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INTRODUCTORY FLUID MECHANICS

The primary objective of this introductory text is to familiarize stu-
dents exposed to only one course on fluids with the basic elements of
fluid mechanics so that, should their future work rely on occasional
numerical solutions, they will be familiar with the jargon of the dis-
cipline and the expected results. This book also can serve as a long-
term reference text, in contrast to the oversimplified approach often
used for such introductory courses. Additionally, it provides a com-
prehensive foundation for more advanced courses in fluid mechanics
within disciplines such as mechanical or aerospace engineering. To
avoid confusing students, the governing equations are introduced early
and the assumptions leading to the various models are presented. This
provides a logical hierarchy and explains the interconnectivity between
the various models. Supporting examples demonstrate the principles
and provide engineering analysis tools for many engineering calcula-
tions.
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Preface

Fluid mechanics is a fascinating but complex science and some problems cannot be
solved by simple intuition. The reason behind this is the complex nonlinear differen-
tial equations, which cannot be solved analytically. The approach that evolved over
recent centuries is to develop simple models for specific flow regions so that engi-
neering calculations and predictions become possible. Unfortunately, even these
simple models rely on complex mathematics, which makes introductory courses on
this subject extremely difficult and sometimes confusing to students.

On the other hand, numerical solutions have matured recently and generating
a solution for a given geometry can be achieved by a simple “run” command. The
approach of many users is to run a large number of cases and develop their own
“learning curve” of the problem, exactly as is done by experiments. The ease of
generating attractive, colorful solutions creates the illusion (for many students) that
further study of the subject is unnecessary.

The first objective of this introductory text is to familiarize students (and many
will be exposed to only one course on fluids) with the basic elements of fluid mechan-
ics. Therefore, if their future work relies on occasional numerical solutions, they will
be familiar with the jargon of the discipline and with the expected results. At the
same time, this book can serve as a long-term reference text, contrary to the over-
simplified approach occasionally used for such introductory courses. The second
objective is to provide a comprehensive foundation for more advanced courses in
fluid mechanics (in areas such as mechanical or aerospace engineering disciplines).
In order not to confuse the students, the governing equations are introduced early
and the assumptions leading to the various models are clearly presented. This pro-
vides a logical hierarchy for the material that follows and explains the intercon-
nectivity between the various models. Subsequent topics are then logically devel-
oped from the early chapter (Chapter 2) and the discussions are simple, brief,
nonconfusing, and accompanied by useful examples (e.g., make it easy to under-
stand to stimulate students’ interest in the subject). Supporting examples demon-
strate and explain the underlying principles and provide engineering analysis tools
for various practical engineering calculations.

Also, emphasis is placed on providing complete solutions (e.g., flow in pipes,
boundary-layer flow, etc.) for simple laminar flow cases (mostly one-dimensional)

xi



xii Preface

to explain the method and to capture student interest. Therefore, the approach is
self-containing and readers are not directed elsewhere for more detailed formula-
tions (e.g., the boundary layer problem is solved by using an integral method, and all
details are presented here). Once the solution for a simple case is explained, extrap-
olation to more realistic and more complex cases (as in turbulent flow in pipes or in
boundary layers) is provided.



A Word to the Instructor

Teaching a first course in fluid mechanics is always challenging because of the
numerous new concepts that were not used in previous engineering courses. The
source of the problem is in the highly nonlinear nature of the governing equa-
tions, which cannot be solved analytically for a general case. Over the years, various
flow regimes were treated by neglecting large portions of the governing equations,
leading to approximate solutions, which are unique to that limited problem. Conse-
quently, many introductory fluid mechanics courses focus on surveying those local-
ized solutions and not dealing directly with the governing equations. This approach
perhaps is less mathematically intense, but it may confuse the novice student who
cannot connect the various partial solutions to construct a more comprehensive
understanding of the fluid mechanics discipline.

The present approach is aimed at easing the learning process by providing an
early overview of the field and identifying a roadmap for understanding the dif-
ferent flow regimes. This is accomplished by presenting the governing equations (in
their simplest laminar form) early on. In each of the following chapters, students are
reminded how the particular subject of the chapter relates to the original roadmap
(i.e., hydrostatics is a case in which the velocity in the governing equations is zero).
Another benefit is that some similar cases are combined and students do not feel
that each case needs a new and different mathematical approach. Bearing in mind
that, for some students this is the only fluid dynamic course they’ll take, providing
a comprehensive survey of the field also becomes a major objective. Thus, deliv-
ery efficiency (of contents per time) becomes of paramount importance, demanding
certain sacrifices such as pushing the discussion on dimensional analysis to the sec-
ond half of the semester. Consequently, the introduction of the Reynolds number is
delayed to Chapter 5, where it pops up automatically. This realignment of the topics
is done mainly to allow early discussions (and assignment of homework problems)
on more practical fluid-related problems such as fluid static or one-dimensional
flows. As a result of these simplifications, more material can be covered during a
given teaching period.

As noted, this text is proposed for the first introductory course on fluid mechan-
ics. Therefore, the discussion is focused on cases in which simple laminar flow mod-
els can be effectively presented (whereas complex subjects such as surface waves,
turbulence modeling, or transition can be discussed in more advanced courses). A
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xiv A Word to the Instructor

one-semester introductory course may cover the following sections (in the order
presented):

Chapter 1 is basically an introduction. A survey of engineering units is recom-
mended, and Section 1.5 can be skipped.

Chapter 2 introduces the fluid dynamic equations. The integral form is easily
developed in class, but Section 2.7 and on can be skipped (reading these sections
at home, for information only, is recommended).

Chapter 3 focuses on the pressure term in the equations and concepts such as
the pressure distribution and the center of pressure are introduced.

Chapter 4 focuses on the inertia term of the general equations. All one-
dimensional tools are easily incorporated, including the Bernoulli equation.

Chapter 5 introduces the effects of viscosity through laminar flow models. Some
exact solutions, such as the pipe flow, are developed. Once the flow parameters
are identified (e.g., the Reynolds number), nondimensional numbers such as the
friction coefficient enable the solution of a wider range of engineering problems
(including turbulent flow). In a one-semester course, Subsection 5.3.4 and the
sections beyond Subsection 5.9.3 are not taught.

Chapter 6 is a short introduction to the next two chapters dealing mainly with
high-Reynolds-number flows. It is important because it provides the connection
between the models for surface friction and external aerodynamics and hydro-
dynamics. It also justifies why potential flow models are capable of estimating
the pressure field in high-Reynolds-number flows.

Chapter 7 discusses the role of the boundary layer in a manner similar to that
of flow in pipes (e.g., after a simple solution, parameters such as the friction
coefficient are extrapolated into the turbulent flow region). Section 7.6 and sub-
sequent sections usually are not taught during an introductory course.

Chapter 8 introduces the concept of ideal flow. Note that only the velocity
potential is presented, as in more advanced courses it can be extended to three-
dimensional flows. The approach used in the previous chapter continues by solv-
ing a limited analytical case (e.g., the flow over a cylinder) and then developing
coefficients so that various practical problems for both laminar and turbulent
flows can be solved (e.g., the lift and drag of various bodies). Students usually
enjoy this chapter, but the end of the semester is already on the horizon.

Chapters 9–11 deal with more advanced topics and portions can be briefly dis-
cussed, if time allows, or can be used in a second, more advanced course. In
practice, the computational fluid dynamics of Chapter 9 can be discussed during
the last week of the semester (but should not be included in the final test). A
presentation of colorful, three-dimensional computational fluid dynamic solu-
tions of the day is highly recommended.



1 Basic Concepts and Fluid Properties

1.1 Introduction

The science of fluid mechanics has matured over the last 200 years, but even today
we do not have complete and exact solutions to all possible engineering problems.
Although the governing equations (called the Navier–Stokes equations) were estab-
lished by the mid-1800s, solutions did not follow immediately. The main reason is
that it is close to impossible to analytically solve these nonlinear partial differential
equations for an arbitrary case. Consequently, the science of fluid mechanics has
focused on simplifying this complex mathematical model and on providing partial
solutions for more restricted conditions. Therefore the different chapters on classi-
cal fluid mechanics are based on retaining different portions of the general equation
while neglecting other lower-order terms. This approach allows the solution of the
simplified equation, yet preserves the dominant physical effects (relevant to that
particular flow regime). Finally, with the enormous development of computational
power in the 21st century, numerical solutions of the fluid mechanic equations have
become a reality. However, in spite of these advances, elements of modeling are still
used in these solutions, and the understanding of the “classical” but limited models
is essential for successfully using these modern tools.

This first chapter provides a short introduction on the historical evolution of
fluid mechanics and a brief survey of fluid properties. After this introduction, the
fluid dynamic equations are developed in the next chapter.

1.2 A Brief History

The science of fluid mechanics is neither new nor biblical; however, most of the
progress in this field was made in the 20th century. Therefore it is appropriate to
open this text with a brief history of the discipline, with only a very few names men-
tioned.

As far as we can document history, fluid dynamics and related engineering
were always integral parts of human evolution. Ancient civilizations built ships,
sails, irrigation systems, and flood-management structures, all requiring some basic
understanding of fluid flow. Perhaps the best known early scientist in this field is

1



2 Basic Concepts and Fluid Properties

Archimedes of Syracuse (287–212 b.c.e.), founder of the field now we call “fluid
statics,” whose laws on buoyancy and flotation are used to this day.

A major leap in understanding fluid mechanics began with the European
Renaissance of the 14th–17th centuries. The famous Italian painter–sculptor,
Leonardo da Vinci (1452–1519), was one of the first to document basic laws such
as the conservation of mass. He sketched complex flow fields, suggested feasible
configurations for airplanes, parachutes, and even helicopters, and introduced the
principle of streamlining to reduce drag.

During the next couple of hundred years, the sciences were gradually devel-
oped and then suddenly accelerated by the rational mathematical approach of an
Englishman, Sir Isaac Newton (1642–1727), to physics. Apart from the basic laws of
mechanics, and particularly the second law connecting acceleration with force, the
concepts for drag and shear in a moving fluid were developed by Newton, and his
principles are widely used today.

The foundations of fluid mechanics really crystallized in the 18th century. One
of the more famous scientists, Daniel Bernoulli (1700–1782, Dutch-Swiss), pointed
out the relation between velocity and pressure in a moving fluid, an equation that
bears his name appears in every textbook. However, his friend Leonhard Euler
(1707–1783, Swiss born), a real giant in this field, is the one who actually formulated
the Bernoulli equations in the form known today. In addition, Euler, using Newton’s
principles, developed the continuity and momentum equations for fluid flow. These
differential equations, the Euler equations, are the basis for modern fluid dynam-
ics and perhaps the most significant contribution to the process of understanding
fluid flows. Although Euler derived the mathematical formulation, he did not pro-
vide solutions to his equations. (Note that Euler is pronounced “oiler,” not “yuler”;
hence we have “an Euler equation.”)

Science and experimentation in the field increased, but it was only in the 19th
century that the governing equations were finalized in the form known today. A
Frenchman, Claude-Louis-Marie-Henri Navier (1785–1836), understood that fric-
tion in a flowing fluid must be added to the force balance. He incorporated these
terms into the Euler equations and published the first version of the complete set
of equations in 1822. These equations are known today as the Navier–Stokes equa-
tions. Communications and information transfers were not well developed in those
days. For example, Sir George Gabriel Stokes (1819–1903) lived on the English side
of the English Channel but did not communicate directly with Navier. Indepen-
dently, he also added the viscosity term to the Euler equations. Hence the glory is
shared by both scientists for these equations. Euler can be also considered the first
to solve the equations for the motion of a sphere in a viscous flow, which is now
called “Stokes flow.”

Although the theoretical basis for the governing equation had been laid down
by now, it was clear that the solution was far out of reach. Therefore scientists
focused on “approximate models,” using only portions of the equation that could
be solved. Experimental fluid mechanics also gained momentum, with important
discoveries by Englishman Osborne Reynolds (1842–1912) about turbulence and
transition from laminar to turbulent flow. This brings us to the 20th century, when
science and technology grew at an explosive rate, particularly after the first powered
flight of the Wright brothers in the United States (December 1903). Fluid mechanics
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attracted not only the greatest talent but also investments from governments as the
potential of flying machines was recognized. If only one name is mentioned per cen-
tury, then Ludwig Prandtl (1874–1953) of Göttingen, Germany, deserves the glory
for the 20th century. He made tremendous progress in developing simple models
for problems such as the flow in boundary layers and over airplane wings.

This trend of solving models and not the complex Navier–Stokes equations con-
tinued well into the mid-1990s, until the tremendous growth in computer power
finally allowed numerical solutions of these equations. Physical modeling is still
required, but the numerical approach allows the solutions of nonlinear partial differ-
ential equations, an impossible task from the pure analytical point of view. Nowa-
days, the flow over complex shapes and the resulting forces can be computed by
commercial computer codes, but without being exposed to simple models, our abil-
ity to analyze the results would be incomplete.

1.3 Dimensions and Units

The magnitude (or dimensions) of physical variables is expressed in engineering
units. In this book we follow the metric system, which was accepted by most profes-
sional societies in the mid-1970s. This International system, (SI for Systeme Interna-
tional) of units is based on the decimal system and is much easier to use than other
(e.g., British) systems of units. For example the basic length is measured in meters
(m): 1000 m is a kilometer (km) and 1/100 of a meter is a centimeter (cm). Along
the same line, 1/1000 m is a millimeter (mm).

Mass is measured in grams (g), which is the mass of one cubic centimeter
(1 cm3) of water. One thousand grams are one kilogram (kg), and 1000 kg are one
metric ton. Time is still measured the old-fashioned way, in hours (h), 1/60 of an
hour is a minute (min), and 1/60 of a minute is a second (s).

For this book, velocity is one of the most important variables, and its basic mea-
sure therefore is meters per second (m/s). Vehicle speeds are usually measured in
kilometers per hour (km/h) and clearly 1 km/h = 1000/3600 = 1/3.6 m/s. Acceler-
ation is the rate of change of velocity and therefore it is measured in meters per
second squared (m/s2).

Newton’s second law defines the units for the force F when a mass m is acceler-
ated at a rate of a:

F = ma = kg
m
s2

.

Therefore this unit is called a newton (N = kg m
s2 ). Sometimes the unit kilogram-

force (kgf) is used because the gravitational pull of 1-kg mass at sea level is 1 kgf. If
we approximate the gravitational acceleration as g = 9.8 m/s2, then

1 kgf = 9.8 N.

The pressure, which is the force per unit area, is measured with the previous units,

p = F
S

=
kg · m

s2

m2
= N

m2
= 1 Pascal (Pa);



4 Basic Concepts and Fluid Properties

this unit is named for the French scientist Blaise Pascal (1623–1662). Sometimes an
atmosphere (atm) is used to measure pressure, and this unit is about 1 kgf/cm2, or,
more accurately,

1 atm = 1.013 × 105 N/m2.

In the following sections we discuss some of the more important fluid properties
along with the units used to quantify them. In reality, there are a large number of
engineering units, and a list of the most common ones is provided in Appendix A.

1.4 Fluid Dynamics and Fluid Properties

Fluid dynamics is the science dealing with the motion of fluids. Fluids, unlike solids,
cannot assume a fixed shape under load and will immediately deform. For example,
if we place a brick in the backyard pool it will sink because the fluid below is not
rigid enough to hold it.

Both gases and liquids behave similarly under load and both are considered
fluids. A typical engineering question that we’ll try to answer here is this: What are
the forces that are due to fluid motion? Examples could focus on estimating the
forces required for propelling a ship or for calculating the size and shape of a wing
required for lifting an airplane. So let us start with the first question: What is a fluid?

As noted, in general, we refer to liquids and gases as fluids, but we can treat the
flow of grain in agricultural machines, a crowd of people leaving a large stadium,
or the flow of cars by using the principles of fluid mechanics. Therefore one of the
basic features is that we can look at the fluid as a continuum and not analyze each
element or molecule (hence the analogy to grain or seeds). The second important
feature of fluids is that they deform easily, unlike solids. For example, a static fluid
cannot resist a shear force and the particles will simply move. Therefore, to generate
shear force, the fluid must be in motion. This is clarified in the following subsections.

1.4.1 Continuum

Most of us are acquainted with Newtonian mechanics, and therefore it would be
natural for us to look at particle (or group of particles) motion and discuss their
dynamics by using the same approach used in courses such as dynamics. Although
this approach has some followers, let us first look at some basics.

Consideration a: The number of molecules is very large and it would be difficult
to apply the laws of dynamics, even when a statistical approach is used. For exam-
ple, the number of molecules in one gram-mole (1 g mole) is called the Avogadro
number (after the Italian scientist, Amadeo Avogadro, 1776–1856). 1 g mole is the
molecular weight multiplied by 1 g. For example, for a hydrogen molecule (H2) the
molecular weight is 2; therefore 2 g of hydrogen are 1 g mole. The Avogadro number
NA is

NA = 6.02 × 1023molecules/g mole. (1.1)

Because the number of molecules is very large, it is easier for us to assume a con-
tinuous fluid rather than to discuss the dynamics of each molecule or even their
dynamics by using a statistical approach.
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Consideration b: In gases, which we can view as the least condensed fluids, the
particles are far from each other, but as Brown (Robert Brown, botanist, 1773–1858)
observed in 1827, the molecules are constantly moving, and hence this phenomenon
is called Brownian motion. The particles move at various speeds and in arbitrary
directions, and the average distance between particle collisions is called the mean
free path λ, which for standard air is about 6 × 10−6 cm. Now, suppose that a pres-
sure disturbance (or a jump in the particle velocity) is introduced; this effect will
be communicated to the rest of the fluid by the preceding interparticle collisions.
The speed that this disturbance spreads in the fluid is called the speed of sound, and
this gives us an estimate about the order of molecular speeds (the speed of sound
is about 340 m/s in air at 288 K). Of course, many particles must move faster than
this speed because of the three-dimensional (3D) nature of the collisions (see Sec-
tion 1.6). It is only logical that the speed of sound depends on temperature because
temperature is related to the internal energy of the fluid. If this molecular mean-
free-path distance λ is much smaller than the characteristic length L in the flow
of interest (e.g., L ∼ the chord of an airplane’s wing) then, for example, we can
consider the air (fluid) as a continuum! In fact, a nondimensional number, called
the Knudsen number (after the Danish scientist Martin Knudsen, 1871–1949), exists
based on this relation:

Kn = λ

L
. (1.2)

Thus, if Kn < 0.01, meaning that the characteristic length is 100 times larger than the
mean free path, then the continuum assumption may be used. Exceptions for this
assumption of course would be when the gas is very rare (Kn > 1), e.g., in vacuum
or at very high altitudes in the atmosphere.

Therefore, if we agree on the concept of a continuum, we do not need to trace
individual molecules (or groups of molecules) in the fluid but rather we should
observe the changes in the average properties. Apart from properties such as density
or viscosity, the fluid flow may have certain features that must be clarified early on.
Let us first briefly discuss frequently used terms such as laminar and turbulent and
attached and separated flows, and then focus on the properties of the fluid material
itself.

1.4.2 Laminar and Turbulent Flows

Now that, by means of the continuum assumption, we have eliminated the discus-
sion about arbitrary molecular motion, a somewhat similar but much larger-scale
phenomenon must be discussed. For the discussion let us assume a free-stream flow
along the x axis with uniform velocity U. If we follow the traces made by several
particles in the fluid we would expect to see parallel lines, as shown in the upper
part of Fig. 1.1. If, indeed, these lines are parallel and follow the direction of the
average velocity and the motion of the fluid seems to be “well organized,” then this
flow is called laminar. If we consider a velocity vector in a Cartesian system,

�q = (u, v, w), (1.3)
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Laminar flow

Turbulent flow

Figure 1.1. Schematic description
of laminar and turbulent flows hav-
ing the same average velocity.

then for this steady-state flow the velocity vector will be

�q = (U, 0, 0), (1.3a)

and here U is the velocity in the x direction.
On the other hand, it is possible to have the same average speed in the flow,

but in addition to this average speed the fluid particles will momentarily move in
the other directions (lower part of Fig. 1.1). The fluid is then called turbulent (even
though the average velocity Uav could be the same for both the laminar and tur-
bulent flows). In this two-dimensional (2D) case the flow is time dependent every-
where, and the velocity vector then becomes

�q = (Uav + u′, v′, w′), (1.4)

where u′, v′, and w′ are the perturbations in the x, y, and z directions. Also, it is clear
that the average velocities in the other directions are zero:

Vav = Wav = 0.

So if a simple one-dimensional (1D) laminar flow transitions into a turbulent flow,
then it also becomes 3D (not to mention time dependent). Knowing whether
the flow is laminar or turbulent is very important for most engineering problems
because features such as friction and momentum exchange can change significantly
between these two types of flow. The fluid flow can become turbulent in numerous
situations such as inside long pipes or near the surface of high-speed vehicles.

1.4.3 Attached and Separated Flows

By observing several streamline traces in the flow (by injecting smoke, for example),
we can see if the flow follows the shape of an object (e.g., a vehicle’s body) close to
its surface. When the streamlines near the solid surface follow exactly the shape of
the body [as in Fig. 1.2(a)], the flow is considered to be attached. If the flow does not
follow the shape of the surface [as seen behind the vehicle in Fig. 1.2(b)], then the
flow is considered detached or separated. Usually such separated flows behind the
vehicle will result in an unsteady wake flow, which can be felt up to large distances
behind the vehicle. Also, in Fig. 1.2(b) the flow is attached on the upper surface and
is separated only behind the vehicle. As we shall see later, having attached flow fields
is extremely important because the vehicle with the larger areas of flow separation
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Separated flow

Attached flow(a)

(b)

U∞

Figure 1.2. (a) Attached flow over a streamlined car and (b) the locally separated flow behind
a more realistic automobile shape.

is likely to experience higher resistance (drag). Now, to complicate matters, if the
flow above this model is turbulent then, because of the momentum influx from the
outer fluid layers, the flow separation can be delayed.

1.5 Properties of Fluids

Fluids, in general, may have many properties related to thermodynamics, mechan-
ics, or other fields of science. In the following subsections, only a few, which are used
in introductory fluid mechanics, are mentioned.

1.5.1 Density

Density, by definition, is mass per unit volume. In the case of fluids, we can define
the density (with the aid of Fig. 1.3) as the limit of this ratio when a measuring
volume V shrinks to zero. We need to use this definition because density can change
from one point to the other. Also in this picture, we can relate to a volume element
in space that we can call “control volume,” which moves with the fluid or can be
stationary (in any case it is better to place this control volume in inertial frames of
reference).

Therefore the definition of density at a point is

ρ = lim
V→0

(m
V

)
. (1.5)

Typical units are kilograms per cubic meter (kg/m3) or grams per cubic centimeter
(g/cm3).

m

V

Control volume

Figure 1.3. Mass m in a control volume V. Density is the ratio of
m/V.
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dS

n

Figure 1.4. Pressure acts normal to the surface dS
(�n is the unit vector normal to the surface).

1.5.2 Pressure

We can describe the pressure p as the normal force F per unit area acting on a
surface S. Again, we use the limit process to define pressure at a point, as it may
vary on a surface:

p = lim
S→0

(
F
S

)
. (1.6)

Bernoulli pictured the pressure as being a result of molecules impinging on a
surface (so this force per area is a result of the continuous bombardment of the
molecules). Therefore, the fluid pressure acting on a solid surface is normal to the
surface, as shown in Fig. 1.4. Consequently the force direction is obtained by multi-
plying with the unit vector �n normal to the surface. Because the pressure acts normal
to a surface the resulting �F force is

�F = −p�n ds. (1.7)

Here the minus sign is a result of the normal unit vector pointing outside the surface
while the force that is due to pressure points inward. Also note that the pressure at
a point inside a fluid is the same in all directions. This property of the pressure is
called isetropic. The observation about the fluid pressure at a point acting equally in
any arbitrary direction was documented first by Blaise Pascal (1623–1662).

The units used for pressure were introduced in Section 1.3. However, the pascal
is a small unit; the units used more often are the kilopascal (kP), the atmosphere
(atm), or the bar (bar has no abbreviation; hence the correct use is: 1 bar or 5 bars):

1 kP = 1000
N
m2

, 1 atm = 101,300
N
m2

, 1 bar = 100,000
N
m2

.

1.5.3 Temperature

Temperature is a measure of the internal energy at a point in the fluid. Over the
years different methods have evolved to measure temperature; for example, the
freezing point of water is considered zero in the Celsius system and the boiling tem-
perature of water under standard conditions is 100 ◦C. Kelvin units (K) are similar
to Celsius; however, they measure the temperature from absolute zero, a temper-
ature found in space, and they represent a condition when molecular motion will
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stop. The relation between the two temperature-measuring systems is

K = 273.16 + ◦C. (1.8)

The Celsius system is widely used in European countries whereas in the United
States, Fahrenheit units are still used. In this case, 100 ◦F was set to be close to the
human body’s temperature. The conversion between these temperature-measuring
systems is

◦C = 5/9(◦F − 32), (1.9)

which indicates that 0 ◦C = 32 ◦F . The absolute temperature in these units is in
Rankine units (◦R) and this scale is higher by 459.69◦:

◦R = 459.69 + ◦F. (1.10)

Now that we have introduced density, pressure, and temperature, it is important to
recall the ideal-gas relation, in which these properties are linked together by the gas
constant R:

p/ρ = RT. (1.11)

If we define v as the volume per unit mass then v = 1/ρ, and we can write

pv = RT. (1.12)

However, R is different for various gases or for their mixtures, but it can be easily
calculated with the universal gas constant R (R = 8314.3 J/mol K). Then we can find
R by dividing this universal R by the average molecular weight M of the mixture of
gases.

EXAMPLE 1.1. THE IDEAL-GAS FORMULA. As an example, for air we can assume
M = 29 and therefore

R = R/M = 8314.3/29 = 286.7 m2/(s2 K) for air. (1.13)

Suppose we want to calculate the density of air when the temperature is 300 K
and the pressure is 1 kgf/cm2:

ρ = p/RT = 1 × 9.8 × 104/286.7 × 300 = 1.139 kg/m3.

Here we used 1 kgf/cm2 = 9.8 × 104 N/m2 and g = 9.8 m/s2.
Another interesting use of the universal gas constant is when we can cal-

culate the volume (V) of 1 g mole of gas in the following conditions (e.g.,
T = 300 K and p = 1 atm = 101,300 N/m2). For air we should take 29 g because
M = 29 and therefore R is multiplied by 10−3 because we considered 1 g mole
and not 1 kg mole:

V = RT/p = 8314.3 × 10−3 × 300/101,300 = 24.62 × 10−3 m3 = 24.62 L.

Note that 1 g mole of any gas will occupy the same volume because we have
the same number of molecules (as postulated by Avogadro). Also, L is one liter
(= 0.001 m3).

1.5.4 Viscosity

The viscosity is a very important property of fluids, particularly when fluid motion is
discussed. In fact, the schematic diagram of Fig. 1.5 is often used to demonstrate the
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No-slip condition

No-slip conditionSolid boundaries

x

z

F

Fluid

U∞

h

Figure 1.5. The flow between two
parallel plates. The lower is sta-
tionary while the upper moves at a
velocity of U∞.

difference between solids and fluids. A fluid must be in motion in order to generate
a shear force, whereas a solid can support shear forces in a stationary condition.

In this figure the upper plate moves at a velocity of U∞ while the lower surface
is at rest. A fluid is placed between these parallel plates, and when the upper plate
is pulled, a force F is needed. At this point we can make another important observa-
tion. The fluid particles in immediate contact with the plates will not move relative
to the plates (as if they were glued to it). This is called the no-slip boundary condi-
tion, and we will use this in later chapters. Consequently we can expect the upper
particles to move at the upper plate’s speed while the lowest fluid particles attached
to the lower plate will be at rest. Newton’s law of friction states that

τ = μ
dU
dz

. (1.14)

Here τ is the shear force per unit area (shear stress) and μ is the fluid viscosity. In
this case the resulting velocity distribution is linear and the shear will be constant
inside the fluid (for h > z > 0). For this particular case we can write

τ = μ
U∞
h

. (1.15)

A fluid that behaves like this is called a Newtonian fluid, indicating a linear relation
between the stress and the strain. As noted earlier, this is an important property of
fluids because without motion there is no shear force.

The units used for τ are force per unit area, and the units for the viscosity μ are
defined by Eq. (1.14). Some frequently used properties of some common fluids are
provided in Table 1.1.

Table 1.1. Approximate properties of some common fluids at 20 ◦C (ρ = density,
μ = viscosity, σ = surface tension)

Fluid ρ (kg/m3) μ (N s/m2) σ (N/m)

Air 1.22 1.8 × 10−5

Helium 0.179 1.9 × 10−5

Gasoline 680 3.1 × 10−4 2.2 × 10−2

Kerosene 814 1.9 × 10−3 2.8 × 10−2

Water 1000 1.0 × 10−3 7.3 × 10−2

Sea water 1030 1.2 × 10−3 7.3 × 10−2

Motor oil (SAE 30) 919 0.29 3.6 × 10−2

Glycerin 1254 0.62 6.3 × 10−2

Mercury 13600 1.6 × 10−3 4.7 × 10−1
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Figure 1.6. Variation of viscosity versus temperature for several fluids.

Also note that the viscosity of most fluids depends on the temperature, and this
is shown for several common fluids in Fig. 1.6.

EXAMPLE 1.2. THE UNITS OF SHEAR. To demonstrate the units of shear let us
calculate the force required to pull a plate floating on a 2-cm-thick layer of SAE
30 oil at U∞ = 3 m/s.

Taking the value of the viscosity from Table 1.1, we have μ = 0.29 kg/m s at
20 ◦C. Thus,

τ = 0.293
3

0.02
= 43 kg/m s2 = 43 N/m2.

Sometimes the ratio between viscosity and the density is denoted as ν, the
kinematic viscosity. Its definition is

ν = μ

ρ
. (1.16)

1.5.5 Specific Heat

Fluids have several thermodynamic properties, and only two, related to heat
exchange, are mentioned here. For example, if heat Q is added in a constant-
pressure process to a mass m, then the relation between temperature change and
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heat is stated by the simple formula

Q = mcp�T. (1.17)

Here cp is the specific-heat coefficient used in a constant-pressure process. However,
if the fluid is not changing its volume during the process, then cv is used for the
specific heat in this constant-volume process:

Q = mcv�T. (1.18)

The ratio between these two specific-heat coefficients is denoted by

γ = cp

cv

. (1.19)

The heat (energy) required for raising the temperature of 1 g of water by 1 ◦C is
called a calorie (cal). Therefore, the units for cp or cv are cal

kg ◦C and 1 cal = 4.2 J
(J = joule). Work in mechanics is force times distance, and therefore units of 1 J are

1 J = kg
m
s2

m = kg
m2

s2
.

Also, for an ideal gas undergoing an adiabatic process, the two heat capacities relate
to the gas constant R (see [1, p. 90]):

cp − cv = R. (1.20)

1.5.6 Heat Transfer Coefficient k

Heat transfer can take several forms, such as conduction, convection, or radiation.
Because this introductory text does not include heat transfer only one basic mode of
heat transfer called conduction is mentioned. The elementary 1D model is depicted
by Fig. 1.7, where the temperature on one side of the wall is higher than that on
the other side. The basic heat transfer equation for this case, called the Fourier
equation, states that the heat flux is proportional to the area A, the temperature
gradient, and the coefficient k, which depends on the material through which the
heat is conducted:

Q = −k A
dT
dx

. (1.21)

Q

T1
T

x

h

T2

Figure 1.7. Conductive heat transfer through a wall
of thickness h.
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For the case in Fig. 1.7, we could state that the heat flux is

Q = −k A
T2 − T1

h
. (1.21a)

Here T2 is larger that T1, and the minus sign indicates that the heat flux is in the left
direction. Also note that the temperature distribution in the wall is linear. The units

for k are defined by Eq. (1.21) as
cal

m2 ◦C
.

1.5.7 Surface Tension σ

Molecules in a liquid attract each other equally, but near the surface this equilib-
rium is changed, resulting in the surface tension σ . A simplistic visualization of this
effect is provided in Fig. 1.8. The molecule, deep in the fluid, is attracted equally by
its neighbors and therefore is in equilibrium. However, on the surface (as shown),
the vertical force is not balanced and this inward force is balanced by the surface
tension, very much like a thin cover stretched over the surface of a pool. Near the
wall this surface tension may change direction and pull the surface up or down,
depending on the wetting angle.

Figure 1.8. Schematic description of the surface tension in a
liquid.

This wetting angle or the contact angle θ is used to define the direction of the
force. An example to demonstrate surface tension is shown in Fig. 1.9. Here a mov-
able link is closing the open end of a U-shaped wire. After dipping it, say in soapy
water, a film is visible. A load F may be applied, as shown, to measure the magnitude
of the surface tension σ , which has units of force per unit length.

We can therefore estimate the total force resulting from the surface tension by
multiplying the contact length L by the surface tension σ :

F = σ L. (1.22)

Rigid wire frame

Surface of film
Movable
wire

F

L

Figure 1.9. A film of liquid forming inside a wire
frame.
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(a) Spherical droplet (b) Spherical bubble

p

σ

σ

σ

σ

p
R

R Figure 1.10. The forces on one half of a bub-
ble or droplet.

Typical values for the surface tension for an air–water surface at standard conditions
are σ = 0.073 N/m and for an air–mercury surface at standard conditions σ = 0.48
N/m. The surface tension for several other fluids is listed in Table 1.1.

EXAMPLE 1.3. PRESSURE INSIDE A LIQUID BUBBLE OR DROPLET. Let us estimate
the pressure (difference) inside a liquid bubble. We do this by imaginarily split-
ting the droplet into two halves and estimating the forces that must be in equilib-
rium. The surface tension force around the circular opening, pulling the hemi-
sphere of radius R to the left (Fig. 1.10), is

σ2π R.

The force that is due to pressure inside the hemisphere, pushing to the right, is

π R2�p.

Because the hemisphere is in equilibrium, those two forces are equal:

σ2π R = π R2�p,

or (1.23)
�p = 2σ/R.

Therefore the pressure difference depends on the radius R when σ is given.
In the case of a droplet, the smaller ones will have higher pressure inside, and
as the radius is increased the droplet becomes less stable, so there is a limit to
the size of possible droplets. In the case of the bubble, if the pressure inside
increases, the bubble stretches and becomes larger; again, for very large bub-
bles, the stress holding them together is too low and they will disintegrate.

EXAMPLE 1.4. PRESSURE DIFFERENCE IN A SOAP-WATER BUBBLE. As an example,
calculate the pressure difference for a 10-cm-diameter spherical water and soap
bubble. The surface tension of the water and soap mixture is actually much
less than for clean water; let us assume σ = 2.5 × 10−2 N/m. By the way, the
long molecules of the soap stabilize the bubble and reduce evaporation. Using
Eq. (1.23), we get

�p = 2σ

R
= 2 × 2.5 × 10−2 N/m

5 × 10−2 m
= 1.0

N
m2

.

Another important parameter related to the surface tension is the contact angle
(or wetting angle) θ , as shown in Fig. 1.11.

For a glass–water surface in air and at standard conditions, θ = 0◦. For a
glass–mercury surface in air and at standard conditions, θ = 130◦.
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h

θ

2R

Figure 1.11. The effect of surface tension when a capil-
lary tube is dipped in a fluid container. θ is the contact
angle.

To demonstrate the effect of surface tension and wetting angle, let us con-
sider a case in which a capillary tube is inserted vertically into a container filled
with a liquid (Fig. 1.11) and the parameters θ and σ are known.

Let us observe the vertical force balance. This force that is due to the sur-
face tension on the upper, circular contact area is

σ2π Rcos θ

The weight of the raised liquid column is

ρgπ R2h.

Because the liquid in the column is in equilibrium, we can write

σ2π R = ρπ R2h,

and by solving for h we get

h = 2σ cos θ

ρgR
. (1.24)

This means, for example, that for tubes with smaller radius R the liquid will rise
higher (in the case of θ < 90◦). Also note that for θ < 90◦ the liquid inside the
tube will rise while a capillary depression will be observed (the level inside the
tube will be lower then in the outer container) for θ > 90◦. If a liquid droplet is
positioned on a surface, then this last condition is called a nonwetted surface, as
illustrated in Fig. 1.12b. Along the same line, for θ < 90◦ we may call the surface
a wetted.

(a) A “wetted” surface (b) A nonwetted surface

Water
dropletθ <  90°

θ > 90°Figure 1.12. Effect of the wet-
ting angle on the shape of a
droplet placed on a solid surface.
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EXAMPLE 1.5. CAPILLARY EFFECT. For a numerical example, calculate the rise of
water in a capillary tube. Consider R = 1 mm and from Table 1.1 we get σ =
0.073 N/m, θ = 0◦, and water density ρ = 1000 kg/m3. Then, using Eq. (1.24), we
get

h = 2 × 0.073 × cos 0
1000 × 9.8 × 0.001

= 0.015 m,

or 15 mm. Now we continue the same example but with a nonwetted condition
and assume mercury is the fluid. Then from Table 1.1 we get σ = 0.48 N/m,
θ = 130◦, and density ρ = 13,600 kg/m3. Then, using Eq. (1.24), we get

h = 2 × 0.48 × cos 130
13,600 × 9.8 × 0.001

= −0.0046 m,

or 4.6 mm. Note that the negative sign means that the liquid in the tube is below
the liquid level outside the tube.

These effects seem small, but when a liquid column is used for pressure
measurements (as in some manometers) then these small differences that are
due to surface tension must be accounted for.

1.5.8 Modulus of Elasticity E

The modulus of elasticity E is a measure of compressibility. It can be defined as

E = dp/(dV/V) or dp = E(dV/V). (1.25)

The second form indicates how much pressure is needed to compress a material
having a modulus of E. Also, the change in volume is directly related to the change
in density, and we can write

dρ/ρ = dV/V. (1.26)

And by substituting dV/V for dρ/ρ in Eq. (1.25) we get

E = dp/(dρ/ρ). (1.27)

Most liquids are not very compressible, but gases are easily compressed and for an
ideal gas we already introduced this relation [in Eq. (1.11)]:

dp/dρ = RT. (1.28)

Therefore, substituting Eq. (1.28) into Eq. (1.27) results in (for an ideal gas)

E = ρRT. (1.29)

The units for E, based on Eq. (1.25), are
N/m2

m3/m3 = N/m2.

EXAMPLE 1.6. COMPRESSIBILITY OF A LIQUID. For this example, let us consider
the compressibility of seawater. The modulus of elasticity is E = 2.34 × 109

N/m2, and let us evaluate the change in volume at a depth of 1 km. The change
in pressure at a 1000-m depth is

dp = ρgh = 1000 × 9.8 × 1000 N/m2,

dV/V = dP/E = 1000 × 9.8 × 1000/2.34 × 109 = 4.188 × 10−3 (0.42%),
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which is less than half a percent. This shows that water is really incompres-
sible.

It is interesting to point out that compressibility relates to the speed of
sound in a fluid. If we use the letter a to denote the speed of sound, then later
(Section 10.2) we shall see that

a2 = dp/dρ. (1.30)

For liquids we can use Eq. (1.27) to show that

a2 = dp/dρ = E/ρ. (1.31)

For ideal gases undergoing an adiabatic process (thermally isolated), we get

dp/dρ = γ RT. (1.32)

Therefore

a =
√

γ RT, (1.33)

indicating that the speed of sound is a function of the temperature.

EXAMPLE 1.7. THE SPEED OF SOUND. Let us calculate the speed of sound in air
at 300 K. Taking the value of R from Eq. (1.13) and assuming γ = 1.4, we get

a =
√

1.4 × 286.6 × 300 = 346.9 m/s for air.

Now, to calculate the speed of sound in water we must use Eq. (1.31). Based
on the modulus of elasticity of seawater,

a =
√

E
ρ

=
√

2.34 × 109

1000
= 1529 m/s,

and the resulting speed of sound is significantly higher.

1.5.9 Vapor Pressure

Vapor pressure is a property related to the phase change of fluids. One way to
describe it is to observe the interface between the liquid and the gas phase of a
particular fluid; the vapor pressure indicates that there is an equilibrium between
the molecules leaving and joining the liquid phase. The best example is to exam-
ine the vapor pressure of water as shown in Fig. 1.13. Because molecular energy
is a function of the temperature, it is clear that vapor pressure will increase with
temperature. The vapor pressure is zero at 0 ◦C, and of course is equal to 1 atm at
100 ◦C, which is the standard boiling point of water.

In later chapters we shall see that the pressure can change in a moving fluid. So
even if there is no temperature change, there could be a situation in which the pres-
sure in the fluid falls below the vapor pressure. The result is the formation of bub-
bles, because at this condition the liquid will evaporate locally. This phenomenon
is called cavitation, and Fig. 1.14 shows an example of the bubble trail created near
the tip of a propeller (where a tip vortex creates a high local velocity). Cavitation in
pumps or fast-moving objects through fluid can result in mechanical damage that is
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Figure 1.13. Vapor pressure of
water versus temperature.

due to pitting of the surface and vibration. In the case of liquid pumps, cavitation
will reduce flow rate and performance and will affect the pump efficiency.

