Z (pronounced zed) is a formal notation for specifying and designing computer systems
and software. Formal methods are useful when problems are novel or difficult, or systems
must meet requirements for safety, security, accuracy or other critical properties. This
book is a self-contained tutorial on Z and formal methods for experienced professionals
and serious students in programming, software engineering and computer science.

By using realistic case studies emphasizing safety-critical systems and other exam-
ples drawn from embedded controls, real-time and concurrent programming, computer
graphics, games, text processing, databases, artificial intelligence, and object-oriented
programming, the author motivates the use of formal methods and discusses practical
issues concerning how to apply them in real projects. He also teaches how to apply
formal program derivation and formal verification to implement Z specifications in real
programming languages through examples in C.

The book includes exercises with solutions, reference materials, and a guide to further
reading directing readers to more case studies, experience reports, recent research, and
other formal notations and methods.

If you want to try out formal methods, or just want to find out more about them, this
book is for you.
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Preface

I learned Z {pronounced zed) when I got tired of programming by trial and error.

I write large programs for a serious purpose. I work in a clinical department in a
research hospital. My first project here was a program that assists in planning radi-
ation therapy treatments for cancer, by performing physics simulations — radiation
dose calculations — with 3-D interactive graphics. Qur planning system took more
than two years to develop and comprised 40,000 lines of code. We spent plenty of
time on design, coded carefully, and ran lots of tests.

Like most software, our system usually worked. It did most of what the users asked
for — and some things that they didn’t. It handled most cases correctly — then every
so often it did the wrong thing, locked up, or crashed. We, the developers, were as
surprised by the bizarre behavior as anyone else. Fortunately, the computations were
done before patients’ treatments began and every result was reviewed thoroughly.
We could detect and work around the problems. We could live with it — though it
wasn’t always convenient.

We had to do better. Our next project was the computer control system for a
unique radiation therapy machine at our clinic. Typical software quality wasn’t good
enough. We had recently learned of another therapy control system that had killed
people!

I surveyed every development method I could find, including many packaged as
software products with nice facilities for drawing diagrams and producing docu-
ments. I was disappointed. Most of them emphasize how a system is structured but
are weak on describing behavior. Above all, we needed a complete and unambiguous
description of what our system would do. A few methods and products did attempt to
do this, but they weren’t very expressive and didn’t provide a clear way to represent
the important features of our system.

To my surprise, I found that the only methods that really hit the nail on the head
were the formal methods. Formal methods apply logic and simple mathematics to
programming. They enabled us to create complete, yet concise, descriptions of what
we were trying to do and helped us write the programs so we knew they would work.
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I chose Z for this book because it is the formal notation which is the most acces-
sible and best explained. It already has a rich literature of case studies that provide
examples and inspiration. Z is among the first of the formal description languages
to break out of the research world and be used on large projects in industry: Industry
leaders with IBM, Inmos and others say it has saved them millions. Z has been applied
to embedded controls, commercial transaction processing, floating point microcode,
and other applications. It is also beginning to be taught at colleges and universities. Z
works with any programming language and supports different programming styles,
including object-oriented programming, functional programming, and others. You
can get started easily: You don’t need to buy any expensive tools, and it can work
on a small scale — even for a single programmer.

Formal programming methods have a frustrated history. They have a reputation for
being esoteric and impractical. This reputation derives from how they are customarily
presented, not from their actual content or difficulty. Most of the literature has
been written by researchers for other researchers. They have honed the methods
to a very sharp point and have made some impressive accomplishments, but their
achievements remain little-known and have hardly influenced the actual practices of
most working programmers.

I wrote this book to break that pattern. This is a popular introduction, intended
to demystify formal methods and interpret them for a wide audience. This is a book
about programming — it shows how Z can help you write programs. It takes you all
the way to code, with examples in C.

This is not a conventional textbook. The textbooks provide instruction in writing
the Z notation and manipulating Z formulas. But programming is not just formula
manipulation. There is much more to developing software than solving symbolic
puzzles. My goal is to teach you to apply Z to the novel problems that you are sure to
encounter in your work — problems that have never before been expressed formally.
I will describe an approach to programming where formal methods can fit in and
make sense. Through it all, I never lose sight of the whole point of programming: to
create something useful that solves a real problem.

Although this is not a conventional textbook, it is a self-contained introduction to
Z and the discrete mathematics on which it is based. It covers most of the notation,
including some advanced topics that are not discussed in most textbooks but which 1
have found to be useful in practical applications of Z. If you are serious about using
Z, you will eventually want to get a copy of The Z Notation: A Reference Manual,
but in the meantime the appendices here contain enough reference material to get
you through this book.

My method is to demonstrate the notation through a series of short studies, each
just a few pages long. This introduces the essential features of the notation quickly.
The examples are drawn from computer graphics, embedded controls, games, safety-
critical systems, text processing, artificial intelligence, and databases. Several of the
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examples are taken from my work in radiation therapy. I present a few of these twice:
first in simplified form, then with something nearer to their actual complexity, to
show how Z can be scaled up from toy examples to real problems.

This book does not require any prior exposure to Z or formal methods. However,
it does require a certain professional maturity. I assume that you have enough expe-
rience in real programming projects to appreciate the problems that Z is intended to
solve. If you have ever had to make sense of complicated requirements, work from
a lengthy prose specification, or figure out an obscure program written by someone
else, this book will speak to you. I also assume that you understand certain technical
concepts that are used in all modern programming languages, such as Boolean ex-
pressions, relational operators, and data types. You should also be comfortable with
elementary arithmetic and algebra.

Paper and pencil are all the tools you need to begin using Z, but software can
help. Utilities for printing and displaying the Z symbols, and for checking syntax and
type correctness, are available for most popular computer systems; some are free.
The Z home page (http://www.comlab.ox.ac.uk/archive/z.html)
has information on tools and other useful resources.

I have another goal besides just conveying technical information. 1 want to con-
vince you to try out Z in your own work! Much of this book is devoted to providing
motivation and explaining the rationale for using Z.

In my experience, manipulating the notation is not the hard part. Every pro-
gramming language is a formal language, and Z is simpler than most programming
languages. When to use this kind of notation is difficult for newcomers to grasp. Z
only makes sense in a programming approach that is very different from the methods
many programmers are now using. Language isn’t just syntax and semantics; it is
culture, too. I've tried to pass some of that culture along in this book so you can
learn and enjoy the way of Z.
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He who seeks for methods without having a definite problem in mind

seeks for the most part in vain.
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| Formal methods

Formal methods apply logic and simple mathematics to programming. They work
best where traditional programming methods don’t work very well: problems that
are too difficult to solve by intuition or too novel to solve by modifying some
existing program or design. They can help you create new programs, or analyze
and document programs that are already written. Using formal methods requires
creativity and judgment, but once you have created or analyzed a program formally,
you can document your work as a sequence of steps that you or anyone else can check.
You must be able to do this if you need to convince yourself or others that a program
meets requirements for safety, accuracy, security, or any other critical property. It is
also worth doing if you simply want to understand how the program works.

What are formal methods?

Formal methods are methods that use formulas.

A formula is a text or diagram constructed from predefined symbols combined
according to explicit rules. A good working definition of formula is anything whose
appearance or syntax can be checked by a computer. According to this definition,
every computer program is a formula.

It’s a little odd for programmers to speak of formal methods as if they were
something special - asif formality were an option. If you want to program a computer,
you really don’t have any choice. Computation is formula evaluation.

And yet, formal methods have become something to make a fuss over, some-
thing that many programmers are said to be unwilling — or unable! — to use. What
distinguishes these formal methods from what programmers already do every day?

The special meaning of formal methods often appears on when we use formulas.
When we’re doing formal methods, we don’t just write the code in a formal notation,
we also use formal notations in the stages that come before coding. We express the
specification or design in formulas.
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Formal methods are also distinguished by what we use the formulas to express:
the behavior of programs. Many programmers only know one way to determine the
meaning or semantics of a formula: execute it on acomputer. With formal methods we
can determine the meaning of a formula - be it a specification, design, or program —
without executing it. The whole point of using formal methods is to be able to predict
what a program will do without running any code - in fact, without writing any. This
means we can discover many errors without having to run any tests. This ability
to model behavior distinguishes Z and other formal notations from diagramming
methods that can only model program structure.

Formal methods are also distinguished by the choice of notation. The formal no-
tations we use to express specifications and designs are usually different from our
programming language — we can use a distinct specification language. The specifi-
cation language need not be executable and may resemble traditional mathematics
and symbolic logic more than a programming language. These languages can be
more expressive, more concise, and easier to understand than any executable pro-
gramming language, and they usually come with a lot less syntactic clutter. Z is one
of these nonexecutable specification languages (some alternatives are surveyed in
Appendix G). We usually call Z a notation rather than a language to emphasize its
mathematical nature.

Formal notations such as Z are distinguished from less formal notations such
as data flow diagrams because they have a formal semantics that assigns a precise
meaning to any formula in the notation. Moreover, a formal notation comes with laws
that enable us to simplify formulas, derive new ones, and determine whether one
formula is a consequence of others. This is what most distinguishes mathematical
notations such as Z from natural human languages and also from most programming
languages. It makes it possible to derive designs and code from a specification, and to
check whether code and designs correctly implement a specification. Moreover, since
formal notations can be processed by machine, parts of these tasks can be automated.

Formal methods are a kind of analysis. Analysis is any activity devoted to un-
derstanding software without actually running programs, including reviews, inspec-
tions, and walkthroughs — anything that involves reading, discussing, and trying to
understand programs without testing. Analysis can be more effective than testing for
many purposes, because you can analyze an entire program text, but you can only
test a (usually very small) sample of program behaviors. Many studies have found
that informal analyses can be more effective than testing for detecting errors and
improving software quality [Fagan, 1986; Ackerman, Buchwald, and Lewski, 1989;
Russell, 1991; Knight and Myers, 1993]. What we call formal methods are just
particular kinds of analyses that employ mathematical notations.

Formal methods can help you create software so that you can understand it before
you run it. You shouldn’t have to resort to guessing to produce programs. You needn’t
rely on trial and error to validate and improve them. You still need to test, but it no
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1.2

1.3

longer serves as your primary error detection method. You make sure that the code
is right by being sure about all the stages leading up to it.

What formal methods are not

Formal methods are not project management methods. People in computing often use
the word formal rather loosely, to mean strict, detailed, or methodical. Sometimes
formal even connotes a particular style of doing software projects that involves
following a lot of written procedures that are enforced by management. In this
book, I reserve formal for methods that use logical and mathematical formulas!.
Management methods are concerned with the process used to create the program,
but with formal methods we can assess the program directly.

Another common misconception is that formal methods use one particular mod-
elling technique that is in competition with other popular techniques. This mistake
is revealed by questions such as, “Do you use formal methods or object-oriented
programming?”’ Those are not mutually exclusive categories. You can use formal
methods with any modelling technique.

When are formal methods useful?

Formal methods involve writing another formal description of the program, in ad-
dition to the code itself. This might seem like extra work and it isn’t always useful.
Formal methods can help with novel projects, difficult projects, and critical projects.

Novel projects involve building something substantially new, where we can’t just
take an existing system and make some obvious modifications. We need to compare
design alternatives, not just plunge ahead and implement the first idea that comes
along. We can’t afford to build several versions of the whole system, so we have to
analyze models instead.

Projects are difficult when they tackle problems that are profound and deep, or
when they present a multitude of intricate details. Difficult projects need not be large;
a single page of code can present so many choices that trial-and-error guessing and
testing might never converge to a useful solution. We don’t have to throw up our
hands and complain how incredibly complicated it is. We can use formal methods’
to derive a solution and check that it is correct.

! However, the first definition of “formal specification” in an IEEE standard is “‘a specification written
and approved in accordance with established standards” [IEEE, 1987]. A recent book on avionics
states, “Formal methods are institutionalized procedures that permit managers, engineers and cus-
tomers to verify that development is proceeding without major problems” [Neuport, 1994].
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1.4

1.4.1

Most software is produced with the expectation that users will discover errors that
the developers missed, but this is unacceptable for critical projects. Critical projects
are those where so much is at stake —~ safety, security, money — that stakeholders
outside the development group demand to be informed about the technical content
of the product. These stakeholders might be management, customers, an external
quality assurance organization, or government regulators. They are not content to
discover how the product behaves in the course of using it; they require a detailed
statement of what it will do — and what it will not do. They require the developers
to show that the promised behavior has been achieved. A formal specification can
describe the product behavior, and a formal development can help make the case
that the product meets its specification.

Many programming projects are neither novel, difficult, nor critical. In truth, many
of these are too tedious to be easy — let’s call them routine. Experienced programmers
can adapt an adequate solution from their files, or their heads. Routine errors arise
from fatigue, haste, or simple carelessness, and can be detected by inspection of
the code against prose requirements — or implicit understandings that are not even
written down. Once the program is running, it is easy to determine if the results are
correct, and if they are not they can simply be discarded. In such routine jobs there
is no need to use formal methods.

How can we use formal methods?

We use formal methods in three essential activities: modelling, design, and verifica-
tion,

Modelling

Models enable us to describe and predict program behavior.

Many programmers believe that the only really accurate description of what a
program does is the program text: the code itself. However a mathematical model
can describe program behavior accurately and comprehensively, and it is often much
shorter and clearer than the code. We can use the model to calculate or infer the
behavior of the program before we code it. Modelling makes the behavior of the
program predictable — a good property for any program to have, an essential property
for a safety-critical system.

Complex systems can have surprisingly simple models. Finding the right model
can be the key to a clear design and a compact, efficient program. The chapters in
Parts II and IV present a series of models expressed in Z.

A model is a simplified representation. Computing confronts us with a mass of
detail; models help us cope. A model leaves something out — it has some of the
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properties of the system it models, but not all of them. We construct a model to focus
on some particular aspect of a system, and we omit all the details that are inessential
to that aspect. There can be several models of the same system, each focusing on a
different aspect.

For example, a prototype that demonstrates the look and feel of a new system to
prospective users is a kind of mode! because it does not provide all of the functions
of the final product. Itis a bit like an architect’s scale model or an artist’s rendering of
a new building, because it is intended to convey an aesthetic impression. Sometimes
we need a different kind of model, intended to represent the system’s functional be-
havior or internal structure. This is more like the mathematical models that structural
engineers use to check that the beams will fit together and bear the loads. Z is used
to create this latter type of model.

A mathematical model that represents the intended behavior of a program can be
used as a formal specification. Programmers sometimes act as if formal specifications
were a strange new idea. In fact, we have always used mathematical models in
computing.

Here is an example from my own work. In radiation therapy we use computer
programs to estimate the radiation dose distribution that would be created in the
patient’s body by a proposed treatment [Khan, 1984). Figure 1.1 shows part of the
formal specification for our program [Kalet et al., 1993]; the notation is ordinary
mathematics. It is supplemented by a picture to help illustrate the definitions of the
variables that appear in the formula (not shown here are several pages of prose and
formulas that also explain those definitions).

This next example may. be more familiar to programmers. Figure 1.2 shows the
formal specification for the syntax of numbers in the programming language Pascal.
For example, Figure 1.2 permits 1, 0.5, 1ES5, and 1.5E-5, but prohibits 1.,
.5, E5, 1.5E-5.0, and so forth. Figure 1.2 appears in the language reference
manual [Jensen and Wirth, 1974] to help programmers understand how to form
numbers. However, it can also be considered part of the formal specification for a
Pascal compiler. The formal notation is called Backus-Naur Form (BNF). Here again,
there is a picture. It illustrates an alternative view of the information presented in
BNF. The entire syntax of the Pascal language (which describes every syntactically
correct Pascal program) is given in five pages of BNF. Thanks to formal models like
this one, writing a correct syntax analyzer for a compiler is a straightforward task.
This achievement belies the programmers’ complaint that hard problems present
too many cases to anticipate. Any compiler can handle a virtually infinite number
of distinct cases (program texts), accepting all syntactically legal programs and
rejecting every illegal one.

These examples should remind you that using formal specifications is really
not such a strange thing to do. We already use formal specifications in complex
applications where we know how to write substantially correct programs that people
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The dose D at a point P inside the patient (see figure 1) due to a single fixed external photon or neutron beam source with
a rectangular collimator is calculated by the formula

F 2 2x 2y .
D= (—-) - Dear - O(we) - [TPR(wd.d)~OCR (w|,d,——) -OCR (wz.d. -—) —B] 1w (1.1)
F+m . wy w2

where D is does per machine unit at point P within the patient.

Figure 1.1: Formal specification for a radiation dose calculation program

can understand. It would be crazy to try to write either of these programs without the
formal specification. Can you imagine trying to write a compiler where the syntax
was only defined by a lot of prose and examples describing particular special cases?
Can you imagine trying to use a compiler that was written that way? No competent
programmer today would even consider such a thing, and no physicist would begin
coding a calculation without the formula close at hand.

These examples also show that a mathematical model does not much resemble
a prose description. It is no mere paraphrase of the prose into another notation; it
is a different expression of the same behaviors, in a form that is better organized to
serve as a guide for programming. Bridging from the users’ informal view of the
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unsigned number

(D -

unsigned integer

<unsigned number> ::= <unsigned integer> | <unsigned real>

<unsigned integer> := <digit> {<digit>}

<unsigned real> = <unsigned integer> . <digit> {<digit>} |
<unsigned integer> - <digit> {<digit>} E <scale factor> |
<unsigned integer> E <scale factor>

<scale factor> ::= <unsigned integer> | <sign> <unsigned integer>
<sign> ;= 4]-

Figure 1.2: Formal specification for Pascal number syntax.

requirements to the programmers’ formal model is one of the central creative tasks
in programming. This task is discussed in Chapter 3.

In both examples, the formal model enables us to calculate the results the program
should get. We can use the formal model as an oracle, an independent standard of
accuracy that can tell us what the result of executing the program on any test case
should be. We can use the model to help us choose test cases and tell whether the
program passed the tests.

An oracle can also help us determine whether we made the right decisions about
what the program should do — that is, whether we got the requirements right. Failure
to understand the real requirements has been responsible for many software failures
and accidents, and these errors can be the most expensive and difficult to fix. Because
a formal model enables us to predict program behavior, we can investigate how our
program would behave even before we begin design and coding. If we have a formal
model, we can apply powerful analytical techniques to confirm that it meets critical
requirements such as safety or security. Chapter 15 describes some techniques used
in those analyses.

Programmers often try to write complex programs with no formal model; the
only formal description is the code itself. As a result the expected system behaviors
and the assumptions about the environment cannot be reviewed, criticized, or even
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examined because they are hidden in the program text itself, usually encoded in
some obscure way — they don’t call it code for nothing. Such a system is not
predictable; the only way to really find out what it does is to experiment with it. This
is unacceptable for systems that have requirements for safety, security, accuracy, or
any other critical property.

A formal specification can be valuable even when the rest of the development is
informal, because it provides an oracle for analyzing requirements and planning tests.

Design

Design means organizing the internal structure of a program.

There are two dimensions to design: partition and refinement. Partition means
dividing the whole system into parts or modules that can be developed independently.
Refinement means adding detail, going from an abstract model that clearly satisfies
the original requirements to a concrete design that is closer to code?.

Many informal software development methods address design. Mast of them
teach a particular way to draw and annotate diagrams that you can use to document
designs, such as bubble-and-arrow data flow diagrams. Some of these methods are
supported by software products called CASE tools to help you produce the diagrams
and documents. However, the formal content of many of these methods is weak. They
can only represent the structure of a program: what the program’s parts are and how
they are related to each other. They provide few criteria to determine whether a
design is correct, or to choose the best of several plausible designs.

Z is a more powerful design notation because it can also model behavior. Finding
the best structure usually depends on understanding the behavior. In Z you can
express which components of the system are needed to perform any behavior, down
to any level of detail you need (even to individual program variables). This enables
you to see how components must be grouped together to provide the behaviors you
need. You can find the best way to partition your system into modules.

Z can also support constructive approaches to design. Rather than work fop-
down and partition an abstract specification into modules that we have to implement
ourselves, we might achieve savings by working bottom-up and assembling our
system from prefabricated building blocks or reusable software components. In
this enterprise — “programming in the large” [DeRemer and Kron, 1976} — the
problem shifts to identifying which blocks to use and determining how they should
fit together. Z can express precise descriptions of what the blocks do and enable us to
calculate how the whole system will behave when the blocks are used in combination.
Chapter 15 describes how to infer properties of systems described in Z.

2 In some formal methods literature, refinement is called reification.
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Z can also help you determine whether your design will work. Mathematics can
tie development stages together in a way that is not possible with informal notations.
It provides the only way we have to show that an abstract model and a detailed design
are two views of the same thing. If we have a mathematical model, we can infer
development steps, and then we can check each step by calculation and proof. This
means we need not rely solely on intuition to tell whether our designs are correct. We
can find and correct design errors without coding and testing a program. Chapters 15
and 26 describe how to check designs.

Verification

Verification means showing that our code will do what we intend.

Verification deals with the final product of our development: code in some ex-
ecutable programming language. One of the products of a formal verification is a
proof, a convincing demonstration — based only on the specification and the pro-
gram text, not on executing the program.— that the code does what its specification
requires. Proof can provide greater confidence than testing because it considers all
cases, while testing just samples some of them. Moreover, proof can be more con-
vincing than appeals to intuition because it can be more explicit, easier to check,
and therefore less fallible than intuition. :

Much of the early research in formal methods concentrated on formal verifica-
tion. Some even experimented with automating the proofs. This early work was
so influential in fixing the image of the field, that when you say formal methods,
many programmers still think, “proving the correctness of code,” or even “automated
proof.” This perception is no longer accurate; much recent work concerns modelling
and design, in addition to verifying code.

Chapter 27 discusses formal verification and shows that the most efficient way
is usually to do the verification in the course of deriving a program from a formal
specification. '

Are formal methods too difficult?

Using formal methods can be more difficult than programming in the usual way —
because formal methods aim higher. Describing exactly what your program does is
more difficult than letting testers or users figure it out for themselves. Making your
program do the right thing in every situation is more difficult than just handling some
typical cases. Any method that can handle hard problems will sometimes be hard to
carry out; only superficial methods can be easy all the time.

Fortunately, most of the mathematics we need for formal methods is not terribly
difficult. The discrete mathematics used in this book — and in most practical appli-



12

Chapter 1. Formal methods

1.6

1.7

cations of formal methods — is easier than much of the calculus that students in the
sciences and engineering must study.

Formal methods make us confront the hard problems early. The difficulties cannot
be escaped, only deferred. Superficial methods put off the hard parts until coding
and testing — but then they appear with a vengeance. News stories about stressful
projects tell of programmers who work eighty-hour weeks, sleep under their desks,
punch holes in walls, have nervous breakdowns, and commit suicide [Markoff, 1993;
Zachary, 1994]). Compared to that, formal methods don’t seem so difficult after all.

By making difficult issues more visible, formal methods encourage us to seek a
more thorough understanding of the problem we are trying to solve. They require us
to express our intentions with exceptional simplicity and clarity. They help us resist
the usual tendency in programming to make things too complicated and therefore
error-prone and difficult to use.

Formal methods at work

Some programmers still believe that formal methods are too difficult and esoteric for
anything but toy problems, but this is no longer true. One recent survey [Craigen, Ger-
hart, and Ralston, 1993} learned of more than sixty industrial projects that used formal
methods, and reported on several large projects that produced important products
that are used and work well. These products included microprocessor floating point
microcode, embedded programs in electronics instruments, commercial transaction
processing software, and safety-critical control systems in railways and power plants.
Some of the projects formally specified and verified tens of thousands of lines of code.

The survey reveals that formal methods can be used in many different ways.
Some projects used the formal notation to explore new design ideas; others used
it to document existing designs. Some used the formal notation for modelling and
description, others derived and verified code. Some projects used tools, others were
largely paper-and-pencil efforts. Some trained dozens of people in formal meth-
ods; others had only a few self-taught enthusiasts. Some projects finished ahead of
schedule, others were very late. Some groups believe that formal methods saved
them money; others spent more than they expected. Some of the organizations are
increasing their use of formal methods, others have abandoned them.

Formal methods can be practical
Imagine two extremes. At one extreme is trial-and-error hacking: Programmers with

no real understanding type in code, make changes, and run tests, hoping to hit on
something that works. At the other end is purest formality: Programmers specify,
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refine, and prove — and finally present their customers with the text of a program
they have never bothered to run! Of course, both extremes are¢ caricatures. No one
believes they can produce useful software by either method.

Practical development methods lie between these two extremes. Z works well
across a wide range on this scale. You can write a few formulas to supplement an
informal prose description, or you can derive code from a comprehensive formal
specification. Pick the level of formality that makes the most sense for your project.

The realization that computer programs are formulas lies behind all the deep the-
oretical results in computer science. The same insight can help us with the practical
problems we face every day. Skilled programmers have long recognized that good
programs share many qualities with good writing — we speak of “programming
style” [Kernighan and Plauger, 1978] and “literate programming” [Knuth, 1992].
This literary view is valid and useful; the mathematical view is complementary.
Logic and mathematics take advantage of essential qualities of our material. We're
writing formulas when we program, so we may as well get good at it.



2 Why Use Formal
Methods?

Why study formal methods? This chapter describes the predicament that formal
methods were invented to solve and presents a vision of what programming should be.

Software frequently disappoints us. As users, we find that many programs are a
poor match to our real needs and frustrate us with unrepaired defects. As program-
mers, our disappointment is especially keen. We expect to find the joy of creation in
our work and the satisfaction of providing something useful. But all too often our
expectations are dashed, our joy is spoiled, and our job becomes a dispiriting slog,
churning out shapeless code and patching up bugs.

What’s wrong? Is there something inherent in the nature of software that makes
our troubles as inevitable as bad weather?

I argue that creating software is not intrinsically more difficult than any other
kind of engineering. Many of our difficulties result from avoidable mistakes and
poor programming practices.

A central problem is that people feel it is acceptable to create software without
fully understanding what they are doing — they believe they can produce software
and then understand it later by running tests and observing users’ experience. It is
this attitude, rather than any inherent difficulty in the task, that results in so many
software problems. ' '

This error can be made at any stage. Designers specify products when they don’t
fully understand customers’ real needs. Programmers write code when they don’t
fully understand what it will do, and so on. The fundamental error is reliance on
guessing to produce systems, and trial and error to validate and improve them.

We can do much better. We can usually determine much of what is needed in
advance and then produce a system that we know will behave as we intend. Our
methods aren’t perfect, but knowledge and effort pay off. Even modest efforts can
produce appreciable improvement.

Conventional wisdom holds that this positive attitude is not realistic, but I argue
this conventional wisdom is incorrect and self-defeating. By aiming too low, it
makes programming unnecessarily difficult and inflicts inconvenience — and much



2.1. True stories 15

2.1

212

worse — on the people who use our programs. Here are two true stories that show
what we’re up against.

True stories

Money

A man tries to withdraw some cash from an automatic teller machine (ATM). He
inserts his card and keys in his number, but the display reads, “Cannot complete, try
later.” The machine retumns his card, but doesn’t print anything. Thinking nothing of
it, he walks away. A few weeks later the same thing happens. Suspecting something
funny is going on, he inserts his card again and checks his balance. The ATM has
indeed debited his account, but has not dispensed any cash — and has not given him
a printed record of any transaction!

The man complains to his bank. They explain that they cannot reimburse him
without “proof”” — the card agreement clearly states that a printed receipt from the
machine is the only evidence of a failed transaction that the bank must accept. The
man is unusually persistent. After several days and many phone calls to his own
bank, the bank that housed the ATM machine, and the company that operates the
ATMs, he finally gets his money back. After an investigation the bank admits that
he was not the only customer who encountered the problem.

It so happens that the man works in computing. He posts an account of his
experience in a digest that is circulated by computer network, concluding that he
will stay away from the machines and patronize a store where you can show them
your card and a human being will give you the money [Denninger, 1988]. A few
days later a response from a member of IBM — then the mightiest computer company
on earth — appears in thc same digest. He writes,

Electronic banking systems are incredibly complicated. It is impossible to
even imagine the number of things that can go wrong, or the number of
ways that clever consumers can subvert the system. Go ahead and boycott
the machines if you want. However, if you want them to improve, then you
have to exercise the system so that the bugs will be found and fixed.

You were expecting an apology? Well, it’s only money. The second story is much
worse.

Lives

A woman goes to a clinic to get a radiation treatment for cancer. She knows the
procedure should be painless, but she feels a searing heat. She complains that she has
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been burned, but the therapist explains that is impossible; the computer-controlied
radiation machine is the most advanced one available. The woman refuses to return
to the clinic and they lose track of her. Months later one of her arms is paralyzed,
and she is in constant pain.

Almost a year later a man goes to a clinic in another state. He, too, is burned. The
clinic and the vendor can find nothing wrong with the radiation machine, so they
keep using it. A few weeks later at the same clinic a second man is burned. After
days of investigation, clinic staff are able to reproduce the unusual but legitimate
sequence and timing of keystrokes that cause the computer-controlled machine to
deliver a dose about one hundred times greater than prescribed.

A few months later both men are dead. Their story is reported in the news, and the
first woman finally realizes what happened to her. Eventually, investigators find four
more cases at other clinics where people were maimed or killed by the same type of
machine [Jacky, 1989; Jacky, 1991; Leveson and Turner, 1993; Leveson, 1995].

In a newspaper story on the accidents [Davis, 1987], a quality assurance manager
at the company that built the therapy machine was quoted,

There are too many combinations of features to guarantee that the (radiation)
beam won’t come on too intensely.

A government agency required the vendor to supplement the machine’s computer
controls with a nonprogrammable, hard-wired relay safety interlock system.

Some popular fallacies

The statements quoted in the preceding two stories are symptoms of the problems
that Z was designed to solve. In both quotations, the speakers urge their audiences to
regard these incidents as inevitable (if regrettable) consequences of some inescapable
complexity that is inherent in software. These statements reveal incorrect beliefs that
are held by many programmers, including some of the most influential leaders on
the computing scene. These beliefs amount to a entire complex of rationalizations
and excuses for programs that don’t always work. Here is a summary:

Complexity
Software is incredibly complicated. As one manager put it, “the complexity can
be of machines like no human has seen before.” ! As a result, “Programmers can

! Chris Peters of Microsoft. In the same interview, Peters said of his group’s spreadsheet program, I be-
lieve that the product I'm working on now is far more complex than a 747 (jumbo jet airliner)” [WGBH,
1992al.
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never imagine the countless different ways in which a program can fail, or the many
different ways a program can be used.”

Testing

Programs are bound to contain efrors, because we can never run enough tests to
uncover all the mistakes. “You don’t have the precision or the reliability to say,
well, having built this, we think it works according to the specifications. Instead,
you have to exhaustively test it. And there are always particular combinations of
circumstances that have somehow eluded the test plan.’

Users

Users don’t know what they want. The only way to find out is to build something
and give it to them to try out. Only then will we discover what we really should have
built. The users will be disappointed, but maybe we can do better with the second
(or later) versions.

Systems and tools

No matter what we do, our programs will sometimes fail anyway. There are bugs
in our compilers, operating systems, window managers, and all the other system
software on which we depend. Even the hardware can have problems.

Economics

Producing high-quality software is extraordinarily expensive. The cost is justified
only for a very few safety-critical applications. For most applications, the market
does not demand high quality. After all, “it is only software.™*

Foundations

Computing is still a young science. We can’t be expected to produce reliable results
in atimely fashion, as if we worked in a mature engineering discipline. “It’s different,
in that we take on novel tasks every time. The number of times (civil engineers) make
mistakes is very small. And at first you think, what’s wrong with us? It’s because
it’s like we're building the first skyscraper every time.”

These beliefs are self-serving and naive. In fact software usually fails for prosaic
reasons that are largely under the control of the people who build it: Not enough

2 Journalist Leonard Lee [1992].

3 Mitch Kapor, founder of Lotus and author of a phenomenally popular spreadsheet program [Palfreman
and Swade, 1991; WGBH, 1992b].

4 A programmer’s response to a customer’s complaints about errors in one of his company’s prod-
ucts [Gleick, 1992]. _

% Bill Gates, chairman and CEO of Microsoft [WGBH, 1992a].
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time or effort is allocated, or knowledge and skills are insufficient, so problems
are handled poorly or are simply overlooked. In some cases there is a deliberate
decision to release products that are unfinished or known to contain defects in order
to meet schedules or save on development costs [Gleick, 1992; Zachary, 1994].
Programmers and customers are encouraged to view this as normal, even inevitable,
Software reliability expert and educator Maurice Naftalin [1988] observes,

The great majority of software workers have been taught in the conventional
manner, which can be characterised as encouraging students (or trainee pro-
grammers) to produce, as quickly as possible, large programs which they
know will contain serious errors.

Some hopeful alternatives

The beliefs described in the preceding section are all incorrect, but each holds the
seed of a truth. Each denial can be turned around into an affirmation.

Complexity
Software shouldn’t be too complicated. We can produce a compact description that
explains exactly how a program is supposed to behave.

Testing

Software must be made correct by construction, not testing. Testing is literally a
trial-and-error process. No mature field of engineering or manufacturing relies on
testing to reveal design errors. They test to find defects in materials and investigate
the effects of wear and other physical phenomenon that programmers do not even
have to worry about [Adams, 1991]. Using testing to find mistakes in our own
code is a poor use of everyone’s time. Testing is inconclusive, and it comes too
late to do much good. The proper role of testing is to confirm our understanding of
the requirements and check our assumptions about the compiler, operating system,
hardware, and other aspects of the environment where our program has to work.
When we are done, testing demonstrates to customers and other witnesses that the
development was done correctly.

Users

Users do understand the problem they need to solve. What they usually aren’t able
to do is conceive a detailed computer solution to their problem. That’s our job. It
takes a lot of time and empathy to appreciate users’ needs well enough to provide
them with something useful. Many projects skimp on this — they consider learning
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the requirements to be just a perfunctory prelude to the real work of programming®.
In fact it is the single most important task in any project.

Systems and tools

We depend on system software and hardware that aren’t perfect, but we can’t just
pass other peoples’ mistakes on to our users. When things go wrong, we must be
able to distinguish our own mistakes from the limitations of the systems we have to
use. This isn’t possible if we program by trial and error, just changing things until
the program seems to work. But if we understand our program, we can fix our own
mistakes and work around the rest — until we eventually get them fixed or find a
better system vendor.

Economics

Coping with mediocre software is extraordinarily expensive. Former software in-
dustry leaders have gone out of business after they released defective products
and their customers fled to competitors 7. Moreover, software development al-
ready costs an extraordinary amount. Microsoft and IBM spend thousands of
programmer-years and hundreds of millions of dollars developing complex per-
sonal computer software products such as OS/2 and Windows NT [Carrol, 1991;
Zachary, 1994]. The costs and effort are as great as we find in large safety-critical
engineering projects, like building skyscrapers [Sabbagh, 1990). But the greatest
costs are borne by the customers. Occasionally, horror stories surface where people
pay with their lives, or dollars, as in Section 2.1. More often, they pay in time and
aggravation for their lost work and the effort they must devote to recovering from
problems and improvising workarounds.

Foundations

Computing is a mature science. The electronic computer is about the same age as the
jet aircraft engine — to which we routinely entrust our lives. We rarely have to start
from scratch; most new software products are refinements of ideas that go back for
decades. People were computing long before there were any electronic computers.
Programmers are the modern heirs to a legacy of logical ingenuity that reaches back

6 One software engineer quoted by Poltrock and Grudin [1994] speculated, “I think it would be worth-
while if all developers would spend maybe a couple of hours a year seeing how the product is used
by customers.”

Ashton-Tate was the third largest personal computer software vendor in 1988, when it released dBase
1V, a famously buggy version of its flagship product. It spent 18 months working on a corrected
version, but it was too late. Its database product line was acquired by another vendor and Ashton-Tate
went out of the software business [Keefe, 1990; Lewis, 1990].

-
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to antiquity. The ancient Greeks developed algorithms thousands of years ago that
we still use — and proved them correct 3!

I don’t mean to minimize the very real difficulties of programming. Every tech-
nology has its unique problems. What I reject is the special pleading that holds
computing is so new, so unique, so “incredibly complicated,” that it simply defies
analysis. We shouldn’t have to confess bewilderment, hide behind disclaimers, or
conceal our confusion behind a facade of condescending bluster.

Instead, I invite you to consider the opposite view. We can do better. The second
group of tenets is our vision of what programming should be. Formal methods —
along with a conscientious and systematic approach to our work, and a thorough
knowledge of our application — can help us realize this vision.

Our aspirations are tempered by realism. Sometimes it is necessary to release a
program that is imperfect and incomplete, because there are times when something is
better than nothing. This can be all right if the users are made to understand the limita-
tions in what they are getting. But let’s be candid and admit the shortcomings are the
result of time pressure and work load, not some inherent problem in computing itself.

I’m not saying it’s easy. There is no magic, no method you can follow like a recipe
in a cookbook, where merely following the directions will result in a successful
project. It takes a great deal of judgment and imagination to make any programming
method work. Success does not chiefly derive from the techniques that can be taught
in books, which are necessarily devoid of specific guidance for your particular appli-
cation. Merely selecting a formal notation cannot solve your problem. Your success
largely depends on the unique features of your project: the problem itself and the
people who join together to solve it. It is up to you to choose a method which is
a good match to the problem, and then to express the problem in such a way that
the techniques of the method can be brought to bear. These are deeply creative acts
that cannot be taught in any very prescriptive way. I can only provide examples and
inspiration, and trust'in your judgment to apply their lessons to your own work.

# Ruclid taught the algorithm for finding the greatest common divisor of two integers in Alexandria
around 300 BC (Elements, Book VII) [Dunham, 1990]. We still use Euclid’s algorithm because modern
cryptography and secure data transmission require an abundant supply of large prime numbers and
the algorithm figures in certain primality tests [Schneier, 1994]. Hoare [1987] expresses Euclid’s
algorithm in several modem programming styles.
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3.1

Formal methods are not project management methods, but some programmers fear
that using formal methods would impose a burdensome and inflexible way of work-
ing. This chapter should dispel that misconception and reassure you that formal
methods are compatible with many different development methods and manage-
ment styles. This chapter discusses dividing projects into stages, learning users’
requirements, translating informal requirements to formal specifications, and vali-
dating formal specifications.

Work in stages

There is one assumption that underlies all formal methods: A programming project
is divided into stages, where each stage produces a product that can be examined,
reviewed, and assessed for correctness and other qualities.

Three products that must be produced by almost any programming project are
the specification, which describes the behavior of the product; the design, which
describes its internal structure; and the code, which is executable and is expressed
in some particular programming language. Most projects produce other products as
well, such as manuals and other materials for instructing users, assurance evidence
such as test plans and test results, and so forth.

Working in stages is a central concept in every systematic software development
method. Formal methods add these innovations: express the specification and design
(not just the code) in a formal notation, and use formula manipulations (such as
calculation and proof) to derive the products and check that they are correct.

Experienced programmers are often skeptical of programming methods that pro-
ceed in stages. They can draw on a vast mental library of correct solutions to pro-
gramming problems, which they can adapt to routine situations by intuition — that
is, without articulating the development steps. Making the stages explicit takes time;
writing them down adds work. Why waste time stepping through stages when you
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can reach a solution in a single leap? These concemns are not unfounded, but the
stages don’t have to be too onerous.

Working in stages need not be burdensome. In some projects the product of each
stage is a heavy document produced with a lot of attention to cosmetic formatting
details, but this is not always necessary or even useful. Stages occur in any project,
no matter how small. Some projects are so trivial we can do most of the stages in our
heads, or we write them down in scribbled notes we throw away; the only product
is the code itself. As projects take longer and involve more people, we have to make
the stages visible. Our notes get bigger, more public and more permanent — they
become “documentation.”

The stages need not be steps in a sequence. In most real projects, several stages
— or all of them — are in progress at the same time. There is nothing wrong with
this, provided we can ensure that the stages are consistent with each other when the
project is finished. Sometimes the specification is written last, to record what has
been discovered during an exploratory project.

The stages need not be independent of each other. Sometimes it is useful for
the specification and design to be independent of the programming language used to
code the program and the target computer system where it will run. This kind of inde-
pendence makes it easier to produce multiple implementations that run on different
systems. But sometimes we know in advance that the product will be implemented
in a particular programming language and will run on one target configuration. We
can take advantage of this knowledge to create a specification and design that are
closely matched to the code.

The stages need not imply any division of labor. Sometimes it works best if the
same people participate in all stages, so that each staff member assumes full re-
sponsibility for a portion of the system, from understanding the users’ requirements,
through supporting the product in use in the field. This enables each participant to
develop a comprehensive appreciation of the whole project that can inform their
work on every stage. This can be much more efficient (and more satisfying) than
isolating people and forcing them to communicate through documents.

The stages need not connote status. In some organizations, senior programmers
(often called “systems analysts,” “software engineers,” or “scientists’) concentrate
on specification and design, while junior programmers (called “programmers”) are
assigned to coding. In fact there is no self-evident scale of difficulty; none of the
stages is easy. Each stage applies different kinds of knowledge, emphasizing knowl-
edge about the users and their problem in specification, and knowledge about the
programming language and operating environment in design and coding. But the
knowledge cannot be too specialized; to perform any stage, you must bridge from
one view to another. In this book I use the word “programmer” for anyone involved
in the technical work of software production, whether or not they spend most of their
time writing code.
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It should be clear that the stages are a technical concept, not a management tool.
Many books on project management also discuss stages. They often recommend a
particular sequence of stages and the activities that should happen in each stage; some
even recommend particular formats for documents that should be produced at each
stage. You must understand that their stages are idealizations of programming made
for the benefit of management. They are not the same stages that I write about. The
programmer’s stages are not the manager’s stages. It is the manager’s job to worry
about schedules and the expenditure of funds, so the manager wants the stages to be
steps in a sequence and see stages get finished! But programmers view the stages as
simultaneously evolving aspects of a single thing. Sometimes we can build the best
product if we are free to revise all the stages until the last minute.

Sometimes management, customers, or regulators require developers to provide
them with the products of development stages. They may require that these products
be documented in a particular style or format. You should not allow their reporting
requirements (however burdensome they might be) to unduly influence the technical
aspects of your project. The format of their documents might suggest a particular
way to design the product or organize the the project, but it might not be the best way.

You cannot expect management, customers, regulators, or standards bodies to
know how to solve your problem. Solving a problem is a different activity than
reporting the solution. Sometimes you have to do both, but do not confuse them.
Your management may not understand formal methods and may not require you to
report on their use, but they might prove to be very useful to you nevertheless.

Gathering requirements

There is much more to programming than solving symbolic puzzles. The most
important thing of all is to create a program that does something useful. Without
this, everything else is wasted. You must understand the users’ work and learn the
problems they are trying to solve.

I deliberately say “users,” not “customers” or “clients.” The users are the people
who must actually use the program to get their work done. Sometimes the customer
— the one who makes purchasing decisions — is the users’ manager.

The requirements are properties that a system should have in order to succeed
in the environment where it will be used [Goguen and Lugi, 1995]. Learning the
requirements demands that programmers and other technical specialists devote the
time and empathy to understand some job that people do and identify the tasks that
are repeatable and well enough understood to be mechanized. It also requires the
judgment to determine whether the task is worth mechanizing, or whether bringing
in the computer will just make life more complicated and create extra work for
people to do.
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Getting the requirements right is one of the central problems in computing. It
is probably the single most important factor in determining whether a program is
useful and effective, yet the vast literature of computer science has surprisingly little
to say about it. The issues are deeper than are usually addressed by the user interface
or human-computer interaction specialists. The term “user interface” suggests a
shell that wraps around some predetermined core of functions; the real requirements
problem is to decide what those core functions should be.

Requirements are seldom arbitrary. Many requirements are dictated by nature or
by human laws and customs. If the flight control program does not respect the laws
of aerodynamics, the airplane will crash. If the computer-aided design program that
does integrated circuit layout does not observe the design rules, the circuit will not
work. In commercial transactions and funds transfers, the sums must balance. Other
requirements are dicated by the interfaces that enable a program to fit into a larger
system.

Programmers should participate in gathering the requirements because they ap-
preciate the need for precision and will recognize when users’ requests are too vague
to be useful. A useful requirement is expressed in a declarative sentence that describes
some objective property or occurrence that users can observe. If users say, “make the
program easy to use,” programmers can work with them to get to something more
specific, like “the program will always display a menu of the options that the user can
choose.” Some users’ requests are not software requirements at all: “The program
should make our work more efficient.” Demands like this concern the larger environ-
ment of which the software is only one part; they involve organizational and social
issues that are often outside the programmers’ control. Nevertheless, programmers
can use such requests as opportunities to learn where the real problems are.

Programmers can also help elicit the whole story. Users’ requests usually have
gaps at cases they haven’t considered. Programmers are good at recognizing these
gaps, and will take care to meet the users’ real needs by covering them properly. It is
essential that the users participate in this filling-in process to ensure that important
functions are not handled by default or whim.

Programmers also understand that they must negotiate with users to limit the
requirements. Projects grow out of control when they try to accommodate too many
requests. Some requirements are not very important, and the product would be
improved if they were omitted. Users cannot always appreciate how seemingly
minor requirements can spoil the clarity of a design and pile on a great deal of
extra work. Programmers can advise them on the tradeoffs among features, cost, and
development time.

Once we understand the requirements, we should write them down. We almost
always need a written statement of requirements. Without it, something is sure to be
overlooked or misunderstood.

It is essential that the users themselves understand the written requirements,
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because they have to review them. They are the only ones who can tell you if the
requirements describe a solution to their problem. Therefore, the requirements must
be expressed in plain (natural) language in the users’ vocabulary, and be liberally
provided with figures, tables, and diagrams that they can appreciate. The prose
should not describe the problem in computing jargon. If the users are scientists or
engineers, some of the requirements might be expressed in formulas, but even in
technical applications most of the requirements are expressed in prose and pictures.

From informal requirements to formal specifications

Formal notations such as Z are designed to help programmers produce software.
They are not intended to replace the prose statement of requirements. Writing a
formal specification does not come at the beginning of a project. You have to know
a great deal about a problem before you can write a useful formal specification.

Itis often said that formal specifications are necessary because prose is not precise,
but this is not really true. When you are describing the behavior of a system that is
designed for some definite purpose, you can write prose that is clear, precise, and
free of ambiguity. For example:

The radiation beam cannot turn on unless the therapy room door is closed.

As we shall see in Chapter 10, the meaning of this sentence can be expressed
formally:

beam = on = door = closed

This formula is no more precise than the prose. Its advantages do not derive from
precision, but from brevity, ability to guide systematic progression to code, and
support for calculation, logical inference, and proof. These advantages are only
meaningful to programmers. The formal notation serves no purpose in a requirements
document intended for an audience of users.

This little example might suggest that you can translate prose requirements to
formal notation one sentence at a time, but that usually does not work. The problem
with the prose requirements is not precision, but organization: A good prose descrip-
tion does not map directly into a good formal description. The prose is organized
around tasks, problems, and scenarios that users encounter. Much of it is essentially
anarrative. The narrative can be repetitious; there may be many operations that work
almost the same way. If you try to just translate prose into formulas, you are likely
to end up with one of those “incredibly complicated” programs that doesn’t always
work. A good formal specification is no mere paraphrase of the prose description;
it is a different expression of the same behaviors, in a form that is better organized
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3.4

to serve as a guide for programming. Common features can be factored out so they
only appear once.

Validating formal specifications

It is necessary to show that a formal specification expresses the intent of the prose
requirements. This is called validating the specification. If the requirements are
clear, and the formal specification is well organized, much of the specification can
be validated by inspection. In cases where it is not so obvious, we can apply the
formal reasoning methods taught in Chapter 15. Any meaningful requirement can
be expressed in a declarative sentence, and a declarative sentence can be translated
to a formula (as in the example in Section 3.3). If this formula is present in the
specification, or can be calculated or inferred from the formulas in the specification,
the specification is valid for that requirement.



Further reading

Phil Agre [1988] discussed the teller machine incident in a memorable posting to
RISKS. Nancy Leveson and Clark Turner [1993] wrote the authoritative account of
the radiation therapy machine accidents.

" There is a vast literature on mishaps involving computers. Lauren Wiener [1993]
provides a recent and lively book-length treatment, and I cite some notable incidents
in a textbook chapter [Jacky, 1991; Jacky, 1996). The most systematic compilation
is maintained by Peter Neumann, moderator of the ongoing RISKS FORUM Digest.
Neumann’s review and assessment appear in his recent book {Neumann, 1994].!
Nancy Leveson’s book [1995] on system safety and computers reviews many in-
cidents and emphasizes that accidents can only be understood and prevented by
considering the whole systems where they can occur.

Even when software does not actually fail, it can make life difficult. Many pro-
grams are poorly matched to users’ real needs and create extra work for people
to do. Thomas K. Landauer’s book [1995]) describes many examples and suggests
some remedies. One school within computer science that does confront the require-
ments problem is participatory design. It has developed techniques for eliciting what
the job really is and where the real problems are [Bjerknes, Ehn, and Kyng, 1987;
Greenbaum and Kyng, 1991; Schuler and Namioka, 1993].

Matthew Jaffe er al. [1991] and Nancy Leveson [1995] show how to analyze
requirements for completeness and safety, and Carl Landwehr [1981] reviews work
on analyzing security. ’

The book by David Alex Lamb [1988] and the paper by David Parnas and Paul
Clements [1986] are good sources on software design and the technical aspects of

! Current issues of RISKS appear on Usenet news in comp . risks; excerpts and summaries appear
in a printed newsletter from the Association for Computing Machinery, ACM Software Engineering
Notes (for example [Neumann, 1996]). At this writing the RISKS ftp archive is at ftp.sri.com
and is on the World Wide Web at http://catless.ncl.ac.uk/Risks, but check recent
issues for current information.
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Further reading

project management. Parnas [1995] explains the difference between a description, a
model, and a specification.

Dan Craigen, Susan Gerhart, and Ted Ralston have done the most thorough
survey of formal methods use to date [1993]; it has been summarized in sev-
eral conference papers and journal articles [Craigen, Gerhart, and Ralston, 1995;
Gerhart, Craigen, and Ralston, 1994a; Gerhart, Craigen, and Ralston, 1994b]. Other
reviews appear in the paper by Jonathan Bowen and Victoria Stavridou [1993] and
the report by John Rushby [1993]. The book edited by Mike Hinchey and Jonathan
Bowen [1995] describes many recent projects. C. P. Pfleeger [Pfleeger, 1995] and
M. Tiemney [Tierney, 1993] review experience with mandated use of formal methods
in military secure communications and safety-critical systems.

Many authors have remarked on the attitudes 1 criticize in Chapter 2. Joseph
Weizenbaum'’s classic Computer Power and Human Reason [1976] is usually con-
sidered a work of social criticism, but his chapters “Incomprehensible Programs”
and “Science and the Compulsive Programmer” are pertinent to my argument.

The quote from David Hilbert appears in the textbook by David M. Burton [1980].
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Introducing Z






4 Whatis 2?

Z is a set of conventions for presenting mathematical text, chosen to make it con-
venient to use simple mathematics to describe computing systems. [ say computing
systems because Z has been used to model hardware as well as software.

Z is a mature notation. Conceived in the late 1970s, it developed through the
1980s in collaborative projects between Oxford University and industrial partners,
including IBM and Inmos (a semiconductor producer). The first Z reference manual
to be widely published benefited from this long experience when it finally appeared
in 1989. At this writing a draft Z standard (including a formal semantics) is being
considered by the American National Standards Institute (ANSI), the British Stan-
dards Institute (BSI) and the Interational Organization for Standardization (ISO).
Z has served as the basis for other notations, including several variants adapted for
object-oriented programming.

Z is a model-based notation. In Z you usually model a system by representing
its state — a collection of state variables and their values — and some operations
that can change its state. A model that is characterized by the operations it describes
is called an abstract data type (ADT). This modelling style is a good match to
imperative, procedural programming languages that provide a rich collection of data
types, and also to some physical systems (such as digital electronics) that include
storage elements. Z is also a natural fit to object-oriented programming. Z state
variables are like instance variables, and the operations are like methods; Z even
provides a kind of inheritance. However, Z is not limited just to ADTs and object-
oriented style; you can also use Z in a functional style, among others.

Z dictates few assumptions about what can be modelled. Z is just a notation, it is
not a method; the Z notation can support many different methods. The meaning of a
Z text is determined by its authors. It can be understood to model only the behavior
of a system: It is an abstract formal specification. Or, the elements of a Z text
can be understood to represent structures in code: modules, data types, procedures,
functions, classes, objects. In that case the Z model is a detailed design.

Zisnot an executable notation. In general, Z specifications cannot be interpreted or
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compiled into a running program (or prototype or simulation). Z is not a programming
language. Z texts are not just programs written in very high-level language. What
would be the point of writing the program twice?

Z was designed for people, not machines. For years Z was exclusively a pencil-
and-paper notation. Z encourages a style where formulas are annotated liberally
with prose. Z documents usually include more prose than formal text. Novices can
be intimidated by the appearance of Z: a mixture of boxes, text, Greek letters, and
invented pictorial symbols. But the notation is easy to learn; once assimilated, its
advantages become clear. The boxes and pictorial symbols in Z help your eye grasp
the structure of the model even before you read it.

Z actually includes two notations. The first is the notation of ordinary discrete
mathematics, expressed in the symbols and syntax described in Part III. The second
notation provides structure to the mathematical text: It provides several structur-
ing constructs called paragraphs. The most conspicuous kind of Z paragraph is a
macro-like abbreviation and naming construct called the schema. Z defines a schema
calculus you can use to build big schemas from small ones. The schema is the feature
that most distinguishes Z from other formal notations.

The mathematical notation of Z consists of a small core, supplemented by a larger
collection of useful objects and operators called the Z mathematical tool-kit. The
tool-kit is not software, it is a collection of mathematical theories: definitions and
laws concerning objects such as sets, tuples, relations, functions, sequences, and
their operators. In Z we use these mathematical objects to model data structures and
other components of computing systems. The tool-kit plays somewhat the same role
in Z that a standard library of types and functions does in an executable programming
language. The portions of the tool-kit used in this book appear in Appendix D.

Z is very powerful, and the notation is used in two rather different ways. First
there is a descriptive style where we use Z to model some particular system we
intend to implement: a text editor or a radiation therapy machine. Then there is an
analytic style that experts use to define and extend the Z notation itself. Several
constructs in Z were put there to support the analytic style and are only rarely used
for description. My purpose in this book is to teach the descriptive style. We can
take the foundations for granted. We’re going to use Z.

Z is supported by tools. The notation is defined with sufficient precision that Z texts
can be processed by machine. Software tools are available for writing and displaying
the special Z symbols and typesetting documents like this book, for checking Z texts
for syntax and type errors in much the same way that a compiler checks code in an
executable programming language, and even for assisting in proving claims about
the behavior of systems modelled in Z. These tools are invaluable for serious work,
but you do not need them to begin learning and using Z.

We’ll tackle some small examples first. In the next few chapters I'll show you
what Z can do, explaining the basics as I go, without a lot of didactic preamble. I’ll
explain the notation more fully in Part III.
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In this Chapter, I describe a well-known function in Z and compare the Z model
to code in C. The function is tiny, but not trivial; it reveals in miniature several
issues that recur in problems of any size. The Z model describes the behavior of
the code without describing its internal structure: It is a specification. This exercise
demonstrates what a specification is and explains why we need one. It shows how a
specification differs from code, and makes it clear why we cannot (in general) expect
to compile a useful specification into an executable program. It also provides a first
look at some constructs in the Z notation.

Many programmers believe that formal specifications are not useful. They be-
lieve that the program text — the code itself — can be the only really complete and
unambiguous description of what a program does. This view holds that a formal spec-
ification is nothing more than the program written over again in another language.
It misinterprets Z to be some kind of very high-level programming language.

This example shows they are wrong. See for yourself: Here is the code in C.

int f(int a)

{

int i, term, sum;

term=1; sum=1;

for (i=0; sum <= a; i++) {
term=term+2;
sum=sum+term;

}

return i;

}

The code couldn’t be simpler. It is well structured and very brief — in fact it
looks trivial. But what does it do? It seems to be adding up a series of numbers —
but why? And it returns the counter, rather than the sum — is that a mistake? Try to
answer before you turn the page.
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I'll give you some hints: Here is the code again with a new name and a comment.

int iroot (int a)
/* Integer square root */
{

int 1i,term,sum;

term=1l; sum=1;

for (i=0; sum <= a; i++)
term=term+2;
sum=sum+term;

}

return 1i;

Now I've told you that the code is supposed to compute the integer square root,
so you might guess that if you call iroot with a set to 4, it should return 2. If you
type in the code, write a driver program, and run a little test, you will find that it
does.

But the name and the comment are not as helpful as they might seem. Some
numbers don’t have integer square roots. What happens if you call iroot with a
set to 3?7 Negative numbers don’t have square roots at all. What if you call iroot
with a set to 47 Does it return anything, or does it loop forever — or crash? These
questions reveal the problem with the name and the comment: They aren’t complete.
They don’t explain how the function behaves for every input. There are a lot of cases,
and we don’t want to try every one. Can’t we come up with a better description?

We need more than just the code. We need a specification. The code describes the
computation itself, but a specification describes the result of the computation. We
start with a definition of square root in English:

When you multiply the square root of a number by itself, you get the original
number back again.

