
Introducing
Web
Development

—
Jörg Krause

Introducing Web
Development

Jörg Krause

Introducing Web Development

Jörg Krause						
Berlin, Germany						

ISBN-13 (pbk): 978-1-4842-2498-4		 ISBN-13 (electronic): 978-1-4842-2499-1
DOI 10.1007/978-1-4842-2499-1

Library of Congress Control Number: 2016961532

Copyright © 2016 by Jörg Krause

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are
brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for
the purpose of being entered and executed on a computer system, for exclusive use by the purchaser
of the work. Duplication of this publication or parts thereof is permitted only under the provisions
of the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, and
images only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility
for any errors or omissions that may be made. The publisher makes no warranty, express or implied,
with respect to the material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,

Jonathan Gennick, Todd Green, Celestin Suresh John, Nikhil Karkal, Robert Hutchinson,
James Markham, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Nancy Chen
Copy Editor: Kezia Endsley
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global, image courtesy of Freepik.

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
http://www.apress.com/
http://www.apress.com/source-code/

iii

Contents at a Glance

About the Author��� ix

Introduction��� xi

■■Chapter 1: Protocols of the Web�� 1

■■Chapter 2: Dynamic Web Sites�� 27

■■Chapter 3: HTML: Hypertext Markup Language����������������������������� 39

■■Chapter 4: CSS: Cascading Style Sheets��������������������������������������� 65

Index��� 87

v

Contents

About the Author��� ix

Introduction��� xi

■■Chapter 1: Protocols of the Web�� 1

Standardization with RFCs��� 1

The OSI Reference Model��� 2

The Internet Protocol Family�� 3

Important Protocols of the Internet Protocol Suite�� 4

Address Resolution Protocol (ARP)�� 5

Internet Control Messaging Protocol (ICMP)�� 5

Internet Protocol (IP)�� 6

Transmission Control Protocol (TCP)�� 9

User Datagram Protocol (UDP)��� 10

Session Initiation Protocol (SIP)��� 11

The High-Level Language Protocols��� 11

File Transfer Protocol (FTP)�� 11

Network News Transfer Protocol (NNTP)��� 11

Simple Mail Transfer Protocol (SMTP)/Extended SMTP (ESMTP)����������������������������� 12

Hypertext Transfer Protocol (HTTP)�� 12

HTTP 2.0�� 16

Supplemental Standards��� 17

﻿ ■ Contents

vi

REST��� 18

Features��� 18

REST Example�� 20

URI��� 20

HTTP�� 22

MIME�� 23

JSON�� 24

The ATOM Format�� 25

■■Chapter 2: Dynamic Web Sites�� 27

How Dynamic Web Sites Are Created��� 27

Optimization��� 28

Tools�� 28

Server Page Optimization�� 30

General and Banal��� 35

Client-Site Optimization��� 35

■■Chapter 3: HTML: Hypertext Markup Language����������������������������� 39

Basics of HTML��� 39

The History of HTML�� 39

XML Basics for HTML��� 40

Markup�� 41

Structure and Features of an XML Document�� 41

Processing��� 42

The Term “Markup”��� 42

Site Structure��� 45

The Doctype��� 46

Codings�� 46

HTML5 Site Structure�� 47

﻿ ■ Contents

vii

Elements of the Page��� 51

Text Elements�� 51

Text Flow��� 54

References�� 54

Tables�� 55

Multimedia and Graphics��� 55

Forms�� 56

Scripts��� 57

Interactive Elements�� 57

General and Universal Attributes�� 57

The id Attribute�� 58

The class Attribute��� 58

The accesskey Attribute�� 59

The contenteditable Attribute�� 59

The contextmenu Attribute�� 60

The dir Attribute��� 60

The draggable Attribute��� 61

The dropzone Attribute�� 61

The hidden Attribute�� 61

The lang Attribute�� 61

The spellcheck Attribute�� 62

The style Attribute��� 62

The tabindex Attribute��� 62

The title Attribute��� 62

■■Chapter 4: CSS: Cascading Style Sheets��������������������������������������� 65

CSS Basics��� 66

CSS Syntax��� 66

The Selector Component��� 67

﻿ ■ Contents

viii

The Box Model�� 72

Components of the Box��� 73

The Box Model in CSS3��� 73

Attention of Media�� 74

Syntax�� 74

Parameters�� 77

The Viewport�� 81

Viewport Configuration�� 81

Viewport Configuration�� 83

CSS Units�� 83

Absolute Units�� 84

Relative Units��� 85

Index��� 87

ix

About the Author

Jörg Krause has been working with software and
software technology since the early 1980s, beginning
with a ZX 81 and taking his first steps as a programmer
in BASIC and Assembly. He studied Information
Technology at Humboldt University, Berlin, but
left early, in the 90s, to start his own company. He
has worked with Internet technology and software
development since the early days when CompuServe
and FidoNet dominated. He’s been with Microsoft
technologies and software since Windows 95.

In 1998, he worked on one of the first commercial
e-commerce solutions, and wrote his first book
in Germany, E-Commerce and Online Marketing,
published by Carl Hanser Verlag, Munich. Due to
its wide success, he started working as a freelance

consultant and author in order to share his experience and knowledge with others.
He has written several books for Apress, Hanser, Addison-Wesley, and other major
publishers along with several self-published books—a total of over 60 titles. He also
publishes articles in magazines and speaks at major conferences in Germany. Currently,
Jörg works as an independent consultant, software developer, and author in Berlin.

In his occasional spare time, Jörg enjoys reading thrillers and science fiction novels
and going on a round of golf.

xi

Introduction

The Foundation of Web Development
The book describes the basic techniques, protocols, and standards of the web:

•	 The underlying protocols such as HTTP

•	 HTML, currently in version HTML5

•	 CSS, currently in version CSS3

This is a base, independent of platform and environment. With this foundation, you
can adapt all the sources on the Internet and read all the documentations you’ll need to
learn programming the Web.

Who Should Read this Book?
This book is aimed at beginners and web developers who are new to the web world.

In any case, I tried not to ask for prerequisites or conditions of the reader. You do not
need to be a computer scientist, nor in perfect command of a language, and you don’t
need to know rocket science. No matter in what context you have encountered Jade, you
will be able to read this text.

What You Should Know
Readers of this series have hardly any requirements. A current operating system is always
a good idea. Use either Linux or Windows; it really doesn’t matter as long as you install a
program and run it. You should have your favorite browser handy. An editor is helpful for
some examples, such as Visual Studio Code or Sublime Text. Both work on all operating
systems.

How to Read this Book
I will not dictate how you should read this book. In the first draft of the structure, I tried
several variations and found that there exists no ideal form. However, readers today tend
to consume smaller chunks, independent chapters, and focused content. This book
meets this trend by reducing it to a small issue, focused, and with no “blah-blah” for the
inflation of the volume.

﻿ ■ Introduction

xii

Beginners should read the text as a narrative from the first to the last page. Those
who are already somewhat familiar can safely skip certain sections.

Conventions Used in the Book
Because scripts are often extensive and are hard to read when they’re put down on paper
(it would be nice if you could support the best optical reading form), I included extra line
breaks used to aid readability. Just keep in mind that they have no place in the editor of
their development environment.

In general, each program code is set to a non-proportional font. In addition, scripts
have line numbers:

1 body {
2 color: black;
3 }

If you find you need to enter something in the prompt or in a dialog box, that part of
the statement is in bold:

$ bower install bootstrap
The first character is the prompt and is not entered. I use the Linux prompt and the bash
shell. The commands will work, without any exception, unchanged, even on Windows.
The only difference then is the command prompt C:> or something similar is shown at
the beginning of the line instead of the $. The instructions are usually related to relative
paths or no paths at all, so the actual prompt shouldn’t matter despite the fact that you
are in your working folder.

Expressions and command lines are sometimes peppered with all types of
characters, and in almost all cases, it depends on each character. Often, I’ll discuss
the use of certain characters in precisely such an expression. Then the “important”
characters with line breaks alone and also in this case, line numbers are used to reference
the affected symbol in the text exactly (note the : character in line 2):

1 a.test {
2 :hover {
3 color: red
4 }
5 }
6

The font is non-proportional, so that the characters are countable and opening and
closing parentheses are always on their own lines.

﻿ ■ Introduction

xiii

Symbols
To facilitate readability, there is a whole range of symbols that are used in the text.

 Tip T his is a tip.

 Information T his is extra information.

 Warning T his is a warning.

1© Jörg Krause 2016
J. Krause, Introducing Web Development, DOI 10.1007/978-1-4842-2499-1_1

CHAPTER 1

Protocols of the Web

This chapter offers a very compact overview of protocols, which you should know if you
want to develop web applications actively. The information in this chapter is roughly
divided into the following sections:

•	 The OSI reference model

•	 The internet protocols family, with TCP/IP and DNS

•	 The Hypertext Transfer Protocol (HTTP)

•	 Representational State Transfer (REST)

Standardization with RFCs
If you occupy yourself with protocols or technical procedures of the Internet, you’ll
always be confronted by RFCs (Request For Comments). The RFCs serve as a public panel
for technical and organizational related to the Internet. They were brought to existence in
1969 with ARPANET. RFC 0001 was published on April 7, 1969, during the development of
the ARPANET.

RFCs are sequentially numbered can go through different stages. There are no
version numbers. If an RFC is comprehensively developed further, a new document with
a new number appears. The old is marked as obsolete. If standards are adopted from the
RFCs, then these appear in a second document form, which is characterized by an STD.
The connection between RFCs and STDs is described in RFC 2500. The standardization
process is described in RFC 2026.

As good source of information for RFCs is found at www.rfc-editor.org.1

1http://www.rfc-editor.org

http://www.rfc-editor.org/
http://www.rfc-editor.org/

Chapter 1 ■ Protocols of the Web

2

Here you can comfortably browse the RFC and STD database. If you want to look in
greater depth for various information about ICMP or DNS, enter these into the search
box, as shown in Figure 1-1.

 The study of RFCS can be quite amusing with the publication date of the first of April

of and the status INFORMATIONAL. RFC 2550 is recommended here, in which the year
10.000 problem is discussed.

The OSI Reference Model
For the development and evaluation of communication processes in the IT world, the
ISO/OSI reference model is frequently referred to. This model was adopted in 1984 by
the ISO (International Organization for Standardization) and describes all the substantial
processes during the IP supported data transfer over a layer model. ISO/OSI stands for

Figure 1-1.  A good source of information is the RFC editor

Chapter 1 ■ Protocols of the Web

3

Reference Model for Open Systems Interconnection of the International Organization for
Standardization.

Table 1-1 shows the seven layers of the ISO/OSI reference model and their meanings.

Table 1-1.  Layers of the ISO/OSI Reference Model

Nr. Designation Task and/or Applications of Examples

7 Application user interface Program interface

6 Representation Coding and decoding

5 Meeting communication control

4 Structure of transport of connections Data transfer

3 Switching Addressing and routing of packets

2 Backup, Logical Link Control MAC
(Media Access Control)

Control functions, data fragmentation

1 Bit transfer Physical network transport
(cable, radio, etc.)

In the case of a transmission method developed exactly according to this model,
one component and/or network protocol works on each level. Between two computer
systems, all layers will then go through each case. The actual data exchange takes place
finally only over layer 1, for example the network cable. The individual layers within a
partner communicate thereby only in each case directly over or under neighbors through
protocols and technical components. Thus the higher layers are independent of the
process, which takes place further down. Whether layer 1 is technically implemented over
a copper or an optical waveguide cable is irrelevant to the protocol layer, which controls
the packets to dispatch.

The ISO/OSI reference model is a little theoretical and is in practice rarely
consistently converted. The best example of it is at most common network protocols—TCP
and IP. The development of these protocols is older than the reference model, so that
the so-called Internet protocol family lets itself be only partly illustrated. The motivation
for developing its own standardization layer was to simplify and thus decrease the
implementation expenditure.

The Internet Protocol Family
The Internet protocol family (Internet Protocol Suite, IPS) can be divided into four
layers, which are structured similarly to the reference model. Starting at layer 2, different
protocols take over other specific ones in each case. These will be more specifically
introduced in the following sections.

Chapter 1 ■ Protocols of the Web

4

Important Protocols of the Internet Protocol Suite
In the following discussion, the most important protocols of the IPS are presented. The
sequence corresponds to the IPS 4 layer model (see Figure 1-2).

Figure 1-2.  Internet protocol family in comparison to the ISO/OSI reference model

Chapter 1 ■ Protocols of the Web

5

In Figure 1-2, you can once again see the most important protocols being
represented and their classification into the TCP/IP layer model, as well as into the OSI
layer model.

The ARP protocols have a special role. Since this is purely technically over the
DLCMAC (Ethernet), but doesn’t belong to layer 3, it is also sometimes called the 2,5
layer of a protocol.

Address Resolution Protocol (ARP)
This protocol, which works at a very elementary level, allocates the IP addresses of the
network adapters of the communication participants. MAC stands for Media Access
Control. MAC addresses are always worldwide clear, so that a mistake can be excluded
from the participants. However, there is a network adapter that permits entering a user-
defined MAC address.

The information in the MAC addresses of network computers involved is held in
Windows (Server), as with other operating systems in an ARP cache. Thus these do not
have to be determined again. You can display the ARP cache with the command prompt
** arp ** (Linux and Windows use the same command) and the option -a.

$ arp -a

If you installed several network adapters in your computer system, you can query the
ARP cache for a certain adapter by indicating its IP address:

$ arp –a 192.168.100.6

It’s possible to adapt which and how long data is being held in this cache. This is rarely
necessary in practice. You can find a more exact description of the syntax ** arp ** and
the program with the online help for Windows Server, or on the appropriate main page.

Internet Control Messaging Protocol (ICMP)
This protocol transports the diagnostic, control, and routing packets in the network. It’s
located on the same layer as IP (Internet Protocol), which is layer 2. ICMP is used for example
by the utility program ** ping** in order to inquire information from a host. See Figure 1-3.

Chapter 1 ■ Protocols of the Web

6

Figure 1-3.  Ping on a server (Windows command prompt))

The server in Figure 1-3 is not a fake address. It concerns the DNA server of Google
(google-public-dns-a.google.com).

Internet Protocol (IP)
IP transports the utilizable data in the network. Protocols are characterized by the
following features:

•	 IP addressing: Each network can be reached by a clear address,
the IP address. Subnet masks create partitions between the
subnet work and the concrete host address.

•	 No error correction: The data can be transported over the IP, yet
there won’t be an error correction.

•	 IP fragmentation: If necessary, packets can be divided over IP into
smaller units, especially if the network devices involved are limited.

•	 IP broadcast: Data packets can be sent with IP to a completely
determined host, as its IP address is used. This is called Unicast.
Via an appropriate addressing, several hosts at once can be
addressed. This is designated with multicast and used when not
meeting-orient data are exchanged, for example, UDP or ICMP
data packets. This way, a UDP (multimedia) data stream can be
sent to several receivers at the same time.

•	 IP routing: IP is a protocol with the ability of routing. This means
that the IP data stream can be led purposefully over an IP router
from separate subnetworks to each other.

Chapter 1 ■ Protocols of the Web

7

Figure 1-4.  IP header

•	 TOS

Apart from the version, the length of the IP head (IP Header
Length—IHL) and the type of service are indicated. This way
devices can prioritize the basic traffic of the data (Type of
Service—TOS—is a way of prioritization).

•	 Fragmentation

The entire package length as well as the fields’ identification (it
helps with the recognition of fragments), flags (gives information
whether the package is fragmented), and FragmentationOffset
for building fragmented packages will be indicated.

•	 Addresses

The most important two fields represent the source (source)
as well as the goal (destination) of the address. Here, the IP
address is put down byte by byte as a 32-bit (4 bytes) value.

