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Preface

Cloud storage is an important service of cloud computing, which offers services for
data owners to host their data in the cloud. This new paradigm of data hosting and
data access services introduces two major security concerns: (1) Protection of data
integrity. Data owners may not fully trust the cloud server and worry that data
stored in the cloud could be corrupted or even removed. (2) Data access control.
Data owners may worry that some dishonest servers give data access to unau-
thorized users, such that they can no longer rely on the servers to conduct data
access control. In this book, we investigate the security issues in the cloud storage
systems and develop secure solutions to ensure data owners the safety and security
of the data stored in the cloud.

We first introduce Third-party Storage Auditing Service (TSAS), an efficient
and secure dynamic auditing service to ensure the cloud data integrity in Chap. 2.
In Chap. 3, we describe Attribute-Based Access Control (ABAS), a fine-grained
access control scheme with efficient attribute revocation for cloud storage systems.
In Chap. 4, we further present Data Access Control for Multi-Authority Cloud
Storage (DAC-MACS), a data access control scheme with efficient revocation and
decryption for cloud storage systems with multiple authorities.

We hope this book gives the reader an overview of the data security for cloud
storage systems, and will serve as a good introductory reference to improve the
security of cloud storage systems.

Hong Kong, March 2013 Kan Yang
Xiaohua Jia
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Chapter 1
Introduction

Abstract Cloud computing has emerged as a promising technique that greatly
changes the modern IT industry. In this chapter, we first give a brief introduction
to cloud storage systems. Then, we explore some security issues in cloud storage
systems, including data integrity and data confidentiality. We also give an overview
on how to solve these security problems.

1.1 Brief Introduction to Cloud Storage Systems

1.1.1 Cloud Computing

Cloud computing has emerged as a promising technique that greatly changes the
modern IT industry. The National Institute of Standards and Technology (NIST)
defined the cloud computing as follows [12].

Cloud computing is a model for enabling convenient, on-demand network
access to a shared pool of configurable and reliable computing resources (e.g.,
networks, servers, storage, applications, services) that can be rapidly provi-
sioned and released with minimal consumer management effort or service
provider interaction.

This cloud model is composed of five essential characteristics, three service
models, and four deployment models.

The five essential characteristics are defined as

• On-demand self-service
• Ubiquitous network access
• Resource pooling

K. Yang and X. Jia, Security for Cloud Storage Systems, SpringerBriefs 1
in Computer Science, DOI: 10.1007/978-1-4614-7873-7_1,
© The Author(s) 2014
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• Rapid elasticity or expansion
• Measured service

The service models are defined as

• Cloud Software as a Service (SaaS)—Use providers applications over a network.
• Cloud Platform as a Service (PaaS)—Deploy customer-created applications to a

cloud.
• Cloud Infrastructure as a Service (IaaS)—Rent processing, storage, network capac-

ity, and other fundamental computing resources.

The deployment models, which can be either internally or externally implemented,
are summarized in the NIST definition as

• Private cloud—Enterprise owned or leased
• Community cloud—Shared infrastructure for specific community
• Public cloud—Sold to the public, mega-scale infrastructure
• Hybrid cloud—Composition of two or more clouds

1.1.2 Cloud Storage as a Service

Cloud storage is an important service of cloud computing, which allows data own-
ers (owners) to host data from their local computing systems to the cloud. Cloud
storage is a model of networked online storage where data is stored in virtualized
pools of storage which are generally hosted by third parties (e.g., the storage service
providers). The service providers operate large data centers, and data owners buy or
lease storage capacity from them in a pay-as-you-go business model. The service
providers, in the background, virtualize the resources according to the requirements
of the customer and expose them as storage pools, which the customers can them-
selves use to store files or data objects. Physically, the resource may span across
multiple servers.

The cloud storage can provide a comparably low-cost, scalable, location inde-
pendent platform for managing users data, thus more and more data owners start to
store the data in the cloud [1]. By hosting their data in the cloud, data owners can
avoid the initial investment of expensive infrastructure setup, large equipments, and
daily maintenance cost. The data owners only need to pay the space they actually
use, e.g., cost-per-gigabyte-stored model [17]. Another reason is that data owners
can rely on the cloud to provide more reliable services, so that they can access data
from anywhere and at any time. Individuals or small-sized companies usually do not
have the resource to keep their servers as reliable as the cloud does.

However, this new paradigm of data storage service also introduces new security
challenges. The principal goal of this book is to investigate the security issues in the
cloud storage systems and develop secure solutions to ensure data owners the safety
and security of the data stored in the cloud.
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1.2 Data Security for Cloud Storage Systems

When people outsource data into the cloud, they cannot manage the data as in their
local storage systems. On the other hand, because service providers are not in the same
trust domain as data owners, they cannot be fully trusted by data owners. Therefore,
the cloud storage system introduces two major security concerns: (1) Protection of
data integrity. Data owners may worry that data stored in the cloud could be corrupted
or even deleted. (2) Data access control. Data owners may worry that some dishonest
servers give data access to unauthorized users.

1.2.1 Storage Auditing as a Service

When outsourcing data in the cloud, data owners would worry their data could be lost
or corrupted in the cloud. This is because data loss could happen in any infrastructure,
no matter what high degree of reliable measures the cloud service providers would
take [2, 15]. Some recent data loss incidents are the Sidekick Cloud Disaster in 2009
[4] and the breakdown of Amazon’s Elastic Compute Cloud (EC2) in 2010 [13].
Sometimes, the cloud service providers may be dishonest and they may discard the
data which has not been accessed or rarely accessed to save the storage space or keep
fewer replicas than promised. Moreover, the cloud service providers may choose to
hide data loss and claim that the data are still correctly stored in the cloud. As a result,
data owners need to be convinced that their data are correctly stored in the cloud.

Checking on retrieval is a common method for checking the data integrity, which
means data owners check the data integrity when accessing their data. This method
has been used in peer-to-peer storage systems [7, 14], network file systems [6, 8],
long-term archives [11], web-service object stores [20] and database systems [10].
However, checking on retrieval is not sufficient to check the integrity for all the data
stored in the cloud. There is usually a large amount of data stored in the cloud, but
only a small percentage is frequently accessed. There is no guarantee for the data that
are rarely accessed. An improved method was proposed by generating some virtual
retrievals to check the integrity of rarely accessed data. But this causes heavy I/O
overhead on the cloud servers and high communication cost due to the data retrieval
operations.

Therefore, it is desirable to have storage auditing service to assure data owners
that their data are correctly stored in the cloud. But data owners are not willing to
perform such auditing service due to the heavy overhead and cost. In fact, it is not fair
to let any side of the cloud service providers or the data owners conduct the auditing,
because neither of them could be guaranteed to provide unbiased and honest auditing
result [18]. Third party auditing is a natural choice for the storage auditing. A third
party auditor who has expertise and capabilities can do a more efficient work and
convince both the cloud service provider and the data owner. On one hand, through
the auditing reports released by the third party auditor, data owners can make sure
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that their data is correctly stored in the cloud. On the other hand, the cloud service
provider can also build a good reputation from good auditing reports and enhance its
competitiveness. This book aims to design an efficient third party auditing scheme
for cloud storage systems.

1.2.2 Access Control as a Service

In cloud storage systems, data owners would worry their data could be mis-used or
accessed by unauthorized users. However, the data access control is a challenging
issue in cloud storage systems, because the cloud storage service separates the roles
of the data owner from the data service provider, and the data owner does not interact
with the user directly for providing data access service.

Existing methods [16] usually delegate data access control to a trusted server and
let it be in charge of defining and enforcing access policies. However, the cloud server
cannot be fully trusted by data owners, since the cloud server may give data access
to unauthorized users to make more profit (e.g., the competitor of a company). Thus,
traditional server-based data access control methods are no longer suitable for cloud
storage systems.

To achieve data access control on untrusted servers, traditional methods usually
require the data owner to encrypt the data m with a symmetric content key K by
using symmetric encryption method, and encrypt the content key K with each user’s
public key PKu by using public encryption methods. Since the data owner delegates
the data access service to the remote server, the data owner does not need to stay
online “24/7/365” to distribute the content key to all the users. Thus, the ciphertext
of the content key EPKu (K ) (the encrypted forms of the content key) will be stored
on the server together with the encrypted data EK (m). The user can retrieve both the
ciphertext of the content key EPKu (K ) and the encrypted data EK (m). However, in
cloud storage systems, it is very difficult for data owners to know all the potential
users beforehand [5, 9], and thus data owners cannot encrypt the content key with all
the users’ public keys or predefine a fixed access control list for the data. Moreover,
the storage overhead on the server caused by the ciphertext of the content key is
linear with the total number of all the users in the system.

The Ciphertext-Policy Attribute-based Encryption (CP-ABE) [3, 19] is regarded
as one of the most suitable technologies for data access control in cloud storage
systems, because it gives the data owner more direct control on access policies and
the policy checking occurs “inside the cryptography”. In CP-ABE scheme, there is
an authority that is responsible for attribute management. Each owner in the system
is associated with a set of attributes that describe its role or identity in the system.
To encrypt a file, the data owner first defines an access policy over the universal
attribute set, and then encrypts it under this access policy. Only the users whose
attributes satisfy the access policy are able to decrypt the ciphertext. However, due
to the attribute revocation problem, it is very costly to apply the CP-ABE approach
to control the data access in cloud storage systems.
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This book aims to study the data access control issue in cloud storage systems,
where the data owner is in charge of defining and enforcing the access policy.
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Chapter 2
TSAS: Third-Party Storage Auditing Service

Abstract In cloud storage systems, data owners host their data on cloud servers
and users (data consumers) can access the data from cloud servers. Due to the data
outsourcing, however, this new paradigm of data hosting service also introduces new
security challenges, which requires an independent auditing service to check the data
integrity in the cloud. In large-scale cloud storage systems, the data may be updated
dynamically, so existing remote integrity checking methods served for static archive
data are no longer applicable to check the data integrity. Thus, an efficient and secure
dynamic auditing protocol is desired to convince data owners that the data is correctly
stored in the cloud. In this chapter, we first introduce an auditing framework for cloud
storage systems. Then, we describe Third-party Storage Auditing Scheme (TSAS),
an efficient and privacy-preserving auditing protocol for cloud storage, which can
also support data dynamic operations and batch auditing for both multiple owners
and multiple clouds.

2.1 Introduction

Cloud storage is an important service of cloud computing [16], which allows data
owners (owners) to move data from their local computing systems to the cloud. More
and more owners start to store the data in the cloud [1]. However, this new paradigm
of data hosting service also introduces new security challenges [24]. Owners would
worry that the data could be lost in the cloud. This is because data loss could happen
in any infrastructure, no matter what high degree of reliable measures cloud service
providers would take [5, 11, 13, 14, 18]. Sometimes, cloud service providers might
be dishonest. They could discard the data which has not been accessed or rarely
accessed to save the storage space and claim that the data are still correctly stored in
the cloud. Therefore, owners need to be convinced that the data are correctly stored
in the cloud.

K. Yang and X. Jia, Security for Cloud Storage Systems, SpringerBriefs 7
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Traditionally, owners can check the data integrity based on two-party storage
auditing protocols [6, 9, 12, 15, 17, 19, 20, 22, 28]. In cloud storage system, however,
it is inappropriate to let either side of cloud service providers or owners conduct such
auditing, because none of them could be guaranteed to provide unbiased auditing
result. In this situation, third party auditing is a natural choice for the storage auditing
in cloud computing. A third party auditor (auditor) that has expertise and capabilities
can do a more efficient work and convince both cloud service providers and owners.

For the third party auditing in cloud storage systems, there are several impor-
tant requirements which have been proposed in some previous works [25, 29]. The
auditing protocol should have the following properties:

1. Confidentiality The auditing protocol should keep owner’s data confidential
against the auditor.

2. Dynamic Auditing The auditing protocol should support the dynamic updates of
the data in the cloud.

3. Batch Auditing The auditing protocol should also be able to support the batch
auditing for multiple owners and multiple clouds.

Recently, several remote integrity checking protocols were proposed to allow the
auditor to check the data integrity on the remote server [2, 4, 8, 21, 26, 27, 30–32].
Table 2.1 gives the comparisons among some existing remote integrity checking
schemes in terms of the performance, the privacy protection, the support of dynamic
operations and the batch auditing for multiple owners and multiple clouds. Table 2.1
shows that many of the existing schemes are not privacy-preserving or cannot support
the data dynamic operations, so that they cannot be applied to cloud storage systems.

In [27], the authors proposed a dynamic auditing protocol that can support the
dynamic operations of the data on the cloud servers, but this method may leak the data
content to the auditor because it requires the server to send the linear combinations
of data blocks to the auditor. In [26], the authors extended their dynamic auditing
scheme to be privacy-preserving and support the batch auditing for multiple owners.

Table 2.1 Comparison of remote integrity checking schemes

Scheme Computation Commu- Privacy Dynamic Batch operation Prob. of
Sever Verifier nication Multi- Multi- detection

owner cloud

PDP [2] O(t) O(t) O(1) Yes No No No 1 − (1 − ρ)t

CPDP [21] O(t + s) O(t + s) O(t + s) No No No No 1 − (1 − ρ)ts

DPDP [8] O(t log n) O(t log n) O(t log n) No No No No 1 − (1 − ρ)t

Audit [27, 26] O(t log n) O(t log n) O(t log n) Yes Yes Yes No 1 − (1 − ρ)t

IPDP [31, 32] O(ts) O(t + s) O(t + s) Yes Yes No Yes 1 − (1 − ρ)ts

TSAS O(ts) O(t) O(t) Yes Yes Yes Yes 1 − (1 − ρ)ts

n is the total number of data blocks of a file; t is the number of challenged data blocks in an auditing
query
s is the number of sectors in each data block; ρ is the probability of block/sector corruption (suppose
the probability of corruption is the same for the equal size of data block or sector)
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However, due to the large number of data tags, their auditing protocols may incur
a heavy storage overhead on the server. In [31], Zhu et al. proposed a cooperative
provable data possession scheme that can support the batch auditing for multiple
clouds and also extended it to support the dynamic auditing in [32]. However, their
scheme cannot support the batch auditing for multiple owners. That is because para-
meters for generating the data tags used by each owner are different and thus they
cannot combine the data tags from multiple owners to conduct the batch auditing.
Another drawback is that their scheme requires an additional trusted organizer to
send a commitment to the auditor during the multi-cloud batch auditing, because
their scheme applies the mask technique to ensure the data privacy. However, such
additional organizer is not practical in cloud storage systems. Furthermore, both
Wang’s schemes and Zhu’s schemes incur heavy computation cost of the auditor,
which makes the auditor a performance bottleneck.

In this chapter, we introduce Third-party Storage Auditing Service (TSAS) to
ensure the data integrity in the cloud, where all the above listed requirements are
satisfied. To solve the data privacy problem, the method in TSAS is to generate an
encrypted proof with the challenge stamp by using the Bilinearity property of the
bilinear pairing, such that the auditor cannot decrypt it but can verify the correctness of
the proof. Without using the mask technique, it does not require any trusted organizer
during the batch auditing for multiple clouds. On the other hand, the auditing protocol
lets the server compute the proof as an intermediate value of the verification, such
that the auditor can directly use this intermediate value to verify the correctness of
the proof. Therefore, it can greatly reduce the computing loads of the auditor by
moving it to the cloud server.

2.2 Preliminaries and Definitions

2.2.1 Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with the same prime order p.
A bilinear map is a map e : G1 × G2 → GT with the following properties:

1. Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zp.
2. Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that e(u, v) �= I , where I is

the identity element of GT .
3. Computability: e can be computed in an efficient way.

Such a bilinear map is called a bilinear pairing.

2.2.2 Computational Bilinear Diffie-Hellman Assumption

The definition of the Computational Bilinear Diffie-Hellman (CBDH) assumption is
defined as follows.
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A challenger chooses a group G of prime order p according to the security para-
meter. Let a, b, c ∈ Zp be chosen at random and g be a generator of G. When given
g, ga, gb, gc, the adversary must compute e(g, g)abc.

An algorithm B that outputs e(g, g)abc has advantage ε in solving CBDH in G if

|Pr[B(g, ga, gb, gc) = e(g, g)abc]| ≥ ε.

Definition 2.1 The (t, ε)-CBDH assumption holds if no t-time algorithm has a non-
negligible probability ε in solving the CBDH problem.

2.2.3 Definition of System Model

As shown in Fig. 2.1, an auditing system for cloud storage normally involves data
owners (owner), the cloud server (server) and the third party auditor (auditor). The
owners create the data and host their data in the cloud. The cloud server stores the
owners’ data and provides the data access to users (data consumers). The auditor is a
trusted third party that has expertise and capabilities to provide data storage auditing
service for both the owners and servers. The auditor can be a trusted organization
managed by the government, which can provide unbiased auditing result for both
data owners and cloud servers.

Before describing the auditing protocol definition, some notations are defined as
in Table 2.2.

Definition 2.2 (TSAS). TSAS is a collection of the following five algorithms:
KeyGen, TagGen, Chall, Prove and Verify.

• KeyGen(λ) → (skh, skt, pkt). This key generation algorithm takes no input other
than the implicit security parameter λ. It outputs a secret hash key skh and a pair
of secret-public tag key (skt, pkt).

• TagGen(M, skt, skh) → T . The tag generation algorithm takes as inputs an
encrypted file M, the secret tag key skt and the secret hash key skh. For each

Fig. 2.1 System model of the
data storage auditing
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Table 2.2 Notations Symbol Physical meaning

skt Secret tag key
pkt Public tag key
skh Secret hash key
M Data component
T Set of data tags
n Number of blocks in each component
s Number of sectors in each data block
Minfo Abstract information of M
C Challenge generated by the auditor
P Proof generated by the server

data block mi, it computes a data tag ti based on skh and skt . It outputs a set of data
tags T = {ti}i∈[1,n].

• Chall(Minfo) → C. The challenge algorithm takes as input the abstract information
of the data Minfo (e.g., file identity, total number of blocks, version number and
timestamp etc.). It outputs a challenge C.

• Prove(M, T ,C) → P. The prove algorithm takes as inputs the file M, the tags T
and the challenge from the auditor C. It outputs a proof P.

• Verify(C,P, skh, pkt, Minfo) → 0/1. The verification algorithm takes as inputs the
P from the server, the secret hash key skh, the public tag key pkt and the abstract
information of the data Minfo. It outputs the auditing result as 0 or 1.

2.2.4 Definition of Security Model

The auditor is assumed to be honest-but-curious. It performs honestly during the
whole auditing procedure but it is curious about the received data. But the sever
could be dishonest and may launch the following attacks:

1. Replace Attack. The server may choose another valid and uncorrupted pair of data
block and data tag (mk, tk) to replace the challenged pair of data block and data
tag (mi, ti), when it already discarded mi or ti.

2. Forge Attack. The server may forge the data tag of data block and deceive the
auditor, if the owner’s secret tag keys are reused for the different versions of data.