Fluids have many more properties such as enthalpy, entropy, internal energy,
etc., but they are mostly not used in this text.

Figure 1.14. Cavitation: bubble trail forming inside the fluid when the local pressure falls
below the vapor pressure. In this case the bubbles originate near the propeller tip where
the pressure is the lowest. (Courtesy of Garfield Thomas Water Tunnel, Pensylvania State
University.)

1.6 Advanced Topics: Fluid Properties and the Kinetic Theory of Gases

Gases were defined earlier as fluids in which the molecules can move freely and
are far from each other, occasionally colliding with each other. This model led
Daniel Bernoulli in 1738 to explain pressure in gases based on this type of molec-
ular motion. Bernoulli considered a cylindrical container, filled with gas, as shown
in Fig. 1.15. As the molecules move inside the container, they also impinge on the
walls, as shown in the figure. Now we may neglect the intermolecular collisions and
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Figure 1.15. Gas molecules moving randomly inside a con-
tainer.

assume that when a molecule hits the wall it will bounce back without losses (elastic
collision). This assumption also includes pure elastic collisions with the sides of the
cylinder.

Therefore the total forces that are due to these collisions must produce the pres-
sure on the container’s walls. For example, the particle in Fig. 1.15 (marked by the
letter A) hitting the top has a velocity of

q = (u, v, w), (1.34)

and when it hits the top, the change in its linear momentum in the x direction is

2 mu,

where the 2 is a result of the elastic collision, m is the mass of the molecule, and u
is the velocity component in the x direction. Because the particle is contained inside
the cylinder and is continuously bouncing back and forth, we can estimate the time
�t between these collisions on the upper wall by

�t = 2L/u,

where L is the length of the cylinder. The force that is due to the collisions of this
particle, based on Newton’s momentum theory, is

F = �(mu)
�t

= 2mu
2L/u

= mu2/L. (1.35)

Now recall that the particles are likely to move at the same speed in any direction
and

q2 = u2 + v2 + w2;

if all directions are of the same order of magnitude we can assume that

q2 ≈ 3u2.

Now suppose that there are N particles in the container; therefore the force that is
due to the inner gas is

F = N
mq2/3

L
, (1.36)

and the pressure is simply the force per unit area,

p = F
S

= N
mq2/3

LS
= N

3V
mq2 (1.37)
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Figure 1.16. Maxwell’s universal velocity distribution for the molecules of air (M = 29), at
300 K.

where the volume V = LS and S is the cylinder top (or bottom) area. This is a
surprisingly simple approach that connects the pressure to the molecular kinetic
energy. Now we recall the ideal-gas equation,

pV = nRT = N
NA

RT, (1.38)

where n = N/NA is the number of moles in the cylinder [recall that NA is the
Avogadro number in Eq. (1.1)]. By equating these two equations, we solve for the
temperature:

T = NA

3R
mq2. (1.39)

This simple model shows that for an ideal gas the molecular kinetic energy is pro-
portional to the absolute temperature. This means that at absolute zero the molec-
ular motion will stop, a concept that was not received well in Bernoulli’s era. About
100 years later, a Scottish physicist, James Maxwell (1831–1879), revived this theory
and introduced a statistical approach. He suggested a universal velocity distribution
(Fig. 1.16) that shows the velocity range of molecular motion. Our interest at this
point is to demonstrate the magnitude of the molecular velocity, which mainly
depends on temperature and molecular weight. The probability is depicted on the
ordinate (the y axis) and the probable velocity is on the abscissa (the x axis). Of
course, the total area under the curve is always 1 because all particles in the con-
tainer are included. Note that the average velocity is a bit over the top to the right
(468 m/s for air), which is somewhat higher than the speed of sound, mentioned
earlier.
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Figure 1.17. Using the kinetic
theory of gases, we can explain
the high pressure near a con-
cave curvature and the lower
pressure near a convex curva-
ture.

Another interesting aspect of this molecular model is that, for flow over bod-
ies, it can explain intuitively the effect of curvature on the pressure distribution.
For example, Fig. 1.17 shows a generic automobile that is moving forward at a con-
stant speed. The air molecules are moving toward the car at an average velocity, in
addition to their Brownian motion (see Fig. 1.17). At the base of the windshield the
number of collisions will increase because the incoming molecules will hit head on
and some may even bounce back again because of intermolecular collisions. On the
other hand, when observing the flow over a concave surface as shown in the figure
(behind the rooftop), we see that the particles will not hit the rear window head on.
They will fill the void mainly due to intermolecular collisions. Hence a lower pres-
sure is expected there. We can also guess that the velocity at the base of the wind-
shield (concave surface) slows down whereas the undisturbed particles at the back
(convex surface) will accelerate to cover the additional distance created by the void.
This generic discussion suggests that the pressure is lower if the velocity is increased
in such flows. We shall see later that this observation led to the formulation of the
well-known Bernoulli equation.

1.7 Summary and Concluding Remarks

In this introductory chapter the properties of fluids were discussed. The reader
must have seen those during earlier studies and the only ones worth mentioning are
related to the forces in fluids. The first is of course the pressure, which acts normal
to a surface and the second is the shear force. The shear stress in a fluid exists only
when the fluid is in motion, contrary to solids that can resist shear under static con-
ditions. This situation is created by the no-slip boundary condition, which postulates
that the fluid particles in contact with a surface will have zero relative velocity at the
contact area.

REFERENCE

[1] Karlekar, B. V., Thermodynamics for Engineers, Prentice-Hall, Englewood Cliffs, NJ,
1983.



22 Basic Concepts and Fluid Properties

PROBLEMS

1.1. A uniform pressure is acting on a plate 0.5 m tall and 3.0 m wide. Assuming
the pressure difference between the two sides of the plate is 0.05 atm, calculate the
resultant force.

F

3.0 m

0.5 m

Constant
pressure

Problem 1.1.

1.2. Identical bricks 0.1 m wide, and weighing 2 kg are placed on a plate (assume
the plate has negligible weight). Calculate the total weight and force F required for
balancing the plate. How far from x = 0 should F be placed so that the plate will not
tip over?

1

2

3

4

1

2

3

1

21

1
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F

x
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Problem 1.2.

1.3. A linearly varying pressure [p(x) = Pmax/L × x] is acting on a plate. Calculate
the total force (resultant) and how far it acts from the origin. Later we call this the
center of pressure.

x

p =

L0

Pmax

Pmax x
L

Problem 1.3.

1.4. Suppose that a 1-m3 metal container holds air at standard conditions (P = 1 atm
and T = 300 K).

(a) Calculate the pressure inside the container if it is heated up to 400 K.
(b) Calculate the density ρ inside the container. [R = 286.6 m2/(s2 K)].

1.5. A 2D velocity field is given by the following formulation:

u = x
x2 + z2

, w = z
x2 + z2

.

Calculate the value of the velocity vector q at a point (1,3).



Problems 23

1.6. On a warm day the thermometer reads 30 ◦C. Calculate the absolute tempera-
ture in degrees Kelvin and also the temperature in degrees Fahrenheit.

1.7. 1 m3 of air at 1 atm and 300 K is sealed in a container. Calculate the pressure
inside the container

(a) if the volume is reduced to 0.5 m3 but the temperature is cooled off to 300 K,
(b) when the temperature is 350 K, and the volume is still 0.5 m3.

1.8. A 1-m3 balloon is filled with helium at an ambient temperature of 30 ◦C. The
pressure inside the balloon is 1.1 atm and outside it is 1.0 atm. The molecular weight
of helium is about 4 and that of the surrounding air is about 29. Calculate the weight
of the helium inside the balloon. What is the weight of the outside air that has the
same volume as the balloon? What is the meaning of this weight difference?

1.9. Usually we check the tire pressure in our car early in the morning when the
temperature is cold. Suppose the temperature is 288 K (about 15 ◦C), the volume of
the air inside is 0.025 m3, the air density (at standard conditions) is 1.22 kg/m3, and
the tire pressure gauge indicates a pressure of 2 atm (2 times 1.1013 × 105 N/m2)
above ambient pressure.

(a) What is the tire pressure when the car is left in the summer sunshine and
the tire temperature reaches 333 K?

(b) Suppose the tire is inflated with helium (M ∼ 4) instead of air (M ∼ 29);
then how much weight is saved?

1.10. A 200-cm3 container is filled with air at standard conditions. Estimate the num-
ber of air molecules in the container.

1.11. The temperature inside the container in the previous question was raised to
350 K. Calculate the pressure, density, and the number of air molecules inside the
container.

1.12. A 3-m3 tank is filled with hydrogen at standard conditions. If the molecular
weight of helium is 4.0, calculate the mass of the gas inside the tank.

1.13. The tire pressure in a car was measured in the morning, at 280 K, and was
found to be 2.5 atm. After a long trip on a warm afternoon the pressure rose to 3.1
atm. Assuming no change in the tire volume, calculate the air temperature inside
the tire.

1.14. A flat plate is floating above a 0.05-cm-thick film of oil and is being pulled to
the right at a speed of 1m/s (see sketch for Problem 1.15). If the fluid viscosity is 0.4
N s/m2, calculate the shear force τ on the lower and upper interfaces (e.g., on the
floor and below the plate) and at the center of the liquid film.

0.05 cm Water

F
U

Problem 1.15.

1.15. A flat plate floating on a 0.05-cm-thick water film is pulled by the force F.
Calculate F for an area of 1 m2 and for U = 1 m/s [note that for water μ = 0.001
kg/(m s)].



24 Basic Concepts and Fluid Properties

1.16. A flat plate is pulled to the right above a 0.1-cm-thick layer of viscous liquid
(see sketch of Problem 1.15) at a speed of 1 m/s. If the force required for pulling the
plate is 200 N/1 m2, calculate the viscosity of the liquid.

1.17. Consider a stationary vertical line in the figure of Problem 1.15 (fixed to the
lower surface). Calculate how much water per 1 m width is flowing during 1 s to the
right across that line (U = 1 m/s).

1.18. The 2D velocity distribution above a solid surface placed on the x coordinate
is

u = 3z − 3z3,

w = 0.

Calculate the shear stress on the surface at z = 0 and at z = 0.5.

1.19. A thin oil film is covering the surface of an inclined plane, as shown in the
figure. Develop an expression for the terminal velocity of a block of mass m sliding
down the slope. Assume that the oil film thickness and viscosity are known, as well
as the incline angle θ and the contact surface area.

m

h

F

Oil film

S (contact area)
θ

Problem 1.19.

1.20. Calculate the terminal velocity of a 0.2-m wide, 0.3-m long, 5-kg block
sliding down an incline of 30◦, as shown in the figure for Problem 1.19.
Assume the oil film thickness is 1 mm and the oil viscosity (from Table 1.1) is
0.29 N s/m2.

1.21. The block in the figure of Problem 1.19 slides at a velocity of 2 m/s because
of the force F. In this case, however, the slope θ = 0. Calculate the magnitude of
the force if the oil film thickness is 1 mm and the oil viscosity (from Table 1.1) is
0.29 N s/m2.

1.22. A thin plate is pulled to the right between two parallel plates at a velocity U,
as shown in the figure. It is separated by two viscous fluids with viscosities μ1 and μ2

and the spacing is h1 and h2, accordingly. Assuming that the plates are very large,
calculate the force per unit area required for pulling the central plate.

h1

h2

F, U

μ1

μ2

Problem 1.22.
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1.23. A small bird with a characteristic length of L = 0.2 m flies near the ocean at a
speed of 14 m/s. The mean free path of air molecules at sea level is about λ = 6.8 ×
10−8 m, and the average molecular speed can be estimated as c = 468 m/s. Calculate
the Knudsen number. Can you assume that the fluid is continuous?

1.24. At standard atmospheric condition the average speed of air molecules is esti-
mated at c = 468 m/s (see Fig. 1.16). Calculate the speed of sound for this condition
(at T = 300 K). Can you explain the large difference?

1.25. An important parameter for grouping different flow regimes (called the
Reynolds number) represents the ratio between the actual and the molecular scal-
ing of length times velocity. It can be approximated by the following formulation:
Re = 2 V

c
L
λ

(see Section 6.2). Calculate this ratio for the small bird of Problem 1.23
flying at a speed of 14 m/s (recall that c = 468 m/s, and λ = 6.8 × 10−8 m).

1.26. A 0.3-m wide, 0.5-m long, 10-kg block (m1) is sliding on a 1 mm thin oil film,
pulled by the mass m2, as shown in the figure. Calculate the terminal velocity by
using the oil viscosity from Table 1.1 (0.29 N s/m2).

m1=
10 kg

m2=
10 kg

Oil film

h

Problem 1.26.

1.27. Calculate the terminal velocity in the previous problem, but now m1 = 20 kg.

1.28. Calculate the terminal velocity in Problem 1.26, but now m1 = 20 kg and
m2 = 5 kg.

1.29. The disk shown in the figure rotates at a speed of 50 RPM above a stationary
plane separated by an oil film. If the oil viscosity is μ = 0.01 kg/(m s), the spacing
between the disk and the stationary surface is 2 mm, and R = 5 cm; calculate the
torque required for rotating the disk (assume a linear velocity distribution in the
gap).

R

Disk

h
Oil

Problem 1.29.

1.30. A rotary damper consists of a disk immersed in a container, as shown in the
figure. Assuming that the gap h is the same on both sides and the viscosity μ and
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the disk radius R are known, calculate the torque required for rotating the disk at a
particular RPM.

R

Oil

h

h

R

Problem 1.30.

1.31. The diameter of the rotary damper shown in the figure for Problem 1.30 is
2R = 20 cm. The oil viscosity is μ = 0.29 kg/(m s) and the gap is h = 1 mm. Calculate
the torque on the shaft at 1000 RPM.

1.32. Suppose the gap is increased to h = 2 mm on both sides. How much would the
torque change?

1.33. Two concentric cylinders with radiis R1 and R2 are separated by an oil film
with viscosity μ, as shown in the figure. Next the inner cylinder is rotated and a
linear velocity distribution is assumed in the gap between the cylinders (the lower
surface is not active). Develop a formula for the torque on the shaft as a function of
rotation speed.

R1

R2
Oil

h

Problem 1.33.

1.34. The two concentric cylinders shown in the figure for Porblem 1.33 are sep-
arated by an oil film with viscosity μ = 0.023 kg/(m s). If the shaft rotates at
200 RPM, calculate the torque on the shaft (R1 = 15.12 cm, R2 = 15 cm, and h =
70 cm).

1.35. The device, based on the two concentric cylinders (shown in the figure for
Problem 1.33) can be used to measure the viscosity of a fluid. Assuming that the
shaft rotates at 200 RPM and the torque measured is 6 N m, calculate the viscosity
of the fluid. (Use the dimensions from the previous problem (R1 = 15.12 cm, R2 =
15 cm, and h = 70 cm).
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1.36. Some desalination processes are based on evaporating seawater. Energy
can be saved by reducing the boiling temperature of the water. From Fig. 1.13,
determine the boiling temperature of the water if the pressure is lowered to
0.5 atm.

1.37. Suppose we approximate the tiny tubes carrying water up to the branches of
a tall tree by a simple tube of diameter 0.005 mm. Taking the values for σ = 0.073
N/m and θ = 15◦, calculate how high the water can rise in such a tube.

1.38. The disk shown in the figure rotates at a speed of ω = 50 rad/s above a station-
ary plane separated by an oil film. If the oil viscosity is μ = 0.01 kg/(m s), the spacing
between the disk and the stationary surface is 2 mm, and D = 10 cm, calculate the
torque required for rotating the disk.

D

hOil

Disk

ω

Problem 1.38.

1.39. Oil with a viscosity of μ is flowing between two parallel plates, as shown in the
figure. Suppose the velocity distribution is given as

u(z) = −k
(

z
h

− z2

h2

)
;

plot and calculate the shear stress as a function of z. Where (in terms of z) is the
highest and where is the lowest shear stress?

h

x

z

Umax

u(z)

Problem 1.39.

1.40. A 1-mm inner-diameter tube is inserted into a container with mercury, as
shown in the figure. Assume that for this condition the surface tension is σ =
0.514 N/m, θ = 140◦, and ρ = 13,600 kg/m3. Calculate how far the meniscus is de-
pressed.
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Mercury

140°

h

Problem 1.41.

1.41. Two circular tubes are inserted vertically into a large container filled with a
liquid that has a surface tension of σ = 0.07 N/m and a contact angle of θ = 10◦. The
density of the liquid is 960 kg/m3, the diameter of the first tube is 1.5 mm, and the
diameter of the second tube is 2.5 mm.

(a) Calculate how high the liquid columns will rise in each tube.
(b) Is this in conflict with Pascal’s law? Explain.

1.5 mm 2.5 mm

θ

Problem 1.42.

1.42. Calculate the pressure difference that is due to surface tension for a spher-
ical water droplet with a diameter of 0.5 cm (use the surface-tension values from
Table 1.1). Is the pressure higher inside or outside the droplet?

1.43. Calculate the pressure difference for a 5-cm-diameter and a 15-cm-diameter
spherical water and soap bubble. The surface tension of the water and soap mixture
is about σ = 2.5 × 10−2 N/m.

1.44. A circular tube is inserted into a large container filled with a liquid that has
a surface tension of σ = 0.07 N/m and a contact angle of θ =10◦. If the density of
the liquid is 960 kg/m3 and the tube diameter is 2 mm, calculate how high the liquid
column will rise.
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d

h
θ

σ

Problem 1.45.

1.45. A circular tube (similar to the one described in Problem 1.45) is inserted into
a large container filled with a liquid that has a surface tension of σ = 0.07 N/m and
a contact angle of θ =10◦. If the density of the liquid is 1100 kg/m3 and the tube
diameter is 3 mm, calculate how high the liquid column will rise.

1.46. Two layers of fluid are dragged along by the motion of an upper plate as shown
in the figure (without mixing). The bottom plate is stationary. The top fluid gener-
ates a shear stress on the upper plate, and the lower fluid generates a shear stress on
the bottom plate. Calculate the velocity of the boundary between the two fluids.

0.02 m

0.02 m

μ1 = 0.4 N s/m2

μ2 = 0.2 N s/m2

U

Fluid 2

Fluid 1

3 m/s

Problem 1.47.

1.47. A small steel ball is placed gently on the surface in a large water tank. Estimate
the largest diameter of the ball that will float on the surface because of the surface
tension (assume σ = 0.073 N/m, θ = 15◦, and ρsteel = 7800 kg/m3). Assume the
surface tension is acting at the maximum perimeter (as shown).

15°

Problem 1.48.
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1.48. The mosquito shown in the sketch is supported above the water by the sur-
face tension. Determine the minimum length of this interface needed to support the
bug. Assume the mosquito weighs 10−4 N and that the surface-tension force acts
vertically upward on both sides of the contact line (σ = 0.073 N/m).

σ σ

Problem 1.49.

1.49. A noise created by small earthquake at a depth of 1200 m in the ocean prop-
agates upward and eventually reaches a bird flying above at an altitude of 400 m.
Calculate how long it takes for the noise to reach the bird. For seawater use E =
2.34 × 109 N/m2, ρ = 1030 kg/m3, and for air, γ = 1.4 and T = 270 K.

Problem 1.50.

1.50. A small explosion in the ocean is 3000 m from two swimmers (horizontal dis-
tance). The first has his ears under the water and the second swimmer’s head is
above the water. How soon will each hear the noise of the explosion? For seawater
use E = 2.34 × 109 N/m2, ρ = 1030 kg/m3 and for air γ = 1.4 and T = 300 K).

1.51. The speed of an airplane is frequently stated in terms of the Mach number,
which is simply the ratio between the actual speed and the speed of sound: M = U/a.
Suppose an airplane flies at M = 0.8 at sea level, where the temperature is 27 ◦C;
calculate the actual speed of the airplane. Next, calculate the speed at the same
Mach number but at an altitude of 13 km, where the temperature is −57 ◦C (for air,
γ = 1.4).

1.52. A piston is floating over a 1-m-high column of water enclosed in a 2-cm-
diameter pressure-tight cylinder. Calculate how deep the 100-kg weight will push
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the cylinder down. Assume the water modulus of elasticity is E = 2.34 ×
109 N/m2.

Water
1 m

10
0 

kg

Problem 1.53.



2 The Fluid Dynamic Equation

2.1 Introduction

One approach in teaching introductory fluid mechanics is to avoid the presentation
of complex fluid dynamic equations. This is done for very good reasons, including
the lack of preparation in partial differential equations and the overall complexity of
the problem. Although avoiding the introduction of complex equations is welcome
by the average student, the negative and long-term outcome of this approach is that
there is no clear rationale and a connecting string among the various chapters that
follow. Therefore students are asked to be patient and “suffer quietly” at the begin-
ning and the benefits of a clear roadmap will surface with the systematic approach
that follows.

The mechanisms controlling fluid motion may include elements of basic mecha-
nics, heat transfer, phase change, chemical reactions, and even molecular mechanics.
Limiting the discussion to the simple mechanics of fluids, usually leads to principles
such as the conservation of mass momentum and energy. In this text, however, we
concentrate on the conservation of mass (continuity equation) and the conservation
of momentum and assume a simple Newtonian fluid without heat transfer. Hence
our objective in this chapter is to derive these two conservation laws, the conserva-
tion of mass and momentum.

The conservation of mass simply states that there is no change in the total mass
(usually referring to a control volume):

d(m)
dt

= 0. (2.1)

The momentum equation simply applies Newton’s second law of motion, which
states that the change in linear momentum is equal to the sum of the forces acting
on the mass m (e.g., in a control volume):

d(m�q)
dt

=
∑ �F . (2.2)

As will be demonstrated for the case of fluids, these equations will be quite com-
plicated and their exact solutions are very limited. Therefore the discipline of fluid
mechanics is based on simplified models, in which only portions of the full equations

32
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Trajectory of
a particle

Airfoil

P0 (x0, y0, z0)

P (x, y, z)

U∞

t = 0

t = t1

x

z

Figure 2.1. Paricle trajectory lines in a steady-state flow over an airfoil as viewed from a body-
fixed coordinate system.

are used. We can accomplish this simplification by identifying the dominant terms
in the formulation and neglecting terms of much lower orders of magnitude. This
approach provides the practicing engineer with the ability to appreciate both the
power and the limitations of the techniques that are presented in this text. Further-
more, it makes the learning process easier, as the links among the various chapters
are understood.

NOTE TO THE INSTRUCTOR. When teaching an introductory course (and dedicating
only one or two lectures to this chapter), it is easier to focus in class on the integral
approach (Section 2.6). The rest of the chapter can be assigned as a reading assign-
ment at home followed by a brief discussion in class. The overall objective is for the
student to be familiar with the continuity and momentum equations and with the
origins of the terms appearing in these equations.

2.2 Description of Fluid Motion

The fluid studied here is modeled as a continuum, and infinitesimally small regions
of the fluid (with a fixed mass) are called fluid elements or fluid particles. The motion
of the fluid can be described by two different methods. One adopts the particle
point of view and follows the motion of the individual particles. The other adopts the
field point of view and provides the flow variables as functions of position in space
and time. The particle point of view, which uses the approach of classical mechanics,
is called the Lagrangian method (after the Italian scientist Joseph-Louis Lagrange,
1736–1813). To trace the motion of each fluid particle, it is convenient to introduce
a Cartesian coordinate system with the coordinates x, y, and z. The position of any
fluid particle P (see Fig. 2.1) is then given by

x = xP(x0, y0, z0, t),

y = yP(x0, y0, z0, t), (2.3)

z = zP(x0, y0, z0, t),
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where (x0, y0, z0) is the position of P at some initial time t = 0. [Note that the quan-
tity (x0, y0, z0) represents the vector with components x0, y0, and z0.] The compo-
nents of the velocity of this particle are then given by

u = ∂x/∂t,

v = ∂y/∂t, (2.4)

w = ∂z/∂t,

and the acceleration by

ax = ∂2x/∂t2,

ay = ∂2 y/∂t2, (2.5)

az = ∂2z/∂t2.

The Lagrangian formulation requires the evaluation of the motion of each fluid
particle. For most practical applications, this abundance of information is neither
necessary nor useful and the analysis is cumbersome. The field point of view, called
the Eulerian method, provides the spatial distribution of flow variables at each
instant during the motion. For example, if a Cartesian coordinate system is used,
the components of the fluid velocity are given by

u = u(x, y, z, t),

v = v(x, y, z, t), (2.6)

w = w(x, y, z, t).

The Eulerian approach provides information about the fluid variables that is consis-
tent with the information supplied by most experimental techniques and is in a form
that is appropriate for most practical applications. For these reasons the Eulerian
description of fluid motion is the most widely used (and is developed later in this
chapter). Also note that we use the notation for the velocity vector:

�q = (u, v, w); (2.7)

a constant velocity of U∞ in the x direction is therefore

�q = (U∞, 0, 0). (2.7a)

2.3 Choice of Coordinate System

For the following chapters, when possible, primarily a Cartesian coordinate system
will be used. Other coordinate systems such as curvilinear, cylindrical, or spherical
are introduced and used if necessary, mainly to simplify the treatment of certain
problems. Also, from the kinematic point of view, a careful choice of a coordinate
system can considerably simplify the solution of a problem. As an example, consider
the forward motion of an airfoil, with a constant speed U∞, in a fluid that is otherwise
at rest, as shown in Fig. 2.1. Here the origin of the coordinate system is attached
to the moving airfoil and the trajectory of a fluid particle inserted at point P0 at
t = 0 is shown in the figure. By following the trajectories of several particles, we
obtain a more complete description of the flow field in the figure. It is important
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Airfoil position at t = t1 Airfoil position
at t = 0

t = t1

z

x

t = 0

Particle trajectory

U∞

Figure 2.2. A single-particle trajectory line for an airfoil moving left at a constant speed U∞
(as in Fig. 2.1) as viewed from a stationary frame of reference.

to observe that, for a constant-velocity (unsteady) forward motion of the airfoil, in
this frame of reference, these trajectory lines become independent of time. That is,
if various particles are introduced at the same point in space, they will follow the
same trajectory. Now let’s examine the same flow, but from a coordinate system
that is fixed relative to the undisturbed fluid. At t = 0, the airfoil was on the right-
hand side of Fig. 2.2 (dashed curve), and as a result of its constant-velocity forward
motion (with a speed U∞ toward the left-hand side of the page), later at t = t1 it
moves to the new position indicated in the figure. A typical particle’s trajectory line
between t = 0 and t = t1 for this case is also shown. The particle’s motion (as viewed
from the stationary frame of reference) now depends on time, and a new trajectory
has to be established for each particle. This simple example depicts the importance
of a “good” coordinate system selection. For many problems in which a constant
velocity and a fixed geometry (with time) are present, the use of a body-fixed frame
of reference will result in a steady or time-independent flow.

Figure 2.2 also demonstrates the principle of the Lagrangian formulation. In
this case it is quite common to use a nonmoving, inertial frame of reference and to
trace the dynamics of the particles (or group of particles) as shown in the figure.
It is also clear that each group of particles must be followed individually, thereby
significantly complicating the process. In contrast, the Eulerian approach observes
a fixed control volume attached to the airfoil (as shown in Fig. 2.3), and as noted the
streamlines and the whole problem appear to be independent of time. In most cases
this results in a major simplification, and therefore the Eulerian approach is widely
used in classical fluid mechanics (and throughout this book).

Airfoil

Control
volume

Particle
trajectory

U∞
x

z

Figure 2.3. Particle trajectories for the case shown in Fig. 2.2, but as viewed in a control vol-
ume attached to the airfoil.
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(a) (b)

q1

q2
dl

StreamlineP1

P2

z

x
dx

dz

Streamline

q

Figure 2.4. Schematic description of streamlines in a steady-state flow: The velocity vector �q
is parallel to the streamline �l.

2.4 Pathlines, Streak Lines, and Streamlines

Three sets of curves are normally associated with providing a pictorial description
of a fluid motion; pathlines, streak lines, and streamlines.

Pathlines: A curve describing the trajectory of a fluid element is called a pathline or
a particle path. Pathlines are obtained in the Lagrangian approach by an integration
of the equations of dynamics for each fluid particle. If the velocity field of a fluid
motion is given in the Eulerian framework by Eqs. (2.6) in a body-fixed frame, the
pathline for a particle at P0 in Fig. 2.1 can be obtained by an integration of the
velocity. For steady flows the pathlines in the body-fixed frame become independent
of time and can be drawn as in the case of flow over the airfoil shown in Fig. 2.1 or
Fig. 2.3.

Streak lines: In many cases of experimental flow visualization, particles (e.g., dye or
smoke) are introduced into the flow at a fixed point in space. The line connecting
all of these particles is called a streak line. To construct streak lines by use of the
Lagrangian approach, draw a series of pathlines for particles passing through a given
point in space and at a particular instant in time, and then connect the ends of these
pathlines.

Streamlines: Another set of curves can be obtained (at a given time) by lines that
are parallel to the local velocity vector. To express analytically the equation of
a streamline at a certain instant of time, at any point P in the fluid, the veloc-
ity �q must be parallel to the streamline element d�l [Fig. 2.4(a)]. Therefore, on a
streamline,

�q × d�l = 0. (2.8)

If the velocity vector is �q = (u, v, w), then vector equation (2.8) reduces to the fol-
lowing scalar equations:

wdy − vdz = 0,

udz − wdx = 0, (2.9)

vdx − udy = 0,

or, in a differential equation form,

dx
u

= dy
v

= dz
w

. (2.9a)
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F
n

S

Figure 2.5. A force �F is acting on a surface S.

This equation is described schematically in Fig. 2.4(b). For example, the velocity
components in the x–z plane are �q = (u, w) and the slope of the streamline (at a
point) is dz/dx, which is equal to the slope of the velocity vector,

dz
dx

= w

u
,

and this is identical to Eq. 2.9(a). Also, in Eq. (2.9a), the velocity (u, v, w) is a func-
tion of the coordinates and of time. However, for steady flows the streamlines are
independent of time, and streamlines, pathlines, and streak lines become identical,
as shown in Fig. 2.1.

2.5 Forces in a Fluid

Prior to discussing the dynamics of fluid motion, we should identify the types of
forces that act on a fluid element. Here, forces such as body forces per unit mass �f
and surface forces that are a result of the stress vector �t are considered. The body
forces are independent of any contact with the fluid, as in the case of gravitational
or magnetic forces, and their magnitude � �F is proportional to the local mass,

� �F = ρ �f �V, (2.10)

where �V is the volume increment. To define the stress vector �t at a point, consider
the force �F acting on a planar area S (shown in Fig. 2.5) with �n being an outward
normal to S. Then

�t = lim
S→0

( �F
S

)
. (2.11)

Note that in Eq. (1.6) we used a similar formulation to define the pressure. As we
shall see soon, the pressure is the normal component of the stress vector. To obtain
the components of the stress vector, consider the force equilibrium on an infinites-
imal cubical fluid element, shown in Fig. 2.6. To simplify the discussion let us use
momentarily an indicial notation. Note that τi j acts in the xi direction on a sur-
face whose outward normal points in the xj direction. This indicial notation allows
a simpler presentation of the equations, and the subscripts 1, 2 and 3 denote the
coordinate directions x, y, and z, respectively. For example,

x1 = x, x2 = y, x3 = z,

q1 = u, q2 = v, q3 = w.
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z
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y

τzz

τyz
τxz

τzx

τyx
τxx

τzy
τyy

τxy

Figure 2.6. Stress components on an infini-
tesimal cubical fluid element.

The stress components shown on an infinitesimal cubical fluid element of
Fig. 2.6. can be summarized in matrix form or in an indicial form as follows:

⎡
⎣ τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

⎤
⎦ =

⎡
⎣ τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

⎤
⎦ = τi j (2.12)

A treatment of the moment equilibrium results in the symmetry of the stress vector
components so that τi j = τ j i . Also, it is customary to sum over any index that is
repeated such that

3∑
j=1

τi j n j ≡ τi j n j for i = 1, 2, 3, (2.13)

and to interpret an equation with a free index [as in in Eq. (2.13)] as being valid for
all values of that index. For a Newtonian fluid (in which the stress components τi j

are linear in the derivatives ∂qi
∂xj

), the stress components are related to the velocity
field by (see, e.g., [1, p. 147])

τi j =
(

−p − 2
3
μ

∂qk

∂xk

)
δi j + μ

(
∂qi

∂xj
+ ∂qj

∂xi

)
, (2.14)

where μ is the viscosity coefficient, p is the pressure, the dummy variable k is
summed from 1 to 3, and δi j is the Kronecker delta function defined by

δi j ≡
{

1 i = j
0 i �= j

. (2.15)

Equation (2.14) is quite complex, and only simple cases are used in this book. For
example, when the fluid is at rest, the tangential stresses vanish and the normal stress
component becomes simply the pressure. Thus the stress components become

τi j =
⎡
⎣−p 0 0

0 −p 0
0 0 −p

⎤
⎦ (2.16)

Another interesting case of Eq. (2.14) is the one-degree-of-freedom shear flow
between a stationary plate and a moving infinite plate with a velocity U∞, which
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Solid boundaries

Fluid

No-slip condition

F = ∫τxz ds

z

x

U∞

h

Figure 2.7. Flow between a stationary (lower) and a moving (upper) plate.

was discussed in Chapter 1 (see Fig. 1.5). Let us repeat this case in Fig. 2.7 and
assume that there is no pressure gradient and the fluid motion is due to the motion
of the upper plate. This flow is called Couette flow and was used in Chapter 1 to
demonstrate the shear stress in a moving fluid.

Because this is a steady-state problem, with only the x component of the
velocity, �q = (u, 0, 0), and no pressure gradient, Eq. (2.14) the shear stress re-
duces to

τxz = μ
∂u
∂z

= μU∞
h

. (2.17)

This example also clarifies the use of the notation xz. The shear stress τxz points in
the x direction and acts on the surface, which normaly is pointing in the z direction.
Because there is no pressure gradient in the flow, the fluid motion in the x direction
is entirely due to the action of the viscous forces. The force �F on the plate can be
found by integration of τxz on the upper moving surface.

2.6 Integral Form of the Fluid Dynamic Equations

To develop the governing integral and differential equations describing the fluid
motion, the various properties of the fluid are investigated in an arbitrary control
volume that is stationary and submerged in the fluid (Fig. 2.8). These properties can
be density, momentum, energy, etc., and of course may change with time. A typical
accounting for the change in one of those properties inside the control volume must
be the sum of the accumulation of the property inside the control volume and the
transfer of this property through the control-volume boundaries. As an example,
we can analyze the conservation of mass by observing the changes in fluid density ρ

c.v.

dS

n

q

(q . n)

Figure 2.8. Control volume in the fluid. Note that to
calculate the flux of the fluid crossing a surface ele-
ment ds we use only the normal (to the surface)
component.
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for the control volume (c.v.) in Fig. 2.8. The mass mc.v. within the control volume is
then

mc.v. =
∫

c.v.

ρdV, (2.18)

where dV is the volume element. The accumulation of mass within the control vol-
ume is simply the time derivative of Eq. (2.18):

∂mc.v.

∂t
= ∂

∂t

∫
c.v.

ρdV. (2.18a)

The change in the mass within the control volume, because of the mass leaving
(mout) and the mass entering (min) through the control-volume boundaries (c.s.) is

mout − min =
∫

c.s.
ρ(�q · �n)dS, (2.19)

where �q is the velocity vector (u, v, w) and ρ(�q · �n)dS is the rate of mass leaving
normal to the surface element dS (�n is the outward normal unit vector), as shown
in Fig. 2.8. Because mass is conserved and no new material is being produced, it is
clear that

∂mc.v.

∂t
= min − mout.

Replacing the left- and right-hand terms with Eq. (2.18a) and Eq. (2.19), respec-
tively, yields

∂

∂t

∫
c.v.

ρdV +
∫

c.s.
ρ(�q · �n)dS = 0, (2.20)

or we can state that mc.v. is conserved (conservation of mass):

dmc.v.

dt
= ∂

∂t

∫
c.v.

ρdV +
∫

c.s.
ρ(�q · �n)dS = 0. (2.20a)

As noted, Eq. (2.20) is the integral representation of the conservation of mass (often
called the continuity equation). It is the equivalent of Eq. (2.1), and it simply states
that any change in the mass of the fluid in the control volume is equal to the rate
of mass being transported across the control-surface (c.s.) boundaries. In a similar
manner, the rate of change in the momentum of the fluid flowing through the control
volume at any instant d(m�q)c.v./dt is the sum of the accumulation of the momentum
ρ�q per unit volume within the control volume and of the change of the momentum
across the control-surface boundaries [so all we need to do is to multiply Eq. (2.20)
by �q]:

d(m�q)c.v.

dt
= ∂

∂t

∫
c.v.

ρ�qdV +
∫

c.s.
ρ�q(�q · �n)dS. (2.21)

This change in the momentum, as given in Eq. (2.2), according to Newton’s second
law, must be equal to the forces

∑ �F applied to the fluid inside the control volume:

d(m�q)c.v.

dt
=

∑ �F . (2.22)
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The forces acting on the fluid in the control volume in the xi direction are either
body forces ρ fi per unit volume or surface forces njτi j per unit area, as discussed in
Section 2.4: (∑ �F

)
i
=

∫
c.v.

ρ fi dV +
∫

c.s.
njτi j dS, (2.23)

where �n is the unit normal vector that points outward from the control volume. By
substituting Eqs. (2.21) and (2.23) into Eq. (2.22), we obtain the integral form of the
momentum equation in the i direction:

∂

∂t

∫
c.v.

ρqi dV +
∫

c.s.
ρqi (�q · �n)dS =

∫
c.v.

ρ fi dV +
∫

c.s.
njτi j dS. (2.24)

Sometimes the pressure and the shear terms are separated, and Eq. (2.24) will have
the form

∂

∂t

∫
c.v.

ρqi dV +
∫

c.s.
ρqi (�q · �n)dS =

∫
c.v.

ρ fi dV +
∫

c.s.
njτi j dS −

∫
c.s.

pni dS,

(2.24a)
where the minus sign in front of the pressure term is a result of the outward normal
unit vector pointing opposite to the pressure force [see Eq. (1.7)]. Also, τi j now
represents the shear stress only.

The preceding approach can be used to develop additional governing equations,
such as the energy equation. However, for the fluid dynamic cases that are consid-
ered here, the mass and the momentum equations are sufficient to describe the fluid
motion.

EXAMPLE 2.1. FLOW THROUGH A STREAM TUBE. Upto this point we have devel-
oped the equivalents of the two basic equations [Eqs. (2.1) and (2.2)] in integral
form and applied them to a control volume. To demonstrate their applicability
to fluid motion let us consider 1D flow through a stream tube. Here the fluid is
flowing in the x direction (Fig. 2.9) and it enters the stream tube through inlet
A1 and exits through A2.

We may further assume an incompressible (ρ = constant) flow, and the 1D
flow assumption suggests that the velocity entering the stream tube at section 1
is uniform �q1 = (u1, 0, 0) as well as the exiting velocity �q2 = (u2, 0, 0). The con-
trol surface contains the entire stream tube in Fig. 2.9 and the outside pressure
is pa. Continuity equation (2.20) in steady state becomes∫

c.s.
ρ(�q · �n)dS = 0. (2.25)

Next we need to consider all the areas where fluid is crossing the control vol-
ume (namely areas A1 and A2) in the figure. The velocity vector in section 1

pa

Fx

u1

n1

1

A1 A2
n2

u2

z

x

2

Figure 2.9. Example: 1D flow
through a stream tube.
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is (u1, 0, 0) and in section 2 it is (u2, 0, 0). Also the unit normal vector is defined
as pointing outside the control volume and therefore �n1 = (−1, 0, 0) and �n2 =
(1, 0, 0), as shown in the figure. The integration on all other areas is zero because
the velocity is not penetrating the surface. Consequently Eq. (2.25) for this case
becomes

ρu1(−A1) + ρu2(+A2) = 0,

where the minus sign in the first term is due to �n1 = (−1, 0, 0). Or we can
write

ṁ = ρu1 A1 = ρu2 A2, (2.26)

where ṁ is the mass flow rate. So basically this states that all the flow entering
the control volume at station 1 must leave at the other end. Let us now continue
with the momentum equation for the steady-state incompressible case without
body forces: ∫

c.s.
ρqi (�q · �n)dS =

∫
c.s.

njτi j dS. (2.27)

By looking at the forces (right-hand side of the equation), we can separate the
pressure [as in Eq. (2.24a)] acting on surfaces A1 and A2 and call the shear forces
acting on the axisymmetric stream-tube shell Fx. Consequently a simpler form
of the force term is now∫

c.s.
njτi j dS = Fx −

∫
c.s.

p · �ndS.