•	 Options and Protocol

The fields become options (information for the router), time
to live (number of switching centers over which a package is
conveyed), protocol (which protocol in the IP packages,
TCP = 6 or UDP = 17), and a checksum, in order to recognize
errors in the head.

Since IP belongs to more important protocols in the Web, we should also focus on
the exact composition of the head (header), as shown in Figure 1-4.

Chapter 1 ■ Protocols of the Web

8

Figure 1-5.  IP fragmentation

•	 MTU

The maximum IP package size is named Maximum
Transmission Unit (MTU). If the package size is smaller
or equal to the MTU, the package must not be divided but
fragmented. Fragmented IP packages are characterized as a
Flag and built up by an appropriate number in the system.
However, IP fragmentation holds a potential security risk.
Skillful hackers can, for example, create IP fragments in such
a way so that the system crashes while it’s loading. Therefore,
IP fragments are rejected by modern firewalls and are usually
avoided by the procedure Path MTU Discovery. The systems
involved negotiate the MTU size among themselves.

 No Error Correction A n error correction is not intended in the IP. This must be

made by protocols, which has a layer over it. This is for example the Transmission Control
Protocol (TCP). TCP packets “are packed” in addition into IP packages. The TCP packages
are then examined. If there are errors, the data can be requested again. For this reason, IP
can be associated with a transport protocol, even though TCP is a better security protocol. 

Chapter 1 ■ Protocols of the Web

9

IPV6 versus V4
The IP protocol may have been specified in version 6 for a long time; however, it takes a
while to get started. That may be partially because of the providers and partially because of
the manufacturers of the IP equipment. For this reason, IPv4 is still used predominately.

Transmission Control Protocol (TCP)
TCP is a layer above IP and includes an effective mechanism for error correction.
Apart from numbering of the data packets, checksums are generated, which check and
guarantee the integrity of the data. If an error is recognized, the defective packets are
requested; the same happens for packages that weren’t loaded at a certain time. That data
will be requested again as well.

Since each line has different qualitative features, TCP can adapt the parameters, as
to when a package has to be repeated, dynamically. This way, optimal performance is
always guaranteed.

Figure 1-6.  TCP header

•	 Sequence Number

The Sequence Number is a sequential number that marks a
package in the data stream. That way, packages that arrive in
the wrong order can be sorted properly.

•	 Acknowledge Number

The Acknowledge Number is used to communicate with the
receiving station about how many data packages successfully
arrived. This way, a new transmission can be released indirectly,
if for example it only got approved up to the second-to-last
package. The transmitter waits to see whether the packages will
be confirmed a bit later than usual (a timeout). If that is not the
case, all packages are usually transferred again, starting from the
package that wasn’t received.

Chapter 1 ■ Protocols of the Web

10

•	 Window

Window is the amount of the data octet (bytes), beginning at
the data octet indicated by the Acknowledgement field, which
the transmitter of this TCP is ready to receive.

Port
In addition to the IP source and destination addresses, TCP uses so-called port numbers.
These numbers, combined with the IP addresses, produce a clear connection. Each
service gets a port assigned, which receives detailed connections. Since many unified
services use the same port, a lot of ports are often named after respective services. Here
are a few examples:

•	 Port 23: Telnet

•	 Port 80: HTTP-Standard

•	 Port 21: FTP

Data Stream
TCP is a data stream protocol (stream-oriented), also sometimes called a connection-
oriented protocol. That means that individual packets are sent but the connection is
established before the data transfer is established. This is quite the opposite of UDP.

From here on, we don’t discuss other fields, since there are so many that you could
fill a whole book with them. TCP protocols are the most common of this layer and are
used to transfer data between two hosts.

User Datagram Protocol (UDP)
This protocol is related to TC. However, it has different parameters and serves other
purposes. For one, no error connection is implemented. This is not necessary for all
kinds of data transfers. Multimedia streams are, for example, usually transferred with
UDP, since it depends particularly on high performance. If moving pictures miss a few
frames, it won’t necessarily be that important. Then that information will transfer, thus
the contents of the film is more important when it arrives at the receiver. Continuous
stagnation during the transmission, because of incorrect or incomplete data, may disturb
your process.

Multimedia and VoIP
UDP is used according to the standard for the inquiry of DNS information. Here protocols
have a high performance advantage at the numerous small packets, which constantly
reach a DNS server. Further applications of this protocol are routing protocols, such as
RIP (Routing Information Protocol), TFTP (Trivial File Transfer Protocol), and SNMP

Chapter 1 ■ Protocols of the Web

11

(Simple Network Management Protocol). In addition, UDP is used with multimedia and
other streaming applications like VoIP.

Pay attention, because UDP isn’t necessarily the safest protocol due to its missing
flow control and error correction. Therefore it is a popular protocol for hackers who use
Denial of Service (DoS) attacks again and again. Hosts are flooded with an enormous
amount of UD packages, which leads to excessive demand and thus the occasional
interruptions in service.

Session Initiation Protocol (SIP)
VoIP (voice over IP) continues to increase in meaning. Even if this book isn’t about
multimedia and telephony, this protocol enumerates that the most important Internet
protocols should not be missing. As the name expresses, this protocol is used for the
setting up and communicating sessions for all kinds of uses. You can find further
information in the RFC 3261.

The High-Level Language Protocols
High-level language protocols work on layer 7 of the reference model and/or layer 4 of
the IPS. They are text-based and usually convey simple commands. For working with
web applications, the Hypertext Transfer Protocol (HTTP) is without exception the
most important. Aside from that, the File Transfer Protocol (FTP), the Network Transfer
Protocol (NNTP), and the Simple Mail Transfer Protocol (SMTP) are all very important as
well. Each of these is covered in the following overview.

File Transfer Protocol (FTP)
Besides HTTP, this protocol is the most important for the daily use of the Internet. It
serves the data exchange between an FTP server and client, whereby the client can
receive access to the file system of the server in a very defined way.

To access an FTP server, all modern operating systems offer different kinds of clients.
In addition, there are many FTP clients.

Network News Transfer Protocol (NNTP)
This protocol serves the interaction between so-called news servers and appropriate
clients. It is historically seen one of the oldest protocols, and was used far before the
introduction of the internet. Protocols work, different than HTTP, statusless, and
lead a message to a pointer. For communication with a news server, you must have a
registration.

This protocol is now considered outdated. Newsgroups are increasingly replaced by
web-based forums, which offer more creative leeway.

Chapter 1 ■ Protocols of the Web

12

Simple Mail Transfer Protocol (SMTP)/Extended SMTP
(ESMTP)
SMTP is used by client systems and mail servers for dispatching, as well as sending and
passing, e-mails. In the meantime, the ESMTP standard became generally accepted. This
is specified in RFC 2821 and offers advanced features for the communication between
SMTP client and servers.

Like many other protocols in the Web environment, this protocol is based on ASCII
text. All news, which is sent by the client to the server, can be interpreted by both humans
and the software.

Hypertext Transfer Protocol (HTTP)
In this section, you learn about HTTP, which plays an outstanding role in web server
programming. HTTP serves the communication between web servers. There are three
main versions—1.0 (1996, RFC 1945), 1.1 (1999, RFC 2616), and 2.0 (2015, RFC 7540).
Most browsers use HTTP 1.1., and some newer browsers (Chrome, Edge) use HTTP
2.0. The version 2.0. is in its introduction phase. In addition, it comes with a set of
substandards that are partly implicitly used:

•	 RFC 7541: Header Compression (2, 2015)

•	 RFC 7230: Message Syntax and Routing (1.1, 2014)

•	 RFC 7231: Semantics and Content (1.1, 2014)

•	 RFC 7232: Conditional Requests (1.1, 2014)

•	 RFC 7233: Range Requests (1.1, 2014)

•	 RFC 7234: Caching (1.1, 2014)

•	 RFC 7235: Authentication (1.1, 2014)

When it comes to HTTP, it’s about connecting or statusless protocols. The server and
the client thus never get into special conditions, but terminate the process completely
after each command, either with success or with an error message. It is incumbent on the
communication partner to react to the message in the appropriate way.

Protocol Construction: Header, Body
HTTP commands are transferred as ASCII text and can consist on several lines. The
first line is always the command line. Attached to it is the message header (heading).
The heading contains head fields, which describe the command more closely. So it can
contain the Content Length head field, for example. If there’s any value larger than 0, the
data will go into the heading. The data is sent to the message, thus directly together with
the command, which might be the Body in that case (message body). HTTP can handle
8-bit values, contrary to other protocols. Binary data, like images and sounds, do not have
to be converted. If two blank lines (line changes) follow the HTTP command and the
heading lines, the command is considered terminated. Commands with a message body
do not have a special ending character. The Content Length head field determines how
many bytes make up the contents of the message.

Chapter 1 ■ Protocols of the Web

13

Command Structure
An HTTP command always has the following structure:

1 METHOD ID VERSION

The command itself is called the METHOD.

 Method or Verb?  In literature, the HTTP method is sometimes called a verb.

However, the term verb does not appear in the RFCs and standardization documents. The
use of the verb designation comes from classes and data, like https://technet.
microsoft.com/dede/library/dd569062.aspx, whereby Microsoft methods are called
HTTP-Verbs.

Table 1-2 shows the most important HTTP methods at a glance.

Table 1-2.  HTTP Methods

Method Meaning

CONNECT Start the connection to the TLS resources

DELETE Delete the resource (see REST)

GET Request the resource

HEAD Request headers of the resources

LINK Link two resource requests

OPTIONS Inquire about the web server’s features

POST Send form data to a server process

PUT Place resources on the web server (see REST)

TRACE Send back the command

UNLINK Delete the link between resources

Consider that the method must be written in capital letters, as shown in Table 1-2.
All objects that transfer data are called resources—primarily this includes HTML files
and images.

https://technet.microsoft.com/dede/library/dd569062.aspx
https://technet.microsoft.com/dede/library/dd569062.aspx

Chapter 1 ■ Protocols of the Web

14

The status code is a three-digit number, and the first number (hundred) shows the
allocation to a certain group.

1 GET index.html HTTP/1.0

This command requests the file index.html.

The HTTP Status Codes
The answer to a command exists in sending the data—if it was requested—and a status
code. Optional fields follow the status code and, during the transmission of resources, the
data. The status line has the following structure:

1 VERSION STATUSCODE STATUSTEXT

The status code is a three-digit number, and the first number (hundred) shows the
allocation to a certain group.

Table 1-3.  HTTP Reply Code (Selection)

Group Code Name Meaning

1 100 Continue Continue further

1 101 Switching Protocols Protocol change necessary, e.g. HTTP to
WebSockets

1 102 Processing Server works on the request; this is prevented
if necessary timeout is longer processing time

2 200 OK Command successful (after GET/POST)

2 201 Created Resources are created (after PUT)

2 202 Accepted Accepts authentication (after GET)

2 204 No Content No contents or not requested (GET)

3 301 Moved Permanently Resources at another place

3 302 Found Resource Temporarily at another place (this is a
temporary condition)

3 304 Not Modified Resources were not changed (steers proxy)

4 400 Bad Request Syntax error (all commands)

4 401 Unauthorized No authorization

4 403 Forbidden Not public range, request inadmissible

4 404 Not Found Resources not found

5 500 Server Error Server error, malfunctioning of server software
or application

5 503 Service Unavailable Service not available

Chapter 1 ■ Protocols of the Web

15

You probably know about the 404 error, (not found). You will also become
acquainted with the error number 500 (internal server), which is generated if a problem
with the code you wrote occurs.

Expiration of HTTP Communication
The fundamental operational sequence of HTTP communication consists of two
parts—the request and the answer (response). An HTTP request will look similar to
Listing 1-1, whereas Listing 1-2 shows a response.

Listing 1-1.  HTTP Request

1 GET http://www.joergkrause.de/ HTTP/1.1
2 Accept: text/html, application/xhtml+xml, image/jxr, */*
3 Accept-Language: de-DE,de;q=0.8,en-US;q=0.5,en;q=0.3
4 User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; LCJB; \
5 rv:11.0) like Gecko
6 Accept-Encoding: gzip, deflate
7 Host: www.joergkrause.de
8 Connection: Keep-Alive

Listing 1-2.  HTTP Response (Only the Head Fields, Without Data)

 1 HTTP/1.1 200 OK
 2 Date: Sun, 17 Jan 2016 10:59:09 GMT
 3 Server: Apache
 4 X-Powered-By: PHP/5.5.30
 5 Expires: Thu, 19 Nov 1981 08:52:00 GMT
 6 Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pr\
 7 e-check=0
 8 Pragma: no-cache
 9 X-Pingback: http://www.joergkrause.de/xmlrpc.php
10 Link: <http://wp.me/P6sMv6-12>; rel=shortlink
11 Set-Cookie: PHPSESSID=4744597c154b01a61e245292b8f1a897; path=/1
12 Keep-Alive: timeout=2, max=200
13 Connection: Keep-Alive
14 Content-Type: text/html; charset=UTF-8
15 Content-Length: 27465

Head Fields
Additional fields can be attached to a command or a status line, so-called head fields
(sometimes also called headers, because each field stands on its own line):

1 Fieldname: Value; Value

Chapter 1 ■ Protocols of the Web

16

The heading fields can be divided in three main groups:

•	 F Question fields (Request Header Fields), which are permitted
only in commands.

•	 A Response fields (Response Header Fields), which are reserved
for status news.

•	 I Information fields (General Header Fields), which serve the
transmission of all other news in all directions.

A typical application, which can occur during web programming, is the delivery of a
heading field. A special type of file for downloading a file indicates the heading:

1 Content-Type: application/pdf; name=aspnet.pdf

Contrary to other protocols, the length of a data block is fixed in the content length
head field; there are no given separators. Note also that the server does not send an
answer to the connection establishment. Only the first arriving command indicates a
reaction. The browser must react according to the requirement of an unattainable server
in a certain amount of time. A “dead signal” is simply a time interval in which the server
should react to the first command.

HTTP 2.0
The current version of HTTP is 2.0 (called HTTP/2 in the header), which was published as
RFC 7540 on the May 15th, 2015.

The standard is today specified in the RFCs 7540 and 7541. Google has considerably
improved its development (SPDY, which is pronounced like “speedy’). Microsoft (HTTP
Speed + Mobility) also has its own case in each proposal. A first draft, which was to a large
extent against SPDY, was published in November 2012 and was adapted in several steps.

With HTTP/2, the transmission is accelerated and optimized. The new standard is
completely downward compatible with HTTP/1.1.

Important new features include:

•	 Summarizing several requests

•	 Better compression possibilities

•	 Binary transmissions of coded contents

•	 Server-initiated data transfer (push procedures)

An acceleration results mainly from the new possibility of summarizing (multiplex)
several requests, in order to be able to complete them over a connection. The data
compression now also includes head data. Instead of the Gzip or Deflated used thus far,
you can use a new special algorithm called HPACK.

Contents can be coded in binary. In order to not have to wait for subsequent client
requirements, the data transfer can be partly initiated by the server (push procedures).

Chapter 1 ■ Protocols of the Web

17

The originally planned option that HTTP/2 use TLS (Transport Layer Security, called
SSL back then and useful for encoding) according to the standard, was not converted.
However, Google and Mozilla announced for their browsers that HTTP/2 will not have any
support without encoding (see Application Layer Protocol Negotiation). Due to market
power, one must assume therefore that all HTTP/2 servers will compellingly offer TLS.

The most popular browsers now support HTTP/2. This includes Google Chrome
(also iOS and Android) starting at version 41, Mozilla Firefox starting at version 36,
Internet Explorer 11 under Windows 10, Opera starting at version 28 (also Opera Mobile
starting from version 24), and Safari starting at version 8.

Supplemental Standards
HTTP is flanked by other standards, which either add to it or use it as a supplement.

