvious reasons. It should be
noted that a slightly modified definition of the reliability function is used
in reliability theory and in this book in Chapters 5, 6 and 7. The modified
version is simply the difference between the strength and the load.

The hazard function, h(x), is the probability of failure given that no
failures have occurred so far:

h(x) = f (x)
1 − F(x)

(2.39)

The hazard function is also termed the failure rate or hazard rate. It is most
often encountered in problems concerning time variation (x replaced by t
in Equation 2.39), with the interpretation that the hazard function is the
probability that failure occurs for t ≤ T ≤ t + δt given that there have been
no failures for t ≤ T.

The cumulative or integrated hazard function is the integral of the hazard
function:

H(x) =
x∫

−∞

h(u)du =− ln [1 − F(x)] =− ln [G(x)] (2.40)

Equation (2.40) provides a neat relation between the four different func-
tions.
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Example 2.20. Find the reliability, hazard and integrated hazard function
for the exponential distribution.

Solution. For the exponential distribution we have F(x)=1−e−λx and f (x)=
λe−λx. Thus G(x) = 1 − F(x) = e−λx; h(x) = λ; and H(x) =− log (e−λx) = λx.

Returning to the case where the argument of the hazard function is
time, note that the exponential distribution has a constant hazard func-
tion. Proneness to failure at any time is constant, and is not time dependent.
This is suitable for elements that do not age, for example, semi-conductor
components.

If h(t) is an increasing function of t, the T is said to have an increas-
ing failure rate. This is appropriate for items that age or wear. If h(t) is a
decreasing function of time, then T has a decreasing failure rate. This could
happen when a manufacturing process produces low-quality units so that
many will fail early. If h(t) has a U or ‘bathtub’ shape, this corresponds to
high early failure rate, followed by a period of stability, followed by a wear-
out period. Such a shape has been proposed as a possible model for the life
distribution of humans.

A flexible form of hazard function is:

h(t) =αμ−αtα−1 (2.41)

where α, μ > 0 are shape and location parameters. α < 1 gives a decreas-
ing hazard, α = 1 gives a constant hazard and α = 2 gives a linearly
increasing hazard. We can work out the probability density and cumula-
tive distribution functions for this hazard function. From Equation (2.40)
we have:

H(t) =
t∫

−∞

h(u)du =− ln [1 − F(t)]

∴ 1 − F(t) = e− ∫ h(t)dt = e−αμ−α
∫

tα−1dt = e−( t
μ )

α

∴ F(t) = 1 − e− t
μ

α

(2.42)

∴ f (t) = d
dt

[F(t)] =αμαtα−1e−( t
μ )

α

This particular distribution is well known and is called the two-parameter
Weibull distribution. Note that for α = 1 it reduces to the exponen-
tial distribution with mean μ, and for α = 2 it reduces to the Rayleigh
distribution.
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Example 2.21. Concrete pipe sections for a drain are known to have a
Weibull failure density, with a=2 and b=300, 000. What is the probability
that such a component survives longer than 5 years?

Solution. Firstly, 5 years = 24 × 365.25 × 5 hours = 43, 830 hours. The
required probability is given by the value of the reliability function, G(t =
43, 830, a = 2, b = 300, 000). Thus,

G(t = 43830, a = 2, b = 300000 = e−( t
b )

a = e−
(

43830
300000

)2

≈ 0.9789

Associated with the concept of reliability is the mean time to failure,
(MTTF), illustrated in Figure 2.18. The reliability is the probability of no
failures over a stated time interval. Suppose a single item is characterised by
the distribution function F(t) = P(τ ≤ t) of its failure-free operating time, τ .
Its reliability function, G(t), is given by

G(t) = P[no failure in(0, t)] = 1 − F(t) (2.43)

The MTTF can be computed from Equation (2.24), as

MTTF =
∞∫

0

tf (t)dt

= [tF(t)]∞
0 −

∞∫
0

F(t)dt (2.44)

= [t(1 − G(t))]∞
0 −

∞∫
0

(1 − G(t))dt

= [t(1 − G(t)) − t]∞
0 +

∞∫
0

G(t)dt

= [tG(t)]∞
0 +

∞∫
0

G(t)dt

=
∞∫

0

G(t)dt

where we have used integration by parts, Equation (2.38), and the assump-
tion that G(t) tends to 0 faster than t tends to infinity, so that Lim

t→∞
(tG(t))=0
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Figure 2.18 Illustrations of reliability functions G1 and G2, where: (a) G2 has a
larger MTTF than G1, (b) both G1 and G2 have the same MTTF.
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3 Elements of probability and
stochastic processes

3.1 Manipulating distributions

In this chapter further definitions and results are presented. These are
relevant to aspects of reliability theory but also introduce some ideas that
are not found in most textbooks on reliability theory. The style adopted
is necessarily brief in order to cover the material. Illustrative explanations
of results are given but formal mathematical proofs are excluded as they
may be found in other sources (see further reading at the end of this
chapter).

3.1.1 Functions of one variable

A simple case of working out the probability distribution of a trans-
formed random variable was covered in Section 2.3.5. The more general
case, where the transforming function is not monotonic, is covered in this
section. First, the result is quoted (with an illustrative explanation), and
then several examples are provided to amplify the case-by-case approach
required.

Finding fY(y): It is required to determine the density function of Y = g(X)
in terms of the density function of X. To find fY(y) for a specific y, solve the
equation y = g(x). Denoting its real roots by xn,

y = g(x1) = g(x2) = . . . = g(xn) = . . .

and

fY(y) = fX(x1)
g′(x1)

+ . . . + fX(xn)
g′(xn)

+ . . . (3.1)

where g′(x) is the derivative of g(x).

Explanation: For sake of argument, let us assume that the equation y = g(x)
has two roots as shown in 3.1.

Now, fY(y)dy = P{y < Y ≤ y + dy}. Thus, we need to find the set of val-
ues x such that y < g(x) ≤ y + dy and the probability that X is in this set.
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x 

x2 – dx2

g(x) 

dy

y + dy

y 

x2 x1 + dx1x1

Figure 3.1 Illustration of the transformation of the density function of a function of
one variable.

From Figure 3.1 it is evident that this set consists of two intervals: x1 < x <

x1 + dx1 and x2 − dx2 < x < x2. Thus,

P{y < Y < y + dy} = P{x1 < X < x1 + dx1} + P{x2 − dx2 < X < x2}

The right-hand side of this expression is the sum of the shaded areas in
Figure 3.1. Since

P{x1 < x < x1 + dx1} = fX(x1)dx1 and dx1 = dy/|g′(x1)|, and
P{x2 − dx2 < x < x2} = fX(x2)dx2 and dx2 = dy/|g′(x2)|, we have that

fY(y) = fX(x1)
|g′(x1)| + fX(x2)

|g′(x2)| (3.2)

where dashes denote the derivative with respect to x. Taking the
absolute value of the derivative of g ensures that fY(y) integrates to
unity.

Example 3.1. If X is a random variable with density function fX(x), find the
density function of Y = aX2 for a > 0.
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Solution. g′(x)=2ax. If y<0, then the equation y=ax2 has no real solution,
so fY(y)=0. If y>0 then it has two solutions: x1 =√(y/a) and x2 =−√(y/a),
and Equation (3.2) gives:

fY(y) = 1

2a

√
y
/

a

[
fX

(√
y
a

)
+ fX

(
−
√

y
a

)]
(3.3)

Special case: If a = 1, and X is N(0, 1), then Equation (3.3) gives

fY(y) = 1√
2πy

e− y
2 (3.4)

for y ≥ 0. This is the density function of the chi-squared distribution with
one degree of freedom.

Example 3.2. If X is a random variable with density function fX(x), find the
density function of Y = tan(X).

Solution. g′(x) = 1/ cos2 (x) = 1 + y2. The equation y = tan (x) has infinitely
many roots, xn = tan−1 (y) with n = . . . ,−1, 0, 1, . . .

fY(y) = 1
1 + y2

∞∑
n=−∞

fX(xn) (3.5)

Special case: If X is uniform in (−π/2, π/2) then all terms in the summa-
tion in Equation (3.5) are zero except the first, which is equal to 1/π . Thus,
the density function of Y is

fY(y) = 1/π

1 + y2
(3.6)

which is the density function of the Cauchy distribution, shown in
Figure 3.2.

The Cauchy distribution is unimodal and symmetric, but has much heav-
ier tails than the normal distribution. It is also notable for the fact that it
has no moments; i.e., the integral in Equation (2.23), and similar for higher
moments, is infinite.

Example 3.3. Truncated distribution. Let X be a random variable with den-
sity fX(x) and distribution function FX(x). If the values that X may take are
limited, how does this affect its density and distribution functions?

Solution. In some instances the distribution of a random variable
may be limited to an upper or lower bound. Taking the first case, let
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Figure 3.2 The Cauchy density and distribution function.

xmax be the upper limit, then the resulting distribution of the variate
X subject to truncation, denoted by X′, is given by the conditional
density:

fX′(x) = fX;X≤xmax =
{

afX(x) x ≤ xmax

0 otherwise
(3.7)

where the constant a is required to normalise the density so that its integral
over all values of x remains equal to 1. The constant a is given by:

a = 1
FX(xmax)

(3.8)

In the case where there are upper and lower bounds, xmax and xmin say, the
constant a is given by:

a = 1
FX(xmax) − FX(xmin)

(3.9)

In the specific case where X is N(μ,σ ) the constant a takes the form

a = 1

�

(
xmax −μ

σ

)
−�

(
xmin −μ

σ

) (3.10)

This is illustrated in Figure 3.3 for a N(70, 10) distribution curtailed
below at x = 65 and above at x = 85.
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Figure 3.3 Normal, N(70, 10), and truncated density and distribution functions.

Example 3.4. If X is a random variable with density function fX(x), find
the density function of Y = aX + b where a and b are constants. This
corresponds to a simple translation and scaling of the variable X. This
function is also used for transforming variables into standard normal form.

Solution. We have y = g(x) = ax + b, so x = (y − b)/a is the unique solution
(as long as a �= 0). Also, g′(x) = a. Thus, from Equation (3.2) we have

fY(y) =
fX

(
y − b

a

)
|a| (3.11)

Example 3.5. If X is a random variable with density function fX(x), find the
density function of Y =√

(aX) where a is a constant.

Solution. We have y = g(x) = √
(ax), so x = y2/a. Also, g′(x) = √

(a/4x).
Thus, from Equation (3.2) we have

fY(y) =
fX

(
y2

a

)
√

a/4x
= 2

y
a

fX

(
y2

a

)
(3.12)

Example 3.6. If X is a random variable with density function fX(x),
find the density function of Y = √

(aX + b) where a and b are
constants.

Solution. We can use Equation (3.2) as in the previous examples, or we can
use the results from the previous examples. Let Z = aX + b and Y = √

Z.
From Example 3.4 we have fZ(z)= fX[(z−b)/a]. From Example 3.5 we have
fY(y) = 2yfZ(y2) = 2(y/a)fX

[
(y2 − b)/a

]
.
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3.2 Joint probability

The joint distribution of two random variables X and Y, FX,Y(x, y), is the
probability of the event {X ≤ x,Y ≤ y} = {(X, Y) ∈ D}, where x and y are
arbitrary numbers and D is the area in the x–y plane for which X ≤ x and
Y ≤ y:

FX,Y(x,y) = P [(X ≤ x) ∩ (Y ≤ y)] =
x∫

−∞

y∫
−∞

fX,Y(u, v)dudv (3.13)

where fX,Y(x, y) ≥ 0 is the joint probability density function. The following
conditions also hold:

FX,Y( −∞,−∞) = 0
FX,Y( −∞,y) = FX,Y(x,−∞) = 0

FX,Y(∞, y) = FX,Y(x,∞) = 0
FX,Y(∞,∞) = 1

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

The last expression is just the statement that the volume under the joint
density function is unity. Similar expressions apply for discrete random vari-
ables. Where there are several random variables, the statistics of each are
called marginal. Thus, FX and fX are the marginal distribution and density,
respectively. The marginal distribution and density may be obtained from
the joint distribution and density by:

FX(x) = FX,Y(x,∞)
FY(y) = FX,Y(∞, y)

fx(x) =
∞∫

−∞
f (x,y)dy

fy(x) =
∞∫

−∞
f (x,y)dx

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.15)

The conditional probability density of X and Y is given by:

limδx,δy→0 {P(x < X ≤ x + δx|y<Y ≤y+δy)}≡ fX|Y(x|y)= fXY(x, y)
fY(y)

(3.16)

The relationship between joint, conditional and marginal density functions
of two variables is illustrated in Figure 3.4.

Example 3.7. A rainfall event at a recording station is defined by two vari-
ables, the duration X of the storm and its intensity Y (equal to the average
rainfall rate). Suppose the two variables X and Y are jointly distributed with
a bivariate exponential density function:

fXY(x, y) = [(a + cy)(b + cx) − c
]
e−ax−by−cxy (3.17)
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X and Y

Conditional density of Y,
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Figure 3.4 Relationship between joint, marginal and conditional density functions.

where a, b > 0, and 0 ≤ c ≤ 1 are three parameters evaluated from the rain
gauge data. Note also that x, y ≥ 0. For now, let us take a = 0.03h−1,
b = 1.5h/mm and c = 0.05mm−1. It is required to find the probabil-
ity that a storm lasting 6 hours will exceed an average intensity of
3 mm/h.

Solution. The probability that a storm lasting 6 hours has an intensity
greater than 3 mm/h is given by 1 − FY|X(3, 6). To determine the condi-
tional distribution function we need to use the density functions. Since the
conditional pdf of the storm intensity for fixed duration is:

fY|X(x,y) = fXY(x,y)
fX(x)

(3.18)

we need to determine the marginal density fX(x). From Equation (3.15) we
have

fx(x) =
∞∫

0

f (x, y)dy =
∞∫

0

(
(a + cy)(b + cx) − c

)
e−ax−by−cxydy = ae−ax
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Thus

fY|X(x, y)= [(a + cy)(b + cx) − c]e−ax−by−cxy

ae−ax
= [(a + cy)(b + cx) − c]e−y(b+cx)

a
(3.19)

Hence, the conditional distribution FY|X(x,y) is given by

FY|X(x,y) =
y∫

0

fY|X(x,y)du =
y∫

0

[
(a + cu)(b + cx) − c

]
e−u(b+cx)

a
du

= 1 − a + cy
a

e−(b+cx)y (3.20)

and so

P(Y > 3|x = 6) = 1 − FY|X(3, 6) = 1 − 1 + 0.03 + 0.05 × 3
0.03

e−(1.5+0.05×6)3

= 0.027

We now present some important definitions. Two random variables X
and Y are called independent if

fXY(x, y) = fX(x)fY(y) (3.21)

The covariance of two random variables X and Y, denoted Cov(X, Y), is
defined as the expectation of the product between the respective deviations
from their mean:

Cov(X, Y) = E[(X − E(X))(Y − E(Y))] = E(X, Y) − E(X)E(Y) (3.22)

If X and Y are independent, then their covariance is zero. However, the
reverse is not always true; just because the covariance of two variables is
zero does not mean they are independent.

The (linear) correlation coefficient ρ is the normalised covariance between
two variables:

ρ = Cov(X,Y)
σXσY

(3.23)

where σX and σY are the standard deviations of X and Y, respectively. The
correlation coefficient lies between −1 and 1.



Elements of probability and stochastic processes 53

The bivariate exponential density was introduced in Example 3.7.
Another well-known bivariate density is the joint normal density. This is
defined as:

fXY(x,y) = 1

2πσXσY

√
1 − ρ2

e
−
(

1
2(1−ρ2)

[
(x−μX)2

σX
−2ρ

(x−μX)(y−μY )
σXσY

+ (y−μY )2
σY

])
(3.24)

It is left as an exercise for the reader to verify that the marginal and
conditional densities are as follows:

fX(x) = 1

σX

√
2π

e
− 1

2

[
(x−μX)

σX

]2

(3.25)

fY(y) = 1

σY

√
2π

e
− 1

2

[
(y−μY )

σY

]2

(3.26)

fY|X(x,y) = 1

σY

√
2π (1 − ρ2)

e
− 1

2

⎛
⎝ y−

{
μY+ρ

σY
σX

(x−μX)
}

σY

√
(1−ρ2)

⎞
⎠2

(3.27)

The impact of correlation on the shape of the density function (Equa-
tion 3.24) is illustrated in Figure 3.5.

x

y

–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3
ρ = –0.4

ρ = +0.8

Figure 3.5 Examples of positive and negative correlation showing probability
contours of the bivariate normal density.
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3.3 Functions of more than one variable

In much of what will be discussed in later chapters we will be interested
in functions of two or more random variables and the statistics of this
function. Given the random variables X and Y and a function g(x, y), then
g(X, Y)=Z is also a random variable. The statistics of Z can be expressed in
terms of the function g(x,y) and the joint statistics of X and Y. Now, for a
given value z, the region(s) of the x–y plane for which g(x, y) ≤ z is denoted
by Dz, so

{Z ≤ z}= {g(X,Y) ≤ z}= {(X,Y) ∈ Dz}
Thence,

FZ(z) = P{Z ≤ z} = P{(X,Y) ∈ Dz} =
�
Dz

fXY(x, y)dxdy (3.28)

Therefore, to find FZ(z) requires us to determine the region Dz for every
z and to evaluate the integral in Equation (3.28). The density can be
determined by differentiating the distribution function, or directly, as

fZ(z)dz = P{z < Z ≤ z + dz} =
�
�Dz

fXY(x,y)dxdy (3.29)

While this procedure may sound straightforward, even if somewhat
involved, it can be severely complicated by the fact that the region Dz does
not have to be connected. In some applications a significant part of the work
can be identifying all the areas that make up Dz. A few examples of simple
forms for g(x,y) are described below because they will reappear in later
chapters.

Example 3.8. Z = g(X,Y) = X + Y.

Solution. The region Dz such that x + y ≤ z is the region to the left of the
line x + y = z (shaded in Figure 3.6).

For fixed y, x=z−y; thus, integrating over all values of y, the correspond-
ing values of x are z − y:

FZ(z) =
∞∫

−∞

z−y∫
−∞

fXY(x,y)dxdy (3.30)

Differentiating with respect to x yields

fZ(z) =
∞∫

−∞

fXY(z − y,y)dy (3.31)
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x + y = z

x 

y 

z – y

y 

Dz

Figure 3.6 Illustration of the variables for the transformation in Example 3.8.

If X and Y are independent, then their joint density function is the product
of their marginal density functions, and so:

fZ(z) =
∞∫

−∞

fX(z − y)fY(y)dy (3.32)

This is the convolution of the functions fX(x) and fY(y). Equation (3.32)
plays an important role in the simpler versions of reliability theory.

Example 3.9. Z = g(X,Y) = X − Y.

Solution. Replacing Y with −Y in the previous example we obtain

fZ(z) =
∞∫

−∞

fX(z + y)fY(y)dy (3.33)

Example 3.10. Z = g(X,Y) = X/Y.

Solution. The region Dz for which x/y ≤ z is the shaded portion in
Figure 3.7.

Integrating over suitable strips we find that

FZ(z) =
∞∫

0

yz∫
−∞

fXY(x,y)dxdy +
0∫

−∞

∞∫
yz

fXY(x,y)dxdy (3.34)
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Figure 3.7 Illustrating the regions used in Example 3.10.

and

fZ(z) =
∞∫

−∞

|y| fXY(zy, y)dy (3.35)

The function g(x,y) defined in this case is used to define the
safety factor of a system that has a random strength X and ran-
dom loading Y. In passing, it is noted that if both X and Y fol-
low a normal distribution then Z has a Cauchy density and thus no
moments.

Example 3.11. Z = g(X,Y) = XY.

Solution. The region Dz for which xy≤z is the shaded portion in Figure 3.8.
Integrating over suitable strips we find that

FZ(z) =
∞∫

0

z/x∫
−∞

fXY(x,y)dydx +
0∫

−∞

∞∫
z/x

fXY(x,y)dydx (3.36)
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y > z/x

y > z/x

x

y 

Dz

xy ≤ z

Figure 3.8 Illustrating the region of integration of the joint pdf of X and Y used in
Example 3.11.

and

fZ(z) =
∞∫

−∞

1
|y| fXY

(
z
y

,y
)

dy =
∞∫

−∞

1
|x| fXY

(
x,

z
x

)
dx (3.37)

The function g(x,y) defined in this case is used to describe the total cost
of a system that has a random demand X and random cost per unit of
demand Y.

Example 3.12. Z = g(X,Y) = X + Y, where X and Y are independent and
obey uniform distributions over intervals a < x < b and c < y < d.

Solution. It follows from Equation (3.32) that the convolution of
two rectangular density functions is a trapezoidal density. If the ran-
dom variables X and Y are uniform in the intervals (a, b) and (c, d),
respectively, then Z = X + Y has a trapezoidal density. If, in addition,
b − a = d − c, then the density of Z is triangular. This is illustrated in
Figure 3.9.
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fX (x) fY (y) fZ (z)

fX (x) fY (y) fZ (z)

xa b xc d x

xa b xc d xa + c

a + c

b + d

b + d

Figure 3.9 Transformation of the sum of two uniformly distributed random
variables to a trapezoidal or triangular distribution.

Example 3.13. Z=g(X,Y)=X+Y, where X and Y are independent N(0, 1)
variables.

Solution. From Equation (3.32), it may be determined that Z has density
given by

fZ(z) =
∞∫

−∞

fX(z − y)fY(y)dy =
∞∫

−∞

1√
2π

e− 1
2 (z−y)2 1√

2π
e− 1

2 y2
dy

= 1
2
√

π
e−( z

2 )
2

∞∫
−∞

1√
2π

e− 1
2 u2

du (3.38)

= 1
2
√

π
e−( z

2 )
2

where the substitution u = (x − z/2)
√

2 has been used.

Example 3.14. Z=g(X,Y)=XY, where X and Y are independent exponen-
tial variables with parameters a and b, respectively.

Solution. From Equation (3.36), it may be determined that Z has distribu-
tion given by
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FZ(z) =
∞∫

0

z/x∫
−∞

fXY(x,y)dydx +
0∫

−∞

∞∫
z/x

fXY(x,y)dydx

=
z∫

−∞

∞∫
−∞

1
|y| fXY

(
t
y

,y
)

dydt (3.39)

=
z∫

0

∞∫
0

ab
y

e−(by+(at/y))dydt

= 1 − 2
√

abzK1(2
√

abz)

where K1 is the modified Bessel function of order one. This form of distri-
bution function has found application is describing the intensity of acoustic
and radar waves reflected from irregular surfaces (see e.g., Jakeman 1980
and Shankar et al. 2000).

Example 3.15. Z = g(X,Y) = √
(X2 + Y2), where X and Y are independent

N(0,σ ) variables.

Solution. If

fXY(x,y) = 1
2πσ 2

e
−
(

x2+y2

2σ2

)
(3.40)

then, transforming to polar coordinates (r, θ ) gives

FZ(z) = 1
σ 2

z∫
0

re
−
(

r2

2σ2

)
dr = 1 − e− z2

2σ2 z > 0 (3.41)

and hence

fZ(z) = z
σ 2

e
−
(

z2

2σ2

)
z > 0 (3.42)

Thus, Z has a Rayleigh density.

Example 3.16. Consider the sine wave X cos (ωt) + Y sin (ωt) = Z cos
(ω t + θ ). Since Z = √

(X2 + Y2), from the previous example we know that
if X and Y are N(0,σ ) then the density of Z is Rayleigh. The significance
of this is that, if one considers the sea surface to be composed of sinusoidal
waves with random amplitudes following a normal distribution, then the
resulting wave heights follow a Rayleigh distribution. This has been found
to be a reasonable approximation for swell waves, which tend to have a
smaller range of amplitudes and phases than wind waves.
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Example 3.17. Maximum and minimum of two or more vari-
ables. In the general case of n variables, X1, X2, . . . , Xn we define
Y = max (X1,X2, . . . , Xn). The distribution function of Y will be the joint
probability that each variable Xi is less than or equal to y. In other
words,

P(Y ≤ y) = P(X1 ≤ y,X2 ≤ y, . . . ,Xn ≤ y) = FX1X2...Xn(y, y, . . . , y) (3.43)

If the Xi are mutually independent then the probability is equal to the
product of the individual probabilities, so that

FY(y) =
n∏

i=1

FXi
(y) = (FX(y))n (3.44)

if the n variables have a common distribution function FX. Following a sim-
ilar line of argument, the variable Z=min (X1, X2, . . . , Xn) may be shown to
have the distribution function

FZ(z) = 1 −
n∏

i=1

[1 − FXi
(z)] = 1 − [1 − FX(y)]n (3.45)

when the Xi are identically distributed and independent. The correspond-
ing density function can be obtained by differentiation in a straightforward
manner:

fZ(z) = dFZ(z)
dz

= n[1 − FX(z)]n−1fX(z) (3.46)

With due attention to the requirement for independence these results can
be used to ‘scale up’ or ‘scale down’ observations for different periods. For
example, suppose we have a time sequence of daily observations of rain-
fall, with a known distribution function. Equation (3.44) may be used to
determine the distribution of the annual maxima but only if the daily obser-
vations are independent. In a similar fashion, if one knows the distribution
of the annual maxima, then the maxima over a period of (1/n)th of a year
may be found by taking the nth root. Again, caution should be exercised in
the choice of n due to the inherent assumption of independence.

3.4 Central limit theorem

The central limit theorem is an important result from the theory of proba-
bility. This states that if the random variables Xi are independent, then the
density of their sum tends to a normal distribution as n→∞. This is a pow-
erful result, which is misused typically through assuming that variables are
independent when in fact they are not. There are other caveats regarding the
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1/a

a a a2a 2a 3ax x 

X = X1 + X2 X = X1 + X2 + X3

1/a

fi (x)

Figure 3.10 Progression of the sum of uniformly distributed random variables,
illustrating the tendency towards normality as the sum is performed
over a larger number of variables.

distributions of the Xi, essentially that for the theorem to hold there must
not be too many variables with very narrow distributions in the total of n
variables. Another situation where the assumption that variables are normal
is not helpful is in the description of extreme values of a distribution. These
are discussed in more detail in Chapter 4. We conclude this section with
a simple illustration (‘proof by pictures’) of how the central limit theorem
works.

Example 3.18. Let the random variables Xi(i=1, 2, . . . , n), be independent
and identically distributed with uniform density of 1/a in the interval [0, a].
Calculate the density for the sum of 2 and 3 variables (i.e., for n = 2 and
n = 3).

Solution. We have μi = a and σ 2
i = a2/12. If n = 2, then μ = 2a

and σ 2 = a2/6. The density function in this case is triangular, obtained
by convolving a rectangle with itself. If n = 3, then μ = 3a/2 and
σ 2 = a2/4, and the density function consists of three parabolic pieces
obtained by convolving the rectangular distribution with a triangle.
Figure 3.10 illustrates the progression as more variables are added to
the sum.

3.5 Characteristic and moment generating functions

A function that is sometimes useful in the analytical manipulation of distri-
butions is the characteristic function of a random variable. For a random
variable x this is defined as

�(ω) = E(eiωx) =
∞∫

−∞

f (x)eiωxdx (3.47)
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which is related to the Fourier transform of the density function. The den-
sity function of a random variable can be recovered from its characteristic
function via the inverse Fourier transform.

Example 3.19. Let X be N(0,σ ) and Y =aX2. Find the density function of Y.

Solution. Substituting the normal distribution for f (x) in Equation (3.47),
and noting that the integrand is an even function, we find

�Y(ω) =
∞∫

−∞

f (x)eiaωx2
dx = 2

σ
√

2π

∞∫
0

e−x2/2σ2
eiaωx2

dx (3.48)

As x increases from 0 to ∞ the transformation y= ax2 is one-to-one, that
is, for each value of x there is only one value of y. Now, dy = 2axdx =
2

√
(ay) dx, so

�Y(ω) = 2

σ
√

2π

∞∫
0

e−y/2aσ2
eiωy

2
√

ay
dy (3.49)

and thus, from the definition of the characteristic function,

fY(y) = e−y/2aσ2

σ
√

2aπy
(3.50)

Another function, related to the characteristic function, which can be
helpful in determining the moments of a random variable, is the moment
generating function, M(s). For a random variable X, this is defined by

M(s) = E(esx) =
∞∫

−∞

f (x)esxdx (3.51)

which is related to the Laplace transform of the density function. Note that
M(iω) =�(ω). If we differentiate Equation (3.51) with respect to s we have:

dM(s)
ds

=
∞∫

−∞

sf (x)esxdx = E(xesx) (3.52)

Repeating n times we find

dnM(s)
dsn

= E(xnesx)

(3.53)

⇒ dnM(0)
dsn

= E(xn) = mn
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Example 3.20. If X has an exponential density with parameter a, find
its moment generating function and use this to determine the mean and
variance.

Solution. From Equation (3.51),

M(s) =
∞∫

0

ae−axesxdx = a
a − s

(3.54)

also,

dM(0)
ds

= 1
a

(3.55)
d2M(0)

ds2
= 2

a2

so

E(X) = 1
a

E(X2) = 2
a2

and σ 2 = E(X2) − E(X)2 = 1
a2

(3.56)

Example 3.21. If Y has a normal density with a mean and standard devia-
tion μY and σY, respectively, determine the mean and variance of X, where
Y = ln (X).

Solution. The distribution that X obeys is known as a log–normal distri-
bution. Using the transformation in Equation (3.1) the probability density
function of X is

fX(x) = 1

xσln (X)

√
2π

exp

{
−1

2

[
ln (x) −μln (X)

σln (X)

]2
}

(3.57)

for 0≤x<∞. Now, either from the moment generating function, or the def-

inition of the nth moments, the mean and variance of X may be determined
as follows:

E(Xr) =
∞∫

0

xrfX(x)dx = 1

σln (X)

√
2π

∞∫
−∞

esy exp

{
−1

2

[
y −μln (X)

σln (X)

]2
}

dy

= exp
(
sμY + 0.5s2σY

2
)

(3.58)
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But the right-hand side of the above equation is exactly the definition of
the moment generating function for Y! Therefore

E(Xr) = MY(s)

E(X) = exp
(
μln (X) + 0.5σ 2

ln (X)

)≡μX

E(X2) = exp
(
2
[
μln (X) + σ 2

ln (X)

])
(3.59)

Var(X) = E(X2) − E(X)2 =μ2
X

{
σ 2

ln (X) − 1
}

Note also from the above that ln (μX) =μln (X) + 0.5σln (X)
2, and

(
σX

μX

)2

+ 1 = σ 2
ln (X) (3.60)

3.6 Transformation of moments

In the previous sections it has been demonstrated how the probability den-
sity function of a function of a random variable can be determined from a
knowledge of the probability density function of the original variable. This
is not always straightforward, and for nonlinear transformations can be par-
ticularly difficult. The same comments apply to the case of transformations
involving two or more random variables. However, it may be possible to
determine the moments of a transformed variable more easily, and these can
give useful practical information about the behaviour of the transformed
variable.

The general expression for the rth moment of a function Y =
g(X1, X2, . . . , Xn) of n random variables X1,X2, . . . , Xn may be written as:

E(Yr) =
∞∫

−∞

. . .

∞∫
−∞

Y(x1,x2, . . . , xn)fX1X2 ...Xn(x1, x2, . . . , xn)dx1dx2 . . .dxn

(3.61)

A summary of some important special cases is given below without
workings.

Y =
n∑

i=1

aiXi E(Y) =
n∑

i=1

aiμXi Var(Y) =
n∑

i=1

a2
i Var(Xi)

+
n∑

i=1

n∑
j=1

aiajCov(Xi, Xj)



Elements of probability and stochastic processes 65

Y = X1X2 E(Y) = μX1μX2 + ρσX1σX2 Var(Y) = (1 + ρ2)
[
(μX1σX1 )2

+ (μX2σX2 )2 + (σX1σX2 )2
]

Y =
n∏

i=1

Xi Xi independent, E(Y) =
n∏

i=1

μXi Var(Y) =
n∏

i=1

μ2
Xi

−
(

n∏
i=1

μXi

)2

Y = √
X E(Y) =

(
μ2

X − σ 2
X

2

)1/4

Var(Y) = μX −
(

μ2
X − σ 2

X

2

)1/2

Y = aX2 + bX + c E(Y) = a(μ2
X + σ 2

X) + bμX + c Var(Y) = σ 2
X(2aμX + b)2

+ 2a2σ 4
X

(3.62)

where ρ is the correlation coefficient.

Example 3.22. Hydrographic surveying of river and sea beds measured by
echo-sounder is subject to two independent sources of error: movements
of the vessel and electronic noise in the processing circuitry. If these two
sources are described by normal variates X and Y with mean values μX and
μY, and variances σX

2 and σY
2, respectively, find the mean and variance of

the overall error Z = X + Y.

Solution. We will use the moment generating function to solve this problem.
The moment generating function for X is given by:

MX(s) = E(esx) =
∞∫

−∞

1

σX

√
2π

e
− (x−μX)2

2σX
2 esxdx

= esμX

σX

√
2π

∞∫
−∞

e
− [(x−μX−σX

2s)2−σX
4s2]

2σX
2 dx

= esμXeσX
2s2/2

σX

√
2π

∞∫
−∞

e
− (x−μX−σX

2s)2

2σX
2 dx

= e(2μXs+σX
2s2)/2

The moment generating function for Y will have an analogous form.
Now, as X and Y are independent

MZ(s) = E(esZ) = E(es(X+Y)) = E(esXesY) = E(esX)E(esY) = MX(s)MY(s)
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Thus, the moment generating function of Z is:

MZ(s) = e(2μXs+σX
2s2)/2e(2μYs+σY

2s2)/2 = e[(μX+μY )s+(σX
2+σY

2)s2/2]

and

dMZ(0)
ds

=μX +μY

d2MZ(0)
ds2

= (μX +μY)2 + σ 2
X + σ 2

Y

⇒ Var(Z) = σ 2
X + σ 2

Y

Therefore, the mean overall error in the measurements is the sum of
the means of the individual errors; and its variance is the sum of the
variances.

The mean and variance of general functions is often difficult to obtain
due to the complexity in evaluating the transformation integrals. Estimates
of the mean and variance can be approximated in the following manner.
First, expand the function Y = g(X1,X2, . . . , Xn) in a Taylor series about the
point defined by the vector of the means (μ1,μ2, . . . ,μn). Now truncate the
series expansion at linear terms. The first-order estimates of the mean and
variance of Y are:

E(Y) ≈ Y(μ1,μ2, . . . ,μn)

Var(Y) ≈
n∑
i

n∑
j

cicjCov(Xi,Xj) (3.63)

where

ci ≡ ∂Y
∂Xi

∣∣∣∣
μ1,μ2,...,μn

.

If the Xi are independent, then Cov(Xi, Xj) = 0 if i �= j and
Cov(Xi,Xj) = Var(Xi) if i = j. Corresponding expressions can be obtained
by truncating the Taylor series expansion at higher orders. As an
example, the second-order approximations for a function of two
variables are

E(Y) ≈ Y(μ1,μ2, . . . ,μn) + 1
2

∂2Y

∂x2
1

Var(X1) + 1
2

∂2Y

∂x2
2

Var(X2) + ∂2Y
∂x1∂x2

Cov(X1,X2)

Var(Y) ≈
(

∂Y
∂x1

)2

Var(X1) +
(

∂Y
∂x2

)2

Var(X2) + 2
(

∂Y
∂x1

∂Y
∂x2

)
Cov(X1,X2) (3.64)

where the derivatives are evaluated at the mean values of the variables.
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3.7 Estimating parameters

In most practical reliability problems the exact distribution of random vari-
ables is not known. Rather, a set of observations will have been gathered.
The standard approach is then to select a distribution with a particular
analytical form to fit the data by suitable adjustment of the distribution
parameters. (A distribution with arbitrary parameters, such as the normal
distribution with mean μ and standard deviation σ , is considered a ‘fam-
ily of distributions’. The process of fitting the normal distribution to the
observations will result in specific values of μ and of σ that make the nor-
mal distribution fit the observations most closely.) Once this has been done,
the analytical function may be used to interpolate between measured data
points, and more often to extrapolate beyond the data to determine extreme
values for particular quantiles. Without an analytical expression for the dis-
tribution function it is much more difficult to extrapolate to extreme values,
but fitting a particular functional form to the data imposes a constraint on
the measurements that may not be justified. For this reason the selection of
distribution functions, or statistical model, is an extremely important pro-
cess, and the associated uncertainties should be understood. The choice of
model may be influenced by knowledge of the physical processes impor-
tant in the situation being studied. Past experience may also be valuable; if
similar observations have led to results conforming to a particular distribu-
tion then this indicates a useful starting point. In the absence of any guide,
exploratory data analysis is required to investigate the characteristics of the
empirical distribution function, which in turn may suggest plausible fami-
lies of distributions. In any fitting process, the observations are considered
to be a sample of a larger population the characteristics of which are being
estimated, and the properties of the sample are used to infer the properties
of the whole population. The parameter values determined by fitting to a
sample are termed an estimate.

Before describing various methods for estimating parameters of prob-
ability distributions, three important concepts are introduced. These are
consistency, bias and efficiency. Parameter estimates are said to be consis-
tent if they converge in probability as the sample size increases. Estimates
are unbiased if an average is taken of the estimates of the parameters from
a large number of samples of the same size and the average converges to
the true value of the parameter, that is, E(θ ′) = θ , where θ ′ is the esti-
mator of the parameter θ . Estimates that do not have this property are
biased. An unbiased estimator θ ′ may still deviate widely from θ . A desirable
property of an estimator is that its variance should be as small as possi-
ble (thereby reducing the uncertainty in any estimate); that is, it should be
efficient.

Different estimates are considered to be different values of a function,
the estimator. Any estimate will have an associated uncertainty, which is
measured by confidence limits. In general, an estimate θ ′ is given by some
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function, f , of a random sample from the population, X = {X1, X2, . . . , Xn}.
For large samples, many estimates may be approximated as normally
distributed, and confidence bounds are defined in the form

E[f (X)] ± zc

√
Var[f (X)] (3.65)

where zc is a percentage point from the standard normal distribution reflect-
ing the degree of belief in the limits. For example, the 90% confidence limits
are based on the 5% and 95% points of the standard normal distribution.
The variability in parameter estimates is measured by the standard error
(s.e.), given by the square root of the variance of the estimator.

3.7.1 Method of moments

The method of moments is a well-established method. It works by equating
the sample moments to the analytical expressions of the moments for the
chosen distribution function.

Example 3.23. The mean and standard deviation of a set of near-shore wave
heights are 2 m and 0.5 m, respectively. Find the distribution parameters
assuming (a) a Rayleigh distribution and (b) a gamma distribution.

Solution. (a) The Rayleigh distribution has one parameter and:

F(x) = 1 − exp
[
− x2

2b2

]
, 0 ≤ x

Mean = b

√
π

2
, Variance = (2 −π/2)b2 (3.66)

Using the expression for the mean gives 2=b
√

(π/2), or b=1.60. Note that
this value of b gives a standard deviation of 1.0 m, which does not agree
very well with the sample standard deviation. Using the expression for the
variance to solve for b gives b=√

[0.25/(2−π/2)]=0.76. In turn this gives
a value for the mean of 0.95 m, which again is not a good match with the
sample mean. This suggests that the Rayleigh distribution is not a good
statistical model for the observations.

(b) The gamma distribution has two parameters, λ and r, both of which
must be positive (see Equation 2.23). The density function is defined as:

f (x) = λr

�(r)
e−λxxr−1 0 ≤ x <∞ (3.67)

Mean = r/λ Variance = λ2r
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Figure 3.11 The density functions corresponding to Rayleigh(1.6), Rayleigh(0.76)
and Gamma(0.5, 1).

Setting the expressions for the mean and variance equal to the sample
moments yields two simultaneous equations for λ and r. Using the expres-
sion for the mean to eliminate r from the expression for the variance gives
λ = 1/2, and thus r = 1. The functions are shown in Figure 3.11.

The extra parameter in the gamma distribution gives extra flexibility for
the distribution to fit the data. The nature of the density functions is very dif-
ferent, and when using the method of moments it is often advantageous to
use additional information to choose an appropriate family of density func-
tions. For distributions with n parameters, n moments are required, yielding
n simultaneous equations to be solved. The advantage of the method of
moments is that it gives estimates that are easily obtained. The estimates are
also usually consistent. However, the method is not suitable for fitting dis-
tributions that have no moments (e.g., Cauchy). Furthermore, the method
can lead to biased estimates, and is not always efficient for small sample
sizes (say, n < 30) or if higher order (third and above) moments are used.

3.7.2 Methods of probability-weighted and L-moments

The methods of probability-weighted moments and L-moments are variants
of the method of moments that seek to avoid some of the difficulties encoun-
tered with evaluating high-order moments. Details of these methods can be
found in Greenwood et al. (1979) and Hosking (1990). Although useful,
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these methods have not found wide application in hydraulic engineering
practice.

3.7.3 Least squares

The least-squares technique is probably the default choice for many cases.
It is typically based on fitting a straight line to observations, and minimising
a function of the distances of the points from the line. A straight line can be
written as y = mx + c. For fitting observations to a probability distribution,
xi would be the observed data in increasing order, and yi would be the
empirical distribution function. The least-squares principle is that the sum
of the squared deviations of the distances between the points and the line,
measured in the y-direction, should be minimised. Defining,

R2 =
n∑

i=1

(yi − ŷi)2 (3.68)

where n is the number of observations and is the estimator of y
(i.e., = mxi + c), the least-squares estimates of m and c are obtained by dif-
ferentiating R2 with respect to m and c, setting each derivative to zero and
solving for m and c. Thus,

dR2

dm
=−2

n∑
i=1

xi[yi − (mxi + c)] = 0 (3.69)

dR2

dc
=−2

n∑
i=1

[yi − (mxi + c)] = 0 (3.70)

Equations (3.69) and (3.70) lead to a set of simultaneous equations that
have to be solved to find m and c. The equations can be cast in matrix form:

(
n

∑
xi∑

xi

∑
xi

2

)(
c
m

)
=
( ∑

yi∑
xiyi

)
(3.71)

which has the solution

ĉ =
∑

x2
i

∑
yi −∑xi

∑
xiyi

n
∑

x2
i − (∑xi

)2 (3.72)

and

m̂ = n
∑

xiyi

∑
yi −∑xi

∑
yi

n
∑

x2
i − (∑xi

)2 (3.73)
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A good measure of fit can often be gained simply by looking at a plot of
the points and the fitted line. A more quantitative measure of fit is given by
the value of R2. In software packages this value is often normalised so that
it lies between 0 and 1, with 1 corresponding to a perfect fit. Now, there is
no reason why we should restrict ourselves to a linear function. Indeed, the
analysis above can be extended to a wide range of functions, although the
algebra can get very extensive. In fact, it is often more efficient to transform
the variables x and y first, in order to fit a straight line to the (transformed)
points.

Example 3.24. It is required to fit an exponential curve y = aebx to a set of
observations (xi, yi). Find the transformation of variables that will allow the
use of straight-line fitting.

Solution. Taking logarithms of both sides of the equation yields:

ln (y) = b ln (x) + ln (a)

using the properties of logarithms. But this is in the form y = mx + c, so by
using the points ln(xi), ln(yi) in the straight-line fitting algorithm should give
a straight line that intercepts the y-axis at y = ln (a) and has slope b.

Example 3.25. The River Vistula in Poland runs into the Bay of Gdansk.
There is a benchmark station at Tczew, on the banks of the River Vistula,
about 35 km upstream from the mouth of the river. Table 3.1 shows the
measured annual maximum river levels in millimetres above the zero datum.
Observations xi of annual peak river level are likely to follow the following
distribution:

FX(x) = exp
[
− exp

(
− (x − a)

b

)]

Estimate the parameters a and b of the distribution that best fit the
observations.

Solution. First, put the xi in order of increasing value. Then compute the
empirical distribution FX(xi) = i/(N + 1). Writing y = FX(x), we find that:

−x
b

+ a
b

= ln [ − ln (y)]

Therefore, by plotting ln[− ln (FX(xi))] against xi should give a straight-
line fit. The slope of the line will be −1/b and the intercept will be a/b.
Table 3.1 summarises the data and Figure 3.12 shows the resulting points
and straight-line fit. Parameters a and b are found as a = 719.8 mm and
b = 116.1 mm. Visually, the straight-line fit appears reasonable, particu-
larly for those points in the middle of the range. However, the fit appears
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Table 3.1 Annual maximum river levels

Year River level (mm)

1961 566
1962 1017
1963 698
1964 927
1965 905
1966 908
1967 862
1968 715
1969 656
1970 900
1971 806
1972 772
1973 640
1974 867
1975 801
1976 738
1977 814
1978 696
1979 991
1980 981
1981 841
1982 844
1983 716
1984 507
1985 650
1986 642
1987 785
1988 730
1989 704

less good at the extremes of the range where, naturally, there are fewer
observations.

Plots like Figure 3.12 are known as quantile–quantile or Q-Q plots. There
are some choices to be made about the x-ordinate that should be used
when generating the empirical distribution, and this is discussed further in
Chapter 4.

3.7.4 Maximum likelihood estimation

The maximum likelihood procedure is another way of estimating the param-
eters of a distribution. It has several desirable properties that often make it
the method of choice. The method requires the construction of a likelihood
function, L, which is a function of the observed data and the chosen den-
sity function. This function is maximised, for the given dataset, with respect



Elements of probability and stochastic processes 73

River levels (mm)

ln
[–

ln
(F

x
(x

i ))
]

y = –0.008613*x + 6.2

500 600 700 800 900 1000 1100
–4

–3

–2

–1

0

1

2
Data
Fit

Figure 3.12 Straight-line fit to the River Vistula measurements (Q-Q plot) for
Example 3.25.

to the chosen distribution function parameters. The principle is first illus-
trated for the binomial distribution. Consider repeated independent events
that have a constant probability, p, of success. The probability of m suc-
cesses in n independent trials is nCmpmqn−m (see Equation 2.12). We have
been given a coin that may or may not be biased, and told that in 15 tosses
of the coin 9 heads and 6 tails were obtained. The likelihood function is
L = nCmpmqn−m. We now investigate the value of the likelihood function for
different values of the probability of obtaining ‘heads’.