Steady-state momentum equation (2.24) with this modified force term has the
following form: ∫

c.s.
ρqx(�q · �n)dS = Fx −

∫
c.s.

p · �ndS. (2.28)

Also, instead of using p as the pressure we can use the pressure difference
(p − pa). This has no effect on the result because the integral of constant pres-
sure pa over a closed body is zero. Consequently momentum equation (2.28),
when applied to the stream tube, has the following form

ρu1(−u1 A1) + ρu2(+u2 A2) = Fx − (p1 − pa)(−A1) − (p2 − pa)(+A2),

and, after rearranging,

Fx = ρu2
2 A2 − ρu2

1 A1 + (p2 − pa)A2 − (p1 − pa)A1. (2.29)

So the force Fx on the stream tubes is a result of the change in the linear momen-
tum plus the change in pressure on the two open ends. Also the force Fx is
positive in the positive x direction, so for the control volume to stay stationary
the momentum and pressure forces are balanced by the external force Fx. This
equation is useful for calculating forces that are due to jets, such as the thrust
created by jet engines, and more examples are provided in Chapter 4.
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pa
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Figure 2.10. The static thrust of a rocket engine.

EXAMPLE 2.2. STATIC THRUST OF A ROCKET. As a second example let us use
this method to derive the static thrust of a rocket engine, as shown in the
Fig. 2.10.

In this case as well, the control volume encloses the whole engine and the
fluid exchange takes place only through exit area A2. Consequently, by using
Eqs. (2.26) and (2.29), we get

Fx = ρu2
2 A2 + (p2 − pa)A2,

and by using the continuity equation

ṁ = ρu2 A2,

we can write

Fx = ṁu2 + (p2 − pa)A2.

This indicates that the thrust of the rocket engine consists of the exhaust
momentum and the pressure term at the exit.

EXAMPLE 2.3. CONSERVATION OF MASS. As a numerical example for the princi-
ple of continuity [Eq. (2.26)], consider the flow into a pipe (see Fig. 2.11), but
instead of one exit as in Fig. 2.9, let us have two! Assume that water enters at
station 1, where A1 = 30 cm2 (0.003 m2) at an average velocity of u1 = 1 m/s and
leaves at station 3, where A3 = 20 cm2 and u3 = 1.2 m/s. The rest of the flow
leaves through section 2, where the cross-section area is A2 = 20 cm2. Calculate
the flow rates entering at station 1 and leaving at station 2, and the average exit
velocity at station 2.

Solution: We can imagine a control volume surrounding the pipes, which have
one entrance and two exits. We can calculate the flow rate entering at station 1
by using Eq. (2.26),

ṁ1 = ρu1 A1 = 1000
kg
m3

1
m
s

0.003 m2 = 3
kg
s

,

u1 A1

u3 A3

u2 A2

Figure 2.11. Simple example for the conserva-
tion of mass.
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and here we used the water density from Table 1.1. Also note that the volume
flow rate is 3 L/s because 1 L water has a mass of 1 kg. The flow leaving at station
3 is calculated with the same method:

ṁ3 = ρu3 A3 = 1000
kg
m3

1.2
m
s

0.002 m2 = 2.4
kg
s

.

The conservation of mass implies that

ṁ2 = ṁ1 − ṁ3 = 0.6
kg
s

.

The average velocity leaving at station 2 is then

u2 = ṁ2

ρ A2
= 0.6

1000 × 0.002
= 0.3

m
s

.

EXAMPLE 2.4. THE MOMENTUM OF A JET. To demonstrate the application of
Eq. (2.29), let us calculate the force on the water pipe that is due to the jet,
shown in Fig. 2.12. The average exit velocity is 5 m/s, the exit area is 20 cm2, and
the pressure at the exit is equal to the pressure outside [so there is no pressure
term in Eq. (2.29)].

Solution: The pipe and the tap assembly are surrounded by a control volume,
and our interest is to find the horizontal force only. In this case the momentum
in the horizontal direction is leaving only through the exit, as in the case of the
rocket in Example 2.2. To calculate the force that is due to the jet, we can use
the same equation:

Fx = ṁue = ρu2
e Ae = 1000 × 52 × 0.002 = 50 N.

This force acts on the control volume (to the right in Fig. 2.12), and the reaction
force (acting on the pipe) is in the opposite direction.

Fx

pe = pa

ue  =  5 m/s

ρ  =  1000 kg/m3

Ae  =  20 cm2

Figure 2.12. Force that is due to a
water jet.

2.7 Differential Form of the Fluid Dynamic Equations

Equations (2.20) and (2.24) are the integral forms of the conservation of mass and
momentum equations. In many cases, though, the differential representation is more
useful. To derive the differential form of the conservation of mass equation, both
integrals of Eq. (2.20) should be volume integrals. This can be accomplished by the
use of the divergence theorem (see [1, p. 39]), which states that for a vector �q,∫

c.s.
�n · �qdS =

∫
c.v.

∇ · �qdV. (2.30)
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If �q is the velocity vector then this equation states that the fluid flux through the
boundary of the control surface (left-hand side) is equal to the rate of expansion of
the fluid (right-hand side) inside the control volume. In Eq. (2.30), ∇ is the gradient
operator and, in Cartesian coordinates, is

∇ = �i ∂

∂x
+ �j ∂

∂y
+ �k ∂

∂z

or in indicial form

∇ = �e j
∂

∂xj
,

where �e j is the unit vector ( �i, �j, �k , for j = 1, 2, 3). Thus the indicial form of the
divergence theorem becomes∫

c.s.
nj qj dS =

∫
c.v.

∂qj

∂xj
dV. (2.30a)

An application of Eq. (2.30) to the surface integral term in Eq. (2.20) transforms it
to a volume integral: ∫

c.s.
ρ( �q · �n)dS =

∫
c.v.

(∇ · ρ�q)dV.

This allows the two terms in Eq. (2.20) to be combined as one volume integral:∫
c.v.

(
∂ρ

∂t
+ ∇ · ρ�q

)
dV = 0,

where the time derivative is taken inside the integral as the control volume is sta-
tionary. Because the equation must hold for an arbitrary control volume anywhere
in the fluid, the integrand is also equal to zero. Thus the following differential form
of conservation of mass or the continuity equation is obtained:

∂ρ

∂t
+ ∇ · ρ�q = 0. (2.31)

Expansion of the second term of Eq. (2.31) yields

∂ρ

∂t
+ �q · ∇ρ + ρ∇�q = 0, (2.31a)

and in Cartesian coordinates

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z

)
= 0. (2.31b)

We can use the material derivative, which is defined as

D
Dt

≡ ∂

∂t
+ �q · ∇ = ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

Because this is an important operator it is discussed in more detail in Section 2.8.
When this operator is used, Eq. (2.31) becomes

Dρ

Dt
+ ρ∇ · �q = 0. (2.31c)
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The material derivative D
Dt represents the rate of change following a fluid particle.

For example, the acceleration of a fluid particle is given by

�a = D�q
Dt

= ∂ �q
∂t

+ �q · ∇�q. (2.32)

An incompressible fluid is a fluid whose elements cannot experience volume change
(think of water). Because, by definition, the mass of a fluid element is constant,
the fluid elements of an incompressible fluid must have constant density. (A
homogeneous incompressible fluid is therefore a constant-density fluid.) Continu-
ity equation (2.31) for an incompressible fluid reduces to

∇ · �q = ∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (2.33)

Note that the incompressible continuity equation does not have time derivatives
(but time dependency can be introduced by means of time-dependent boundary
conditions). To obtain the differential form of the momentum equation, we follow
the same approach, and the divergence theorem [Eq. (2.30a)] is applied to the sur-
face integral terms of Eq. (2.24):∫

c.s.
ρqi (�q · �n)dS =

∫
c.v.

∇ · ρqi �qdV,

∫
c.s.

njτi j dS =
∫

c.v.

∂τi j

∂xj
dV.

Substituting these results into Eq. (2.24) yields∫
c.v.

[
∂

∂t
(ρqi ) + ∇ · ρqi · �q − ρ fi − ∂τi j

∂xj

]
dV = 0. (2.34)

Because this integral holds for an arbitrary control volume, the integrand must be
zero, and therefore

∂

∂t
(ρqi ) + ∇ · ρqi �q = ρ fi + ∂τi j

∂xj
(i = 1, 2, 3). (2.35)

Expanding the left-hand side of Eq. (2.35) first and then using the continuity equa-
tion will reduce the left-hand side to

∂

∂t
(ρqi ) + ∇ · (ρqi �q) = qi

[
∂ρ

∂t
+ ∇ · ρ�q

]
+ ρ

[
∂qi

∂t
+ �q · ∇qi

]
= ρ

Dqi

Dt
.

because the terms in the first square brackets are equal to zero [see Eq. (2.31)].
Note that the fluid acceleration [the material derivative, as noted in Eq. (2.32)] is

ai = Dqi

Dt
= ∂qi

∂t
+ �q · ∇qi ,

which, according to Newton’s second law, when multiplied by the mass per unit
volume must be equal to

∑
Fi . So, after substituting this form of the acceleration

term into Eq. (2.35), we find that the differential form of the momentum equation
becomes ρai = ∑

Fi or

ρai = ρ fi + ∂τi j

∂xj
(i = 1, 2, 3), (2.36)
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or, by using the material derivative, we obtain

ρ
Dqi

Dt
= ρ fi + ∂τi j

∂xj
(i = 1, 2, 3), (2.36a)

and, in Cartesian coordinates,

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
=

∑
Fx = ρ fx + ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
(2.36b)

ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)
=

∑
Fy = ρ fy + ∂τyx

∂x
+ ∂τyy

∂y
+ ∂τyz

∂z
, (2.36c)

ρ

(
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)
=

∑
Fz = ρ fz + ∂τzx

∂x
+ ∂τzy

∂y
+ ∂τzz

∂z
. (2.36d)

The stress components on the fluid element were described in Fig. 2.6. Also
note that in Eqs. (2.36b)–(2.36d) the symmetry of the stress vector has been
enforced. For a Newtonian fluid the stress components τi j are given by Eq. (2.14),
and by substituting them into Eqs. (2.36b)–(2.36d), we obtain the Navier–Stokes
equations:

ρ

(
∂qi

∂t
+ �q · ∇qi

)
= ρ fi − ∂

∂xi

(
p + 2

3
μ∇ · �q

)
+ ∂

∂xj
μ

(
∂qi

∂xj
+ ∂qj

∂xi

)
(i = 1, 2, 3),

(2.37)
and in Cartesian coordinates we have

ρ

(
∂u
∂t

+ �q · ∇u
)

= ρ fx − ∂p
∂x

+ ∂

∂x

{
μ

[
2
∂u
∂x

− 2
3

(∇ · �q)
]}

+ ∂

∂y

[
μ

(
∂u
∂y

+ ∂v

∂x

)]
+ ∂

∂z

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
, (2.37a)

ρ

(
∂v

∂t
+ �q · ∇v

)
= ρ fy − ∂p

∂y
+ ∂

∂y

{
μ

[
2
∂v

∂y
− 2

3
(∇ · �q)

]}

+ ∂

∂z

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
+ ∂

∂x

[
μ

(
∂u
∂y

+ ∂v

∂x

)]
, (2.37b)

ρ

(
∂w

∂t
+ �q · ∇w

)
= ρ fz − ∂p

∂z
+ ∂

∂z

{
μ

[
2
∂w

∂z
− 2

3
(∇ · �q)

]}

+ ∂

∂x

[
μ

(
∂w

∂x
+ ∂u

∂z

)]
+ ∂

∂y

[
μ

(
∂v

∂z
+ ∂w

∂y

)]
. (2.37c)

Typical boundary conditions for this problem require that, on stationary solid
boundaries (Fig. 2.13), both the normal and tangential velocity components reduce
to zero (e.g., the no-slip boundary conditions):

qn = 0 (on solid surface), (2.38a)

qt = 0 (on solid surface). (2.38b)

The number of exact solutions to the Navier–Stokes equations is small because
of the nonlinearity of the differential equations. However, in many situations some
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qn

qt

Figure 2.13. Definition of tangential and nor-
mal velocity components near a solid boundary.

terms can be neglected so that simpler equations can be obtained. For example, by
assuming a constant-viscosity coefficient μ, we find that Eq. (2.37) becomes

ρ

(
∂ �q
∂t

+ �q · ∇�q
)

= ρ �f − ∇ p + μ∇2�q + μ

3
∇(∇ · �q). (2.39)

Furthermore, by assuming an incompressible fluid [for which continuity equation
(2.33) becomes ∇ · �q = 0], we find that Eq. (2.37) reduces to

ρ

(
∂ �q
∂t

+ �q · ∇�q
)

= ρ �f − ∇ p + μ∇2�q. (2.40)

For an inviscid compressible fluid,

∂ �q
∂t

+ �q · ∇�q = �f − ∇ p
ρ

. (2.41)

This equation is called the Euler equation. The general approach for simplifying
(neglecting certain termes) the Navier–Stokes equations is discussed in Chapter 6.
In situations in which the problem has cylindrical or spherical symmetry, the use of
appropriate coordinates can simplify the solution. As an example, the fundamen-
tal equations for an incompressible fluid with constant viscosity are presented. The
cylindrical coordinate system is described in Fig. 2.14, and for this example the r, θ
coordinates are in a plane normal to the x coordinate. The operators ∇, ∇2, and D

Dt
in the r, θ, x system are (see [3, p. 38] or [4, p. 132])

∇ =
(

�er
∂

∂r
, �eθ

1
r

∂

∂θ
, �ex

∂

∂x

)
, (2.42)

z

x

yr
θ

Figure 2.14. A cylindrical coordinate system.
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∇2 = ∂2

∂r2
+ 1

r
∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂x2
, (2.43)

D
Dt

= ∂

∂t
+ qr

∂

∂r
+ qθ

r
∂

∂θ
+ qx

∂

∂x
. (2.44)

The continuity equation in cylindrical coordinates for an incompressible fluid
then becomes

∂qr

∂r
+ 1

r
∂qθ

∂θ
+ ∂qx

∂x
+ qr

r
= 0. (2.45)

The momentum equation for an incompressible fluid in the r direction is

ρ

(
Dqr

Dt
− q2

θ

r

)
= ρ fr − ∂p

∂r
+ μ

(
∇2qr − qr

r2
− 2

r2

∂qθ

∂θ

)
, (2.46)

in the θ direction is

ρ

(
Dqθ

Dt
+ qr qθ

r

)
= ρ fθ − 1

r
∂p
∂θ

+ μ

(
∇2qθ + 2

r2

∂qr

∂θ
− qθ

r2

)
, (2.47)

and in the x direction is

ρ
Dqx

Dt
= ρ fx − ∂p

∂x
+ μ∇2qx. (2.48)

A spherical coordinate system with the coordinates r, θ, ϕ is described in
Fig. 2.15. The operators ∇, ∇2, and D

Dt in the r, θ, ϕ system are ([5, Chapter 2] or
[4, p. 132])

∇ =
(

�er
∂

∂r
, �eθ

1
r

∂

∂θ
, �eϕ

1
r sin θ

∂

∂ϕ

)
, (2.49)

∇2 = 1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

r2 sin2 θ

∂2

∂ϕ2
, (2.50)

D
Dt

= ∂

∂t
+ qr

∂

∂r
+ qθ

r
∂

∂θ
+ qϕ

r sin θ

∂

∂ϕ
. (2.51)

z

x

y

r

r sin θ

x = r cos θ
y = r sin θ cos ϕ
z = r sin θ sin ϕ

P

θ

ϕ
Figure 2.15. The spherical coordinate
system.
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The continuity equation in spherical coordinates for an incompressible fluid
becomes ([3, p. 40])

1
r

∂(r2qr )
∂r

+ 1
sin θ

∂(qθ sin θ)
∂θ

+ 1
sin θ

∂qϕ

∂ϕ
= 0. (2.52)

The momentum equation for an incompressible fluid is ([3, p. 40]), in the r direction
is

ρ

(
Dqr

Dt
− q2

ϕ + q2
θ

r

)

= ρ fr − ∂p
∂r

+ μ

(
∇2qr − 2qr

r2
− 2

r2

∂qθ

∂θ
− 2qθ cot θ

r2
− 2

r2 sin θ

∂qϕ

∂ϕ

)
, (2.53)

in the θ direction is

ρ

(
Dqθ

Dt
+ qr qθ

r
− q2

ϕ cot θ

r

)

= ρ fθ − 1
r

∂p
∂θ

+ μ

(
∇2qθ + 2

r2

∂qr

∂θ
− qθ

r2 sin2 θ
− 2 cos θ

r2 sin2 θ

∂qϕ

∂ϕ

)
, (2.54)

and in the ϕ direction is

ρ

(
Dqϕ

Dt
+ qϕqr

r
+ qθqϕ cot θ

r

)

= ρ fϕ − 1
r sin θ

∂p
∂ϕ

+ μ

(
∇2qϕ − qϕ

r2 sin2 θ
+ 2

r2 sin θ

∂qr

∂ϕ
+ 2 cos θ

r2 sin2 θ

∂qθ

∂ϕ

)
. (2.55)

When a 2D flow field is treated in this book, it is described in either a Cartesian
coordinate system with coordinates x and z or in a corresponding polar coordinate
system with coordinates r and θ (see Fig. 2.16). In this polar coordinate system,
we obtain the continuity equation for an incompressible fluid from Eq. (2.45) by
eliminating ∂qx

∂x and the r - and θ -momentum equations for an incompressible fluid
are identical to Eqs. (2.46) and (2.47), respectively.

z
P

r

x

θ

Figure 2.16. 2D polar coordinate system.

2.8 The Material Derivative

In the process of developing the differential form of the momentum equation, a
sequence of derivatives called material derivatives was obtained. In this section we
return to discuss this operator and to demonstrate that it represents fluid accelera-
tion. Consider an Eulerian description of the fluid motion in which the velocity of a
particle is

�q = (u, v, w).
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Airfoil

Control
volume

z

x

u(t) u(t + Δt)

Figure 2.17. The motion of a
particle in a fixed control vol-
ume.

The Eulerian control volume of Fig. 2.3 is redrawn in Fig. 2.17, and the velocity
components (e.g., u, v, or w) are a function of location and time. For example, the
velocity in the x direction of a selected particle [shown for simplicity as u(t) in the
figure] is described by the function f:

u = f (x, y, z, t). (2.56)

After a short time interval �t , the particle has moved to a new location, as shown,
and its velocity is now u + �u [shown as u(t + �t) in the figure]. To estimate the
change in the velocity we can use Eq. (2.56) as

u + �u = f (x + �x, y + �y, z + �z, t + �t). (2.57)

Assuming all quantities appearing with � are small, we can expand Eq. (2.57) into
a Taylor series:

u + �u = f (x, y, z, t) + ∂ f
∂x

�x + ∂ f
∂y

�y + ∂ f
∂z

�z + ∂ f
∂t

�t

+ ∂2 f
∂x2

(�x)2

2
+ ∂2 f

∂y2

(�y)2

2
+ · · · . (2.58)

The distance the particle traveled during the time interval �t is

�x = u�t, �y = v�t, �z = w�t. (2.59)

Substituting these into Eq. (2.58), recalling that u = f (x, y, z, t), and neglecting the
higher-order terms, we obtain Eq. (2.58) as

�u = ∂ f
∂x

u�t + ∂ f
∂y

v�t + ∂ f
∂z

w�t + ∂ f
∂t

�t.

Dividing by �t , recalling that f is actually u, and taking the limit for very small
increments, we have

ax = lim
�u

�t→0
= u

∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+ ∂u
∂t

. (2.60)
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Thus the derivative of the x component of the velocity is the particle acceleration
ax in the x direction.∗ As noted, this operator is called the material derivative, and it
can be applied to any other property:

D
Dt

= ∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2.61)

Of course, accelerations in the y and z directions will have a similar form; for the 3D
particle acceleration we can recall Eq. (2.32):

�a = D�q
Dt

= ∂ �q
∂t

+ �q · ∇�q. (2.32)

To rewrite the momentum equation in the x direction, recall the acceleration term
from Eq. (2.60),

ax = ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

, (2.60a)

and the acceleration times the density must be equal to the sum of the forces acting
in the x direction:

ρax = ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
=

∑
Fx. (2.62)

Once the force term is found, the Navier–Stokes equation will result.
The general approach for simplifying (neglecting certain terms) in the Navier–

Stokes equation is discussed in Chapter 6.

2.9 Alternative Derivation of the Fluid Dynamic Equations

The differential form of the continuity and momentum equations so far is based (for
sake of simplicity) on the integral formulation. However, these equations can be
derived by use of elementary principles. To demonstrate the method, let us consider
an infinitesimal (very small) cubical control volume, as shown in Fig. 2.18. For exam-
ple, the flow in the y direction enters the control volume across an area of ds = dxdz
at a speed of v. The mass flow rate across this plane is therefore (ρv)dxdz. On the
other side of the cube (at a distance of dy) both velocity and density may have

z

x

y

dy

[ρ   +  ∂ (ρ(ρ  ) (dx dz)
dz

∂y

dx

)](dx dz)
Figure 2.18. Infinitesimal control vol-
ume (Cartesian coordinates).

∗ The approach used here was aimed at depicting the meaning of the material derivative. The accel-
eration into the x direction expressed by Eq. (2.60) can be obtained by use of the chain rule for the
derivative of f (x, y, z, t).

du
dt

= ∂ f
∂t

+ ∂ f
∂x

∂x
∂t

+ ∂ f
∂y

∂y
∂t

+ ∂ f
∂z

∂z
∂t

= ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂y
∂z

.
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changed and the mass flow rate across the exit plane is
[
ρv + ∂

∂y
(ρv) dy

]
dxdz. The

net change in the y direction is therefore

(ρv)dxdz −
[
ρv + ∂

∂y
(ρv) dy

]
dxdz = −

[
∂

∂y
(ρv)

]
dxdydz,

and similar expressions can be formulated in the x and z directions, as well.
The total change of mass in the cubical control volume is the sum of the changes

in the three orthogonal directions:

−
[

∂

∂x
(ρu)

]
dxdydz −

[
∂

∂y
(ρv)

]
dxdydz −

[
∂

∂z
(ρw)

]
dxdydz.

Now let us examine the conservation of mass principle, as stated in Eq. (2.20).
According to this principle, the accumulation of mass inside the cubical element
is:

∂m
∂t

= ∂ρ

∂t
(dV) = ∂ρ

∂t
dxdydz,

which must be equal to the change that is due to the flux in and out of the control
volume:

∂ρ

∂t
dxdydz = −

[
∂

∂x
(ρu)

]
dxdydz −

[
∂

∂y
(ρv)

]
dxdydz −

[
∂

∂z
(ρw)

]
dxdydz.

Canceling the volume of the cubical element (dx dy dz) results in the continuity
equation in Cartesian coordinates:

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw) = 0, (2.63)

and this is exactly the same as Eq. (2.31b):

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
+ ρ

(
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z

)
= 0. (2.31b)

The momentum equation, too, can be developed with the cubical element in
Fig. 2.18, but now the momentum balance must be made in the three directions (of
the Cartesian coordinates selected). For example, we obtain the momentum change
in the x direction by replacing ρ with ρu in Eq. (2.63). However, the result will
include more terms, which can be eliminated by use of the continuity equation [Eq.
(2.63)]. The result, of course, is the acceleration, as discussed in the previous sec-
tion (about the material derivative). Because we already developed this term in Eq.
(2.60), it can be readily applied. Let us demonstrate this in the x direction:

ax = ∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

, (2.64)

and the acceleration times the density must be equal to the sum of the forces acting
in the x direction;

ρax = ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
=

∑
Fx. (2.65)

The forces on the infinitesimal cubical element consist of body force, shear stress,
and pressure, as discussed in Section 2.5. The body force acts on the mass inside the
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Figure 2.19. Stress components on a cubical
fluid element.

cube and its magnitude in the x direction (per unit volume) is ρ fx. The stress on the
cubical element was discussed in reference to Fig. 2.6, which is reintroduced here in
Fig. 2.19.

The force in the x direction that is due to the pressure on the panels facing the
plus and minus x directions is

∂τxx

∂x
= ∂p

∂x
.

The force in the x directions that is due to the panels facing the plus and minus y
directions is a result of the change in the shear on those panels:

∂τxy

∂y
.

Finally, a similar term that is due to the change in shear on the panels facing the plus
and minus z directions is

∂τxz

∂z
.

The total force on the cubical element in the x direction is therefore the sum of these
components:

∑
Fx = ρ fx + ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
.

The momentum balance in the x direction, as noted earlier, is

ρax =
∑

Fx,

and by substituting the acceleration and the force terms (for the x direction only),
we get the same result as that presented earlier in Eq. (2.36b):

ρ

(
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
alz

)
=

∑
Fx = ρ fx + ∂τxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
. (2.66)
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Of course, the same procedure must be repeated for the y and z directions. Finally,
replacing the stress terms with their definitions in Eq. (2.14) results in the Navier–
Stokes equations as given by Eqs. (2.37).

2.10 Summary and Concluding Remarks

The equations developed in this chapter provide the foundations for fluid dynamics
and are used in almost every chapter that follows. Therefore it is useful to regroup
them at the end of the chapter where it is easier to locate them. Let us start with the
integral fom of the equations. The first, the continuity equation, states that no fluid
is lost:

∂

∂t

∫
c.v.

ρdV +
∫

c.s.
ρ(�q · �n)dS = 0. (2.20)

The second equation, the conservation of momentum, is

∂

∂t

∫
c.v.

ρqi dV +
∫

c.s.
ρqi (�q · �n)dS =

∫
c.v.

ρ fi dV +
∫

c.s.
njτi j dS. (2.24)

The same equations derived in a differential form, which is more frequently used
for computations, are (starting with the continuity equation)

∂ρ

∂t
+ ∇ · ρ�q = 0, (2.31)

and for an incompressible fluid where ρ = const.,

∇ · �q = ∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (2.33)

Here also the Cartesian form was added. The momentum equation still states the
same thing, that the acceleration is a result of the forces acting on the fluid:

ρai =
∑

Fi . (2.36)

Writing this in differential form for a Newtonian fluid, we obtain

ρ

(
∂qi

∂t
+ �q · ∇qi

)
= ρ fi − ∂

∂xi

(
p + 2

3
μ∇ · �q

)
+ ∂

∂xj
μ

(
∂qi

∂xj
+ ∂qj

∂xi

)
(i = 1, 2, 3),

(2.37)
and by assuming a constant-viscosity coefficient μ, we have

ρ

(
∂ �q
∂t

+ �q · ∇�q
)

= ρ �f − ∇ p + μ∇2�q + μ

3
∇(∇ · �q). (2.39)

For an incompressible fluid we have

ρ

(
∂ �q
∂t

+ �q · ∇�q
)

= ρ �f − ∇ p + μ∇2�q. (2.40)
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Figure 2.20. Progress in solving the fluid dynamic equations.

For an inviscid compressible fluid we end up with the Euler equation:

∂ �q
∂t

+ �q · ∇�q = �f − ∇ p
ρ

. (2.41)

These equations are complex, and analytical solutions exist only for simplified
forms, as will be demonstrated later. However, tremendous progress has been made
in numerical solutions (see Chapter 9) in recent years, and this is sumarized in
Fig. 2.20.

In Fig. 2.20 the complexity of the flow field is shown schematically on the ordi-
nate and the complexity of the applicable equations is on the abscissa. For example,
in the 1970s, the flow over a 3D wing could be solved by use of potential flow meth-
ods. Some 20 years later, we could solve (numerically) the same problem by solving
the Navier–Stokes equation and modeling turbulent effects. After the year 2000, the
complexity of the geometry that can be modeled increased gradually, as shown in
the figure.
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PROBLEMS

2.1. Calculate the net force that is due to the shear forces acting on two opposite
sides of the cube shown in the figure. What is the direction of the resultant (net)
force? (Cube dimensions are 2 m by 2 m by 2 m).

z

x

N

y

τxy = 7
m2

N
τxy = 5

m2

2 m

Problem 2.1.

2.2. The velocity field in the x–z plane is given by the the following expressions:

u = x,

w = −z.

Determine the equation describing the streamline passing through point (2,1) and
sketch the flow field described by this formula.

2.3. The velocity field in the x–z plane is given by the following expressions:

u = −3z2,

w = −6x.

Determine the equation describing the streamline passing through point (1,1) and
sketch the flow field described by this formula.

2.4. A 2D velocity field is given by the following equations:

u = x
x2 + z2

,

w = z
x2 + z2

.

Check if these satisfy the incompressible continuity equation.

2.5. The velocity distribution between two parallel horizontal plates is given by the
following expression:

u(z) = −k
[

z
h

− z2

h2

]
,

where k is a constant and h (in the z direction) is the clearance between the two
plates. Calculate the shear along a vertical line (between z = 0 and z = h). Where
does the shear force reaches its maximum value?

2.6. Based on Eq. (2.37) write the 2D Euler equation in Cartesian coordinates.
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2.7. Based on Eqs. (2.46) and (2.47) write the 2D Euler equation in cylindrical coor-
dinates (r–θ directions).

2.8. Based on Eq. (2.37) write the 3D incompressible Navier–Stokes equation in
Cartesian coordinates.

2.9. A 2D steady-state flow between two parallel plates is given by the following
functions:

u = a

[
z
h

−
(

z
h

)2
]

, 0 < z < h,

w = 0.

Note that the velocity is in the x direction only, but the flow is still 2D.

(a) Find the maximum velocity.
(b) Calculate the flow rate Q at a station x = const., which is given by the inte-

gral from the continuity equation,

Q =
∫

c.s.
ρ(�q · �n)dS.

z

x

h
Umax

u (z)

Problem 2.9.

2.10. Calculate the force per unit area (in the previous problem) acting on the sur-
face z = 0 and on the surface z = h. Assume fluid viscosity, μ, is known.

2.11. Fluid is flowing through a circular pipe into a cubical control volume, as shown
in the figure. If the cube dimensions are a = 30 cm and S = 3 cm2, the velocity vector
is (0. − 1,0) m/s, and the outside density is ρa = 1.0 kg/m3, determine the value of
the integral ∫

c.s.
ρ(�q · �n)dS

z

S

y

x

a

v

ρa

Problem 2.11.
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2.12. Evaluate the value of the integral ∂
∂t

∫
c.v.

ρdV for the control volume discussed
in the previous problem. Assume initial conditions at t = 0, ρ = 0.

2.13. Calculate the force and direction of the force acting on the cube. Assume the
pressure at the pipe inlet is the same as the pressure surrounding the cube.

2.14. A 2D steady-state velocity field is described by the following velocity compo-
nents: u = 5x, w = −5z. Calculate the corresponding acceleration field (using the
material derivative). What is the magnitude and direction of the acceleration at
point x = 1, z = 1?

2.15. A 2D steady-state velocity field is described by the following velocity compo-
nents: u = x

x2+z2 , w = z
x2+z2 . Provide a graphical representation of the velocity dis-

tribution along the following lines: (a) z = 0 and (b) x = 0.

2.16. A 2D steady-state velocity field is described by the following velocity com-
ponents: u = x

x2+z2 , w = z
x2+z2 . Calculate the corresponding acceleration field (using

the material derivative). What is the magnitude and direction of the acceleration at
point x = 0, z = 1?

2.17. Try to sketch the streamlines from the previous problem, starting at the origin.
What is the shape of this flow?

2.18. A 2D steady-state velocity field is described by the following velocity com-
ponents: u = z

x2+z2 , w = x
x2+z2 . Calculate the corresponding acceleration field (using

the material derivative). What is the magnitude and direction of the acceleration at
point x = 0, z = 1?

2.19. Try to sketch the streamlines from the previous problem, starting at the origin.
What is the shape of this flow?

2.20. A 2D steady-state velocity field is described by the following velocity compo-
nents: u = 1 + 2x + z, w = 1 − 2x + 3z. Calculate the corresponding acceleration
field (using the material derivative). What is the magnitude and direction of the
acceleration at point x = 1, z = 1?

2.21. An incompressible (1D as in Fig. 2.9) steady-state flow in a circular dif-
fuser is flowing from station 1 at x = 0 (where the velocity is u) to station 2 at
x = x2. The inlet radius at station 1 is r1 and at station 2 the radius is r2.
Assuming r2 > r1, develop an expression for the fluid acceleration as a function
of x.

z

0

1

xr2r1

2

Problem 2.21.
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2.22. An incompressible (1D) steady-state flow in a circular diffuser is flowing from
station 1 at x1 = 0 (where the velocity is u = 3 m/s) to station 2 at x2 = 10 cm. The
inlet radius at station 1 is r1 = 5 cm and at station 2 the radius is r2 = 10 cm. Calculate
the fluid acceleration as a function of x.

2.23. An incompressible (1D) steady-state flow in a nozzle with a rectangular cross
section is flowing from station 1 at x = 0 (where the velocity is u) to station 2 at
x = x2. The inlet height at station 1 is b1 and at station 2 is b2. Assuming that b2 <

b1, develop an expression for the fluid acceleration as a function of x.

z

x

1 2

b1

b2

Problem 2.23.

2.24. An incompressible (1D) steady-state flow in a nozzle with a rectangular cross
section is flowing from station 1 at x = 0 (where the velocity is u = 3 m/s) to station
2 at x = 10 cm. If the inlet height at station 1 is b1 = 10 cm and at station 2 is b2 =
5 cm, calculate the fluid acceleration as a function of x.

2.25. A 2D steady-state flow is given by the following functions:

u = a1z + a2z2, 0 < z < h,

w = 0.

Note that the velocity is in the x direction only, but the flow is still 2D.

(a) Sketch the velocity distribution along a vertical line (between z = 0 and
z = h).

(b) Calculate the shear stress τxz and its value at z = 0.

2.26. The velocity profile above a horizontal flat plate (within the range of 0 < z <

δ) is described by the following function:

u
Ue

= sin
(πz

2δ

)
, z ≤ δ.

Calculate the force per unit area acting on the surface z = 0. Assume fluid
viscosity of μ.

2.27. The velocity profile above a horizontal flat plate (within the range of 0 < z <

δ) is described by the following function:

u
Ue

=
(z
δ

) 1
9
, z ≤ δ.
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(a) Calculate the force per unit area acting on the surface z = 0. Assume fluid
viscosity of μ.

(b) Compare with the force calculated in the previous problem. Which one is
higher? (Note that these two formulas relate to the shape of a boundary
layer above a flat plate; the latter is for turbulent flows).

2.28. Wine in poured from a barrel into a liter bottle, as shown in the figure. At a
certain point, the fluid velocity is 1 m/s, and the cross-section area is 0.5 cm2. How
long does it take to fill the 1-L bottle?

u1  A1

Problem 2.28.

2.29. A firefighter holds a water hose, as shown in the figure. The water leaves the
nozzle at a velocity of 10 m/s, and the diameter of the circular jet is 0.03 m. Assuming
the pressure at the exit of the nozzle is atmospheric, calculate the force pushing the
firefighter backward (ρwater = 1000 kg/m3).

u = 10
m
s

0.03 m

4

Problem 2.29.

2.30. A small fan engine (as shown in the figure) is tested and the incoming speed
u1 is 100 m/s. The inlet area is A1 = 0.1 m2 and the exhaust speed is u2 = 200 m/s.
Assuming that the flow is accelerated by the fan and that the pressure and density
are the same at the inlet and exit (and ρ = 1.2 kg/m3), calculate the exit area A2.
Also calculate the thrust generated by this unit.

u2u1

A1 A2

Problem 2.30.



62 The Fluid Dynamic Equation

2.31. Water enters a 0.05-m-diameter tube at section 1 at an average speed of
0.5 m/s and exits through stations 2 and 3, as shown. The diameter of the exit at
station 2 is 0.03 m and the average velocity there is 0.5 m/s. as well. Calculate the
average exit velocity at station 3 if the tube diameter there is 0.02 m.

u1

A1

u2

A2

u3

A3

Problem 2.31.

2.32. At t = 0, the pipe above an empty cylindrical container is opened, pouring
water at a rate of Q1 = 1 L/s. At the bottom of the container, an open pipe can drain
the container at a rate of Q2 = 0.3 L/s. How long it will take to fill up the container
(with the dimensions shown in the figure)? Assume that Q2 is independent of the
water level in the container.

Q1

Q2

0.4 m

0.3 m

Problem 2.32.

2.33. A water stream is flowing from a pipe at a rate of Q = 1 L/s into a container
placed on a scale, as shown in the figure. Assuming that the effective height of the
water column is 1 m (e.g., the vertical velocity is zero at that height), calculate the
force measured by the scale.

Q = 1

Scale

L
s

1 m

Problem 2.33.
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2.34. Oil is poured at a rate of Q = 1 L/s into a conical funnel of r = 0.3 m, as shown
in the figure. Assuming it exits at the bottom of the funnel at a constant average
speed of u = 0.8 m/s through a 0.03-m-diameter tube, calculate how long it will take
to fill up the conical section (the volume of a cone = 1/3 × base area × height).

d = 3 cm

r

u = 0.8
m

30°

s

Q = 1
L
s

Problem 2.34.

2.35. A water jet hits horizontally a 50-kg block. The friction coefficient between
the block and the ground is 0.9. What is the minimum diameter d of the water jet
in order for the block to slide to the left? Assume that the jet speed, as it hits the
block, is 20 m/s.

50 kg

Jet

Friction coeff = 0.9

Nozzle

pa

d

p0

Problem 2.35.

2.36. Consider the flow in a circular pipe of radius R. Assume that the axis symmet-
ric velocity distribution is given by the expression qx = A[1 − ( r

R

)2], where A is a
constant. Calculate the volumetric flow rate and the average velocity.

r

x

R

Problem 2.36.

2.37. Calculate the shear stress on the inner wall of the pipe shown in the figure for
Problem 2.36 and estimate the shear force per unit length of the pipe. Find where in
the fluid the shear stress is minimum.

2.38. A fluid jet exits a large container, and the 2D velocity distribution can
be described as u(z) = U(z/h), where U is the maximum velocity at the top.
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Assuming the exit pressure is the same as the ambient (pe = pa), calculate the flow
rate per unit width, the average velocity, and the force on the container.

Large container

z

xpe = pa

e

U

h

Problem 2.38.

2.39. The 2D velocity profile between a plate moving at a velocity U and a stationary
plate is given by

u(z) = U sin
(

πz
2h

)
, 0 ≤ z ≤ h.

Calculate the 2D flow rate (per unit width) crossing the x = 0 plane.

z

U

x

h

Problem 2.39.

2.40. Calculate the shear stress on the upper and lower walls in the previous
problem.



3 Fluid Statics

3.1 Introduction

This chapter deals with the simplest form of the fluid dynamic equations, namely,
when there is no motion at all.

Because there is no fluid motion, there is no shear strain, and the shear stress
(and force) disappears. This provides the opportunity to focus on the effects and
the forces resulting from the pressure. Important principles such as the center of
pressure are also discussed.

3.2 Fluid Statics: The Governing Equations

In this case the fluid is at rest and the velocity vector is �q = 0. Consequently all
terms in the continuity equations becomes zero because they contain the velocity
vector. The momentum equation, however, contains other terms and will provide
information on the forces that may exist in a resting fluid. As noted, because there
is no velocity, there is no strain and no shear stress. Consequently the general stress
formula (Eq. 2.12) becomes

τi j =
⎡
⎣−p 0 0

0 −p 0
0 0 −p

⎤
⎦ . (3.1)

This means that the only force acting on the fluid element described in Fig. 2.5 is the
pressure, and its action is equal to all directions (at a point). This observation was
documented by Blaise Pascal (French scientist, 1623–1662), who postulated that the
pressure at a point in a fluid is independent of direction (sometimes called isetropic).
Suppose we’d like to state this in a Cartesian system; then clearly

px = py = pz = p. (3.2)

With these assumptions, momentum equation (Eq. 2.36) in Cartesian coordinates
reduces to

ρax = ρ fx − ∂p
∂x

, (3.3a)

65
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ρay = ρ fy − ∂p
∂y

, (3.3b)

ρaz = ρ fz − ∂p
∂z

, (3.3c)

or in vector form

ρ�a = ρ �f − ∇ p (3.4)

or

ρ( �f − �a) = ∇ p. (3.4a)

Note that we have left the acceleration term �a and at the same time we assumed that
the velocity is zero. This is done in order to discuss cases in which we wish to include
body forces that are due to solid-body acceleration (see Section 3.5). Therefore,
in these cases, there is no “fluid motion” because the fluid particles do not move
relative to each other.

In the following section we discuss the pressure field that is due to gravitational
force and due to solid body acceleration. Once the pressure is known, the resulting
forces on submerged surfaces including buoyancy can be calculated.

3.3 Pressure Due to Gravity

Let us consider a case in which the body forces �f consist of only the gravitational
force g, which acts in the vertical direction. The body-force vector is then

�f = (0, 0,−g), (3.5)

and the “solid-body acceleration” is zero:

�a = 0.