WebSockets
The WebSocket protocol is a TCP-based network protocol, and it has been created in
order to achieve a bidirectional connection between a web application and a WebSocket
server and/or a web sever that supports WebSockets. The additional data may fall away
because of the HTTP head fields in association with WebSockets.

The request is initiated with a special head field from HTTP:

1 GET /chat HTTP/1.1
2 Host: server.example.com
3 Upgrade: websocket
4 Connection: Upgrade
5 Sec-WebSocket-Key: dJhoIeNrbgBKZrBabu5sZe==
6 Origin: http://example.com
7 Sec-WebSocket-Protocol: chat, superchat
8 Sec-WebSocket-Version: 13

The answer should then contain the status code 101:

1 HTTP/1.1 101 Switching Protocols
2 Upgrade: websocket
3 Connection: Upgrade
4 Sec-WebSocket-Accept: sjpoLeBrTgai9sYazGheRe+KxOo=
5 Sec-WebSocket-Protocol: chat

Due to the HTTP status code 101 and the following two lines, the server explains that
it agrees with the exchange of protocols.

If you try to see it in a technical way, WebSocket client, just like with HTTP,
starts a request. The difference is that, after the transmission of data, the connection
establishment and the underlying TCP connection remain and transmissions in both
directions are possible.

Chapter 1 ■ Protocols of the Web

18

WebDAV
WebDAV (Web-based Distributed Authoring and Versioning) is an open standard for the
supply of files on the internet. Users can access its data transparently, thus they can read
and write to it.

WebDAV is an extension of the protocol HTTP/1.1, but it waives certain restrictions
of HTTP. With WebDAV files, whole listings can be transferred. Besides that, the version
control is specified.

Since granting write access to web servers is rather risky, WebDAV hasn’t been
very popular. It is useful, if at all, for publishing applications in a local development
environment. Some web hosts and providers offer it as efficient alternative to FTP.

REST
REST stands for Representational State Transfer and marks an architectural style (or a
“programming paradigm for distributed systems”; see https://de.wikipedia.org/wiki/
Representationa State_Transfer). It summarizes already frequently used techniques
and protocols for data transfer. This covers:

•	 URI for addressing resources

•	 HTTP for transmitting commands

•	 MIME for coding resources

•	 JSON and XML for formatting

 Web Service REST is a special form of web service. One therefore speaks of a

REST service.

Features
The technical features of a REST service are:

•	 Addressability

•	 Representation variable

•	 Conditionlessness

•	 Scalability

•	 General acceptance

•	 Expandability

https://de.wikipedia.org/wiki/Representationa
https://de.wikipedia.org/wiki/Representationa

Chapter 1 ■ Protocols of the Web

19

Addressability
Each REST service has a clear address, called the Uniform Resource Locator (URL). REST
also uses a Uniform Resource Identifier (URI) in order to designate individual resources.

Representation Variable
The address-accessible services can have different representational forms
(representations). A REST server can supply HTML, JSON, or XML, for example. This can
contain data or descriptions.

Conditionlessness
Each REST message contains all the information necessary for the server and/or the
client in understand the message. Neither the server nor the application store status
information between the news. It’s a stateless protocol. Each request contains all the
information about the application’s condition, which is needed by the server.

Scalability
The conditionlessness favors the scalability of a service. Since each request leads to a
defined reaction and no condition on a certain machine has to be there, load divider
requests can be distributed on several machines. Without that, this changes the server
site processing.

Generally Accepted
HTTP prescribes that GET must be “safe”. This means that this method has only
information and no side effects. The methods GET, HEAD, PUT, and DELETE must be
idempotent, which means that repeated sending of the same requirement does not
change it.

Expandable
Extensibility means that extensions of resource base, additional functions, more data,
other representations, or other scaling measures taking place later won’t affect the
existing clients.

Chapter 1 ■ Protocols of the Web

20

REST Example
One characteristic of REST is the description of resources. The elements be included or left
off. If relationships exist between the data, then this is to be recognized in the answer. One
simple inquiry uses the GET command (see also section about HTTP later in this chapter).

1 GET /book/2605

 1 HTTP/1.1 200 OK Content-Type: text/xml
 2 <?xml version="1.0"?>
 3 <book xmlns:xlink="http://www.w3.org/1999/xlink">
 4 <cat xlink:href="http://shop.texxtoor.de/cat/122">122</cat>
 5 <author xlink:href="http://shop.texxtoor.de/author/1">1</author>
 6 <author xlink:href="http://shop.texxtoor.de/author/2">2</author>
 7 <title>Pug</title>
 8 <desc>The Template-Engine Pug</desc>
 9 <price>2,99</price>
10 <type>Paperback</type>
11 </book>

Here, URI refers to some elements of dependent resources. The client can use this to
provide a part of the user interface dynamically.

URI
URI stands for Uniform Resource Identifier and is the procedure for designing
the addresses. In connection with REST, the term RESTful means that the correct
implementation of REST is used. That means not only that HTTP is used, but also that the
routes, which call the data and release actions, obey certain criteria.

URI is often confused with URL (Uniform Resource Locater). URL is a special form of
URI. URLs serve the addressing of web pages in the browser. URIs can address web pages
and other things. URLs attach data parameters, which are separated by ?. This is called
the querystring. Here are some typical applications:

•	 /admin/updatebook.aspx?book=2605

•	 /bookview.html?book=2605

•	 /bookreviews.py?book=2605

The book=2605 part is the querystring. This is not RESTful. REST requires that the
data division be part of the URL. Routes—addressing patterns on the basis of the
URI—have defined sections, to which meaning is assigned. This assignment is arbitrary
(point of developing), but frequently rungs according to a simple principle:

/resource/id

Chapter 1 ■ Protocols of the Web

21

Or a somewhat more complex principle:

/resource/id/action

RESTful examples look as follows:

•	 /admin/book/2605

•	 /book/2605

•	 /book/2605/view

Certainly here are still many options present. Therefore, a few rules:

•	 Short: Shorter URIs are better

•	 Tree structure: The tree structure of the object/data graph should
represent the URI.

•	 Readable: Plain language helps

•	 Predictable: The reaction of the server makes sense based on URI
name.

•	 Nouns: URIs address something, therefore the word is not a thing,
an action. If an action is used, it attaches itself from behind.

•	 Querystring I: You can use them, but only exactly as query
(inquiries/searches), for example:

/books/search?filter=title&value=JADE

•	 Querystring II: Don’t use if parameters are needed, for example:

/books/select/quarter=2;year=2016

•	 Deterministic: The same resources always show the same URI.

•	 Stateless: No condition on the server has influence.

•	 Canonical: If two URIs lead to the same resource, the alternative
in the answer must be designated.

Less important, but still important for good style, are these guidelines:

•	 Only use lowercase: CamelCase and the like are rather disturbing
in this setting.

•	 Use hyphens instead of underlines: book-review is better than
book_review for search engines.

•	 Use plural, if applicable (books, if it concerns several).

Chapter 1 ■ Protocols of the Web

22

•	 If a call for collections takes place, this should be visible: /books/
book/3. Then, however, the call must be technically possible, such
as /books and supply all books. However, if the collection cannot
be supplied, /book/3 is enough.

•	 No blanks: Sooner or later you’ll see only %20 fragments (indicates
a blank coded for an URL)

HTTP
REST uses specific HTTP methods in order to release actions on the server. REST uses
these HTTP methods:

•	 GET: Call up resources

•	 POST: Change or release an action

•	 PUT: Produce s resource

•	 DELETE: Delete resources

•	 PATCH: Change a part of a resource

•	 HEAD: Request meta-data

•	 OPTIONS: Show permitted actions on resources

It is not compellingly necessary to compare this to SQL; a simple mapping, however,
can represent REST well, as shown in Table 1-4.

Table 1-4.  Mapping REST to SQL

HTTP (REST) SQL

GET SELECT

POST INSERT

PUT UPDATE

DELETE DELETE

In HTTP, this looks as follows (... stands for typical head fields):

1 POST /book/2605
2 ...
3 name=New Article

Here, the URI is a relative path to resources. basket marks the route to a controller,
which worries about the car. The route expects an ID, which is 2605 here. Thus an
element has the primary key 2605 in the cart. This element has a feature called name to
which the new text “new article name” is assigned.

Chapter 1 ■ Protocols of the Web

23

By means of PUT resources are produced as follows:

 1 PUT /book
 2
 3 <book>
 4 <title>Pug</title>
 5 <desc>
 6 The Template-Engine Pug
 7 </desc>
 8 <price>2,99</price>
 9 <type>Paperback</type>
10 </book>

Since one of the characteristics of REST is self description, PUT returns a link to new
resources:

1 HTTP/1.1 201 OK
2 Content-Type: text/xml;
3 Content-Length: 34
4
5 http://shop.texxtoor.de/book/2605

Deleting resources takes place similarly:

1 DELETE /book/2605

MIME
MIME stands for Multipurpose Internet Mail Extensions and was originally developed to
embed documents in e-mails. A describing header is used in order to show the original
format. The client can then re-create it. It’s divided into two parts and includes the
header, which is the typical “content type”:

group/detail

For an image, it looks as follows:

Content-Type: image/jpeg

A specification, which is needed here and goes beyond REST, can be found at
https://de.wikipedia.org/wiki/Multipurpose_-Internet_Mail_Extensions.

For REST, the following is used:

•	 text/xml

•	 application/json

https://de.wikipedia.org/wiki/Multipurpose_-Internet_Mail_Extensions

Chapter 1 ■ Protocols of the Web

24

JSON
For communication between a client and a server, JSON is used. JSON (JavaScript Object
Notation) is a compact format in readable text form for the purpose of data exchange
between applications. Although the name points to an exclusive use in JavaScript, JSON is
an independent format, and it can be used in any programming language.

The biggest difference between JSON and XML is the somewhat more compact
coding of data structures where, contrary to XML, less administrative data is produced.
In addition JSON can be converted into JavaScript or directly into a JavaScript object.
However, XML is more versatile than JSON and applicable, which is not a markup
language, but a data exchange format. XML enjoys a bigger audience. Both formats are
not necessary to represent large binary data.

JSON recognizes objects, arrays, character strings, numbers, Boolean values,
and zero. Data can be interlocked at will, for example, an array of objects is possible.
JSON uses UTF-8 as its indication coding.

The JSON Format Definition
A JSON object is surrounded by curly braces { }. It can contain an unordered list of
characters, divided by commas.

A characteristic JSON object consists of a key and a value, separated by a colon. The
key is a character string. The value is an object, an array, a character, a string, a number,
or one of the expressions true, false, or zero. An array begins and ends with square
brackets []. It can contain a regulatory list of values, divided by commas.

A character string begins and ends with quotation marks (“). It can contain Unicode
characters and escape sequences. A Boolean value is represented by the expressions
true or false without quotation marks. A number is in the range of 0-9 and can include a
minus sign – by the way of introduction and a decimal point, if interrupted. The number
can be supplemented by the information of an exponent e or E, which can have a sign
such as + or -. It also recognizes empty space characters arbitrarily.

Listing 1-3.  Example of a JSON Block

 1 {
 2 "CreditCard" : "Visa",
 3 "Number" : "1234-5678-9012-3456",
 4 "Owner" :
 5 {
 6 "LastName" : "Krause",
 7 "Firstname" : "Jörg",
 8 "Gender" : "\"male\"",
 9 "Preferences" : [
10 "Golf",
11 "Reading",
12 "Badminton"
13],
14 "Age" : null
15 },

Chapter 1 ■ Protocols of the Web

25

16 "Limit" : 10000,
17 "Currency" : "EURO"
18 }

If you’d like to read more about JSON, the following sources might be interesting:

•	 json.org offers an introduction to the official JSON site.

•	 The RFC 4627 defines a further type of MIME with
application/json.

The ATOM Format
ATOM stands for the Atom Syndication Format, an platform-independent format used
to change feeds. It has the same purpose as the well-known RSS, the Really Simple
Syndication. ATOM is considered a designated successor of RSS 2.0. ATOM is defined for
different purposes, whereby the ASF (ATOM Syndication Format) is referred here.
Apart from the pure feed distribution, ATOM can be used for newsletters and similar
purposes. ATOM was published in RFC 4278. The type of MIME is application/atom+xml.
Listing 1-4 shows a typical ATOM block.

Listing 1-4.  Typical ATOM Block

 1 <?xml version="1.0" encoding="utf-8"?>
 2 <feed xmlns="http://www.w3.org/2005/Atom">
 3 434759_1_En
 4 <name>Jörg Krause</name>
 5 </author>
 6 <id>urn:uuid:60a76c80-9926-9905-1964-0003939e0af6</id>
 7
 8 <entry>
 9 <title>Neues aus der Web-Welt</title>
10 <link href="http://hanser.de/2010/08/08/atom-wcf"/>
11 <id>urn:uuid:1225c695-cfb8-4ebb-aaaa-01723243189a</id>
12 <updated>2016-12-08T12:50:07Z</updated>
13 <summary>Alles über Web</summary>
14 <content>Hier steht der gesamte Text</content>
15 </entry>
16 </feed>

 Atom in Web Sites  In web applications, use ATOM only if your clients demand it

explicitly. The employment of JSON is clearly simpler and faster.

27© Jörg Krause 2016
J. Krause, Introducing Web Development, DOI 10.1007/978-1-4842-2499-1_2

CHAPTER 2

Dynamic Web Sites

This chapter is about quickly and clearly covering the execution when calling up dynamic
web pages. Some aspects of optimization are also discussed. It is helpful to never forget
about optimization when you’re creating your web site.

How Dynamic Web Sites Are Created
Dynamic web pages are known as pages that are created as soon as a call is sent to the
server. So data can be built interactively into the sites. They are particularly helpful when
you need to react to user inputs. Forms can be evaluated immediately and the content of
the next page can be shown. The application possibilities are nearly unlimited. Whether
and to which extent databases are used depends on the goal. Dynamic web pages actually
do not need a database. You should not feel obligated to solve every problem with the
help of a database when you’re a beginner, while professionals may recommend that.

This book shows many examples that obtain impressing effects with the simplest
means—completely without a database. The emergence of a dynamic web site is
described with the help of an illustration. You should understand this execution well,
because all other, more complex, procedures in programming depend on it.

If the user types an address in the browser, a complex procedure happens:

	 1.	 The browser looks for a name server in order to determine the
IP address to the URL.

	 2.	 The name sever may necessarily consult with further servers,
in order to procure the IP address.

	 3.	 The browser receives an IP address of the sever. If the HTTP
protocol is used, the port address is also fixed (Port 80). The IP
address and port form a so-called socket.

	 4.	 The browser receives an IP address from the provider and
forms a port for the connection. Thus, a socket is available.
Between both terminals, IP traffic can now take place.

	 5.	 The browser sends the requirement via the connection to the
site. This happens with the HTTP protocol. The appropriate
method reads GET, the procedure is called request or
requirement.

Chapter 2 ■ Dynamic Web Sites

28

	 6.	 The server receives the requirement and looks for the file.
If it’s found, it will be delivered. This procedure is called
response and in this book, it’s also called answer. If the file
is not found, the server produces an error. For missing files,
HTTP defines the error number 404.

	 7.	 The browser receives data or an error message and
shows these.

First the user requests a program using his browser. The entire procedure is client-
steered in the long run. On this web server the request is accepted and HTML code or
static contents will be created. Thus the procedure is terminated. Both sides “forget”
everything that happened during this procedure. With the requirement of the next object,
the entire operational sequence is repeated. The procedures of the name resolution
and address procurement happen completely transparent and are hardly noticed when
programming. The actual assembly of the sites is the interesting part. This happened in
the representation of the signal element sequence in Step 6. We will examine this step in
more detail.