If p = 0.4 the probability of a sample
result such as that given would be: 15C9(0.4)9(0.6)6 = 0.061;

If p = 0.5 the probability becomes: 15C9(0.5)9(0.5)6 = 0.153;
And if p = 0.6 the probability becomes: 15C9(0.6)9(0.4)6 = 0.207.

The use of the principle of maximum likelihood to decide between the
three possibilities leads to the choice p = 0.6, as this is the value of p that
would have made the given sample the most likely result.

The likelihood function is defined in general terms as:

L(θ ) =
n∏

i=1

fX(xi|θ ) (3.74)

where fX(x) is a chosen density function and θ is the set of parameters for
the density function. If L is not zero and the value of θ that maximises it is
the same as that which maximises ln(L), it is often convenient to work with
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the log-likelihood function. This is particularly so when the density function
has an exponential term.

The principle of maximum likelihood is equally applicable to continuous
distributions. Suppose we are sampling from a normally distributed popu-
lation with known variance σ 2, and that it is required to find the maximum
likelihood estimator of the population mean μ on the basis of a sample
of size N from the population X1,X2,X3,X4, X5, . . . , XN. The density of
each Xi is

f (Xi|μ) = 1

σ
√

2π
e−(Xi−μ)2

/
2σ2

Assuming the trials to be independent, the likelihood function is simply
the product of the N density functions:

L(X1, X2, . . . , XN|μ) = (f (X1|μ)f (X2|μ), . . . , f (Xi|μ)

That is,

L(X1, X2, . . . , XN|μ) =
(

1

σ
√

2π
e−(X1−μ)2

/
2σ2
)(

1

σ
√

2π
e−(X2−μ)2

/
2σ2
)

. . .

(
1

σ
√

2π
e−(Xi−μ)2

/
2σ2
)

Or,

L(X1, X2, . . .XN|μ) =
(

1

σ
√

2π

)N

e
−

N∑
1

(Xi−μ)2
/

2σ2

To minimise L(X1,X2, . . . , XN|μ) we take the logarithm, differentiate and
set the result equal to zero:

log (L) = N log
(

1

σ
√

2π

)
−

N∑
1

(Xi −μ)2

2σ 2

so

d log (L)
dμ

=−

N∑
1

2(Xi −μ)( − 1)

2σ 2
=

N∑
1

(Xi −μ)

σ 2
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Setting this equal to zero we obtain:

N∑
1

(Xi −μ) = 0

or
N∑
1

Xi−
N∑
1

μ= 0

or
N∑
1

Xi − Nμ= 0

which implies that

μ=

N∑
1

Xi

N

Thus, for populations having a normal distribution, the sample mean is a
maximum likelihood estimator of μ.

Confidence intervals for parameter estimates, θ ′
i , based on the maximum

likelihood approach, are determined as follows. The observed information
matrix has entries −∂2 log (L)/∂θi∂θj evaluated at θ ′. The inverse of this
matrix is the estimated covariance matrix. Confidence intervals for the θi

are given by: θ ′
i ± zc

√
[Var(θ ′

i )], where zc is the chosen percentage point from
the standard normal distribution.

3.7.5 Bayesian methods

Bayesian methods have had a renewed surge of development in recent years.
They are, in essence, a generalisation of the maximum likelihood method
that makes use of Bayes’ theorem to modify an assumed distribution. The
likelihood function is multiplied by a ‘prior’ density function that is esti-
mated on the basis of observations or engineering judgement. The product
is divided by a constant to ensure that the integral of the resulting density
function is unity. In symbols:

P(x|y) = P(y|x)P(x)
P(y)

≡ likelihood × prior
evidence

(3.75)

where ‘x’ is what is being estimated, ‘y’ is considered the evidence, and the
‘prior’ is an initial guess of the density function of the variable, x. P(x|y)
is referred to as the posterior, and is interpreted as an updated version of
P(x), improved by the knowledge of new evidence ‘y’. Bayes’ theorem gives
a direct means of revising the density function of x as it changes from prior
P(x) before observation of y, to posterior P(x|y) once y has been observed.



76 Risk and reliability

Bayesian methods work on a different philosophy from the ‘classical’
approach. In the classical approach, the parameters of a distribution are
considered unknown constants that are to be determined. In the Bayesian
approach, the unknown parameters are treated as random variables. Qual-
itative engineering experience may also be incorporated in the choice of
prior distribution. New observations or evidence can then be used to refine
the prior distribution through the application of Equation (3.75). Unsur-
prisingly, this approach has generated some controversy and debate, not
least with regard to the choice of prior distribution and the probabilities
attaching to new evidence. Some examples are discussed by Benjamin and
Cornell (1970), and Kottegoda and Rosso (1997).

3.7.6 Resampling techniques – confidence limits

In cases where the function of the sample is not amenable to analyti-
cal treatment, or where there is an assumption that the estimates may
be approximated as normally distributed, numerical techniques can be
employed to find confidence limits. Two well-known numerical methods
are the bootstrap1 and the jack-knife2 techniques. Both use the concept of
re-sampling, that is, creating new samples from an existing sample. Boot-
strap re-sampling has been available for more than 30 years (Efron 1979),
while jack-knife re-sampling is an even older technique, and was introduced
by Quenouille (1949). Both are quite computationally intensive, and have
recently become more widely used with advances in computing power. Fur-
ther details of re-sampling methods are described by Efron and Tibshirani
(1993). A brief outline of the basic jack-knife and bootstrap procedures are
given here.

Suppose a sample X = (X1,X2, . . . , Xn) of n observations is to be used to

estimate a population parameter, θ . The estimator of θ is defined as
�

θ = f (X).
The jack-knife employs samples, Xi, that leave out one observation at a
time, and which are of the form:

Xi = (x1,x2, · · ·,xi−1, · · ·,xi+1, · · ·,xn) (3.76)

with i = 1, 2, . . . ,n. These are the jack-knife samples. For each jack-knife
sample a value of the statistic in question is obtained. These are known as

the ‘jack-knife estimators’, and are denoted by
�

θ i = f (Xi). Since the process
is repeated n times, there are n estimators. Now, if the function f is taken to

1 The term ‘bootstrapping’ is believed to originate from Rudolph Eric Raspe’s eighteenth-
century tale The Surprising Adventures of Baron Munchausen, in which the hero escapes
from a lake, pulling himself upwards by tugging on his bootstraps.

2 ‘Jack-knife’ alludes to the everyday usefulness of this statistical tool to the statistician.
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be the mean, we have θ̂ =
n∑

i=1

xi

/
n = x̂ then each jack-knife estimator of the

mean will be of the form

θ̂i =
n∑

j=1

xj

(n − 1)
(1−δij),

Defining

θ̂ ∗
i ≡ nθ̂ − (n − 1) θ̂i

the jack-knife estimate of θ is given by the average

θ̂ ∗ = 1
n

n∑
i=1

θ̂ ∗
i

and the jack-knife estimate of the variance of
�

θ is given by

VarJK

(
θ̂
)

= 1
n (n − 1)

n∑
i=1

(
xi − x̂

)2
(3.77)

The standard error of the jack-knife estimate, s.e.JK, is given by the pos-
itive square root of Equation (3.77) and an approximate 100(1 − β)%
confidence interval for θ is given by

[
θ̂ ∗ − t1−β/2,(n−1)s.e.JK

(
θ̂
)

, θ̂ ∗ + t1−β/2,(n−1)s.e.JK

(
θ̂
)]

(3.78)

where t1−β/2,(n−1) denotes the (1 − β/2) quantile of a Student’s t distribution
with (n − 1) degrees of freedom.

It is well known that the jack-knife works well for linear statistics (e.g.,
the mean), but can fail to give accurate estimation for non-smooth (e.g.,
median) and nonlinear (e.g., correlation coefficient) statistics (Efron &
Tibshirani 1993).

A dataset of size n has 2n − 1 non-empty subsets; however, jack-knife
re-sampling uses only n of them. Thus, it can be seen that jack-knife
re-sampling may be refined by obtaining estimates from more than n sub-
sets, which is the main motivation for the bootstrap method, described
by Efron (1979). The idea behind bootstrap re-sampling is to randomly
sample the dataset a very large number of times. The assumption is that
each data point is a valid member of the total sample, and that at any
time there is an equal probability of ‘picking’ any of the data values in
the original sample. Thus, new and equally valid re-sampled datasets can
be created by picking from these data at random. Bootstrap re-sampling
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is achieved by randomly selecting n data points, with replacement, from
the original observed random sample. Therefore, it is possible that in any
sample of n data points some of the original data points can appear twice
or more, and some of the original data points may not appear at all. All
bootstrap replicates (samples) have the same length as the original sam-
ples and each of the bootstrap replicates can provide an estimator θ̂ ∗

i . The
spread in the estimators formed from these re-sampled datasets then pro-
vides information on the stability of the estimator with respect to different
possible outcomes represented by the bootstrap replicates. However, resam-
pling with replacement may lead to unusual bootstrap samples. Therefore,
a large number of replicates are generally recommended. Confidence inter-
vals may be found directly from the estimators derived from the bootstrap
replicates by rank ordering the estimators and selecting the appropriate
values corresponding to the chosen percentage point. For example, with
1000 bootstrap replicates, the 90% confidence interval of the mean will be
defined by the 50th and 950th rank-ordered values of the mean computed
from the bootstrap replicates. Re-sampling methods are discussed further in
Chapter 4.

3.8 Stochastic processes

In reliability analysis one often has to deal with quantities that vary as a
function of time (e.g., rainfall, river flows and wave heights). To describe
the time variation in reliability requires the concept of a stochastic pro-
cess. The definition is analogous to that of a random variable. Formally,
a stochastic process X(t) is a rule for assigning to every outcome of an
experiment, a, a function X(t,a), that is, a stochastic process can be con-
sidered to be a family (or ensemble) of time-dependent functions that are
also dependent upon the parameter a or, equivalently, a function of t and
a. If a is fixed (a = a0, say) then X(t,a0) is a realisation of the stochas-
tic process. If t is fixed (t = T, say) and a is variable then X(T, a) is a
random variable equal to the state of the given process at time t = T. If
both t and a are fixed then X(t,a) is a number. Figure 3.13 illustrates this
relationship.

For a specific t, X(t,a) is a random variable with distribution

F(x, t) = P[X(t) ≤ x] (3.79)

This function depends on t, and it equals the probability of the event
{X(t) ≤ x} consisting of all outcomes ai such that, at the specific time t,
the samples X(t,ai) of the given process do not exceed the number x. As
an example, consider the weather forecasts produced by national forecast-
ing offices. Nowadays, many of these base their presented forecast on an
analysis of an ensemble of forecasts (typically 20–30) made with slightly dif-
ferent initial conditions. If we are interested in the rainfall rate at 12 noon
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Figure 3.13 Illustration of a stochastic process. The upper diagram depicts different
realisations of the process x, which is a function of t and parameter ξ .
Fixing t = T we obtain x as a function of the parameter ξ , as shown
in the lower diagram. If the value of the parameter is now fixed, we
retrieve a number.

tomorrow at a particular site, then the ensemble forecasts will provide
20–30 different answers. We can rank these answers in increasing order
to create a cumulative probability distribution, just as for random vari-
ables. As we move from one member of the ensemble to another we are
looking at the dependence of the answer on the parameter a in the con-
text of the above discussion. If we select one member of the ensemble,
we are in effect fixing the parameter a in the above discussion, and the
result is a single number. In practice, a system as complex as a weather
forecasting model depends on a huge number of parameters and predicts
quantities as a function of space as well as time. The same concepts of a
stochastic variable apply, but the notation and manipulations become more
involved.
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For reasons that will become clear shortly, the function F(x, t) is some-
times known as the ‘first-order distribution’ of the process X(t). In analogy
with random variables, its first-order density is defined as

f (x, t) = ∂F(x, t)
∂x

(3.80)

The second-order distribution of X(t) is defined as the joint distribution

F(x1,x2; t1, t2) = P[X(t1) ≤ x1,X(t2) ≤ x2] (3.81)

of the random variables X(t1) and X(t2). In any analytical manipulations,
x1, x2, t1 and t2 are considered independent, with t1 and t2 describing the
corresponding evolution of X in ‘parallel universes’. The corresponding
density is

f (x1, x2; t1, t2) = ∂2F(x1,x2; t1, t2)
∂x1∂x2

(3.82)

Higher-order distributions can be defined, and are required to charac-
terise a stochastic process fully. For our purposes, we need only consider
the first- and second-order distributions. One quantity that is of particular
importance is the autocorrelation function, R(t1, t2), which is defined as the
expected value of the product X(t1)X(t2):

R(t1, t2) = E[X(t1)X(t2)] =
∞∫

−∞

∞∫
−∞

x1x2f (x1, x2; t1, t2)dx1dx2 (3.83)

The autocorrelation function describes how quickly the process varies in
time (i.e., becomes decoupled from earlier values) on average. Setting t1 = t2

gives the second moment, or average power, of the process X(t):

R(t, t) = E[X2(t)] (3.84)
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Example 3.26. Find the autocorrelation function of the process X(t) =
A cos (ωt + ϕ), where ϕ is uniform in the interval (−π ,π ). This is a linear
wave with constant amplitude but random phase.

Solution. From Equation (3.80) we have

R(t1, t2) = E[X(t1)X(t2)] =
∞∫

−∞

A cos (ωt1 +ϕ)A cos (ωt2 +ϕ)
1

2π
dϕ

=
π∫

−π

A2

2
[cos (ωt1 −ωt2)

− cos (ωt1 +ωt2 + 2ϕ)]
1

2π
dϕ

=
π∫

−π

A2

2
cos (ωt1 −ωt2)

1
2π

dϕ

−
π∫

−π

A2

2
1

2π
cos (ωt1 +ωt2 + 2ϕ)dϕ (3.85)

= A2

2
cos (ωt1 −ωt2)

where the integral over ϕ has been reduced to run over its range, simple
trigonometric relations have been used to go from line one to line two, and
the second term on the right-hand side of line three is zero.

Three concepts that are of particular importance in the theory of
stochastic processes are now introduced. A stochastic process X(t) is
called strict-sense stationary if its statistical properties are unchanged
with a shift of the origin. It is called wide-sense stationary if its mean
is constant and its autocorrelation function depends only on τ ≡ t1 − t2.
In both of these cases we have E[X2(t)] = R(0). Figure 3.14 illus-
trates a stationary stochastic process and two types of non-stationary
behaviour.

In dealing with stochastic processes it may well be that it is easier to
measure a long time series of one realisation of a process than it is to mea-
sure a number of different realisations. The question then arises whether
the time average over a long period of time of a single realisation is
equivalent to averaging over several different realisations. A stochastic pro-
cess X(t) is called ergodic if its ensemble averages equal appropriate time
averages.
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t

t

t

Figure 3.14 Top panel – stationary stochastic process; middle panel – nonstationary
stochastic process with a time-dependent mean; bottom panel –
nonstationary stochastic process with a time-dependent mean and
variance.

The power spectrum (or spectral density), S(ω), of a process X(t) is the
Fourier transform of its autocorrelation:

S(ω) =
∞∫

−∞

R(τ )e−iωτ dτ (3.86)

and

R(τ ) = 1
2π

∞∫
−∞

S(ω)eiωτ dω (3.87)
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Example 3.27. A stochastic process has an autocorrelation function given
by R(τ ) = exp[ − (t/T)2], where T is the ‘correlation’ time. Find the power
spectrum of the process.

Solution. To calculate the power spectrum we need to find the Fourier
transform of the autocorrelation function:

S(ω) =
∞∫

−∞

e−
( τ

T

)2

e−iωτ dτ

=
∞∫

−∞

e
−
{( τ

T

)2+iωτ

}
dτ

=
∞∫

−∞

e−
{( τ

T

)
+iωτ

}2−
(

ωT
2

)2

dτ

= e
−
(

ωT
2

)2 ∞∫
−∞

e−
{( τ

T

)
+iωτ

}2

dτ

= e−
(

ωT
2

)2
∞∫

−∞

e−y2
Tdy

= T
√

πe
−
(

ωT
2

)2

where the change of variables y = (τ/T) + (iωT/2) has been used.

Example 3.28. It is left as an exercise for the reader to verify that stochas-
tic processes with autocorrelation functions given by (a) an exponential
function R(τ ) = exp [ − |τ |/T], and (b) a modified exponential function
R(τ ) = (1 + |τ |/T) exp [ − |τ |/T], where T is the ‘correlation’ time, have
power spectra S(ω) = 2T/[(1 + T2ω2)] and S(ω) = 4T/[(1 + T2ω2)2], respec-
tively. The autocorrelation functions and their corresponding power spectra
in Examples 3.27 and 3.28 are shown in Figures 3.15 and 3.16.

Example 3.29. Generation of a normal stochastic process with arbitrary
autocorrelation function.

The ideas introduced above can be used to simulate realisations of
stochastic processes with normal statistics and arbitrary autocorrelation
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function. The idea is outlined below. Implementing this as a computer pro-
gram is not computationally efficient, however. For details of computational
procedures the reader is referred to the publications listed under further
reading at the end of this chapter.

Description. Here we consider the simulation of a continuous stochastic
variable. Let the stochastic variable have autocorrelation function R(τ ). As
this is both real and even, so is its Fourier transform. Thus, we will consider
its power spectrum in terms of a Fourier cosine transform:

S(ω) = 2
π

∞∫
0

R(τ ) cos (τω)dτ (3.88)

and write A(ω) = √
[S(ω)]. Now, choose N equally spaced frequencies ωi =

i�ω, where N and ωN are large enough to resolve the features of S suffi-
ciently. Next, choose N independent random phases ϕI, which are uniformly
distributed in (0, 2π ). Now define a function X(t) by

X(t) = 2

√
�ω

π

N∑
i=1

Ai sin (ωit +ϕi) (3.89)

where Ai = A(ωi). Then X(t) is a continuous function of t with the required
statistics, as will be demonstrated below.

The random part of the definition of the function in Equation 3.88 is in
the choice of phases. Each different set of phases gives rise to a different
realisation of a stochastic process X, and averages can therefore be taken
over this ensemble. The ensemble average, denoted by < . >, is the integral

< . >= 1
2π

2π∫
0

.dϕ

First, it is easy to check that < X >= 0. Also, by the central limit the-
orem, for large N the values of X(t) are normally distributed. It remains
to calculate the autocorrelation function of X(t). Let us write ti = ωit + ϕi



86 Risk and reliability

and si = ωis + ϕi. As ϕi are uniform in (0, 2π ), using standard trigonometric
integrals it is easy to show that:

< sin (ti) >= 0

< sin (ti) cos (ti) >= 0

< sin2 (ti) >= 1/2

< sin (ti) sin (si) >= cos (ωiτ )
2

where τ = s − t. Now, the autocorrelation function can be written as:

< X(t)X(s) >= 4�ω

π

N∑
i

N∑
j

AiAj < sin (ti) sin (sj) >

= 4�ω

π

N∑
i

A2
i < sin (ti) sin (sj) >

= 2�ω

π

N∑
i

A2
i cos (ωiτ )

∼= 2
π

∞∫
0

S(ω) cos(ωτ )dω

= R(τ )

as required. Note that in the above derivation it has been assumed that
sin(ti) and sin(si) are independent.

In many real-life applications it is necessary to relax the requirement
of normality. Numerical methods for generating an ensemble of sequences
with arbitrary statistics and autocorrelation properties are now becoming
available. Some of these are used in the later examples in Chapter 6.

Further reading

Fox, C. G., 1987. An inverse Fourier transform algorithm for generating random
signals of a specified spectral form. Computers and Geosciences, 13(4): 369–374.

Jenkins, G. M. and Watts, D. G., 1968. Spectral Analysis and Its Applications,
Holden-Day, San Francisco.

Macaskill, C. and Ewart, T. E., 1984. Computer simulation of two-dimensional
random wave propagation. IMA Journal of Applied Mathematics, 33: 1–15.

Papoulis, A., 1984. Probability, Random Variables and Stochastic Processes, 2nd
edition, McGraw-Hill, Electrical Engineering Series, Singapore, p. 576.



4 Extremes

4.1 Introduction to extremes

Rivers, estuaries and coastal regions have always been a popular place for
commerce, recreation and habitation. In many countries, land adjacent to
waterways is much more valuable than that inland. However, low-lying
flood plains are subject to flooding and erosion. Public awareness of the
potential for climate change to adversely affect the lives of a huge number
of people has been raised in recent years by the news coverage of many
high-profile flooding events around the world.

Naturally, there has been a call for the construction of defences to
reduce the risk of flooding and erosion. Engineering structures that pro-
vide protection against flooding and erosion hazards include open (ditch)
and closed (piped) drainage systems, scour protection, embankments, revet-
ments, breakwaters and coastal flood defences. Examples of some of these
types of structures are shown in Figure 4.1.

The design of these structures usually takes into account the anticipated
lifetime of any human, natural or built assets. Thus, a new hotel being built
near an eroding seafront cliff may have a planned life of 50 years. Knowing
the typical annual cliff recession rate, one could position the hotel at least
50 times this distance landward of the current cliff position. The economic
planning of the investment in the hotel would be designed to recoup all costs
well before the 50-year limit. Protection of larger or more diffuse assets,
such as towns or highly productive agricultural land, provides a greater
challenge. Nevertheless, current planning in the majority of countries uses
some measure of the benefit accruing from the construction of the defence
relative to the cost of its construction and maintenance in justifying the
construction of defences.

The causes of flooding and erosion are driven predominantly by the
weather. As this still remains extremely difficult to predict over periods
longer than a few days, there is a high degree of uncertainty in the con-
ditions that may be experienced by a structure. As a result, defences are
typically designed to withstand conditions of a specified severity (e.g., the
storm conditions encountered once every 50 years on average), judged to
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Figure 4.1 Examples of flood defence structures (left to right and from top to
bottom): (a) Storm water outflow from seawall at Teignmouth, UK.
(b) Harbour breakwater at Nice, France. (c) Concrete sea wall with rock
scour protection at Sheringham, Norfolk, UK. (d) Harbour breakwater
at Sohar, Oman (courtesy of Halcrow Group Ltd). (e) Low-lying rock
groynes on a sandy beach backed by vertical blockwork wall in Colwyn
Bay, Wales. (f) Concrete mattress revetment on earth embankment at
Freiston, Lincolnshire, UK. (g) Short piped sea outfall at Teignmouth,
UK. (h) Sea wall with rock toe protection and short groynes at West
Bay, UK (courtesy of Dr David Simmonds).

provide an appropriate balance between cost on the one hand and the level
of protection on the other.

It is often the case that a structure has to be designed to resist a condition
so extreme that no similar condition may be found in available measure-
ments or records. One way to proceed is to fit a probability distribution to
the measurements and extrapolate this to find the conditions corresponding
to the rarity of the required event, taking due account of the uncertainty in
this process. The range of probability distributions that is used for design
and the methods for fitting them to the measurements have been the subject
of much study, and the following sections provide an introduction and guide
to some of the main techniques currently in use.
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Almost all the variables encountered in hydraulic and coastal engineer-
ing are continuous functions of time (e.g., wind speed, current speed, wave
height). However, measurements are taken at fixed intervals, resulting in a
discrete set of values over time or time series. Typically, wave and water-
level records are available at hourly or 3-hourly intervals, although this can
vary according to the instrument and processing adopted. Suppose we have
a time series of significant wave heights, such as those plotted in Figure 4.2a.

Each point of the time series can be considered to be an individual event
with a duration equal to the interval between successive points. Depending
on the sampling rate and the characteristics of the random variable, con-
secutive measurements may or may not be independent. For many of the
statistical manipulations that will be used later, the events are required to
be independent. It is important, therefore, to check that the time series are
independent. A convenient way to do this is to calculate the autocorrela-
tion function of the time series (see Chapter 3). For the wave record plotted
in Figure 4.2a this is shown in Figure 4.2b. If the autocorrelation function
drops rapidly from its value of 1 at zero lag, then the assumption that events
are independent is reasonable. If the autocorrelation drops more slowly, this
shows a similarity or correlation between consecutive values. Correlation of
wave records has been investigated and for UK waters, measurements sepa-
rated by more than 12 hours may be treated as being independent to a good
approximation (HR 2000). On the basis of the short record in Figure 4.2a,
a value of 12 hours looks a reasonable choice for this location too.

For the case of pluvial and fluvial loading, theoretical and empirical
evidence suggest that rainfall patterns exhibit so-called ‘multifractal’ or
‘scaling’ behaviour (Lovejoy et al. 1996). This implies that rainfall has fea-
tures existing on a continuum of spatial scales, from many kilometres down
to tens of metres. Zawadzki et al. (1994), Grecu and Krajewski (2000),
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Figure 4.2 (a) Time series of significant wave heights from NOAA wave buoy
42058, situated at 15◦5′33′′N 75◦3′52′′W (Central Caribbean – North of
Colombia). (b) The autocorrelation function of the wave height record.
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Germann and Zawadzki (2002) demonstrated that the lifetime of precipi-
tation features is approximately proportional to their size. Thus, while the
smallest features observed by operational weather radar generally persist
for no more than a matter of minutes, the largest features may persist for
many hours or even days. At catchment scale, a similar general observation
to that made for wind waves applies, although it is always advisable, at the
very least, to plot and look at your data (and preferably analyse it for cor-
relation properties) rather than simply assume that a particular correlation
property holds.

It is yet to be defined what is meant by extreme. One possibility is to
define extreme events as those that are greater than some threshold value.
The statistics of the values over the threshold may be studied using the
peaks over threshold method described later. Alternatively, we may decide
to ‘block’ the data into sections of a fixed length, say 1 year, and select
the maximum value from each block and investigate the properties of these
maxima.

In design, a structure is typically conceived so as to withstand an event of
a specified severity – that is, the design condition. For events of a severity
up to and including the design condition, the structure is expected to pro-
vide adequate protection. Conversely, for events of a severity exceeding the
design condition, the ability of the defence to provide protection cannot be
assumed. To determine the chance of this occurrence we require the prob-
ability of the design condition being exceeded. This is most easily obtained
from the cumulative distribution; but the cumulative distribution of what?
Due to the inherent time scales, a useful ‘unit’ of time is a year.

Using the cumulative distribution function of a variable, questions rele-
vant to flood or damage prediction may be addressed. For example, in the
case of river level it might be required to answer the following questions:

i What is the probability that the maximum level in a particular year is
more than h m3/s/m?

ii In the next n years what is the probability that the highest level in the
n years will be less than h m3/s/m?

iii What is the 1 in N year annual maximum level?

If F(h) is the distribution function of the annual maxima of river levels,
then the answers are: (i) 1 − F(h); for (ii), if the annual maxima are inde-
pendent, then the required probability is Prob{the maximum for each year
is less than h} = F(h)n; for (iii) we need the concept of a return period.

In engineering design the usual measure of the rarity or severity of an
event is the return period, T. The T-year event is the event that has a
1/T chance of being exceeded in any given year. It may be linked to the
distribution function as follows. Suppose we have a time series contain-
ing N independent values of a load variable L1, L2, L3, . . . , Li, . . . , LN at
intervals of �t, and we have a loading threshold of Lt, above which the
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structure cannot perform its intended purpose. Of the N values, assume m
are greater than Lt. Approximating the probability of Li exceeding Lt by
m/N ≈ 1 − F(Lt). Equivalently, this may be interpreted as meaning there will
be m exceedances every N events (or over N · �t units of time) on average,
that is, one exceedance every N/m events or N·�t

m
units of time. N·�t

m
is the

return period and is usually expressed in units of years. Thus, the answer to
(iii) is the value h such that F(h) = 1/N, or, h = F−1(1/N).

Example 4.1. A time series of wave heights is sampled at 12-hourly inter-
vals and contains 292,200 independent values. Of the values recorded only
four exceed a given threshold wave height, Ht. What is the return period
corresponding to the wave height Ht?

Solution. We have �t=12 hours, N = 292, 200 (corresponding to 400
years), and m = 4. The return period is

292200
4

× 12 × 1
24 × 365.25

= 100years

The last term on the left-hand side converts units of hours to years (24 hours
per day and 365.25 days per year).

A concept related to, but distinct from, the return period is the design
life of a structure. The design life of a structure is the period over which
the structure is expected to continue providing protection against the design
condition. The return period is not the same as the design life. For example,
a particular sewer pipe may be designed to last 50 years, but to be able to
carry the 1 in 25 year flow. The fact that a storm leads to extreme rainfall
in excess of the 1 in 25 year value does not necessarily mean the sewer
will be broken, and therefore fail to continue working after the particular
storm. Rather, it means that there will be flooding because the sewer cannot
convey all the water fast enough. After the flooding subsides, the sewer
should continue to provide protection against the 1 in 25 year flow.

Over a period of 50 years the integrity of the pipe is likely to deteriorate.
An adequate design will take such deterioration into account, so that at
the beginning of its life a structure can probably withstand an event rather
more severe than the design condition. Gradual deterioration over time will
impair its performance, so that, at the end of its design life, it still provides
protection against the original design condition, as illustrated in Figure 4.3.

Considering annual maxima, the probability of exceedance (P), the design
life (L) and the return period (T) are related by:

P = 1 −
(

1 − 1
T

)L

(4.1)
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Figure 4.3 Design to resist an extreme event accounting for material deterioration
over the design life.

Figure 4.4 plots the return period against duration for fixed values of
probability of exceedance.

It can be seen that, if the return period of an extreme event is the same
as the design life, there is a ∼63% chance that the extreme event will be
exceeded during the period of the design life.

In the preceding discussion, the form of the distribution function that
might best describe the extreme values of a random process has been
avoided. A brief background to the theory of extreme values, together with
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Figure 4.4 Exceedance probability as a function of event return period and
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Extremes 93

details of fitting these to data and estimating values corresponding to large
return periods, are the topics of the remainder of this chapter.

4.2 Limiting distributions and behaviour

We start by considering the extremes of the normal distribution, because it
is analytically tractable and illustrates several important features. If the ran-
dom variable X is normally distributed with mean μ and standard deviation
σ then it obeys

F(x) =
x∫

−∞

1

σ
√

2π
e

−
(

(t−μ)
σ
√

2

)2

dt

In the case of n variables, X1, X2, . . . , Xn, which are independent and have
the same normal distribution, then (see Chapter 3) the distribution of the
maximum of X1, X2, . . . , Xn is

FX max(x) =
⎛
⎝ x∫

−∞

1

σ
√

2π
e

−
(

(t−μ)
σ
√

2

)2

dt

⎞
⎠

n

Figure 4.5 illustrates how the distribution of the maximum changes with
increasing n. Two facets of the distribution are clear. First, it is not normal
and, second, the mean of the distribution progressively increases. In addi-
tion, it may be shown that, as n increases, this distribution approaches zero
for every finite value of X. Some standardisation is therefore necessary. The
history behind the theory of extreme value distributions can be traced to
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Fisher and Tippett (1928), who sought distributions for the maxima that
satisfied

Fn(x) = F(anx + bn) (4.2)

where an > 0 and bn are arbitrary constants, that is, the distribution of the
maxima is the same, up to a linear re-scaling, as F itself. Fréchet (1927)
found a solution for the special case of bn = 0. Fisher and Tippett (1928)
found three classes of solution to Equation (4.2), which can be written in a
single unifying form:

F(x;μ,σ , δ) = exp

[
−
{

1 − δ

(
x −μ

σ

)}1/δ
]

(4.3)

which has the corresponding probability density function

f (x;μ,σ , δ) = 1
σ

{
1 − δ

(
x −μ

σ

)}(1/δ)−1

exp

[
−
{

1 − δ

(
x −μ

σ

)}1/δ
]

(4.4)

with 1 − δ

(
x −μ

σ

)
> 0; −∞<μ, δ <∞; 0 <σ <∞

Thus, the data are bounded below if δ < 0 and bounded above if δ > 0.
This distribution is known as the generalised extreme value (GEV) dis-
tribution, and sketches of its shape are shown in Figure 4.6. A rigorous
mathematical proof that this is the only nontrivial solution of Equation (4.2)
may be found in Gnedenko (1943) and De Haan (1976).
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The three classes of solution correspond to δ > 0 (EV3 or Weibull distri-
bution), δ < 0 (EV2 or Fréchet distribution) and δ = 0 (EV1 or Gumbel
distribution). For future reference, some useful properties of these three
distributions are given in detail here.

Gumbel distribution

F(x;μ,σ ) = exp
[
− exp

(
−x −μ

σ

)]
(4.5)

σ > 0, and −∞< x <∞.

Mean =μ+ 0.57721σ

Variance = σ 2π 2

6
F−1(p) =μ− σ ln

[− ln (p)
]

Random numbers with a Gumbel distribution, gi, may be generated
from random numbers with a standard uniform distribution, ui, by gi =
μ − σ ln [ − ln (ui)]. The maximum likelihood estimators of μ and σ are
given by:

μ̂ =−σ̂ ln

[
1
n

n∑
i=1

e
−
(

xi
σ̂

)]

σ̂ = 1
n

n∑
i=1

xi −

n∑
i=1

xie
−
(

xi
σ̂

)

n∑
i=1

e
−
(

xi
σ̂

) (4.6)

Distributions whose extremes lead to a Gumbel distribution include nor-
mal, log-normal, exponential and gamma. Plots of the Gumbel density and
distribution functions are shown in Figure 4.7.

Fréchet distribution

F(x;μ,σ ,γ ) = exp
[
−
(

x −μ

σ

)γ]
x ≥μ (4.7)

σ > 0 and γ > 0.

Mean =μ+ [σ�(1 − 1/γ )] γ > 1

Variance = σ 2[�(1 − 2/γ ) −�2(1 − 1/γ )] γ > 2

F−1(p) =μ+ σ
[− ln (p)

]−1/γ
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Figure 4.7 Gumbel probability density (left) and distribution (right) functions for
various parameter settings.
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Figure 4.8 Fréchet probability density (left) and distribution (right) functions for
various parameter settings.

Distributions whose extremes lead to a Fréchet distribution include the
Pareto, log-gamma and Cauchy distributions. Moments of order k ≥ γ do
not exist, which can complicate the estimation of parameters σ and γ . Plots
of the Fréchet density and distribution functions are shown in Figure 4.8.

Weibull three-parameter distribution

F(x;μ,σ ,α) = exp
[
−
(

μ− x
μ− σ

)α]
x ≤μ (4.8)

where μ is the upper bound of X, σ < μ is a location parameter and α > 0
is a shape parameter.
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Mean =μ− (μ− σ )�
(

1 +α

α

)

Variance = (μ− σ )2

[
�

(
2 +α

α

)
−�2

(
1 +α

α

)]

F−1(p) =μ− (μ− σ )
[− ln (p)

]1/α

Distributions whose extremes lead to a Weibull distribution include the
uniform and beta distributions.

Corresponding distributions for the minimum of n independent and iden-
tically distributed variables Xi can be derived. The most widely used in
hydraulic and reliability analysis is the Weibull distribution for minima.
It has the following distribution function:

F(x; ε,σ ,β) = 1 − exp

[
−
(

x − ε

σ − ε

)β
]

x ≥ ε (4.9)

where ε is the lower bound of X, and β > 0 is a shape parameter. We also
have:

Mean = ε + (σ − ε)�
(

1 +β

β

)

Variance = (σ − ε)2

[
�

(
2 +β

β

)
−�2

(
1 +β

β

)]

F−1(p) = ε − (σ − ε)
[− ln (1 − p)

]1/β

Estimation of the parameters for the three-parameter Weibull distribu-
tion is not straightforward. If the upper or lower bound is known or can
be estimated on the basis of other information, then this fixes one of the
parameters and the method of moments can be used. For the case when
ε = 0, the maximum likelihood method can be used with the estimators of
σ and β given by the simultaneous solution of:

σ̂ =
[

1
n

n∑
i=1

xβ̂

i

]1/β̂

β̂ = n(
1
σ̂

)β̂ n∑
i=1

xβ̂

i ln (xi) −
n∑

i=1
ln (xi)

(4.10)

Plots of the Weibull density and distribution functions for maxima are
shown in Figure 4.9.
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Figure 4.9 Weibull probability density (left) and distribution (right) functions for
various parameter settings.

A second method of describing extremes is to set a threshold value, and
to define the exceedances of this value as ‘extreme’. This approach is often
called ‘peaks over threshold’ (POT) in Europe and ‘partial duration series’
(PDS) in the USA. Variables Xi with a distribution function F are considered
extreme events if a threshold u is exceeded. Using essentially the same argu-
ments that justified the GEV asymptotic form for maximum values, it may
be shown that the natural family of distributions to describe the exceedances
of a threshold is the Generalised Pareto Distribution (Pickands 1975). Thus,
the conditional distribution of the random variable X, given that X > u, is

Pr(X ≤ x | X > u) = F(X ≤ x/X > u), x > u (4.11)

where F is the distribution function of X. For u sufficiently large this can be
well approximated by the Generalised Pareto Distribution, GPD(σ , ξ ),

F(X ≤ x | X > u) = 1 −{1 − ξ (x − u) /σ}1/ξ , x > u (4.12)

where σ is a scale parameter (σ >0) and ξ is a shape parameter. If ξ =0, we
retrieve the exponential distribution. The GPD pdf is shown in Figure 4.10
for several values of the parameters.

The POT/GPD approach is widely considered as being much less wasteful
of information in comparison with the block maximum/GEV method. Nev-
ertheless, it requires a judicious selection of the threshold value, some check
that for a given threshold the peak values are independent, and a means of
converting the result into a form suitable for engineering design and assess-
ment (i.e., a value corresponding to a particular return period). The choice
of threshold is not straightforward and a survey of methods available
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Figure 4.10 GPD probability density (left) and distribution (right) functions for
various parameter settings.

for addressing the first two of these points may be found in Thompson
(2009). For the last point, the following ‘conversion’ relations are
required:

XN =
⎧⎨
⎩

u + σ

ξ

[(
Nnyp

)ξ − 1
]

ξ �= 0

u + ln (Nnyp) ξ = 0
(4.13)

where XN is the N-year return level, ny is the average number of excesses
per year, and p is the probability that X > u. It should not be surprising
that the GEV and GPD distributions have some similarities. Indeed, Davi-
son and Smith (1990) showed that, if the exceedances obey a GPD(σ , ξ )
distribution, then the distribution of the annual maxima of the observations
is described by a GEV distribution with parameters defined in terms of σ ,
ξ , ny and p. Thus, knowing the GPD parameters, we may estimate the cor-
responding GEV parameters using all the large values rather than just the
annual maximum values.

In practice, if the standard errors associated with fitting annual max-
ima to a GEV distribution are sufficiently small to allow specification
of design conditions within acceptable bounds, then this method is often
used. It is also worth noting, on a practical level, that some historical
recordings (e.g., tide gauge records) only archive the annual maximum
values. In this case the GEV distribution is the sensible option. How-
ever, with the introduction of continuous digital recording, continuous time
series records are becoming the norm and the POT method is a viable
alternative.
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4.3 Fitting extreme distributions to data

4.3.1 Least-squares fitting

In Chapter 3 the concept of least squares was introduced as a means of esti-
mating the parameters of a distribution that best fits the observed data in
the sense of minimising the mean square differences in the y-direction. In
Examples 3.24 and 3.25 it was shown how the method for fitting a straight
line to observations could be adapted to more complicated functions by
transformations of the independent and dependent variables. Expressions
for estimating the parameters of the Gumbel and two-parameter Weibull
distributions were given in the previous section. In this section we return to
the process of fitting a curve (in particular a probability distribution func-
tion) to observations. The discussion starts with the normal distribution and
then progresses to the choice of plotting position and estimation of standard
errors.

All cumulative distribution functions are nondecreasing functions of the
random variable. The idea behind probability plotting is to transform the
vertical (and sometimes the horizontal) scale so that the distribution func-
tion plots as a straight line. For a normal distribution it is necessary to alter
only the vertical scale. Consider a normal random variable X with a mean μ

and a standard deviation σ . With the wide availability of computer spread-
sheet programs, it is easy to recreate what used to be done on commercially
produced ‘probability paper’ by performing the mathematical transforma-
tion and plotting the results. Recall that the standard normal form Z of a
normal random variable X is

Z = X −μ

σ
=
(

1
σ

)
X +

(−μ

σ

)

For any realisation x of X, the standardised value, z, is defined in the
corresponding way. Thus,

FX(x) = p =Φ

(
x −μ

σ

)
(4.14)

Taking the inverse of Equation (4.14) yields

Φ−1(p) = z =
(

1
σ

)
x +

(−μ

σ

)
(4.15)

Now, Equation (4.15) represents a linear relationship between z and x.
The slope of the line is the reciprocal of the standard deviation, and the
intercept is minus the mean divided by the standard deviation. Note that, in
order to make the graph easier to use, the y-axis is often shown as prob-
abilities (p), and stretched, rather than plotting the z values on a linear
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Figure 4.11 Straight-line plot on normal probability ‘paper’, demonstrating that on
the scaled ordinate the normal curve becomes a straight line.

scale. This relationship is illustrated in Figure 4.11. This format is easier
for determining quantiles. For example, the values of x corresponding to
FX(x) = 0.25, 0.5 and 0.75 are the 25% quartile, the median and the 75%
quartile, respectively.

The application of this to a set of observations is as follows:

1 Sort the observations in increasing order, with x1 ≥ x2 ≥ . . . ≥ xi ≥ . . . ≥
xN, and retain any repeated values.

2 Associate with each xi a cumulative probability pi defined as:

pi = i
N + 1

(4.16)

3 For each pi calculate zi =Φ−1(pi).
4 Plot the coordinates (xi, zi) on standard linear axes.
5 If the xi follow a normal distribution then the coordinates will follow a

straight line. The best-fit straight line yields the parameters (mean and
standard deviation) of the distribution as described above. If the points
do not fall on a straight line, then a normal distribution is probably not
appropriate.



102 Risk and reliability

Example 4.2. Consider the following set of 12 observations: {5.6, 4.8, 7.6,
12.3, 8.3, 6.4, 5.8, 7.9, 5.1, 6.6, 6.9, 5.9}. Plot the observations on a normal
probability plot.

Solution. We follow the steps (1) to (3) above, noting that N = 12, and
summarise the results in Table 4.1 below.

Table 4.1 Data for Example 4.2

Index xi pi = i/(N + 1) zi =Φ−1(pi)

1 4.8 0.08 −1.41
2 5.1 0.15 −1.03
3 5.6 0.23 −0.74
4 5.8 0.31 −0.49
5 5.9 0.38 −0.31
6 6.4 0.46 −0.10
7 6.6 0.54 0.10
8 6.9 0.62 0.31
9 7.6 0.69 0.49

10 7.9 0.77 0.74
11 8.3 0.85 1.03
12 12.3 0.92 1.41

Figure 4.12 shows the points and a best fit-line through them on nor-
mal probability axes. The slope is 0.3773, so the standard deviation is
1/0.3773 = 2.65; the intercept is −2.616, so the mean is 2.616 × 2.65 =
6.93. By direct calculation, the mean of the values in Table 4.1 may also be
found to be 6.93.

In this example it is clear, even from a visual inspection, that the fit is not
very good. Indeed, if the largest value were omitted, a much better fit would
have been achieved. The existence of unusual points, or ‘outliers’, is often
an indication of the need for further investigation, either of the quality of
the data or a better understanding of the processes being modelled, or of
the (in)appropriateness of the choice of probability distribution selected to
fit the data.

The method of least squares is one means of performing step (5), that is,
to define the line that best fits the observations. The plotting formula Equa-
tion (4.16) was proposed by Gumbel (1954). Other formulae have been
proposed, for example

i − 1
N

,
i − 0.3

N + 0.4
,

i − 0.44
N + 0.12

,
i − 0.5

N
(4.17)

The last is known as the ‘Hazen formula’ and has the property of gen-
erally being the least biased for larger samples with N > 20. The second
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Figure 4.12 Normal probability plot for Example 4.2 plotted on linear axes.

formula is generally favoured for use with smaller samples. Further dis-
cussions can be found in Cunnane (1978) and Chambers et al. (1983). The
choice of plotting position is important, particularly if it is expected that the
observations are censored. An observation is said to be censored if its exact
value is not known, but rather that it lies in some interval. Two common
cases are left- and right-censoring. Left-censoring, where it is known that
an observation lies in an interval (−∞, a) for a given constant a, may occur
if there is simply no sufficiently extreme event recorded. Right-censoring
can occur if the recording equipment is limited in range or breaks down
at the extremes of the observations; the observation is in the breakdown
range but its precise value is not known. In any case, if there are suspected
outliers, it can be wise to treat the extreme observations as right-censored
rather than observed to allow for the possibility of equipment breakdown.
The relevance of this to plotting position is that, in the case of right-
censored data, the plotting position may be replaced by the Kaplan–Meier
estimator:

pi = 1 − N + 0.5
N

∏
j∈I
j≤i

N − j + 0.5
N − j + 1.5

(4.18)

as recommended by Chambers et al. (1983).

4.3.2 Method of moments

For cases where only uncensored data are available, the simple method
of moments provides a straight forward means of estimating param-
eters. The idea behind this approach is to equate the sample and
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population moments, and was illustrated in Example 3.23 for the Rayleigh
and Gamma distributions. The method is most effective for distribu-
tions that have closed-form expressions for their moments. Here we
give an example using the Gumbel, Pareto and two-parameter Weibull
distributions.

Example 4.3. The data in Table 4.2 are the monthly maximum wave heights
from a wave buoy located near Alghero for the years 1990–2005. Find
the best-fit parameters for the data for the Gumbel, Pareto and Weibull
distributions, and thus determine the 50-year return wave height.

Solution. We extract the annual maxima from the dataset {7.5, 8.9,
7.8, 9.1, 9.2, 8.0, 7.6, 9.2, 9.88, 8.11, 8.3, 6.5, 8.2, 5.32}. The mean
and standard deviation of the sample annual maxima data are 8.101
and 1.144, respectively. The mean and standard deviation of the Gumbel
distribution are:

Mean =μ+ 0.57721σ

Variance = σ 2π 2

6

Equating the sample and population moments allows us to solve for σ

directly (σ = 0.892) and then substitute this value into the expression for
the mean to obtain μ= 7.586.