3. Replay Attack. The server may generate the proof from the previous proof or other
information, without retrieving the actual owner’s data.
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2.3 An Efficient and Privacy-Preserving Auditing Protocol

In this section, we first present some techniques applied in the design of the audit-
ing protocol. Then, we describe the algorithms and the detailed construction of the
auditing protocol for cloud storage systems.

2.3.1 Overview

The main challenge in the design of data storage auditing protocol is the data pri-
vacy problem (i.e. the auditing protocol should protect the data privacy against the
auditor.). This is because: (1) For public data, the auditor may obtain the data infor-
mation by recovering the data blocks from the data proof. (2) For encrypted data, the
auditor may obtain content keys somehow through any special channels and could
be able to decrypt the data. To solve the data privacy problem, TSAS generates an
encrypted proof with the challenge stamp by using the Bilinearity property of the
bilinear pairing, such that the auditor cannot decrypt it. But the auditor can verify
the correctness of the proof without decrypting it.

Although the auditor has sufficient expertise and capabilities to conduct the audit-
ing service, the computing ability of an auditor is not as strong as cloud servers. Since
the auditor needs to audit for many cloud servers and a large number of data owners,
the auditor could be the performance bottleneck. TSAS lets the server compute the
proof as an intermediate value of the verification (calculated by the challenge stamp
and the linear combinations of data blocks), such that the auditor can use this inter-
mediate value to verify the proof. Therefore, the computing loads of the auditor can
be greatly reduced by moving it to the cloud server.

In TSAS, both the Data Fragment Technique and Homomorphic Verifiable Tags
are applied to improve the performance. The data fragment technique can reduce
number of data tags, such that it can reduce the storage overhead and improve the
system performance. By using the homomorphic verifiable tags, no matter how many
data blocks are challenged, the server only responses the sum of data blocks and the
product of tags to the auditor, whose size is constant and equal to only one data block.
Thus, it reduces the communication cost.

2.3.2 Algorithms for Auditing Protocol

Suppose a file F has m data components as F = (F1, . . . , Fm). Each data component
has its physical meanings and can be updated dynamically by the data owners. For
public data components, the data owner does not need to encrypted it, but for private
data component, the data owner needs to encrypt it with its corresponding key.

Each data component Fk is divided into nk data blocks denoted as
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Fk = (mk1, mk2, . . . , mknk ).

Due to the security reason, the data block size should be restricted by the security
parameter. For example, suppose the security level is set to be 160-bit (20-Byte),
the data block size should be 20-Byte. A 50-KByte data component will be divided
into 2,500 data blocks and generate 2,500 data tags, which incurs 50-KByte storage
overhead.

By using the data fragment technique, each data block is further split into sectors.
The sector size is restricted by the security parameter. One data tag is generated for
each data block which consists of s sectors, such that it can reduce the number of
data tags. In the same example above, a 50-KByte data component only incurs 50/s
KByte storage overhead. In real storage systems, the data block size can be various.
That is different data blocks could have different number of sectors. For example, if a
data block mi will be frequently read, then si could be large, but for those frequently
updated data blocks, si could be relatively small.

For simplicity, the construction only considers one data component and constant
number of sectors for each data block. Suppose there is a data component M, which
is divided into n data blocks and each data block is further split into s sectors. For data
blocks that have different number of sectors, it first selects the maximum number of
sectors smax among all the sector numbers si. Then, for each data block mi with si

sectors, si < smax , it can simply consider that the data block mi has smax sectors by
setting mij = 0 for si < j ≤ smax. Because the size of each sector is constant and
equal to the security parameter p, the number of data blocks can be calculated as
n = sizeof (M)

s·log p . The encrypted data component is denoted as M = {mij}i∈[1,n],j∈[1,s].
Let G1, G2 and GT be the multiplicative groups with the same prime order p and

e : G1 × G2 → GT be the bilinear map. Let g1 and g2 be the generators of G1 and
G2 respectively. Let h : {0, 1}∗ → G1 be a keyed secure hash function that maps the
Minfo to a point in G1.

The storage auditing protocol consists of the following algorithms:

• KeyGen(λ) → (pkt, skt, skh). The key generation algorithm takes no input other
than the implicit security parameter λ. It chooses two random number skt, skh ∈ Zp

as the secret tag key and the secret hash key. It outputs the public tag key as
pkt = gskt

2 ∈ G2, the secret tag key skt and the secret hash key skh.
• TagGen(M, skt, skh) → T . The tag generation algorithm takes each data compo-

nent M, the secret tag key skt and the secret hash key skh as inputs. It first chooses
s random values x1, x2, . . . , xs ∈ Zp and computes uj = g

xj
1 ∈ G1 for all j ∈ [1, s].

For each data block mi(i ∈ [1, n]), it computes a data tag ti as

ti = (h(skh, Wi) ·
s∏

j=1

u
mij
j )skt ,
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where Wi = FID||i (the “||” denotes the concatenation operation), in which FID
is the identifier of the data and i represents the block number of mi. It outputs the
set of data tags T = {ti}i∈[1,n].

• Chall(Minfo) → C. The challenge algorithm takes the abstract information of the
data Minfo as the input. It selects some data blocks to construct the Challenge Set
Q and generates a random number vi ∈ Z∗

p for each chosen data block mi(i ∈ Q).
Then, it computes the challenge stamp R = (pkt)

r by randomly choosing a number
r ∈ Z∗

p. It outputs the challenge as C = ({i, vi}i∈Q, R).
• Prove(M, T ,C) → P. The prove algorithm takes as inputs the data M and the

received challenge C = ({i, vi}i∈Q, R). The proof consists of the tag proof TP and
the data proof DP. The tag proof is generated as

TP =
∏

i∈Q

tvi
i .

To generate the data proof, it first computes the sector linear combination of all
the challenged data blocks MPj for each j ∈ [1, s] as

MPj =
∑

i∈Q

vi · mij.

Then, it generates the data proof DP as

DP =
s∏

j=1

e(uj, R)MPj .

It outputs the proof P = (TP, DP).
• Verify(C,P, skh, pkt, Minfo) → 0/1. The verification algorithm takes as inputs

the challenge C, the proof P, the secret hash key skh, the public tag key pkt and the
abstract information of the data component. It first computes the identifier hash
values h(skh, Wi) of all the challenged data blocks and computes the challenge
hash Hchal as

Hchal =
∏

i∈Q

h(skh, Wi)
rvi .

It then verifies the proof from the server by the following verification equation:

DP · e(Hchal, pkt) = e(TP, gr
2). (2.1)

If the above verification Eq. 2.1 holds, it outputs 1. Otherwise, it outputs 0.
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Fig. 2.2 Framework of the privacy-preserving auditing protocol

2.3.3 Construction of the Privacy-Preserving Auditing Protocol

As illustrated in Fig. 2.2, the storage auditing protocol consists of three phases: Owner
Initialization, Confirmation Auditing and Sampling Auditing. During the system ini-
tialization, the owner generates the keys and the tags for the data. After storing the
data on the server, the owner asks the auditor to conduct the confirmation auditing
to make sure that their data is correctly stored on the server. Once confirmed, the
owner can choose to delete the local copy of the data. Then, the auditor conducts the
sampling auditing periodically to check the data integrity.

2.3.3.1 Owner Initialization

The owner runs the key generation algorithm KeyGen to generate the secret hash
key skh, the pair of secret-public tag key (skt, pkt). Then, it runs the tag generation
algorithm TagGen to compute the data tags. After all the data tags are generated,
the owner sends each data component M = {mi}i∈[1,n] and its corresponding data
tags T = {ti}i∈[1,n] to the server together with the set of parameters {uj}j∈[1,s]. The
owner then sends the public tag key pkt , the secret hash key skh and the abstract
information of the data Minfo to the auditor, which includes the data identifier FID,
the total number of data blocks n.
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2.3.3.2 Confirmation Auditing

In the auditing construction, the auditing protocol only involves two-way commu-
nication: Challenge and Proof. During the confirmation auditing phase, the owner
requires the auditor to check whether the owner’s data is correctly stored on the
server. The auditor conducts the confirmation auditing phase as

1. The auditor runs the challenge algorithm Chall to generate the challenge C for
all the data blocks in the data component and sends the C = ({i, vi}i∈Q, R) to the
server.

2. Upon receiving the challenge C from the auditor, the server runs the prove algo-
rithm Prove to generate the proof P = (TP, DP) and sends it back to the auditor.

3. When the auditor receives the proof P from the server, it runs the verification
algorithm Verify to check the correctness of P and extract the auditing result.

The auditor then sends the auditing result to the owner. If the result is true, the owner
is convinced that its data is correctly stored on the server and it may choose to delete
the local version of the data.

2.3.3.3 Sampling Auditing

The auditor will carry out the sampling auditing periodically by challenging a sample
set of data blocks. The frequency of taking auditing operation depends on the service
agreement between the data owner and the auditor (and also depends on how much
trust the data owner has over the server). Similar to the confirmation auditing in
Phase 2, the sampling auditing procedure also contains two-way communication as
illustrated in Fig. 2.2.

Suppose each sector will be corrupted with a probability of ρ on the server. For a
sampling auditing involved with t challenged data blocks, the probability of detection
can be calculated as

Pr(t, s) = 1 − (1 − ρ)t·s.

That is this t-block sampling auditing can detect any data corruption with a probability
of Pr(t, s).

2.3.4 Correctness Proof

The correctness of the privacy-preserving auditing protocol is concluded as the fol-
lowing theorem:

Theorem 2.1 In the proposed auditing protocol, the server passes the audit iff all
the chosen data blocks and the data tags are correctly stored.
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Proof First, let’s prove that if all the chosen data and the corresponding data tags
are stored correctly on the server, the server will pass the auditing via the challenge-
response protocol. The verification equation can be rewritten in details as the fol-
lowing:

DP · e(Hchal, pkt) (2.2)

=
s∏

j=1

e(uj, R)MPj · e(
∏

i∈Q

h(skh, Wi)
rvi , pkt)

=
s∏

j=1

e(uj, pkt)
r
∏

i∈Q vimij · e(
∏

i∈Q

h(skh, Wi)
rvi , pkt)

=
∏

i∈Q

e(
s∏

j=1

u
mij
j , pkrvi

t )e(h(skh, Wi), pkrvi
t )

=
∏

i∈Q

e(
s∏

j=1

h(skh, Wi)u
mij
j , pkrvi

t )

=
∏

i∈Q

e(
s∏

j=1

(h(skh, Wi)u
mij
j )skt , grvi

2 )

=
∏

i∈Q

e(ti, grvi
2 )

=e(TP, gr
2)

From Eq. 2.2, we can say that the server can pass the auditing, if the data blocks and
the data tags are stored correctly on the server. However, if any of the challenged
data block or data tag is corrupted or modified, the verification equation will not hold
and the server cannot pass the audit.

2.4 Secure Dynamic Auditing

In cloud storage systems, the data owners will dynamically update their data. As an
auditing service, the auditing protocol should be designed to support the dynamic
data, as well as the static archive data. However, the dynamic operations may make
the auditing protocols insecure. Specifically, the server may conduct two following
attacks: (1) Replay Attack The server may not update correctly the owner’s data on
the server and may use the previous version of the data to pass the auditing. (2) Forge
Attack When the data owner updates the data to the current version, the server may
get enough information from the dynamic operations to forge the data tag. If the
server could forge the data tag, it can use any data and its forged data tag to pass the
auditing.
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2.4.1 Solution of Dynamic Auditing

To prevent the replay attack, an Index Table (ITable) is introduced to record the
abstract information of the data. The ITable consists of four components: Index, Bi,
Vi and Ti. The Index denotes the current block number of data block mi in the data
component M. Bi denotes the original block number of data block mi and Vi denotes
the current version number of data block mi. Ti is the timestamp used for generating
the data tag.

This ITable is created by the owner during the owner initialization and managed
by the auditor. When the owner completes the data dynamic operations, it sends an
update message to the auditor for updating the ITable which is stored on the auditor.
After the confirmation auditing, the auditor sends the result to the owner for the
confirmation that the owner’s data on the server and the abstraction information on
the auditor are both up-to-date. This completes the data dynamic operation.

To deal with the forge attack, it can modify the tag generation algorithm TagGen.
Specifically, when generating the data tag ti for the data block mi, the owners insert
all the abstract information into the data tag by setting Wi = FID||i||Bi||Vi||Ti, such
that the server cannot get enough information to forge the data tag from dynamic
operations.

2.4.2 Algorithms and Constructions for Dynamic Auditing

The dynamic auditing protocol consists of four phases: Owner Initialization, Con-
firmation Auditing, Sampling Auditing and Dynamic Auditing.

The first three phases are similar to the privacy-preserving auditing protocol as
described in the above section. The only differences are the tag generation algorithm
TagGen and the ITable generation during the owner initialization phase. Here, Fig. 2.3
only illustrates the dynamic auditing phase, which contains three steps: Data Update,
Index Update and Update Confirmation.

2.4.2.1 Data Update

There are three types of data update operations that can be used by the owner: Mod-
ification, Insertion and Deletion. For each update operation, there is a corresponding
algorithm in the dynamic auditing to process the operation and facilitate the future
auditing, defined as follows.

• Modify(m∗
i , skt, skh) → (Msgmodify, t∗i ). The modification algorithm takes as

inputs the new version of data block m∗
i , the secret tag key skt and the secret

hash key skh. It generates a new version number V∗
i , new timestamp T∗

i and calls
the TagGen to generate a new data tag t∗i for data block m∗

i . It outputs the new
tag t∗i and the update message Msgmodify = (i, Bi, V∗

i , T∗
i ). Then, it sends the new
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Fig. 2.3 Framework of auditing for dynamic operations

pair of data block and tag (m∗
i , t∗i ) to the server and sends the update message

Msgmodify to the auditor.
• Insert(m∗

i , skt, skh) → (Msginsert, t∗i ). The insertion algorithm takes as inputs the
new data block m∗

i , the secret tag key skt and the secret hash key skh. It inserts
a new data block m∗

i before the ith position. It generates an original number B∗
i ,

a new version number V∗
i and a new timestamp T∗

i . Then, it calls the TagGen to
generate a new data tag t∗i for the new data block m∗

i . It outputs the new tag t∗i and
the update message Msginsert = (i, B∗

i , V∗
i , T∗

i ). Then, it inserts the new pair of
data block and tag (m∗

i , t∗i ) on the server and sends the update message Msginsert

to the auditor.
• Delete(mi) → Msgdelete. The deletion algorithm takes as input the data block mi.

It outputs the update message Msgdelete = (i, Bi, Vi, Ti). It then deletes the pair
of data block and its tag (mi, ti) from the server and sends the update message
Msgdelete to the auditor.

2.4.2.2 Index Update

Upon receiving the three types of update messages, the auditor calls three corre-
sponding algorithms to update the ITable. Each algorithm is designed as follows.

• IModify(Msgmodify). The index modification algorithm takes the update message
Msgmodify as input. It replaces the version number Vi by the new one V∗

i and
modifies Ti by the new timestamp T∗

i .
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• IInsert(Msginsert).The index insertion algorithm takes as input the update message
Msginsert . It inserts a new record (i, B∗

i , V∗
i , T∗

i ) in ith position in the ITable. It then
moves the original ith record and other records after the i-th position in the previous
ITable backward in order, with the index number increased by one.

• IDelete(Msgdelete). The index deletion algorithm takes as input the update message
Msgdelete. It deletes the ith record (i, Bi, Vi, Ti) in the ITable and all the records
after the ith position in the original ITable moved forward in order, with the index
number decreased by one.

Table 2.3 shows the change of ITable according to the different type of data update
operation. Table 2.3(a) describe the initial table of the data M = {m1, m2, . . . , mn}
and Table 2.3(b) describes the ITable after m2 is updated. Table 2.3(c) is the ITable
after a new data block is insert before m2 and Table 2.3(d) shows the ITable after m2
is deleted.

Table 2.3 ITable of the abstract information of data M

Index Bi Vi Ti

Initial abstract information of M
1 1 1 T1

2 2 1 T2

3 3 1 T3
.
.
.

.

.

.
.
.
.

.

.

.

n n 1 Tn

After modifying m2, V2 and T2 are updated
1 1 1 T1

2 2 2 T∗
2

3 3 1 T3
.
.
.

.

.

.
.
.
.

.

.

.

n n 1 Tn

After inserting before m2, all items before m2 move backward with the index increased by 1
1 1 1 T1

2 n + 1 1 Tn+1

3 2 1 T2
.
.
.

.

.

.
.
.
.

.

.

.

n + 1 n 1 Tn

After deleting m2, all items after m2 move forward with the index decreased by 1
1 1 1 T1

2 3 1 T3

3 4 1 T4
.
.
.

.

.

.
.
.
.

.

.

.

n − 1 n 1 Tn
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2.4.2.3 Update Confirmation

After the auditor updates the ITable, it conducts a confirmation auditing for the
updated data and sends the result to the owner. Then, the owner can choose to delete
the local version of data according to the update confirmation auditing result.

2.5 Batch Auditing for Multi-Owner and Multi-Cloud

Data storage auditing is a significant service in cloud computing which helps the
owners check the data integrity on the cloud servers. Due to the large number of data
owners, the auditor may receive many auditing requests from multiple data owners.
In this situation, it would greatly improve the system performance, if the auditor
could combine these auditing requests together and only conduct the batch auditing
for multiple owners simultaneously. The previous work [31] cannot support the batch
auditing for multiple owners. That is because parameters for generating the data tags
used by each owner are different and thus the auditor cannot combine the data tags
from multiple owners to conduct the batch auditing.

On the other hand, some data owners may store their data on more than one cloud
servers. To ensure the owner’s data integrity in all the clouds, the auditor will send
the auditing challenges to each cloud server which hosts the owner’s data, and verify
all the proofs from them. To reduce the computation cost of the auditor, it is desirable
to combine all these responses together and do the batch verification.

In the previous work [31], the authors proposed a cooperative provable data pos-
session for integrity verification in multi-cloud storage. In their method, the authors
apply the mask technique to ensure the data privacy, such that it requires an addi-
tional trusted organizer to send a commitment to the auditor during the commitment
phase in multi-cloud batch auditing. The TSAS applies the encryption method with
the Bilinearity property of the bilinear pairing to ensure the data privacy, rather than
the mask technique. Thus, the multi-cloud batch auditing protocol does not have any
commitment phase, such that it does not require any additional trusted organizer.

2.5.1 Algorithms for Batch Auditing for Multi-Owner
and Multi-Cloud

Let O be the set of owners and S be the set of cloud servers. The batch auditing for
multi-owner and multi-cloud can be constructed as follows.