For all problems, various programming environments supply interesting and
helpful solutions. Programming is therefore comparatively simple. However, that
changes nothing in the principle of the underlying technology. Without the ping-pong
play between browsers and web servers, nothing would function. Sometimes it’s not
always visible that this process actually happens, but it is nevertheless without exception
implemented. Clearly it should be remembered that, if the web site request is sent to the
browser, only HTML code is produced.

Optimization
During the optimization, there are many aspects to consider:

•	 Development environment: Without the correct tools it won’t work!

•	 Server-page optimization: Requests, range, and payload

•	 Client-page optimization: DOOM and JavaScript

Tools
Try to understand how the Web functions. In addition you have to know other things
aside from the already covered protocols, such as performance, range, and the number
of HTTP requests, since the behavior of HTML and JavaScript usually differentiate when
rendering the CSS effects in the browser. Various tools help make the procedures visible
and this helps substantially to understand them.

Chapter 2 ■ Dynamic Web Sites

29

You should have the following tools:

•	 Fiddler:

–– From Telerik, for Windows (http://www.telerik.com/fiddler)

–– Fiddler on Mono (http://fiddler.wikidot.com/mono) for Linux

•	 F12—Tools in IE, Chrome, Firefox, Edge, etc. :

–– Profiler

–– Network Analytics

–– CSS-Debugger

–– HTML-Tree

–– JavaScript Debugger

•	 Also available online:

–– Pingdom1

–– Browserstack2

Figure 2-1.  Execution of communication on a timeline

1http://tools.pingdom.com/fpt
2http://www.browserstack.com

Fiddler is a web debugger and a protocol proxy. Thus you can see and evaluate the
traffic between the client and server. In terms of temporal operational sequence, the
requests really happen only partly in parallel. Some inquiries are only released when the
browser starts processing the site.

http://www.telerik.com/fiddler)
http://fiddler.wikidot.com/mono)
http://tools.pingdom.com/fpt
http://www.browserstack.com/
http://tools.pingdom.com/fpt
http://www.browserstack.com/

Chapter 2 ■ Dynamic Web Sites

30

These effects can be considered within the structure of the site. The less dependence
there is, the better the range that’s available.

Server Page Optimization
The server-page optimization stage involves the following topics:

•	 Pipeline optimization

•	 Process configuration

•	 CDN

•	 Bundling

•	 Sprites

Figure 2-2.  Execution of communication in Fiddler

Chapter 2 ■ Dynamic Web Sites

31

Pipeline Optimization
At the core, it concerns unloading (to deactivate) unnecessary modules. Web servers
come with a whole set of modules, which fulfill all possible tasks. This begins with
authentication and ends with simple logging. It’s in the nature of these modules that they
treat each request. Small delays can have drastic effects.

For ASP.NET and IIS, it looks like Figure 2-3, which shows first the active
standard modules.

Figure 2-3.  Modules with IIS: not optimized

Figure 2-4.  Modules in IIS: optimized

Possibly only some of it is really needed, as shown in Figure 2-4.

If you work with Apache on Linux, use the command a2dismod:

$ sudo a2dismod autoindex

Chapter 2 ■ Dynamic Web Sites

32

Typical modules, which are not always needed, are the following:

•	 PHP

•	 SSL

•	 Rewrite

•	 Perl

•	 Python

•	 Rack/Ruby/Passenger

Process Configuration
The goal here is the optimal use of resources. In addition you adapt the process
configuration to the concrete hardware conditions. For a Windows server, IIS covers the
following steps:

•	 maxWorkerThreads

20 per core (4 cores == 80 threads). More is possible, if there
is CPU-intensive work (e.g., much async, service calls), then
values to 100 are possible.

•	 maxIOThreads

20 per core. For file operations, database access, web service
calls, internal requests etc. with fast hardware, SSD etc., values
up to 100 are possible for a 10Gbit net.

•	 minWorkerThreads, minIOThreads

Standard 1. Steers the beginning of the request queue. At least
the value must be free, so that it will not be queued.

•	 memoryLimit

Portion (%) of the system memory that the worker process
may occupy. If the application is alone, the value may be
high, e.g., 80. With many lags or other applications, COM will
reduce the value.

Settings of the process configuration take place in machine.config, as shown in
Figure 2-5.

Figure 2-5.  Settings of process configuration

Chapter 2 ■ Dynamic Web Sites

33

In Apache, you configure comparable values as follows:

1 <IfModule mpm_worker_module>
2 ServerLimit 40
3 StartServers 2
4 MaxClients 1000
5 MinSpareThreads 25
6 MaxSpareThreads 75
7 ThreadsPerChild 25
8 MaxRequestsPerChild 0
9 </IfModule>

CDN (Content Delivery Network)
A Content Delivery Network (sometimes called a Content Distribution Network) is
regionally distributed and makes it possible to deliver content, such as scripts, pictures,
and videos, over the Internet. The goal of a CDN is quicker answers to requests and
less latency. For general files, like jQuery, Knockout, etc. Microsoft, Google etc. will be
there for you. For your own resources, you are liable to pay the costs for services such as
CacheFly (simple, upload/distribute) and EdgeCast (complex, DNS catching).

Figure 2-6.  Principle of a Content Delivery Network (CDN)

Chapter 2 ■ Dynamic Web Sites

34

Minify and Bundling
Bundling and minifying are two techniques that can improve load time. This essentially
happens by summarizing resources (bundling) and avoiding requests. Due to the
overhead of HTTP protocols, it requires the distribution of many small files, while it has
more bandwidth than a large file.

The creation of sprites is not really manually controllable. Therefore, a variety of
tools for all platforms and operating systems is provided. Ideally you furnish these tools as
part of the production procedure. How it looks depends on the development system.

Sprites
An individual diagram file, which contains several symbols and picture components, is
called a sprite or a CSS sprite. These summarized diagrams function as picture suppliers
and serve to minimize the load time of the web pages. The individual elements of this
total diagram faded out of place with the background-image and background-position
CSS characteristics.

Due to the overhead of HTTP protocols, the distribution of many small pictures
requires more range, as the distribution of a larger picture.

Here is an example of CSS that works with sprites:

 1 .flags-canada, .flags-mexico, .flags-usa {
 2 background-image: url('../images/flags.png');
 3 background-repeat: no-repeat;
 4 }
 5
 6 .flags-canada {
 7 height: 128px;
 8 background-position: -5px -5px;
 9 }
10
11 .flags-usa {
12 height: 135px;
13 background-position: -5px -143px;
14 }
15
16 .flags-mexico {
17 height: 147px;
18 background-position: -5px -288px;
19 }

The creation of sprites is not really controllable. Therefore, a variety of tools for
all platforms and operating systems is provided. You can do this under a node or on a
system, that has installed a node. Take Sprity as an example. This is how you install it:

$ npm install sprity -g

Chapter 2 ■ Dynamic Web Sites

35

Then you combine all the pictures of a folder into sprites:

$ sprity ./outputfolder/ ./inputfolder/*.png

 You can find more examples at https://css-tricks.com/css-sprites.

General and Banal
Generally, you should be sure not to use these certain techniques:

•	 Try to avoid redirects

•	 Try to avoid frames/iframes

•	 Try to avoid DNS lookups (absolute paths)

Spreading assets on various hosts is called off-loading and looks like this:

•	 www.greatsite.com

•	 images.greatsite.com

•	 scripts.greatsite.com

Essentially, browsers only send a certain number of requests per host (between 6
and 13) and if you have three hosts, this triples the available range.

With static assets you should avoid cookies and headers, if possible. Absolutely use
Gzip/Deflate for compression. It should be available on practically all systems. Then
configure the server in such a way that it uses Gzip. ETag (entity brand) is not needed—you
can remove this head field if you want to.

Client-Site Optimization
Here is only a short overview of the possibilities. These are simply suggestions, and you
can find many more examples on the Internet.

Handling Pictures
If modern browsers are available, use inline pictures. Particularly for dynamic pictures,
for rare or frequently changing ones, this method is favorable.

1 <img src="data:image/gif;base64, R0lGODlh...
2 and so on ">

The coding of Base64 is suitable, such as http://webcodertools.com/
imagetobase64converter.

https://css-tricks.com/css-sprites
http://www.greatsite.com/
http://webcodertools.com/imagetobase64converter
http://webcodertools.com/imagetobase64converter

Chapter 2 ■ Dynamic Web Sites

36

You should never scale pictures, but always compute them before (on the server) and
compress them before delivering.

Use font libraries, so-called symbol fonts, if possible. Font-based symbols are more
streamlined, whereas individual pictures and symbols have more stringent requirements.
All symbols are loaded as fonts, thus they exist in a file. However, symbols are more like
letters. Their size can change, but they can only accept one color. Fonts are mostly fine,
if you don’t mind the 3D effect ones. For fast, modern web pages, Glyphs is far more
established.

Some examples:

•	 Font Awesome3: 479 symbols

•	 Octicons, the GitHub Icons4: 160 symbols

•	 Elegant Icon Font5: 350 symbols

•	 Typicons6: 336 symbols

•	 Meteocons7: 40 Weather symbols

•	 Open Iconic8: 223 symbols that can’t be reduced to eight pixels

This is certainly only a small selection. Be sure to search around to find options that
meet your exact needs.

3http://fortawesome.github.io/Font-Awesome/
4https://octicons.github.com/
5http://www.elegantthemes.com/blog/resources/elegant-icon-font
6http://typicons.com
7http://www.alessioatzeni.com/meteocons
8https://useiconic.com/open

http://fortawesome.github.io/Font-Awesome/
https://octicons.github.com/
http://www.elegantthemes.com/blog/resources/elegant-icon-font
http://typicons.com/
http://www.alessioatzeni.com/meteocons
https://useiconic.com/open
http://fortawesome.github.io/Font-Awesome/
https://octicons.github.com/
http://www.elegantthemes.com/blog/resources/elegant-icon-font
http://typicons.com/
http://www.alessioatzeni.com/meteocons
https://useiconic.com/open

Chapter 2 ■ Dynamic Web Sites

37

Figure 2-7.  The free symbol font octicons

Chapter 2 ■ Dynamic Web Sites

38

Handling the DOM
The JavaScript language is extremely fast. What’s problematic is accessing elements in
the object tree of the site (document object model, DOM). To illustrate this, look at this
jQuery example:

1 $('#dialog-window')
2 .width(600)
3 .height(400)
4 .css('position': 'absolute')
5 .css('top', '200px')
6 .css('left', '200px');

An element gets addressed as #dialog-window and is accessed six times in a row.
This is very unfortunate. It’s better to do it the following way, which changes all values
with one access:

1 $('#dialog-window').css({
2 width: '600px',
3 height: '400px',
4 position: 'absolute',
5 top: '200px',
6 left: '200px' });

Here a batch is provided when rendering. Provide dynamic DOM blocks separately
and insert the entire tree in one step. This leads to the screen refreshing on many
indication procedures. You should know that the browser draws the surface each time
the DOM is changed. Sequences with many small changes require a substantial amount
of computing power. Even if this is available, it means nevertheless a lot of battery service
life will be used if you’re using a mobile device.

If you use JPG files, try to remove any junk data. This is the meta-information that
adds cameras, partly in programs such as Photoshop. Kilobytes of information are wasted
that way, such as for date, camera data, etc.

Generally pay attention to the suitable image format.

Figure 2-8.  Image size with pictures and color processes

39© Jörg Krause 2016
J. Krause, Introducing Web Development, DOI 10.1007/978-1-4842-2499-1_3

CHAPTER 3

HTML: Hypertext Markup
Language

The basis of every web site is the specification language it uses, HTML (HyperText
Markup Language). It structures the sites, and the current version HTML5 can access
hierarchical object models of the site, which are accessed via JavaScript. CSS (Cascading
Style Sheets) organize the graphic contents of the site.

Both languages are very old and meet today’s requirements insufficiently. HTML5
became therefore a bundle of different standards, which supplements all kinds of
functions. An overview is described in this chapter. In addition, different template systems
were established, and they attempt to address the disadvantages of HTML. AngularJS tries
to work after the intentions of its developers and is something like a dynamic extension,
although it would be different if it had been invented together with HTML.

Even CSS isn’t new. Here, complex style systems make high demands, whereupon
there are two answers. On the one hand, preprocessors like LESS and SASS were
developed, which define dynamic CSS and are prepared for the modern-day browser.

Basics of HTML
This section is about the basics of HTML, including a very short historical overview.

The History of HTML
The HTML standard is a cooperation between the W3C (World Wide Web Consortium)
and the WHATWG (Web Hypertext Application Technology Working Group). The
principles of the working groups are:

•	 The standard is HTML + CSS + DOM + JavaScript

•	 No plugins (no Java, no Flash, no Silverlight, nothing!)

•	 More markup, don’t be obtrusive, less direct scripting

•	 Device-independence

Chapter 3 ■ HTML: Hypertext Markup Language

40

 Your own implementations should follow these principles!

Figure 3-1.  The official HTML5 logo

Table 3-1.  The History of the HTML Versions

Version Year

HTML 1991

HTML+ 1993

HTML2 1995

HTML3.2 1997

HTML4.01 1999

XHTML1.1 2001

WHATWG 2004

WHATWG and W3C Cooperation 2006

HTML5 2012

XHTML5 2013

HTML5.2 2015 - 2016

XML Basics for HTML
Even though the topic of this chapter is HTML, you should know the basic structure
of an XML document. Both standards use the same ideology and are so-called
markup languages. This term is the reason behind ML. Contrary to programming
languages, markup languages serve to describe contents. Here, only the most necessary
characteristics are discussed.

Chapter 3 ■ HTML: Hypertext Markup Language

41

Markup
All tag groups whose structure is defined in XML is called markup:

•	 Start tags: <startTag>

•	 End tags: </endTag>

•	 Empty elements: <EmptyElement />

•	 Entity references: &

•	 Character references: &x0f;

•	 Comments: <!-- Comment -->

•	 CDATA range limiter: <![CDATA[no XML]]>

•	 Document type declarations: <!DOCTYPE HTML PUBLIC
"-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd"

•	 Instructions for processing: <? include ("datei.php") ?>

•	 The XML declaration: <?xml version="1.0"?>

•	 Text declaration: <?xml encoding="utf-8" ?>

Everything else is text. Three special characters steer the markup:

•	 > stands for <

•	 < stands for >

•	 & stands for &

For attribute values and quotes, two entities are added:

•	 " stands for "

•	 ' stands for '

CDATA ranges represent a special feature. In these, the usual rules are repealed and
special indications must not be coded:

<![CDATA[here & here is "not" <XML>]]>

Structure and Features of an XML Document
The XML document structure follows firm rules. These rules enable an automated
processing system in a comprehensive to take place. On the other hand, the employment
should be as universal as possible, as the name “eXtensible Markup Language” suggests.

http://www.w3.org/TR/html4/loose.dtd

Chapter 3 ■ HTML: Hypertext Markup Language

42

Shapeliness
The rules permit the examination of the shapeliness of documents by the processing
program without knowledge of the grammar of the language. The term shapeliness,
which means “well formed,” is a basic characteristic of markup languages. A document is
considered shapely if the following features apply:

•	 All tags are syntactically correct. All beginning tags have an end tag,
whereby upper- and lowercase are to be considered (<tag></Tag>
is inadmissible). Each opening tag must have a closing tag
(<tag></tag>). Alternatively, one tag can be closed directly (<tag/>).

•	 All attributes are syntactically correct. Parameters of the
attributes must always be placed in quotation marks
(<tag attr= "param">). In addition, shortened attributes,
those without parameters, are not permitted. The HTML tag
<hr noshade> would look in XHTML (the corresponding
HTML in XML) as follows: <hr noshade= "noshade"/>.

•	 Correct nesting is necessary. Tags must be correctly interlocked.
The following code is wrong: <i></i>. Instead, it has to
be written as follows: <i></i>.

Validation
In a second processing step, the grammar must be naturally checked. It concerns
their relation permitted tags, and the possibly applicable attributes. This step is called
validation. A document must be recognizable as valid before processing. A regulation
must naturally exist for validation, from which the parser can derive the validity, and
there are several procedures.