We can say the same thing more concisely in mathematical notation:
JaxJJa=a

Unfortunately this definition can’t serve as the specification for any computer
program. Here we confront a difference between the ideal world of mathematics and
the real world of the computer: Computers can only represent numbers to some finite
degree of precision — they can only carry so many digits. However, many useful
numbers — for example +/2 — cannot be expressed exactly with a finite number of
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digits. No real computer can represent a number that you can multiply by itself and
obtain exactly 2. No matter how many digits you have, there will always be a little
error! . Our i root function makes the problem especially obvious because it returns
an integer, but the same problem arises no matter how many digits of precision we
might have: We must explain how we handle all those numbers with square roots we
can’t represent exactly. Similar problems arise in most other numerical calculations:
It is not possible to compute the exact answer, so we must specify the accuracy.

We can do it easily in Z. Here is a specification for i root, expressed in a single
Z paragraph called an axiomatic definition:

iroot :N - N

Va:Noe
iroot(a) * iroot(a) < a < (iroot(a) + 1) x (iroot(a) + 1)

The first thing you will notice is that the Z paragraph is set off from the surrounding
prose by lines that suggest a sort of box. Z turns the commenting convention of
programming languages inside out: In Z we delimit the formal text, not the prose.
There is no way to write informal comments inside a Z paragraph. You are supposed
to provide the explanation in the surrounding text, and keep the Z parts brief enough
that your readers don’t get lost. '

Now let’s look inside the box. This example shows how Z combines features
from programming languages and traditional mathematics. Like many programming
languages, Z has declarations and data types. The big horizontal line is a piece of Z
syntax that divides the paragraph into parts. The text above the line is the declaration:

iroot:N - N
It corresponds to the declaration of the C function:
int iroot(int a)

Both declarations tell us that i root is a function that takes an integer argument and
returns an integer, but the differences here are not just syntactic. The Z declaration
is actually stronger: It tells use more. In Z, N is the symbol for the natural numbers,
the data type whose members are the nonnegative integers: 0, 1, 2, .. ..

The N to the left of the arrow says that the input to the function must be a natural
number. This tells us that the behavior of iroot is not defined when the input is a
negative integer — it might return anything or nothing; it could crash or loop forever.
It is up to the caller to ensure that iroot is never called with a negative argument.

! The discovery of such “incommensurable” or “irrational” numbers is another one of those important
computer science discoveries that the ancient Greeks made thousands of years ago [Toeplitz, 1963).
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The N to the right of the arrow says that the result returned by the function is
also a natural number; iroot will never return a negative number. This is tells us
that iroot(4) will always be 2, never —2 (which would also seem to work, since
—2 x —2 = 4). This additional information is necessary because a function must
always be defined so that there can be just a single output value for any input
value.

The restriction of the input and output of the function to nonnegative integers is
not explicit in the C declaration. It is typical for Z declarations to include more infor-
mation than the declarations in executable programming languages. The collection
of data types available in Z is much richer than in any programming language.

Like the code, the Z uses a dummy variable or formal parameter to define the
function. The Z text Va : N corresponds to the C code int a; it introduces the
formal parameter a and tells its type (the spot e is just a delimiter). In Z, g is called
a bound variable; 1 will explain the V. . . syntax in Chapter 10.

Now we come to the biggest difference between Z and code. The Z text below
the line is called the predicate:

iroot(a) x iroot(a) < a < (iroot(a) + 1) * (iroot(a) + 1)

The predicate resembles the mathematical definition /a x /a = a, but it says
more. It explains what happens when the argument does not have an integer square
root: iroot returns the largest natural number that is af most \/a. When a = 4, iroot
returns 2, but when a = 3, iroot returns 1, and when a = §, iroot also returns 2,
and so on. You can plug these numbers into the formula to confirm that they satisfy
the specification. It is important that the specification makes this clear because other
choices are possible. We might have chosen the predicate with... < a < ...instead.
This defines a different function that returns the smallest natural number that is at
least \/a; when a is 4 this function returns 2 just as iroot does, but when a is 3 it
also returns 2, whereas iroot retumns 1.
The code that corresponds to the predicate is the body of the function:

{

int i, term, sum;

term=1; sum=1;

for (i=0; sum <= a; i++)
term=term+2;
sum=sum+term;

}

return 1i;
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The code doesn’t resemble the specification at all. This is the key difference
between Z and an executable programming language: The predicate in a Z definition
describes what the function does without explaining how to do it; the body of a C
function describes how to compute the function without exblaim'ng what the result
will be. The two descriptions are complementary; neither can take the place of the
other. We need both.

This example reveals that Z is not a programming language; we cannot expect
anyone to produce a compiler that could tumn the Z definition into executable code.
The Z definition is nonconstructive: it is essentially an acceptance test that we can
use to check whether a candidate iroot(a) is correct, but it provides no obvious clues
how to calculate (or construct) iroot(a) from a. This ability to use nonconstructive
definitions is one of the main reasons why specifications in nonexecutable notations
such as Z can be so much shorter and clearer than code.

So where did the code come from? I have to explain a little about how the code
was developed in order to make it clear why we cannot expect anyone to come up
with a Z compiler.

As I explained in Chapter 3, you get from a specification to code in stages, adding
knowledge at each stage. If you take away the intermediate stages, the results can
seem completely mysterious. Usually you apply two kinds of knowledge: knowledge
about the application and knowledge about the system where the program must run.
In this case the application is mathematics, and it so happens that the system where
the program must run is very limited: a tiny embedded controller with a primitive
processor and very little memory. We must make our program as small as possible,
and we must limit our use of arithmetic to addition and comparison -— our processor
has no built-in multiply or divide instructions.

To find a solution we must search our store of mathematical knowledge: We look
in books or ask an expert. We want a formula that defines square root in terms of
addition. The closest one we find is

143454+--+Q@n—-1)=n?

This one will do — 1t describes squares in terms of addition. It is a constructive defi-
nition: The quantity of intcrest n2 appears by itself on one side of an equation, and the
other side only uses operators we have available in our programming language (in this
case, addition). We can always translate a constructive definition into an executable
program. Chapter 27 explains how the i root code can be derived from this formula.

No compiler could do all of this. There is no algorithm for making the leap from a
nonconstructive definition to an executable program. Implementing nonconstructive
definitions requires additional knowledge that is specific to each problem. Much of
the creative work in programiming involves finding this knowledge and figuring out
how to apply it.
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Creating code from specifications also involves another kind of judgment that
cannot, in general, be built into a compiler: choosing tradeoffs in performance. This
is essentially an economic judgment. For example in this case we wrote the simplest
and shortest code that could compute iroot(a). However, our code is slow. It just
counts up to iroot(a), so as a gets larger, it takes longer (technically, we say iroot
has complexity O(4/n)). There are more efficient ways to compute iroot(a), but all
of them are more complicated than our i root. If we were not limited to just addition
and comparison, the code would look completely different. Our code follows from
the knowledge that our implementation requires extreme simplicity instead of speed.

Just as there can be no Z compiler, there is no simplistic Z development method
either. There can be no cookbook recipe for getting from Z to code. There are always
many different ways to implement a Z specification. It is up to you to choose the
best one for your situation.

This freedom to choose from alternative implementations is one of the defining
characteristics that distinguishes a specification from code. Describing a system with
code can close off alternatives too early and force you to accept a solution that is not
the best match to your real needs. This is one of the reasons why a nonexecutable
specification is a good thing to have.

Summary

A specification describes the behavior of code without describing its internal struc-
ture. A specification can convey information that cannot be expressed directly in
code: information about precision, applicability, and exceptional situations. A spec-
ification can be nonconstructive: It can express the result that the code achieves
without explaining how it works. A nonconstructive specification can be seen as an
acceptance test. Nonconstructive specifications achieve expressivity and brevity at
the expense of executability; in general they cannot be compiled into code. Therefore
they leave the programmer free to choose among different implementation strate-
gies. Functions can be specified in Z paragraphs called axiomatic definitions. The
declaration and predicate in a Z axiomatic definition correspend to the declaration
and body of a function in an executable programming language.



6 From prose to Z:
control console

Here is a first example to illustrate the progression from informal to formal descrip-
tions. I will describe the control program for the therapist’s console on a radiation
therapy machine (Figure 6.1).

Figure 6.1: Therapy machine.
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6.1

Informal requirements

The purpose of this program is to help ensure that patients are treated correctly, as
directed by their prescriptions. Many therapy machine settings must be set properly
to deliver each prescribed treatment. The console program ensures that the radiation
beam can only turn on when the correct settings have been achieved.

The treatment console computer stores a database of prescriptions for many pa-
tients. Each patient’s prescription usually includes several different beam configu-
rations called fields. Each field is defined by many machine settings.

The therapist operates the control program at an ordinary workstation, selecting
different console operations by pressing labelled function keys (Figure 6.2). The
therapist actually turns the radiation beam on and off by pressing buttons on a
separate control panel. These buttons act on directly the therapy machine through
nonprogrammable hard-wired controls that are not controlled by the computer. The
computer merely senses the condition of these buttons. The therapist sets many
machine settings — those involved in positioning the patient and the moveable parts
of the therapy machine — at local controls in the therapy room. Again, the control
computer can only sense these settings.

The control program is only responsible for checking that the prescribed settings
and actual settings agree. There are many other safety conditions that are checked by
other computers and nonprogrammable elements. All safety conditions are mediated
by relays in a hard-wired interlock chain, essentially a chain of switches wired in
series. An open switch indicates a potential hazard; a closed switch indicates a
safe condition. All switches must be closed to allow the beam to turn on; if any
switch opens when the beam is on, it turns off immediately. The console computer
indicates that the prescribed settings have been achieved by closing a switch in
this chain.

This design expresses a conservative philosophy commonly applied in safety-
critical systems: Computers are used only where their complexity is absolutely re-
quired; elsewhere, safety is delegated to simpler mechanisms whose trustworthiness
can be ensured by time-tested techniques.

When a patient arrives, the therapist presses the SELECT PATIENT key to
display the list of patients whose prescriptions are on file and then chooses that
patient’s identifier from the list (by a method we needn’t describe). When the display
shows the selected patient, the therapist confirms the selection by pressing ENTER.
Then the list of beams on file for that patient appears (Figure 6.3). The therapist
chooses one and again presses ENTER. The prescribed settings for the selected
field appear (Figure 6.4). Then the therapist enters the treatment room to position
the patient and set up the machine.

When all the settings match the prescription, and all safety interlocks are clear, the
control program closes its relay in the interlock chain, and the workstation display
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Figure 6.2: Therapy control console block diagram.

indicates that the machine is ready to begin a treatment. Then the therapist presses the
START button, and the beam turns on. It usually remains on until the prescribed dose
is delivered, and then turns off automatically when a dosimeter opens its relay in the
interlock chain. After the beam tumns off, it is necessary to repeat some of the setup
procedures in order to clear certain interlocks and make the machine ready again.

There can be many exceptions to this usual sequence. The therapist may select
a different patient or field at any time, except when the beam is actually on. The
therapist can always turn off the beam by pressing the STOP button before the
prescribed dose is delivered (for example, if the patient moves). The control program
or the hardware safety circuits will open their relays in the interlock chain if they
detect any faults. This will also turn off the beam.
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Figure 6.5: Therapy contro! console: data flow diagram.

6.2 Data flow diagram

Now let’s create a model of this control program. First, we try a data flow model
like the ones recommended in countless books (Figure 6.5).

This diagram describes a way to organize the internal structure of the control
program. However, we cannot use it to predict or analyze the behavior of the therapy
machine. It has little formal content: merely three symbols (bubbles, arrows, and
boxes) and a simple syntax (each arrow has to begin and end on a bubble or box).
After checking superficial features — Do all the arrows go someplace? — there is
not much we can do formally to help us decide if this diagram describes a good

design. Clearly, we need more. We seem to have pushed most of the work into that
bubble labelled CONTROL. What’s going on in there?
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6.3

State transition diagram

Next, we draw a state transition diagram (Figure 6.6). It doesn’t look so different
—- more bubbles and arrows. But this diagram is much more powerful. It illustrates
a completely different kind of model: a finite state machine model. It models the
behavior of the control program, not its structure. '

States are indicated by bubbles, transitions between states by arrows. The arrows
are labelled with the events that cause state transitions. Thus, in the PATIENTS
state pressing the ENTER key causes a transition to the FIELDS state, but in the
FIELDS state pressing ENTER brings you to SETUP.

The key insight here is that the program described in the informal requirements
can be modelled by a machine with just a few states. Different screen designs (as
in Figures 6.3 and 6.4) correspond to different states; when the machine makes
a transition between states, the display updates with a new design. Moreover, the
control program’s safety relay is closed in the READY and BEAM ON states and
is open in all the other states.

We say this diagram is more formal than the data flow diagram because it enables
us to infer the behavior of the program, and it can be analyzed. In addition to a simple
formal syntax, it conveys meaning or semantics: We can trace all possible treatment
sequences by following the arrows around the diagram. We can say what is and is
not supposed to happen in all situations.
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SELECT SELECVT

PATIENT FIELD ENTER ok START stop intlk
PATIENTS — — FIELDS — — — —
FIELDS PATIENTS — SETUP — - — —
SETUP PATIENTS FIELDS —_ READY — —_ —
READY PATIENTS FIELDS — —_ BEAM ON —_ SETUP
BEAM ON — - — — —_ READY | SETUP

Figure 6.7: Therapy control console: state transition table.

6.4

The state transition diagram says more than the informal requirements. It makes
it clear that pressing the STOP button has a different effect than occurs when the
dosimeter stops the treatment. After STOP, the system is in the READY state where
the treatment can be easily resumed, but after the prescribed dose is delivered, the
system is no longer READY. In order to make a formal model, we have to under-
stand the requirements very thoroughly; we often find that the original statement is
inadequate.

State transition table

The state transition diagram is a picture of our state machine model. There are other
ways to represent the same model. Figure 6.7 shows the state transition table. Entries
in the table indicate the next state that is reached when the event indicated by the
column heading occurs during the state indicated by the row heading.

This table is a bit more explicit than the state transition diagram because it makes
it clear when events are ignored. For example, pressing the SELECT PATIENT key
in the BEAM ON mode has no effect (causes no state change); this is indicated by
the dash (—) in the table. Including all of these in the diagram would make it too
cluttered. As notations grow more formal, they become more explicit and rely less
on unwritten assumptions.
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Therapy control console

STATE ::= patients | fields | setup | ready | beam_on
EVENT ::= select_patient | select_field | enter | start | stop | ok | intlk
FSM == (STATE x EVENT) +» STATE

no_change, transitions, control : FSM

control = no_change ® transitions
no_change = { s : STATE; ¢ : EVENT ¢ (s,e) — s}
transitions = { (patients, enter) v« fields,
(fields, select_patient) v patients, (fields, enter) v setup,

(setup, select_patient) > patients, (setup, select_field) — fields,
(setup, ok) > ready,

(ready, select_patient) > patients, (ready, select_field) > fields,
(ready, start) — beam_on, (ready, intik) — setup,

(beam_on, stop) +> ready, (beam_on, intlk) > setup }

Figure 6.8: Therapy control console: Z specification.

65 Z

Finally, we express the state machine model in Z (Figure 6.8). Don’t worry about the
details of the notation for now. You should be able to see that the function transitions
models the state transition table in Figure 6.7. For example, the expression (patients,
enter) > fields corresponds to the single transition in the first row of the table:
When the patients screen is displayed, pressing enter displays the fields screen.
Likewise, (fields, select_patient) — patients, (fields, enter) > setup represents the
two transitions in the second row of the table.

This is the most explicit version yet. The definition of no_change spells out what
was left to convention before: In certain states, certain inputs do not cause a state
change.

Are we really justified in going to all the trouble to learn this weird notation? I
admit it: If all examples were as trivial as this one, we wouldn’t need Z.

In fact, this example is very much oversimplified — yet we are already pressing
the limits of diagrams and tables. We could easily manage with diagrams and tables
that were, maybe, twice as large as these. This example already illustrates two of
the most powerful concepts in formal methods: using compact symbolic expressions
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to represent lots of cases in a little space and using operators to build up complex
formulas from simpler ones. '

State transition tables are often very sparse: Most of the entries are empty “nothing
changes” cells that make the tables large and difficult to read. In Z we don’t have
to enumerate all the no_change transitions as we did in the table — we can do it
symbolically; no_change is actually a state machine that does nothing. We define
a second machine, transitions, that includes only the transitions where something
actually happens. Then we use the Z override operator @ to combine the two. The
expression no_change @ transitions describes the state machine that behaves as
no_change, except when there is a relevant entry in transitions.

More importantly, the diagram and the table are specialized notations that only
work for finite state machines. We cannot use them to attack the hard parts of the
problem that I left out of this toy example. For example, what really distinguishes
the state READY from SETUP? We glossed over this — we merely said the system
becomes ready when the ok event occurs. This mysterious ok event does not come
from a key or button; we left it undefined. But we must define it; this transition is
the central safety-critical event in the program because it closes the relay that allows
the beam to tumn on.

In READY, all the settings match their prescribed values; the ok event occurs
when the system achieves this condition. (In fact, some settings must match exactly,
while others are permitted to vary within a tolerance; some settings that don’t match
can be overridden, while others cannot, and so on.) We cannot represent this with our
diagrams or tables because it involves dozens of settings that vary over continuous
ranges. We need to model values and relations between values. We will see how
when we develop a more complete model of this program in Chapters 21 and 22.

Exercise 6.5.1 Something very important was left out of our state machine model.
What was it? (It can be expressed in terms of the states and events we already
defined.)



7 Introducing schemas:
text editor

1.1

The schema is the characteristic construct of Z. Schema boxes distinguish a Z text
from any other notation. This chapter describes the schema and introduces most of
the other Z paragraphs as well.

We’ll model a simple text editor. All you can do with this editor is type in text,
move the cursor backwards and forwards through the text, and delete the character
in front of the cursor. We will describe some additional features in Chapter 17.

Basic types and abbreviation definitions

Our editor deals with texts composed of characters. We can express this in two very
short Z paragraphs. We declare a basic type: the set of all characters. Then we make
an abbreviation definition to say that a text is a sequence of characters.

[CHAR)
TEXT == seqCHAR

CHAR is our character set. We don’t have to say that characters are bytes; they might
not be. We don’t have to say what the encoding convention is; it might be ASCII,
but it needn’t be. We don’t even have to say which characters are in the set; they
needn’t include our usual Roman alphabet. These details are not necessary to explain
what the editor does. The omission of inessential details is one of the things that
distinguishes a model from an executable program.

CHAR is a full-fledged Z data type. In Z we can introduce a new data type just by
writing its name inside brackets (see Section 8.1.9). From now on we can use CHAR
in declarations, just like N and all the other predefined data types.

The abbreviation definition introduces another new data type, TEXT, a sequence
of characters. We can use seq to define a sequence of any type. Sequences and
their operators are defined in the mathematical tool-kit (Section 9.5). The definition
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1.2

1.3

symbol == says that TEXT is just an abbreviation for seq CHAR. Z abbreviations
are much like the macros provided in some programming languages. They can save
us the trouble of writing out long definitions again and again. But far more important
is that they enable us to make our intentions clear by giving meaningful names to
our constructions.

Identifers defined in basic type declarations and abbreviations are global: They
can be used anywhere in the text after their definition.

Axiomatic descriptions

Our little editor must run in memory on small computers, so we have to say that
there is an upper limit on the size of the document it can handle. We know that we
are limited to a 16 bit address space at most, and we may have to configure versions
that run in even less memory.

We use an axiomatic description to express this. We have already used axiomatic
descriptions to define functions in Chapters 5 and 6; in Z we use axiomatic descrip-
tions to define constants of any type!.

maxsize : N

maxsize < 65535

Here again, the axiomatic description has two parts: the declaration above the line
says that maxsize is a nonnegative integer, and the predicate below the line con-
strains its value. Items declared in axiomatic descriptions are always constants, not
variables. We have not committed ourselves to a particular value for maxsize; it can
be any number up through 65,535. However, it still has a constant value, we just
haven’t said what that value is.

Constants declared in axiomatic descriptions are global. This is suggested by the
open appearance of the axiomatic description box.

Axiomatic descriptions are also called axiomatic definitions.

State schemas

All the notation I have presented so far is just a way to write ordinary mathematics.
The schema adds something new that we need to model computing systems: storage,
that is, memory. The contents of a system’s memory are called its state. Schemas
model states as collections of state variables and their values. State variables are
also called components.

! In Z, functions such as ireot are a kind of constant.
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1.4

The systems modelled in the preceding chapters have no state: You present them
with an input, and immediately you get an output. They behave as if they have no
memory: Every time you present them with the same input, you get the same output.
Such systems can be modelled by mathematical objects called functions. Our iroot
in Chapter 5 and control in Chapter 6 are both functions. In Z we use axiomatic
definitions to describe functions, but axiomatic definitions cannot describe states
because they provide no way to represent memory?.

A text editor does have memory: It stores the text you type and the changes you
make. The state of our text editor is ver); simple: We have a document with a cursor.
The document is a text (a sequence of characters) that is no larger than our upper
limit. We model the document as two texts: left is the text before the cursor, and
right is text following it. This turns out to be much more convenient than modelling
the document as a single text with an integer index to indicate the cursor position.

Here is our state schema. Its two state variables are left and right:

__Editor
left, right : TEXT

#(left " right) < maxsize

Just as in an axiomatic definition, we declare variables above the line and constrain
their values in the predicate below the line. But the schema box looks different
from an axiomatic definition. It has a name, so we can refer to its contents just by
naming it. And the schema box is closed. This is to remind you that the variables
declared inside the box are local: They can only be used in the schema where they
are declared.

The predicate in Editor says that the document can hold no more than maxsize
characters. We use the Z concatenation operator ~ to construct the whole text from
its two pieces left and right, and the size operator # to count all the characters.

The predicate in a Z state schema is called an invariant because it is always true;
it describes properties that always hold.

Initialization schemas
Every system has a special state in which it starts up. In Z this state is described

by a schema conventionally named /nit. For example, we might say that our editor
always starts up with an empty document:

2 The STATE in the control console example (Chapter 6) was really just an input to the function.
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7.5

—Init
Editor

left = right = ()

The {} in the predicate is the empty sequence.

The Init schema includes the Editor schema in its declaration section. This indi-
cates that all the declarations and predicates in Editor apply to Init as well, so Init
can use the local state variables right and left from Editor.

Schemas resemble the macros provided by some programming languages. You
can use the schema name instead of writing out the whole text of the schema again
and again. This preserves your wrists and fingers, makes the Z text shorter, and —
most important of all — makes it easier for readers to grasp the structure of your
model.

Operation schemas

We have shown how state schemas can model one of the essential qualities of state:
storage. We need to model another aspect of state: change. Our editor starts up empty,
but it fills with text as the user types, and its contents change as the user edits. To
model this kind of activity, Z provides the operation schema.

We want to type text into our editor. Let’s define the the Insert operation that
puts a single character in the document to the left of the cursor. In most editors you
invoke this operation by simply typing on any of the ordinary alphanumeric keys
on the workstation keyboard. This operation only applies to printing characters, not
control characters, so we use an axiomatic definition to define a new constant, the
set of printing characters. This axiomatic definition has no predicate because it isn’t
necessary to say which characters are the printing characters.

| printing : PCHAR
Insert

B AEditor
ch? : CHAR

ch? € printing
left’' = left ™ (ch?)
right' =right
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1.6

Here AEditor (pronounced delta editor) tells us that Insert is an operation schema
that changes the state of Editor.

This operation schema declares the input variable ch?, the character to be inserted
— that is, the character you just typed. In Z we usually indicate input variables by
ending them with a question mark. This is just a naming convention. The question
mark is not an operator, it is just another character that we can use to form a variable
name.

The predicate tells us how the editor state changes. The unprimed variables left
and right denote the texts to the left and right of the cursor beforc the Insert operation,
and the primed variables leff and right denote those texts after the operation.

The first line of the predicate, ch? € printing, is a precondition: It describes what
must be true before the operation can occur. Sometimes preconditions are called entry
conditions. This precondition says that the /nsert operation can only occur when the
input is a printing character; it uses the set membership operator € (pronounced in).
The rest of the predicate is a postcondition: It describes the state of the editor after
the operation. The line left’ = left ™ (ch?) says that the new character is appended to
the end of the text preceding the cursor (in other words, it is inserted to the left of the
cursor). Here again we use the concatenation operator. The next line right’ = right
says that the text following the cursor does not change. In Z it is necessary to say
when things remain the same. This usually surpnses programmers. In specifications
this is useful, as we shall see.

Our Insert operation works equally well whether the cursor is at the end of the
document, at the beginning, or somewhere in the middle. This is why we modelled
the editor as two texts. A more obvious model would represent the editor as a single
text with the cursor position indicated by an integer: the index of the character
before the cursor. But this would make the definition of the Insert operation far more
cumbersome, because we would have to write formulas to adjust the indices of all
the characters to the right of the cursor. What a mess!

Implicit preconditions

The next operation moves the cursor forward one character. In many editors, the
user invokes this operation by pressing the right arrow key on the workstation
keyboard. We use an axiomatic definition to declare this right_arrow character. We
have to include a predicate that uses the set nonmembership operator ¢ to say that
right_arrow is not a printing character; otherwise our editor would try to insert the
arrow character into the file, instead of interpreting it as a command.
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right_arrow : CHAR

right_arrow ¢ printing

__Forward
AEditor
ch? : CHAR

ch? = right_arrow
lef! = left ™ (head(right))
right = tail(right)

Forward uses the head and tail functions: head retumns the first element of a sequence,
and tail returns the sequence with the first element removed. The predicate says that
the Forward operation removes the first element from right and appends it to the end
of left. This has the effect of moving the cursor forward one character.

There is only one problem with our Forward operation: It doesn’t always work.

Exercise Why not?

Solution Here is the problem: You press the right arrow key when the cursor is
at the end of the document, and the editor crashes. It is a typical experience with a
shaky new program.

Forward does not work when the cursor is already at the end of the document. The
definition breaks because head(right) and tail(right) are not defined when right is
empty. If we implemented Forward, the program’s behavior in this situation would
be undefined. It might crash, losing all the user’s work.

It is crucial that you understand this is not just a coding error. The problem is
already evident in our Z model. Our Forward operation only makes sense when there
is someplace to which to move forward.

We say that Forward is a partial operation because it only works in some situa-
tions; its effects are undefined in others. Forward has an implicit precondition. Anim-
plicit precondition is not written out, as the explicit precondition ch? = right_arrow
is here. Implicit preconditions arise from the interaction between the state invariant
and the predicates that are explicit in the operation schema. The implicit precondition
of Forward is that the cursor is not at the end of the document: right # ().

We should revise our definition so there are no undefined operations and the
precondition is explicit. '
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1.7

— Forward
AEditor
ch? : CHAR

ch? = right_arrow

right # ()

lef! = left ™ (head(right))
right = tail(right)

It is easy to write operations that have implicit preconditions; failure to recognize
them is a frequent source of programming errors. Here we relied on insight and
experience to tell us that Forward doesn’t always work. Must we always depend on
our intuition to recognize implicit preconditions? As we shall see, we can calculate
the precondition of a Z operation. If we write a formal specification in Z, we can
check it systematically for certain kinds of errors and oversights. This is one of the
things that distinguishes a formal method from informal ones.

Exercise Does Insert have any implicit preconditions? (This exercise is solved in
Section 154.)

Schema calculus

Our editor musn’t crash. We need to make it robust. We will define a toral version
of Forward that works in all situations. We’ll define it in pieces, where each piece
is a schema. Then we’ll use the schema calculus to put the pieces together. This is
the usual way to define complex operations in Z.

First we define a state schema to describe the end of file condition where the
cursor is at the end of the document.

__EOF
Editor

right = ()

We decide that in this state pressing the right arrow key should not move the cursor
or change the contents of the document. In Z it is necessary to say when nothing
happens. EEditor is the operation on Editor that does not change the value of any
state variable. We make right_arrow into a schema by defining RightArrow.



56

Chapter 7. Introducing schemas: text editor

1.8

__RightArrow
ch? : CHAR

ch? = right_arrow

This is necessary so ch? = right_arrow appears in both disjuncts of the schema
expression that defines our total operation T _Forward.

T _Forward = Forward v (EOF A RightArrow A EEditor)

This formula says that T _Forward behaves as the Forward operation when the cursor
is not at the end of the file, but pressing the right arrow key when the editor is in the
EOF state has no effect.

T _Forward is also a schema but instead of defining it in box form we write a
schema calculus formula on one line. The part of the formula to the right of the
definition symbol = is a schema expression composed of schema names or schema
references and schema operators. The A operator is pronounced and; we use it to
combine states and operations together. The Vv operator is pronounced or; we use it
to separate distinct alternatives. This is the usual Z style for defining total operations
in terms of partial ones.

We will study schemas and the schema calculus operators more thoroughly in
Chapter 12.

It should be clear how to complete the formal specification of our editor. We still
have to define the the Backward operation that moves the cursor one character to the
left and the Delete operation that deletes the character before the cursor. We have
to define a total version of each operation. Finally, it is necessary to say how the
program handles input characters that are not handled by Insert, Forward, Backward,
and Delete.

The Way of Z

As you can see, the Z notation is really quite simple. This little example has revealed
most of its features. Let’s review some of its lessons.

InZ we use axiomatic descriptions to model constants and functions, and schemas
to model states and operations. There is nothing more. Z has no built-in concept of
a program or any explicit control structure. In this example the program is defined
implicitly by the top-level operation schemas that are included in no other operation
schemas, such as T _Forward (Forward is not at top level because it is used to define
T _Forward). The control structure is determined implicitly by the input variables
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and preconditions of the top-level operations. Each top-level operation is invoked
whenever its input appears and all of its preconditions are satisfied.

Z encourages a modelling method that makes it easy to ensure that specifications
are complete. First we determine which operations we need to provide. Then we
choose the inputs that should invoke each operation. Then we define the normal
or typical case of each operation. Then we think about what might go wrong and
consider how to handle inputs in different system states, and augment each typical
operation to obtain a total operation. We take care to define a reasonably small
number of operations and states so we can do a case analysis to confirm that they
cover all possible situations. We identify the states and do the case analysis in Z
where it is easy, not in the program code where it is a lot harder. When we write the
code, we can preserve the structure of our Z model and take care not to introduce
any additional cases.

This example, like many Z specifications, models the program as a state transition
system. It is similar in principle to the model of the therapy machine console in
Chapter 6, but has many more inputs — all the elements of CHAR — and vastly
more states — all the possible states in Editor. It would be impossible to model a
system this large using the diagrams or tables of Chapter 6, but it is not difficult in
Z, because we can gather inputs and states together in sets such as printing and state
schemas such as EOF. Unlike a diagram or table, the length of the Z text need not
grow in proportion to the number of states. This makes it feasible to model systems
that have lots of states.

It is typical for programs to have astronomically large numbers of states, and
programmers sometimes complain that this makes programming errors inevitable.
In fact the number of states doesn’t matter. For each operation in a well-designed
system, we can divide the states into a small number of equivalence classes. Within
a class, every state behaves the same way — it can be handled by the same code.
Systems that have huge numbers of states might have only a few equivalence classes
for each operation; often there are just two. When we attempt the Forward operation,
all that matters is whether or not the system is an EOF state, and that is easy to test.
Of course, we must remember to do it. If we don’t think carefully about the states,
we can create states with every line of code we write — and we won’t know what
they are. Programs written that way are usually full of errors.

The key to designing with Z is finding a good model for the system state, because
it usually becomes the design for the central data structures in the program. The
first attempt often doesn’t work out: We have to try defining the same operations
with different models of the state, before we find a good one. This exploratory phase
can be time consuming but it is worth the effort because it compels us to face the
difficult design issues early. One of the main reasons for making Z models is to
explore alternatives so we can reject overly complex designs. In our editor example,
an obvious model represents the document by a single sequence, where the cursor is
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an integer index into the sequence. If we try it, we find this obvious solution makes
the definition of Insert overly complicated, because we have to adjust the index of
every character to the right of the cursor. This exercise makes it clear that the editor
design turns on finding a data structure that makes it easy to insert and delete text in
the middle of the document.

Z is not a programming language. The schemas in this chapter are not intended
to resemble efficient code. They are intended to be the simplest possible description
of the operations that the implementation must provide.

We don’t try to do everything in Z. Beginners are often surprised by how much
is left out of a Z model, and sometimes feel frustrated because so many details have
been deferred. But experienced Z users usually try to find a very abstract model first,
then add the details in stages. You can always add detail later, but if you put in the
detail at the beginning you might put in the wrong details, or details that bias you
towards some particular implementation that isn’t the best. This process of adding
details is called refinement and is the subject of Chapter 26.

Exercises

Exercise 7.8.1 Define the total operations 7. Backward and T _Delete. You may
use any functions or operators defined in Appendix D.

Exercise 7.8.2 Define the operation that handles input characters that are not
handled by Insert, Forward, Backward, and Delete.

Exercise 7.8.3 Our editor would be far more useful if it could read in the contents
of a file at the user’s demand. Model this in Z.

Exercise 7.8.4 How many distinct states are described by the Editor schema? The
EOF schema? Assume that CHAR is implemented by the ASCII character set.

Exercise 7.8.5 Prototype the Insert operation in a functional programming lan-
guage. Investigate the performance of your prototype on sequences of different
sizes. (Hint: The Z operators head, tail, and ~ (concatenation) resemble the Lisp
functions car, cdr, and append.)



Further reading

The de-facto standard is The Z Notation: A Reference Manual, second edi-
tion [Spivey, 1992b). At this writing there is a draft ANSI/ISO standard [Nicholls,
1995]. These documents define the core mathematical notation, the mathematical
tool-kit, and the schema calculus.

Some of the early work at Oxford was collected in the first Z book, Hayes’
Specification Case Studies [1987]; a second edition [1992a] uses the standard no-
tation of Spivey [1992b]. Woodcock and Loomes’ textbook Software Engineering
Mathematics [1990] teaches discrete mathematics using a Z-like notation; a paper by
Woodcock [1989b] adds material on schemas in the same style. There are now several
introductory textbooks on Z; the most comprehensive are by Diller [1990; 1994}, Pot-
ter, Sinclair, and Till [1991], and Wordsworth [1992]. The paper by Gravell [1991],
the report by Macdonald {1991], and especially the book by Barden, Stepney, and
Cooper [1994] offer guidance on Z style, illustrated by many instructive examples.

Among formal notations, Z has perhaps the largest literature of convincing, well-
written case studies. My favorites include Morgan’s telephone network, and Sgrensen
and Sufrin’s assembler in [Hayes, 19871, Sufrin’s text editor [1982], Morgan and
Sufrin’s Unix file system [1984], Sufrin’s make utility [1989], and Bowen’s X
window system [1992]. Some of the IBM work on its CICS transaction process-
ing system appears in Hayes’ paper [1985]. The Inmos work on the IEEE floating
point arithmetic standard and the T800 Transputer floating point unit is described in
papers by Barrett, and Shepherd and Wilson [1989; 1989; 1990]); Bowen’s micro-
processor work appears in [1987b; 1990). Delisle and Garlan [1989; 1990; 1990]
model oscilloscopes and other electronic instruments, Spivey [1990] analyzes the
operating system kernel for an embedded controller, and Stepney [1993] develops
a compiler.

There are annual Z user meetings with published proceedings [Bowen, 1987a;
Bowen, 1988; Nicholls, 1990; Nicholls, 1991; Nicholls, 1992; Bowen and Nicholls,
1993; Bowen and Hall, 1994; Bowen and Hinchey, 1995al. Z has been the subject
of two special journal issues [McDermid, 1989; Bowen and Hinchey, 1995b]. An
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annotated bibliography of the Z literature has been published [Bowen, Stepney, and
Barden, 1995].

Woodcock and Loomes [1990] and Spivey [1988] compare Z to other notations
in their books. Saaltink offers technical criticism of Z [1991; 1992].

Some notes on the history of Z appear in the paper by Woodcock [1989b) and the
annotated bibliography in the first edition only of the textbook by Diller [1990].

There is an unmoderated Usenet newsgroup comp . specification.z.

There is a Z home page maintained by Jonathan Bowen on the World Wide Web
athttp://www.comlab.ox.ac.uk/archive/z.html. Itincludes links to
many useful resources, tools, events, people, and documents.

Z tools are available for most popular computer systems, including personal
computers. Some are free. For up-to-date information, visit the Z home page.

The integer square root code in Chapter 5 is adapted from an example in Pascal

by Alagi¢ and Arbib [1978].

The radiation therapy machine in Chapter 6 is necessarily simplified. For
descriptions of real machines, good and bad, see Jacky er al. [1990]; Jacky
et al. [1992]; Leveson and Tumer [1993]; Leveson [1995]; and Weinhous, Purdy,
and Granda [1990).

The text editor in Chapter 7 is based on Bemard Sufrin’s early paper [1982].
Another adaptation appears in Antoni Diller’s textbook [1990). Sufrin’s original
paper models the appearance of the display as well as the contents of the document.
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8 Elements

8.1.1

This chapter introduces the three basic constructs that appear everywhere in Z texts:
declarations, expressions, and predicates. Declarations introduce variables. Expres-
sions describe the values that variables might have. Predicates express constraints
that determine which values the variables actually do have.

Sets and types, declarations, and variables

The systems that we need to model might contain vast numbers of things. How can
we possibly deal with them all? We gather similar objects into collections and treat
each collection as a single object in its own right. These collections are called sets.
Sets are central in Z.

Displaying sets

The obvious way to describe a set is to list or enumerate all of its members or
elements. This is called a set display. In Z we follow the ordinary mathematical
convention and write sets with braces, separating elements by commas. Here is a
display of the set of lamps in a traffic light:

{red, yellow, green)

Elements in a set are not ordered, so the order you write elements in a set display is
not significant. Here is another (equally good) display of the same set:

{yellow, red, green}

Sets contain no duplicate elements, and mentioning the same element more than
once is redundant but innocuous. So, the same set could even be written

{green, red, yellow, yellow, red}

The set with no elements {} is called the empty set. It is usually written @.
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8.1.2

8.1.3

Obviously, enumerating elements is impractical for all but the tiniest sets. As we
shall see, there are far more powerful ways to describe sets.

Naming sets

When a set contains many members, it is impractical to list them all, so we give sets
names. Some sets are used so often that standard names have already been assigned.
In particular, there are names for sets of numbers. Z is the set of integers, including
negative numbers. N is the set of natural numbers, beginning with zero. N is the
set of strictly positive integers or counting numbers, beginning with one.

We can make up our own names for the sets we define. For example, to write a
program that simulates a dice game, we need a set that contains the numbers of spots
found on the faces of dice: {1, 2, 3, 4, 5, 6}. Z does provide notation for a range of
consecutive numbers; we can abbreviate this 1 .. 6 (without braces) pronounced one
up to six. For the purposes of simulating tosses and scoring a game, a die is a number
from one up to six, so we choose the name DICE for this set. Named sets don’t have
to be made up of numbers; they can hold anything. We can choose the name LAMP
for the set {red, yellow, green}.

Types

In Z we can only form sets from objects that are similar in some way. We say that
elements of the same set must have the same type; sets in Z are typed. So a set can
be composed of colors, or numbers, but not a mixture of both. The following text is
not Z; it exhibits a type error because the elements listed between the brackets have
different types:

{2, 4, red, yellow, 6) [TYPE ERROR! Elements have different types.]

(There is no standard way to include comments within Z paragraphs; comments
should usually appear in the surrounding prose. This example illustrates the conven-
tion I use in this book when it is necessary to annotate a single formula: Surround
the comment by brackets and right-justify it.)

Types and sets are very closely related. Every type has a carrier set that contains
all of the objects of that type. For example, the carrier set for the integer type Z is
the set with every integer init: {..., -2, —1,0, 1,2, ...}. We usually say that the
type is its carrier set!. :

Every type is a set, but not all sets are types. The natural numbers N are a set, not
a type. Natural numbers belong to the type integer, Z, because every natural number

! The three dots “. . .” are not Z. They are informal notation that we use to indicate an indefinitely long
sequence of numbers.
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is also an integer. An object’s type is the most inclusive or maximal set to which it
belongs.

Types are very important in Z, even though only one type is built in: the type
integer, appropriately named Z?. We can define our own types. Most Z texts are
largely populated by types invented by their authors. These texts convey a lot of
information by their choice of types. This is one of the biggest differences between
Z and traditional mathematics. In mathematics there aren’t many types, and the type
of each object is obvious from context: Mathematicians understand that number
theory deals with integers, analysis deals with real numbers, and so on. In Z we
typically work with many different types in the same text so we have to be careful to
make the type of each object explicit. In this respect Z is more formal than traditional
mathematics (that is, more information is expressed in formulas).

Declarations and variables

.In order to talk about any object in Z, we have to introduce its name in a declara-

tion. Declarations introduce variables and tell to which set each variable belongs.
Declarations formalize a kind of language we often find in mathematics: “Let i be

an integer . . ..” Here are some Z declarations, along with their meanings:
i:7Z (i is an integer.]
dy,dy : DICE [dy and d; are two numbers in the range 1 .. 6.]
signal : LAMP [signal is one of the colors red, yellow, green.]

Each name introduced in a declaration names or denotes a single element in the set
that appears to the right of the colon. This element is sometimes called the name’s
value. This value may be unknown or undetermined, so the names introduced in
declarations are called variables. In the preceding declarations, i, d, d3, and signal
are variables.

Z declarations resemble the declarations found in many programming languages,
but they are more flexible. Any set can appear in a declaration — it doesn’t have
to be a type. Moreover, Z does not require that sets used in declarations have to be
referred to by name. Sometimes it is clearer to write out the sets literally instead.
The preceding declarations can be written:

di,dy:1..6 {d, and d, are two numbers in the range 1 .. 6.]

signal : {red, yellow, green} [signal is one of the colors red, yellow, green.)

2 Rational numbers, real numbers, and complex numbers are not built in, so Z is the maximal numeric
type in Z.
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This example illustrates a typical feature of Z: We can usually write the name or
object it denotes, whichever we prefer.

Z declarations can express more than the declarations we use in program code.
In most programming languages, types and declarations are really about storage:
Objects have the same type if they are represented the same way in computer memory,
and declarations are primarily used to reserve storage. Z declarations can be more
expressive because they can use sets, not just types. You can define sets that are
restricted to any elements that you like. As we shall see in Chapter 11, it is easy to

_define sets like EVEN, the set of even numbers, ODD, the set of odd numbers, and

PRIME, the set of prime numbers. We can use them in declarations like these:

e : EVEN [e is an even number.]
o:0DD [o is an odd number.]
p : PRIME | [p is a prime number.]

In most programming languages, this would not be possible; all three variables e,
o, and p would have to be declared the same way because they all have the same
integer type. Z declarations can convey information about the values that variables
may take on, not just their types.

Constraining variables, axiomatic definitions

We constrain a variable when we say what values it can take on. We have already
learned how to write one kind of constraint: Declarations can constrain a variable’s
value to belong to a particular set. There are many other kinds of contraints besides
set membership. In Z we define variables in a construct called an axiomatic definition
that can include any constraints we wish. The axiomatic definition is a Z paragraph
that is set off from the surrounding informal prose by an open box. Its general form is:

declarations

predicates

The optional predicates are formulas that constrain the variables introduced in the
declarations. Here is an axiomatic definition without a predicate. It declares two
numbers, di and d,. They are constrained by the declaration to belong to the set
DICE (the integers 1 .. 6):

| di.d,: DICE

Now here is an axiomatic definition with a predicate. It declares two numbers in the
range 1 .. 6, but it also constrains them to add up to 7:
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dy,d; : DICE

So we might have dy = 1 and d2 = 6, or d| = 4 and d, = 3, and so forth, but not
dy = 1and dp = 5, ordj = 4 and d; = 4. If we want to add more constraints, we
just write them out on successive lines. To say that d) must also be less than d5, we
would write

dy,d, : DICE

This still admits d; = 1 and d; = 6, but excludes d; = 4 and d; = 3.

Variables defined in axiomatic definitions are global: They can be used anywhere
in a Z text after their definition. This is called declaration before use.

Z global variables do not really vary, in the sense of changing value. A Z global
variable denotes the same value each time it appears. They are called variables
because their (fixed) values may be unknown or undetermined; or we may have a
choice of several values. This often surprises programmers because it is so different
from program code, where different occurrences of the same variable often have
different values, due to the effects of assignment statements>.

You can think of Z global variables as options or parameters: You can choose
different values for global vanables to describe different configurations. This ax-
iomatic definition defines a global variable named size whose value is the size of
memory in kilobytes:

size > 640

This declaration says, “You must have at least 640 kilobytes of memory; any size
Jarger than that will work as well.” In Z this is called a loose definition: It defines
not just one configuration, but a whole family of configurations, one for each value
of size greater than or equal to 640. You can choose any of these configurations that
you wish, but then size has that same value each time it appears — it wouldn’t make
sense for size to mean 1024 on one page and 2048 on the next.

3 The property that every occurrence of a variable denotes the same value is called referential trans-
parency. Referential transparency makes it easier to use certain kinds of reasoning. Z has it; most
programming languages don’t.



68

Chapter 8. Elements

8.1.6

8.17

Constants, abbreviation definitions

The strongest constraint you can reasonably make is to allow only a single value®.
A variable that can only take on one value is called a constant. This axiomatic
definition makes size a constant; it describes a single configuration, the one with two
megabytes of memory:

size = 2048

The Z abbreviation definition is a shortcut for defining global constants. It uses
the definition symbol == to introduce the variable and give its value on one line.
This abbreviation definition means exactly the same thing as the preceding axiomatic
definition:

size == 2048

An abbreviation definition does not need to include an explicit declaration, because
we can always infer the type of the constant from its value.

Abbreviation definitions are often used to create synonyms for sets and types, in
order to make declarations clearer. The names DICE and LAMP that we introduced
informally in section 8.1.2 could be defined formally this way:

DICE==1..6
LAMP == {red, yellow, green}

Normalization and signatures

We can deduce the type of any set once we have defined it, so we often write
declarations using just sets, as in this axiomatic definition:

e : EVEN
o:0DD
p : PRIME

Sometimes we wish toemphasize the distinction between types and sets. We can write
definitions that explicitly reveal the types of the variables. We declare the types in the
declaration above the line, and provide additional information about set membership
in the predicate below the line. A definition where the types are explicitly spelled
out in this way is said to be normalized. A signature is a declaration that names the

4 You can allow no values at all, but why would you?
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type, as we must have in a normalized definition: e : EVEN is a declaration, bute : Z
is a signature.

The following normalized axiomatic definition means exactly the same thing
as the preceding unnormalized one. We have to introduce some new Z syntax:
e € EVEN is a predicate that means “e is an element of EVEN.” The predicate
e € EVEN expresses the same constraint as the declaration e : EVEN.

e € EVEN
o € ODD
p € PRIME

Writing the normalized definition makes it clear which variables have the same type.
This is an important thing to know because variables that belong to different sets
can nevertheless be used together in expressions — as long as they have the same
type. We may use a tool called a type checker to search for certain kinds of errors in
our Z texts. Such tools can check the type of any expression automatically, but it is
not possible in general to check set membership automatically.

Set variables

Z variables can name whole collections of objects; that is, they can denote sets. In Z,

~ variables whose values are sets are declared as follows, using the symbol P (usually

pronounced “set of’). This axiomatic definition declares a set of natural numbers
named PR/IME and a set of numbers in the range 1 .. 6 named toss:

PRIME : PN
toss : PDICE

In Z sets are objects in their own right. Every set has a type. The type of a set whose
elements have type T is PT. So the type of PRIME and toss is both P Z.

The P symbol is actually an abbreviation for the mathematical term power set,
the set of all subsets. If § is the set {x, y, z}, the power set of S, that is PS, is
{8, {x}, (¥}, {z}, {x, ¥}, >, 2}, {x, 2}, {x, ¥, 2}}. So PZ actually means “the set of
all subsets of the integers.” Any particular set of integers, the prime numbers for
example, belongs to this power set. So this form of declaration is really no different:
The identifier to the left of the colon denotes one of the elements of the set named
to the right.
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Defining new types

You may have noticed a chicken-and-egg kind of problem: If each new variable has
to belong to a previously defined type, how can we introduce a new type that is
different from all the others? The numbers come predefined in Z, but from where
did the colors red, green, and yellow come?

Z provides two kinds of paragraphs for introducing new types. The first is the free
type definition. Free types are similar to the enumerated types provided by many
programming languages. We define a free type when there aren’t too many elements
in the type, and we know in advance what they all are. To define a free type, give its
name and then, after the definition symbol ::=, list all of its elements. For example,
here is the declaration for the free type COLOR:

COLOR ::= red | green | blue | yellow | cyan | magenta | white | black

The order here is not significant — no sequence is implied.

The second method is the basic type definition. We define a basic type when we
do not want to say in advance what all the elements are; this is usual when sets are
large. To define a basic type, simply mention its name, enclosed in brackets, as we
did for CHAR (characters) in Chapter 7. For example, here is the declaration for the
type whose elements are all the names that might appear in a telephone directory:

INAME]

Both kinds of declarations introduce new types, not just sets. That means we can’t
form sets or write expressions that combine elements from different basic types or
free types — that would be a type error. We can (and usually do) define new sets
made of elements from the basic types and free types that we define.

Sets introduced both ways can be used later to declare variables, just like prede-
fined sets. Here palette is a set of COLOR, and subscribers is a set of NAME.

palette : P COLOR
subscribers : PNAME

Basic types and free types are defined in small paragraphs, but their elements do
not have to represent small objects. They need not be simple things like names and
numbers. We use basic types whenever we can ignore the internal structure of the
elements. You do not need to know the contents of a file to delete it or rename it; you
do not need to know the program that a process is running to suspend it or resume it.
To model an operating system, we might declare processes and files to be basic types:

[PROCESS, FILE]

This example also shows how to declare more than one basic type in one paragraph.
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The integer type Z has no special qualities just because it comes predefined. By
convention, it is assumed that this basic type definition precedes any Z text:

[Z)

The useful arithmetic properties of Z have to be built up in the usual way: by
writing axiomatic definitions. Fortunately, these come already written for us in the
Z mathematical tool-kit.

Basic sets and free types are usually given names composed of all capital letters,
like NAME and COLOR here. 1 use capitalized names for other constant sets as well,
for example ODD and LAMP.

Identifiers and layout

By now you have noticed that Z allows great freedom in choosing names. Z identifiers
can include symbols besides alphanumeric characters: punctuation marks, as in in?,
out!, and x’, subscripts as in y,, and Greek letters as in AEditor. Some identifiers
consist of a single pictorial symbol, such as @. You can even invent your own pictorial
symbols; some Z tools can process symbols that you invent.

Some characters have conventional meanings that I will explain later, but in
general there are no restrictions on where you can use nonalphanumeric characters.

Z is case sensitive, so name, Name, and NAME are three distinct identifiers. All
three might be used in the same Z text to refer to different things.

You can use semicolons instead of line breaks to separate declarations and pred-
icates. Instead of

PRIME : PN
dy, d, : DICE

di+dry=17
dy < dj

you can save a little space by writing

PRIME : PN; dy, d, : DICE

di+dry=17,dy <dy

Expressions and operators

Expressions describe the values that variables might have. So far we have only
described two ways to describe values. We can write them out literally, as in 3, red,
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and {1, 2, 3, 4, 5, 6}, or we can define names that stand for values and then write the
names, as in dy, signal, and DICE. Clearly, we need more. '

Expressions enable us to describe values in terms of names and literals we have
already defined. Expressions are formulas where names and literal values appear to-
gether with operators. Expressions are sometimes called terms. The value denoted
by an expression is determined by the values of the names and literals it contains,
and by the rules or laws associated with the operators. In fact a lone name or lit-
eral is merely an expression of the simplest kind. So we can say that the value of
an expression is determined by the values of the expressions it contains, and its
operators.

Mathematics has created an immensely rich collection of operators, but before
we can use them in Z, someone must formalize them by precisely defining how to
express them in Z syntax. The most useful operators have already been formalized
for us in the Z mathematical tool-kit. If we need more, it is not too difficult to
formalize them ourselves.

Each type has its own repertoire of operators. So far we have only learned two
kinds of types: the integers Z and basic types such as COLOR and NAME 6,

Arithmetic expressions

The Z mathematical tool-kit defines the usual arithmetic operators addition, sub-
traction, and multiplication +, —, and *. The tool-kit doesn’t provide any way to
represent fractions — it doesn’t define real or rational numbers — so ordinary di-
vision is not available. However, the tool-kit does provide integer division div and
remainder or modulus mod. For example,

12divS =2
12dive =2

but

12mod5 =2

12mod 6 =0

5 Some people use familiar mathematical operators such as ¥ (the series summation operator) that do
not appear in the tool-kit, without bothering to formalize them first. This is fine as long as the meaning
is clear to the readers. However, if such texts are analyzed by tools such as syntax analyzers and type
checkers, the unformalized operators will be flagged as errors.

$ It is possible to define free types such as COLOR in terms of basic types.
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Set expressions

Sets are central in Z, and the tool-kit defines many operators for them. Here are a
few of the most important ones. The union operator U combines sets.

{1,2,3}U{2,3,4} ={1,2,3,4}

The difference operator \ removes the elements of one set from another.
{1,2,3,4}\{2,3} = (1,4}

The inter.fection operator N finds the elements common to both sets.

{1,2.3}N{2,3,4) = {2.3)

Expressions and types

Every expression has a type: the type of the value it denotes. So every arithmetic
expression has type Z, and every set expression has type P T, where T is the type
of the set elements. Each operator works with operands of particular types. The
arithmetic operators only work with numbers; the set operators U, N, and \ only
work with sets.

Some operators are generic; they can work with different types as long as types
are combined correctly. The set operators are generic because they can apply to sets
of any type. We can use them with sets of numbers:

{1,2,3}U ({3, 4}
or sets of colors:
{red, yellow} U {yellow, green}

or sets of any type we wish, as long as both operands are sets of the same type.

Some operators take operands of one type and denote values of a different type.
For example, the size (or cardinality) operator # counts the elements of a set. Its
operand is a set, but its value is a number: '

#DICE = 6
#(red, yellow, green} =3

In Z we write #DICE, not size(DICE) or something similar. Z departs from many
other notations by having a great many pictorial symbols like this one. They make
the formal texts shorter and (after a period of familiarization) easier to read.
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Erroneous expressions

Expressions must have the correct appearance or syntax. In Z, as in traditional
mathematics, most binary operators have infix syntax: They appear between their
operands, asin 5 + 3or ODD U EVEN. Many unary operators in Z have prefix syntax:
They appear before their operands, as in —x or #DICE. Using a prefix operator as if
it were postfix is an example of a syntax error:

DICE# [SYNTAX ERROR! # is a prefix operator.]

Each operator only works with operands of particular types. It would be nonsense
to try to divide a number by a color; this is an example of a type error:

12 div red [TYPE ERROR! Second operand is not a number.]
The type rules for generic operators are a bit more subtle:

{1,2,3} U {red, green} [TYPE ERROR! Operands are sets of different types.]
Although both operands here are sets, this is a type error because we cannot have
numbers and colors in the same set.

Exercise 8.2.4.1 Is this an erroneous expression? Why or why not?

{red, green} U yellow

Undefined expressions are more subtle. This expression uses proper syntax, and
the types are correct:

dydiv0 [undefined expression; second argument is 0]

However, you can’t divide by zero, and the definition of div in the mathematical
tool-kit explicitly excludes this case. This expression is undefined. It doesn’t denote
anything; it is nothing but marks on a page. Undefined expressions are not strictly
erroneous, but they are meaningless. You probably don’t want to write them.

Tools can detect syntax errors and type errors, but it is not possible in general to
detect undefined expressions automatically.

Predicates, equations, and laws

Predicates express constraints that determine which values the variables actually
do have. So far we have encountered three kinds of predicates: equations such as
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size = 2048, inequalities such as size > 640, and membership predicates such as
e € EVEN. 1 will say much more about predicates in Chapter 10. In the meantime,
here are some essential facts.

Predicates are not expressions; they do not denote values. They are assertions
about values’.

We are free to put predicates wherever they will help the reader most. There is no
requirement in Z that a predicate which constrains a global variable must appear in
the same paragraph as the definition of the variable. In a Z text, a variable denotes
the same value wherever it appears, so there is no need to write the constraint near
the declaration.

These two examples mean exactly the same thing. In the first example, the pred-
icate appears in the axiomatic definition box where the variable is defined:

size = 2048

In this second example, the predicate appears later in the text, long after the axiomatic
definition. '

| size: N

.. .formulas that use size . ..

size = 2048

When they are separated from declarations in this way, Z predicates do not appear
inside boxes.

Equations

We often want to say that two expressions have the same value. There is a symbol
for this; of course it is the familiar equal sign, =. An equation is a predicate where
two expressions are joined by an equal sign: e; = e; means that e and e; both have
the same value. Equations are perhaps the most common predicates. Here are two
examples:

7 In many other notations, predicates are just expressions on a boalean type that has the two values
true and false; symbols such as =, >, and € are just Boolean operators. Z has no Boolean type
(see Section 10.7). Z distinguishes predicates from expressions to avoid certain difficulties involving
undefined expressions (see Section 10.8.)
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size = 2048
{1,2,3}N{2,3,4) ={2,3)

An equation is not an expression; it does not denote a value. It is simply an assertion
that the two expressions in the equation have the same value, whatever that may be.