Equations (3.3) then reduce to

0 = −∂p
∂x

, (3.6a)

0 = −∂p
∂y

, (3.6b)

0 = −ρg − ∂p
∂z

. (3.6c)

Assuming incompressible fluid and integrating the first two equations, we find that
the pressure is constant in the x and y directions:

p(x) = p(y) = const. (3.7)

Next, by integrating the third equation, we get

p(z) = −
∫

ρgdz = −ρgz + c, (3.8)

where c is the constant of integration. Now let us select an x–z coordinate system
attached to the top surface of a liquid, as shown in Fig. 3.1:
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z

x

h

paFigure 3.1. Coordinate system used to describe the
hydrostatic pressure variation.

In this coordinate system, above the liquid and at z = 0, the pressure is p(0) =
pa , and by substituting this into Eq. (3.8) we get

p(z) = pa − ρgz. (3.9a)

Or we can measure the depth of the liquid from the surface as h, and then

p(h) = pa + ρgh. (3.9b)

Because the fluid is stationary we can compare this condition with that of solids.
For example, let us compare it with a pile of bricks, as shown in Fig. 3.2. Assume
that each brick weights 1 kg and its base area is 0.02 m2. In the case of the left-hand
column we have six blocks, and the pressure under them is

p1 = 6 kg f

0.02 m2
= 300

kg f

m2
.

For the smaller pile, where h2 = h1/2, the pressure is reduced by the same ratio and
therefore

p2 = 3 kg f

0.02 m2
= 150

kg f

m2
.

In conclusion, the taller the column, the larger the pressure at the bottom. However,
in case of the solid block pile, there is no pressure to the sides. In the case of a liquid
column, there will be a pressure of magnitude ρgh acting to the sides, as well.

Now let us return to the observations of Blaise Pascal (1623–1662), who docu-
mented these relations. One of the consequences of Eqs. 3.9 is that the pressure at
the bottom of the container shown in Fig. 3.3 is the same under all branches and it
is ρgh (in addition to the ambient pressure pa). Therefore the height of the liquid
column in each of the branches is independent of the shape and will have the same
height h.

We can continue with the example by sealing the top of the container and
adding a longer tube onto one of the branches. Now we fill it with a small amount

1 kg

1 kg

1 kg

1 kg

1 kg

1 kg

1 kg

1 kg

1 kg

h1

h2

p1 p2

Figure 3.2. The pressure under a pile of bricks depends on
the height h of the pile.
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h

Figure 3.3. The fluid level h in a container is inde-
pendent of the shape of the container.

of liquid to the height h1 and the pressure inside will increase throughout the con-
tainer. For example the pressure above the liquid level px (see Fig. 3.4) will increase
according to Eqs. (3.9)

px = pa + ρgh1,

and the pressure at the bottom of the container now is

p = pa + ρg(h + h1);

this example shows how easy it is to increase the pressure in a pipe system. This
principle is used to ensure sufficient high pressure in urban areas by the positioning
of water towers on higher grounds.

From the same principle we can develop a pressure measurement device called
the U-tube manometer (see Fig. 3.5). In this case a U-shaped tube is filled with
a liquid with known density. When both sides of the U-tube are open the liquid
column will have the same level. However, if one side is connected to the unknown
pressure px, then the liquid column will move accordingly. In this case the measured
pressure is higher than the ambient pressure pa by

px = pb = pa + ρgh.

Another important application for which we can credit Blaise Pascal’s princi-
ple about the pressure’s being isetropic is in hydraulic jacks. In this case the objec-
tive is to generate mechanical advantage by using the principle that the pressure is
the same throughout the whole system (in this case we assume that the hydraulic
pressure inside the system is very high and small changes in ρgh that are due to
differences in the inner fluid level are negligible).

h

h1

px
Figure 3.4. One method of increasing the pres-
sure in a closed container by simply adding a liq-
uid column h1, as shown.
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h

pa

pb 

px 

Figure 3.5. Principle of U-tube manometer. The liquid col-
umn height h allows us to measure the pressure px .

Now let us refer to Fig. 3.6. The pressure inside the hydraulic lift system is
increased by application of a force F1 on the smaller piston having an area of A1.
The resulting pressure is

p = F1

A1
.

Because the pressure is the same in the hydraulic fluid (as noted, we neglect
small differences between the fluid levels because the pressure inside is much larger
than ρgh) we can write

p = F1

A1
= F2

A2
.

Consequently, the mechanical advantage for lifting the heavier car is

F2 = F1
A2

A1
. (3.10)

Although we gained in magnifying the lifting force, the work invested pV is
unchanged because the force F1 is pushed in deeper to displace the same volume
of fluid V. So the total work invested w, is simply the pressure multiplied by the
volume displaced:

w = F1h1 = pA1h1 = pV

and h1 is the stroke in pump 1 in Fig. 3.6.

F2

F1

A2 A1

Figure 3.6. The principle of a hydraulic lift: using a
smaller force F1 to create a mechanical advantage in
order to lift the vehicle.
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3.4 Hydrostatic Pressure in a Compressible Fluid

Let us repeat the previous exercise, but now the stationary fluid is compressible.
Therefore it is only logical that the lower layers (facing the higher pressure) will
be compressed more. As in the previous example, let us assume that the only force
acting is gravitation:

�f = (0, 0,−g). (3.5)

Furthermore, we assume that the compressible fluid behaves like an ideal gas and
fulfills the state equation,

p
ρ

= RT, (1.8)

Eqs. (3.3) reduce to the same forms as in the previous case:

0 = −∂p
∂x

, (3.6a)

0 = −∂p
∂y

, (3.6b)

0 = −ρg − ∂p
∂z

. (3.6c)

Again, by integrating the first two equations we find that the pressure is constant in
the x and y directions,

p(x) = p(y) = const.,

and by substituting Eq. (1.8) into (3.6c) we get

dp
dz

= −ρg = − p
RT

g.

After separating the variables we get

dp
p

= − g
RT

dz,

which allows the integration of both sides:

ln p
∣∣∣p1

p2

= − g
RT

z
∣∣∣z2

z1

.

For a constant temperature T we can write

ln
p2

p1
= − g

RT
(z2 − z1) (3.11)

or

p2 = p1e−
g

RT (z2 − z1)
. (3.11a)

Now, compare this relation with the linear one in Eq. (3.9). You’ll note that the
exponential variation in Eq. (3.11a) compares well with the experimental data in
Fig 3.7.
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Figure 3.7. Variations of temperature and pressure versus altitude in the standard Earth’s
atmosphere.

EXAMPLE 3.1. HYDROSTATIC PRESSURE VARIATION IN A COMPRESSIBLE FLUID.

To demonstrate the use of this equation let us calculate the pressure changes
we face when climbing the elevator in one of the world’s tallest buildings. If
we approximate the height of the Empire State Building as 380 m, then the
expected change in pressure, based on Eq. (3.11), is

p2

p1
= e−

9.81
286.6×300 (380) = 0.9575;

here we assume a constant temperature of T = 300 K and a gas constant for
air of R = 286.6 m2/(s2 K). At the base of the building we have an atmospheric
pressure of, say 101,325 N/m2; then the difference in pressure is

�p = (1 − 0.9575)101,325 = 4299 N/m2.

Now if we were to use the incompressible formula, the pressure difference
would be

�p = ρgh = 1.22 × 9.81 × 380 = 4547 N/m2,

and this inaccuracy is significant.
The compressibility effect is best observed in the Earth’s atmosphere. How-

ever, some of our assumptions are not holding there, mainly because of the non-
linear temperature variations. The temperature changes with altitude are shown
in Fig. 3.7 along with the changes in pressure (and density). It appears that the
density too, is following in general the exponential behavior of Eq. (3.11); how-
ever, the large temperature changes create significant inaccuracies.

3.5 “Solid-Body” Acceleration of Liquids

In this case the fluid inside a container is accelerated such that the fluid remains
static relative to the container. Initial effects (such as the shape of the fluid body
before the acceleration began) are not considered, and during the constant acceler-
ation there is no relative motion between fluid particles. In principle we can regard
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z

x

ax

paα

x1
h1

z1 Figure 3.8. Linear acceleration of a fluid.

the resulting body forces in the same manner in which we treated the gravitational
acceleration. Therefore this case is similar to the earlier cases with the stagnant fluid,
but now we can add another force that is due to solid-body-type acceleration �a, and
Eq. (3.4a) becomes

ρ( �f − �a) = ∇ p. (3.12)

Let us demonstrate this principle for two cases: (a) linear acceleration and (b) steady
rotation.

3.5.1 Linear Acceleration

Assume a container is filled with a liquid as shown in Fig. 3.8. The container is sub-
ject to a constant forward acceleration, and after a while the fluid inside the con-
tainer appears as depicted in the figure.

We can speculate that the fluid will be pushed backward by a body force, as
shown in the figure. Equation (3.12) in Cartesian coordinates now becomes

−ρax = ∂p
∂x

, (3.13a)

0 = ∂p
∂y

(3.13b)

−ρg = ∂p
∂z

. (3.13c)

Note that from the “fluid point of view” both ax and g are the same and the only
difference is their direction. This is described schematically in Fig. 3.9, and we can
visualize this case as a static fluid subject to a body force of (−ax, 0, −g).

−g

−ax

Figure 3.9. This case is the same as a stationary fluid
subject to a body force �f = (−ax, 0, −g).
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To proceed and solve Eqs. (3.13), let us assume an incompressible fluid, and by
integrating Eq. (3.13b) we find that the pressure is constant in the y direction:

p(y) = const.

Next we can integrate Eqs. (3.13a) and (3.13c) to get

p(x) = −
∫

ρaxdx = −ρaxx + c1,

p(z) = −
∫

ρgdz = −ρgz + c2,

where c1 and c2 are the constants of integration. By combining the two independent
solutions we get

p(x, z) = −ρ(axx + gz) + c, (3.14)

where c replaces the two previous constants of integration. Now we select a coordi-
nate system with the origin at the upper left-hand corner, as shown in Fig. 3.8. Con-
sequently, at the origin, x = z = 0 above the liquid surface, the ambient pressure is
p = pa . Substituting this boundary condition into the previous result determines the
constant c:

c = pa .

Substituting this result into Eq. (3.14) shows the pressure distribution inside the
liquid:

p(x, z) − pa = −ρ(axx + gz). (3.15)

We can find the shape of the liquid surface by letting p(x, z) = pa . Substituting this
into Eq (3.15) we get

0 = −ρ(axx + gz),

and by rearranging this relation we get the curve describing the surface,

z = −ax

g
x, (3.16)

and the slope of the surface

tan α = dz
dx

= −ax

g
. (3.17)

This angle α is shown at the top of Fig. 3.8. Note that the basic formula

p(x, z) − pa = ρgh

works here as well when h represents the liquid height at any point (inside the liq-
uid). Let us examine this observation by checking the pressure at an arbitrary point
x = x1 inside the liquid in the container, where the liquid depth is h1. The z1 coordi-
nate at a depth of h1 is then the sum of the liquid’s surface position combined with
the depth h1.

z1 = −ax

g
x1 − h1.
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Figure 3.10. Solid-body rotation of a fluid.

Now we can use Eq. (3.15) to calculate the pressure at this point (x1, z1):

p(x, z) − pa = −ρ(axx1 + gz1) = −ρ

[
axx1 + g

(−ax

g
x1 − h1

)]
= ρgh1.

As expected, this shows that we can calculate the hydrostatic pressure at any point
by using the local liquid column height.

3.5.2 Solid-Body Rotation of a Fluid

Assume a cylindrical container of radius R filled with a liquid, as shown in Fig 3.10.
The dashed horizontal line shows the fluid level (z0) when the container is not rotat-
ing. Next the container is rotated about the z axis at a rate of �. We assume that
after a while the fluid inside the container will rotate as a solid body and its upper
surface will assume a new shape, as shown in Fig. 3.10. Also, there is no relative
motion between the container and the fluid (on the boundary) or inside the fluid
(between the fluid particles); hence we can look at this as a fluid statics problem. As
in the previous example, our objective is to find the pressure distribution inside the
liquid and the shape of the upper surface.

We can start with the fluid statics equation, Eq. (3.12):

ρ( �f − �a) = ∇ p. (3.12)

Because this is an axisymmetric case we use the r–z cylindrical coordinate system,
as shown in the figure. Next, we need to identify the forces (or accelerations). The
gravitational acceleration remains as before,

�f = (0, 0,−g), (3.5)

whereas for the radial acceleration ar we can write

ar = −r�2. (3.18)

Equation (3.12) in cylindrical coordinates (r, θ, z) now becomes

ρr�2 = ∂p
∂r

, (3.19a)

0 = ∂p
∂θ

, (3.19b)

−ρg = ∂p
∂z

. (3.19c)
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Again, assuming an incompressible liquid, we can integrate Eqs. (3.19), and the
result is

p(r) =
∫

ρr�2dr = ρ
(r�)2

2
+ c1,

p(θ) = const. = c2,

p(z) = −
∫

ρgdz = −ρgz + c3,

where c1, c2, and c3 are the constants of integration. Also, the second equation sug-
gests that there are no tangential variations (with θ) inside the liquid. By combining
these independent solutions we get

p(r, z) = ρ

[
(r�)2

2
− gz

]
+ c, (3.20)

where c replaces the previous constants of integration. To calculate this constant we
need to specify the boundary conditions. For example, we observe that at the center
of the rotating liquid where z = zmin, just above the liquid, the pressure is equal to
the ambient pressure pa . Substituting this into Eq. (3.20) results in

p(0, zmin) = pa = ρ (0 − gzmin) + c

or

c = pa + ρgzmin.

Substituting this result into Eq. (3.20) provides the expression for the pressure dis-
tribution inside the liquid:

p(r, z) − pa = ρ

[
(r�)2

2
− g(z − zmin)

]
. (3.21)

We can find the shape of the liquid surface by letting p(r, z) = pa . Substituting this
into Eq (3.21) we get

0 = ρ

[
(r�)2

2
− g(z − zmin)

]
,

and after rearranging we get the shape of the liquid’s upper surface, which is a
parabola:

z = zmin + (r�)2

2g
, (3.22)

and we can calculate zmax by simply substituting r = R into Eq. (3.22). At this point,
it is important to establish the relation between liquid height z0 before the rotation
and the two heights zmin and zmax (appearing in Fig. 3.10) once the rotation is estab-
lished. We can use the conservation of mass principle stating that the liquid volume
before and after the rotation is the same:

Vbefore = Vafter.

Of course, the initial volume is

Vbefore = π R2z0
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and the volume of the rotating fluid is

Vafter =
∫ R

0
z(2πr)dr =

∫ R

0

[
zmin + (r�)2

2g

]
2πr(dr)

= π R2zmin + π

g
�2 R4

4
= π R2

[
zmin + (R�)2

4g

]
.

Comparing the two volumes

π R2z0 = π R2
[

zmin + (R�)2

4g

]
.

and solving for z0, we get

z0 = zmin + (R�)2

4g
, (3.23)

and by substituting r = R in Eq. (3.22):

zmax = zmin + (R�)2

2g
. (3.24)

We can rearrange these equations based on the initial liquid height z0:

zmin = z0 − (R�)2

4g
, (3.25)

zmax = z0 + (R�)2

4g
. (3.26)

This shows that the initial height of the liquid is at the centerline between zmin and
zmax once the liquid is rotated. Also note that the basic formula,

p(r, z) − pa = ρgh,

works well when h represents the liquid height at any point. Let us examine this
observation by checking the pressure at the bottom of the container at r = R. Based
on this simple assumption, the pressure there must be

p(R, 0) − pa = ρgzmax.

According to Eq. (3.21) the pressure there is

p(R, 0) − pa = ρ

[
(R�)2

2
+ gzmin

]
. (3.27)

However, based on Eqs. (3.25) and (3.26),

zmax − zmin = (R�)2

2g
.

Substituting this into Eq. (3.27) results in

p(R, 0) − pa = ρ [g(zmax − zmin) + gzmin] = ρgzmax, (3.28)

which is exactly as expected.
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pa

ΔF

ds

S

hFigure 3.11. The pressure acts normal to the sub-
merged surface S.

3.6 Hydrostatic Forces on Submerged Surfaces and Bodies

In the previous sections we demonstrated that the pressure may vary in a stationary
fluid because of body forces (gravitational or even solid-body acceleration). In this
section we try to calculate the forces that are due to pressure in a stationary fluid
(called hydrostatic) acting on a submerged surface or on a closed body. Consider
a body with surface S, as shown in Fig. 3.11, submerged in an incompressible fluid.
The force acting at a point on this body was defined by Eq. (1.4) such that

�F = −p�ndS, (1.4)

and dS is an infinitesimal surface element, as shown.
So if we need to find the total force F acting on a specific area S1 because of

a variable-pressure field, then we need to integrate this equation over a desirable
surface S1:

F = −
∫

S1

p�ndS. (3.29)

Assuming that only gravitational forces act on the fluid, then the pressure will vary
with the depth h, as given by Eq. (3.9b)

p(h) = pa + ρgh. (3.9b)

The meaning of this relation is explained visually in Fig 3.12, where the pressure
(and resulting force) will increase on the sides of a container with the depth h. At
the bottom of the container, at a depth of H, the pressure is constant, as shown in
the figure. So basically all the weight of the liquid is supported by the bottom sur-
face, but in addition, the sides will experience horizontally acting hydrostatic force
(because pressure at a point acts equally to all directions). In comparison, if the

pa

p = pa + ρgh

p = pa + ρgh

H

h
Figure 3.12. Variation of the hydrostatic
pressure in a stationary container.
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dS

p

xdFx

Figure 3.13. The force components acting on a surface
are split by the unit normal vector �n = (nx, ny, nz).

same weight of bricks were piled in the container, then only the loads on the bottom
surface will be present.

To continue the determination of the force acting on the submerged surface we
substitute the pressure from Eq. (3.9b) into force equation (3.29) to get

F = −
∫

S1

(pa + ρgh)�ndS. (3.30)

Note that Eq. (3.30) is a vector expression and the force components must be eval-
uated in a well-defined coordinate system. For example, Fig. 3.13 shows a surface
element dS, and clearly the pressure acts normal to it. The force in the x direction,
however, accounts for only the projection of the area in this direction:

Fx = −
∫

S1

(pa + ρgh)nxdS, (3.31)

where the unit normal vector is �n = (nx, ny, nz). Because the integration is now in
the y–z plane we can also write

Fx = −
∫

S1

(pa + ρgh)dydz. (3.31a)

In the following subsections we use this equation to determine the forces acting on
submerged surfaces or submerged bodies.

3.6.1 Hydrostatic Forces on Submerged Planar Surfaces

The discussion on hydrodynamic forces can be divided into two parts. The first part
focuses on calculating the magnitude of the hydrostatic force; the second part is
aimed at determining the center of pressure.

3.6.1.1 Hydrostatic Force on a Submerged Surface
Let us consider the liquid reservoir shown in Fig. 3.14 and assume that the right wall
is planar and that it is inclined at an angle α, as shown in the figure. The origin of
the Cartesian coordinate system is attached to the upper right-hand corner (at the

pa

pa

y

z

α

h Figure 3.14. Nomenclature for calculating the hydraulic
force on an inclined planar surface.
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fluid level) and the x coordinate points into the page. The y and z coordinates are
positioned, as shown in the figure. In addition we assume that the ambient pressure
pa is constant above the fluid level and behind the wall.

Based on Eq. (3.30), the force that is due to pressure on the wall is

Fz = −
∫

S
(pa + ρgh)nzdS,

and here the normal points in the z-coordinate direction: �n = (0, 0, 1). Because the
constant pressure pa acts on both sides of the wall, we cancel it in this equation.
Also, we can replace h with h = y sin α to get

Fz = −
∫

S
(ρgy sin α)dS = −ρg sin α

∫
S

ydS. (3.32)

However, the remaining integral is similar to the process of finding the average coor-
dinate y for the area S (or the centroid):

y = 1
S

∫
ydS. (3.33)

Consequently, with the aid of Eq. (3.32), we can calculate the force as

Fz = −ρg sin αyS. (3.34)

This result can be interpreted such that the force is simply the average pressure
p = p(y = y), multiplied by the area S:

Fz = −pS. (3.35)

Location of the average y is at the centroid of the area, and it is shown for several
common geometrical shapes in Fig. 3.15.

3.6.1.2 The Center of Pressure
Next we’ll try to find the center of pressure. This point is very important in engi-
neering because it represents the location where the resultant force acts. This is
demonstrated in Fig. 3.16(a), where bricks are piled up on a planar board. To find
the action line of the resultant force, we place a small triangle underneath the board
and try to balance the board. Once this point is found, then the force F shown is the
reaction to the resultant force and acts in the opposite direction.

We can repeat a similar exercise, but now we use a linear variation of the pres-
sure along the plate, as shown in Fig. 3.16(b). Let us assume that the pressure on the
plate varies linearly such that

p(x) = pmax
x
l
.

Based on Eq. 3.29 the total force per unit width is then

Fz = −
∫ l

0
pdx = − pmax

l

∫ l

0
xdx = − lpmax

2
. (3.36)

This is the resultant force, and it confirms Eq. (3.35) because p = pmax
2 . Next we must

answer the question about the location of the equivalent force. For example, we can
select the force F in Fig. 3.16(b) such that the total sum of moments about the origin
is zero (e.g., the system is in equilibrium). Consequently the moment that is due to
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Figure 3.16. The principle of the center of pressure, representing the point where the resul-
tant force acts.



3.6 Hydrostatic Forces on Submerged Surfaces and Bodies 81
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y

xcp

x

S

z

h
Figure 3.17. Calculation of the center of
pressure for a segment S lying on the
inclined planar surface.

the resultant force (but opposite in direction) multiplied by xcp must balance the
moment due to the pressure from above the plate:

Fzxcp =
∫ l

0
xpdx = pmax

l

∫ l

0
x2dx = − l2 pmax

3
. (3.37)

Using the expression for Fz from Eq. (3.36) and solving for the center of pressure,
we get

xcp = 2
3

l. (3.38)

This location is closer to the right-hand side where the pressure is higher.
Now we can continue to calculate the center of pressure for the inclined wall

in Fig. 3.14. The projection of the area of interest S is shown in Fig. 3.17 and the
center-of-pressure coordinates are at (xcp, ycp), as shown in the figure. Using the
same principle, we require that, at this point, the moments will be balanced by
the resultant force (with the minus sign). Let us start with the y coordinate:

Fzycp =
∫

S
ypdS =

∫
S

y(ρgy sin α)dS = ρg sin α

∫
S

y2dS. (3.38)

By substituting Fx from Eq. (3.34), we can solve for the y coordinate of the
center of pressure:

ycp =
∫

S y2dS∫
S ydS

. (3.39)

But
∫

S y2dS = Ixx is the (area) moment of inertia and
∫

S ydS = yS [as in Eq. (3.33)];
therefore

ycp = Ixx

yS
, (3.40)

and, as noted, Ixx is the area moment of inertia about the horizontal x axis. In a
similar manner we can derive the center-of-pressure x coordinate xcp. To balance
the moments about the y axis we write:

Fzxcp =
∫

S
xpdS =

∫
S

x(ρgy sin α)dS = ρg sin α

∫
S

xydS. (3.41)

Substituting Fx from Eq. (3.34) we can solve for the y coordinate of the center of
pressure:

xcp =
∫

S xydS∫
S ydS

. (3.42)
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Figure 3.18. Application of the parallel-axes theorem for
shifting the moment of inertia between parallel axes.

But
∫

S xydS = Ixy and
∫

S ydS = yS and therefore we can summarize:

xcp = Ixy

yS
,

ycp = Ixx

yS
, (3.43)

and the moments of inertia are calculated relative to the coordinate axes shown in
Fig. 3.17.

Next, let us redraw in Fig. 3.18 the x–y plane and the area of interest S from
Fig. 3.17. The centroid for the area S is at (x, y), as shown. The moments of inertia in
Fig. 3.15, and in most engineering reference books, are given relative to the centroid
of the area and not relative to the x–y frame in Fig. 3.18. To use those formulas we
need to use the parallel-axes theorem that allows us to shift the calculated moment
of inertia between parallel axes:

Ixx = Ixx + y2S,

Ixy = Ixy + xyS. (3.44)

Substituting these relations into Eqs. (3.43) allows us to use the area centroid-
based moments of inertia (Ixx and Ixy), as given in Fig. 3.15:

xcp = Ixy

yS
+ x,

ycp = Ixx

yS
+ y. (3.45)

This can be rearranged to show the displacement between the centroid and the cen-
ter of pressure:

xcp − x = Ixy

yS
,

ycp − y = Ixx

yS
, (3.45a)

and y is measured from the water level, as shown in Fig. 3.14. Note that if the area
is symmetric about a line (crossing the centroid) and parallel to the y axis, then Ixy

is zero (as shown in Fig. 3.15).
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Figure 3.19. Force on a submerged circular valve
in a pool.

EXAMPLE 3.2. HYDROSTATIC FORCE ON A CIRCULAR VALVE. As an example, con-
sider the 4-m-diameter circular valve submerged in a pool of water, as shown in
Fig. 3.19. The horizontal rotation axis crosses the center of the circle, and this
point is located at a depth of 10 m. The wall inclination is 60◦, and we would like
to calculate the hydrostatic force on the valve, the center of pressure, and the
magnitude of the moment required to open it.

First let us find the force acting on the circular valve. We can use Eq. (3.35)
because we know the centroid location is at h = 10 m. The average pressure at
the centroid is

p = ρgh →= 1000 × 9.8 × 10 = 9.8 × 104 N
m2

and the valve area is S = π22 = 12.56 m2. The force is then

Fz = −pS = −9.8 × 104 × 12.56 = −1.23 × 106 N,

and of course the minus sign means that the normal force is pushing the valve
in the −z direction. Because of the lateral symmetry, the center of pressure will
not be shifted to the side, but it will be below the centroid. To calculate this
point we use Eqs. (3.45):

xcp = x

ycp − y = Ixx

yS
= π R4

4(h/ sin 60)π R2
= 0.0866 m.

Note that y is the distance in the coordinate system of Fig. 3.19 (with the origin
at the upper liquid surface). Next we need to calculate the moment required to
open the valve. The opening moment M is

M = Fz(ycp − y) = 1.23 × 106 × 0.0866 = 1.06 × 105 Nm,
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Figure 3.20. Shift in center of pressure
location for the valve in Example 3.2.

and the required direction is shown in the figure. It is important to show that
the distance between the centroid and the center of pressure depends on the
depth h. This is logical because the deeper the valve in the pool, the smaller
the relative changes in the pressure across the valve. The trend in the distance
between these two points versus the valve depth is depicted in Fig. 3.20, and the
distance clearly decreases with increasing depth.

EXAMPLE 3.3. HYDROSTATIC FORCE ON A TRIANGULAR SURFACE. In this second
example we demonstrate a case in which the submerged surface is not sym-
metric and therefore the center of pressure will not be immediately below the
centroid. The geometry of the submerged triangular surface at the bottom of a
pool, filled with water, is shown in Fig. 3.21. The apex is located at a depth of
5 m and the triangle base is at h = 11 m, with a surface inclination of 30◦, as
shown. Again, we would like to calculate the hydrostatic force on the triangular
surface and the location of the center of pressure.

Based on Fig. 3.15 the area centroid for the triangle is at 1/3 of its height
and 1/3 of its base, as shown. The depth h at this point is

h = 5 + 8 sin 30◦ = 9 m,

x

y

xx

Center o
f

pressu
re

y

p

2 m

z
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hcentroid

6 m

5 m

8 m

4 m

4 m

Figure 3.21. Force on a submerged
triangular valve in a pool.
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and the hydrostatic pressure at this point is

p = ρgh = 1000 × 9.8 × 9 = 88,200
N
m2

.

The area S of the triangle is

S = 6 × 12
2

= 36 m2,

the force on the triangular surface, using Eq. (3.35), is

Fz = −pS = −88,200 × 36 = −3.175 × 106 N,

and the minus sign means that the force is pointing in the −z direction. Next
we need to calculate the position of the center of pressure. The formulas for the
triangle’s moment of inertia are taken from Fig. 3.15; first we calculate those
about the area centroid;

Ixx = bL3

36
= 6 × 123

36
= 288 m4,

Ixy = b(b − 2s)L2

72
= 6(6 − 2 × 6)122

72
= −72 m4.

We now find the center of pressure by using Eqs. (3.45). First, however, we must
find y:

y = h
sin 30◦ = 9

0.5
= 18 m.

Substituting this into Eqs. (3.45), we obtain

xcp − x = Ixy

yS
= −72

18 × 36
= −0.111 m,

ycp − y = Ixx

yS
= 288

18 × 36
= 0.444 m.

The resultant force Fz acts at this point and its location is shown in the figure.
Note that it is below the centroid and the minus sign indicates that it is shifted
in the −x direction (closer to the y coordinate) relative to the centroid.

3.6.2 Hydrostatic Forces on Submerged Curved Surfaces

The calculation of the hydrostatic forces on nonplanar surfaces is quite similar and is
based on Eq. (3.29). For complex submerged surface shapes, however, the integra-
tion process may be complicated (because of the complex math). Let us demonstrate
the method by calculating the hydrostatic forces on a dam having a simple parabolic
shape, as shown in Fig. 3.22.

Let us use an x–z coordinate system placed at the bottom floor of the reservoir,
as shown in the figure, and calculate the forces on this dam, per unit width. The
shape of the surface is given by z = x2/a, where a is a constant and H is the depth
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Figure 3.22. Forces on a parabolic dam.

of the water. The x coordinate at the upper-right corner of the water surface is x =√
aH, as shown. As noted, we use Eq. 3.29 to calculate the forces:

Fx = −
∫

S
pdSx = −

∫
S
ρg(H − z)dydz.

And here the projection of the area element pointing in the −x direction is dSx =
dydz, and calculating per unit width (dy = 1) we get

Fx =
∫

S
ρg(H − z)dz = ρg

(
Hz − z2

2

)∣∣∣∣
H

0
= ρg

H2

2
.

This, as expected, means that the average pressure at H/2 (which is ρg H
2 ) is mul-

tiplied by the projected area, H × 1. Now let us proceed to calculate the vertical
component of the hydrostatic force Fz:

Fz = −
∫

S
pdSz = −

∫
S
ρg(H − z)dxdy.

And here the projection of the area element pointing in the +z direction is dSz =
dxdy, and calculating per unit width (dy = 1) we get

Fz = −
∫

S
ρg(H − z)dx = −

∫
S
ρg

(
H − x2

a

)
dx = −ρg

(
Hx − x3

3a

)∣∣∣∣
√

aH

0

= −ρg
2
3

H
√

aH.

Note that, because the integration is on the x–y plane, z is replaced with the curve
shape x2

a . The negative sign means that the force acts downward, opposite to the +z
coordinate. The mass m per unit width of the liquid above the surface is

m = ρ

∫ √
aH

0
(H − z)dx = ρ

(
Hx − x3

3a

)∣∣∣∣∣
√

aH

0

= ρ
2
3

H
√

aH.

So it is clear that the vertical component of the force is equal to the mass of fluid
above it. We can generalize these conclusions as follows:

The horizontal component of the hydrostatic force is the product of the projected
area into the horizontal direction multiplied by the pressure acting at the centroid of this
area.

The vertical component of the hydrostatic force acting on a curved surface is equal
to the weight of the liquid column above it.

Note that in this section we did not include the force that is due to the ambient
pressure pa , which must be included to calculate the absolute pressure values.
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Figure 3.23. The principle of calculating the forces on a sub-
merged curved surface.

The preceding two principles are demonstrated schematically in Fig. 3.23, which
indicates that the force on the bottom surface is equal to the weight of the fluid
above it whereas we can calculate the side force by using the preceding calculations
using the average pressure at the centroid of the projected area. For simplicity, the
volume in Fig. 3.23 is divided into upper and lower sections with weights of W1 and
W2, respectively. The vertical force on the curved lower surface is then W1 + W2.
The lateral force Fx is the same as the force acting on the projected area at the left,
as shown.

Now let us continue with the example of Fig. 3.22 and calculate the center of
pressure for the horizontal and vertical forces. To calculate zcp let us consider the
moment balance about origin of the x–z coordinate system:

zcpFx = −
∫

S
pzdSx = −

∫
S
ρg(H − z)zdz = ρg

(
H

z2

2
− z3

3

)∣∣∣∣
H

0
= ρg

H3

6

Substituting the results for Fx we get

zcp = H
3

Repeating the calculation for the x coordinate of the center of pressure we get

xcpFz = −
∫

S
pxdSz = −

∫
S
ρg(H − z)xdx = −ρg

(
H

x2

2
− x4

4a

)∣∣∣∣
√

aH

0
= −ρg

aH 2

4

Again by substituting the vertical force component we get

xcp = 3
8

√
aH

In conclusion, to find the force acting on complex surfaces, we can still use Eq. (3.30),
and only the integration process becomes more complicated.

3.7 Buoyancy

Calculation of the hydrostatic forces acting on bodies immersed or floating in a liq-
uid is important to numerous disciplines and to the design of ships, balloons, etc.
Some of these problems are depicted schematically in Fig. 3.24. A ship, for exam-
ple, that is floating on the water surface is lifted by the buoyancy force that is equal
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(a)

(b)

(c)

Figure 3.24. Cases of objects in a
liquid.

to its weight. A submarine or a fish planning to sink or rise in the water must account
for buoyancy forces. The third case, that of a structure on the bottom floor of the
sea, is similar to the cases discussed in the previous section, and the normal force on
it is equal to the weight of the fluid column above it.

Let us start with a simple analysis of a completely submerged object. Assume
that a cube is placed inside the fluid such that its upper and lower surfaces are hori-
zontal, as shown in Fig. 3.25. It is clear that the left-to-right and fore-and-aft forces
on the cube are the same because of symmetry, whereas the forces on the upper and
lower surfaces are not identical.

The downward-pointing force on the upper surface is F1 = ρgh1S and the
upward-pointing force on the lower panel is F2 = ρgh2S. The net force L (lift) is
therefore

L = F2 − F1 = ρg(h2 − h1)S.

But the cube volume V = (h2 − h1)S, and therefore we can conclude that the buoy-
ancy force is

L = ρgV, (3.46)

where V is the volume of the displaced fluid. This was discovered many years ago by
the Greek physicist Archimedes (287–212 b.c.e.) who made these statements:

1. A body immersed in a fluid experiences a vertical buoyancy force equal to the
weight of the displaced fluid.

2. A floating body experiences a vertical buoyancy force equal to its weight (which
is also equal to the weight of the displaced fluid).

3. The buoyancy force acts through the centroid of the displaced fluid volume.

S
h1

h2

F2

F1

Figure 3.25. Simple approach to estimating the
forces on a submerged object.
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z

x
h

S

V

Figure 3.26. The use of the Gauss divergence theorem for cal-
culating the buoyancy force.

To prove those observations let us apply the Gauss divergence theorem [see
Eq. (2.30)] to Eq. (3.29). The benefit of this is that, instead of integrating the pres-
sure on the surface of the submerged body, we get a much simpler volume integral:

F = −
∫

S1

p�ndS = −
∫

V
∇ pdV. (3.47)

Let us use this result for the buoyancy-force calculation. We can use the same Carte-
sian coordinate system as before and the z coordinate points up (opposite to h in
Fig. 3.26). The hydrostatic pressure in the fluid is p = ρg(−z) and ∂p

∂z = −ρg. There-
fore

∇ p = (0, 0,−ρg).

Substituting this into Eq. (3.47) gives

L = −
∫

V
(0, 0,−ρg)dV = ρg

∫
V

dV = ρgV, (3.48)

and the force is in the positive z direction. This result is exactly the same as the one
presented in Eq. (3.46)! At this point we have verified Archimede’s first and sec-
ond observations. However, the buoyancy-force line of action requires more atten-
tion. We can apply the same principles used in the previous sections. Referring to
Fig. 3.27, assume that the buoyancy force acts at a point shown and therefore the
moment about the origin is: xL = ∫

xdL. However, the buoyancy force is given in
Eq. (3.48) and therefore

xρgV =
∫

xdL =
∫

xρgdV.

By canceling ρg on both sides we simply end up with the volume centroid
location,

x = 1
V

∫
xdV, (3.49)

z

−z

x

L

x

Figure 3.27. Nomenclature used to prove that the buoyancy force acts
at the centroid of the displaced volume.
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Water Vc

F

Figure 3.28. Archimedes’ experiment to determine the volume of
complex shapes.

and by simply repeating the same procedure we can write

z = 1
V

∫
zdV, (3.50)

which proves that the buoyancy force acts at the centroid of the displaced volume.

EXAMPLE 3.4. THE KING’S CROWN. One of the most famous anecdotes about
Archimedes involves the newly crafted crown made for Syracuse’s king
Hiero II. The king suspected that the goldsmith skimmed some of the gold and
asked the renowned scientist to conduct one of the early undestructive tests.
While taking a bath, Archimedes discovered how to measure the volume of a
complex-shaped object (the crown), as depicted in Fig. 3.28. He was so excited
that he ran to the street loosing his towel and crying “Eureka” (got it – in
Greek). Next (one would hope that he had put his towel back on by then.) he
went to the king and held the crown in a container full of water, as shown.

The force F to hold the crown in position was 20.9 N, and the volume of
water displaced by submerging the crown was VC = 310 cm3. The weight of the
crown is the sum of F and the weight of displaced water (ρw is the water density):

Wc = F + ρwgVc = 20.9 N + 1000 × 9.8 × 310 × 10−6 = 23.94 N.

The crown density ρc therefore is

ρc = Wc

Vcg
= 23.94

310 × 10−6 × 9.8
= 7880

kg
m3

.

Of course, pure gold is 19.3 times heavier than water (whereas iron is only about
7.8). So the fate of the goldsmith was doomed by this clever measurement.

EXAMPLE 3.5. HOT-AIR BALLOON. Let us assume that a hot-air balloon’s structural
weight, including the passengers, is 275 kg, the ambient temperature is 290 K,
and the air density is ρ = 1.22 kg/m3. The balloon is then inflated with hot air
and its volume can be approximated by a sphere of diameter D = 15 m (see
Fig. 3.29). The question we ask is at which internal temperature will the liftoff
begin?

To solve this problem we must find out at which temperature the buoyancy
forces are equal to the structural weight. Based on Eq. (3.48), the lift is ρgV,
but the weight of the hot air inside must be taken into account as well. Conse-
quently, the lift that is due to buoyancy is

L = ρcoldgV − ρhotgV = (ρcold − ρhot)g
π D3

6
.
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Hot air

Figure 3.29. A hot-air balloon lifted by buoy-
ancy forces.

Because we know the “cold-air” temperature we can use the ideal-gas relation
to calculate the density of the hot air. Using Eg. (1.8) we can write

p
ρcoldTcold

= R = p
ρhotThot

,

but because the pressure inside the balloon is the same as that outside we get

ρcoldTcold = ρhotThot.

Substituting this into the lift equation and equating to the weight of 275 ×
(9.8 = g) we get

L = ρcold

(
1 − Tcold

Thot

)
g
π D3

6
= 275 × 9.8 N.

Solving for the average inside temperature Thot we get

Tcold

Thot
= 1 − 6L

ρcold gπ D3
= 0.8724,

and after substituting the ambient temperature we get

Thot = 332.4 K = 59.2 ◦C,

which is quite hot but not too hot to burn holes in the fabric of the balloon.

3.8 Stability of Floating Objects

Buoyancy effects play an important role in the design of naval vessels or even air-
borne balloons. Let us discuss briefly the lateral-stability problem of floating objects,
as shown in Fig. 3.30.

Three important cases are shown schematically in Fig. 3.30. For example, case
(a) on the left-hand side shows a floating vessel and to its right a condition in which
it was rolled slightly by a perturbation. Under normal conditions the vessel is hor-
izontal but its center of gravity is above the centroid of the area representing the
displaced fluid volume. At first sight it appears that this situation is not stable. To
check this we introduce a disturbance and roll the vessel by an angle φ. However,
as a result of this change, the centroid of the displaced fluid is now moved to the
right, creating a restoring moment M. So if we define the positive direction for the
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mg

L

(a) (b) (c)

L

+M

φ L L
L

mg

mg mg mg

Figure 3.30. Lateral stability of floating objects.

roll angle and the moment in the same direction then clearly the moment acts in the
opposite direction. Consequently we can write:

∂ M
∂φ

< 0, stable, (3.51)

and this is the condition for a “statically stable” vessel. An unstable condition is
depicted in case (b) in Fig. 3.30. In this case a roll in the positive direction results in a
nonrestoring moment, which increases with the roll angle φ. Therefore we conclude
that this case is unstable

∂ M
∂φ

> 0, unstable, (3.51a)

and of course the vessel will roll over. These simple observations have significant
meaning, when various ground, sea, or airborne vehicles are being designed. To
conclude the discussion, we may look at case (c) in Fig. 3.30 in which a sphere or
a cylinder will not be affected by a rotational perturbation, and we can call this
condition neutral.