22 2 TSAS: Third-Party Storage Auditing Service

2.5.1.1 Owner Initialization

Each owner Ok(k ∈ O) runs the key generation algorithm KeyGen to generate the
pair of secret-public tag key (skt,k, pkt,k) and a set of secret hash key {skh,kl}l∈S . That
is, for different cloud servers, the owner has different secret hash keys. Each data
component is denoted as Mkl, which means that this data component is owned by
the owner Ok and stored on the cloud server Sl. Suppose the data component Mkl is
divided into nkl data blocks and each data block is further split into s sectors. (Here
each data block is assumed to be further split into the same number of sectors. It can
also use the technique proposed in Sect. 2.3.2 to deal with the situation that each data
blocks is split into different number of sectors.) The owner Ok runs the tag generation
algorithm TagGen to generate the data tags Tkl = {tkl,i}i∈[1,nkl] as

tkl,i = (h(skh,kl, Wkl,i) ·
s∏

j=1

u
mkl,ij

k,j )skt,k .

where Wkl,i = FIDkl||i||Bkl,i||Vkl,i||Tkl,i.
After all the data tags are generated, each owner Ok(k ∈ O) sends the data

component Mkl = {mkl,ij}k∈O,l∈S
i∈[1,nkl],j∈[1,s] and the data tags Tkl = {tkl,i}k∈O,l∈S

i∈[1,nkl] to the
corresponding server Sl. Then, it sends the public tag key pkt,k , the set of secret hash
key {skhl,k}l∈S , the abstract information of data {Minfo,kl}k∈O,l∈S to the auditor.

2.5.1.2 Batch Auditing for Multi-Owner and Multi-Cloud

Let Ochal and Schal denote the involved set of owners and cloud servers involved in
the batch auditing respectively. The batch auditing also consists of three steps: Batch
Challenge, Batch Proof and Batch Verification.

• Step 1: Batch Challenge
During this step, the auditor runs the batch challenge algorithm BChall to generate
a batch challenge C for a set of challenged owners Ochal and a set of clouds Schal.
The batch challenge algorithm is defined as follows.

– BChall({Minfo,kl}k∈O,l∈S) → C. The batch challenge algorithm takes all the
abstract information as input. It selects a set of owners Ochal and a set of cloud
servers Schal. For each data owner Ok(k ∈ Ochal), it chooses a set of data blocks
as the challenged subset Qkl from each server Sl(l ∈ Schal). It then generates a
random number vkl,i for each chosen data block mkl,i(k ∈ Ochal, l ∈ Schal, i ∈
Qkl). It also chooses a random number r ∈ Z∗

p and computes the set of challenge
stamp {Rk}k∈Ochal=pkr

t,k
. It outputs the challenge as

C = ({Cl}l∈Schal , {Rk}k∈Ochal ),

where Cl = {(k, l, i, vkl,i)}k∈Ochal .
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Then, the auditor sends each Cl to each cloud server Sl(l ∈ Schal) together with
the challenge stamp {Rk}k∈Ochal .• Step 2: Batch Proof
Upon receiving the challenge, each server Sl(l ∈ Schal) generates a proof Pl =
(TPl, DPl) by using the following batch prove algorithm BProve and sends the
proof Pl to the auditor.

– BProve({Mkl}k∈Ochal , {Tkl}k∈Ochal ,Cl, {Rk}k∈Ochal ) → Pl. The batch prove algo-
rithm takes as inputs the data {Mkl}k∈Ochal , the data tags {Tkl}k∈Ochal , the received
challenge Cl and the challenge stamp {Rk}k∈Ochal . It generates the tag proof TPl
as

TPl =
∏

k∈Ochal

∏

i∈Qkl

t
vkl,i
kl,i .

Then, for each j ∈ [1, s], it computes the sector linear combination MPkl,j of all
the chosen data blocks of each owner Ok(k ∈ Ochal) as

MPkl,j =
∑

i∈Qkl

vkl,i · mkl,ij,

and generates the data proof DPl as

DPl =
s∏

j=1

∏

k∈Ochal

e(uk,j, Rk)
MPkl,j .

It outputs the proof Pl = (TPl, DPl).

• Step 3: Batch Verification
Upon receiving all the proofs from the challenged servers, the auditor runs the fol-
lowing batch verification algorithm BVerify to check the correctness of the proofs.

– BVerify(C, {Pl}, {skh,lk}, {pkt,k}, {Minfo,kl}) → 0/1. The batch verification
algorithm takes as inputs the challenge C, the proofs {Pl}l∈Schal , the set of
secret hash keys {skh,kl}k∈Ochal,l∈Schal , the public tag keys {pkt,k}k∈Ochal and
the abstract information of the challenged data blocks {Minfo,kl}k∈Ochal,l∈Schal .
For each owner Ok(k ∈ Ochal), it computes the set of identifier hash values
{h(skh,kl, Wkl,i)}l∈Schal,i∈Qkl for all the chosen data blocks from each challenged
server, and use these hash values to compute a challenge hash Hchal,k as

Hchal,k =
∏

l∈Schal

∏

i∈Qkl

h(skh,kl, Wkl,i)
rvkl,i .

When finished the calculation of all the data owners’ challenge hash
{Hchal,k}k∈Ochal , it verifies the proofs by the batch verification equation as
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∏

l∈Schal

DPl = e(
∏

l∈Schal
TPl, gr

2)∏
k∈Ochal

e(Hchal,k, pkt,k)
. (2.3)

If Eq. 2.3 is true, it outputs 1. Otherwise, it outputs 0.

2.5.2 Correctness Proof

The correctness of the batch auditing protocol is concluded as the following theorem:

Theorem 2.2 In the multi-owner multi-cloud batch auditing protocol, all the chal-
lenged servers pass the audit iff all the chosen data blocks and the data tags from all
the owners are correctly stored.

Proof If the data blocks and the data tags from all the owners are stored correctly
on the challenged servers, the right part of the batch verification equation can be
rewritten as

e(
∏

l∈Schal
TPl, gr

2)∏
k∈Ochal

e(Hchal,k, pkt,k)
(2.4)

=
∏

k∈Ochal

∏

l∈Schal

∏

i∈Qkl

e(t
vkl,i
kl,i , gr

2)

e(h(skh,kl, Wkl,i)
rvkl,i , pkt,k)

=
∏

k∈Ochal

∏

l∈Schal

∏

i∈Qkl

e((h(skh,kl, Wkl,i) ·
s∏

j=1
u

mkl,ij

k,j )skt,kvkl,i , gr
2)

e(h(skh,kl, Wkl,i)
vkl,iskt,k , gr

2)

=
∏

l∈Schal

s∏

j=1

∏

k∈Ochal

e(u
∑

i∈Qkl
vkl,imkl,ij

k,j , pkr
t,k)

=
∏

l∈Schal

s∏

j=1

∏

k∈Ochal

e(uk,j, pkr
t,k)

MPkl,j

=
∏

l∈Schal

DPl

It shows that the batch verification equation can hold, if all the data blocks and
tags are correctly stored on the challenged servers. Otherwise, the batch verification
Eq. 2.4 does not hold. That is, the server fail to pass the audit, if any of the chosen
data block or data tag is corrupted or modified.
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2.6 Security Analysis

In this section, we first prove that the auditing protocols are provably secure under
the security model. Then, we prove that the auditing protocols can also guarantee
the data privacy. Finally, we prove that the auditing system is an interactive proof
system.

2.6.1 Provably Secure Under the Security Model

The security proofs of the dynamic auditing protocol and batch auditing protocol
are similar. Here, we only demonstrate the security proof for the dynamic auditing
protocol, as concluded in the following theorems.

Theorem 2.3 The dynamic auditing protocol can resist the Replace Attack from the
server.

Proof If any of the challenged data blocks ml or its data tag tl is corrupted or not
up-to-date on the server, the server cannot pass the auditing because the verification
equation cannot hold. The server may conduct the replace attack to try to pass the
audit. It uses another pair of data block and data tag (mk, tk) to replace the chosen
one (ml, tl). Then, the data proof DP∗ becomes

DP∗ =
s∏

j=1

e(uj, R)
MP∗

j ,

where each MP∗
j can be expressed as

MP∗
j = vl · mkj +

∑

i∈Q,i �=l

vi · mij.

The tag proof TP∗ can be calculated as

TP∗ = tvl
k ·

∏

i∈Q,i �=l

tvi
i .

Then, the left hand of the verification equation can be transformed to

DP∗ · e(Hchal, pkt) = e

((
h(skh, Wl)

h(skh, Wk)

)vlskt

· TP∗, gr
2

)
. (2.5)

Due to the collision resistance of hash function, h(skh, Wl)/h(skh, Wk) cannot be
equal to 1 in the random oracle model and thus the verification equation does not
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hold, such that the proof from the server cannot pass the auditing. Therefore, the
dynamic auditing protocol can resist the replace attack. �

Theorem 2.4 The dynamic auditing protocol can resist the Forge Attack.

Proof The server can forge the tag without knowing the secret tag key and the secret
hash key, when the same hash value and the secret tag key are used for two times. For
example, suppose the same hash value h(skh, i) and the secret tag key skt are used
for generating the data tags for two different data blocks mi and m′

i. The two tags can

be expressed as ti = (h(skh, i) · gmi)skt and t′i = (h(skh, i) · gm′
i)skt . The server can

first compute
ti · t′i

−1 = g(mi−m′
i)skt

and get

gskt = (ti · t′i
−1

)

1
mi−m′

i

by using the Euclidean algorithm gcd(mi − m′
i, p). Then, for any pair of data block

and tag (mk, tk), the server can easily compute

h(skh, k)skt = tk
(gskt )mk

.

Therefore, for any data block m∗
k , the server can forge its tag t∗k by

t∗k = tk · (ti · t′i
−1

)

m∗
k −mk

mi−m′
i .

The above equation shows that if the same value and the secret tag key is reused for
two times, the server can forge the tag and deceive the auditor.

In the dynamic auditing protocol, the server cannot forge the tags and pass the
audit successfully. That is because there is no chance to get the same hash value from
the abstract information of data blocks in the dynamic auditing protocol. For each
data block mi, the abstract information contains the original block number Bi, the
version number Vi and the timestamp Ti. Due to the different value of timestamp Ti

for each data block, it is impossible for a hash function to get two same hash values
from different abstract information in the random oracle model. �

Theorem 2.5 The dynamic auditing protocol can resist the Replay Attack.

Proof On one hand, in the dynamic auditing protocol, there is a challenge stamp
R in each challenge-response auditing process. Because different audit processes
have different challenge stamps, the server cannot only use the previous proof P to
generate the new proof and pass the auditing without retrieving the challenged data
blocks and data tags.

On the other hand, in the dynamic auditing protocol, a timestamp is introduced in
the ITable, which is used to generating the tags. For different version of data blocks or
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new inserted data blocks, the timestamps used to generate the data tags are different.
The update operations will not allow the server to launch the replay attack based on
the same hash values of the abstract information. �

2.6.2 Privacy-Preserving Guarantee

The data privacy is an important requirement in the design of auditing protocol in
cloud storage systems. The proposed auditing protocols are privacy-preserving as
stated in the follow theorem.

Theorem 2.6 In the proposed auditing protocols, neither the server nor the auditor
can obtain any information about the data and the secret tag key during the auditing
procedure.

Proof Because the data are encrypted by owners, it is obvious that the server cannot
decrypt the data without the owners’ secret key. The secret hash key and the secret
tag key are kept secret to the server and the server cannot deduce them based on
the received information during the auditing procedure. Therefore, the data and the
secret tag key are confidential against the server in the auditing protocols.

On the auditor side, it can only get the product of all the challenged data tags from
the tag proof TP. The data proof in the auditing protocol is in an encrypted way by
the exponentiate on the challenge stamps R. It is a discrete logarithm problem to get
the linear combinations of the chosen data sectors {MPj}j∈[1,s] from the data proof
DP, which is similar to obtain the secret tag key skt from gskt . Hence, the auditor
cannot get any information about the data and the secret tag key from the proof
generated by the server in the auditing protocol. For the dynamical index update, the
index update messages do not contain any information about the secret tag key and
the content of the data, and thus the auditor cannot obtain any information about the
data content from the dynamic operations. �

2.6.3 Proof of the Interactive Proof System

In this section, we first recall the definition of the interactive proof system and the
zero-knowledge in [10] as follows.

Definition 2.3 A system is a zero-knowledge interactive system if the completeness,
soundness and zero-knowledge hold.

Then, we prove that the dynamic auditing system is an Interactive Proof system,
which provides zero-knowledge proof to ensure both the data integrity and the data
confidentiality in the cloud.
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Theorem 2.7 The storage auditing system is a zero-knowledge interactive proof
system under the CBDH assumption in random oracle model.

Proof First, we prove that the TSAS system is an interactive proof system. Accord-
ing to the definition of an interactive proof system in [10], an interactive proof system
should satisfy the following two features:

1. Completeness The storage auditing scheme is complete if the verification algo-
rithm accepts the response when the server returns a valid response. This can be
proved as the correctness proof in Theorem 2.1 and Theorem 2.2.

2. Soundness The storage auditing scheme is sound if any cheating server that
convinces the auditor that it is storing a file is actually storing that file. In other
words, the server cannot conduct the forge attack successfully, which is proved
by Theorem 2.4..

Then, we prove that the TSAS is zero-knowledge as follows.
Zero-knowledge Proof The only information can be revealed in each auditing pro-
cedure is the data proof DP and the tag proof TP. We construct a simulator S that is
not interacted with the protocol A as follows.

Given the public tag key pkt , the public parameter g2 and the challenge hash
Hchal, the simulator chooses a random TP ∈ G1 as the tag proof and a random
number r ∈ Zp, then the data proof DP can be simulated as

DP = e(TP, gr
2)

e(Hchal, pkt)
∈ GT . (2.6)

Such randomly generated pair of (TP, DP) are computationally indistinguishable
from the pair of proof generated according to the auditing protocol. Thus, the
auditing protocol A is a zero-knowledge protocol. This completes the proof of
the theorem. �

2.7 Performance Analysis

Storage auditing is a very resource demanding service in terms of computational
resource, communication cost and memory space. In this section, we give the com-
munication cost comparison and computation complexity comparison between the
TSAS and two existing works: the Audit protocol proposed by Wang et al. [26, 27]
and the IPDP proposed by Zhu et al. [31, 32].
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Table 2.4 Storage overhead comparison for |M|-bit data

Scheme Server Auditor

Wang’s audit [26, 27] 3 · |M| O(1)

Zhu’s IPDP [31, 32] |M|/s O(1)

TSAS |M|/s O(1)

s number of sectors in each data block

2.7.1 Storage Overhead

We compare the storage overhead on both the server and the auditor as described in
Table 2.4.

2.7.1.1 Storage Overhead on the Server

The storage overhead on the server mainly comes from the storage of data tags.
Suppose the size of data component is |M| and the security parameter is set to 160-
bit.

In Wang’s auditing scheme, the data is divided into data blocks, and for each data
block, there is a data tag. Due to the security reason, the size of each data element
(in Wang’s scheme, the data element is the data block) should not be larger than
the security parameter. In that case, the total size of data tags should be |M|-bit,
which is the same as the total size of data blocks. Moreover, in Wang’s scheme, the
server should store a MHT for the dynamic auditing, which incurs 2|M|-bit storage
overhead. Thus, in Wang’s auditing scheme, the storage overhead on the server should
be 3|M|-bit, three times of the data size.

Both the TSAS and Zhu’s IPDP apply the data fragment technique to further split
each data block into s sectors. Since the data element is the sector in the TSAS and
Zhu’s IPDP, the size of each sector is corresponding to the security parameter. Then,
for each data block that consists of s sectors only one data tag is generated, such that
a |M|-bit data component only incurs |M|

s -bit storage overhead, which can greatly
reduce the storage overhead.

2.7.1.2 Storage Overhead on the Auditor

The abstract information of the data contributes the main storage overhead on the
auditor. In Wang’s auditing scheme, the abstract data information only contains the
file name, the number of data blocks. Besides the file name and the number of data
blocks, in the TSAS and Zhu’s IPDP, the abstract data information also includes the
index table. However, the value of each item in the index table is only the number
from 1 to the total number of data blocks n. The size of each item in the index table
is very small compared to the data tags. For example, suppose the security parameter
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is 160-bit, and the number of sectors in each data block is set to 50. Then, for 10 MB
data component, the number of data block is 1000, which means that TSAS can use
10 bits to describe all the values in the index table. Thus, the size of index table is
500 Bytes, which is 0.005 % of the data size. Therefore, the storage overhead on the
auditor is O(1).

2.7.2 Communication Cost

Because the communication cost during the initialization is almost the same in these
three auditing protocols, we only compare the communication cost between the
auditor and the server, which consists of the challenge and the proof.

Consider a batch auditing with K owners and C cloud servers. Suppose the number
of challenged data block from each owner on different cloud servers is the same,
denoted as t, and the data block are split into s sectors in Zhu’s IPDP and TSAS.
We do the comparison under the same probability of detection. That is, in Wang’s
scheme, the number of data blocks from each owner on each cloud server should be
st. The result is described in Table 2.5.

From the table, we can see that the communication cost in Wang’s auditing scheme
is not only linear to C, K , t, s, but also linear to the total number of data blocks n. As
we know, in large scale cloud storage systems, the total number of data blocks could
be very large. Therefore, Wang’s auditing scheme may incur high communication
cost.

TSAS and Zhu’s IPDP have the same total communication cost during the chal-
lenge phase. During the proof phase, the communication cost of the proof in TSAS
is only linear to C, but in Zhu’s IPDP, the communication cost of the proof is not
only linear to C and K , but also linear to s. That is because Zhu’s IPDP uses the
mask technique to protect the data privacy, which requires to send both the masked
proof and the encrypted mask to the auditor. In TSAS, the server is only required to
send the encrypted proof to the auditor and thus incurs less communication cost than
Zhu’s IPDP.

Table 2.5 Communication cost comparison of batch auditing for K owners and C clouds

Scheme Challenge Proof

Wang’s audit [26, 27] O(KCst) O(KCst log n)

Zhu’s IPDP [31, 32] O(KCt) O(KCs)
TSAS O(KCt) O(C)

t is the number of challenged data blocks from each owner on each cloud server
s is the number of sectors in each data block
n is the total number of data blocks of a file in Wang’s scheme
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2.7.3 Computation Complexity

The simulation of the computation on the owner, the server and the auditor is con-
ducted on a Linux system with an Intel Core 2 Duo CPU at 3.16 GHz and 4.00 GB
RAM. The code uses the Pairing-Based Cryptography (PBC) library version 0.5.12
to simulate TSAS and Zhu’s IPDP (Under the same detection of probability, Wang’s
scheme requires much more data blocks than TSAS and Zhu’s IPDP, such that the
computation time is almost s times more than TSAS and Zhu’s IPDP and thus it is
not comparable). The elliptic curve used is a MNT d159-curve, where the base field
size is 159-bit and the embedding degree is 6. The d159-curve has a 160-bit group
order, which means p is a 160-bit length prime. All the simulation results are the
mean of 20 trials.

2.7.3.1 Computation Cost of the Auditor

We compare the computation time of the auditor versus the number of data blocks,
the number of clouds and the number of owners in Fig. 2.4.

Figure 2.4a shows the computation time of the auditor versus the number of chal-
lenged data blocks in the single cloud and single owner case. In this figure, the number
of data blocks goes to 500 (i.e. the challenged data size equals to 500 KByte), but
it can illustrate the linear relationship between the computation cost of the auditor
versus the challenged data size. From the Fig. 2.4a, we can see that TSAS incurs less
computation cost of the auditor than Zhu’s IPDP, when coping with large number of
challenged data blocks.