Some equations superficially resemble the assignment statements found in many
programming languages. This equation

size = 2048
looks a lot like the assignment statement
size = 2048;

but equations are not assignment statements. In the preceding example, the assign-
ment statement may cause the value of size to change. Occurrences of size after
the assignment might denote different values than occurrences before, so the loca-
tion of the assignment in the program is very important — reversing the order of two
assignment statements is often a serious error. But the equation does not change the
value of size. It merely tells what the fixed value of size is, each time size occurs in
the text, so it doesn’t matter where the equation occurs.

Moreover, equality (unlike assignment) is symmetric: We can reverse the order
of the expressions without changing the meaning of the equation. In Z we can write

2048 = size

but in a programming language 2048 = size; is a syntax error.

Equations are more expressive than assignment statements because we can put
expressions on both sides of the equal sign, not just one. There is no requirement
that a single variable must appear by itself on one side. We can write

di+dy =17

to constrain the relation between d; and d, without fixing the value of either one.

Laws

Predicates are not just for constraining variables. They are also used to describe the
operators themselves. Predicates used in this way are called laws. Many laws appear
in the mathematical tool-kit. They can help us simplify expressions and compute
their values.

For example, this law describes an important property of division that we use all
the time in elementary arithmetic calculations. It says we get the same result when
we divide after factoring out common factors from the numerator and divisor:
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(¢ xn)div(c xd) =ndivd [where d and ¢ are not zero]

Obviously, this law is just as valid whether it is written with variables ¢, d, and n
or x, y, and z. The variables that appear in a law are just place-holders. A law holds
no matter what values are assigned to its variables (subject to side conditions like
the one here prohibiting division by zero). The purpose of a law is to describe the
operators, not the variables. We will say more about laws when we study formal
reasoning in Chapter 15.
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9.1

We can use objects from discrete mathematics to model data structures. This chapter
describes them: tuples, relations, functions, and sequences.

Tuples and records

Sets collect whole groups together, but we often need to associate particular individ-
uals. Every element in a set must have the same type, but we want to create structures
composed of dissimilar things. Elements in a set are not ordered, but sometimes order
is important. Tuples associate particular elements of any type, in a fixed order.

Consider the problem of representing dates, for example July 20, 1969, or Novem-
ber 9, 1989. The obvious solution is to use a data structure with three components,
for the day, month, and year. We anticipate doing calculations with dates — for
example, to calculate the interval between two dates — so we represent all three
components as numbers, even the month (so January is 1, February is 2, etc.). First
we name the sets from which the components will be drawn (we allow YEAR to take
on negative values so we can represent dates from ancient history).

DAY ==1..31; MONTH == 1..12; YEAR == 7.

(Recall that 1 . . 31, pronounced one up to thirty-one, is the set of numbers from one
up to thirty-one, inclusive.)

Next we have to decide on an order for the components. We choose day, month,
year so November 9, 1989, is written (9, 11, 1989). The parentheses distinguish
tuples from sets. Order is significant in tuples: The difference between (9, 11, 1989)
and (9, 11, 1989) — that is, November 9, 1989 and September 11, 1989 — is quite
important. This contrasts with sets, where order is not significant: {9, 11, 1989} and
{11, 9, 1989} are the same set.



9.1. Tuples and records 79

Tuples are instances of Cartesian product types, sometimes called cross product
types. We define product types using the cross product symbol x. This abbreviation
definition introduces a set of tuples named DATE.

DATE == DAY x MONTH x YEAR

Since DAY, MONTH, and YEAR all have type Z, the set DATE has the product type
P(Z xZ x Z).

As you see, tuples can resemble C structures or Pascal records. We can declare Z
variables that are tuples:

landing, opening : DATE

landing = (20,7, 1969)
opening = (9, 11, 1989)

We tried to define DAY, MONTH, and YEAR so that we could only form valid dates,
but we were only partially successful. We exclude obviously invalid dates such as
November 32, 1989, but the set of valid days actually depends on the month. There
is no way to account for this in our definition, so our DATE admits invalid dates such
as November 31, 1989. A comprehensive solution to this problem requires schemas,
as we shall see in Chapter 13.

The components of a tuple can have different types. Consider a database of people
who work at a company. The database records several items of information about
each person: their name, an identification number (to distinguish different people
who have the same name), and the department where they work. Each item belongs
to a different type:

[NAME]
ID==N
DEPARTMENT .= administration | manufacturing | research

We can define a tuple that contains all three items:
EMPLOYEE == ID x NAME x DEPARTMENT
Now we can define variables of this type:

Frank, Aki : EMPLOYEE

Frank = (0019, frank, administration)
Aki = (7408, aki, research)
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Relations, tables, and databases

We usually work with whole sets of tuples. A set of tuples is called a relation.
Relations can model tables and databases. You have probably heard of the relational
database, which is just a database where the data are stored in one or more relations.
For example, here is a partial listing of the Employee relation from our company

database:

[ ID [ Name [ Department

0019
0308
6302
7408
0517
0038

Frank

Philip

Frank
Aki

Doug
Philip

Administration
Research
Manufacturing
Research
Research
Administration

This is how we notate it in Z:

Here the tuples appear in no particular order, to remind you that a relation is just a
set of tuples. Sets are unordered; there is no ordering in a relation. (The three vertical
dots here are not part of the Z notation, they just indicate that many tuples are not

Employee = {

(0019, frank, administration),

Employee : P EMPLOYEE

(0308, philip, research),

(6302, frank, manufacturing),

(7408, aki, research),
(0517, doug, research),

(0038, philip, administration),

)

shown, in order to save space.)
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Pairs and binary relations

A particularly common kind of tupleis the pair: It has just two components. We can
use a pair to associate a name with a telephone extension number, as in (aki, 4117).Z
provides an alternate syntax for pairs that uses the maplet arrow — to emphasize the
asymmetry between the two components. The pair (aki, 4117) can also be written
aki — 4117.

You can consider the parentheses and maplet arrows to be operators for con-
structing pairs. Z also provides the first and second operators for extracting each
component from a pair:

first(aki, 4117) = aki

second(aki, 4117) = 4117

Operators like these that extract components from structures are called projection
operators.

A binary relation is a set of pairs. Z provides an alternate syntax for declaring
binary relations: IP (NAME x PHONE) can also be written NAME < PHONE. Here
is a partial listing of the company telephone directory:

| Name | Phone |
Aki 4117
Philip | 4107
Doug | 4107
Doug | 4136
Philip | 0113
Frank | 0110
Frank | 6190

This is how we notate it in Z:

PHONE == 0..9999
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phone : NAME < PHONE

phone = {

aki — 4117,

philip — 4107,
doug — 4107,
doug — 4136,
philip — 0113,
frank — 0110,
frank — 6190,

}

Note that Doug and Philip share a phone, and Doug might be reached at two different
phones (there are also two numbers listed for the names Philip and Frank, but refer-
ring back to the Employee relation, we suspect those might be for different people
with the same name). In general, binary relations can be many-to-many relations, as
suggested by the symmetric Z relation arrow, <. As we shall see, Z defines special
names and arrow symbols for many-to-one and one-to-one relations.

Domain and range

We sometimes need to speak of the set formed by the first components of all the
pairs in a binary relation and the set formed by all the second components. They have
names: They are the domain and range, respectively. The domain of phone includes
every employee who can be reached by telephone: aki, doug, and the others. The
range of phone includes all the numbers that have been assigned to telephones: 4117,
4017, and so forth. The abbreviations dom (domain) and ran (range) are operators
whose argument is a binary relation and whose value is a set. In this example:

dom phone = {.. ., aki, philip, doug, frank, . ..}

ranphone = {...,4117,4107, 4136, 0113, 0110, 6190, .. .}

(Again, the dots are not part of the Z notation, but indicate that many elements are
not shown.)

The domain and range of a relation are not necessarily the same as the sets that
appear in its declaration, which are called the source set and the farget set. In this
example the source set is NAME, and the target set is PHONE; the domain and range
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are subsets of the source and target sets. We declared phone : NAME < PHONE,
but there could be many names that do not appear in dom phone because they do not
have phones in our company, and surely there are many numbers in PHONE (that
is 0..9999) that do not appear in ran phone because they are not assigned to any
telephone.

Operators for relations: lookups, queries, updates, and inverses

Relations are more important in computing than in most other applications of math-
ematics (which tend to emphasize functions instead). Z provides a rich collection
of operators for binary relations. We often use binary relations to model tables and
databases, and many of the Z relational operators behave like typical database oper-
ations.

The relational image operator can model table lookup. Its first argument is a
relation, its second argument is a set of elements from the domain, and its value is
the set of corresponding elements from the range. It is notated in an unusual mixfix
syntax: Thick brackets (. . . surround the second argument. To look up the numbers
for Doug and Philip in the phone relation, we use the relational image:

phone({doug, philip}) = {4107, 4136, 0113}

The argument between brackets is not a single individual, it is an entire set, and the
value of the image is another set. Z encourages us to think in terms of entire sets and
relations.

We often use relations to model databases. The domain restriction and range
restriction operators can model database queries. The domain restriction operator <
selects tuples based on the values of their first elements: Its first argument is a set
of elements from the domain of a relation, its second argument is a relation, and its
value is the matching tuples from the relation. To retrieve all the tuples for Doug
and Philip from the phone relation, we apply domain restriction:

{doug, philip} <t phone =

{philip — 4107,
doug > 4107,
doug > 4136,
philip — 0113}

The value of this expression is another relation of the same type as phone.
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The range restriction operator &> selects tuples based on the values of their second
elements. Its first argument is a relation, its second argument is a set of elements
from the range, and its value is the matching tuples. To retrieve all the tuples that
have numbers in the 4000s from the phone relation, we apply range restriction:

phone t>(4000 . . 4999) = {

aki > 4117,

philip — 4107,
doug — 4107,
doug — 4136,

}

We can combine domain and range restriction!. This expression finds the numbers
for Doug and Philip in the 4000s:

{doug, philip} <t phone t>(4000 . . 4999) =

{philip — 4107,
doug — 4107,
doug — 4136}

There are also domain and range antirestriction operators < and &, respectively.
S <4 R is the binary relation R, except without the pairs whose first element is in S,
and R & T is R without the pairs whose second element isin T'.

The override operator @ can mode] database updates. Both of its arguments are
relations. Its value is a relation that contains the tuples from both relations, except
that tuples in the second argument replace any tuples from the first argument that
have the same first component. This has the effect of adding new tuples and replacing
old ones. For example:

! The parentheses are needed around (4000 . . 4999) in these examples because the range restriction
operator [> binds more tightly than the up to operator . ., so phone > 4000 . . 4999 would be parsed
(phone > 4000) . . 4999, which would be a syntax error. See Appendix C.
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phone @ {heather — 4026, aki — 4026} = {

aki — 4026,
philip +— 4107,
doug — 4107,
doug > 4136,
philip — 0113,
frank — 0110,
frank > 6190,
heather — 4026,

}
The inverse operator reverses the direction of a binary relation by exchanging the
first and second components of each pair. It is a postfix unary operator that is notated

as a tilde ™. The inverse of the phone relation is a reverse directory from telephone
numbers to names:

phone™ = {

4117 v aki,

4107 — philip,
4107 v doug,
4136 v doug,
0013 +— philip,
0110 v frank,
6190 — frank,

}

The examples in this section illustrate the motivation for the pictorial symbols
and irregular operator syntax in Z. Newcomers often find them bizarre, but if every
operator had a written name and prefix syntax, our example

{doug, philip} <t phone t>(4000 ..4999) = ...

would have to be rendered as something like:

rres(dres(phone, (doug, philip)), upto(4000, 4999))) = ...
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or maybe that should be

rres(upto(4000, 4999), dres(doug, philip), phone) = . ..
or perhaps

dres(rres(upto(4000, 4999), phone), (doug, philip)) = . . .

You see the problem. The Z pictorial symbols emphasize the asymmetry of the
operators to remind us of the correct operand order and work together to make
common expressions easy to parse by eye.

Composing relations

When we have several relations that describe the same collection of objects, we
can make inferences by forming chains of associations from different relations.
Relational composition formalizes this kind of reasoning: It merges two relations
into one by combining pairs that share a matching component.

For example, you may have noticed that we can infer employees’ departments
from their telephone numbers. This is possible because each pool of telephone
numbers is assigned to a different department, as described by the dept relation:

dept : PHONE <> DEPARTMENT
dept = |{

0000 — administration,

0999 > administration,

4000 +— research,

4999 > }esearch,

6000 — manufacturing,

6999 > manufacturing)

The range of phone matches the domain of dept, so we can compose the two relations:
Match up pairs from phone and dept that contain the same phone number, then form
new pairs from these, with just the name and department. For example, we match
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philip — 0113 from phone with 0113 + administration from dept, obtaining
philip — administration. When we perform all such matches, we obtain a new
relation with domain NAME and range DEPARTMENT. The relational composition
symbol § notates this operation:

phone $ dept = {

aki — research,

philip > research,

doug > research,

philip > administration,
frank > administration,
frank — manufacturing,

Z also provides the backwards relational composition symbol ¢ which is sometimes
used in traditional rmnathematics. It takes its arguments in reverse order, so deptophone
means the same as phone § dept.

Exercise 9.3.3.1 Write a fully formal definition of the dept relation that does not
use the three dots.

Binary relations and linked data structures

Relations are not just for modelling tables and flat databases. They can model linked
data structures as well. Linked data structures are often pictured as graphs: networks
of nodes connected by arcs. Data flow diagrams, state transition diagrams, and syntax
trees are all examples of graphs. We have already used a kind of binary relation to
model the state transition system in Chapter 6.

We can model any graph as a binary relation where both the domain and range
are drawn from the same set: the set of nodes in the graph. Each arc in the graph is a
pair in the relation. For example, Figure 9.1 shows a simple graph. It is a genealogy:
Nodes represent family members; arcs connect parent and child. The direction of
the arcs is significant: In the drawing, children appear below their parents.

Here is how to notate it in Z. We model the graph with a binary relation on
PERSON named child. The direction of each arc is represented by the order of
the corresponding pair: The parent is the first component; the child is second.
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Hagar

Abraham Sarah

Ishmael Isaac Rebekah

Esau Jacob

Figure 9.1: A genealogy.

9.4

PERSON ::= hagar | abraham | sarah | ishmael | isaac | rebekah | esau | jacob

child == {hagar > ishmael, abraham v ishmael, abraham > isaac,
sarah v isaac, isaac v> esau, isaac > jacob, rebekah — esau,
rebekah v jacob}

All of the relational operators we described with our phone example are useful here
as well. We can use relational image to find the children of Abraham and Sarah:

child({abraham, sarah}) = {ishmael, isaac}-

Ishmael appears here because he is the child of Abraham, though not of Sarah.

The relational notation of Z makes it easy to define linked structures like this one.
We do not have to equip the elements of PERSON with any links or “pointers”
that are used to create linked data structures in many programming languages. In Z,
the definition of a linked structure is completely independent of the definition of its
nodes. We can put any object into a linked structure without changing its definition,
and we can change the shape of a linked structure without changing the contents of
any of its nodes.

Exercise 9.3.4.1 Define the parent relation: Abraham and Sarah are the parents
of Isaac, etc.

Functions
Sometimes we need to associate a single item with each element in a set. For this

we use a special kind of relation, called a function. A function is a binary relation
where an element can appear only once as the first element in a pair.
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We haven’t defined any functions yet in this chapter. The phone relation is not
a function, because some names appear more than once; some people — Doug
for example — have more than one telephone number. The child relation is not a
function either, because some family members have more than one child.

In general, relations are many-to-many like phone or child. A function cannot be
many-to-many or even one-to-many; a function can only be many-to-one or one-to-
one.

Let’s define a function. Imagine that our company announces a new cost-cutting
measure: Each employee is allowed only one telephone number. Doug loses his
second phone; in fact, he has to share with Philip. There is a new edition of the
company phone directory, where each name appears only once, at most. Enforcement
of the new policy is so zealous that some people who are unlucky enough to have the
same name as another employee find that their phone numbers have disappeared.

We model the new phone directory with the function phone . Its declaration uses
the function arrow, -». The arrow suggests the asymmetry of the functional relation:
Each employee can only have one phone number, but several employees might have
the same number.

phoner : NAME » PHONE

phonerp = {

aki — 4117,

philip — 4107,
doug — 4107,
Jfrank — 6190,

i

Another function is suggested by our genealogy (Figure 9.1). A person can have
only one mother, so mother is a function:

mother : PERSON » PERSON

mother = {ishmael — hagar, isaac — sarah, esau v rebekah,
jacob +> rebekah}

Again, the arrow reminds us that each person has one mother, although several people
might have the same mother.

Here is another example. Consider a busy office building with several elevators.
The elevators and floors can be identified by numbers.
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| n,top: N

ELEVATOR == 1..n; FLOOR == 1..top

At any moment, some (perhaps all) of those elevators may be stopped at particular
floors. This can be represented by a set of pairs, where the first element in each pair
is an elevator, and the second is the floor where it is stopped. In this example, the
first three elevators are stopped at the first floor, and the fifth elevator is stopped at
the seventh floor:

{1=32-> 13> 1,57,..}

This set of pairs has to be a function because each elevator can only be stopped at
one floor at a time. We could declare it this way:

| floor : ELEVATOR - FLOOR
Exercise 9.4.1 The second elevator leaves the first floor and stops at the third

floor while all the other elevators remain in place. This new configuration is named
floor’. Define floor' in terms of floor.

Function application

Finding the single item associated with an element by a function is called function
application. Function application is a special case of relational image. To say that
Rebekah is Jacob’s mother, we could write

mother({jacobl)) = {rebekah)}

But we know Jacob can only have one mother, so we don’t need to use sets at all.
We write function application in prefix syntax:

mother(jacob) = rebekah

In Z the parentheses are optional; we can often reduce clutter by omitting them:
mother jacob = rebekah

Likewise, we use function application to look up Doug’s phone number:
phoner doug = 4107

As these examples show, it usually works best if the function name suggests the
function’s range. If ¢ is an elevator, then floor e is the floor where e is stopped.
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The Z syntax for function application, without parentheses, is uncommon in
mathematics but should be familiar to programmers. The shell (command inter-
preter) languages provided with many popular computer operating systems also
omit parentheses, and many shell commands are actually function applications. For
example,

1s “doug

is a function application whose value is the set of file names in Doug’s home directory,
and

wc structure.tex

is a function application whose value is a tuple whose components are the number
of lines, words, and characters in the file structure. tex. We will see how to
specify the wc function in Z in Chapter 17.

Function application in Z often surprises programmers who are used to thinking
of functions as pieces of executable code. Z functions are often used to model data
structures instead; it is best to think of a Z function as a kind of table. Sometimes a
function can be implemented by executing an algorithm rather than looking up an
entry in a table, but not always. In our elevator example there is no algorithm for
determining the floor where a particular elevator might be found; the f/oor function
is merely a data structure that holds the set of pairs, subject to the constraint that
each elevator only appears once.

In Chapter 11 we will learn methods for describing some functions by rules,
instead of explicitly tabulating all of their elements as we do in the small examples
in this chapter. But the function is not the rule; the rule is just a convenient way to
define the function. The function is the entire set of pairs.

Partial functions and total functions

In our genealogy, we did not name every person’s mother. In particular, Hagar,
Abraham, Sarah, and Rebekah do not appear in the domain of the function mother.
The expression mother rebekah does not denote anything — it has no value. We say
that mother is a partial function.

The domain of a partial function might not include every element of the source
set. Although the declaration says mother : PERSON + PERSON, not every
PERSON is in the domain of mother. Likewise, we have the declaration phoner :
NAME -» PHONE, but NAME is the set of all possible names, and most names
will not appear in the company phone directory. In our elevator example, floor is a
partial function because some elevators may not be stopped at any floor; they may
be in transit between floors.
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The mathematics here models a situation we often have to deal with in real
programs: Many operations do not apply universally, and we must be sure to handle
the exceptional cases. A naive program written to implement the mother function
(for example, by looking up entries in a table) might crash when called with hagar
(as the program tries to search past the end of the table). In Z, the stroke through the
function arrow -» reminds us that we have to be careful to check each argument to
make sure that the function application is meaningful.

Some functions are total functions: They apply to every element of the source
set. Many functions from traditional mathematics are total. For example, the integer
square root function we defined in Chapter § is a total function: Every natural number
has an integer square root. Its declaration iroot : N — N uses the total function arrow
—, without the stroke. In Z, as in life, partial functions are the rule; total functions
are special cases.

Injections

Functions are a special kind of relation. Total functions are a special kind of function.
Z defines other special functions as well.

Injections are functions that associate each element in their domain with a different
element in their range: An injection is a one-fo-one relation. For example, suppose
our company changes its telephone directory policy once again. The directory is still
functional — each employee only has one number — but now each employee has a
different telephone number. So Doug no longer has to share with Philip; he gets his
own number. The new directory can be modelled by the injection phone,, declared
with the injection arrow »+:

phone; : NAME -~ PHONE
-

phone; = {

aki — 4117,

philip — 4107,
doug — 4200,
frank — 6190,

}
Injections are reversible in the sense that they can be “run backward” without
losing information: The inverse of an injection is another function. Given a telephone

number, we can invert phone, to find the employee who placed the call (perhaps that
explains the new company policy).
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Besides injections, Z defines several other kinds of functions, each with its own
kind of arrow. It is typical Z style to pack a lot of information into declarations
and pictorial symbols. We will put some of these special functions to good use in
Chapter 18.

Sequences

Sets are unordered collections; it is not meaningful to speak of the first or last element
in a set, or whether one element follows another. When we write a set, we have to
write down the elements in some order, but the ordering we choose is not significant.

In many situations the ordering of elements is significant. These are modelied
by the sequence. Sequences can model arrays, lists, queues, and other sequential
structures. A sequence of items from set S is declared seq S; sequences are notated
inside angle brackets.

The days of the week form a sequence. First we need to declare the names of all
the days.

DAYS ::= friday | monday | saturday | sunday | thursday | tuesday | wednesday

There is no ordering implied by this definition. To express the ordering, we need to
define sequences:

weekday : seq DAYS

weekday = {monday, tuesday, wednesday, thursday, friday)

There are operators for taking apart and putting together sequences. The head oper-
ator finds the first element in a sequence. Monday is the first weekday:

head weekday = monday

The concatenation operator  combines two sequences into one, appending its

~ second argument to its first. Here we use the concatentation operator twice to make

the entire week:
week == (sunday) ~ weekday ~ (saturday)

We have to use the brackets to make (sunday) and (saturday) into sequences of one
element because both operands of the concatenation operator must be sequences.

Sequences are just functions whose domains are consecutive numbers, starting
with one. Another way to write weekday is
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weekday = {1 v~ monday, 2 v tuesday, 3 — wednesday, 4 — thursday,
5 > friday}

Since sequences are just functions, operators defined for functions also apply to
sequences, including function application itself. The third weekday is Wednesday:

weekday 3 = wednesday

And, since functions are just a kind of set, all the set operators apply as well. There
are seven days in a week:

#week =7

Operators

Most of our operators are just functions that use infix syntax and have symbolic
names. For example, addition is a function that is applied to a pair of numbers to
yield another number. So

24+3=35
is really just a more familiar way of writing
-+-)2.3)=5

When you mention an infix function name without its arguments, you must sur-
round its name with underscores to show where the arguments would go. When you
write the function name without arguments in an expression, you must enclose it in
parentheses. The addition operator is defined in an axiomatic definition that looks
something like this:

. . . definition omitted . . .
As you can see, in Z the familiar plus sign is really just the name of a set.
—+0={....L, D~ 2,(1,2)»3,(1,3)— 4,...}

This is an informal description of (_+_) because it uses the three dots, which are just
a notational convention that has no formal definition. However some conventions
are defined formally in Z. For example the two dots in 1 .. 6 are actually a function
whose name is pronounced up fo, as in “one up to six.” “Up to” is a function from
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a pair of integers to a set of integers, declared —.. _: Z x Z — P Z. The familiar
construct 1 .. 6 is a function application that can also be written in prefix syntax:
(~ .. )1, 6). The full formal definition of (_ .. ) appears in the Z mathematical
tool-kit (Appendix D). In Z the two “up to” dots are no mere convention; they denote
a mathematical object with properties of its own that can be combined in turn with
other operators.

Exercise 9.6.1 Fill in the right side of this informal description of “upto”: (_.._) =

Exercise 9.6.2 Describe the range of the “up to” function, ran(_ .. _). Propose a
use for the object denoted by this expression.



10 Logic

10.2

We have described a universe that is richly populated with individuals, sets, tuples,
relations, functions, and sequences. We can extend our univesse indefinitely by using
operators to build up ever more complex structures. But we need something more.
We need a way to classify the profusion of structures we can create. We need
to divide the wheat from the chaff, the sheep from the goats, the bogus from the
bona fide. We will make an essentially binary distinction between the answer we
are looking for — the objects we wish to model — and everything else. Our tool for
distinguishing the two is called logic. The concept of a purely binary classification
may seem crude, but with logic we can express distinctions that are exceedingly fine.

Basic predicates

The textual unit of logic is the predicate. There are just a few kinds of basic predicates.
All the others are built up from these.

The simplest predicates are frue and false. We say true and false are the two
logical constants or truth values. In fact, every predicate has one value or the other,
true or false. There are many rules for simplifying predicates or otherwise inferring
whether any predicate, no matter how complicated, is true or false.

The next basic predicate is equals, =. The predicate ¢; = e is true when the two
expressions e} and e; have the same value, and is false otherwise.

The remaining basic predicate is set membership, €. The predicate x € S, x is a
member of S, is true when the value of x is one of the elements of the set §.

Using predicates in Z

In Z we create models by a process of specialization or restriction. First we make
declarations that admit a large number of objects, then we add predicates to allow only
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the particular objects that we want. Recall the dice game example from Chapter 9.
We model the result of throwing two dice with two integer variables. This declaration
restricts their values to the range from one to six:

| di,dy:1..6

A Z definition like this one describes a number of situations. A situation is a partic-
ular assignment of values to variables. This particular definition describes thirty-six
distinct situations: the one where both numbers are 1, the one where both are 6, and
all the rest. We can describe all of the situations in a table. The top and bottom rows
enumerate all permissible values of d; and d5, respectively; each column in the table
describes a single situation (that is, a particular combination of d; and d; that is
permitted by the predicate).

affi|ifrfifi]1i2}2f2]2)...|5|5/5|6](6/6]6|6]6]

dfft]2]3]4]s]e|1]2]3]4]...[4]5]6]1[2[3]4]5]6]

(In this table we use the three dots ... to indicate that some columns have been
omitted to save space.)

Usually we want to restrict the situations more than we can express in a declaration.
In this next definition we add a predicate to admit only situations where the two
numbers add up to seven:

di+dy =1

This definition describes the situations where the two numbers are one and six,
two and five, and so forth. We say a situation satisfies a predicate when it makes
the predicate true. There are only six situations that satisfy the predicate in this
definition:

difl1]2]3/4]5]6|

dielsfa]3fafr]

We say this definition is stronger than the first one because it it is satisfied in
fewer situations.

It is possible to write a predicate that is too restrictive. What if we said the two
dice had to add up to thirteen:

This predicate can’t be satisfied in any situation. Here di and 45 can be no larger than
six, so their sum can be no larger than twelve. A predicate that cannot be satisfied is
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said to be inconsistent; its truth value is always false. An inconsistent specification
cannot be implemented.
Relations as predicates

Predicates in Z definitions don’t have to be equations. This definition says that the
value of d; must be less than d:

The predicate in this definition is satisfied in these situations:

difli1)1]1)1]2)2]2)2]3/3]3/4]4]|5]

d|2]3]4[5]6[3[4]5]6]4]5[6][5]6]6]

The predicate here uses < (less than), a relation. Any relation can be used to
form a predicate. All of these predicates are based on relations: odd(x), 5 < 12,
k divides 12, S € T, mother(ishmael, hagar), leap year. Here odd and leap take one
argument, while the others take two; odd, mother, and leap use prefix syntax, while
the others use infix; < and C come already defined in the mathematical tool-kit,
while the others must be defined by their authors.

All this diversity in appearance, syntax, and origins disguises an essential simi-
larity: These are all' membership predicates that can be expressed in the form x € §.
As we leamed in Chapter 9, relations are sets of tuples. Unary relations with one ar-
gument, such as odd and leap, are just ordinary sets. So odd(x) means x is a member
of the set of odd numbers, and leap year means year is in the set of leap years.

Binary relations with two arguments, such as <, divides, C, and mother, are sets
of pairs. So 5 < 12 means the pair (5, 12) belongs to the set of pairs of integers
where the first component is less than the second, and mother(ishmael, hagar) (from
our genealogy example in Chapter 9) means the pair (ishmael, hagar) belongs to the
set of pairs of PERSON where the second person is the mother of the first.

Z provides infix syntax and pictorial symbols so that we can use traditional math-
ematical notation in Z texts: 5 < 12 looks familiar; (5, 12) € less_than could mean
the saine thing, but it looks bizarre. Prefix syntax is also customary in logic: odd(x)
is the common usage, not x € odd.

It is not required that you use prefix or infix syntax; you can use any relation as
a predicate. In Chapter 8 we defined ODD, the set of odd numbers. To express that
k is odd, you could simply write the membership predicate

k € ODD
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However, you can define relations that use prefix or infix syntax if you prefer. When
you define a prefix relation in Z, or use it in an expression without its arguments, you
follow its name with an underscore to show where the argument would go. When
you write the relation name without arguments in an expression, you must enclose
it in parentheses. So you would define the unary prefix relation odd like this:

.. . definition omitted . . .
Now we can cxpress that k is odd this way:
odd(k)
Prefix binary relations are declared in much the same way:

mother_ : PERSON < PERSON

(mother_) = {(ishmael, hagar), (isaac, sarah), (esau, rebekah),
(jacob, rebekah)}

This enables us to write mother(ishmael, hagar) instead of (ishmael, hagar) €
mother.

We often want to use binary relations with infix syntax, so Z makes it easy.
Any binary relation can be used in infix syntax when it is underlined. Consider the
relation divides, the set of pairs of numbers where the first evenly divides the second:
4 divides 12 and 6 divides 12 are true, but 5 divides 12 is false. We can define divides
in the usual way:

divides : 7. & Z

... definition omitted . ..
Now we can express that 4 divides 12 this way:
(4, 12) € divides
or this way:

4 divides 12
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Logical connectives

We use logical connectives to build complex predicates from simple ones. The truth
value of a predicate that contains logical connectives is determined by the truth values
of its constituent simple predicates. Predicates that include logical connectives can
describe situations that are more complex than we can describe by simple equality
and set membership.

Some logical connectives are familiar from ordinary English and from program-
ming languages. For example, the connectives not, and, and or in English are not,
and, or inPascaland !, &&, | | in C. In our mathematical notation they are — , A, V.

In the following discussion, p and q are place-holders that stand for any predicate.

Conjunction

The predicate p A q, thatis, p and q, is called a conjunction; its components p and
q are called conjuncts. Conjunction is used to strengthen predicates by combining
requirements. A conjunction is only satisfied by situations that satisfy both of its
conjuncts: it is true only when both of its conjuncts are frue.

The rule for a logical connective can be expressed by a truth table where each
row shows a different combination of truth values for the constituent predicates, and
the last column shows the truth value for the whole predicate. Here is the truth table
for and:

lpla {rra]
false | false || false
false | true || false
true | false | false
true | true true

The predicate in this definition says that the numbers on the two dice add up to
seven, and the the first number is less than the second:

(di+dy=T) A (d1 <dr)

It is satisfied in just three situations:

dyj1124{3
d2654‘

Conjunction is used so often in Z that there is a convention for reducing clut-
ter. Successive lines in a predicate are understood to be joined by and if no other
connective appears. The preceding definition could also be written
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Disjunction

" The predicate p v g, p or q, is called a disjunction; its components are called

disjuncts. Disjunction is used to offer alternatives. A disjunction is satisfied by
any situation that satisfies any of its disjuncts: it is true when either, or both, of its
disjuncts is true:

lp_l9 [pva]
false | false || false
false | true | true
true | false || true
true | true || true

A disjunction is said to be weaker than its disjuncts because it is usually satisfied
by a larger number of situations. This disjunct

di+dra=7V (d <dy)

(where d| and d, are in 1. . 6 as declared above) is satisfied in all of these situations

a1 ]2]3]4]s]6]1]1]1]1]1]2]2]2]2|3]3]3]a]4]5]
& elsTal3 2 11213 4[5 6345 [6[4]5T6]516]16]

We use disjunction to express case analyses where situations can be classified into
cases and all the situations in a case are handled the same way. For example, below
zero degrees on the centigrade scale, water is solid; above one hundred degrees, it is

gas; in between, it is liquid. The following definition models this with three cases'.

TEMP ==

PHASE ::= solid | liquid | gas

! This is a simplified model. Phase actually depends on additional variables besides temperature, and
different phases can exist together at the same temperature.
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temp : TEMP

phase : PHASE

(temp < 0 A phase = solid) v

(0 < temp < 100 A phase = liquid) v

(temp > 100 A phase = gas)
Notice how conjunction and disjunction work together: and combines the conditions
that are found together in the same case; or separates the cases. This is a very common
pattern in Z.

A good case analysis should cover all possibilities, with no overlap where situ-
ations can fall into more than one case, and no undefined gaps that are not covered
by any case.

Exercise 10.4.2.1 Explain how this predicate differs from the preceding one:
(temp < 0 A phase = solid) v
(0 < temp < 100 A phase = liquid) v
(temp > 100 A phase = gas)

These examples show that Z allows a traditional shortcut for writing predicates
with infix relations: 0 < temp < 100is an abbreviation forQ < temp A temp < 100.
In general, for infix relation symbols R} and Ry, x Ry y R z is an abbreviation for
the conjunction x R) y A y Ry z.

10.4.3 Negation

The predicate — p, not p, is called a negation. Negation inverts the truth value of a
predicate. The negation — p is satisfied in all the situations that are not satisfied by
p. When p is true, its negation — p is false; when p is false, — p is true:

p [ -p
true |i false
false || true

Exercise 10.4.3.1 Write the table of situations that satisfies this negation:

~di+dy=T7)
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10.4.5

Equivalence

The equivalence p < q is true when p and q have the same truth value, whether it is
true ot false. An equivalence is satisfied in situations that make both of its constituent
predicates true, and also in situations that make them both false.

lp_la [red]
false | false || true
false | true || false
true | false || false
true | true | true

Equivalence means that two predicates are frue in the same situations. It plays the
same role for predicates that equality does for expressions. The equation e; = e
is true when expressions €; and e; have the same value; the equivalence p & ¢
is true when predicates p and ¢ have the same truth value. Equivalence expresses
that two predicates mean the same thing. Most programming languages use equality
(usually =, but == in C) to express logical equivalence. Equivalence is sometimes
pronounced . ..ifand only if . . ..

Exercise 10.4.4.1 Write the table of situations that satisfies this equivalence:
(di+d2=T7) & (d1 <d2)

Exercise 10.4.4.2 Consider expressing case analyses using equivalence. Compare
this definition of temperature and phase to the previous one. Which logical connective
is used to separate cases? What happens at temp = 0?7 At temp = 100?

temp : TEMP
phase : PHASE

temp < 0 < phase = solid
0 < temp < 100 & phase = liquid
temp > 100 & phase = gas

Implication

The implication p = q is true in every case except when p is true and q is false:
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lp_lg [p=4q]
false | false || true
false | true | true
true | false || false
true | true || true

Implication is not provided in most programming languages, and its meaning is
difficult to describe in English. For now you can just think of it as an abbreviation
for the situations described in its truth table. This turns out to be exactly what we
need to describe certain situations. For example, safety requirements can often be
expressed as implications.

A safety requirement expresses that some unsafe situation must not occur. In a
radiation therapy clinic it is necessary that the radiation beam must not turn on when
the treatment room door is open, in order to protect staff and visitors from scattered
radation. This can be formalized:

BEAM ::= off | on
DOOR ::= closed | open

beam : BEAM
door : DOOR

beam = on = door = closed

This definition is satisfied in these situations:

beam || of | off |on |

door || closed | open | closed |

This predicate prohibits a single situation: the one where the beam is on while
the door is open. When the beam is off it doesn’t matter whether the door is open or
closed. The implication arrow suggests this asymmetry.

Implication can express that one predicate follows from another. In the implication
p = q, p is called the antecedent, and q is called the consequent. For example
in beam = on = door = closed, if you know that the beam is on, then you
can conclude that the door must be closed. As the implication arrow suggests, the
inference only works in one direction: If the door is closed, you cannot conclude
that the beam is on. ’

Implication can be confusing. The implication arrow = is almost too evocative:
It suggests cause and effect; or a change of state?. It is helpful to view implication

2 In some notations, the symbol for implication is not the arrow, but the hook or horseshoe: p D q.
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this way:
stronger predicate = related weaker predicate
For example in
beam = on = door = closed

the first predicate beam = on is stronger, because it is true in fewer situations than
door = closed (sometimes the door is closed even when the beam is not on).

Exercise 10.4.5.1 Write the table of situations that satisfies each of these predi-
cates. Would these make reasonable safety requirements?

beam = on & door = closed
beam = on A door = closed
beam = on Vv door = open

beam = off Vv door = closed

Exercise 10.4.5.2 Write the table of situations that satisfies this implication:

di+dr=7)= (dy <dy)

Logic and natural language

As you can see from the preceding examples and exercises, it can be quite difficult to
translate English statements to formulas in logic. There is an English word or phrase
for each logical connective but it can mislead you. The English meaning can be
quite different from the logical meaning. For example, the English and is sometimes
used to enumerate alternatives (“Ladies and gentlemen, boys and girls™), which is
closer in meaning to the logical or. In English or is usually exclusive (“Dinner comes
with soup or salad”), but the logical or is inclusive. Logical implication p = ¢ is
often pronounced if p then q but in English this phrase often expresses cause and
effect, and is usually intended to convey an unspoken else clause: “If it rains for
one more day, the river will overflow its banks.” Implication does not necessarily
indicate cause and effect, and there is no implied else; in fact, when p is false, the
implication p = g is always true.

It is not possible to translate natural language requirements into logical formulas
by rote or by some mechanical process. It requires deep understanding, and you
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must review the formulas very carefully to confirm they have the meaning you
intend. Attempting a sentence-by-sentence translation from English to predicates
usually doesn’t work well. It often works better to read all of the requirements, make
a table of the situations they describe, and derive the predicates from that.

It is sometimes useful to depict predicates in tabular form and include these de-
cision tables as supplementary documentation. However tables become impractical

. when there are large numbers of variables to consider. Predicates, on the other hand,

can be scaled up to handle indefinitely many variables by using quantifiers.

Quantifiers

Quantifiers introduce local variables into predicates. In Chapter 5 we saw this defi-
nition of the integer square root function iroot:

iroot :N > N

Va:Ne
iroot(a) * ircot(a) < a < (iroot(a) + 1) * (iroot(a) + 1)

The symbol V, for all, is the universal quantifier. Here it is used to introduce
the bound variable a into the predicate. This bound variable does not model some
particular component of the system we are trying to describe, it is merely a place-
holder that stands for any natural number, which we need to explain the meaning of
iroot. We do not want to clutter up our specification by declaring a in an axiomatic
definition — that would make it seem far too important. Instead, we use the quantifier
to declare a right where we need it. Elsewhere, a is not defined.

The general form of a universally quantified predicate is

Y declaration e predicate

The spot e is just a delimiter. The variables declared in declaration are called bound
variables. This quantified predicate means that predicate is true for all values of
the bound variables that are admitted by the declaration. The scope of the bound
variables is limited to the predicate; outside this scope, the bound variables are
undefined. Because bound variables are local to a single quantified predicate, you
can declare the same variable names in different quantified predicates if you wish
— it is understood that they might refer to different things.

Bound variables in predicates are much like local variables in code. Quantified
predicates can also contain global variables, which are called free variables when
they appear inside a local scope. This example defines a global variable nmax and a
set of numbers ns, where none of the numbers in ns exceeds nmax:
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Yi:nsei < nmax

The predicate here is pronounced, “For all i in ns, i is less than or equal to nmax.” In
this predicate { is bound and nmax is free. The bound variable i is just a place-holder
that stands for any element of ns, but the free variable nmax represents a particular
constant in the system we are modelling. (Notice that ns, the range of the bound
variable, is a variable; it needn’t be a type or a constant set.)

Quantifiers can be combined with other logical connectives to achieve powerful
effects. Equivalence expresses that two predicates mean the same thing, so it is useful
in definitions. Consider the relation divides, the set of pairs where the first number
evenly divides the second. We could describe it this way

divides == {. .., (5, 10), (10, 10), (1, 1 1), (11, 11), (1, 12), (2, 12), 3, 12), .. .}

but this isn’t really formal because it uses the three dots. We can write a formal
definition by expressing divides in terms of remainder or modulus, mod: d divides
n when the remainder of the division of n by d is zero:

divides : 7 & Z

Vd,n:Z e
d dividesn & nmodd =0

The bound variables serve as place holders to show how the pattern d divides m
matches n mod d = 0, so 4 divides 12 means 12 mod 4 = 0, not 4 mod 12 = 0.

So far, most of our predicates have described individuals. A bound variable ranges
over every element in a set, S0 we can write a single predicate that describes every
element. Bound variables give us the power we often need to define entire sets,
including relations, functions, and sequences.

Exercise 10.6.1 Define the relation phasey from temperature to phase, consistent
with the definitions of temp and phase in section 10.4.2.

Logic and quantifiers

You can think of the universal quantifier as just a bit of syntax for declaring local
variables. In most Z texts, it means nothing more than that. However, you should
know that the universal quantifier also has a logical meaning related to and.
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Let’s assume that the set of numbers ns in our previous example contains elements
ny, n2, n3, and so forth:

ns = {ny,na,n3,...}
Then the quantified predicate

Yi:ns ei <nmax
means the same thing as

ny <nmax A ny <nmax A ny <nmax A ...

You can see that the universal quantifier is a sort of abbreviation for a big conjunction
that contains indefinitely many ands. Notice how the bound variable i acts as an index
that ranges over all the elements of ns. To write the quantified predicate, we do not
need to know the names of the elements in ns; we do not even need to know how
many elements there are. The logical power of quantifiers arises from this ability to
compactly express a great many facts. Their power far outstrips what we can express
with tables.

The universal quantifier is a generalization of and. There is another quantifier
which is a generalization of or. It is the existential quantifier there exists, 3. The
existential quantifier has a similar syntax to the universal quantifier and introduces
bound variables in exactly the same way. However the logical meaning of this exis-
tentially quantified predicate is different:

3i:ns ei < nmax

This predicate is pronounced, “There exists an i in ns, such that i is less than or
equal to nmax.” It means that some — perhaps just one — of the variables introduced
in the declaration satisfy the predicate. It is an abbreviation for this disjunction:

ny <nmaxV ny <nmaxVv ny <nmaxV ...

Existential quantification appears less frequently in Z than universal quantification,
because it cannot be used just to introduce local variables — you always have
to consider its logical meaning as well. However, this logical meaning is needed to
express certain concepts. For example, an existential quantifier appears in the formal
definition of precondition. Notation with quantified predicates is called predicate
calculus.

Z and Boolean types

In many formal notations, including some programming languages, true and false
are the values of a Boolean data type. Z has no built-in Boolean type. Programmers
are often surprised to learn this, but a Boolean type really isn’t necessary in Z.
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Some notations use Booleans as an all-purpose binary data type. Our radiation
therapy safety example would probably look something like this:

beam, door : BOOLE AN [This is not Z. No built-in Boolean type.]

beam = door

You see the problem: Is the door closed when door is true, or is it the other way
around? In Z we use descriptive binary enumerations instead.

BEAM ::= off | on
DOOR ::= closed | open

SO We can write
beam = on = door = closed

This is much clearer. We don’t need a glossary to interpret it.

In languages with boolean data types, relations are usually represented by Boolean
functions. The unary relation odd would be declared this way, and tests for oddness
would be function applications:

| odd : Z — BOOLEAN [This is not Z! No built-in Boolean type.]

odd(3) = true
odd(4) = false

In Z relations are sets, and oddness is represented by set membership:

| obD:PZ

3e0DD
4 ¢ ODD

If you prefer prefix §yntax, you can express the same thing this way in Z:

| odd_:PZ

odd(3)
= odd(4)
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In Z true and false are not the values of a Boolean data type, they are predicates, and
predicates and expressions are entirely different things. In many formal notations
predicates are just expressions that have Boolean values. Logical connectives like
and and or are functions that take two Boolean arguments and return a Boolean result,
and logical equivalance is the same as equality. In Z, predicates are not expressions,
and logical connectives are not functions. The formula 0dd(3) = true is a syntax
error in Z because an equation joins two expressions, but true is not an expression,
it is a predicate.

Predicates and undefined expressions

The distinction between expressions and predicates differentiates Z from many other
formal notations. Why was Z designed this way? Why have two kinds of formulas
where it seems that one would do?

Z distinguishes predicates from expressions to address the problem of undefined
expressions. For example the expression 12 div 0 is undefined because you cannot
divide by zero (put more formally, 0 is not in the domain of div). This raises a
problem: What is the truth value of a predicate such as 12div0 = 2? It is tempting to
say false, but this isn’t so obvious because part of the predicate is undefined; 12div0
doesn’t denote anything. The problem arises frequently because partial functions are
common in Z, and we often want to write predicates of the form f x = y in contexts
where x might not be in the domain of f.

Dealing with undefined expressions is one of the knottiest issues in formal nota-
tions; no single widely accepted solution has emerged. Some notations propose rules
for determining the truth values of predicates that include undefined expressions;
others define a third truth value that means unknown or undefined.

Z distinguishes predicates from expressions to contain the undefinedness prob-
lem. Some expressions have no value; that is inescapable. However, predicates can
be handled differently. The Reference Manual proposes this solution: Every predi-
cate has a truth value, either frue or false. An equation that contains an undefined
expression, such as 12 div 0 = 2, is undetermined: Its truth value might be true or
false, but we cannot say which. This sounds like sophistry, but it usually removes
the problem. For example we can fix

fx=y
by adding a conjunct that makes the requirement on x clear
fx=yAxedomf

In the case where x is not in the domain of f, the conjunct x € dom f is false. In
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that case the truth table tells us that the whole conjuction has to be false, regardless
of the undetermined truth value of f x = y. So the entire predicate is false when
f x is undefined, and when f x is defined the truth value depends on fxandyin

the way we expect.

Exercise 10.8.1 What is the meaning of this predicate when f x is undefined?
When f x is defined?

xedomf=fx=y
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The three basic elements of Z are declarations, expressions, and predicates. Now that
we know something about all three, we can begin to do some real work. This chapter
describes Z constructs that combine the elements so we can write formal definitions
of useful objects. This chapter also describes some notational conventions that make
it easier to read and write Z.

Set comprehensions

Until now we have had to define sets by enumerating all their elements. This is
impractical for all but the tiniest sets. To describe large sets, we have had to resort
to the three dots, . . ., as in our informal definition of the set of odd numbers:

ODD =={...,-5,-3,-1,1,3,5,...)

This is not Z. It is not a formal definition at all because the three dots have no clearly
defined meaning — in fact, they mean something different each time they appear. I
have been depending on your intuition to infer a reasonable meaning in each case.

We no longer need the three dots. We can use the set comprehension to define
sets that are as large as we need. Here is a formal definition of ODD:

ODD == {i :Ze2xi+1}

The set comprehension {i : Z & 2 x i + 1} combines the declaration i : Z with the

expression 2 % i + 1. This means, take every element i from the set Z, substitute its

value into the expression 2 x i + 1 and evaluate, and form the set of results. So 0

from Z becomes 2 x 0+ 1 or 1 in ODD, 1 from Z becomes 3 in ODD, —2 becomes

—3, and so forth. Here i is a bound variable that is local to the set comprehension.
A set comprehension has the form

{ declaration | predicate e expression }
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The value of this set comprehension is the set whose members are all the values
taken by expression when the variables introduced in declaration take all possible
values that satisfy predicate. The predicate and the expression are both optional; our
definition of ODD omits the predicate.

When the expression is omitted, it is understood that the set elements take the form
of the characteristic tuple defined by the declaration. For example in this definition
of the points on the line with slope m and intercept b

line=={x,y:Zly=mxx+b)

the elements of line are tuples of the form (x, y).
Set comprehensions are nothing new; the simpler form

{ declaration | predicate }

often appears in traditional mathematics texts, usually written as in this example, a
definition of the natural numbers:

N={i}i>0} [This is not Z — declaration is incomplete.]
Sometimes they even write it backwards, as in
N={i>0]i) [This is not Z — syntax is reversed.]

These are not Z because (as is usual in traditional mathematics) the type is implicit
— you are supposed to understand that i is an integer. In Z the type must always be
spelled out, as in this definition of the natural numbers from the tool-kit:

=={i:Z]i>0)

Z also uses the definition symbol == rather than the equal sign to indicate that the
identifier N is being defined here.
It is often helpful to think of the set comprehension in this way:

{ source | filter e pattern )

The declaration names a set that is a source of items. The predicate is a filter that
selects items that have the desired properties. The expression is a pattern created
from every item that passes through the filter. For example, this set comprehension
is the set of odd numbers beginning with 11:

{i:N|i>4e2%i+1)})

Let’s evaluate this set comprehension. The source is the set of natural numbers:
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{i:N}=1{0,1,2,3,4,5,6,7,8, ...}

Next we add the filter. Only elements larger than four can pass through:
{i:N]i>4}=1(56,7,8,...}

Finally, we add the pattern. Here are the elements transformed:

(i:Nji>4e2%i+1)=1{(11,13,1517,...}

Exercise 11.1.1 Define the set of right triangles whose sides have integer lengths.
The set should not include triangles that are merely reflections or rotations of others
in the set.

Exercise 11.1.2 Define the set of points within the rectangular window whose
lower left and upper right corners are points modelled by pairs of integers (x;, y1)
and (x,, y.), respectively. Then define segment , the portion of the previously defined
line that lies within window.

Lambda expressions

Functions are just sets of pairs, so we could define them using set comprehensions.
However functions are so important that there is a special construct for defining them
called the lambda expression. A lambda expression is just an abbreviation for a set
comprehension and retains the same declaration, predicate, expression structure:

(A declaration | predicate o expression)

The Greek letter lambda, A, alerts us that it is a function which is being defined,
not just an ordinary set. The declaration and predicate determine the first element of
each pair, and the expression describes the second element.

Here are three definitions of the function isqr that associate each integer with its
square. The first definition uses set comprehension:

isqr=={i:Zeirixi}
The second definition uses a lambda expression:

isqr==(Ai :Z eixi)

Here the expression is more compact than in the set comprehension because the first
element of each pair is left implicit.
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Here is a third way, using an axiomatic definition with a quantifier:

isqr:Z —- N

Vi:Zeisqri =ix*i

This style is the most verbose, but sometimes it is clearest because it makes the
declaration explicit and shows an equation where the function application is written
out.

All three definitions mean the same thing:

isgr=(..., -2~ 4,-1> 1,001~ 1,2>4,...}

A lambda expression is just an ordinary expression, so it doesn’t have to appear in a
definition; we can use it anywhere. If we only need to use a function once, we don’t
have to define a name for it at all; we can just write the lambda expression in place.
Instead of defining isqr and then writing

isqr3
we can simply write
(Ai:Zeixi)3

Obviously, in this example it would be easier to write 3 x 3 or just 9, but there are
situations where lambda expressions are more convenient (section 24.2).

Some simple formal specifications

A set comprehension includes all three elements of a formal specification. In fact, it
is a formal specification in miniature. Here are some one-line specifications for the
prime numbers. A prime number is an integer larger than 1 that is only divisible by
itself and 1. Informally, the primes are:

PRIME == {2,3,5,7,11, 13,17, ...}

Here the failings of the three dots are painfully obvious: it isn’t at all clear how to
come up with the rest of the numbers.

Paraphrasing the English definition into mathematical notation, and recalling that
n mod m = 0 means m divides n, we get

PRIME=={n:N|n>1A-@3m:2..n—1enmodm=0)}
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This is hard to understand. We have to study the negated, quantified predicate very
carefully. Notice how the range of the inner bound variable m depends on the outer
bound variable n. Can’t we do better?

We observe that a prime number is not a product of numbers larger than 1. We
can use a set comprehension to form the set of all such products, and then use the set
difference operator \ to remove all of those products from the entire set of numbers
larger than 1.

N; == N\ {0, 1}
PRIME == Ny \{n,m:Nyenxm}

This definition neatly expresses the central idea in the famous Sieve of Eratosthenes
algorithm for computing the primes: Start with all the numbers, then remove every
number that is a multiple of another [Dunham, 1990]. We can often make specifica-
tions clearer by moving away from a literal paraphrase of the English, and using set

* operators instead of negation and quantification.

Exercise 11.3.1 Isour second definition of PRIME a constructive definition? Could
this definition be translated to an executable program in some suitable language?

Conveniences and shortcuts

Z provides some additional notational conventions beyond those offered by tra-
ditional mathematics. These conventions enable us to abbreviate some common
patterns. They make the formal texts less cluttered and easier to read.

Restricted quantifiers

The pattern declaration | predicate is very important in Z. We have already seen it
in set comprehensions and lambda expressions. We can use it in quantified predicates
as well.

Let’s extend an example from Section 10.6. Once again we define a global variable
nmax and a set of numbers ns, but this time we stipulate that only the odd numbers
in ns cannot exceed nmax; we don’t care about the even numbers.

Vi:ns|odd(i) ei < nmax
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This is pronounced, “For all i in ns where i is odd, i is less than or equal to nmax.”
It is an example of a restricted quantifier.
The general form of a universally quantified predicate in Z is:

Vdeclaration | p e q

where p and g are both predicates. This form is an abbreviation for the unrestricted
predicate

Vdeclaration e p = q
So our earlier predicate could also be written,

Vi:ns eodd(i) = i < nmax
This reads, “For all i in ns, if { is odd, then i is less than or equal to nmax.”

Existential quantifiers can be restricted, too. The general form of an existentially
quantified predicate in Z is:

3declaration | p e q
where p and g are both predicates. This form is an abbreviation for

ddeclaration e p 1 q
Note that the logical connective here is and but for the universal quantifier it is
implies. It turns out that the two different variations are necessary in order to express
the intended meaning of restriction in each case. Here is how we say that at least
one odd member of ns is less than or equal to nmax:

di:ns|odd(i) ei < nmax

’

Literaily, “There exists an / in ns where / is odd, and / is less than or equal to nmax.’
It means the same thing when we write in the and:

3i:ns eodd(i) NI < nmax
The Z restricted quantifier convention eliminates a logical connective and makes the

notation more uniform. It helps make Z easier to read and write than pure predicate
calculus.
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Local definitions

We have already learned how to declare local variables in quantified predicates,
set comprehensions and lambda expressions. In each of these constructs, we declare
local variables that range over some set. Sometimes want to introduce a local variable
that has one particular value. For this we use let!.

We can use the let construct to avoid writing the same expression again and again.
In Chapter 5 we used this predicate to define the integer square root iroot:

Va : N eiroot(a) x iroot(a) < a < (iroot(a) + 1) x (iroot(a) + 1)

This predicate spells out iroot(a) four times. With let we can abbreviate it with the
single letter r:

Va:Ne(letr ==iroot(a) er xr <a< (@ +1)*( +1))

This is shorter, and the structure of the defining inequality is easier to grasp. Notice

how the local definition uses the bound variable; this would not be possible in an

abbreviation definition because it would lie outside the bound variable’s scope.
The general form of a local definition is:

(letx == e o 5)

where x is the local variable, e is an expression, and s is some formula, an expression
or a predicate. The first part of the let construct has exactly the same form as an
abbreviation definition, but the scope of x is limited to s.

This let construct is actually an abbreviation for an existentially quantified pred-
icate. Without it, the preceding formula would have to be written this way:

Va:Nedr:Ner=irootlay Arxr<a<{F+1)*(+1)

This is obscure. You have to study it for quite a while to figure out that r is really
nothing more than an abbreviation for iroot(a). The local definition makes a big
improvement in readability and provides another reason we don’t need to resort to
quantifiers. Z provides just a few simple conventions for improving the presentation
of predicates, but they make a big difference.

! The Z community has experimented with several Ways to make local definitions. let is described
in the Reference Manual, some earlier sources use a similar where construct [Woodcock, 1989b;
Macdonald, 1991]
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11.43

1.5

Conditional expressions

Sometimes we wish to assign one or another value to a variable, depending on
the truth of some predicate. We can use the conditional expression construct
if...then...else... to express the two-way case analysis.

For example, the absolute value function returns the magnitude of an integer and
ignores its sign: The absolute value of 3 is 3, and the absolute value of —3 is also
3. Absolute value is notated using an unusual outfix syntax: We write | — 3| = 3.
We can define absolute value this way: If its argument is not negative, just return the
argument; otherwise, invert its sign:

Vx:Ze|x|=ifx >0then x else —x
The general form of the conditional expression is
if p then el else €2

where p is a predicate and el and e2 are expressions. It is similar to the conditional
expression in C:

p?el : e2

The conditional expression is an abbreviation for disjunction. Without it we would
have to write out the case analysis this way:

Vx:Ze(x>0A|x|=x)V{x <0A|x] =—~x)

This disjunction leaves the function partially undefined if you inadvertently write
x > Oinstead of x > 0. The conditional expression is easier to read and ensures that
all possibilities are covered.