EXAMPLE 3.6. STABILITY OF A FLOATING BLOCK. Many floating objects may ini-
tially appear as neutral, but a closer examination shows that they are stable in
roll (see the left-hand side of Fig. 3.30). As an example, consider a floating rect-
angular block, as shown on the left-hand side of Fig. 3.31. When floating, undis-
turbed, the block’s center of gravity is exactly above the center of buoyancy.
Next, let us create a roll displacement to the right, as shown in the figure. The
center of gravity is still at the centroid of the block, but at the condition shown,
the displaced fluid has a triangular shape (from the front view). The centroid
of this area is at 2l/3, from the left, clearly resulting in a restoring moment.
We can easily estimate the magnitude of this moment by calculating the

L
L

z

x φ

mg mg

l

b

b1

c.g.

Figure 3.31. Roll stability of a floating block.
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horizontal distance between the center of gravity and the center of buoyancy.
Let us select an x–z coordinate system attached to the block, as shown on the
left-hand side of the figure. In these coordinates, the center of gravity (cg) is
located at (l/2, b/2), and the buoyancy center is at (2l/3, b1/3). On the right-
hand side of the figure, the block is rotated by φ and the horizontal locations of
these points are obtained by a simple transformation. The horizontal locations
of the center of gravity xcg and buoyancy xb are

xcg = l
2

cos φ + b
2

sin φ,

xb = 2l
3

cos φ + b1

3
sin φ,

the horizontal moment arm is

xb − xcg = l
6

cos φ +
(

b1

3
− b

2

)
sin φ,

the restoring moment M is

M = −mg(xb − xcg) (3.52)

and the roll angle in terms of the block geometry is

tan φ = b1

l
. (3.53)

Clearly, a positive roll angle results in a negative moment (restoring), indicating
a stable flotation.

3.9 Summary and Conclusions

In this chapter we discussed stationary fluids and the resulting hydrostatic pressure
field. This gave us the opportunity to evaluate forces that are due to pressure only
(recall that in a moving fluid there are additional forces that are due to shear). The
first important observation is that the pressure (because of gravity) increases with
the depth h:

p(h) = pa + ρgh. (3.9b)

Thus the first task in engineering calculation is to evaluate the pressure field. Once
the pressure field is known, the resulting forces can be calculated by summing up
the local effects:

F = −
∫

S1

p�ndS. (3.29)

Recall that the pressure acts normal to a surface, as indicated by the vector �n. Once
the force that is due to the pressure is calculated, it is desirable to establish an equiv-
alent resultant force that acts at the center of pressure. This provides valuable infor-
mation for engineering calculations, and methods to calculate the center of pressure
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were discussed. When the hydrostatic force is integrated over a body, a buoyancy
force results for both submerged and floating objects. The buoyancy force is simply
the weight of the displaced fluid:

L = ρgV. (3.48)

PROBLEMS

3.1. Two interconnected cylinders are filled with oil of density 850 kg/m3, as shown
in the figure. A force F1 = 200 N is applied to the smaller piston of diameter
d1 = 4 cm. Assuming negligible piston weight, calculate the magnitude of the force
F2 acting on the larger piston with a diameter of d2 = 10 cm and positioned at
h = 2 m.

F1

F2

d2

d1

Piston

Piston

h

Problem 3.1.

3.2. A hydraulic jack is used to lift a 5-metric-ton weight. The diameter of the small
piston is 1 cm and that of the large piston is 6 cm. Using the geometry of the handle,
as shown in the figure, determine the force F1 needed to lift the weight. How much
will the 5-ton weight raise if the small piston travel is 3 cm?

Piston
diameter
= 1 cm

F14 cm

5 tons

40 cm

Piston
diameter
= 6 cm

Problem 3.2.

3.3. A rectangular container (with a square base: 0.6 m by 0.6 m) is partially filled
with water (h1 = 0.15 m). Calculate the total force on the bottom surface of the tank.
Also calculate the total weight of the water for this case. Next, the tank is filled up to
the mark shown by h2 = 1.0 m through a 1-cm-diameter tube. Again, calculate the
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total force on the bottom surface of the tank. Is this force equal to the total weight
of the water?

h1

0.3 m

0.6 m

h2 = 1.0 m

Problem 3.3.

3.4. The apparatus shown in the figure is filled with air and the unknown pressure px

is measured by a h = 20 cm high mercury column. Calculate the pressure difference
px − pa (take the density of mercury from Table 1.1).

h

pa

pb 

px 

Problem 3.4.

3.5. The hull dimensions of a 100,000-ton cruise ship can be estimated by a 40 m
wide and 290 m long square.

(a) Calculate how deep the hull will sink in seawater (based on a simple box-
shaped hull).

(b) If 4500 passengers and crew are boarding the ship, with each adding about
100-kg weight (including luggage), calculate the additional depth the hull
will sink.

3.6. A circular container of diameter D = 0.1 m is filled with water. A weightless
piston is placed on the liquid surface and the water level stabilizes (also in the small
tube) to a level of h. Next, a weight of 10 kg is placed on the piston causing the liquid
in the small tube to rise. Calculate how high will the liquid rise in the small tube and
how deep the piston will sink,
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S = 1 cm2

h

D

10 kg

Problem 3.6.

3.7. A rectangular gate that is b = 2 m wide and L = 4 m high is located in the
vertical wall of a tank containing water, as shown in the figure (case a).

(a) Calculate the center-of-pressure location.
(b) What is the magnitude of the horizontal force on the gate?

Water

R

x

Case (a) Case (b)

x x x

Ixx =
bL3

12
Ixx =

πR4

4

10 m

4 m

R

b

L

Problems 3.7 and 3.8.

3.8. A circular gate is located on the vertical wall of a tank containing water [same
figure, case (b)]. Use the condition shown in the figure.

(a) Calculate the horizontal force on the gate.
(b) How deep is the center of pressure on the gate (measured from the top)?
(c) Calculate the moment required to open the gate (assuming that the hori-

zontal axis is at R = 2 m,
(d) Is this moment holding the gate close or trying to push it open? (ρwater =

1000 kg/m3.)

3.9. Water is flowing in a V-shaped irrigation channel, as shown in the figure. Its
sides are supported by poles, mounted normal to the channel walls, as shown. Cal-
culate the axial force F1 on the support, per 1-m length (into the page) of the
channel.
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F1

1.0 mSupport

90°

3.0 m

Problem 3.9.

3.10. A gate at the bottom of a pool is held close by the hydrostatic pressure. Deter-
mine the vertical force F to just start opening the 2-m-wide gate in the figure. Also,
calculate the location of the center of pressure.

2-m-wide gate

Hinge

Water

F

1 m

3 m

4 m

Problem 3.10.

3.11. A 3-m-wide rectangular plate is sealing the bottom of a pool filled with water,
as shown in the figure. If h = 5 m, find the magnitude of the hydrostatic force acting
on the plate. Find the location of the center of pressure along the plate (measured
from the top).

Water

F1

60°

z

y

h

h

Problem 3.11.
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Suppose the plate is hinged at the bottom and held in position by a vertical force
F1, as shown. What is the magnitude of this force?

3.12. The 2D pressure distribution along a flat plate (of length = c) is given
by the following function: p = A1 sin(πx/c), where A1 is the maximum pres-
sure. Calculate the magnitude of the resultant force and the center-of-pressure
location.

xc

A1

p

0 c/2

Problem 3.12.

3.13. A circular-arc-shaped gate is located at the bottom of a water reservoir, as
shown in the figure. Based on the principle demonstrated in Fig. 3.23, estimate the
hydrodynamic force per unit width and its direction on the gate.

5 m

2 m

Problem 3.13.

3.14. A circular-arc-shaped gate is aligned with the water surface in the reservoir,
as shown in the figure. Based on the principle demonstrated in Fig. 3.23, esti-
mate the hydrodynamic force per unit width and its direction on the gate. Assume
R = 2 m.
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R

Problem 3.14.

3.15. Solve the previous problem by direct integration of the pressure on the
quarter-circle surface (unit depth into the page). Use the coordinate system pro-
posed in the figure. Consequently, the pressure as a function of θ becomes p =
ρgh = ρgR(1 − cos θ). The results must be the same as before!

θ R

Problem 3.15.

3.16. An automatic gate is based on a heavy semi-cylindrical valve, which controls
the water height in the reservoir. It is designed to open at the condition shown in the
figure. Estimate the horizontal and vertical forces, per unit width, on the cylindrical
valve.

4 m 2 m

. .
.

. .
.

. .
.

.
..

....
...

.
. ... ..

....
.

. . .
.

.
.
.

.

.
..

.
.

.

.
.

..
.. .

.
..

. . ..
.
...

..

Problem 3.16.

3.17. A rectangular gate (4 m × 4 m) is hinged at the upper surface in a water reser-
voir. Calculate the resultant force on the gate, the center-of-pressure location, and
the magnitude of the force F1 on the lock.
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4 m

Water
F1

Problem 3.17.

3.18. A rectangular gate (4 m × 4 m) is held in place by the two forces F1 and F2.
Calculate the resultant force on the gate, its direction, the center-of-pressure loca-
tion, and the magnitude of the forces F1 and F2.

1 m

30°

Water

F1

F2
4 m

Problem 3.18.

3.19. A circular gate of 2-m radius is held in place by the two forces F1 and F2 (refer
to the previous figure). Calculate the resultant force on the gate, its direction, the
center-of-pressure location, and the magnitude of the forces F1 and F2.

3.20. Water is flowing into a reservoir equipped with a gate (2 m wide, into the page)
that will open once the water level reaches 3 m. Calculate the weight of the mass m
required for proper operation of the gate.

2 m

m

4 m3 m

Problem 3.20.
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3.21. A cylindrical container is filled with water as shown in the figure.

(a) Calculate the slope of the liquid–air interface if the container is accelerated
at 0.7g in the x direction,

(b) What is the pressure at the bottom of the container (at point A)?
(c) At what acceleration will the water spill out?

10 cm

7 cm

6 cm

Point A

x

z

Problem 3.21.

3.22. The container of the previous problem is spinning about its vertical axis.

(a) At which rotation speed will the water spill from the container?
(b) While the container is spinning at the rate calculated in (a), calculate the

pressure at point A.

3.23. A 0.3-m-wide and 0.4-m-long container is filled with water up to 0.15 m,
as shown. Later, it is accelerated in the x direction at a constant rate of ax =
4 m/s2. Calculate the percentage of fluid lost during the acceleration.

x

0.4 m

0.2 m
0.15 m

Problem 3.23.

3.24. A circular container is filled with a liquid to a height of 0.15 m, as shown. At
a certain point the container is rotated about its vertical axis and after a while it

0.15 m

1.0 m

Problem 3.24.
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reaches a “solid body rotation.” How fast, in terms of RPM, must the container
spin in order for the center of the liquid’s upper surface to touch the bottom of the
container?

3.25. A 0.5-m-long container is filled to 0.1-m height with water. How fast should
the container accelerate in order for the upper water level to reach the bottom of
the container at point A?

x

0.5 m

Point A
0.1 m

Problem 3.25.

3.26. The 0.5-m-long container shown in the figure accelerates downhill, so that the
liquid surface is parallel to the road.

(a) Estimate how fast the container should accelerate in order to maintain the
shown condition.

(b) Suppose the container slows down gradually and stops at the slope in the
condition shown; estimate the volume of liquid spilled (assume the con-
tainer width, into the page, is 0.2 m).

0.5 m

0.3 m

x

0.2 m

25°

Problem 3.26.

3.27. A cylindrical container of diameter D = 0.5 m is filled with water up to z0 =
0.5 m. Next, it begins spinning about the z axis until it reaches a “solid-body rota-
tion.” How fast should it rotate for the pressure at point A to be 7500 N/m2 above
the ambient pressure? At that condition, what is the height of the water column
above point A?

3.28. A cylindrical U tube is filled with water up to z0 = h = 0.3 m. Next, it
is rotated about the z axis at 200 RPM. At this condition the upper surface of
the liquid in the left leg of the tube is touching the center of the container (e.g.,
zmin = 0). Estimate the radius R of the container.
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z0

pa

z

Ω

D

A

Problem 3.27.

R

h0

z

Ω

Problem 3.28, 3.29.

3.29. The U-tube shown in the figure is filled with an unknown liquid up to a height
of h0 = 0.2 m. Calculate the difference in the height of the two liquid columns when
the U-tube is rotated about the z axis, at 40 RPM (assume R = 0.25 m). Does the
liquid density has an effect on your answer?

3.30. At what RPM there will be no liquid in the left arm of the U-tube of the
previous problem?

3.31. The U-tube shown in the figure of Problem 3.29 is filled with an unknown
liquid up to a height of h = 0.2 m. At this time, however, the rotation axis is 5 cm to
the right of the left tube and R is still 0.25 m. Calculate the difference in the height
of the two liquid columns when the U-tube is rotated at 40 RPM.

3.32. A container filled with water is accelerated along the x axis (as shown in the
figure). If the maximum liquid height h0, the container length l, and its width b, are
given, calculate the acceleration, the total force Fz on the lower (bottom) horizontal
surface, and the center of the pressure.

h0 Water

l

z

x

ax

g

Problem 3.32.

3.33. The water height in the previous problem is h0 = 0.2 m, the container length
l = 0.5 m and its width is b = 0.3 m. Calculate the acceleration, the total force Fx, on
the rear (left) vertical surface, and the center of the pressure (height).
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3.34. The average radius of the earth is 6371 km and the average pressure at sea
level is 1.013 × 105 N/m2. If the pressure at sea level is a result of the fluid column
weight above, then estimate the total mass of air around the globe (the surface of a
sphere is π D2).

3.35. A 0.1 × 0.1 × 0.1 m cube is placed on a (mechanical spring) scale, register-
ing a weight of 7.5 kg. Next it was placed on the same scale, but on the bot-
tom of a pool filled with water (ρ = 1000kg/m3). What weight will the scale
show?

3.36. A 90 deg inverted cone is filled with water as shown. The volume of the water
in the cone, for the 90 deg cone case, is given by V = πh3/3. The initial depth of the
water is h = 10 cm. Next, a block with a volume of 200 cm3 and a specific gravity of
0.6 is floated in the water. Calculate the raise �h in the water surface height (inside
the cone).

?

Δh

h

Problem 3.36.

3.37. A buoy consists of a hemispherical bottom and a conical top, as shown. The
diameter of the hemisphere is 1 m and the cone angle is 60◦ (see figure). If the mass
of the buoy is 450 kg, then find the water level when the buoy floats on seawater
(ρ = 1030 kg/m3).

60°

1 m

Problem 3.37.
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3.38. A rectangular box with negligible weight is floating on the water (dimensions
are given in the figure). Suppose a weight of 30 kg (at sea level) is placed at its center;
calculate how deep the box will submerge (h = ?).

0.5 m

0.
4 

m

0.3 m

h

Problem 3.38.

3.39. A 0.4-m-diameter and 0.6-m-high cylinder, with negligible weight, is floating in
a pool of water. To stabilize it, 45 kg of liquid with ρ = 2000 kg/m3 is poured inside.
In addition a 5-kg block of wood is thrown in. Determine the height h between the
pool surface and the highest point on the cylinder (ρwater = 1000 kg/m3).

h = ?

Water
0.6 m

0.4 m

Problem 3.39.

3.40. A cylinder is floating in a pool of water as shown in the figure. Assuming the
mass of the cylinder is 50 kg and most of it is concentrated at the bottom (so it floats
as shown), determine the height h between the pool surface and the highest point
on the cylinder (ρwater = 1000 kg/m3).

0.2 m

h
0.6 m

Problem 3.40.

3.41. A cylindrical container is filled with water to a level of 0.3 m as shown (D =
0.3 m). Next, a block of wood measuring 0.2 × 0.2 × 0.2 m (density ρ = 800 kg/m3)
is placed inside the container (water density is ρ = 1000 kg/m3).
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(a) How deep will the block sink into the water?
(b) Calculate the water level rise �h in the container.

0.3 m
0.3 m

Δh

0.3 m

Problem 3.41.

3.42. A rectangular container is filled with water to a level of 0.3 m as shown (L =
0.3 m). Next, a block of cylindrical wood with a diameter of 0.2 m and height of
0.2 m (density ρ = 800 kg/m3) is placed inside the container (water density is
ρ = 1000 kg/m3).

0.3 m

0.3 m

Δh Top view

L

0.2 m

Wood
block

Problem 3.42.

(a) How deep will the block sink into the water?
(b) Calculate the water level rise �h in the container.

3.43. A 10-m3 balloon filled with helium at a pressure of 1 atm at 300 K, reaches
(and stays at), an altitude of 11 km, where the ambient pressure is 0.224 atm and the
temperature is 217 K. Assuming that the internal volume didn’t change, calculate
the structural weight of the balloon (assume that the molecular weight of helium is
about 4 and of the surrounding air is about 29).

3.44. A 1.2-m-wide gate is holding oil (ρ = 800 kg/m3) inside the tank, as shown.
Calculate the total force and the location of the center of pressure. Also calculate
the moment on the bottom hinge.
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1.2 mρ = 800
kg
m3

0.8 m

Problem 3.44.

3.45. The triangular gate shown in the figure is pivoted along the lower horizontal
plane (A–C). Assuming the water level in the tank is h = 10 m, the height of the
triangle is H = 9 m, and its width W = 4 m, calculate the total force on the gate
and the location of the center of pressure. Also calculate the moment on the bottom
hinge.

h
H

W
A, C

Water

A C

B

Problem 3.45.

3.46. A hot-air balloon’s total weight, including the passengers, is 250 kg, and the
ambient temperature is 290 K, and the air density is ρ = 1.22 kg/m3. The balloon
is then filled with hot air at an average temperature of 60 ◦C. Approximating the
shape of the balloon as a sphere, what is the minimum diameter for the balloon to
take off?

Hot air

Problem 3.46.
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3.47. A cylinder with negligible mass is held in a vertical position by a weight W =
20 kgf. If its dimensions are D = 0.4 m and l = 0.7 m, calculate how deep it will sink
in the water.

D

W

l

h

Problem 3.47.

3.48. A cylinder with negligible mass is floating in a pool filled with water. It is held
in a vertical position by a weight W = 60 kgf, which is placed on a scale. The cylin-
der dimensions are D = 0.4 m and l = 0.7 m. If the cylinder is submerged to a
depth of l1 = 0.4 m, calculate the weight measured by the scale at the bottom of the
pool.

Scale

l

l1

D

W

Problem 3.48.

3.49. A cylinder with a mass of 5 kg is placed at the bottom of a pool filled with
water. Its length is l1 = 0.3 m and its frontal area is S = 0.015 m2.

(a) Calculate the relative density of the cylinder.
(b) To demonstrate the principles used by submarines to rise to the water sur-

face, the length of the cylinder is extended to l = 0.7 m. Calculate the per-
centage of the body volume that is submerged when the cylinder is floating
at its extended mode.
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l

0.7

0.3

l1
S

Problem 3.49.

3.50. The water level in a flush tank is controlled by the mechanism shown in the
figure. The condition shown represents the “tank-full” condition and the water sup-
ply valve is closed. Assuming a negligible mass for the half-sunken ball (of radius
R = 0.08 m), calculate the vertical force on the valve at point B (note that the arm
is hinged at point A and l1 = 0.15 m and l2 = 0.05 m).

A
15°

B

R

l1

l2

Problem 3.50.

3.51. A water container, filled to the top, is placed on a scale that is measuring
30 kgf (the weight of the container not included). Next a metal block of volume
0.005 m3 and weighing of 13.5 kgf is dropped into the container, and the excess
water is spilled at point A (so the water level is still full). Calculate the weight that
the scale will show.

Water

A
m

Problem 3.51.
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3.52. A 0.6-m-long wooden block is floating on the water. Its height is b = 0.1 m and
width is l = 0.5 m, as shown in the figure. Because of a torque the block is rotated
and its right-hand side sinks down to b1 = 0.08 m. Calculate the density of the block
and the magnitude of the torque.

L

c.g.

W
b1

b

l

Problem 3.52.

3.53. A 0.6-m-long wooden block is floating on the water (length is the dimension
vertical to the page). Its height is b = 0.1 m and width is l = 0.5 m. Because of a ver-
tical force F, the block assumes the position shown with its lower surface submerged
for l1 = 0.4 m. Calculate the block density and the magnitude of the force F.

F

l1

b

c.g.

l

Problem 3.53.



4 Introduction to Fluid in Motion –
One-Dimensional (Frictionless) Flow

4.1 Introduction

In the previous chapter, the effects of pressure in a fluid were isolated (because
the fluid was not moving) and the resulting forces were investigated. If we use the
Navier–Stokes equations as a roadmap for gradually increasing the complexity of
the models, then the next level requires the addition of the inertia terms in the
momentum equations. For simplicity, it is assumed that the effects of viscosity are
negligible, and the examples focus on cases for which such a simplification is accept-
able. The addition of the viscosity term (and resulting friction) is discussed in the
next chapter.

This is the first chapter in which solutions for fluid in motion are studied.
By starting with the simple 1D model the basic principles can be easily demon-
strated. The conservation of momentum, for example, closely resembles the classi-
cal mechanical formulation and easily can be explained. At first, however, we must
clarify the meaning of the 1D flow assumption. Let us start by observing the veloc-
ity distribution inside a stream of fluid leaving a pipeline (Fig. 4.1). It is likely that
the exiting flow velocity will not be uniform, and the size of the arrows in the figure
describes the velocity distribution. If this velocity distribution has an axisymmetric
shape then we can call the flow 2D because the velocity u will have a distribution
u = u(r), where r is the radial direction (e.g., we must consider both the x and r vari-
ables). However, if we define an average velocity u for the exiting stream (as shown
in the lower sketch in the figure) having the same mass flow, then we can call this a
1D flow, because only one quantity (namely u) exists when the flow is described in
the x direction. Of course, in reality the flow could have a much more complex 3D
velocity distribution.

The basic equations used for such 1D flows are the integral form of the continu-
ity and momentum equations (as developed in Section 2.6). However, an additional
equation, called the Bernoulli equation, is frequently used, and therefore we must
derive it first.

111
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Two dimensional

One dimensional

x

u

r

Figure 4.1. 1D and 2D velocity distributions.

4.2 The Bernoulli Equation

In the early discussion about the kinetic theory of gases (see Fig. 1.17), we spec-
ulated how Daniel Bernoulli connected (in the mid-1700s) velocity with pressure
variations in a moving fluid. This equation is widely used in numerous engineering
applications, but it is initially limited to flows without friction (in fact, we modify this
later by including a head-loss term). The objective of this section is to introduce the
Bernoulli equation for inviscid flows, and a more detailed discussion of its limita-
tions follows in Section 8.3. To clarify the applicability of this equation, consider the
flow over a moving vehicle, as shown in Fig. 4.2. We may follow a particle moving
along a streamline as shown, but we assume that there are no losses such as friction
along this path. This assumption suggests that we must use the inviscid form of the
momentum equation [Eq. (2.41)], called the Euler equation:

∂ �q
∂t

+ �q · ∇�q = �f − ∇ p
ρ

. (2.41)

The x component of the Euler equation may be rewritten (because we are dis-
cussing 1D flow only) as

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
alz

= fx − 1
ρ

∂p
∂x

. (4.1)

The only body force we consider for this case is gravity, which acts in the vertical
direction [see Eq. (3.5)]:

�f = (0, 0,−g). (3.5)

This force is conservative and the work along the streamline depends only on
h. Consequently we can write that the force is a gradient of a conservative potential
(−gh):

�f = ∇(0, 0,−gh). (3.5a)

a s

U∞

∞

c

b
h

Figure 4.2. Frictionless flow along a streamline.
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Note that here (see Fig. 4.2) h is positive in the +z direction! Next, let us limit
the discussion to steady flows (∂u/∂t = 0) and replace the x coordinate with a coor-
dinate s along the streamline. Because this is a 1D model (along the streamline) we
do not have velocity components in the other directions, and Eq. (4.1) reduces to

u
∂u
∂s

= ∂

∂s

(
−gh − p

ρ

)
.

Here only one term remains on the inertia side (left-hand side), and the force com-
ponent that is due to gravity and pressure is on the right-hand side. This can be
rearranged such that

∂

∂s

(
gh + p

ρ
+ u2

2

)
= 0.

To calculate the changes along the streamline we integrate along s (e.g.,
between point a and b in Fig. 4.2) to get

gh + p
ρ

+ u2

2
= const. (4.2)

This equation is named after Daniel Bernoulli (1700–1782), and a more rigor-
ous development of this equation, clarifying its applicability, follows later in Sec-
tion 8.2. As an example we can apply Eq. (4.2) to the two points in Fig. 4.2 to get

gha + pa

ρ
+ u2

a

2
= ghb + pb

ρ
+ u2

b

2
, (4.3)

and here we assume that the fluid is incompressible. This equation shows the change
in pressure versus the change in velocity (taking into account the loss of energy that
is due to altitude change). A much more common use of the equation is to refer to
a vehicle moving at a speed of U∞ and to apply the equation to the far undisturbed
field (at ∞) and to a point where the flow stops relative to the vehicle (e.g., point
c in the figure where the velocity uc is zero). Neglecting the changes in altitude we
can write

pc − p∞ = ρ

2
U2

∞. (4.4)

This equation shows the increase of pressure (ram effect) ahead of the cooling
system as a function of vehicle speed. The higher pressure at point c is called total
pressure because velocity is zero there, whereas p∞ in this case is called the static
pressure. The right-hand side ( ρ

2 U2
∞) is called the dynamic pressure. Consequently

we can rewrite Eq. (4.4) as

total pressure − static pressure = dynamic pressure. (4.4a)

4.3 Summary of the One-Dimensional Tools

The proposed 1D model is not necessarily limited to flows along a single straight
line, as demonstrated by the following examples. Three equations are used for this
1D fluid flow model, depicted schematically in Fig. 4.3. The stream tube, as shown, is
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A1
u1

u2

A2

Control
volume

1 2

Figure 4.3. Basic model for 1D flow.

wrapped by a control volume, and the flow enters at station 1 and exits at station 2,
as shown. For the continuity equation (or conservation of mass) we use Eq. (2.26),

ṁ = ρu1 A1 = ρu2 A2, (4.5)

which basically states that in steady flow the fluid flow that enters the control volume
is equal to the flow leaving it.

The 1D momentum equation [Eq. (2.29)] is used to calculate the forces that are
due to the momentum change and the pressure acting on the two surfaces at stations
1 and 2:

Fx = ρu2
2 A2 − ρu2

1 A1 + (p2 − pa)A2 − (p1 − pa)A1. (4.6a)

If there is no mass addition or subtraction inside the control volume, then by
using Eq. (4.5) we can write

Fx = ṁu2 − ṁu1 + (p2 − pa)A2 − (p1 − pa)A1. (4.6b)

Note that the momentum equation is a vector expression, and, for example, in a
Cartesian coordinate system we can write three such equations in each of the direc-
tions. The continuity and momentum relate to a control volume, whereas Bernoulli
is between two points, as shown in Fig. 4.2:

gha + pa

ρ
+ u2

a

2
= ghb + pb

ρ
+ u2

b

2
. (4.7)

The use of this model and the applicability of the three equations is demon-
strated in the following examples.

4.4 Applications of the One-Dimensional Flow Model

In cases in which friction effects are negligible the preceding model can provide fast
and simple estimates on the forces generated by a moving fluid. Because this model
closely resembles classical particle dynamics it is easily understood and cases such
as the forces that are due to free jets can be simply estimated.

4.4.1 Free Jets

Let us consider a liquid jet leaving a nozzle and being turned by a solid frictionless
surface, as shown in Fig. 4.4. To calculate the forces acting on the structure we define
the control volume (as shown) with inflow station 1 and exit station 2.

If we assume an incompressible flow then the continuity equation remains the
same as Eq. (4.5):

ṁ = ρu1 A1 = ρu2 A2.
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u1

u2

x

z

1

2
Control
volumeFigure 4.4. Free jet turned by a solid surface.

Because this is a free jet, the pressure is the same at both stations, p1 = p2 =
pa , and because there are no losses (friction) the velocity is also the same ([see
Eq. (4.7)]:

u2 = u1.

At this point the pressure and the velocity (at the inlet and exit) are fixed and
the Bernoulli equation is not needed anymore (assuming negligible gravitational
effects). The momentum equation can be split into two components (in the x and z
directions) as follows:

Fx = ṁu2 cos θ − ṁu1 = ṁu(cos θ − 1), (4.8a)

Fz = ṁw2 − ṁ01 = ṁu sin θ. (4.8b)

Note that for θ < 90◦ the x-direction force is negative and the normal force is
positive. These are the forces acting on the control volume. Of course, the reaction
force on the curved stand is pushing it to the right and down.

EXAMPLE 4.1. FORCE ON A TURBINE BLADE. As a numerical example let us con-
sider a simple model of a turbine blade. The water jet in Fig. 4.5 is leaving the
nozzle with an area of 1 cm2 at a velocity of un = 15 m/s while the blade moves
in the positive x direction at a velocity of ub = 10 m/s. We attach the control vol-
ume to the (constant-speed) blade, and therefore the relative velocity at station
1 is

u1 = 5 m/s = u2,

which is the same as the velocity at station 2
The forces can be found by use of Eq. (4.8):

Fx = ρu2 A(cos θ − 1) = 1000 × 52 × 0.0001(cos 120 − 1) = −3.75 N,

Fz = ρu2 A sin θ = 1000 × 52 × 0.0001 · sin 120 = 2.16 N.

z

x
ub

120°

Nozzle 1

2Figure 4.5. Free jet hitting a turbine
blade.
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0.1 m

u1

u2

z
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Fx
x

Control
volume

2

1

2

Figure 4.6. Free jet hitting a symmetric wedge.

Again the force in the x direction is negative, indicating the direction of the
external force acting on the control volume. This means that the fluid (reaction)
is pushing the turbine blade to the right and the z component of the force is
pushing the blade down. The power W generated by this turbine blade is simply
the force times its translation velocity ub:

W = Fxub = 37.5 W.

EXAMPLE 4.2. FORCE ON A WEDGE. A circular water jet of velocity u1 = 15 m/s
and diameter 0.1 m is impinging on a wedge, as shown in Fig. 4.6. The jet is split
into two equal jets, and the force on the wedge must be calculated.

We start by defining the control volume as shown in the figure, assuming no
changes in the pressure (free jet). Also, as in Example 4.1, we assume that there
are no losses and the velocity at the exit remains the same (as in the previous
example):

u1 = u2 = 10 m/s.

Because the flow is incompressible, the total jet cross-section area is not
changing (A1 = 2A2 = A). Now we can write the momentum equation (4.6)
in the horizontal direction, assuming symmetry between the upper and lower
exiting jets:

Fx = 2ρu2
2

1
2

A2 cos θ − ρu2
1 A1 = ρu2 A(cos θ − 1)

= 1000 × 152
(

π0.12

4

)
(cos 60 − 1) = −883.6 N.

The vertical components of the momentum equation cancel each other and
there is no force in that direction:

Fz = 1
2
ρu2 A sin θ − 1

2
ρu2 A sin θ = 0.

EXAMPLE 4.3. THRUST OF A JET ENGINE. A jet engine flies at a speed of U∞,
as depicted in Fig. 4.7, and the surrounding pressure is pa . To calculate the
thrust of the engine we need to use both the continuity; and the momentum
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U∞
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x•

z

m  f

a i e

Figure 4.7. Calculating the thrust of a jet engine.

equations. Let us wrap the nacelle with a control volume; the air enters through
inlet section i and leaves at exhaust section e. Based on Eq. (4.6), the thrust T is

T = Fx = ρu2
e Ae − ρu2

i Ai + (pe − pa)Ae − (pi − pa)Ai . (4.9)

We can use the continuity equation to quantify the incoming and exiting
mass flows rates:

ṁa = ρi ui Ai ,

ṁe = ρeue Ae.

However, the fuel flow ṁ f must be taken into account:

ṁe = ṁa + ṁ f .

Substituting these results into Eq. (4.9) yields

T = (ṁa + ṁ f )ue − ṁaui + (pe − pa)Ae − (pi − pa)Ai . (4.10)

Usually the exhaust conditions and flight speed are known whereas the inlet
conditions at station i are not. To further simplify this relation (and eliminate
the unknowns at the inlet) we can introduce a new control volume in front of
the nacelle, between a far-field station a and inlet i. By applying the momentum
equation to this control volume and noting that there is no thrust generated by
it, we get

0 = ṁaui − ṁaU∞ + (pi − pa)Ai − (pa − pa)Aa,

and after rearranging, we get

ṁaU∞ = ṁaui + (pi − pa)Ai .

Substituting this into Eq. (4.10) yields

T = (ṁa + ṁ f )ue − ṁaU∞ + (pe − pa)Ae. (4.11)

In modern engines the nozzle converts most of the pressure to exhaust
velocity and the last term is small relative to the other two terms. Consequently
we can approximate the thrust as

T = (ṁa + ṁ f )ue − ṁaU∞. (4.11a)

Compare this with the rocket (at the end of Section 2.6) and you’ll see that
the rocket has a higher thrust because there is no incoming momentum.
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u2

Streamline

pa

s

1

2

h

Figure 4.8. Flow leaving a large reservoir.

4.4.2 Examples for Using the Bernoulli Equation

In these cases we must identify the two points for applying the Bernoulli equation
and make sure that there are no losses as the fluid moves from one point to the
other.

EXAMPLE 4.4. THE VELOCITY OF A JET LEAVING A LARGE RESERVOIR. To demon-
strate the applicability of the Bernoulli equation, let us analyze the flow leaving
a large reservoir, as shown in Fig. 4.8. Exit section 2 is very small, and the fluid
loss that is due to the flow through this exit has negligible effect. The control-
volume exit section is placed slightly outside the container, and therefore the
outside pressure (in the free jet) is the same as on the top (e.g., p1 = p2 = pa).
Now we assume that there are no losses such as friction along the path s, and
we apply Eq. (4.7) at the top of the reservoir (station 1) and at the exit (station
2), but it is clear that there is no velocity at station 1:

gh1 + pa

ρ
+ 02

2
= gh2 + pa

ρ
+ u2

2

2
.

Note that here h is positive in the +z direction, as shown in Fig. 4.2. After
rearranging the terms we get

g(h1 − h2) = gh = u2
2

2
,

and the velocity is exactly the same as calculated by assuming a free fall (recall
we assumed no friction losses):

u2 =
√

2gh. (4.12)

EXAMPLE 4.5. THE FORCES ON A WATER HOSE. This example is similar to the free-
jet examples, but now we’ll try to use the Bernoulli equation as well. Assume
that the pressure inside the pipeline, shown in Fig. 4.9, is p0 and is much larger

u2

u1

x
z

2

1

Figure 4.9. Forces on a bent fire hose.
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than the ambient pressurepa . Also, the inflow u1 and cross-section area A1 are
known. It appears, though, that both the continuity equation and the Bernoulli
equation control the exit velocity. Of course, we all know that for a smooth
jet we need to adjust the jet exit area. For example, if it is too small then the
excess pressure will brake the jet, and then we cannot assume that there are
no losses in this flow. So in our example let us first find the ideal exit velocity,
by using the Bernoulli equation, assuming no losses through the nozzle for this
incompressible flow:

u2
2

2
= u2

1

2
+ p0 − pa

ρ
. (4.13)

From the continuity equation we can calculate the required exit area for
this matched flow:

A2 = A1
u1

u2
. (4.14)

We now proceed with the force calculation by using the momentum equa-
tion (4.6) (recall that the exit area was selected such that p2 = pa) for both
directions:

Fx = ρu2
2 A2,

Fz = −ρu2
1 A1 − (p0 − pa)A1. (4.15)

Therefore the external force on the control volume acts down and to the
right. To a person holding the hose, the reaction force is felt pushing back (to
the left) and up. If we want to rewrite this in terms of the mass flow rate ṁ and
the incoming velocity u1, then with Eq. (4.13) (recall – no losses), this becomes

Fx = ṁ

√
u2

1 + 2(p0 − pa)
ρ

,

Fz = −ṁu1 − (p0 − pa)A1. (4.16)

4.4.3 Simple Models for Time-Dependent Changes in a Control Volume

Certain time-dependent problems can be approximated by use of the 1D flow
model. As an example, the flow from a container that is due to gravity or the flow
leaving a pressurized container are presented here. In these examples an incom-
pressible fluid is assumed; a similar model but for compressible flow is presented
later in Section 10.3.

EXAMPLE 4.6. FLOW (DUE TO GRAVITY) THROUGH A SMALL HOLE IN A CONTAINER.

For the first case, consider a container with a (fixed) cross section A1, as shown
in Fig. 4.10. The momentary height of the liquid is h and the outside pressure
is pa. The flow exits the container at the bottom through a small pipe of cross-
section area A2. It is clear that the exit velocity depends on the liquid height h,
and therefore a solution for this variable (with time) is sought.
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pa

h0

u2

A2

h

A1

Figure 4.10. Time-dependent flow that is due to gravity.

The exit velocity (at the bottom) can be calculated with Eq. (4.12),

u2 =
√

2gh,

and the mass flow rate leaving the container is

ṁ = ρu2 A2 = ρ
√

2ghA2.

Next, consider a control volume containing all the liquid inside the con-
tainer. The conservation of mass principle requires that no mass be lost:

d
dt

(mtank) = d
dt

(ρ A1h) = −ρ A2

√
2gh.

This means that the mass reduction in the tank is equal to the fluid leaving
at the bottom (hence the minus sign). This equation can be rearranged, with a
separation of the variables, as follows:

dh√
h

= − A2

A1

√
2gdt.

After integrating both sides of the equation, we get

2
√

h = − A2

A1

√
2gt + C,

and C is the constant of integration. Solving for h, we get

h =
(

C1 − A2

A1

√
g
2

t
)2

,

and C1 is a modified constant of integration to be calculated by use of the initial
conditions. Assuming that at t = 0, h = h0, we get c1 = √

h0, and therefore the
time-dependent height of the liquid in the container is

h =
(√

h0 − A2

A1

√
g
2

t
)2

. (4.17)

The corresponding exit velocity at the bottom is

u2 =
(√

2gh0 − A2

A1
gt
)

, (4.18)

and the time to drain the container [e.g., t(h = 0)] can be calculated by setting
u2 = 0 in this equation

th=0 = A1

A2

√
2h0

g
. (4.19)
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u(t)

pa

x
Figure 4.11. A water balloon placed on friction-
less wheels.

EXAMPLE 4.7. THE VELOCITY OF A WATER BALLOON. This example is similar to
the example in Fig 4.8, but now a 1D equation of motion (for the system)
is added. Consider a popular children’s toy (Fig. 4.11) consisting of a water-
inflated balloon, placed on a small rolling platform. The objective is to calculate
the momentary velocity of the apparatus.

This problem can be solved with a few simplifying assumptions. First,
assume that the exit velocity and internal pressure p0 do not change as the bal-
loon deflates. Second, assume the nozzle losses are negligible, and we can use
the Bernoulli equation (Eq. 4.4) to calculate the water jet exit velocity ue:

ue =
√

2(p0 − pa)
ρ

≈ const.

With these assumptions the equation of motion in the x direction becomes

m(t)
du(t)

dt
= ṁue = −dm(t)

dt
ue,

where u(t) is the apparatus velocity and the minus sign on the right-hand side is
a result of the mass m(t) shrinking with time. After separating the variables and
neglecting friction forces in the wheels, we get

du(t) = −dm(t)
m(t)

ue.

After integration we get

u(t)
∣∣t1
0 = ue ln m(t)

∣∣t1
0 .

Assuming initial conditions at t = 0,

u(0) = 0 and m(0) = m0,

and replacing the variable t1 with t, we get

u(t) = ue ln
m0

m(t)
=

√
2(p0 − pa)

ρ
ln

m0

m(t)
. (4.20)

These results indicate that both acceleration and momentary speed will
increase with time. If the mass of the system without the water is ms, then the
final velocity uf becomes

u f =
√

2(p0 − pa)
ρ

ln
m0

ms
. (4.21)

Of course in most cases the pressure inside the balloon may change, and
then the equations are more complex.
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As a numeric example, consider a balloon filled with 1-kg water at a pres-
sure of 105 N/m2. The nozzle area is 1 cm2 and the mass of the whole system,
without the water, is 0.5 kg.

The solution starts with calculating the exit velocity as

ue =
√

2 × 105

1000
= 14.14

m
s

.

The final velocity of the system, based on Eq. (4.21), is

u f = 14.14 ln
1.5
0.5

= 15.53
m
s

.

Note that the final velocity is higher than the jet exit speed!

4.5 Flow Measurements (Based on Bernoulli’s Equation)

The preceding 1D models (mainly based on Bernoulli’s equation) led to the devel-
opments of several important flow-measuring devices. The principle of their opera-
tion is discussed next.