In real cloud storage systems, the data size is very large (e.g. petabytes), TSAS
applies the sampling auditing method to ensure the integrity of such large data.
The sample size and the frequency are determined by the service level agreement.
From the simulation results, it requires approximate 800 s to audit for 1 GByte data.
However, the computing abilities of the cloud server and the auditor are much more
powerful than the simulation PC, so the computation time can be relatively small.
Therefore, TSAS is practical in large scale cloud storage systems.

Figure 2.4b describes the computation cost of the auditor of the multi-cloud batch
auditing scheme versus the number of challenged clouds. It is easy to find that TSAS
incurs less computation cost of the auditor than Zhu’s IPDP, especially when there
are a large number of clouds in the large scale cloud storage systems.

Because Zhu’s IPDP does not support the batch auditing for multiple owners, the
simulation repeats the computation for several times which is equal to the number of
data owners. Figure 2.4c compares the computation cost of the auditor between the
multi-owner batch auditing and the general auditing protocol which does not support
the multi-owner batch auditing (e.g. Zhu’s IPDP). Figure 2.4c also demonstrates that
the batch auditing for multiple owners can greatly reduce the computation cost.
Although in the simulation the number of data owners goes to 500, it can illustrate
the trend of computation cost of the auditor that TSAS is much more efficient than
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(a) (b)

(c)

Fig. 2.4 Comparison of computation cost of the auditor (s = 50). a Single owner, single cloud.
b Single owner, 5 blocks/cloud. c Single cloud, 5 blocks/owner

Zhu’s IPDP in large scale cloud storage systems that may have millions to billions
of data owners.

2.7.3.2 Computation Cost of the Server

We compare the computation cost of the server versus the number of data blocks in
Fig. 2.5a and the number of data owners in Fig. 2.5b. TSAS moves the computing
loads of the auditing from the auditor to the server, such that it can greatly reduce
the computation cost of the auditor.

2.7.4 Computation Cost of the Owner

Both TSAS and Zhu’s IPDP apply the data fragment technique to reduce the number
of data blocks by further splitting data block into sectors. The number of sectors in
each data block should be carefully selected. As we mentioned, due to the security
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(a) (b)

Fig. 2.5 Comparison of computation cost on the server (s = 50). a Single owner, single cloud. b
Single cloud, 5 blocks/owner

reason, the size of the data element should not be larger than the security parameter.
In TSAS and Zhu’s IPDP, the data element is the data sector, thus the size of each
data sector is fixed according to the security parameter. For a constant size data
component M, the number of data blocks can be calculated as n = sizeof (M)

s·log p , where
s is the number of sectors in the data block and p is the security parameter.

When considering the time of generating a tag for one data block, it is easy to
see that the computation time is linear to the number of sectors in the data block.
Specifically, let Exp. and Mul.be an exponentiation computation and a multiplication
computation in the group respectively. Let the H. be the hash computation. The time
of generating a data tag for one data block can be described as

Timetag(s) = s · (Exp. + Mul.) + Exp. + H.

The total tag generation time for a constant size of data M can be calculated as

TTimetag(s) = sizeof (M)

log p

(
Exp. + Mul. + 1

s
(Exp. + H.)

)
.

It is easy to find that the total tag generation time for a constant size of data is
linear to 1

s . Figure 2.6 shows the total computation time of generating all the data
tags for 1 MByte data component versus the number of sectors in each data block.
We can see that for the fixed size data, when the number of sectors in a data block is
increased, the total time of tag generation goes stable.

2.8 Related Work

Juels et al. proposed a Proofs Of Retrievability (POR) scheme which enables a server
(prover) to give a concise proof that a user (verifier) can retrieve a target file [12]. Their
POR protocol encrypts the file F and randomly embeds a set of randomly-valued
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Fig. 2.6 Computation time of tag generation for 1 MByte data

check blocks called sentinels. The verifier challenges the prover by specifying the
positions of a collection of sentinels and asking the prover to return the associated
sentinel values. If the prover has modified or deleted a substantial portion of F, then it
also has suppressed some sentinels with high probability and thus it cannot respond
correctly to the verifier. The security of this protocol is proved by Dodis et al. in
[7] without making any simplifying assumptions on the behavior of the adversary.
However, this POR protocol is inappropriate for the proposed problem because it
only allows a limited number of auditing times which is related to the number of
sentinels.

To ensure the data integrity in remote servers, in [22, 23], the owner pre-computes
some MACs of the data with different secret keys and sends all the MACs and keys
to the auditor. When verifying data integrity, the auditor selects and sends a key k to
the server. Then, the server computes the MAC with k and returns it to the auditor for
comparison with the one stored on it. However, the number of times a particular data
item can be verified is limited by the number of secret keys that fixed beforehand.
Besides, the auditor needs to store several MACs for each file. Therefore, Shah’s
auditing protocols still cannot be applied to the problem.

Filho et al. [9] proposed a cryptographic protocol based on RSA-based secure hash
function, through which a prover can demonstrate possession of a set of data known
to the verifier. But in their protocol the prover needs to exponentiate the entire data
file which will cause high computation cost. To overcome the drawback of Filho’s
protocol, Sebe et al. [20] improved the protocol by first dividing data into blocks
and fingerprinting each block and then using a RSA-based hash function on each
block. Then, a Diffie-Hellman-based approach is used to verify the data integrity.
Their protocol can reduce the computation time of verification by trading off the
computation time required at the prover against the storage required at the verifier.
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Similarly, Yamamoto et al. [28] proposed a fast integrity checking scheme through
batch verification of homomorphic hash functions on randomly selected blocks of
data. However, in their schemes, the verifier needs to store a copy of the meta-data,
such that they cannot be applied to the storage auditing in cloud storage system.

Ateniese et al. proposed a Sampling Provable Data Possession (SPDP) scheme [2],
which combines the RSA cryptography with Homomorphic Verifiable Tags (HVT).
It divides the data into several data blocks and encrypts each data block. For each
auditing query, the auditor only challenge a subset of data blocks. By using such
sampling method, the integrity of entire data can be guaranteed, when sufficient
number of such sampling auditing queries are conducted. This sampling mechanism
is applied in many remote integrity checking scheme, because it could significantly
reduce the workloads of the server. Although the SPDP scheme can keep the data
privacy, it cannot support the dynamic auditing and the batch auditing for multiple
owners.

To support the dynamic auditing, Ateniese et al. developed a dynamic provable
data possession protocol [3] based on cryptographic hash function and symmetric
key encryption. Their idea is to pre-compute a certain number of metadata during the
setup period, so that the number of updates and challenges is limited and fixed before-
hand. In their protocol, each update operation requires recreating all the remaining
metadata, which is problematic for large files. Moreover, their protocol cannot per-
form block insertions anywhere (only append-type insertions are allowed). Erway et
al. [8] also extended the PDP model to support dynamic updates on the stored data
and proposed two dynamic provable data possession scheme by using a new version
of authenticated dictionaries based on rank information. However, their schemes may
cause heavy computation burden to the server since they relied on the PDP scheme
proposed by the Ateniese.

In [27], the authors proposed a dynamic auditing protocol that can support the
dynamic operations of the data on the cloud servers, but this method may leak the data
content to the auditor because it requires the server to send the linear combinations of
data blocks to the auditor. In [26], the authors extended their dynamic auditing scheme
to be privacy-preserving and support the batch auditing for multiple owners. However,
due to the large number of data tags, their auditing protocols will incur a heavy
storage overhead on the server. In [31], Zhu et al. proposed a cooperative provable
data possession scheme that can support the batch auditing for multiple clouds and
also extend it to support the dynamic auditing in [32]. However, it is impossible
for their scheme to support the batch auditing for multiple owners. That is because
parameters for generating the data tags used by each owner are different and thus they
cannot combine the data tags from multiple owners to conduct the batch auditing.
Another drawback is that their scheme requires an additional trusted organizer to send
a commitment to the auditor during the batch auditing for multiple clouds, because
their scheme applies the mask technique to ensure the data privacy. However, such
additional organizer is not practical in cloud storage systems. Furthermore, both
Wang’s schemes and Zhu’s schemes incur heavy computation cost of the auditor,
which makes the auditing system inefficient.
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2.9 Conclusion

In this chapter, we introduced TSAS, an efficient and inherently secure dynamic
auditing protocol. It protects the data privacy against the auditor by combining the
cryptography method with the bilinearity property of bilinear paring, rather than
using the mask technique. Thus, the multi-cloud batch auditing protocol in TSAS
does not require any additional organizer. The batch auditing protocol in TSAS
can also support the batch auditing for multiple owners. Furthermore, TSAS incurs
less communication cost and less computation cost of the auditor by moving the
computing loads of auditing from the auditor to the server, which greatly improves
the auditing performance and can be applied to large scale cloud storage systems.
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Chapter 3
ABAC: Attribute-Based Access Control

Abstract Cloud storage service allows data owner to outsource their data to the
cloud and through which provide the data access to the users. Because the cloud server
and the data owner are not in the same trust domain, the semi-trusted cloud server
cannot be relied to enforce the access policy. To address this challenge, traditional
methods usually require the data owner to encrypt the data and deliver decryption
keys to authorized users. These methods, however, normally involve complicated key
management and high overhead on data owner. In this chapter, we introduce ABAC,
an access control framework for cloud storage systems that achieves fine-grained
access control based on an adapted Ciphertext-Policy Attribute-based Encryption
(CP-ABE) approach. In ABAC, an efficient attribute revocation method is proposed
to cope with the dynamic changes of users’ access privileges in large-scale systems.

3.1 Introduction

Cloud storage service allows data owners to host their data in the cloud and rely on
the cloud server to provide “24/7/365” data access to the users (data consumers).
Because the cloud storage service separates the roles of the data owner from the
data service provider, and the data owner does not interact with the user directly
for providing data access service, the data access control becomes a challenging
issue for cloud storage systems. Existing methods [16] usually delegate data access
control to a trusted server and let it be in charge of defining and enforcing access
policies. However, the cloud server cannot be fully trusted by data owners, since the
cloud server may give data access to unauthorized users to make more profit (e.g.,
the competitor of a company). Thus, traditional server-based data access control
methods are no longer suitable for cloud storage systems. This chapter studies the
data access control issue in cloud storage systems, where the data owner is in charge
of defining and enforcing the access policy.

K. Yang and X. Jia, Security for Cloud Storage Systems, SpringerBriefs 39
in Computer Science, DOI: 10.1007/978-1-4614-7873-7_3,
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The Ciphertext-Policy Attribute-based Encryption (CP-ABE) [2, 21] is regarded
as one of the most suitable technologies for data access control in cloud storage
systems, because it gives the data owner more direct control on access policies and
the policy checking occurs “inside the cryptography”. In CP-ABE scheme, there is
an authority that is responsible for attribute management. Each owner in the system
is associated with a set of attributes that describe its role or identity in the system.
To encrypt a file, the data owner first defines an access policy over the universal
attribute set, and then encrypts it under this access policy. Only the users whose
attributes satisfy the access policy are able to decrypt the ciphertext. However, due
to the attribute revocation problem, it is very costly to apply the CP-ABE approach
to control the data access in cloud storage systems. To address this problem, there
are two requirements:

1. Backward Security The revoked user (whose attribute is revoked) cannot decrypt
any new published ciphertext which requires the revoked attribute to decrypt.

2. Forward Security The newly joined user who has sufficient attributes is still able
to decrypt the ciphertexts which were published before it joined the system.

Existing attribute revocation methods proposed for CP-ABE systems usually rely
on the fully trusted server, thus they cannot be applied into cloud storage systems.
The attribute revocation is still an open problem in the design of attribute-based data
access control schemes for cloud storage systems.

In this chapter, we study the data security issues in cloud storage systems and
describe Attribute-Based Access Control (ABAC), an attribute-based data access
control scheme, where the server is not required to be fully trusted and data owners
are not required to be online all the time. In ABAC, the access policy is defined
and enforced by data owners rather than by cloud server. The attribute revocation
method in ABAC achieves both forward security and backward security, and incurs
less computation cost and communication overhead. Moreover, the revocation is
conducted efficiently on attribute level rather than on user level.

3.2 Preliminary

We give some formal definitions for access structures, Linear Secret Sharing Schemes
(LSSS) and the background information on Bilinear Pairings.

3.2.1 Access Structures

Definition 3.1 (Access Structure) Let {P1, P2, . . . , Pn} be a set of parties. A col-
lection A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B, C if B ∈ A and B ⊆ C then
C ∈ A. An access structure (respectively, monotone access structure) is a collection
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(respectively, monotone collection) A of non-empty subsets of {P1, P2, . . . , Pn}, i.e.,
A ⊆ 2{P1,P2,...,Pn}\{∅}. The sets in A are called the authorized sets, and the sets not
in A are called the unauthorized sets.

In ABAC, the role of the parties is taken by the attributes. Thus, the access structure
A will contain the authorized sets of attributes. We restrict our attention to monotone
access structures. From now on, unless stated otherwise, by an access structure we
mean a monotone access structure.

3.2.2 Linear Secret Sharing Schemes

The Linear Secret Sharing Schemes (LSSS) is defined as

Definition 3.2 (Linear Secret-Sharing Schemes (LSSS)) A secret-sharing scheme
Π over a set of parties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix M called the share-generating matrix for Π . The matrix

M has l rows and n columns. For all i = 1, . . . , l, the i-th row of M is labeled
by a party ρ(i) (ρ is a function from {1, . . . , l} to P). When we consider the
column vector v = (s, r2, . . . , rn), where s ∈ Zp is the secret to be shared and
r2, . . . , rn ∈ Zp are randomly chosen, then Mv is the vector of l shares of the
secret s according to Π . The share (Mv)i belongs to party ρ(i).

Every linear secret sharing-scheme according to the above definition also enjoys
the linear reconstruction property: Suppose that Π is a LSSS for the access struc-
ture A. Let S ∈ A be any authorized set, and let I ⊂ {1, 2, . . . , l} be defined as
I = {i : ρ(i) ∈ S}. Then, there exist constants {w ∈ Zp}i∈I such that, for any valid
shares {λi} of a secret s according to Π , we have

∑
i∈I wiλi = s. These constants

{wi} can be found in time polynomial in the size of the share-generating matrix M.
Note that for unauthorized sets, no such constants {wi} exist.

3.2.3 Bilinear Pairing

Let G1, G2 and GT be three multiplicative groups with the same prime order p.
A bilinear map is a map e : G1 × G2 → GT with the following properties:

1. Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zp.
2. Non-degeneracy: There exist u ∈ G1, v ∈ G2 such that e(u, v) �= I , where I is

the identity element of GT .
3. Computability: e can be computed in an efficient way.
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Such a bilinear map is called a bilinear pairing. If g1 and g2 are the generators of G1
and G2 respectively, e(g1, g2) is the generator of GT . The bilinear pairing applied in
ABAC is symmetric, where G1 = G2 = G.

3.2.4 q-Parallel BDHE Assumption

We recall the definition of the decisional q-parallel Bilinear Diffie-Hellman Exponent
(q-parallel BDHE) problem in [21] as follows. Choose a group G of prime order p
according to the security parameter. Let a, s, b1, . . . , bq ∈ Zp be chosen at random
and g be a generator of G. If an adversary is given

y = (g, gs, ga, . . . , g(aq), g(aq+2), . . . , g(a2q)

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), g(aq+2/bj), . . . , g(a2q/bj)

∀1≤j,k≤q,k �=j ga·s·bk/bj , . . . , g(aq·s·bk/bj) ),

it must be hard to distinguish a valid tuple e(g, g)aq+1s ∈ GT from a random element
R in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving q-parallel
BDHE in G if

∣∣∣Pr[B(y, T = e(g, g)aq+1s) = 0] − Pr[B(y, T = R) = 0]
∣∣∣ ≥ ε.

Definition 3.3 The decisional q-parallel BDHE assumption holds if no polyno-
mial time algorithm has a non-negligible advantage in solving the q-parallel BDHE
problem.

3.3 System and Security Model

3.3.1 System Model

Figure 3.1 describes the system model of ABAC. There are four entities in the system:
Authority, Data owners (owners), Cloud server (server) and Data consumers (users).

The authority is responsible for entitling/revoking/re-granting attributes to/from/to
users according to their role or identity in the system. It assigns secret keys to users
when they are entitled attributes and maintains a version number of each attribute.
When an attribute is revoked, the authority will update the version number of the
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Fig. 3.1 System model of access control in cloud storage

revoked attribute, and generate a corresponding update key. The update key is used
to update secret keys for non-revoked users1 and the ciphertexts on the cloud servers.

The owners determine the access policies and encrypt their data under the policies
before hosting them in the cloud (For simplicity, the data here means the content
key2).

The cloud server stores the owners’ data and provides data access service to users.
But the server does not engage in the data access control. Instead, it is assumed that
the ciphertext may be accessed by all the legal users in the system. But, the access
control happens inside the cryptography. That is only the users who possess eligible
attributes (satisfying the access policy) can decrypt the ciphertext.

Each user is entitled a set of attributes according to its roles or identity in the
system. However, the user’s attribute set may dynamically change due to the role
changed of the user in the system. For example, when a user is degraded from
the manager to the normal worker, some of its attributes should be revoked, while
sometimes the revoked attribute need to be re-granted to the user. The user can decrypt
the ciphertext only when he/she has sufficient attributes satisfying the access policy
associated with the ciphertext.

1 We use non-revoked users to denote those users who hold the revoked attribute but not been
revoked.
2 In practical, the data is encrypted with a content key by using symmetric encryption method, and
the content key is encrypted by using CP-ABE.
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3.3.2 Framework

The framework of the data access control is defined as follows.

Definition 3.4 (ABAC) ABAC is a collection of the following algorithms: Setup,
SKeyGen, Encrypt, Decrypt, UKeyGen, SKUpdate and CTUpdate, where UKeyGen,
SKUpdate and CTUpdate are used for attribute revocation.

• Setup(1λ) → (MK, PP, {PKx}, {VKx}). The setup algorithm is run by the
authority. It takes no input other than the implicit security parameter λ. It out-
puts a master key MK , the public parameters PP, the set of all the public attribute
keys {PKx} and the set of all attribute version keys {VKx}.

• SKeyGen(MK, S, {VKx}x∈S) → SK . The secret key generation algorithm is run by
the authority. It takes as inputs the master key MK , a set of attributes S that describes
the secret key, and the corresponding set of attribute version keys {VKx}x∈S . It
outputs the user’s secret key SK .

• Encrypt(PP, {PKx}, m, A) → CT . The encryption algorithm is run by the data
owner. It takes as inputs the public parameters PP, the set of public attribute key
{PKx}, a message m and an access structure A over the universe of attributes. The
algorithm will encrypt m such that only a user who possesses a set of attributes
satisfying the access structure will be able to decrypt the message. It outputs a
ciphertext CT .