Modelling systems and change

Now that we have completed our review of discrete mathematics, we have at our
disposal all the expressive power we need to model any computing system. Tuples
can model collections of related data. Relations and functions can model changes of
state. Who could ask for more? ‘

Let’s try an example: an appointment calender. The calender includes the current
day, month, and year. We need an operation that advances the date by one day. What
could be simpler?
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In Section 9.1 we defined a Cartesian product type to represent the date:
DAY ==1..31

MONTH ==1..12

YEAR ==17

DATE == DAY x MONTH x YEAR

To compute the next date, usually we can just add one to the day, but the end of each
month is a little extra work. We define the days function: January, the first month,
has 31 days, February, the second month, usually has 28, and so forth. December,
the twelfth and last month, has 31 days.

days == {1~ 31,2+ 28,...,12 > 31}
Now let’s define the function next that takes a DATE and retums the next DATE.

next : DATE » DATE

VYd :DATE enextd = (..., ..., ...)

You see the problem: The next day, month, and year depend on the components of
the current date d, but we have no easy way to get at them. The tool-kit defines
functions first and second that extract components from a pair, but there are no
predefined projection functions for extracting components of larger tuples.

There is an alternative: Use pattern matching to get at the components.

next : DATE + DATE
.

Vd :DAY; m : MONTH; y : YEAR o
(d <daysm A next(d,m,y)=(d+1,m,y)) v.
d=daysmrm<12Anext(d.m,y)=(1,m+1,y)) v
d=daysmAm=12 Anext(d,m,y)=(1,1,y+ 1))

This is a good start, but we’re still not finished. Our DATE tuple admits impossible
dates like June 31; shouldn’t we exclude them from the domain of next? What about
the special case that happens on February 28 in leap years? Solving these problems
threatens to make the definition a lot more complicated.

We can begin to see the limitations of using ordinary mathematics as a modelling
notation. It can be done, but it isn’t always convenient. Large tuples can be cumber-
some. The logic can get complicated. People complain that the formal specifications
are obscure and difficult to understand. It’s almost as bad as code!
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There is lots of room for improvement: The declarations in the definition of next
echo the definition of DATE, and this text would have to be repeated again and
again in every other operation on dates. Wouldn’t it be nice if we could abbreviate
recurring clusters of declarations, and refer to components by name? Couldn’t we
make good use of a standard way to notate changes of state? Wouldn't it help if we
could express constraints between components that applied to every instance of a
data type? Wouldn’t it make things clearer if we could define cases separately, then
combine them later?

We can have all this: They are all provided by schemas. We will learn more about
schemas in the next two chapters.

Exercise 11.5.1 Define the function month that extracts the MONTH component
from a DATE.



12 Schemas and schema
calculus

12.1

2.1.1

Z includes two languages. The first is the language of ordinary discrete mathematics,
our subject in the last few chapters. In this chapter we turn to the the new language
of schemas.

The schema is the characteristic construct of Z. Schema boxes distinguish a Z
text from any other notation. Schemas help us model computing systems because
they can represent state — memory or storage — and changes of state. Moreover
the schema can be used as a powerful macrolike facility to make mathematical texts
shorter and easier to read. The schema calculus enables us to build up complex
schemas from simple ones.

We used schemas to model the text editor in Chapter 7. This chapter explains
schemas more fully, introduces a few more examples, and describes the important
schema calculus operators. It shows how schema boxes and schema calculus oper-
ators can be expressed in ordinary mathematics.

Inside the schema boxes

This section explains the notation we use to write a single schema box, using our
editor example from Chapter 7.

State schemas

We began with this state schema to model the editor’s state:

Editor
Fleft, right : TEXT

#(left " right) < maxsize
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12.1.2

This schema says that the Ediror state consists of two texts named lef and right —
the text before and after the cursor — and the size of the document never exceeds
maxsize.

Schema names usually begin with an initial capital letter followed by lowercase
letters.

Schema inclusion

Next, we defined this schema to define the editor’s initial state:

__Init
Editor

left = right = ()

This says that the editor starts up with an empty document. The /nit schema includes
the Editor schema: Its text includes the name or schema reference Editor. This means
that Init includes all the declarations and predicates in Editor. We can show this by
expanding Init: We replace the included schema reference by its text. Here is how
Init looks when it is expanded:

—Init
left, right : TEXT

#(left " right) < maxsize
left = right = ()

This longer version of Init means exactly the same thing as the first, shorter
version. Within the predicate of any Z paragraph, successive lines are implicitly
joined by A, and (unless a different logical connective is explicitly written in). The
predicate here means the same as

#(left ~ right) < maxsize A
left = right = ()

or just
#(left " right) < maxsize A left = right = ()

Schemas resemble the macros found in some programming languages: You can
write the schema name in place of the schema text. This preserves your wrists and
fingers, makes the Z text shorter, and — most important of all — makes it easier for
readers to grasp the structure of your model.
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12.1.3

Operation schemas: A, &, and decoration

Z uses operation schemas to model changes of state. In Chapter 7 we defined the
Insert schema to describe what happens when the user types a printing character,
and the editor inserts it in front of the cursor.

| printing : PCHAR
Insert

AEditor
ch? : CHAR

ch? € printing

left = left ™ (ch?)
right = right

Insert illustrates several features of Z operation schemas. AEditor tells us that Insert
is an operation that changes the state of Editor (it is traditional in science and
mathematics to use the A symbol to indicate change). The question mark tells us
that ch? is the input variable. This is just a naming convention: Variable names that
end in ? are understood to model inputs. The question mark is not an operator; it is
an example of a Z decoration: a character that we put at the end of a variable name
to indicate some conventional meaning. The prime ’ is another decoration. It tells us
that leff and right describe the state after the operation.

We can decorate whole schemas, not just individual variables. Decorating a
schema name defines a new schema that is the same as the named schema, except
that all the variable names in the new schema are marked with the same decoration
as the schema name itself. Decorations are usually punctuation marks (as in §’, ",
§7, S!, etc.) or subscripts (as in Sy, S2, etc.). The decorated schema name Editor is
the name of this schema:

__Editor’
leff, right’ : TEXT

#(lef! " right) < maxsize

A primed schema such as S’ or Editor’ is understood to represent the system state
after an operation. There is no prime on maxsize because it is a global variable, not
a state variable in Editor.

The A naming convention is just an abbreviation for the schema that includes both
the unprimed “before” state and the primed “after” state. The A is not an operator;
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it is just another character that we can use in a schema name: the capital Greek letter
delta. AEditor is the name of this schema:

AEditor
Editor
Editor’

When we expand AEditor we obtain:

— AFEditor
left, left , right, right : TEXT

#(left " right) < maxsize
#(lef! " right') < maxsize

In A schemas the predicate is always repeated with the primed variables, because the
predicate is always true: It holds before and after any operation — it is an invariant.

So AEditor is just the name of a schema, and the AEditor in Insert is just an
ordinary schema inclusion. When we expand Insert, replacing the name AEditor
with its full text, we obtain:

rJnsert
left, left, right, right : TEXT
ch? : CHAR

ch? € printing

#(left " right) < maxsize
#(lef! " right) < maxsize
lef! = left ™ (ch?)

right! = right

This is the Insert operation fully expanded; it includes no more schema references.
The E symbol indicates an operation where the state does not change (ZE, the
capital Greek letter xi, suggests an equal sign). We use E when we only need to read
state variables without changing their values, or where the operation exists only to
consume inputs or produce outputs.
Z is yet another naming convention. EEditor is the name of the operation schema
where none of the state variables in Editor changes value:
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12.1.4

ZEditor
ALditor

=

lef! = left
right! = right

When we fully expand the AEditor included in EEditor we obtain:

— EEditor
left, left , right, right : TEXT

#(left " right) < maxsize
#(lef! " right) < maxsize

lef! = left
right! = right

We can expand any schema, just as we did with Init and Insert. In their expanded
versions there are no schema names, no As or Es. Nothing remains but ordinary
declarations and predicates, just like we have been using in the last several chapters.
(Remember, the primes and question marks are just decorations; ch?, leff, and so
on are just variable names.)

Although we can expand any schema, we almost never do— except in discussions
like this one, where the purpose is to explain the meaning of the conventions. The
whole point of A, E, decoration, and the other Z conventions is to free us from
having to write such verbose texts.

Vertical and horizontal schema format

Z provides several ways to notate schemas, so we can choose different options to
reduce clutter or savc space. For example, we can write short schemas on a single
line. Here is our /nit schema in the usual vertical format:

__Init

Editor
|

left = right = ()

Here is the same schema in the single-line horizontal format. The schema name
appears to the left of the definition symbol =, and the schema body is enclosed
within square brackets, with a vertical bar separating the declaration and predicate:
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12.2

Init = [ Editor | left = right = () ]

We can join successive lines from the predicate together if we explicitly write in the
and. We can also write several declarations on the same line if we separate them by
semicolons. Here is the Insert schema in the usual vertical format:

—Insert
AEditor
ch? : CHAR
I
ch? € printing
lef! = left ™ (ch?)
righ! = right

Here it is with the declarations and predicate each written on one line:

__Insert
AFEditor; ch? : CHAR

ch? € printing A left = left ™ (ch?) A right = right

It doesn’t quite fit in horizontal format:

Insert = [ AEditor; ch? : CHAR | ch? € printing A left = left ™ (ch?) A ... ]

Schema calculus: conjunction and disjunction

We use the schema calculus to build complex schemas from simple ones. In Chapter 7
we built a total operation from partial ones. Forward describes what happens when
the user types the right-arrow control character. It is a partial operation because it
does not account for all situations; it does not say what happens when the cursor is
already at the end of the file. T_Forward is a total operation because it describes
what happens when the right-arrow characters appear in all possible states.

T _Forward = Forward v (EOF A Right Arrow A EEditor)

This says that the T __Forward operation does the same thing as the Forward operation,
except when the right-arrow character is typed when the editor is in the EOF state
it leaves the editor unchanged. It is a formula in the schema calculus; the part to the
right of the definition symbol = is a schema expression formed from schema names
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12.2.1

or schema references and schema operators. The schema operators look the same as
the logical connectives from ordinary mathematics that we learned in Chapter 10. As
we shall see, their meanings are similar also: We use schema conjunction to combine
requirements and schema disjunction to provide alternatives.

Any schema expression can be expressed in a single schema box. The declaration
of the combined schema is formed by merging the declarations from all the referenced
schemas: The declarations from all of the schemas in the expression appear in the
combined schema. Declarations from different schemas that declare variables with
the same name and type appear only once; they are not duplicated or renamed.
(Schemas that declare variables that have the same name but different types are not
compatible: They cannot be combined in schema expressions.) The predicate of the
combined schema is formed by joining the predicates from each of the referenced
schemas, using the logical connectives in the schema expression. What could be

‘simpler?! The examples in the following sections should make it clear.

Schema conjunction

Schema conjunction combines the predicates using the logical connective and, A.
We use schema conjunction to combine requirements.

To explain how schema conjunction works, we’ll take a little detour away from our
editor and consider an arithmetic problem. What if the tool-kit did not define integer
division and modulus div and mod, and we had to define them ourselves? Both
functions deal with integers related as numerator, divisor, quotient, and remainder,
so it seems like a good idea to package up the definitions in a schema. To make things
a little simpler, we’ll limit our definitions to natural numbers instead of integers.

This is what division means: We divide a number n by a nonzero divisor d and
obtain quotient q and remainder r. The quotient times the divisor, plus the remainder,
should equal the original number: For example, 12 divided by 5 yields quotient 2
and remainder 2, because 2 x 5 + 2 = 12. It seems simple enough:

— Quotient
n,d,q,r:N

d#0
n=qxd+r

! Actually, we really have to normalize all the schemas, merge the signatures (not the declarations),
and combine the predicates taking into account any predicates contributed by the declarations. Then
we can move predicates back into the declarations if we wish. In most cases this is the same as the
simpler procedure described in the main text.



12.2. Schema calculus: conjunction and disjunction 129

As soon as we write it down we see that this isn’t strong enough: We can always
make the predicate true by setting the quotient g to zero and setting the remainder r
equal to the original number n: We could say 12 divided by 5 gives quotient 0 and
remainder 12, because 0 * 5 + 12 = 12. This is not what we wanted at all! We also
have to say that the remainder is less than the divisor:

__Remainder
r,d:N

r<d

Now we can form the complete specification using the schema conjunction operator
and, A:

Division = Quotient A Remainder

This is typical Z style: Define requirements separately, then use the schema con-
junction operator to combine the requirements. Written out as a single schema box,
Division is:
__Division
nd,q,r:N

d#0
r<d
n=qx*d+r

The declaration of Division includes all the declarations from Quotient and
Remainder; the variables r and d that are declared in both appear only once in
Division. The predicate of Division is formed by joining the predicates of Quotient
and Remainder with the logical connective and, A. Separate lines in a schema pred-
icate are implicitly joined by A, so the predicate of Division could be written out

d#0Ar <dnn=qgx*d+r

We’ll use the Division schema to define our division function in Section 12.3.

Obviously, we cannot implement Division just by implementing Quotient and
Remainder separately. Schema conjunction is far more powerful than any combining
operator we have in programming languages. This is one of the reasons why there
can never be a Z compiler.

The other schema calculus operators work in much the same way as conjunction.
We always merge the declarations in the same way, but we combine the predicates
differently, depending on the schema operator.
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Schema disjunction

Schema disjunction combines the predicates using the logical connective or, V. We
use disjunction to handle separate cases, especially errors and other exceptional
conditions.

Our Division schema is partial: It doesn’t say what happens when the divisor d is
zero. Let’s define a total version T _Division where q and r are defined in this case.
For lack of any better alternative, we simply set ¢ and r to zero also:

__DivideByZero
d,q,r:N

d=0Ag=0Ar=0

Now we join the normal and exceptional cases to describe the total operation:
T _Division = Division v DivideByZero
Expressed as a single schema box, T _Division is:

rT_Division
nd,q,r:N

@#0Ar<dAn=qgxd+r)v
d=0Ar=0Aq=90)

Here we have written in the or connective V, so this time the lincs in the predicate are
not implicitly joined by and. It is clear that the two cases joined by or are mutually
exclusive.

Combining conjunction and disjunction

Now we can understand our T_Forward operation from Chapter 7. It uses both
conjunction and disjunction:

T _Forward = Forward v (EOF A Right Arrow A EEditor)

When we expand the three schema references in T_Forward we obtain:
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_ Forward
left, right, left, right : TEXT
ch? : CHAR

ch? = right_arrow

right # ()

#(left " right) < maxsize
#(left " right’) < maxsize
leff = left ™ (head right)
right = tail right

__EOF
left, right : TEXT
N

#(left " right) < maxsize A right = ()

— RightArrow
ch? : CHAR

ch? = right_arrow

__ EEditor
left, right, left, right : TEXT

#(left  right) < maxsize
#(lef! " right) < maxsize
left = left A right! = right

Merging the declarations, combining the predicates, and simplifying?, we obtain:

2 'We factor the invariant about maxsize and the equation with ch? out of the disjunction by applying
the distributive law. (p A@) V(pATr) & pA(g V).
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—~ T _Forward
left, right, left , right : TEXT
ch? : CHAR

#(left  right) < maxsize

#(lef! " right) < maxsize

ch? = right_arrow

((right # () A leff = left ™ (head right) A right = tail right) v
(right = () A left = left A right = right))

This is easier to read if we reintroduce AEditor:

T _Forward
[ AEditor
ch? : CHAR

ch? = right_arrow
((right # () A left = left ™ (head right) A right’ = tail right) v
(right = () A left = left A right = right))

Here again, we write in the or. It is clear that the two disjuncts cover all possibilities.

So a schema expression can always be written as a schema box, and a schema
box can always be expanded to ordinary mathematical formulas. We can regard
schemas and the schema calculus as nothing more than conveniences; we can explain
them without introducing any new mathematical concepts. But the convenience is
invaluable; compare the clarity of the schema expression for T _Forward with the
clutter of its expanded version.

The notational conventions in Z are simple, but they enable us to write mathe-
matical texts that are dramatically smaller and clearer. Z makes it practical to use
ordinary mathematics to model computer systems.

Schemas everywhere

Schema references aren’t just for defining new schemas. We can use them like
macros to make mathematical texts shorter and easier to read. A schema reference
can appear wherever we find a declaration, a predicate, or the common pattern
declaration | predicate. This pattem is called a schema text. It occurs in set com-
prehensions, lambda expressions, and quantified predicates.
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For example, let’s use a set comprehension to define the natural number division
function ndiv. Our new ndiv function works much like the integer division function
div from the tool-kit: Its argument is a pair of integers, and it returns an integer,
but its domain is limited to the natural numbers. For example ndiv(12, 5) = 2, or
12 ndiv 5 = 2. Here is the definition:

ndiv=={n,d,q,.r :N{d#0Ar<dAn=qgx*xd+re(n,d) - q}

The declaration and predicate here contain exactly the same formulas as our Division
schema, so we can write

ndiv == {Division e (n,d) — q}

Division is not a function at all; it is just a state schema whose variables are con-
strained to be related as numerator, divisor, quotient, and remainder. The expression
in this set comprehension arranges the variables in the proper pattern or syntax to
define a function. Notice that the remainder r does not appear in the expression at
all, but it is still needed in the definition.

Schema texts also appear in quantified predicates. This predicate expresses a fact
about division: When the remainder is zero, the quotient and the divisor are factors
of the numerator: '

Vn,d,q,r:N|d#0Ar<dAn=q*xd+rer=0&n=gqx*d
It’s much shorter written with the schema reference
V Divisioner =0 & n=q *d

Schemas can also serve as predicates. Factor expresses that the two numbers n and
d are factors of n:

__Factor
nq,d:N

n=qx*d

Now we can write the preceding predicate this way:
Y Division e r = 0 & Factor

Here Factor appears where syntax demands a predicate. This is permitted; a schema
reference can be used as a predicate, provided it is inside the scope of a declaration
that declares all of its state variables. The necessary declarations are provided here
by Division.
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12.4

124.1

Interesting system properties can often be expressed entirely in schemas. When
the Editor starts up, the cursor is at the end of the (empty) file:

Y Editor | Inite EOF

To paraphrase, “For every Editor in the Init state, the predicate of the EQ F state
holds.”

Schema references are often used as predicates below the line in schema defini-
tions. We can augment our T _Division schema with a status value that indicates an
error when the DivideByZero condition occurs:

STATUS ::= ok | error
__S_Division

T _Division
status : STATUS

DivideByZero < status = error

Exercise Expand V Editor | Init e EOF.

Exercise What does S_Division say about status when the DivideByZero condi-
tion does not nccur?

Other schema calculus operators

Schema conjunction and disjunction are the most useful schema calculus operators,
but there are several others.

Schema composition and piping

A few schema operators are not based on logical connectives. The schema composi-
tion operator $ derives from relational composition: S§7 is the operation that begins
in an initial state of S and ends in a final state of 7. Obviously, this only makes sense
when the final state of § matches an initial state of T. For example, we could use
schema composition to define a new editor operation ForwardIwo that moves the
cursor forward two characters:

ForwardTwo = Forward § Forward
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124.2

Schema piping is useful for combining operations that communicate through input
and output variables. For example we might wish to model the low-level interface
to the console keyboard from which our editor receives its input. The Get operation
on the Console state has one output, the character which was most recently pressed
on the keyboard:

__Get
AConsole
ch! : CHAR

Then we could form a new operation G_Insert by piping the output of Get to the
input of Insert:

G_Insert = Get > Insert

This is almost like Get A Insert except the pipe operator > ensures that the output
and input variables ch! and ch? are merged as well.

Schema composition and piping can resemble sequences of instructions in an
executable programming language. Sometimes they can be implemented that way,
but it is important to understand that in Z they do not denote sequences of operations.
A schema expression can only define a single operation. ForwardTwo is one operation
that jumps the cursor forward over two characters; there is no state here where the
cursor rests between the characters; likewise, G_Insert is a single operation. Z is not
a programming language.

Exercise 12.4.1.1 What is the precondition of ForwardTwo?

Schema negation

The logical negation operator not gives rise to schema negation. I have to warn you
that it is not very useful. It often means something quite different from what you
might expect.

In Chapter 7 we defined the state schema E O F to describe the editor states where
the cursor is at the end of the file. You might expect that ~ E O F describes the editor
states where the cursor is not at the end of the file, but it doesn’t mean that at all.

To negate a schema, we expand all the included schemas, normalize, and then
negate the predicate of the normalized schema. Let’s work it through. Here is the
definition of EO F:
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_EOF
Editor

right = ()

Explanding the included reference to Editor we obtain:

- EOF
left, right . TEXT

#(left " right) < maxsize
right = ()

Next we must normalize. Recall that TEXT is an abbreviation for seq CHAR. This
sequence is a function from natural numbers to characters, so its type is P(Z x CHAR).
We obtain:

_EOF
left, right : P(Z x CHAR)

left € seq CHAR
right € seq CHAR
#(left " right) < maxsize
right = ()

Now we negate the predicate of E O F. Remember that the lines in the predicate are
implicitly joined by and. When we negate the predicate these become or because
we have to apply DeMorgan’s Law: = (p Aq) & - p VvV — q>. Hereis ~ EOF*.

left, right : P(Z x CHAR)

left ¢ seq CHAR v
right ¢ seq CHAR v
#(left " right) > maxsize vV
right # ()
L__

3 Moreover, ¢, >, and # are the negations of €, <, and =, respectively. Thatis,x € § & - (x € §),

etc.
4 This schema box has no name because it is the expansion of the unnamed schema expression ~ EOF.
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There are four ways to satisfy the predicate of - E O F.Only one of them, right # (),
means that the cursor is not at the end of the file. Then #(left ~ right) > size means
that the file is larger than the invariant of Editor allows, and the other two predicates
mean that the state is not a seqence of characters at all!

Negating the predicates implicit in declarations often adds meanings that you do
not intend. For this reason schema negation is not very useful. It is usually better to
define a new schema that says just what you want:

NotEOF = [ Editor | right # () ]

NotEOF, unlike = EOF, includes the declaration and invariant of Editor.
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13.1

This chapter shows how to use schemas to define new data types. It also explains
the mathematical meaning or semantics of schemas. This will help you use schemas
expressively and reason about Z texts.

Schema types

So far we have treated schemas as nothing more than macros that we can use to
abbreviate blocks of mathematical text. In this view, schemas and the schema calculus
are just conveniences: They save us a lot of writing, but they don’t introduce any new
concepts. This modest view provides practical benefits — but it isn’t very ambitious.

Schemas are more than just abbreviations. They are objects in their own right.
Schema definitions declare new data types called schema types. The instances of
schema types are objects called bindings. Schema references denote sets of bindings.
Schema types and bindings are new kinds of mathematical objects.

So far we have defined only three kinds of fundamental data types — all of the
others are built up from these: basic types, declared as in [ X], whose instances are
individuals; set types, declared as in IP X, whose instances are sets; and Cartesian
product types, declared as in X x Y, whose instances are tuples. Schema types and
their instances, bindings, are the fourth (and last) kind of data type in Z.

A binding is the formal realization, in Z, of what we have been calling a situation
or a state: an assignment of particular values to a collection of named variables. A
binding resembles a tuple in that it is a composite object whose components can
have different types. But the components of a tuple are distinguished by position,
while the components of a binding are distinguished by name. Schema types are
much like structure types in C and record types in Pascal.

Let’s define a Date schema that models any date as three numbers: the day,
month, and year. We tried to accomplish something like this with the DATE tuple in
Chapter 9, but we had no way to rule out impossible dates such as June 31 or February
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29, 1995. With a schema we can do better: We write a predicate that describes the
valid dates.

First we must define the days function that associates each month with the number
of its days: January, the first month, has 31 days; February, the second month, usually
has 28 days, and so forth.

days == {1 — 31,2+ 28,..., 12 31}

A typical valid date has no more days in it than the days function allows. We can
express this by including the constraint day < days month in the predicate part of the
schema. In February, month = 2 so the value of the function application days month
is 28, and the predicate requires day < 28, but in January and December we get
day < 31, and so forth. This ability to constrain the relation between components
of every instance of a data type is one of the most important features of Z. It makes
the schema much more powerful than the tuple.

__TypicalDate
day:1..31
month:1..12
year : Z

day < days month

TypicalDate defines a new schema type that is written this way, with special brackets:

(day, month, year : Z)

The components of a schema type are distinguished by name, not position, so the
order of the day, month, and year components in the schema type isn’t significant
(we often list components in alphabetical order, to make them easier to find). The
type of day and month in the schema type is Z, not the integer ranges 1..31 and
1.. 12, because these ranges are sets, not types; the type of both of these sets is Z.

The types of the components in the schema type can be found by normalizing
the schema: Rewrite the schema so that the declarations of all its components are
expressed in terms of their underlying types, and move the predicates specializing
the declarations into the predicate part of the schema. This is how TypicalDate looks
when it is normalized:
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— DypicalDate
day, month, year : 7

day € 1..31
monthel..12
day < days month

Here day, month, year : Z is the signature of TypicalDate; day : 1. .31, and so forth,
18 its declaration.

The TypicalDate schema does not describe every valid date. There is a special
case: In leap years there is an extra day, February 29. We solve this problem in the
usual Z way: Define another schema to cover the exceptional case; then use schema
disjunction to combine the cases. We define the prefix unary relation /eap. so that
leap year is true when year is a leap year. Our leap_ is just a set of years: Leap years
occur every four years, excluding only centuries not divisible by 400 (2000 is a leap
year, though 1900 was not).

(leap) =={y:Zo4xy}\({y:Zo100xy}\{y:Ze400xy})

Feb29
rmonth, day, year : 7

month = 2
day =29
leap year

Feb29 looks different from TypicalDate: Its components appear in a different
order, its month and day belong to Z rather than integer ranges, and the predicate
is different. Nevertheless, Feb29 has exactly the same schema type as TypicalDate:
{day, month, year : Z)).

The schema types are the same because TypicalDate and Feb29 both have com-
ponents with the same names and types — they have the same signature. The order
of the components, the particular sets named in the declarations, and the schema
predicate do not affect the schema type.

The instances of schema types are objects called bindings. Bindings resemble
structures in C and records in Pascal. Here is one of the many bindings that belongs
to the schema type of TypicalDate and Feb29:

(day = 30; month = 2; year = 1996)

(The arrows =~ indicate binding, not logical implication.) This particular binding
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represents the impossible date February 30, 1996; the schema type includes bindings
that are not constrained by any predicate.

Schema references denote sets of bindings. The set TypicalDate contains all of the
bindings in the schema type (day : Z; month : Z; year : Z|) that satisfy the predicate
of TypicalDate' . Here are some of the bindings from TypicalDate:

(day = 27, month = 2; year == 1996),
(day == 28; month = 2; year = 1996},
(day == 1; month =~ 3; year > 1996},

Here are some of the bindings from Feb29:

(day == 29, month = 2; year == 1992},
{(day == 29; month => 2, year = 1996},
(day = 29; month = 2; year == 2000),

Now we can describe any valid date, and only valid dates, by combining our two
schemas using disjunction:

Date = TypicalDate v Feb29
Expanding Date (not forgetting to normalize TypicalDate) we get:

Date
Tday, month, year : Z

(day € 1..31 A day < days month A monthe 1..12) v
(day = 29 A month = 2 A leap year)

Schema references denote sets of bindings, and so do schema expressions.
TypicalDate v Feb29 contains every binding that belongs to TypicalDate or Feb29:
all valid dates, in fact. Here are some of them:

I' Z provides different ways to write down the set denoted by the schema S. In a declaration we simply
write S. In set comprehensions and other contexts where we want to emphasize that we are naming a
set, we can write {S}.
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(day = 27; month = 2; year = 1996},
(day = 28; month = 2; year =~ 1996),
(day = 29; month > 2; year = 1996),
(day =~ 1; month = 3; year = 1996),

Schema types and bindings provide a new kind of meaning or seman-
tics for schemas. Our new denotational semantics encourages a view of
schemas that is much richer than merely regarding them as abbreviations for
blocks of formulas®. Editor is no longer just an abbreviation for the string
left, right - TEXT | #(left ~ right) < maxsize, it actually denotes a collection of
record-like data structures — you can almost touch them. Now the predicate
3 Editor e Init has a more vivid interpretation: “Take a look at all the Editor data
structures — you can find one that satisfies the predicate of Init.”

Using schema types and bindings

-Schema references denote sets, so we can use them in declarations to define record-

like variables that have schema types. We access the components of these variables
using the selector dot — exactly the same syntax we use for selecting members of
structures in C and fields of records in Pascal. Here we define the variable landing,
a member of Date, and constrain its value to be July 20, 1969:

landing : Date

landing.day = 20
landing .month =7
landing .year = 1969

Now I have to warn you that the notation for schema types and bindings is not part
of Z. It seems that we should be able to define landing this way, explicitly writing
out the schema type and the binding:

landing : {day, month, year : Z)

landing = (day = 20, month = 7, year = 1969)

% In a denotational semantics, the meaning of a formula is the object it represents or denotes. In our
denotational semantics of Z, schemas denote sets of bindings.
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This would closely resemble our definition using a tuple (Section 9.1):

landing : DAY x MONTH x YEAR

landing = (20, 7, 1969)

However, our second definition of landing is not permitted in Z as it is defined
in the Reference Manual and taught in most textbooks. This does not limit the
expressiveness of Z, because we can always resort to the style of our first definition.
However, the absence of explicit notation for schema types and bindings can be
regarded as missing syntax that makes the Z notation irregular>.

Schema references can appear in declarations anywhere we use types. This can
help us write definitions that are quite compact. Let’s define the weekday function
that tells us the day of the week for any date (for example, July 20, 1969, was a
Sunday). We represent the days with numbers; so Sunday is 0, Monday is 1, and so
forth (it turns out to be more convenient to start with zero). You can guess the shape
of this function, because there are only seven values in the range, and the weekday
of a given day of the month advances one day each year, and an additional day on

leap years®.

weekday : Date — 0..6

Vd : Date » weekday(d) = (d.day + d.year + d.year div4 + ...) mod 7

In fact we can write an even shorter definition. All the variables we need are defined
in the schema Date, so we can omit the bound variable d. There is only one problem:
Now that we no longer have the bound variable d, what is the argument of weekday
in the predicate? It is tempting to say Date, but that would be type error. Date is a
whole set of bindings, but the argument of weekday is a single binding.

To solve this problem Z provides the binding formation operator € (the Greek letter
theta, perhaps because it suggests the English word the). Then 6 Date (sometimes
pronounced the Date) refers to the (otherwise anonymous) member of Date that is
currently in scope. So we write:

weekday : Date — 0..6

V Date e weekday(6Date) = (day + year + yeardivd + .. .y mod 7

3 The Reference Manual does use {. . .) and =, but only in discussions about Z semantics; they are not
included in the definition of the Z notation itself. The draft Z standard [Nicholls, 1995] proposes to
include a standard notation for schema types and bindings.

4 A complete formula for weekday appears in many sources, for example Rosen [1993).
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Now we can refer to the state variables day and year directly, because they are in the
scope of the declarations in Date.

We often find 6 in schema predicates. For example the usual way to write
the definition of EEditor, the operation where the before and after states are the
same, is

__ SEditor
AEditor

OEditor = 6Editoi

Without & we have to explicitly write out the equality of each component: leff =
left A right = right. This becomes tedious for large schemas.

Here is another way to use 6. You have probably noticed that an operation schema
is much like a relation: It relates before states and after states. It is often easier to
define a schema, but sometimes we would prefer relation syntax instead. We can
have both. The binding operator makes it easy to define the relation corresponding
to any operation schema. This schema defines what it means for one date to precede
another:

__Precedes
ADate

(year < year') v
(year = year A month < month") v
(year = year’ A month = month’' A day < day')

Here we use A as a convenient way to declare pairs of related state variables such
as year and year’. We do not always have to interpret A as a change of state.

This set comprehension defines the relation precedes. We use the binding oper-
ator twice to separate the before and after state variables into the two components
of a pair:

precedes == { Precedes » (0 Date, 8 Date’) }

Now we can write definitions like this one
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— Biography
name : NAME
birth, death : Date

birth precedes death

Exercise 13.2.1 Define the operation Next that advances a Date by one day.

We can use schemas in declarations wherever we can use sets — even inside other
schemas. This makes it easy to define complex structures.

For example, let’s define a more powerful editor. We would like to work on several
files at once in different workspaces or buffers. Each buffer has a name — usually
the name of the file where we will save the buffer’s text. The buffer we are currently
working in is called the active buffer. Every buffer, including the active buffer, has
its own text and cursor position, so we can model each one as an instance of our
previously-defined Editor. The state of our multibuffer editor is a function from
names to editor instances, with the active buffer distinguished:

__ MultiEditor
active : NAME
buffer : NAME -» Editor

—
active € dom buffer

In this chapter we have seen that schema references can be used as expressions whose
values are sets of bindings. A schema reference can appear where syntax demands
a set, for example in a declaration. In section 12.3 we learned that schemas can be
declarations or predicates; now we know that they can be expressions as well!



14 Generic definitions
and free types

14.1

It isn’t possible to do justice to all of Z in an introductory book like this one. This
chapter mentions a few features that are not discussed elsewhere. You should know
that they exist.

Generics

Z provides generic constructs that enable you to write definitions that apply to any
type.

We have already used many generic operators. In our editor example we used
several functions from the Z mathematical tool-kit to operate on sequences of char-
acters called TEXT. For example we used the concatenation operator " to join texts
together: leff = left ~ (head right). You might infer that the concatenation operator
must be defined something like this:

_ 7 _: TEXT x TEXT — TEXT

But this cannot be right — we defined TEXT ourselves, but concatenation came
already defined in the mathematical tool-kit. In fact this definition would be far too
restrictive, because it only applies to texts. The concatentation operator ought to
work on any kind of sequence. Of course it does, because the actual Z concatenation
operator is defined in a generic definition. Turning to the tool-kit in the The Z Notation
we find:
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—{X]
-~ _-:seqX xseqX — seq X

Here X is a formal generic parameter that stands for any type. In our editor we
instantiate this function by providing the actual generic parameter CHAR, so seq X
becomes seq CHAR — which is the same as TEXT.

The double bar and the parameter at the top of the box alert you that the definition
is generic. Generic defintions are global, even though they appear inside a box.

Abbreviations can also be generic. The left side of an abbreviation definition
need not be a single identifier. It can be an entire pattern including formal generic
parameters. This is how the tool-kit defines the binary relation symbol «:

XoY=PXxY)

The Z mathematical tool-kit largely consists of such generic definitions and abbrevi-
ations. You can write your own; this is a very powerful way to extend the Z notation.
In this book we concentrate on using Z rather than extending it, so we don’t find it
necessary to use generic definitions here.

Z also provides generic schemas. This example from the Reference Manual de-
fines a generic resource manager named Pool. There can be different instantiations
of Pool, where the generic parameter RESOURCE is supplied with an actual param-
eter that might represent any resource, for example memory pages, disk blocks, or
Processors.

Pool {[RESOURCE] :
owner : RESOURCE -+ USER
free : PRESOURCE

(domowner) U free = RESOURCE
(dom owner) N free = @

In Pool, the set free models the pool of available resources, and the function owner
associates the resources that have been allocated with the users that own them. The
predicate says that every resource either belongs to some owner or is free, and no
free resource belongs to anyone.
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14.2

Free types

- Free type definitions are not just for introducing enumerations. They can also be

used to define recursive data types that include several kinds of distinct elements.
One application of free types is to write syntax definitions, similar to the definition
of programming language syntax in Chapter 1. Here is a definition of the syntax of
simple arithmetic expressions on natural numbers, such as 2 + 3 and (12 div (2 +
3N-17:

OP ::= plus | minus | times | divide

EXP ::= const{{N))
[ binop((OP x EXP x EXP))

Here the first free type definition is a simple enumeration that introduces the binary
operators. The second definition says that an expression is a numeric constant, or a
pair of expressions joined by a binary operator.

Free types also provide an alternative to the method of Section 9.3.4 for modelling
linked data structures.

Free types are just a notational convenience; the meaning of any free type defini-
tion can be expressed using only basic types and axiomatic definitions.
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So far we have been using Z to name objects, describe their structure, and state
some of their properties. For each property of an object, we added another formula
to the description. But this is not always necessary. We don’t have to spell out each
property explicitly. Once we have stated a few properties, we can infer many more
by using formal reasoning. This ability to infer new facts by applying simple rules
is one of the distinguishing features of a formal method.

Reasoning enables us to use a formal model as a nonexecutable prototype or
oracle. Formal reasoning plays somewhat the same role for mathematical models
that testing does for code. Just as you can experiment with code by running it, you
can investigate the behavior of a nonexecutable prototype by reasoning. You can
check important system properties before you write a single line of code. Moreover,
an exercise in formal reasoning often establishes the behavior for a whole class of
situations, not just a single test case.

We can use formal reasoning to validate a mathematical model against require-
ments. A model is valid if its properties satisfy the intent of the requirements. Re-
quirements are usually not expressed formally, but we can translate almost any
reasonable requirement to a predicate. We can then attempt to determine whether
this predicate follows from the predicates in our model. If it does, the model is valid
with respect to that requirement.

Formal reasoning provides a systematic way to check for certain kinds of er-
rors and oversights. In this chapter we will learn how to investigate preconditions.
Misunderstandings about preconditions can cause programming errors.

Formal reasoning can also show how one model is related to another. It can show
that a detailed design is a correct refinement of a more abstract specification, and it
can verify that code implements its specification.

An exercise in formal reasoning is sometimes called a proof. In this chapter we
will learn how to do formal reasoning in Z and write simple proofs.
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15.1

Calculation and proof

Formal reasoning means reasoning with formulas. An exercise in formal reasoning is
akind of calculation. The arithmetic calculations you learned in school are examples
of formal reasoning. Here is a simple one:

A train moves at a constant velocity of sixty miles per hour. How far does the
train travel in four hours?

To solve this problem, you calculate the distance by multiplying velocity and
time. We can express the problem in Z:

distance, velocity, time : N

distance = velocity * time
velocity = 60
time = 4

The problem is to find distance, which is implicit in the other predicates. We
calculate the solution in steps. Here is the solution written out in full detail:

distance = velocity * time [Definition)
= 60 x time [velocity = 60]
=60x4 [time = 4]
=240 [Arithmetic]

This calculation is a formal proof of the predicate distance = 240 (miles). We do
not have to include this predicate in the Z axiomatic description because it can be
inferred from the other predicates.

This proof applies two principles: We can substitute equals for equals, and equality
is transitive: from a = b and b = ¢, we can conclude a = c¢. The proof is written
out in a format that makes it easy to check. Each step is written on a separate line
annotated with its justification, and the vertical layout makes it clear that the solution
follows from the transitivity of equality.

Each step in our proof is a formula, but not only that; the entire proof is also a
formula! The proof is a predicate. Written out in the usual way it is

distance = velocity * time = 60 * time = 60 * 4 = 240

Without the annotations, our proof is just an ordinary Z predicate (it uses the Z
convention that a = b = c is an abbreviation fora = b A b = ¢).
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A proof can be any predicate; it need not be an equation. Let’s change the problem
statement slightly to say that the train is moving at less than sixty miles per hour:
velocity < 60. Then the proof becomes:

distance = velocity * time [Definition]
< 60 * time fvelocity < 60]
=604 [time = 4]
=240 [Arithmetic]

Written out on one line, this is
distance = velocity x time < 60 x time = 60 x 4 = 240

This time we obtain the inequality distance < 240 because we can infera < d
froma=b<c=d.

Exercise 15.1.1 Equality =, greater than >, and less than < are all transitive. Is
inequality # transitive as well?

Calculations need not be arithmetic. This example uses set membership € and the
subset relation C. Organizations are modelled as sets of people, and organizational
hierarchy is modelled as subset relations. Philip works on the adhesives team in the
materials group, which is part of the research division.

philip : PERSON
adhesives, materials, research, manufacturing : P PERSON

adhesives C materials
materials C research
philip € adhesives

Intuition tells us that Philip must work in the research division. We don’t have to
write a formula to say that because it is easy to show:

philip € adhesives [Definition)
C materials [Definition]
C research [Definition]

This is a formal proof of the predjcate' philip € research. It uses the transitivity of
the subset relation: From S C T C U we can infer § C U. The proof is trivial but it
can save us a great deal of writing. Without it we would have to include the predicates
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philip € materials and philip € manufacturing in the definition — and so on for
every other employee. Now that we can do the proof, we don’t have to include these
facts; we can infer them when they are needed. If the company is reorganized — for
example, materials is moved from research to manufacturing — we only need
to change a single line. '

In the preceding proofs, each line shows an expression which is joined to the
expression on the preceding line by an equal sign or a relation symbol. We can
also build proofs where the lines are predicates joined by logical connectives. The
connective is often equivalence, which plays much the same role for predicates that
equality does for expressions. Here 1s a formalization of the little algebra problem:
find x, given 2x + 7 = 13.

We simply solve for x

2xx+7=13 [Definition.]
&S 2xx=13-7 [Subtract 7 from both sides.]
S2xx=6 [Arithmetic.]
= 2*x)div2=6div2 [Divide both sides by 2.]
S x=06div2 [Division on left side, algebra]
S x=3 [Division on right side, arithmetic]

This completes our proof of the predicate 2xx +7 = 13 = x = 3.

Laws

A proof is sound or valid only when every step is justified. We try to write our proofs
so the validity of each step is self-evident, but we need an authority we can consult to
confirm that every step is justified. That authority exists. It is a collection of formulas
called laws.

A law looks just like an ordinary predicate, but the identifiers have a different
meaning: They are not variables, they are place-holders. This distinction is important:
A variable always denotes a particular value, but a place-holder represents any
expression of the appropriate type. A predicate may be true or false depending on
the values of its variables, but a law is always true when a place-holder is replaced
by any expression of the appropriate type. Predicates usually express facts that
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are particular to some specific situation, but laws express rules that are universally
applicable. For example

2¥n=6 [This is an ordinary predicate.]

is a predicate with one variable, n. This predicate is really just a roundabout way of
saying n = 3; it is true when n = 3 and false otherwise. In contrast

0xn=0 [This is a law.]

is a law that is ¢rue for any integer expression we can write in place of n. It expresses
a fundamental property of arithmetic: Multiplication by zero always results in zero.
Likewise

n=dxq+r [Predicate]

is a predicate that includes the variables n, g, d, and r. This predicate is frue when
n=7,q=2,d =3,and r = 1, and in many other situations as well, but it is false
whenn =7,q9 =2,d = 3, and r = 0, and in many other situations besides that. In
contrast

d#0=n=dx*(ndivd) + (n mod d) [Law]

is a law that is true for any integer expressions we might write in place of the place-
holders n and d (notice how the implication takes care of division by zero). This law
expresses the definitions of integer division div and remainder mod.

In some laws the place-holders do not just stand for expressions; they stand for
whole predicates. For example

pv~—p {Excluded middle]

is a law. It is always true, for any predicate we might substitute for the place-holder
p. This is the famous law of the excluded middle, which says that in our logic, a
predicate is either true or false. There are many laws like this one that describe the
properties of the logical connectives. For example DeMorgan’s Law explains how
to negate a conjunction: Form the disjunction of the negated conjuncts.

~(prg) &S ~pV g [DeMorgan}

We used DeMorgan’s law to calculate the schema negation in section 12.4.2. We
used this distributive law to simplify the predicate of T_Forward in section 12.2.3.

(PA@)V(PATYS pA(@VT) [Distributivity)
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Where do laws come from? The short answer is: They are written down in books.
All the laws can be derived from just a few, but I can simplify this book enormously
by taking the laws as givens and stating them without justification. The laws used
in the book are collected in Appendix E. It is possible to create new laws from the
ones we already have in much the same way we prove ordinary predicates.

Exercise 15.2.1 The proof of 2 * x + 7 = 13 & x = 3 in Section 15.1 used
informal justifications such as “divide both sides by two.” This style of reasoning is
formally justified by Leibniz’ Law, which says that equality is preserved by function
application: x = y = f x = f y (where f is a function and x is in the domain
of f). Find each step in the proof where Leibniz’ law is applied, and identify the
functions used in those steps.

Exercise 15.3.1 Leibniz’ Law is an implication, not an equivalence. When is x =
y<& fx=fytrue?

Checking specifications

We can use formal reasoning to check our work for certain kinds of errors and
oversights. This is one of the most important qualities that distinguishes a formal
method from informal ones.

In the course of writing a complex specification it is not difficult to write formulas
that conflict. This error is called inconsistency. There are systematic ways to apply
formal reasoning to discover certain kinds of inconsistencies.

For example, every system has a special state in which it starts up, which is usually
named Init. If the specification is consistent, this initial state must statisfy the state
invariant, so the predicate 3 State e Init must be true. This predicate is called the
Initialization Theorem. It seems obvious, but errors involving initial states are not
uncommon; programs that are supposed to manage a collection of files sometimes
crash when all of the files are absent or empty. For our editor example this requirement
becomes

3 Editor e Init

which can be read, “There exists an Editor that satisfies the predicate of Inir” It
expands to

Aleft, right : TEXT | #(left ™ right) < maxsize o left = right = ()

This can be paraphrased, “There exist two texts whose combined length does not
exceed maxsize, and both texts are empty.” This is obviously true; our initial state is
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consistent with our state invariant. In this simple example there is no need for any
further formal investigation, but in Section 15.4 we will learn some techniques that
would enable us to prove this predicate formaily.

Precondition calculation

Many actual program failures occur because programmers did not account for all
the preconditions — the conditions that must be satisfied before an operation can be
invoked. In the text editor study in Section 7.6 our first attempt to define the operation
that moves the cursor forward was inadequate because it failed to account for the
situation where the cursor is already at the end of the file. If we had implemented that
first version, we might have produced a faulty program that could crash, losing all the
users’ work. In Chapter 7 we discovered the precondition by experience and insight.
In fact, we don’t have to depend on intuition: We can can calculate the precondition
of any operation defined by a Z schema.

The precondition of an operation is a predicate that describes all the starting
states in which the operation is defined. Therefore the precondition only contains
unprimed “before” variables and input variables, but no primed “after” variables or
output variables. Sometimes the precondition is explicitly written out in the operation
schema, and we can find it by inspection. For example, here is the second version of
the Forward operation from Section 7.6: ‘

__Forward
AFEditor
ch? : CHAR

ch? = right_arrow

right # ()

lef! = left ™ (head(right))
right = tail(right)

Here the precondition is simply the predicate that defines the input variable and the
uprimed state variable:

ch? = right_arrow A right # ()

An operation is total when the predicates in the precondition that define the “before”
state variables cover all possibilities; that is, when they are equivalent to true. Clearly
Forward is not a total operation because right # () doesn’t cover the case where
right = (). We defined an augmented operation T _Forward to account for that case.
Here is the expanded version of T_Forward from Section 12.2.3:
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— T _Forward
AEditor
ch? : CHAR

ch? = right_arrow
((right # () A leff = left ™ (head right) A right = tail right) v
(right = () A left = left A right = right))

Extracting the predicates where the “before” variables are defined, we obtain:

(right # () Vv (right = ()

The T_Forward operation is total because this disjunction covers all possibilities.
This example illustrates acommon pattern in Z: Preconditions are disjunctions where
each disjunct models a different case; the cases are supposed to cover all possibilities,
so the disjunction should be equivalent to frue. It is often possible to check this by
inspection. In this example we can easily confirm our inspection formally: The
disjunction is equivalent to true because it matches the law of the excluded middle,
pv-=p.

Sometimes the precondition of an operation is implicit; we cannot easily find it
by inspection. This situation arises when the predicate in the operation definition
interacts with the state invariant. Consider the Insert operation that puts a character
into the text buffer to the left of the cursor. Here is our definition from section 12.1.3:

Insert
AEditor
ch? : CHAR

ch? € printing

left = left ™ (ch?)
right = right

Does this operation always work, or does it have some preconditions that aren’t
obvious? Let’s calculate the precondition.

The precondition of an operation describes all the initial states where the operation
is defined. The precondition of operation schema Op on state schema S is described
by the schema expression 35’ e Op: “There exists a final state that satisfies the
predicate of the operation schema.” In our example this becomes

3 Editor e Insert

Recall from section 12.1.1 that Editor is the text editor’s state schema.
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__Editor
left, right . TEXT

#(left " right) < maxsize

To express the schema expression 3 Editor’ e Insert as a predicate, we write all the
formulas in Editor, remembering to prime all the state variables and then write the
predicate only of Insert (section 12.1.3),

Aleft, right’ : TEXT | #(leff " right) < maxsize @
ch? € printing A leff = left ™ (ch?) A right! = right

In this predicate the primed variables leff’ and right from the final state are bound,
and the input variable and the unprimed variables from the initial state are free. It is
understood that these free variables satisfy the declarations in Insert.

Now this is just an ordinary predicate with all the Z schema calculus removed, so
we can use any of the laws of ordinary discrete mathematics and logic to simplify
it. We recall from Chapter 11 that restriction in an existentially quantified predicate
is an abbreviation for conjunction. This can be expressed by a law

@dlpeg) (3depArg) [Restricted 3-quantifier]
Applying this law, we obtain

Jleft, right : TEXT o
ch? € printing A #(lefl "~ right) < maxsize A
lef! = left ™ (ch?) A righ! = right

We can eliminate the existential quantifier because the predicate contains equations
that assign fixed values to the bound variables. This is expressed formally by a law
called the One-point rule:

Bx:Tex=eAp)& ple/x] [One-point rule]

The notation p[e/x] means p with e substituted for x. Applying the one-point rule
with the equations leff = left ~ (ch?) and right = right, we obtain

#ich? € printing A ((left ™ (ch?)) ™ right) < maxsize

Now the primed variables have disappeared, and the predicate only contains input
variables and unprimed variables from the initial state — just as we would expect
for a precondition.
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To review our progress so far we express the steps in our standard proof format,
using pr to abbreviate ch? € printing.

I Editor’ e Insert [Definition of precondition]
& leff, righ! : TEXT| ... e... [Expand schemas]
& 3left, righ! :TEXT e ... A ... [Restricted 3-quantifier]
& pr A #((left ~ (ch?)) ™ right) < maxsize [One-point rule]

Now the calculation proceeds quickly. We apply some laws about sequences:
#(s 7 t) = #s + # (the length of a sequence is the sum of the lengths of its
components) and #{x) = 1 (the length of a singleton sequence is one).

& pr A #((left ~ (ch?)) ™ right) < maxsize [see above]
& pr A #left -+ #(ch?) + #right < maxsize [#(s T t) = #s + #1)]
& pr A #left + 1 + #right < maxsize [#(x) = 1]
& pr A #left + #right < maxsize [Arithmetic]

This completes the calculation. The precondition of Insert is ch? € printing A
#left + #right < maxsize. When the input is a printing character, the number of
characters to the left and right of the cursor must be less than the buffer size. In
other words, the buffer must have room for at least one more character, or the Insert
operation won’t work. To make our editor robust, we have to define a total version
of the insert operation that handles the full buffer case somehow. Perhaps it should
just discard ch? and leave the buffer contents unchanged.

Perhaps the precondition in this example is obvious, but many software failures
result from errors that seem obvious in retrospect. This precondition concerns a
resource limitation: What happens when the editor runs out of memory? Many
failures are examples of resource limitations. When real-time programs run out of
time, they miss a deadline; when calculations run out of numbers, they overflow.

What is important in this example is that the calculation did not depend on our
intuitions about buffers becoming full; it used a general technique that can be ap-
plied to any operation. In this example the precondition was just what we expected,
but in more complicated examples, the calculation sometimes reveals unexpected
preconditions.
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I15.5

15.5.1

5.6

Formal reasoning and intuition

Most reasoning is informal, even in “logical” subjects like science, mathematics,
and computing. Most proofs in textbooks and journals are informal: They contain
formulas, but the proofs themselves are not formulas. Informal reasoning draws on
all kinds of knowledge and reaches conclusions without making the steps explicit.
Perhaps there are no steps; the conclusions come in a flash of intuition.

In formal reasoning the steps are explicit. Moreover, the validity of a formal proof
depends only on the syntax (shape or appearance) of the formulas. A formal proof
in the format of this chapter is valid if every pair of successive lines matches a law.
The proof does not depend on the semantics (meaning or denotation) of the formulas
at all. It does not matter what the symbols in the proof represent. Your knowledge
of the application and your intuitions about what the symbols mean may help you
discover a formal proof, but they have no bearing on the validity of the proof itself.
In this sense formal proof is profoundly counter-intuitive.

The uncommon sense of formal reasoning is valuable exactly because it works so
differently from ordinary reasoning. It can act as an independent check on intuition.
Programming problems can be very intricate and intuition can fool you. And some-
times when intuition fails and you are stumped, the shape of a formula can suggest
a solution you might have overlooked.

A caution

Most proofs involve a few insights and a lot of details. Authors try to present the
insights and gloss over the rest, instead of listing every step in mind-numbing detail
(in our precondition example we didn’t bother to prove that the length of the singleton
sequence is one, #(x) = 1). It is a matter of judgment when the proof is complete,
a consensus decision by the authors and their audience. The reviewers’ main job
— after checking for outright errors — is to determine whether the level of formal
detail is appropriate.

Because it depends on judgment and consensus, proof is a social process. Like
any social process, it is fallible. Eliding details achieves brevity but incurs a risk of
error. There are many cases where published proofs by distinguished experts were
found to be invalid [Gerhart and Yelowitz, 1976; DeMillo, Lipton, and Perlis, 1979;
Rushby and von Henke, 1991].

Machine-checked proof

A formal proof is a kind of formula, so it can be analyzed by a machine. The little
proofs in this chapter (when stripped of annotations) are ordinary predicates that can



160

Chapter 15. Formal reasoning

be processed by any Z type checker. One can imagine a more ambitious program
that checks each step in a proof to ensure that it matches a law; it might relieve
the author of some tedium and help reviewers overcome the fallibility of the social
process. Such programs exist; they are usually called theorem provers because most
can generate some proofs automatically. However, it is not possible to construct
an algorithm that can prove every predicate in a notation as expressive as Z!. Proof
demands creativity and invention, and practical theorem provers all require guidance
by an expert who must often develop the proof to greater detail than many human
reviewers would demand. :

Enlisting the computer to help check proofs of very difficult algorithms — such as
synchronizing multiple processors in the presence of faults — has revealed errors in
published proofs that were developed and reviewed by distinguished human experts.
“A mechanical theorem prover . . . (acts) as an implacable skeptic that insists on all
assumptions being stated and all claims justified.” [Rushby and von Henke, 1991]

A new technique called model checking provides another way to automate the
analysis of formal specifications. In contrast to the purely syntactic techniques dis-
cussed thus far, a model checker constructs and then checks a representation (or
“mode!”) of all the conditions described by the formulas. For example if the formu-
las describe a state transition system, a model checker constructs a representation
of its state transition diagram. Judicious assignment of conditions into equivalence
classes can make it feasible to use model checking on systems that have a grcat many
states [Jackson, 1994; Jackson and Damon, 1996].

! This famous result was established by Alan Turing in the 1930’s {Mackenzie, 1995].



Further reading

An innovative approach to the material covered here in Chapters 9, 10, and 15 is
explored by Gries and Schneider in A Logical Approach to Discrete Math [1993].
They emphasize formal proof throughout and give detailed instruction in techniques
of symbolic (as opposed to merely arithmetic) calculation.

The textbook by Newton-Smith [1985], the monograph by Van Gasteren [1990],
and the paper by Ohlbach [1985] are particularly good on the subtlcties and pitfalls
of expressing English statements in formal logic.

The prime number examples in Chapter 11 are from a paper by Gravell [1991].

Jim Woodcock’s tutorial paper “Structuring Specifications in Z” [1989b)] provides
many examples that illustrate the versatility of schemas.

According to the brief history in Woodcock’s paper, schemas evolved gradually.
They began as simple macros for naming and abbreviating chunks of mathematical
text. Only later did people realize they could represent states and operations. The
notion that schemas introduce a new kind of type and denote sets of bindings emerged
later still.

A denotational semantics for Z based on sets of bindings is developed by Mike
Spivey in his book, Understanding Z: A Specification Language and its Formal
Semantics [1988). A similar semantics is proposed in the draft Z standard [Nicholls,
1995]). The draft also proposes standard notation for schema types and bindings.

The best explanations of genericity and free types are in Spivey’s Reference
Manual and also Understanding Z. The free type example in Chapter 14 comes from
the manual for a typesetting and type-checking tool [Spivey, 1992a]. An example in
Diller’s textbook [1990] uses free types to describe the syntax of predicates, in order
to specify a theorem prover. Several other examples appear in the book by Barden,
Stepney, and Cooper [1994].

The Reference Manual also provides more complete explanations of schema
composition and piping, and defines a few additional schema operators that are not
discussed in this book.