4.5.1 The Pitot Tube

The principle introduced by Bernoulli’s equation allows us to measure speed at a
point in the flow by simply measuring a pressure difference. The device utilizing
this principle is called the Pitot tube and was named after Henry Pitot (1695–1771),
a French hydraulic engineer who invented this device to measure river flows. The
basic apparatus is described schematically in Fig. 4.12 and consists of two concen-
tric tubes. It is assumed that at the tip the velocity comes to a halt. Therefore the
inner tube measures at its tip the higher, total pressure, which increases as flow
speed increases (as at point c in Fig. 4.2). The holes surrounding the outer tube are
exposed to a speed of U∞ and measure the static pressure, and this should be equal
to the undisturbed pressure (at ∞), which is not affected by the vehicle’s speed. The
difference between the pressure in the two concentric tubes (the dynamic pressure)
can be measured and connected to a display that shows the speed of the fluid stream.

Total pressure
port

Static pressure
ports

Static pressure
tube Internal,

total pressure
tube

U∞

Figure 4.12. The Pitot tube.
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Now if we attach the Pitot tube to a moving vehicle and make sure that it points
straight into the flow, then, from Eq. (4.4), we can measure the vehicle’s speed as

U∞ =
√

2(ptot − p∞)
ρ

. (4.22)

Pitot tubes are widely used on airplanes, ships, and in wind tunnels to measure
the flow speed. For best accuracy, the tube must be aligned with the flow and placed
away from disturbances created by the moving vehicle. Therefore Pitot tubes are
frequently mounted on long rods extending ahead of an airplane or any other test
vehicle.

EXAMPLE 4.8. MEASURING AIRSPEED IN A WIND TUNNEL. A Pitot tube was inserted
into the flow in a wind tunnel, and the pressure difference between the tubes
was measured by a water column of 20-cm H2O. If air density is about ρa =
1.2 kg/m3 then calculate the airspeed in the wind tunnel.

The solution is given by Eq. (4.22); however, the pressure difference is given
as

�p = ρwgh = 1000 × 9.8 × 0.2 = 1960 N/m2.

Substituting this into Eq. (4.22) gives us

U∞ =
√

2 × 1960
1.2

= 57.15
m
s

= 205.75
km
h

.

4.5.2 The Venturi Tube

Another device that can be used to measure fluid flow (or average velocity) is the
Venturi tube (or meter), named after the Italian physicist G. B. Venturi (1746–
1822), who was the first to investigate its operating principles in 1791. The Venturi
meter consists of a tube with a narrowed center section, as shown in Fig. 4.13, and
when in operation, the air flow (or water flow or any other fluid flow) moves faster
through the narrow section, as expected. Usually, the Venturi meter is used to mea-
sure the flow inside a pipe whereas the Pitot tubes used mainly for external flows.

1 2
u2u1

A1

x

A2

Figure 4.13. Nomenclature for the Venturi
tube.
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To measure the pressure difference, a thinner tube is connected to the large
and narrow sections (as shown in the figure) and filled partially with (sometimes
heavier) liquid. The pressure difference between the wide and narrow sections of the
Venturi tube causes the fluid to rise in the lower-pressure side of the tube. The level
of the fluid in the thin tube can be directly related (and calibrated) to the velocity
inside the Venturi tube. In general, the pressure difference (and signal) created by
a Venturi meter is smaller than the signal from a Pitot tube. This makes the Venturi
meter less desirable for measuring external velocity (e.g., airspeeds), and in actual
practice Venturi meters are used primarily to measure liquid flow rates in pipes. To
demonstrate the principle of operation let us assume that the fluid inside the tube is
incompressible and the relation between the two velocities and cross section areas
(based on the continuity equation) is

u2 = u1
A1

A2
. (*)

Now we can apply the Bernoulli equation between these two points:

p1 − p2 = ρ

(
u2

2

2
− u2

1

2

)
.

Next, we substitute u2 from (∗) into the Bernoulli equation to get

p1 − p2 = ρ
u2

1

2

[(
A2

1

A2
2

)
− 1

]
.

Solving for u1, we get

u1 =
√√√√ 2(p1 − p2)

ρ
[(

A2
1

A2
2

)
− 1

] . (4.23)

Usually the flow rate is more important, and therefore

ṁ = ρu1 A1 =
√√√√√2ρ(p1 − p2)

1

A2
2

− 1

A2
1

. (4.24)

Note that when the pressure difference is measured with a liquid column, as
shown in Fig. 4.13, then

p1 − p2 = ρmg�h,

and here the measuring fluid density ρm is used.
To incorporate the losses in the pipeline that are due to the installation of this

measuring device, a discharge or loss coefficient CD is used. Consequently the fric-
tionless Venturi formula is modified by simply adding the discharge coefficient CD:

ṁ = CD

√√√√√2ρ(p1 − p2)
1

A2
2

− 1

A2
1

. (4.25)
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Venturi

Figure 4.14. Experimental results for
the discharge coefficient of a Venturi
tube.

In reality, the performance of the Venturi tube depends on the fluid properties
and speed and on the tube geometry. Typical experimental results for the discharge
coefficient are given in Fig. 4.14 for a range of diameter ratios.

The Venturi tube is very efficient and the losses are quite small, as seen in Fig.
4.14 where typical values for CD are between 0.94 to 0.98! Also note that the dis-
charge coefficient varies with the internal flow speed. However, instead of the speed
u1, a nondimensional number ρu1 D1

μ
was used. This number is called the Reynolds

number and is discussed in the next chapter.

4.5.3 The Orifice

The orifice shown in Fig. 4.15 is a popular flow-measuring device, and its advantage
is in its simplicity. Basically a simple flange is added to the pipeline with a narrower
hole, as shown in the figure. Because of this narrower passage, the flow accelerates
near the smaller hole and the pressure drops accordingly. Contrary to the smoother
flow in a Venturi tube, the flow in the orifice is separated, causing more losses.

The flow rate in the orifice is measured with the same formula developed for
the Venturi tube [Eq. (4.25)] but the loss coefficient CD is much larger. The dis-
charge coefficient depends much more on the ratio between the two areas and typi-
cally varies between 0.55 for smaller holes to 0.65 for the relatively larger openings.
Experimental data showing the discharge coefficient versus the nondimensional flow
speed are shown in Fig. 4.16.

1 2

u2u1

Figure 4.15. The orifice.
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Figure 4.16. Discharge coefficients for an
orifice.

4.5.4 The Sluice Gate

A quite simple flow-measuring device for open channel flows is the sluice gate,
shown schematically in Fig. 4.17. It is operated by raising the gate and allowing the
liquid (often water) to flow under it. By applying the Bernoulli equation between
point 0 and point 2, we can develop a quite good approximation for the flow rate:

gh0 + pa

ρ
+ 02

2
= g

h2

2
+ pa

ρ
+ u2

2

2
.

Here we assume that the reservoir on the left is large and the velocity at point 0
is negligible. Furthermore, assuming no friction losses and that the ambient pressure
pa is the same at the two points, we find that the velocity at station 2 becomes

u2 =
√

2g
(

h0 − h2

2

)
.

Figure 4.17 suggests that the water stream exiting the gate contracts from a
height of h1 to h2. Usually, when h0/h1 > 5, taking h2 = 0.6h1 is considered a rea-
sonable approximation.

Sluice
gate

h1
h2

21

h0

0

Figure 4.17. Schematic description of
a sluice gate. It is operated by sim-
ply raising the gate and allowing the
water to flow under it.
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With the preceding considerations, the flow rate under the sluice gate is

Q = ρu2 A2 = ρh2b

√
2g

(
h0 − h2

2

)
(4.26)

and here b is the width of the gate.

4.5.5 Nozzles and Injectors

The discussion in this section was aimed at flow-measuring devices. Nozzles and
injectors can also be viewed as flow-control devices because they deliver a premea-
sured flow rate. Furthermore, the flow rate of liquids through the narrow orifice
(of area Ai) is controlled by the same formulas used in this section. Three generic
injector shapes are shown in Fig. 4.18, all having the same exit area, Ai. If the stag-
nation pressure inside the nozzle is p0 and the pressure outside is pa, then the 1D
exit velocity u can be estimated by use of Eq. (4.22):

u = CD

√
2(p0 − pa)

ρ
. (4.27)

Here CD is the discharge coefficient, as defined earlier. Typical values for the dis-
charge coefficient are also shown in Fig. 4.18.

Frequently the flow rate of the injector is sought, and then, by using the conti-
nuity equation, we get

ṁ = ρu Ai = CDAi

√
2ρ(p0 − pa). (4.28)

p0

p0

p0

Ai

CD = 0.65

CD = 0.80

CD = 0.85

Figure 4.18. Simple injector–nozzle geometries (for
liquids) and typical discharge coefficients.

4.6 Summary and Conclusions

In this chapter a simple 1D model was introduced that could be very useful when
the average velocity can be estimated. Calculation of the average velocity in pipe
flows is discussed in the next chapter. Because viscosity effects were not discussed
directly, the forces that are due to momentum changes were easily evaluated.

The Bernoulli equation introduced the relation between velocity and pressure
in a frictionless environment, and several flow-measuring devices using this principle
were introduced.
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Sometimes the simplicity of this model creates the impression that fluid mechan-
ics is an easy subject (and some students stop paying attention to the following chap-
ters). Of course, this is great misconception.

PROBLEMS

4.1. Water flows through the circular nozzle shown in the figure at a rate of 0.3 m3/s
(or 300 kg/s). The diameter at section 1 is 0.3 m and at section 2 is 0.1 m. Using
the simple stream-tube model, calculate the velocities at stations 1 and 2 and the
force acting on the flange. Assume that the pressure at station 1 inside the nozzle is
700,000 N/m2 and is zero at station 2.

D1

D2

21

Problem 4.1.

4.2. The rocket motor shown in the figure is tested under static conditions. Suppose
the exit velocity is 500 m/s, exit area A2 = 0.1 m2, and the density of the jet at the exit
is ρ2 = 0.6 kg/m3; then calculate the static thrust (e.g., Fx). Assume the exit pressure
is p2 = 1.5 atm and the ambient pressure is pa = 1 atm.

pa

Fx

ue

1

A2

Problem 4.2.

4.3. The rocket motor of the previous problem is fired in space. Calculate its thrust.
Is it different from the value obtained during static tests at sea level?

4.4. The container shown in the figure is filled with water. The water discharges
through a hole of area A2 at the lower right.

(a) Develop an expression for the discharge velocity u2.
(b) Calculate the rate at which the water level drops at point 1?

A2

u2

p2

2

p1

hF

A1

1

Problem 4.4.
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(c) Develop an expression for the force required for holding the container in
place.

4.5. The Pitot tube shown in the figure is mounted in front of a moving vehicle. The
pressure in the stagnation tube is higher than the one measured in the static pressure
tube by 10 cm of water. Calculate the speed of the vehicle in terms of km/h and mph.
Assume the air density is ρ = 1.2 kg/m3.

U

Static
pressure tap

Stagnation
pressure tap

Problem 4.5.

4.6. A conical weight of 4 kgf is “floating” on the jet, as shown (ignore the wire,
which is there to stabilize the weight). The jet leaving the orifice at the bottom has
an upward velocity of 15 m/s and a diameter of 3 cm. Note that the jet speed is
reduced with height! Find the height h at which the weight will remain stationary.

u
d

h

Wire for
stability

60°

Problem 4.6.

4.7. According to Bernoulli’s principle the pressure ahead of an automobile radiator
will increase with increasing U∞, thereby pushing the cooling air across the dense
cooling fins. Assuming that the air ahead of the radiator (point A) stops completely,
estimate the pressure rise for speeds of 60, 100, and 140 km/h (take air density as
1.22 kg/m3).

U∞
A

Problem 4.7.
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4.8. A 70-km/h wind is blowing on a concave dish antenna, with a radius of R =
0.4 m. Estimate the pressure acting on the frontal surface and the resulting forces on
the frontal surface of the antenna (compare your results with the results of Example
8.9).

U∞ R

Problem 4.8.

4.9. A stationary water jet impinges on a turning vane mounted on a container with
frictionless wheels, as shown on the left-hand side of the figure. If the jet cross-
section area is 5 cm2 and its horizontal velocity is 10 m/s, calculate the force Fx in
the x direction while the container is not moving. Calculate its initial acceleration if
its initial mass is 5 kg. How will the force change when the container is moving to
the right at a speed of 3 m/s (assume mass is the same).

30°
30°U U

x

Stationary
nozzle

Stationary
nozzle

(a) (b)

Problem 4.9.

4.10. A stationary water jet impinges on a turning vane mounted on a container
with frictionless wheels (right-hand side of the figure in Problem 4.9). In this case,
however, the vane is mounted forward and the returning jet hits the water in the
container. If the jet cross-section area is 5 cm2 and its horizontal velocity is 10 m/s,
calculate the force Fx in the x direction while the container is not moving. Calculate
its initial acceleration if its initial mass is 5 kg. How will the force change when the
container is moving to the right at a speed of 3 m/s (assume mass is the same).

Total pressure
port

Static pressure
ports

Static pressure
tube Internal,

total pressure
tube

U∞

Problem 4.11.
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4.11. An airplane is flying at a speed of 500 km/h. It is using a simple Pitot tube to
measure its velocity. Calculate the pressure difference the probe will register where
air density is 1.1 kg/m2. Provide your answer in atmospheres (atm).

4.12. A strong wind is blowing at a velocity of U∞ past a probe pointing directly
into the wind. The lower end of the tube is inserted into a small water tank, and the
inside water level reaches �h = 4 cm below the water level in the tank. Calculate
the wind speed (assume air density is 1.22 kg/m3).

U∞

Problem 4.12.

4.13. A 6-cm-diameter circular jet with a velocity of 20 m/s is hitting the turning
vane, as shown. Assuming the vane is moving away from the nozzle at a speed of
7 m/s, then (assuming no friction) calculate the horizontal and vertical forces on the
vane.

u1
uvane

45°
x

= 7 m/s

Problem 4.13.

4.14. A simple model of a turbofan engine is shown and, at the exit, two concen-
tric jets can be seen. Assume a flight speed of 300 m/s, and that the total incoming
air flow rate is 300 kg/s. At the exit, however, the inner jet has an exit velocity of
1000 m/s and mass flow rate of 100 kg/s, whereas the outer flow speed is 600 m/s and
the mass flow rate is 200 kg/s (fuel mass is negligible). Calculate the thrust of this
unit.

m· 1

m· 2

300 m/s
600 m/s

1000 m/s

Bypass

Problem 4.14.
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4.15. A turbofan engine is modeled by two concentric jets; the outer fan flow is
leaving the engine at a speed of 260 m/s and the inner hot flow leaves at 800 m/s.
Assuming a core mass flow rate of 20 kg/s and a bypass ratio of 4 (the outer cold
flow is 4 times larger than the hot core flow) calculate the thrust of this engine at a
flight speed of 200 m/s.

4.16. Consider a water jet being turned by a solid frictionless surface, as shown in
the figure. Calculate the forces acting on the structure when u1 = 10 m/s, the circular
jet cross section is 5 cm2, and the angle θ = 20◦.

u1

u2

x

z

1

2

Problem 4.16.

4.17. A circular water jet (as in the previous problem) is turned by a solid frictionless
surface, and a downward force of 20 N is measured on the structure. The incoming
jet velocity is u1 = 15 m/s and its cross section is 5 cm2.

(a) calculate the turning angle θ .
(b) Calculate the horizontal force on the solid surface.

4.18. An airplane flies at a speed of U∞ = 250 m/s, the air mass flow rate into the
engine is ṁa = 50 kg/s, and the average exhaust speed is ue = 800 m/s.

(a) If the air to fuel ratio is about 2%, calculate the engine thrust (assume
pe = pa).

(b) Suppose the airplane lift-to-drag ratio is 10 and it has two engines; calculate
the airplane weight.

U∞
m· a

m· f ue

pe

Problem 4.18.

4.19. Juliet empties a bucket of water on Romeo from her window, which is 5 m
above his head. Assume the jet diameter is 5 cm at section 2 (just above Romeo’s
head).

(a) Calculate the jet velocity (at point 2) as it hits Romeo’s head.
(b) What is the force acting on Romeo’s head if the water is splashed sideways

(no vertical speed)?
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5 m

1

A2 = 0.05 m 
2

Problem 4.19.

4.20. A jet of fluid hits a flat plate and leaves without any axial velocity component,
as shown in the figure.

(a) If the flow rate is 50 L/s and the velocity of the jet hitting the plate is 20 m/s,
calculate the force on the plate.

(b) Calculate the force in the case in which the plate moves away from the jet
at a speed of 50 km/h.

20 m/s

Jet Plate

Problem 4.20.

4.21. A small boat is propelled by a water jet and is traveling at a speed of 5 m/s.
The force required for propelling the boat is 100 N, and the water flow rate is
5 kg/s.

Jet
Pump

Problem 4.21.
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(a) Calculate the jet exit velocity (assume exit pressure = ambient pressure).
(b) Would it matter if the exiting jet were slightly submerged? (Still, the exit

pressure = ambient pressure.)

4.22. A water jet hits horizontally a 50-kg block. The friction coefficient between
the block and the ground is 0.9. What is the minimum diameter d of the water jet
for the block to slide to the left? Assume the stagnation pressure inside the nozzle is
p0 = 4 atm the pressure outside the nozzle is pa = 1 atm (1 atm = 1.013 × 105 N/m2),
and the flow is ideal through the nozzle.

50 kg

Jet

Friction coeff = 0.9 m

Frictionless
Nozzle

pa

d

p0

Problem 4.22.

4.23. The neighbor kid decided to water the garden while standing on his skate-
board. As he opened the valve, the circular jet speed was 7 m/s and its diameter was
d2 = 0.02 m. If his total mass is 40 kg, then calculate the force of the jet and his initial
acceleration (assuming no friction).

7
m
s

0.02 m

Problem 4.23.

4.24. A free stream of U = 50 m/s is blowing on a 0.6-m-diameter cylinder, as shown
in the figure. A simple approximation of the flow behind it indicates that the velocity
was reduced to 30 m/s for a strip of 0.6 m (e.g., the same as the cylinder’s diameter).
Suppose we define a force coefficient as CF = F

0.5ρU2 D, where F is the force per unit

50
m
s 50

m
s

30
m
s

0.6 m

Problem 4.23.
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width on the cylinder; then calculate the value of CF (you may use Table 1.1 for the
air density).

4.25. The orifice shown in the figure is used to measure the water flow in the pipe.
The pressure difference across the orifice registers as a column of 10-cm water.
Assuming that the water density at ρ = 1000 kg/m3, R1 = 20 cm and R2 = 10 cm,
and the discharge coefficient is CD = 0.6, calculate the mass flow rate in the pipe.

2 R1

u2u1

2 R2

1 2

Problem 4.25.

4.26. The orifice from Problem 4.25 is used to measure the water flow in a pipe.
Assuming that the water density at ρ = 1000 kg/m3, R1 = 20 cm and R2 = 10 cm,
and the discharge coefficient is CD = 0.6, calculate the average speed in the pipe
when the mass flow rate is 100 kg/s. What is the pressure difference (in terms of
centimeters of water) for the preceding flow rate?

4.27. The flow rate across the orifice of Problem 4.25 is 100 L/s (1 L water = 1 kg).
Calculate the water-column height �h registered in the U-tube monometer.

4.28. A Venturi meter is used to measure the water flow in a 3-cm-diameter pipe.
The diameter of the narrow section is 1.5 cm. The pressure difference between the
large- and small-diameter pipes registers as a 5-cm column of water. Assuming a
discharge coefficient of CD = 0.95, calculate the mass flow rate in the pipe (ρ =
1000 kg/m3).

1 2
u2u1

A1

x

A2

Problem 4.28.

4.29. The Venturi tube shown in the figure of Problem 4.28 is used to measure water
flow in a pipe. The incoming pipe diameter is D1 = 20 cm and the throat diameter
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is D2 = 10 cm. Assuming a discharge coefficient of CD = 1.0, u1 = 0.5 m/s, and the
density of water ρ = 1000 kg/m3 calculate the following values:

(a) The water flow rate.
(b) The pressure difference measured as �h in meters (water column)

4.30. Air is drawn into a long tube, as shown in the figure. The air velocity inside
the tube is 50m/s and the pressure outside, in the still air, is 1 atm. Assuming the air
density is 1.22 kg/m3 and constant, calculate the pressure inside the tube.

p∞ = 1 atm

50

p = ?

m
s

kg
m3

Problem 4.30.

4.31. Air is drawn into a wind tunnel during automobile testing, as shown in the
figure. A simple manometer measures the velocity in terms of water-column height
h. If the velocity at the test section is 120 km/h, calculate the height of the water
column in centimeters (ρwater = 1000 kg/m3, ρair = 1.22 kg/m3).

pa

pa

h

U

Wind tunnel

Water

Problem 4.31.

4.32. We repeat the previous experiment, but now we use a tube to measure the
total pressure, as shown in the figure. If the water-column height in the manome-
ter h = 8 cm, calculate the velocity at the test section (ρwater = 1000 kg/m3, ρair =
1.22 kg/m3).

pa

h

U

Wind tunnel

Water

Problem 4.32.

4.33. Air flows at a rate of 1.7 kg/s through a smooth contraction in a pipe with
negligible friction losses. The pressure difference between the two sections is mea-
sured by a water manometer. If the pipe diameters are D1 = 0.3 m and D2 = 0.15 m,
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calculate the height difference �h measured between the two vertical tubes (assume
air density is 1.22 kg/m3).

UD1 D2

Problem 4.33.

4.34. Air flows through a smooth contraction in a pipe with negligible friction losses
(the pipe diameters are D1 = 0.3 m and D2 = 0.15 m). The pressure difference
between the two sections is measured by a water manometer. If the height difference
�h measured between the two vertical tubes is 0.2 m, calculate the mass flow rate
(assume the air density is 1.22 kg/m3).

U
D1 D2

Problem 4.34.

4.35. Air flows through a smooth contraction in a pipe with negligible friction losses
(the pipe diameters are D1 = 0.3 m and D2 = 0.15 m). The pressure difference
between the two sections is measured by a water manometer. If the height difference
�h measured between the two vertical tubes is 0.15 m, calculate the mass flow rate
(assume the air density is 1.22 kg/m3).

UD1 D2

Problem 4.35.

4.36. Air flows at a rate of 3 kg/s through a smooth contraction in a pipe with negligi-
ble friction losses (the pipe diameters are D1 = 0.4 m and D2 = 0.2 m, as in problem
4.35). The pressure difference between the two sections is measured by two tubes
connected to a water manometer. Calculate the height �h measured between the
two vertical tubes (assume the air density is 1.22 kg/m3).

4.37. Air flows through a smooth contraction in a pipe with negligible friction losses,
and the pressure difference between the two vertical tubes of problem 4.35 is mea-
sured at �h = 0.3 m. If the pipe diameters are D1 = 0.3 m and D2 = 0.2 m, calculate
the flow rate (assume the air density is 1.22 kg/m3).
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4.38. A small circular jet having a cross section of 5 cm2 is flowing out at the bottom
of a large container and is aimed 30◦ upward. At a horizontal distance of 0.5 m, the
jet impinges on a vertical plate. Calculate the horizontal force required for holding
the plate in place if the water level in the container is h = 5m. Also estimate the
height from the bottom where the jet hits the plate.

Fx

0.5 m

h

30°

Problem 4.38.

4.39. Water is flowing through two holes from a container with frictionless wheels.
The left hole is located at a height of h1 = 0.3 m and its area is 3 cm2, and the right
hole area is 1 cm2. If the water level in the container is h2 = 0.7 m, calculate the
resultant force and its direction on the container.

A2
A1

h2

h1

Problem 4.39.

4.40. A ball weighing 1 kg is “floating” on a circular jet, as shown in the figure
(ignore the wire, which is there to stabilize the weight). The jet leaving the orifice at

z

D1 = 0.02 m
w1 = 10 m

s

Jet h

2

1

Problem 4.40.
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the bottom has an upward velocity of 10 m/s, and the jet diameter at the exit is 2 cm.
Assuming the jet spills sideways at 90◦, find the height h at which the ball will float.

4.41. A jet flowing from the bottom of a water tank is aimed upward at 30◦, as
shown in the figure. Assuming no friction losses at the nozzle, calculate the max-
imum height H and distance of the jet (again, neglecting friction with the outside
air).

30°
H

x

Water

h = 10 m

Problem 4.41.

4.42. A rectangular container is filled with water, as shown in the figure. At a time
t = 0, a small opening with an area Ae is opened at the bottom. Develop the formu-
lation for the exit velocity ue and the water column height h as a function of time.

h

a

Aeue

Problem 4.42.

4.43. If the width of the container in the previous problem is a = 20 cm, h =
80 cm, and the opening area Ae is 3 cm2, calculate how long it will take to empty
the container.

4.44. A 1-m-diameter spherical tank is half full with water. A circular drain of
1-cm-diameter opened at the bottom, as shown in the figure. How long does it take

h

R

1 cm

Problem 4.44.
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to empty the tank? Note that the radius r of the liquid surface area inside the tank
can be expressed as πr2 = π [R2 − (R − h)2].

4.45. A cylindrical container having a diameter of D = 0.3 m is filled with water
to a level of h0 = 0.5 m. Suddenly the drain plug with an area of 3 cm2 is opened,
allowing the water to flow out. Calculate the horizontal force versus time until the
tank is completely drained. Also develop a formula for the water height versus time.
How long it will take to drain the container?

D

Ae

h0

Problem 4.45.

4.46. A cylindrical container having a diameter of D1 is filled with water to a level
of h1. A drain plug with a diameter of D2, located at a height of h2 above the ground
is opened, allowing the water to flow out. Develop an expression for the distance x,
versus time.

h1

D2

h2

D1

x

Problem 4.46.

4.47. The balloon shown in Fig. 4.11 is filled with 2 kg water at a pressure of 0.8 ×
105 N/m2, and the mass of the whole system, without the water, is 0.5 kg. Assuming
constant discharge velocity (without friction losses), calculate the maximum velocity
of the device. Can it move faster than the exit jet velocity?

4.48. A water jet of area Ai = 5 mm2 flows out of an injector where the inside pres-
sure p0 is 2 atm (and the outside pressure is 1 atm). Calculate the water flow rate if
the discharge coefficient is CD = 0.65.
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p0 pa Ai

Problem 4.48.

4.49. The jet in a sprinkler system shown in the figure, is designed to deliver 2 L
of water per minute. The pressure difference across the nozzle is 1.5 atm and its
discharge coefficient is CD = 0.85. Calculate the orifice diameter Di.

p0

Di

Problem 4.49.

4.50. The water height in a large reservoir is h0 = 5 m. When the water is needed
for irrigation, a 1-m-wide sluice gate is opened, leaving a gap of h1 = 0.6 m under it.
Estimate the velocity at point 2 and the water flow rate when the gate is opened.

Sluice
gate

h1
h2

2

0

h0

1

Problem 4.50.

4.51. The water height in a large reservoir is h0 = 6 m. If a flow rate of 3000 L/s is
needed for irrigation, how high (h1) a 1-m-wide gate must be raised?



5 Viscous Incompressible Flow:
Exact Solutions

(Leading to Some Practical Engineering Solutions)

5.1 Introduction

In Chapter 3 the effects of pressure in a fluid were isolated (because the fluid was not
moving), and in Chapter 4 the inertia terms were added. The inclusion of viscosity,
its effects, and the resulting velocity distribution are discussed here. For example,
the velocity distribution for the laminar flow inside a pipe is formulated and the
average velocity is calculated. This provides the relation between the simple 1D
average velocity model (of Chapter 4) and the more complex (and realistic) 2D or
3D flows.

The solutions presented early in this chapter are often called exact solutions.
This means that, for a few limited cases, a set of logical assumptions leads to simplifi-
cation of the fluid dynamic equations, which allows their solution (for laminar flow)!
Also, the cases presented in this chapter (e.g., the flow in pipes) is often termed as
internal flows. The discussion on external flows is delayed to the following three
chapters.

The second part of this chapter demonstrates the approach that evolved during
the past 200 years for solving fluid dynamic problems (because there is no closed-
form analytic solution to the complete fluid dynamic equations). According to this
approach, to develop a practical engineering solution, we must start with a simple
but exact solution that determines the major parameters and the basic trends of the
problem (e.g., the pressure drop in a circular pipe versus the Reynolds number).
Based on these parameters, an empirical database can be developed for treating
a wider range of engineering problems. As an example, the viscous laminar flow
model in circular pipes is extended into the high-Reynolds-number range and the
effects of turbulent flow are discussed.

5.2 The Viscous Incompressible Flow Equations (Steady State)

When developing the fluid dynamic equations in Chapter 2 we noted that their gen-
eral analytic solution is next to impossible. There are several simple cases, however,
for which we can actually derive a solution that contains important physical infor-
mation. One of the most successful examples is the viscous flow in circular pipes,
which provides the rationale for developing an experimental database to help in

142
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Figure 5.1. Flow between two infinite par-
allel plates.

more complex (but similar) engineering problems. Prior to starting, let us rewrite
the governing equations for steady-state, viscous, incompressible flows. The conti-
nuity equation is [Eq. (2.33)]

∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0, (5.1)

and the viscous incompressible momentum equations [from Eq. (2.40)] in Cartesian
coordinates are

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
, (5.2a)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p
∂y

+ μ

ρ

(
∂2v

∂x2
+ ∂2v

∂y2
+ ∂2v

∂z2

)
, (5.2b)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

alz
= −1

ρ

∂p
∂z

+ μ

ρ

(
∂2w

∂x2
+ ∂2w

∂y2
+ ∂2w

∂z2

)
. (5.2c)

Here we neglected the body forces. However, if gravitational force is present, its
effect can be reintroduced in the pressure-gradient term.

5.3 Laminar Flow between Two Infinite Parallel Plates –
The Couette Flow

Let us start with the simplest example, the flow between two parallel (infinite)
plates, as shown in Fig. 5.1.

The fluid is considered viscous and incompressible (such as water or oil), and
for this case we neglect the time derivatives and the body forces. We also assume
that the flow is laminar, and this statement will be clarified toward the end of the
chapter. Let us use a Cartesian coordinate system attached to the lower plate, as
shown in Fig. 5.1, and the governing equations for this case are summarized by
Eqs. (5.1) and (5.2). Observing Fig. 5.1, we can assume that the lower plate is station-
ary and therefore the velocity near the lower wall is zero (at z = 0). We may specu-
late about the shape of the velocity distribution (as shown); however, it is clear that
the velocity at z = h is equal to the velocity of the upper plate, U. This flow is called
the Couette flow after Maurice Marie Alfred Couette (1858–1943), a well-known
French physicist. The model is 2D and there are no changes in the y direction. Also
there is no velocity in the z direction, and we summarize this as

v = w = 0. (5.3)
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Now, substituting this into continuity equation (5.1) results in

∂u
∂x

= 0. (5.4)

The conclusion therefore is that the velocity profile is a function of z and it is the
same at any x station:

u = u(z). (5.5)

Recall that the plates extend to infinity (−∞ < x < ∞) and therefore it is obvious
that the velocity profile u(z) is the same at any x station. Next we apply all the
previous assumptions to momentum equations (5.2), which now reduce to

0 = −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂z2

)
, (5.6a)

0 = −1
ρ

∂p
∂y

, (5.6b)

0 = −1
ρ

∂p
∂z

. (5.6c)

The two last equations indicate that there is no lateral or vertical change in the
pressure. Hence the pressure can change only with x and is constant vertically:

p = p(x). (5.7)

Also, this is a steady-state problem, and Eq. (5.4) states that there are no changes
in u with x (and the velocity is changing only with z). So if the second term in
Eq. (5.6a) is constant along the x axis, then we conclude that the pressure gradi-
ent must be constant too:

dp
dx

= const. (5.8)

At this point, only Eq. (5.6a) remains, and after rearranging it becomes

∂2u
∂z2

= 1
μ

dp
dx

. (5.9)

The only parameter now is x, and instead of the partial derivatives, an ordinary
differential equation remains. After integrating twice we get

u(z) = 1
μ

dp
dx

z2

2
+ Az + B, (5.10)

where A and B are the constants of integration.

5.3.1 Flow with a Moving Upper Surface

This first case is the original Couette flow, and the boundary conditions for
Eq. (5.10) are

at z = 0, u = 0;
at z = h, u = U.

(5.11)
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Figure 5.2. Effect of the pressure gra-
dient on the velocity profile of the flow
between two relatively moving plates.

Substituting the z = 0 condition into Eq. (5.10) yields that B = 0, and the second
boundary condition results in

U = 1
μ

dp
dx

h2

2
+ Ah.

After rearranging we get

A = U
h

− h
2μ

dp
dx

.

Substituting this result into Eq. (5.10) provides the velocity distribution at any x
station:

u(z) = U
z
h

− h2

2μ

dp
dx

(
z
h

)(
1 − z

h

)
. (5.12)

The first term is clearly a linear variation and reduces to the shear flow profile dis-
cussed in reference to Fig. 1.5. The second parabolic (shape) term contains the effect
of the pressure gradient, and this effect is summarized in Fig. 5.2. To visualize this,
let us define a constant k such that

k = − h2

2μ

dp
dx

. (5.13)

When k = 0, then we get the basic shear flow, and when the pressure gradient is
favorable (negative dp/dx or positive k) then we get an additional parabolic forward
velocity distribution, as shown. When the pressure gradient is opposing the flow then
this parabolic shape is reversed. At higher negative values of k, even reverse flows
are possible (as shown in the figure).

5.3.2 Flow between Two Infinite Parallel Plates – The Results

With the assumptions posed for the viscous flow between parallel plates we actu-
ally arrived at the “exact solution.” It is important to connect those results with
engineering quantities such as the average velocity, which was used in the 1D flow
model of Chapter 4. Thus the average velocity Uav is the velocity that, when multi-
plied by the inflow area, will have the same volumetric flow rate Q (per unit width):

Q = Uavh =
∫ h

0
udz. (5.14)
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Consequently we define the average velocity as

Uav = 1
h

∫ h

0
udz. (5.15)

Next, the velocity distribution from Eq. (5.12) is substituted and the integration is
performed:

Uav = 1
h

∫ h

0

[
U

z
h

− h2

2μ

dp
dx

(
z
h

)(
1 − z

h

)]
dz

= U
2

(
z
h

)2

− h2

2μ

dp
dx

[
1
2

(
z
h

)2

− 1
3

(
z
h

)3
]h

0

= U
2

− h2

12μ

dp
dx

. (5.16)

Now we can also solve for the volumetric flow rate (per unit width:

Q ≡ hUav = Uh
2

− h3

12μ

dp
dx

. (5.17)

Figure 5.2 shows the various velocity distributions as functions of the pressure gra-
dient. To calculate the maximum velocity we must derive the velocity distribution,

du(z)
dz

= U
h

− h2

2μ

dp
dx

(
1
h

− 2z
h2

)
= 0,

and after solving for z, we get

z
h

= 1
2

− μ

h2

U
dp
dx

. (5.18)

Note that this equation is not valid when dp/dx approaches zero. The next impor-
tant observation is that in this viscous flow there is a shear stress. This force acts
between the parallel fluid layers as they slide on each other (creating friction).
To calculate the shear stress (per unit width) we use the definitions introduced by
Eq. (1.14) and the velocity distribution from Eq. (5.12):

τxz = μ
du(z)

dz
= μ

U
h

− h2

2
dp
dx

(
1
h

− 2z
h2

)
. (5.19)

From the engineering point of view, the determination of the shear force (or fric-
tion) on the solid surface is important. Therefore a friction coefficient C f can be
defined as the ratio between the shear stress and the average dynamic pressure:

C f ≡ τxz
1
2ρU2

av

. (5.20)

Calculation of this coefficient is important at the upper and lower walls, which can
be found from Eq. (5.19)

τxz

∣∣∣∣
0

= μ
U
h

− h
2

dp
dx

, (5.21a)

τxz

∣∣∣∣
h

= μ
U
h

+ h
2

dp
dx

. (5.21b)
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Figure 5.3. The flow between
two parallel plates. The upper
is moving at a velocity of U and
the lower is stationary.

EXAMPLE 5.1. SHEAR FLOW (WITH NO PRESSURE GRADIENT). For this first example
let us revisit our introductory model for explaining the effects of viscosity. Fig-
ure 1.5 is redrawn here in Fig. 5.3, and the problem at hand is the case in which
the upper plate moves at a velocity U but there is no pressure gradient:

dp
dx

= 0.

The average velocity is obtained from Eq. (5.16),

Uav = U
2

, (5.22)

and, as expected, it is the velocity at the centerline. Similarly the volumetric flow
rate per unit width [from Eq. (5.17)] is

Q = Uh
2

, (5.23)

and the maximum velocity is at the contact with the upper plate (z = h):

Umax = U. (5.24)

The shear force at the wall, based on Eq. (5.19), is constant (with z) and is the
same at the upper and lower walls (and this was discussed in Chapter 1):

τxz = μ
U
h

. (5.25)

We calculate the friction coefficient on either the upper or lower surface by
substituting the values of the shear stress and the average velocity:

C f = τxz
1
2ρU2

av

= μU
h

1
2ρ U2

4

= 8μ

ρUh
. (5.26)

This is a very important result because it introduces a nondimensional num-
ber, called the Reynolds number, Re, after the British fluid dynamicist Osborne
Reynolds (1842–1912). It represents the ratio between the “inertia” and the vis-
cosity effects:

Re = ρUh
μ

. (5.27)

Here Re is based on the clearance h between the plates (but in other cases,
different quantities for the length scale may be used). The importance of this
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number will be discussed later, but now let us rewrite the friction coefficient for
this case as

C f = 8
Re

. (5.28)

This equation is not only simple but also provides the basics for experimental
evaluation of universal friction coefficients as a function of Re. Note that in this
case (of laminar flow) the friction coefficient is reduced with increasing Re.

EXAMPLE 5.2. NUMERICAL EXAMPLE FOR THE FLOW BETWEEN TWO PARALLEL

PLATES WITH NO PRESSURE GRADIENT. As a numerical example, following
Example 5.1, let us consider the flow of water between two parallel plates. The
upper plate moves at a velocity of U = 5 m/s and the clearance is h = 1 cm.

Solution: The average velocity is at the centerline,

Uav = U
2

= 5
2

= 2.5 m/s,

and the volumetric flow rate per unit width is

Q = Uh
2

= 0.01 × 2.5 × 1.0 = 0.025 m3/s.

The maximum velocity is at the contact with the upper plate (z = h),

Umax = U = 5 m/s,

and the shear stress per unit width at the wall (upper or lower) is

τxz = μ
U
h

= 0.001
5

0.01
× 1.0 = 0.5

N
m2

.

Here the viscosity μ = 0.001 for water was taken from Table 1.1. Suppose we
want to calculate the force F required for pulling a unit area, S = 1 m2, of the
plate:

F = τxzS = 0.5
N
m2

1 m2 = 0.5 N.

5.3.3 Flow between Two Infinite Parallel Plates — The Poiseuille Flow

This is another important case of the flow between plates because now both the
upper and lower plates are stationary. Consequently the fluid motion is due to the
pressure gradient. This flow is named the Poiseuille flow after Jean Louis Marie
Poiseuille (1799–1869), a French physician who studied the pressure loss in small
tubes.

Essentially this case was solved in the previous section, and information such
as the average, maximum velocity and other properties can be obtained by simply
setting the upper plate velocity to zero (U = 0). The velocity distribution, based on
Eq. 5.12 is then

u(z) = − h2

2μ

dp
dx

(
z
h

)(
1 − z

h

)
. (5.29)
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Figure 5.4. The flow that is due to a
constant-pressure gradient between two
parallel stationary plates.

This is a parabolic shape, as shown in Fig. 5.4, and u(z) = 0 at z = 0 and at z = h.
Also this establishes the relation between pressure loss and viscous friction on the
walls. The average velocity is obtained from Eq. (5.16),

Uav = − h2

12μ

dp
dx

, (5.30)

and the volumetric flow rate (per unit width) from Eq. (5.17) is

Q = − h3

12μ

dp
dx

. (5.31)

This indicates that the flow rate is directly (linearly) related to the pressure gradient.
The maximum velocity location, based on Eq. (5.18), is found at the centerline:

z
h

= 1
2
. (5.32)

When this is substituted into the velocity distribution, Eq. (5.29), the maximum
velocity is found:

Umax = − h2

8μ

dp
dx

. (5.33)

Comparing this with the average velocity yields

Uav = 2
3

Umax. (5.34)

Because of the symmetry (upper/lower), the shear stress on both walls is the same.
To calculate the shear we use Eq. (5.19) (with U = 0):

τxz = −h2

2
dp
dx

(
1
h

− 2z
h2

)
. (5.35)

Note that the shear at the center (z = h/2) is zero and on the walls (z = 0, and
z = h) is

τxz|wall = ±h
2

dp
dx

, (5.36)

and it seems to pull opposite to the pressure force. The friction coefficient C f on
one wall is then

C f = − h
2

dp
dx

1
2ρU2

av

. (5.37)
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Figure 5.5. Two velocity distributions having the same shear stress at the wall.