• Decrypt(CT , SK) → m. The decryption algorithm is run by the user. It takes as
inputs the ciphertext CT which contains an access structure A and the secret key
SK for a set of attributes S. If the set of attributes S satisfies the access structure
A, then the algorithm will decrypt the ciphertext and return a message m.

• UKeyGen(MK, VKx′) → (ṼKx′, UKx′). The update key generation algorithm is
run by the authority. It takes as inputs the master key MK and the current version
key VKx′ of the revoked attribute x′. It outputs a new version key ṼKx′ of the
revoked attribute x′ and an update key UKx

′.
• SKUpdate(MK, SK, UKx′) → S̃K . The secret key update algorithm is run by the

authority. It takes as inputs the master key MK , the current secret key SK and the
update key UKx′ of the revoked attribute x′. It outputs a new secret key S̃K .

• CTUpdate(CT , UKx′) → C̃T . The ciphertext update algorithm is run by the cloud
server. It takes as inputs the ciphertext CT and the update key UKx′ . It outputs a
new ciphertext C̃T .

3.3.3 Security Model

In cloud storage systems, the cloud server may give access permission to the users
who are not authorized. In ABAC, the server is assumed to be curious but honest. It
is curious about the content of the encrypted data or the received message, but will
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execute correctly the task assigned by the authority. The users, however, are assumed
to be dishonest and may collude to obtain unauthorized access to data.

We now describe the security model for CP-ABE systems by the following game
between a challenger and an adversary as follows.

• Setup. The challenger runs the Setup algorithm and gives the public parameters
PP, and the public keys PK to the adversary.

• Phase 1. The adversary is given oracle access to secret keys SK that corresponding
to sets of attributes S1, S2, . . . , Sq1 and the update keys UK .

• Challenge. The adversary submits two equal length messages M0 and M1. In
addition, the adversary gives a challenge access structure A

∗ such that none of the
secret keys and updated keys queried from Phase 1 satisfy the access structure.
The challenger flips a random coin b, and encrypts Mb under the access structure
A

∗. Then, the ciphertext CT∗ is given to the adversary.
• Phase 2. Phase 1 is repeated with the restrictions: (1) none of sets of attributes

Sq1+1, . . . , Sq satisfy the access structure corresponding to the challenge; (2) none
of the updated secret keys S̃K (generated by the queried SK and update keys UK)
can decrypt the challenge ciphertext.

• Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1/2.
This security model can easily be extended to handle chosen-ciphertext attacks by
allowing for decryption queries in Phase 1 and Phase 2.

Definition 3.5 A revocable CP-ABE scheme is secure if all polynomial time adver-
saries have at most a negligible advantage in the above game.

3.4 ABAC: Attribute-Based Access Control
with Efficient Revocation

In this section, we first give an overview of the method and then propose the detailed
construction of access control scheme. After that, we describe the attribute revocation
method to cope with the dynamic changes of users’ attributes in large-scale storage
systems.

3.4.1 Overview

To achieve fine-grained access control, the owner first divides the data into several
components according to the logic granularities and encrypts each data component
with different content keys by using symmetric encryption techniques. Then, the
owner applies CP-ABE methods to encrypt each content key, such that only the user
whose attributes satisfy the access structure in the ciphertext can decrypt the content
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keys. Users with different attributes can decrypt different number of content keys
and thus obtain different granularities of information from the same data.

Since the constructions of the existing CP-ABE schemes are not suitable for
attribute revocation, it is difficult to directly apply them as the underlying techniques
to design the data access control scheme. Thus, ABAC first designs a new underlying
CP-ABE scheme that supports attribute revocation, where each attribute is assigned
with a version number. When an attribute is revoked from a user, the authority
generates a new version key and an update key for this revoked attribute. With
the update key, all the non-revoked users can update their secret keys (Backward
Security). By using the update key, the components associated with the revoked
attribute in the ciphertext can also be updated to the current version. To improve
the efficiency, ABAC delegates the workload of ciphertext update to the server by
using the proxy re-encryption method, such that the newly joined user is also able to
decrypt the previous published data, which are encrypted with the previous public
keys (Forward Security). Moreover, all the users need to hold only the latest secret
key, rather than keep records on all the previous secret keys.

3.4.2 Construction of ABAC

Let G and GT be the multiplicative groups with the same prime order p and e :
G×G → GT be the bilinear map. Let g be the generator of G. Let H : {0, 1}∗ → G

be a hash function such that the security will be modeled in the random oracle.
The construction of ABAC consists of four phases: System Initialization, Key

Generation by Authority, Data Encryption by Owners and Data Decryption by Users.

3.4.2.1 System Initialization

The authority initializes the system by running the Setup algorithm. It randomly
chooses α, β, γ, a ∈ Zp as the master key MK = (α, β, γ, a). Then, it generates the
public parameters PP as

PP = ( g, ga, g1/β, gβ, e(g, g)α )

For each attribute x, the authority generates a random number vx ∈ Zp as the
initial attribute version number VKx = vx and then applies it to generate a public
attribute key PKx as

PKx = ( PK1,x = H(x)vx , PK2,x = H(x)vxγ ).

All the public parameters PP and the public attribute keys {PKx} are published
on the public bulletin board of the authority, such that all the owners in the system
can freely get them.
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3.4.2.2 Secret Key Generation for Users

When a user joins the system, the authority first assigns a set of attributes S to this
user according to its role or identity. Then, it generates the secret key SK for this user
by running the secret key generation algorithm SKeyGen. It takes as inputs the master
key MK , a set of attributes S that describes the secret key, and the corresponding set
of attribute version keys {VKx}x∈S . It then chooses a random number t ∈ Zp and
generates the user’s secret key as

SK = ( K = g
α
β · g

at
β , L = gt,∀x ∈ S : Kx = gtβ2 · H(x)vxtβ ).

The authority then sends SK to the user via a secure channel.

3.4.2.3 Data Encryption by Owners

Before outsourcing data M to the cloud servers, the owner processes the data as
follows.

1. It first divides the data into several data components as M = {m1, . . . , mn} accord-
ing to the logic granularities. For example, the person record data may be divided
into {name, address, security number, employer, salary};

2. It encrypts each data component mi with different content keys ki(i = 1, . . . , n)

by using the symmetric encryption techniques;
3. For each content key ki(i = 1, . . . , n), the owner defines the access structure M

over the universe of attributes S and then encrypts ki under this access structure
by running the encryption algorithm Encrypt.

The encryption algorithm Encrypt can be constructed as follows. It takes as inputs
the public parameters PP, a set of public attribute key {PKx}, a content key k and a
LSSS access structure (M, ρ). Let M be a l × n matrix, where l denotes the number
of attributes involved in the encryption. The function ρ associates rows of M to
attributes. It first chooses a random encryption exponent s ∈ Zp and a random vector
v = (s, y2, . . . , yn) ∈ Zn

p, where y2, . . . , yn are used to share the encryption exponent
s. For i = 1 to l, it computes λi = v · Mi, where Mi is the vector corresponding to
the i-th row of M. Then, it randomly chooses r1, r2, . . . , rl ∈ Zp and computes the
ciphertext as

CT = ( C = ke(g, g)αs, C′ = gβs, Ci = gaλi(gβ)−ri H(ρ(i))−rivρ(i) ,

D1,i = H(ρ(i))vρ(i)riγ , D2,i = g
ri
β (i = 1, . . . , l)).

The owner then uploads the encrypted data to the server in the format as described
in Fig. 3.2.
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Fig. 3.2 Data format on cloud
server

3.4.2.4 Data Decryption by Users

Upon receiving the data from the server, the user runs the decryption algorithm
Decrypt to obtain the corresponding content keys and uses them to further decrypt data
components. Only the attributes that the user possesses satisfy the access structure
defined in the ciphertext CT , the user can get the data component successfully. Users
with different attributes will be able to decrypt different number of data components,
such that they can get different granularities of information from the same data.

The decryption algorithm Decrypt is constructed as follows. It takes as inputs a
ciphertext CT attached with the access structure (M, ρ) and the secret key for a set
of attributes S. Suppose that the user’s attribute set S satisfies the access structure
and let I ⊂ {1, 2, . . . , l} be defined as I = {i : ρ(i) ∈ S}. Then, it chooses a set of
constants {wi ∈ Zp}i∈I and reconstructs the encryption exponent as s = ∑

i∈I wiλi

if {λi} are valid shares of the secret s according to M. The decryption algorithm first
computes

e(C′, K)∏
i∈I

(e(Ci, L)e(D2,i, Kρ(i)))wi

= e(gβs, g
α
β · g

at
β )

∏
i∈I

(e(gaλi H(ρ(i))−vρ(i)ri , gt) · e(g
ri
β , H(ρ(i))vρ(i)tβ))wi

(3.1)

= e(g, g)αse(g, g)sat

e(g, g)
at

∑
i∈I

λiwi

= e(g, g)αs

It can then decrypt the content key as

k = C/e(g, g)αs.

The user then uses the content keys to further decrypt the data.

3.4.3 Attribute Revocation Method

In large-scale data storage systems, the users’ access privileges may dynamically
change. For example, when a user is leaving the system, it loses the access privileges
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of all the data in the cloud, which is called User Revocation. When a user is degraded
in the system, it only loses part access privilege as some attributes should be removed
from it, which is called the Attribute Revocation.

As we mentioned before, there are two basic requirements for the design of effi-
cient attribute revocation methods:

1. The revoked user cannot decrypt any new published ciphertext with its previous
secret key, called Backward Security;

2. The newly joined user who has sufficient attributes can still decrypt the ciphertexts
which were published before it joined the system, called Forward Security. For
example, in a company, an archive document is encrypted under the policy “IT
department & Developer”. When a new developer joins the IT department of this
company, he/she should also be able to decrypt the archive document.

In order to satisfy the requirements of attribute revocation, the revocation method
includes three phases: Update Key Generation by Authority, Secret Key Update for
non-revoked Users and Ciphertext Update by Cloud Server. Suppose an attribute x′
is revoked from a user μ.

3.4.3.1 Update Key Generation by Authority

When there is an attribute revocation, the authority runs the update key generation
algorithm UKeyGen(MK, VKx′) → (ṼKx′, UKx′). It takes the master key MK and
the current version key VKx′ of the revoked attribute x′ as inputs. It generates a new
attribute version key ṼKx′ by randomly choosing a number ṽx′ ∈ Zp(ṽx′ �= vx′).
Then, the authority computes the update key as

UKx′ =
(

UK1,x′ = ṽx′

vx′
, UK2,x′ = vx′ − ṽx′

vx′γ

)
.

It outputs a new version key ṼKx′ of the attribute x′ and an update key UKx′ that
can be used for updating the secret keys of non-revoked users and the ciphertexts
that are associated with the revoked attribute x′. Then, the authority sends the update
key UKx′ to the cloud server (for ciphertext updating) via secure channels.

The authority also updates the public attribute key of the revoked attribute x′ as

P̃Kx′ = ( P̃K1,x′ = (PK1,x′)UK1,x′ , P̃K2,x′ = (PK2,x′)UK1,x′ )

= ( P̃K1,x′ = H(x′)ṽx′ , P̃K2,x′ = H(x′)ṽx′γ ).

After that, the authority broadcasts a message to all the owners that the public attribute
key of the revoked attribute x′ is updated. Then, all the owners can obtain the new
public attribute key of the revoked attribute from the public bulletin board of the
authority.
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3.4.3.2 Secret Key Update for Non-revoked Users

Each non-revoked user submits two components L = gt and Kx′ of the secret key SK
to the authority. Upon receiving these components, the authority runs the SKUpdate
to compute a new component K̃x′ associated with the revoked attribute x′ as

K̃x′ = (Kx′/Lβ2
)UK1,x′ · Lβ2 = gtβ2 · H(x′)ṽx′ tβ.

Then, it returns the new component K̃x′ to the non-revoked user. The user’s secret
key is updated by replacing the component Kx′ associated with the revoked attribute
x′ with the new one K̃x′ :

S̃K = ( K, L, K̃x′, ∀x ∈ S\{x′} : Kx ).

Note that only the component associated with the revoked attribute x′ in the secret
key needs to be updated, while all the other components are kept unchanged.

3.4.3.3 Ciphertext Update by Cloud Server

To ensure that the newly joined user who has sufficient attributes can still decrypt
those previous data which are published before it joined the system, all the ciphertexts
associated with the revoked attribute are required to be updated to the latest version.
Intuitively, the ciphertext update should be done by data owners, which will incur
a heavy overhead on the data owner. To improve the efficiency, ABAC moves the
workload of ciphertext update from data owners to the cloud server, such that it can
eliminate the huge communication overhead between data owners and cloud server,
and the heavy computation cost on data owners. The ciphertext update is conducted
by using proxy re-encryption method, which means that the server does not need to
decrypt the ciphertext before updating.

Upon receiving the update key UKx from the authority. The cloud server runs the
ciphertext update algorithm CTUpdate to update the ciphertext associated with the
revoked attribute x′. It takes as inputs the ciphertext CT and the update key UKx′ . It
updates the ciphertext associated with x′ as

C̃T = ( C̃ = C, C̃′ = C′, ∀i = 1 to l : D̃2,i = D2,i,

if ρ(i) �= x′ : C̃i = Ci, D̃1,i = D1,i,

if ρ(i) = x′ : C̃i = Ci · (D1,i)
UK2,x′ , D̃1,i = (D1,i)

UK1,x′ )

It is obvious that ABAC only requires to update those components associated with
the revoked attribute in the ciphertext, while the other components are not changed.
In this way, ABAC can greatly improve the efficiency of attribute revocation.

The ciphertext update can not only guarantee the forward security of the attribute
revocation, but also can reduce the storage overhead on the users (i.e., all the users
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need to hold only the latest secret key, rather than to keep records on all the previous
secret keys). The cloud server in ABAC is required to be semi-trusted. Even when the
cloud server is not semi-trusted in some circumstance, which means that the server
will not update the ciphertexts correctly. The forward security cannot be guaranteed,
but ABAC can still achieve the backward security (i.e., the revoked user cannot
decrypt the new published ciphertexts encrypted with the new public attribute keys).

3.5 Analysis of ABAC

3.5.1 Security Analysis

We conclude the security analysis as the following Theorems:

Theorem 3.1 When the decisional q-parallel BDHE assumption holds, no polyno-
mial time adversary can selectively break ABAC with a challenge matrix of size
l∗ × n∗, where n∗ ≤ q.

Proof Suppose we have an adversary A with non-negligible advantage ε = AdvA in
the selective security game against the construction of ABAC and suppose it chooses
a challenge matrix M∗ with the dimension at most q columns. Under the constraint
that none of the updated secret keys S̃K (generated by both the queried secret keys
SKs and update keys UKs) can decrypt the challenge ciphertext, we can build a
simulator B that plays the decisional q-parallel BDHE problem with non-negligible
advantage. �

Theorem 3.2 ABAC is secure against the unauthorized access.

Proof From the definition of the unauthorized access, there are two scenarios:
(1) Users who do not have sufficient attributes satisfying the access structure may
try to access and decrypt the data. (2) When one or some attributes of the user are
revoked, the user may still try to access the data with his/her previous secret key.

For the first scenario, the users who do not have sufficient attributes cannot decrypt
the ciphertext by using their own secret keys. We also consider the collusion attack
from multiple users, in ABAC, the user’s secret key is generated with a random
number, such that they may not be the same even if the users have the same set
of attributes. Thus, they cannot collude their secret keys together to decrypt the
ciphertext.

For the second scenario, suppose one attribute is revoked from a user, the authority
will choose another version key to generate the update key and sends it to the server
for updating all the ciphertexts associated with the revoked attribute, such that the
ciphertexts are associated with the latest version key of the revoked attributes. Due
to the different values of the version key in the ciphertext, the revoked user is not
able to use the previous secret key to decrypt the ciphertext. �
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Table 3.1 Comparison of each component size

Component ABAC [6]

Master key 4|p| |p| + |g|
Public key 2|g| + |gT | 2|g| + |gT |
Secret key 2|g| + na,i · |g| |g| + 2na,i · |g|
Other keys |p|a + 2|g|b log(nu + 1) · |p|c
Ciphertext |gT | + (3l + 1)|g| |gT | + (2l + 1)|g| + l·|nu|·|p|

2
aVersion key; bUpdate key; cPath Key
na total number of attributes in the system
nu total number of users in the system
na,i number of attributes the user i possesses
l number of attributes associated with the ciphertext

3.5.2 Performance Analysis

We give the analysis of ABAC by comparing with [6] in terms of storage overhead,
communication cost and computation efficiency. Let |p| be the size of elements in
Zp. Let |g| and |gT | be the element size in G and GT respectively. First, we compare
each component involved in ABAC and [6], as described in Table 3.1.

3.5.2.1 Storage Overhead

Table 3.2 shows the comparison of storage overhead on each entity in the system. The
main storage overhead on the authority comes from the master key in [6]. Besides the
master key, in ABAC, the authority needs to hold a version key for each attribute. Both
the public parameters and the public attribute keys contribute the storage overhead
on the owner in ABAC, which is linear to the total number of attributes in the system.
Although the data is stored on the server in the format as shown in Fig. 3.2, we do
not consider the storage overhead caused by the encrypted data, which are the same
in both ABAC and [6]. ABAC only requires the server to store the ciphertext, while
the server in [6] needs to store both the message head and the ciphertext which is
also linear to the number of users in the system. The storage overhead on each user in

Table 3.2 Comparison of storage overhead

Entity ABAC [6]

Authority (4 + na) · |p| 2|p|
Owner (2 + na)|g| + |gT | 2|g| + |gT |
Server |gT | + (3l + 1)|g| 2|gT | + (3l + 3)|g| + l·|nu|·|p|

2
User (2 + na,i) · |g| (2na,i + 1)|g| + log(nu + 1)|p|
na total number of attributes in the system
nu total number of users in the system
na,i number of attributes the user i possesses
l number of attributes associated with the ciphertext
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ABAC is associated with the number of attributes it possesses, while in [6] the storage
overhead on each user is not only linear to the number of attributes it possesses but
also linear to the number of users in the system. Usually, the number of users are
much larger than the number of attributes in the system, which means that ABAC
incurs less storage overhead.

3.5.2.2 Communication Cost

As illustrated in Table 3.3, the communication cost in the system is mainly caused by
the keys and ciphertexts. In ABAC, the communication cost between the authority
and the user comes from both the user’s secret keys and the update keys, while in
[6] only the secret key contributes the communication cost between the authority
and the user. The communication cost between the authority and the owner mainly
comes from the public keys. In ABAC, when there is an attribute revocation, the
owner needs to get the latest public attribute key of the revoked attributes, which also
contributes the communication between the authority and the owner.

In ABAC, the communication cost between the server and the user comes from the
ciphertext. But in [6], besides the ciphertext, the message head (which contains the
path keys) also contributes the communication cost between the server and the users,
which is linear with the number of all the users in the system. Thus, ABAC incurs
less communication cost between the server and the user than [6]. The ciphertext
contributes the main communication cost between the server and the owner. Because
the size of ciphertext in ABAC is much smaller than the one in [6], the communication
cost between the sever and the owner is much less than the one in [6].