The proof style taught in Chapter 15 is called the equational style (even though
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it isn’t just for equations). This style is used by Van Gasteren [1990], Cohen [1990],
Kaldewaij [1990], and Hehner [1993], and is central in the textbook by Gries and
Schneider [1993]. Hehner observed that a proof in this style is just an ordinary
predicate. )

Woodcock’s paper [1989b] includes many equational proofs about Z specifica-
tions, and another paper presents a larger investigation of a memory management
system [Woodcock, 1989a]. A calculation by Spivey [1990] reveals a potentially
hazardous deadlock in the kemel of the real-time operating system for an X-ray
machine. Jonathan Unger and I report some proofs from a programming project in
our paper [1995].

Most Z textbooks use equational proof but also teach different proof systems
called natural deduction and sequent calculus (see the texts by Woodcock and
Loomes [1990], Diller [1990], Potter et al. [1991], and Wordsworth [1992]). Proofs
in these systems are not just predicates; it is necessary to introduce additional formal
notation to present them. Gries and Schneider [1993] compare natural deduction to
the equational style.

In addition to the mathematical tool-kit in the Reference Manual, there are large
collections of laws (in slightly different syntax) in the books by Morgan [1994],
Hehner [1993], and Gries and Schneider [1993]. Gries and Schneider and also Cohen
discuss Leibniz’ law.

The Reference Manual, Woodcock’s paper, and all the Z textbooks discuss pre-
condition calculations.

You need a technique called induction to prove many properties of integers,
sets, sequences and linked data structures. A chapter in Paulson’s textbook [1991]
illustrates induction with many examples involving data structures much like those
we use in Z. '

Mackenzie provides a historical review of theorem provers [1995], and Paul-
son develops a small prover in a textbook chapter [1991]. Popular provers include
NQTHM (the Boyer-Moore prover) [Boyer and Moore, 1988], HOL {Gordon and
Melham, 1993], EVES [Craigen, 1995] and PVS [Owre et al., 1995]. Extensions
for handling Z formulas have been added to EVES [Meisels and Saaltink, 1995] and
HOL [Bowen and Gordon, 1995].

Jackson [1994] and Jackson and Damon [1996] have applied model checking
to Z specifications. Wing and Vaziri-Farahani [1995] proved some properties of a
distributed file system by model checking.
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16 Document control
system

In this chapter we’ll model a simple document control system in Z. People who
work together need to share their work, but there are many opportunities for misun-
derstandings and confusion. Errors can be introduced when two people working on
the same thing — a file of program code, for example — make changes that conflict
with each other. We can enlist the computer to help prevent such errors: This is the
purpose of a document control system. Real examples include SCCS (source code
control system) and RCS (revision control system) [Tichy, 1982].
Here is an excerpt from the informal description:

If a user wants to check out a document in order to change the document and
the user has the permission to change it, and nobody else is changing it at the
moment, then that user may check the document out.

As soon as a user has checked out a document for editing everyone else is
disallowed from checking it out (of course people with read permission can
read it).

When the user is done editing the document, it should be checked in, allowing
another user to check it out.

Here is the Z model. We begin by introducing two basic sets that hold everything
of interest in this universe, namely people and documents:

[PERSON, DOCUMENT]

Some people have permission to change particular documents. We can model that
as a relation on documents and people:

| permission : DOCUMENT < PERSON

This relation is just a set of pairs of the form (document, person). For example, Doug
can change the specification, Aki and Doug can change the design, and Aki and Phil
can change the code.
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doug, aki, phil : PERSON
spec, design, code : DOCUMENT

permission = {(spec, doug), (design, doug), (design, aki), (code, aki),
(code, phily}

The state of the system is merely another relation of the same type, this one saying
which documents are actually checked out to whom. The central requirement is that
a docurnent can only be checked out to one person at a time, so in this case the
relation is a function: It associates each object in the domain with a single object in
the range.

__Documents
checked_out : DOCUMENT - PERSON

checked_out C permission

Note that checked_out is a partial function, indicated by the stroke through the
arrow . This means that some documents might not be checked out to anybody.
The predicate says that documents can only be checked out to people who have
permission to change them.

A possible state of our system occurs when Doug has checked out the specification
and design, and Phil has checked out the code.

checked_out = {(design, doug), (spec, doug), (code, phil)}

We need two operations that change the state, CheckOut and Checkin. Here is
CheckOut. It has two input parameters, the person p? and the document d?.

__CheckOut
ADocuments

p? : PERSON

d? : DOCUMENT

d? ¢ dom checked_ou’t
(d?, p?) € permission
checked_out = checked_out U {(d?, p?)}

CheckOut has two preconditions. They are the predicates that contain no primed
“after” variables. First, document d? can’t already be checked out: It can’t be in
the domain of checked_out. Moreover, the person doing the checking out needs
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permission: (d?, p?) must belong to permission. If the preconditions are satisfied
we add the pair (d?, p?) to checked_out; this prevents anyone else from checking
out d?.

‘We must account for cases where the preconditions are not satisfied. There are two
preconditions, so there must be two such cases. CheckedOut says that the document
is already checked out: d? € dom checked_out. Unauthorized expresses that the
person does not have permission: (d?, p?) ¢ permission. In both cases nothing gets
checked out and the state of the system does not change: & Documents.

CheckedOut = [ EDocuments; d’? : DOCUMENT | d? € dom checked_out ]

__Unauthorized
EDocuments
p?: PERSON
d? : DOCUMENT

(d?, p?) ¢ permission

The total operation T _CheckQOut covers all three possibilities.
T _CheckOut = CheckOut v CheckedOut v Unauthorized

This concludes our presentation. This little study illustrates some typical features of
Z models:

You can ignore details in order to focus on the aspects of the problem in which
you are interested. Here we concentrated on permissions and keeping track of who
has checked out what. We did not model actually copying documents back and
forth between the central repository and users’ local directories. We modelled the
collections of documents and users as fixed sets, and the permissions as a constant.
A real document control system would have to provide some way to enter new
documents into the system and delete old ones, and there would also have to be
a way to assign and change permissions. If we wished to model all that in Z we
could represent people, documents, and permissions as variables in the state schema
instead of basic types and global constants.

Models should be simple. If you find yourself writing complicated functions and
quantified predicates, it is usually a sign that you are on the wrong track. Let the -
basic properties of sets, relations and functions do the work for you. The requirement
that only one person at a time can check out a document can be neatly expressed by
a function.

The requirements about permissions can be represented by letting the checked_out
function be a subset of the permission relation. In Z, functions are relations and
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relations are sets, so operators defined for sets also apply to relations and functions,
and you can put them all together in the same expressions. This is an advantage of
Z that you don’t find in every formal notation.

Exercise 16.1 Define the normal Checkin operation, and a total T_Checkin oper-
ation that accounts for the exceptional cases.



17 Text processing

17.1

This chapter continues our investigations into text processing. In Chapters 7 and 12
we modelled the state of a simple text editor as nothing more than a sequence of
characters. In this chapter we add a little more structure: words and lines. This will
enable us to model a word counting utility and format operations such as filling
paragraphs.

Breaking a text into words
Once again we begin by defining a set of characters. A text is just a sequence of

characters. Certain characters are blanks. Spaces, line breaks, and tabs are certainly
blanks, but we might also choose to include punctuation marks and other special

‘characters. In fact, we define a word to be a sequence of nonblank characters, so a

blank is any character that might separate two words. A space is a sequence of blank
characters.

[CHAR]
| blank : PCHAR

TEXT == seqCHAR
SPACE == seq,blank
WORD == seq;(CHAR \ blank)

TEXT includes the empty sequence, but SPACE and WORD must have at least one
character, so we declare them to be seq; (nonempty sequences).

Our word counting and formatting utilities are based on a function called words.
The words function returns the sequence of all the words in a text. For example,
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words (H,o0,w, ,a,r,e, ,y,o,u,?) = {(H,o,w),{a,r e),{(y,o,u))

Clearly words is a total function from a TEXT to a sequence of WORD. To define
words, we consider all possible patterns of words and spaces, and write an equation
for each.

words : TEXT — seq WORD

Vs : SPACE; w:WORD; l,r : TEXT o
words () = () A
words s = () A
words w = (w) A
words (s " r) = wordsr A
words (I 7 ) = words 1 A
words (I s " r) = (words 1) ~ (words r)

As you can see, there really aren’t so many patterns. When the text is empty, the
result is empty. When the text is nothing but space, the result is empty too. When the
text is a single word, the result is a sequence that contains just that word. When the
text begins or ends with a space, you can strip it off; the result is the same. Wherever
the interior of the text contains a space, you can discard the space and break the text
in two. That’s it.

This example illustrates several Z techniques that can make definitions shorter
and clearer than code. The function is applied to patterns like | s " r that reveal the
internal structure of their arguments. If you think in terms of code that has to work
its way through the text from beginning to end, you can’t use patterns in this way.
The definition is recursive: The function being defined can appear on both sides of
an equation. (The definition is not circular: By repeatedly applying the equations
to any text, we will eventually arrive at the simple cases.) Finally, the last equation
is nondeterministic: It doesn’t tell us where to begin breaking between words; any
space is as good as another. We don’t need to assume that the text will be scanned
in order from beginning to end.

The definition might seem obvious, but it includes cases that are often forgotten.
Published programs that purport to fill paragraphs break down when presented with
an empty file or a text that ends with a series of blank lines. The errors are not just
coding bugs; they reveal a failure to understand the problem fully. Writing formal
definitions encourages us to think carefully about all the cases. We don’t have to
complain, as some programmers do, that there are so many possibilities we can’t
consider them all.
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17.2

17.3

A word counting utility

The number of words in text ¢ is simply #(words t). We can define a function similar
to words that breaks a text into lines. We consider a line break to be a special blank
character named n/ (for new line).

lines : TEXT — seqLINE

... definition omitted . . .

Now we have everything we need to write a formal specification tor the Unix word
counting utility wc. This popular utility is actually a function whose argument is a
file name, and whose result is a tuple whose components are the number of lines,
words, and characters in the file. A typical application looks like this:

$ wc structure.tex

110 559 4509
Here is the definition of wc:

we:TEXT > (Nx NxN)

Vfile : TEXT o
wc file = (#(lines file), #(words file), #file)

Or, if you like to be more terse

wc == (Afile : TEXT o (#(lines file), #(words file), #file))

Filling paragraphs

Almost any text editor provides a fill operation. The fill operation transforms raggedy-
looking text with lines of different lengths into nicely formatted text with lines nearly
the same length.

For example, you can type in something that looks like this:

Almost any text editor provides a fill

operation. The fill operation transforms raggedy-looking text
with lines of

different lengths into nicely formatted text with lines
nearly the same length.

and then you can use the fill operation to turn it into this:
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Almost any text editor provides a fill operation. The

fill operation transforms raggedy-looking text with lines of
different lengths into nicely formatted text with lines
nearly the same length.

Let’s define the fill operation in Z. We observe that fill is just one example of a
format operation that changes the appearance of a text by breaking lines in different
places and expanding or contracting the spaces between words, subject to the con-
straint that no line exceeds the page width. Moreover, a format operation must not
change the content of the text: It preserves the same words in their original order.

I width : N

__Format
t,t' : TEXT

words t' = words t
V1 :ran (linest') o #1 < width

The fill operation is a format operation that satisfies an additional constraint: The
lines should be filled as much as possible. There are many different ways to express
this, and each one results in a slightly different appearance to the text. Perhaps the
simplest rule is to require that the filled text occupy the fewest possible lines.

—Fill

Format
_

#(lines t'y = min (¢’ : TEXT | Format e #(lines t')}

This definition says that Fill is essentially a minimization operation: It is the spe-
cialization of Format that minimizes the number of lines. The schema is a little
tricky because Format is used in two different ways and different occurrences of ¢’
represent different things. The ¢’ on the left of the equal sign is the final state of Fill.
The ¢’ inside the set comprehension is different: It is a bound variable that ranges
over all final states of Format that can be reached from the initial state of Fill. Inside
the set comprehension, Format is used as a predicate. The ¢ in this Format is free: It
is the initial state of the enclosing schema Fill.

Fillis nondeterministic. There are usually many different ways to place line breaks
and spaces that achieve the same minimal number of lines. In specifications, non-
determinism is usually a good thing. We should only ask for what we really want.
Nondeterministic definitions are often shorter and clearer because they can omit
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unimportant details. When we come to implementation, they give us the freedom
to make choices that can increase efficiency or convenience. Moreover, nondeter-
ministic definitions enable us to build up specifications by a process of increasing
specialization. Just as Fill is a specialization of Format, we can define specializations
of Fill to achieve different effects such as justified right margins or minimal spaces
between words. Z was designed to support this style of definition by specialization. It
makes the formal texts easy to understand and enables us to reuse general definitions.

Exercise 17.3.1 Does Format have any preconditions?

Exercise 17.3.2 Define Justify, the specialization of Fill that produces justified
right margins. (The last character in every line is aligned at a fixed right margin.)



18 Eight queens

We have already learned how Z can be used to describe data structures. Sometimes
the solution to a problem is just a data structure that has some particular properties.
In that case, the description of the data structure is the central element in the whole
specification. A well-known example is the problem of the eight queens.

Many books on programming show how to solve the problem of the eight queens
(for example, see Wirth [1976]). Here is the problem statement in English:

Eight queens must be placed on a chessboard so that no queen attacks any
others. A chessboard is a square grid with eight columns, or files, and eight
rows, or ranks. When a queen is placed on a square, it attacks any other queen
that sits on the same rank, file, or diagonals.

Figure 18.1 illustrates one solution to the problem.

This is not a problem of great practical significance, but it does illustrate some
common difficulties of prose specifications: They usually turn out to be imprecise and
incomplete. The English problem statement is usually considered sufficient because
“everybody knows what it means.” When we write real specifications, usually ev-
erybody does not know what is needed. When we write the program, we can’t appeal
to visual impressions and intuitions. Could you explain the eight queens problem to
somebody who had never seen a chessboard? What if you had to communicate by
telephone and couldn’t refer to a picture? What exactly is a “diagonal” anyway?

We can do it in Z. We’ll build a model of the chessboard using numbers and
arithmetic. We begin by numbering the files and ranks from one to eight, starting
with the lower left square. Then the solution shown in Figure 18.1 becomes:

(1> 82>43>1,43,6>2 717, 8>3}

In this form it is clear that the solution is a mathematical structure, not a picture.
What is it about this particular structure that makes it a solution? It should be possible
to express that in mathematics as well.



Eight queens 175

Q

Figure 18.1: A solution to the eight queens problem.

We begin by defining some synonyms to make our specification easy to read.
SIZE == 8

FILE == 1..SIZE

RANK == 1..SIZE

SQUARE == FILE x RANK

Every solution is a set of SQUARE. We begin to write a schema, using the predefined
functions first and second to extract the elements of each pair:

—Queens
squares : PSQUARE

#squares = SIZE
Vs1,s2: squares | sl # 52 e
first s1 # first s2 A second s1 # second 52

The complicated predicate here merely says that there are eight queens, and no two of
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them can occupy the same file or the same rank. What a long-winded mess! We really
don’t need all this formal text — the situation it describes is so common that it is
already defined in the standard Z tool-kit. It is a bijection, a function that maps every
element of its domain to every element of its range, in one-to-one correspondence.
Z provides a special symbol for bijections, and the declaration becomes

squares : FILE —» RANK

This declaration conveys everything we need to say about the files and ranks, so we
needn’t mention them again in the predicate.

Next, I'll describe the diagonals. For now, it helps to look at a picture (Figure 18.2).
This is just to help us get started; when we have completed our Z specification, we
won’t need the picture anymore.

Each square sits on two diagonals: One slants up, the other, down. Each diagonal
can be identified by the number of the rank where it intercepts the left edge of the
board (we have to imagine the board extending up and down). We can calculate the
intercept of any diagonal by using the equation of a line:

rank = slope x file + intercept
The slopes are just 1 and —1 for the up and down diagonals, respectively, so we get:

up = rank — file
down = rank + file

We define functions that, given any square, return the up and down diagonals that
pass through it:

DIAGONAL == 1 —SIZE .. 2 x SIZE

up, down : SQUARE — DIAGONAL

V f : FILE; r : RANK o
up(fvr)=r—f/\
down (f,ry=r+f

Now we have all the pieces we need to complete the problem statement in Z. We know
better than to start writing some complicated predicate with quantifiers and such.
Instead, we look in the tool-kit for something suitable. We want to say that when the
domain of the function up is restricted to the squares occupied by queens, each square
is mapped to a different diagonal; the function is an injection. The tool-kit defines
symbols for domain restriction <1 and injective functions —. Function signatures
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kr

-2
/ L
Figure 18.2: Numbering the diagonals for the eight queens problem.

such as SQUARE — DIAGONAL can appear in predicates as well as declarations,
and we can use expr € TYPE to say that an expression has all the properties of a
type in addition to any properties entailed by the declarations of its components:

squares <l up € SQUARE — DIAGONAL

The same can be said of down. We can eliminate repetition by collecting the two
functions into a single set:
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Eight queens

Eight queens must be placed on a chessboard so that no queen attacks any
others. A chessboard is a square grid with eight columns, or files, and eight
rows, or ranks. When a queen is placed on a square, it attacks any other queen
that sits on the same rank, file, or diagonals.

SIZE == 8

FILE == 1..SIZE

RANK ==1..SIZE

SQUARE == FILE x RANK
DIAGONAL == | — SIZE . .2 x SIZE

up, down : SQUARE — DIAGONAL

YV f . FILE; r : RANK o
up (f,ry=r—fn
down (f,ry=r+f

— Queens
squares : FILE — RANK

{ squares < up, squares <tdown} € SQUARE — DIAGONAL

Figure 18.3: Eight queens.

__Queens
squares : FILE — RANK

{ squares Qup, squares Idown} C SQUARE — DIAGONAL

This completes the formal specification (Figure 18.3). The formal text is not much
longer than the English problem statement, but it says much more, such as what a
“diagonal” is. We don’t need the picture any longer.

Our formal specification is much shorter and easier to understand than any pro-
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gram that could solve the problem. The solution shown in Figure 18.1 is just one
of many; our specification describes all of them. The set of bindings Queens is the
collection of all solutions to the problem. The formal model doesn’t bias us toward
any particular strategy for designing the program. Instead, it presents all the facts
we would need to program a solution in any language — and nothing more.

Exercise 18.1 The eight queens problem models a single board position. A real
chess game is a series of moves. In most moves, a single chess piece moves from
one square to another, according to certain rules. For example, the queen can move
to any square which lies on the same rank, file, or diagonals as the square that the
queen occupied before the move.

Model the queen’s moves in Z. You may assume that none of the potential desti-
nation squares is occupied by another piece.

Exercise 18.2 The knight’s tour is another familiar computing problem inspired
by chess. The knight moves in an L-shaped pattern (consult a chessplayer, or a book,
for the exact rule). Model the knight’s tour: a sequence of legal moves where a knight
visits every square on the board exactly once.



19 Computer graphics
and computational
geometry

Z can describe data structures. In this chapter we’ll use Z to define the fundamental
objects of computer graphics and computational geometry: points, line segments,
contours, and polygons.

Consider the distinction between a contour, which is any sequence of connected
line segments, and a polygon, which is a closed contour that has an inside and
an outside (Figure 19.1)). Your eye can see the difference immediately, and the
distinction is vital for many computations of great practical importance.

Figure 19.2 is a computer graphic that shows a view of a patient’s anatomy and
radiation beam geometry, used to plan this patient’s radiation treatment for cancer.
Cross-sections of anatomical structures must be polygons, not just contours, and the
physics calculations that compute the radiation dose depend on this. If some contours
are not closed, or cross over themselves, the dose calculations may be incorrect.

The difference between contours and polygons is vital, but there is no way to
express this distinction in most programming languages: You have to represent both
as mere sequences (arrays or lists) of points, Data types in programming languages
correspond closely to the way data are represented in computer memory: If two
objects are stored in the same format, they belong to the same data type. Z is far
more expressive because we can distinguish data types based on their values and
constraints between the values of their components. This enables us to define data
types that capture such requirements as “a closed contour that doesn’t cross over
itself.”

First let’s define contour. A contour is a sequence of points. A point is represented
in the usual way, as a pair of (x, y) coordinates. It works well enough to let the
coordinates range over the integers, the only numeric type that comes already defined
in Z. You can think of the integer coordinates as representing pixels on a display
screen, rather than locations in real space. We define separate identifiers for the

! In some computer graphics literature our contour is called a polyline.
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Figure 19.1: Some contours. The contours on the right are polygons.

x and y coordinates, so they can have different ranges. For example, to model a
video display whose origin is the upper left corner of the screen, x might range over
0..1280 and y might range over 0 .. —1024. For now we’ll let x and y range over
all the integers.

X==17Z
Y==7
POINT == X xY

CONTOUR == seq POINT

A polygon is a special kind of contour. The defining characteristic of a polygon
is that it divides the plane into two regions, an inside and an outside. We have to
express this formally, using only the data included in a contour. A polygon is a closed
contour, and a contour is closed when its first and last points coincide. A polygon
must enclose some area, so the simplest polygon we can have is a triangle, which
contains four points, counting the duplicated point at the end. A polygon has just
a single interior region; we don’t allow shapes that cross over themselves like the
figure eight. In other words, there are no duplicated points except the last point, and
no segment in the contour intersects any others. The Polygon schema expresses these
constraints:
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Figure 19.2: Polygons represent human anatomy in a radiation therapy treatment plan.
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— Polygon
¢ : CONTOUR

#c>4

head ¢ = last ¢

front c € iseq POINT

V51,52 : segments ¢ | 51 7 52 @ — (51 intersects s57)

The first line in the predicate says that the contour ¢ has at least four points. The
second line says that the first point is duplicated at the end; the head and last func-
tions return the first and last elements of a sequence, respectively. The third line says
that there are no duplicated points except the last point; the front function returns a
sequence with the last element removed, and an injective sequence iseq has no dupli-
cate elements. The last line says that no segment intersects any others. The segments
function returns all the segments in a contour, and the predicate sy intersects s> is
true when the two segments 51 and s; cross over each other (however s intersects s>
is false when the two segments merely touch at their endpoints).

The functions head, last, and front and the abbreviation iseq are already defined
in the Z mathematical tool-kit. We have to define the segments function and the
intersects relation ourselves.

A segment is a pair of points. The segments function returns all the consecutive
pairs of points in a contour. So if @, b, and ¢ are points that form the triangular
contour {a, b, c, a) then

segments (a, b, c, a) = {(a, b), (b, ¢), (c, a)}

The formal definition uses the segment relation in from the mathematical tool-kit;
sint is true when sequence s forms a contiguous part of sequence ¢.

segments == (Lc : CONTOUR e { a,b : POINT | {a,b)inc})

Now let’s work on intersects. It helps to look at a picture. In Figure 19.3 contour
{a,b,c,d,e, [,g,h,i,e k1, a) is closed because its first point a is duplicated at
the end, but it is not a polygon because an interior point e is also duplicated and
several of the segments intersect.

Two segments intersect each other if they actually cross, as segments (a, b) and
(k, 1) do in the figure. We require that a polygon has a single interior region, not two
or more, so we say that two segments intersect even if they only rouch each other,
as segments (e, f) and (g, #) do in the figure. We will define two relations crosses
and touches to express this.

A relation is symmetric if it means the same thing when its arguments are ex-
changed: x R y & y R x. Our crosses and touches relations are not symmetric;
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5 =4

In contour (a, b, c,d, e, f,g,h,i,e k1, a)}, (a,b) intersects (k, ) because
(a, b) crosses (k, 1). However (g, h) intersects (e, f) because (g, h) touches (e, f).

Figure 19.3: Contour intersections, crossings, and touchings.

they are asymmetric. We say (d, e) crosses (a, b) because its two ends d and e lie on
opposite sides of the line through (a, b), however (a, b) does not cross (d, ¢) because
its two ends a and b both lie on the same side of (d, e). Also, (g, h) touches (e, f)
because point 4 lies between e and f, but (e, f) does not touch (g, h) because
neither e nor f lies between g and A.

Two segments intersect if they both cross each other. In the figure
(a, b) intersects (k,l) because (a, b) crosses (k,!) and also (k, ) crosses (a, b).
However (a, b) does not intersect (d, e) even though (d, ) crosses (a, b), because
(a, b) does not cross (d, ¢). Two segments intersect if either touches the other;
(e, f) intersects (g, h) because (g, h) touches (e, f) even though (e, f) does not
touch (g, h).

Now we can define intersects in terms of crosses and touches:
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SEGMENT == POINT x POINT
intersects,.crosses, touches : SEGMENT <« SEGMENT

V51,52 : SEGMENT o
S| intersects s &
(si crosses sy A 52 crosses s1) V sy touches s2 V 53 touches s

Exercise 19.1 Is the intersects relation symmetric?

To define crosses and touches we use some results from computational geometry.
It turns out that we do not have to calculate the point of intersection to tell whether
segments cross or touch. That is fortunate, because it usually isn’t possible: The
point of intersection cannot be represented in integer arithmetic at all. As you can
see in the figure, the point of intersection between segments (a, b) and (k, /) does not
lie on one of the integer grid points. Even when we can use floating point arithmetic,
we should avoid calculating the intersection because the calculations have limited
accuracy and might yield the wrong answer if the two segments are very short and
nearly parallel.

There is another way to check for intersections, using a formula for calculating
the area of a triangle from the coordinates of its vertices. According to this formula,
the area is positive when the peak of the triangle lies on one side of the base and
negative when it lies on the other side. We can use this formula to determine whether
one segment crosses another.

The area formula uses the synonyms x and y for the predefined projection func-
tions first and second: x a and y a are the x and y coordinates of point a, respectively?.

x == first, y == second

areal == (Aa,b,c: POINTe (xa)*(yb) — (ya)*(x b)
+(ya)x(xc)—(xa)*(yc)
+x by x(yc)—(xc)x(y b))

The function is called area2 because it actually calculates twice the area of the
triangle. Twice the area is always an integer, but the area itself might not be. Consider
the triangle (a, b, k) in the figure. We have a = (0,0), b = (2,3),and k = (0, 1)
so area2(a, b, k) = 2. Alsol = (2, 0) so area2(a, b,l) = —6. The two areas have
opposite signs, so k and / lie on opposite sides of (a, b).

Now we can define crosses: (¢, d) crosses (a, b) is true when area2(a, b, ¢) and
" area2(a, b, d) have opposite signs. When this condition is true, the product of the

2 To be strictly correct, the definitions should actually be written x == first[ X, Y}, etc., because first
is a generic function. See Chapter 14.
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two areas will be negative. In the following discussion, s; and s; are the segments
(a, b) and (c, d), respectively. We package their definitions in a schema so we don’t
have to write them over and over.

__Segments i
51,52 : SEGMENT
a,b,c,d : POINT

sy =(a,b) Asy=(c,d)

Finally, herc is the formal definition of crosses.

V Segments o
$y crosses sy < area2(a, b, c) x area2(a, b,d) < 0

We do not have to declare crosses here because we already declared it in the same
paragraph where we defined intersects. This ability to declare objects before com-
pleting their definitions makes it possible to use a top-down definition style in Z.

The formal definition of touches uses the new relation on. The point a is on
segment s if a is collinear with (lies on the same line as) s, and a lies between the
two points of s. In the figure we have & on (e, f). We use area2 for the collinearity
test: The area is zero when the three points lie on the same line.

(collinear_) == {a, b, ¢ : POINT | area2(a,b,c) =0}

It is not enough just to test for collinearity; 2 is also collinear with (c, d) but it does
not lie on (c, d) because h is not between ¢ and d. We can check whether one of
three collinear points lies between two others by checking just the x or y coordinates.
A number j lies between i and k if i, j, and k form an ascending or descending
sequence.

(between_) == {i, j,k:Z|i < j<kVi>j>k}

Our definition of between uses strict inequality (< not <), so between is false if
the point coincides with either end of the segment. We say that segments which
coincide only at their endpoints do not touch (otherwise we would have to say that
every segment in a polygon intersects its two neighbors, which is not what we want
to express).

Now we can define on. We have to be careful about using between in the special
cases where the line is vertical or horizontal.
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Computational Geometry

X==2Z,Y==12

POINT ==X xY

CONTOUR == seq POINT
SEGMENT == POINT x POINT

x == first[X,Y); y == second[X,Y]

area2 == (La,b,c: POINT e (xa) * (y b) — (ya) x (x b)
+ya)yx(xc)—(xa)x(yc)
+xb)yx(yc)—(xc)x(y b))

segments == (Ac : CONTOUR e { a,b : POINT | {a,b)inc})

(between_) == {i, j,k :Z|i<j<kVvi>j>k}
(collinear_) == { a, b, ¢ : POINT | area2(a,b,c) =0}

on : POINT & SEGMENT
touches, crosses, intersects : SEGMENT < SEGMENT

VY s1,52 : SEGMENT; a,b,c,d : POINT | s; = (a,b) As2 = (c,d) e

(a on s3 & collinear(c,a, d) A
((x ¢ # x d A between(x ¢, x a, x d))

(s1 touches s3 & aon sy VvV bon s7) A

(52 crosses s| & area2(a, b, c) x area2(a, b,d) < 0) A

(51 intersects s7 &
(s crosses sy A sy crosses si) V 5| touches sy V sy touches s1)

V(yc#yd A between(y c,y a,y d))) A

Figure 19.4: Computational geometry definitions used by Polygon.
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on : POINT & SEGMENT

V Segments o
a on sy & collinear(c, a,d) A
((x ¢ # x d A between(x c, x a, x d))
V(yc#ydA between(y c,ya,yd)))

Finally we can write the formal definition of touches.

V Segments o
sy touches sy <> aonsy VvV bons

This completes the development. We have described a data type: Every polygon is
a binding of our Polygon schema. It is helpful to collect the definitions together in
bottom-up (definition before use) order (Figure 19.4).

We have not specified any executable code, but our definitions suggest how to
write code that checks whether a contour is a polygon. Such code is included in the
utilities that prepare data for the planning program illustrated in Figure 19.2.



20 Rule-based
programming

Some problems present us with a large collection of facts and rules, but no un-
derlying theory that we can use to design a compact algorithm for calculating a
solution. Examples of such problems include medical diagnosis and treatment plan-
ning, scheduling jobs in a machine shop, diagnosis and repair of malfunctioning
machinery, and determining customers’ eligibility for financial credit. In these areas
there are no simple first principles from which everything follows; instead, there are
a lot of empirical observations and rules gleaned from hard experience or laid down
by fiat. Sometimes you can find an acceptable solution by searching for relevant facts
and applying the pertinent rules. Rule-based programming mechanizes this style of
problem solving.

Rule-based programs are sometimes called expert systems and are said to dis-
play artificial intelligence, but they are just computer programs that employ some
specialized techniques that have been found useful for certain kinds of problems. If
such a program is intended for a serious purpose, it must meet the same standards of
quality and correctness required of other programs. How can we tell if a rule-based
program has computed the right answer?

Rule-based programs are often evaluated by submitting some sample results to
a panel of human experts. This kind of validation can be helpful but it does not
provide sufficient coverage to detect every incorrect result nor does it provide any
guidance for design and implementation. We need a way to check any program output
against an independent standard of accuracy. A formal specification can provide that
standard.

In this chapter we develop a formal specification for a rule-based program that
can be used to predict the answer to any query, or check any output. It also shows
how the program works and suggests a strategy for implementing it.
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20.1

20.2

Elements of rule-based programming

A rule-based program has two major components, and the correctness of each com-
ponent is an independent problem. The first component is a database of rules, which
is sometimes grandly called a knowledge base. The second is a rule interpreter that
can deduce new facts from known facts and the rule database. The rule interpreter
is sometimes called the inference engine.

The facts and rules should make sense. They must model the real world accurately.
There is no way to check this formally; review by real experts is indispensable. But
the rules should not include any contradictions; this we can check formally.

The rule interpreter is just a program; making it work correctly is a programming
problem that need not require participation by experts in the subject matter of the
application. Most programs contain errors, and we can easily imagine an incorrect
rule interpreter that fails to reach the conclusions it should, or reaches the wrong
conclusions. A correct rule interpreter infers all of the pertinent conclusions entailed
by its facts and rules, and does not infer any conclusions that are not justified by
them. Our formal specification expresses this precisely.

Facts and rules

Our case study in this chapter solves a toy problem: It deduces an animal’s species.
For example, from “the animal has stripes,” “the animal has fur,” and “the animal
is a carnivore,” it concludes “the animal is a tiger.” This toy problem demonstrates
techniques that can be used to solve real problems, such as diagnosing an illness
from clinical findings and laboratory results.

We declare a basic type to represent facts; particular facts are elements of this

type:

[FACT)

l stripes, fur, zebra, sharp_teeth, carnivore, herbivore, mammal, tiger : FACT

Of course there are many more facts besides these.

Rules associate a set of facts called premises with a fact called the conclusion. If
the premises are all true, we can infer that the conclusion is true as well. For example,
“If an animal has stripes, is a mammal, and is a carnivore, then it is a tiger.” In our
Z model this rule is written

{stripes, mammal, carnivore} > tiger
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20.3

Rules that have this if .. . then . .. form are called production rules, and rule-based
programs are sometimes called production rule systems.

In our Z model we represent the rule database as a global constant: a relation from
sets of facts to facts.

rules : P FACT & FACT

rules = |

{fur} = mammal,

{sharp_teeth} — carnivore,

{stripes, mammal, carnivore} > tiger,
{stripes, mammal, herbivore} > zebra,

}
In this excerpt we show only four rules: the one about the tiger and three others: “if
an animal has fur, it is a mammal,” “if an animal has sharp teeth, it is a carnivore,”

and “if an animal has stripes, is a mammal, and is a herbivore, it is a zebra.” Rcal
rule-based programs have dozens, hundreds, even thousands of rules.

Deducing new facts

The program is initially loaded with a set of facts that are known to be true. The
rule interpreter searches for a rule whose premises are all found in this set of facts
and adds the conclusion of that rule to the set. Now the set of facts is larger, so
more rules might apply. Another applicable rule is selected, and another new fact
is added. This continues until some interesting conclusion is reached or nothing
more can be concluded. (This explanation emphasizes forward chaining from facts
to conclusions; we will also discuss backward chaining from conclusions.)

Of course this simple explanation leaves out a lot. Usually it is possible to infer
a great many facts, but most of them are irrelevant to what the user wants to know.
In order to achieve acceptable performance it is necessary to limit the search; there
has to be a control strategy for selecting which rules to try, and the rules and facts
are usually organized in data structures that support efficient search. The quest for
efficiency and good performance makes the program complicated, and complicated
programs usually contain errors. That is why the correctness of the rule interpreter
is a real issue distinct from whether the contents of the rules are valid.

However, since we are only interested in the correctness of the program, we can
ignore the complications. For now, we don’t have to worry about limiting the search.
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Instead we ask, what is the set of all the facts that the program should be able to
infer? Any correct result must belong to this set. We don’t have to consider which
rules to try; we can imagine trying them all.

Imagine generating facts in stages. In each stage, examine the entire set of facts,
apply all the applicable rules, and add all the new facts to the set. Repeat the stages
until no new facts appear. Every stage can be modelled as an application of deduce.

deduce == () facts : P FACT e facts U rules(P facts))

Here deduce is a function from an initial set of facts to a (possibly larger) final
set of facts. All of the initial set facts also appear in the final set: Once the program
concludes that a fact is true, it never retracts that conclusion. This is called monotonic
reasoning.

In addition, deduce may infer new facts. The expression rules([P facts) is the set
of all the conclusions of all the rules whose premises match some combination of
the initial set of facts. The expression [P facts is the set of all possible combinations
of the initial facts. This expression uses the power set operator [P (Section 8.1.8). In
Z we usually see this operator in declarations but we can use it anywhere. If S is a
set, the power set of S, P S, is the set of all subsets of S. So if facts is

facts = {stripes, sharp_teeth, fur}
then the power set of facts is

Pfacts = { {stripes, sharp_teeth, fur}, {stripes, sharp_teeth}, {stripes, fur},
{sharp_teeth, fur}, {stripes}, {sharp_teeth}, {fur}, @ }

The expression rules{P facts) uses the relational image brackets {...) (Sec-
tion 9.3.2). The value of this expression is a set, the second elements (the conclu-
sions) of all the pairs (rules) in relation rules whose first elements (premises) appear
in the set P facts. Here {fur} matches the premises of the rule {fur} > mammal and
{sharp_teeth} matches {sharp_teeth} v carnivore. So rules(P facts)) contains the
new facts mammal and carnivore:

deduce facts = {stripes, sharp_teeth, fur, mammal, carnivore}

Now if we apply deduce again, we find a match with the rule whose premises are
{stripes, mammal, carnivore}. We conclude tiger. Now our set of facts is

deduce (deduce facts) = {stripes, sharp_teeth, fur, mammal, carnivore, tiger}

If we apply deduce once more, we do not conclude anything new. We have concluded
all we can from the initial set of facts. In a realistic example we would apply deduce
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20.4

many more times and conclude a great many new facts, but eventually we would
reach the same situation: We would exhaust all the applicable rules, and further
applications of deduce would generate no more new facts.

We wish to define the function complete which applies deduce until no more
new facts can be inferred. This is a special case of a general problem: Beginning
with a child relation, define the corresponding descendant relation. The descendant
relation is called the transitive closure of the child relation. In Z the transitive closure
operator is the superscript plus sign, *. Our complete function is the transitive closure
of deduce.

complete == deduce*
Our example can be expressed as a single application of complete.

complete (stripes, sharp_teeth, fur} =
{stripes, sharp_teeth, fur, mammal, carnivore, tiger)

The complete function is the basis for our formal definition of a correct rule inter-
preter. But first we return to the database of rules.

Checking the rules

It is no use having a correct rule interpreter if the rules don’t make sense. Human
experts must review all the rules to make sure that their contents are valid. This is
not sufficient, however, because rules that appear valid may contradict each other.

After discussion with an expert, a programmer might put the rule
(stripes, mammal} — tiger in the database. Some time later, another programmer
might add {stripes, fur} v~ zebra. Each rule seems reasonable, but they contradict
each other. From stripes and fur the rule interpreter could infer both tiger and zebra.
Both cannot both be true. These two rules are inconsistent.

When a large rule database is built by several people over a period of time, there
is a real danger that it will become inconsistent. We need a systematic way to search
for inconsistencies, which means we need a precise definition of inconsistency.

We cannot just compare pairs of rules, because rules interact: The rules about
tigers and zebras depend on the rule about mammals and fur. We have to consider all
of the rules together: They are consistent if, starting from a consistent set of facts,
there is no way to deduce inconsistent facts.

We begin by defining what it means for facts to be inconsistent. In our example
we can just enumerate them: The set inconsistent contains sets of facts that we know
are inconsistent. Mutually exclusive categories are inconsistent: An animal cannot
have both fur and feathers; it cannot be both mammal and bird.
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inconsistent ==
{fur, feathers, scales, . . .},
{mammal, bird, fish, . ..},
{tiger, zebra, ostrich, goldfish, . . .}
}
A consistent set of facts contains no more than one element from each set of mutually
exclusive alternatives:
consistent : P (P FACT)
Y facts : consistent, mutually_exclusive : inconsistent o
#(mutually_exclusive N facts) < 1
In the predicate, facts ranges over all sets of consistent facts, and mutually_exclusive
ranges over all sets of inconsistent facts.
Our rules are consistent if, starting from a consistent set of facts, we can only
deduce more consistent facts. We express this formally using our complete function.
Y facts : consistent e complete facts € consistent
Or, if you prefer prefix syntax!.
Vfacts : P FACT e consistent facts => consistent (complete facts)
This predicate actually expresses a requirement on rules, which occurs here by way
of the definition of complete.
20.5 Specifying rule-based programs

Now that we have formal definitions for deduction and for consistent facts and rules,
we can specify rule-based programs.

The state of a rule-based program is the collection of facts that it takes to be
true. Some of these facts may have been loaded into the system, and others may
have been deduced, but we make no distinction between these two categories in the
system state.

I To be strictly correct in using prefix syntax, we should redefine consistent with an underscore:
consistent_. In the interests of brevity we skip it.
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20.5.1

The central activity of a rule-based program is to consider some data and deduce
some conclusions relevant to some goal. We model all this with the Deduce operation
schermna.

__Deduce
facts, facts’ : P FACT
data, goals, conclusions! : P FACT

(let all == complete (facts U data) e
facts C facts'’ C all A
conclusions! = goals N all C facts')

Here facts and facts' are the state of the system before and after the Deduce
operation (in this example we don’t bother to define a state schema; it is shorter to
include the before and after variables in the operation schema explicitly). The data
are new facts that are introduced in this operation, and the output conclusions! are
the pertinent facts that this operation deduces.

Control

Rule interpreters traditionally incorporate two components: a generative part that
deduces new facts and a search control part that directs the generative part. In our
formal model these two parts are modelled by the function complete and the predicate
goals, respectively. A practical program cannot just implement complete. A huge
number of facts might be deduced, but usually we are only interested in a few of them.
We necd a way to control the generation of new facts; the goals provide that control.

The goals distinguish the facts we seek from all the rest. So goals must be a unary
predicate on facts, that is, a set of facts. In our example, if we wish to know the
species of the animal, goals is the set of all facts that name the animal’s species:
{tiger, zebra, ostrich, goldfish, . . .}. Alternatively, if we only want to know the kind
of animal, goals would be {mammal, bird, fish, . . .}. In this latter case, our program
might reach a conclusion more quickly.

Now we can understand the predicate of Deduce. The local variable all is the
set of all valid facts that can be deduced from the initial set of facts and the new
data, as described by complete. Here facts C facts’ says that the program never
retracts any conclusions; it mechanizes monotonic reasoning. Here facts’ C all says
that all the new facts are valid deductions; the program never deduces anything it
shouldn’t. Here goalsNall C facts’ says that the program deduces all valid goals; its
deductions are complete in the sense that it never fails to deduce what it should. The
final predicate conclusions! = goals N all says that the goals that could be deduced
are the conclusions reported in the output.
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20.5.2

Deduce suggests a naive implementation: First generate all valid facts by applying
complete to the stored facts and new data. Then search all the facts for those that also
occur in goals and report those as the conclusions!. This strategy is correct, but it is far
too inefficient to be feasible because it wastefully generates too many irrelevant facts.
Any practical rule-based program must incorporate a control strategy that attempts
to reach the goals with the fewest possible deductions. Our formal definition can
be much shorter than any program because it doesn’t have to describe the control
strategy, it only describes its effects.

Deduce does not require all the facts in all to be generated but it does not prohibit
this either. In other words, Deduce does not require an optimally efficient solution.
A good formal specification defers such issues to the later implementation stages.

Forward and backward chaining

Our Deduce operation models the essential core of rule-based programming. It can
be specialized in various ways to model particular strategies. It supports both data-
driven forward chaining and goal-driven backward chaining.

Forward chaining is data-driven. The inputs are data: You provide the program
with some new observations and see what conclusions emerge.

__Forward _
Deduce
observations? : P FACT

data = observations?

Submitting observations? =  {stripes, sharp_teeth, fur} and obtaining
conclusions! = {tiger} are examples of forward chaining.

Backward chaining is goal-driven. The inputs are goals or queries. You load up
the system with facts, then make queries. A query is a set of facts (you wish to know
which of these facts are true). The conclusions are the facts in the query that could
be deduced from the rules and facts already in hand.

__Backward
Deduce
queries? : P FACT

goals = queries?

Submitting queries? = {tiger, zebra} and obtaining conclusions! = ({tiger} are
examples of backward chaining.
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Rule-based programming

[FACT]

rules ;: P FACT <> FACT

... rules omitted . . .

deduce == (A facts : P FACT e facts U rules(P facts))

complete == deduce™

consistent, inconsistent : P(P FACT)

Y facts : consistent, mutually_exclusive : inconsistent o
#(mutually_exclusive N facts) < 1

Y facts : consistent » complete facts € consistent

__Deduce _
facts, facts’ : P FACT
data, goals, conclusions! : P FACT

(let all == complete (facts \U data) e
facts € facts' C all A
conclusions! = goals N all C facts')

Backward = [Deduce; queries? : P FACT | goals = queries?]

Forward = [Deduce; observations? : P FACT | data = observations?)

Figure 20.1: Rule-based programming.
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20.6

Other variations are possible. For example, many backward-chaining systems
prompt the user to enter more data if a query cannot be answered from facts already
on hand.

Conclusion

The complete formal model is presented in Figure 20.1. It shows how to predict or
check the answer to any query. The independent checking process suggested by our
model is laborious, but it can serve as an oracle for generating the correct results
expected for selected test cases, or comparing against suspect program output. It
also suggests a strategy for designing and implementing the program.



21 Graphical user
interface

21.1

This chapter presents a more realistic model for the graphical user interface we
introduced in Chapter 6. It is based on the control console of a real medical device,
but the same techniques can be applied to any system where the operator uses
a pointing device such as a mouse to select items from on-screen windows and
menus, and uses a keyboard to enter information into dialog boxes. Such facilities
are provided by many software systems in wide use today, for example the X window
system.

A graphical user interface is an example of a state transition system driven by
events. This chapter explains how to model event-driven state transition systems
in Z, and shows how to illustrate a Z text with a kind of state transition diagram
called a statechart. This chapter also shows how to use Z to express designs that are
partitioned into units or modules that are largely independent. In Z these units can
include both data and the operations that act on it, so they can represent classes in
object-oriented programming.

Events

A great advantage of a graphical user interface is that it allows the users to choose
operations in whatever order makes the most sense to them, it does not force users
through a fixed sequence determined by the designers. All operations are always
potentially available, although some operations might have to be disabled at certain
times.

This is a good match to Z, where we define operations that have preconditions that
might not be satisfied in certain states. In fact, the lack of any built-in sequencing
construct in Z is a positive advantage for modelling this kind of system. We will
not be tempted to make unfounded assumptions about the ordering of operations
because there is none. The order of operations cannot be predicted; it is completely
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21.2

determined by what the user wants to do. Systems that must respond to events from
the outside world whose order of arrival cannot be predicted are said to be event-
driven.

In our graphical user interface, the events of interest are mouse clicks and
keystrokes. The core of every operation is to receive an event and handle it somehow.
These events occur in a system called Console which we will describe in the next
section.

[EVENT)

Event
AConsole
e?: EVENT

Many events are simply ignored (they do not change the Console state).

Ignore = Event A EConsole

Displays and dialogs

Now let’s fill in the Console state. The console provides several different displays
such as those shown in Figures 6.3 and 6.4. The display which is currently visible
on the console is an important component of the state because it determines which
items appear and which operations are available.

The rest of the state is concemned with the dialog that occurs when the user enters
a new value for one of the settings that controls the machine. The user begins a dialog
by positioning the cursor over a setting on a display such as shown in Figure 6.4 and
clicking on the mouse button. Then a dialog box appears where the user may type
a new value (Figure 21.1, compare to Figure 6.4) and click on buttons to accept or
cancel the value. The characters that the user types into the dialog box are stored as
a string of text in a buffer. Normally a user can select almost any operation at any
time, but once the dialog begins it must be completed before any other operation can
be selected. So the state includes a mode to indicate when a dialog is in progress.

[DISPLAY, SETTING, VALUE, CHAR]
TEXT == seqCHAR

MODE ::= idle | dialog

BUTTON ::= accept | cancel
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21.3

Console
display : DISPLAY
mode : MODE
buffer : TEXT
setting : SETTING

Selecting a display

The user selects a new display by pressing a function key on the console key-
board (there is a different key for each display). Each time a key is pressed, the
Event operation occurs. The value of the input event e? tells us which function key
was pressed, and that corresponds to the display that the user wants to see. An in-
stance of EVENT is actually a data structure that includes an encoded representation
of the key.

Here we don’t have to provide a detailed description of the event data structure
or give directions for decoding the event to determine the function key, and then
translate from the function key to the intended display. We hide all of this in a partial
function disp that examines the event and returns the display that the user wants
to see. The function is partial; events in the domain of disp correspond to display
selections.

In Z it is permitted to declare a function without providing its full definition. This
supports a top-down specification style where details are deferred.

Here is the operation that selects a new display. This operation is only enabled
when the console is not engaged in a dialog.

| disp : EVENT - DISPLAY

SelectDisplay
B Event
mode = idle

e? € domdisp
display’ = disp e?
mode’ = mode

The predicate e? € domdisp checks that this event came from one of the display
selection keys, and the function application disp e? determines which display the
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214

214.1

user selected. The screen updates with the new display; this is modelled by display’ =
disp e?. In this definition it is necessary to say the mode does not change: mode’ =
mode (or mode’ = idle would mean the same thing). We do not need to say anything
about buffer and setting here because their values do not matter unless a dialog is in
progress.

If a dialog is in progress, attempts to select a new display are ignored.

IgnoreDisplay
Ignore

e? € domdisp
mode = dialog

We use schema disjunction to combine the two cases.
DisplayEvent = Select Display v IgnoreDisplay

The total operation DisplayEvent describes everything that can happen when the
user presses one of the display selection function keys.

Changing a setting value

Users can enter new prescribed settings at the console. To model this seemingly
simple action in Z, we have to break it down into stages and write an operation
schema for each stage. In SelectSetting the user selects a setting and the dialog
begins. Then the user types in the new value; each keystroke invokes GetChar.
Finally, the user may Accept the new value into the machine or Cancel the dialog
to leave the machine state unchanged. If the user attempts to enter an invalid setting
value, the system will not accept it but will Repromps.

Starting the dialog

The SelectSetting operation occurs when the user clicks on a setting name displayed
on the screen. Each such event lies in the domain of the stg function. The setting state
variable records which setting has been selected, as determined by szg. A dialog box
appears on the screen, and the dialog begins with an empty text buffer (Figure 21.1).
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| stg: EVENT -» SETTING

__SelectSetting
Event

mode = idle

e? € domstg
setting’ = stg e?
mode' = dialog
buffer =@
display’ = display

If a dialog is already underway, this operation is disabled.

IgnoreSetting
Flgnore

e? € domstg
mode = dialog

SettingEvent = SelectSetting \/ IgnoreSetting

21.4.2 Typing the new value

Each time the user strikes one of the alphanumeric keys, an event occurs, and the
GetChar operation handles the event. The char function extracts the new character
from the event, and edit updates the buffer. Usually the new character is simply
appended to the end, but there might be editing characters that have more complex
effects.

char : EVENT -» CHAR
edit . (TEXT x CHAR) — TEXT

. GetChar
Event

mode = dialog

e? € dom char

buffer’ = edit (buffer, char e?)
mode’ = mode

setting' = setting

display’ = display
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When the console is not engaged in a dialog, alphanumeric characters are ignored.

IgnoreChar
Ignore

-

e? € dom char
mode = idle

CharEvent = GetChar v IgnoreChar

21.4.3 Finishing the dialog

When users are finished editing, they may click on an “accept” button in a dialog
box (not shown in Fig. 21.1). The system converts the text in the buffer to a value.
If the value lies within the range of valid values for the selected setting, it is used to
update the prescribed machine settings.

button : EVENT +» BUTTON
value : TEXT — VALUE
valid_ : SETTING < VALUE

__Accept
Event

mode = dialog

e? € dom button

button e? = accept
valid(setting, value buffer)
mode' = idle

display’ = display

When the dialog ends, indicated by mode’ = idle, the dialog box disappears. If
the value derived from the buffer contents is not valid, the machine state remains
unchanged and the dialog continues. The system may issue a message to reprompt
the operator, but we do not model this formally.
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21.5

—_Reprompt
Event

mode = dialog

e? € dom button

button e? = accept

— valid(setting, value buffer)
buffer’ = buffer

mode’' = mode

display’ = display

Alternatively, the user may cancel the dialog at any time, for example by clicking
on a button in a dialog box (not shown in Fig. 21.1).

Cancel
FEvent

mode = dialog

e? € dom button
button e? = cancel
mode’ = idle
display = display

Dialog buttons are not available when the console is idle, so these three operations
cover all possibilities.

ButtonEvent = Accept v Cancel v Reprompt

Z and state transition systems

We have used Z to define a system with states and transitions between states: a finite
state machine. Pictures can help us understand state machines. Figure 21.2 illustrates
our system with a kind of state transition diagram called a statechart [Harel, 19871.

Each bubble in the statechart represents a set of states that satisfies some predicate.
In this diagram the outermost bubble represents all Console states. The two large
bubbles represent the states where mode = idle and mode = dialog. The two smaller
bubbles represent the states in mode = dialog where the buffer contents represent
a valid setting or not: valid(setting, value buffer) and — valid(setting, value buffer),
respectively. This nesting of state bubbles is one of the innovations that distinguishes
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Console

ﬂ SelectDisplay

idle

Ignore

SelectSetting Accept Cancel

GetChar

l\GetC har dialog Reprompt
Ignore U
- J

Figure 21.2: Graphical user interface: statechart.

a statechart from an ordinary state transition diagram, such as the one in Figure 6.6,
More deeply nested state bubbles correspond to stronger state predicates.

The arrows represent transitions between states, which correspond to Z operation
schemas. Each arrow is labelled with the Z operation name, and you can refer to the
schemas to find the events that can trigger the transition.

The diagram shows how the operations work together and helps us check for
completeness. It is easy to see that we have provided ways in and out of each state
bubble and to check that we have dealt with all possible events in every state. However
the Z texts contain some essential information that does not appear in the diagram.
For example, the valid predicate depends on the values of buffer and setting.

A statechart (or any other diagram) is incomplete; it is always necessary to provide
some additional text to explain the diagram. We can use Z to annotate a statechart.
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Or, if you prefer to look at it in another way, a statechart can illustrate Z text. The
diagram and the formal text complement each other.

21.6 Changing the machine state

By itself, a user interface is useless — it has to connect to something else. The
purpose of this user interface is to enable the operator to control a machine. We have
to model the machine, too.

A good design can be partitioned into units or modules that can be described inde-
pendently. Not just the data, but also the operations can be separated. A unit composed
of data and the operations that act on it are abstract data types (ADTs). An abstract
data type can model a class in object-oriented programming. Qur Console subsystem
and its operations form such a unit. Next we will define the Machine subsystem.

The state of the machine is determined by the values of its settings. We don’t
have to name the settings individually; we can model all of them by a total function
from settings to values. In fact there are two functions, one for the prescribed settings
loaded from a prescription file and another for the measured settings read by sensors.

Machine
rmeasured, prescribed : SETTING — VALUE

The NewSetting operation describes what happens in the Machine when a new value
v? is assigned to prescribed setting s?.

—_NewSetting
AMachine
s? . SETTING; v?: VALUE

prescribed = prescribed & {s? — v?)
actual’ = actual

We use the override operator @ (Section 9.3.2) rather than the equation
prescribed s? = v? to express that the values of all the other settings remain
unchanged.

Now we can combine the user interface and the machine to make the whole
system,

Sys

Console
Machine
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21.7

ChangeSetting describes what happens to the whole system when the user edits a
_setting.

— ChangeSetting
ASys

Accept
NewSetting

5?7 = setting
v? = value buffer

This is typical Z style for building up operations on whole systems. We use schema
inclusion to combine the Accept operation from the Console subsystem with the
NewSetting operation from the Machine subsystem. The predicate provides the glue
that couples the two operations together.

Here ASys is redundant because all the necessary before and after state variables
are declared in Accept and NewSetting. We include ASys anyway to make it clear
that ChangeSetting affects the combined system state.

In fact ChangeSetting is the only operation we have defined where the two subsys-
tems interact. We can extend the other operations to make it clear that the machine
state is unaffected by most activities at the user interface.

SysDisplayEvent = DisplayEvent A EMachine
SysSettingEvent = Sem'ngEvgnt A EMachine

SysCharEvent = CharEvent A EMachine

SysButtonEvent = ChangeSetting v (Reprompt A EMachine)

Vv (Cancel A EMachine)

It works the same way in the other direction, too. There are many operations on the
Machine state that do not involve the user interface. We make the design clean and
easy to understand by separating the subsystems. Z nicely supports this modular
approach to design.

Conclusions

A Z model like this one can serve as a bridge from requirements expressed in prose
and diagrams to code in an executable programming language. The Z texts are more
explicit than the informal requirements but they are free of the mass of low-level
detail that you have to include to make a program run.
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We did not model the appearance of the display or the internals of the event data
structure. We did not show how to decode events, how setting values are represented
as numbers, or how to test for a valid setting value. We did not describe how to couple
Console and Machine in ChangeSetting; we just used schema inclusion (which is
essentially logical conjunction) to combine the requirements. The conjunction could
be implemented by shared variables or a procedure call with passed parameters.
Console and Machine might even be two different computers communicating across
a network. In Z we needn’t commit to any of these.

In Z we can defer the details while we focus on essential design issues: parti-
tioning the whole system into subsystems, determining which variables belong in
each subsystem, separating required subsystem behaviors into discrete operations,
and expressing precisely when each operation is enabled and how it changes the
subsystem state.

Exercise 21.7.1 The console modelled in this chapter does not work quite like the
one we described in Chapter 6. Our Select Display operation here allows the user
to select any display whenever the console is idle, but in Chapter 6 we described an
Enter operation that selects one particular display after another in fixed sequence
(see Figures 6.6 and 6.7). Define the Enter operation that selects the fields display
when the patients display is visible, selects the setup display when the fields display
is visible, and has no effect in other states.



22 Safety-critical
protection system

22.1

In this chapter we pursue the safety issues introduced in the therapy machine study
from Chapter 6. To ensure that patients are treated as directed by their prescriptions,
many machine settings must be set properly. The radiation beam should only be
allowed to turn on when the correct settings have been achieved. This chapter presents
a formal specification for the control software that permits the beam to tumn on. It is
an example of a safety-critical protection system because it prevents some potentially
hazardous action from occurring unless particular safety requirements are satisfied.