The distribution function, mean and standard deviation of the Pareto
distribution are:

F(x;a, c) = 1 −
( a

x

)c

a ≤ x <∞

Mean = ca
(c − 1)

, c > 1 (4.19)

Variance = ca2

(c − 1)2(c − 2)
, c > 2

Using the expressions for the population moments, we can eliminate a
to obtain a quadratic equation for c. This has the roots −6.153 and
8.153. We select the larger one, as this gives c > 1 as required. Using this
value in the expression for the mean allows us to solve for a, yielding
a = 7.107.

We use the form of Weibull two-parameter distribution associated with
minima (set ε = 0 in Equation 4.9), because there is a known minimum
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Table 4.2 Monthly maximum wave heights from January 1990 to December 2005,
recorded at Alghero, Italy

Month Height Month Height Month Height Month Height Month Height

1 3.4 37 5.6 73 5.5 109 7.55 145 5
2 5.7 38 6.7 74 7.9 110 7.9 146 5.52
3 5.2 39 4.9 75 4.5 111 5.48 147 3.84
4 5.5 40 8.6 76 5.8 112 5.81 148 3.23
5 1.8 41 1.6 77 5.5 113 4.4 149 3
6 3.4 42 3.6 78 4.7 114 5.07 150 3.01
7 3.9 43 4.2 79 5.8 115 4.17 151 4
8 2.9 44 3.2 80 2.4 116 2.16 152 5.2
9 3.4 45 3.6 81 6.6 117 3.14 153 4.6

10 3.5 46 6 82 5.2 118 4.39 154 4.8
11 6.2 47 7.6 83 7.3 119 7.84 155 6.5
12 7.5 48 9.1 84 6.6 120 9.88 156 6.4
13 4.1 49 9.2 85 5 121 6.08 157 7.1
14 4 50 4.6 86 6.7 122 6.53 158 8.2
15 3.3 51 4.7 87 5.4 123 8.11 159 4.22
16 7.4 52 8.4 88 5.1 124 3.76 160 4.74
17 5.4 53 3.8 89 6.2 125 2.21 161 4.37
18 4.1 54 4.3 90 2.8 126 3.61 162 2.66
19 3.3 55 2.8 91 3.9 127 4.24 163 2.74
20 2.7 56 3.6 92 4 128 2.82 164 2.42
21 3.4 57 3.8 93 3.2 129 4.13 165 4.08
22 5 58 2.9 94 6.4 130 5.83 166 5.23
23 7.1 59 5.6 95 5.8 131 5.32 167 4.28
24 8.9 60 5.4 96 7.6 132 7.1 168 4.84
25 4.2 61 8 97 9.2 133 7.93 169 4.82
26 6.4 62 6.4 98 3.6 134 8.3 170 4.94
27 6.3 63 6.9 99 6 135 5.84 171 5.32
28 4.2 64 6.1 100 5.2 136 5.79 172 4.23
29 5.7 65 7.4 101 3.5 137 3.07 173 4.55
30 2.7 66 4.6 102 6.9 138 4.7 174 3.99
31 2.3 67 2.1 103 6 139 4.6 175 2.97
32 2.3 68 5.7 104 4 140 3.43 176 3.14
33 3.6 69 4.4 105 6.4 141 4.89 177 4.76
34 3.9 70 1.4 106 5.2 142 2.58 178 3.35
35 6.4 71 6.8 107 5.7 143 5.24 179 4.63
36 7.8 72 6.1 108 6.3 144 7.54 180 5.08

threshold of 0 that all annual maximum wave heights must exceed. This
gives,

Mean = σ�

(
1 +β

β

)

Variance = σ 2

[
�

(
2 +β

β

)
−�2

(
1 +β

β

)]
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No closed-form solution for these simultaneous equations is available,
so they have to be solved numerically using a Newton–Raphson or min-
imisation technique (see e.g., Press et al. 2007). We find σ = 8.580 and
β = 8.435.

Figure 4.13(a–c) shows the observations and the best-fit distribution on
Q-Q plots for the Gumbel, Pareto and Weibull distributions. Note that the
scales for each plot are different, as the coordinates have been transformed
to yield a straight line for each distribution, as described in Table 4.3.

xi

ln
[–

ln
(F

(x
i))

]
ln

[–
ln

(1
–F

(x
i))

]

ln
[1

–F
(x

i)]

5 6 7 8

(a) (b)

9 10
–3

–2

–1

0

1

2

3
Data
Fit

ln (xi)

ln (xi)

2 2.05 2.1 2.15 2.2 2.25 2.3
–3

–2.5

–2.0

–1.5

–1.0

–0.5

0

1.6 1.8 2.0 2.2

(c)

2.4 2.6
–5
–4
–3
–2
–1

0
1
2
3
4

Data
Fit

Data
Fit

Figure 4.13 Data plus best-fit distributions for Example 4.3: (a) Gumbel; (b) Pareto
and (c) Weibull.

Table 4.3 Scaled axes used for the Q-Q plots for the three
distribution functions

Model x y

Gumbel x ln [ − ln (F(x))]
Pareto ln (x) ln [1 − F(x)]
Weibull ln (x) ln [ − ln (1 − F(x))]
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The 50-year return wave height is obtained by setting the distribution
function to 1 − 1/50 = 1 − 0.02 = 0.98 and solving for ‘x’. Thus, for the
Gumbel distribution:

x = F−1(p) =μ− σ ln
[− ln (0.98)

]= 11.1m

Similarly, for the Pareto and Weibull distributions the 50-year wave
heights are 11.5 m and 10.1 m, respectively. The spread in the estimates
should not be surprising, because the fit to the observations is good but not
perfect in any of the cases, as can be seen from the Q-Q plots. The decision
of which of the three statistical distribution models is ‘best’ is dependent
upon, amongst various factors, the standard errors in the estimates of the
extreme values and the goodness-of-fit of each distribution to portions of
the data. For example, the Gumbel distribution might provide the best fit
to the data for points at the lower end of the range, while the Weibull dis-
tribution fits the points at the upper end of the range better. If interest is
in extremes at the upper end, there could be an argument to prefer the
estimates of extreme levels based on the Weibull distribution in this case.
Similarly, the standard errors associated with the estimates made with the
Pareto distribution might be much smaller than with the other two distribu-
tions. In that case, it could be argued that the estimates from the Pareto
distribution should be used, as there is less uncertainty associated with
them. One method of determining the standard errors is covered in the next
section. The problem of how to determine the goodness-of-fit of a particular
distribution to different parts of a dataset is covered in Section 4.3.5.

4.3.3 Maximum likelihood estimation

The estimation of parameters using the maximum likelihood estimation was
described in Section 3.7.4. Here it can also provide a measure of the errors in
these estimates as confidence limits. In general, an estimate of a parameter θ ′

is given by some function, f , of a random sample from the population, X =
{X1, X2, . . . , Xn}. For large samples, many estimates may be approximated
as normally distributed, and confidence bounds are defined in the form

E[f (X)] ± zc

√
Var[f (X)] (4.20)

where zc is a percentage point from the standard normal distribution reflect-
ing the degree of belief in the limits. For example, the 90% confidence limits
are based on the 5% and 95% points of the standard normal distribution
[i.e., zc =1.96, as Φ(zc)=0.05]. The problem remaining is how to determine
Var[f (X)]. This can be estimated from the observed information matrix. If
there are p parameters to be estimated the information matrix is defined as
the p×p matrix with elements −∂2 ln (L)/∂θi∂θj evaluated at the best-fit val-
ues of the parameters. The inverse of this matrix is the estimated covariance
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matrix, and the elements on the diagonal are the variances of the param-
eters. Confidence intervals for the θi are given by: θ ′

i ± zc
√

[Var(θ ′
i )], where

zc is the chosen percentage point from the standard normal distribution. In
all but the simplest cases, the information matrix has to be evaluated and
inverted numerically.

Example 4.4. Using the results of Example 4.3, determine the informa-
tion matrix, correlation matrix and 90% confidence limits of the best-fit
parameters of the Gumbel distribution.

Solution. First, we construct the likelihood function, L(Xi;μ,σ ). This is
given by

L(Xi;μ,σ ) =
N∏

i=1

fGumbel(Xi;μ,σ )

where the Xi, i = 1, 2, . . . ,N, are the observed annual maxima, and μ, σ are
the best-fit parameters of the Gumbel distribution. We now calculate the
log-likelihood function and its partial derivatives:
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Now construct the information matrix by evaluating the derivatives at the
best-fit values of the parameters to give J = ( 28.39 −51.30

−51.30 200.1

)
. This is a 2 × 2

matrix, which can be inverted straightaway to find Corr = (0.0656 0.0168
0.0168 0.0093

)
.

Taking zc = 1.96, which corresponds to the 5% and 95% points of the
standard normal distribution, yields the following 90% confidence limits
on the two Gumbel parameters: μ = 7.59 ± 1.96 (0.0656) = 7.59 ± 0.50,
and σ = 0.892 ± 1.96 (0.0093) = 0.892 ± 0.189. Using these values to find
the 90% confidence limit for the 50-year return value of the water level
estimated with the Gumbel distribution gives 11.1 m as the best estimate,
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as before, with upper and lower limits of 12.3 m and 9.8 m, respectively.
These values comfortably embrace the estimates obtained using the other
two distributions. More importantly, the magnitude of the confidence inter-
val is large and indicates a considerable degree of uncertainty. This should
not come as a surprise, because only 15 years of measurements have been
used to estimate the 50-year level!

4.3.4 Getting more from your data

One of the criticisms of using annual maxima to estimate extreme levels is
that it is wasteful of data, particularly if you have good time series avail-
able. This is one reason why using peaks over threshold is often preferred
where appropriate data are available, as is often the case for data from river
gauging stations, rainfall records and so on. However, at coastal locations,
particularly in harbours away from nationally controlled tide gauges, it was
long the custom to record only the highest water level in any year. Thus,
many of the longest records comprise only annual maxima, and so a peak
over threshold approach is inappropriate in these cases.

Where more data are available, the annual maxima/GEV approach can be
modified to include the r-largest annual values. Smith (1986) developed the
theory for a family of statistical distributions for extreme values based on
r > 1 of the largest annual events and applied it to water level observations
in Venice. He found that more of the observations could be used subject to
the condition that the value of ‘r’ had to be chosen carefully to ensure the
events were ‘sufficiently’ independent. Specifically, the GEV distribution is
an appropriate model for the distribution of block maxima for stationary
dependent sequences, provided there is only short-range dependence (see
Leadbetter 1983 or O’Brien 1987).

4.3.5 Model selection

As described in previous sections, the conventional approach to the analysis
of extreme values proceeds by fitting the rank-ordered observational data
to a cumulative distribution function. There are several methods of fitting a
model distribution function to a sample of extreme data, such as a graphical
fitting method, least-squares estimation, L-moments estimation (Hosking
1990) and maximum likelihood estimation. The L-moments technique has
found application in hydrological studies (e.g., Kjeldsen & Jones 2006). The
maximum likelihood estimation has been favoured recently in coastal engi-
neering, partly because it is the only method, apart from numerical Bayesian
techniques, that can really be considered a general method in the sense that
it is applicable to a wide range of problems. The fitting procedure yields a
set of optimised parameters, θ̄ , for the distribution function.

After fitting a model to the data with maximum likelihood estimation, it
is then necessary to evaluate how well the candidate distribution function
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describes the sample data. As noted in Section 4.3.3, the information matrix
may be used to estimate standard errors, and thus confidence intervals, of
the parameters. An alternative is to use re-sampling techniques (Section 3.7)
to estimate confidence intervals.

As it happens, re-sampling techniques provide a means of comparing how
well different statistical models (i.e., distribution functions) fit the data.
Almost as a by-product, estimates for the confidence limits of parameter
values and quantiles may be retrieved. First, we define an error norm that
will be used to calculate how well a distribution fits the observations. By
denoting a single sample by X = {x1,x2 · · ·xn} an error norm, �(θ̄), can
be defined as the maximum deviation between the empirical distribution
and an approximating model Fθ̄ with optimised parameters θ̄ . Linhart and
Zucchini (1986) suggested the following error norm:

�(θ̄) = max
1≤i≤n

∣∣∣∣∣
[

i
(n + 1)

]h

− Fθ̄ (ri)h

∣∣∣∣∣ (4.21)

where r1, r2, · · · , rn are the ordered data X in increasing order. The parame-
ter h controls the emphasis of the fitting algorithm to a particular segment
of the data: when h = 1.0 the test corresponds to the Kolmogorov–Smirnov
test, which places equal emphasis across the whole of the rank-ordered dis-
tribution; for h < 1, emphasis is placed on the lower tail; and for h > 1,
emphasis is placed on the upper tail.

Now, by considering a series of B replicates, we can compute the expected
value of the error norm (Equation 4.11), which is an improved estimator of
the standard error, can be computed:

〈
�i(θ̄j)

〉=
〈

max
1≤i≤n

∣∣∣∣∣
[

i
(n + 1)

]h

− Gθ̄i
(rij)h

∣∣∣∣∣
〉

(4.22)

where j = 1, 2, · · · ,B and 〈·〉 is the expectation operator.
By generating bootstrap replicates from the original sample, then fit-

ting each replicate to different distribution functions and calculating the
expected error norm for a range of values of h, it is possible to gain a
detailed picture of which distributions best fit which portions of the data.

Example 4.5. Annual maximum wave heights recorded at the US Army
Corps coastal research station at Duck, North Carolina for 1981–2007 are
plotted in Figure 4.14.

The bootstrap method was employed to create 500 replications. The error
norm in Equation (4.21) was used to calculate the expected error norm for
various values of h and are tabulated in Table 4.4. For each bootstrap repli-
cate the distributions were fitted to the data using the maximum likelihood
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Figure 4.14 Annual maximum wave heights at the US Army Corps of Engineers
Coastal Research Station, Duck, North Carolina, from 1981 to 2007
inclusive.

Table 4.4 Expected error norms for various values of h and for four different
families of distributions

h = 1.5 h = 1.25 h =1.00 h = 0.75 h = 0.50 h = 0.25

Weibull (II) 0.254 0.238 0.214 0.189 0.191 0.177
Weibull (III) 0.177 0.172 0.165 0.158 0.170 0.206
Gumbel 0.167 0.155 0.143 0.131 0.121 0.104
GEV 0.153 0.143 0.134 0.128 0.125 0.117

estimation method and the error calculated accordingly. The errors for fixed
distribution and h are then averaged over all replications.

The best fit is obtained with the smallest value of the error norm, and is
printed in bold type for each value of h. From the table above it may be seen
that the GEV is the best fit, except for the lower end of the data where the
Gumbel distribution provides a very slightly better fit. At first glance it might
appear puzzling that the Gumbel distribution can perform better than the
GEV because the GEV distribution includes the Gumbel distribution. How-
ever, it should be noted that the maximum likelihood estimation for three
parameters is a much more numerically complex procedure; it is not always
easy to find a global maximum and there is greater scope for the accumu-
lation of rounding errors in the calculations. The three-parameter Weibull
distribution generally provides a better fit than the two-parameter Weibull
distribution. This can be understood because the extra parameter provides
an additional degree of freedom with which to fit the observations. Note
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Table 4.5 Extreme wave heights at Duck, with 95% confidence
limits, for return periods of 10, 50 and 100 years for
the best-fit GEV distribution

10 years 50 years 100 years

Return value (m) 6.40 7.93 8.65
Lower limit (m) 5.61 6.20 6.46
Upper limit (m) 7.27 10.47 12.62

that we have used the Weibull distribution for minima. This is because the
distribution for minima has a ‘cut-off’ on the left-hand side of the distri-
bution. Obviously, wave heights have a minimum of zero. This information
about the physics of the problem leads us to use this form of the Weibull dis-
tribution. Assuming a cut-off on the right-hand side (i.e., an upper limit on
wave heights) is possible, but is potentially dangerous for design as it could
lead to underestimation of extreme wave heights. The Gumbel distribution
has only two parameters but still provides a reasonably good fit. In fact, the
differences in error norm between the GEV, Gumbel and three-parameter
Weibull distributions is actually very small in this case.
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Figure 4.15 Frequency plot of the best-fit values of the GEV distribution parameters
obtained from 500 bootstrap replications.
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The best-fit distribution can be used to estimate the extreme quantiles cor-
responding to particular return periods. Table 4.5 summarises the extreme
wave heights for return periods of 10, 50 and 100 years. Also included
are the 95% confidence limits, determined from the ordered bootstrap
replications.

Note the rapid and asymmetric growth in confidence interval with
return period, which is indicative of the increasing uncertainty associ-
ated with extrapolating the distribution beyond the period covered by the
observations.

The bootstrap process also provides 500 sets of parameter values for each
of the distributions. These can be used to create a density function for each
parameter (see e.g., Li et al. 2008). Figure 4.15 shows a density function for
the GEV parameters.

This demonstrates that parameters μ and σ have a small spread in values,
while δ has a large spread of values, corresponding to greater uncertainty in
the estimated value of this parameter.

Example 4.6. Using the 15 years of monthly maximum wave heights from
Alghero (see Figure 4.16), determine the 50- and 100-year return period
wave height.

Solution. In this case we have only 15 data points if we select the annual
maxima. Alternatively, we could make better use of the data by using peaks
over threshold or the r-largest annual events. On the other hand, we could
use block maxima – the monthly maxima – to determine the distribution
for these, and then scale this accordingly to obtain the annual return peri-
ods (i.e., the 10-year return period is the 120-month return period, and
so on). Here, we use the latter method. First we calculate the autocorrela-
tion at a lag or 1 month to check whether the data are independent. The
lag-1 correlation is 0.36. This is on the high side for strict independence,
but for the purposes of this example we proceed on the basis that block
maxima and extreme-value analysis are still valid for locally dependent
sequences.

The bootstrap method was used to calculate the error norm for various
distribution functions. The results are summarised in Table 4.6. This shows
that the best fit at the more extreme values is actually found with the Weibull
three-parameter distribution (see Figure 4.17).

The values of the Weibull three-parameter distribution corresponding
to the best fit are α = 2.4016, σ = 4.4496 and μ = 1.0994. Substituting
these values in Equation (4.8), one then sets the value of the distribu-
tion function = 1/(100 × 12) and solves for the value of the wave height.
This gives the 100-year wave height as 11.16 m. The bootstrap samples
give the 95% confidence limits of this estimate as 9.51 m and 11.87 m,
respectively.
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Figure 4.16 Plot of monthly significant wave height maxima at Alghero. Month 0
corresponds to January 1990.
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Figure 4.17 Best-fit Weibull distribution together with the data points (Q-Q plot).

4.4 Joint extremes

To this point, extremes of a single variable have been discussed. However,
in assessing the reliability of a structure or the risk of an undesirable event,
one is usually dealing with a problem that involves more than one random
variable. For example, the amount of water falling during a storm will
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Table 4.6 Bootstrap error norms for Alghero, with 500 bootstrap replicates (see
Example 4.6)

h = 1.5 h = 1.25 h = 1.00 h = 0.75 h = 0.50 h = 0.25

Weibull (II) 0.0689 0.0654 0.0619 0.0615 0.0803 0.1005
Weibull (III) 0.0588 0.0540 0.0499 0.0484 0.0568 0.0877
Gumbel 0.0698 0.0663 0.0620 0.0571 0.0629 0.0886
GEV 0.0622 0.0569 0.0535 0.0529 0.0543 0.0618

depend on the intensity and the duration of the storm. Wave overtopping of
sea defences is more complicated still, depending upon wave height, wave
period, wave direction, water level, beach elevation and the shape and mate-
rials of the defence. A full treatment of such problems requires consideration
of multivariate extreme values, which is concerned with the joint distribu-
tion of extreme values in more than one variable. Such a theory has a wider
applicability, because it could be used to examine the dependence between
flooding at two neighbouring sites, between the failure of two elements in
a network (e.g., a flood embankment composed of elements with different
types of construction), or even in the analysis of dependent time series.

The treatment of multivariate extremes is far from trivial. Early progress
was made by, amongst others, De Haan and Resnick (1977), Pickands
(1981) and Resnick (1987), who proposed a form of theory in which the
univariate marginal distributions were the classical extreme-value distribu-
tions. The typical line of argument runs as follows. First, assume a model
distribution for the marginal distributions of each variable. Second, the
choice of marginal distribution defines the form of multivariate distribu-
tion, up to an arbitrary function, usually termed the ‘dependence function’.
Third, this arbitrary function is specified on the basis of an analysis of
the dependence properties (usually pairwise) between each variable. Tawn
(1988) proposed a number of models for the dependence function. The
above process may sound straightforward, but there are many mathematical
constraints on the form of the marginal and joint distributions and on the
dependence function that need to be observed. Nevertheless, the concepts
of block maxima and peaks over thresholds discussed for univariate cases
can be carried over to the multivariate case.

More recent development of the theory has seen progress in the applica-
tion of the peaks over thresholds approach to the bivariate case in particular.
By taking the marginal extreme distributions to be GPD, it is possible to
create a bivariate equivalent that will give an approximation to the joint
distribution. Coles and Tawn (1991, 1994) describe techniques in which
the bivariate extremes of the distribution of wave heights and water levels
are constructed by fitting a GPD to the marginal distributions. The data
are then transformed to normal scales before a bivariate normal model is
used to match the dependence in the observations. Hames (2006), Hawkes
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(2008), Hames and Reeve (2007), and Galiatsatou and Prinos (2007) pro-
vide extensive bibliographies of work on joint probability analysis for
coastal engineering applications, together with example applications.

While it is certainly possible to use multivariate extremes in reliability
analysis, many of the analytical techniques rely on assumptions of nor-
mality and independence between variables. Where numerical methods are
required, for example, to solve equations of fluid flow or transmission of
forces in structures, it is often more expedient to use either Monte Carlo
simulation or Monte Carlo integration techniques, which are discussed
further in Chapter 5.

For now, note that to solve a reliability problem it may not actually be
necessary to know the joint distribution of the basic variables. The reliability
of a structure is often assessed by using the formulae used in design to deter-
mine whether extreme conditions will cause a load in excess of a threshold
level that is deemed safe. In this case the load may be a pressure, a water
level, a flow rate or similar. It will often be a function of a combination of
the basic variables, and is sometimes termed the ‘structure function’. As an
example, consider wave overtopping. Knowing the joint distribution of the
wave variables and water levels (four variates) would be helpful but is not
necessary. Given a time series of wave conditions and water levels near the
toe of a structure, information about the structure geometry and material,
and beach levels, it is a simple, but somewhat tedious, process to convert this
into a time series of overtopping volumes using a standard design formula
for wave overtopping. This is a time series of a single variable, which can be
analysed using univariate techniques. At a stroke, all the issues about depen-
dence between variables have been removed. However, the price to pay is
twofold. First, the time series of overtopping volumes refers specifically to a
particular structure, so that the analysis will have to be run again for each
new structure. This is not a major hurdle for coastal structures, because
wave conditions can vary quite rapidly along the shoreline and computing
design criteria for specific schemes is a commonplace practice. Secondly, the
function defining the overtopping volume is highly nonlinear and can have
the effect of increasing the scatter in the data, thereby increasing the uncer-
tainty in the estimation of distribution parameters. Similar comments can
apply to hydrological, fluvial and estuarine structure functions.

This chapter concludes with a final comment regarding directionality,
which applies to winds, currents and waves. Direction as a variate is usually
dealt with using one of two methods. Either observations are binned accord-
ing to direction sectors, with each sector being modelled independently, or
the direction is included as a covariate, as in Ewans and Jonathan (2006).
Thompson et al. (2008) proposed a method based on Bayesian quantile
regression that models the dependence of the extremes of one variable on
the value of another using a spline. Inference is performed using a Markov
Chain Monte Carlo algorithm. The details of these ideas are beyond the
scope of this book, but can be found in Yu and Moyeed (2001) and Yu et al.
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Figure 4.18 A scatter plot of significant wave heights against corresponding trans-
formed wave directions. The waves are hindcast for a point near Selsey
Bill from wind records and cover the period between 1971 and 1998 at
3-hourly intervals. The plot includes a 90% Bayesian quantile smooth-
ing spline with 95% credibility envelope. The spline provides a better
model, as it is fitted locally, than a single polynomial fitted over the
all-direction values (from Thompson 2009).

(2003). A typical output from this type of analysis is shown in Figure 4.18.
This shows the best fit to the 90% wave height quantile as a function of
wave direction.
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5 Uncertainty and reliability
analysis

5.1 Background

Reliability theory arose out of the engineer’s practice of trial and error.
Before the theories of statics and dynamics were developed, structures were
designed and constructed very much on the basis of experience, being
informed by the performance of earlier structures. After Newton’s work
on forces and dynamics, a consistent framework for designing structures
evolved that was based on the principles of mechanics. Structures were still
not perfect because of several factors. Firstly, the behaviour and perfor-
mance of materials such as timber, stone and brick depend on their chemical
and physical microstructure, which can vary between individual beams or
blocks. No two timber beams are identical because the growth rates and
internal structure of the fibres differ. Similarly, no two stone blocks are iden-
tical at the microscale because the arrangement of the crystalline structure
is not repeated exactly from one block to the next. Construction materi-
als have associated with them some uncertainty in their performance due
to unavoidable small-scale differences in their composition. Secondly, the
diligence with which the construction of a structure follows the design
is important. Errors and carelessness in the process of construction can
lead to underperformance of the structure. Thirdly, the loads that the
structure is intended to withstand may be underestimated. Finally, the pre-
vailing environmental conditions may alter to an extent that diminishes
the integrity of the structure. For example, tunnelling beneath buildings
can weaken the load-bearing capacity of the earth, leading to subsidence
or collapse. Similarly, changes in river flow due to the construction of
weirs and dams may lead to higher water levels than previously experi-
enced and designed for along some reaches, thereby leading to localised
flooding.

The growing reliance on mechanics led towards a somewhat determin-
istic approach to design. That is to say, it was considered that one could
determine exactly the environmental loads that a particular structure was
required to resist and then, through knowledge of the behaviour of the con-
struction materials and mechanics, calculate an appropriate sizing of beams,



Uncertainty and reliability analysis 119

blocks and so on. However, because of the factors mentioned above, this
approach did not always meet with success. There was, in fact, if nothing
else, an inherent uncertainty in the performance of materials and in the esti-
mation of loads. In due course this led to the realisation that robust design
procedures needed to encapsulate these various sources of uncertainty in
order to achieve reliable, yet economical, designs.

Reliability theory developed originally as part of structural engineering,
and hence much of it is couched in these terms. Thus, when considering
the reliability of an object is determined by considering the balance between
the ‘strength’ of the object and the ‘load’ imposed upon it, the strength and
load are denoted by R and S, respectively, by international agreement. The
choice of symbols comes from the French words ‘résistance’ and ‘sollici-
tation’ (‘asking’). How strength and load are defined will depend on the
object or structure in question, and also what mechanisms of failure are
being considered.

The theory of reliability is concerned with the definition of the loads
and strengths. Their ratio and difference provide means of quantifying how
well an object can resist a load. In the following sections these issues are
discussed in more detail.

5.2 Definition of failure

Defining what is meant by ‘failure’ is, it turns out, very important and not
always straightforward. We could say a structure fails when it does not
perform its intended function. Without defining what the intended function
is, this definition is vague at best. As a specific example, consider a flood
embankment on a river. We could say that the embankment fails when water
passes over the top of the embankment. However, the defence may also
‘fail’ if there is excessive piping of water through the embankment, excessive
scour at the toe, and consequent slumping and thinning of the embankment,
loss of cohesion and stability; or from more direct damage, such as by ship
collision. Before attempting a reliability analysis, what is meant by failure
must be clearly defined.

Types of failure are often split into three categories:

1 Ultimate limit states (ULS) – essentially the point at which the strength
equals the load, beyond which there will be damage to the structure
and/or reduction in load resistance. Examples of this mode of failure
include storm wave conditions in excess of those for which the structure
was designed, extreme water levels exceeding embankment levels, and
surcharging of drains.

2 Serviceability limit states (SLS) – essentially limits imposed by con-
straints other than structural integrity. Examples include limitations
imposed by gradual deterioration, climate change, environmental and
health legislation, maintenance costs or human comfort.
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3 Fatigue limit states (FLS) – limits related to loss of strength under
repeated loading. This type of failure is not often considered explic-
itly in the reliability of hydraulic structures due to the nature of the
greatest loads (which tend to be intermittent rather than repeated) and
the materials used (earth, clay, rock and concrete, rather than steel or
plastic). However, fatigue failures have been reported in the prestressing
strands of post-tensioned concrete elements. Structures in an intertidal
zone will also experience repeated loading due to the regular changes
in the ocean tides, and coastal and marine structures will be exposed to
repeated loading by waves.

In what follows we will be primarily concerned with ULS, and, to a
lesser extent, SLS. Accurate assessment of FLS requires a good understand-
ing of the deterioration of the materials and links between elements of
the structure over time. A detailed discussion of this is beyond the scope
of this book, although time-dependent risk assessment is touched upon in
Section 5.8.

5.3 Uncertainty

In any assessment of strength and loads there will be uncertainties. If the
structure under consideration is one that has been made many times before,
the historical record of the performance of these structures can be used
to build a picture of the reliability. In the case of hydraulic and coastal
engineering, many structures are unique in terms of the characteristics of
the loading, the materials used and the method of construction.

As already mentioned, due to the variability in timber and rock aris-
ing from their natural characteristics, there will be some uncertainty in
their response to a specific load. Although similar considerations apply to
concrete units, the variability in performance between individual units is
generally less in a well-managed operation. This is one reason why con-
crete units are sometimes favoured over rock, despite the associated visual
appearance and energy cost.

Uncertainties also arise in defining load variables. For example, in design-
ing an embankment to resist the 1 in 20 year flood it is useful to have
recordings of water levels over at least 20 years, and preferably much,
much longer. There are likely to be errors in recording such data, instru-
ment inaccuracies, and even changes in recording behaviour if the method
of recording changes (e.g., changing the method of recording from reading
levels off a tide board to an automated pressure gauge).

The quality and duration of the observational record also has an influence
on any statistical analysis employed to estimate extreme values correspond-
ing to particular return periods. This can affect the quality of both the
goodness-of-fit of a particular statistical distribution and any extrapolations
made from this.



Uncertainty and reliability analysis 121

Failure in the ULS sense is often defined through use of design equations.
These are equations based on combinations of experimental observation
and mathematical modelling that define a load in terms of basic hydraulic
variables and variables describing the strength of the structure. Many modes
of failure are described in terms of such design equations. There is, of
course, uncertainty in the design equations arising from their empirical
nature. Thus, they can only describe behaviour within the range of variables
tested in the laboratory. If these experiments were performed using scaled
models, there will be uncertainty in the verisimilitude of the scaled observa-
tions. Furthermore, there will inevitably be some scatter in the observations,
and the design equation will embody a ‘best-fit’ curve through these points.
Figure 5.1 illustrates these different types of uncertainty.

A source of uncertainty that is difficult to quantify is that arising from
human errors. Tables 5.1 and 5.2 show the results of studies into the type
of human error that can occur and also the relative importance of human
error in structural failures.

The clear conclusion from these data is that human error is a significant
cause in the majority of recorded failures. Human error must be considered
in a reliability assessment. Unfortunately, the means of quantifying human
error are limited by our lack of understanding (e.g., Blockley 1992). Another
significant underlying cause of failure that is not explicitly identified in the
tables is the use of new materials, novel construction methods or construc-
tion under circumstances in which the loads are unfamiliar or unknown.

Figure 5.1 Some different forms of uncertainty. Top left – a change in recording
device during the record can lead to a change in sensitivity of the mea-
surements and also the mean level; top right – empirical formulae are an
idealised fit to discrete measurements; bottom left – repeating the same
experiment will often lead to a scatter in the measured values for what
should be the same conditions.
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Table 5.1 Types of error in observed failures (adapted from
Matousek and Schneider 1976)

Factor Percent

Ignorance, negligence, carelessness 35
Errors, forgetfulness 9
Insufficient control 6
Insufficient knowledge/training 25
Underestimation of conditions 13
Other 12

Table 5.2 Main causes of failure (adapted from Walker 1981)

Cause Percent

Inadequate appreciation of loads or response 43
Errors in calculations or drawings 7
Insufficient information or contravention of

requirements in contract documents
13

Deficiency in construction procedures 13
Random variations in loading, materials and

workmanship
10

Other 14

Despite the range of advice and guidance, failures of structures still occur.
Such failures can be the result of the structure being exposed to extreme
events, greater than the structure was designed to endure, or due to deficien-
cies in the design or construction. When failures do occur, it is not always
clear that there is a single mode of failure. Rather, it may be a combination
of factors, such as inappropriate aspects of design, lack of quality control
in construction, use of novel construction materials or methods. Even con-
sidering a specific example of, say, breaching of an embankment, a single
mode of failure may not be easy to identify a posteriori. Figure 5.2 shows
some failure modes of a shingle bank.

The breaching process may have been initiated by seepage through an
internal layer, leading to washout of fines from the core, then to piping,
which in turn led to localised slumping, and hence lowering of the crest,
resulting in overflow and thence erosion of the crest and backface, and ulti-
mately to the formation of a breach. When investigating the site after the
failure it might well be impossible to determine the initiating mechanism.
There can, therefore, be significant uncertainty in identifying the mecha-
nism(s) responsible for failure when conducting a forensic assessment, or
indeed when trying to understand the risks in the process of design.

A good example of this is shown in Figure 5.3, of flooding that occurred
in 2007 near the Blyth Estuary in Suffolk, UK. The footpath lay in a straight
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Possible failure modes for a shingle bank

Water level below crest

Erosion of
seaward face

Seepage through
internal layer

Erosion of crest

Lowering of crest
and breach

Internal erosion

Piping

Breach

Breach

Reduction in width

Erosion of 
landward face

Reduction in width

Breach

Water level above crest

Figure 5.2 Possible failure modes for a shingle bank (after MAFF 2000).

Figure 5.3 Breached embankment and footpath, Bailey Bridge Footpath,
Walberswick, Suffolk, UK, arising from a combination of high
tides and torrential rainfall in November 2007 (courtesy of Halcrow
Group Ltd).

line, in the direction of view, towards the houses in the distance. As well as
overflow, evidence of scour on what was the backface of the embankment is
evident from the wake pattern in the turbulent flow. Overflow was almost
certainly one contributing factor, but seepage and piping may also have
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combined to lower the crest level at a particular section of the defence. It is
difficult to tell.

A question that is almost unanswerable is ‘Have all possible modes of
failure been considered?’. Sometimes an ‘unimaginable’ phenomenon occurs
that causes structural failure. The Tacoma Narrows Bridge is perhaps one
widely-known example of such an instance, where a violent oscillation of
the bridge deck was set up by the cross-wind; but the bridge was also
of a design that departed from earlier suspension bridge designs. Such
‘unimaginable’ cases often arise when design techniques or the form of
construction generates uncertainty about the performance of the struc-
ture under severe conditions. It is of particular importance for innovative
projects that attempt to extend the ‘state of the art’, but which are virtu-
ally impossible to quantify in an objective manner. One example of such
a case was the $178 million Sines breakwater in Portugal, which failed
catastrophically on 26 February 1978.

The breakwater was constructed in deep water with high wave expo-
sure (the design wave height was Hs = 11m), used an armour almost twice
as heavy as any used previously, and the exposure and operational tech-
niques made construction difficult. The armour consisted of some 21,000
42-t Dolosse units. Figure 5.4 shows examples of some concrete units used

(a) (b)

(c) (d)

Figure 5.4 Concrete breakwater armour units (a) Dolosse, (b) Tetrapod, (c) Core-loc
and (d) Accropode.
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in coastal defence, including Dolosse units. The failure occurred towards the
completion of the breakwater. By the time the storm of 26 February 1978
had calmed, almost two-thirds of the Dolosse units in the armour layer were
apparently lost (Herzog 1982).

Analysis of the damage of the breakwater (ASCE 1982) showed that
units above water level were, by and large, less damaged than those below
it. This led to the conclusion that failure occurred due to slumping of
the armour units down the seaward slope. What it was not possible to
determine was whether the slumping was due to the fracturing of the
units, to inaccuracies in placing the units during construction, or to scour-
ing of the seabed at the toe of the structure. The destruction of Sines
breakwater also led to numerous studies, amongst which was an investi-
gation of the strength of Dolosse units and the effects of reinforcement
(Burcharth et al. 2000). Perhaps the most important conclusion from this
failure is that design principles established for smaller structures in shallow
water cannot necessarily be transferred directly to larger structures in deep
water.

5.4 Risk and reliability

5.4.1 Introduction

The words ‘risk’ and ‘reliability’ are well known in everyday parlance. Risk
conveys the concept that there is an element of uncertainty, perhaps with the
possibility of being reduced if further information is obtained. If something
is ‘reliable’ or has a high degree of reliability then we understand that, unless
we are unlucky, the ‘thing’ will perform its expected purpose. In order to
make progress, these ideas have to be defined in a more rigorous manner,
using concepts from probability and statistics.

Methods to deal with uncertainty in engineering calculations have been
developed. Scientists had already used statistics to describe many natural
phenomena, such as water levels, rainfall, wave heights and so on. How-
ever, Benjamin and Cornell (1970) demonstrated how statistical techniques
could be introduced to engineering calculations so that uncertainties were
represented by probability density functions. CIRIA (1977) presented the
methods in a widely accessible form. Subsequent reports have specialised
the approach for coastal structures, beaches and tidal defences (CIRIA &
CUR 1991, CIRIA 1996, EA 2000, Oumeraci et al. 2001).

The application of probabilistic calculations to engineering design, or
probabilistic design has long been an integral part of design guidance for
structures in many countries (e.g., US ACE 1989). The requirement for
probabilistic assessments in the design of sea defences was formalised in
the UK by MAFF (2000). In The Netherlands, where much of the inhabited
land is below mean sea level, probabilistic assessment of coastal defences
has been in practice for longer (see e.g., Vrijling 1982).
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5.4.2 Defining risk

In some texts on structural reliability theory, ‘risk’ is defined as the prob-
ability of failure; that is, the probability of the ultimate limit state being
exceeded with a load greater than the strength occurring in any of the pos-
sible ‘failure modes’. In the context of hydraulic and coastal engineering, it
is more conventional to define risk as the combination of the hazard and
the consequences of the hazard occurring. That is:

Risk = hazard × consequence (5.1)

where the hazard is defined as the probability of the load exceeding the
strength, and the consequence is defined in terms of money or fatalities. The
hazard is sometimes termed the probability of failure. Consequences may
be measured in many forms but are often converted to a monetary value, so
risk has units of rate of expenditure (e.g., $/quarter, £/year,¤/month). In the
case of flooding, the consequences of failure occurring will depend on the
geographical extent of the inundation, its duration and the nature of whom
and what are adversely affected. The risk of inundation is then the combi-
nation of the probability of failure and an evaluation of the consequences.
With this definition, it is possible to significantly reduce the risk associated
with failure simply by reducing the consequences of failure through, for
example, setting up a flood-warning system or excluding development in
areas prone to flooding, such as river and coastal flood plains.

5.4.3 Defining reliability

In everyday parlance something is considered reliable if it works, as noted
in Chapter 1. A more formal definition of a reliability function in terms of
the cumulative distribution function of a variable was given in Chapter 2.
Here, this definition is expanded to the case where there is a function of
at least two variables: strength and loading. Strength (R) and loading (S)
were introduced in Section 5.1 as a means of assessing the performance of
a structure under design conditions. Strength and loading are usually both
functions of many variables. The load variables normally include: flow rates
(for pipes); water levels (for rivers); wave height, period and direction, and
water level (for coasts and estuaries).

The geometry and material of the structure and the characteristics of the
riverbed/beach are typical strength variables. When no damage or excess is
allowed, the condition R = S is applied. This is known as the ‘ultimate limit
state condition’. The probability of failure is the probability that the loading
exceeds the strength, that is, that S > R, and the reliability is then defined as
the probability that S ≤ R.

In the traditional design approach, a limit state condition is set in accor-
dance with the accepted loading of the structure. Exceedance of the limit
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state condition (i.e., ‘failure’) is accepted with a small probability Pf . Pf

is often expressed as the reciprocal of the return period of exceedance
(Pf = 1/TR), where TR is the return period of the loading in the limit state
condition and has the units of a rate. Typically, a probability of failure will
be quoted as a percentage, that is, x%, with the implicit time unit under-
stood. For the case where there is a single known load s, the probability of
failure is simply P(R− s≤0), or FR(s). Where both the strength and the load
are considered as random variables then, if the probability distributions for
the strength and loading are FR(R) and Fs(S), respectively, the probability of
failure is given by:

Pf =
∫ ∞

−∞
FR(x)fS(x)dx (5.2)

under the condition that R and S are independent. This equation is best
understood by plotting the density functions of R and S, as shown in
Figure 5.5. Equation (5.2) gives the probability of failure as the product of
the probabilities of two independent events summed over all possible occur-
rences. Suppose the loading has a value x. The probability of this occurring
is given by fS(x)dx (i.e., the probability that S lies close to x, within an
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Figure 5.5 Probability of failure definitions.
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interval of length dx). Failure will occur if the strength R is less than x.
Now, FR(x) is the probability that the strength R is less than x, so the inte-
grand is the probability that for a given load S = x, failure will occur. The
total probability of failure is obtained by summing (or, in this case, integrat-
ing, as the variables are considered continuous) over all possible values that
x can take. As a specific example, consider R to be the level of an embank-
ment that has some uncertainty associated with it and S to be the variable
water level. Failure occurs when the water level exceeds the embankment
level. To calculate the probability of failure it is necessary to consider each
possible water level and the probability that the embankment crest is below
this water level.

In general, a reliability function G is defined as

G = R − S

= R(x1, x2, . . . , xm) − S(xm+1, . . . , xn) (5.3)

where x1,x2, . . . , xm are strength variables, xm+1, . . . , xn are load variables
and the probability of failure (i.e., the probability that G < 0) is evaluated
from

∫
G<0

fG(g) dg (5.4)

where g = (x1,x2, . . . , xm,xm+1, . . . , xn), fG(g) is the joint probability function
of g and the integral is over a volume defined in n dimensions. In practice,
a design problem will involve many variables, and the evaluation of the
probability of failure will involve integrating over a volume in many dimen-
sions. An additional complication can arise if there is dependence between
strength and load variables, such as through the effect that beach levels can
have on wave conditions at a structure.

A common assumption in much reliability analysis is to take the variables
x1, x2, . . . , xn to be independent so that Equation (5.4) reduces to a multiple
integral

∫ ∫
G

∫
<

∫
0

fx1 (x1) · fx2 (x2) · . . . . . . . . . . · fxn(xn) dx1dx2 . . . . . . .dxn (5.5)

where fx1 (x1), fx2 (x2), . . . . . . , fxn(xn) are the marginal probability density
functions of the loading and strength variables. Even with the assump-
tion of independence, the integral can be very difficult to evaluate. This
has prompted the development of various approximate methods, which are
discussed in the next section.
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5.4.4 Reliability theories

Much of probabilistic reliability theory is concerned with the approximate
evaluation of Equation (5.4) or Equation (5.5). Simpler approaches, based
on trying to describe some of the uncertainties associated with traditional
methods, are included in the hierarchy of methods described here. In partic-
ular, the development of partial safety factors represents a robust means of
quantifying the uncertainty in quite complicated structures, such as rubble
mound breakwaters (see e.g., PIANC 1992). Finally, with the advent of
significant computer power, and the development of more sophisticated
numerical modelling methods, direct estimation of the probabilities via
Monte Carlo simulation is a possibility in some cases.

Reliability methods can be divided into four categories:

Level 0: Traditional methods that use characteristic values of strength and
loading.
In the traditional design approach, characteristic values of
strength, R, and load, S, are used to ensure that R is sufficiently
greater than S to meet the design requirements. Level 0 methods
are not discussed further here.

Level 1: Quasi-probabilistic methods, which assign safety factors to each
of the variables to account for uncertainty in their value.

Level 2: Probabilistic methods, which approximate the distribution
functions of the strength and load variables to estimate
Equation (5.4). Level 2 methods have been further subcategorised
as first-order risk methods (FORMs), and second-order risk
methods (SORMs), depending on the order of the approximation
to the reliability function.

Level 3: The most complex probabilistic methods, which estimate
Equation (5.4) either directly or through numerical simulation
techniques.

The array of methods that are available can appear rather overwhelming
initially. To provide some assistance, Appendix B contains flow charts to
assist in selecting the appropriate method for the problem in hand. These
will not make much sense to the reader until Sections 5.5, 5.6 and 5.7 have
been read.

5.5 Level 1 methods

Level 1 methods are design methods in which appropriate measures of
structural reliability are provided by the use of partial safety factors that
are related to predefined characteristic values of the major loading and
structural variables.
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Probabilistic design techniques are based on the ultimate limit state, in
which G is the reliability function, R is the resistance (or strength) of the
structure and S is the design load. For a structure to resist a specified load
S then R ≥ S, or R = Γ S where Γ is a number greater than or equal to
1. Γ is the factor of safety against failure, and is included to account for
uncertainty. More generally, we may write

G = R
�r

−�sS = 0 (5.6)

where Γr is a safety coefficient relating to the resistance (sometimes called
the ‘performance factor’), and Γs is a safety coefficient relating to the load.
The product ΓrΓs is the (global) factor of safety, Γ . The values of Γ are
greater than one, thereby having the effect of reducing the strength and
increasing the load. In practical problems there are usually many variables
to consider, and partial safety factors for each variable will be specified.
Thus, for example, Γr = Γr1Γr2Γr3Γr4Γr5, where the Γri are the partial safety
factors for five strength variables used in the definition of the particular
reliability function.

In Level 1 methods, R and S are assigned characteristic or mean values.
The safety factors are normally specified for a discrete set of values of R
and S, being based on laboratory or prototype tests. For many types of fail-
ure function, the resistance and loading will depend on several variables,
say N. Typically, partial safety factors will be tabulated for each variable,
and so the global safety factor will be the product of N partial safety factors.
In standard structural design, partial safety factors are provided in building
codes and the like, and are based on a large body of designs and tests. A sim-
ilar volume of accurate measurements is not normally available for coastal
structures, and hence the level of confidence in partial safety factors has not
been as great, although safety factors for Level 1 design may be found in
PIANC (1992) and Burcharth and Sorensen (1998) for rubble mounds and
vertical breakwaters, respectively.