3.5.2.3 Computation Efficiency

The implementations of ABAC and [6] are conducted on a Linux system with an Intel
Core 2 Duo CPU at 3.16 GHz and 4.00 GB RAM. The code uses the Pairing-Based
Cryptography (PBC) library version 0.5.12 to implement the schemes. A symmetric
elliptic curve α-curve is used during the simulation, where the base field size is
512-bit and the embedding degree is 2. The α-curve has a 160-bit group order, which

Table 3.3 Comparison of communication cost

Communication ABAC [6]
Cost between

Auth.&User 4|g| + na,i|g| |g| + 2na,i|g|
Auth.&Owner 2|g| + |gT | + na|g| 2|g| + |gT |
Server&User |gT | + (3l + 1)|g| |gT | + (2l + 1)|g| +

(l · |nu|/2 + log(nu + 1))|p|
Server&Owner |GT | + (3l + 1) · |G| (l + 1)|GT | + 2l|G|
na total number of attributes in the system
nu total number of users in the system
na,i number of attributes the user i possesses
l number of attributes associated with the ciphertext
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(a) (b)

(c)

Fig. 3.3 Computation cost comparison. a Encryption, b Decryption, c Re-encryption

means p is a 160-bit length prime. The size of the plaintext is set to be 1 KByte. All
the simulation results are the mean of 20 trials.

We compare the computation efficiency between ABAC and [6] in terms of encryp-
tion, decryption and re-encryption.3 From the Fig. 3.3a, we can see that the time of
encryption is linear with the total number of attributes in the system. The encryption
phase in ABAC is more efficient than the one in [6]. That is because, in [6], the owner
first encrypts the data by using the CP-ABE scheme and sends the ciphertext to the
server. Upon receiving the ciphertext from the owner, the server will re-encrypt the
ciphertext with a randomly generated encryption exponent. Then, the server encrypts
this exponent with a set of attribute group keys by using the broadcast encryption
approach. Correspondingly, in the phase of decryption, the user should first decrypt
the exponent with its own path key and uses it to decrypt the data together with the
secret key. In ABAC, however, the user only needs to use the secret key to decrypt
the data, which is more efficient than the [6] as illustrated in the Fig. 3.3b.

During the attribute revocation, ABAC only requires to update those components
associated with the revoked attribute of the ciphertext, while the [6] should re-encrypt
all the components of the ciphertext. Besides, the re-encryption in [6] should generate

3 Note that we do not consider the computation of symmetric encryption for data components since
they are the same in both ABAC and [6].
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a new encryption exponent and encrypt this new exponent with the new set of attribute
group key by using broadcast encryption approach. Thus, as illustrated in Fig. 3.3c,
the time of re-encryption phase in [6] is linear with the total number of attributes,
while the time of ciphertext update in ABAC is constant to the number of revoked
attributes.

3.6 Related Work

The traditional remote storage systems usually rely on the cryptographic techniques
to conduct data access control. In [8], data owners encrypt files by using the symmetric
encryption approach with content keys and then use every user’s public key to encrypt
the content keys. The key management in this approach is very complicated when
there are a large number of data owners and users. Also, the key distribution is not
convenient in the situation of user dynamically joining or leaving the system, since
it requires each data owner to always be online. To deal with the key distribution
issue, Goh et al. [4] proposed a SiRiUS to provide the end-to-end security over the
existing file systems, such as NFS. It attaches each file with a metadata file that
contains the file’s access control list (ACL), each entry of which is the encryption of
the content key by using the public key of each user. The extension version of SiRiUS
applied NNL broadcast encryption algorithm [12] to encrypt the content key instead
of encrypting it with each individual user’s public key. However, these access control
techniques cannot be applied in cloud storage systems, because the data owner does
not know which potential user can access its data before the encryption.

Some methods are proposed by delivering the key management and distribution
from data owners to the remote server under the assumption that the server is trusted
or semi-trusted [3, 18–20]. In [3], the authors divide users into groups based on their
access rights to the data. To reduce the number of encryption keys, the users are then
organized into a hierarchy and further transformed to a tree structure. In [20], the data
owner’s data is encrypted block-by-block and a binary key tree is constructed over
the block keys to reduce the number of keys given to each user. In [19], Vimercati
et al. proposed a fine-grained access control for the outsourced data on semi-trusted
servers. It allows the server to conduct a second level encryption (over-encryption)
to control access, while the complexities of file encryption and user grant/revocation
operations are linear to the number of authorized users. They also proposed another
access control scheme which required the server to store multiple copies of the same
data encrypted by different keys [18]. But it may cause heavy storage overhead and
the server should be fully trusted. These schemes, however, are inappropriate to the
problem because the server is not trustworthy in cloud storage systems.

The attribute-based encryption (ABE) technique [2, 5, 15, 21] is regarded as one
of the most suitable technologies for data access control in cloud storage systems,
because it allows the data owner to define the access policy on the attributes instead
of on the users. There are two complementary forms of ABE, Key-Policy ABE
(KP-ABE) [5] and Ciphertext-Policy ABE (CP-ABE) [2, 21]. In KP-ABE, attributes
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are used to describe the encrypted data and access policies over these attributes
are built into user’s secret keys; while in CP-ABE, attributes are used to describe
the user’s attributes and the access policies over these attributes are attached to the
encrypted data.

In [23], the authors proposed a fine-grained data access control scheme based on
the KP-ABE approach [5]. In their scheme, the data owner encrypts the data with a
content key and then encrypt the content key by using the KP-ABE technique. The
data owner assigns the access structure and the corresponding secret key to users
by encrypting them with the user’s public key and stores it on the server. However,
their scheme requires the data owner to always be online for user joining, which is
not appropriate in cloud storage systems. Some access control schemes are proposed
based on CP-ABE [2, 6], since CP-ABE is considered to be more suitable for data
access control in cloud storage systems than KP-ABE. It allows data owners to define
an access structure on attributes and encrypt the data under this access structure, such
that data owners can define the attributes that the user needs to possess in order to
decrypt the ciphertext. In [10], the author proposed a proxy re-encryption method for
ABE systems that allows the proxy to transform the access policy of the ciphertext
into another one. However, the revocation issue in CP-ABE is still an open problem.

To deal with the attribute revocation issue in ABE system, Pirretti et al. [14]
proposed a timed rekeying mechanism, which is implemented by setting expiration
time on each attribute. However, this approach requires the users to periodically go
to the authority for key update. This brings a heavy burden to the authority and
thus is inefficient. In [2], the authors improve the Pirretti’s scheme by assigning
the user’s secret key with a single expiration date instead of on each attribute, such
that the keys could be updated less frequently. In [9], the authors proposed a multi-
authority ciphertext-policy ABE scheme with accountability. In [22], the authors
also improved the efficiency and proposed a temporal attribute revocation based
on the timed rekeying methods for cloud storage systems with multiple authorities.
However, these schemes can just disable a user’s secret key at a designated time,
while the immediate attribute revocation cannot be realized.

Golle et al. [17] proposed a user revocable KP-ABE scheme, with the condition
that the number of attributes associated with a ciphertext is exactly half of the universe
size. Some previous revocation schemes [11, 13] only allow the user level revocation.
That is when a user is revoked even from a single attribute group, it loses all the
access rights to the data in the system. In [1], the authors proposed a user-revocable
ABE systems by combining broadcast encryption schemes with ABE schemes. This
scheme, however, requires the data owner to maintain all the membership list for
each attribute group, which is not applicable in cloud storage systems.

Yu et al. [24] proposed an attribute revocation method for CP-ABE, where the
authority redefines the master key components for involved attributes and generates
the new public keys for re-encrypting the ciphertext and new secret keys for users.
But they delegate the re-encryption of ciphertext and the secret key update to the
server. However, like the method in [7], but they require the server to decide which
users can update their secret keys according to the revoked user identity list, such
that the server is required to be fully trusted.
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Hur et al. [6] also proposed an attribute revocation scheme in CP-ABE by allowing
the server to re-encrypt the ciphertext with a set of attribute group keys. It can
conduct the access right revocation on attribute level rather than on user level. During
the attribute revocation, the server needs to change the attribute group key for the
attribute which is affected by the membership change and re-encrypts the ciphertext
with the new set of group attribute keys. This may incur high computation cost on the
server. Also the server should be fully trusted. However, the server in cloud storage
systems cannot be trusted and thus [6] cannot be applied in the problem. Therefore,
the attribute revocation is still an open problem in attribute-based data access control.

3.7 Conclusion

In this chapter, we described an attribute-based fine-grained data access control
scheme, ABAC, where the owner was in charge of defining and enforcing the access
policy. We also presented an efficient attribute revocation method for CP-ABE, which
can greatly reduce the cost of attribute revocation.
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Chapter 4
DAC-MACS: Effective Data Access Control
for Multi-Authority Cloud Storage Systems

Abstract Ciphertext-Policy Attribute-based Encryption (CP-ABE) is a promising
technique for access control of encrypted data, which requires a trusted authority to
manage all the attributes and distributes keys in the system. In multi-authority cloud
storage systems, the users’ attributes come from different domains each of which
is managed by a different authority. However, existing CP-ABE schemes cannot be
directly applied to data access control for multi-authority cloud storage systems, due
to the inefficiency of decryption and revocation. In this chapter, we propose DAC-
MACS (Data Access Control for Multi-Authority Cloud Storage), an effective and
secure data access control scheme with efficient decryption and revocation.

4.1 Introduction

Ciphertext-Policy Attribute-based Encryption (CP-ABE) [2, 25] is regarded as one
of the most suitable technologies for data access control in cloud storage systems,
because it gives the data owner more direct control on access policies and does not
require the data owner to distribute keys. In CP-ABE scheme, there is an authority
that is responsible for attribute management and key distribution. The authority can
be the registration office in a university, the human resource department in a company,
etc. The data owner defines the access policies and encrypts data under the policies.
Each user will be issued a secret key reflecting its attributes. A user can decrypt the
ciphertexts only when its attributes satisfy the access policies.

Extensive research has been done for single authority systems [2, 8, 14, 21, 25].
However, in cloud storage systems, a user may hold attributes issued by multiple
authorities and the owner may share data with the users administrated to different
authorities. For instance, in an E-healthy system, the medical data may be shared only
with a user who has the attribute of “Doctor” issued by a hospital and the attribute
“Medical Researcher” issued by a medical research center. Although some multi-
authority CP-ABE schemes [3, 4, 15, 19] have been proposed for data encryption,
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they cannot be directly applied to data access control for multi-authority cloud storage
systems, because they either require a global central attribute authority to manage all
the attributes across different organizations or lack of efficiency. In this chapter, we
investigate the data access control issue in multi-authority cloud storage systems.

One critical requirement in the design of access control schemes is the efficiency
in computation. There are two operations in access control that require efficient com-
putation, namely decryption and revocation. The users may use their smart phones
to access the data in nowadays cloud storage systems, but the computation abil-
ity of smart phones is not as strong as the PCs. Thus, the decryption on each user
should be as efficient as possible in data access control schemes. When a user is
degraded or leaving the system, some attributes should be revoked from this user.
There are two requirements of the efficient attribute revocation: (1) The revoked
user (whose attribute is revoked) cannot decrypt the new ciphertexts that require the
revoked attributes to decrypt (Backward Security); (2) The newly joined user can
also decrypt the previously published ciphertexts that are encrypted with previous
public keys if it has sufficient attributes (Forward Security).

In this chapter, we first introduce DAC-MACS (Data Access Control for Multi-
Authority Cloud Storage), an effective and secure data access control scheme with
efficient decryption and revocation for multi-authority cloud storage systems, which
is provably secure in the random oracle model and has better performance than exist-
ing schemes. The efficient immediate attribute revocation method in DAC-MACS
achieves both forward security and backward security.

4.2 System Model and Security Model

4.2.1 System Model

As shown in Fig. 4.1, DAC-MACS consists of five types of entities: a global certificate
authority (CA), the attribute authorities (AAs), the cloud server (server), the data
owners (owners) and the data consumers (users).

The CA is a global trusted certificate authority in the system. It sets up the system
and accepts the registration of all the users and AAs in the system. For each legal
user in the system, the CA assigns a global unique user identity to it and also gen-
erates a pair of global secret key and global public key for this user. However, the
CA is not involved in any attribute management and any generation of secret keys
that are associated with attributes. For example, the CA can be the Social Security
Administration, an independent agency of the United States government. Each user
will be issued a Social Security Number (SSN) as its global identity.

Every AA is an independent attribute authority that is responsible for entitling,
revoking and updating user’s attributes according to their role or identity in its domain.
In DAC-MACS, every attribute is associated with a single AA, but each AA can
manage an arbitrary number of attributes. Every AA has full control over the structure
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Fig. 4.1 System model of DAC-MACS

and semantics of its attributes. Each AA is responsible for generating a public attribute
key for each attribute it manages and a secret key for each user reflecting their
attributes.

The cloud server stores the owners’ data and provides data access service to
users. It helps the user decrypt a ciphertext by generating a decryption token of the
ciphertext according to user’s secret keys issued by the AAs. The server also does the
ciphertext update when an attribute revocation happens.

Each owner first divides the data into several components according to the logic
granularities and encrypts each data component with different content keys by using
symmetric encryption techniques. Then, the owner defines the access policies over
attributes from multiple attribute authorities and encrypts the content keys under the
policies. Then, the owner sends the encrypted data to the cloud server together with
the ciphertexts.1 They do not rely on the server to do data access control. Instead,
the ciphertext can be accessed by all the legal users in the system, which means that
any legal user who has been authenticated by the system somehow, he/she can freely
query any interested ciphertexts from the server. But, the access control happens
inside the cryptography. That is only when the user’s attributes satisfy the access
policy defined in the ciphertext, the user is able to decrypt the ciphertext. Thus, users
with different attributes can decrypt different number of content keys and thus obtain
different granularities of information from the same data.

Each user is assigned with a global user identity from the CA and can freely get the
ciphertexts from the server. To decrypt a ciphertext, each user may submit their secret
keys issued by some AAs together with its global public key to the server and ask

1 In this chapter, we simply use the ciphertext to denote the encrypted content keys with CP-ABE.
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it to generate a decryption token for each ciphertext. Upon receiving the decryption
token, the user can use it to decrypt the ciphertext together with its global secret key.
Only when the user’s attributes satisfy the access policy defined in the ciphertext,
the server can generate the correct decryption token. The secret keys and the global
user’s public key can be stored on the server; subsequently, the user does not need to
submit any secret keys if no secret keys are updated for the further decryption token
generation.

4.2.2 DAC-MACS Framework

The framework of DAC-MACS is defined as follows.

Definition 4.1 (DAC-MACS) DAC-MACS is a collection of algorithms that com-
bines a set of CP-ABE algorithms: CASetup, AASetup, SKeyGen, Encrypt, TKGen,
Decrypt and a set of attribute revocation algorithms: UKeyGen, SKUpdate and
CTUpdate.

• CASetup(1λ)→ (MSK, SP, skCA, vkCA, {(uid, GPKuid, GSKuid, Cert(uid))}). The
CA setup algorithm is run by the CA. It takes no input other than the implicit secu-
rity parameter λ. It outputs the master key MSK, the system parameter SP, a secret
and verificative key pair (skCA, vkCA) of CA. For each user uid, it generates a
global public/secret key pair (GPKuid, GSKuid) and a certificate Cert(uid).

• AASetup(aid)→ (SKaid, PKaid, {VKxaid , PKxaid }). The attribute authority setup
algorithm is run by each AA. It takes the authority identity aid as input. It outputs
a pair of authority secret key SKaid and authority public key PKaid , the set of
version keys and public attribute keys {VKxaid , PKxaid } for all attributes x issued by
the AAaid .

• SKeyGen(Suid,aid, SKaid, {PKxaid }, SP, Cert(uid)) → SKuid,aid . The secret key
generation algorithm is run by each AA. It takes as inputs a set of attributes Suid,aid
that describes the secret key, the authority secret key SKaid , the set of public
attribute keys {PKxaid }, the system parameter SP and the certificate of the user
with uid. It outputs a secret key SKuid,aid for the user with uid.

• Encrypt(SP, {PKk}k∈IA, {PKxk }k∈IA
xk∈SAk

, m, A)→ CT . The encryption algorithm is

run by data owners. It takes as inputs the system parameter SP, a set of public
keys {PKk}k∈IA from the involved authority set IA, a set of public attribute keys

{PKxk }k∈IA
xk∈SAk

, a message m and an access structure A over all the selected attributes

from the involved AAs. The algorithm encrypts m according to the access structure
A and outputs a ciphertext CT. It is assumed that the ciphertext implicitly contains
the access structure A.

• TKGen(CT, GPKuid, {SKuid,k}k∈IA)→ TK. The decryption token generation algo-
rithm is run by the cloud server. It takes as inputs the ciphertext CT which contains
an access structure A, user’s global public key GPKuid and a set of user’s secret keys
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{SKuid,k}k∈IA . If the set of attributes S satisfies the access structure A, the algorithm
can successfully compute the correct decryption token TK of the ciphertext.

• Decrypt(CT, TK, GSKuid)→ m. The decryption algorithm is run by the users. It
takes as inputs the ciphertext CT, the decryption token TK and the user’s global
secret key GSKuid . It outputs the message m.

• UKeyGen(SKaid, {uj}, VKx̃aid )→ (KUKj,x̃aid , CUKx̃aid ). The update key generation
algorithm is run by the AA corresponding to the revoked attribute x̃aid . It takes as
inputs the authority secret key SKaid , a set of user’s secret {uj} and the previous ver-
sion key of the revoked attribute VKx̃aid . It outputs both the user’s Key Update Key
KUKj,x̃aid (j ∈ SU , j �= μ, x̃aid ∈ Sj,aid) and the Ciphertext Update Key CUKx̃aid .

• SKUpdate(SKuid,aid, KUKuid,x̃aid )→ SK′
uid,aid . The user’s secret key update algo-

rithm is run by all the non-revoked users. It takes as inputs the current secret key
SKuid,aid and its key update key KUKuid,x̃aid . It outputs a new secret key SK′

uid,aid .
• CTUpdate(CT, CUKx̃aid )→ CT′. The ciphertext update algorithm is run by the

cloud server. It takes as inputs the current ciphertext CT and the ciphertext update
key CUKx̃aid . It outputs a new ciphertext CT′.

4.2.3 Security Model

4.2.3.1 Threat Model

In multi-authority cloud storage systems, the CA is assumed to be trusted in the
system. But we still need to prevent it from decrypting any ciphertexts. Each AA
is also assumed to be trusted, and can be corrupted by the adversary. The server is
assumed to be curious but honest. It is curious about the content of the encrypted
data or the received message, but will execute correctly the task assigned by each
AA. The users are assumed to be dishonest and may collude to obtain unauthorized
access to data. DAC-MACS also assumes that all the non-revoked users will not give
the received update keys to the revoked user.