This study also illustrates how Z can express two important design strategies:
partitioning a complex system into largely independent subsystems or modules and
refining from an abstract model to a detailed design.

Partition

First we develop a more detailed model of the therapy machine system Machine
that we introduced in Chapter 21. Much of the apparent complexity of the therapy
machine arises from the interaction of several subsystems which, by themselves, are
simpler. We partition the system into subsystems and describe simple operations on
each. For each operation on the system as a whole, we define a separate operation on

- each affected subsystem. The complex behaviors of the whole system emerge when

we compose these simpler operations together.

The advantages of this approach arise because many operations involve only a few
of the subsystems, and many complex operations can emerge when simpler opera-
tions appear together in different combinations. As a result, the formal description of
the partitioned design is shorter and clearer than would be possible with a monolithic
design. These advantages carry over into the implementation as well.

We partition Machine into several subsystems, including the two we consider in
this chapter: Field and I ntlk (interlocks).
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22.1.1

Field subsystem

The therapy machine has dozens of named settings that must be adjusted differently
for each treatment run: gantry angle, dose, collimator leaf positions, and so forth.
The machine state, or setup, is largely determined by the values of all the settings.
We don’t have to model each setting as a separate system state variable; we can
model the entire setup as a function from setting names to values: A particular setup
might have value gantry = 270 (degrees) and value leafio = 174 (millimeters).
This time we model the values as integers so we can do arithmetic on them (some
settings might actually be implemented with floating point types). Prescribed setups
are selected from a database of prescriptions where they have unique field names.

[FIELD, SETTING]
VALUE ==
SETUP == SETTING — VALUE

| prescription : FIELD - SETUP

The prescription database is modelled as a function from field names to setups.
Retrieving a setup from the database is modelled as an application of the prescription
function to a particular member of FIELD, returning that field’s setup, which s itself a
function. A function that returns another function, as prescription does here, is called
a higher-order function.

The Field schema includes the state variables that represent settings for the cur-
rently selected field. Sensors report measured setting values. Prescribed setting val-
ues are read from the prescription database. The operator may override some settings
to indicate that they need not be checked against their prescribed values. It is neces-
sary to remember the value of each setting when it was overridden, so these are also
part of the system state.

__Field
field : FIELD
measured, prescribed : SETUP
overridden : SETTING » VALUE

field € dom prescription
prescribed = prescription field

The invariant of Field says that the currently selected field and its prescribed settings
occur in the prescription database. We will not model the operations that the therapist
uses to select a field and override settings.
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22.1.2

Exercise Why is overridden a partial function? What about measured and
prescribed?

Intlk subsystem

The Intlk schema declares state variables that model interlocks and status flags. The
status function indicates the readiness of each setting; settings might be ready,
not_ready, or overridden. Interlocks prevent undesired or potentially hazardous
situations. The function intlk indicates the status of each interlock; operations are
inhibited when interlocks are set and are enabled when interlocks are clear. Most
members of INT ERLOCK are hardware sensors, for example the therapy room
door sensor. When the door is open, intlk door = set, and the beam must not turn
on. This requirement is enforced by a nonprogrammable hardware interlock, but our
control program also monitors the door sensor.

The master therapy interlock rherapy_intlk is an output of the control program
that must be clear to allow the beam to turn on. It is a special software-controlled
interlock that is not included with the sensors in intlk. Clearing this master ther-
apy interlock is the central safety-critical act of the control program. When the
master therapy interlock is clear, the operator can turn on the beam (using a nonpro-
grammable mechanism not described here).

[INTERLOCK]
INTLK ::=clear | set

READY ::=ready | not_ready | override

Intlk
therapy_intlk : INTLK

intlk : INTERLOCK — INTLK
status : SETTING —» READY

The master therapy interlock indicates the combined effect of all the safety conditions
that are checked by the control program!. In the following sections we formally
describe the software that sets and clears this interlock. '

! Many interlocks are also implemented directly in hardware, and the master therapy interlock output
is implemented by redundant hardware interlocks.
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22.2

22.2.1

2222

Refinement

Abstract safety requirements

The central idea in the control system is this safety requirement: The beam can only
turn on (or remain on) when the measured setup of the machine is physically safe,
and matches a prescription that the operator has selected and approved. We can begin
to express these requirements formally by declaring two relations, safe and match;
we can provide their definitions later.

safe_ . PSETUP
match_ : SETUP & SETUP

—SafeTreatment
measured, prescribed : SETUP

safe(measured)
match(measured, prescribed)
prescribed € ran prescription

The whole design follows from this simple model. The entire purpose of the control
program is to establish and confirm the SafeTreatment condition. The prescribed
setup must be selected; the measured setup must be achieved; and the safe and
match conditions must be tested.

The condition safe(measured) ensures that the beam can only be on when the
setup is physically safe. It expresses generic safety requirements that must be met
by any treatment and do not depend on the prescription. It prevents the beam from
turning on when the machine is in some inconsistent state, for example when it is in
transition between setups. Failure to ensure this kind of condition in other machines
has contributed to fatal accidents [Leveson and Turner, 1993; Leveson, 1995].

The other two conditions  prescribed € ranprescriptions and
match(measured, prescribed) do concem the particular features of each pre-
scribed setup. They express that the setup should be the particular one selected
by the therapist. These conditions depend on setting values that are different for
each setup, so they would be quite difficult to check with a nonprogrammable
mechanism. Our control program is largely concerned with these conditions.

Concrete safety requirements

The readiness of each setting is computed from variables in the Field state. We
distinguish two kinds of settings: scales are continously variable over some range;
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examples are gantry angle and every collimator leaf position. Selections can only take
on certain discrete values; examples are wedge filter and flattening filter selection.

Each setting has a particular range of valid (physically reasonable) values. We
declare a function named valid that checks sensor readings for faults; the value of
valid s is the set of all valid values for setting s. Setting s is considered to be safe
only if its measured value is in valid s. In this study we omit the more complicated
conditions that involve combinations of settings.

Settings are ready when their prescribed and measured values match. Selections
match when their prescribed and measured values are equal; scales match when
their prescribed and measured values are within tolerance (each setting has its own
tolerance range; to check this we use the absolute value function we defined in
Chapter 11). A setting is overridden if the operator has overridden it and it remains
at that overridden value. If the value of an overridden setting changes from when it
was first overridden, it reverts to not_ready.

| selection, scale : P SETTING

tol : scale - VALUE
valid : SETTING — PVALUE

Match_ : P(SETTING x SETUP x Field)
Safe_, Overridden_, Ready_ : SETTING « Field

Vs : SETTING,; setup : SETUP; Field e

(Safe(s, OField) &
measured s € valid s) N

(Match(s, setup, 8Field) &
(s € selection A measured s = setup s) v
(s € scale A |measured s — setup s| < tol s)) A

(Overridden(s, OField) &
s € dom overridden A
Safe(s, OField) A Match(s, overridden, OField)) A

(Ready(s, OField) &
Safe(s, OField) A Match(s, prescribed, OField))

In these definitions measured, overridden, and prescribed are declared by Field in
the declaration part of the quantified predicate.
The Safe and Match predicates defined here resemble the safe and match relations
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introduced in Section 22.2.12. We say that Safe and Match are refinements of safe
and match, respectively, because they express the same ideas with more detail. This
is an informal definition of refinement; a formal definition appears in Chapter 26.

Having partitioned our system and described the parts separately, we must com-
pose the parts together again. We collect together all the field settings and all the
interlock and status flag conditions in the TreatmentStatus schema. It shows how
the status flags in /ntlk depend on the prescribed and measured settings in Field, as
determined by the functions and relations we just defined.

__TreatmentStatus
Field
Intlk

status =
(As : SETTING e not_ready) &
(A s : SETTING | Overridden(s, OField) e override) @
(A s : SETTING | Ready(s, OField) e ready)

The predicate fixes the value of the starus flags. The lambda expression (A s :
SETTING e not_ready) is a function that associates every setting with the status
value not_ready, while (As : SETTING | Ready(s, 0Field) e ready) associates
only those settings that satisfy the Ready predicate with the status value ready.
We use the function overriding operator @ (Section 9.3.2) to combine the lambda
expressions; their order conveys that settings are not_ready unless they have been
Overridden or have become Ready.

The SafeTreatment schema describes what it means for the system to be in a safe
state. It occurs when, accounting for all of the conditions in TreatmentStatus, we
find that all interlocks are clear and every setting is ready, or has been overridden by
the operator.

— SafeTreatment
TreatmentStatus

ranintlk = {clear}
ranstatus C {ready, override}

This can be considered a refinement of the original SafeTreatment schema in Sec-
tion 22.2.1.

2 We capitalize the names Safe, Match, etc., just to distinguish them from names we have already
defined.
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22.3

Enforcing the safety requirements

Finally we can define the operation that actually tests the safety conditions and sets
the flags and the interlock. The control program invokes this operation periodically;
we call this scanning the interlocks. The Scanintlk schema describes the effect of a
single scan.

__Scanlintlk
EField
Alntlk

TreatmentStatus'
therapy_intlk’ = if SafeTreatment then clear else set

Scanlntlk sets or clears the master therapy interlock, depending on whether the
SafeTreatment predicate holds. This predicate must be tested in the after state. The
TreatmentStatus' predicate is not an invariant; it can only be guaranteed in the after
state (as indicated by the prime decoration). This is because the measured setting
values may change at any time, and it requires computational effort to recompute
the status flags and reestablish the TreatmentStatus’ condition.

Here EField expresses that this operation only requires read access to variables in
Field. This means that Scan/ntlk can be scheduled independently of other operations
that might change the contents of Field, without fear of interference (provided that
Scanlntlk can only observe Field when Field itself is in some consistent state — that
is, when its own invariant holds).

In Section 28.9, we’ll derive code from this specification.
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23.1

All of our examples so far have been small: They have only a few state variables. In
this chapter we tackle a large system that has hundreds of state variables. Z provides
several structuring techniques that make this feasible. The system is large but the Z
description is concise. It is built up from components, subsystems, conditions, and
modes that are developed separately, but also accounts for behaviors that emerge at
the system level. The description illustrates several useful idioms of the Z notation,
including one called promotion.

The case study in this chapter is the control system fora cyclotron, a type of particle
accelerator. A radiation therapy machine includes an accelerator that produces a
radiation beam and therapy equipment that uses the beam. In Chapters 6, 21, and 22
we described some of the controls for the therapy equipment. Now we turn to the
controls for the accelerator.

Our system is built up from many components, and most of its size derives from
repetition of similar components. We can make our specification much shorter and
easier to grasp by identifying the components, describing them separately, and then
combining them. We will define a schema type for each kind of component. The
system contains multiple copies of most kinds of components, so the system model
contains multiple bindings of those schema types. Many features are common to
several kinds of components, and these can be concisely represented by schemas
that are included elsewhere. Each kind of component can be considered an abstract
data type and could be implemented by a class in object-oriented programming.

A single subsystem

Most of our requirements can be expressed by a quite simple framework: A system
is a collection of state variables that must obey certain control laws and safety
assertions. This can be modeled by a Z state schema.
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State

The state variables are named in the schema declaration and can be discrete in-
dicators or numeric quantities. The control laws and safety assertions are system
invariants which appear as schema predicates. Control laws are formulas that relate
state variables in a way that produces the intended system behaviors. In classical
control theory, control laws are usually differential equations that relate continuous
variables, but our control laws also include discrete variables and logical connec-
tives. Safety assertions are formulae that place additional constraints on the state
variables, as required by considerations of human safety and equipment protection.

Here are some definitions and a (much simplified) state schema for our cyclotron.
The schema shows a few of the state variables and laws concerned with the radio
frequency (RF) amplifiers that accelerate the particles, the main magnet that confines
them, and the sensor switch on the shielding door that protects staff and visitors from
scattered radiation.

STATUS ::= disabled | off | on | error
SWITCH ::= open | closed
CURRENT == —100.. 900

Many more definitions . . .
| €:CURRENT

__Cyclotron

rf, mainfld : STATUS
mainfld_setpoint, mainfld_preset, mainfld_current : CURRENT
door : SWITCH

Many other state variables . . .

mainfld € {disabled, off} = mainfld_setpoint = 0.00
mainfld € {on, error} = mainfld_setpoint = mainfld_preset
mainfld = on = |mainfld_setpoint — mainfld_current| < €

Many other control laws . ..

rf = on = door = closed
rf = on = mainfld = on

Many other safety assertions . ..
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23.1.3

The particle beam is considered to be on whenever the RF drive amplifiers are on.
When the main magnet field is off, its current is zero; when it is on, its current is
held at a nominal preset value (this magnet also has a disabled state from which
it cannot be turned on, and an error state where it has been turned on but is not
running correctly). The safety assertions say that the beam can only be on when the
vault door is closed and the main field is running within its nominal range (this last
assertion uses the absolute value function we defined in Chapter 11.4.3).

An important part of the documentation for a real system is a glossary that ties the
formal model to the real world. The glossary explains each formal state variable such
asr f,mainfld_setpoint, and so forth in the vocabulary of the informal documentation.

Operations

The control system provides a repertoire of operations that can change the values of
some state variables. These are modeled by Z operation schemas.

For example, this operation turns on the main field power supply, unless it has
been disabled:

. TurnOnMainfld
ACyclotron

mainfld # disabled
mainfld_setpoint = mainfld_preset

Changing mainfld_setpoint usually causes mainfld_current to follow (the control
law for this is rather complicated and is not shown). The control laws require that
mainfld must change as well; it either becomes on or error, depending on whether
mainfld_curr ent approaches mainfld_setpoint.

This illustrates a common technique for writing concise operation definitions:
The variables explicitly changed in the operation schema drive other variables, as
dictated by the control laws. Therefore, operation definitions usually do not include
predicates that fix the values of variables that are not explicitly changed.

Interlocks

A distinguishing feature of safety-critical control systems is that many operations
are interlocked; they are not allowed to proceed if certain potentially hazardous
conditions exist. When an interlock is set or active, the operation must not proceed;
otherwise the interlock is clear.

In Chapters 10 and 22 we modelled interlocks with binary variables but this is not
strictly necessary. Any condition can be used as an interlock. In our present frame-
work, interlocks are modelled by predicates that act as preconditions in operation
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23.2.1

schemas. Consider the operation invoked by pressing the BEAM ON button. Here
the condition r f # disabled acts as an interlock that prevents the beam from tuming
on when the RF system is disabled.

TurnOnBeam
ACyclotron

rf # disabled
rf' € {on, error}

This schema says that pressing the BEAM ON button when the RF system has not
been disabled will attempt to turn on the RF drive amplifiers (it cannot be guaranteed
that they will turn on; they may indicate an error).

Many subsystems

The following sections describe some components that occur in this application.
Each kind of component is specified as a different schema type with its own state,
operations, and interlocks, using the basic framework presented in Section 23.1.
Subsequent sections show how the component specifications are combined into a
system specification.

Analog control parameters

The three state variables mainfld_setpoint, mainfld_preset, and mainfld_current
that appeared in the Cyclotron schema in Section 23.1 reveal a pattern that appears
in many other components. We define a schema for this recurring pattern, which
we call a control parameter or simply a parameter (in this paper we use the word
“parameter” in this sense, not the programming language’s sense). The value of a
parameter is a signal, a quantity that varies with time. We need to do arithmetic on

signals so we model them as integers'.

SIGNAL ==1Z

Param
r preset, setpoint, value : SIGNAL

! Integers are the only numeric type built into Z. In fact some signals are implemented as floating-point
numbers.
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It is useful to define a schema for the situation where the parameter’s value is nearly
equal to the setpoint.

| €:SIGNAL

__ ParamValid
Param

|setpoint — value| < €

23.2.2 Power supplies and servomotors

Many of the state variables in our system are devoted to about forty power supplies
that provide current to the magnets that confine, focus, and steer the beam. The
main field supply discussed in Section 23.1 is just one of these. Here is a slightly
more realistic generalization; this model also includes the contactor that connects the
supply to its power source and represents the various faults that induce the disabled
and error states. The control law says that current cannot flow when the contactor
is open. The safety assertions say that we must not try to drive current when faults
exist or the contactor is open.

FAULT ::= overload | line_voltage | overtemp | ground_short

_PS

Param

contactor : SWITCH
faults : P FAULT

contactor = open = value < €
faults # @ = setpoint =0
contactor = open = setpoint = (

Explicitly modelling the contactor and faults reveals that the status values of Sec-
tion 23.1 (disabled, off etc.) actually indicate different power supply states, so we
no longer need an explicit status variable. The supply is Off when the contactor is
open and there are no faults:

Off
[ ps

contactor = open
faults =9
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The supply is On when the contactor is closed, there are no faults, and setpoint and
value (nearly) equal preset. Note that power supplies can use any properties defined
for parameters, such as ParamValid.

On
[ ps

ParamValid
contactor = closed
setpoint = preset
faults = 0

There are several other states, including an Error state. It is easy to define opcrations
in terms of these states. Here is the operation to turn on a power supply.

TurnOn = Off A (On’ v Error)

Off is the initial state, and the primed schemas On’ and Error’ are the possible final

states.
Several other kinds of components besides power supplies include control pa-

rameters. For example, in servomotors the signals represent position, not current.

MODE ::= enabled | disabled

— Servo
Param
enable : MODE

Other state variables specific to servomotors . . .

23.2.3 Discrete indicators

It is convenient if every state variable in the system is handled in a uniform way,
as part of an instance of some class of components. Those few system-level state
variables that do not belong to any obvious component can be handled by defining
simple components with only one state variable. '

Indicator
rstatus SWITCH
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Combining the components

With several kinds of components now in hand, we return to the system level. Every
component has a name. For each class of component, there is a set that names all
the components of that class. Each class of components in the system is modelled
as a function from names to bindings (instances of the state schema for that class).
The roster of components in the system is fixed, so each of these functions is total
(their domains are constant), and each maplet (such as rf > @PS in the function
supply) represents the name and state of a persistent object (in this case the radio
frequency power supply).

This simplified example shows only three classes of components: power supplies,
servos, and indicators, whose names form the sets ps, s, and i, respectively. Here r f
and mainfld are the names of power supplies, the main probe mainpr b is a servo, and
the door is an indicator. In a real specification, these constant definitions would be
fully filled in: This inventory of components and their classification into categories
are important parts of the system documentation.

[NAME])

ps,s,i :PNAME
rf, mainfid, mainprb, door : NAME

door € i
mainprb € s
rf € ps A mainfld € ps

__Cyclotron
supply : ps > PS
servo:.s —> Servo
indicator . i — Indicator

supply rf € On = supply mainfid € On
supply rf € On = (indicator door).status = closed

Other system level laws . ..

All of the state variables and most of the predicates from the basic framework are
now inside the various components, so the system state schema can be much shorter.
Laws that relate state variables in different components can only be expressed at the
system level. These include the two safety assertions discussed in section 23.1. Here
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233.1

the value of the function application supply r f is the binding of P § that represents
the state of the radio frequency power supply, and indicator door is the binding of
Indicator that tells whether the door is open.

Some useful idioms

Specifying the operations of a system described this way requires several construc-
tions in the Z notation that are not obvious. I call them idioms. These idioms are not
described in the reference manual nor taught in many introductory textbooks; they
must be gleaned from case studies, technical reports, or more advanced textbooks.
Here are two useful ones.

Promotion

Much useful behavior can be modelled at the component level. However, methods
defined at the component level are not, by themselves, meaningful at the system level.
For example, at the system level it makes no sense to merely turn on a power supply.
It is necessary to say which supply and to explain what happens to the whole system
when a particular supply turns on. Component-level operations that must be made
available at the system level can be adapted by applying a Z idiom called promotion.

First, for each type of component we have to define a framing schema, where the
identifier of the component of interest is an input parameter. For power supplies, the
framing schema is Cyclo® P §, pronounced cyclo frame p.s. The symbol ® is the
Greek letter phi; it is not an operator, but is merely another naming convention like
A (delta) and E (xi).

__CyclodPS
ACyclotron
APS

ps?: ps

{ps?) <€ supply’ = {ps?) < supply
OPS = supply ps? A OPS’ = supply ps?

This framing schema says that the cyclotron changes and some power supply named
in ps? changes. It also uses the domain anti-restriction operator <4 (Section 9.3.2)
to say that all the other power supplies besides ps? remain unchanged. However
it does not say which power supply changes, nor how the power supply changes.
That comes next. Here is the operation that turns on the main field magnet in the
cyclotron:
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TurnOnMainfid
Cyclo®dPS
TurnOn

ps? = mainfld

This schema completes the description by saying that the TurnOn operation occurs,
and the mainfid power supply is the one that tums on. Other power supply operations
can be promoted in the same way.

Sometimes, additional predicates must be added to promoted operations to ac-
count for requirements that emerge at the system level. In order to tumn on the RF
amplifiers, the door must be closed and the main field must be on.

TurnOnBeam
Cyclo®PS
TurnOn

-

ps?=rf
(indicator door).status = closed
supply mainfld € On

23.3.2 Operations on multiple components

Other system level operations are obtained by performing the same method on
multiple components. For example, a common operation is to turn on all the power
supplies in some subsystem, say Beam Line A. This is provided at a single button
to save the operator the trouble of switching each supply on individually. It can be
expressed by another Z idiom.

| blaps : P ps

— TurnOnBLA
ACyclotron

V p : blaps « 3TurnOn e
OPS = supply p A 6PS' = supply’ p

Here blaps holds the names of all the power supplies in Beam Line A, the bound
variable p ranges over them all, and the TurnOn operation applies to each.
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Subsystems, conditions, and modes

In addition to components, we use a few other ideas to organize the specification.
Other authors have noted the usefulness of conditions and modes. Subsystems are
also helpful. '

Subsystems

The various subsystems include the RF system, the cyclotron proper?, the three
beamlines A, B, and C, the isocentric treatment room, the fixed beam treatment
room, and so forth. Each is simply a collection of components, identified by their
names.

| rfsys, cyclo, bla, bib, blc, iso, fix : P NAME

Note that these collections contain elements of different types. For example the
cyclotron subsystem cyclo includes the main field power supply mainfid, the main
probe.servo mainprb, and so on. The objects themselves have different types, but
they all have the same type of name. This makes it possible to define collections of
dissimilar objects by defining sets of names.

In the interest of brevity we do not list the components in each subsystem here,
but this inventory is an important part of the system documentation.

Conditions

It is useful to define state schemas to abbreviate conditions that appear frequently
in the specification. Some conditions are quite simple. When the radio frequency
power supplies are on, the beam is considered to be on:

__BeamOn
Cyclotron

supplyrf € On

Others are more complex; subsystems often appear in these definitions. For example,
the cyclotron is ready when the vault door is closed and all of its power supplies
are on.

2. Somewhat confusingly, we use the term cyclotron both for the whole system and for a particular
subsystem within it consisting mostly of magnet power supplies but not the radio frequency subsystem
nor the beam lines, etc. Formally, these are the Cyclotron state schema and the cyclo subsystem,
respectively.
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_CycloReady
Cyclotron

(indicator door).status = closed
supply(cyclon ps) € On

Here cyclo N ps is the set of names of all the power supplies in the cyclotron
subsystem, and the relational image supply(cyclo 0 ps) returns the set of all their
states.

This is a precondition for many operations. Here is a more realistic specification
for tumning on the beam’.

__TurnOnBeam
Cyclo®PS
TurnOn

pst=rf
CycloReady
BeamOn’

Modes

Our cyclotron can be operated in different modes. Each mode is characterized by
the destination and purpose of the beam. The beam can be delivered to two treat-
ment rooms or an isotope production station. 1t can be used to treat patients or for
experiments and testing.

Modes, like conditions, are modelled by state schemas. For example

__IsoTest
Cyclotron

Isocentric treatment room, test mode . ..

Modes are important because the control laws and safety assertions depend on which
mode is selected. In order to turn on the beam in a room, the beam line to that room
must be ready. BLAReady is the state schema that expresses this condition for Beam
Line A. Moreover, different safety interlocks must be cleared, depending on whether

3 Recall that r f is not one of the power supplies in the cyclo subsystem; r fsys is a separate subsystem.
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we are preparing to treat a patient or, alternatively, run an experiment with no people
in the room. This is expressed by using modes and other conditions to write the
control laws and safety assertions. IsoReady describes the states where it is safe to
run the beam in the isocentric treatment room in test mode, and /soSafe describes the
states where it is safe to run the beam in the isocentric room with a patient present.

__SafeCyclotron
Cyclotron

IsoTest A BeamOn = CycloReady A BLAReady A IsoReady
IsoTreat A BeamOn = CycloReady A BLAReady A IsoSafe

Laws for other modes . ..

These predicates concisely express many important properties. For example, if any
of the conditions included in IsoSafe become false while the beam is on in IsoTreat
mode, the beam must turn off.

Modes and conditions also appear in the operation schemas:

__SafeTurnOnBeam
TurnOnBeam

IsoTest = CycloReady A BLAReady A IsoReady
IsoTreat = CycloReady A BLAReady A IsoSafe

Preconditions for other modes . . .

When users attempt operations that are interlocked, the system state does not change.
Pressing the BEAM ON button turns on the RF drive if all the interlocks relevant to the
selected mode are clear; otherwise, nothing happens. Therefore, the full specification
for this and every other operation must be total; they must cover both possibilities.
This is expressed: "

T_TurnOnBeam = SafeTurnOnBeam V (Interlocked A ECyclotron)

The active interlocks, conditions, and modes are displayed at the control console so
operators can see which operations are enabled.

Exercise 23.4.3.1 Define Interlocked at the same level of detail as
SafeTurnOnBeam.

Exercise 23.4.3.2 Define TurnOnBL A without using quantifiers.
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Conclusion

Much of the effort in developing large applications like this one is devoted to identi-
fying the system state variables and describing the operations that must be provided,
taking care that nothing is omitted and no inconsistencies are introduced. The Z
notation can help us organize this work.

Z is particularly effective for systems whose size derives from repetition of com-
ponents which are not identical but share many features in common. The Z schema
calculus permits recurring features to be factored out and described with texts that
apply to all, supplemented with brief texts that address the differences.
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Object-oriented programming is a method for creating programs that use a particular
kind of model. Object-oriented programming languages such as Smalltalk and C++
can implement these models, but a simpler notation that is independent of any
programming language is more useful when you are creating and analyzing the
models. Z can serve as that notation. You can do object-oriented design in ordinary
Z, and there are several Z dialects that are intended to provide better support for
object-oriented programming.

The object-oriented model and Z

The data in an object-oriented program are encapsulated in record-like data structures
called objects. Objects belong to types called classes. You change or examine the
data in an object, called its attributes or instance variables, by invoking one of the
methods defined for the object’s class.

Z is a good match to this object-oriented model. A Z state schema together with
the operation schemas on that state define a class. The state variables in the state
schema are the attributes or instance variables of that class; the operation schemas
are the methods. Bindings, which are instances of the state schema type, are objects,
which are instances of the class.

The cyclotron control sytem model in Chapter 23 can be considered an object-
oriented design in this sense. All the data are encapsulated in objects, and the only
way to read or change any data is by invoking a method.

Inheritance and schema inclusion

In object-oriented programming it is possible to define new classes that inherit all
the attributes and methods of a previously defined one, and include new ones as
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well. Schema inclusion in Z is similar to inheritance. Recall the control parameter
schema we defined in Chapter 23, which encapsulates a preset value, a set point, and
a measured value.

Param
r preset, setpoint, value : SIGNAL

'We can consider this state schema to be part of the definition of a class called Param
(the AParam operation schemas that define the methods for this class are not shown).

We defined a new state schema to model power supplies. The power supply state
schema P S includes the Param state schema and adds some additional state variables
as well.

__PS

Param

contactor : SWITCH
Sfaults : P FAULT

We can say that P S inherits Param. In the nomenclature of object-oriented program- -
ming, Param is the base class and PS is the subclass or derived class. A derived
class has all of the attributes of its base class, and Z schema inclusion provides this
as well. Param and P § both have state variables named setpoint (etc.).

This definition declares two objects, panel and mainfld, which are instances of
Param and PSS, respectively, and constrains the main field setpoint to track the
setpoint on the control panel.

panel : Param; mainfld : PS

panel.setpoint = mainfld.setpoint

However schema inclusion in Z is not quite the same as inheritance in object-oriented
programming. In most object-oriented languages, instances of a derived class are
also considered to belong to the base class: mainfid is not just a P§, it would also
be a Param, and any method defined for Param also applies to a P S. In Z, however,
each variable can only have a single type: mainfid is a P S; it is not a Param even
though it includes Param. Operations defined for Param cannot be applied directly
toa PS.

Here is how it works out in practice. Let’s define a method for Param that reports
the difference between the setpoint and the value; we call this the offset. This method
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merely reads a Param object’s attributes and returns a single number; it does not
change the object’s state, so we model the method by a function.

offset == (A Param e value — setpoint)

Now we can form expressions by applying the offset function to Param objects.
To model “invoking the panel object’s offset method” or even “sending the offset
message to the panel object,” we just write

offset panel

However we cannot apply our offset function to the mainfld object. This would be a
type error in Z, because the domain of error is Param, but mainfidis a PS.

offset mainfld [TYPE ERROR! Here mainfid is a PS, not a Param.]

With just a little extra work we can express what we want in Z. Every P S includes
a Param, so can use the projection function (A PS e 8Param) to extract the Param
part of any PS.

offset (A PS o 8Param) mainfld)

This expression is correct and expresses the intended meaning. The lambda expres-
sion extracts the Param from mainfld so offset can be applied.

Object-oriented Z dialects

Several formal notations based on Z are intended to provide better support for
object-oriented programming. They are designed to allow text in the notation to
more closely resemble code in an object-oriented programming language. Object-Z,
MooZ, OOZE, and Z++ are examples of such dialects.
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25.1

Z has no built-in facilities for modelling concurrency and real time, but we can do it
anyway. In fact, Zis well suited for expressing many of the classic issues in concurrent
and real-time systems. We need to be able to do this in order to understand what
happens when (for example) the user interface from Chapter 21 and the protection
system from Chapter 22 are both executing in the same system.

In this chapter we’ll model a multi-tasking system and confront the problems that
arise when several tasks try to share resources. We’ll represent real-time deadlines
and model timeouts.

Concurrency

A process is a single task or thread of control. We’ll model a simple multi-tasking
system where several processes run concurrently. Each process owns some virtual
memory in which it can store its own data. Processes also exchange data in shared
resources that might include regions of memory, blocks of disk storage, and com-
munication channels.

The basic types PROCESS and RESOURCE model the fixed complement of pro-
cesses and resources in this simple system. DATA models the contents of a resource
or virtual memory. For each process p in PROCESS, the value of vm p is the contents
that processes’ virtual memory. Likewise, data r is the contents of resource r.

[PROCESS, RESOURCE, DATA)

Sys
"vm : PROCESS — DATA

data : RESOURCE — DATA

The state Sys is shared by all the processes. Anything that any process can do is
modelled by a Z operation on this state. The execution of each process is a sequence
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of Z operations. We still view the execution of the whole system as a sequence of
discrete, nearly instantaneous operations, but now the operations might be invoked
by several different processes, not just one. Operations invoked by different processes
might alternate or interleave. This is called the interleaving model of concurrency.

Any process might attempt to invoke any operation at any time. If the preconditions
of the operation are satisfied, the operation is enabled. An operation that is enabled
will eventually occur: The system is fair. If several operations invoked by different
processes are all enabled at the same time, then any one of them might be next to
occur; we cannot predict which: The system is nondeterministic. We have to assume
that there is a scheduler that selects and executes enabled operations, but we do not
model this in Z.

A process can invoke the Write operation to store the contents of its virtual memory
in a resource. The process and the resource are the inputs p? and r? to the Write
operation.

Write
ASys
p?: PROCESS; r?: RESOURCE

-

datd = data ® {r? — vm p?)
vm’' = vm

Here we use the override operator @ (Section 9.3.2) rather than the equation
data’ r? = vm p? to indicate that all the other resources remain unchanged. A
process can invoke Read to load its virtual memory with contents from a resource.

— Read
ASys
p?: PROCESS; r?: RESOURCE

vm’' =vm & {p? — datar?)
datd' = data

There is a problem with Write and Read. There is no way for a process to ensure that
anything it writes can ever be read again, because some other process might destroy
it by writing something else on the same resource. For example, process p; might
write the data x on resource ry, intending to read it back later, but in the meantime
process pp writes y on ry. Later, when p; reads r assuming it will find x, it gets
y instead, and disaster ensues. This scenario demonstrates the problem common
to most difficulties involving concurrency, such as race conditions. To prevent such
difficulties, a process must be able to gain exclusive control of a resource and prevent
other processes from writing on it.
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The classic solution to this problem is to provide a new kind of object called
a mutex (for mutual exclusion). A mutex is sometimes called a binary semaphore.
Each resource is protected by a mutex. To write on the resource, a process must
possess the mutex. The mutex can only belong to one process at a time; this can be
modelled by a partial function from mutexes to processes.

[MUTEX]

| mutex : RESOURCE — MUTEX

ProtectedSys
Sys
owner : MUTEX + PROCESS

The owner function is partial because sometimes no process owns a particular mutex;
in that case we say the mutex is free. If the mutex is free, a process may seize it.

— Seize
AProtectedSys
p? : PROCESS; m? : MUTEX

m? ¢ dom owner
owner’ = owner ® {m? > p?}
datd' = data

Seize must be implemented as an atomic operation: Once it begins, it must be allowed
to complete without interference or interruption. When a process executes Seize it
first tests the precondition. If this condition is true, the process must be able to
establish the owner’ = owner & {m? > p?) postcondition before another process
can test the m? ¢ dom owner condition. Otherwise, the second process might also
conclude that the mutex is free and attempt to use the same resource.

When a process owns the mutex, it may write on its resource.

__ProtectedWrite
AProtectedSys
Write

p? = owner(mutexr?)
owner’ = owner
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When a process is finished using a resource, it should release the mutex.

Release
r AProtectedSys
p? . PROCESS; m?: MUTEX

p? = owner m?
owner = {m?} € owner
data’ = data

This definition uses the domain antirestriction operator <€ (Section 9.3.2). It has the
effect of removing the pair m? > p? from owner.

Events

A system that interacts with the outside world must respond to events whose time
and order of arrival cannot be predicted. Such systems are said to be event-driven
or interrupt-driven. Processes in these systems wait for events and handle each one.
For example, an event might indicate that a resource has new data ready, and then
the handler reads the data from the resource and perhaps does some computation
on it.

We define a new data type to model events. We augment our system state with a
set of events that have occurred but have not yet been handled, and a relation that
associates processes with the events they await.

[EVENT]

EventSys
Sys
events : PEVENT

waiting : PROCESS < EVENT

A process can wait for several events, and an event might have several processes
waiting for it. When (p, €) is a member of waiting, process p is waiting for event
e. A waiting process performs no operations. We can ensure this by including the
precondition p ¢ dom waiting in every operation. Dividing tasks among processes
in a multi-tasking system allows work to be done by some processes while others
are waiting.

Process p? can invoke the Wai't operation to begin waiting for the next occurrence
of any of the events in set es?:
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Wait
[ AEventSys
p?: PROCESS; es?: PEVENT

waiting' = waiting U { e? : es? o p? > e?}
events' = events

The Signal operation signals the occurrence of event e? by placing it in the set of
unhandled events. Signal might be invoked by a running process to awaken a waiting
process, or it might be invoked by hardware to signal an occurence in the outside
world. An event signalled by hardware is called an interrupt.

Signal

r AEventSys
y

e? : EVENT

events' = events U {e?)
waiting’ = waiting

A process responds to an event by invoking a handler. The handler becomes enabled
when an unhandled event appears. The handler clears the event by removing it from
the set of unhandled events and also removes all of its entries from waiting. This
allows processes that were waiting for the event to proceed.

— Handler
AEventSys
p?: PROCESS; e?: EVENT

e? € events A (p?, €7) € waiting
events’ = events \ {e?)
waiting' = waiting & {e?}

...handle event e? ...

This definition uses the range antirestriction operator & (Section 9.3.2) to remove
all the pairs that refer to e? from waiting. The handler can also perform computations
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specific to the event. If the event indicates that new data are ready, the handler could
read the data into its processes’ virtual memory.

25.3 Real time

We can model real time as an ordinary Z state variable. We augment our event driven
system with a real-time clock. The value of the current time stored in the variable
clock is just a number; perhaps it indicates the number of milliseconds that has
elapsed since system startup. We assume that the value of our clock variable grows
larger as each successive operation is invoked. Each process has a timer that it can
use to measure elapsed time.

TIME == N

RealTimeSys
EventSys

clock : TIME
timer : PROCESS — TIME

If a process wishes to limit the time it will wait, it uses the TimedWait operation to
request a timeout. A timeout is an event that is signalled after a deadline expires.
Each process has its own timeout event, so we declare the timeout function with
the injection arrow »— (Section 9.4.3). The TimedWait operation sets up the timeout
by registering for the timeout event and recording the current time in its processes’
timer.

deadline : TIME
timeout : PROCESS — EVENT

. TimedWait
ARealTimeSys
Wait

timeout p? € es?
timer’ = timer @ {p? v clock}

If the process is still waiting when the deadline expires, the timeout is signalled.
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Timeout
B ARealTimeSys
Signal

e? € ranwaiting
e? € ran timeout
(let p == timeout™ e? o clock — timer p > deadline)

Here p is the process associated with the timeout event e?, obtained by inverting the
timeout function. The system determines that a timeout has occurred by comparing
the current clock value to the start time recorded in timer p.



Further reading

A real document contro! system (Chapter 16) is described in Tichy’s paper [1982]
on the RCS.

The text filling problem (Chapter 17) has been discussed in many books and pa-
pers. Some of the published solutions don’t quite work. Bertrand Meyer [1985] re-
views this literature, traces some of the errors to difficulties with informal definitions,
and proposes a formal one. I believe Meyer’s paper also reveals some disadvantages
~ of using ordinary mathematics as a specification notation and motivates the kinds of
conventions we use in Z.

Richard Bird [1986) demonstrates several different text-filling strategies and de-
velops a program from his formal definition. Carroll Morgan [1990] presents another
version in his book.

My words function owes much to the word count study and the blue pencil problem
in the book by Rosalind Barden, Susan Stepney, and David Cooper [1994].

Smith [1990] observed that a solution to the eight queen’s problem (Chapter 18)
is a bijection.

The development in Chapter 19 is based on the computational geometry book by
O’Rourke [1994], which also includes a derivation of the area2 formula.

Definitions for fundamental objects such as polygons can be built up further
to define more complex objects, such as anatomical structures, that are useful in’
particular applications. A collection of such definitions serves as the foundation for
a suite of software tools for radiation therapy planning [Jacky et al., 1994]. In order
to make them widely accessible, the definitions in that project were expressed in
a semiformal style using formulas and formatted text. The presentation style was
influenced by my experience with Z.

Radiation therapy treatment planning is discussed in the textbooks by Johns and
Cunningham [1983] and Khan [1984]. Fig. 19.2 was created with the Prism treatment
planning system [Kalet, 1996]. ‘

Marshall [1990] uses the VDM notation to describe several approaches to a re-
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lated problem: Given the integer coordinates of two points, calculate the integer
coordinates of all the points which best approximate a continuous real line between
the two. This problem must be solved to draw line graphics on raster display devices.

Patrick Henry Winston'’s textbook Artificial Intelligence [1977) provides a good
introduction to rule-based programming and is the source of the animal example in
Chapter 20.

The example in Chapter 20 has many limitations. Most obviously, it has no vari-
ables. Many useful rule-based programs do have variables, and facts can be predicates
such as carnivore(x), herbivore(y), and eats(x, y). The results of deductions can
be assignments of values to variables, such as x = lion, y = zebra. Deduction
with variable assignments is called unification. John S. Fitzgerald [1990)} and Sunil
Vadera [1990] have both described unification in the VDM notation. Craig [1991]
uses Z to model larger artificial intelligence programs in his book.

Large programs built with mostly conventional techniques can incorporate rule-
based components to solve particular subproblems. An example from radiation ther-
apy planning is described by Mary Austin-Seymour et al. [1995].

Transitive closure is explained in almost any book on discrete mathematics. In Z,
Jim Woodcock and Martin Loomes employ transitive closure in the configuration
manager model in their textbook [1990], and Bernard Sufrin [1989] uses it in his
model of the Unix make utility. The book by Barden et al. [1994] includes several
more examples.

The case study in Chapter 21 is based on an X window application. Jonathan Unger
and I describe our implementation in [Jacky and Unger, 1995] The X window system
is described in the paper by Scheifler and Gettys [1986]. The book by Nye [1988] is
a standard reference on X window programming. Jonathan Bowen [1992] modelled
some display aspects of the X window system in Z.

David Harel [1987] describes statecharts.

Matt Jaffe, Nancy Leveson, Mats Heimdahl and Bonnie Melhart [1991] showed
how to analyze state transition systems for completeness and other properties relevant
to safety. Nancy Leveson’s book [1995] is devoted to safety issues. I discuss safety
in a textbook chapter [Jacky, 1991; Jacky, 1996).

The protection system in Chapter 22 has some similarities to the reactor protection
system modelled in VDM by Bloomfield and Froome [1986] and Fields and Elvang-
Geransson [1992].

The cyclotron case study in Chapter 23 is based on the Clinical Neutron Therapy
System at the University of Washington, Seattle [Risler etal., 1984; Jacky etal., 1990;
Jacky et al., 1992]. The chapter is based on a conference paper [Jacky, 1993b]
and a journal article [Jacky, 1995]). Other work on formalizing this system appears
in [Jacky, 1990; Jacky, 1993al.

Carroll Morgan and Bernard Sufrin [1984] introduced promotion in their Z model
of the Unix file system. Promotion is also discussed in the technical report by Ruaridh
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Macdonald [1991] and the Z textbook by John Wordsworth [1992]. Several more
examples appear in the book by Barden et al. [1994].

The paper by Heninger [1980] shows how conditions and modes were used to
simplify the formal specification of an avionics program.

The paper by Stcpney, Barden, and Cooper [1992b] surveys object-oriented style
in ordinary Z as well as several object-oriented Z dialects. Their book [Stepney et al.,
1992b] includes several papers that demonstrate these techniques and notations.
Several chapters in the book by Lano and Haughton [1993] use object-oriented Z
dialects.

Andy S. Evans observed that Z can model interleaved concurrency, and showed
how to prove safety and progress or liveness properties [Evans, 1994a; Evans, 1994b].
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26 Refinement

26.1

Development often proceeds from an abstract specification to a detailed design.
This process is called refinement'. Both the specification and the design are models,
but the specification is closer to the users’ view, while the design is closer to an
executable program. If we express both models in mathematics, we can use formal
reasoning to check that the design faithfully expresses the intent of the specification.
We can prove that the specification and the design are really two views of the same
thing. This ability to check the correctness of design steps is one of the distinguishing
features of a formal method.

What is refinement?

An abstract model has some of the properties of the thing it models, but not all of
them. A design is more concrete than a specification. A design is correct if it has
all the properties of the specification; it usually has some additional properties as
well. This relation is expressed precisely by logical implication: The predicate that
describes the design must imply the predicate that describes the specification.

Here is a trivial example. Our specification requires that we increase the value
of x:

x' >x
We propose to achieve this by adding one to x. Our design is this stronger predicate:

X =x+1

The design should imply the specification:

! Some authors call it reification.
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26.2

26.2.1

X=x+1=2x">x

This implication s clearly true, so the refinement is correct. We cansay that x’ = x+1
refines x’ > x.

Exercise 26.1.1 Write a truth table for the implication p => g where pisx’ = x+1,
and g is x’ > x. Add two more columns to the table for x and x’ and fill in each row
with integer values that cause p and g to take on the truth values called for in that row.

A refinement example

Z provides a rich collection of types; some are abstract, but others are similar to the
data types we find in programming languages. For example, sets are central in Z but
are not provided in most programming languages. On the other hand, Z sequences
resemble the arrays and lists provided in many languages. In this section we will
refine a specification with sets to a design with sequences.

From sets to sequences

Our abstract state is a set s of elements of type X.

[X]

Abstract
I‘s PX

We define an abstract operation that stores an element in the set, using the set union
operator.

—AStore
AAbstract
x?: X

s  =sU{x?}

We plan to implement this system in a programming language that has no built-in set
data type, but does have arrays and lists. We decide to refine our abstract specification
to a detailed design based on sequences because we expect this will be easier to map
into the target programming language.

Our concrete state is not a set but a sequence ss of elements of type X.
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26.2.2

Concrete
rss 1seq X

Here is the concrete operation that stores an element in the sequence, using the
concatenation operator.

CStore
r AConcrete
x?: X

ss' =857 (x7)

Already we have added some detail. A sequence has more structure than a set; to add
an element to a sequence, we have to say where to put it in the sequence order. To
keep things simple we just put the new element at the end. This is an implementation
decision that should not affect the programmers who use the store operation. Putting
the new element at the front or inserting it somewhere in the middle would be equally
acceptable from the point of view of the abstract specification.

Checking the refinement

This example is a bit more complicated than the x’ > x example from Section 26.1
because the specification and the design use different data structures. To show that the
design correctly refines the specification, we must say how the two data structures are
related. The sequence should always hold the same elements as the set. A sequence is
a function from natural numbers to elements, so the elements stored in the sequence
are the range of this function. The range of the sequence must be the same as the set.

s =ranss A s =ranss’

This must be true before and after any operation, so equations appear for unprimed
and primed variables.

Now we can form the implication that expresses the refinement. The predicate
of the abstract operation ASfore appears on the right of the implication arrow, and
the predicate of concrete operation CStore is on the left, along with the equations
relating s and ss.

s’ =ss T (xM) As=ranss As' =ranss' = 5" =s U {x?)

The refinement is correct if this predicate is true. Figure 26.1 illustrates the argument:
The initial and final states are related by the store operations, and the abstract and
concrete states are related by the range function.
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Abstract Operation AStore

sU{z?}
Initial state § —_— s Final state

58— s

ss™z?)
Concrete Operation CStore

Figure 26.1: Refinement of AStore by CStore.

This refinement is easy to prove. We use two laws about sequences. The range of a
sequence is the union of the ranges of its constituents: ran(s " t) = (rans)U(rant).
The range of a singleton sequence is just the element itself: ran(x) = {x}. We also
apply a classic technique for proving implications. To prove p = q, assume the
antecedent: Treat the antecedent p as if it were a law. If it is possible to prove the
consequent ¢ using p in this way, then the entire implication is true. In our proof
format it looks like this:

ey [To prove])
& q [Assume antecedent.]
& true [Justified by antecedent p]

Here is the proof of the refinement:

s’ =ss T (xN As=ranss A s =ranss’ = 5  =sU {x?)} [Given]
& s =5sU{x7 [Assume antecedent. ]
& ranss’ =5 U {x7) [Antecedent s’ = ranss’.]
Sran(ss T xMN) =sU {x?) [Antecedent ss’ = 55~ (x?).]
& ranss Uran(x?) = s U {x?} {Law about ran(s " ¢).]
< ranss U {x?} = s U {x?)} [Law about ran{x?).]
SsUx=sU({x?) [Antecedent s = ranss.)
& true [e =e & true.]

This concludes the proof of correctness for this refinement.
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26.3

Generalizing refinement

The preceding example was very simple. We can generalize the technique to larger
systems by writing an abstraction schema that includes the abstract state, the concrete
state, and the predicate that relates them. Here is the abstraction schema for our little
example.

Abs
FAbstract
Concrete

§ =ran ss

Here the predicate is simply s = ran ss; s is declared in Abstract, and ss is declared
in Concrete. An abstraction schema can relate many different state variables, and
the predicate need not be an equation.

In general, the correctness condition is a schema expression, not just an equation.
In this example it is

V AAbstract, AConcrete; x?: X o
pre AOp A COp N AAbs = AOp

where AOp and COp are the abstract and concrete operations. In this example they
are AStore and CStore, and pre AOp is the precondition of AStore, which is true.
Expanding this schema expression for our example we obtain

VY AAbstract, AConcrete; x?7:X o
true Ass' =ss T (XD As=ran ss As' =ran ss' = 5 =sU {x?)

This is equivalent to the condition presented earlier. Figure 26.2 illustrates the
method. The abstraction schema Abs relates the concrete and abstract states in the
same way that the range function did in Fig. 26.1.

Exercise 26.3.1 In our example, our concrete operation CStore interprets the se-
quence ss to be a list and implements the abstract operation AStore by appending the
new element to the end of the list. Define an alternate concrete operation CStorel
that interprets the sequence ss to be an array and implements AStore by updating the
element at the end of the array. You may not use the Z concatentation operator .
Prove that your refinement is correct.

Exercise 26.3.2 There are other ways to refine AStore. Instead of storing the new
element at the end of the sequence, we might use a hash function to compute the
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AOp
Initial state Abstract ————— Abstract’ Final state
Abs Abs

Concrete ———_ 5 Concrete’
COp

Figure 26.2: Refinement using an abstraction schema Abs.

26.4

index where the new element should be stored. Propose a declaration for the hash
function and define the concrete operation CStore? that uses it. What must be true
of the hash function to make the refinement correct?

Refinement strategies

In refinement we wish to make a model that is sufficiently concrete so that translating
it to a programming language is a simple exercise. You might have to apply several
different refinement strategies to reach that goal. The preceding example illustrated
one of them: Replace an abstract data structure with a more concrete one.

Another refinement strategy replaces nonconstructive definitions that describe
items by their properties to definitions that show how to construct the items. This
example from elementary algebra provides a nonconstructive definition of x:

ax’+bx+c=0

This predicate does not resemble a statement in an executable programming lan-
guage because x, the item whose value we wish to know, appears embedded in an
expression. We obtain this equivalent constructive definition by using the quadratic
formuta:

x=—-b+vVb?—-4ac /2

This predicate more closely resembles an assigment statement because x appears by
itself on one side of an equation?.

2 In this example only, x might denote a real or complex number.
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Another strategy replaces nondeterministic definitions with deterministic ones.
Nondeterministic definitions admit more than one solution. Nondeterminism is often
a good thing to have in a specification because it permits designers to choose among
alternative solutions. Subsequent design steps remove the nondeterminism by se-
lecting a particular solution. In the preceding solution to the quadratic equation, we
could make the solution deterministic by replacing + with 4- or —. A larger example
occurs in Chapter 17 where we developed the words function that takes a stream of
text and returns a sequence of words. Its definition includes the equation

words(l ™ s " r) = (words 1) " (words r)

This says that wherever the text contains a space s, you can discard the space and
break the text in two. This is nondeterministic because any space will do. It can be
replaced by the deterministic equation

words(w " s " r) = (w) " (words r)

which always breaks off the initial word in the text. This latter equation is closer to
a program that scans the text from beginning to end.



27 Program derivation
and formal
verification

At last we reach code. This chapter shows how to derive code from formulas taken
from a Z specification and demonstrate that the code does what the formulas require.
Program derivation is the systematic derivation of code from a formal specification.
A prodf of correctness demonstrates agreement between code and its specification.
Such a proof is a by-product of every program derivation. It is also possible to attempt
a formal verification to prove the correctness of an already completed block of code.

Almost all code in use today was produced by traditional informal methods, which
are based on adapting code from previously solved problems and making modifi-
cations guided by programmers’ intuitions about what happens when a computer
executes a program. Thinking about what happens in the computer is called opera-
tional reasoning (in contrast to formal reasoning, which only considers the program
text). Operational reasoning is fallible because it requires programmers to imagine
how the values of variables evolve through time as execution takes one path or an-
other through the code. For any but the smallest programs, there are far too many
variables, values, and paths to consider, so programmers often resort to running their
code to see if it behaves as they intend. This is a trial-and-error process, so it can
take a great deal of effort to produce an acceptable product.

Formal program derivation proposes a radical alternative: A program is a for-
mula. It can be derived from a specification, and its properties can be checked by
calculation. There is no need to try to imagine what happens in the computer, and
you shouldn’t need to rely on tests to find out what your program means. In this
view testing is primarily intended to detect misunderstandings in the specification
and check assumptions about the operating environment, including the compiler, the
operating system, and the hardware.

Program derivation requires creativity and judgment; there is nothing mechanical
or automatic about it. At each step you must invent the next fragment of code,
but the formal specification can help show you the way, and you can check each
fragment as soon as you write it. Moreover, your calculations check correctness for
all cases, not just a single test case. This ability to detect errors immediately, without
having to finish the code and run tests, is one of the biggest advantages of formal
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27.1

program derivation over traditional methods. Moreover, a formal development can
be documented as a sequence of steps that you or anyone else can review. This
is essential when you must convince yourself or others that your program meets
requirements for safety, accuracy, security, or any other critical property.

Program derivation need not replace traditional coding methods. Many program-
ming problems are routine; experienced programmers can adapt a correct solution
from their files or their heads more quickly than they can derive one. You can hold
formal derivation in reserve for those difficult problems where intuition doesn’t work
very well. It is rarely useful to attempt a formal derivation or verification of an entire
program. Formal methods work at any scale, in the sense that they can be applied to
critical pieces extracted from large programs, so you can concentrate on deriving or
verifying the difficult parts.

Chapter 28 teaches a practical method of programming that supplements expe-
rience and intuition with formal derivation. This chapter is only a very brief intro-
duction to program derivation and verification intended to show you that code (not
just specifications and designs) can be treated formally. The few examples in this
chapter were deliberately chosen to be very simple so you can follow them easily
and use your own intuition to confirm the results of the formal calculations. Deeper
examples are cited in the further readings.

Program derivation makes the connection between two formal notations: a math-
ematical notation such as Z and an executable programming language. There are two
popular styles of program derivation. The original axiomatic approach is closer to first
principles. The more recent refinement calculus approach can be more convenient.

Axiomatic program derivation and verification

When we write code, we should include comments to help explain how the code
works. Some of the most helpful comments are predicates that describe the state
of the computation when execution reaches a particular point. Here is our integer
square root function from Chapter 5 commented in this style:

int iroot(int arg)
/* Integer square root, using 1 + 3 + 5 + ... + 2%i-1 = i*i */
{

int i, term, sum;

/* 0 =< arg */
term=1; sum=1l;
for (i = 0; sum <= arg; i++) {
term=term+2; /* term = 2*i-1 */
sum=sum+term; /* sum =1 + 3 + 5 + ... + 2*i - 1 */
}

return i; /* 0 <= i*i <= arg < (i+1)*(i+1) */
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The comments show why the function works. What had seemed mysterious is
now obvious. But how was this code invented? And how can we make sure that the
code agrees with the comments? The axiomatic method shows how.

The product of an axiomatic derivation (or verification) is code with predicates (or
assertions) interleaved. The assertion before the beginning of the code describes the
precondition and subsequent assertions are stronger until the final assertion after the
end of the code describes the postcondition or goal. Each statement in the program
should make progress toward the goal by establishing a stronger predicate.

The axiomatic method considers the program state: the program variables and
their values. Executing a statement in an imperative programming language usually
causes the state of the program to change, for example a new value might be assigned
to some variable. We can characterize any program fragment by describing how it
changes the program state, using notation called the Hoare triple.

{(P}S{Q]}

P and Q are predicates in mathematical notation (the braces are merely delimiters),
and S is a block of code in our chosen programming language; it might be a single
statement or an entire program. If the program is in a state that satisfies predicate P,
executing the code S will result in a new state that satisfies predicate Q. This triple
defines the meaning or semantics of a block of code in the mathematical language
of predicates. P and Q are very much like the “before” and “after” states of a Z
operation schema; P is the precondition, and Q is the postcondition.

If S is a single programming language statement, a Hoare triple can be used
as a formal definition of that statement. You can define every kind of statement in
a programming language this way; the whole collection of definitions comprises
an axiomatic semantics of the language. Most popular programming languages do
not have a full axiomatic definition, but that is no obstacle, because we do have
definitions of the three basic constructs that are present in every imperative language:
assignment (= in C), branching (i f in C), and loops (while in C). These are

sufficient to express any algorithm; the other constructs are just conveniences that

can be expressed in terms of these three. You can do formal development in popular
programming languages such as C by first deriving code in the basic constructs
that have axiomatic definitions, and then using source language transformations to
reach more complex constructs. For example, in C you can transform the while loop
s; while (p) { u; t; } intothe forloop for (s; p; t) ul.Many
of the distinctive idioms that distinguish one programming language from another
(making C appear different from Pascal or Ada for example) can be expressed by
source language transformations.

! This transformation is only valid when the code fragment u does not contain the C continue
statement. Irregularities like this one make programs hard to verify.
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27.1.1

Assignment

Here is an axiomatic definition of the assignment statement that assigns the value of
expression e to variable x.

[eisdefined}x = e{x' =¢}

This can be read, “starting in a state where expression e is defined, executing the
statement x = e results in a state where the predicate x’ = e holds.”

The precondition here is a disclaimer against expressions that cause division
by zero, arithmetic overflow, and other actions that can crash the program or cause
undefined behavior. Expressing this predicate formally can be quite difficult because
itrequires detailed knowledge of the programming language and its run-time system,
the number representation, and so forth, We often just assume it is true. It is also
necessary that evaluating expression e does not have any side effects that change
the values of program variables (C permits the expression on the right side of the
assignment to be another assignment or a function call with side effects, but in those
cases our definition may not be valid). The assignment statement itself is written
here in the syntax of C which uses the equal sign, nevertheless assigment is different
from equality. The second predicate uses the same convention as Z to indicate that
the primed variable x’ is the value of the program variable x in the state after the
assignment.