Processing
During the processing of the data, there are different strategies. One of them illustrates
the document as an object model in a hierarchy. Wrongly interlocked tags do not permit
the representation as a hierarchy. A hierarchy is most simply represented as a tree.

The Term “Markup”
HTML, XML, and XHTML are all markup languages, and they are based on SGML. SGML
stands for Standard Generalized Markup Language and was developed in 1986. HTML
and XML descend directly from SGML. XML is more restrictive than SGML and serves as
a basis for XHTML. XHTML is identical to HTML, except the spellings are based on XML
(see Figure 3-2).

Chapter 3 ■ HTML: Hypertext Markup Language

43

The empty elements are a feature, but not a necessity.

Empty Elements
Empty elements do not have contents. They produce an edition, have a standard
behavior, and are shapeable in some cases.

The most well-known empty elements are:

1

2 <hr>
3
4 <input>
5 <link>
6 <meta>

The following empty elements are rarely used in HTML:

 1 <area>
 2 <base>
 3 <col>
 4 <command>
 5 <embed>
 6 <keygen>
 7 <param>
 8 <source>
 9 <track>
10 <wbr>

So it is not permitted to be written as
</br>. Alternatively to the classical HTML,
–
 can be always used with the XHTML variants of the immediate closing tag:
.
So far, so good. But why is this possible? The reason is to look back long ago, in SGML.

Figure 3-2.  Development of basic standards

Chapter 3 ■ HTML: Hypertext Markup Language

44

A so-called null end tag (NET) was permitted in SGML. It was an abbreviation, in order to
avoid the closing tag. With NET, you can write the following:

<quote/Quoted text/

Without NET, it would look as follows:

<quote>Quoted text</quote>

The short version for elements without contents is called <quote// (SHORTTAG
NETENABL IMMEDNET), which corresponds to <quote></quote>.

HTML attempted to take over this feature and close elements like XML correctly.
That is because the <br/ would be wrong in this case, and a
 as
> would be
just as wrong. The “correct” slash is here the error. With the implementation the browser
developers considered this and did not adopt the SGML typical spelling. In this case,
HTML leans more strongly against XML. In HTML5 it was still theoretically permitted and
the SGML spelling was explicitly forbidden.

XML (and thus XHTML) serves to avoid the problems of this syntax completely. In
order to make empty elements possible, a special spelling is used: . The slash in the
end returned, and it is now correctly placed between the < and > delimiters.

Validity
The validity of HTML results from the correct construction of tags. An element is
considered a tag, and it obeys certain rules:

•	 It must begin with a < indication.

•	 It must be followed directly by the name of the element (<name>).

•	 It follows attributes, which are always limited by blanks
(this is optional).

•	 If the element is empty, it will be closed with />, otherwise with >.

 Especially in HTML5, the closing /> tag construct is optional. The HTML5

specification clearly defines which elements do and do not have contents.

Correctness
If you remember, XHTML is actually the better way to go. It has more rules and more
examination, and thus gives the spelling
 preference (in the sense of being better).
Unfortunately, this is no longer true. HTML5 defined empty elements very clearly, and
it indicated which ones are not closed with a slash. Using this spelling, it’s not certain
that valid XHTML will be created, since there’s more to it than just that

Chapter 3 ■ HTML: Hypertext Markup Language

45

(XML head fields, attributes. etc.). It is thus perfectly senseless and makes viewing the
document more difficult. If you regard a cutout, the impression is formed that it concerns
XHTML. However, that is not the case and begins an unfortunate chain of errors.
Developers who do not know HTML might nevertheless be irritated by specific tags on
other sites that do not appear to be closed. In addition, here it must be said that people,
having access to the source code of HTML, should learn it themselves rather than rely on
protected bases of crude measures.

In earlier times, XML was used because editors could deal with it better. Current
development environments such as Visual Studio are rather good in their HTML
knowledge and need no private tutoring anymore.

Special Cases
Actually, there is only one correct special case: <script></script>. All the other ones
are, at best, annoying.

The script tag can be empty if it only refers to one script file. However, then it may not
be shortened. Thus, the following is correct:

1 <script src="my-script.js"></script>

The short spelling is consistently ignored by all other browsers on the market:

1 <script src="my-script.js" />
1 <script>
2 function ShowMe(v){
3 alert(v);
4 }
5 </script>

The reason for this is the XHTML specification. Here the pattern will be specified
that an element cannot be empty. That is logical, because you can write script code
directly into a tag.

Site Structure
Listing 3-1 shows the basic structure of a complete HTML site.

Listing 3-1.  Structure of an HTML Site

 1 <!DOCTYPE html>
 2
 3 <html lang="en" xmlns="http://www.w3.org/1999/xhtml">
 4 <head>
 5 <meta charset="utf-8" />
 6 <title>Name</title>
 7 </head>

Chapter 3 ■ HTML: Hypertext Markup Language

46

 8 <body>
 9 Inhalt
10 </body>
11 </html>

The <body> tag indicates the contents range, the <head> tag is the control block. The
HTML site can be regarded as a Document Object Model (DOM).

 DOM T he Document Object Model (DOM) is a specification of an interface for

access to HTML or XML documents.

In the browser, DOM is at your disposal via a JavaScript API. The contents range, so
basically the <body> tag works as document object.

The Doctype
Each document must begin with information about the type of document. The browser
recognizes by the Doctype declaration which type the HTML document is.

1 <!doctype html>

The <head> element is a mandatory element and contains information about the
document following the HTML body. See Listing 3-2.

Listing 3-2.  Head Area of an HTML Site

 1 <!doctype html>
 2 <head>
 3 <meta charset="utf-8">
 4 <meta name="viewport"
 5 content="width=device-width, initial-scale=1.0">
 6 <meta name="keywords"
 7 content="Diese Angaben können weggelassen werden">
 8 <link rel="stylesheet" href="style.css">
 9 <style>
10 <!--- Platz für CSS -->
11 </style>
12 <title>Meine erste HTML5-Seite</title>
13 </head>

Codings
You should always specify the encoding you need explicitly. UTF-8 is the most important
standard, since it contains all the special characters and Asian characters.

Chapter 3 ■ HTML: Hypertext Markup Language

47

 As example, in old HTML documents you had to write down umlauts as ü, ä, etc. in

order for them to be represented. These so-called entities are no longer necessary, unless
you cannot use UTF-8 (for whatever reason).

In order to prevent web pages from being viewed in a very small format on your
mobile phone, you can indicate scaling with <meta name=”viewport”…>, which adapts
the site to the viewport. This representation control and the associated document features
are discussed in detail in Chapter 4 on CSS.

 The other meta-information such as author, keywords, and description are

automatically ignored by search engines such as Google and can be omitted.

The title shows the names of the file in the browser or the tabs and should
therefore be meaningful. Consider a single page application, which can be provided with
AngularJS and can be used across multiple pages.

HTML5 Site Structure
Listing 3-3 shows typical HTML5 coding for a page.

Listing 3-3.  Typical HTML5 Page

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <meta charset="utf-8">
 5 <title>HTML5-Seite mit Grundstruktur</title>
 6 </head>
 7
 8 <body>
 9 <header>
10
11 <h1>My Company</h1>
12 </header>
13
14 <footer>
15 Kontakt
16 <p>© 2016 by Joerg Krause</p>
17 </footer>
18 </body>
19 </html>

http://dx.doi.org/10.1007/978-1-4842-2499-1_4

Chapter 3 ■ HTML: Hypertext Markup Language

48

The <body> is the visible range of the web page. Most web pages have a so-called
page header that appears before the body and usually contains a logo, title, and
navigation elements.

Further there is the element called <footer> that should contain the contact,
imprint, copyright, and possibly the sitemap. Although the name suggests it’s a position
below the contents, this is not necessary. This concerns a semantic element; it’s not an
organization regulation.

Listing 3-4.  Structure of Navigation

 1 <body>
 2 <header>
 3
 4 <h1>Heading</h1>
 5 <nav>
 6
 7 Wiki
 8 Blog
 9 Forum
10
11 </nav>
12 </header>

The navigation is enclosed by a new <nav> element, which can also be used for the
under navigation.

 Think about placing the navigation at the end of the document. You can then

absolutely position it in the header and get a pleasing representation on mobile devices.

During a placement before the document’s contents, you can mark the contents
with the <main role="Main"> tag in order to let screen readers jump directly to the page
contents.

Listing 3-5.  Structure of Sections

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <meta charset="utf-8">
 5 <title>HTML5 Page with Base Structure</title>
 6 </head>
 7

Chapter 3 ■ HTML: Hypertext Markup Language

49

 8 <body>
 9 <header>
10
11 <h1>Title</h1>
12 </header>
13
14 <main role="main">
15 <h1>Heading</h1>
16 <p>This is my first HTML5 page</p>
17 ... more content
18 </main>
19
20 <aside>
21 <h2>More links</h2>
22
23 Wiki
24 Blog
25 Forum
26
27 </aside>
28
29 <footer>
30 </footer>
31 </body>
32 </html>

Sidebars or marginal notes are represented in HTML5 by the <aside> element. It
doesn’t matter where the sidebar will be placed (right or left or down the side), because
you’ll determine that later with specific CSS features. The <aside> block contains
information about the contents about the web page; however, they aren’t automatically
part of the content of the web page. Also, this is a semantic element.

Listing 3-6.  Contents Range of a Simple HTML Site

 1 <!doctype html>
 2 <html>
 3 <head>
 4 <meta charset="utf-8">
 5 <title>HTML5 Page</title>
 6 </head>
 7
 8 <body>
 9 <header>
10
11 <h1>Title</h1>
12 </header>
13

Chapter 3 ■ HTML: Hypertext Markup Language

50

14 <article>
15 <h1>Heading</h1>
16 <p>This is my first HTML5 page</p>
17 ... more content
18 </article>
19
20 <aside>
21 <section>
22 <h2>Contact</h2>
23
24 Wiki
25 Blog
26 Forum
27
28 </section>
29
30 <section>
31 <h2>More links</h2>
32
33 Wiki
34 Blog
35 Forum
36
37 </section>
38 </aside>
39
40 <footer>
41 </footer>
42 </body>
43 </html>

For the distinction of the contents range, there are three elements:

•	 <main>: The main content of the site.

•	 <article>: An article that contains a heading (and possibly some
sections, closed in on itself, and a header and footer)

•	 <section>: A section like a chapter, a…

Use <article> if contents in the one paragraph are final. Use <section> if there are
several similar blocks.

 The actual content in the examples in this chapter do not really matter. It’s the

structure that matters here.

Chapter 3 ■ HTML: Hypertext Markup Language

51

Elements of the Page
Contents of an HTML site are text, text elements, and external resources such as pictures
and videos.

 This section is only a compact overview of the possibilities for beginners, in order to set
the stage. You are encouraged to check out the complete documentation if you have questions
and need more guidance. A good starting point is W3Schools at http://www.w3schools.com/.

Text Elements
Under text structuring, all the elements are summarized, which reflects the structure of
the text of a web page. For example, headings or text sales.

•	 <h1> … <h6>: Headings in six hierarchical levels

•	 <p>: Text paragraphs

•	 <pre>: Preformatted text

•	 <blockquote>: Quotation blocks

•	 <figure>: Graphic additions, about charts, code examples, and
photos

•	 <figcaption>: Description of the contents of one <figure>
element

•	 <hr>: Thematic break, a horizontal line

•	 : Regulatory lists (with numbers/letters)

•	 : Unordered lists (enumerating characters)

•	 : Elements that have created lists with and/or

•	 <dl>: Definition lists

•	 <dt>: Term that’s described in a description list

•	 <dd>: Closer representations of <dt>; definition data

•	 <div>: Grouping element without a semantic meaning

All these elements are block elements, so they stand without further measures alone
on a line. The following elements fall on the free range under block elements.

http://www.w3schools.com/)

Chapter 3 ■ HTML: Hypertext Markup Language

52

Headings (h1 … h6)
The headings (h = heading) are always shown in bold and have simply a different size to
be distinguished, as shown in Figure 3-3.

Figure 3-3.  Various headings

1 <h1>Here we go</h1>
2 <h2>Headings are not nested</h2>

Paragraphs (p)
Paragraphs (p = paragraph) are blocks of text.

1 <p>A paragraph.</p>

Preformatted (pre)
Normally the renderer removes them when it notices extra blanks (only one blank is
rendered) and ignores all other spaces and line breaks. If these are needed nevertheless,
you can use the preformatted (pre = preformatted) tag.

The blockquote Tag
Quotation blocks are engaged and formatted in a block.

Chapter 3 ■ HTML: Hypertext Markup Language

53

The figure and figcaption Tags
This is a general form for figures. It is used for graphic charts, code examples, photos, and
so on. <figcaption> describes the contents of the image, or rather of a <figure> element.

1 <figure>
2 <img src="joerg.jpg" alt="Joerg Is A Geek" width="100" height="20\
3 0">
4 <figcaption>The Author</figcaption>
5 </figure>

The hr Tag
This is a thematic break, a horizontal line.

The ol and li Tags
These tags create regulatory lists (ol = ordered list, with numbers/letters). Each element
of the list is based on the tag (listing item). Lists can be interlocked.

The ul and li Tags
These tags format unordered lists (ul = unordered list, with enumerating characters).
Each element of the list is based on the tag (an unordered item). Lists can be
interlocked.

1
2 HTML
3 CSS
4 JavaScript
5

The dl, dt, and dd Tags
Description lists (DL = description list) contain two elements—the expression
(dt = definition term) and the definition of the expression (dd = definition data).

The div Tag
This is a grouping element without any semantic meaning.

Chapter 3 ■ HTML: Hypertext Markup Language

54

Text Flow
Elements in the flow text stand like letters in lines and displace the following elements
only from their own area.

•	 <a>: A reference goal with the attribute name

•	 , , <i>, <kbd>, <mark>, <s>, <small>, , <sub>,
<sup>, and <u>: Formats such as fat, cursive, marked, high, and
down.

•	 <cite>, <q>: Quotations

•	 <dfn>, <abbr>: Definitions and abbreviations

•	 <code>, <var>, and <samp>: Semantic emphases

•	 <time>: Time or date

•	 <ruby>, <rt>, and <rp>: Supplemental information on Asian
characters

•	 <bdi> and <bdo>: Temporary change of the river direction.