4.2.3.2 Decisional q-Parallel Bilinear Diffie-Hellman Exponent Assumption

We recall the definition of the decisional q-parallel Bilinear Diffie-Hellman Exponent
(q-parallel BDHE) problem in [25] as follows. Chooses a group G of prime order p
according to the security parameter. Let a, s ∈ Zp be chosen at random and g be a
generator of G. If an adversary is given



64 4 DAC-MACS: Effective Data Access Control for Multi-Authority

y = ( g, gs, g1/z, ga/z, . . . , g(aq/z),

ga, . . . , g(aq), g(aq+2), . . . , g(a2q),

∀1≤j≤q gs·bj , ga/bj , . . . , g(aq/bj), g(aq+2/bj), . . . , g(a2q/bj),

∀1≤j,k≤q,k �=j ga·s·bk/bj , . . . , g(aq·s·bk/bj) ),

it must be hard to distinguish a valid tuple e(g, g)aq+1s ∈ GT from a random element
R in GT .

An algorithm B that outputs z ∈ {0, 1} has advantage ε in solving q-parallel
BDHE in G if

∣∣∣Pr[B(y, T = e(g, g)aq+1s) = 0] − Pr[B(y, T = R) = 0]
∣∣∣ ≥ ε.

Definition 4.2 The decisional q-parallel BDHE assumption holds if no polyno-
mial time algorithm has a non-negligible advantage in solving the q-parallel BDHE
problem.

4.2.3.3 Security Model

We now describe the security model of DAC-MACS by the following game between
a challenger and an adversary. The security model allows the adversary to query for
any secret keys and update keys that cannot be used to decrypt the challenge cipher-
text. Similar to [15], the adversaries are assumed to be able to corrupt authorities
only statically, but key queries are made adaptively. Let SA denote the set of all the
authorities. The security game is defined as follows.

• Setup. The system parameters are generated by running the CA setup algorithm.
The adversary specifies a set of corrupted attribute authorities S′

A ⊂ SA. The
challenger generates the public keys by querying the AA setup oracle, and generates
the secret keys by querying the secret key generation oracle. For uncorrupted
authorities in SA − S′

A, the challenger sends only the public keys to the adversary.
For corrupted authorities in S′

A, the challenger sends both public keys and secret
keys to the adversary.

• Phase 1. The adversary makes secret key queries by submitting pairs (uid, Suid)

to the challenger, where Suid = {Suid,k}k∈SA−S′
A

is a set of attributes belonging
to several uncorrupted AAs. The challenger gives the corresponding secret keys
{SKuid,k} to the adversary. The adversary also makes update key queries by sub-
mitting a set of attributes S′

aid . The challenger responses the corresponding update
keys to the adversary.

• Challenge. The adversary submits two equal length messages m0 and m1. In
addition, the adversary gives a challenge access structure (M∗, ρ∗) which must
satisfy the following constraints. Let V denote the subset of rows of M∗ labeled
by attributes controlled by corrupted AAs. For each uid, let Vuid denote the subset
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of rows of M∗ labeled by attributes that the adversary has queried. For each uid,
DAC-MACS requires that the subspace spanned by V ∪ Vuid must not include
(1, 0, . . . , 0). In other words, the adversary cannot ask for a set of keys that allow
decryption, in combination with any keys that can obtained from corrupted AAs.
The challenger then flips a random coin b, and encrypts mb under the access
structure (M∗, ρ∗). Then, the ciphertext CT∗ is given to the adversary.

• Phase 2. The adversary may query more secret keys and update keys, as long
as they do not violate the constraints on the challenge access structure (M∗, ρ∗)
and the following constraints: None of the updated secret keys (generated by the
queried update keys and the queried secret keys2) are able to decrypt the challenged
ciphertexts. In other words, the adversary is not able to query the update keys that
can update the queried secret keys to the new secret keys that can decrypt the
challenge ciphertext.

• Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 .

Definition 4.3 DAC-MACS is secure against static corruption of authorities if all
polynomial time adversaries have at most a negligible advantage in the above security
game.

4.3 DAC-MACS: Data Access Control for Multi-Authority
Cloud Storage

In this section, we first give an overview of the challenges and techniques of designing
access control schemes for multi-authority cloud storage systems. Then, we propose
the detailed construction of DAC-MACS with efficient decryption and revocation.

4.3.1 Overview

Although the existing multi-authority CP-ABE scheme [15] proposed by Lewko and
Waters has high policy expressiveness and has been extended to support attribute
revocation in [10], it still cannot be applied to access control for multi-authority
cloud storage systems due to the inefficiency of decryption and revocation. Thus, the
main challenge is to design a new underlying multi-authority CP-ABE scheme with
efficient decryption and revocation.

One challenging issue in the design of a multi-authority CP-ABE scheme is
how to tie the secret keys together and prevent the collusion attack. Similar to [3],

2 There is another reason that makes the queried secret keys cannot decrypt the challenge ciphertext.
That is at least one of the attributes in the previous queried secret keys may be not in the current
version.
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DAC-MACS separates the authority into a global certificate authority (CA) and mul-
tiple attribute authorities (AAs). The CA sets up the system and assigns a global user
identity uid to each user and a global authority identity aid to each attribute authority
in the system. Since the uid is globally unique in the system, secret keys issued by
different AAs for the same uid can be tied together for decryption. Also, since each
AA is associated with an aid, every attribute is distinguishable even though some
AAs may issue the same attribute. Thus, the collusion attack can be resisted by using
the aid and uid. However, different from [3], the CA in DAC-MACS is not involved
in any attribute management and the creation of secret keys reflecting the user’s
attributes. DAC-MACS also requires all the AAs to generate their own public keys
and uses them to encrypt data together with the global public parameters, instead of
using the system unique public key (generated by the unique master key) to encrypt
data. This solves the security drawback in [3], i.e., it prevents the CA from decrypting
the ciphertexts.

To achieve efficient decryption on the user, DAC-MACS proposes a token-based
decryption outsourcing method. It applies the decryption outsourcing idea from [10]
and extends it to multiple authority systems by letting the CA generate a global
secret/public key pair for each legal user in the system. During the decryption, the
user submits its secret keys issued by AAs to the server and asks the server to compute
a decryption token for the ciphertext. The user can decrypt the ciphertext by using
the decryption token together with its global secret key.

To solve the attribute revocation problem, DAC-MACS assigns a version number
for each attribute, such that when an attribute revocation happens, only those com-
ponents associated with the revoked attribute in secret keys and ciphertexts need to
be updated. When an attribute of a user is revoked from any AA, the AA generates
a new version key for this revoked attribute and generates the update keys which
contains a ciphertext update key and a set of user’s key update keys. With the user’s
key update key, each non-revoked user who holds the revoked attributes can update
its secret key. Because the update keys are associated with the uid, the revoked user
cannot update its secret key by using other users’ update keys (Backward Security).
By using the ciphertext update key, the components associated with the revoked
in the ciphertext can be updated to the current version. To improve the efficiency,
DAC-MACS delegates the workload of ciphertext update to the server by using the
proxy re-encryption method, such that the newly joined user is also able to decrypt
the previous data which are published before it joins the system (Forward Security).
Moreover, all the users need to hold only the latest secret key, rather than to keep
records on all the previous secret keys.

4.3.2 Construction of DAC-MACS

Let SA and SU denote the set of attribute authorities and the set of users in the system
respectively. Let G and GT be the multiplicative groups with the same prime order
p and e : G × G → GT be the bilinear map. Let g be the generator of G. Let
H : {0, 1}∗ → G be a hash function such that the security is in the random oracle.
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The DAC-MACS consists of five phases: System Initialization, Secret Key Gen-
eration by AAs, Dat Encryption by Owners, Data Decryption by Users (with the help
of Cloud Server) and Attribute Revocation. For clarity, the attribute revocation phase
will be described in the next section.

4.3.2.1 System Initialization

There are two steps in the system initialization phase: CA Setup and AA Setup.

1. CA Setup
The CA runs the CA setup algorithm CASetup, which takes a security parameter
as input. The CA first chooses a random number a ∈ Zp as the master key MSK of
the system and compute the system parameter SP = ga. Then, the CA generates
a pair of secret key and verificative key (skCA, vkCA). The CA accepts both User
Registration and AA Registration.

• User Registration
Every user should register itself to the CA during the system initialization.
If the user is legal in the system, the CA then assigns a global unique user
identity uid to this user. For each user with uid, it generates the global public
key GPKuid = guuid and the global secret key GSKuid = zuid by randomly
choosing two numbers uuid, zuid ∈ Zp. The CA also generates a certificate
Cert(uid) which contains an item EnskCA(uid, uuid, g1/zuid ). Then, the CA gives
the global public key GPKuid , the global secret key GSKuid and the user’s
certificate Cert(uid) to this user.

• AA Registration
Each AA should also register itself to the CA during the system initialization. If
the AA is a legal authority in the system, the CA first assigns a global authority
identity aid to this AA. Then, the CA sends both its verificative key vkCA and
the system parameter SP to this AA.

2. AA Setup
Each AAk(k ∈ SA) runs the AA setup algorithm AASetup. Let SAk denote the set
of all attributes managed by this authority AAk . It chooses three random numbers
αk, βk, γk ∈ Zp as the authority secret key SKk = (αk, βk, γk). For each attribute
xk ∈ SAk , the authority generates a public attribute key as PKxk = (gvxk H(xk))

γk

by implicitly choosing an attribute version key as VKxk = vxk . The AAk also
computes the authority public key as

PKk =
(

e(g, g)αk , g
1
βk , g

γk
βk

)
.

All the public attribute keys are published on the public bulletin board of AAk ,
together with the authority public key PKk .
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4.3.2.2 Secret Key Generation by AAs

For every user Uj(j ∈ SU), each AAk(k ∈ SA) first authenticates whether this
user is a legal user by verifying the certificate of the user. It decrypts the item
EnskCA(uidj, uj, g1/zj ) in the certificate Cert(uidj) by using vkCA and authenticates
the user. If the user is not a legal user, it aborts. Otherwise, the AAk assigns a set
of attributes Sj,k to this user according to its role or identity in its administration
domain. Then, the AAk runs the secret key generation algorithm SKeyGen to gener-
ate the user’s secret key SKj,k as

SKj,k = ( Kj,k = g
αk
zj · gauj · g

a
βk

tj,k
, Lj,k = g

βk
zj

tj,k
, Rj,k = gatj,k ,

∀xk ∈ Sj,k : Kj,xk = g
βkγk

zj
tj,k · (gvxk · H(xk))

γkβkuj ).

where j ∈ SU , k ∈ SA, and tj,k is a random number in Zp.

4.3.2.3 Data Encryption by Owners

The owner first encrypts the data component with a content key by using symmetric
encryption methods. It then runs the encryption algorithm Encrypt to encrypt the
content key. It takes as inputs the system parameter, the public keys, the content key
κ and an access structure (M, ρ) over all the selected attributes from the involved
AAs. Let M be a l × n matrix, where l denotes the total number of all the attributes.
The function ρ associates rows of M to attributes.

The encryption algorithm first chooses a random encryption exponent s ∈ Zp

and chooses a random vector v = (s, y2, . . . , yn) ∈ Zn
p, where y2, . . . , yn are used

to share the encryption exponent s. For i = 1 to l, it computes λi = v · Mi, where
Mi is the vector corresponding to the i-th row of M. Then, it randomly chooses
r1, r2, . . . , rl ∈ Zp and computes the ciphertext as

CT = ( C = κ · (
∏

k∈IA

e(g, g)αk )s, C′ = gs, C′′ = g
s

βk ,

∀i = 1 tol :Ci = gaλi · ((gvρ(i)H(ρ(i)))γk )−ri ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri
, ρ(i) ∈ SAk ).

4.3.2.4 Data Decryption by Users (with the Help of Cloud Server)

All the legal users in the system can query any interested encrypted data from the
cloud server. But only when the user’s attributes satisfy the access structure embedded
in the ciphertext, he/she can decrypt the content key and use it to further decrypt the
data component. The decryption phase consists of two steps:
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• Step 1. Token Generation by Cloud Server
The user Uj(j ∈ SU) sends its secret keys {SKj,k}k∈SA to the server and asks
the server to compute a decryption token for the ciphertext CT by running the
token generation algorithm TKGen. Only when the attributes the user Uj possesses
satisfy the access structure defined in the ciphertext CT, the server can successfully
compute the correct decryption token TK.
Let I = {IAk }k∈IA be the whole index set of all the attributes involved in the
ciphertext, where IAk ⊂ {1, . . . , l} is the index subset of the attributes from the AAk ,
defined as IAk = {i : ρ(i) ∈ SAk }. Let NA = |IA| be the number of AAs involved
in the ciphertext. It chooses a set of constants {wi ∈ Zp}i∈I and reconstructs the
encryption exponent as s = ∑

i∈I wiλi if {λi} are valid shares of the secret s
according to M.
The algorithm computes the decryption token TK as

TK =
∏

k∈IA

e(C′, Kj,k) · e(Rj,k, C′′)−1

∏
i∈IAk

(
e(Ci, GPKUj ) · e(D1,i, Kj,ρ(i)) · e(D2,i, Lj,k)

)wiNA

=
e(g, g)aujsNA · ∏

k∈IA

e(g, g)

αk
zj

s

e(g, g)
ujaNA

∑
i∈I

λiwi

=
∏

k∈IA

e(g, g)

αk
zj

s
.

It outputs the decryption token TK for the ciphertext CT and sends it to the user Uj.
• Step 2. Data Decryption by Users

Upon receiving this decryption token TK, the user Uj can use it to decrypt the
ciphertext together with its global secret key GSKUj = zj as

κ = C

TKzj
.

Then, the user can use the content key κ to further decrypt the encrypted data
component.

4.3.3 Efficient Attribute Revocation for DAC-MACS

Suppose an attribute x̃k of the user Uμ is revoked from the AAk . The attribute revo-
cation includes three phases: Update Key Generation by AAs, Secret Key Update
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by Non-revoked Users3 and Ciphertext Update by Cloud Server. The secret key
update can prevent the revoked user from decrypting the new ciphertexts which
are encrypted by the new public attribute keys (Backward Security). The ciphertext
update can make sure that the newly joined user can still access the previous data
which is published before it joins the system, when its attributes satisfy the access
policy associated with the ciphertext (Forward Security).

4.3.3.1 Update Key Generation by AAs

The corresponding authority AAk runs the update key generation algorithm UKeyGen
to compute the update keys. The algorithm takes as inputs the authority secret key
SKk , the current attribute version key vx̃k and the user’s global public keys GPKUj .
It generates a new attribute version key VK′

x̃k = v′
x̃k

. It first calculates the Attribute
Update Key as AUKx̃k = γk(v′

x̃k
− vx̃k ), then it applies this AUKx̃k to compute the

user’s Key Update Key
KUKj,x̃k = gujβk ·AUKx̃k

and the Ciphertext Update Key as

CUKx̃k = βk

γk
· AUKx̃k .

Then, the AAk updates the public attribute key of the revoked attribute x̃k as

PK′
x̃k = PKx̃k · gAUKx̃k

and broadcasts a message for all the owners that the public attribute key of the revoked
attribute x̃k is updated. Then, all the owners can get the new public attribute key for
the revoked attribute from the public board of AAk . It outputs both the user’s key
update key KUKj,x̃k (j ∈ SU , j �= μ, x̃k ∈ Sj,k) and the ciphertext update key CUKx̃k .

4.3.3.2 Secret Key Update by Non-Revoked Users

For each non-revoked user Uj(j ∈ SU , j �= μ) who has the attribute x̃k , the AAk sends
the corresponding user’s key update key KUKj,x̃k to it. Upon receiving the user’s key
update key KUKj,x̃k , the user Uj runs the key update algorithm SKUpdate to update
its secret key as

3 We use Non-revoked Users to denote the set of users who possess the revoked attribute but have
not been revoked.
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SK′
j,k = ( K ′

j,k = Kj,k, L′
j,k = Lj,k, R′

j,k = Rj,k,

K ′
j,x̃k

= Kj,x̃k · KUKj,x̃k , ∀x ∈ Su, x �= x̃ : K ′
j,k = Kj,k ).

Note that each KUKj,x̃k is associated with the uid, so that they are distinguishable for
different non-revoked users. Thus, the revoked user Uμ cannot use any other user’s
update keys to update its secret key.

4.3.3.3 Ciphertext Update by Cloud Server

The AAk sends a ciphertext update key CUKx̃k to the server. Upon receiving the
CUKx̃k , the server runs the ciphertext update algorithm CTUpdate to update all the
ciphertexts which are associated with the revoked attribute x̃k . It takes inputs as the
current ciphertext CT and the CUKx̃k . It only needs to update only a few components of
the ciphertext, which are associated with the revoked attribute x̃k . The new ciphertext
CT′ is published as

CT′ = ( C = κ · (
∏

k∈IA

e(g, g)αk )s, C′ = gs, C′′ = g
s

βk ,

∀i = 1 to l : if ρ(i) �= x̃k : Ci = gaλi · ((gvxk H(xk))
γk )−ri ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri
,

if ρ(i) = x̃k : C′
i = Ci · D

CUKx̃k
2,i ,

D1,i = g
ri
βk , D2,i = g

− γk
βk

ri
).

DAC-MACS requires to update only a few components which are associated with
the revoked attribute, while the other components are not changed. This can greatly
improve the efficiency of attribute revocation.

The ciphertext update not only can guarantee the backward security of the attribute
revocation, but also can reduce the storage overhead on the users (i.e., all the users
need to hold only the latest secret key, rather than to keep records on all the previous
secret keys).

4.4 Analysis of DAC-MACS

This section provides a comprehensive analysis of DAC-MACS, followed by security
and performance analysis.
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4.4.1 Comprehensive Analysis

Let |p| be the size of element in the groups with the prime order p. Let tc be the total
number of attributes in a ciphertext and tu be the total number of attributes of a user.
Let nu denote the number of users in the system. For the revoked attribute x, let nnon,x

be the number of non-revoked users who hold the revoked attribute and let nc,x be
the number of ciphertexts which contain the revoked attribute.

Table 4.1 shows the comparison among DAC-MACS and two existing schemes,
which are all based on the ciphertext re-encryption to achieve the attribute revocation.
From the table, we can see that DAC-MACS incurs less computation cost for the
decryption on the user and less communication cost for the revocation. In DAC-
MACS, the attribute revocation is controlled and enforced by each AA independently,
but the ciphertexts are updated by the semi-trusted server, which can greatly reduce
the workload on the owners. For the security of attribute revocation, DAC-MACS
can achieve both forward security and backward security. The cloud server in DAC-
MACS is required to be semi-trusted. Even if the cloud server is not semi-trusted in
some scenarios, the server will not update the ciphertexts correctly. In this situation,
the forward security cannot be guaranteed, but DAC-MACS can still achieve the
backward security.

4.4.2 Security Analysis

Under the security model defined in Sect. 4.2.3, we conclude the security analysis
into the following theorems:

Theorem 4.1 When the decisional q-parallel BDHE assumption holds, no polyno-
mial time adversary can selectively break DAC-MACS with a challenge matrix of
size l∗ × n∗, where n∗ < q.