5.6 Level 2 methods

5.6.1 Historical background

Level 2 methods introduce the concept of probability distributions to the
calculations. At the beginning of the development of these methods, the
load and strength variables were considered to be independent, normally
distributed variables. Furthermore, the reliability function was required to
be a linear function of the variables. In the case of two variables, S and R
are taken as independent, normally distributed variables with known means
and standard deviations. Thus, from Equation (3.58) and Example 3.21,
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the linear reliability function G = R − S is also normally distributed, with
the mean and standard deviation given by

μG =μR −μS (5.7)

σG =
√

σ 2
R + σ 2

S (5.8)

The quantity (G −μG)/σG is unit standard normal, and thus

Pf = P{G ≤ 0} =
0∫

−∞

fG(x)dx =�

(
0 −μG

σG

)
≡�( −β) (5.9)

where β is defined as the reliability index; it is also the reciprocal of the
coefficient of variation and is the distance of the most probable value of G
to the failure point G = 0, measured in units of standard deviations of G.
This situation is shown in pictorial form in Figure 5.6.

At failure, G = 0 and the probability of failure, PF, is equal to the area of
the shaded region in Figure 5.6.

In fact, it is not necessary that R and S are independent. If they are cor-
related, with correlation coefficient ρ, then Equation (5.7) remains true but
σG is given by

σG =
√

σ 2
R + σ 2

S − 2ρσRσS (5.10)

G < 0
failure

G > 0
safety

fG(g)
βσG

μG
0

σG

g

Figure 5.6 Illustration of the reliability index.
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For the more general case of a reliability function G that is a linear
function of n normally distributed variables, Equation (3.62) gives the cor-
responding expressions for the mean and standard deviation of G. The
reliability index β may be given a simple geometric interpretation. Consider
the standardised variables

R′ = R −μR

σR
and S′ = S −μS

σS

In terms of R′ and S′ the reliability function becomes

G = R − S = σRR′ − σSS′ + (μR −μS) (5.11)

For G=0 this equation describes a line in the plane, as shown in Figure 5.7.
The shortest distance from the origin to the failure ‘surface’ is equal to

the reliability index.

Example 5.1. The crest level of an embankment over a reach is described by
a normal distribution with mean of 5 and standard deviation of 0.5. This is
often written as N(5, 0.5). Monthly maximum water levels along the reach
obey N(3, 1). What is the probability of flooding?

Solution. Flooding occurs when water level > crest level, or WL > CL. So
the reliability function can be written as

G = CL − WL

Safe Safe

Failure

Failure

S

S ′

β 

R  ′R

r – s = 0

Figure 5.7 Geometric interpretation of the reliability index.
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The variables are normal and independent, so (from Equations 5.7 and 5.8):

μG = 5 − 3 = 2, σ 2
G = 0.52 + 12 = 1.25 ⇒ β = 2√

1.25

From Equation (5.9),

PF =�

(
0 − 2√

1.25

)
=�(−1.79)= 0.037 ≈ 4%

Thus, the probability of failure is approximately 4% per month.

The bulk of Level 2 methods deal with approximations that attempt to
reduce the reliability function and the main variables to the simple case of
a reliability function that is linear in the variables, and the variables are
independent and normally distributed, so that Equations (5.7–5.9) can be
applied.

Dealing first with the case where the reliability function is not a linear
function of the variables; what can be done? The function can be linearised
by expanding it as a Taylor series and truncating quadratic terms and higher.
This sounds like a drastic action, but can give useful results under the right
conditions. Let

G = R(x1,x2,x3, . . . , xm) − S(xm+1,xm+2, . . . , xn)

= G(x1,x2, . . . , xn) (5.12)

Expanding this function in a Taylor series about the point

(x1,x2, . . . , xn) = (X1,X2, . . . , Xn) (5.13)

and retaining only linear terms gives

G(x1,x2, . . . , xn) ≈ G(X1,X2, . . . , Xn) +
n∑

i=1

∂G
∂xi

(xi − Xi)

where ∂G
∂x1

is evaluated at (X1,X2, . . . , Xn). Approximate values of μG and σG

are obtained from, (see Equation 3.63)

μG ≈ G(X1,X2, . . . . . .Xn) (5.14)

and

σ 2
G ≈

n∑
i=1

n∑
j=1

∂G
∂xi

∂G
∂xj

· cov(xi,xj) (5.15)
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If the variables are uncorrelated then the covariances are zero for i �= j and
unity for i = j, so that

σ 2
G =

n∑
i=1

(
∂G
∂xi

)2

σxi
2 (5.16)

The quantities
(

∂G
∂x

σxi

)2
are termed the ‘influence factors’ as they represent

the contributions to the variance in G from each individual random variable
Xi.
It is worth noting that, in the case where G is a linear function,

G(X1,X2, . . .XN) = a0 +
N∑

i=1

aiXi

We obtain

β =
a0 +

N∑
i=1

aiμi√∑N
i=1

∑N
j=1 aiajρijσiσj

(5.17)

Three variants of Level 2 methods that are in current use are now
described.

5.6.2 First-order mean value approach

This is sometimes denoted by FMA or MVA, for obvious reasons. In this
case (X1,X2, . . . ., Xn) = (μx,μxz, . . . ..μxn). That is, the failure function is
expanded about the mean values of the basic variables. The mean and stan-
dard deviation of the reliability function can then be evaluated directly from
the equations above.

Example 5.2. A reliability function is given by G = aX2
1 − bX2, where a and

b are positive constants.

a Use this to calculate the probability of failure, in terms of a and b, with
the MVA method, given that X1 = N(4, 1) and X2 = N(1, 3).

b What condition applies to the values of a and b if the probability of
failure is to be no greater than 0.023?

c If now you are told that results from experiments suggest that b ≈ 0.2,
and the manufacturer of the structure asserts that a = 0.5, what do you
conclude?
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Solution.

a The first step is to calculate the partial derivatives. This gives:

∂G
∂X1

= 2aX1

∂G
∂X2

=−b

Table 5.3 summarises the results of the MVA calculations.
Thus, we have:

μG =μX1 −μX2 = 3

and

σ 2
G = 64a2 + 9b2

Therefore the reliability index β = μG
σG

= 3√
64a2+9b2

and the probability of failure is given by �(−β)

b Now, from Table D in Appendix A, �(−2.0)= 0.023, so β must be no
smaller than 2 in order for the probability to be no greater than 0.023.
Thus, the condition on a and b is:

3√
64a2 + 9b2

≥ 2

⇒ 256a2 ≤ 9 − 36b2

Now, the left-hand side of this inequality is non-negative, so the right-
hand side must also be non-negative. This gives the further constraint
on b: b ≤ 1/2.

Table 5.3 Summary of the steps in the MVA

Variable Mean Standard
deviation

Partial derivative
(evaluated at the
mean values)

Influence factor

X1 4 1 8a 64a2

X2 1 3 −b 9b2
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c Using the values of a and b provided, we see that

256a2 = 64

and

9 − 36b2 = 7.56 < 64

The condition on a and b is not fulfilled, so the desired probability of
failure cannot be achieved.

The MVA method is relatively easy to use but can be inaccurate if the
failure function is strongly nonlinear. The method also relies on accurate
estimates of the mean and variance of the key variables. In the exam-
ple above, these values have been assumed to be known exactly, but in
practice there is likely to be considerable uncertainty in estimating both
the mean and the variance. Where parameters have been measured in a
series of experiments, the sample mean and variance could be used in the
absence of other information. Experience shows that this approach should
not be used in isolation. If in doubt, results should be checked against other
methods.

5.6.3 First-order design point approach

A serious objection to the MVA method is that the point about which the
failure function is linearised is not necessarily on the failure surface. Fur-
thermore, the value of the reliability index can change when different, but
equivalent, non-linear failure functions are used. A means of overcoming
these problems was introduced by Hasofer and Lind (1974), who defined a
modified form of reliability index based on expanding about a point in the
failure surface. In this first-order design point approach (FDA), commences,
as before, with a failure function that is a function of normal, independent,
random variables, x1,x2, . . . , xn. The first step is to map these into standard
form by

zi = xi −μxi

σxi

i = 1, 2, . . . ,n (5.18)

so that μzi
= 0 and σzi

= 1
Note that the reliability function G(x1,x2, . . . , xn) is also transformed

to a (different) function of the standardised variables, which is denoted
by g(z1, z2, . . . , zn). Hasofer and Lind’s reliability index is defined as the
shortest distance from the origin to the failure surface in the standardised
z-coordinate system. This is shown for two dimensions in Figure 5.8.
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Figure 5.8 Geometric interpretation of Hasofer and Lind’s reliability index.

The point A is known as the design point. In general, the reliability index
can be found from

βHL = min

(
n∑

i=1

z2
i

) 1
2

(5.19)

for zi in the failure surface. The calculation of βHL may be performed in
several ways, but generally involves iteration, which is suited to numeri-
cal schemes (see e.g., Thoft-Christensen and Baker 1982, Kottegoda and
Rosso 1997). The important feature of Hasofer and Lind’s reliability index
is that it relates to the failure ‘surface’ g(z1, z2, . . . , zn)=0, which is invariant
with respect to the reliability function because equivalent reliability func-
tions result in the same failure surface. The two reliability indices will match
when the failure surfaces are linear. Clearly, this is also the case if nonlin-
ear reliability functions are linearised by Taylor series expansion around
the design point. Linearisation about the design point rather than mean
values is thus preferable, but has the disadvantage of requiring extra calcu-
lations. Linearisation about mean values can give wildly inaccurate results,
but because of the simplicity of the evaluation might be used to obtain an
initial ‘order of magnitude’ estimate of the probability of failure.

Numerical solution

In the iterative numerical solution scheme, an initial guess for the design
point is chosen, and then a sequence of calculations is performed to yield a
refined estimate for the design point. In essence, the procedure ‘nudges’ our
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Figure 5.9 Iterative refinement to obtain the design point (in two dimensions).

chosen point, so that not only does it lie on the failure surface but also it is
the point on the failure surface that is closest to the origin. The procedure is
strictly a minimisation problem. There are several ways in which a solution
can be found (see Melchers 1999). Here, we outline a procedure that is
based on iterating the initial guess along the failure surface to the point at
which the normal to the surface passes through the origin. This is illustrated
in Figure 5.9.

Let x denote the basic variables x1,x2, . . . , xn and z denote the standard-
ised variables z1, z2, . . . , zn. Furthermore, let z(m) denote the mth approxima-
tion to the point representing the line from the origin to the failure surface
g(z)=0. To create an iterative scheme requires an expression relating succes-
sive approximations z(m) and z(m+1). This can be obtained from a first-order
Taylor expansion of g[z(m+1)] about z(m):

g[z(m+1)
1 , z(m+1)

2 , . . . , z(m+1)
n ] ≈g[z(m)

1 , z(m)
2 , . . . , z(m)

n ]

+
n∑

i=1

(z(m+1)
i − z(m)

i )
∂g(z(m))

∂zi
= 0 (5.20)

In the language of mathematics, this expression represents a hyperplane,
g[z(m+1)] = 0, approximating the hypersurface g[z(m)] = 0 in n-dimensional
z-space, for which at point m + 1, the linearised reliability function must be
satisfied. In two dimensions this is equivalent to defining the tangent to a
curve, and in three dimensions to defining the tangent plane at a point on a
solid object.
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From the geometry of surfaces (e.g., Lang 1974) the outward normal
vector to a hyperplane has components given by

ci = λ
∂g
∂zi

(5.21)

where λ is an arbitrary constant. The total length of the outward normal, l,
is defined as

l =
(∑

i

c2
i

)1/2

(5.22)

and the direction cosines, αi, of the unit outward normal are then

αi = ci

l
(5.23)

With αi known, it may be shown that the coordinates of the trial point
z(m) are

z(m) =−α(m)β (m) (5.24)

Substituting Equation (5.24) into Equation (5.20) and rearranging yields:

z(m+1) =−α(m)

[
β (m) + g(z(m))

l

]
(5.25)

The ‘recipe’ for numerical solution can now be stated as:

1 Standardise the basic random variables x to the independent standard-
ised normal variables z.

2 Transform G(x) to g(z).
3 Choose initial guess z(1).

4 Compute β (1) =
[

n∑
i=1

(
z(1)

i

)2] 1
2
; set m = 1.

5 Compute direction cosines α(m) using Equations (5.21–5.23).
6 Compute g[z(m)].
7 Compute z(m+1) using Equation (5.25).

8 Compute β (m+1) =
[

n∑
i=1

(
z(m+1)

i

)2] 1
2
.

9 Check whether z(m+1) and β (m+1) have converged; if not, go to step (5)
and increase m by 1.

10 Once z(m+1) and β (m+1) have converged, use Equation (5.9) to evaluate
the probability of failure.
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It should be noted that this procedure is not guaranteed to converge nor, if
it does converge, to converge to the global minimum value of β. To alleviate
this problem it is advisable to repeat the calculations several times with
different initial guesses, to check that the solution converges to the same
endpoint in each case.

One (of many) alternative iterative schemes is based on the following. Let
z∗ be the failure point. By careful examination of Equations (5.21)–(5.25) it
can be seen that any component of this, z∗

i , is given by

z∗
i =

(
∂g
∂zi

)∣∣∣∣
z=z∗√√√√ n∑

i=1

(
∂g
∂zi

)2
∣∣∣∣∣
z=z∗

β =−αiβ (5.26)

where we have defined

αi =

(
∂g
∂zi

)∣∣∣∣
z=z∗√

n∑
i=1

(
∂g
∂zi

)∣∣∣∣
z=z∗

(5.27)

or,

αi =

(
∂g
∂zi

)∣∣∣∣
z=z∗

K
(5.28)

where

K =
[

n∑
i=1

(
∂g
∂zi

)2
]1/2

(5.29)

By definition,

x∗
i =μi + σiz∗

i =μi −αiσiβ (5.30)

The required value of β can then be found by substituting this expression
for the xi in the reliability function G:

G(μ1 −α1σ1β,μ2 −α2σ2β, . . . .,μn −αnσnβ) = 0 (5.31)

An iterative procedure is then launched with an initial guess for z. Then,
using estimated or known values of the means and variances, one deter-
mines the xi values, the partial derivatives, and the values of αi, which are
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then used in Equation (5.25) to solve for β. This value of β is then used in
Equation (5.30) to provide a refined estimate of x∗

i . The process is repeated
until convergence.

Correlated normal variables

The case where the basic variables are normal and correlated can be treated
with a slight modification of the above method. The correlation between
any pair of the random variables x is expressed by the covariance matrix

Covx =

⎡
⎢⎢⎢⎢⎣

Var(x1) Cov(x1,x2) · · · Cov(x1, xn)

Cov(x2,x1) Var(x2)
...

...
. . .

...
Cov(xn,x1) · · · · · · Var(xn)

⎤
⎥⎥⎥⎥⎦

The covariance matrix is symmetric [i.e., Cov(xi, xj) = Cov(xj, xi)] and
positive definite. It is well known from linear algebra that a real-valued,
symmetric matrix may be transformed into a diagonal matrix, that is, a
matrix whose elements are all zero except those on the diagonal. This
process corresponds to a transformation from x1, x2, . . . , xn to y1, y2, . . . , yn,
where each yi is a linear combination of the xi’ values, and the y1 values are
independent normal variables. The transformation is determined by finding
the eigenvectors of the covariance matrix Covx. The eigenvalues of Covx

correspond to the variances of the y1 values. Thus,

⎡
⎢⎢⎢⎣

y1

y2

...
yn

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

a11 a21 · · · an1

a12 a22

...
...

. . .
...

a1n · · · · · · ann

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦

and

Covy =

⎡
⎢⎢⎢⎢⎢⎢⎣

Var(y1) 0 · · · 0

0 Var(y2)
...

...
. . .

...

0 · · · · · · Var(yn)

⎤
⎥⎥⎥⎥⎥⎥⎦

In general, the eigenvectors and eigenvalues have to be calculated numer-
ically, and techniques for this are well known (e.g., Press et al. 2007). Once
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the elements aij and the variances of the y′
i values have been determined in

this fashion, it remains to:

1 Write the x1 values in terms of the yi values.
2 Write the reliability function G(x) in terms of the y1 values.
3 Determine the mean value of each yi from the knowledge of the

transformation and the means of the x1 values.
4 Proceed as in the above ‘recipe’, using y in place of x.

5.6.4 Approximate full distribution approach (AFDA)

In the approximate full distribution approach (AFDA) the FDA is used but
the variables are allowed to be non-normal. Equating normal and non-
normal distribution functions at the design point allows the requirement
for normal variables of the FDA method to be relaxed. This is sometimes
referred to as the ‘normal tail transform’. Specifically, if the reliability func-
tion depends on a non-normal variable Y, this can be rewritten in terms of
normal variables through the transformation.

Z =�−1 [FY(y)] (5.32)

where FY(y) is the distribution function of Y and �−1 is the inverse
normal distribution function. This transformation is shown pictorially in
Figure 5.10.

yy0Z0
0μz μYz0

0.5

1.0

FZ(z) ≡ Φ(z) FY(y)

FY(y0)
Set Φ(z0) = Fy (y0)

Z0
= value of Z for 

Φ(z0) = FY(y0)which

Figure 5.10 The transformation of non-normal variables to equivalent normal
variable at the design point.
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If the design point is given by x∗ = (x1
∗,x2

∗, . . . , xn
∗), then the transforma-

tion reads

FXi
(x∗

i ) =Φ

(
x∗

i −μXi

σXi

)
(5.33)

fXi
(x∗

i ) = 1
σXi

φ

(
x∗

i −μXi

σXi

)
(5.34)

where μXi
and σXi

are the mean and standard deviation of the approximat-
ing normal distribution. Now,

FXi
(x∗

i ) =Φ

(
x∗

i −μXi

σXi

)
=Φ

(
z∗

i

)=Φ(βαi) (5.35)

Solving for xi
∗ yields

xi
∗ = F−1

Xi
Φ(βαi) (5.36)

The iterative method (Equations 5.26–5.31) can be used for this
case, as long as the mean and standard deviation obtained by solving
Equations (5.33) and (5.34) are calculated for those variables where the
normal tail transformation has been applied.

5.6.5 Correlated non-normal variables

Consider a set of n correlated variables X1, X2, . . . , Xn. They can be
represented only through their joint distribution function, Fx(x)

Fx(x) = P [(X1 ≤ x1) and (X2 ≤ x2) and . . . .. and (Xn ≤ xn)] (5.37)

However, in many situations, sufficient data and other information are
not available to determine the form of the joint distribution function with
any certainty. Often, the most that can be expected is that the marginal
distributions FXi

(xi) can be determined, together with their correlation
matrix.

For a pair of jointly distributed random variables X1, X2, the marginal
distribution function is defined as

FX1 (x1) =
∫ x1

−∞
fX1

(t)dt =
∫ x1

−∞

∫ ∞

−∞
fX1 ,X2 (t,x2)dx2dt (5.38)

and analogously for n jointly distributed variables, where fX1
(t) is the

density function of X1 and so on.



144 Risk and reliability

The correlation matrix R is given by

R =

⎛
⎜⎜⎜⎜⎝

ρ11 ρ12 · · ρ1n

ρ21 ρ22 · · ·
ρ31 · ρ33 · ·
· · · · ·

ρn1 · · · ρnn

⎞
⎟⎟⎟⎟⎠ (5.39)

where ρij is the correlation coefficient between variables Xi and Xj with
i, j = 1, 2, . . . ,n. However, if Fx( · ) or fx( · ) are not known, the marginal
distributions can not be obtained from Equation (5.38), and these plus the
correlation matrix must be obtained directly by fitting from data.

In the event that the individual marginal distributions of the basic
variables X and their correlation matrix R can be estimated, the method
proposed by Der Kiureghian and Liu (1986) may be used. An outline of the
method is given here.

A joint density function is assumed that is consistent with the known
marginal distributions and correlation matrix:

fx (x) =φn (y, R′)
fx1 (x1) fx2 (x2) . . . fxn(xn)
φ (y1)φ (y2) . . . φ (yn)

(5.40)

where φn(y, R′) is the n-dimensional normal probability density function
with zero means, unit standard deviations and with correlation matrix R′.

φ(yi) is the standard univariate normal density function
fXi

(xi) is the marginal density function for basic variable Xi.

The elements ρij of the correlation matrix R′ are related to the known
marginal densities fX.i (xi) and fXj

(
xj

)
and the correlation coefficient ρij

between the basic variables Xi and Xj through the relationship

ρij =
∫ ∞

−∞

∫ ∞

−∞

(
xi −μi

σi

)(
xy −μj

σj

)
φ2

(
yi, yj.ρ ′

ij

)
dy

i
dyj

(5.41)

where φ2(·, ·, ) is the bivariate normal density with correlation coefficient
ρij,, and xi is given by

xi = F−1
xi

[�(yi)] (5.42)

Solution of Equation (5.41) usually has to be performed iteratively to
determine ρ ′

ij, and needs to be solved for each pair of values of i and j.
Once the new correlation matrix R′ has been obtained, the steps are as

follows:
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1 Obtain a set of correlated normal variables with zero mean and unit
standard deviation yi from

Y =Φ−1
[
Fx (x)

]
Y = (Y1,Y2, . . . , Yn) (5.43)

2 Compute L from

R′ = L L T (5.44)

3 Obtain a set of uncorrelated unit standard normal variables by

Z = L −1 Y (5.45)

4 The set of correlated, non-normal basic variables X occurring in a
reliability function may be replaced by

Xi = FYi
−1 [Φ(Yi)] i = 1, 2, . . . ,n (5.46)

with Yi being obtained from Equation (5.43).

Example 5.3. Given that: X1 is normal with mean μx1 = 100 and standard
deviation σx1 =15, X2 is Gumbel with mean μx2

=5 and standard deviation
σx2 =1, their correlation ρ12 =0.6, and the reliability function is of the form
G = X1 − 1.5X2, determine the reliability function in terms of uncorrelated
normal variables.

Solution.

We have

R =
(

1 0.6
0.6 1

)

and

FX2 (x2) = exp [ − exp ( −α(x2 − u))]

where

α =π/(σx2

√
6) = 1.283

u =μx2 − γ

α
= 4.55

from the properties of the Gumbel distribution

This gives

FX2 (x2) = exp [ − exp ( − 1.283(x2 − 4.55))]
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Or

x2 = 4.55 − ln x2 = 4.55 − ln [ − ln (FX2 (x2))]/1.283

Therefore

ρ12 = 0.6 =
∫ ∞

−∞

∫ ∞

−∞

(
x1 − μx1

σx1

)(
x2 −μx2

σx2

)
�2(y1,y2;ρ ′

ij)dy1 dy2

=
∫ ∞

−∞

∫ ∞

−∞
y1 ·
{ {4.55 − [ ln ( − ln (Φ(y2)))/1.283]} − 5.0

1

}
Φ2 (y1,y2;ρ ′

ij)dy1dy2

=
∫ ∞

−∞

∫ ∞

−∞
y1 · {−0.45 − ln [ − ln (�(y2))]/1.283

}
Φ2(y1,y2;ρ ′

ij)dy1dy2

Iterative solution of the above integral gives ρ ′
12 ≈ 0.62 by numerical

integration.

Hence,R′ =
[

1 0.62
0.62 1

]

Cholesky decomposition (determined numerically) gives

L =
[

1 0
0.62 0.79

]
and Y = L Z =

[
1 0

0.62 0.79

] [
Z1

Z2

]

Therefore X1 = F−1
x1

[�(Z1)] =μx1 + Z1 σ1 = 100 + 15Z1 (5.47)

and X2 = F−1
x2

[Φ(0.62Z1 + 0.79Z2)]

= u − ln [ − ln (Φ(0.62Z1 + 0.79Z2))]/α

= 4.55 − [ ln ( − ln (�(0.62Z1 + 0.79Z2)))/1.283] (5.48)

Finally, G(X1,X2) = X1 − 1.5X2 becomes

g(Z1, Z2) =100 + 15Z1 − (1.5)4.55 + (1.5)

ln [ − ln (Φ (0.62Z1 + 0.79Z2))]/1.283

i.e.,

g = 93.18 + 15Z1 + [1.5 ln ( − ln (� (0.62Z1 + 0.79Z2)))/1.283] (5.49)

This reliability function is a (nonlinear) function of independent normal
variables Z1 and Z2.
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5.6.6 Correlated extreme variables

It may have struck the reader that much of the effort in earlier chapters
was concerned with determining the distribution function of extreme val-
ues. This is because most engineering structures are designed to withstand
‘everyday’ loads with ease and also to resist unusual loading up to a given
limit. We saw in Chapter 4 that the distribution of the extremes of a normal
random variable do not follow a normal distribution. Furthermore, there
may be a complicated dependence structure between joint extremes that
is different from that for more ‘typical’ values of the variates. The methods
given in the previous sections can be applied to such cases, but it is as well to
remember that extreme distributions are skewed, and that the observational
basis for univariate extreme values in hydraulic and coastal engineering is
scarce, and for multivariate extremes even more so.

The uncertainties involved in determining a probability of failure of a
structure may seem overwhelming, but a pragmatic approach coupled with
the foregoing methods can provide useful results. One source of assistance
comes from the way in which the strength of hydraulic structures is defined.
Very often, this will not be a complicated function of many variables, but
simply a number. For example, if we consider overflow of an embankment,
then the ‘strength’ of the structure is just the crest level. To make it slightly
more realistic, we might make allowances for local variability in the crest
level by assigning a narrow probability distribution function to it, say a
N(design crest level, 0.1 m), based on the contractor’s estimate of working
accuracy or a post-construction survey.

In contrast, much of the complication arises from specifying the loads,
which can involve functions of many variables such as head, flow rate, flow
velocity, wave height, wave period, rainfall intensity, storm duration and
so on. Sometimes, as alluded to in Chapter 4, it may be possible to cast
the reliability problem as a function of one or two variables only. As an
example, consider wave overtopping of a sea wall. The ‘strength’ is usu-
ally defined in terms of a maximum permissible overtopping rate. The load
is defined by an empirical formula involving at least five variables describ-
ing the environmental conditions and the sea-wall geometry and materials.
Simply determining the joint probability function of these variables would
be challenging enough in a standard case. However, if long time series of
waves, water levels, beach conditions and so on are available, one alter-
native is to use these to generate a time series of overtopping rates. These
overtopping rates can then be analysed in the standard univariate manner
(i.e., using annual maxima or peaks over thresholds) to yield a ‘best-fit’
probability distribution function for the extreme events, and then use this
to calculate the probability of failure – that is, the annual probability that
the overtopping at the sea wall will exceed the permissible rate.

Such an approach requires a significant amount of data that will not nec-
essarily be available in all cases, but it allows the complications associated
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Random load
and strength
variables 

Determine joint
distribution of
strength and
load variables

Create time series
of structure
function 

Analyse series using
univariate extremes
theory

Evaluate Equation (5.4) or
perform approximate
Level 2 calculations

Determine probability of
failure and/or probability of
exceedance

Figure 5.11 Alternative routes to evaluating the probability of failure in the multi-
variate case.

with potentially correlated, non-normal variables to be circumvented. It is
sometimes known as the ‘structure function’ approach, for obvious rea-
sons. Figure 5.11 illustrates the two alternative routes for calculating the
probability of failure in this case.

5.6.7 Point estimation methods

Point estimation methods (PEMs) offer one alternative to the first-order reli-
ability methods described in the previous sections. PEMs, as developed by
Rosenblueth (1975) and Li (1992), can be applied to the failure function
G to obtain estimates of the moments of the distribution function of G.
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The two of interest, the mean and variance, can then be used to evalu-
ate the reliability index, and thus the probability of failure. Alternatively,
the estimated moments can be used to define a (chosen) statistical distribu-
tion function to G, from which the probability of failure can be determined
directly. This method does not require the evaluation of derivatives of the
reliability function, which can be advantageous if the reliability function is
not given explicitly in functional form, but perhaps instead as implicit func-
tions of the variables, in the form of tables or graphs, or even as the output
of a detailed numerical model.

The method requires the statistical moments of the basic variables and
their correlations to be known and also for the function G to be evaluated at
a specific set of values of the basic variables. Explicit formulae for functions
of up to three correlated variables were derived by Rosenblueth (1975). The
method assumes, in effect, that the probability mass can be concentrated at
a finite number of points. The general method is outlined below.

Let G = G(X1, X2, . . . , Xn) be a reliability function that is a function of
n basic variables. Point estimates at 2n points gk (with k = 1, 2, . . . , 2n) are
computed as

gk = G(μ1 + ε1kσ1,μ2 + ε2kσ2, . . . ,μn + ε1nσn, ) (5.50)

where μi and σi are the mean and standard deviation of Xi, respectively. The
εik are coefficients that take the values ±1, satisfying

k = 1 +
n∑

i=1

2i−2(1 + εik) (5.51)

Thus, if G is a function of a single variable there are two point estimates;
if G is a function of two variables there are four point estimates; and so on.
The moments of G are estimated from

E(Gr) =
2n∑

k=1

θkgr
k (5.52)

where

θk =
{

2−n ∀k ifXi are mutually independent

2−n
(∑n−1

i=1

∑n
j=i+1 εijεjkρij

)
ifXi are correlated

(5.53)

and ρij is the correlation coefficient between Xi and Xj.
The method is illustrated in Figure 5.12 for the case of two variables.
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x1

x2

g

μ1 – σ1

μ2 – σ2

μ2 + σ2

μ1 + σ1

Figure 5.12 Illustration of the point estimation method for a function of two vari-
ables, g(x1,x2). The moments of g are estimated from the values of g at
four points.

The reliability of this method can be impaired if the distribution of G is
highly skewed. Modifications of the method have been proposed by Harr
(1987) and Chang et al. (1993), amongst others.

As noted above, if there is reason to suspect that the reliability function
obeys a particular form of distribution, then the PEM can be used as a
means of fitting the distribution. For example, suppose we suspect that the
failure function obeys a Gumbel distribution

FG(g) = e −e
− (g−a)

b (5.54)

This has mean μG and variance σ 2
G, given by

μG = a − b�′(1) (5.55)

σ 2
G = (bπ )2/6 (5.56)

where Γ
′ (x) is the first derivative of the gamma function (see e.g.,

Abramowitz & Stegun 1964), and Γ
′ (1) =−0.57721.

The PEM gives estimates of μG and the second moment of G, from which
the variance σG

2 may be computed (see Section 2.3.3). Substituting these
estimates into the left-hand sides of Equations (5.55) and (5.56) gives two
simultaneous equations that may be solved to obtain the two unknown
parameters a and b. The probability of failure is then estimated from
P(G < 0) = FG(0).
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5.7 Level 3 methods

Level 3 methods are the most general of the reliability techniques. The
approach in Level 3 methods is to obtain an estimate of the integral in
Equation (5.4) through numerical means. The complexity of the integral
(in general) means that numerical, rather than analytical, methods are used.
There are two widely used techniques:

1 Monte Carlo integration;
2 Monte Carlo simulation.

The first method may be used if there is a closed analytical form for the
probability distribution of the reliability function and a failure region that
is well defined in terms of the basic variables. As illustrated in Figure 5.13
for the two-dimensional case, Monte Carlo integration evaluates the func-
tion at a random sample of points, and estimates its integral based on that
random sample (Hammersley & Handscomb 1964, Press et al. 2007). In
symbols:

∫
G<0

fG(x)dx ≈ V < f >±V

√
< f 2 >−< f >2

N
(5.57)

where

< f >≡ 1
N

N∑
i=1

f (xi) < f 2 >≡ 1
N

N∑
i=1

f 2(xi) (5.58)

x

y

f (x,y )

V 

Figure 5.13 Illustration of Monte Carlo integration. The function f (x,y) is evalu-
ated at randomly spaced points in a ‘volume’ defined in x − y space.
Only those points lying within the volume V for which G < 0 are used.
The choice of volume in this case could be considerably reduced to
improve the efficiency of the process.
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and xi, for i = 1, . . . ,N, are random points uniformly distributed in the
multidimensional volume V for which G < 0.

Example 5.4. Estimate the integral of the function y = f (x) = 4x3 − 3x2 + 1
over the region x ∈ [0, 2]; that is,

2∫
0

(4x3 − 3x2 + 1)dx

exactly and also using Monte Carlo integration using 2, 4 and 8 points from
the random number generation example (Example 2.17).

Solution. The exact value of the integral may be found by direct integration
and is 10. We next perform Monte Carlo integration using the first 2, first 4
and all 8 of the random numbers in Table 2.2. The ‘volume’ V in this case
is simply the length of the line segment [0, 2], that is, 2.

For N = 2: First, we use the first two random numbers in Table 2.2 (0.75
and 0.875). Now, these were generated for a random variate lying between
0 and 1. To cover the interval [0, 2], we have to multiply all the random
numbers by 2. Thus, we have f (1.5) = 7.75 and f (1.75) = 13.25. From
Equations (5.57 and 5.58) we have:

2∫
0

f (x)dx ≈ V < f >±V

√
< f 2 >−< f >2

N
= 2

(
1
2

{7.75 + 13.25}
)

± 2

√
(7.752 + 13.252) /2 − ( (7.75 + 13.25) /2)2

2

= 21.0 ± 15.8

The error bounds are very large and should alert us to the very approximate
nature of the result. For N =4: We take the first four values in Table 2.2 and
repeat the process used for the case N = 2. Thus, we already have f (1.5) =
7.75 and f (1.75) = 13.25, and we find that f (1) = 1.0 and f (1.25) = 4.125.
Hence,

2∫
0

f (x)dx ≈ V < f >±V

√
< f 2 >−< f >2

N

= 2
(

1
4

{7.75 + 13.25 + 1.0 + 4.125}
)

± 2

√
63.46 − (6.54)2

4

= 13.06 ± 4.56
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Finally, for N = 8, we find:

2∫
0

f (x)dx ≈ V < f >±V

√
< f 2 >−< f >2

N

=2
(

1
8

{7.75 + 13.25 + 1.0 + 4.125 + 0.75 + 1 + 1 + .875}
)

± 2

√
32.12 − (3.72)2

8

=7.44 ± 3.02

It is worth noting a couple of points. First, in this example, the error
bounds more than cover the discrepancy between the estimated integral and
the exact solution. Second, the estimates can be either greater or smaller
than the exact result.

The ‘error bounds’ defined in this way are simply an estimate of one
standard deviation either side of the mean and, critically, depend upon both
the xi and N. Clearly, the larger N the better the estimate of the integral
should be. However, as the number of dimensions increases, the number
of points required goes up as the power of the dimension. The consequent
computational effort can be mitigated somewhat by a technique known as
importance sampling. In essence, this involves selecting the random points
so that, rather than being uniformly distributed, they follow a distribution
designed to make the integrand appear as constant as possible. (See also
Further Reading at the end of this chapter.)

In Monte Carlo simulation a set of values of the basic variables is
generated with the appropriate probability distribution and values of the
reliability function determined. By repeating this process many times and
storing the results, the integral may be estimated as the proportion of the
results for which the reliability function is negative. In symbols, if Xn is the
nth simulation, then the Monte Carlo estimate of the integral is

number of the Xn (n = 1, . . . ,N) in the failure region
total number of simulations ( = N)

(5.59)

Clearly, increasing N improves the precision of the answer and, in prac-
tice, N should correspond to at least 10 times the length of the return period
of interest.

Evidently, large sample sizes are required for the most extreme events,
which can be computationally demanding. There are methods available,
known as variance reduction techniques, for improving precision without
increasing N. These methods use a disproportionate number of extreme
conditions at the simulation stage, but the manner in which this is done
is not straightforward.
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5.8 Further notes on reliability methods

In this section two additional topics are discussed: second-order reliability
methods and time-varying reliability methods.

5.8.1 Second-order reliability methods

In the previous sections, the focus has been on first-order reliability methods
(FORMs). These are based on linearising the nonlinear reliability function
about the point of interest via truncation of the Taylor series expansion.
This is equivalent to finding the tangent line or plane to the reliability sur-
face. A natural progression is to retain additional terms in the Taylor series
expansion. Methods that include nonlinear approximations to the reliabil-
ity function have been termed second-order reliability methods (SORMs) by
Fiessler et al. (1979) and Hohenbichler et al. (1987). By retaining an addi-
tional term in the Taylor series expansion, a quadratic approximation to the
reliability surface may be obtained. The advantage of this is that the sense of
curvature of the reliability surface can be captured. Whether this is impor-
tant or not will clearly depend on the nature of the reliability surface in
the region of the design point. The situation is illustrated in Figure 5.14. In
the case of a linear approximation (Figure 5.14a), errors locating the exact
position of the design point can result in an over- or underestimate of the
probability of failure, depending on whether the reliability surface is convex
or concave, respectively. This can be mitigated to some extent by means of
a higher order approximation (Figure 5.14b), which captures the sense of
the curvature in the surface.

Of course, a quadratic approximation to the surface cannot capture any
skewness, for which a third-order approximation is required, and so on. The
quantity of algebra involved, and the often modest improvements in the esti-
mates of probability of failure, mean that retaining extra terms follows a law

Safe Safe

Failure
surface

(a) 
(b) 

Failure
surface

Failure Failure

Figure 5.14 (a) Linear approximation to the reliability surface at the design point;
(b) quadratic approximation to the reliability surface at the design
point.
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of rapidly diminishing returns. Alternative approaches to obtaining higher-
order estimates of the probability of failure can be found in the literature
(e.g., Breitung 1984, Abdo & Rackwitz 1990, Breitung 1994, Ditlevsen &
Madsen 1996).

A note of pragmatism: the accuracy of any estimate of the probability of
failure will be conditioned by many other factors, including: the quality of
the data; the methods used to analyse the data (say, in fitting probability dis-
tribution functions); the quality of the design formulae used in formulating
the reliability function; and the quality of materials and construction. The
level of probabilistic analysis in a reliability calculation should be chosen in
the context of the problem at hand, that is, the method should be commen-
surate with the quality and accuracy of the data and design formulae. For
example, if the design formula used in the reliability function is known to be
accurate only to within a factor of 50%, it is hardly appropriate to expect
estimates of the probability of failure to have better accuracy than this, and
the use of high-order reliability methods is unlikely to be cost effective.

5.8.2 Time-varying reliability methods

The alert reader will have noticed that in the foregoing discussion time
has been an implicit rather than explicit variable. From experience it is
known that not all failures result from spectacular extreme loading events,
but rather occur gradually over time, either as the integrity of a structure
degrades due to wear and tear, or as loading conditions gradually increase,
perhaps as a result of changes in climate. To describe the basic reliability
problem (Equation 5.3) in these terms requires the strength and loading
functions to be considered as a function of time:

Pf (t) = P[R(t) < S(t)] = P[G(t) < 0] (5.60)

so that the strength, the load, their probability distribution functions and
the probability of failure are all functions of time. Figure 5.15 illustrates
this scenario.

Although R(t) and S(t) may vary continuously in time, from a practical
point of view any time series will actually have a finite resolution determined
by the resolving power of a measuring instrument. The instantaneous prob-
ability of failure may also be written in terms of the density function of the
reliability function:

Pf (t) =
∫

G(X1,X2, ... ,Xn)<0

fX1,X2,... ,Xn[x1(t), x2(t), . . . , xn(t)]

dX1(t)dX2(t) . . .dXn(t) (5.61)
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Figure 5.15 Illustration of the time-varying nature of loads and structural strength.

where each of the basic variables X1,X2, . . . , Xn is considered to be a func-
tion of time. The probability of a failure occurring over a period of time, say
t = 0 to t = T, is given by integrating over this period with respect to time:

Pf (T) =
t=T∫

t=0

∫
G(X1,X2,...,Xn)<0

fX1,X2,...,Xn[x1(t), x2(t), . . . , xn(t)]

dX1(t)dX2(t) . . .dXn(t)dt (5.62)

This is a very general statement of the reliability problem, involving the
integration of a function of many potentially correlated (both in time and
with each other) stochastic random variables.

A common simplifying approach is to consider time-integrated quantities,
that is, attention is focused on the whole lifetime of the structure, t ∈ [0, tL],
and all random variables relate to this lifetime. Thus, the probability of
interest with regard to loads is the maximum load over the lifetime, and
that for strength is the minimum strength over the lifetime. In many cases
the strength is considered time invariant, and the load can be represented
over the total time period by an extreme value distribution.

A common variant of this approach that allows some time variation is to
integrate over ‘blocks’ of time. The lifetime of the structure is then com-
posed of a succession of blocks. A typical length for a block is a year,
and the probability of failure in each block refers to the probability that
the annual maximum of the load exceeds the strength. A further assump-
tion is that the annual maxima of the loads are identically distributed and
independent. Each year may be viewed as ‘an event’ in the parlance of dis-
crete variables (see Chapter 2). Thus, the probability that the maximum
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load is less than some value, say a, for any year is given by the cumulative
distribution function FS(S < a).

Example 5.5. If the annual probability of a load exceeding a critical value
a is p, and the design life of the structure is tL, what is the probability of the
load exceeding the critical value during the lifetime of the structure?

Solution. The probability of exceedance over tL years is (1 – the probabil-
ity of non-exceedance over tL years). The probability of non-exceedance in
any year is 1 − p. As each year is considered to be independent, the proba-
bility of non-exceedance in n years is (1 − p)n. Thus, the probability of the
load exceeding the critical value during tL years is 1 − (1 − p)tL . (See also
Section 4.1.)

Example 5.6. Taking the situation described in Example 5.5, let p = 0.01,
which corresponds to a 1 in 100 year event, and let the lifetime of the
structure be 50 years.

a Calculate the probability that the critical value is exceeded in 10, 50
and 100 years.

b Calculate the probability that the critical value is exceeded in the first
2 years only of the lifetime of the structure.

c Calculate the probability that the critical value is exceeded four times
during the lifetime of the structure.

Solution.

a Following the argument in the previous example, the probabilities are
given by 1 − (1 − p)n, where n = 10, 50 and 100. Evaluating the expres-
sion for these values of n gives 0.0956, 0.395 and 0.634, respectively,
illustrating that the longer the period under consideration, the greater
the probability of excess.

b The required probability is given by the product of the probability of
exceedance in each of the first 2 years and non-exceedance in each of
the following 48 years, that is, p.p.(1 − p)48 = 6.17 × 10−5

c This is a combination-type problem (see Chapter 2). The probability is
given by

nCr.p4(1 − p)46 =50 C4 × 6.30 × 10−9 = 230, 300 × 6.30 × 10−9

= 1.45 × 10−3

which is the probability of obtaining four exceedances in 50 ‘events’ in
every possible combination.
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It may seem surprising that the probability in (b) is so much smaller
than that in (c). The reason for this is that, in (b), the probability refers
to exceedances occurring in two specific years, while in (c) the four
exceedances can occur in any years during the lifetime of the structure.

An alternative to the ‘block’ approach is to consider individual load
events that are likely to take the structure close to the ultimate limit state.
For flooding problems this will normally equate to major storms. A common
assumption is to consider storms to be independent, non-overlapping and
randomly occurring. A useful model for this type of behaviour is the Poisson
distribution (see Chapter 2). The probability, pk(t), of k events occurring in
the interval [0, t] is defined as:

pk(t) = (at)ke−at

k! (5.63)

and is illustrated diagrammatically in Figure 5.16.
The probability of failure over the period [0, tL] may then be deter-

mined as

Pf (t) =
∞∫

0

∞∑
k=0

pk(t)[1 − FS(y)]fR(y)dy (5.64)

where y is the basic variable, the summation is over all possible numbers
of storms that can occur in the interval, and the probability functions are
understood to be extreme distributions.

A further alternative approach is to treat the loads, strengths and thus the
reliability function as time-dependent stochastic processes. Failure is defined
as the point at which the reliability function first crosses from being positive
to negative. This is sometimes referred to as the ‘first passage’ or ‘outcross-
ing’ problem in stochastic process theory. Details of the theory are beyond
the scope of this book, but a brief introduction to stochastic processes was
given in Chapter 3. Typically, the theory will yield the mean and variance
of the time to the first outcrossing, that is, the expected time to failure,
together with a measure of the dispersion. The theory is far from straightfor-
ward, even for relatively restrictive cases. For practical hydraulics problems,
where the basic variables may be correlated, nonstationary and non-normal,
a practical alternative is Monte Carlo simulation, but care must be taken to

0 5 10 15 20 25
t

Figure 5.16 Example of occurrences of a Poisson process in time.
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ensure that the statistical properties of the randomly generated sequences of
variables actually reflect the desired properties. A means of generating nor-
mally distributed variables with arbitrary temporal autocorrelation can be
found in Chapter 3. In general, variables will not be normally distributed,
and a means of generating correlated non-normal multivariate sequences is
required, such as that proposed by Cai et al. (2008). In some cases, it may be
possible to obtain an analytical or semi-analytical solution to a time-varying
problem. An example of how such solutions can be used in a reliabil-
ity problem is given in Chapter 6, in the section on coastal morphology
(Section 6.3.1).

This section concludes with analytical results for Poisson and geometri-
cally distributed processes. The cumulative distribution function FW(t) for
the time Wn that elapses before the occurrence of the nth event in a Poisson
process is given by

FW(t) = 1 − P(Wn > t)

= 1 − P(number of events < n) (5.65)

= 1 −
n−1∑
k=0

(at)ke−at

k!
≡ P(k,at) t ≥ 0, k > 0

= 1
�(k)

at∫
0

e−ssk−1ds

where Γ (k) is the gamma function, P(k, at) is the incomplete gamma func-
tion, and FW(t) is the Gamma distribution with mean n/a and variance
n/a2. FW is the distribution function for the Gamma density function
(Equation 3.61). For the case where n = 1, this simplifies to

FW(t) = 1 − e−at.

In a sequence of Bernoulli trials (see Chapter 2), the probability that an
event will occur for the first time during trial N is given by the geometric
distribution (see Equation 2.14) as:

P(First occurrence is for n = N) = p(1 − p)N−1

• This can be used to estimate the average time between events, that is,
the return period. Now,
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Expected time between events = E(T) =
∞∑

n=1

np(1 − p)n−1

= p[1 + 2(1 − p) + 3(1 − p)2 + . . . ]

= p
[

1
(1 − (1 − p))2

]

= p
[

1
p2

]

= 1
p

where we have used a series expansion result in going from line 2 to line 3.
A flood level with an annual exceedance probability of p will be exceeded
at an average rate of once every 1/p years. A typical benchmark for catas-
trophic flooding is the 1 in 100 year event. This is a severity of flood that
has a probability of being exceeded in any given year of 0.01. It is impor-
tant to note that several 100-year floods can occur within a few years, and
conversely several hundred years may pass without a 1 in 100 year flood
occurring. The long-term average rate will be once every 100 years.