•	
 and <wbr>: Line breaks

•	 and <ins>: Change markings with weak semantic meaning

•	 : Grouping element without semantic meaning

References
•	 <a>: The anchor tag, with which hyperlinks are provided

•	 <map> and <area>: Clickable ranges in pictures or a freely defined
structure

 1 <img src="planets.gif" width="145" height="126" alt="Planets"
 2 usemap="#planetmap">
 3
 4 <map name="planetmap">
 5 <area shape="rect" coords="0,0,82,126" href="sun.htm" alt="Sun">
 6 <area shape="circle" coords="90,58,3" href="mercur.htm" alt="Merc\
 7 ury">
 8 <area shape="circle" coords="124,58,8" href="venus.htm" alt="Venu\
 9 s">
10 </map>

Chapter 3 ■ HTML: Hypertext Markup Language

55

Tables
The following tags format information into a tabular format:

•	 <table>: Table element

•	 <caption>: Heading outside of the table

•	 <col> and <colgroup>: Column definitions

•	 <thead>, <tbody>, and <tfoot>: Area definitions (head,
contents, and foot)

•	 <tr>: Arrays

•	 <th>, <td>: Head element in a row and/or data element in a row

 1 <table>
 2 <thead>
 3 <tr>
 4 <th>Month</th>
 5 <th>Revenues</th>
 6 </tr>
 7 </thead>
 8 <tfoot>
 9 <tr>
10 <td>Total</td>
11 <td>$ 180</td>
12 </tr>
13 </tfoot>
14 <tbody>
15 <tr>
16 <td>January</td>
17 <td>$ 100</td>
18 </tr>
19 <tr>
20 <td>February</td>
21 <td>$ 210</td>
22 </tr>
23 </tbody>
24 </table>

Multimedia and Graphics
The following tags format multimedia and graphics on a web page:

•	 and <picture>: General picture and/or alternative source
of a picture with a Media Query (see Chapter 4)

•	 <canvas>: 2D indication surface for script-steered pictures

http://dx.doi.org/10.1007/978-1-4842-2499-1_4

Chapter 3 ■ HTML: Hypertext Markup Language

56

•	 <svg>: Indication surface for vector graphics

•	 <math>: Zone for mathematical formulas

•	 <iframe>, <embed>, <object>, and <param>: Embedded data
and sites

•	 <audio>, <video>, <source>, and <track>: Embedded media
and their elements

1 <canvas id="myCanvas"></canvas>
2
3 <script>
4 var canvas = document.getElementById("myCanvas");
5 var ctx = canvas.getContext("2d");
6 ctx.fillStyle = "#FF0000";
7 ctx.fillRect(0, 0, 80, 80);
8 </script>

Forms
The following tags format information that’s presented in forms:

•	 <form>: Form with sending off references

•	 <fieldset> and <legend>: Section (group) in the form

•	 <label>: Field identifier

•	 <datalist>: List for a combo box

•	 <input>: Universal input field

•	 <button>: Button

•	 <select>, <optgroup>, and <option>: Folding menu (drop-
down) or box

•	 <textarea>: Text entry box of several lines

•	 <keygen>: Key generator (only Chrome/Firefox)

•	 <output>, <progress>, and <meter>: Various output formats for
values and/or measured values

 1 <input list="countries">
 2
 3 <datalist id="countries">
 4 <option value="Germany">
 5 <option value="Netherland">
 6 <option value="France">

Chapter 3 ■ HTML: Hypertext Markup Language

57

 7 <option value="Denmark">
 8 <option value="Austria">
 9 ...
10 </datalist>

Figure 3-4.  Combo box with a data list

Scripts
•	 <script></script>: Load script or use it directly

This tag always requires a closing tag, even if it does not have any content. This is
because the parser just looks for the closing tag because the content is treated as text and
may contain any sort of “tag-like” parts as part of the script. Hence the parser cannot treat
that part as a regular structure in HTML.

Interactive Elements
The following tags are used with interactive elements:

•	 <details> and <summary>: Explanation of contents

•	 <dialog>:

•	 <menu>, <menuitem>, and <command>:

General and Universal Attributes
Universal attributes have a firm meaning in all the elements in which they occur. There
are however deviations concerning the elements, in which the universal attributes
may occur. Universal attributes can occur within <body> elements, thus they can be in
most elements. The actual usability of the element is inferred from an HTML reference.
Universal attributes are:

•	 id

•	 class

Chapter 3 ■ HTML: Hypertext Markup Language

58

•	 accesskey

•	 contextmenu

•	 contenteditable

•	 data--Attributes

•	 itemprop--Micro data

The id Attribute
The id attribute identifies an element within a document. It predominantly serves as a
goal for the links within the site, and as identifier within the CSS selectors or as identifier
for JavaScript. Contents of the id attribute must be the only thing in the document.

1 <div id="footnote-collection">

The name for id has to begin with a letter and contains as many other indications as
desired, out of [A-Za-z0-9_:-]. It is permitted in all elements except: base, head, HTML,
meta, script, styles, and headlines. These elements are not addressable, because they
are not part of the DOM or can only exist once.

The class Attribute
The attribute class is not an empty character string without blanks. It is permitted in
all elements except: base, head, HTML, meta, script, styles, and headlines. The class
attribute assigns an element to one or more classes. Classes serve to mark homogenous
elements in the markup with the goal of being able to select them. It does not have to be
homogenous elements.

Classes are typically used for CSS or as a selector for JavaScript. Other processes can
recognize such elements on the basis of the class.

 Abuse of Class  Very often classes are used as universal tools for the selection of

elements. The use should be limited, however, to style templates; that is, they should serve
the selection of CSS. If you need universal selectors, the data attributes in HTML5 are
suitable for this job.

The example in Listing 3-7 shows how classes are used. You can check out the details
about CSS in Chapter 4.

http://dx.doi.org/10.1007/978-1-4842-2499-1_4

Chapter 3 ■ HTML: Hypertext Markup Language

59

Listing 3-7.  Site with Styles

 1 <style>
 2
 3 .warning {
 4 color: red;
 5 }
 6 p.warning {
 7 border: 1px solid red;
 8 background-color: peachpuff;
 9 }
10
11 </style>
12 <body>
13 <h1 class="warning">Warning</h1>
14
15 <p class="warning">Read more books!</p>
16
17 <p><strong class="warning">Attention: Learn HTML!</p>
18 </body>

The example classifies all elements with the text color red. The paragraph with the
class warning is provided additionally with a red edge and a skin colored background.

The accesskey Attribute
With accesskey, you can set key combination on the keyboard, which the users can press
in order to have elements start directly. Its implementation in each browser is different.
Likewise, it can happen that shortcuts are already occupied by browser menus.

The accesskey attribute has further disadvantages. These begin with other functions
or with the concept of the keyboard operation of web contents, up to missing standards
for the allocation of links. There is no generally accepted convention as to which
keyboard shortcut should be used for which function, links, etc. Such “standards” are
discussed among specialists again and again, and the concept of accesskey attributes
is not practical in HTML. The concept of shortcuts in future HTML specifications will
nevertheless have to be considered.

The contenteditable Attribute
The contenteditable attribute specifies whether you edit contents of an element
(changes) or not. The possible values are true or false (the latter is the standard).

1 <section contenteditable="true">
2 <h2>The heading might be changed.</h2>
3 <p>This para can be changed.</p>
4 </section>

Chapter 3 ■ HTML: Hypertext Markup Language

60

The section element has the universal attribute contenteditable with the value
true. Since the elements <h2> and <p> haven’t set an attribute, the editing capability
isn’t activated.

The contextmenu Attribute
The contextmenu attribute specifies whether you can open a context menu with the right
mouse button or not.

 1 <body contextmenu="info">
 2 <menu type="context" id="info">
 3 <menu label="info">
 4 <menuitem label="Joerg"
 5 onclick="window.open('http://www.joergkrause.de');">\
 6 </menuitem>
 7 <menuitem label="IT-Visions"
 8 onclick="window.open('http://www-it-visions.de');"><\
 9 /menuitem>
10 </menu>
11 </menu>
12 </body>

 Support A t present, the contextmenu attribute works only with Edge and Mozilla
Firefox. Neither Chrome nor Safari have incorporated this procedure.

The dir Attribute
The dir attribute defines the writing direction within the document. Languages such as
Hebrew and Arabic are written from right to left. However, in the Unicode System, the
information about the writing direction is already there. Use this element if you must
control an element’s writing direction. CSS has additional possibilities to check the
writing direction.

1 <q dir="rtl"/> <q<

The value is set by using one of these character sequences: ltr or rtl (left to right or
right to left).

It is permitted in all elements except: applet, base, basefont, br, frame, frame set,
HR, iframe, param, and script.

Chapter 3 ■ HTML: Hypertext Markup Language

61

The draggable Attribute
The draggable attribute determines whether an element with the drag and drop can be
dragged by the API.

•	 true: The element can be drawn and shifted

•	 false: The element cannot be drawn and shifted

The dropzone Attribute
The dropzone attribute specifies whether an element can be moved, copied, or linked
when it’s pulled with drag and drop.

The hidden Attribute
The hidden attribute shows that an element is not longer relevant and is therefore faded
out. You should never use the hidden attribute to hide contents, because users can easily
view the text from the source code.

 No Protection! U sing the hidden attribute doesn’t give your data any genuine
protection. The data is visible in the source text of the site, which is easily accessed in most
browsers.

The lang Attribute
The lang attribute sets (https://www.iana.org/) a specific language setting, and the
following element contents firmly. The attribute should also be defined with monolingual
documents in the root element (HTML) and for multilingual documents in each element,
starting from where the language change takes place.

1 <html lang="de">

The contents are IANA-language shortcuts. It is permitted in all elements except:
applet, base, basefont, br, frame, frame set, HR, iframe, meta, param, and script.

Always use the language attribute in the HTML tag, in order to indicate the language
of the text on your site. For sites that are delivered as XML, use the xml: lang attribute
instead.

http://www.iana.org/)
http://www.iana.org/)

Chapter 3 ■ HTML: Hypertext Markup Language

62

The spellcheck Attribute
The spellcheck attribute specifies whether the browser’s internal spell checker is to be
activated or not. The value can be either true or false. You can use this attribute in the
following elements: inputs and textarea.

 Spell Checker T he spell checker uses the “natural” language of the browser. Often
this depends on the operating system. For users who are somewhat bilingual, this can be
annoying. Usually switching this off is helpful. If an editor field has a spell checker, it should
really be used and you look for a commercial component with programmable features.

The style Attribute
The style attribute’s content is CSS code. Normally you note CSS in your own CSS files.
For some purposes it is however meaningful to note style rules directly in the element,
for example, if many pictures on a map are placed and the positions to be determined are
directly where they’re supposed to be. Some people call this an inline style. Compared
to the noted variants, this can be restrictive. Definitions of pseudo-attributes and the
context of medium are not possible. You should use the style attribute only in justified
exceptions.

1

This attribute is allowed for all elements except: base, basefont, head, HTML, meta,
param, script, styles, and headlines.

The tabindex Attribute
The tabindex attribute makes it possible, with the help of the tab key, to start arbitrary
elements of an HTML file. The operation with the keyboard complements the attribute
accesskey, but it’s by far more robust and globally supported where the keyboard is
present.

The title Attribute
The title attribute describes an element. Browsers show descriptive text when the user
points toward it with the mouse. This is also called a tool hint. Commentating from links
is typical, supplying additional information to pictures or the explanation abbreviations.
Calling should be economically implemented on superordinate elements.

1

Chapter 3 ■ HTML: Hypertext Markup Language

63

Additional information, which is not immediately evident from the href attribute, is
shown in the title attribute.

1 <abbr title="International Panel for Climate Change">IPCC</abbr>

Abbreviations are described using the title attribute.
The attribute is allowed for all elements except: basefont, head, HTML, meta, param,

script, styles, and headlines.

 Browser Behavior  Browsers represent contents such as title attributes

differently. Firefox writes about only one line. Internet Explorer shows, if necessary, a field of
several lines. Avoid very long text and radical changes. They can stand out and will need the
assistance of CSS contents and attributes.

65© Jörg Krause 2016
J. Krause, Introducing Web Development, DOI 10.1007/978-1-4842-2499-1_4

CHAPTER 4

CSS: Cascading Style Sheets

CSS—Cascading Style Sheets—is a layout and formatting language that enables you to format
markup languages such as HTML. Ideally the HTML document contains only semantic
information and, with CSS, these will be formatted formatively and typographically.

HTML provides some basic formatting, like larger point sizes with headings. These
can be adapted to CSS, just as all not formatted elements can be formatted. Format tags
in HTML and format attributes should not be used in principle anymore. They became
outdated since HTML5. CSS is now used in their place.

With CSS, it’s also possible to separately specify output modes for different media,
such as a monitor (screen), projection, and print.

Figure 4-1.  Logo for CSS3

Chapter 4 ■ CSS: Cascading Style Sheets

66

CSS Basics
A HTML document consists of semantically meaningful awards for headings, sales, lists,
etc. The instructions for CSS must be placed in such a way that the browser can assign
these to the elements. In addition, these instructions must be written somewhere. There
are three main options:

•	 The style attribute, which every HTML element knows

•	 The <style></style> element, which summarizes several styles

•	 The <link /> element, which refers to a file that contains several
style definitions

The preferential way is the use of a CSS file. The browser can buffer these files in the
cache and the content can be made smaller with appropriate tools, so that you save range
(not because of the range, but because of the associated achievement gain).

Local style elements should be used only in exceptional cases, in order to make
short-term changes to complex files. Such local instructions for style have a higher
priority. The style attribute extends or modifies the styles for only one element. It has the
highest priority over contradictory rules from local or imported styles.

The link containing the CSS file takes place in the HEAD range of the HTML document:

1 <link rel="stylesheet"
2 type="text/css"
3 href="styles/style.css">

Note that the path of the file has to be indicated relative to the HTML document.

CSS Syntax
CSS syntax is quite simple. The essential structure consists of two components:

•	 Selector

•	 Rule set

The selector determines to which element the rules refer.

1 Selector {
2 Rule set
3 }

If the styles are within the style attributes, then they are only valid for the specified
element. Here the selector is therefore not applicable.

However, the rule set consists of rules. These are written in the following form:

Style: Parameter;

The semicolon at the end is necessary.

Chapter 4 ■ CSS: Cascading Style Sheets

67

The Selector Component
The selector is constituted so that elements on the side will purposefully be reached.
The entire pattern of the selectors is rather comprehensive. Here, the most important
components are shown at first.

Elements (Tags)
With CSS you can address individual elements. The syntax in looks as follows:

TagName { Rule set }

If you want to reach all <p> elements, it’s enough to write the following:

p { }

IDs
Frequently only one tag is changed. The addressed tag must be identifiable as such,
which means it has to be attainable with an ID. The HTML attribute of the same name
contains a character sequence, which is attainable in the CSS characteristics. An ID can
only be used to add an element within a document, therefore it should occur only once.
The syntax looks as follows:

#id { }

Here’s an example of a button:

1 <style>
2 #send {
3 color: red;
4 }
5 </style>
6 <button id="send">Send</button>

Classes
More frequently, several elements need to be addressed. In addition, you can address
server classes, which are written into the attribute class as HTML. You can hand this
attribute several classes separated by spaces and combine the rule sets. This saves
extensive work. Bootstrap uses this to provide many modification options with a few basic
rule sets. Contrary to IDs, the same class for several elements can be defined and may
then occur in several documents.

Chapter 4 ■ CSS: Cascading Style Sheets

68

The syntax looks as follows:

.class { }

Here’s an example of a button:

1 <style>
2 .btn {
3 color: red;
4 }
5 </style>
6 <button class="btn">Send</button>

Attributes
Attributes of HTML elements can be referred to using the following syntax:

[name] { }

[name="wert"] { }

Here’s another example of a button:

1 <style>
2 [data-item] {
3 color: blue;
4 }
5 </style>
6 Continue</button>

If the value of the attribute (to right of the equals character) is not indicated, then
the existence of the attribute is considered as sufficient to use the rules.

Logical Selection
It often occurs that rule sets apply to several selectors. In addition a logical OR is needed,
which is represented by a comma in CSS:

a, b { }

There is no connection between a and b, so the rule is independently applied to
both. The placeholders a and b in the example can be more complex selectors.

Chapter 4 ■ CSS: Cascading Style Sheets

69

More Selectors
In practice, these selectors are not sufficient. Table 4-1 is a compact overview of all the
other forms.

Table 4-1.  Simple CSS Selectors

Symbol Description

* Universal

tag Element

.class Class (Attribute class)

#id ID (Attribute ID)

[a] Attribute is present

[a=v] Attribute value

[a∼=v] Attribute contains value as word

[a|=v] Attribute does not contains value

[aˆ=v] Attribute starts with

[a$=v] Attribute ends with

[a*=v] Attribute contains value

Handling hierarchies is essential, because HTML documents are hierarchies,
often referred to as trees. Figure 4-2 shows the relationship between elements in the
document tree.

Figure 4-2.  Elements in the hierarchy of a HTML site

Chapter 4 ■ CSS: Cascading Style Sheets

70

Table 4-3.  Static CSS Selectors

Symbol Description

::first-line First line

::first-letter First letter

::before Before the element

::after After the element

::selection The selected text

Table 4-2 shows the syntax for CSS.