There is a more useful axiomatic definition of assignment. We usually write code
with some goal in mind. This triple relates the goal (the postcondition Q) to the state
before the assignment

(Qle/x')}x = e{ Q)

Substitution in predicates corresponds to assignment in code; Qfe/x’] means predi-
cate Q with expression e substituted for x’ (from now on we assume that ¢ is defined).
QOfe/x'] is called the weakest precondition of Q with respect to the statement x =
e; it is the necessary and sufficient precondition for the executionof x = etoendin
postcondition Q. This definition makes it possible to derive assignment statements
from goals. Let’s say our goal is to increase the value of x: Q is the predicate x’ > x
so Qfe/x’lise > x. The single program variable x is modelled by two mathematical
variables x and x’ for the before and after states, respectively. Substituting these into
the definition we obtain

{e>x}x = e{x'>x}

To achieve our goal, we can choose any expression e that makes the first predicate
true. Many choices would work; we choose ¢ = x + 1 and obtain

[x+1>x)x = x+1{x'>x}
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27.1.2

This triple is a formal proof of correctness that the program x = x+1 satisfies its
specification x” > x. We say it is formal because it does not depend on our intuition
about how assignment works. It can be verified by merely comparing formulas:
Our triple matches the axiomatic definition, and its postcondition matches our goal,
therefore it is correct.

Control structure

What happens when we introduce control structure and multiple statements? Let’s
try a slightly more complicated example: Compute the truth value of the conjunction
P A q using short-circuit evaluation: Do not evaluate ¢ when p is false.

In C we can implement the predicates p and g with integer-valued expressions
where zero means false; any nonzero value means true. C provides a built-in and
operator && that is supposed to provide short-circuit evaluation so we could easily
implement p A q withp && q. For the purposes of this example we posit that our
compiler does not provide &&, or that it violates the language standard and always
evaluates both arguments to && (some programming languages, such as Pascal, do
evaluate both arguments to and).

We wish to evaluate p A ¢q as cheaply as possible. We happen to know that it is
cheap to evaluate p but quite expensive to evaluate g. It seems there should be two
cases (p could be true or false) so we try an if statement. We find this axiomatic
definition:

(U}
if (P {UApYSL{Vy)else{UA—=p)S2{(W)
{VVvWw}

The final predicates V and W depend on S1 and S2, which might be whole blocks
of code. We can treat this definition as a template and fill it in to match our problem
statement (here again, evaluating predicate p must not have side effects). We want the
same result from both branches so both V and W are p A g. We will return the truth
value of the conjunction in a variable so the final predicate becomes x’ < p A gq.
Here x’ is a Z predicate (not a variable) but it is implemented as the C integer variable
x. We guess that S1 and S2 will be assignment statements, but we don’t know yet
what the assignments will be. Filling in the definition { V[e/x'J}x = e {V } for
each assignment, we obtain:

{p and q are defined)

if (p){pHea©pArglx =e;{xX & pArg)
else{-~pHe o prglx = ea{x & pArg}

{(xX*&pnrq)
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27.1.3

Next we choose predicates e) and ez that make the two bracketed preconditions
true. Inthe i f branch pistrueso{e; © pAglis{e) <& true A g};inthe else
branch we have { e; < false A q }. We use two laws about and, true A q & q and
false A q & false, so e) is q, and e is false, which is zero in C. We have:

{p and q are defined)

if (p){pHaepPAglx =q:{xX & pnrg)
else{—~pH false s prqg)x = 0{xX S pAg}

(Yo pnrgl

There is one last detail. In the then branch we have two adjacent bracketed predi-
cates: { p {qg & p A g }. The first predicate p comes from the definition of i f, and
the second predicate ¢ & p A g comes from the definition of assignment. We have
two adjacent predicates in the else branch as well, and adjacent predicates like
these occur frequently in axiomatic program development. The program is correct
when the first predicate in each adjacent pair implies the second. These are verifica-
tion conditions: predicates that arise during formal verfication, that must be proved
to show correctness. We have two verification conditions, p = (g < p A ¢) and
= p = (false & p A q). These are clearly true, so our development is complete.
Removing the embedded predicates to make the code clear, we get

{ p and g are dcfined }
if (p) x = g; else x = 0
(X pArg)

We have derived the code if (p) x = ¢; else x = 0 and proved that it
satifies its specification x’ < p A ¢q. Many C programmers would apply a source
transformation to this result to take advantage of the C conditional expression, ob-
tainingx = p ? q : 0.

Perhaps you find this derivation excessively long-winded for such a simple result.

Section 27.2 demonstrates a more streamlined version. But first, we must show how
the axiomatic method deals with loops.

Exercise 27.1.2.1 Prove the two verification conditions.

Loops

We’ll use the integer square root example from Chapter 5. Here is a Z definition
for the iroot function that takes an integer argument a and returns its integer square
root r (in this version we’ve written out the predicates that say @ and r must not be
negative).
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iroot :N > N

Va:Ne (letr == iroot(a)
0<an
O<rxr<a<@+Dx+1)

We can extract the predicates from this definition to write the Hoare triple:
{0<a}R{O<rxr<a<(@+Dx@r+1))

We have to solve for the code R that computes the root r. The postcondition of the
triple can be seen as an acceptance test for r. It suggests an inefficient but effective
algorithm: Count up through the integers, testing each one until the root is found.
Counting suggests a loop, so we look up this axiomatic definition for the while
statement:

{1}
while (p) {(pAI}S{I' AV <v}
{~pAl}

Here p is a predicate called the guard, v is an integer expression called the variant or

bounding function, and § is the code in the body of the loop. If the guard is true, the
body is executed. Executing the body must cause the variant to decrease. When the
guard is false the program exits in the loop. / is a predicate called the loop invariant.
It must be true before and after the loop, so it must remain true after executing the
body of the loop.

Once again we treat the axiomatic definition as a template to fill in. We begin
by bracketing the definition with the pre- and postconditions from our Hoare triple.
Our algorithm counts up through the natural numbers so we initialize the loop with
r = 0;the body of the loop is simplyr = r + 1.

{0<a}

r = 0;

{1}

while (p) {pAl}r = x + 1; {I' AV <v}
{—-pAl)

{0<rxr<a<(r+D=x(r+1)}

Next we must choose the guard p and identify the invariant /, again by deriving
them from the specification. The conjunction — p A I at the exit from the loop must
imply our goal, the conjunction0 <r xr <a Aa < (r + 1) * (r + 1). We choose
the first conjunct 0 < r xr < a to be the invariant /, so the guard p must be the
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negation of the second conjuncta > (r + 1) x (r + 1):

{0<a}

r = 0;

{0<rxr<a}

while (a >= (r+1)*{(r+l1)) r = r + 1; {v < v}
{a<(r+D*x@r+1D)A0<rxr<a}
{(0<r*xr<a<(@+Dx*x@r+1)}

The last two adjacent predicates say the same thing, so the verification condition
is obviously true. This example illustrates a useful heuristic for designing loops:
Choose the invariant by deleting a conjunct from the goal. Then, to derive the guard,
simply negate the deleted conjunct. There is no need to wonder whether the guard
should say > or >=, r, or r+1. Algorithm design often turns on choosing the right
loop invariant. The invariant can be seen as a weakened version of the goal; each pass
through the loop makes progress toward the goal by conjoining a stronger predicate
to the invariant.

To confirm that execution of the loop terminates we must identify the variant, The
obvious answer is suggested by the guard: Let the variant v be the error or difference
that remains between the argumenta and the square of r+1,s0v = a—(r+1)x(r+1).
Each repetition of the loop will make this difference smaller until the guard becomes
false and execution terminates.

In general, a loop is correct if the five conditions in this checklist are all true:

Initialization (the invariant [ is ¢rue before entering the loop).

Invariance (the body of the loop preserves the invariant): { p AT} S {1 ).
Progress (the body of the loop decreases the variant): { p AT} S {v < v }.
Boundedness (when the variant falls below some constant k, the guard becomes
false): I Av <k=-p.

S. Exit (the invariant and the negation of the guard imply the goal or postcondition
Qr—-~pnl=Q0.

In our example all five conditions can easily be confirmed by inspection; more
difficult examples can give rise to verification conditions that are not so obvious and
must be proved.

The axiomatic method works best when the predicates and code are developed
together; the proof of correctness is a byproduct of the program derivation. When
the development is finished it is useful to retain the assertions as comments. Some
systems even provide a facility for checking such assertions at run time. Attempting
to verify an already written program is more difficult because the verifier has to
figure out which predicates to add. This can involve much guesswork and can result
in verification conditions that are difficult to prove. Nevertheless, attempting a formal
verification can be quite effective at detecting errors.

W~



262

Chapter 27. Program derivation and formal verification

27.2

Exercise 27.1.3.1 In our loop example, what is the value of the bound £?

Exercise 27.1.3.2 In our loop example, why did we not choose the other conjunct
a < (r +1) = (r + 1) to be the loop invariant?

Exercise 27.1.3.3 Prove invariance for our loop example.

Exercise 27.1.3.4 Apply source language transformations to produce a shorter
version from the code derived in our loop example.

Exercise 27.1.3.5 Which condition(s) in the checklist become false if the body of
the loop in our example is changed to r = r+2? If we substitute > for > in the
guard, or r forr + 1?

Exercise 27.1.3.6 The version of iroot in Chapter 5 (repeated in here in Sec-
tion 27.1) avoids multiplication by using the equation 1 +3+5+-- -4 (2i — 1) = i%.
Annotate that code with predicates and write the verification conditions.

Refinement calculus

A refinement calculus provides another way to document a formal development. It
can be more convenient than the axiomatic approach. Instead of axioms that define
programming language statements in terms of predicates, it uses refinement laws
that show how predicates can be replaced by programming language statements.
The left side of a refinement law is a mathematical formula, and the right side is
a code fragment, joined by the refinement symbol C.2 The refinement symbol can
be pronounced “is implemented by” or “translates to.” For example the refinement
law named Conditional predicate shows how disjunction can be translated to a C
conditional expression.

(pAqQYV(mpATr) E p?q:r [Conditional predicate]

On the left, the place-holders p,q, and r stand for predicates that are used as tests and

% The refinement symbol C is from Morgan [1994]. Unfortunately this symbol also has another meaning
in Z. 1t is the sub-bag relation symbol, which is defined in the Reference Manual but is not used in
this book.
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do not specify a change of state. Such predicates can be implemented in C as integer
expressions, where zero indicates false, and any nonzero value indicates true. The C
fragment p?q :r is an expression whose value is ¢ when p is nonzero and r when
p is zero. The place holders on the right side of the refinement law indicate that
additional refinement steps will be needed to translate each of these place holders to
code. For example this law says that false translates to 0 in C

false T 0 (C false)

A development in refinement calculus resembles an ordinary proof in the style of
Chapter 15, except some steps replace formulas with code. Here is a development
of our short-circuit evaluation code from Section 27.1.2 in this style.

PAG [Given]
&S (pAq)V false [pV false & p]
S(pAq)V(—pA false) [p A false & false]
C p?q: false [Conditional predicate]
C p?q:0 [C false]

This development can be read from top to bottom as a program derivation, or from
bottom to top as a proof of correctness. It follows a common pattern for refinement
calculus developments: First use ordinary laws to transform the formula until it
matches the left side of a refinement law, then use refinement laws to replace for-
mulas with code. This can be more compact and easier to follow than an axiomatic
development because the presentation is linear and there are no separate verifica-
tion conditions to prove; transformation from one mathematical formula to another
appears in the same chain of reasoning as the translation to code.

In refinement calculus developments, the refinement symbol C plays much the
same role that equivalence does in ordinary proofs. However the refinement symbol
is not a logical connective like equivalence because it does not join two predicates,
it joins a predicate and a code fragment. What does this refinement symbol really
mean? How can we check whether a refinement law is valid?

We can define our refinement symbol formally. Every refinement law can be
written P A @ C S, where P is a precondition, Q is a postcondition, and S is a
programming language fragment (often the precondition P is implicitly trur). This
refinement law is an assertion that the Hoare triple { P } S { Q } can be proved by the
axiomatic method. For example, here is a refinement law named Swap that shows
how to implement the operation where two variables exchange values.

X=yAy=xCt=x; x=y;y=t [Swap]
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This refinement law is an assertion that we can prove the Hoare triple
{true}t = x; x =y; y = t;{x’=yny =x}

Now that we have defined refinement in terms of axiomatic semantics, we know
how to check any refinement law to confirm it is valid. We can derive any number
of refinement laws from just a few axiomatic statement definitions.

Refinement laws provide a way of summarizing the results of axiomatic deriva-
tions so they can be reused easily. Refinement calculus developments are reusable
because the result of each development is a new refinement law that can contain place
holders. For example the results of our short-circuit development can be summarized

pAg E p?q:0 [Short circuit and]

Now we can reuse this result in other developments, just citing it by name. Likewise,
our Swap law is actually a special case of a more general law called Sequential
assignment that contains place holders:

¥=ex, DAY =exy) Ct=x x=exy);y=ellDy
[Seq. =]

When ¢;(x, y) = y and e2(x, y) = x, this reduces to Swap.

Many programs are largely built up from a few basic patterns that reappear again
and again. It is possible to create refinement laws that are matched to these pat-
terns. A collection of such customized refinement laws serves as a formalization
of a particular programming style and can help make formal program development
practical. In Chapter 28 we will present more refinement laws for translating Z to C
and demonstrate the method in action.

Exercise 27.2.1 Prove the Hoare triple for Swap: {true } t = x; x = y; y
= t;{(X=yAy =x}). -

Exercise 27.2.2 Prove thatthe code t = x; y = t; x = y does not cor-
rectly implement the swap operation.
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28.1

This chapter teaches a practical method for writing code from Z specifications that
supplements intuition and experience with formal derivation.

The preceding Chapters 26 and 27 on refinement and program derivation show
how to get from Z to code by purely formal methods, where each development step is
a formula manipulation. As you must have realized, it is rarely necessary to develop
an entire system in this completely formal way. The programming problems that
arise within a single project usually present a range of difficulty. Large parts of the
project may be so routine that there is no need for any formal description other than
the code itself. Only a portion requires specification in Z. In this portion, you might
refine only a fraction to a detailed design in Z. And in this fraction you might derive
and verify only a page or two of code. The rest is so obvious that it can be translated
to code by intuition and then verified by inspection.

Nevertheless, you can choose a strategy for implementing Z that you could justify
formally by the methods of Chapters 26 and 27 if you were challenged to do so.
This chapter presents such a strategy. When you have a formal specification, you
can check designs and code rigorously if doubts remain after informal inspection.

The examples in this chapter are in C. They could easily be adapted to other
programming languages.

Data structures

In Z we use just a few kinds of mathematical structures to model all of the complex
data structures we have to deal with in code. Z specifications can be much shorter
and clearer than code because they can leave out detailed data representations and
ignore efficiency considerations, but when you come to detailed design and coding
you must confront these issues. There are many different ways to implement each
mathematical structure; your choice of data structures will depend on the amount of
data they must hold, the resources available in your target computer system, and the
performance required of your application.
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28.1.1

Z basic type declarations, free type declarations, and certain abbreviation def-
initions are usually implemented by data type declarations in the program. Some
Z axiomatic definitions and abbreviation definitions can be implemented as data
structures whose contents rarely change, such as program constants and data files.
State schemas are usually implemented as program variables that hold mutable data
structures whose contents can change frequently.

Sets

Free types in Z are a good match to the enumerated types provided in many pro-
gramming languages. Small sets can be implemented by arrays of boolean flags,
where there is an array index for each element in the type, and the flag tells whether
the element is present in the set. In Section 23.2.2 we declared a free type to model
power supply faults:

FAULT ::= overload | line_voltage | overtemp | ground_short

—PS

faults : P FAULT

In C this can be implemented by

typdef enum { OVERLOAD = 0, LINE_VOLTAGE,
OVERTEMP, GROUND_SHORT } fault;

#define N_FAULTS GROUND_SHORT + 1

int faults[N_FAULTS];

C array indices start at zero so this code defines OVERLOAD to be the index of the
first array element. Subsequent values in the enumeration index successive elements
in the array. The array declaration reserves one element for each enumeration value.
In C the size of the array is one greater than the index of the last element.

Larger sets are modelled by other data structures. For example the set of all the
subscribers to some service

[NAME]

| subscriber : PNAME
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could be implemented by a data file. In addition to the actual text of the subscriber’s
name, each entry might include additional identifying information, so each element
of NAME would be implemented by a C structure (this is called a record in many
other languages). If the number of subscribers is large, the file should be organized in
some way that enables it to be searched quickly, so the name records might include
keys as well.

/* NAME */

typedef struct

{
char name_string[name_length];
int id;
int name_key;

} Name;

/* Subscriber set, a file of Name */
FILE *subscriber;

28.1.2 Relations

Z relations often represent data structures, such as this telephone directory:

phone : NAME &+ N

dom phone = subscribers

This relation is a set of pairs of type NAME x N. The pair can be implemented by a
C structure and the relation could be a file or an in-memory data structure organized
to permit rapid search and retrieval.

/* Phone record */
typdef struct
{

Name name;
int phone_num;
} phone_rec;

/* Phone relation, a file of phone_rec */
FILE *phone;
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28.1.3

28.2

Functions

Zfunctions often represent data. A function is a binary relation where the first element
of each pair is unique, so functions can be implemented by files or data structures
where each item has a unique key. The keys correspond to the domain of the function,
and the items stored in the structure correspond to the range. The simplest example
is the array: The array indices are the domain, and the array elements are the range.
For example these two Z functions

| wv:Z->7Z
can be implemented by two C arrays

int uln], vinl;

State schemas

State schemas are usually implemented by mutable data structures whose contents
can change frequently. If the system will contain just a single instance (binding)
of a schema type, then the state schema can be implemented by ordinary program
variables, and the binding is just the values which those variables hold. For example
the trivial state schema § with two integer state variables x and y

S=[x,y:Z]
becomes this declaration for two program variables
int x,y; /* state schema S */

Alternatively, a state schema can be implemented by the declaration of a C structure
(a record in other languages). The members of the structure (fields of the record) are
the state variables in the schema. Bindings of the schema type are implemented by
variables which are instances of the structure (record) type, so it is possible to have
many bindings of a single type. Implemented in this style, schema S becomes

/* Schema type S */
typedef struct
{
int x,y;
} S;

Now we can declare several variables which are instances of this schema type, so
the Z declaration
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| sa.sb,sc:S
becomes
S sa, sb, sc; /* instances of schema type S */

The power supply schema from Section 23.2.2 provides a more realistic example.

PS
r contactor : SWITCH
preset, setpoint, output : SIGNAL
faults : P FAULT

Jaults # @ = setpoint =0
contactor = open = setpoint = 0
contactor = open = output < €

This can be implemented as follows. The typedef directive makes it possible to
use similar type names in Z and C code.

typedef int signal;
typedef enum { OPEN, CLOSED } switch;

/* PS state */
typedef struct power_supply

{
switch contactor;
signal preset, setpoint, output;
int faults [N_FAULTS]}

} PS;

The predicate of a state schema is an invariant which places restrictions on the values
that its variables can take on. Invariants do not correspond directly to any construct
in a programming language. Instead, we must write the executable code to ensure
that the invariant is always true.

In large systems there are often many instances (bindings) of the same schema
type, and the records that implement bindings are built into larger structures. In the
accelerator, power supplies are collected into subsystems. For example, the Beam
Line subsystem includes the supplies for Quadrupole Magnet 1, X Steering Magnet
1, and several others. This is modelled in Z by a set of power supply names and a
function from power supply names to bindings.
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bips == {q1, x0, x1, y1, swm, bend, q2a, q3a, xwob, ywob}

Cyclotron

beam_line : blps —» P S

This can be implemented by an array of records indexed by name.

typedef enum { Q1=0, X0, X1, Y1, SWM, BEND, Q2A,
Q3A, XWOB, YWOB } blps;

#define N_BLPS = YWOB + 1

PS beam_line[N_BLPS];

28.3 Refinement from Z to code

This section describes a development method based on refinement laws as described
in Section 27.2. In this method much program derivation can be reduced to sys-
tematic substitution: You just replace formulas with fragments of code. Wherever
a formula from your specification matches the left side of a refinement law, you
can replace it with the code on the right side of the law. Much verification can be
reduced to inspection: Compare each piece of specification to the corresponding
code, confirming that they match a law. Of course, most specifications have sections
that are too intricate to match the predefined laws, and these require additional work.
Nevertheless the laws can often get you to a mostly complete program with a few
difficult parts left to fill in later. As we shall see, there are formal ways to attack the
difficult parts as well.

I do not attempt to provide a universally applicable set of refinement laws. Instead,
I advocate creating a collection of refinement laws for each application, customized
for its own data structures and programming style. The laws presented here are just
examples to help you get started.

As explained in Section 27.2, any valid refinement law can be proved correct by
axiomatic methods, but I present these laws without proof. In your own work, you
are free to justify your refinement laws in any way you choose; a simple appeal to
intuition may be sufficient. Writing down the refinement laws you use is valuable
even when you provide no proof because the laws summarize the assumptions upon
which the correctness of the code depends. If doubts arise about the validity of a
refinement law, you can resort to a more formal justification.
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28.3.1

2832

Naming conventions

The method depends on matching formulas from your specification and fragments
from your code with place-holders in the refinement laws, so the naming conventions
used for the place holders are quite important.

The most important convention arises because predicates are used in Z in two
quite different ways. Used in the first way, predicates are descriptive: They describe
situations where specifications are applicable, and they might be true or false. In
operation schemas, preconditions that only contain unprimed state variables and
input variables are examples of these descriptive predicates. In our refinement laws,
descriptive predicates are indicated by the place holders p, q, and r; p(x) and so
forth indicate a descriptive predicate that contains the (free) variable x. Descriptive
predicates are implemented by code that merely evaluates or tests the predicate
to determine its truth value but has no side effects that change the values of any
state variables. In C these tests become integer-valued expressions or functions that
contain no assignments to global variables.

Used in the second way, predicates are prescriptive: Such predicates are always
true; they assert that the variables in the predicate must have values that make the
predicate true. In operation schemas, postconditions that contain primed state vari-
ables and output variables are examples of prescriptive predicates. In our refinement
laws, prescriptive predicates are indicated by the place holders s, ¢, and u. Pre-
scriptive predicates are implemented by code that can assign new values to global
variables.

Another important convention is that expressions (including function applica-
tions) are indicated in our refinement laws by e or ¢, e2, and so forth for arbitrary
expressions that might contain any variables, and e(x) and so on for expressions
that might (but need not) contain the (free) variable x and so forth. Qur refinement
rules require that evaluating an expression in the C implementation returns a value
but has no side effects that change the values of any state variables. This prohibits
certain idioms favored by some C programmers, such as expressions that include
assignments and other C operators, such as ++ that can change variable values.

Expressions

Implementing expressions is easy. We merely use the obvious substitutions for our
programming language. In C the arithmetic operators +, *, div, and mod become
+, *, /, and %. Moreover, Z descriptive predicates are implemented in C as integer-
valued expressions where equality (=) becomes (==), inequality (#) becomes
('=), the logical connectives A and v become && and | |, and so on, relational
operators < and < become < and <= and so forth, and the two truth values false
and true become zero and any nonzero integer, respectively. We justify refinement



272

Chapter 28. From Z to code

28.3.3

steps that use these substitutions by appealing to a single law called C operators, for
example:

xmod2#0 [Given]
C x%2 !=0 [C operators]

Set membership

Each set membership test depends on how the set is implemented, and there are lots
of possiblities. When the set is implemented by a data structure, thc membership
test is implemented by searching for the element in the structure. Without knowing
more about the data structure, we have to express the right side of the refinement
law informally:

x € s T Search for x in data structure s {Membership (data structure)]

For example, when the set is implemented by a file, as in the subscriber database of
Section 28.1.1, the membership predicate

name? € subscriber

would be implemented by code that searches the file for a particular record (and
possibly stores it in a cache of recently accessed records).

With more information about the data structure, we can formalize the right side of
the law. When the set is implemented by an array of (integer) boolean flags indexed
by the element names as recommended in Section 28.1.1, the membership test is
simply the value of the array element at the index, where a nonzero value indicates
that the element is a member of the set.

x€s E s[x]) [Membership (Boolean array)]

For example in the power supply example of Section 28.1.1, we can have the Z
membership predicate

overtemp € faults
In C this is simply the value of the array element
faults [OVERTEMP]

where a nonzero value indicates that the fault has occurred. Other set implementa-
tions require different refinement laws.

Some sets are not implemented by data structures because they are too large. In
those cases we determine set membership by testing the predicate that defines the
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2834

set. This can be formalized by appealing to an ordinary law about set comprehension
xex:X|px)} & pk) {Comprehension]

We apply this law to implement predicates which are disguised membership tests.
For example odd(x) is true when x is a member of the set of odd integers. We can
derive the C code x%2 this way:

odd(x) [Given]
& x € (odd.) [Prefix relation syntax]
exe{x:Z|xmod23#0} [Definition]
o xmod2#0 {Comprehension]
E x%2 !=0 [C operators]
= x%2 [C true)

In this simple example we could easily derive the code by inspection, but we write
out the formal derivation in great detail here because it illustrates a strategy that can
be applied to more difficult problems: Express the Z formula in standard syntax,
replace identifiers by their definitions, simplify using ordinary laws, then translate
to code and simplify the code. The last step here is to replaces the C expression x$2
!= 0 with the simpler equivalent x%2. This step can be justified by the source
language transformation

e '=0=c¢e [C true]

This law follows from the C convention that logical true is represented by any
nonzero integer, so the truth value of e != G (e is not equal to zero) is the same
as the truth value of the expression e itself. This example also shows that source
language transformations can be represented in a similar form to refinement laws,
but we introduce yet another symbol for them: The source transformation symbol
(=) signifies that two programming language fragments mean the same thing (This
symbol is not part of Z itself).

Function application

Functions might be implemented by data structures or executable code, so the infor-
mal refinement laws are

u(x) © Find item in u with key x [Function application (data structure)]

f(x) T Evaluate £ with argument x [Function application (executable code)]
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In the cases where data structure u and function f are implemented by an array and
a C function, respectively, these become

u(x) C ulx] [Function application (array)]
f(x) C £(x) {Function application (C function)}
Assignment

The simplest refinement law for prescriptive predicates occurs where the primed
after variable has the same value as the unprimed before variable. These predicates
require no code at all!

x' = x T (empty statement) [Skip]

The next simplest law is Assignment. In a context where only one variable can change
value, equality can be implemented by assignment:

X =eny=yAZ=zA...Ex =¢ [Assignment]

This law only applies in contexts where just one variable changes value. When
there are several variables, we cannot simply replace equations with assignments
because the assignments might interact: For example, we cannot implement the swap
operation x’ = y A y’ = x with the naive solution x = y; y = x. Equations
can appear in any order, but we must do a data flow analysis to determine the order
in which the assignments must be performed.

Let’s do the data flow analysis for a pattern that is pervasive in state transition
systemis: At each transition, new values are assigned to each state variable, based
only on the previous values of one or more variables. In Z it looks like this:

Op
AS

—

x' =e(x,y)
Y =exx,y)

Most of the operation schemas in this book include instances of this pattern. The
analysis is easy because this definition is constructive: The after (primed) variables
appear by themselves on one side of an equation; furthermore, the other sides of the
equations only contain the before (unprimed) variables. We can use new variables
to store initial values, and order the assigments so no variable is used on the right
side of an assigment after it has appeared on the left of another assignment after
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initialization. The Sequential Assignment law we quoted in Section 27.2 records the
solution for two variables.

X =etx, ) Ay =ea(x, ) A2/ =2z... C

t =x; x = ei(x,y); ¥ = ext,y)

Here z’ = z is needed to prevent the left side from matching predicates with more
than two variables. Similar laws can easily be derived for three or more variables.
In the special case where the variables do not interact, we don’t need the temporary
variable. We can express this in the law Independent Assignment

Y=eifx) Ay =ey) E x = ei(x); v = exy) (Independent =]
Sequential assignment often appears slightly disguised as a sequence of function
calls; the assignments are in the function bodies.

Not all prescriptive equations can be directly implemented by assigments, because
the Z variable that appears in the equation might denote a program variable which
cannot be the target of an assignment. This occurs when the program variable is a
complex data structure. For example the set union operator indicates that more ele-
ments should be added to a data structure, but without knowing more implementation
details we can only express this informally:

S§' = SU{x)} T Putxindata structure s [Union]

When the set is implemented by an array of Boolean flags, we add an element by
setting its flag to any nonzero (true) value. This can be formalized

§S'=8U{x} C s[x] = TRUE [Union (Boolean array)]

In the power supply example from Section 28.1.1 we use set union to express that a
fault has occurred

faults' = faults U {overtemp)
In C this becomes assigment to an array element
faults[OVERTEMP] = TRUE;

where TRUE is any nonzero integer. Other set implementations require different
refinement laws. '
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Guarded command

A common pattern specifies that a change of state should occur when a precondition is
satisfied. This can be implemented by an i f statement, as described by the Guarded
Command law.

pAs T if (p) s [Guarded command]

The descriptive predicate p and the prescriptive predicate s appear on the right side
of the law, so it takes a few more refinement steps to reach code. For example here
is the development of x = e; A x’ = e3:

x=e Ax =€ [Given]
Cif (x=¢€) X' =e [Guarded command]
Cif (x == ¢;) X' =€ [C operator]
Cif (x == ¢1) x = & [Assignment]

The first equation becomes a test, and the second equation becomes an assignment.

Disjunction

Disjunction is implemented by conditional branching, as expressed in the Case
Analysis law.

(pAs)V(@At) C if (p) s; else if (q) ¢ [Case analysis]

This only makes sense when p and ¢ describe distinct (nonoverlapping) situations,
so only one of the predicates can be true. Here ¢ itself might be another disjunction,
so we can apply the law repeatedly to obtain the results

(pASYV@A)v(raAuw...C
if (p) s; else if (q) t; else if (r) u ...

There are some useful special cases. Sometimes there are just two mutually exclusive
alternatives

(pAs)V(pat) E if (p) s; else t [Branch]

When s and ¢ are equations that describe the same variable, we can take advantage
of the conditional expression syntax of both Z and C. This ordinary law describes
the Z conditional expression

(pAx' =e)) V(- pAx=e) & x' =if pthen e else e; [Z Cond. expr.]
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This refinement law shows how to implement the conditional expression

if pthenej elseez T pre :ezk [Conditional expression]
The conditional assigment law follows from these two

(pAX =e)V(mpAx'=e) C x = p2e;:e;[Conditional assignment]

Descriptive predicates that express two mutually exclusive alternatives can also be
implemented by a conditional expression, as we saw in Section 27.2,

(pAg)V(—~pAr) € p?q:r [Conditional predicate]

Conjunction

There is no direct way to implement conjunction in general. Our guarded command
and sequential assignment laws show how to implement certain conjunctions, but
these are special cases where the conjuncts hardly interact. When both conjuncts
are prescriptive predicates that constrain the same variables, no generally applicable
refinement law exists.

Here is a simple example that illustrates the difficulty. In Section 12.2.1 we defined
integer division of a number n by divisor d, yielding quotient ¢’ and remainder 7’.
We defined Division by conjoining Quotient and Remainder, where the predicate of
Quotient is

d#0An=q xd+r
and the predicate of Remainder is
r'<d

These do not match any of our assignment laws because the results ¢’ and r’ are not
defined constructively. They do not appear by themselves on one side of an equation;
they appear together on the same side. Nevertheless we can easily see solutions to
both predicates separately. Quotient is true when ¢’ = 0 A r’ = n so it can be
implemented by ¢ = 0; r = n; Remainder is true when r’ = 0 so it can be
implemented by r = 0. But there is no way to combine these two code fragments
to produce an implementation of their conjunction, Division:

d#0An=gq' xd+r' Ar' <d

The whole problem is to find values for ¢’ and r’ that satisfy both conjuncts at the
same time. Here is a solution that finds the quotient by repeated subtraction:

for (q =0, r=n; r>d; g++) r =r - d
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This kind of situation often arises from conjunction: A solution cannot be assembled
from components; it is necessary to find or invent an algorithm that solves the whole
problem at once. Usually no simple refinement laws apply. If a formal solution is
desired, it is necessary to resort to axiomatic methods.

Exercise 23.8.1 Derive an implementation of Division using the axiomatic method
for developing loops.

New variables

It is often necessary to add new program variables to the implementation that are not
present as mathematical variables in the specification. For example, our sequential
assignment law uses the new program variable t to store the value of the mathe-
matical variable x, the initial value of the program variable x. Another reason for
introducing new variables is to factor out repeated expressions which are too lengthy
to write or too expensive 1o evaluate more than once.

New variables in programs correspond to local definitions in Z. The ordinary law
Local definition says that we can factor out an expression e and replace all of its
occurrences by a new variable x:

54 (letx ==ceos[x/e)) [Local definition}

where s[x/e] means predicate s with all occurrences of expression e replaced by
variable x. The New Variable refinement law shows how to implement predicates-
with local definitions.

(letx ==ceos(x)) C x = ¢; s(x) [New variable]

Here we apply these laws to implement the guarded command p(y') A y' = f x,
where the primed variable y’ appears in the guard.

pOYAY =fx [Given]
Sp(foOony =fx [Expand first y'}]
S(lett == fxept)ry =1) [Local definition]
Ct=1fx; p)ny =t [New variable)
Cta=fx; if (p@)) y =t [Guarded command]
Ct=fux; if (p(t)) v =t [Assignment]
Ct=f£f(x); if (p(t)) ¥y = ¢ [C operators]
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28.310 Quantifiers

Predicates involving sets and quantifiers are implemented by loops that iterate
over the elements of the set. Descriptive predicates test the elements; the universal
quantifier requires that every element pass the test, and the existential quantifier
requires that at least one element passes. The implementations assign the truth value
of the quantified predicate to the boolean flag b.

Vx:Sep(x) C b =1; for (xinS) if (!p(x)) b = 0

{Universal test]

dx:Sep(x) T b = 0; for (xinS) if (p(x)) b = 1

[Existential test]

The iterator for (x in S) is expressed informally because it depends on how we
implement the set S. This code works correctly when S is empty: Universal test
returns true and the existential test returns false.

If the set S is implemented by the array s so each array element s [i] corresponds
to one set element x;, we can reach all the elements by iterating over the array index.
For an array with n elements, the first law becomes

Vx:Sepx) C
b=1; for (i = 0; 1 < n; i++) if (!p(s[i]))) b =0

This law is now completely formal, but the place-holder predicate p still appears
on both sides of the refinement law. We need an additional refinement step to re-
place p(s[i]) with code. For example if p(x) is odd(x) we can use the result from
Section 28.3.3 to replace p(s [1]) with s [1] %2. Development using a refinement
calculus typically proceeds in this fashion, replacing mathematical formulas with
fragments of code until only code remains.

Prescriptive predicates assign new values to elements, as described informally
in these two laws. Universally quantified predicates assign to every element while
existentially quantified predicates can nondeterministically assign to any or all el-
ements. Existentially quantified predicates often contain additional restrictions that
confine the assignment to one particular element.

Vx:Ses(x) E for(xin$) s(x) [Universal assignment]

dx: S es(x) © Choose any or all x in S; s(x) [Existential assignment]
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28.5

Functions and relations

Our refinement laws show how to translate formulas to executable code fragments,
but we need to incorporate these fragments into some larger structure in order to
produce a program. Z specifications have structure: Formulas are collected into
paragraphs such as axiomatic definitions and schemas. These Z paragraphs can be
made to correspond to programming language units in the implementation such as
functions, procedures, and methods.

Some axiomatic definitions can be implemented as functions: executable program
units that can the read the program state and return results but have no side effects
that change the program state by assigning new values to global variables.

Z relations that are used as predicates can often be implemented in C by functions
that return integer values, with zero indicating false and any nonzero value indicating
true. In Section 28.3.3 we showed that the Z predicate odd(x) could be implemented
by the C code fragment x%2. The Z relation (odd-) can be implemented by a C
function that performs the test. Here is the definition of the Z relation

Vi:Zeodd(i) & imod2+#0
Here is the definition of the corresponding C function

int odd(int i) { return i%2; }

Z functions that return values, such as our integer square root example from
Chapter S, can also be implemented by C functions. The argument of the function
belongs to the domain, and the value retumned by the function belongs to the range.

iroot :N—-> N

int root(int a) { ... }

Here the returned value is the integer square root, not just a boolean flag.

Operation schemas

In Z, operation schemas usually model changes of state. They can be implemented
by procedures that can change the program state by assigning new values to global
variables. A procedure is a programming language construct that can change global
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variables. In C, procedures are implemented by the same construct as functions,
which happens to be called function. In my C examples, I distinguish procedures
by declaring their type to be void to indicate that they do not accomplish their work
by returning a value.

When there is just a single binding of a schema type and it is implemented by a
program variable, there is no need to pass a parameter to the procedure that imple-
ments the operation schema. The procedure can simply update the global variable.
In C this is indicated by using a void parameter list. For example the Z schemas

S=[x,y:Z]
Op=[AS|xX=x+y]
Can be implemented

int x, y; /* State S */

void op(void) ( x = x + y; }

Bindings

In more complex systems the Z binding operator is often used. Here is a simple
example to show how it works. The operation SumOp has the same effect as Op but
all the work is done by applying the function sum to a binding of S.

VS esum@S)=x+y

SumOp = [ AS | x' = sum(85) ]

When you see the Z binding operator theta, as in 8 S, all the identifiers declared in the
schema $ are in scope. In this example x and y are in scope in the function sum. When
there is only a single instance of S implemented by a global variable, the implemen-
tations of sum and SumOp don’t need any passed parameters. Access to the binding
is implicit in references to global variables. They can be implemented this way:

int x, y; /* Single binding of schema type S */

int sum(void) { return x + y; }
/* theta S is global */

void sum_op({void) { x = sum(); }
/* apply sum to theta S */



282  Chapter 28. From Z to code

When there are multiple instances of S, the binding must be made explicit in the
code as passed parameters, as in this example:

/* Schema type S */
typedef struct
{
int x,y;
} S;

S sa, sb, sc;
/* multiple bindings of schema type S */

int sum(S *s) { return (*s).x + (*s).y; }
/* theta S is a param. */

void sum_op(S *s) { (*s).x = sum(s); }
/* apply sum to theta S */

I use the syntax (*s) .x here instead of the more usual s->x to emphasize the
similarity to (6.5).x in Z; the definition of sum could be written sum(6S) = (65).x +
©S).y. :

A more realistic example of a large system with multiple bindings of a single
schema type appears in our accelerator case study in Chapter 23. Some relevant
declarations appear in Section 28.2. Operation schemas from this system can be
implemented as procedures where the structure, which is the target of the operation,
is a passed parameter. We need to update members in the target structure, so in C
the parameter must be a pointer. For example here is a (simplified) version of the
TurnOn operation that turns on a power supply.

— TurnOnPS
APS

contactor’ = closed
setpoint’ = preset

This is implemented

void turn_on_ps(PS *ps)

{
ps->contactor = CLOSED;
ps->setpoint = ps->preset;
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As explained in Section 28.3.10, quantifiers are often implemented by loops. This
schema from Chapter 23 specifies the operation that turns on all the power supplies
in a beam line.

— TurnOnBL
ACyclotron

V ps : blps ¢ 3TurnOn e
OPS = beam_line ps A @ PS' = beam_line' ps

This procedure can be implemented by turn_on _bl, which uses the blps enu-
meration and N_BLPS constant defined in Section 28.2. In this example there is only
one beam line so there is no need to pass it as a parameter; the procedure can simply
refer to the global variable. The body of the procedure is implemented according
to our Universal Assignment law from Section 28.3.10. The outer bound variable
ps is the loop index; it iterates over all the power supplies in the beam line. The
inner existential quantifier merely associates the TurnOn operation with the proper
supply, which is implemented by passing the pointer to that supply in the call to
turn_on_ps.

void turn_on_bl (void)

{
blps ps;
for (ps = 0; ps < N_BLPS; ps++)
turn_on_ps (&beam_line[ps]);
}

Partial operations

We must be careful about preconditions when we implement partial operations. If the
precondition of a Z operation schema is not satisfied, the final state of the operation
is undetermined. In Z we are careful to combine such partial operations in schema
expressions so that the combined operation is total: Its final state is defined for all
possible input states. However, in code we sometimes implement partial operations
by separate procedures whose results are combined elsewhere. In that case, it is
essential that each such procedure leaves the state unchanged if its precondition is
not satisfied. For example, the predicate in Partial says that the assignment to y can
be made only if the final value y’ would satisfy predicate g:



284

Chapter 28. From Z to code

28.6

__Partial
AS

pOYAY =fx

The predicate p should be tested with the final value y’, not the initial value y.
The development in Section 28.3.9 derives a correct implementation that uses a
temporary variable to store the result of evaluating f x.

void partial (void)
{

int t;

t = £(x);
if (p(t)) y = t;
}

This has the intended effect of leaving the state unchanged if p(y’) would be
false.

Schema expressions

Schema expressions contain multiple schema references joined by schema calculus
operators. Section 28.5 recommends implementing operation schemas by proce-
dures, but this does not mean you should separately implement each schema in a
schema expression. It often works better to expand the schema expression to a sin-
gle schema according to the laws of schema calculus. Then you can write a single
procedure that implements the expanded schema. This has many advantages; for
example it often removes the necessity for dealing with partial operations.

For example schema disjunction often expresses case analyses. In this example
the final state of Op12is S1 or S2, depending on predicate p

Opl =[AS | p A ST]
Op2=[AS|—pAS2]
Opl12 = Opl v Op2
This schema expression is useful for purposes of description because it makes the

cases explicit, but expressing it as a single schema box shows the best way to an
implementation:
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— Opi2
AS

(pASI)YV(~pAS2)

This can be implemented by applying the Case Analysis refinement law:
void op_12(void) { if (p) S1; else §2; )

Sometimes we must expand schema expressions in order to do the data flow analysis,
as in this example

OpX=[AS | px) Ax' = fy]
OpY =[AS | q(y) AY =g x]
OpXY = OpX A OpY

Expanding the schema expression reveals

— OpXY
AS

px) A q(y)
i=fyny =gx

We must test both preconditions before doing any assignments, use a temporary
variable, and order the assignments correctly:

. void op_xy (void)

{
int t;
if (p(x) && qly)) {
t =x; x=£(y); ¥y = glt);
}
}

28.7 Modules and programs

A collection of related Z paragraphs can be implemented by the larger programming
language constructs variously named modules, packages, or classes. In languages
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such as C that do not provide such constructs, some large-scale structuring can be
achieved by placing the declarations of related program units together in a single
header file and defining them together in a single file of related variables, function
definitions, and supporting code.

A Z state schema, along with the operation schemas that include it and the def-
initions they use, can be implemented by one module. When one Z state schema
includes another, this can be implemented by a module dependency, or inheritance
in an object-oriented programming language. In C it can often be implemented by
including a header file.

The Z notation itself has no structuring construct for collecting together related
Z paragraphs. It is up to you to choose a layout and use informal prose text to make
the intended organization of your Z paragraphs clear.

Z has no built-in concept of a program or any explicit control structure, and Z
users often do not write any formal definition of the “main program” or “top level”
that invokes the appropriate operation schemas when they are needed. Nevertheless,
we often have to implement the top level anyway. It is usually intended that any
operation whose preconditions are satisfied will be executed promptly, so we have
to code the machinery to make that happen. That machinery can be defined formally,
and the formal definition can help show the way to the implementation.

A top level system definition in Z is often determined by a collection of operation
schemas. We can tell which operation schemas are at the top level because they are
not included in any others. If we call these top level schemas Opl, Op2, ..., OpN
then the formal definition of the main program is just the disjunction of these
operations.

Main = Opl v Op2 v ... v OpN Vv Exception

This is just like any other schema disjunction and can be implemented by all the
same techniques. The precondition of each top level operation should be differ-
ent from all the others, and together all the preconditions should cover all possi-
ble cases. It is a good idea to include an Exception operation to handle any cases
that might have been overlooked. The precondition for Exception is usually im-
plicit in the program logic: Control reaches Exception when no other operations are
invoked.

A simple but effective programming strategy applies the Case Analysis law, im-
plementing each operation such as Op1 with two program units: a boolean function
test_1 that tests its precondition and a procedure do_1 that performs the state
change by executing assignments. The heart of the main program is a loop that
repeatedly tests preconditions and executes any enabled operation until some exit
condition is reached. This can be made into an event-driven system by adding a
statement at the beginning of the body of the loop that waits for events.
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#include

main{(...)

{
while (ok)
{
get_event () ;
if (test_1()) do_1();
else if (test_2()) do_2();
else if (test_n{()) do_n();
else exception();
}
}

This program is an example of an event-driven state transition system. Each
of the test functions can examine the most recent event to determine whether
its do operation should be invoked. Executing each operation’s do procedure can
change the program state so a different operation becomes enabled (a different test
function will succeed on the next pass through the body of the loop). Control reaches
exception if none of the other preconditions are satisfied.

A larger example

A specification that appears quite complicated might turn out to have a simple
implementation. This example shows how to untangle complicated definitions. It
is based on several pages of axiomatic definitions and schemas from a real formal
specification. Its authors closely followed the organization of the original prose
requirements document, which described several different but similar cases.

In the original formal specification, the schemas and functions had long names and
contained complex expressions. Mnemonic names help convey the intended meaning
of a specification and are needed during reviews and validation, but they can distract
you from seeing the mathematical structure and they make calculations cumbersome.
The first step in the development was to extract the Z text from the surrounding prose
and rewrite it, representing complicated expressions with functions and relations,
and using simple identifiers in place of mnemonic names. This was the result:



288

Chapter 28. From Z to code

[A9 X’ Y! Z]

x1:X;»m:Y
p-PA g X oY
g h:Y>Z, f:ZxZ—>1Z

S=[a:A; x:X;y:Y;, z:2Z]

OpX=[AS|ad =a nx' =x]

Opl = [OpX | p@) AY =y AZ =2]

OpY = [0OpX | = p(a) A Y’ = 2]

Op2 = [0pY | q(x', Y'Y A2 = f(z, 8(y'))]

Op3 =[0pY | —qW',y) A2 = f(z, h(y'))]

Op = Opl v 0Op2 v Op3
This shows that the specification concerns a single state schema § with four state
variables, two global constants x| and y;, two descriptive predicates p and g, and
three functions f, g, and k. It defines an operation Op composed of three alternatives
Opl, Op2 and Op3, which are defined in terms of two operations OpX and OpY.

The next step is to expand the final merged operation schema Op according to
the rules of the schema calculus. We obtain

__Op
AS

a=a
x' =x
@Ay =yrd=2V
—p@AY =yA
(@', Y)ANZ = f(z, 80 v
(—qG&" Y)YAZ = fz, k(DN

Now let’s work on the predicate. Eliding the complicated bit at the end for now,
we have

d=anx'=xn((p@Ay =yrd=2)v(=pla)rny =y rs)

Let’s pick up the pace a bit. There is no need to write out every step, we can easily
see that this translates to

x = x1; if (!'p(a)) {y = v2; s}
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We only need to implement s
@O YIYNZ = fz,g0M V (— (', YY) A2 = f(z, h(Y))
We observe that the pattern z’ = f(z, e) appears in both disjuncts. It can be factored
out this way
7 = (lett == if g(x’, y') then g(y") else h(y') e f(z, 1))
According to Conditional Expression and New Variable this becomes

t = q(x,y) ? gly) : hiy); z = £(z,t)

Putting all the pieces back together, we obtain the following code. In the actual im-
plementation, the symbolic identifers are replaced by the original mnemonic names.
The state schema S is implemented by a collection of global variables, and the op-
eration schema Op is implemented by a procedure that uses them. The predicates
p and g are implemented by functions that return integers and the functions f, g,
and h are implemented by C functions that return the appropriate types. For brevity
here we say that types A, X, Y and Z are all integers, and we elide all the function
bodies with dots.

typedef int A, X, Y, Z;
Aa; Xx,x1; Yy, y2; Z z;

int p(A a) { ...}
int g(X x, Yy) { ...}

Z2g(Yyy) { ...}
Zh(Yy) { ...}

z £f(z z, Z t);

void op(void)

{

Z t;

x = x1;

if (!p(a)) {
Y = ¥2;
t = a(x,y) ? gly) : hiy);
z = f(z,t);

}
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28.9

289.1

289.2

Exercise In this development we implicitly used a new law:

(pAx'=f(z,e) V(mpAXx = f(z,e))
& x' = (lett ==if pthenej else ey o f(z,1))

Prove it.

A final example

In this example we allocate the implementations of Z paragraphs to functions and
files, choose data structures to efficiently implement Z types, and derive code that
implements operators from the Z tool-kit.

In this example we’ll implement the interlock system described in Section 22.2.2.
Figure 28.1 shows the Z specification and Figures 28.2 and 28.3 at the end of the
section show the C implementation. A programmer familiar with both notations
could write the code by inspection, but it is possible to explain the rationale and even

" justify many of the steps formally.

Program units

The specification is based on two state schemas, Field and Intlk. It is implemented
in four C source files: field.h, field.c, intlk.h, and intlk.c. The two
header files field.h and int1k.h contain declarations that are used elsewhere
in the implementation. The two . c files contain definitions whose internals are not
needed elsewhere in the implementation. This example concentrates on intlk.c;
the contents of £ield. c are not needed to explain the example so field. c does
not appear in Figure 28.3.

State variables in the Field and Intlk schemas are implemented by C program
variables defined at file level in field.c and int1k. c, respectively. Operation
schemas that include the Field state only are implemented as C functions defined in
field. ¢, and operations that include the Intlk state are implemented as C functions
defined in inltk.c. Some operations that include Intlk also include the Field, so
intlk.c includes £ield.h for the declarations of the identifiers and functions
needed to access the contents of field.c.

Data structures

The Z basic sets SETTING and INTERLOCK are implemented by C enumerations
setting and interlock whose values are the setting and interlock names. The
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{SETTING, INTERLOCK]}

MODE ::= experiment | therapy

INTLK ::= clear | set

READY ::= ready | not_ready | override

Intlk
mode : MODE

therapy_intlk : INTLK

intlk : INTERLOCK — INTLK
status : SETTING — READY

| preset : PSETTING

__TreatmentStatus
Field
Intlk

dom status = if mode = therapy then SETTING else preset

status =
(A s : dom status e not_ready) ®
(A s : dom status | Overridden(s, OField) e override) ®
(A s : dom status | Ready(s, OField) e ready)

. SafeTreatment
TreatmentStatus

ranintlk = {clear}
ran status < {ready, override}

Scanintlk
EField
Alntlk

TreatmentStatus’
therapy_intlk' = if SafeTreatment then clear else set

Figure 28.1: Safety interlock specification.
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/* field.h - setting names, exported function declarations etc. */
typedef enum { LEAF0 = 0, ..., LEAFl, WEDGE_ROT,
GANTRY, ..., TURNTABLE } setting;

#define N_PRESETS WEDGE_ROT + 1
#define N_SETTINGS TURNTABLE + 1

int overridden(setting s);
int ready_setting(setting s);

/* intlk.h - interlock names, exported function declarations etc. */
typedef enum { KEY = 0, DOOR, DOSIMETRY } interlock;

#define N_INTERLOCKS DOSIMETRY + 1

typedef enum { EXPERIMENT, THERAPY } mode_status;
typedef enum { CLEAR, SET } intlk_status;
typedef enum { READY, NOT_READY, OVERRIDE } ready_status;

void scan_intlk(void);

Figure 28.2: Safety interlock implementation (header files).

2893

status and intlk state variables are implemented by the status and int 1k arrays

" which are indexed by the setting names and interlock names, respectively.

The order of the setting names in the C enumeration is critical because SETTING
has a subset named preset which is used in the TreatmentStatus schema!. The im-
plementation code only works if the elements of preset are consecutive enumeration
values. We achieve this by placing the elements of preset together at the beginning
of the C set ting enumeration.

Operations and predicates

The three operations TreatmentStatus, SafeTreatment, and ScanIntlk are imple-
mented by C functions. TreatmentStatus is not an operation schema at all; it is
a state. However it is used in Scanintlk where it appears primed: It describes
the after state, so it is implemented by the procedure treatment_status that
can assign new values to the elements of the array that implements status. The
predicate of TreatmentStatus is complicated so we’ll defer discussing the body of
treatment_status for now.

! This detail was omitted from Chapter 22.
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/* intlk.c - interlock state variables and function definitions */

#include "field.h"
#include "intlk.h"

/* Intlk state variables */
mode_status mode;

intlk_status therapy_intlk;
intlk_status intlk[N_INTERLOCKS];
ready_status status[N_SETTINGS];

/* Intlk predicates and operations */
void treatment_status(void)

{
setting s, ns;

ns = (mode == THERAPY) ? N_SETTINGS : N_PRESETS;
for (s = 0; s < ns; s++) {
if (ready_setting(s)) status([s] = READY;
else if (overridden(s)) status[s] = OVERRIDE;
else status[s] = NOT_READY;

}
int safe_treatment (void)
{
int safe;
interlock i;
setting s, ns;
safe = 1;
for (i = 0; 1 < N_INTERLOCKS; i++)
if (intlk(i] !'= CLEAR) safe = 0;
ns = (mode == THERAPY) ? N_SETTINGS : N_PRESETS;
for (s = 0; s < ns; s++)
if (status[s] == NOT_READY) safe = 0;
return safe;
}
void scan_intlk(void)
{
treatment_status();
therapy_intlk = safe_treatment() ? CLEAR : SET;
}

Figure 28.3: Safety interlock implementation.
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The predicate of TreatmentStatus uses the two predicates Overridden(s, 6 Field)
and Ready(s, @ Field) defined in Section 22.2.2. These are implemented by the func-
tions overridden and ready_setting which are declared in field.h and
defined in £ield. c. The bindings 6 Field indicate that Overridden and Ready re-
quire access to state variables in Field. These variables do not have to be passed
parameters because they are implemented as variables at file level in field.c and
are global to overridden and ready-setting. The only passed parameter
required by these two functions is the setting s.

SafeTreatment is another state schema. It appears in Scanlntlk where it is used as
a predicate in a conditional expression. SafeTreatment is primed in Scanintlk; it tests
the status and intlk state variables in the after state when they have constrained by
TreatmentStatus. It is implemented by the function safe_treatment that tests
status and int1k.

Scanlintlk is an operation schema that sets the master therapy interlock according to
the truth value of the predicate SafeTreatment. It is implemented by a procedure that
invokes safe_treatment. TreatmentStatus appears primed in the definition of
Scanintlk, so we invoke the t reatment_status procedure first to assign values to
the elements of the status array before they are tested by safe_treatment (the
int 1k array is assigned by procedures in other files not described here). Scanintlk
includes EField, so treatment_status and safe_treatment must notcause
new values to be assigned to the program state variables in field.c.

Tool-kit operators

The specification uses operators from the tool-kit for which we have not defined any
refinement laws. We will derive their implementations now.
SafeTreatment says that every interlock must be clear:

ranintlk = {clear)

Predicates about sets can often be translated to quantified predicates where the bound
variable ranges over the set elements. Here we can use the Constant range law:

ran f ={y} & (Vx:domfe fx=y) {Constant range]

The right side of this equivalance matches our Universal Test law. We obtain code
that loops over all the elements in the array that implements intlk.

safe = 1;
for (i = 0; i < N_INTERLOCKS; i++)
if (intlk(i] '= clear) safe = 0;
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The predicate of TreatmentStatus is complicated:

dom status = if mode = therapy then SETTING else preset

status =
(A s : dom status e not_ready) ®
(A s : dom status | Overridden(s, O Field) e override) @
(A s : domstatus | Ready(s, O Field) e ready)

The conditional expression says that all settings must be checked in therapy mode,
but only a subset of the settings (called “presets”) should be checked in experiment
mode. We accomplish this by the method described previously: Put all the elements
of this subset at the beginning of the enumeration, and adjust the upper limit of the
iteration appropriately:

ns = (mode == therapy) ? N_SETTINGS : N_PRESETS;

The lambda expressions and the overriding operator @ are supposed to convey
that settings are not ready unless they have been overridden or have become ready.
It seems we need to do some conditional branching but we’re not sure how. When
it isn’t exactly clear what to do, look up the definitions. Turning to the tool-kit, we
find this definition of the overriding operator:

O®R=(domR)4Q)UR [Definition of @]
Expanding the déﬁnition of the range anti-restriction operator < we obtain

(domR)<«Q={s:X,t:Y|s¢domRAsQ1t} [Definition of <}
expressing R itself in similar form we get

R={s:X,t:Y|sedomRAsRt} [Definition of R, etc.]
Next we apply the law that relates set union and disjunction

(S1pIUiSIg)=1{SIpVvaq} [Disjunction and union]
replacing {S | p} in this law with R, and {S | ¢} with (dom R) € Q, we obtain

QBR={s:X,t:Y|(s€edomRAsRYy)V(s¢domRAs Qy)}

Now the predicate in the set comprehension has the form (p A r) V (— p A g).
According to our Branch refinement law, this can be implemented by 1£ (p) r;
else g: Q appears before the @ operator, but it corresponds to ¢ in the second
disjunct. We’ve got the answer we were looking for. The result of applying the
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function (A S @ €;) ® (A S | p e e2) to the argument x can be computed by the code
if (p) x = ez; else x = e;. The expression that appears before the & in
the formula appears in the el se clause in the code. We feel certain we could work
this up into a proper proof if we had to, but for now we’re eager to write the code:

for (s = 0; s < ns; s++) {
if (ready setting(s)) status[s] = READY;
else if (overridden(s)) status([s] = OVERRIDE;
else status[s] = NOT_READY;

The completed implementation appears in Figures 28.2 and 28.3.