Further reading

Lepage, G. P., 1978. A new algorithm for adaptive multidimensional integration.
Journal of Computational Physics, 27: 192–203.

Liu, J. S., 2002. Monte Carlo strategies in Scientific Computing, Springer, New York.
Melchers, R. E., 1999. Structural Reliability Analysis and Prediction, 2nd edition,

John Wiley & Sons, Chichester, p. 437.
Nowak, A. S. and Collins, K. R., 2000. Reliability of Structures, McGraw-Hill,

Boston.
Thoft-Christensen, P. and Baker, M. J., 1982. Structural Reliability Theory and Its

Applications, Springer, Berlin.
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6 Applications

6.1 Introduction

This chapter is organised as a set of worked examples. Each section
covers problems in a particular discipline; but the problems cover a
range of types of reliability analysis. The majority of these have been
described in detail in the previous chapters; where they have not, addi-
tional working is provided. It is anticipated that the reader will not
necessarily be familiar with the appropriate background in all disci-
plines covered in this chapter; hence each section includes the relevant
formulae, equations and background concepts used in the examples.
References to additional sources of material are provided at the end
of the chapter for those readers seeking further information in partic-
ular areas. Each example is structured in the following manner. First,
a statement and explanation of the problem is given, including a dis-
cussion of possible failure modes and the particular mode(s) considered.
Then, the failure criterion is defined, together with the reliability func-
tion, and the basic variables of the problem. Next, the method of solution
is identified (e.g., Level 1, Level 2), and, finally, the worked solution is
presented.

6.2 Fluvial flood defences

6.2.1 Introduction

The reliability of fluvial flood defences is governed mainly by the water level
and the flow speed. Flooding occurs when the water level exceeds the crest
level of an embankment, while excessive flow speed can lead to scouring
around the toe of a structure, destabilising it. Additional complications can
arise from flow of water through or under the materials comprising the
embankment. Here, we restrict attention to overflow and scour.

The Froude number Fr is defined as

Fr = V/(gR)1/2 (6.1)
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B

Y

Wetted perimeter

Figure 6.1 Definition of variables for open channel flow.

where V is the flow velocity, g the acceleration due to gravity (9.81 ms−2)
and R is the hydraulic radius defined as the ratio of the cross-sectional
area of flow to the wetted perimeter. The hydraulic radius is an important
parameter in hydraulic engineering.

For a rectangular channel of width B and water depth Y, R = BY/(B +
2Y), see Figure 6.1. For a wide channel B >> Y and R ≈ Y. Manning’s
formula for the velocity in an open-channel cross-section is

V = S1/2R2/3

n
(6.2a)

where n is the roughness coefficient and S is the friction slope of the channel.
For a wide rectangular channel this is equivalent to

V = S1/2Y2/3

n
(6.2b)

The alert reader will have noticed that the symbols R and S, defined as
strength and load in the discussion of reliability theory in Chapter 5, are
now being used for different quantities, in accordance with common usage
in hydraulics. This is one of the difficulties when trying to combine two
disciplines that have developed separately. Here, we use the symbols for
multiple quantities, clarifying the usage in particular instances.

When water flows around objects, such as bridge piers, the nature of the
flow can change. Thus, rather than being smooth (or laminar), the flow
may become confused and chaotic (or turbulent). This can lead to grains of
sediment being moved by the flow, and eventually to scouring. Figure 6.2
illustrates the flow around a bridge pier and the corresponding pattern of
scour.



Applications 163

Sediment

Downflow

Surface roller

Wake vortex
Pier

Scour hole

Horseshoe vortex

Figure 6.2 Diagrammatic representation of the flow pattern and scour hole at a
cylindrical bridge pier. The principal causes of scour are the horseshoe
and wake vortices, together with the downflow.

The empirical formula for estimating scour depth near piers, developed
by Johnson (1992), is

D = 2.02Y(b/Y)0.98Fr
0.21W−0.24 (6.3)

where the scour depth is D,b is the pier width, Y is the flow depth
immediately upstream of the pier, W is a measure of the sediment size
(W = D84/D50, the ratio of the 84% quantile to the median sediment diam-
eter). The constant of proportionality (2.02) is appropriate for quantities
measured using metric units (metres).

6.2.2 Examples

Example 6.1. Overflow of an embankment

Statement of problem – An earth embankment for a river reach is required
to prevent flooding such as shown in Figure 6.3.

Observations have shown that water levels in the river are usually below
+4.5 m relative to a local datum. Recent measurements have shown that
town development in upstream reaches has led to a ‘peakier’ hydrograph,
and it has been recommended by the local river authority that a factor
of safety of 1.07 should be used to account for the higher water lev-
els associated with these peaks. Experience in designing and constructing
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Figure 6.3 Overflow of Robinson’s Marsh embankment, Suffolk, UK. Erosion of
the backface of the embankment is evident and is a precursor of the
formation of a breach (courtesy Halcrow Group Ltd).

earth embankments has shown that account must be taken of: variations
in construction accuracy; variations in soil type; settlement; burrowing by
rabbits, which can lead to local collapse of the embankment and reduction
in crest level; and compaction by pedestrians and vehicles moving along the
top of the embankment. The corresponding recommended partial safety fac-
tors are: 1.05, 1.1, 1.12, 1.05 and 1.20, respectively. Determine the global
factor of safety and thus the crest level required.

The failure criterion is thus that the water level exceeds the crest level. The
basic variables are water level and embankment crest level. This is a problem
concerning Level 1 methods that require specification of safety factors.

Solution. Using the nomenclature of reliability theory, let the crest level be
R and the water level be S. Then, from Equation (5.6) we have:

R
�r

= �s1 �s2 �s3 �s4 �s5S (6.4)

where Γr is the factor of safety for the water levels and Γsi are the factors of
safety for the embankment. The global factor of safety is given by the prod-
uct of all the factors of safety = 1.07 × 1.05 × 1.1 × 1.12 × 1.05 × 1.20 =
1.74. Substituting in the values of the factors of safety, together with the
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value of 4.5 as the nominal value of the water level, gives the required crest
level as:

R =�r �s1 �s2 �s3 �s4 �s5 S =1.07 × 1.05 × 1.1 × 1.12 × 1.05 × 1.20

× 4.5 = 7.85m

This is significantly higher than the nominal water level. The more fac-
tors that are included, the greater the global factor of safety, because each
individual partial safety factor is greater than unity. When using this type
of approach, care and judgement are necessary, both in the identification of
variables and in the definition of partial safety factors, in order to obtain a
solution that is both safe and economic.

Example 6.2. Overflow of an embankment

Statement of problem – Consider the same problem as described in Exam-
ple 5.1, with an alteration. Namely, the crest level of embankment overreach
is described deterministically as 5 m rather than by a normal distribution
with a mean of 5 m and a standard deviation of 0.5 m. Monthly maxi-
mum water levels along the reach obey N(3, 1). What is the probability
of flooding?

The failure criterion is, as in the previous example, that the water level
exceeds the crest level. The basic variables, water level and crest level, are
described by probability density functions, therefore a Level 2 method will
be appropriate.

Solution. Flooding occurs when water level > crest level. Using the nomen-
clature of reliability theory, let the crest level be R and the water level be S.
So the reliability function can be written as

G = R̄ − S (6.5)

with failure occurring when G < 0. Two approaches are possible. Either
treat the crest level as a N(5, 0) distribution (i.e., it has mean of 5 and zero
variance), or note that the problem reduces to finding the probability that
the water level exceeds 5 m. In the first case, the variables are normal and
independent, so (from Equations 5.7 and 5.8)

μG = 5 − 3 = 2, σ 2
G = 02 + 12 = 1 ⇒ β = 2 (6.6)

And so, from Equation (5.9), we have that the probability of failure is
given by:

PF =Φ

(
0 − 2

1

)
=Φ (−2) = 0.023 ≈ 2% (6.7)
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Alternatively, note that failure occurs when the water level exceeds 5 m,
and thus the probability of failure is just the probability that the water level
is greater than 5 m. This can be computed from the tables in Appendix A
by first standardising the water level variable by setting z = (S − μS)/σS =
(S − 3)/1. The probability of failure is then the probability that S > 5, or
that z > 2. In other words, from Table D in Appendix A, the probability of
failure is 0.023.

Thus, the probability of failure is approximately 2% per month. This is
about half the probability of failure of the structure in Example 5.1. The
reason why the probability is smaller in this case is because the variance of
the reliability function G is less while the mean is the same. There is thus
less area under the probability density curve to the left of the y-axis (viz.
Figure 5.6).

Example 6.3. Scour around bridge piers

Statement of problem – Local scour around bridge piers can undermine the
foundations and lead to collapse (Figure 6.4). Given the following hydraulic
and sediment information, estimate the mean and variance of the scour
depth. The pier width is 3.0 m, the channel slope is S ∼ N(0.002, 0.0004),
the depth Y has exponential density with parameter 0.2, the roughness
coefficient has a uniform distribution between 0.02 and 0.05, and the
sediment grading is W ∼ N(4, 2). It may also be assumed that S, Y, b
and n are independent. The failure criterion is not defined in this case,
but would be a depth of scour considered to compromise the integrity of
the bridge pier foundation. To estimate the scour depth we use Johnson’s
formula (Equation 6.3) and Manning’s formula (Equation 6.2) for the
velocity. The basic variables are those required to evaluate Johnson’s
formula.

Pier 

Foundation

Variable bed level

Figure 6.4 Illustrating uncertainty in scour depth.
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The method of solution will be to use Equation (3.64) to estimate the
mean and variance of the scour from the partial derivatives. This is a Level
2 type approach, and will yield an approximate solution.

Solution. Substituting Manning’s formula into the expression for the
Froude number (Equation 6.1) gives

Fr = S1/2Y1/6n−1g−1/2

Thus, the scour depth, D, in Johnson’s formula, can be written as

D = 1.59b0.98Y0.055S0.105n−0.21W−0.24 (6.8)

From Equation (3.56) note that the mean and standard deviation of Y are
5 m and

√
5 m, respectively. The mean and standard deviation of the rough-

ness coefficient are 0.03 and 0.0087 (see Equation 2.30). To use Equation
(3.64) to calculate estimates of the mean and variance of D requires the first
and second derivatives, evaluated at mean values:

∂D
∂y

∣∣∣∣
μ

= 1.59 × 0.055b0.98μY
−0.945μS

0.105μn
−0.21μW

−0.24 = 0.04245

∂D
∂s

∣∣∣∣
μ

= 1.59 × 0.105b0.98μY
0.055μS

−0.895μn
−0.21μW

−0.24 = 202.16

∂D
∂n

∣∣∣∣
μ

=−1.59 × 0.21b0.98μY
0.055μS

0.105μn
−1.21μW

−0.24 =−23.11

∂D
∂w

∣∣∣∣
μ

=−1.59 × 0.24b0.98μY
0.055μS

0.105μn
−0.21μW

−1.24 =−0.2311

∂2D
∂y2

∣∣∣∣
μ

=−1.59x0.052b0.98μY
−1.945μS

0.105μn
−0.21μW

−0.24 = 0.00801

∂2D
∂s2

∣∣∣∣
μ

=−1.59 × 0.094b0.98μY
0.055μS

−1.895μn
−0.21μW

−0.24 =−90477.5

∂2D
∂n2

∣∣∣∣
μ

= 1.59 × 0.254b0.98μY
0.055μS

0.105μn
−2.21μW

−0.24 = 798.68

∂2D
∂w2

∣∣∣∣
μ

= 1.59 × 0.298b0.98μY
0.055μS

0.105μn
−0.21μW

−2.24 = 0.07174

where μY,μS,μn and μW are the mean of Y,S,n and W, respectively. The
first-order estimate of the mean scour depth is obtained by substituting the
mean values of the variables into Equation (6.8):

E(D) ≈ 3.85
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The second-order estimates of the mean and variance are given by

E(D) ≈3.85 + 0.5(0.00801 × 5 − 90477.5 × 0.00042 + 798.68

× 0.00872 + 0.07174 × 22) = 4.036m

Var(D) ≈0.042452 × 5 + 202.162 × 0.00042 + ( − 23.11)2 × 0.00872

+ ( − 0.2311)2 × 22 = 0.270m2

Example 6.4. Overflow of flood embankment

Statement of problem – In the early stages of the development of reliabil-
ity theory, the ‘factor of safety’ was often used to define the reliability of
a structure (see Section 5.5). The factor of safety was defined as the ratio
of the assumed nominal values of strength and loading. Considering the
strength and loading to be random variables R and S, respectively, the fac-
tor of safety may be written as Z=R/S. R and S are described by probability
distributions and, through the techniques described in Chapter 3, the distri-
bution of Z may also be found. The probability of failure is then given by
the probability that the loading is greater than the strength, or Z < 1. Con-
sider an embankment whose crest level is R and water levels are S, where R
and S are independent log-normal variables, with means and standard devi-
ations of μR =9.0m,μS =6.7m,σR =1.0m and σS =1.5 m, respectively. The
failure criterion is thus that the water level exceeds the crest level, and these
two variables are the basic variables of the problem. Find the probability
that the water level exceeds the embankment crest. We are given informa-
tion about the probability distributions of the basic variables, so a Level 2
approach is an appropriate method of solution.

Solution. We write Z = R/S, and determine the probability that Z < 1.
It is left as an exercise for the reader to show that, if R and S are log-

normal, then so is Z. Now, ln (Z) = ln (R) − ln (S), so (from Equation 3.59)

μln (Z) =μln (R) −μln (S) = ln (μR) − 0.5 ln
[
1 + (σR / μR)

2
]− ln (μS)

+ 0.5 ln
[
1 + (σS / μS)

2
]

Similarly,

σ 2
ln (Z) = σ 2

ln (R) + σ 2
ln (S) = ln

[
1 + (σR / μR)

2
]+ ln

[
1 + (σS / μS)

2
]

Since ln(Z) is normally distributed, with mean μln (Z) and standard devi-
ation σln (Z), the random variable [ ln (Z) − μln (Z)]/σln (Z) is a standard normal
variable. Therefore, the probability of failure may be found as:

Pf = FZ(1) =Φ

(
ln (1) −μln (z)

σln (Z)

)
=Φ

(
−μln (z)

σln (Z)

)
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Substituting the numerical values in for the mean and standard deviations
yields

μln (Z) = ln (9.0) − 0.5 ln
[
1 + (1.0 / 9.0)

2]− ln (6.7)

+ 0.5 ln
[
1 + (1.5 / 6.7)

2]
=2.197 − 0.00615 − 1.902 + 0.0245

=0.3134

σ 2
ln (Z) = ln

[
1 + (1.0 / 9.0)

2]+ ln
[
1 + (1.5 / 6.7)

2]
= 0.0123 + 0.0489 = 0.0612

The probability of failure is thus Pf = Φ( −0.3134/0.2474) =
Φ(−1.267) = 1 −Φ(1.267) ≈ 1 − 0.898 ≈ 0.1.

Example 6.5. Irrigation scheme

Statement of problem – An irrigation scheme has a demand Y of water from
a river (Figure 6.5). The mean demand is 15 units, with a standard deviation
of 5 units, which accounts for variations in water supply due to rainfall
variability. The mean quantity of water available for abstraction, X, is 20
units, with a standard deviation of 3 units, which accounts for the seasonal
hydrological variability. Due to the link between hydrology and climate, the

Reservoir

River

Agricultural
land 

Figure 6.5 Illustrating abstraction from a river plus an additional reservoir to
smooth out peaks in demand and supply.
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natural water availability often tends to decrease when demand increases,
so that the random variables X and Y are negatively correlated, with an
estimated correlation coefficient of −0.6. If both X and Y are normally
distributed, what is the reliability of the system? If, subsequently, a reservoir
is constructed that weakens the correlation between supply and demand to
−0.2, what effect does this have on the reliability? What is the result of
ignoring the correlation?

The failure criterion is that the water demand exceeds the water supply.
The basic variables are water demand and supply. Information about the
distribution and correlation between the basic variables is provided, so a
Level 2 type method of solution is appropriate.

Solution. The reliability function may be written as G = X − Y. As X
and Y are both normally distributed, so is G (see Examples 3.9 and 3.13).
Furthermore,

μG =μX −μY = 20 − 15 = 5

and

σG = (σ 2
X − 2ρXYσXσY + σ 2

Y

)1/2 = (25 − 2 × ( − 0.6) × 5 × 3 + 9)
1/2

= 7.21units

The probability of failure, Pf , is

Pf = FG(0) =Φ

(
− 5

7.21

)
= 1 −Φ (0.693) ≈ 1 − 0.755 = 0.245

The reliability of the system is 1 − Pf = 0.755, or 75.5%.
If the correlation is then altered to −0.2 by the construction of a reservoir,

the mean values remain the same, but the standard deviation becomes

σG = (σ 2
X − 2ρXYσXσY + σ 2

Y

)1/2 = (25 − 2 × ( − 0.2) × 5 × 3 + 9)
1/2

= 6.08units

The probability of failure, Pf , is then

Pf = FG(0) =Φ

(
− 5

6.08

)
= 1 −Φ (0.822) ≈ 1 − 0.794 = 0.206

The reliability of the system is 1 − Pf = 0.794, or 79.4%. Thus, the
construction of a reservoir to alter the correlation properties does not have
a very large impact in this case. Should the correlation between the variables
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be ignored, that is, by setting ρXY = 0, then the standard deviation of G is
given by:

σG = (σ 2
X + σ 2

Y

)1/2 = (25 + 9)
1/2 = 5.83units

The probability of failure Pf is then estimated as

Pf = FG(0) =Φ

(
− 5

5.83

)
= 1 −Φ (0.858)≈ 1 − 0.805 = 0.195

The reliability of the system is 1 − Pf = 0.805, or 80.5%. Thus, in this
case, ignoring the correlation leads to an overestimate of the reliability of
the scheme.

Example 6.6. Water quality

Statement of problem – Water quality is important for both bathing water
as well as drinking water. Criteria for safe water have been defined by leg-
islation in many continents, including Europe and America (e.g., Council
Directives 1975, 1991, EPA 2007). This example provides an illustration
of how reliability methods can be applied to such issues. For the sake of
argument, the quantity of phytoplankton (algae) present in the water is
used as the critical variable. The quantity of phytoplankton will depend on
the availability of nutrients, temperature, daylight, and depredation due to
death and grazing by zooplankton. Here, a simple model for the growth of
phytoplankton is used, which is a linear function of nutrient concentration
X1, temperature X2 and solar radiation X3, and depredation as a constant
value a0, with units of mg/m3. We take X1 ∼ N(100 mg/m3, 75 mg/m3),
X2 ∼ N(16◦C, 6◦C) and X3 ∼ N(130 W/m2, 70 W/m2). Temperature and
solar radiation are highly positively correlated, as the water will heat up
when the sun shines and cool down when it does not, with ρ23 = 0.75.
A weak negative correlation is observed between temperature and nutri-
ent concentration, and between solar radiation and nutrient concentration,
as phytoplankton absorb nutrients when they grow and release them to
the water when they die, with ρ12 = −0.1 and ρ13 = −0.4. The equation
describing the phytoplankton concentration, P, is given by

P(X1,X2,X3) = a1X1 + a2X2 + a3X3 − a0 (6.9)

where a1 = 0.05, a2 = 0.08 mg/(m3◦C), a3 = 0.01 mg/(mW) and a0 =
1.5 mg/m3. This is a great oversimplification, and the interested reader is
directed to textbooks on this subject for further details (e.g., James 1993).
The failure criterion is that the phytoplankton concentration exceeds a
specific value that is considered harmful, say P0 =12 mg/m3. The basic vari-
ables, water temperature, nutrient concentration and solar radiation, are
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described by probability density functions, and therefore a Level 2 method
of solution will be appropriate.

Solution. The reliability function may be written as

G = P0 − (a1X1 + a2X2 + a3X3 − a0)

= P0 + a0 − a1X1 − a2X2 − a3X3

Failure occurs when G < 0. Now, G is a linear function of the basic vari-
ables, which are normal with known correlation properties. The reliability
index may be calculated using Equation (5.17)

Thus,

β = P0 + a0 − a1μ1 − a2μ2 − a3μ3√
3∑

i=1

3∑
j=1

aiajρijσiσj

= 12 + 1.5 − (0.05).100 − (0.08).16 − (0.01).130√
0.052 × (75)2 + 0.082 × (6)2 + 0.012 × (70)2 + (2) × (0.05) × (0.08) × ( − 0.1) × (75) × (6)
+(2) × (0.05) × (0.01) × ( − 0.4) × (75) × (70) + (2) × (0.08) × (0.01) × (0.75) × (6) × (70)

= 5.92√
14.06 + 0.23 + 0.49 − 0.36 − 2.1 + 0.50

= 5.92
3.58

=1.654

The probability of failure is, therefore,

Pf = FG(0) =Φ (−1.654)= 1 −Φ (1.654)≈ 1 − 0.951 = 0.049

The probability that the phytoplankton concentration exceeds the allow-
able value is 0.049, or about 5%.

Example 6.7. Scouring of a river bed

Statement of problem – consider a wide channel of uncertain cross-section,
with R ∼ U(4, 8), where the slope and roughness are random variables
with S ∼ U(0.0015, 0.0045) and n ∼ Rayleigh(0.03). Sediment transport
occurs if the flow velocity exceeds the critical shear velocity Vc. However,
this is known only imprecisely, and Vc ∼ exponential(1.5). Determine the
probability that scour occurs.

Solution. It is assumed that the basic variables, Vc, S, n and R, are inde-
pendent. The failure criterion is simply that the flow velocity exceeds the
critical value. It would be possible, in principle, to determine the distribution
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function of the reliability function, and thence determine the probability of
it being less than zero. Here, given that the reliability function is nonlinear
and the variables are correlated and non-normal, an approximate Level 2
method of solution is used.

Now, R ∼ U(4, 8), and the roughness n and slope S are known. From
Equation (6.2a),

V = S1/2R2/3

n
≡ AR2/3 (6.10)

The reliability function may be written as

G = Vc − V = Vc − S1/2R2/3

n
(6.11)

which is a nonlinear function of non-normal variables. One could use an
iterative Level 2 method, but here the use of the point estimation method
(PEM) is illustrated.

G is a function of four random variables. Thus, values of G are required
at 2m ≡ 24 = 16 points. Following Equations (5.50–5.53), these points
are zk = G(μ1 + ε1kσ1,μ2 + ε2kσ2, . . . ,μm + εmkσm), and are summarised in
Table 6.1, with the obvious shorthand. The means of Vc, S, R and n are
written as μ1,μ2,μ3 and μ4 etc.

Table 6.1 Points for PEM and corresponding values of G

Z1 = G(μ1 + σ1,μ2 + σ2,μ3 + σ3,μ4 + σ4) −2.256
Z2 = G(μ1 − σ1,μ2 + σ2,μ3 + σ3,μ4 + σ4) −3.590
Z3 =+−++ −2.256
Z4 =−−++ −3.589
Z5 =++−+ −1.322
Z6 =−+−+ −2.656
Z7 =+−−+ −1.322
Z8 =−−−+ −2.655
Z9 =+++− −10.415
Z10 = − + +− −11.750
Z11 = + − +− −10.412
Z12 = − − +− −11.745
Z13 = + + −− −7.358
Z14 = − + −− −8.692
Z15 = + − −− −7.356
Z16 = − − −− −8.690
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Table 6.2 Summary of basic variables

Variable Distribution Mean Standard deviation

Vc Exponential(0.6) 1/1.5 = 0.6666 0.6666
S U(0.0015, 0.0045) 0.003 7.5 × 10−7

R R ∼ U(4, 8) 6 1.3333
N Rayleigh(0.03) 0.03 × (π/2)1/2 = 0.0376 0.03×√

[2− (π/2)]=
0.020

From Equation (5.52) the moments of G are estimated by

E(Gr) =
16∑

k=1

θkzr
k

where θk = 1/16, as the basic variables are independent. To evaluate the zk,
the means and standard deviations of the basic variables are required. These
are summarised in Table 6.2.

Using these, the values for zk shown in the second column in Table 6.1
are obtained from direct calculation. Expressions for the mean and variance
of G then follow as:

E(G) = 1
16

[−2.256 + ( − 3.590) + . . . + ( − 8.690)] (6.12)

=−96.1
16

=−6.00

Var(G) = 1
16

[
( − 2.256)2 + . . . + ( − 8.690)2

]− E(G)2 (6.13)

= 800
16

− 36.0 = 14.0

The reliability index is thus μ/σ = −0.428 and the probability of failure
is �( −β) =�(0.428) = 0.667. The probability of failure is very high in this
case, ∼ 67%, which means that scouring of the river bed is very likely.

6.3 Coastal flood defences

6.3.1 Introduction

Property and farmland close to the shoreline may be exposed to signifi-
cant flood risk and have high value. Levels of flood protection vary from
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country to country. For example, in The Netherlands, where two-thirds of
the country is below storm surge level, large rural areas may be protected
by defences designed to withstand the 1 in 10,000 year event, with less
densely populated areas protected to 1 in 4000 years. In the UK, where less
of the country is below sea level, new residential developments are required
to be defended to the 1 in 200 year level. Many design formulae for struc-
tures exposed to waves are underpinned by linear wave theory. This is also
known as ‘first-order theory’ or ‘Airy wave theory’. The essential assump-
tion is that wave heights are small compared with wave length and water
depth. Assume a sinusoidal free surface, η(x, t), that is,

η = H
2

cos 2π

(
x
L

− t
T

)
= H

2
cos
(
kx −ωt

)
(6.14)

and

L = wave length k = 2π

L
= wave number

T = wave period ω = 2π

T
= wave frequency

Figure 6.6 shows the definition sketch for a sinusoidal wave and the def-
inition of variables. Under the assumptions that the fluid is incompressible,
inviscid and irrotational, the Navier-Stokes equations reduce to a Laplace
field equation, which may be solved to find expressions for the horizon-
tal and vertical components of velocity. The solution holds subject to the
condition that:

ω2 = gk tanh kh

Figure 6.6 Definition sketch for a sinusoidal wave.
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Table 6.3 Summary of linear wave equations

Wave parameter General expression
(transitional water
depths)

Deep water
(d/L > 1/4)

Shallow water
(d/L > 1/20)

Surface profile (η) η = H
2

cos (kx −ωt) = H
2

cos θ

Celerity (C = L/T) C = g
ω

tanh (kh) = g
ω

=√gh

Length (L) L = gT
ω

tanh (kh) = gT
ω

= T
√

gh

Group velocity (Cg) Cg = nC

= C
2

[
1 + 4πh/L

sinh4πh/L

] = C
2

=√gh

This describes how the wave frequency is related to the wave number,
and is known as the dispersion relation. The speed of wave propagation, or
wave celerity (sometimes termed the phase speed), c, is given by:

c = L
T

= ω

k
=
(g

k
tanh kh

) 1
2 = g

ω
tanh kh (6.15)

For deep water and shallow water, some simplification of these expres-
sions is possible, and they are summarised in Table 6.3.

The potential energy is Ep = ρgH2L/16 and kinetic energy is Ek =
ρgH2L/16 per unit crest length for one wave length. The total energy E
per unit area is, therefore,

E = ρgH2

8

This can be large, that is, a force 8 gale after 24 hours can give a wave height
of 5 m, corresponding to an energy in excess of 30 kJ/m2.

Wave transformations

The reader will need to be aware of three other important processes. These
are refraction, shoaling and breaking. For detailed discussion the reader is
referred to textbooks on the subject (e.g., Kamphuis 2001, Dean & Dal-
rymple 2002, Reeve et al. 2004). However, a brief explanation is given
here. The process of refraction is the tendency of waves to turn so that
their crests approach almost parallel to the shoreline. This happens because
waves in deeper water travel faster than those in shallow water. If waves are
approaching the shore obliquely, the section of their crest that is in deeper
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water travels faster, thereby making the crest line align more closely with
the seabed contours. Waves can change their height through the process of
shoaling. If a wave propagates into shallower water then, according to Airy
theory, its speed reduces. If the rate at which the wave propagates its energy
is conserved (i.e., there are negligible losses due to friction), then a reduc-
tion in wave speed must be counterbalanced by an increase in wave height,
so that the energy-transmission rate remains unaltered. As waves propa-
gate into shallower water, the process of shoaling leads to increasing wave
heights. This cannot continue indefinitely, and eventually the wave breaks,
dissipating energy through the production of turbulence, heat and sound.
Waves break because their steepness (H/L) becomes very large as the depth
decreases. The fluid velocity at the crest becomes large and the crest topples
because it is unstable. The main limiting factors are:

1 Steepness H/L < 1/7
2 Ratio of height to depth (the breaking index) γ = H/h = 0.78

These criteria are for monochromatic (single frequency) waves rather than
random waves, and should be used as guidance only in design, as in practice
0.4 ≤ γ ≤ 1.2.

Figure 6.7 shows wave transformations at Bigbury Bay, Devon. As a
further complication, waves can break in a number of different ways,
which affects the forces they exert when impinging on a sea defence.

Figure 6.7 Wave transformations at Bigbury Bay, Devon, England (photograph
courtesy of Dr S. M. White).
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Figure 6.8 illustrates the main types of wave transformation that are com-
mon in coastal areas. In coastal situations, the primary limiting factor is
water depth, and many design issues revolve around whether the design con-
ditions should be defined by unbroken, breaking or broken waves. The type

Figure 6.8 Wave transformations: main concepts.
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of breaking may be determined approximately by the value of the Irribarren
number (or surf similarity parameter):

ξb = tanβ√
Hb
Lb

(6.16)

where tan (β) is the beach slope, and Hb and Lb are the wave height and
wave length at the breaking point. The breaker types are defined as follows
(Figure 6.9):

Spilling ξb < 0.4

Plunging 0.4 <ξb < 2.0 (6.17)

Surging ξb > 2.0

Any unidirectional sea state can be described mathematically as being
composed of an infinite series of sine waves of varying amplitude
and frequency. Thus, the surface excursion at any time η(t) may be
represented as

η(t) =
∞∑

n=1

cn cos (ωnt +φn)

where cn are the amplitudes, ωn are the frequencies and φn are phase angles.
Figure 6.10 illustrates how such a summation of waves can build into a
random-looking sea surface.

Note that, from the equation for wave energy (E = ρgH2/8), the wave
energy is proportional to (amplitude)2/2 (with units of m2). Thus, the

Spilling ξb < 0.4

Plunging 0.4 < ξb < 2.0

Surging ξb > 2.0

Figure 6.9 Classification of breaking waves.
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Figure 6.10 Superposition of harmonics to create a random wave train.

spectral energy density function S(f ) (with units of m2s), which is often
expressed in terms of the frequency f = (ω/2π ), may be found from

S(f )�f =
f+�f∑

f

1
2

c2
n (6.18)
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Figure 6.11 Illustration for the definition of commonly used wave parameters.

Table 6.4 Approximate equivalence of some time and spectral domain
wave parameters

Time domain parameter Equivalent frequency domain parameter

Hs Hm0 (approximate)
ηrms m0.5

0 (exact)
Tz Tm02 (approximate)
Ts 0.95Tp (approximate)

Rather than dealing with idealised or empirical energy spectra, many
design formulae are cast in terms of quantities that may be derived from an
analysis of time series, and these have an approximate equivalent in terms
of moments of the energy spectrum. Figure 6.11 and Table 6.4 summarise
some of these quantities and the relationships between the time and spectral
domain parameters, where:

1 Hz (mean height between zero upward crossing);
2 Tz [mean period between zero upward (or downward) crossings];
3 Hc (mean height between wave crests);
4 Tc (mean period between wave crests);
5 Hmax (maximum difference between adjacent crest and trough);
6 Hrms (root-mean-square wave height);
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7 H1/3 (mean height of the highest one-third of the waves), also known as
the significant wave height or Hs;

8 H1/10 (mean height of the highest one-tenth of the waves).

The moments of the energy spectrum are defined as:

mn =
∫ ∞

0

S(f )f ndf

Spectral domain parameters that are defined in terms of the spectral
moments include:

Hm0 = 4(m0)0.5

Tm01 = m0/m1

Tm02 = (m0/m2)0.5

Tp = 1/fp

where fp is the frequency at the maximum value of S(f ).
Frequency domain wave parameters do not have direct equivalent param-

eters in the time domain. However, as a guide, Table 6.4 summarises the
approximate equivalences.

Types of structure

The cross-section of a typical breakwater is shown in Figure 6.12. This type
of breakwater is often referred to as a ‘rubble mound’ breakwater, as the
core, filter and armour layers are composed of randomly placed material.
Its primary aim is to limit wave action and overtopping. The main elements
are the primary armour, which will be designed to withstand the forces of

Port

Core

Wave wall

Filter layerToe scour
protection

Secondary armour

Open sea 

Toe berm 

Primary
armour 

Armour

Figure 6.12 Typical elements of a port rubble-mound breakwater.
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incoming storm waves, and the toe protection, which prevents erosion of
the seabed and undermining of the structure.

Other forms of breakwater are the caisson type, shown in Figure 6.13,
and the solid stone/concrete type, an example of which is shown in
Figure 6.14.

PortOpen sea

1. Sliding

2. Excess bearing pressure

3. Overturning

4. Toe scour

5. Mound failure
6. Foundation failure

Figure 6.13 Illustrative vertical caisson-type breakwater with primary failure
modes.

Figure 6.14 Wave overtopping of a stone/concrete near-vertical seawall at
Aberystwyth, Wales. Note also the return flow of the overtopped water
through the pipe outflow in the wall towards the left-hand end of the
picture (photograph courtesy of Dr Adrián Pedrozo-Acuña).
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Core
settlement

Breakage, sliding, tilting of wave wall

Erosion of armour

Seabed scour and
toe erosion

Berm erosion 

Erosion,
breakage of
armour

Slip failure

Overtopping

Filter instability 

Venting

Subsoil settlement

Figure 6.15 Overview of rubble-mound breakwater failure modes.

As noted in Chapter 1, the failure of the breakwater at Sines, amongst
others, prompted much research into the failure modes of breakwaters.
Figure 6.15 shows some of the main failure modes of rubble mound
breakwaters. Here, two of these are considered in more detail: wave
overtopping and the ability of the primary armour to withstand wave
action.

Of the many formulae developed over the years for defining the size of the
armour units (i.e., to ensure the hydraulic stability of the armour layer), the
most enduring have been those due to Hudson (1959) and Van der Meer
(1988). Hudson developed his formula by laboratory testing with regular
(monochromatic) waves. The formula is:

D3
n50 = H3

KD(ρs/ρw − 1)3 cot (α)
(6.19)

where:

H = characteristic wave height (often taken as Hs when random
waves are considered)

Dn50 = equivalent cube length of median rock
ρs = density of rock
ρw = density of water
α = slope angle of the armour facing the waves

The quantity (ρs/ρw −1) is often written as Δ. Although really superseded
today by the Van der Meer equations, the Hudson formula is still a useful
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Table 6.5 KD values for armour on the trunk of a breakwater

Unit Layer thickness in
number of units

Breaking waves Nonbreaking wave

Quarrystone
Rounded 2 1.2 2.4
Angular 2 2.0 4.0
Angular >3 2.2 4.5

Tetrapod 2 7.0 8.0
Dolos 2 15.8∗ 31.8∗

∗ This refers to <5% rocking.

tool for non-extreme conditions, slopes that are within the range which
the original model tests validated (generally slopes of 1:2 or 1:3 and, in
some circumstances, 1:1.5), and also where generally conservative values
are adopted for the KD factors. The strong influence of the armour unit
density is apparent, being within an expression that is raised to the cube
power. Table 6.5 provides recommended KD values for different types of
unit from CERC (1984).

Van der Meer’s equations, which were developed by means of a series
of model tests carried out at the Delft Hydraulics Laboratory, have
become the current ‘standard’ – but are more complicated to apply.
Van der Meer published his results in a monograph entitled ‘Stability
of Cubes, Tetrapods and Accropodes, Design of Breakwaters’, but has
since published many more papers on stability, wave run-up and trans-
mission. A very comprehensive list of references is given at the end of
Section VI of the CEM (see references). Van der Meer’s formula for two-
layered armour on non-overtopped slopes is, for plunging waves (defined
as ξm <ξmc):

Hs

(ρs/ρw − 1)3Dn50
= 6.2S0.2

d P0.18N−0.1
z ξ−0.5

m (6.20)

and for surging waves, with ξm >ξmc

Hs

(ρs/ρw − 1)3Dn50
= 1.0S0.2

d P−0.13N−0.1
z [ cot (α)]0.5ξ P

m (6.21)

where ξm = s−0.5
m tanα and ξmc ={6.2P0.31( tanα)0.5}1/(P+0.5)



186 Risk and reliability

and:

Hs = significant wave height in front of the breakwater.
Dn50 = equivalent cube length of median rock (M50 = ρsD3

n50)
ρs = density of rock or concrete unit
ρw = density of water
Sd = relative eroded area or damage level
P = notional permeability
Nz = number of waves
α = slope angle of the seaward facing slope
sm = wave steepness = Hs/Lom

Lom = deepwater wave length corresponding to mean wave period.

Typical ranges for parameters P,Sd and rock density are: 0.1 ≤ P ≤
0.6, 0.005 ≤ Sd ≤ 0.06 and 2000 kg/m3 ≤ ρs ≤ 3100 kg/m3.

Overtopping formula

The estimation of wave overtopping volume is important, not just for
harbour breakwaters, but also for coastal flood defences.

Figure 6.16 shows a typical arrangement of a coastal flood defence,
together with definitions of some of the most important variables. The for-
mula used in the UK for many years, based on laboratory experiments by
Owen (1980) is:

Qm = Q∗TgHs (6.22)

where R∗ = Rc/[Tm(gHs)0.5], Q∗ = A exp (−BR∗/r), and A and B are empiri-
cally derived coefficients given in Table 6.6 (for straight slopes only).

Still water
level

Cw

h

Rc Hs

Figure 6.16 Definition of terms for wave overtopping. The still water depth is h, the
significant wave height Hs, the crest width Cw and the freeboard Rc.
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Table 6.6 Owen’s coefficients for simple slopes

Seawall slope A B

1:1 7.94×10−3 20.1
1:1.5 8.84×10−3 19.9
1:2 9.39×10−3 21.6
1:2.5 1.03×10−3 24.5
1:3 1.09×10−2 28.7
1:3.5 1.12×10−2 34.1
1:4 1.16×10−2 41.0
1:4.5 1.20×10−2 47.7
1:5 1.31×10−2 55.6

This formula appears in the recently published EurOtop manual, which
presents an integrated set of results for overtopping drawn from across
Europe (EurOtop 2008).

6.3.2 Examples

Example 6.8. Tsunami warning

Statement of problem – For a tsunami warning system there is a need to esti-
mate wave travel times from an earthquake region to a distant shoreline.
The seabed levels are known reasonably well, but with some uncertainty.
The mean undisturbed water depth that a tsunami wave experiences while
propagating to a distant coast is 40 m. Variations about this depth due
to undulations in the seabed may be described by a uniform distribution
U(−10, 10). The distance travelled by the tsunami from its point of gen-
eration to the coast is 4000 km. Determine the distribution of the tsunami
propagation speed, and thus the uncertainty in arrival time. No failure cri-
terion is specified, but the result will provide a measure of uncertainty in
estimates of the arrival time of the tsunami, and hence the amount of time
available for warning and preparation. The basic variable is water depth,
which is described by a probability density function. The method of solu-
tion will be to calculate the probability density function of a transformed
variable.

Solution. Tsunami waves have a very long wave length (many kilome-
tres), so in the case above they may be considered to be shallow-water
waves as their wave length is much greater than the water depth. To a
good degree of approximation, it may be described as a shallow-water wave
with wave speed, c = √

(gh), where h is the water depth. The water depth
may be described by a U(30, 50) distribution. The problem is to determine
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h3 50

1/20

c√(30g)

√(1/2g)

√(3/10g)

√(50g)

Figure 6.17 Illustration of the transformation of the water depth density function
to the wave speed density function.

the probability density of c, given the probability density of h, and the
relationship between c and h. Referring to Example 3.5, we see that

fc(c) =
fh

(
c2

g

)
√

g/4h
=
⎧⎨
⎩2

c
g

fh

(
c2

g

) √
30g ≤ c ≤√50g

0 otherwise

but fh(c2/g) is just a uniform distribution so the distribution of c is actually
linearly increasing over the given range. Figure 6.17 illustrates the trans-
formation of distributions. The result of the change in distribution means
that, although the tsunami speed obtained by using the midpoint of the
range of possible speeds is {√(50g) + √

(30g)}/2 = 19.66 m/s, the majority
of the area under the probability density function (and thus the probabil-
ity of occurrence) lies slightly to the right of this value. The median value
of the tsunami speed (the value of c for which the integral of its density
function equals 0.5) is given by

√
(40g) = 19.81 m/s. The propagation time

using the two speeds, respectively, is 4, 000, 000/19.66 = 56.52 hours and
4, 000, 000/19.81 = 56.09 hours. As the distribution is skewed, using the
mean value rather than the median value in this case results in a smaller
value of the speed and thus travel time. The difference is not great, but
in the case of a tsunami, an extra half an hour could be extremely valu-
able in terms of saving people and property. When dealing with skewed
distributions, using the median rather than the mean provides a ‘fairer’ rep-
resentation of the ‘typical’ value, as there is a 50% chance that a value
obtained at random will be smaller than the median.

Example 6.9a–d. This group of examples covers a rock armour stability
problem, a variation on this, and solutions of these obtained with iter-
ative and PEM methods in both cases. The initial problem follows the
development given by Burcharth (1992).
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a Statement of problem – It is required to assess the stability of a
breakwater rock armour layer using Hudson’s formula, where KD =
4, cot (α) = 2 and Δ = 1.6. These variables are taken to be exact, but
uncertainties in them are accounted for by a single multiplicative fac-
tor A, which has an N(1, 0.18) distribution. It is also given that
Hs ∼ N(4.4, 0.7) and Dn ∼ N(1.5, 0.1), and that the variables are inde-
pendent. The failure criterion is that the rock size is no longer able
to maintain stability against the wave conditions. Rewriting Hudson’s
formula as a reliability function yields:

G = ADn50�[KD cot (α)]1/3 − Hs

The basic variables are A,Dn50 and Hs. As these variables are described
by probability distributions, a Level 2 approach is appropriate. The
reliability function is a nonlinear function of the basic variables, so an
iterative method will be used.

Solution. The failure surface corresponding to the reliability function
is, for KD = 4,

1.59ADn50� cot (α)1/3 − Hs = 0

Using the transformation (Equation 5.16), and writing X1 for A, X2 for
Dn50 and X3 for Hs, the failure surface in the normalised coordinate
system is given by:

(1 + 0.18z1) × 1.6 · (1.5 + 0.1z2) × 21/3 × 1.59 − (4.4 + 0.7z3) = 0

or

0.864z1 + 0.32z2 + 0.058z1z2 − 0.7z3 + 0.4 = 0

One of the alternative iterative solution methods is now illustrated. Sub-
stituting zi =βαi in the above, following the Hasofer–Lind definitions in
Chapter 5, gives

β = −0.4
0.864α1 + 0.32α2 + 0.058α1α2β − 0.7α3

By use of Equations (5.21)–(5.29):

α1 =− (0.864 + 0.058βα2)
K
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α2 =− (0.32 + 0.058βα1)
K

α3 = 0.7
K

and

K =√(0.864 + 0.058βα2)2 + (0.32 + 0.058βα1)2 + (0.7)2

The iteration is now initiated by choosing starting values for β,α1,α2,
and α3, and then calculating new values until convergence is achieved.
This process is shown in Table 6.7 below. Convergence tends to be faster
if α values related to loading variables are positive and those relating to
resistance variables are negative.

The probability of failure is then

Pf =Φ( −β) =Φ( − 0.341) = 0.367

The design point coordinates in the normalised z-coordinate system
are (zd

1, zd
2, zd

3)= (βα1,βα2,βα3)= (−0.255,−0.091,0.208). Inverse trans-
forming these back to the original ‘X’-coordinates gives (Ad, Dd

n50, Hd
s )=

(0.954, 1.491, 4.546). The α values give the relative importance of the
random variables to the failure probability. Table 6.8 shows that the
uncertainty related to the stone size is of relatively little importance
in comparison to the uncertainties in wave height and the uncertainty
factor A.

In itself, this result suggests that most effort should be put into the
careful estimation of the wave heights, and assessing the suitability of
the underlying stability formula.

b Statement of problem – With exactly the same conditions as in Exam-
ple 6.9a, estimate the probability of failure using PEM. The failure
criterion is exactly the same, as are the basic variables. The method of

Table 6.7 Iteration of variables for Example 6.9a

Iteration number

Initial value 1 2 3

β 3.0 0.438 0.342 0.341
K 1.144 1.149 1.149
α1 −0.50 −0.744 −0.747 −0.747
α2 −0.50 −0.263 −0.266 −0.266
α3 0.50 0.612 0.609 0.609
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Table 6.8 Relative importance of basic variables
to the probability of failure

i Variable (Xi) αi (αi)2 (%)

1 A −0.747 55.8
2 Dn −0.266 7.1
3 Hs 0.609 37.1

solution is specified as PEM. There are three basic variables, which are
independent, and hence the three-variable version of the PEM algorithm
suitable for independent variables is used.

Solution. G is a function of three random variables, and hence eval-
uation at 2m ≡ 23 = 8 points will be required. Following Equations
(5.50)–(5.53), these points are zk = G(μ1 + ε1kσ1,μ2 + ε2kσ2,μ3 + ε3kσ3),
and are summarised in Table 6.9, with the obvious shorthand. Also, the
means of A, Dn50 and Hs have been written as μ1,μ2 and μ3 etc.