Table 4-2.  CSS Selectors for Hierarchies

Symbol Description

e > f Selection if f is a child of e

e f Selection if f is an immediate successor to e

e + f Selection if f is a successor to e

e ∼ f Selection if f is a sibling of e

In this case, the use of predecessors and parents is missing as a function. You can get
this result by exchanging the elements.

Pseudo-selectors do not have a comparable representation in HTML, but result from
the position of elements or the use. There are three kinds of such selectors:

•	 Static positions

•	 Selection of ranges

•	 Dynamic behavior

Table 4-4.  CSS Selectors for Ranges

Symbol Description

:root Basic element

:empty Applies only if the item is empty

:first-child The first child element of a list

:last-child The last child element of a list

:nth-child() A particular child element of a list

:nth-last-child() A particular child element at the end of a list

(continued)

Chapter 4 ■ CSS: Cascading Style Sheets

71

Symbol Description

:only-child Valid only when there is only one child element

:first-of-type First child element of a type

:last-of-type Last child element of a type

:nth-of-type() Child element of a type in a list

:nth-last-of-type() Child element of a type at the end of a list

:only-of-type Only this type from a list

Table 4-5.  Dynamic CSS Selectors

Symbol Description

:link A hyperlink

:visited A hyperlink that has already been visited

:hover A hyperlink to the hovering the mouse

:active A hyperlink that is active (clicked)

:focus An item that has the focus (blinking cursor)

:target An item that has a target attribute

:disabled An item that is disabled (disabled attribute)

:enabled An item that is enabled (not disabled attribute)

:checked An item that is checked (a check box)

:valid An element that is valid

:invalid An element that is not valid

:lang() An item that the appropriate lang="" attribute

:not() Negates the following selections (this is an operator)

Table 4-4.  (continued)

The examination of the validity of form elements presupposes that the attributes
defined in HTML5 are used, such as max length, required , DATE , e-mail, etc.

Contrary to the long attribute, the long() in CSS can determine a fallback, thus
de-DE reacts to de, etc.

 Browser Support N ot all the current browsers support all of these pseudo-classes.

Check the online documentation of the appropriate browsers before you use any of these
classes, for best results.

Chapter 4 ■ CSS: Cascading Style Sheets

72

The Box Model
HTML supports two kinds of description forms for elements—flow elements and
block elements. Flow elements embed themselves in text. These elements do not have
dimensions such as width and height, because they depend on the surrounding elements.
Block elements, however, have dimensions and displace any adjacent elements when
necessary. This displacement behavior is adaptable, and is up to the intended overlay.
Using special rules, you can change these elements, which are actually flow elements,
into block elements. This also works in reverse.

The box model of the block element defines characteristics for almost all the ranges
of a rectangular range (see Figure 4-3).

Figure 4-3.  Components of the box model

It’s important to recognize that the instructions of width and height are not the final
measurements, but indicate the dimensions of the contents. If a framework encloses the
box, the final width of the frameworks must be computed again. If the framework on all
sides is alike:

Width = edge * 2 + framework width * 2 + distance * 2 Height = edge * 2 +
framework width * 2 + distance * 2

If there’s a difference with the edges, calculating the framework widths and distances
becomes accordingly more complex.

Chapter 4 ■ CSS: Cascading Style Sheets

73

Components of the Box
Each component of the box has its own separate value. The internal range includes the
contents. The components are:

•	 padding: The internal distance

•	 border: The framework on the outside

•	 margin: The outside edge, the distance to other elements

Since the box is associated with a rectangle, four values have to be indicated:

•	 top

•	 right

•	 bottom

•	 left

 Counting Method T he origin can be seen on screens and printed pages in the

upper-left corner. In some rules, several values can be directly indicated. In such cases, the
four values shown in order are interpreted, beginning with top (upper-left) and then further
in the clockwise direction.

With margin, horizontally formed distances are valid. However, the vertical distances
can collapse under certain circumstances (collapsed). This occurs if neither frameworks
(border) nor distance (padding) are used without exemption (clear). The lower edge
of the upper box with the top margin of the lower box is then overlaid. If the edges are of
various sizes, the wider edge will be used.

 Exceptions T here is a whole set of exceptions from the unification rules of the
edges. Consult the official documentation for example of more complex sites.

The Box Model in CSS3
CSS3 introduced an extension of the box model, and it allows a more flexible assignment.
With help from the characteristic box-sizing, it’s possible to specify where width and
height are used. Thereby one of the following indications is allowed:

•	 content-box: Default value, information is valid only for contents

•	 padding-box: Information is valid for contents and interior
distances

Chapter 4 ■ CSS: Cascading Style Sheets

74

•	 border-box: Information is valid for contents, interior distances,
and framework

•	 inherit: box-sizing of the parents element takes over
(inheritance)

Attention of Media
CSS allows you to specify the representation of a document for a different edition media.
The allocation of stylesheets to a medium takes place using media queries.

A list with criteria is called media inquiry, and it must fulfill an edition medium, so
that a stylesheet is merged for processing. Medium inquiries consist of a type of medium
(e.g., screen or printer), a medium characteristic (e.g., color rendition), or a combination
of both. Stylesheets can be tailored to a variety of edition media.

 Media queries cannot be noted in the style attributes.

Syntax
The medium type takes place as a simple keyword, for example screen.

If no medium inquiry is indicated or if the indicated inquiry
consists only of blanks, then the default value is valid (all).

Listing 4-1.  Medium Inquiry in an HTML Document

1 <link rel="stylesheet" href="monitor.css" media="screen">
2 <link rel="stylesheet" href="printer.css" media="print">

The print type ensures that the stylesheet printer.css is used during the printout.
On a screen, however, monitor.css will be activated.

 This approach has the disadvantage that both stylesheets often contain the same
CSS rules. On top of that, at least two files are needed.

You can also omit the media attribute, at which point the stylesheet is valid for all
media. In the alternative file, only the changes must be noted.

Chapter 4 ■ CSS: Cascading Style Sheets

75

Listing 4-2.  Medium Inquiry with a Standard Document

1 <link rel="stylesheet" href="monitor.css">
2 <link rel="stylesheet" href="printer.css" media="print">

The rules can also be accommodated in the CSS file, as shown in Listing 4-3.

Listing 4-3.  Rules for Printing

1 @media print {
2 /* Regeln für Druckausgabe */
3 }

Media have certain characteristics, which modify the selection of the rule. With
the screen type, this can be the number of pixels, for example. Prefixes like min and max
permit you to indicate a range.

1 <link rel="stylesheet" href="pt.css"
2 media="(orientation: portrait)">

The stylesheet pt.css is merged if the content of the sites is in the portrait format.

1 <style type="text/css" media="(color)">
2 /* Farbangaben. */
3 </style>

The style element indicates any color information, if the display can represent
colors. A black-and-white printer would profit from the fact that no poorly readable colors
are used (yellow and white for example).

1 @import 'layout.css' (min-width: 150mm);

The stylesheet layout.css is used if the normal range of the medium amounts to
150mm at least.

Medium inquiries can be grouped with logical ORs. As is the case with the CSS
selectors, the comma is used. Grouped inquiries are completely independent from each
other. As soon as at least one of the inquiries applies, the declarations are used.

1 @media print, embossed {
2 /* Formate für Printmedien. */
3 }

In this example, a stylesheet is specified, and it can be used for both the print and
embossed types.

Chapter 4 ■ CSS: Cascading Style Sheets

76

Several medium characteristics can be connected using the and keyword. A stylesheet
is processed only if all its associated criteria is fulfilled.

1 @media (min-width: 130mm) and (max-width: 160mm) {
2 /* Kompaktes Layout */
3 }
4 @media print and (color), screen and (color) {
5 /* Farbangaben */
6 }

The style element indicates any color information, assuming the edition medium
can represent colors. If a type of medium is noted at the beginning of the medium
inquiry, then this information can be placed in front of only or can use the keyword
emergency. only hides the medium inquiry in browsers that do not support them.
Otherwise, the inquiry is processed as if the keyword was missing. If the operator is
placed in front of not, the inquiry is denied.

1 @media only all and (min-width: 150mm) {
2 /* Layout */
3 }
4 @media not all and (monochrome) {
5 /* Farben */
6 }

This example shows how screens that are at least 150mm wide are assigned to the
range rules. A browser that understands medium inquiries ignores the keyword only.
Denying the inquiry monochrome enables you to use the color information by all media
that can deal with color information.

 Handling Units A characteristic deals with relative length specifications like em or ex.
When these values are processed, the default value of the browser is assumed, which was
defined by the user. Normally, em refers to the current text, which is however not defined and on
the level of the medium inquiry yet. You can find more about units at the end of this chapter.

Each characteristic can also be used without a declared value. In this case, CSS
checks whether the characteristic on the used medium is present.

1 @media (width) {
2 /* Das Ausgabemedium besitzt das Merkmal "Breite" */
3 }
4 @media (color) {
5 /* Das Ausgabemedium besitzt das Merkmal "Farbfähigkeit" */
6 }

Chapter 4 ■ CSS: Cascading Style Sheets

77

Parameters
The characteristic width determines the width of the normal range (viewport) with
sequential media. With paged media, it determines the width of a side. The prefixes min
and max can be used to indicate borders.

1 @media (width: 60em) {
2 /* Breite entspricht genau 60em */
3 }
4 @media (min-width: 50em) {
5 /* Breite beträgt mindestens 50em */
6 }
7 @media (max-width: 70em) {
8 /* Breite beträgt höchstens 70em */
9 }

With characteristics that assign themselves to the normal indicator, it’s almost always
meaningful to use one of the possible prefixes since the actual indicator width is not set
by the user.

The characteristic height determines the height of the normal range (viewport) with
sequential media; with paged media, it determines the height of a site. The prefixes min
and max are used to indicate borders.

The device-width and device-height characteristics determine the width and
height of the output device, for example, the width of a screen in pixels. The value is a
positive length. The prefixes min and max can be used to indicate borders.

1 @media (device-width: 800px) {
2 /* Breite entspricht genau 800 Pixel */
3 }
4 @media (min-device-width: 800px) {
5 /* Breite beträgt mindestens 800px */
6 }
7 @media (max-device-width: 1024px) {
8 /* Breite beträgt höchstens 1024px */
9 }

 Even if an output device possesses certain dimensions, that does not mean that the
available range will be used. Likewise, the message of the pixels can deviate from the
physical pixels, for example, in the case of retina displays. Likewise, not all devices
announce their orientation by changing the values. On Apple devices, the width is always in
portrait mode, even if the user turns the tablet around or uses it in horizontal format.
Orientation must be likewise considered.

Chapter 4 ■ CSS: Cascading Style Sheets

78

The orientation characteristic determines the page format of an edition medium.
Orientation corresponds to the value landscape (landscape format), if the width value is
larger than the height value. Otherwise, the orientation is set to portrait. The value is
one of two keywords—portrait or landscape.

1 @media (orientation: portrait) {
2 /* Formate für hochformatige Ausgabemedien */
3 }

The aspect-ratio characteristic determines the relationship of the width
characteristic to the height characteristic. The prefixes min and max can be used here.

1 @media (aspect-ratio: 4/3) { /* Fall 1 */ }
2 @media (min-aspect-ratio: 4/3) { /* Fall 2 */ }
3 @media (max-aspect-ratio: 4/3) { /* Fall 3 */ }

In this example, the relationship value 4/3 is assigned to the variant’s “aspect ratio”
of the characteristic. The stylesheet is processed if the aspect ratio of the normal range
(viewport) corresponds exactly to 4 to 3 (case 1). That is that case with a normal range
from 492 to 369 pixels. The stylesheet in case 2 is used, if the aspect ratio is 4/3 or more. In
case 3, the stylesheet is processed only if the aspect ratio is smaller than 4/3 (for example,
2/3 or 1/3).

The device-aspect-ratio characteristic determines the relationship of the device-
width characteristic to the deviceheight characteristic. This is implemented similar to
the aspect-ratio characteristic

The color characteristic determines the number of bits that color equipment
components (the red, green, or blue values) use. If the output device cannot show colors,
the value 0 (zero) is applicable. For different color components, if a different number
is used, then the lowest number of bits of the equipment counts. This value is a never a
negative number.

1 @media (color: 2) { /* Einfaches Farblayout */ }
2 @media (min-color: 3) { /* Komplexes Farblayout */ }
3 @media (max-color: 2) { /* Einfaches Farblayout */ }

The color index characteristic determines the number of color definitions in the
color chart of the edition medium. If the medium does not have a color chart, the value 0
(zero) is applicable. Usually only media possess a color chart.

1 @media (color-index: 16) {
2 /* genau 16 Farben stehen zur Verfügung */
3 }
4 @media (min-color-index: 20) {
5 /* Mindestens 20 Farben stehen zur Verfügung */
6 }
7 @media (max-color-index: 256) {
8 /* Höchstens 256 Farben stehen zur Verfügung */
9 }

Chapter 4 ■ CSS: Cascading Style Sheets

79

 Support for “color index” is at present not universal with all browsers.

The monochrome characteristic (black-and-white) determines the number of bits
used to describe a black-and-white shade. If it does not concern equipment, which can
represent only grayscale (but also colors), the value 0 (zero) is applicable

1 @media (monochrome: 1) {
2 /* only black and white are available */
3 }
4 @media (min-monochrome: 4) {
5 /* at least 16 shades of gray */
6 }
7 @media (max-monochrome: 8) {
8 /* a maximum of 256 shades of gray */
9 }

The light level characteristic determines the lightning conditions of the
environment and this is determined by the brightness sensor of the camera. The
following settings are possible:

•	 dim: Absorbed light only

•	 normal: The normal lighting level

•	 washed: Very bright, flooded with light. If the medium does not
have a color chart, the value 0 (zero) is applicable. Usually only
media possess a color chart, and the color rendition is reduced.
To have a color chart, the value 0 (zero) is applicable. Usually only
media possess a color chart, whose color rendition is reduced.
The specification uses no firm lighting values, since many devices
have their own contrast adjustments. The technologies are just
too different (E-Ink remains legible in bright light, while crystal
displays wouldn’t support that). Since the brightness sensors are
not frequently calibrated, the reaction is difficult to predict.

 1 @media (light-level: normal) {
 2 p {
 3 background: url("texture.jpg");
 4 color: #333 }
 5 }
 6 @media (light-level: dim) {
 7 p {
 8 background: #222;
 9 color: #ccc }
10 }

Chapter 4 ■ CSS: Cascading Style Sheets

80

11 @media (light-level: washed) {
12 p {
13 background: white;
14 color: black;
15 font-size: 2em; }
16 }

The pointer characteristic determines the accuracy of information that’s entered as
a point. It’s often difficult to distinguish between touch devices, such as smartphones and
tablets, with a mouse click, not to mention consoles such as the Wii. This is where you
indicate touchpad or input pins. The following settings are possible:

•	 fine: For devices with mouse, touchpad, or input pins

•	 coarse: For devices with touch or gesture control

•	 none:

1 @media (pointer: coarse) {
2 input {
3 padding 1em;
4 font-size: 2em;
5 }
6 }

With touch devices, the font size and the interior distance of the input field are
increased accordingly.

Since most devices have several input modes, and you don’t know which method
they will use at any one time, you can find out with any pointer whether there are input
devices at all. You can’t completely close specific devices with pointer or any-pointer.
However, you can recognize (in combination with the display width) whether someone is
using a smartphone, tablet, or desktop computer. Thus you can optimize web pages more
exactly for certain devices.

The resolution characteristic determines the dissolution, thus the tightness, of the
pixels on an edition medium. If the medium you’re using does not use rectangular pixels
(for example printers), then the characteristic can be used only in connection with a
prefix. In this case, min-resolution determines the lowest possible inquiry, and max-
resolution sets the highest possible tightness of the pixels.