This is not a very useful expression, but from Eq. (5.30) we can solve for the pressure
gradient,

dp
dx

= −12μ

h2
Uav,

and substitute this into Eq. (5.37):

C f =
h
2

12μ

h2 Uav

1
2ρU2

av

= 12μ

ρUavh
. (5.38)

We see again that the Reynolds number appears in this equation. Using the Re
definition from Eq. (5.27) we can write

C f = 12
Re

. (5.39)

It is interesting to compare the shear stress between this case and the basic shear
flow (Example 5.1). First we need to rearrange the shear on the wall based on the
maximum velocity. We can do this by solving Eq. (5.33) for dp/dx and substituting
the result into Eq. (5.36):

τxz

∣∣∣∣
wall

= h
2

dp
dx

= h
2

8μUmax

h2
= 4μ

Umax

h
. (5.40)

Now recall the shear term for the shear flow of Example 5.1:

τxz = μ
U
h

(5.19)

Based on these results, to have the same shear at the wall, the flow created by
the moving upper plate must have a maximum velocity four times larger than in the
case in which the flow is moved by a pressure gradient (see Fig. 5.5).

We can also observe the force balance on the fluid in this flow, as depicted in
Fig. 5.6. Because there is no acceleration in the x direction, the sum of the forces

h
F3

F1

F2

u(z)

Umax

l

Figure 5.6. The shear flow on the walls must be equal to the force that is due to the pressure
drop.
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acting on the fluid between the two plates must be zero. To investigate this hypoth-
esis let us select a segment of length l, as shown in the figure. The shear forces on
the upper and lower walls for the selected segment (per unit width) are then

F1 = F2 = τxzl × 1 = −h
2

dp
dx

l × 1.

Here we used the shear term from Eq. (5.36). The force F3 that is due to the pressure
gradient (per unit width) is

F3 = �ph × 1 = −dp
dx

l × h × 1,

and clearly

F1 + F2 + F3 = 0.

EXAMPLE 5.3. WATER FLOW DUE TO PRESSURE GRADIENT BETWEEN PARALLEL

PLATES. To demonstrate the applicability of the preceding formulation let us
investigate the flow of water with an average velocity of 1 m/s, and a clearance
between the plates of 1 cm. Using the viscosity value from Table 1.1, calcu-
late the maximum velocity, the pressure gradient, the shear, and the friction
coefficients.

First, from on Eq. (5.34), we can calculate the maximum velocity:

Umax = 1.5Uav = 1.5 m/s.

Next, we may use Eq. (5.30) to calculate the pressure drop:

dp
dx

= −12μ

h2
Uav = −12 × 0.001 × 1

0.012
= −120

N/m2

m
.

The shear at the wall per unit width is calculated with Eq. (5.35):

τxz|h=0 = −h
2

dp
dx

= −0.01
2

(−120) = 0.6
N
m2

.

The Reynolds number is

Re = ρUavh
μ

= 1000 × 1 × 0.01
0.001

= 104,

and the friction coefficient [based on Eq. (5.39)] is

C f = 12
Re

= 12
104

= 1.2 × 10−3.

5.3.4 The Hydrodynamic Bearing (Reynolds Lubrication Theory)

The potential of thin viscous fluid layers to reduce friction has been recognized
and successfully used in many engineering applications. For example, rotating com-
ponents such as the camshafts and crankshafts of the internal combustion engine
are rolling on hydrodynamic bearings. The magnetic-reader mechanism of rotating
computer disks is floating above the surface, based on the same principle. In all
these cases, the moving surface is supported by the pressure, created by the viscous
flow within the gap (also resulting in very low friction). The models for the rotating
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Figure 5.7. Model for the viscous laminar flow
under a linear bearing.

shaft and the sliding block (slipper bearing) are quite similar, and here only the sim-
pler linear slipper bearing is discussed. The theory was first developed by Osborne
Reynolds in 1886, and the approach for laminar flow is shown schematically in
Fig. 5.7.

Here a block is sliding at a velocity of U on a thin film of viscous fluid. The
attempt is to describe a 2D steady-state case in which l is relatively very large and
the gap h between the block and the solid surface is very small (l � h). An x–z
coordinate system is attached to the upper sliding block, which moves at a velocity
U to the right. Also the slope α is very small, and the velocity components in the z
direction are small too:

u � w, (5.41)

(l � h).

With these assumptions only one term remains from the 2D incompressible conti-
nuity equation (5.1):

∂u
∂x

∼ 0.

Because we expect a small change in the x direction we cannot conclude that the
velocity profile in the x direction is constant. However, the flow rate Q is constant:

Q =
∫ h

0
u(z)dz = const. (5.42)

Next we apply the previous assumptions to the momentum equations [Eqs. (5.2)].
For the x direction we get

u
∂u
∂x

= −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂z2

)
, (5.43)

and the momentum equation in the z direction becomes

0 = −1
ρ

∂p
∂z

. (5.44)

Equation (5.44) indicates that there is no lateral or vertical change in the pressure.
Hence the pressure can change only with x and is constant vertically:

p = p(x).
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Considering the order of magnitude of the terms in the momentum equation in the
x direction, we find that the left-hand inertia term is of the order of O(l)

u
∂u
∂x

∼ O
(

l
l
l

)
∼ O(l) .

The order of the two second-order derivatives, based on inequalities (5.41), is

∂2u
∂x2

∼ O
(

l2

l2

)
= O(1),

∂2u
∂z2

∼ O
(

l2

h2

)
,

and therefore this last second-order derivative term is clearly the largest:

∂2u
∂z2

� ∂2u
∂x2

.

Consequently, the inertia term can be neglected too, and the momentum equation
in the x direction becomes [exactly as in the Couette flow case – see Eq. (5.9)]

0 = −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂z2

)
. (5.45)

The boundary conditions, based on Fig. 5.7, at x = 0 are

p = p0,

h = h1,

u(z = 0) = −U,

u(z = h1) = 0.

(5.46)

Note that the coordinate system is attached to the sliding block and therefore the
lower surface appears to be moving at a velocity of –U. The boundary conditions at
the other end of the block at x = l are

p = p0,

h = h2,

u(z = 0) = −U,

u(z = h2) = 0.

(5.47)

Before integration, the momentum equation is rearranged,

∂2u
∂z2

= 1
μ

∂p
∂x

,

and the velocity profile in the gap is found after two integrations:

u(z) = 1
μ

∂p
∂x

z2

2
+ A(x)z + B(x) (5.48)

We calculate the integration constant B(x) by applying the boundary condition at
z = 0 (for any x along the gap),

−U = B(x), (5.49)
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and we find A(x) by applying the boundary condition at z = h,

0 = 1
μ

∂p
∂x

h2

2
+ A(x)h − U. (5.50)

Substituting A(x) and B(x) into Eq. (5.48) yields

u(z) = 1
μ

∂p
∂x

z2

2
+

(−1
μ

∂p
∂x

h
2

+ U
h

)
z − U,

and after rearranging, the velocity profile inside the gap becomes

u(z) = h2

2μ

∂p
∂x

(
z2

h2
− z

h

)
+ U

(
z
h

− 1
)

. (5.51)

The only unknown at this point is the shape of the pressure distribution, which we
can find by applying continuity equation (5.42), which stated that the flow in the gap
is constant:

Q =
∫ h

0
u(z)dz =

∫ h

0

[
h2

2μ

∂p
∂x

(
z2

h2
− z

h

)
+ U

(
z
h

− 1
)]

dz

= − h3

12μ

∂p
∂x

− Uh
2

= const. (5.52)

Now the pressure gradient as a function of the local h can be calculated:

∂p
∂x

= −12μ

h3

(
Uh
2

+ Q
)

. (5.53)

At this point we can look at the boundary conditions and see that the pressure at
both ends of the sliding block is p0. This suggests that the pressure builds up toward
the center and must have a maximum where (∂p/∂x = 0). Let us identify the corre-
sponding gap at this point (of maximum pressure) as h0. With this definition, we can
easily calculate the flow rate at h0 [Eq. (5.52)] because Q is constant with x,

Q = −Uh0

2
, (5.54)

and we can simplify the pressure gradient by substituting Eq. (5.54) into
Eq. (5.53):

∂p
∂x

= −6μU
h3

(h − h0) . (5.55)

The pressure distribution can be found by integration with x; however, first, the gap
geometry (based on Fig. 5.7) is obtained:

h = h1 + (h2 − h1)
x
l

≈ h1 + αx. (5.56)

We can simplify the integration more by exchanging the integration variable:

∂p
∂x

= ∂p
∂h

∂h
∂x

= ∂p
∂h

α.

With this modification Eq. (5.55) becomes

∂p
∂h

= −6μU
α

(
1
h2

− h0

h3

)
.
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0

pmax

h2
h0

U

Figure 5.8. Schematic description of
the pressure distribution under the
sliding block [for the case of (h2/h1) =
2.2] and the shape of the velocity dis-
tribution in the gap.

This can be integrated with respect to h,

p = 6μU
α

(
1
h

− h0

2h2

)
+ C,

where C is the integration constant. We can find the two unknowns (C and h0) by
applying the boundary conditions at the two ends of the sliding block,

at x = 0, p = p0, h = h1,

at x = l, p = p0, h = h2,

and after some algebra we get

h0 = 2h1h2

h1 + h2
. (5.57)

After we solve for the constant C, the longitudinal pressure distribution as a function
of the gap h becomes

p − p0 = 6μU
α

(h − h1)(h − h2)
h2(h1 + h2)

. (5.58)

The shape of this pressure distribution is shown schematically in Fig. 5.8. The
maximum pressure occurs at h = h0 and based on Eq. (5.58) [and recalling that
(h2 − h1)/ l ≈ α] it is

pmax − p0 = 6μU
α

(h0 − h1)(h0 − h2)

h2
0(h1 + h2)

= 3μUl
2

(h2 − h1)
h1h2(h1 + h2)

. (5.59)

We obtain the position of the maximum pressure in terms of the x coordinate by
substituting h0 from Eq. (5.57) into Eq. (5.56):

x
l

∣∣∣
pmax

= h1

h1 + h2
. (5.60)

The local velocity distribution is also shown in Fig. 5.8 and it is determined by
Eq. (5.51). Initially, at the right-hand side of the block, it resembles the simple shear
flow, as in Fig. 5.3, but in this case the pressure gradient is not constant. Near the
left-hand side of the sliding block, the pressure gradient is positive and the parabolic
term in the velocity profile is more dominant.
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From the engineering point of view, the total force L lifting the sliding block
and the friction drag D must be calculated. We can obtain the supporting force L
(per unit width) by integrating the pressure along the block and again replacing the
integration of x with the integration with h:

L =
∫ l

0
(p − p0)dx = 6μU

α2

∫ h2

h1

(h − h1)(h − h2)
h2(h1 + h2)

dh

= 6μUl2

h2
1(h2/h1 − 1)2

[
ln

h2

h1
− 2(h2/h1 − 1)

h2/h1 + 1

]
. (5.61)

We can find the drag force by integrating the shear force along the lower surface of
the block, at z = h. Taking the velocity distribution from Eq. (5.51), we find that the
shear stress is

τ = μ
du(z)

dz

∣∣∣∣
h

= h2

2
∂p
∂x

(
2h
h2

− 1
h

)
+ μ

U
h

= h
2

∂p
∂x

+ μ
U
h

. (5.62)

Next, substituting ∂p/∂x from Eq. (5.53), we get

τ = μ

(
4U
h

+ 6Q
h2

)
. (5.63)

We now find the drag force (per unit width) by integrating the shear stress and
exchanging the integration in the x direction with the h direction:

D =
∫ l

0
τdx = μ

α

∫ h2

h1

(
4U
h

+ 6Q
h2

)
dh = μ

α

(
4U ln h − 6Q

h

)h2

h1

. (5.64)

Substituting Q from Eq. (5.54), α from Eq. (5.56), and h0 from Eq. (5.57), we find
that the drag force becomes

D = μUl
h1(h2/h1 − 1)

[
4 ln

h2

h1
− 6(h2/h1 − 1)

h2/h1 + 1

]
. (5.65)

We can obtain the maximum lift by calculating dL/d(h2/h1) = 0, and after some
algebra, the condition for the maximum lift occurs when (h2/h1) = 2.2. Calculating
the lift [from Eq. (5.61)] and drag [from Eq. (5.65)] for the maximum lift condition,
we get

Lmax = 0.16μU
(

l
h1

)2

,

DLmax = 0.75μU
(

l
h1

)
, (5.66)

and the lift-to-drag ratio (which is the mechanical friction coefficient) for this con-
dition is

D
F

∣∣∣∣
Lmax

= 4.7
h1

l
. (5.67)

Considering that the order of magnitude for a typical bearing is l
h1

∼ 10−3 the fric-
tion coefficient of the hydrodynamic bearing is significantly lower than the dry
friction!
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EXAMPLE 5.4. LIFT OF A LINEAR BEARING. A 1-cm-long magnetic pickup is floating
on a rotating disk where the linear velocity is 50 m/s. Assuming the allowed gap
is h1 = 0.2 mm and (h2/h1) = 2.2, calculate the weight of the magnetic head.
Also calculate the drag-to-lift ratio.

Solution: For this 2D case we can use Eqs. (5.66) and assume that the disk oper-
ates in air. The lift is

L = 0.16μU
(

l
h1

)2

= 0.16 × 1.8 × 10−5 × 50
(

0.01
0.0002

)2

= 0.36
N
m

.

Suppose the pickup head is only 1 cm wide; then we can approximate the lift by
taking 1/100 of the preceding value (e.g., the ratio between 1 cm and 1 m). We
can calculate the drag-to-lift ratio by using Eq. (5.67),

D
F

∣∣∣∣ = 4.7
0.0002

0.01
= 0.094,

and this is at least one order of magnitude smaller than that of dry friction.

5.4 Laminar Flow in Circular Pipes (The Hagen–Poiseuille Flow)

Calculations, such as the pressure loss in long circular pipes, is of paramount impor-
tance in many engineering applications. It was extensively studied during the early
19th century by the German hydraulician G. H. L. Hagen (1797–1884) and the
French physiologist J. L. M. Poiseuille (1799–1869). The mathematical formulation
of this problem is similar to the one used for the flow between parallel plates; how-
ever, now a cylindrical coordinate system is used. The basic model is described in
Fig. 5.9 and it is assumed that the flow is incompressible, viscous, laminar, and fully
developed (far from entrance effects and no changes with x). The only body force
we consider is gravitation (ρg), and the flow inside the pipeline moves only in the x
direction and there are no velocity components in the other directions:

qr = qθ = 0. (5.68)

With these assumptions the continuity equation in cylindrical coordinates for
an incompressible fluid [Eq. (2.45)] becomes

∂qx

∂x
= 0. (5.69)

We assume the flow is axisymmetric (and no changes with θ) and we reach the con-
clusion that

qx = qx(r). (5.70)

r

x

u(r) RFigure 5.9. Fully developed laminar
flow in a circular pipe.
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The momentum equation in the r direction [Eq. (2.46)] is now reduced to

0 = −∂p
∂r

. (5.71)

The momentum equation [Eq. (2.47)] in the θ direction is

0 = −∂p
∂θ

, (5.72)

and in the x direction [Eq. (2.48)] is

0 = ρg − ∂p
∂x

+ μ

(
∂2qx

∂r2
+ 1

r
∂qx

∂r

)
. (5.73)

From Eqs. (5.71), and (5.72) we conclude that the pressure varies only in the x
direction:

p = p(x). (5.74)

Because the term inside the parentheses in Eq. (5.73) is independent of x (or con-
stant along the x axis), the term ∂p/∂x must be constant, too.

Now we can rearrange Eq. (5.73) as follows:

−ρg + dp
dx

= μ
1
r

d
dr

(
r

dqx

dr

)
.

A more convenient form is

d
dr

(
r

dqx

dr

)
= 1

μ

(
dp
dx

− ρg
)

r.

Now we can integrate with respect to r,

r
dqx

dr
= 1

μ

(
dp
dx

− ρg
)

r2

2
+ A,

where A is the constant of integration. We divide first by r,

dqx

dr
= 1

μ

(
dp
dx

− ρg
)

r
2

+ A
r

,

and perform the second integration

qx = 1
2μ

(
dp
dx

− ρg
)

r2

2
+ A ln r + B. (5.75)

To calculate the integration constant we must use the boundary conditions. At the
center of the pipe, clearly there is symmetry and we can require that

at r = 0,
dqx

dr
= 0,

and at r = R, qx = 0. (5.76)

And this second condition, at the pipe inner wall, requires that the velocity must
be zero (based on the zero-slip boundary condition). Substituting the first boundary
condition into Eq. (5.75) yields

dqx

dr
= 1

μ

(
dp
dx

− ρg
)

0
2

+ A
0

= 0.
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This is possible only if A is zero. Substituting the second boundary condition to solve
for B, we get

0 = 1
2μ

(
dp
dx

− ρg
)

R2

2
+ B,

and after rearranging, we get

B = − 1
2μ

(
dp
dx

− ρg
)

R2

2
. (5.77)

By substituting this into Eq. (5.75), we obtain the velocity distribution at any x
station:

qx = R2

4μ

(
dp
dx

− ρg
)[( r

R

)2
− 1

]
. (5.78)

This velocity distribution has a parabolic shape, and maximum velocity is reached at
the center. Next let us calculate quantities such as the maximum velocity, flow rate
and shear on the wall. First, however, let us assume that the ρg term is similar to the
pressure drop and use only one. In this case the velocity distribution is

qx = R2

4μ

dp
dx

[( r
R

)2
− 1

]
. (5.79)

The maximum velocity is at the center (r = 0)

Umax = − R2

4μ

dp
dx

, (5.80)

and the negative sign is a result of the flow in the positive x direction, for which the
pressure gradient must be negative. The average velocity is related to the volumetric
flow rate Q as

Q = UavS =
∫

qxdS;

therefore the average velocity is obtained:

Uav = 1
S

∫
qxdS, (5.81)

where S is the pipe cross-section area and dS = 2πrdr . Substituting Eq. (5.79) yields

Uav = 1
π R2

∫ R

0

R2

4μ

dp
dx

[( r
R

)2
− 1

]
2πrdr = 1

2μ

dp
dx

∫ R

0

[
r3

R2
− r

]
dr

= 1
2μ

dp
dx

[
r4

4R2
− r2

2

]R

0
,

and after substituting the constants at the two limits, we get

Uav = − R2

8μ

dp
dx

. (5.82)

Comparing this with Eq. (5.80) reveals that

Umax = 2Uav. (5.83)
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The volumetric flow is then

Q = UavS = − R2

8μ

dp
dx

π R2 = −π R4

8μ

dp
dx

. (5.84)

This is a very important conclusion because it shows the relation between the pres-
sure drop and the flow rate in a circular pipe. The relation is linear, with the pressure
drop indicating that the higher pressure gradient will increase the flow rate. The
effect of viscosity is also linear but opposite; for example, more pressure is needed
to drive the same flow rate if the viscosity is increased. Next, we calculate the shear
stress in the flow by deriving Eq. (5.78):

τxr = −μ
dqx

dr
= −μ

R2

4μ

dp
dx

2r
R2

= −r
2

dp
dx

, (5.85)

and the minus sign is a result of the coordinate system (e.g., the origin is at the
center). Note that the shear stress is zero at the centers and increases linerly towards
the wall. The shear at the wall is then

τxr |wall = − R
2

dp
dx

. (5.86)

It is more useful to replace the pressure drop with an average velocity formulation.
We do this by rearranging Eq. (5.82),

dp
dx

= −8μUav

R2
,

and by substituting this into Eq. (5.86) we find that the wall shear term becomes

τr x|wall = 2μ

R
Umax = 4μ

R
Uav. (5.87)

It is interesting to compare this with the shear stress relation in the flow between
parallel plates (with one plate moving at a velocity of Umax, where τwall = μ

h Umax). If
the clearance h is compared with the pipe diameter (2R) then the shear in the pipe
is four times larger! Once the shear stress is evaluated, the friction coefficient can
be calculated:

C f = τxr
1
2ρU2

av

=
4μ

R Uav
1
2ρU2

av

= 16μ

ρUav(2R)
= 16

Re
. (5.88)

This is an amazingly good result that is validated by experiments and usually appli-
cable up to Re = 2000. It also lays the foundation for more complex pipe flow calcu-
lations, and we discuss this in the next section. To conclude this section, let us evalu-
ate the force balance between the shear and the pressure components. Suppose we
consider a pipe with a length of l. The force pushing the fluid in the x direction is

F1 = �p(π R2) = −dp
dx

l(π R2).

The shear on the wall acting into the opposite direction is

F2 = −τxr |wall S = R
2

dp
dx

2π Rl = dp
dx

π R2l,

and the two forces are equal (e.g., steady flow).
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EXAMPLE 5.5. PRESSURE DROP IN A CIRCULAR PIPE. Estimate the pressure
drop for a fully developed flow in a 3-m-long, 1.2-cm-diameter pipe, delivering
0.5 L/min of kerosene (at 20 ◦C).

Solution: To solve the problem we look up the viscosity and density values from
Table 1.1. Because the flow rate is given, the pressure gradient and the average
velocity are easily obtained [Eq. (5.84)]:

dp
dx

= − Q8μ

π R4
= −

0.5
60 × 10−3 m3/s × 8 × 1.9 × 10−2 (N s)/m2

π0.0064 m4
= 31.2

N/m2

m
.

The average velocity is

Uav = Q
S

=
0.5
60 × 10−3 m3/s

π 0.0062 m3
= 0.0736 m/s.

Because it was mentioned that the preceding formula is valid up to Reynolds
numbers of about 2000, let us calculate Re:

Re = ρUav D
μ

= 814 × 0.0736 × 0.012
1.9 × 10−3

= 378.8.

Therefore this calculation is within the range of this model.

R1

R2

x

u(r)
r

Figure 5.10. Fully developed laminar
flow between two concentric circular
pipes.

5.5 Fully Developed Laminar Flow between Two Concentric
Circular Pipes

Let us consider the fully developed, viscous laminar flow between two concentric
cylinders (or pipes), as depicted in Fig. 5.10. The assumptions here are the same as
those in Section 5.3, and we can start with the solution obtained in Eq. (5.75):

qx = 1
2μ

dp
dx

r2

2
+ A ln r + B. (5.89)

The difference now is in the boundary conditions because the flow will stop at
the wall of the inner cylinder. Consequently the boundary conditions are

at r = R1, qx = 0,

and at r = R2, qx = 0.
(5.90)
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Substituting these conditions into Eq. (5.75) provides two equations:

0 = 1
2μ

dp
dx

R2
1

2
+ A ln R1 + B,

0 = 1
2μ

dp
dx

R2
2

2
+ A ln R2 + B

After solving for the two constants we get

A = −
[
(R2/R1)2 − 1

]
ln(R2/R1)

R2
1,

B =
[
(R2/R1)2 − 1

]
ln(R2/R1)

R2
1 ln R1 − R2

1 .

We now obtain the velocity distribution between the two concentric cylinders by
substituting A and B into Eq. (5.89):

qx = − 1
4μ

dp
dx

{
R2

1 − r2 +
[
(R2/R1)2 − 1

]
ln(R2/R1)

R2
1 ln

r
R1

}
. (5.91)

We can obtain the flow rate by integrating the velocity between the two
boundaries:

Q =
∫ R2

R1

qxdS = −
∫ R2

R1

1
4μ

dp
dx

{
R2

1 − r2 +
[
(R2/R1)2 − 1

]
ln(R2/R1)

R2
1 ln

r
R1

}
2πrdr

= π

4μ

dp
dx

{
r4

2
− R2

1r2 −
[
(R2/R1)2 − 1

]
ln(R2/R1)

R2
1

(
ln

r
R1

− 1
2

)
r2

}R2

R1

= −π R4
1

8μ

dp
dx

{
(R2/R1)4 − 1 −

[
(R2/R1)2 − 1

]2

ln(R2/R1)

}
. (5.92)

We now easily calculate the average velocity by dividing the flow rate by the area:

Uav = Q

π
(
R2

2 − R2
1

) = − R2
1

8μ

dp
dx

[
(R2/R1)2 + 1 − (R2/R1)2 − 1

ln(R2/R1)

]
. (5.93)

The shear stress on the outer wall is calculated as before:

τxr

∣∣∣∣
R2

= −μ
dqx

dr
= − R1

4
dp
dx

[
2(R2/R1) − (R2/R1)2 − 1

(R2/R1)
1

ln(R2/R1)

]
, (5.94)

and the shear stress at the inner cylinder wall is

τxr

∣∣∣∣
R1

= μ
dqx

dr
= − R1

4
dp
dx

[
(R2/R1)2 − 1

ln(R2/R1)
− 2

]
; (5.95)

we dropped the minus sign for the inner cylinder because the velocity gradient there
is positive.
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5.6 Flow in Pipes: Darcy’s Formula

Henry Philibert Gaspard Darcy (1803–1858) was a French scientist who made sev-
eral important contributions to hydraulics. One of his most well-known contribu-
tions is the experimental development of the pressure-loss formula in pipes. Because
we developed the exact laminar flow solution we should be able to arrive at the same
formulation Darcy did. Let us start with the friction coefficient formula and substi-
tute the shear stress from Eq. (5.86) into the definition of C f [Eq. (5.26)]:

C f = τxr

1
2
ρU2

av

=
− R

2
dp
dx

1
2
ρU2

av

=
−R

dp
dx

ρU2
av

. (5.96)

This relation basically implies that if the friction coefficient is known then we can
calculate the pressure drop. Assuming long circular pipes, let us use �p

L instead of
− dp

dx where L is the length of the pipe:

�p
L

= C f ρ
U2

av

R
.

This could be rearranged in a form used two decades ago:

�p
ρ

= C f
L
R

U2
av.

Basically this is very close to Darcy’s formula; however, he used the pipe diameter
D (instead of 2R) and a friction factor f instead of the friction coefficient, which is
also four times larger

f = 4C f . (5.97)

If we use the results of Eq. (5.88) for laminar flow we get

f = 4C f = 64
Re

. (5.98)

Now we can write Darcy’s pressure-drop formula when the average velocity inside
the pipeline is known:

�p
ρg

= f
L
D

U2
av

2g
(5.99)

To follow the original spirit of the formula, g was added at both sides of the equation.
Note that this is basically a one-dimensional model because only the average velocity
is taken into account. Also, the dimensions on both sides of this equation are length.
This is called the “head loss,” h f , and it can be measured in terms of the liquid-
column height (the same liquid flowing in the pipeline):

h f = �p
ρg

= f
L
D

U2
av

2g
, (5.100)

and the friction factor f for laminar flow is calculated by Eq. (5.98). In many engi-
neering applications the pressure drop is expressed versus the volumetric flow rate
Q, and for a circular cross section we can write

Q = UavS = Uav
π D2

4
.
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Laminar flowWater

Dye

Transition Turbulent flow

Figure 5.11. Schematic description of Reynolds’ 1883 pipe flow experiment.

Replacing the average velocity in Eq. (5.99) with the volumetric flow rate yields

h f = �p
ρg

= f
L

D5

8Q2

π2g
. (5.101)

Another very important feature of Darcy’s formulation [Eq. (5.99)] is that it can be
used for turbulent flows as well. All that is needed now is to establish a database
of the friction factors for various cases and we can calculate the pipeline pressure
loss in many different situations. Prior to drawing practical conclusions, let us briefly
discuss the effect of turbulence on the flow in pipes.

5.7 The Reynolds Dye Experiment, Laminar–Turbulent Flow in Pipes

One of Osborne Reynolds’ (1842–1912) pipe flow experiments is described schemat-
ically in Fig. 5.11. Basically the fluid is flowing from a large container into a long
pipe, and flow rates and other parameters can be changed. Near the center of the
pipe inlet, colored dye is injected through a very thin tube (as shown). When the dye
is observed as it flows inside the tube, initially a thin concentrated line is seen. This is
expected in laminar flow, where the fluid particles move parallel (in the x direction in
this case) so there is no reason (forget diffusion) for the dye to spread laterally. At a
certain point this smooth flow is interrupted and the dye shows chaotic motions (lat-
erally), and instead of a thin concentrated line, a rapid mixing of the dye is observed.
This condition, in which the fluid particles chaotically move in all directions in addi-
tion to the main flow direction, is called turbulent flow. The region where the lami-
nar flow turns into turbulent flow is called the transition region. Reynolds was able
to show with his dye experiment that this condition occurs when the nondimensional
number ρUav D/μ is about 2000 (and this is of course the Reynolds number).

Because of the additional motion of the fluid particles, turbulent flow losses are
larger. In terms of our definitions, the shear stress and the friction coefficients are
larger than in a laminar flow. Even if the average velocity has only one component,
the one in the x direction, perturbations in the other directions exchange momentum
and create larger losses. For example, the 2D shear stress at the wall will have an
additional component, clearly increasing the shear stress:

τxr = μ
∂u
∂r

− ρu′w′ (5.102)

and here u′w′ are the perturbation velocities in the x and r directions. This also has
an effect on the velocity distribution inside the pipe, as shown in Fig. 5.12, and both
flows will have the same average velocity (and flow rate). Clearly the turbulent flow
has larger shear ( ∂u

∂r ) near the wall compared with that of the laminar solution.
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Figure 5.12. The difference between
fully developed laminar and turbu-
lent velocity distributions in a circu-
lar pipe flow.

Note that this is the first opportunity to observe the effect of turbulence in high-
Reynolds-number flows. Because of the complex motion of the fluid, the engineer-
ing approach is to approximate the average quantities, based on the laminar flow
model, as demonstrated next.

Now we can return to Darcy’s formula and plot the friction parameter for a
wide range of Reynolds numbers. For laminar flow the results are the same as in
Eq. (5.88) and f is reduced with increasing Re:

f = 4C f = 64
Re

. (5.103)

The chart in Fig. 5.13 is known as the “The Moody diagram,” which was published
by L. F. Moody in 1944. The turbulent curves for smooth pipes are significantly
higher than for the laminar case, and for the higher Re only the turbulent flow
case is present. Moody also included relative roughness, so that the effect of sur-
face smoothness can be incorporated into the pressure-loss formula (the relative
roughness is the average height of the roughness inside the pipe, k, divided by the
pipe diameter).

EXAMPLE 5.6. PRESSURE LOSS IN TERMS OF HEAD LOSS. Water is flowing in
a 10-m-long smooth pipe with a 0.02-m diameter and an average velocity of
0.15 m/s. Calculate the pressure drop.

Solution: First let us calculate the Reynolds number and use the values for the
density and viscosity from Table 1.1:

Re = 1000 × 0.15 × 0.02
10−3

= 3000.

It is still possible to maintain laminar flow, and the friction factor, from
Eq. (5.98) is

f = 64
3000

= 0.0213.



166 Viscous Incompressible Flow: Exact Solutions

f = 64
Re

Equation 5.103
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Figure 5.13. The Moody friction factor for fully developed flow in circular pipes. Note the
effect of relative roughness (k = average height of inner surface roughness).

The head loss, based on Eq. (5.62), is then

h f = �p
ρg

= 0.0213
10

0.02
0.152

2 × 9.8
= 0.0122 m (H2O) ,

so this is a little over 1 cm of water. Now if the flow is turbulent the friction
factor is about 0.042 (based on Fig. 5.13) and the pressure drop will increase by
more than two times.

5.8 Additional Losses in Pipe Flow

Actual pipelines include elbows, flanges, valves, and other devices; all may have an
effect on the flow inside the pipe. For example, Fig. 5.14(a) shows the entrance into
a pipe where the locally narrowing streamlines may create local flow recirculations
and additional pressure losses. Similarly, Fig. 5.14(b) shows the flow in an elbow
where the turning streamlines separate and create additional blockage and pressure
loss. To accommodate such losses in the pressure-drop calculations, a loss coefficient
must be defined.

Let us start with Darcy’s formula; it was already pointed out that we can call the
pressure loss a “head loss,” h f . Rewriting Eq. (5.99) we can see that the head loss
measures the loss in terms of the pipe flow’s liquid-column height:

h f = �p
ρg

= f
L
D

U2
av

2g
. (5.104)
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Figure 5.14. Additional losses in a pipeline: (a) entrance losses, (b) elbow losses.

Consequently the loss coefficients K must have the same units, and the head loss
that is due to an elbow or entrance will be estimated by

h f = �p
ρg

= K
U2

av

2g
. (5.105)

A table showing the loss coefficient K values for various conditions is depicted in
Fig. 5.15. Note that these coefficients depend on the geometry; for example, elbows
with different diameters or turn radii will have different loss coefficients.

In summary, for a long pipeline (with the same diameter) but with elbows and
other fittings, the total pressure loss (or head loss) can be summarized as

h f = �p
ρg

=
(

f
L
D

+
∑

K
)

U2
av

2g
, (5.106)

where the first term inside the parentheses is the friction inside the pipe and
∑

K is
the sum of all the additional losses.

5.9 Summary of One-Dimensional Pipe Flow

Although we started this chapter with “exact solutions” in mind, Darcy’s formula
and the Bernoulli equation provide a simple 1D model for calculating the incom-
pressible flow in pipes. The method of using these equations is depicted schemati-
cally in Fig. 5.16.

In principle we can write the Bernoulli equation [Eq. (4.7)] between two points,
as shown. However if there are losses (

∑
h f ) in the flow we can add those into the

equation: as follows

z1 + p1

ρg
+ u2

1

2g
= z2 + p2

ρg
+ u2

2

2g
+

∑
h f ; (5.107)

the losses are summarized by Eq. (5.106):

h f = �p
ρg

=
(

f
L
D

+
∑

K
)

U2
av

2g
. (5.106)

Note that in terms of velocity we see here three variables (e.g., u1, u2, and Uav –
if pipe-segment diameters are not equal), therefore, additional equations may be
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Figure 5.16. 1D model for pipe flow calculations.

needed (e.g., the continuity equation). Several examples to demonstrate the appli-
cation of these formulas are presented later in this section.

Another important observation highlighting the simplicity of Darcy’s equation
can be demonstrated by a simple water-tower example (see Fig. 5.17). Such water
reservoirs are placed at the highest point in a neighborhood, ensuring a pressurized
water supply to the users below. Assuming that the water level inside the reservoir
(point 1) is not changing then the exit velocity at station 2, without losses, is given
by the simple 1D model of Eq. (4.12):

u2 =
√

2g(z1 − z2) =
√

2gh,

and here we use h for the height difference. The losses along the pipeline that are
due to the fluid flow can be summarized by use of the head-loss term hf as given in
Eq. (5.106). Therefore a simple estimate for the average velocity in the pipe at point
2 can be obtained by reducing the available water column height for accelerating
the fluid:

u2 =
√

2g(h − h f ). (5.108)

This example not only depicts the meaning of the term head loss but it also highlights
the ingenious formulation of Darcy’s formula.

hf

h

2

Water 
tower z1

z2
u2

1

z

x

Figure 5.17. Schematic description of
a water tower. By placing the water
reservoir at the highest point in a
neighborhood the problem of a pres-
surized water supply is solved.
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QΔp

Figure 5.18. Simple pump model.

5.9.1 Simple Pump Model

Because we are dealing with pipelines, one important engineering question relates
to the power required to pump the fluid. Let us examine a simple incompress-
ible case in which the pump creates a pressure jump �p and the flow rate is Q
(see Fig. 5.18).

In general, the definition of work W is force F times distance l. But the force is
equal to the pressure difference times the cross-section area of the pipe (F = �pS)
and the work then is the pressure times the fluid volume V.

W = F × l = �pS × l = �p × V,

The power is the work per unit time and is measured in watts (W):

Power = d
dt

W = �p
d
dt

V = �pQ,

and here Q is the volumetric flow rate. In conclusion, the power required to move
the fluid is

Power = �p × Q. (5.109)

If the pump efficiency is denoted as η, the power supplied to the pump is

Powerto pump = �p × Q
η

. (5.110)

Sometimes, the pump performance is measured as a head gain hpump, which, based
on the preceding relation, becomes

hpump = �p
ρg

= η
Powerpump

ρgQ
.

With this definition, Eq. (5.107) can be modified to account for the pump head gain:

z1 + p1

ρg
+ u2

1

2g
± hpump = z2 + p2

ρg
+ u2

2

2g
+

∑
h f , (5.111)

and the ± sign depends on the direction the pump is operating (the same applies
to the

∑
h f term). A more detailed discussion on pumps and their internal flows is

presented in Chapter 11.

5.9.2 Flow in Pipes with Noncircular Cross Sections

Based on Eq. (5.98), the formula for the friction factor f can be modified to include
the flow in pipes with different cross sections. For the laminar case we can do this
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by simply replacing the number 64 in the numerator with a constant CK (and for
circular pipes CK = 64). The modified formula then becomes

f = CK

Re
. (5.112)

However, the Reynolds number is now based on the hydraulic diameter Dh and the
hydraulic diameter is based on the wetted perimeter Ph and the cross-section area
S:

Dh = 4S
Ph

. (5.113)

With these definitions the Reynolds number becomes

Re = ρUav Dh

μ
. (5.114)

Of course, for a circle the hydraulic diameter remains the circle’s diameter and for
a pipe with a square cross section the hydraulic diameter remains its height.

With these modifications and based on the geometry of the pipe cross section,
the friction factor f for the cases shown in Fig. 5.19 can be estimated (for fully devel-
oped laminar flows).

For example, the hydraulic diameter for a rectangular cross-section pipe where
a = 2b is

Dh = 4S
Ph

= 4 × a × 2a
2(a + 2a)

= 4
3

a.

To estimate the pressure drop for high-Reynolds-number turbulent flows in noncir-
cular pipes, Darcy’s formula [Eq. (5.100)] can still be used. However, in this case the
hydraulic diameter based on Eq. (5.113) must be used to estimate the friction factor
from the Moody diagram.
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Figure 5.20. One dimensional flow in a long pipe line.

5.9.3 Examples for One-Dimensional Pipe Flow

EXAMPLE 5.7. HEAD LOSS IN AN ELBOW. The purpose of this example is to demon-
strate the use of the head loss formulation to determine the corresponding pres-
sure loss and associated units. Let us consider a 6-L/min flow of water in a 3-cm-
diameter pipe that has a 90◦ elbow. Calculate the head loss that is due to the
elbow that has a loss coefficient: K = 0.32.

Solution: The head loss is calculated by Eq. (5.105), but the average velocity in
the pipe must be calculated first:

Uav = Q
S

= 6/60 × 10−3 m3/s
π0.0152 m2

= 0.141
m
s

.

Now we can use Eq. (5.105) to calculate the head loss:

h f = K
U2

av

2g
= 0.32

0.1412

2 × 9.8
= 3.24 × 10−4 m.

The unit of the head loss is in the length (meters in this case) or height of the
fluid inside the pipeline. To return to pressure units we must look at the left-
hand side of Eq. (5.105):

h f = �p
ρg

.

Consequently the pressure drop is

�p = h f ρg = 3.24 × 10−4 × 1000 × 9.8 = 3.18
N
m2

.

EXAMPLE 5.8. PRESSURE LOSSES IN A LONG PIPE. Kerosene is flowing through
the pipeline shown in Fig. 5.20. The fluid level in the main tank is 20 m above
the exit and along the line there is an additional elevation drop of 2 m, as shown.
The pipe inner diameter is 0.3 m and the inside resistance coefficient is f = 0.015.
Assume a loss coefficient for the two elbows at K = 0.3, and the properties of
kerosene are ρ = 804 kg/m3 and μ = 1.9 × 10−3 N s/m2. Based on this, calculate

(a) The average discharge velocity at the end of the pipe.
(b) The Re of the flow.

Solution: Let us use Eq. (5.107) for this case. The coordinate system is set at
the lowest elevation of the pipeline; the upper level of the fluid in the tank is
considered as point 1 and the pipe exit at the bottom is point 2. The velocity
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at point 1 is zero and the pressure at both points is ambient (e.g., p1 = p2 =
pa because at point 2 the pressure is evaluated outside the pipe); therefore the
pressure terms cancel and Eq. (5.107) becomes

(20 + 2) + pa

ρg
+ 0

2g
= 0 + pa

ρg
+ u2

2

2g
+

∑
h f . (∗)

So if the flow has no friction, the potential energy (ρgz1) will be converted into
velocity at point 2; however, the friction in this case will reduce the exit velocity.
Next we must calculate the friction losses in the pipe and in the elbows:

∑
h f = f

L
D

u2
2

2g
+ 2K

u2
2

2g
.

Substituting this into (∗) we get

22 = u2
2

2 × 9.8

(
1 + 0.015

202
0.3

+ 2 × 0.3
)

.

Note that the units are meters – because the calculation is for head loss! Basi-
cally we can solve now for the velocity, and we get

u2 = 6.07
m
s

.

The corresponding flow rate is

Q = u2S = 6.07 × π × 0.152 = 0.429
m3

s
.