From Equation (5.52) the moments of G are estimated by

E(Gr) =
16∑

k=1

θkzr
k

where θk = 1/8, as the basic variables are independent. Estimates of the
mean and variance of G are then obtained as follows:

E(G) = 1
8

[0.951 + (− 0.895) + . . . + (− 0.021)] = 3.26
8

= 0.408

Var(G) = 1
8

[(0.951)2 + . . . + (− 0.021)2] − E(G)2

= 12.089
8

− 0.166 = 1.345

Table 6.9 Points for PEM in Example 6.9b

Z1 = G(μ1 + σ1,μ2 + σ2,μ3 + σ3) 0.951
Z2 = G(μ1 − σ1,μ2 + σ2,μ3 + σ3) −0.895
Z3 =+−+ 0.195
Z4 =−−+ −1.421
Z5 =++− 2.351
Z6 =−+− 0.505
Z7 =+−− 1.595
Z8 =−−− −0.021
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The reliability index is thus μ/σ = 0.303 and the probability of
failure is Φ(−β) = 1 − Φ(0.303) = 0.382. This is very close to the value
computed using the iterative method in part (a) of this example. This
method is also much quicker to evaluate, and does not require iteration.
However, it gives neither the design point nor any indication of which
variables are contributing most to the probability of failure.

c Statement of problem – We have exactly the same conditions as in
Example 6.9a, except that the distribution function for the wave heights
is taken to be a Gumbel distribution, with the same mean and standard
deviation as before. This is more realistic than the assumption of nor-
mality, as for storm conditions wave heights may be expected to follow
an extreme distribution. The failure criterion is exactly the same, as are
the basic variables. The basic variables are all described by probability
density functions, so a Level 2 approach is suitable. The difference from
Example 6.9a is that one of the basic variables is not normal. Therefore,
the method of solution will require a modified version of the iterative
technique.

Solution. The Gumbel distribution is given in Equation (4.5). The val-
ues of the mean and standard deviation, 4.4 m and 0.7 m, respectively,
determine the parameters of the Gumbel distribution as μ=4.08 m and
σ =0.546 m. These are required later in the iteration to transform from
the Gumbel to the normal distribution. The working now proceeds as
before, but with a modified mean and variance for the wave height
variable. The failure surface in the normalised coordinate system is
given by:

(1 + 0.18z1) × 1.6 × (1.5 + 0.1z2) × 21/3 × 1.59 − (μ′
x3

+ σ ′
x3

z3) = 0

or

0.864z1 + 0.32z2 + 0.058z1z2 − σ ′
x3

z3 + (4.8 −μ′
x3

) = 0

Substituting zi =βαi in the above, gives

β = −(4.8 −μ′
x3

)

0.864α1 + 0.32α2 + 0.058α1α2β − σ ′
x3

α3

By use of Equations (5.21)–(5.29):

α1 =− (0.864 + 0.058βα2)
K

α2 =− (0.32 + 0.058βα1)
K
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α3 = σ ′
x3

K
and

K =
√

(0.864 + 0.058βα2)2 + (0.32 + 0.058βα1)2 + (σ ′
x3

)2

From Equation (5.32),

xd
3 = F−1

G [Φ (βα3)]

and from Equations (5.33) and (5.34)

σ ′
x3

= φ
[
Φ−1

(
FG(xd

3)
)]

fG(xd
3)

and

μ′
x3

= xd
3 −Φ−1

[
FG(xd

3)
]× σ ′

x3

The iteration now proceeds as follows. First, choose starting values
for α1,α2,α3 and β. Next, find xd

3, and then μx3
′ and σx3

′ . Then find the
new value of β, and update α1,α2 and α3, and so on, until convergence
is achieved. The results of this procedure are shown in Table 6.10.

The probability of failure is then

Pf =Φ( −β) =Φ( −0.457) = 0.324

The design point coordinates in the normalised z-coordinate sys-
tem are (z1

d, z2
d, z3

d)= (βα1,βα2,βα3)= (−0.342,−0.12,0.277). Inverse
transforming these back to the original ‘X’-coordinates gives

Table 6.10 Iterations for Example 6.9c

Iteration number

Initial
value

1 2 3 4 5 6 7

β 3.0 1.717 0.553 0.569 0.463 0.461 0.457 0.457
K 1.295 1.363 1.165 1.155 1.144 1.143 1.143
α1 –0.5 −0.629 −0.629 −0.735 −0.742 −0.749 −0.749 −0.750
α2 –0.5 −0.199 −0.220 −0.254 −0.260 0.262 −0.262 −0.263
α3 0.5 0.772 0.754 0.627 0.619 0.609 0.608 0.607

xd
3 5.359 4.568 4.525 4.475 4.471 4.469 4.469

σ ′
x3 1.0 1.027 0.731 0.715 0.697 0.695 0.694 0.694

μ′
x3 3.0 4.033 4.139 4.264 4.270 4.275 4.276 4.276
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(Ad,Dn50
d, Hd

s ) = (0.934, 1.474, 4.468). In this case, the change in the
probability density function for wave heights has not altered the
probability of failure very much, reducing by only a few per cent.

d Statement of problem – With exactly the same conditions as in Exam-
ple 6.9c, estimate the probability of failure using PEM. The failure
criterion is exactly the same, as are the basic variables. The method of
solution is specified as PEM. We have three basic variables, which are
independent, and hence the three-variable version of the PEM algorithm
suitable for independent variables is used.

Solution. The PEM requires evaluation of the reliability function G at
specific points defined by the mean and standard deviation of the basic
variables. As the means and standard deviations of all the variables
are the same as in Example 6.9b, the answer is the same, that is, the
probability of failure is �(−β) = 1 −�(0.303) = 0.382.

Example 6.10. Statement of problem – Derive an expression for the proba-
bility of failure of a rock armour revetment using Van der Meer’s formula.
Use this to calculate, using the MVA method, the probability of fail-
ure for the specific conditions given below. Assume that a, b,�, Sd, Hs, Tm

and Dn50 are independent random variables with a = N(6.2, 0.62), b =
N(0.18, 0.02),� = N(1.59, 0.13), Hs = N(3, 0.3), Dn50 = N(1.30,0.03), Sd =
8, cot (θ )=2.0, and the number of waves equal to 2000. The failure criterion
is that the wave conditions cause unacceptable damage to the revetment.
The basic variables are a and b. The formulae parameters are �, the relative
density; Sd, the relative eroded area; Hs, the significant wave height; Tm, the
mean wave period; and Dn50, the nominal rock diameter. These are defined
by probability distributions; therefore a Level 2 method of solution will be
appropriate.

Solution. The response function is taken to be Van der Meer’s (1988a)
formula for armour stability under deep-water plunging waves. For a given
damage level Sd, the formula provides an estimate of the required nominal
median stone size Dn50. The failure function may be written as

G = R − S = aPbS0.2
d �Dn50

√
cot (α)

( g
2π

)− 1
4 − H0.75 0.5

T0.5
m

N0.1

where Hs is the significant wave height, Tm is the mean wave period, �

is the relative mass density (ρs − ρw) /ρw,a = 6.2 and b = 0.18, with some
uncertainty defined by their probability density functions. The first step is
to calculate the partial derivatives. Performing this analytically gives:

∂G
∂a

= R/a
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∂G
∂Hs

=−0.75S/Hs

∂G
∂Tm

=−0.5S/Tm

∂G
∂Dn50

= R/Dn50

∂G
∂b

= bR/P

∂G
∂�

= R/�

Table 6.11 summarises the results of the MVA calculations, where values are
quoted to two decimal places and hence there may be small discrepancies.
For example, for the variable a(0.62 × 2.63)2 = 2.65, rather than the value
2.64 in the table.

Now,

μG =μR −μs = 4.29

and

σ 2
G =

6∑
i=1

α2
i = 9.64

so σG = 3.11

Therefore, the reliability index β = μG

σG
= 1.383

and the probability of failure is Φ (−β)= 0.034

In this relatively simple case the probability of failure has been calculated
taking into account uncertainty in the parameter values of an empirical

Table 6.11 MVA results for Example 6.10

Variable Mean Standard deviation Partial derivative α2
i

a 6.2 0.62 2.63 2.64
b 0.18 0.02 29.2 0.34
� 1.59 0.13 10.2 1.76
Dn50 1.30 5.00 12.5 0.14
Tm 6.0 2.0 −1.0 3.96
Hs 3.0 0.30 −3.0 0.80
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equation, construction materials and the random nature of waves. In
passing, it is interesting to note that the result is sensitive to the rock size
and density, not just the wave conditions.

Example 6.11. Statement of problem – Given 20 years of 3-hourly mea-
surements of water level, wave height, wave period and wave direction,
determine using PEM the probability distribution of wave overtopping of a
simple seawall with a front-face slope of 1 in 2, a roughness of 0.85 corre-
sponding to stone blockwork, a crest of 10 m, a foreshore of a plane beach
with a slope of 1 in 50 rising to a level of 1 m at the base of the struc-
ture. The failure criterion is not specified, only that the probability density
function of overtopping is required. The basic variables are wave height,
wave period, wave direction, water level, crest level, wall slope and wall
roughness. Various methods of solution are possible, but here the results of
a simulation–structure function approach are described. It is also required
that PEM be used, but this does not provide a probability distribution func-
tion by itself, so an additional step to link the moments obtained from PEM
to a probability density function is required.

Solution. Using Owen’s equation for overtopping, Equation (6.22) may be
recast in the following form for the mean overtopping rate:

Qm = ATmgHs exp [−BRc/(Tm(gHs)0.5)/r] (6.23)

Rc is the freeboard, or the difference between the crest level and the water
level. In principle, all variables in this equation, including g, could have
uncertainty associated with them. The problem is thus to find the proba-
bility distribution of a nonlinear function of six random variables, which
are probably non-normal and possibly correlated. This is a very difficult
problem, and to make progress either simplifying assumptions or numerical
simulation is necessary. One possibility is to use the time series data to calcu-
late a time series of overtopping volumes, corresponding to each set of water
level and wave conditions in the given series. This sequence of overtopping
values can then be analysed using a univariate extremes analysis and a dis-
tribution function with best-fit parameters obtained. This approach has the
advantage of side-stepping any issues of correlation, but requires specific
values of the parameters A and B to be used. The analysis could be repeated
many times over with differing values of A and B to test the sensitivity of
results to uncertainties in these parameters.

Alternatively, marginal extremes analysis of the water levels and wave
heights, combined with suitable assumptions about the wave period and
direction could be used to perform a Level 2 type analysis. PEM could also
be used in this case, although extensive preparatory analysis to determine
the means and variances of the basic variables would be required, together
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Figure 6.18 Cumulative probability curves of overtopping computed from a 30-year
synthetic time series data using: (i) Weibull fit to data; (ii) PEM applied
to extreme wave heights and water levels; (iii) PEM applied to extreme
wave heights, periods and water levels; (iv) the assumption of complete
dependence between wave heights and water levels.

with an estimation of intercorrelations. Figure 6.18 illustrates a compar-
ison of various Level 2 methods and a Level 3 simulation for the case
of wave overtopping of a simple seawall. The plots show the distribution
function of overtopping discharge as determined using different assump-
tions. The assumption of complete dependence between waves and water
levels provides an upper bound (i.e., the largest waves always occur with
the largest water levels). The Level 3 result, obtained by generating a time
series of overtopping rates from the time series of waves and water levels
and then performing a univariate extremes analysis on the series, provides
the least conservative result (labelled ‘control’ in Figure 6.18). Distributions
derived using PEM (two-dimensional using wave height and water level,
and three-dimensional using wave height, wave period and water level) lie
between them. Further details may be found in Reeve (1998, 2003) and
references therein. In passing, it is worth noting that the uncertainty repre-
sented by the different approaches does not provide a designer with much
guidance. For example, taking an overtopping threshold of 100 l/s/m-run,
the control curve and the PEM two-dimensional curve both show the prob-
ability of the overtopping being below this threshold as being close to or at
unity. In contrast, the three-parameter PEM and complete dependence show
probabilities of ∼0.6 and 0.2, respectively.
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Table 6.12 Details of distributions of basic variables in Example 6.12

Basic variable Distribution Mean Standard
deviation

(Percentage
of mean)

Significant wave
height(m)

Normal 3.0 10

Slope angle (◦) None 0.5 –
Rock density kg/m3 Normal 2,650 5
Nominal rock
diameter(m)

Normal 1.3 5

Permeability
parameter

None 0.1 –

Wave steepness Normal 0.05 10
Van der Meer
parameter a

Normal 6.2 10

Van der Meer
parameter b

Normal 0.18 10

Example 6.12. Damage to a rock armour structure (adapted from
Meadowcroft et al. 1995)

Statement of problem – It is required to estimate the probability of exces-
sive damage to a rock armour structure using Van der Meer’s equation.
Uncertainty in the performance of the structure arises from sources such as
variability in rock armour size, errors in estimating design wave height, and
the approximate empirical nature of the design equation. For this exam-
ple we take the distribution functions of the basic variables to be known
and to be normal; these are given in Table 6.12. In practice, the choice of
distributions and their parameters should be estimated against observations.

The failure criterion is that the degree of damage Sd does not exceed a
value of 2, that is, minor damage only. The basic variables are listed in the
first column of Table 6.12. Various methods of solution are possible. In this
case, a Monte Carlo simulation is performed.

Solution. Given the probability density functions in Table 6.12, a Monte
Carlo simulation was set up to generate 6000 values of each of the basic
variables. In the absence of other information, the variables are treated as
being independent. For each of the 6000 sets of values of the basic variables,
the damage levels are calculated using Van der Meer’s formula (Equation
6.20). The 6000 results of these calculations are then used to create a fre-
quency plot and thus an empirical probability density function. This is then
used to generate an exceedance plot (which plots 1 minus the cumulative
distribution function against Sd), which is shown in Figure 6.19.

The ensemble of results have a mean of Sd =3 and a standard deviation of
3.7. The probability distribution shows the predicted damage for a structure
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Figure 6.19 Probability of exceedance of the predicted damage for a structure
designed for minor damage (Sd = 2).

designed for minor damage (Sd = 2), as a probability of exceedance. For
example, the probability of the damage exceeding 6 is about 10%.

6.4 Flow in pipes and drains

6.4.1 Introduction

In this section, problems concerning the flow of fluid in pipes, tanks and
drains are covered. A brief summary of some key equations is given, as well
as introductory material on turbulent flow in pipes. The principle behind
most elementary fluid flow problems is that of energy conservation and mass
conservation. The first is often expressed as Bernoulli’s equation for a unit
weight of fluid:

z1 + V2
1

2g
+ p1

ρg
= z2 + V2

2

2g
+ p2

ρg
+ energy head losses (6.24)

In ideal flow, the energy head losses are zero, but in practice these are
often specified by empirical formulae. In the above equation the indices refer
to two particular points in the fluid, and zi,Vi and pi are the height above a
fixed datum, velocity of the fluid, and pressure, respectively, at point i.

Water is conveyed from its source to treatment plants and then to con-
sumers, usually in pressurised pipes and thence, via unpressurised drains, to
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Figure 6.20 The synthetic hydrological cycle (from Chadwick and Morfett 1999).

sewage treatment plants to return to the rivers and seas through outfalls,
see Figure 6.20.

At the treatment plants, and also to a lesser degree in drains and storm
water containment tanks, a balance between the rate at which water flows in
and the rate at which it flows out must be maintained. If the inflow exceeds
the outflow by too much, the spare capacity in the tank/plant will be used
up and flooding will occur. Conversely, if the outflow is greater than the
inflow, the tank/plant will run dry.
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Figure 6.21 Discharge through an orifice. Left-hand panel – definition of terms
for flow through an orifice in the side of a tank discharging freely to
the atmosphere. Right-hand panel – detail of the flow as it leaves the
tank, illustrating the vena contracta caused by the contraction of the
streamlines as they pass through the plane of the orifice.

At its simplest, a storage tank may be considered to be open to the atmo-
sphere, with drainage achieved through an orifice near the bottom of the
tank. Bernoulli’s equation can be applied to this situation at points 1 and 2
in Figure 6.21.

Neglecting energy losses, we assume the tank is large and the orifice is
small so that, to a good degree of approximation, V1 = 0. If we take atmo-
spheric pressure as our reference pressure, then without loss of generality
we can set p1 = 0, and so p2 = 0. Similarly, taking the level of point 2 to be
the height datum, we have z2 = 0 and z1 = H. Consequently,

V2 =√2gH (6.25)

By conservation of mass, the discharge from the orifice QT should be

QT = AT

√
2gH (6.26)

where AT is the area of the orifice. This equation does not completely reflect
reality because the area of the jet at the vena contracta (see Figure 6.21),
A, is less than the area of the orifice AT. The area of the jet is a function
of the roughness and geometry of the orifice, and is usually described by
a coefficient of contraction, CC = A/AT. This is inserted as a multiplicative
constant on the right-hand side of Equation (6.26). Even with this correc-
tion, an accurate prediction of the discharge is not obtained because we have
assumed there is no energy loss. In practice, the nature of the flow through
the orifice generates turbulence, which dissipates energy. A coefficient of
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velocity, CV = VJ/V2, is introduced to account for this, so that the actual
discharge Q is given by

Q = CVCCA
√

2gH (6.27)

Research into flow in pipes has a long history and is marked by a tension
between those wishing to take a fluid mechanics view and those adopting
a more empirical approach. The formulae that are in widest current use
essentially provide a means of estimating the flow velocity as a function of
the hydraulic radius, the friction slope (the head lost due to friction in a pipe
of a given length), the nature of the flow and various coefficients. One of
the earliest formulae was proposed by the French engineer Chézy when he
was designing a canal for water supply to Paris. This may be written:

V = C
√

RS (6.28)

where C is known as the Chézy coefficient, R is the hydraulic radius and S is
the friction slope. A refinement of this formula related the Chézy coefficient
to the hydraulic radius. This became known as the Manning equation, after
the Irish engineer Robert Manning. In this equation C = R1/6/n, where n is
a coefficient known as Manning’s n. Equation (6.28) thus reads

V = S1/2R2/3

n
(6.29)

Manning’s equation is generally considered to be applicable for fully
turbulent flow (i.e., with Re > 4000). The Darcy–Weisbach equation is a
phenomenological formula developed by the French scientist Henri Darcy,
and further refined into the form used today by Julius Weisbach of Saxony
in 1845. It relates the head loss due to friction hf along a given length of
pipe L to the average velocity of the fluid flow:

hf = λLV2

2gD

where D is the pipe diameter. This can be recast as an equation for velocity:

V =
√

8gRS
λ

(6.30)

where the friction slope S = hf /L and for full pipe flow the hydraulic radius
R = D/4. The friction factor λ (often written as f in US texts) is not a
constant but depends upon the Reynolds number and the hydraulic radius.
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In the 1930s, Colebrook and White performed experiments on non-uniform
roughness and proposed the following relationship:

1√
λ

=−2 log
(

ks

3.7D
+ 2.51

Re
√

λ

)
(6.31)

which is applicable to the whole of the turbulent region for commercial
pipes, where ks is Nikuradse’s coefficient. Using an effective roughness
(ks/D), determined empirically for each type of pipe, Equation (6.31) may
then be solved for λ when Re is known. Finally, for transitional turbulent
flow, 2000 < Re < 4000, the Hazen–Williams equation is used widely in the
water industry:

V = 0.355CHWD0.63S0.54 (6.32)

where CHW is the Hazen–Williams coefficient. Recommended values for the
various coefficients may be found in tables for the design of pipelines.

6.4.2 Examples

Example 6.13. Storm water containment

Statement of problem – A flood storage tank has a volume of 3000 m3.
Flood water flows into the tank at a rate Qin ∼ Rayleigh(1000) m3/h and
drains from the tank through an orifice at a rate QA ∼ Rayleigh(900) m3/h.
Find the probability that the storage tank floods within 3 hours, on the basis
that the tank is initially half full and that the time variation can be treated
as independent hourly events.

The failure criterion is that the net addition of water to the tank exceeds
1500 m3 in 3 hours. The basic variables are the inflow rate and the drainage
rate. We can use the fact that time variation is divided into independent
hour-long blocks. The situation is slightly more complicated than the cases
discussed in Section 5.8.2 because, although the flows in individual time
blocks are independent, they are linked through the cumulative net volume
change in the tank. The method of solution is to use Equation (3.61) to
estimate the mean and variance of the distribution of the volume of water
in the tank, and then determine the probability of failure from these.

Solution. The mean and variance of a Rayleigh (b) variable are b(π/2)0.5

and [2− (π/2)]b2 respectively. So E(Qin)=1253m3, Var(Qin)=429, 200m6,
E(Qout) = 1128m3 and Var(Qout) = 347, 700m6. Write Qin(i) and Qout(i) for
the inflow and drainage rates, respectively, in hour i. The probability of
flooding occurring by the end of the first hour is P[Qin(1)−Qout(1)]>1500;
by the end of the second hour it is P[Qin(1) + Qin(2) − Qout(1) − Qout(2)] >

1500; and by the end of the third hour it is P[Qin(1) + Qin(2) + Qin(3) −
Qout(1) − Qout(2) − Qout(3)] > 1500.
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The Q terms are independent random variables, so we may use Equation
(3.61) to determine the mean and variance of the sum of the inflows and
drainage for the 3 hours as:

E(V) = 3 × 1253 − 3 × 1128 = 375

Var(V) = 3 × 429, 200 + 3 × 347, 700 = 2, 331, 000

The approximate probability of failure is given by:

Φ(−375/
√

2, 331, 000) =Φ(−0.2456) = 1 −Φ(0.2456) ≈ 0.4

Note that this is only approximate, because the sum of the six Rayleigh
distributed variables is not exactly normally distributed. An alternative
would be to calculate the exact distribution function of the sum of six
Rayleigh variables, or to use the approximate distribution transformation
described in Section 5.6.4. However, as the number of variables increases,
so the central limit theorem (see Chapter 3) works in favour of the
approximation that the resultant distribution is normal.

Example 6.14. Storm water containment

Statement of problem – In an emergency flood operation, 100 m3 of water
is pumped, under constant pressure equivalent to a head of 30 m, from a
container through an orifice with area A = 3.0m2, and which has a coef-
ficient of contraction of CC ∼ N(0.7, 0.1) and a coefficient of velocity of
CV ∼ N(0.96, 0.01), both of which may be considered to be independent. If
the water has to be pumped out within 2 seconds, what is the probability of
this not being achieved? The failure criterion is that the water is not pumped
out of the container in under 2 seconds. The basic variables are the coeffi-
cients of contraction and velocity. The distribution functions of the basic
variables and the failure function is nonlinear, so an appropriate method of
solution would be a Level 2 method.

Solution. Let the volume of water to be pumped be V, and the rate at which
it exits the orifice be Q, then the time taken to pump the water is V/Q. The
reliability function may be written as:

G = 2 − V/Q = 2 − 100/CVCCA
√

2gH = 2 − 33.3/CVCC

√
60g (6.33)

or

G = 2 − 1.37CV
−1CC

−1 (6.34)

which is a nonlinear function of the basic variables. As the basic vari-
ables are normal and independent, we will use the Level 2 MVA and FDA
approaches.
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Table 6.13 Summary of the MVA calculations for Example 6.14

Variable Mean Standard deviation Partial derivative α2
i

CC 0.7 0.1 2.91 0.085
CV 0.96 0.01 2.12 0.0004

Thus, with the MVA (Equations 5.14–5.16),

∂G
∂CC

= 1.37CV
−1CC

−2

∂G
∂CV

= 1.37CC
−1CV

−2

Now,

μG =μR − μs = 2 − 2.04 =−0.04

and

σ 2
G =

2∑
i=1

α2
i = 0.0854

The probability of failure is thus Φ(0.04/0.292) = Φ(0.137) = 0.555 (see
Table 6.13).

With the FDA, it is necessary to transform to normalised variables:

z1 = CC − 0.7
0.1

; z2 = CV − 0.96
0.01

and the reliability function becomes:

G = 2 − 1.37(0.1z1 + 0.7)−1(0.01z2 + 0.96)−1

or

0.096z1 + 0.007z2 + 0.001z1z2 − 0.013 = 0 (6.35)

Substituting zi =βαi in the above, following the Hasofer–Lind definitions
in Chapter 5 gives

β = 0.013
0.096α1 + 0.007α2 + 0.001α1α2β
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Table 6.14 Iteration of variables for Example 6.14

Iteration number

Initial value 1 2 3

β 3.0 17.333 −0.135 −0.135
K 0.0873 0.0963 0.0963
α1 −0.50 −1.000 −0.997 −0.997
α2 −0.50 0.019 −0.0741 −0.0741

By use of Equations (5.21)–(5.29):

α1 =− (0.864 + 0.058βα2)
K

α2 =− (0.32 + 0.058βα1)
K

α3 = 0.7
K

and

K =√(0.864 + 0.058βα2)2 + (0.32 + 0.058βα1)2 + (0.7)2

The iteration is now initiated by choosing starting values for β,α1 and α2,
and then calculating new values until convergence is achieved. This process
is shown in Table 6.14. As noted in Example 6.9a–d, convergence tends to
be faster if positive values are used for α values related to loading variables
and a negative sign for those relating to resistance variables. To be contrary,
the starting values of the loading variables are set to a negative value.

The probability of failure is then

Pf =Φ(−β) =Φ(0.135) = 0.553

This is extremely similar to the value estimated using the less accurate
MVA method. In this case, FDA could be used without much loss of accu-
racy. Note also that the coordinates of the z-design point are negative,
indicating that the mean values of the variables lie in the failure region,
and hence a probability of failure greater than 0.5 is not unexpected.

Example 6.15. Investigation of the effect of uncertainty in resistance
coefficients – based on Y. K. Tung (pers. comm.)

Statement of problem – The Manning, Darcy–Weisbach and Hazen–
Williams resistance coefficients are often used in hydraulic calculations and
analyses. In general practice, nominal values of these resistance coefficients



Applications 207

are used on the basis of experience or published literature. By accounting
for the uncertainties inherent in these coefficients, examine the consistency,
from a probabilistic view, as they are applied to steady uniform full flow
in circular pipes, in particular, riveted steel pipes and cast iron pipes. There
is no failure criterion in this case. The basic variables are the resistance
coefficients n, λ and CHW . The question is posed in the form of a research
investigation, but probabilistic methods are mentioned.

Solution. The Manning, Darcy–Weisbach (DW), and Hazen–Williams
(HW) equations are among the most frequently used formulae in hydraulic
analysis of flow in pipes and channels. Their use requires the specification of
the corresponding resistance coefficient, for example, tables in Chow (1959)
for the Manning n, the Moody diagram or Colebrook–White formula for
the Weisbach λ, and King’s handbook (Brater & King, 1976) for CHW . The
formulae can be linked nondimensionally as

V√
gRS

=
√

8
λ

= KnR1/6

n
√

g
= CHW

(
KHWR0.13S0.04

√
g

)
(6.36)

where V is the velocity, S is the friction or energy slope, A is the flow
cross-section area, R = D/4 is the hydraulic radius, with D being the pipe
diameter, g is gravitational acceleration, Kn is a unit conversion factor (hav-
ing the dimensionality of g and a value equal to 1 m1/2/s for SI units or
1.486 ft1/3 − m1/6/s for Imperial units) (Yen 1992), and KHW is the unit con-
version factor for the HW formula, being 0.849 for SI units or 1.318 for
Imperial units.

For a given pipe and material, the uncertainty of the resistance coefficient
values gives rise to uncertainty in the calculation of the discharge or veloc-
ity. Comparison of the Manning, DW and HW formulae can be made in
two ways. One is from the user’s viewpoint, in which a value of the resis-
tance coefficient is chosen for a specific channel or pipe to compute the flow
velocity, discharge or friction slope. In this way the formulae are compared
on the basis of the values of the resistance or roughness coefficients given
in authoritative references, without considering the compatibility of their
ranges and distributions. The other way is to select the range and distri-
bution of the resistance coefficient values of a given formula from which
the statistical features of the resistance coefficient of the other formulae are
determined for comparing with the suggested values in literature. Values of
the Manning n and CHW for different pipe materials can be found directly
in standard hydraulics reference books. The Weisbach friction factor λ, on
the other hand, may be determined from the Colebrook–White formula.

Due to spatial nonhomogeneity of wall roughness and temporal varia-
tions of the flow surface, the values of flow resistance coefficients cannot
be assessed with certainty. In natural or man-made open channels, ranges
of variation in the Manning n for different types of channel boundary
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can be found in Chow (1959) and Zipparro and Hasen (1972). For vari-
ous types of pipe, ranges of the Manning n, pipe wall roughness ks, and
CHW can also be found in literature (Williams & Hazen 1955, Giles 1962,
Zipparro & Hasen 1972, Brater & King 1976, Johnson, 1998). As a result,
the computed average flow velocity, discharge and frictional loss can be
uncertain. By explicitly considering the uncertain nature of the resistance
coefficients, the practical implications of uncertainty in resistance coeffi-
cients on the computed velocity of steady uniform flow in circular pipes
can be determined.

From a user’s viewpoint, an engineer can choose any one of the three flow
equations as shown in Equation (6.36) to compute the discharge or average
flow velocity in a circular pipe for a specified pipe size and design hydraulic
gradient. For a specified pipe diameter and friction slope, the probability
density function associated with the calculated flow velocity from the three
flow formulae can be derived by the transformation-of-variables scheme (see
Chapter 3) as:

hV(vn) = gR(n) × |dn/dvn|
hV(vk) = gR(ks) × |dks/dvk| (6.37)

hV(vc) = gR(c) × |dc/dvc|
where hV( • ) and gR( • ) denote, respectively, the PDFs of a random resis-
tance coefficient and the corresponding flow velocity under consideration;
and vn, vk and vc represent the flow velocities computed from the Man-
ning, DW, and HW formulae, respectively. The derivative terms in | • |
are the Jacobians, which can be easily obtained for the Manning and HW
formulae as

dn
dvn

=−KnR2/3S1/2

v2
n

dCHW

dvc
= 1

KHWR0.63S0.54

and through the chain rule for the DW formula as:

dks

dvk
= ∂ks

∂λ

∂λ

∂vk
=−

(
16gRS

v2
k

)(
2.129D exp (−1.1513/

√
λ

λ1.5

)

Once the PDFs of flow velocity have been determined, their statistical
properties, such as the mean and standard deviation, can be compared to
give a more complete indication of the relative performance of the three
formulae.

Typical ranges of wall roughness, Manning and HW coefficients appear-
ing in the most popular reference work are listed in Table 6.15.
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Table 6.15 Adopted range of resistance coefficients of some selected pipes

Pipe type Lower bound Mode Upper bound

Riveted
steel
pipes

Wall Roughness,1ks

Manning’s,2n
Hazen-Williams,3CHW

0.914 mm
0.013
80

1.829 mm
0.016
110

9.144 mm
0.017
150

Cast
iron
pipes

Wall Roughness,1ks

Manning’s,2n
Hazen-Williams,3CHW

0.122 mm
0.011
100

0.244 mm
0.014
110

0.610 mm
0.016
140

Note: 1from Giles (1962); 2from Chow (1959); 3from Zipparro & Hansen (1972).

For the sake of argument, suppose that each resistance coefficient has a
triangular distribution extending over the respective ranges, i.e.,

gR(r) =

⎧⎪⎨
⎪⎩

2(r − rl)
(ru − rl)(rm − rl)

for rl ≤ r ≤ rm

2(ru − r)
(ru − rl)(ru − rm)

for rm ≤ r ≤ ru

(6.41)

where R is the random resistance coefficient, which can be Manning’s
n, CHW or pipe wall roughness ks; the subscripts l, m and u represent
the lower bound, mode, and upper bound of the random variable. The
mode adopted here corresponds to the design value or typical value in the
literature.

Let us assume that the fluid in the pipe is water with a kinematic vis-
cosity ν = 9.838 × 10−3 m2/s(1.059 × 10−5 ft2

/s) flowing in a circular pipe
subject to a friction slope of S = 0.005m/m. The variations in PDF of the
resulting flow velocity found by applying the three flow formulae to the two
types of pipe are shown in Figure 6.22(a, b) for two different pipe diame-
ters. It is interesting to observe from the figure that the pipe wall roughness
ks-based velocity PDFs in the two different pipe types behave rather differ-
ently from the others. For riveted steel pipes, the PDFs of the flow velocity
(Figure 6.22a) corresponding to the DW and Manning formulae overlap
closely, with the latter formula yielding a slightly more concentrated dis-
tribution. Conversely, the PDFs of flow velocity by the DW and Manning
formulae in cast-iron pipes (Figure 6.22b) are distinctly separated, while the
PDF from the HW formula straddles between them. This gives some indi-
cation of the impact of the uncertainty of published resistance coefficient
values on the flows in the two pipe types.

As shown in Figure 6.22, the PDF of flow velocity in both types of pipe, as
expected, shifts to the right as pipe size increases, indicating an increase in
flow velocity with pipe diameter for fixed friction slope. Further, for a given
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Figure 6.22 Probability density functions for computed flow velocities (in feet per
second) using different resistance coefficients: (a) riveted steel pipe; (b)
cast-iron pipe. Note: Imperial to metric length unit conversion is 1 foot
∼0.3048 m. The labels e, n and c refer to the Darcy–Weisbach, Manning
and Hazen–Williams formulae, respectively.

flow formula, the range of variation in the calculated flow velocity also
widens with pipe size. Although the range of flow velocity can be calculated
in a deterministic way, it cannot provide information with regard to the
likelihood of possible velocity variation within the range as a probabilistic
analysis could do. Information contained in a PDF can be collapsed into a
few pertinent statistical moments. Figure 6.23(a, b) shows the variation of
the mean (solid lines) and the coefficient of variation (dotted lines) of n-, ks-,
and CHW -based flow velocities with respect to pipe size. Figure 6.23a clearly
shows that for riveted steel pipes the mean and coefficient of variation (Cv =
standard deviation/mean) of flow velocity associated with the Manning and
DW formulae are similar, whereas those with the HW formula are much
higher and wider.

For cast iron pipes (Figure 6.23b), the use of the HW and DW formulae
would result in a persistently higher mean flow velocity than that of the
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Figure 6.23 Statistical moments of flow velocities (in feet per second) determined by
different resistance formulae: (a) riveted steel pipe; (b) cast-iron pipe.
The labels e, n and c refer to the Darcy–Weisbach, Manning and Hazen–
Williams formulae, respectively.
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Figure 6.24 Comparison of exceedance probability of flow velocities by different
resistance formulae: (a) riveted steel pipe; (b) cast-iron pipe. The labels
e, n and c refer to the Darcy–Weisbach, Manning and Hazen–Williams
formulae, respectively.

Manning formula. However, the coefficient of variation associated with the
flow velocity determined by the DW formula is persistently smaller than
that of the two other flow formulae. This is consistent with the plots shown
in Figure 6.22.

By adopting the DW formula as the base model, the probability that
the n- or CHW -based velocity is greater than the ks-based velocity, that is,
P(Vn ≥ Vk) and P(Vc ≥ Vk), can be calculated and the results are shown in
Figures 6.24a,b for the two pipe types.

Although the range of variation of n- and ks-based flow velocities are
closer in riveted steel pipes, because the mass of hV(vn) is more concentrated
on the lower velocity range as shown in Figure 6.22a the value of P(Vn ≥
Vk) will be slightly less than 50% (see Figure 6.24a). Relative to the HW
formula, hV(vk) lies within the lower half of hV(vc). This is reflected in
Figure 6.24a, which shows a high probability that the HW formula would
yield larger flow velocity than the DW formula.

The different ranges of probability distributions shown in Figure 6.22
indicate that the ranges of values of n, CHW , and ks from the literature
and given in Table 6.15 are not entirely consistent. Which one is likely
to yield the most accurate computed velocity or discharge depends on the
range values listed for the particular pipe material. Using the suggested wall
roughness for cast-iron pipes in Table 6.15, along with the DW formula,
would very likely yield higher flow velocities than would be obtained using
the Manning formula (Figure 6.24b). This can be explained by referring to
Figure 6.22b, which shows that the great majority of the probability mass in
hV(vk) is on the right-hand side of hV(vn), with very little overlapping area
between the two. If nothing else, this illustrates the uncertainties in pre-
dicting the nature of turbulent flow, and the care required when designing
drains.
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6.5 Maritime and offshore structures

6.5.1 Introduction

In this section problems concerning the stability of floating objects and ship
collisions with structures are covered. A brief summary of the stability of
floating objects is given first, followed by introductory material on ship
damage to offshore structures.

At its simplest, the stability of floating objects reduces to an analysis of
the relative magnitudes and centres of action of the gravitational force and
the buoyancy force acting on an object. The buoyancy force is described by
Achimedes’ principle. This is illustrated in Figure 6.25.

Now,

Fp1 = ρgy πR2

Fp2 = ρg(y + h) πR2

Upthrust = Fp2 − Fp1 = ρgh πR2

i.e., Upthrust = weight of liquid displacement
For floating objects, such as ships, we need to consider the combined

effect of the buoyancy and weight forces. Figure 6.26 shows the force dia-
gram for a stable body, where W is weight and U is upthrust. If the body is
displaced slightly to one side the upthrust no longer acts through the centre
of gravity G. The stability can be analysed by looking at the position of the
metacentre M. The metacentre is the point of intersection of a vertical line

Fp1

Fp2

R 

y

h

Figure 6.25 Forces acting on a floating body – in this case a cylinder of radius R.
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Figure 6.26 Illustration of forces acting on a floating body and the metacentre, M.
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B 

Figure 6.27 Unstable body, with GM < 0 (i.e., pointing downwards), and the
upthrust and weight creating a couple acting to overturn the body.

up from the line of action of the upthrust U and the centre line of the body.
The upthrust acts through the centre of buoyancy, B, which is the centre of
gravity of the displaced liquid. In this case the restoring couple is positive
as M is above G. GM is known as the metacentric height. The couple act-
ing on the body is GMWsin(θ ). Figure 6.27 shows the force diagram for an
unstable body.
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The restoring couple is negative and the metacentre is below G. Thus,
GM is a measure of stability:

GM > 0 => Stable

GM < 0 => Unstable

It can be shown that

BM = I
V

where BM is the distance of the metacentre above the centre of buoyancy, I
is the waterline second moment of area, and V is the displaced volume.

The following relationship may be seen to hold:

BM = BG + GM

where BG is the distance between the centre of buoyancy and the centre of
gravity. It can also be shown that the period of oscillation T is given by

T = 2π

√
IR

W × GM
(6.38)

where IR is the moment of inertia about the roll axis.
The following summarises key elements of the Health and Safety Exec-

utive report on ‘Comparative Evaluation of Minimum Structures and
Jackets’. In recent years there has been a trend to use minimum facility plat-
forms (MFPs) to ‘fast track’ the development of marginal oil and gas fields
in water depths of up to 60 m. Similar structures are also being considered
for deepwater wind farms, for which monopile structures are insufficient.
MFPs are finding favour primarily due to the relatively low fabrication and
installation costs. In contrast to conventional jackets, MFPs have a slender
construction with low stiffness and a low level of redundancy. The HSE
was concerned to understand the potential sensitivities of such structures to
damage caused during design, construction and operation. A project was set
up, described in HSE (2002), to evaluate the reliability of three MFPs, and to
compare the results against those from a conventional four-pile jacket under
extreme loading conditions. The structures considered were: (i) a three-pile
monotower; (ii) a Vierendeel tower; (iii) a braced caisson; and (iv) a four-
pile jacket. The three MFPs are shown in Figure 6.28 and an example of
a four-pile jacket is shown in Figure 6.29. Detailed numerical simulations
were performed to study the performance of these structures against col-
lision from a supply vessel. Following the impact, post-impact pushover
analyses were performed to determine the reduction in pushover capacity



(a)

(c)

(b)

Figure 6.28 The three MFP structures: (a) three-pile monotower; (b) Vierendeel
tower; (c) braced caisson.



216 Risk and reliability

Figure 6.29 The standard four-pile jacket structure.

resulting from the collision. For each structure, analyses were performed
for a range of vessel sizes (500–3500 tonne mass) and impact velocities up
to 2.5 m/s, which covered the expected range of values for operations in
the North Sea fields. The report concludes that MFPs can be made to be as
reliable as conventional jackets by:

• Designing for ship impact to mitigate the risk of damage by considering
the dynamic interaction between vessel and structure;

• Designing critical welds for fatigue lives > 10 times the service life;
• Using a reliability-based approach during design.

Environmental data and soil properties were taken from the Davy field
in the North Sea. The key environmental parameters are summarised in
Table 6.16.
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Table 6.16 Environmental parameters used for design

Water depth including storm surge 36.2 m
100-year return wave height 16.4 m
Period of the 100-year wave 12.6 s
Associated current speed at the surface 0.96 m/s
Associated wind speed (1 hour mean @ 10 m above LAT) 32.2 m/s

Conventional North Sea practice considers ship collision from a 2500
tonne vessel at 2 m/s. The project team found that this was seen to totally
govern the section dimensions of most of the structures, which made the
other loading conditions insignificant.

For reliability analysis, the structure was modelled as a single component
with its resistance representing the ultimate strength of the structure under
the pushover condition. The reduction in pushover capacity due to ship
impact damage was modelled using a reduction factor f (M, v), which is a
function of the ship mass and velocity of impact.

The reliability function G for collapse of the structure under extreme
environmental loading following ship impact is expressed as

G=Xmodel ×Rinit[1− f (M, v)]−Xhydro(aHb)×Fhydro −Xwind ×Fwind (6.39)

where:

Xmodel = random factor for uncertainty in ship impact and pushover
capacity

Xhydro = random factor for uncertainty in base shear calculations
Fhydro = base shear due to associated hydrodynamic loading on the deck

(random)
H = annual maximum wave height (random)
Xwind = random factor for uncertainty in wind force calculations
Fwind = base shear due to associated wind loading on the deck (random)
Rinit = ultimate capacity of the structure in terms of base shear at collapse
f (M, v) = function to account for degradation of system strength due to

ship impact (see below)
a, b = structure-dependent parameters, fitted from analysis results, to

relate base shear wave height.

The function f (M, v) depends on the mass M and velocity v of the ship.
The results of the analyses suggested that f (M, v) = 0 for all structures
except the three-pile monotower. The monotower structure failed during
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the ship impact for certain combinations of mass and velocity. The reliability
function during ship impact for this structure is expressed as

G = (411.5v2 − 3971v + 9560) − M (6.40)

The term in brackets represents the capacity of the structure against ship
impact and was obtained by fitting a function to those values of mass and
velocity that resulted in the failure of the structure during impact.

The vessel sizes that could visit a structure were modelled using a uniform
(rectangular) distribution between 500 and 3500 tonnes. (This does not
include the added mass which was taken into account during analyses.) For
a given vessel, the uncertainty in its mass was modelled using a normal
distribution with a coefficient of variation of 0.15. The velocity of impact
was taken to be exponentially distributed with a mean of 0.3 m/s and a
standard deviation of 0.3 m/s.

6.5.2 Examples

A typical deterministic problem might be something like the following.
A pontoon of density 600 kg/m3, length 4 m, width 2 m and height 0.8 m
floats in water (similar to those in Figure 6.30). Calculate the period of
oscillation about its long axis. (The moment of inertia about this axis is
Mh2/12, where M is the mass and h is the height.)

Solution. We have BG + GM = I
V

and from Equation (6.39) T =
2π

√
IR

W (GM)

Figure 6.30 Floating pontoons on the Bedford River, UK (courtesy of Dr Les
Hamill).
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Now,

I = 1
12

× 4 × 23 = 2.67m4

and G = 0.4 m above base.
The density of water is 1000 kg/m3, so the pontoon sinks to a depth of

0.6 × 0.8 = 0.48 m

∴ B = 0.24 above base

∴ BG = 0.16m

The submerged volume is V = 0.48 × 4 × 2 = 3.84 m3

∴ GM = 2.67/3.84 – 0.16 = 0.535m

GM is positive so the pontoon is stable. Finally,

IR = 1
12

M0.82 = 0.0533M kgm2

and

T = 2π

√
0.0533M

M × 9.81 × 0.535
= 0.633 s

which is independent of the mass.

Example 6.16. Stability of pontoons

Statement of problem – Now suppose in the example above that the pon-
toon is not homogeneous (which is very likely with a solid timber block,
but a certainty with a hollow construction). Its mass remains unchanged,
but there will be uncertainty about its centre of gravity and its moment
of inertia. Suppose G ∼ U(0.1, 0.7) and I ∼ U(0.20V, 0.80V). Determine
whether the pontoon might be unstable and, if so, what the probability of
instability is.

The failure criterion becomes clear if the stability of the pontoon is cast
as a reliability problem. The pontoon will be unstable if GM < 0. Thus,
GM may be treated as the reliability function, with I/V being the ‘strength’
and BG the ‘load’. The pontoon ‘fails’ if GM < 0. The basic variables are I
and G, and these are described by probability density functions; therefore,
a Level 2 method of solution will be appropriate. In fact, as will be seen, the
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density function of the reliability function and the probability of failure can
be determined directly.

Solution. The reliability function may be written as

GM = I/V − BG = I/V − (G − B) = I/V + (B − G)

where G and B are the distances of the centre of gravity and buoyancy,
respectively, above the base of the pontoon. Now, I ∼ U(0.20V, 0.80V) so
I/V ∼U(0.20,0.80). Also, G∼U(0.1, 0.7), so B−G∼U(−0.46, 0.14). The
probability density of GM is therefore described by the sum of two uni-
formly distributed variables (I/V and B−G), which have the same range of
0.6. The resulting density is symmetric and triangular over the range (1.91,
3.11) (see Chapter 3). As the area under the density function must be unity,
the formula for the area of a triangle the peak of the distribution is found to
be 5/3 at GM = 0.34. Figure 6.31 shows the density function of GM. From
basic geometry, the slope of the straight-line segment of the left-hand side of
the triangle is (5/3)/0.6 = 2.78. Furthermore, when GM = −0.26, fGM = 0,
so the equation of the straight-line segment is fGM = 2.78GM + 0.723. The
probability of failure Pf is the area under this straight line to the left of
GM = 0, that is, the area of the shaded triangle. This can be calculated
directly as follows. The area of the shaded triangle =1/2 × base × height =
0.5 × 0.26 × 0.723 = 0.094. Thus, the probability that the pontoon will be
unstable is ∼0.09.