Conclusion

The preceding example shows that we can take Z down to any level of detail we
wish; A Z formula can model a single line of code. Typically we model systems at a
more abstract level, so the Z specification is usually much shorter than the completed
code.

Now that we have the code, let’s step back and see what we have accomplished.
Here is the problem that motivated us: “The purpose of this program is to help ensure
that patients are treated correctly, as directed by their prescriptions” (chapter 6). Our
code doesn’t resemble this statement in any obvious way, but we can show a sequence
of steps connecting the two. The product of our development is not just the code,
it is the entire sequence of steps. What the program is expected to do and what it
will demand of its environment have been made explicit so they can be examined
and criticized. Each step can be reviewed, and some steps can even be checked
by formal calculation. Every development contains errors at first, but our methods
make it possible to discover and correct most errors before the program is run. If
the inspection and correction are performed with diligence, we can be confident that
testing will confirm that the new program meets its requirements.



Further reading

I could only provide the briefest introduction to program derivation here. The re-
cent textbooks by Cohen [1990] and Kaldewaij [1990] are good introductions to
the axiomatic method, and the books by Morgan [1994] and Hehner [1993] both
teach a refinement calculus that is deeper and more versatile than mine. Hehner's
paper [1991] compares the two approaches and is the source of the axiomatic def-
initions I use. Gries’ pioneering textbook [1981] is the source of the checklist for
reviewing loops and the heuristic for deriving invariants from postconditions.

Hoare and Wirth [1973] present an axiomatic definition for most of Pascal which
could be adapted to other languages as well. The early textbook by Alagi¢ and
Arbib [1978] teaches from this definition. The Bohm-Jacopini theorem [1966) es-
tablishes that any program can be written using only a few Pascal-like control
structures.

Hart [1995] applies axiomatic methods to detecting and correcting errors in C
programs. Clutterbuck and Carré [1988] verify assembly language programs. The
Cleanroom method has applied a pragmatic kind of formal verification in numerous
projects with several program languages, see Linger [1993].

Program verification is not new; Herman Goldstine, John von Neumann, and Alan
Turing proved programs correct before 1950. Jones’ report {1992] tells the history;
Gries’ textbook [1981] also includes some historical notes.

I chose C for the examples in this book to show that Z can be implemented in a
popular programming language, not to suggest that C is best for every application.
The real interlock system that suggested the example in Section 28.9 is programmed
in a Pascal dialect. Cullyer, Goodenough, and Wichmann {1991] discuss the suit-
ability of several programming languages for implementing safety-critical systems.
All programming languages have their difficulties. Koening’s book [1988] warns of
pitfalls in C; Welsh, Sneeringer, and Hoare [1977] even uncover ambiguities and
insecurities in Pascal. Hatton [1995] argues that compiler quality and programming
practices are more important than the choice of language.

The correctness condition for refinement in Chapter 26 is from the Reference
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Manual, which describes additional conditions concerning preconditions and initial-
ization. Other Z textbooks also discuss refinement using slightly different notation.

The development methods taught in Chapters 27 and 28 relate the mathemat-
ical notation to imperative programming languages that use assignment state-
ments to change the program state. A radical alternative is to use a program-
ming language which is itself a mathematical notation. This vision is achieved
in functional programming languages that do not require the use of assignment
statements, such as Lisp [Abelson and Sussman, 1984], Miranda [Turner, 1986;
Bird and Wadler, 1988), Haskell {Fasel ez al., 1992], and ML [Paulson, 1991]. Paul-
son [1991] shows how to verify functional programs. Valentine [1995] has shown
that a subset of Z itself could be used as a functional programming language.

I describe a larger example of refinement from a nonconstructive to a constructive
specification in [Jacky, 1993a). Jonathan Unger and I built an efficient table-driven
dispatcher for invoking top-level operation schemas in the event-driven state tran-
sition system described in Chapter 21 [Jacky and Unger, 1995]. Our development
from Z to a Pascal dialect includes some formal refinement and verification.



A Glossary of Z
notation

This glossary is based on the one by Jonathan Bowen at the Z home page,
http://www.comlab.ox.ac.uk/archive/z.html.Itincludes all the no-
tation used in this book.

Names

ab
d,e
.8
m,n

p.q
t

’

y
B
, R
T

xR R

Definitions

a==x
a:=b|...
[a]

a_

_a

—a_

identifiers

declarations (e.g.,a: A; b,...: B..
functions

numbers

predicates

sequences

expressions

sets

relations

schemas

schema text (e.g.,d,d | p,or §)

Abbreviation definition
Free type definition

Introduction of a basic type (or [a, ..

Prefix operator
Postfix operator
Infix operator

)

D
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Logic

true Logical true constant
false Logical false constant
-p Logical negation, not
PAQ Logical conjunction, and
pVq Logical disjunction, or
p=q Logical implication
P&gq Logical equivalence
VXegq Universal quantification
X eg Existential quantification

(leta==x; ...ep)

Sets and expressions

Local definition

x=y Equality

xX#Yy Inequality

x€EA Set membership
x¢A Nonmembership

@ Empty set

ACB Subset

ACB Proper subset
{x,y,...} Set display

{Xeox} Set comprehension
AXex) Lambda expression
(leta==1x; ...0y) Local definition

if p then x else y Conditional expression
(x,y,...) Tuple

(x,y) Pair

AxBx... Cartesian product

PA Power set

ANB Set intersection

AUB Set union

A\ B Set difference

firstx First element of an ordered pair
second x Second element of an ordered pair

#A Number of elements in a set
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Relations

Ao B Binary relation (P(A x B))

a—b Maplet ((a, b))

dom R Domain of a relation

ran R Range of a relation

Q3R Forward relational composition
QoR Backward relational composition (R § Q)
AR Domain restriction

A4R Domain antirestriction

ADR Range restriction

AB> R Range antirestriction

R(A)D Relational image

R~ Inverse of relation

Rt Transitive closure

QOR Relational overriding

aRb Infix relation

Functions

A+ B Partial functions

A—>B Total functions

Ar+ B Partial injections

A— B Total injections

A>» B Bijections

fx Function application (or f(x))
Numbers

Z Set of integers

N ~ Set of natural numbers {0, 1, 2, ...}
N Set of strictly positive numbers {1, 2, ...}
m+n Addition

m-—n Subtraction

mxn Multiplication

mdivn Division

m mod n Remainder (modulus)

m<n Less than or equal

m<n Less than
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m>n
m>n
m..n
min A
max A

Sequences

seq A
seq A
iseq A
()
{x,y,...)
st
head s
tail s
last s
front s
sint

Schema
S

Greater than or equal

Greater than

Number range

Minimum of a set of numbers
Maximum of a set of numbers

Set of finite sequences

Set of nonempty finite sequences

Set of finite injective sequences
Empty sequence

Sequence display

Sequence concatenation

First element of a sequence

All but the head element of a sequence
Last element of a sequence

All but the last element of a sequence
Sequence segment relation

d

p

Axiomatic definition

d

4

Generic definition

d

p

:—_[a, ]
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Schema calculus

S=[X] Horizontal schema
[7r;...1...1 Schema inclusion

z.a Component selection (given z : S)
6S Binding

=S Schema negation

SAT Schema conjunction

SvT Schema disjunction

ST Schema composition

S>»T Schema piping

Conventions

a? Input to an operation

a! Output from an operation

a State component before an operation
a State component after an operation
S State schema before an operation

s State schema after an operation

AS Change of state

=S No change of state



B Omitted features

These Z features are defined in the Reference Manual but are not discussed in this
book.

the unique existential quantifier 3,

the definite description quantifter x4

generalized union and intersection | j and ) -

identity relation id

relational iteration R¥

reflexive transitive closure R*

partial surjections -b>, total surjections —», finite partial functions -, finite
partial injections

successor function succ

e sequence operators: distributed concatenation ~/, reverse rev, compaction

squash, extraction 1, filtering |, prefix, suffix
disjoint and partition

¢ the bag (multiset) datatype and all bag operators

schema calculus operators: implication, equivalence, quantification, component
renaming, and hiding.



C Operator precedence

Operators that join expressions into larger expressions bind more tightly than rela-
tional operators that join expressions into predicates.

squares Qup € SQUARE—DIAGONAL
means the same as
(squares Qup) € (SQUARE— DIAGONAL)

but the parentheses are not necessary because the domain restriction operator < and
the injection arrow ~— form expressions, while the membership operator € forms a
predicate.

Each infix function symbol has a priority from one to six which determines its
binding power; higher numbers indicate tighter binding:

Priority 1: >

Priority 2: ..
Priority 3: + —U\ ™
Priority 4: x divmod N go
Priority 5: @

Priority 6: <1 I> 9 b

For example, range restriction [> binds more tightly than number range (_.. _)
so the parentheses are necessary in

phone >(4000 . . 4999) = {aki — 4019}
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Domain restriction < binds more tightly than relational overriding ®, and func-
tion application binds more tightly than any operator. Therefore we do not require
parentheses in

variable’ = variable @® vars? < encode register

although it is a good idea to include them anyway. This means the same but is much
clearer:

variable' = variable @ (vars? <(encode register’))
Operators with the same priority associate to the left, so
ODD U EVEN \ PRIME

is the same as
(ODD U EVEN) \ PRIME
The relation and function arrows associate to the right, so
FIELD -» SETTING — VALUE

is the same as
FIELD -» (SETTING — VALUE)

Function application associates to the left, so
prescribed lateral collimator

is the same as
(prescribed lateral) collimator

In decreasing order of binding power, the logical connectives are
S AV S

Therefore, we don’t bave to parenthesize equivalences, and we usually don’t have
to parenthesize implications. This predicate

PAGQNVTr=sot
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is the same as
((pAgVr)=>s) &1t
Implication associates to the right, so
p=q=r
is the same as
p=>(@=r)

Implication is not associative, so (p = ¢) = r means something else. The other
binary logical connectives associate to the left but this is moot because they are all
associative.

The scope of a quantifier extends as far as possible to the right, and quantifiers
bind less tightly than any of the propositional connectives. Therefore parentheses
are often required in quantified predicates, for example:

(Vd|peqg) s (Vdep=gq)



D The Z mathematical
tool-kit

These selections from the tool-kit are based on the Reference Manual. They include
all the operators used in this book and a few more that are needed to define them.

The definitions in the tool-kit require some Z constructs we have not used else-
where. It uses generic definitions very heavily: X, Y, and Z stand for any type, S and
T are sets of any type, and Q and R are binary relations between any two types. The
tool-kit also makes extensive use of patterns in abbreviation definitions, for example
it defines the binary relation symbol by X « ¥ ==P(X x Y).

In a few places I've used English paraphrases for predicates, where the formal
definition uses constructs or concepts not discussed in this book.
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Sets

Glossary

3 — Empty set: a set that has no elements.
x ¢ § — Nonmembership: x is not an element of §.

S C T — Subset: All elements of S belongto T

S € T — Proper subset: § is a subset of T, and § is not equal to T

S UT — Union: the set of elements in either S or T.
S N T — Intersection: the set of elements inboth § and 7.

S\ T — Set difference: the set of elements in S that are notin T

Definitions
PIX)=={x:X| false)

~[X]
_C ,_C_:PX o PX

U N, \_:PXxPX-> X
it A

Vx:X; S,T:PXe
x¢gSe~@xeX)A
SCTESEMVx:XexeS=2xeT)) A
SCTESSCTAS#T)A
SUT={xF:X|x€SVxeT}/\
SNT={x:X|xeSAxeT}A
S\T={x:X|xeSAx¢T}




310 Appendix D. The Z mathematical tool-kit

Pairs and binary relations |

Glossary

(x, y) — The pair x,y.
x — y — Maplet: x maps to y, same as (x, y).
first p — First element of pair p.
second p — Second element of pair p.
dom R — Domain: the set of first elements of all pairs in R.

ran R — Range: the set of second elements of all pairs in R.

Definitions
XeoY=PXxY)
[X,Y]

first: X xY > X
second: X xY —»Y
> _XxY—>XxY
dom: (X & Y)—> PX
ran : (X & Y) > PY
Vx:X;y:Y; R: XoYe
first(x,y) =x A
second(x,y) =y A
xr>y=(x,y)A
domR={x:X;y:Y|xRyex}A
ranR={x:X;y:Y|xRyey}
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Pairs and binary relations Il

Glossary
§ <4 R — Domain restriction: the pairs in R whose first element is in S.
R T — Range restriction: the pairs in R whose second element is in T'.
S <€ R — Domain antirestriction: the pairs in R whose first element is not in S.
R &> T — Range antirestriction: the pairs in R whose second element is not in 7.
R™ — Relational inverse: the pairs in R,
but with first and second elements exchanged.
R(S) — Relational image: the second elements of pairs
in R whose first element is in S.
R & Q — Overriding: all pairs in R or Q,
except pairs in R whose first element is also in Q.

RY — Transitive closure of R.

Definitions

—[X, Y]
A,_,d_PXxXeY) > XY
Db (XeYV)xPY > XY

T XeY)s> (Y eX)

AD: (X Y)xPX > PY

o X)) xXelY)» (Xe))
T XeX)» XX

Vx:X;y:Y, S:PX; T:PY; Q,R: X Ye
SAR={x:X;y:Y|xeSAxRyexm> y}A
SAR={x:X;y:Y|x¢SAxRyex—>y}A
RoT={x:X;y:Y|xRyAnyeTex>y}A
ReT={x:X;y:Y|xRyny¢Tex—>y}A
RO={x:X;y:Y|xRyey—x}A
RIS)={x:X; y:Y|xeSAxRyey}A
Q®R=((domR)<gQ)UR

... predicate for _* omitted . ..
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Pairs and binary relations lil

Glossary

Q0 3 R — Relational composition: Q composed with R.

R o Q — Backward relational composition, same as Q § R.

Definitions
—[(X,Y, Z]

o XeNxYeZ)y>(Xe2Z)
_o_ifeoeD)x(XelY)» Xe2Z)

VO: XY, R:YoZe
QsR=RoQ={x:X;y:Y;2:Z|xQyAyRzexmr>z}
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Numbers and arithmetic

Glossary
Z — The set of integers.
N — The set of natural numbers, starting with zero.
N; — The set of strictly positive numbers, starting with ong,
+, —, * — Arithmetic operators: addition, subtraction, multiplication.
div, mod — Arithmetic operators: integer division and remainder (modulus).
<, < — Comparison: less than, less than or equal.
>, > — Comparison: greater than, greater than or equal.
i .. j — Number range: the set of numbers starting with ¢ up through ;.
min § — Minimum: the smallest element in S, if any.
max § — Maximum: the largest element in S, if any.
#§ — Size: the number of elements in S.
Py — Nonempty sets.
F — Finite sets.

Definitions
[Z]
N=={n:Z|n>0}
N == N\ {0}

PiX=={S:PX|S+#0)
FX == {S:PX|...Sisfinite ... }

ety _*%_ZXZ—> 7
_div_,_mod_:Zx (Z\{0)) - Z
~Z -7

< < > > Ll
e xZ—->PZ

#:FX - N

min,max :P\Z » Z

Va,b:Z e
a.b={i:Z|la<i<b)

... predicates for other operators omitted . . .
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Functions

Glossary

X » Y — Partial function: Some members of X are paired with a member
of Y.

X — Y — Total function: Every member of X is paired with a member of Y.

X >+ Y — Partial injection: Some members of X aré paired with different
members of Y.

X — Y — Total injection: Every member of X is paired with a different
member of Y.

X »» Y — Bijection: Every member of X is paired with a different member

of Y, covering all Ys.

Definitions
X+Y== { f: X & Y | Each member of X appears no more than once. }
X—>Y=={f:X+»Y|domf=X}
XY =={f:X-+7Y|Each member of X is pairéd with a different
member of Y. }
X—Y=X»+Y)N(X->Y)

X >» Y == ... definition omitted ...
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Sequences

Glossary
seq X — Sequence: the set of all sequences of Xs.
seq; X — Nonempty sequence: the set of all sequences of X's
with at least one element.
iseq X — Injective sequence: the set of all sequences of Xs
where each element of X appears only once.
s 7t — Concatenation: sequence s with sequence ¢ appended.
head s — Head: the first element of sequence s.
last s — Last: the last element of sequence s.
front s — Front: ail but the last element of sequence s.
tail s — Tail: all but the first element of sequence s.

sint — Segment relation: the sequence s appears in sequence ?.

Definitions
segX =={f:N# X|domf=1..#f)
seq X =={f:seqX |#f >0}
iseq X ==seq X N (N X)

(X1

head,last : seq; X — X

tail, front : seq; X — seq X

~"_:seqX x seqX - seq X
—in_:seqX o seq X

Vs:seqX; u,v:seqX e
head(s) = s(1) A
last(s) = s@#s) A
u " v=uU{i:domvei+#ur> v(i)}
uinv & (3s,t:segXes " u"t=1v)

.. . predicates for other operators omitted . . .
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Logical connectives

true & — false

pv=-p

pArpep

pvperp

pANAtrue o p

P A false & false

pV false & p

p Vtrue & true
PAg&SqAp

pvgé&qVvp

(PA@Ar& pa(gAr)
(pvg)vré&pvigvr)
prA@Vvr)&(pAg)V(pATr)
pvi@garne(pvgAlpvr)

~(pAqg)S~pV—gq

[Complement]

[Excluded middle]

[Idempotence]
[Idempotence]
{Unit of and]
[Zero of and]}
[Unit of or]
(Zero of or]
[Commutativity]
[Commutativity]
[Associativity]
[Associativity]
[Distributivity]
[Distributivity]

(DeMorgan]
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P=q&—pVg
P=>q9g&-p=>—gq
peqge&(p=29Ar@=>p)
pe@genspeger

pogqean=>(per)

[Implication]
[Contrapositive]
[Equivalence]
[Associativity]

[Transitivity]

(pAXx' =e)) V(mpAx'=e) & x' =if pthene, else e;

Assume antecedent

Pp=4q
«*q

<> true

Quantifiers
(Vd|peg) & (Vdep=q)

Ad|peqg) o 3depArg)

Ax:Tex=eAp)& (ple/x])

s & (Jetx ==¢ o s[x/e])

Equality

X=X
Xz=y&y=x
X=y=z=>Xx=Z
x=y=>e=e[x/yl]

x=y=fx=fy

[Z conditional expr.]

[To prove]

{Assume antecedent]

[Justified by antecedent p]

[Restricted Y-quantifier]
[Restricted 3-quantifier]
[One-point rule]

[Local definition}

[Reflexivity]
[Symmetry]
| Transitivity]
[Substitution]

[Leibniz]
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Arithmetic
Oxn=20 [Zero]
X<y<z=$x<z [Transitivity]
d#0=>n=dx(ndivd) + (n mod d) {Integer division]

Sets, relations, and functions

p(x) & xe(p) [Prefix relation syntax]
xRy& (x,y)ER | [Infix relation syntax}
SCTCU=SCU [Transitivity]
| ran f ={y} & (VYx:domfe fx=y) [Constant range]
Sets and logic
{SIplu{Siqi={SIipvVvagl [Disjunction and union]
{StpIn{Siqg}={SIpnrgq) [Conjunction and intersection]
{SIplC{Slqle ¥Sep=gqg) [Implication and subset]

Set comprehensions and lambda expressions

xe{x:X]| pkx)} & phkx) [Comprehension]
{x:Sipl={x:X|xeSAp} [Set membership]
Ax:Xee)={x:Xeoexr> e} {Lambda expression]

x:X;y:Y,2:Z|pe(x,y.)}={x:X;y:Y;2:Z] p}

[Characteristic tuple]

Sequences
#x)=1 [Length of singleton]
ran{x) = {x} [Range of singleton]
#(s T t)y=H#s+# [Length and concatenation]

ran(s " t) = (ran 5) U (ran t) [Range and concatenation]
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Axiomatic program development

Assignment

{eisdefined}x = e{x' =¢}

[Qle/x'1}x = e{ Q)

Conditional branch
{U}

if (PP {UAPp}SL;{V])else{UA—-p}S2{W}

{VvWwW}

Loop
{1}
while (p) {(pAI}S{I' AV <v}
{(—pAl)

Refinement calculus
x € s © Search for x in data structure s

xes E s[x]

[Membership (data structure)]

{Membership (Boolean array)]

u(x) € Find item in u with key x [Function application (data structure)]

f(x) T Evaluate £ with argument x

[Function application (executable code)]

u(x) € ulx]

[Function application (array)]

f(x) E £(x) [Function application (C function)]

x' =x T (empty statement)

X=eAy =yA=zA...C x =¢

=eix, )Ny =e(x, )N =z... C

t = x; x = ex,y); Yy = ext,y)

[Skip]

[Assignment]

- [Sequential assignment]
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X=ex)Ay =ey) E x = ei(x); y = e2(y)

[Independent assignment]

S’ = SU{x} € Putxindata structure s [Union]
§S’=8SU{x} E s[x] = TRUE [Union (Boolean array)]
pAs £ if (p) s [Guarded command]
(pASYV(@AL) C if (p) s; else if (q) 1 [Case analysis]
(pAsyV(—pnt) £ if (p) s; else t [Branch]

(pAx' =e)vV(mpAXx =e) E x = pre:e;

[Conditional assignment]
(pAg@Q)V(—pATr) C p2q:r [Conditional predicate]
(letx ==ceos(x)) C x = e; s(x) ' [New variable]

Vx:Sep(x) Eb =1; for (xinS)if (!p(x)) b =0
[Universal test]

dx:Sep(x) T b

0; for xinS) if (p(x)) b =1
[Existential test]

Vx:Sep(x) Cb =1; for (i = 0; 1 < n; i++)
if (!'p(s[i])) b =0
[Universal test (array of length n))

Vx:Ses(x) C for (xinS) s(x) [Universal assignment]

dx:Ses(x) E ChooseanyorallxinS;s(x) [Existential assignment]
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C source language transformations

x 1= 0=x [C true]
(*x).z2 = x->z [C pointer]
X = X + 1 = X++ [C increment]
x[y]l = *(x+y) [C array]

if (p) x=y; elsex=2=X=p ? X : 2

[C conditional expression]

s; while (p) { t; u; } = for (s; p; u) t; [C for]



F Solutions to selected
exercises

From Chapter 6

6.5.1 The state machine model did not specify the initial state. The only reasonable
choice is the PATIENTS state.

From Chapter 10

10.4.5.1 beam = on & door = closed means the beam is on when the door is
closed and the beam is off when the door is open. This is a bad requirement because
the beam will turn on the moment the door is closed.

beam = on A door = closed means the beam is always on and the door is always
closed. Obviously useless.

beam = on Vv door = open means the beam is on or the door is open, or both.
This is a bad requirement because it allows the beam to be on when the door is open.

beam = off v door = closed means the beam is off or the door is closed, or both.
This is a good requirement, and means exactly the same thing as beam = on =
door = closed, according to thelaw p = ¢ & - p Vv q.

108.1 x e dom f = f x = y is true when x € dom f is false, otherwise it has
the same truth value as f x = y.

From Chapter |1

11.1.1 Represent each triangle as a tuple whose components are the lengths of its
three sides. These tuples are called Pythagorean triples because their components
are related by the Pythagorean theorem; (3, 4, 5) is a Pythagorean triple because
32 +42 =52,
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right_triangles == {a,b,c:N|la<bAaxa+bxb=cx*xc}

Here c must be the longest side, which prohibits rotations such as (5, 3, 4) or (4, 5, 3),
anda < b ensures that the sides appear in order of increasing length, which prohibits
reflections such as (4, 3, 5).

11.1.2 Define window, then segment = line N window.

11.3.1 PRIME is not constructive because N; and { n, m : Ny e n x m } are both
infinitely large. It is not possible to construct both sets and then take the difference.

11.5.1 This solution uses pattern matiching:

month : DATE — MONTH

Vd : DAY, m : MONTH; y : YEAR emonth (d,m,y) =m
This equivalent shorter definition uses the characteristic tuple:

month == (Ad : DAY; m : MONTH; y : YEAR e m)

From Chapter 12

12.4.1.1 The precondition of ForwardT wo is #right > 2.

From Chapter 13

13.2.1 Hint: Define Next using schema disjunction to handle leap years.

From Chapter |5

15.1.1 Inequality is not transitive. Consider x # y # x.

15.2.1 “Divide both sides by three” is an application of Leibniz’ law where f =
(Le:Z e ediv3) and so on.

15.3.1 Wehavex = y & f x = f y when the inverse of f is also a function, that
is when f is an injection.

From Chapter 17

17.3.1 Format requires that no word in the text is larger than width.
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From Chapter 18

18.1,18.2 Model the queen’s and knight’s moves as relations on SQUARE
queen, knight : SQUARE <> SQUARE

18.2 A knight’s tour is a sequence of squares, where each square appears once and
each successive pair of squares is a knight’s move:

— Tour
tour : iseq SQUARE

rantour = SQUARE
Vsl,s2: SQUARE | (s1, s2) intour e (s1,s52) € knight

From Chapter 26

26.6.1

,_x Ix’]x’=x+l |x’>x|x'=x+1=>x’>x]

1 |1 | false false | true
1 i3 | false true true
— | — | true false | false
1 |2 | true true true

There is no way to choose x and x’, so x’ = x + 1 is true but x’ > x is false,
so the entries in the third row are left empty.

26.3.1 Use function overriding to model assignment to an-array element. The
concrete state must include the index of the last array element in use.

__Concretel
nmax : N
ss :seq X

__CStorel
AConcretel
x1: X

nmax’ = nmax + 1
ss’ = 55 @ {nmax — x?)
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26.3.2 The domain of the hash function must be X, the type of the elements to be
stored, and its range must be Ny, the domain of a sequence. The hash function must
map each member of X to a different member of Nj. In other words, it must be a
total injection.

| hash: X — N
— CStore2

AConcrete
x?1: X

ss' = 55 ® (hash x? — x?)}

From Chapter 27

27.1.2.1 The verification conditions are implications, so assume the antecedent:

p=>@&pArg) [Given]
& (q © true A q) [Assume antecedent]
@9 [Unit of and]
& true [Reflexivity of <]

27.1.3.1 When the variant falls below bound k, the guard becomes false. It is
easiest to solve for k formally. The bound k is defined by item 4 in the checklist:
I A v < k = — p.Filling in the definitions of 1, v, and p from our example, we
get

O<srxr<a)A@—-(@+D*x+)<kb)=>—a>2r+D)xr+1)

[Defn}
Sa—e<k=>—a>e [whereeis (r + 1) x (r + 1)}
Sa—-e<k=>a<e [Def’ns — , >, <]
Sa<k+e=>a<e [Arithmetic, e > 0]
S k<0 [ Arithmetic)

The bound & is the largest value that makes the final inequality true, so k is zero.



G Other formal
notations

Here is a sample of notations that might be useful to people who are considering Z.
All are based on the discrete mathematics taught in Chapters 8 to 11.

In addition to Z itself, the Z family includes several object-oriented dialects
including Object-Z, MooZ, OOZE, and Z++ [Stepney, Barden, and Cooper , 1992a;
Stepney et al., 1992b; Lano and Haughton, 1993]. Some early contributors to Z went
on to create a development method called B that includes a specification language
and a tool for automating calculations and proofs [Lano and Haughton, 1995].

Of the other formal notations, VDM {Jones, 1990] is most similar to Z. Like Z,
VDM is a model-based notation. You model a system by representing its state and a
collection of operations that can change its state. VDM lacks the boxed paragraphs
of Z and has nothing quite like the Z schema calculus. VDM stands for the Vi-
enna Development Method. The VDM community emphasizes refinement, not just
modelling. Z and VDM are compared in Hayes [1992b].

Combinations of conditions that define complex predicates can sometimes be
made easier to grasp by presenting them in a two-dimensional tabular format. A
particularly rigorous and comprehensive tabular notation was invented by Parnas and
others [Parnas, 1994] and has been applied to nuclear reactor shutdown software.
Leveson and colleagues invented a tabular notation called AND/OR tables and applied
it to an aircraft collision avoidance system [Leveson ez al., 1994].

Z provides no built-in way to represent concurrent processes, although it is pos-
sible to express them in Z using the methods of Chapter 25. Other formal notations
provide built-in constructs to represent concurrency. Some retain the concept of state
and a model-oriented world view: These include Unity [Chandy and Misra, 1988]
and the Temporal Logic of Actions (TLA) {Lamport, 1994]. The process algebras
hide the state, focusing instead on the processes and their interactions. Examples are
CCS [Milner, 1989], CSP [Hoare, 1985}, and the Pi calculus [Milner, 1993].

Some systems can be modelled by a feasibly small number of discrete states.
Such state transition systems lend themselves to pictorial notations and exhaustive
analyses. Statecharts (Harel, 1987] and Petri nets [Jensen and Rozenberg, 1991] use
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pictures to represent state transitions, concurrency, and synchronization. They are
far more substantive and rigorous than most of the other bubble-and-arrow notations
that they superficially resemble. Models expressed in some discrete state notations
can be executed; they can serve as executable specifications or prototypes [Harel
etal., 1990].

Models that include numbers or indefinitely large sets usually cannot be subjected
to exhaustive analyses, but if a model has a limited number of states it can be
feasible to search the entire state space. Exhaustive search is used in reachability
analysis [Leveson and Stolzy, 1987] and model checking [Clarke, Emerson, and
Sistla, 1986], which can automatically detect certain kinds of errors or confirm
desired properties. In some cases model checking can provide a completely automatic
alternative to the kind of proof taught in Chapter 15.

Integrated systems such as EVES [Craigen, 1995] combine a specification lan-
guage, a theorem prover, and a programming language. Larch [Guttag and Horning,
1993] splits the specification language into a core shared language and a number
of interface languages, each matched to a target programming language such as C,
Ada, or Modula-3.

More information about most of these notations can be found on the Formal
Methods home page maintained by Jonathan Bowen on the World Wide Web at
http://www.comlab.ox.ac.uk/archive/formal-methods/.
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backward chaining 191, 196-198
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data type 108-110, 272, 275, 319, 320
function 109, 280, 286
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design 10
declaration order 188
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bound, in loop verification 260263, 325

bounding function, (see bound)

branch (see if statement)

BSI (British Standards Institute) 31

British Standards Institute (BSI) 31

bubbles and arrows 44-45, 206-207, 327

C programming language
square root example 33-38, 255, 280
axiomatic semantics 256262, 319
programming from Z specifications 254-296
refinement laws 262-264, 270-279, 319-320
and safety-critical systems 297
source language transformations 256, 273, 321
(see also programming language constructs)
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Cleanroom method 297

clock 239-240

closure, transitive 193, 242, 301, 311
code
(see C programming language, programming
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collision avoidance, aircraft 326
comments 35, 64, 255, 261
compaction, sequence 304
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completeness, requirements 24, 27, 207, 242
compiler 7-8, 17, 18, 33, 37-38, 59, 254
complex number 65, 252
component, schema 50, 142, 303
component, software 10
composition
of relations 86-87, 301, 312
of schemas 134, 303
comprehension, set 112-116, 144, 273, 300, 318
computational geometry 180-188, 241
computer graphics 114, 180-188
concatenation 51, 93, 146-147, 158, 302, 315, 318
distributed 304
conclusion (of a rule) 190
concrete
operation 249
state 249
concurrency 234-240, 243, 326-327
condition 227-228
conditional expression
Z notation 119, 276-277, 317
C programming language 259, 262-263, 277, 320,
321
conjunct 100
conjunction
logical connective 100-102, 117, 300, 316
schema operator 128-129
implementation 277
consensus 159
consequent
in implication 104
in proof technique 250
consistent
predicates 97-98
rules 193-194
constant 68, 266
constraint 66, 74
constructive definition 37, 116, 252, 274
control console 3948, 199-210
control law 219
control panel 232
control parameter 221-222, 232-233
control strategy 191, 195
control structure 56, 258-259
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radiation therapy machine 15-16, 27, 3948,
199-230
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convention, notational 31, 94-95, 116, 124-126,
225,303
counting numbers 64
coupling 209-210
correctness, proof of 11, 254-264
cross product 79, 300
cryptography 20
CSP 326
cyclotron 218-230
(see also radiation therapy machine)
database 79-87
query 83-84
update 84-85
data file 266, 267
data flow
analysis 274, 285
diagram 4, 44, 87
data structure 32, 78-95, 265-268, 290-292
data type 31, 35-36, 64-66, 138-149, 266
data-driven 196
date example 78-79, 119-121, 138-145
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decision table 106 .
declaration 63, 65-66, 106, 113, 132, 266, 299
declaration, schema as 133-134
declaration before use 67, 188
decoration 124, 303
DeMorgan’s law 136, 153, 316
definite description quantifier 304
definition symbol 49-50, 68, 147, 299
delta 53, 124-125, 144 '
denotational semantics 142, 161
denote 65, 142
derived class 232
descriptive predicate 271
descriptive style, Z notation 32
design 10-11, 27-28, 209-210, 211, 218, 230,
252-253, 265-266, 285-287, 290-296
design, participatory 27
description 28
deterministic 253
diagonal 174-179
diagram 7-9, 25
data flow 4, 44, 87
state transition 45-46, 87
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dice 66-69, 71, 73, 97
difference, set 73, 116, 140, 300, 309
discrete mathematics 11, 122, 161, 326
disjoint 304
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disjunction
logical connective 101-102, 300, 316, 317, 320
schema calculus operator 130
implementation 276-277, 286
display
sequence 93, 302
set 63, 300
distributive law 131, 153, 316
division
arithmetic operator 72, 74, 110, 128, 152, 153,
271,301, 313, 318
example schema 128-130, 133-134, 277
example C code 271, 277
document control system 165-168
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dose calculation 7-8, 180
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efficiency 58, 191, 196, 265
eight queens problem 174-179, 241
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element, set 63
else, (see conditional expression)
embedded controller 12, 59
empty
sequence 52, 54-55, 123, 302
set 63, 300, 308
end of file 54-56, 130-132
English (see natural language)
entry condition 53
enumerated type
Z notation 70, 148, 266
C programming language 266, 269, 270, 283,
290-295
equality 74-76, 96, 150, 257, 300, 317
equation, (see equality)
equivalence
logical connective 103, 152, 300, 317
schema operator 304
equivalence class 57
Eratosthenes, Sieve of 116
erroneous expression 74
Euclid’s algorithm 20
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event 199-200, 237-240
event-driven programming 199-200, 237
EVES 162, 327
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279,300, 317
expansion, schema 123, 125-126, 130-132, 136
expert system 189
expression, C programming language 257, 271-272
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arithmetic 72
conditional 119
erroneous 74
lambda 114
schema 56, 127
set 73
undefined 74, 110-111
expression, schema 56
expression, schema as 145
extraction, sequence 304
fact 190
fair 235
false 96, 300, 316
file
in Chess 174-179
data 267
C code 286, 290
fill, text 171-173
filtering, sequence 304
finite state machine 45-48, 206-208
first, projection operator 81, 300, 310
first, of sequence 54, 93, 302, 315
floating point arithmetic 185
IEEE standards 59
floating point microcode 59
floating point number 59, 212, 221
for loop 33-36, 255, 256, 279, 283, 294, 296, 320,
321
formal generic parameter 147
formal reasoning 149-160, 254
formal specification 7-10, 31, 33, 38
formal methods 3--28, 326-327
applications 12, 28, 326
home page 327
mandated 328
formal notations,
(see specification languages)
formula 3
forward chaining 191, 196~198
forward relational composition 86-87, 301, 312
free type 70, 148, 266, 299
free variable 106-107, 172, 271
front, sequence 302, 315
function application 90-91, 273-274, 301, 319
function, C programming language 31, 33-38,
280-281, 286
function, Z notation 35, 51, 88-92, 268, 280, 301,
314
bijective 176, 301, 314
hash 251-252, 324-325
higher-order 212
injective 92, 176, 301, 314, 325
partial 91-92, 301, 314
total 92, 224, 301, 314

functional programming 31, 298
genealogy 87-90

generalized intersection 304
generalized union 304

generic definition 146--147, 302
generic operators 73

generic schema 147

geornetry, computational 180188, 241
given set (see basic type)

global variable, C programming language 257, 268,

271, 280-281
global variable, Z notation 50, 67
glue 209
goal-driven 196
graph 87
graphical user interface (GUI) 199-210
graphics, computer 180-188, 241
greater than 151, 302, 313
or equal 302, 313
Greek letters
delta 53, 124-125, 144
lambda 114
phi 225
mu 304
theta 143-144
xi 125
guard (see also precondition) 260-261
guarded command 276, 320
GUI (graphical user interface) 199-210
handler 238
Haskell 298
hash function 251-252, 324-325
head, sequence operator 54, 93, 302, 314
header file 286, 290
hiding, schema operator 304
higher-order function 212
Hoare triple 256-257, 264
home page
formal methods 327
Z notation 60
horizontal schema format 126-127
IBM 59
identifiers 71
identity relation 304
idiom, Z notation 225-226, 233
IEEE floating point arithmetic standard 59
if, (see implication)
if and only if, (see equivalence)
if statement 258259, 276, 319, 320
if then else (see conditional expression)
image, relational 83, 90, 192, 228, 301, 311
imperative programming language 31, 298
implication
logical connective 103-105, 117, 250, 300
schema operator 304
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and refinement 247-248
in, sequence operator 183, 302, 315
include
Z notation 123 ’
C programming language 286, 290
inclusion
file 286, 290
schema 123
incommensurable number 35
inconsistent
predicates 97-98, 154
rules 193-194
induction 162
inequality 75, 151, 300, 323
inference engine 190
infix syntax 74, 94, 98-99, 299, 305, 318
informal requirements 25-26, 3944, 115-116, 165,
174, 296
inheritance 31, 231-232, 286
initial state 51-52, 123, 154, 322
initialization
schema 51-52, 123, 154
theorem 154
injective
function 92-93, 176, 301, 314, 325
sequence 183, 302, 315, 324
Inmos 59
input variable 53, 124, 196, 303
inspection 4, 6, 26, 265, 270, 296
instance variable 31
integer 35, 64-65, 162, 301
integer square root 3348, 118, 255, 259-262, 280
interface languages, Larch 327
interleaving model of concurrency 235, 243
interlock 4047, 211-217, 220-221, 229
interrupt 238
interrupt-driven 237
intersection
of line segments 180188
of sets 73, 300, 309
generalized 304
intuition 3, 11, 158-159, 255, 258
invariant
loop 260262
state 51, 54, 154, 156, 269
inverse relation 85, 240, 301, 311
International Organization for Standardization (ISO)
31
irrational number 35
ISO (International Organization for Standardization)
31
iteration
loop 259-262
relational 304

iterator 279
kernel, operating system 59, 162
key, data base 268
knight’s tour problem 179, 324
knowledge base 190
lambda expression 114
Larch 327
last, sequence operator 302, 315
law 76-77, 152-154
laws 153, 316-321
De Morgan 136, 153,316
excluded middle 153, 316
Leibniz 154, 317, 323
one-point rule 157, 317
laws, refinement 262-264, 270-280, 319-320
layout 71, 126-127
leap year 120, 140, 143
Leibniz’ law 154, 317, 323
less than 151, 301, 313
or equal 301,313
line segment 180188
library, of types and functions 32
lines
of code 12
of text 91, 171
linked data structure 87-88, 148, 162
Lisp 58, 298
literate programming 13
liveness 243
local definition 118, 278, 289, 300, 317, 320
local variable, C programming language 284,
285
local variable, Z notation 51, 106
logic 96-111, 300, 306, 316-317
logical connectives 100-105, 300, 316
conjunction 100102, 117
disjunction 101-102, 320
equivalence 103, 152
implication 103-105, 117, 250
negation 102
logical constant 96, 300
loop 256, 259-262, 277, 279, 320, 321
foop invariant 260-262
loose definition 67
Lotus 17
macro 32, 50, 123, 138
main program 56, 286-287
make utility 59, 242
management, project 5, 21-28
many-to-many relation 82, 89
many-to-one relation 82, 89
maplet 81, 224, 301, 310
mathematical tool-kit 32, 176, 308-315
maximal set 65
maximum 302, 313
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member normalize 68-69, 128, 135-136, 139-141
of a set 63 not, (see negation)
of a C structure 268 nuclear reactor shutdown software 326
membership predicate 96, 98-99, 109 number
menu 199 complex 65, 252
message 233 counting 64
method, object-oriented programming 31, 231 even 66, 68—69

methodology: (see methods software development)
methods, software development
B 326
Cleanroom 297
VDM (Vienna Development Method) 326
Z 31, 38, 56-58, 172-173, 209-210, 211, 218,
230, 252-253, 265-266, 285-287, 290-296
microprocessor 12, 59
microcode {2
Miorosoft 16, 17
military software 28
minimization 172
minimum 172, 302, 313
Miranda 298
mixfix syntax 83
ML 298
mnemonic names 287
mode 200-227, 227-229, 291-295
model 6-10, 28, 231
model checking 160, 162, 327
model-based notation 31, 326
Modula-3 327
module 31, 199, 285-286
modulus 72, 107, 115, 153, 271-273, 280, 301, 313,
318
monotonic reasoning 192, 195
MooZ 233, 326
mouse 199, 200
move, Chess 179, 323-324
mu 304
multiplication 37, 72, 116, 153, 271, 301, 313, 318
multiset 304
mutable data 268
mutex 236-237
mutual exclusion 236-237
natural deduction 162
natural language (see also informal requirements)
105-106, 161
natural number 35, 64, 113, 301, 313
negation
logical connective 102, 300, 306, 316-317
schema operator 135-137, 303
new variable 278, 320
node 87 :
nondeterministic 170, 172-173, 235, 253
nonexecutable 31-32, 37-38
nonconstructive definition 37-38, 252
nonmembership, set 136, 300, 309

floating point 59, 185, 212, 221
incommensurable 35
integer 35, 64-65, 301, 313
irrational 35
natural 35, 64, 113, 301, 313
odd 66, 68-69, 112, 273, 280
_positive 64
prime 66, 115-116, 161
rational 65
real 65, 252
strictly positive 64, 301, 313
numerical computation
(see also floating point, accuracy)
object 31, 138, 231-233
Object Z 233, 326
object-oriented programming 5, 31, 231-233,
285-286
odd number 66, 68—69, 112, 273, 280
one-to-many relation 89
one-to-one relation 82, 89, 92, 176
one point rule 157, 317
OOZE 233, 326
operating system 17, 18, 70, 234, 254
kernel 59, 162
operation schema 52-53, 124-126, 280-289
operational reasoning 254
operator
arithmetic, (see arithmetic operators)
C programming language, (see programming
language constructs)
projection, (see projection operators)
relational, (see relational operators)
schema, (see schema operators)
sequence, (see sequence operators)
set, (see set operators)
operator, generic 73
or, (see disjunction)
oracle 9-10, 149, 198
oscilloscope 59
outfix syntax 119
output variable 195-196, 303
overflow 158
overriding 84-85, 208, 216, 235, 295-296, 301,
311
Oxford University 31, 59
package 285
pair 81, 300, 310
paper and pencil 32
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paragraph
Z notation 32, 49, 66, 266
abbreviation definition 49, 68, 113, 118, 266,
299
axiomatic definition 35, 38, 50, 56, 66-68, 302
basic type definition 70-71, 299
free type definition 70, 148, 266, 299
generic definition 146-147, 302
predicate 75
schema 49-58, 122-145
paragraph, text 171-173
parameter 67, 221-222, 232-233
partial function 91-92, 301, 314
partial operation 54-55, 127, 283-284
participatory design 27
partition
of design 10, 211
operator 304
Pascal 7, 9, 256, 297, 298
pattern matching 107, 113-114, 120, 147, 170
PC (personal computer) 60
personal computer 60
Petri nets 326
phi 225
Pi calculus 326
piping 134-135
polygon 180-188
pointer 88, 282-283, 321
positive integer 64
postcondition 256-261, 271
postfix syntax 193, 299
power set 69, 192, 300
precision 34-35
precondition 53, 135, 149, 155, 256-261, 271, 276,
283, 285, 286
calculation 155-158
implicit 53-55
weakest 257
(see also guard)
predicate 36, 38, 50-51, 63, 66-67, 7477, 96-111
descriptive 271
equality 74-75, 96
inconsistent 97-98
membership 75, 96
quantified 106-108
prescriptive 271
relational 98-99
stronger 97
weaker 101
(see also invariant, precondition, postcondition)
predicate, schema as 133-134
predicate calculus 108
prefix syntax 74, 95, 98-99, 194, 299, 318
prefix 304
premises 190

prescription, radiation therapy: 40, 212, 214, 296
prescriptive predicate 271
prime number 66, 115-116, 161
primed variable 53, 124, 303
procedure 31, 280-281
process 70, 234-240
process algebra 326
production rule 191
project management 5, 21-28
projection operator 81, 120, 233
first 81, 301, 310
second 81, 301, 310
projection, schema operator 304
program derivation 254-296
program, main 56, 286-287
program unit 286, 290
programming languages
Ada 256, 327
C 33-38, 254-297, 319-321, 327
C++ 231
Haskell 298
Lisp 298
Miranda 298
ML 298
Modula-3 327
Pascal 7, 9, 256, 297, 298
Smalltalk 231
programming language constructs 33-38, 254-296,
319-321
array 93, 251, 266, 268, 270, 272, 274, 275, 279,
283, 292-294, 319-320
assignment 76, 257-258, 263264, 274-276,
319-320
attribute 231
class 31, 231-232, 285
comments 35, 64, 255, 261
conditional expression 259, 262-263, 277, 320,
321 .
control structure 56, 258-259
data file 266-267
data structure 32, 78, 265-268, 290-292
data types 31, 35-36, 266
declaration 35, 266
enumeration 266, 269, 270, 283, 290-295
expression 257, 271-272
for loop 33-36, 255, 256, 277, 279, 283, 294, 296,
320, 321
function 31, 33-38, 280-281, 286
global variables 257, 268, 271, 280-281
header file 286, 290
if statement 258-259, 276, 319, 320
include file 286, 290
iterator 279
library 32
local variables 284, 285
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loop 256, 259-262, 277, 279, 320, 321
macro 32, 50, 123, 132
main program 56, 286-287
member 268
message 233
method 31, 231
module 31, 285-286
operator 271-272
pointer 88, 282-283, 321
procedure 31, 280-281
program file 286, 290
program unit 286, 290
record 79, 138, 142, 267-270, 282-283
structure 79, 138, 142, 267-270, 282-283
type definition 269, 289, 290, 292
while loop 256, 321
promotion 225-226
proof 11, 149-162, 249-252, 254264, 294-298,
327
correctness of code 11, 254-264, 294-298
equational 161-162
formal 149-150
informal 159
machine-checked 159-160, 162, 327
natural deduction 162
refinement 249-252
sequent calculus 162
as a social process 159
proper subset 300, 309
prose: (see informal requirements)
protection system 211-217
prototype
executable 7, 32, 327
nonexecutable 149
Pythagorean triple 322
quadratic formula 252
quantifier 106108, 116-119, 279, 317, 320
definite description 304
existential 108, 142, 154, 157-158
restricted 116117
universal 106, 133-134
unique existential 304
quantification, schema operator 304
query 83-84, 196-198
quotient 128-129, 277
race condition 235
radiation therapy
accidents 15-16, 27, 214
machines 39-48, 60, 199-218
prescription 40, 212, 214, 296
treatment planning 180, 182, 241, 242
railway controls 12
range
of numbers 64, 95, 302, 313
of a relation 82-83, 301, 310

range anti-restriction 84, 238, 301, 311
range restriction 84-86, 301, 311
rank 174-179
rational number 65
reachability 327
real number 65, 252
real time 239
reasoning
equational 161-162
formal 149-160
informal 159
intuitive 159
monotonic 192, 195
operational 254
record 267-268
recursive
definition 170
data structure 148
Reference Manual 31, 59, 161, 162, 297-298, 304,
308
referential transparency 67
refinement 10, 211, 214, 216, 247-253, 297-298
calculus 255, 262-264, 270-279
law 262-264, 270, 319-320
proof 249-252
reflexive transitive closure 304
reification (see refinement)
relation 80-88, 98-99, 301, 309-312
asymmetric 184
binary 81-88, 98-99, 301, 310-312
identity 304
inverse 85, 240
many-to-many 82, 89
many-to-one 82, 89
one-to-many 89
one-to-one 82, 89, 92, 176
symmetric 183
unary 98-99, 109, 140
relations as predicates 98-100
relation, schema as 144-145
relational database 80
relational operators 80-88, 301, 309-312
backward composition 301, 312
composition 86-87, 301, 312
domain 82-83, 301, 311
domain anti-restriction 84, 225, 237, 295, 301, 311
domain restriction 83-86, 301, 311
image 83, 90, 192, 228, 301, 311
inverse 85, 240, 301, 311
iteration 304
overriding 84-85, 208, 216, 235, 295-296, 301,
311
range 82-86, 301, 310
range anti-restriction 84, 225, 237, 295, 301, 311
range restriction 83-86, 301, 311
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relational operators, (continued) composition 134, 303

reflexive transitive closure 304 conjunction 128-129, 303

transitive closure 193, 242, 301, 311 disjunction 130, 303
relation syntax equivalence 304

infix 74, 94, 98-99, 299, 305, 318 hiding 304

mixfix 83 implication 304

prefix 304 negation 135-137, 303

postfix 193, 299 piping 134-135, 303
remainder (see also modulus) 128-129, 277 projection 304
renaming, schema component 304 quantification 304
requirements 18-19, 23-26, 27 schema reference 56, 128, 133, 145
resource 147, 234-236 schema, state 50-52, 122-123, 266, 268-270
resource exhaustion (or limitation) 158 schema text 132, 299
restricted quantifier 116-117 schema, top level 56-57, 286287
restriction schema type 138-145

domain 82-83, 301, 311 schemas, compatible 128

range 82-83, 301, 311 scope 106, 118, 133, 143-144, 307
reuse 10, 173 search control 195
reverse, sequence operator 304 secure communications 20, 28
review 4, 296 security 27
right triangle 114, 322 segment
RISKS Digest 27 line 114, 183
rule 190-191 sequence operator 183, 302, 315
rule interpreter 190 selection, schema component 142, 303
rule-based programming 189-198 selector 142
safety assertion 219, 243 semantics 4, 45, 138, 142, 161
safety interlock (see interlock) semaphore 236
safety protection system 211-217 sequence 93-94, 248-251, 302, 315, 318
safety requirement 27, 104, 214, 217 sequence, empty 52, 54-55, 123, 302
safety-critical systems 12, 15-16, 27, 3948, sequence display 93, 302

211-230, 242, 326 sequence operators

programming languages for 297 compaction 304
satisfy, of predicates 97 concatenation 51, 93, 146-147, 158, 302, 315,318
scheduler 235 distributed concatenation 304
schema 32, 49-58, 122-145 extraction 304

as declaration 133-134 filtering 304

as expression 145 first (see head)

as predicate 133-134 front 302, 315

as relation 144145 head 54, 93, 302, 315

as set 141 in 183, 302, 315
schema calculus 32, 55-56, 122-137, 303 last 302, 315
schema component (see also state variable) 52, 142, prefix 304

303 reverse 304

schema expansion 123 segment (see in)
schema expression 56, 127 squash 304
schema format suffix 304

horizontal 127 tail 54, 302, 315

vertical 126 sequent calculus 162
schema, history of 161 servomotor 222-224
schema inclusion 123 set comprehension 112-114, 300, 318
schema, initialization 51-52, 123, 154 set display 63, 300
schema, operation 52-53, 124-126, 280-289 set, empty 63, 300, 308
schema operators set expression 56, 127

component renaming 304 set operators

component selection 142, 303 cardinality 73



Index

349

difference 73, 116, 140, 300, 309
generalized intersection 304
generalized union 304
intersection 73, 300, 309
membership 63
non-membership 136, 300, 309
proper subset 300, 309
size 51, 73, 94, 158, 300, 313, 318
subset 73, 300, 309
union 73, 300, 309
set, schema as 141
set type 69-71, 138
shared language, Larch 327
short circuit evaluation 258-259, 263
shutdown software 326
side effect 257, 271, 280
Sieve of Eratosthenes 116
signature 68-69, 128, 140
singleton sequence 158, 159, 318
situation 97, 138
size, set operator 51, 73, 94, 158, 300, 313, 318
skip 274, 319
social process 159
software component 10
source language transformation 256, 273, 321
source set 82
specialization 96-97, 173
specification languages
B 326
CCS 326
CSP 326
EVES 162, 327
Larch 327
MooZ 233, 326
Object Z 233, 326
OOZE 233, 326
Petri nets 326
Pi calculus 326
statechart 206-208, 242, 326
TLA 326
Unity 326
VDM 241, 242, 326
Z 31-32, 59-60, 161-162
Z++ 233,326
square 114-115
square root (see integer square root)
squash 304
state 50-51, 57, 138
state schema 50-52, 122-123, 266, 268-270
state transition
diagram 45-46, 87
system 45-48, 57, 206-208, 274
table 46
state variable 31, 51
statechart 206-208, 242, 326

storage 50
strictly positive number 64, 301, 313
stronger predicate 97
structure, C programming language 267-268
style, Z notation
analytic 32
descriptive 32
subclass 232
subset 73, 300, 309
subsystem 211, 227
subtraction 72, 271, 277, 301, 313
successor function 304
suffix 304
symmetric relation 183
syntax 4, 7-9, 45, 148, 161
syntax error 74
syntax tree 87
syntax, operator
infix 74, 94, 98-9Y, 299, 305, 318
mixfix 83
outfix 119
prefix 74, 95, 98-99, 194, 299, 318
postfix 193, 299
table 25
AND/OR 326
decision 106
state-transition 46
truth 100-104, 248, 324
tail 54, 302, 315
target set 82
telephone network 59
Temporal Logic of Actions (TLA) 326
term 72
testing 4-5, 9-10, 17, 18, 149, 254, 296
acceptance 37, 38
text editor 49-58, 122-137, 145
text processing 169-173
textbooks, Z notation 59
theorem prover 160, 162, 327
therapy machine 15-16, 3948, 60, 199-218
theta 143144, 281-283, 303
timeout 239-240
time, real 239
timer 239-240
TLA (Temporal Logic of Actions) 326
tool-kit, mathematical 32, 176, 308-315
tools, Z notation 32, 60
top-down 10, 202
top level schema 56-57, 286287
total function 92, 224, 301, 314
total operation 55-57, 127, 203, 229
transaction processing 12, 59
transitive closure 193, 242, 301, 311
transitivity 150-151, 317-318, 323
Transputer 59
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trial and error 4, 5, 18, 254
triangle, right 114, 322
true 96, 300, 316
truth table 100104, 248, 324
truth value 96
tuple 78-79, 300
type 63-65, 70-71, 73-74, 138-145
type checker 32, 69, 74, 160
type error 64, 74, 233
types, C programming language
(see programming language constructs)
types, Z notation
basic 70-71, 138, 266, 299
Cartesian product 79, 138, 300
cross product 79, 300
free 70, 148, 266, 299
schema 138-145
set 69-71, 138
typesetting 32
unary relation 98-99, 109, 140
undefined expression 74, 110-111
undetermincd predicate 110-111
unification 242
union 73, 300, 309
generalized 304
Unity 326
universal quantifier 106, 133-144
Unix file system 59
user interface 24
graphical 199-210
value 65
valid
proof 152
refinement law 263-264, 270
specification 26
validation 26
variable
after 124, 274, 303
before 124, 274, 303
bound 106-108, 112, 118, 172, 226, 294
decorated 124, 303
free 106-107, 172, 27t
global 50, 67
input 53, 124, 196, 303

local 51, 106
output 195-196, 303
primed 53, 124, 303
variant 260262, 325
verification 11, 254-262, 297298
verification condition 259, 261, 263, 325
vertical schema format 126
VDM 241, 242, 326
Vienna Development Method (VDM) 241, 242,
326
virtual memory 234-235
walkthrough 4
weaker predicate 97
weakest precondition 257
while loop 256
window 114, 119
word count 91, 171
World Wide Web (WWW) 60, 327
WWW (World Wide Web) 60, 327
X window system 59, 199, 242
xi 125
Z notation 31-32, 59-60, 161-162
annotated bibilography 59
applications 59
case studies 59
criticism 60
dialects 233, 326
history 60, 161
home page 60
idioms 225-226, 233
journals 59
mathematical tool-kit 32, 176, 308-315
method 31, 38, 56-58, 172-173, 209-210, 211,
218, 230, 252-253, 265-266, 285-287,
290-296
object-oriented programming 31, 231-233
Reference Manual 59
semantics 138, 142, 161
standard 59
style 60
textbooks 59
tools 32, 60
user meetings 59
Z++ 233,326