1 @media (resolution: 96dpi) {
2 /* Die Auflösung beträgt 96 Bildpunkte pro Zoll */
3 }
4 @media (min-resolution: 200dpcm) {
5 /* Die Auflösung beträgt mindestens 200 Punkte pro cm */
6 }
7 @media (max-resolution: 300dpi) {
8 /* Die Auflösung beträgt höchstens 300 Punkte pro Zoll */
9 }

Chapter 4 ■ CSS: Cascading Style Sheets

81

The scan characteristic determines the screen layout of output devices of the type
tv. This can take place progressively and can corresponds, for instance, to the screen
layout on a computer screen. If so, the value progressive applies. Or it can take place by
line formation (i.e., individual character rows are gradually represented), in which case it
applies the interlace value. The values are permitted as progressive or interlace.

1 @media (scan: progressive) {
2 /* screen layout */
3 }

The grid characteristic determines the raster characteristic of the edition media.
With output devices, which represent contents in a raster, the value unity (1) usually
applies; otherwise, you use the value zero (0).

1 @media (grid: 0) {
2 /* several font formattings */
3 }

The Viewport
The viewport indication is an HTML line that ensures that the web site is correctly
rendered upon first call on mobile equipment.

The browsers of mobile devices often assume that the web sites aren’t appropriate
for them and that the web site width exceeds the display width. The browser viewport
(normal range) is adjusted to 980 pixels wide, so that most web sites can be viewed
completely. This has the disadvantage that the text ends up being very small and hard to
read. The user must then zoom in in order to be able to read anything.

Viewport Configuration
The viewport code can be adapted very simply over an HTML element. If the web site
deviates from the standard width, then you can adapt the viewport. Thus, you can ensure
that the contents and the normal range agree. With these layouts, the web site is shown in
the maximum size possible.

The starting view of apple.com zoomed on mobile devices (left) and cut out with
readable text (right) is shown in Figure 4-4.

Chapter 4 ■ CSS: Cascading Style Sheets

82

To make this change, you insert the following line into the head area of the site. This
is then evaluated by the appropriate mobile devices.

1 <!DOCTYPE html>
2 <head>
3 <meta name="viewport" content="width=1024" />
4 </head>
5 <body>
6 </body>

If the web site in question is provided or optimized for mobile devices, you do not
usually indicate a fixed width for the viewport. Smartphones have, for example, in the
portrait format a logical width of 320px and in the landscape format 480px (physically,
the value will be higher). This means that in the high and landscape format, the same
contents, only in a different zoom shot level, would be shown.

Instead, you’ll need to use a formula to convert this ratio suitably:

Width of the Viewports = Width of the Device

If the smartphone has a width of 320px in the portrait format, exactly 320px of the
web site will be shown (1:1). Likewise, in the landscape format, 480px are shown. This
flexible attitude is device-independent. On the other hand, it’s possible to also use it in
landscape format, which is beneficial.

Figure 4-4.  Web site with and without zoom

Chapter 4 ■ CSS: Cascading Style Sheets

83

Figure 4-5.  With (left) and without (right) a meta element

The following comparison shows the effect. Figure 4-5 shows the site on a mobile phone
with the meta element in the source code width=devicewidth (left) and without (right).

Viewport Configuration
The meta element for the viewport has further characteristics, apart from the width, which
are formatted into a comma-separated list.

1 <meta name="viewport" content="width=device-width,
2 initial-scale=1.0,
3 user-scalable=no" />

•	 initial-scale: Specifies the initial zoom in degrees. 1.0 leads to
the fact that the contents of 1:1 are represented, which is called a
320px-width diagram. The complete width on a screen with 320px
wide fills it out (also shown in Figure 4-5). Accordingly, the 2x
zoom leads to an enlargement by 2.0.

•	 user-scalable: You can define whether the user on the site can
zoom (yes) or not (no).

•	 minimum-scale and maximum-scale: These two characteristics
make it possible to limit the zoom degree. If you set the maximum
scaling to 2.0, the text can be increased twice.

CSS Units
CSS units express a length. This is used with widths, heights, distances, edges, etc.
Syntactic information of units consists of a number and a unit. The number of 0
measured can be void. There are two kinds of units—absolute and relative.

Chapter 4 ■ CSS: Cascading Style Sheets

84

Absolute Units
Absolute units are as follows:

•	 cm: Centimeter

•	 mm: Millimeter

•	 in: Inch

•	 px: Pixel

•	 pt: Dot

•	 pc: Pica

 Typographic Information T ypographic units such as point and pica were adopted
from the time of the paper printing. People defined the widths during the printout accurately.
1 Pica is 12 points, 1 point is 1/72 of an inch. In the today’s world, screens have many sizes,
widths, and dissolutions, so this type of information is senseless to a large extent.

The relationship between pixels (points on the screen) and an inch is fixed to 2.54
cm = a 96 resolution. With Windows, 1 inch = 1 pixels. Standard devices with normal
dissolution supply a relationship of 1 equipment pixel to 1 pixel. Devices with high
resolution, like printers or retina displays, supply n pixels to equipment pixel with = 1.

Table 4-6.  Medium Inquiry in an HTML Document

System Resolution Device Pixel per Pixel

Mac 72 1

Windows 96 1

Mobile low 120 1

Mobile medium 160 2

Mobile high 240 2

Retina 300 3

If you want to find out the real dissolution, you can do so by using the instruction
of the screen width and height, as well as the diagonal length of the screen. In the case
of 4.65 inch smartphones with 1280x720 pixels, the result after the set of the Pythagoras
would be:

sqrt(12802 x 7202) / 4.65 = 315.8

Chapter 4 ■ CSS: Cascading Style Sheets

85

That is rounded to 316 inches. You then have to mark out the equipment, which
usually means subtracting 320 dpi from it. Dividing by 96 (the resolution) results in a
relationship of 1:3:33, which is rounded to 3 for the equipment pixel per pixel setting.

Absolute information should be used only if you know for sure how exactly the
medium will display your page. That is more or less only possible for printers.

 Recommendation I f you need an absolute unit, you should size to px if you’re

using the right screen. On a printer, you should use mm or pt.

Relative Units
Relative units use a certain starting point and are relative to other characteristics such a
screen size and styles. The following units are available:

•	 em: Unit of the font size based on the height in pixels (1em is the
size in pixels of a basic letter M)

•	 ex: Unit of the font size based on the height of the small letter x

•	 ch: Unit of the font size based on the width the number 0

•	 rem: Unit of the font size based on the width of the small letter m
of the root element of the side (body)

•	 vw: Relative to 1% of the width of the viewport (with a 46cm screen
width, 1vw = 0.46cm)

•	 vh: Relative to 1% of the height of the viewport

•	 vmin: Relative to 1% of the width of the narrow side of the
viewport

•	 vmax: Relative to 1% of the width of the wider side of the viewport

•	 %: As a proportion of the original value

The em unit defines the size of the letter M as measure of the unit. This is not the case
with CSS, the value is the browser standard, comparable to using the Times New Roman
font. Which actual pixel value the browser uses is not clearly defined—by any means 12
pixels are not accurate and the known 16 pixels aren’t guaranteed either.

Figure 4-6 shows that the standard font (here from Firefox) needs exactly 16 pixels for
the letter M and that this corresponds to the instruction 16px. The red line is 16 pixels. As
the font size in this image, 1em and 16px were adjusted and the same result was obtained.

Chapter 4 ■ CSS: Cascading Style Sheets

86

 Recommendation I f you need a relative unit, use em or rem. The unit rem remains

constant on the entire site; em however is valid for the current text in each case.

Figure 4-6.  Measuring of the pixel unit, em

87

�       � A, B
Address Resolution Protocol (ARP), 5
Atom Syndication Format (ATOM), 25

�       � C
Cascading Style Sheets (CSS)

absolute units, 84–85
basics, 66
box model

characteristics, 73
components, 73
CSS3, 73

description, 77
logo, 65
media inquiry

aspect-ratio, 78
color index, 78–79
color rendition, 73
device-aspect-ratio, 78
font size, 80
grid, 81
light level, 79–80
monochrome, 79
orientation, portrait, 78
parameters, 81
pixels, 77
pointer, 80
resolution, 80
scan, 81
screen/printer, 74
syntax, 74
width and height, 75

relative units, 85–86
selectors

attributes, 68
classes, 67–68

dynamic, 71
elements (tags), 67
hierarchies, 70
IDs, 67
logical selection, 68
ranges, 70–71
rules, 66
simple, 69
static, 70

viewport, 81–83
CDN. See Content Delivery

Network (CDN)
Client-Site optimization

DOM, 38, 46
handling images, 35, 39, 69

Content Delivery Network (CDN), 30, 33
CSS. See Cascading

Style Sheets (CSS)

�       � D
Data Stream, 10
Document object

model (DOM), 38, 46, 58
Dynamic Web Sites

description, 26,
optimization (see Optimization)
programming, 27
type IP-address,

procedure, 27–28
user requests, 27

�       � E
EXtensible Markup

Language (XML)
markup, 41
structure and features, 41

Index

© Jörg Krause 2016
J. Krause, Introducing Web Development, DOI 10.1007/978-1-4842-2499-1

■ INDEX

88

�       � F, G
File Transfer Protocol (FTP), 11

�       � H
HTML5 site structure, 47–50
Hypertext Transfer Protocol (HTTP)

codings, 46–47
correctness, 44–45
CSS (see Cascading Style Sheets (CSS))
description, 39
Doctype, 46
empty elements, 43–44
flow elements and block elements, 72
forms, 56–57
header and body, 12
head fields, 15–16
HTML 5 logo, 40
HTTP 2.0, 16–17
interactive elements, 57
markup, 42–43
methods, 13–14
multimedia and graphics, 55–56
principles, 39
references, 54
request, 15
response, 15
scripts, 57
shapeliness, 42
site structure, 45–46
special cases, 45
status codes, 14–15
sub standards, 12
tables, 55
text elements, 51–53
text flow, 54
universal attributes

accesskey, 59
class, 58–59
contenteditable, 59
contextmenu, 60
dir, 60
draggable, 61
dropzone, 61
hidden, 61
id, 58
lang, 61
spellcheck, 62

style, 62
tabindex, 62
title, 62–63

validation, 42
validity, 44
versions, 40
WebDAV, 18
WebSockets, 17
XML basics

markup, 41
structure and features, 41

�       � I
Internet Control Messaging

Protocol (ICMP), 5–6
Internet protocol family

ARP, 5
ICMP, 5–6
important protocols, IPS, 4
vs. ISO/OSI reference model, 4
layers, 3

Internet Protocol (IP)
addresses, 7
broadcast, 6
fragmentation, 6–8
header, 7
IP addressing, 6
MTU, 8
No error correction, 6, 8
options and protocol, 7
routing, 6
type of Service (TOS), 7

Internet Protocol Suite (IPS), 3–4
ISO/OSI reference model, 2–3

�       � J, K, L
JavaScript Object Notation (JSON), 24–25

�       � M
Maximum Transmission

Unit (MTU), 8
MIME. See Multipurpose Internet

Mail Extensions (MIME)
Multimedia, 10
Multipurpose Internet Mail

Extensions (MIME), 23

■ INDEX

89

�       � N
Network News Transfer

Protocol (NNTP), 11

�       � O
Optimization

client-Site, 35–38
general and banal, 34–35
server-page (see Server-page

optimization)
tools, 28–30

�       � P, Q
Ports, 10

�       � R
Representational State Transfer (REST)

addressability, 19
ATOM, 25
conditionlessness, 19
description, 18
example, 20
extensibility, 19
general acceptance, 19
HTTP methods, 22–23
JSON, 24–25
MIME, 23
representation variable, 19
scalability, 19
technical features, 18
URI, 20–22

Request For Comments (RFCs), 1–2

�       � S
Server-page optimization

bundling and minifying, 34
CDN, 34
pipeline optimization, 32
process configuration, 29
sprites, 34–35

Session Initiation Protocol (SIP), 11
Simple Mail Transfer Protocol (SMTP), 12
Standardizsation, RFCs, 1–2

�       � T
Transmission Control

Protocol (TCP), 9–10

�       � U
Uniform Resource Identifier (URI), 20–21
User Datagram Protocol (UDP), 10–11

�       � V
Voice over IP (VoIP), 10–11

�       � W
Web-based Distributed Authoring

and Versioning (WebDAV), 18
WebSockets, 17

�       � X, Y, Z
XML. See EXtensible Markup

Language (XML)

	Contents at a Glance
	Contents
	About the Author
	Introduction
	Chapter 1: Protocols of the Web
	Standardization with RFCs
	The OSI Reference Model
	The Internet Protocol Family
	Important Protocols of the Internet Protocol Suite
	Address Resolution Protocol (ARP)
	Internet Control Messaging Protocol (ICMP)
	Internet Protocol (IP)
	IPV6 versus V4

	Transmission Control Protocol (TCP)
	Port
	Data Stream

	User Datagram Protocol (UDP)
	Multimedia and VoIP

	Session Initiation Protocol (SIP)

	The High-Level Language Protocols
	File Transfer Protocol (FTP)
	Network News Transfer Protocol (NNTP)
	Simple Mail Transfer Protocol (SMTP)/Extended SMTP (ESMTP)
	Hypertext Transfer Protocol (HTTP)
	Protocol Construction: Header, Body
	Command Structure
	The HTTP Status Codes
	Expiration of HTTP Communication
	Head Fields

	HTTP 2.0
	Supplemental Standards
	WebSockets
	WebDAV

	REST
	Features
	Addressability
	Representation Variable
	Conditionlessness
	Scalability
	Generally Accepted
	Expandable

	REST Example
	URI
	HTTP
	MIME
	JSON
	The JSON Format Definition

	The ATOM Format

	Chapter 2: Dynamic Web Sites
	How Dynamic Web Sites Are Created
	Optimization
	Tools
	Server Page Optimization
	Pipeline Optimization
	Process Configuration
	CDN (Content Delivery Network)
	Minify and Bundling
	Sprites

	General and Banal
	Client-Site Optimization
	Handling Pictures
	Handling the DOM

	Chapter 3: HTML: Hypertext Markup Language
	Basics of HTML
	The History of HTML

	XML Basics for HTML
	Markup
	Structure and Features of an XML Document
	Shapeliness
	Validation

	Processing
	The Term “Markup”
	Empty Elements
	Validity
	Correctness
	Special Cases

	Site Structure
	The Doctype
	Codings
	HTML5 Site Structure

	Elements of the Page
	Text Elements
	Headings (h1 … h6)
	Paragraphs (p)
	Preformatted (pre)
	The blockquote Tag
	The figure and figcaption Tags
	The hr Tag
	The ol and li Tags
	The ul and li Tags
	The dl, dt, and dd Tags
	The div Tag

	Text Flow
	References
	Tables
	Multimedia and Graphics
	Forms
	Scripts
	Interactive Elements

	General and Universal Attributes
	The id Attribute
	The class Attribute
	The accesskey Attribute
	The contenteditable Attribute
	The contextmenu Attribute
	The dir Attribute
	The draggable Attribute
	The dropzone Attribute
	The hidden Attribute
	The lang Attribute
	The spellcheck Attribute
	The style Attribute
	The tabindex Attribute
	The title Attribute

	Chapter 4: CSS: Cascading Style Sheets
	CSS Basics
	CSS Syntax
	The Selector Component
	Elements (Tags)
	IDs
	Classes
	Attributes
	Logical Selection
	More Selectors

	The Box Model
	Components of the Box
	The Box Model in CSS3

	Attention of Media
	Syntax
	Parameters

	The Viewport
	Viewport Configuration
	Viewport Configuration

	CSS Units
	Absolute Units
	Relative Units

	Index