B–G

fB–G

1.67

I/V 

fI/V

1.67

0.2 0.8 –0.46 0.14

GM

fGM

1.67

–0.26 0.94

Figure 6.31 Density functions of I/V (top left), B–G (top right) and GM (bot-
tom). The bottom panel also shows the area under the density function
corresponding to the failure region GM < 0.
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Example 6.17. Oscillations of a floating body

Statement of problem – From the theory above, it would seem that the meta-
centric height should be made as large as possible to ensure vessel stability.
However, this is not always possible or desirable because, as GM increases,
so the period of roll decreases. On a passenger ship, human comfort is a
major consideration in addition to safety, and a rapidly rocking ship would
not be welcomed. As cargo and passengers move around the vessel, both the
centre of gravity and the moment of inertia will change. For simplicity, con-
sider the centre of gravity to be fixed, with GM=10 m and W =100, 000 kg.
The problem is to find the probability that the period of oscillation is less
than a critical value Tc, thereby causing discomfort to the passengers. Tc is
specified to be 7 seconds.

The failure criterion in this case is that the period of roll is less than some
predetermined value Tc. The vessel ‘fails’ if T <Tc. The basic variables are IR

and Tc. For this problem Tc =7 s and the density of IR, fIR, is a U(1,000,000,
1,800,000) distribution. As the basic variables are described by probability
density functions, a Level 2 method of solution will be appropriate.

Solution. First, the reliability function, G(T,Tc), is written as

G(T,Tc) = Tc − T = Tc − 2π

√
IR

W × GM
= Tc −

√
4π2IR

W × GM

Now, from Example 3.5, the density of the period of roll fT is found to be:

fT = W × GM
4π2

TfIR

(
(W × GM)T2

4π2

)

= 25, 330T
1

800, 000

= 0.0317T

The limits on this distribution are found by substituting the limits on IR

into the expression for T, yielding 6.28≤T ≤8.43. The probability of failure
Pf is the trapezoidal area under this straight line to the left of T = 7 s (see
Figure 6.32).

This can be calculated directly as 0.5 × (7 − 6.28) × (0.199 + 0.222) =
0.15. Thus, the probability of failure is 0.15, so that the chances that the
‘Queen of the Seas’ will turn into the ‘Vomiting Venus’ are 15%.

Example 6.18. Environmental loading on an offshore structure – factor of
safety

Statement of problem – Using Γmodel = 1.2,Γhydro = 1.1,Γwind = 1.15 and
Fhydro = αFwind, where α is a constant determined from other calculations,
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0.222
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fIR fT

Figure 6.32 Calculation of the probability of failure for Example 6.17.

and the fact that f (M, v) = 0, recast Equation (6.40) in terms of the failure
function and partial safety factors and determine the global factor of safety.
The failure criterion will be in the form of ‘strength’ minus ‘loading’ and
the criteria for failure will be if the reliability function becomes negative.
The basic variables are the capacity of the structure and the combination of
the wind and wave forces. Probability density functions are not provided,
rather partial safety factors are specified, and therefore a Level 1 method of
solution will be appropriate.

Solution. Equation (6.40) becomes

G = R − S = Rinit

�model
−�hydro×Fhydro −�wind×Fwind (6.41)

where the Γ terms are the performance and partial safety factors and
f (M, v) = 0. Setting G = 0 in Equation (6.42) and multiplying through by
Γmodel gives

Rinit = (�hydro ×Fhydro + �wind ×Fwind)×�model

Substituting in the given values for the safety factors, Equation (6.42)
becomes:

Rinit = (1.1×α ×Fwind + 1.15×Fwind)×1.2 = (1.32α + 1.38)×Fwind

So the global factor of safety is (1.32α + 1.38).

Example 6.19. Environmental loading on an offshore structure – reliability
index

Statement of problem – Given that Rinit ∼ N(1500, 200) and Fhydro ∼
N(800,300) – (where these composite strengths and forces are assumed
to have been calculated using structural codes and Morison’s equation for
wave loading, for example) calculate the reliability index and the probabil-
ity of failure. Wind loading may be neglected. The failure criterion will be
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that the hydrodynamic loading exceeds the structure’s capacity. The basic
variables are the capacity of the structure and the hydrodynamic forces.
Probability density functions are provided, so a Level 2 method of solution
will be appropriate.

Solution. Starting with Equation (6.40) and setting Fwind = 0, the reliability
function G may be written as

G = R − S = Rinit − Fhydro

Standard results for normal distributions give

μG =μR −μS

and

σ 2
G = σ 2

R + σ 2
S

Therefore, μG =1500−800 and σ 2
G =2002 +3002 =130, 000, so σG =360.6.

The reliability index is β = μG

σG
= 700

360.6
= 1.94

The probability of failure is thus

PF =Φ( −β) = 1 −Φ(β)

We find Φ(β) from the statistical tables for the normal distribution as
0.9738, so that the probability of failure is 1 − 0.9738 = 0.0262, or about
1 in 40.

Example 6.20. Environmental loading on an offshore structure – specifica-
tion of strength

Statement of problem – Given that Rinit has a variance of 400 due to vari-
ations in the quality of the steel, and Fhydro is N(800, 300), and that wind
forces may be neglected, find the mean strength (or resistance to shear) that
gives a probability of failure of 0.01. The failure criterion will be that the
hydrodynamic loading exceeds the structure’s capacity. The basic variables
are the capacity of the structure and the hydrodynamic forces. Probabil-
ity density functions are specified, so a Level 2 method of solution will be
appropriate.

Solution. In this example, the problem is cast in the reverse sense to many
reliability calculations. Given the density functions of the loading variable
and the variance of the strength, it is required to find the mean strength that
will give a specified reliability. This problem has one equation (the definition
of the reliability index) and one unknown.
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A probability of failure of 0.01 corresponds to a value of β = 2.33 (see
Table D in Appendix A).

Now, β = μG

σG
, so we can work out μR as follows.

First, σ 2
G = 4002 + 3002 = 250, 000, so σG = 500. Therefore μG = 2.33 ×

500 = 1165, and so μR =μG +μS = 1165 + 800 = 1965.

Example 6.21. Ship impact

Statement of problem – In the report the consultants used a uniform (rectan-
gular) distribution for the ship mass and an exponential distribution for the
ship speed. Using distributions that are not normal (Gaussian) makes the
calculations more complicated (but still possible). For this example, both
distributions are taken to be normal, with M=N(4500, 250) and v=N(1.0,
0.1). (NB. The choice of normal distributions in this case can lead to non-
physical situations, as there is a very small, but not zero, probability of a
ship with negative mass and negative speed.This is justified on the basis
that interest is in the upper tails of the distribution where both masses and
speeds are positive. In practice the choice of distributions that are used to
model the physical problem should have suitable properties that reflect real-
ity.) What is the reliability index and probability of failure, assuming the
mass and velocities follow the normal distributions above?

The failure criterion will be that the ship impact loading exceeds the
structure’s capacity. The basic variables are the mass and speed of the ship.
Probability density functions are given, so a Level 2 method of solution will
be appropriate.

Solution. The mean value approximation is used in this example. For this,
the partial derivatives of G with respect to the basic variables are needed.
Now, G is given by Equation (6.41) as

G = (411.5v2 − 3971v + 9560) − M

The partial derivatives are:

∂G/∂v = 823v − 3971

∂G/∂M =−1

The derivatives at the mean values of the variables are:

∂G/∂v = 823v − 3971 = 823 × 1.0 − 3971 =−3148

∂G/∂M =−1
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Table 6.17 Summary of MVA calculations for Example 6.22

Variable Mean Standard deviation Partial derivative α2
i

v 0.5 0.1 −3,148 99,099
M 4,500 250 −1 62,500

Table 6.17 summarises the results of the calculations. The influence
factors, α2

i , suggest that the speed of the ship is rather more important
than its mass in determining the failure of the structure, in the ratio of
approximately 3:2.

Thus, μG = [411.5 × 1.02 − 3971 × 1.0 + 9560] − 4500 = 1500.5

and

σ 2
G =

2∑
1=1

α2
i = 161, 599

So, σG = 402

The reliability index is

β = μG

σG
= 1500/402 = 3.73

and the probability of failure is Pf = Φ( − β) = 1 − Φ(β) = 1 − 0.9989 =
0.0011, or about 1 in 900.

6.6 Coastal protection

6.6.1 Introduction

Shoreline cliffs may be categorised as either active or inactive. An active
cliff undergoes erosion as incident waves break against the base and expend
their energy. An inactive cliff has a beach at its base that lessens the erosive
activity of the waves. Wave erosion on active cliffs carves notches, caves and
arches in the cliff rock. When the notch, cave or arch grows sufficiently, the
weight of the overhanging rock can no longer be supported and collapses,
leaving debris at the base of the cliff or, in the case of an arch, a column of
rock, called a sea stack, standing in the water. Figures 6.33 and 6.34 show
the results of this type of process.

Particular problems can occur when coast protection is installed to
protect conurbations. The village of Happisburgh is a notable example



Figure 6.33 The undefended eroding cliffs at Hunstanton, North Norfolk, UK. Note
the large rock debris at the base of the cliff, the result of earlier cliff falls,
and the wide sandy beach.

Figure 6.34 Stacks and arches near Vik, Iceland.
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Figure 6.35 Rapidly eroding cliffs at Happisburgh, North Norfolk, UK. In the fore-
ground the remains of a timber coast protection can be seen. The centre
of Happisburgh village can be seen at the top of the photograph and
the Happisburgh lighthouse towards the top left. The photograph was
taken in summer 1998. The row of houses at the top of the cliffs and
the three houses lying closest to the sea along the road running diago-
nally from bottom left to middle right have all now been lost to erosion
(Photograph courtesy of Mike Page).

in the UK, but by no means the only one. Here, timber defences were
installed some years ago to defend the base of the cliffs against wave
action (Figure 6.35). Now, at the end of the design life of the defences,
the approach to coastal defence has changed. Societal perception of the risk
is such that the benefit arising from constructing new defences is deemed
insufficiently large to attract government funding. The result is that the cliff
is now eroding at an average of several metres a year, and the owners of
the properties find themselves in a position where they can neither sell in
order to release funds that would enable them to relocate, nor construct
new defences to slow the erosion.

In this section, the development of a probabilistic method for estimating
the risk due to coastal erosion is described. This is included as an example
of how methods are developed to give robust information to engineers and
managers when there may be insufficient measurements to define probability
distributions or even safety factors.
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6.6.2 Examples

Example 6.22. Risk assessment of coastal erosion

Statement of problem – In 2005, the UK Department of Environment, Food
and Rural Affairs funded a project ‘Risk Assessment of Coastal Erosion’
(RACE). The aim of this project was to develop, test and disseminate a prob-
abilistic method for assessing the risk of coastal erosion. The method had to
be supported by data and information from local monitoring programmes
and risk-based inspections, and also be compatible with the existing meth-
ods used for flood risk assessment. In this context, decisions have to be
made that have practical consequences. In many cases, the luxury of waiting
many years to compile detailed measurements was not available, informa-
tion was limited, and assessment of the hazards and risks was reliant upon
local knowledge and engineering judgement.

The failure criterion is that erosion over a specified time exceeds a value
at which significant assets are lost. The basic variables are the capacity of
the coastal defence to withstand wave action, and the capacity of the unde-
fended cliff to resist erosion and the hydrodynamic forces. Not only is there
minimal information, but there is also the possibility of a variety of differ-
ent types and quality of data, so a hybrid method of solution is probably
required.

Solution. The methodology is based on the source–pathway–receptor
(S-P-R) risk model, DETR (2000), together with the concept of using a
tiered approach to evaluating the hazards and responses along the lines
developed by Meadowcroft et al. (1996a, b) and Environment Agency
(1996), and implemented by Hall et al. (2003) for flood risk. Thus, the
various sources of the erosive forces and how they propagate to their point
of impact are determined before assessing the magnitude of the effect on
receptors.

The framework allows a range of probabilistic analyses to be used, so
that the method can be tailored to the level of detail required, ensuring that
proportionate effort is applied. Figure 6.36 illustrates the general approach

Output

Input

Hazard Risk 

Spatial data

Techniques
different levels
of complexity

Source Pathway Receptor

Figure 6.36 Illustration of the Source–Pathway–Receptor risk model.
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Defence

Erosion

Asset

Figure 6.37 Components of the risk-based cliff erosion methodology.

that has been adopted. The source data are the description of the cliff insta-
bility and erosion process, that is, the mechanisms and rate at which it might
occur (definition of the hazard). The pathway stage represents the response
of the defence (if any) and the cliff to the imposed hydraulic forces, that is,
coastal protection and slope stability measures that slow erosion and lead to
a modification of the hazard. The receptor stage comprises the combination
of hazard and consequence to produce the probabilistic risk assessment.
This is illustrated in Figure 6.37.

The general idea is to define, by means of a probabilistic description of
failure and erosion, a probability of erosion for a given distance or time,
which considers the interaction of both elements: the natural process of cliff
erosion and the presence or not of a coastal structure. The strategy is, first of
all, to define a time window of interest and predict a time history of future
erosion, with uncertainty bands. Second, where there is a coastal structure,
then a probability of failure over the same time period is generated, again
with uncertainty bands. With these two graphs it is possible to generate
probabilities of erosion to a fixed asset or, with many points along the cliff
edge, the spatial distribution of erosion at a given time in the future.

Risk assessment of cliff erosion

With regard to cliff erosion there is uncertainty over the time as to when
the cliff will erode, by how much and whether the erosion is instantaneous
or gradual. With regard to resistance to cliff instability, there are uncer-
tainties relating to when, or if, any coastal protection may fail, whether it
would be reinstated, and any impacts of sea-level rise. The key components
required to determine the erosion versus time plot are the cliff instability
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Figure 6.38 Erosion–time graphs, showing best estimate and bounds of uncer-
tainty. These may be obtained from numerical models of erosion,
extrapolation of historical data or engineering judgement.

and erosion processes. These curves might be generated on the basis of
detailed cliff erosion models, on extrapolation of historical erosion rates,
or local knowledge and engineering judgement. At a well-monitored site it
may be possible to use a quantitative model to predict cliff erosion rates
(see e.g., Lee et al. 2001). Conversely, in a situation where there is little or
no recorded information, local knowledge and engineering judgement are
necessary. Irrespective of the simplicity or complexity of the techniques, it
is a requirement that the same basic output is provided: a timeline to cliff
erosion and a timeline to defence failure. The principal difference between
the outputs is the accuracy and the level of confidence.

Figure 6.38 illustrates a simple example of the required input, with the
black solid line indicating the best assessment, and the degree of uncertainty
shown by the dotted and the dashed lines.

So, in the above example, the cliffs are expected to erode inland by an
average distance of 64 m over the next 100 years, although there is potential
that the cliffs could erode by as little as 58 m, or as much as 76 m.

Coastal defence assessment

Similarly, the probability of defence failure can be determined. In all cases,
there are two components:

• a general deterioration over time due to general wear and tear, which
at some point in the future will render the defence ineffective;
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• destruction of the defence arising from circumstances exceeding the
design conditions; for example, damage due to major storms, or
undermining due to falling beach levels.

Both of these are variable but in different ways. With regard to deteriora-
tion, there is uncertainty over the time at which the defence will become
ineffective, and indeed if this would be instantaneous or gradual. Failures
resulting from environmental conditions can be determined from an annual
probability of exceedance. Factors including climate change and along-
shore interactions can also be incorporated into any of the techniques using
appropriate allowances.

Figure 6.39 illustrates the input required by the methodology, with the
solid black line indicating the best assessment, and the degree of uncer-
tainty shown by the dotted and the dashed lines, which are considered to
approximate the 5% and 95% confidence limits.

In this example, it has been determined that the structure is most likely
to be effective for another 55 years, but it might collapse after 39 years, or
it could last 65 years. During the period leading up to that, it has been esti-
mated that there is a ∼0.6% chance of storm conditions exceeding design
conditions year-on-year and leading to its failure.

In other words, under the ‘best case’ the graph is saying that the defence
will definitely have failed by year 65, but recognises that there is a small
chance that this failure could actually happen this year, next year, or at any
point beyond that.
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Figure 6.39 Probability of failure–time graph.
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Range of techniques for determining recession and probability of failure

From Figures 6.38 and 6.39 it is possible to work out, for any year in the
future, the probability of the defence failing and the consequent erosion
from that point onwards. For a fixed year in the future all these probabilities
can be combined to estimate the probability density of erosion distance.
Alternatively, for a fixed position inland of the initial cliff position, one
may determine the probability of the erosion extending to that point as a
function of time. As there are upper and lower bounds to the erosion and
probability of defence failure, the calculations can be repeated using various
combinations of the erosion curves and probability curves. Furthermore,
when a defence ceases to be effective, a period of accelerated erosion is often
found to occur, as the once defended cliff ‘catches up’ with the eroded cliff
either side of it. These variations were included in a spreadsheet calculator
developed for the project.

Definition of scenarios

The input values, erosion distances and probabilities of failure are defined
with three different possibilities: most likely, best case and worse case
scenarios. Thus, there are nine different combinations that can be plot-
ted. However, given that practitioners required the most likely, best and
worst case scenarios, only these three combinations are calculated. The
combinations are specified as follows:

• Worst scenario: the 95% confidence limit of the probability of failure
with the 95% confidence limit on the erosion curve.

• Intermediate: the 95% confidence limit of the probability of failure with
the 50% confidence limit on the erosion curve.

• Best scenario: the 5% confidence limit of the probability of failure with
the 5% confidence limit on the erosion curve.

To account for ‘catch up’ the user may specify a time over which the
arrested cliff erodes to where it would have been had there been no defence
in place. Further information on the methodology and spreadsheet can be
found in DEFRA (2006) and Pedrozo-Acuña et al. (2008).

Figures 6.40–6.42 illustrate the type of plots that can be produced from
the output of the above procedure, and which are of particular use to local
engineers and planners. These include: contour maps of the probabilities of
erosion for a fixed time; maps showing the probability of asset loss, again
at a given time in the future; and contour maps of the expected evolution of
the cliff line over time, together with uncertainty bands.

By producing a sequence of plots like the one shown in Figure 6.40b it
is possible to build up contour plots of zones of equiprobable erosion at a
fixed time, as shown in Figure 6.40a. Similarly, by repeating calculations
for Figure 6.41b at different points, it is possible to build up a map showing
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Figure 6.40a Typical mapping output – zones of equiprobable erosion at a fixed
time.
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Figure 6.40b Typical spreadsheet output – probability of erosion after 60 years.

the probability of loss due to erosion at a particular year in the future,
as illustrated in Figure 6.41a. Alternatively, from a sequence of plots such
as the one in Figure 6.40a it is possible to construct ‘expected’ bands of
cliff-line evolution for different years by selecting contours corresponding
to particular quantiles (e.g., 5% and 95%).

The different types of model that are available for forecasting cliff and
defence response are described in detail in DEFRA (2006). In practical
engineering applications other considerations, apart from purely scientific
ones, come into play. Thus, the quantity and quality of data can be a very
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Figure 6.41a Typical mapping output – probability of losing a fixed asset at a given
time.
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Figure 6.41b Typical spreadsheet output – probability of erosion to a fixed point.

important factor in determining the type of model used. In fact, the quality
of the data is one of the main sources of uncertainty in modelling. Even
if the predictive model is perfect, if inaccurate data are used as input, the
forecast will be affected. In situations where the available information is
of poor quality, a model that gives qualitative forecasts may actually be of
more practical assistance in informing a decision than an inaccurate forecast
produced by a sophisticated model.
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Figure 6.42 Typical mapping output – expected bands of cliff-line evolution incor-
porating bands of uncertainty defined by quantiles of the distributions
determined in Figure 6.38a.

Example 6.23. Monte Carlo simulation of cliff erosion

Statement of problem – An awareness of the likely cliff position at some
future date is crucial for coastal planning and management. Reliable predic-
tions of coastal recession rates are needed for effective land-use planning.
Investigate methods that might be employed to perform cliff-recession
predictions.

No failure criterion is defined explicitly, but one could imagine that a
possible criterion might be that the cliff top should remain a specified dis-
tance seaward of a particular asset. The basic variables are the cliff position
and the wave, water level and beach level variables. After some preparatory
work it is likely that the method of solution will be based on a variety of
approaches.

Solution. The papers by Lee et al. (2001) and Hall et al. (2002) give a
description of a variety of methods tested for predicting cliff erosion. These
range from a Monte Carlo type prediction of individual cliff falls, in which
the frequency and size of cliff falls are taken as random variables, to the
use of historical records. In their Monte Carlo modelling, cliff recession is
considered to proceed as a series of discrete cliff-fall events. A discrete model
of the cliff recession Xt during duration t is specified as:

Xt =
N∑

i=1

Ci

where N is a random variable representing the number of cliff falls in
duration t and Ci is the magnitude of the ith fall. The model is defined
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Figure 6.43 Sample results from Lee et al. (2001) showing (a) predicted time to
recess by 29 m; (b) predicted cliff position at Year 10; (c) predicted cliff
position at Year 50 (Reprinted from Geomorphology, Vol. 40, Lee,
Hall & Meadowcroft, Coastal cliff recession: the use of probabilistic
prediction methods, Copyright [2001], with permission from Elsevier).
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by two distributions, one describing the timing of cliff falls and the other
their magnitude. The arrival of storms is assumed to follow a Poisson distri-
bution. After a sufficient number of storms a cliff-recession event occurs.
The time between successive events can thus be described by a Gamma
distribution. The magnitude of the cliff falls is described by a log-normal
distribution, which is chosen on the basis of laboratory experiment results.
The Monte Carlo model thus requires the specification of four parameters:
the shape and scaling parameters of the gamma distribution, and the mean
and variance of the log-normal distribution. Cliff-fall events and magnitudes
are then generated using a random-number generator. A single realisation
consists of a simulation of cliff falls over a specified period of time. This
simulation is then repeated many times over to build up a picture of the
distributions of cliff recession. Figure 6.43 shows some results from this
model.

6.7 Coastal morphology

6.7.1 Introduction

Prediction of beach evolution over scales of tens of kilometres is very impor-
tant for coastal management and scheme design (e.g., Cowell et al. 2006).
It is difficult because of the high complexity of the coastal system (e.g.,
De Vriend 2003, Southgate et al. 2003). One mathematical tool that is
used widely for predicting beach evolution is the ‘one-line’ model. This
is an idealised model of beach dynamics proposed by the French engi-
neer Pelnard-Considère (1956). It is based on the assumption that the
shape of the beach profile is in equilibrium, that the shoreline evolves as
a result of spatial gradients of the alongshore sediment transport, and the
principle of the continuity of sediment. Cross-shore transport and other
complex mechanisms are parameterised in a simplified manner. The model
predicts the position of a single beach level contour, hence the sobriquet
‘one-line’.

Consider the element of beach between boundaries 1 and 2 in
Figure 6.44b, shown in sectional elevation in Figure 6.44c. Applying the
continuity equation, in a time interval δt the change in the volume of
sediment in the element is equal to the volume entering less the volume
leaving, yielding

∂Q
∂x

= ∂A
∂t

(6.42)

where Q is the volumetric a longshore transport rate and A is the cross-
sectional area of the element. For an equilibrium profile, any change in area
must result in a horizontal movement of the profile δy, given by δA = dcδy,
where dc is known as the ‘depth of closure’ and is the point at which it is
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Figure 6.44 (a) Equilibrium plane bench (b) Accretion and erosion near a groyne (c)
Definitions for the 1-line model.

assumed that there is no cross-shore transport into or out of the profile.
Substituting in Equation (6.42), this gives

∂Q
∂x

= dc
∂y
∂t

(6.43)
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To make further progress, a relationship between the wave conditions
and sediment transport is required. One well-known formula is given by
the CERC equation (CERC 1984):

Q = Q0 sin2αb (6.44)

Q0 = ε
ρ

16(ρs − ρ)σ
H2

bCgb

where α is the angle between the wave crests and the shoreline, ε is a pro-
portionality coefficient, ρ is the seawater density, ρs is the sediment density,
σ is the sediment ratio (equal to 1 − p, where p is the sediment porosity), H
is the wave height and Cg is the wave group velocity. The angle αb may be
expressed as:

αb =α0 − arctan
(

∂y
∂x

)
(6.45)

where α0 is the angle between the breaking wave crests and the x-axis, set
parallel to the shoreline trend, and ∂y/∂x is the local shoreline orientation.
The subscript b denotes these quantities at breaking.

By assuming that the wave crests approach almost parallel to the shore,
the ‘one-line’ model reduces to a diffusion-type equation, which can be
solved analytically:

∂y
∂t

= K
∂2y
∂x2

(6.46)

where K = 2Q0/dc, and initial conditions and boundary conditions must be
applied according to the situation being modelled (e.g., Pelnard-Considère
1956, Grijm 1961, Le Mèhautè and Soldate 1977, Larson et al. 1987, 1997,
Wind 1990, Reeve 2006, Zacharioudaki & Reeve 2007, 2008) and the ana-
lytical solutions extended to the case of time-varying wave conditions and
arbitrary initial beach shape.

Computational schemes solve the continuity, sediment transport and
wave angle equations (Equations 6.43–6.45) simultaneously, stepping for-
ward in time, and may include extra processes such as detailed wave
transformation. They are thus better suited for engineering practice. In
comparison with other means of predicting shoreline evolution, ‘one-line’
models are computationally cheap, have modest data requirements and have
performed satisfactorily in engineering projects (e.g., Gravens et al. 1991,
Reinen-Hamill 1997, Dabees and Kamphuis 1998).
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6.7.2 Examples

This set of examples illustrates wider applications of a probabilistic
approach to coastal management, as opposed to applications of reliabil-
ity analysis. The first example concerns the effect of the construction of a
groyne on a beach, and the fluctuations of the beach near the groyne in
response to a varying sequence of waves. The response of the beach to a
given wave condition is dependent upon the local alignment of the beach,
which is a function of the earlier waves in the sequence. The beach response
is thus correlated, to a degree, with the waves. Furthermore, the existence
of the groyne means that the statistics of beach position are not station-
ary in either space or time. The second example describes the modelling
of a flood defence scheme in Norfolk, UK. In this scheme, a set of shore-
parallel detached breakwaters have been constructed in an attempt to hold
the beach in place to prevent flooding of valuable habitat in the hinterland.
Not only are the statistics of the beach nonstationary in time, but there
are additional physical processes that need to be accounted for in trans-
forming the waves from deepwater to the shoreline. This entails numerical
modelling of the wave propagation and thus the use of a Level 3 Monte
Carlo simulation to determine the statistics of the beach evolution near the
breakwaters. The final example illustrates the application of the re-sampling
technique of jack-knifing to the prediction of the movement of offshore
sandbanks. Rather than using a computational dynamic model, a sequence
of seabed measurements are used to define spatial and temporal patterns
of change in the sandbank configuration. These patterns are extrapolated
into the future, using a jack-knife method, to create an ensemble of possible
futures from which the mean and variance of future seabed levels may be
estimated.

Example 6.24. Description of the statistics of beach position near a groyne

Statement of problem – Groynes are often employed as part of coast protec-
tion schemes, in an attempt to hold the beach in position, thereby providing
the ability to dissipate the incoming wave energy before it reaches the upper
shore. Due to the variability in wave conditions, the exact height and posi-
tion of the beach will vary over time, thereby providing a variable level
of protection. You are provided with a time history of wave conditions
and asked to investigate the behaviour of the expected position of the
beach position in the vicinity of a groyne, assuming the beach is initially
straight.

No failure criterion is defined explicitly, but one could imagine that a
possible criterion might be that the beach contour of interest should remain
a particular distance seaward of the upper beach. The basic variables are
the beach position and the wave variables. We are given a large amount
of wave data, but little in the way of explicit statistical information. After
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some preparatory work it is likely that the method of solution will be
based on analysing the nature of the beach response to the stochastic wave
conditions.

Solution. This example is taken from recent work (Pedrozo-Acuña et al.
in press) on quantifying the uncertainty of beach position near groynes.
The thrust of the investigation is to compare approximate analytical forms
of the ensemble mean beach position against the solution obtained from
Monte Carlo simulation. The ensemble mean beach position is a func-
tion of along-shore distance and time. The analytical solution described
by Reeve (2006) is used as the basis of the computations. The study
is based on data relating to Cardigan Bay, Wales, and the beach at
Aberystwyth.

A time series of 3-hourly wave conditions in the bay in deep water are
transformed to shallow water at the Aberystwyth frontage using the SWAN
wave transformation model (Booij et al. 1996). Figure 6.45 shows the
summary statistics of the transformed waves.

In order to estimate ensemble averaged quantities, multiple realisations
of wave sequences with the correct probability distribution and correlation
properties are required. The time series of waves may be considered a single
realisation of wave conditions. This can be used to generate more sequences
with similar statistical properties, in order to generate an ensemble of
solutions. The procedure described by Scheffner and Borgman (1992) was
used to generate such an ensemble. This consists of a piecewise, month-
by-month, multivariate, stationary simulation approach, which preserves
the marginal distributions and the first- and second-order moment proper-
ties that describe the intercorrelations within the data sequence. Seasonal
changes are captured by simulating each month separately based on the
information of the original time series for each month. A smooth transition
in the time series and intercorrelations from month to month are enforced
by interpolation.
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Figure 6.45 Wave rose and probability distributions of wave height and period of
waves near Aberystwyth.
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Each realisation within the ensemble of sequences may be used to drive
a one-line model to predict the evolution of the beach of the same time
period. Statistics of the beach position at any position or time can be
computed in the standard manner from the sample of realisations (see
Section 5.7).

For an initially plane beach with a groyne, the analytical solution for the
beach contour position, y(x, t), takes the following form:

y =− 1√
π

t∫
0

T1T2T3 dw (6.47)

where T1, T2 and T3 are (complicated) functions of x and w, and w is
a dummy variable of integration (see Reeve 2006). This expression can be
evaluated using numerical integration for a given sequence of wave condi-
tions. An expression for the ensemble average beach position can be written
down directly from Equation (6.47) as:

〈y〉 =− 1√
π

t∫
0

〈T1T2T3〉 dw (6.48)

where 〈•〉 denotes the ensemble average and is the triple integral
∞∫
0

∞∫
0

2π∫
0

dθdTdH over all possible values. This is difficult to treat analyti-

cally, because it involves a cross-correlation of three terms. If the three
terms are approximately statistically independent, then we may approx-
imate the ensemble of the product of functions by the product of the
ensemble averages,

〈y〉 ≈− 1√
π

t∫
0

〈T1〉 〈T2〉 〈T3〉 dw (6.49)

For this case, Pedrozo-Acuña et al. (2009) have demonstrated that
Equation (6.49) is a very good approximation.

Figure 6.46 shows the comparison of the ensemble average solution evalu-
ated from Equations (6.48) and (6.49) at a point 4 years into the time series.
The agreement between the results obtained using the two methods is very
good, at least for this case, and indicates that the cross-correlation between
the three terms is not at all strong. This demonstrates that, although there
may be strong correlations between, say, wave height and wave direction,
this correlation appears not to be very important in the context of the
morphological evolution of the beach plan shape.
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Figure 6.46 (solid line) Ensemble average of the solution estimated using Equa-
tion (6.48); (dots) ensemble average of the solution estimated using
Equation (6.49).

Example 6.25. Monte Carlo simulation beach response around a detached
breakwater scheme

Statement of problem – The Happisburgh to Winterton sea defences cur-
rently provide protection against sea flooding to a large part of the hinter-
land (including the Norfolk Broads), freshwater-dependent habitats, as well
as people and properties (see Figure 6.47). Over the period of several cen-
turies the 14 km of Norfolk coastline between Happisburgh and Winterton
has suffered a series of serious floods, resulting in severe damage to prop-
erty, agricultural land and the loss of many lives. Historic records show that,
in 1287, nearly 200 people were drowned when extensive flooding reached
as far inland as Hickling. In 1604, a flood inundated some 800 ha of land at
Eccles, destroying over 60 houses and badly damaging the town church. In
more recent times, the sea has breached the dunes twice at Horsey. In 1938,
the whole village was cut off and an area of 3000 ha was flooded, with con-
sequent disruption to the community and damage to agricultural land. On
the night of 31 January 1953, a severe north-westerly gale, coincident with
a period of spring tides, produced a great tidal surge which raised the sea
level to 2.4 m above normal high-tide levels. This washed away the dunes
at Sea Palling, causing extensive damage to houses and the death of seven
people. The defences at Horsey and Eccles were also damaged and an area
of almost 500 ha was inundated.
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Figure 6.47 Location map of the Happisburgh to Winterton scheme.

An investigation of this disaster by the government led to the publication
of the Waverley Report in 1954. This advised that the high water level of the
1953 surge should be taken as the maximum against which protection could
reasonably be afforded. Subsequently, sea defences along the coast were
improved so that the coastline between Happisburgh and Winterton was
protected by a continuous concrete seawall, the height of which was con-
sistent with the worst recorded tide level. The integrity of this wall depends
on its foundations being protected from wave attack by beach sand, espe-
cially under storm conditions. The maintenance of adequate beach levels is
therefore essential to continued sea defence.

The existing seawall and dunes protect a large area of low-lying hin-
terland from flooding during storm events. A significant proportion of the
coastline is of national importance for its landscape and has been designated
an Area of Outstanding Natural Beauty (AONB). Much of the inland area is
within the Broads Environmentally Sensitive Area, and is recognised for its
important landscape, historical interests and wildlife, receiving similar sta-
tus to a National Park. A breach in the defences would cause extensive dam-
age to properties, agricultural land and these sites of nature-conservation
importance. Some estimates suggest that 6000 ha of fertile productive
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agricultural land would be turned into saltmarsh and seawater would flood
into the Norfolk Broads.

By the late 1980s the beach in front of the seawalls had lowered to levels
that were considered critical. To address this, the government sanctioned the
construction of nine offshore reefs (Reefs 5–13). These were constructed
in two stages: Reefs 5–8 in Stage 1 (1993–1995) and the remaining reefs
in Stage 2 (1997) of the project, during which time beach recharge was
undertaken. The reefs constructed in Stage 2 used a modified version of the
Stage 1 reef design, which had lower crest levels, were shorter in length and
had more closely spaced reefs. In addition to Stages 1 and 2 construction,
some intermediate works have been undertaken to ensure the integrity of
existing defences where beach loss has occurred in areas not defended by
the reefs. From 2002 to 2004, Stage 3 works were completed and comprised
beach recharge, the construction of a rock revetment south of Reef 13 and
the improvement of rock groynes between Cart Gap and Bramble Hill. Reefs
1–4 were reserved for a subsequent stage and have yet to be constructed;
thus, the northernmost reef is Reef 5.

In this case we have a complicated system but the failure criterion could
be defined either as the inundation of all or part of the area currently pro-
tected by the coastal defences, or as the undermining and collapse of the
flood defence structures at the top of the beach which, if left unrepaired,
would lead to inundation. In either case, a key part of the problem is to
determine the likely excursions of the beach under varying wave and tide
conditions. The basic variables are the beach position, water levels and wave
variables. We are given a long sequence of deep-water wave conditions and
water level recordings. Waves propagating towards the shore will undergo
shoaling, refraction breaking and diffraction (around the ends of the break-
waters). Furthermore, waves will break on and/or over the breakwaters. The
amount of wave overtopping of the breakwaters will affect sediment trans-
port and thus the movement of the beach. This situation is too complicated
for treatment with an existing analytical solution, so Monte Carlo simula-
tion (a Level 3 method) is a possible way forward. After some preparatory
work, the method of solution will be based on generating realisations of
beach response and analysing these to determine the appropriate statistics.
An oblique aerial photograph of the scheme taken towards the end of the
construction of Stage 2 is shown in Figure 6.48, viewing the scheme from
the northern end looking southwards.

Solution. This example is taken from research undertaken as part of a
project funded by the UK Research Council, a collaborative venture between
the Universities of Liverpool, East Anglia and Plymouth, the Proudman
Oceanographic Laboratory and the British Oceanographic Data Centre
(BODC). Industry representatives Halcrow Group and HR Wallingford
are also partners in the project, which is funded in parallel by the UK
Department for Environment Food and Rural Affairs (DEFRA) and the
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Figure 6.48 Oblique aerial photo of the Happisburgh to Winterton scheme, viewing
south-eastwards (with courtesy of Mike Page).

UK Environment Agency (EA) to incorporate project results into national
design guidelines. The project includes an extensive campaign of field
measurements, detailed process modelling and probabilistic shoreline mod-
elling for medium- to long-term beach evolution prediction. Further details
can be found at http://pcwww.liv.ac.uk/civilCRG/leacoast2/index.htm.

To drive the beach evolution model, nearshore waves are required. The
offshore wave data are the output from the UK Meteorological Office’s
European wave model over the period 1995–2008. The mean water depth
is 18 m and the wave height, period and direction are available at 3-hourly
intervals. Figure 6.49 shows the wave rose of this data, while Figure 6.50
shows a segment of the time series of wave heights, periods and directions,
in which an annual signal is evident in the wave heights. The deep-water
waves are transformed using a numerical wave model that accounts for
refraction, diffraction and breaking.

The 13-year wave record was used to create 200 more 13-year sequences
with similar statistical properties, using the method described by Cai et al.
(2008). In Monte Carlo simulation, creating realisations with the correct
statistical properties is a crucial part of the process, and the realisations
must be recreated accurately. In particular, this is true for the marginal
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Figure 6.51 Autocorrelation functions of wave height for the original (top) and
simulated (bottom) series.

distributions, autocorrelation and cross-correlation properties. Figure 6.51
shows the autocorrelation function of Hs from the original series and the
simulated ones. Similar levels of agreement were found for wave period and
direction.

The field campaign included monthly surveys of the shoreline, covering
the area of the defence scheme. An example of one of these surveys is shown
in Figure 6.52.

The first of these was used to define an initial shoreline condition for
a one-line model. A wave model based on the mild-slope equation model

Figure 6.52 Coastal bathymetric and topographic survey. The heavy contour shows
the mean water line and numbering scheme of the individual bays
formed by the breakwaters.
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Figure 6.53 Comparison of measured and modelled shoreline position at the centre
of the bays.

described by Li (1994) was used to transform the sequences of waves from
deep water towards the shore on a regular grid with resolution 10 m.
The transformed waves were then used to drive the one-line model. The
positions of the centres of each of the bays corresponding to the survey dates
were output from the model. Figure 6.53 shows the comparison between the
calibrated model predictions and the measured mean water line.

Most of the predictions are within about 5 m of the measured position,
with one or two outliers, demonstrating a good level of agreement for this
type of model. The calibrated model was then run repeatedly with the 200
other 13-year realisations to create an ensemble of possible outcomes. Some
summary statistics from this output are shown in Figure 6.54.

This indicates that the shoreline behind the Stage 1 breakwaters is rel-
atively stable, with the exception perhaps of the Bay 1. From Reef 8 and
throughout Stage 2 the shoreline shows a greater variability in position of
between 20 m and 50 m in the horizontal.



250 Risk and reliability

Figure 6.54 Ensemble average shoreline (heavy line) with extreme positive and
negative excursions over a 13-year period.

These particular simulations include the effects of tide-level variation, but
not longer-term water-level changes due to sea-level rise. However, maps
such as the one shown in Figure 6.54 provide a useful tool for local engi-
neers and planners when assessing the performance of the scheme and in
formulating coastal management strategy.

Example 6.26. Offshore sandbanks at Great Yarmouth – a statistical
ensemble approach

Statement of problem – The offshore sandbanks at Great Yarmouth have
major environmental, commercial, leisure and physical importance. An off-
shore wind farm is located on top of one of them (Scroby Sands – see
Figure 6.55); the access to the newly extended port at Great Yarmouth relies
on clear channels running through them; they are used as breeding grounds
for North Sea seals; and they provide protection to the coast from wave
action.

Local knowledge has suggested that significant changes to the bank and
channel configuration can occur over a period of several years. The main
banks in the system are shown in Figure 6.56.

Any significant alterations in the configuration of the sandbanks would
undoubtedly have an effect on the nearby shoreline and associated shoreline
management. The ability to forecast any such changes is of direct relevance
to the strategic management of this shoreline. The difficulty in doing so is
that: (a) the computing power required to simulate the tides, waves and sedi-
ment transport over such a large area for the order of several years is simply
prohibitive; and (b) even if one could do the simulations, the uncertain-
ties associated with initial conditions mean that long-term forecasts with
detailed dynamical models are very unreliable. As a long sequence of 36
bathymetric charts from 1848 to 2008 is available, an alternative is to use
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Figure 6.55 Oblique aerial photograph (viewing northwards) of Scroby Sands in
2006 (courtesy of Mike Page).

a data-driven modelling approach (e.g., Habib and Mesellie 2000, Różyński
et al. 2001, Różyński and Jansen 2002, Różyński 2003). These methods rely
on some form of statistical analysis of observations and extrapolation into
the future, but suffer from the constraint that if a particular behaviour is not
contained in the observations it is unlikely that the extrapolation technique
will accurately predict such a change. It does, however, have the advantage
that it is ideally suited to quantifying the uncertainty of forecasts (Larson
et al. 2003).

This complicated morphological system could be considered to fail in
terms of a structure if its configuration evolved in such a way that the wind
farm was exposed to larger waves; if the channels between the banks infilled
sufficiently to cause navigation difficulties for ships using the port; or if
they eroded to an extent that seals could no longer use them as a breeding
ground; and also that greater wave energy could reach the shoreline. A fail-
ure criterion could be defined in terms of any of these conditions. The basic
variables are not only the total volume of material in the sandbanks but also
its spatial arrangement. Indirectly, the tides and waves are also variables, as
these determine sediment transport, and ultimately the changes in sandbank
configuration. We are given a long sequence of bathymetric surveys. This sit-
uation is too complicated for treatment with existing process models, and
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data-driven modelling offers an alternative. However, a measure of uncer-
tainty in the prediction is required, so some means of estimating the error or
uncertainty in the predictions is required. A re-sampling (Monte Carlo type)
approach could provide this. The method of solution is based on a purely
statistical approach, with no physical process modelling.

Solution. This example follows the paper by Reeve et al. (2008) and details
of the approach may be found in that paper and references therein. Here, a
brief outline is given, together with some of the results.

The steps in the analysis are:

a The bathymetric measurements up to and including 1998 were used
to perform a set of empirical orthogonal function (EOF) analyses.
EOFs were introduced to coastal engineering by Winant et al. (1975)
who used them to analyse changes in beach profiles. The EOFs pro-
vide the means of expressing the patterns of spatial and temporal
change in the data as a series of functions. It is a very efficient way of
compressing variability in the data into a small number of functions
(usually much more efficient than performing a Fourier expansion).
Each EOF describes a spatial distribution of variation. For each EOF
there is a corresponding function that describes its variation in time.
The whole data set of bathymetric charts can be expressed as a
sum of EOFs.

b There are 33 charts for the period 1848–1998. Rather than performing
a single analysis of all the charts, the sequence of charts is used to create
an ensemble of EOF analyses by using the jack-knife technique: 33 EOF
analyses are performed, leaving out each one of the charts in turn. This
introduces an uncertainty into the EOFs equivalent to that associated
with the loss of one of the charts.

c The corresponding temporal functions obtained from these analyses
were extrapolated to 2006 using a technique that mimics the past
temporal behaviour (an autoregressive prediction procedure).

d The extrapolated temporal functions were then recombined with their
corresponding spatial functions to create an ensemble of forecasts of the
bathymetry in 2006, that is, a prediction 8 years into the future from
the date of the last chart used in the EOF analysis.

e These forecasts were then compared to the chart for 2006, and ensemble
statistics computed as in Section 3.7.

Some of the results are shown in Figure 6.57(a–e). The general trends
are that the average of the ensemble agrees fairly well with the observed.
Agreement is less good in the more seaward banks and Holm Chan-
nel. One drawback of any data-driven method is that there is no explicit
inclusion of physical processes in the forecasting, so it cannot capture
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changes due to processes that are not reflected in the historical record.
However, the method provides forecasts and uncertainty bounds, but has
some deficiencies associated with the choice of expansion functions (EOFs),
and could probably be improved in terms of the form of extrapolation used.
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7 Reliability of systems

7.1 Introduction

So far only individual elements and individual modes of failure have been
considered. In practice, a coastal defence or hydraulic structure will have
more than one failure mechanism and will often be part of a larger scheme
that may contain several or many linked components. The entirety of a
drain is a good example, as it may contain not only pipe sections but
also joints, junctions, inflows, outflows and stilling tanks, to name but a
few components. In a similar vein, a flood defence is likely to comprise
several different types of construction along its length, as well as flood
gates and barriers. In some cases where there is a change in construc-
tion the neighbouring structure provides a key element of stability, so that
should it fail then its neighbour would be much more likely to fail too.
Such an example would be vertical steel sheet piles, topped with a con-
crete beam or pad, located next to a mass concrete structure. In the event
that the mass concrete structure failed (most likely through gradual dete-
rioration and lack of maintenance), the sheet piling would be at greater
risk because water could attack from both front and rear, washing out
fines from behind the piles and reducing the integrity of the structure as a
whole.

To simplify the study of system reliability two categories of systems are
considered. In a series system, the failure of one member automatically leads
to the failure of the whole system. An example of such a system is a chain,
which fails when the weakest link breaks. In a parallel system, all the mem-
bers must fail before the system fails. An example of this type of system is a
cable composed of several strands of wire. The cable does not fail until all
the component strands have failed.

When considering a hydraulic structure it can be helpful to consider it
as a system comprising a number of elements. Certain elements may fail
without causing the system as a whole to fail, whereas if other elements fail
the whole system fails. In the former case the elements may be considered
to be connected in parallel in analogy to connections in an electrical circuit.
In the latter case the elements are connected in series.
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Table 7.1 Simple bounds for systems

Lower bound Upper bound

Series system
n

maxPi
i=1,n

1 −
n∏

i=1
(1 − Pi)

Parallel system
n∏

i=1
Pi

n

minPi
i=1,n

Now, each element will have a certain probability of failing. Let the
probability of failure for element i be Pi. Upper and lower bounds on the
probability of system failure can be obtained by assuming that (a) the ele-
ments are all perfectly correlated and (b) there is no correlation between any
pair of elements; the bounds and are summarised in Table 7.1.