Proof Suppose we have an adversary A with non-negligible advantage ε = AdvA

in the selective security game against the construction of DAC-MACS and suppose
it chooses a challenge matrix M∗ with the dimension at most q − 1 columns. In the
security game, the adversary can query any secret keys and update keys that cannot
be used for decryption in combination with any keys it can obtain from the corrupted
AAs. With these constraints, the security game in multi-authority systems can be
treated equally to the one in single authority systems. Therefore, we can build a
simulator B that plays the decisional q-parallel BDHE problem with non-negligible
advantage as follows.

Init. The simulator takes in the q-parallel BDHE challenge y, T . The adver-
sary gives the algorithm the challenge access structure (M∗, ρ∗), where M∗ has n∗
columns.

Setup. The simulator runs the CASetup and AASetup algorithm, and gives g to
the adversary. The adversary chooses a set of S′

A ⊂ SA of corrupted authorities,



4.4 Analysis of DAC-MACS 73

Ta
bl

e
4.

1
C

om
pr

eh
en

si
ve

co
m

pa
ri

so
n

of
C

P-
A

B
E

w
ith

at
tr

ib
ut

e
re

vo
ca

tio
n

sc
he

m
es

Sc
he

m
e

A
ut

ho
ri

ty
C

om
pu

ta
tio

n
R

ev
oc

at
io

n
R

ev
oc

at
io

n
se

cu
ri

ty
R

ev
oc

at
io

n
C

ip
he

rt
ex

t
E

nc
ry

pt
D

ec
ry

pt
a

m
es

sa
ge

(|p
|)

B
ac

kw
ar

d
Fo

rw
ar

d
co

nt
ro

lle
r

up
da

te
r

H
ur

’s
[1

1]
Si

ng
le

O
(t

c
+

lo
g

n u
)

O
(t

u
)

O
(n

no
n,

x
lo

g
n u

n n
on

,x
)

Y
es

Y
es

Se
rv

er
b

Se
rv

er
b

D
A

C
C

[2
2]

M
ul

tip
le

O
(t

c)
O

(t
u
)

O
(n

c,
x
·n

no
n,

x
)

Y
es

N
o

O
w

ne
r

O
w

ne
r

D
A

C
-M

A
C

S
M

ul
tip

le
O

(t
c)

O
(1

)
O

(n
no

n,
x
)

Y
es

Y
es

A
A

Se
rv

er
c

a T
he

de
cr

yp
tio

n
co

m
pu

ta
tio

n
on

th
e

us
er

;b
T

he
se

rv
er

is
fu

lly
tr

us
te

d;
c T

he
se

rv
er

is
se

m
i-

tr
us

te
d



74 4 DAC-MACS: Effective Data Access Control for Multi-Authority

and reveals these to the simulator. For each uncorrupted authority AAk(k ∈ SA −S′
A),

the simulator randomly chooses α′
k, βk, γk ∈ Zp(k ∈ SA − S′

A) and implicitly sets
αk = α′

k + aq+1 by letting

e(g, g)αk = e(ga, gaq
)e(g, g)α

′
k . (4.1)

Then, we describe how the simulator programs the random oracle H by building
a table. Consider a call to H(x), if H(x) was already defined in the table, then the
oracle returns the same answer as before. Otherwise, begin by choosing a random
value dx . Let X denote the set of indices i, such that ρ∗(i) = x. In other words, all
the row indices in the set X match the same attribute x. The simulator programs the
oracle as

H(x) = gdx
∏

i∈X

ga2M∗
i,1/bi · ga3M∗

i,2/bi · · · gan∗+1M∗
i,n/bi . (4.2)

Note that if X = ∅ then we have H(x) = gdx . Also note that the response from the
oracle are distributed randomly due to the gdx value.

The simulator also randomly chooses two numbers βk, γk ∈ Zp. Then, it generates
the public key of each uncorrupted authority AAk as

PKk =
(

e(g, g)αk , g
1
βk , g

γk
βk

)
.

The public attribute keys PKxk can be simulated by randomly choosing a version
number vxk ∈ Zp as

PKxk = (gvxk +dxk

∏

i∈X

ga2M∗
i,1/bi · ga3M∗

i,2/bi · · · gan+1M∗
i,n/bi)γk .

The simulator defined a user identity uid to the adversary. The simulator chooses
two random numbers u′

uid, zuid ∈ Zp. Then, it sets GSKuid = zuid and implicitly sets

uuid = u′
uid − aq

zuid
by setting

GPKuid = gu′
uid (gaq

)
− 1

zuid

The simulator then sends the global public/secret key pairs (GPKuid, GSKuid) to the
adversary.

Phase 1. In this phase, the simulator answers secret key queries and update key
queries from the adversary. Suppose the adversary makes secret key queries by
submitting pairs (uid, Sk) to the simulator, where Sk is a set of attributes belonging
to an uncorrupted authority AAk . Suppose Sk does not satisfy M∗ together with any
keys that can obtain from corrupted authorities.
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The simulator finds a vector w = (w1, w2, . . . , wn∗) ∈ Zn∗
p , such that w1 = −1

and for all i where ρ∗(i) ∈ Sk we have that w · M∗
i = 0. By the definition of a LSSS,

such a vector must exist, since Sk does not satisfy M∗.
The simulator then implicitly defines t by randomly choosing a number r ∈ Zp

as
tuid,k = r + w1aq−1 + w2aq−2 + · · · + wn∗aq−n∗

by setting

Luid,k = (g
βk

zuid )r
∏

i=1,...,n∗
(gaq−i

)
wi

βk
zuid .

The simulator then constructs Ruid,k as

Ruid,k = gar ·
∏

i=1,...,n∗
(gaq+1−i

)wi .

From the definition of guuid , we find that gauuid contains a term of gaq+1/zuid , which
will cancel out with the unknown term in gαk/zuid when creating Kuid,k . The simulator
can calculate

Kuid,k = g
α′

k
zuid gau′

uid g
ar
βk ·

∏

i=1,...,n∗
(gaq+1−i

)
wi
βk .

For the calculation of Kxk ,uid,k(∀xk ∈ Sk), if x is used in the access structure, the
simulator computes Kxk ,uid,Sk as follows.

Kuid,xk = (Luid,k)
γk · (PKxk )

βku′
uid · (gaq

)−βkγk(vxk +dxk )/zuid ·
∏

i∈X

∏

j=1,...,n∗

(
gaq+1+j/bi

)−βkγkM∗
i,j

If the attribute x ∈ SAID is not used in the access structure. That is there is no i
such that ρ∗(i) = x. For those attributes, we can let

Kuid,xk = (Luid,k)
γk · (GPKuid)βkγk(vxk +dxk ).

Towards update key queries, suppose the adversary submits pairs of {(uid, xk)}.
If the attribute xk has a new version number v′

xk
, and uid is an non-revoked users, it

then sends back the key update key as

KUKuid,xk = gujβkγk(v′
xk

−vxk )
.

Otherwise, it responses “⊥”.
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Challenge. In this phase, the simulator programs the challenge ciphertext. The
adversary gives two messages m0, m1 to the simulator. The simulator flips a coin b.
It creates

C = mbT ·
∏

k∈IA

e(gs, g
α′

AIDk )

and C′ = gs, C′′ = g
s

βk .
The difficult part is to simulate the Ci values since this contains terms that must

be canceled out. However, the simulator can choose the secret splitting, such that
these can be canceled out. Intuitively, the simulator will choose random y′

2, . . . , y′
n∗

and share the secret s using the vector

v = (s, sa + y′
2, sa2 + y′

3, . . . , san∗−1 + y′
n∗) ∈ Zn∗

p .

It also chooses random values r′
1, . . . , r′

l .
For i = 1, . . . , n∗, let Ri be the set of all k �= i such that ρ∗(i) = ρ∗(k). That is

the set of all other row indices that have the same attribute as row i. The challenge
ciphertext components can be generated as

D1,i =
(

gr′
i gsbi

) 1
βk , D2,i =

(
gr′

i gsbi
)−γk

βk .

From the vector v, we can construct the share of the secret as

λi = s · M∗
i,1 +

∑

j=2,...,n∗
(saj−1 + y′

j)M
∗
i,j

Then, we can simulate the Ci as

Ci = (
gvρ∗(i) · H(ρ∗(i))

)γkr′
i ·

⎛

⎝
∏

j=1,...,n∗
gaMi,jyj

⎞

⎠ ·

(
gbis

)−γk(vρ∗(i)+dρ∗(i)) ·
⎛

⎝
∏

k∈Ri

∏

j=1,...,n∗
(gajs(bi/bk))

γkM∗
k,j

⎞

⎠ .

Phase 2. Same as Phase 1.
Guess. The adversary will eventually output a guess b′ of b. If b′ = b, the simulator

then outputs 0 to show that T = e(g, g)aq+1s; otherwise, it outputs 1 to indicate that
it believes T is a random group element in GT .

When T is a tuple, the simulator B gives a perfect simulation so we have that
Pr[B(y, T = e(g, g)aq+1s) = 0] = 1

2 + AdvA. When T is a random group ele-
ment the message mb is completely hidden from the adversary and we have at
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Pr[B(y, T = e(g, g)aq+1s) = 0] = 1
2 . Therefore, B can play the decisional q-parallel

BDHE game with non-negligible advantage. �

Theorem 4.2 DAC-MACS is secure against the collusion attack.

Proof In DAC-MACS, each user in the system is assigned with a global unique
identity uid, and all the secret keys issued to the same user from different AAys are
associated with the uid of this user. Thus, it is impossible for two or more users to
collude and decrypt the ciphertext. Moreover, due to the unique aid of each AA, all the
attributes are distinguishable, even though some AAs may issue the same attribute.
This can prevent the user from replacing the components of a secret key issued by
an AA with those components from other secret keys issued by another AA. �

Privacy-Preserving Guarantee Due to the decryption outsourcing, the server can
get the users’ secret keys. However, the server still cannot decrypt the ciphertext
without the knowledge of the users’ global secret keys. Moreover, the ciphertext
update is done by using the proxy re-encryption method, thus the server does not
need to decrypt the ciphertext.

4.4.3 Performance Analysis

We conduct the performance analysis between DAC-MACS and Ruj’s DACC under
the metrics of Storage Overhead, Communication Cost and Computation Cost.

4.4.3.1 Storage Overhead

The storage overhead is one of the most significant issues of the access control
scheme in cloud storage systems. Suppose there are NA AAs in the system. Let |p|
be the element size in the G,GT ,Zp. Let na,k and na,k,uid denote the total number
of attributes managed by AAk and the number of attributes assigned to the user with
uid from AAk respectively. We compare the storage overhead on each entity in the
system, as shown in Table 4.2.

In DAC-MACS, the storage overhead on each AAk consists of the version number
of each attribute and the authority secret key. From Table 4.2, we can see that DAC-
MACS incurs less storage overhead on each AAk than Ruj’s DACC, which consists
of the secret keys for all the attributes. The public parameters contribute the main
storage overhead on the owner. Besides, Ruj’s DACC also requires the owner to
hold the encryption secret for every ciphertext in the system, because the owner is
required to re-encrypt the ciphertexts. This incurs a heavy storage overhead on the
owner, especially when the number of ciphertext is large in cloud storage systems.
The storage overhead on each user in DAC-MACS comes from the global secret
key issued by the CA and the secret keys issued by all the AAs. However, in Ruj’s
DACC, the storage overhead on each user consists of both the secret keys issued by
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Table 4.2 Comparison of storage overhead

Entity Ruj’s DACC [22] DAC-MACS

AAk 2na,k |p| (na,k + 3)|p|
Owner (nc + 2

∑NA
k=1 na,k)|p| (3NA + 1 + ∑NA

k=1 na,k)|p|
User (nc,x + ∑NA

k=1 na,k,uid)|p| (3NA + 1 + ∑NA
k=1 na,k,uid)|p|

Server (3tc + 1)|p| (3tc + 3)|p|
nc total number of ciphertexts on the cloud server
nc,x number of ciphertexts contains x
tc total number of attributes in the ciphertext

all the AAs and the ciphertext components that associated with the revoked attribute,
because when the ciphertext is re-encrypted, some of its components related to the
revoked attributes should be sent to each non-revoked user who holds the revoked
attributes. The ciphertexts contribute the main storage overhead on the server (here
we do not consider the encrypted data which are encrypted by symmetric content
keys).

4.4.3.2 Communication Cost

The communication cost of the general access control is almost the same between
DAC-MACS and Ruj’s DACC. Here, we only compare the communication cost of
attribute revocation, as shown in Table 4.3. It is easily to find that the communication
cost of attribute revocation in Ruj’s scheme is linear to the number of ciphertexts
which contain the revoked attributes. Due to the large number of ciphertext in cloud
storage system, Ruj’s scheme incurs a heavy communication cost for attribute revo-
cation.

4.4.3.3 Computation Cost

The computation time of encryption, decryption and ciphertext re-encryption/update
are evaluated by simulating both DAC-MACS and Ruj’s DACC. The simulations
are conducted on a Linux system with an Intel Core 2 Duo CPU at 3.16 GHz and
4.00 GB RAM. The code uses the Pairing-Based Cryptography library version 0.5.12

Table 4.3 Comparison of communication cost for attribute revocation

Operation Ruj’s DACC [22] DAC-MACS

Key update N/A nnon,x|p|
Ciphertext update (nc,x · nnon,x + 1)|p| |p|
nnon,x number of non-revoked users who hold x
nc,x number of ciphertexts which contain x
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to simulate the access control schemes. The symmetric elliptic curve α-curve is used
in the simulation, where the base field size is 512-bit and the embedding degree is
2. The α-curve has a 160-bit group order, which means p is a 160-bit length prime.
All the simulation results are the mean of 20 trials.

We compare the computation efficiency of both encryption and decryption in
two criteria: the number of authorities and the number of attributes per authority, as
shown in Fig. 4.2. Figure 4.2a describes the comparison of encryption time on the
owner versus the number of AAs, where the involved number of attributes from each
AA is set to be 10. Figure 4.2b gives the comparison of encryption time on the owner
versus the number of attributes from each AA, where the involved number of AAs
is set to be 10. Suppose the user has the same number of attributes from each AA.
Figure 4.2c shows the comparison of decryption time on the user versus the number
of AAs, where the number of attributes the user holds from each AA is set to be
10. Figure 4.2d describes the comparison of decryption time on the user versus the
number of attributes the user holds from each AA, where the number of authority
for the user is fixed to be 10. Figure 4.2e gives the comparison of ciphertext re-
encryption/update versus the number of revoked attributes appeared in the ciphertext.

The simulation results show that DAC-MACS incurs less computation cost on the
encryption of owners, the decryption of users and the re-encryption of ciphertexts.

4.5 Related Work

Cryptographic techniques are well applied to access control for remote storage sys-
tems [7, 13, 20]. To prevent the untrusted servers from accessing sensitive data,
traditional methods [1, 6] usually encrypt the data and only the users who hold
valid keys can decrypt and access the data. Then, the data access control becomes
the matter of key distribution. These methods require complicated key management
schemes and the data owners have to stay online all the time to deliver the keys to
new user in the system. Moreover, these methods incur high storage overhead on the
server, because the server should store multiple encrypted copies of the same data
for users with different keys. Some methods [5, 24] deliver the key management and
distribution from the data owners to the remote server under the assumption that the
server is trusted. However, the server is not fully trusted in cloud storage systems
and thus these methods cannot be applied to data access control for cloud storage
systems.

Attribute-based Encryption (ABE) is a promising technique that is designed for
access control of encrypted data. After Sahai and Waters introduced the first ABE
scheme [23], Goyal et al. [9] formulated the ABE into two complimentary forms:
Key-Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE). There are a
number of works used ABE to realize fine-grained access control for outsourced data
[12, 26, 11]. These schemes require a trusted authority to manage all the attributes
in the system and issue secret keys to users. Since the authority can decrypt all the
encrypted data, it becomes a vulnerable security point and the performance bottleneck
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(a) (b)

(d)(c)

(e)

Fig. 4.2 Comparison of encryption, decryption and ciphertext re-encryption/update time.
a Encryption. b Encryption. c Decryption. d Decryption. e Re-encryption/update.

of the system. Moreover, the authority may become the performance bottleneck
in the large scale cloud storage systems. In multi-authority cloud storage systems,
there are multiple authorities coexist and the users may have attributes from multiple
authorities. Existing CP-ABE schemes with single authority are no longer applicable,
because no authority is able to verify attributes across different organizations and to
issue secret keys to all the users in the system.
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Some cryptographic methods are proposed for the multi-authority ABE problem
[3, 4, 15, 16, 18, 19], where there are multiple authorities coexist and the users may
have attributes from multiple authorities. However, some of them [3, 19] require a
global authority, which would be a vulnerable point for security attacks and a per-
formance bottleneck for large scale systems. In [4], the authors remove the central
authority by using a distributed PRF (pseudo-random function) but it only support
strict “AND” policy of pre-determined authorities. Lin et al. [18] proposed a decen-
tralized scheme based on threshold mechanism. In this scheme, the set of authorities
is pre-determined and it requires the interaction among the authorities during the
system setup. In [15], Lewko et al. proposed a new comprehensive scheme, which
does not require any central authority. It is secure against any collusion attacks and
it can process the access policy expressed in any Boolean formula over attributes.
However, their method is constructed in composite order bilinear groups that incurs
heavy computation cost. They also proposed a multi-authority CP-ABE scheme con-
structed in prime order group, but they did not consider attribute revocation problem.

There are a number of works about the revocation in ABE systems in the cryptog-
raphy literature [2, 8, 14, 21, 25]. However, these methods either only support the
user level revocation or rely on the server to conduct the attribute revocation. More-
over, these attribute revocation methods are designed only for ABE systems with
single authority. Ruj et al. [22] designed a DACC scheme and proposed an attribute
revocation method for the Lewko and Waters’ decentralized ABE scheme. However,
their attribute revocation method incurs a heavy communication cost since it requires
the data owner to transmit a new ciphertext component to every non-revoked user.
Li et al. [17] proposed an attribute revocation method for multi-authority ABE sys-
tems, but their methods is only for KP-ABE systems.

Green et al. [10] proposed two ABE schemes that outsource the decryption to
the server. In their schemes, the authority separate the traditional secret key into a
user secret key and a transformation key. However, their schemes are designed only
for the single authority systems and do not support for the multi-authority systems.
That is because each authority may generate different user’s secret key, such that the
transformation keys cannot be combined together to transform the ciphertext into a
correct intermediate value.

4.6 Conclusion

In this chapter, we described an effective data access control scheme for multi-
authority cloud storage systems, DAC-MACS. We also described a new multi-
authority CP-ABE scheme, in which the main computation of decryption is out-
sourced to the server. We further presented an efficient attribute revocation method
that can achieve both forward security and backward security. The attribute revocation
methods incur less communication cost and less computation cost of the revocation,
where only those components associated with the revoked attribute in secret keys
and ciphertexts need to be updated.
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