For series systems the lower bound corresponds to the assumption of per-
fect dependence (i.e., if one element fails they all do), while the upper bound
corresponds to the assumption of no pairwise correlation between elements
(see, for example, Equation 4.1). For parallel systems the lower bound arises
from the assumption of independence and is the probability of the occur-
rence of n independent events. The upper bound arises from the assumption
of perfect dependence. Note that in this treatment of parallel systems issues
regarding the (time-dependent) spreading of the additional load amongst the
remaining functioning elements is not considered. In practice these bounds
may be so wide as to provide no useful constraint. Other bounds have been
suggested in the literature, such as those proposed by Ditlevsen (1979) for
series systems.

7.2 Overview of methods

7.2.1 Single structure, multiple mutually independent failure
mechanisms

For a series system a fault tree may be used to analyse the reliability of each
element and unit of the system in a logical manner. In its strictest definition,
a fault tree is a description of the logical interconnection between various
component failures and events within a system. A fault tree is constructed
from events and gates. Gates are logical operators used to combine events
to give an event at a higher level. Gates are built from the logical operators
(sometimes known as Boolean operators), AND, OR and NOT. The highest
level of event is known as the TOP event, which would normally be chosen
to correspond to failure of the system as a whole.

The main purpose of constructing a fault tree is to establish the logical
connection between different sets of component failures, assign values to
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component reliability and thus calculate the probability of the TOP event
occurring.

Fault tree analysis is strictly only applicable to systems in which compo-
nents can be in one of two states: working or failed. Where the processes
studied do not obey this behaviour, fault trees on their own are less appro-
priate. Coastal defences are a good example of such systems. Nevertheless,
fault tree analysis can be a useful step in a qualitative assessment of risk.
Figure 7.1 shows the fault tree concept applied to a flood defence system
that contains four elements. Starting with the event of system failure and
working backwards, the possible precursors of this event are identified. The
tree can be extended further downward from system level to element level
to unit level and so on.

System level fault tree

Fault tree for flood gate

Dune
failure

Embank-
ment
failure

Floodgate
failure

Sea wall
failure

Loss of
stability Piping Gate open

Storm
warning
not issued

Vandalism

Collapse of
gate

Link
releases
too early

Link does
not
release
under full
submersion

All other
failure
mechanisms

Damage
from ship
collision

Floodgate
failure

(a)

(b)

Storm
warning
issued but not
acted upon

Figure 7.1 (a) System level fault tree. (b) Fault tree for flood gate.
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The power of the fault tree is evident in Figure 7.1, where a floodgate
is analysed. A number of technical failure mechanisms may be identified
for which design equations are available. This, together with knowledge of
the environmental and design conditions, enables the probability of these
events to be estimated using the techniques described in earlier chapters.
In the case of a floodgate a non-negligible contribution to the probability
of failure arises from human error or intervention. The reliability of this
element of the system is influenced by the possibility of management fail-
ure, and this cannot be expressed by classical engineering calculations. The
fault tree at least identifies this issue and illustrates how it fits into the reli-
ability of the system as a whole. Fault trees for excessive waves behind a
rubble breakwater and inundation due to failure of a flood defence have
been developed by CIAD (1985) and CIRIA & CUR (1991), respectively.
The calculation of probabilities of failure from fault trees usually requires
some assumptions about the mutual exclusivity of failure modes (i.e., fail-
ure arises from one or other failure mechanism, not a combination of them)
and independence between members of the system.

Example 7.1. Statement of problem – A spherical buoy (with instrumenta-
tion) is connected to the seabed with a rope and tension-release link. The
link is designed to release when the buoy is semi-submerged. Four failure
mechanisms have been identified and are shown in the corresponding simple
fault tree.

These are considered to be mutually exclusive failure mechanisms. They
are also considered exhaustive: by virtue of the fact that all other possible
failure mechanisms not identified explicitly are included in the category ‘all
other failure mechanisms’. As a result, once the probability of occurrence of
each failure mechanism has been determined the total probability of failure
will be given by the sum of the probabilities of each mode of failure. Further-
more, the probability of non-failure is (1 – the total probability of failure).
For the present we are given that the last two probabilities are 0.001 and
0.002, respectively. The performance of the particular tension-release mech-
anism is uncertain, but tests on multiple batches of the mechanism have
shown that the actual release tension, Tr, is known to follow a uniform dis-
tribution between 0.7 Tc and 2.1 Tc, where Tc is the target release tension=
mg − ρs(2/3)πr3 where m and r are the mass and radius of the buoy, and ρs

is the density of seawater. Determine the probability that the buoy system
will fail.

The failure criterion is fourfold. First, the system may fail if the buoy is
released before becoming semi-submerged (Tr < Tc); second, the buoy may
fail to release even under full submersion (Tr > 2Tc); third, the buoy may be
damaged by ship collision; and, finally, the system may fail through some
other unspecified mechanism.

The basic variable is the release tension, Tr.



262 Risk and reliability

This is a problem concerning Level 2 methods, as we are given a probability
distribution. However, due to the simple nature of the system a solution can
be found directly.

Solution. Let Pfi denote the probability of failure due to the ith failure mode.
Then Pf3 = 0.001 and Pf4 = 0.002. Now,

Pf1 = P(Tr < Tc) = 3/10 × 5/7 = 3/14, and

Pf2 = P(Tr > 2Tc) = 1/10 × 5/7 = 1/14

As the modes of failure are mutually exclusive, the total probability of
failure is given by the sum of the probabilities of each mode of failure,
that is, the total probability of failure is 3/14 + 1/14 + 0.001 + 0.002
= 0.289.

Example 7.2. Statement of problem – Consider an embankment that pro-
vides defence against flood-water levels corresponding to the 1 in T year
event. Suppose also that the structure has a design life of N years, during
which it is maintained to the standard of its original construction. What is
the probability that the embankment will be overcome by an extreme flood
event? The failure criterion is simply that the water level, W, exceeds the
1 in T year level, WT. The basic variable is water level, but the nature of the
problem is closer to the ideas covered in Chapter 2 than with the reliability
theory covered in Chapter 5.

Solution. The question is equivalent to the question, ‘Will the 1 in T year
water level be exceeded in the next N years?’ To see how the solution can
be derived we begin by looking at the cases N = 1 and N = 2, and then
generalise.

For N = 1: the probability that the water level exceeds the 1 in T year
level is p ≡ P(W > WT) = 1/T, and the probability that it does not is
P′ = 1 − p.

For N =2: we treat each year as an independent event. Thus, the probability
that the water level does not exceed the 1 in T year level in either the first
or second year is the product of the probabilities that it does not exceed
it in the first year and the second year, that is, P(W ≤ WT in year 1 and
2) = (1 − p)(1 − p).

Generalising, for N years the probability that the water level does not
exceed the 1 in T year level is (1 − p)N. Hence, from the theorem of total
probability (Chapter 2), the probability that the water level does exceed WT

during N years is 1 − (1 − p)N.

As an illustration, Table 7.2 shows the probability of failure for different
design lives with T = 100 years.
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Table 7.2 Failure probabilities for Example 7.2

Design life (years) Probability of failure (%)

1 1
5 5

50 39.5
100 63.4
500 99.3

The result can be generalised to m = 1, 2, . . . , M modes of failure. Under
the assumption that the modes of failure are mutually exclusive in a series
system, the overall probability of failure over the course of N years, Pf ,N, is:

Pf ,N = 1 −
m=M∑
m=1

(1 − pm,N) (7.1)

If all the probabilities of failure pm,N are identical (= 1/T), then
Equation (7.1) may be written as:

Pf ,N = 1 − M
(

1 − 1
T

)
(7.2)

7.2.2 Multiple independent structures, single-failure mechanism

The situation where there are multiple but independent structures in a series
system that has a single failure mode is the archetypal ‘weakest link’ system.

Example 7.3. Statement of problem – Consider a system containing n ele-
ments, each with probability of failure = 0.05. Determine the probability of
failure for the system for n = 1, 2, 3, 10 and 20.

Solution. Using Table 7.1,

Pf = 1 −
n∏

i=1

(1 − Pfi)

= 1 − (1 − 0.05)n

= 1 − 0.95n

The probability is derived in the following manner. Let R be the ‘strength’
of the entire system, and let S be the deterministic load. When the load S
is applied to the system, the load Si in each constituent element may vary
from element to element. Similarly, the strength of each element, Ri, may
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Table 7.3 Probabilities of failure for
Example 7.3

N Pf

1 0.05
2 0.0975
3 0.1426

10 0.4013
20 0.642

be different. The probability of failure of the system is thus determined as
follows, Pf = P(R ≤ S) = 1 − P(R > S) = 1 − P(R1 > S1)P(R2 > S2) . . .P(Rn >

Sn) = 1 − [1 − P(R1 ≤ S1)P(R2 ≤ S2) . . .P(Rn ≤ Sn)].
The required probabilities are summarised in Table 7.3.
Note that, unsurprisingly, the probability of failure increases as the

number of elements increases.

7.2.3 Single structure, multiple-failure mechanisms – general

A number of difficulties arise when trying to apply standard fault analysis
techniques to hydraulic structures and sea defences. In particular:

• There are generally insufficient data to assign failure probabilities to
individual components with any degree of confidence, because the num-
ber of failures is very small. (Contrast this with the manufacture of
printed circuit boards, for example.)

• Fault trees are essentially binary in character, that is, components either
work or fail. However, components of a hydraulic structure undergo
various degrees of damage in response to loading of different severity
and, even when damaged, can still provide a reduced level of protection.

• The combination of probabilities of different events to obtain the
probability of the TOP event requires an assumption that the events
are mutually exclusive, that is, failure will occur due to only one of the
branches on the tree. For example, it would be easy to assume that the
failures of each element of a flood-defence system are exclusive events,
which would allow the combined probability to be calculated by adding
the individual probabilities. However, it is possible for the elements to
fail together. For example, a river embankment and flood gate could fail
simultaneously if water levels in the river rose above their crest level.
More problematically, during the course of a storm, failure of individ-
ual components is often influenced by the occurrence of the failure of a
different component. For example, scour at the front toe of the defence
is likely to affect the likelihood of failure of the front armour layer. The
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Figure 7.2 Example of a cause–consequence tree. Up and down arrows indicate
conditions that are respectively larger or lower than anticipated. The ‘a’
items denote a link that has not been drawn with a line (adapted from
Townend 1994).

fault-tree approach has difficulty in representing this behaviour. This
has prompted the use of cause–consequence diagrams (e.g., Townend
1994). These show possible changes in the system and link these to
consequences, thereby providing a more complete description of the
system. They allow representation of some degree of recursion and
dependence between chains of events. Figure 7.2 shows an example
cause–consequence diagram for coastal flooding.

The problem and partial solution in this type of case is illustrated through
a sequence of examples based on the failure modes of a rubble-mound
breakwater (see Figure 6.15). Here, we consider only three modes of failure:
m1, excessive overtopping; m2, armour damage; and m3, toe scour. Further-
more, other modes of failure are excluded. In addition, M1 denotes the event
that failure mode m1 occurs, and so on. First, we note that the sample space
of failure modes F = {m1,m2,m3,ϕ}, where ϕ is the null event (i.e., no fail-
ure). Next, recognise that any event affecting the structure can be written as
a combination of the Mi. For example, M2, M1 and M3, and M1′ are cases
where there is failure due to armour damage, failure due to overtopping and
toe scour, and no failure due to armour damage. The event M1 ∪ M2 ∪ M3

is the occurrence of overtopping, armour damage or toe scour, and the null
event is ϕ = {M1 ∪ M2 ∪ M3}′. To make further progress, it is necessary to
assign probabilities of failure to each mode. There is an implicit time scale
in this, as an ‘event’ has a duration. Here, the probabilities of failure are
interpreted as annual probabilities. Given P(M1) = 0.02, P(M2) = 0.005 and
P(M3) = 0.01, differing relationships between the failure modes are now
illustrated.

Mutually exclusive failure modes

This has been covered in Section 7.2.1 but is revisited here for the sake of
completeness. In this case, the failure modes are mutually exclusive, so they
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cannot occur simultaneously and their intersections are null. The probabil-
ity that in a year no failure occurs is the probability of the null event, which
is 1 minus the probability of any failure occurring, that is,

P(ϕ) = 1 − P(M1 ∪ M2 ∪ M3) = 1 − (0.02 + 0.005 + 0.01)

= 1 − 0.065 = 0.935

and consequently the annual probability that the defence fails is

Pf = 1 − P(ϕ) = 0.065

In this simple case, where the events are mutually exclusive the probability
of any failure occurring could have been computed directly from the prob-
ability of the union of M1, M2 and M3. Figure 7.3 shows a Venn diagram
for this situation. Note that, because the three failure modes are mutually
exclusive, there are no overlaps between any of the sets.

The probability that the structure fails during the course of 50 years due
to any of the three failure modes is:

Pf ,50 = 1 − (1 − Pf )50 = 0.965

Note that there is no requirement for the modes of failure to be
independent.

Overtopping and toe scour are not mutually exclusive

It has been observed that failure of vertical breakwaters due to overtopping
occurs once scour has taken place. In this case, the conditional probability
of overtopping after the toe has been scoured is not null. If P(M1|M3) = 0.4,

U

M1

M3

M2

Figure 7.3 Venn diagram for mutually exclusive failure modes.
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M2

U

M3

M1

Figure 7.4 Venn diagram for the case when overtopping and toe scour are not
mutually exclusive.

and the individual probabilities of overtopping, armour damage and toe
scour remain as before, the probability of failure due to overtopping and
toe scour is given from the conditional probability as:

P(M1M3) = P(M1|M3)P(M3) = 0.4 × 0.01 = 0.004

Figure 7.4 shows the Venn diagram for this case. Note there is now an
overlap between the sets of failure due to overtopping and scour, but not
armour failure.

Furthermore, the probability that the defence will fail in a year due to one
of the three failure modes is:

Pf =1 − P(M1 ∪ M2 ∪ M3) =
3∑

i=1

P(Mi) − P(M1M3)

=0.065 − 0.004 = 0.061

and the probability that the defence does not fail is 1 − 0.061 = 0.939. The
probability that the structure fails during the course of 50 years due to any
of the three failure modes is:

Pf ,50 = 1 − (1 − Pf )50 = 1 − (0.939)50 = 0.957

Note that there is no requirement for the modes of failure to be indepen-
dent. If, in addition, statistical independence of overtopping and toe scour
is assumed, the previous calculations remain the same with the exception
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of the conditional probability. In the case when M1 and M3 are independent
then P(M1|M3)=P(M1)=0.02, and P(M1M3)=P(M1)P(M3)=0.002. There-
fore, the probability that the defence will fail due to any of the three modes
becomes 0.065 − 0.002 = 0.063; the probability that it does not fail in any
year is 1 − 0.063 = 0.937 and the probability that it will fail due to one of
the three modes over the course of 50 years is 1 − 0.93750 = 0.961.

None of the three failure modes are mutually exclusive

Of the cases considered this is perhaps the closest to reality. Figures 7.5
and 7.6 show damage to the seawall between the towns of Dawlish and

Figure 7.5 Erosion of material between the rail track and wave wall as a result of
severe storm action (courtesy of Network Rail).
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Figure 7.6 View of the damaged wall from the seaward side, showing removal of
stone blocks and pointwork (courtesy of Network Rail).

Teignmouth on the south coast of the UK. At this section, the national rail-
way line runs close to the sea, at the foot of sandstone cliffs. The railway
track is protected by an almost vertical wall. There is a pedestrian walk-
way on the top of the wall, approximately 2 m wide, and on the landward
edge there is a wave wall, approximately 1 m high. During the severe storms
of October 2004, waves approached from the south/southeast rather than
the more typical southwest direction. At the peak of the storm, visual esti-
mates of the near-shore significant wave height were of the order of 3.5 m.
There was a large amount of wave overtopping, which led to flooding of
the railway line, closure of services for a few days and severe disruptions to
timetabled services for several weeks.

The cause of the damage to the seawall cannot be determined exactly,
but is more than likely to have come about through a combination of wave
impact forces on the front face (loosening and dislodging blocks), exces-
sive wave overtopping (leading to ponding of water and significant seaward
forces on the blocks due to the resulting head during the wave trough phase
of the waves), and scour of the beach at the base of the wall (reducing wave
breaking and allowing larger waves to reach the wall). The Venn diagram
for this situation is shown in Figure 7.7.
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U

M2
M1

M3

Figure 7.7 Venn diagram for the case when none of the three failure modes are
mutually exclusive.

As before, let P(M1|M3) = 0.4. Furthermore, let P(M2|M3) = 0.5,
P(M2|M1M3) = 0.8 and P(M1M2) = 0.0002. Thus:

P(M2M3) =P(M2|M3)P(M3) = 0.5 × 0.01 = 0.005;

P(M1M3) =P(M1|M3)P(M3) = 0.4 × 0.01 = 0.004; and

P(M2M1M3) =P(M2|M1M3)P(M1|M3)P(M3) = 0.8 × 0.04 × 0.01

=0.00032

In this case the probability of failure due to any combination of failure
modes is

Pf =P{M1 ∪ M2 ∪ M3} =
3∑

i=1

P(Mi) − P(M1M2) − P(M2M3)

− P(M1M3) + P(M1M2M3) = 0.02908

Consequently, the probability that no failure occurs in a year is 1 −
0.02908 = 0.97092. Additionally, the probabilities of other events may be
computed. For example:

a The probability of the simultaneous occurrence of all three modes =
P(M1M2M3) = 0.00032.

b The probability of the simultaneous occurrence of overtopping and
armour damage = P(M1M2) = 0.0002.

c The probability of the simultaneous occurrence of overtopping and
scour = P(M1M3) = 0.004.
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d The probability of the simultaneous occurrence of armour damage and
scour = P(M2M3) = 0.005.

e The probability of failure due to overtopping and armour damage
given that scour has occurred = P(M1M2|M3) = P(M1M2M3)/P(M3) =
0.00032/0.01 = 0.032.

While the theory of probability allows one to calculate such probabilities,
the more difficult practical aspect is estimating the joint and conditional
probability of multiple failure modes with any degree of certainty. Figure 7.8
shows the same section of seawall after repairs were completed.

7.2.4 Multiple structures with multiple-failure mechanisms

Many coastal defence systems consist of multiple structures which can fail
in various ways. A straightforward reliability analysis is further complicated
if, say, the risk of flooding or erosion is required, as this introduces a spatial
element to the considerations. For example, a set of defences may protect an
area from flooding. Various assets within the protected area may be at dif-
ferent levels or have lesser or greater resilience to the depth of flooding than
others. These factors can dramatically modify the picture of risk, as opposed
to the risk of a structure not performing. Such calculations require flood
routing calculations coupled with information on land use, characteristics
of individual properties and so on, which is beyond the scope of this book.

Figure 7.8 Completed repairs of the Teignmouth–Dawlish seawall (courtesy of
Network Rail).
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Figure 7.9 Area affected by failure of one element of flood defence.

However, the process can be illustrated in a simple manner (Figures 7.9
and 7.10). Consider the area at risk from the failure of a particular flood
defence, shown in Figure 7.9; flood routing calculations will determine the
extent and depth of flooding, and in the more sophisticated versions dura-
tion as well. However, this is not the whole story if we are considering the

X

Pf1

Pf2

Pf3

Figure 7.10 Flood risk at a location ‘X’ arising from failure of individual flood
defence elements. The failure of more than one element of the flood
defence system may lead to flooding at a fixed point behind the defence
line, so the total probability of flooding at a point must take this into
account.
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risk to a particular property. Figure 7.10 shows the areas that will be inun-
dated corresponding to the failure of three separate sections of defences.
The risk of flooding at a property is the combination of risks arising from
the failure of each element in the flood defence. In this type of situation it
is common to assume that the elements are independent so that bounds on
the total risk can be obtained from Table 7.1. However, the probabilities of
failure of each element would first of all have to have been defined through
an analysis such as that outlined in Section 7.2.3.

7.3 Flood defence schemes

In this section an example of a practical application of a probabilistic
approach to flood risk assessment is described. The main issues encountered
in this example can be summarised as follows:

• Large numbers of structures to be assessed (over 2000);
• Multiple failure modes;
• Variable quality of data;
• Quantifying the impact of a ‘major storm event’.

Example 7.4. National scale assessment of flood risk. In the mid-1990s
the UK insurance industry commissioned a study to assess the risk of
coastal flooding for England and Wales. The study was commissioned by
the Association of British Insurers (ABI), which is an umbrella organisa-
tion for its membership – insurance companies. The ABI had been aware
of the rising cost of flood claims and wished to satisfy itself that it had
sufficient reserves to cover the likely scale of claims should a major storm
occur. The study covered sea and tidal defences on the open coast and within
the Thames, Humber, Tees and Severn estuaries. In total there were over
1300 km of sea defences, with over 2000 different defence elements.

The main sources of information for the assessment were:

• The UK National Sea Defence Survey (NSDS), undertaken in the early
1990s, which was essentially a condition survey to guide maintenance
and capital scheme requirements over a 5–10 year period;

• Areas defended against flooding as outlined in the NSDS;
• Water-level data, in the form of a 30-year time series for 16 locations

and annual maxima for the remaining locations, from the Proudman
Oceanographic Laboratory;

• Deep-water wave hindcasts, in the form of a 30-year time series at
3-hourly intervals, from the North European Storms Study at 32
locations;
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• Additional wave time series for the Thames and Severn estuaries from
the UK Meteorological Office wave model (Golding 1983), and for the
Humber estuary from local wind records and wave hindcasting;

• Bathymetric data, for wave transformation calculations, obtained from
Admiralty Charts.

A detailed discussion of the methodology adopted can be found in Reeve
and Burgess (1994), and discussions of the mapping procedures in Burgess
and Reeve (1994) and Maddrell et al. (1995, 1996). Here, a brief description
is given so that the basic concepts can be appreciated. The most important
point is that the results were intended to identify areas of high, medium and
low flood risk. High risk was defined as an area vulnerable to an event with
a 50-year return period, low risk as an area vulnerable to an event having a
return period in excess of 200 years, with medium risk falling between these
limits.

The methodology proceeded as follows:

1 Three modes of failure were considered: overflow, overtopping and toe
failure.

2 Water-level data were analysed to determine extreme values corre-
sponding to 50-, 100- and 200-year return periods (see Chapter 4).

3 Wave time series were transformed to inshore points using a spectral
ray model (see e.g., Reeve et al. 2004), which accounted for refraction,
shoaling and breaking.

4 Time series of inshore waves were analysed to determine extreme sig-
nificant wave heights and corresponding wave periods (see Chapter 4).

5 Information on beach levels was used to define extreme (minimum)
beach levels at each defence element.

6 The extreme beach levels were used in two ways: to determine the
breaking wave limit at the structure and to determine the stability of
the toe of the structure.

7 Calculations were performed using the 50-, 100- and 200-year extreme
beach, wave and water levels to determine whether the structure could
withstand these.

8 To determine the overall risk, overflow and overtopping were consid-
ered to be independent of toe failure but to have some dependence
through water level. To provide a robust estimation of the risk, the
combined probability of overtopping and overflow risk was taken as
the larger of the two (i.e., complete dependence), and this was then
combined with the probability of toe failure assuming independence.

Figure 7.11 shows the distribution of offshore wave and water-level
locations that were used to define the near-shore wave and water-level con-
ditions at almost 160 near-shore points. Each near-shore point was used to
determine the wave conditions at approximately 10–20 defence lengths.



Reliability of systems 275

Additional Water-Level Stations

Offshore Water-Level Locations

Offshore Wave Locations

Middlesbrough

Immingham

Gt. Yarmouth

London

Dover

Portsmouth

Plymouth

Bristol

Milford
Haven

Liverpool

Figure 7.11 Offshore wave and water-level locations.

One of the main difficulties faced in this study was the very variable
degree of information on the beach levels and the structures. Figure 7.12
illustrates some examples of defence profiles abstracted from the NSDS,
and shows that in some cases further effort was required to define crest
levels and materials. Indeed, almost 50% of all defences listed in the
NSDS had poor quality (or no) data regarding the structure toe or beach
levels.
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Marsh

Loose stone

Concrete set stone

Sand

SeawardLandward 

Cobbles in
concrete

6
1 

3 m

2 m

Path 

1 m high
concrete wall

Figure 7.12 Examples of information on flood defences extracted from the NSDS.

The NSDS also gave information on the current condition of the defence.
This was used to modify the strength of the structure in a simple way, not
dissimilar to a Level 1 approach. So, for example, in the case of overflow,
the reliability function is defined as:

Goverflow = le − lmw (7.3)

where le is the effective crest level of the structure and lmw is the extreme
water level. The effective crest level is the NSDS quoted level reduced by a
factor based on engineering judgement to account for its condition (typically
between 0.0 m for a new structure and 0.5 m for a damaged or ageing struc-
ture). The overtopping rate during the extreme storm (50-, 100- or 200-year
event) was determined using Owen’s formula (Equation 6.22), but adjust-
ing the crest level as in Equation (7.3) to account for the condition of the
defence. This was compared to damage threshold overtopping rates depend-
ing on the construction of the defence, as recommended in Owen (1980). If
the computed overtopping rate exceeded the damage threshold, failure was
considered to have occurred. Toe failure was defined as the probability that
the beach level at the toe of the structure fell below a critical level required
for the stability of the structure:

Gtoe failure = lb − lc (7.4)

where lb is the annual minimum beach level and lc is the critical beach level.
Beach levels were described by a Gumbel distribution (for minima). In cases
where no or insufficient beach measurements existed, a qualitative method
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based on engineering judgement and historical records was used to cate-
gorise the risk of failure due to toe erosion as being high, medium or low.
The areas at risk of flooding were determined from the results of the defence
failure. Potential flood areas were established using a geographical informa-
tion system and locating (from Ordnance Survey maps) the likely effect of
controlling structures such as embankments, roads and railways. The poten-
tial flood areas were then mapped onto postcode areas, which are used by
insurers as the first step in defining premium levels. Further results of this
project and a follow-on project have been reported in Maddrell et al. (1997,
1998). Even with the conservative assumptions mentioned above, the result
of the analysis was that less than 3% of the area protected by flood defences
was at high risk.

It is interesting to note that, in a more recent assessment, Oakes (2002)
reported that approximately 8% of England and Wales is at non-negligible
risk of flooding. Of this area, some 15% (or 2500 km2) is at risk of direct
flooding by the sea, potentially affecting 1.9 million homes.

Three important points to note are:

• To find a robust estimate of flood risk in such a wide-ranging project
it is necessary to have a large data set, and a strategy for dealing with
variable data quality.

• At one or more stages, it is quite likely that there will be insufficient
information to determine statistical independence or mutual exclusivity,
or otherwise. A pragmatic decision has therefore to be made, and the
natural choice is to assume a ‘worst-case’ situation that gives a higher
probability of failure.

• This risk assessment is a ‘snapshot’ at a particular point in time, and the
risk of flooding will be a function of time, changing as environmental
conditions evolve and structures weather and deteriorate.

7.4 Time-varying risk

While the various methods of estimating the risk of flooding or erosion have
been at the forefront of much of this book, another underlying theme should
also have been evident: that is, the risk of failure of a hydraulic structure or
coastal defence is a function of time because of the nature of the hydrody-
namic loading and the behaviour of the structural materials. The techniques
mentioned in Chapters 5 and 6 provide examples of how time variation can
be incorporated to a degree. The most natural way to model time variation
is by using stochastic variables, particularly if the statistics of the variables in
question are nonstationary. However, to properly specify the characteristics
of a stochastic variable requires extensive observations. These are often not
available or are prohibitively expensive to collect; so alternative approaches
such as those described earlier are necessary if estimates are to be provided
to answer planning and design questions.
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Epilogue

When visiting a site during calm, sunny conditions it can be tempting to
think that severe storms are so rare that there is little need to consider
their occurrence during construction or over the life of a scheme. A recent
paper1 illustrates the dangers of such a train of thought. The extension of the
port of Gijón in the north of Spain was planned and designed meticulously,
using the latest probabilistic approaches.2 The construction took place over
3 years, predominantly during the summer months. During winter, the
partly completed structure was capped with protective layers designed to
have a useful life of 2 years and a failure probability of 0.5. Despite this, a
very extreme storm (estimated at greater than 1 in 1000 year return period)
occurred during the construction phase and caused damage to the structure.
The extremity of the storm was due to the combination of wave height,
period, direction and duration. Significant wave heights of up to 6.63 m,
with a maximum wave height of 11.20 m, were observed, together with
peak periods of 18 seconds, incidence directions from north-northeast, max-
imum sea levels of 5.50 m and a duration of 3 days. Fortunately, the extent
of the damage was limited and was repaired without any great delay to the
project. Had there been no protective layers the extent of the damage would
have been much, much greater. Indeed, the careful calculation of probabil-
ities and adherence to agreed guidelines meant that a force majeure was
declared and the costs of damage were covered by insurance. This recent
and real-life case illustrates that where water, and particularly the sea, is
concerned, one cannot take anything for granted.

Returning to the issue of whether to use probabilistic methods or not – my
advice to those designing flood defences would be, never, ever ‘feel lucky’.
Collect the measurements; perform the analyses and reliability calculations

1 Diaz Rato, J. L., Moyano Retamero, J. and de Miguel Riestra, M., 2009. Extension to the
port of Gijón, Proc ICE Maritime Engineering, 161(MA4): 143–152.

2 Puertos del Estado, 2002. Recommendations for Maritime Structures, ROM 0.0, General
procedure and requirements in the design of harbour and maritime structures, Part 1.
Ministerio de Fomento, Madrid, Spain. ISBN 84-88975-31-7.
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so you can make a sound engineering judgement of the risks involved. One
can then weigh the probabilities of occurrence against the consequences and
make an informed decision as to the appropriate level of protection required
during both construction and for the completed scheme, allowing for the
uncertainties inherent in the whole procedure.



Appendix A: normal distribution
tables

Table A1 Standard normal distribution function Φ(z)

Z Φ(z) Z Φ(z) Z Φ(z)

0.00 0.50000 1.00 0.84134 2.00 0.97724
0.02 0.50797 1.02 0.84613 2.02 0.97830
0.04 0.51595 1.04 0.85083 2.04 0.97932
0.06 0.52392 1.06 0.85542 2.06 0.98030
0.08 0.53188 1.08 0.85992 2.08 0.98123
0.10 0.53982 1.10 0.86433 2.10 0.98213
0.12 0.54775 1.12 0.86864 2.12 0.98299
0.14 0.55567 1.14 0.87285 2.14 0.98382
0.16 0.56355 1.16 0.87697 2.16 0.98461
0.18 0.57142 1.18 0.88099 2.18 0.98537
0.20 0.57925 1.20 0.88493 2.20 0.98609
0.22 0.58706 1.22 0.88876 2.22 0.98679
0.24 0.59483 1.24 0.89251 2.24 0.98745
0.26 0.60256 1.26 0.89616 2.26 0.98808
0.28 0.61026 1.28 0.89972 2.28 0.98869
0.30 0.61791 1.30 0.90319 2.30 0.98927
0.32 0.62551 1.32 0.90658 2.32 0.98982
0.34 0.63307 1.34 0.90987 2.34 0.99035
0.36 0.64057 1.36 0.91308 2.36 0.99086
0.38 0.64802 1.38 0.91620 2.38 0.99134
0.40 0.65542 1.40 0.91924 2.40 0.99180
0.42 0.66275 1.42 0.92219 2.42 0.99223
0.44 0.67003 1.44 0.92506 2.44 0.99265
0.46 0.677724 1.46 0.92785 2.46 0.99305
0.48 0.68438 1.48 0.93056 2.48 0.99343
0.50 0.69146 1.50 0.93319 2.50 0.99379
0.52 0.69846 1.52 0.93574 2.52 0.99413
0.54 0.7054 1.54 0.93821 2.54 0.99445
0.56 0.71226 1.56 0.94062 2.56 0.99476
0.58 0.71904 1.58 0.94294 2.58 0.99505



Table A1 (Continued)

Z Φ(z) Z Φ(z) Z Φ(z)

0.60 0.72574 1.60 0.94520 2.60 0.99533
0.62 0.73237 1.62 0.94738 2.62 0.99560
0.64 0.73891 1.64 0.94949 2.64 0.99585
0.66 0.74537 1.66 0.95154 2.66 0.99609
0.68 0.75174 1.68 0.95352 2.68 0.99631
0.70 0.75803 1.70 0.95543 2.70 0.99653
0.72 0.76423 1.72 0.95728 2.72 0.99673
0.74 0.77035 1.74 0.95907 2.74 0.99692
0.76 0.77637 1.76 0.96079 2.76 0.99710
0.78 0.78230 1.78 0.96246 2.78 0.99728
0.80 0.78814 1.80 0.96406 2.80 0.99744
0.82 0.79389 1.82 0.96562 2.82 0.99759
0.84 0.79954 1.84 0.96711 2.84 0.99774
0.86 0.80510 1.86 0.96855 2.86 0.99788
0.88 0.81057 1.88 0.96994 2.88 0.99801
0.90 0.81593 1.90 0.97128 2.90 0.99813
0.92 0.82121 1.92 0.97257 2.92 0.99824
0.94 0.82639 1.94 0.97381 2.94 0.99834
0.96 0.83147 1.96 0.97500 2.96 0.99846
0.98 0.83645 1.98 0.97614 2.98 0.99855
1.00 0.84134 2.00 0.97724 3.00 0.99865

Table A2 Standard normal distribution function
Φ(z) for larger values of z

Z Φ(z)

3.00 0.99865010
3.05 0.99885579
3.10 0.99903239
3.15 0.99918364
3.20 0.99931286
3.25 0.99942297
3.30 0.99951657
3.35 0.99959594
3.40 0.99966307
3.45 0.99971970
3.50 0.99976737
3.55 0.99980738
3.60 0.99984089
3.65 0.99986887
3.70 0.99989220
3.75 0.99991158
3.80 0.99992765



Z Φ(z)

3.85 0.99994094
3.90 0.99995190
3.95 0.99996092
4.00 0.99996832
4.05 0.99997439
4.10 0.99997934
4.15 0.99998337
4.20 0.99998665
4.25 0.99998931
4.30 0.99999146
4.35 0.99999319
4.40 0.99999458
4.45 0.99999570
4.50 0.99999660
4.55 0.99999731
4.60 0.99999788
4.65 0.99999834
4.70 0.99999869
4.75 0.99999898
4.80 0.99999920
4.85 0.99999938
4.90 0.99999952
4.95 0.99999962
5.00 0.9999997133
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Appendix B: flow diagrams for
reliability analysis

Is the reliability
function linear?

Y
See
Chart 2

See
Chart 3

N

Y

Y

N

N

Calculate Pf using appropriate
factors of safety &/or partial
safety factors

Do you want to
use Level 2
methods?

Do you want to
use Level 1
methods?

Do you want to
use approximate
methods?

Use PEM or 
hybrid methods

Use Level 3
methods

Y

N

Chart 1



Use
Equations
5.14 & 5.16

Use
Equation 5.17

Are Xi
independent?

If a0 and i = 2: G is a
bivariate distribution and
it may be possible to
evaluate P(G < 0) directly

Generally: use general
Level 2 methods
(Section 5.6.5)If a0 and i = 2: Evaluate Pf

using probability theory
(particularly if R =
constant value)

Generally: evaluate using
probability theory, but if I
large consider using CLT
and near-normality of G

Are Xi
independent?

Use PEM; works best with distributions
with small skewness

Use hybrid methods; see examples

Y

Y Y

N

N

Approximate
methods

Numerical
Level 3 Use Monte

Carlo
integration

Can Pf be formulated as an
integral?

Use Monte Carlo simulation

Y
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G linear
G(Xi) =
a0 + ΣiaiXi

Are Xi
normal?

Level 2

Chart 2



Use FMA for
uncorrelated
variables

Use FMA for correlated variables

Are Xi
independent?

Transform G into a function of
independent normal variables;
requires matrix manipulations and
iteration

Normal tail transform

Are Xi
independent?

Use PEM; works best with distributions
with small skewness

Use hybrid methods; see examples

Can Pf be formulated as an
integral?

Use Monte Carlo simulation

Y

N
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Approximate
methods

Numerical
Level 3 Use Monte

Carlo
integration
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Use FDA for uncorrelated variables;
will probably require iteration

G nonlinear
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Note: The notation “ff” along with locators refer to following folios.

Accropode, see armour units
Airy wave, see wave, Airy
alongshore drift, see littoral drift
annual maxima 90–1, 99, 104–5,

109–10, 156, 273
armour 124, 182, 264–71
armour units

Accropode 124, 185
Core-loc 124
Dolos/Dolosse 124
Tetrapod 124, 185

autocorrelation 80, 248
function 80–6, 89, 159, 248

axiom 14, 18

Bayes’ rule 21, 75–6, 116
beach 125–6, 128, 147, 225, 231,

235, 237–46, 274–6
gravel 122–3
profile 237
sand 88, 225
shingle, see beach, gravel
slope 179, 196

Bernoulli
distribution 27
equation 199, 201
trials 27

Bessel function 59
Beta distribution 97
bias 67
binning 29
binomial distribution 73
bivariate

exponential distribution 50–2
normal distribution 53, 144

block maxima 156
Boolean operator 259

bootstrap method 76–8, 110, 113
breach 122–3, 164, 243–4
breaker

index 177
types 179

breakwater 1, 88, 185
caisson 183
detached 240, 243, 245–50
harbour 88, 186
nearshore parallel, see breakwater,

detached
offshore, see breakwater, detached
rubble mound 129–30, 182, 189,

261, 265
Sines 124–5
vertical wall 88, 130, 269

buoy 261–2
buoyancy 212

Cauchy distribution 47–8, 56,
69, 96

cause–consequence diagram 265
censored 103
central limit theorem 60–1
centre of buoyancy 214
centre of gravity 212, 221
CERC formula 239
characteristic function 61–2
Chézy 202
Chi-squared distribution 47
Cholesky decomposition 146
cliff 87, 225, 229, 230, 233, 235–7
coastal

defence 125, 174
management 237, 250
morphology 237
protection 225
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coefficient
of contraction 201, 204
of velocity 202, 204

Colebrook–White formulae 203
collision 214, 218
combination 15–17
complement 13
confidence limits 68, 75–8, 107–8,

113, 232
consistency 67
convolution 55, 61
correlated variables 141, 143, 145
correlation 259

coefficient 52, 65, 131, 144, 149,
170–1

matrix 143–4
temporal 89, 113

covariance 52, 66, 75, 141
cumulative distribution function, see

probability, distribution function

damage level 186, 194
Darcy–Weisbach formula 202, 204
depth of closure 237
design

condition 90
life 5, 9, 91, 262

Ditlevsen bounds 259
Dolos, see armour units

earthquake 187
echo sounder survey 65
efficiency 67
eigenvalue 141
eigenvector 141
embankments 5–6, 13, 22, 123, 132,

147, 163–5, 168, 262, 264
empirical distribution 71
empirical orthogonal function, see EOF
ensemble 78, 85–6, 198, 241–2, 253
EOF 253, 255
equilibrium profile 237
ergodic 81
Erlang distribution 34
erosion 87, 122, 225, 228, 233
estimate 67
estimator 67, 96–7
event 16, 156
expectation, 52, 110

see also mean
expected value, see expectation
extreme

value 10, 90, 93
variable 147

factorial 15
factor of safety 130, 163–5, 168,

222
failure

criterion 163, 165, 168, 245
definition 8, 119, 121
mode 123–6, 161, 250, 261, 265,

267–71
rate 41
surface 132, 136–8, 192

fatigue limit state 120
fault tree 259–61
filter layer 182
first order risk methods (FORM) 129,

148
flood

defence 23, 243, 273–7
gate 258, 264

flooding 87, 243, 270–7
Fourier transform 62, 82, 85
Fréchet distribution 95–6
frequency table 25
friction slope 162, 202
Froude number 161, 167

gamma
distribution 33, 68–9, 104, 159,

239
function 34, 159

Gaussian distribution, see normal
distribution

generalised extreme value distribution,
see GEV

generalised Pareto distribution, see GPD
geometric distribution 27, 30, 159
GEV 94, 98–9, 111–12
GPD 98–9
groyne 240–2

rock 245
timber 227

Gumbel distribution 95, 100, 104–5,
107–8, 111, 145, 150, 192, 276

harbour breakwaters, see breakwater,
harbour

HAT 24
hazard 8, 41–2, 87, 126–7, 224,

228–9
Hazen’s formula 102
Hazen–Williams formula 203–4
Health and Safety Executive (HSE)

214
Hudson formula 184, 189
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importance sampling 153
independent 19, 52, 127
influence factor 134–5, 225
information matrix 75, 107–8, 110
insurance 273
Irribarren number 179
irrigation 169
iterative scheme 138, 140, 190,

205–6

jacket 214
jack-knife method 76–8, 240, 253
joint probability, see probability, joint

Kaplan–Meier estimator 103
kinetic energy 3
Kolmogorov–Smirnov test 110
kurtosis 35

land use 235
Laplace transform 62
least squares method 70–2, 100–3
level 0 method 129
level I method 129, 161, 164, 222,

276
level II method 129–30, 134, 161,

167, 170, 172, 189, 192, 194, 204,
219, 221, 223–4

level III method 129, 133, 151, 240
lighthouse 227
likelihood function 73–4, 108
limit state 126
1-line, see one-line beach plan shape

model
linear wave, see wave, Airy
littoral drift, see sediment, transport;

longshore
load 119
log–normal distribution 63, 168,

239
longshore, 237, 243

Manning 162, 166–7, 202,
206–11

marginal
density function 50, 51, 128
distribution function 50, 144
extreme 115

maximum likelihood 72–5, 95, 97,
107–10

maximum of variables 60
mean 34, 52, 80, 110–11
metacentre 212–13, 221

method
of L-moments 69, 109
of moments 68, 104–7
of probability weighted

moments 69
minimum of variables 60
moment

of area 214
central 34–5
generating function 61–6
of inertia 214, 218, 221
transformation of 64–6

Monte Carlo
integration 151–2
simulation 10, 116, 129, 151, 153,

158, 198, 235–7, 241, 243,
245–6, 253

Morison’s equation 222
MTTF 43
mutually exclusive 10, 16, 18, 21,

263, 265
MVA 134–6, 204, 224–5

Navier-Stokes equations 2, 4, 175
navigation 251
navigation channel 251
normal distribution 30–2, 62–3, 65,

74–5, 93, 101, 145, 168, 171,
223–4

standard 31, 36, 47, 58, 107, 131
tail transform 142–3

offshore banks 250–4
one-line beach plan shape model

237–9, 249
overflow 123, 147, 161, 163–5, 168,

274–7
overtopping 147, 182, 186–7, 196–7,

265–71, 274–7

Pareto distribution 96, 98, 104–5
partial safety factor 129, 165, 222
peaks over threshold, see POT
percentile 36
period of roll 217, 221
permutation 15–16
phytoplankton 171–2
pipes

riveted 207ff
steel 207ff

plotting position 102–3
point estimation method (PEM)

148–50, 173, 188, 190–2, 194,
196–7
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Poisson distribution 27, 34, 158,
237

pontoon 218–20
port 1, 250, 279
POT 90, 98, 99
power spectrum 83
probability

conditional 18–19, 22–3, 50, 52,
268

definition 17
density function 26, 28–9, 41
distribution function 26, 28, 29, 41
of exceedance 91–2
of failure 126–8, 133, 135–7, 139,

148, 158, 165, 168, 174, 221,
223

function 26
joint 50, 143
joint extremes 114
total 18, 262

Q-Q plot 72, 105, 107
quantile 36, 72, 101
quartile 36

rainfall 50, 89–90
Rayleigh distribution 33, 40–2, 59,

68–9, 104, 172, 203–4
realisation 78, 81, 246
rectangular distribution, see uniform

distribution
reliability 8–9, 125

analysis 119, 128
function 41, 128, 131–4, 140, 142,

145–6, 149–51, 165, 170, 217,
220–3, 276

index
Hasofer and Lind’s 136–7, 174,

189, 192, 195, 205, 223,
225

traditional 132, 135
theory 9–10, 118–19, 126, 129

remote-sensing 199
reservoir 169
return period 90–2, 113, 159, 279
revetment 194
Reynolds number 4, 202
risk 7, 8, 125–6
river flow 118
river levels 71–2
rock armour 188
roughness coefficient 162
rubble mound, see breakwater

sample space 16–17, 21–2
sandbank, see offshore banks
scour 161, 172, 264–71

depth 163, 165
sea level rise 229
sea wall 1, 147, 268–71
second order risk methods (SORM)

154–5
sediment

porosity 239
transport 237

seepage 122–3
serviceability limit state 119
set

disjoint 13
empty 10
intersecting 12
subset 10
union 10
universal 13

sewer 6, 91
shingle, see beach, gravel
skewness 35, 154
soft engineering 10
source–pathway–receptor model 228
stability of a floating body 213–14
standard deviation 34
standard error 68, 77, 99, 100, 107,

110
stationarity 81, 241
stochastic process 78–83, 158, 241
strength 119, 263
Student’s t distribution 77
survival function 14
systems

parallel 258–9
reliability 258
series 258–9

tide
board 24
gauge 16

time varying reliability 155–60,
230–7, 277

toe 183, 265, 274–7
TOP event 259, 264
transformation

of a single random variable 37,
45–9

of two random variables 54–61
triangular distribution 57, 61, 220
truncated distribution 47–9
tsunami 187



304 Index

ultimate limit state 119, 121
uncertainty 5–7, 67, 87, 120, 207,

229
uniform distribution 29, 35, 57, 61,

81, 97, 166, 187, 219, 220, 224
upthrust 212

Van der Meer formulae 184–6, 194,
198

variance 34
Venn diagram 13, 15, 266, 269–70
Vierendeel tower 214

water level 262
wave

acoustic 59, 65
Airy 175
breaking 176–7, 179
deep water 176
diffraction 178, 245
dispersion equation 176
energy 176
energy spectrum 180, 182
forces 269
frequency 175
group velocity 176, 239

height 110, 124
length 175
models

mild-slope 248
ray tracing 274
SWAN 241

number 175
parameters – (time domain) 181,

(frequency domain) 181
rose 247
shallow water 176, 187
shoaling 34–8, 97
solitary 100
steepness 177
swell 59
transformation 179, 241, 246, 274
wind 59, 68, 91

Weibull distribution
2-parameter 42–3, 100, 104,

106–7, 111, 197
3-parameter 95–8, 111, 113

wind
farms 214, 250
loading 222

zooplankton 171
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