In this case the friction coefficient was given (if not, we have an iterative process
with the Moody diagram). In both cases it is desirable to calculate Re (and to
see if the friction factor f selection is reasonable):

Re = 804 × 6.07 × 0.3
1.9 × 10−3

= 0.773 × 106,

and from Fig. 5.13 it appears that the friction coefficient selection was reason-
able. Also, now that the average velocity was calculated it is interesting to eval-
uate

∑
h f and demonstrate the meaning of head loss:

∑
h f = f

L
D

u2
2

2g
+ 2K

u2
2

2g
=

(
0.015

202
0.3

+ 2 × 0.3
)

6.072

2 · 9.8
= 20.12 m.

This means that, instead of the potential height of 22 m, only 1.88 m is available
at the end of the pipeline (in the form of jet kinetic energy)! Thus we can use
the ideal flow of Eq. (4.12) to calculate the exit velocity,

u2 =
√

2gh =
√

2 × 9 × 8 × 1.88 = 6.07 m/s,

and this is the same result!

EXAMPLE 5.9. LAMINAR FLOW IN A VERTICAL PIPE. In this example we combine the
friction formula with Eq. (5.107), resulting in a quadratic equation: Consider
the vertical flow of glycerin at 20 ◦C down an h2 = 0.2-m-long circular tube
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Figure 5.21. Laminar flow in a vertical pipe.

of diameter D = 0.01 m, as shown in Fig. 5.21. The liquid height in the large
container is h1 = 0.1 m. Estimate the average discharge velocity at the bottom.
(From Table 1.1 for glycerin we get ρ = 1254 kg/m3 and μ = 0.62 N s/m2.)

Solution: If we place our coordinate system at the bottom exit then the liquid
column height is 0.3 m. Again we consider point 1 at the top of the liquid (at
z1 = 0.3 m) and point 2 at the exit (a small distance after the fluid left the
pipe) and the ambient pressures are the same. Writing Eq. (5.107) for this case
results in

0.3 + pa

ρg
+ 0

2g
= 0 + pa

ρg
+ u2

2

2g
+

∑
h f .

Assuming laminar flow (which must be verified at the end), we can use
Eq. (5.98) for the pressure loss:

f = 64
Re

.

Now we can calculate the head loss as∑
h f = f

L
D

u2
2

2g
= 64

Re
L
D

u2
2

2g
= 64μ

ρ

L
D2

u2

2g
.

Substituting the head loss into Eq. (5.107) results in a quadratic equation:

0.3 = u2
2

2 × 9.8
+ 32 × 0.62

1254
0.2

0.012

u2

9.8
.

Solving for the exit velocity we get

u2 = 0.93 m/s.

Now, to make sure that we have a laminar flow, let us check the Re:

Re = 1254 × 0.93 × 0.01
0.62

= 18.8.

The Re is much less than 2000 so clearly the flow must be laminar.

EXAMPLE 5.10. FLOW IN A PIPE WITH TWO DIFFERENT DIAMETERS. Water is flowing
from a container through the pipeline, as shown in Fig. 5.22. The fluid level in
the main tank is 20 m above the exit and the pipe diameter is 0.3 m for the first
50 m. At this point, the diameter is reduced to 0.2 m and the loss coefficient for
the contraction is K = 0.1. The smaller-diameter pipeline is 100 m long and at
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Figure 5.22. 1D flow in a long
pipeline with a change in diam-
eter.

the end the water is released. Assume the same friction factor of f = 0.015 for
the two pipe segments and the properties of kerosene are taken from Table 1.1.
Calculate the average discharge velocity at the end of the pipe.

Solution: Let us again use Eq. (5.107) for this case. The coordinate system is set
at the lowest elevation of the pipeline; the upper level of the fluid in the tank is
considered to be point 1 and the pipe exit at the bottom is point 3. The velocity
at point 1 is zero, and the pressure at both points is ambient (e.g., p1 = p3 = pa).
Because of the change in pipe diameter, station 2 is added in the larger-diameter
pipe section. Writing Eq. (5.107) between point 1 and point 3 yields

20 + pa

ρg
+ 0

2g
= 0 + pa

ρg
+ u2

3

2g
+

∑
h f .

We calculate the friction losses
∑

h f by using Eq. (5.106):

∑
h f = f

L2

D2

u2
2

2g
+ K

u2
2

2g
+ f

L3

D3

u2
3

2g
.

At this point we use the continuity equation between point 2 and point 3

ρu2S2 = ρu3S3.

Knowing the pipe diameters, we can write

u2 = u3
S3

S2
= u3

(
0.2
0.3

)2

.

Substituting the friction losses and the velocity ratio into the Bernoulli equation
results in

20 = u2
3

2 × 9.8

[
1 + 0.015

50
0.3

(
0.2
0.3

)4

+ 0.1
(

0.2
0.3

)4

+ 0.015
100
0.2

]
.

As noted earlier, the units of this equations are in meters. Solving for the veloc-
ity, we get

u3 = 6.59 m/s

The corresponding flow rate is

Q = u3S3 = 6.59 × π × 0.12 = 0.20 m/s.

Let us calculate Re to verify that the flow is within the turbulent range and
that the estimate of f is reasonable. The density and viscosity are taken from
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Table 1.1 as ρ = 1000 kg/m3 and μ = 1.0 × 10−3 N s/m2:

Re = 1000 × 6.73 × 0.2
1.0 × 10−3

= 1.346 × 106,

and clearly this is within the turbulent flow range and the friction factor selection
is reasonable.

EXAMPLE 5.11. PUMP POWER REQUIREMENTS. Consider a 20-m-long, 6-cm-
diameter pipe discharging into an open container, as shown in Fig. 5.23. The
pipe inclination is 40◦. The desirable flow rate is 7.63 L/s, and the liquid (oil)
properties are ρ = 900 kg/m3 and μ = 0.18 N s/m2. Calculate the power required
to pump the liquid.

Solution: From Eq. (5.109), we need to calculate the pressure drop in the pipe.
Let us select point 1 at the pump exit and set z1 = 0 there. Next, place point 2 at
the discharge exit of the pipe (as shown in the figure). Because the required flow
rate and the pipe diameter are known, we can calculate the average velocity:

u1 = u2 = Q
S

= 7.63 × 10−3

π0.032
= 2.7 m/s.

Next we can calculate the Reynolds number so that we can select the proper
friction coefficient (and evaluate if it is laminar or turbulent):

Re = 900 × 2.7 × 0.06
0.18

= 810.

This is within the laminar region, and we can use the laminar flow formula:

f = 64
Re

= 0.079.

The head loss in the pipe is therefore

h f = f
L
D

u2
2

2g
= 0.079

20
0.06

2.72

2 × 9.8
= 9.79 m.

Now we can return to Eq. (5.107):

0 + p1

ρg
+ u2

1

2g
= 20 sin 40 + p2

ρg
+ u2

2

2g
+ 9.79.

But u1 = u2, and we get

p1 − p2

ρg
= 20 sin 40 + 9.79 = 22.65 m;
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after multiplying by ρg, we get

�p = p1 − p2 = 22.65 × 900 × 9.8 = 199,773 N/m2,

which is about 2 atm. Now we can calculate the power requirement:

Power = �p × Q = 199,773 × 7.63 × 10−3 = 1524.3 W,

which is close to 2 hp.

5.9.4 Network of Pipes

Complex networks of pipes are used in places such as chemical plants or water
distribution or treatment plants. A typical engineering requirement is to estimate
the pressure loss or the flow rates in the pipe network. To demonstrate the generic
approach for solving such problems let us use the simple 1D pipe flow model devel-
oped in Section 5.6. We can use Darcy’s formula [Eq. (5.99)] and apply it to the
simple network shown in Fig. 5.24.

Let us assume incompressible fluid and that the input pressure p1 and the exit
pressure p0 are known. The diameters Di and lengths Li of the four segments are
also known. The problem now is to find the flow rates in each of the pipe branches.
We can apply Darcy’s formula for the four branches as follows (let us simplify and
assume the same friction factor f for all pipes):

�pi = ρ f
Li

Di

u2
i

2
, i = 1, 2, 3, 4. (5.115)

At this point the four velocities and the resulting pressure drops are unknown. Three
equations can be constructed, stating the total pressure drop in the system:

p1 − p0 = �p1 + �p2,

p1 − p0 = �p1 + �p3, (5.116)

p1 − p0 = �p1 + �p4.

An additional equation is based on the continuity equation, stating that the inflow
in pipe 1 is equal to the flow leaving through the three branches:

Q1 = Q2 + Q3 + Q4. (5.117)

D1 L1
u1

p1

u4

p0

u3

p0

u2

p0

D2 L2

D3 L3

D4 L4

Figure 5.24. A simple network of pipes.
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The flow rate is related to the average velocity as

Qi = π D2
i

4
ui , i = 1, 2, 3, 4, (5.118)

and the four equations for the four unknown velocities are

2(p1 − p0)
ρ f

= L1

D1
u2

1 + L2

D2
u2

2,

2(p1 − p0)
ρ f

= L1

D1
u2

1 + L3

D3
u2

3,

2(p1 − p0)
ρ f

= L1

D1
u2

1 + L4

D4
u2

4,

D2
1u1 = D2

2u2 + D2
3u3 + D2

4u4.

(5.119)

In principle these four equations can be solved for the four velocities ui. Usually the
number of pipe segments is very large and (iterative) numerical techniques are used
to solve the system of equations.

EXAMPLE 5.12. PARALLEL FLOW IN TWO PIPES. The simplest example for a net-
work of pipes is when the flow splits between two pipes, as shown in the
Fig. 5.25. Assume water at a flow rate of 5 L/min entering a 10-m-long, and
5-cm diameter pipe at the left. The pipe then splits into two, as shown, but the
upper pipe diameter is only 3 cm. The total length of the upper pipe L1 = 12 m,
the entrance/exit losses are K1 = 0.9, and the loss coefficients in the two bends
are K2 = 0.2. Assuming f = 0.025 for both pipes, calculate the flow rates for the
upper and lower pipes.

Solution: The pressure drop along the two pipes (between the two junctions) is
the same. Therefore the pressure loss (in terms of the head loss) is calculated
for the two segments. The head loss in the upper pipe is

hu =
(

f
Lu

Du
+ 2K1 + 2K2

)
u2

u

2g
,

and the head loss in the lower pipe is

hL = f
LL

DL

u2
L

2g
.

Since the pressure drop is the same, we can compare these two equations:(
f

Lu

Du
+ 2K1 + 2K2

)
u2

u

2g
= f

LL

DL

u2
L

2g
.
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Solving for the velocity ratio, we get

u2
u

u2
L

=
f

LL

DL

f
Lu

Du
+ 2K1 + 2K2

=
0.025

10
0.05

0.025
12

0.03
+ 2 × 0.9 + 2 × 0.2

= 0.4098,

and the velocity ratio is

uu

uL
= 0.64.

The two flow rates are equal to the incoming flow of 5 L/s:

π0.0252uL + π0.0152uu = 5 × 10−3 L/s.

Solving for the velocity and the flow rate in the lower pipe, we get:

uL = 2.07 m/s,

QL = π0.0252uL = 4.06 L/s.

5.10 Open Channel Flows

Liquids flowing in open channels can be found in rivers, irrigation canals, and in
numerous industrial processes. The main difference between such flows and the flow
inside enclosed pipes is that flow rates cannot be increased by simply applying an
arbitrary pressure gradient. Moreover, in a typical case the flow is driven by gravity
(elevation change) and there is no pressure gradient.

Exact solutions of the flow details are significantly complicated by the free-
surface effects. Over the years, instead of complex multidimensional exact solutions,
a much simpler but practical approach evolved, based on the 1D pipe flows discussed
earlier in this chapter.

The objective of this section is to familiarize the reader with the basic concepts
of open channel flow (at an introductory level). Therefore the surface-wave concept
is introduced first, resulting in a classification of such flows. Next the uniform flow
case (which is somewhat similar to the pipe flow) is demonstrated. Finally, some
complex flows such as those found in hydraulic jumps and weirs are discussed, again
using overly simplified first-order approximations.

5.10.1 Simple Models for Open Channel Flows

The first task at this point is to simplify the open channel flow model without losing
the dominant physics, so that practical engineering solutions can be obtained. One
approach is to apply the methodology used earlier in this chapter, leading to simple
“one-dimensional” models. The circular pipe flow problem of Section 5.7 provided
a smooth transition between the 2D axisymmetric flow and the 1D model relying
on experimental friction coefficients. Before the same approach is adapted, some
complications in the case of open channel flow are discussed. Of course, it is clear
that parameters such as the channel slope, the cross section, the shape (top view),
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Figure 5.26. Generic velocity distribution inside two open channel flows.

or the wall’s surface roughness will have a strong effect on engineering quantities
such as flow speed and flow rate. However, even a simple 2D velocity profile cannot
be established by closed-form solutions. Consequently, from the 2D solution of the
laminar flow inside pipes (Section 5.7) we can speculate about the expected velocity
profiles, as shown in Fig. 5.26. Here rectangular and circular cross-section channels
are shown, and when the liquid level is quite high (as shown) the velocity profiles
are similar. Those velocity profiles (based on experimental results) show that the
maximum velocity is not necessarily at the free surface, and the velocity distribution
also depends on the level of the liquid in the channel.

These generic velocity distributions (shown in Fig. 5.26) can be further com-
plicated by 3D effects resulting from complex cross-section shapes or rapid turns
in channel direction. Even when significant simplifications are introduced, such as
1D flow, the problem remains complicated and empirical data are used for practical
engineering solutions (see [1–3]).

When open channel flows are compared with pipe flows, one additional compli-
cation results from the fact that the open surface shape may not be known. Let us
start with a simple example, investigating the speed at which a small surface pertur-
bation moves. This could be viewed as an approximation for surface-wave velocity.

Assume that a liquid column of height h is flowing at a velocity u, as shown
in Fig. 5.27. Because of a downstream disturbance, such as a wall or any other
obstruction (far to the right), a small discontinuity �h in the liquid-column height
is observed. A control volume is attached to this traveling surface wave so that the
sketch in Fig. 5.27 appears to be stationary. For the simplest model we can use the
1D continuity and momentum (or Bernoulli) equations. It is also clear that, for an

h

Control
volume

z

u

Δh

x

Figure 5.27. Simple model for a surface-
wave propagation over shallow water.
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incompressible liquid, the exit velocity will be lower by �u. For example, the conti-
nuity equation [Eq. (2.26)] applied to the incoming and the exiting flows is

ρuh = ρ(u − �u)(h + �h), (5.120)

and the Bernoulli equation [Eq. (4.3)] is

h + u2

2g
= (h + �h) + (u − �u)2

2g
. (5.121)

Our objective is to solve for u, which is the perturbation propagation velocity. From
Eq. (5.120) we get

�u = u�h
h + �h

≈ u�h
h

, (5.122)

and because �h � h, �h is neglected. Similarly, by expanding the square term on
the right-hand side of Eq. (5.121) we get

u2

2g
= �h + u2 − 2u�u + �u2

2g
.

Again �u � u and we get

u2

2g
≈ �h + u2

2g
+ 2u�u

2g
.

Solving for �u we get

�u = �hg
u

. (5.123)

Comparing �u in Eqs. (5.122) and (5.123) results in

u2 = gh. (5.124)

The velocity of this surface disturbance is similar to the speed of sound, and we use
the notation c instead (e.g., c ≡ u). So the surface-wave speed is

c = √
gh (5.125)

This is a simple approximation; a more accurate solution taking the wavelength into
account is presented in [4, Chapter 6]. Now that the surface disturbance was devel-
oped, we can consider other open channel flows with an average velocity of u. The
ratio between this flow speed u and the speed of the surface-wave velocity c is called
the Froude number, Fr (after William Froude, 1810–1879, an English hydrodynam-
icist):

Fr = u
c

= u√
gh

. (5.126)

This number plays an important role in open channel flows. For example, if the flow
is slower than c then perturbations such as surface waves can travel upstream. This
condition is called subcritical. If the average speed u is equal to c (called critical
condition) then a standing wave is observed, and no information can pass from the
elevated side of the flow (in Fig. 5.27). In the case in which the flow is much faster
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Figure 5.28. Model for the uniform open channel flow, flowing down a moderate slope.

than c, then clearly no wave can travel upstream and therefore the flow is called
supercritical. Using Fr, we can categorize the flow regimes as

Fr < 1, subcritical flow,

Fr = 1, critical flow,

Fr > 1, supercritical flow.

(5.127)

The first example deals with the most common form of channel flow in which liq-
uid such as water is flowing slowly because of gravity. In most cases the conditions
are subcritical and Fr < 1. On the other hand, if the flow is very fast, and Fr > 2
(supercritical), a hydraulic jump is observed; this case will be discussed later.

5.10.2 Uniform Open Channel Flows

One of the simplest open channel models is the 1D flow, down a moderate grade,
driven by gravitational forces. Most irrigation canals or rivers can be included within
this category. It is assumed that there are no sudden slope changes resulting in free-
surface irregularities or even waterfalls. The flow is fully developed, the channel
cross section is fixed, and therefore the average velocity is also unchanged. As noted,
instead of the complex velocity profiles (see Fig. 5.26), a uniform (1D) velocity is
assumed. This average velocity assumption was also used for the calculation of the
pressure drop in pipe flows and allowed the inclusion of experimental data for a
wide range of Reynolds numbers (Section 5.6). With the preceding assumptions the
following 1D model is proposed and the corresponding nomenclature is depicted in
Fig. 5.28.

Here the side view of the channel of length L is shown in which the liquid is
flowing from the left (station 1) to the right (station 2) because of the slope α, as
shown. The liquid depth in the channel may vary (at this point) and is represented
by h1 and h2, respectively. From the continuity equation we can write that the flow
rate Q is the same at both sections:

Q = u1S1 = u2S2, (5.128)
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S

Ph

Figure 5.29. Nomenclature used to define the
hydraulic radius.

where S1 and S2 are channel cross-section areas. Next, the Bernoulli equation,
Eq. (5.107), can be modified for this model and because we assume open-air con-
ditions the outside pressure is unchanged between section 1 and section 2:

h1 + z1 + u2
1

2g
= h2 + z2 + u2

2

2g
+

∑
h f , (5.129)

and here
∑

h f represents the losses (e.g., friction on the walls) that are due to the
flow. In principle, we can use Darcy’s formula [Eq. (5.99)] to estimate the losses;
however, a slightly different form, based on the hydraulic radius Rh, is used for this
problem. This term is clarified in Fig. 5.29, where S is the liquid cross-section area
and Ph is the wetted perimeter (representing the friction between the fluid and the
channel wall).

The hydraulic radius Rh is then defined as

Rh = S
Ph

. (5.130)

To use Darcy’s formula, the fully wetted diameter D must be replaced with a quan-
tity based on the hydraulic perimeter. A simple approach is to consider a rectangu-
lar pipe with a width of D. If the liquid is flowing inside the pipe, then the wetted
perimeter Ph = 4D and the cross-section area is S = D2. The hydraulic radius for
this case is then

Rh = D
4

.

Now, recall Darcy’s formula [Eq. (5.99)] and replace the pipe diameter with the
hydraulic radius (e.g., D = 4Rh):

∑
h f = �p

ρg
= f

L
4Rh

U2
av

2g
. (5.131)

At this point we can execute calculations similar to the pipe flow with friction. How-
ever, hydraulic engineers studying long irrigation channels and river flows usually
follow a somewhat simpler model. In this case we assume that the flow cross-section
area is the same and therefore, based on the continuity equation [Eq. (5.128)], the
velocity is constant. Consequently Eq. (5.129) reduces to

z1 = z2 +
∑

h f . (5.132)

Combining Eq. (5.132) with head-loss formula (5.131) and assuming that the friction
coefficient represents the average quantity for the whole length of the channel, we
get

z1 − z2 = f
L

4Rh

U2
av

2g
.
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Solving for the average velocity, we get

Uav =
√

z1 − z2

L
8Rhg

f
, (5.133)

and the flow rate Q is the average velocity multiplied by the cross-section area S:

Q = UavS. (5.134)

Note that the slope of the channel can be represented by the slope angle α:

z1 − z2

L
= tan α. (5.135)

This formulation provides an approximate method for calculating the average veloc-
ity and the flow rate in the open channel, based on the slope, cross-section geometry,
and the friction coefficient. Now let us go back in history: Antoine Chezy (1718–
1798), a French engineer studying the water supply of Paris, arrived empirically at a
similar formula, stating that

Uav = C

√
Rh

z1 − z2

L
. (5.136)

Naturally the coefficient C is called the Chezy coefficient:

C =
√

8g
f

. (5.137)

This coefficient includes the friction effects, and Robert Manning (1816–1897) a
French-born Irish engineer experimentally modified this relation for actual river
and water conduits. He proposed the following formula for the coefficient C:

C = R1/6
h

n
, (5.138)

where n is a nondimensional friction parameter, sometimes called the Manning
roughness coefficient. A short list for the values of this coefficient applicable to
various surface conditions is given in Table 5.1. Substituting this coefficient into
Eq. 5.131 yields

Uav = 1
n

R2/3
h

√
z1 − z2

L
, (5.139)

which is called the Manning equation. Because this formula is based on an empirical
correlation, the units require special attention. In the preceding formula, the units
for the hydraulic diameter and the resulting velocity are in meters (the parameter n
has no units). When the hydraulic diameter is given in feet and the resulting velocity
is in feet per second, then the formula changes slightly to

Uav = 1.486
n

R2/3
h

√
z1 − z2

L
. (5.140)

Once the average velocity is calculated, the flow rate can be calculated with
Eq. (5.134).

The following examples demonstrate the applicability of this simple model to
various open channel flows.
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Table 5.1. The Manning roughness coefficient (or friction parameter) for
several channel surfaces (after Ven Te Chow, Open Channel Hydraulics,
McGraw-Hill, New York, 1959)

Average roughness height ε

Surface n mm

Artificially lined channels
Glass 0.010±0.002 0.3
Brass 0.011±0.002 0.6
Steel, smooth 0.012±0.002 1.0

Painted 0.014±0.003 2.4
Riveted 0.015±0.002 3.7

Cast iron 0.013±0.003 1.6
Cement, finshed 0.012±0.002 1.0

Unfinished 0.014±0.002 2.4
Planed wood 0.012±0.002 1.0
Clay tile 0.014±0.003 2.4
Brickwork 0.015±0.002 3.7
Asphalt 0.016±0.003 3.4
Corrugated metal 0.022±0.005 37
Rubble masonry 0.025±0.005 80

Excavated earth channels
Clean 0.022±0.004 37
Gravelly 0.025±0.005 80
Weedy 0.030±0.005 240
Stony, cobbles 0.035±0.010 500

Natural channels
Clean and straight 0.030±0.005 240
Sluggish, deep pools 0.040±0.010 900
Major rivers 0.035±0.010 500

Floodplains
Pasture, farmland 0.035±0.010 500
Light brush 0.05±0.02 2000
Heavy brush 0.075±0.025 5000
Trees 0.15±0.05 10000

EXAMPLE 5.13. FLOW IN A TRAPEZOIDAL CHANNEL. Calculate the fully developed
average velocity and the water flow rate in a concrete wall, trapezoidal channel,
with the dimensions shown in Fig. 5.30. The slope of the channel is 0.3◦.

Solution: First let us calculate the cross-section area and the hydraulic radius.
The area S is

S =
(

1 + 0.8
tan 60

)
0.8 = 1.17 m2,

b = 1.00 m

z = 0.80 m

θ = 60°

Figure 5.30. Dimensions of the trapezoidal
channel for Example 5.13.
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and the hydraulic perimeter is

Ph = 1 + 2
0.8

sin 60
= 2.84 m.

The hydraulic radius can now be calculated:

Rh = S
Ph

= 0.41 m.

The Manning coefficient for unfinished concrete is taken from Table 5.1 as
n = 0.012. With this information, we calculate the average velocity by using
Eq. (5.139),

Uav = 1
n

R2/3
h

√
z1 − z2

L
= 1

0.012
0.412/3

√
tan 0.3 = 3.33 m/s,

and the flow rate is

Q = UavS = 3.33 × 1.17 = 3.89 m3/s.

EXAMPLE 5.14. THE BEST RECTANGULAR CROSS SECTION OF A RECTANGULAR

CHANNEL. Assuming a fully developed steady flow in a rectangular channel,
calculate the flow rate versus liquid heights z, for a given slope and Manning
factor n (see Fig. 5.31).

Solution: For a fixed slope and Manning coefficient n, the velocity in Eq. (5.139)
depends on the hydraulic radius. So the best design is one in which the flow cross
section is the largest for a given wetted area Ph. Consequently for the highest
average velocity the largest hydraulic diameter is desirable. For the rectangular
cross section the area and the wetted perimeter are

S = bz,

Ph = b + 2z.

Replacing b in the second equation with S/z results in

Ph = S
z

+ 2z.

So for a constant cross-section area the best condition is

dPh

dz
= − S

z2
+ 2 = 0;

b

z
Figure 5.31. Nomenclature of the rectangular channel for Exam-
ple 5.14.
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or, by solving this equation, we get

z2 = S
2

= bz
2

→ z = b
2
.

If we define a cross-section aspect ratio AR as

AR = z/b,

then the conclusion is that AR = 1/2 is desirable. To provide a more complete
variation of flow rates with AR, a set of calculations is performed with a fixed
cross-section area of 1 m2, a slope of 1◦, and n = 0.012. The calculations result
in the graph in Fig. 5.32.

So the wider and shallower cross section is usually better, but below AR =
0.5 the flow rate drops fast (because of the rapid increase in the wetted–friction
area).

EXAMPLE 5.15. FLOW RATES IN A CIRCULAR CHANNEL (OR PARTIALLY FILLED PIPE).

Consider a steady uniform flow in a partially filled circular pipe, as shown in
Fig. 5.33. Calculate the variation of flow rate and the average velocity versus
liquid height z using the Manning formula (the pipe diameter is D and the Man-
ning friction parameter is n).

Solution: First let us establish parameters such as the wetted perimeter and the
cross-section area. It is easier to use a view-angle parameter θ , as shown in the
figure. and calculate the liquid height z as a function of θ :

z = R(1 − cos θ).

S R

Ph

θ

z

Figure 5.33. Flow in a partially filled pipe.



188 Viscous Incompressible Flow: Exact Solutions

1.0

1.0

0.5

0.5

0.813 0.938

0 0
z
D

Q

Qmax

U

Umax

Figure 5.34. Variation of the average velocity
and flow rate versus fluid height inside a circu-
lar pipe (steady uniform flow).

The wetted perimeter, in terms of the angle θ , is

Ph = 2π R
θ

180
.

Next, the cross-section area S is calculated:

S = π R2 θ

180
− Rcos θ Rsin θ = π R2 θ

180
− R2

2
sin 2θ, (5.141)

and the hydraulic radius is

Rh = S
Ph

=
π R2 θ

180
− R2

2
sin 2θ

2π R
θ

180

= R
2

− 45R
π

sin 2θ

θ
.

The average velocity is now calculated with Eq. (5.139)

Uav = 1
n

R2/3
h

√
tan α, (5.142)

and the flow rate Q is

Q = UavS. (5.134)

Suppose we assume D = 1 m, a slope of α = 0.5◦, and a Manning friction param-
eter of n = 0.012. With these values, the average velocity [Eq. (5.142)] and flow
rate can be calculated, as shown in Fig. 5.34. The results are normalized by the
maximum value (which was at z/D = 0.813 for the velocity and z/D = 0.938 for
the flow rate). These data show that, as the circular pipe fills up, both average
speed and flow rate increase. At a certain point, however (before filling up),
the velocity reaches a maximum and then slightly drops before the pipe is full.
The flow rate follows a similar trend but reaches its maximum a bit later,
because Uav is multiplied by the cross-section area S, which always increases
with z.

5.10.3 Hydraulic Jump

When a rapid flow merges with a larger body of still liquid or some obstacle suddenly
slows down the flow, a hydraulic jump can form. We call that condition supercritical
(Fr > 1) because disturbances behind the jump cannot move upstream. The actual
fluid dynamics of such a flow is very complex, but with a simple 1D model, some
low-order estimates are possible.
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z2Figure 5.35. Nomenclature used for
the hydraulic jump.

A typical hydraulic jump is described schematically in Fig. 5.35. A high-speed
steady flow from the left (Fr � 1) is slowed down (by an obstacle an the right), and
as a result the velocity slows down and the liquid height increases. To estimate this
head increase, let us use a control volume, as shown in the figure (width b – normal
to the page), and apply the basic conservation laws. The mass flow rate of the liquid
entering the control volume at station 1 is then

ṁ = ρ1u1z1b, (5.143)

and it must be equal to the flow of the liquid leaving station 2:

ρ1u1z1b = ρ2u2z2b.

Because the flow is incompressible the continuity equation reduces to

u1z1 = u2z2. (5.144)

We can use the 1D momentum equation [as in Eq. (2.29)], and by neglecting the
external force Fx (representing the shear component) in such a short distance, we
get

ρu2
2 A2 − ρu2

1 A1 = −(p2 − pa)A2 + (p1 − pa)A1.

We can simplify the left-hand side by using the continuity equation to yield

ρu2
2 A2 − ρu2

1 A1 = ṁ(u2 − u1),

and we can approximate the pressure on both sides by the average liquid-column
height:

(p1 − pa) ≈ ρg
z1

2
,

(p2 − pa) ≈ ρg
z2

2
.

With these modifications and recalling that A1 = z1b and A2 = z2b, we find that the
momentum equation becomes

ṁ(u2 − u1) = ρg
(
−z2

2
z2b + z1

2
z1b

)
. (5.145)

Now, substituting ṁ = ρ1u1z1b from Eq. (5.107), we get

u1z1

g
(u2 − u1) = z2

1

2
− z2

2

2
. (5.146)
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Next we use the Bernoulli (or energy) equation (5.107) between the two stations,
assuming that the outside pressure is unchanged between station 1 and station 2:

z1 + u2
1

2g
= z2 + u2

2

2g
+ h f , (5.147)

where h f represents the head loss that is due to the rapid mixing. At this point
there are three equations that can be solved for the head loss h f . Let us start with
continuity equation (5.144) and solve for u2:

u2 = u1z1

z2
.

Next we substitute this into momentum equation (5.140):

u1z1

g

(
u1z1

z2
− u1

)
= z2

1

2
− z2

2

2
.

This could be rearranged as:

u2
1

g

(
z1

z2

)
(z1 − z2) = 1

2
(z1 + z2)(z1 − z2).

After canceling (z1 − z2) from both sides of the preceding equation, we can rear-
range it as (

z2

z1

)2

+ z2

z1
− 2

u2
1

gz1
= 0, (5.148)

which is a simple quadratic equation for the liquid-column height (ratio). The third
term in this equation contains the Froude number at station 1,

Fr2
1 = u2

1

gz1
, (5.149)

and we can rewrite Eq (5.148) as(
z2

z1

)2

+ z2

z1
− 2Fr2

1 = 0, (5.150)

the solution of which is

z2

z1
=

−1 ±
√

1 + 8Fr2
1

2
. (5.151)

For the present problem only the positive value of the square root is considered.
Also for Froude numbers larger than zero, (z2/z1) > 1 is expected. To calculate the
head loss we return to the energy equation [Eq. (5.147)],

h f

z1
= 1 − z2

z1
+ u2

1

2gz1
− u2

2

2gz1
= 1 − z2

z1
+ u2

1

2gz1

[
1 −

(
z1

z2

)2
]

,

and here we use the continuity equation, namely, u1z1 = u2z2. Finally, using the
Froude number, we can write:

h f

z1
= 1 − z2

z1
+ Fr2

1

2

[
1 −

(
z1

z2

)2
]

. (5.152)
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z2

z2

z2

z1

z1

z1

z1

z1

z2
z1

Fr

<1 1 Smooth flow

>9.0 >12 Strong, unsteady jump

1 to 1.7 1 to 2.0 Standing-wave or undulant jump

1.7 to 2.5 2.0 to 3.1 Weak jump

2.5 to 4.5 3.1 to 5.9 Oscillating jump

4.5 to 9.0 5.9 to 12 Stable, well-balanced steady jump

Description Sketch

Figure 5.36. Schematic classification of the types of hydraulic jumps versus Fr.

This equation estimates the head loss as a function of the Froude number. To calcu-
late the percentage of head loss we can compare the total heads at both sides of the
hydraulic jump. The incoming total head is then h1 and can be calculated by

h1 = z1 + u2
1

2g
. (5.153)

The percentage of loss is then defined as

%Loss = h f

h1
= h f

z1 + u2
1

2g

. (5.154)

Figure 5.36 provides a pictorial description for the relation between the
hydraulic jump and Fr. Of course, for Fr < 1, a uniform flow is expected and a
hydraulic jump is not possible. Near critical conditions (Fr ∼ 1.0–1.7) a standing
wave is expected with up to 7% head loss. For higher Fr (1.7–2.5) a clear hydraulic
jump is forming, with head losses of up to 15%. As the flow speed increases (Fr ∼
2.5–4.5) a strong hydraulic jump is observed, leading to head losses of up to 45%.
For much faster flows (like jets) the losses are even higher and can reach 80% head
loss.

To demonstrate the applicability of the formulation developed for the hydraulic
jump, let us solve the following example.

EXAMPLE 5.16. HEAD LOSS IN A HYDRAULIC JUMP. Water is flowing in a wide
channel at a velocity of 8 m/s. If the water-column height before the hydraulic
jump is 1 m, then calculate Fr and the head loss.

Solution: Let us first calculate the Fr of the incoming flow:

Fr1 = u1√
gz1

= 8√
9.8×1

= 2.555.
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Based on Fig 5.36, this can be classified as a weak hydraulic jump. To calculate
the height of the jump, we use Eq. (5.151):

z2

z1
=

−1 ±
√

1 + 8Fr2
1

2
= 3.148.

Consequently the height of the column because of the hydraulic jump is

z2 = 3.148 m.

We estimate the average velocity after the jump by using the continuity equa-
tion,

u2 = u1z1

z2
= 8 × 1.00

3.148
= 2.541 m/s,

and the Froude number behind the jump is

Fr2 = 2.541√
9.8 × 3.148

= 0.457,

which is a subcritical number. We then calculate the head loss by using
Eq. (5.152):

h f

z1
= 1 − 3.148

1
+ 2.5552

2

[
1 −

(
1

3.148

)2
]

= 0.787,

and h f = 0.787 m. The percentage of loss is then calculated with Eq. (5.154),

%Loss = h f

z1 + u2
1

2g

= 0.787

1 + 82

2 × 9.8

= 0.184,

so the loss is 18.4%.

5.10.4 Flow Discharge through Sharp-Crested Weirs

A sharp-crested weir is usually a flat plate placed across the open end channel, as
shown schematically in Fig. 5.37. Such devices can be used in open channel flows
to control and measure flow rates (e.g., in a field irrigation system). A similar flow-
control device, the sluice gate, was discussed in Subsection 4.5.4.

The shape of the weir (from the front view) can vary, and two generic cases are
shown in Fig. 5.38. In general, the flow on the left is moving slowly and its height

D

1

h

Weir plate

H

2

Figure 5.37. Nomenclature used for the
flow over a sharp-crested weir.
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is H + D, as shown in Fig. 5.37. As the flow approaches the weir it accelerates and
then drops sharply at the right-hand side, mixing with the fluid below.

The flow field across the weir and particularly behind it and through the lower
mixing zone is extremely complex. However, the flow rate is mostly determined
by the upstream conditions, which can be approximated by ideal flow. This is an
approach similar to the method used to estimate the flow rates through an orifice
(Subsection 4.5.3), and the losses are accounted for by an empirical loss coefficient.
Along the same lines let us observe a fluid particle far upstream (point 1) where
its velocity is negligible and its head, relative to the weir edge, is H. As the particle
reaches the weir its velocity increases, depending on its height h above the weir.
Assuming no losses between these two points we can write the Bernoulli equation
[Eq. (5.107)] as

H + D + u2
1

2g
= H + D − h + u2

2

2g
.

Assuming that the velocity at point 1 is negligible, then the velocity at point 2 is

u2 =
√

2gh,

which is the free-fall equation. Also note that the velocity above the weir varies
with h according to this relation (so the velocity is larger when point 2 is deeper).
To calculate the flow rate Q we must integrate the velocity. Assuming a rectangular
weir as in Fig. 5.38(a), we have

Q =
∫

udS =
∫ H

0

√
2ghbdh = 2b

3

√
2gH3/2, (5.155)

D

b

(a) (b)

(c) (d)

Weir
plate

H

DPlate Plate

H

D

H

b

Weir
plate

θ

θ
b

L

L > 2b

Figure 5.38. Typical shapes, from the front view, of flat-plate weirs: (left) rectangular, (right)
triangular.
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where b is the weir width. In the case of the triangular weir, the area element is

dS = h tan
θ

2
dh

and the flow rate is

Q =
∫ H

0

√
2gh tan

θ

2
hdh = 2

5
tan

θ

2

√
2gH5/2. (5.156)

Defining a discharge coefficient that will account for the losses, we can rewrite
Eq. (5.155) for the rectangular weir as

Q = CDb
√

2gH3/2 (5.157)

and we approximate the experimental discharge coefficient CD for the weir in
Fig 5.38(a) as

CD = 0.399 + 0.0598
H
D

. (5.158)

For a partial-width weir s, shown in Fig. 5.38(c), the flow is reduced by the contrac-
tion on both sides and the discharge coefficient can be approximated as

CD = 0.410
(

1 − 0.100
H
b

)
, (5.159)

and for the triangular weir case

Q = CD tan
θ

2

√
2gH5/2. (5.160)

The discharge coefficient for both weir shapes [shown in Figs. 5.38(b) and 5.38(d)]
is estimated as

CD = 0.31. (5.161)

EXAMPLE 5.17. FLOW MEASUREMENT BY A WEIR. A 0.5-m-wide and 0.5-m-high
weir [as in Fig. 5.38(a)] is measuring the flow from a larger channel, where the
depth ahead of the weir is 1 m. Calculate the flow rate across the weir.

Solution: The flow rate is given by Eq. (5.157), and the discharge coefficient
[from Eq. (5.158)] is

CD = 0.399 + 0.0598
0.5
0.5

= 0.4588.

The flow rate is then

Q = 0.4588 × 0.5
√

2 × 9.8 × 0.53/2 = 0.358 m3/s.

5.11 Advanced Topics: Exact Solutions; Two-Dimensional Inviscid
Incompressible Vortex Flow

This chapter presented several “exact solutions,” and the case of a simple vortex
flow can clearly fit in this category. This simple flow establishes important relations
between solid-body-type rotation and terms such as vorticity and circulation, which
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r
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qθ =

ωy Δθ

θ

Δr

r
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Γ
2πr

(a)

(b)

Figure 5.39. 2D flow near a
cylindrical core rotating as a
rigid body.

will be used in the next three chapters dealing with high-Reynolds-number flows.
Vortex flows are often seen in nature, and the basic properties can be calculated by
a 2D model. To illustrate the flow field of a 2D vortex, consider a 2D rigid cylinder
of radius R rotating in a viscous fluid at a constant angular velocity of ω, as shown
in Fig. 5.39(a) (think about mixing paint with a rotating rod). The no-slip boundary
condition dictates that the particles near the wall (or surface) of the rotating cylinder
will move at the same velocity. Because of the axisymmetric nature of this flow, we
can assume circular streamlines with a zero-radial-velocity component.

We select the cylindrical coordinate system with the rotation ω (see direction in
Fig. 5.39) about the x axis. Consequently the continuity equation [Eq. (2.45)] in the
r − θ plane becomes

∂qθ

∂θ
= 0. (5.162)

Integrating this equation suggests that qθ is a function of the other coordinate:

qθ = qθ (r). (5.163)

With the previous assumptions, the Navier–Stokes equation in the r direction
[Eq. (2.46)], neglecting the body-force terms, becomes

−ρ
q2

θ

r
= −∂p

∂r
. (5.164)
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Because qθ is a function of r only and because of the axial symmetry of the problem,
the pressure must be either a function of r or a constant. Therefore its derivative
will not appear in the momentum equation in the θ direction [Eq. (2.47)],

0 = μ

(
∂2qθ

∂r2
+ 1

r
∂qθ

∂r
− qθ

r2

)
, (5.165)

and because qθ is a function of r only, ordinary differentials are used. After rear-
ranging the terms in Eq. (5.165) we get

0 = d2qθ

dr2
+ d

dr

(qθ

r

)
. (5.166)

Integrating with respect to r yields

dqθ

dr
+ qθ

r
= A,

where A is the constant of integration. Rearranging this again yields

1
r

d
dr

(rqθ ) = A,

and after an additional integration

qθ = A
2

r + B
r

. (5.167)

The boundary conditions are

qθ = −Rω, at r = R, (5.168a)

qθ = 0, at r = ∞. (5.168b)

and the minus sign is a result of the rotation being opposite to the direction of θ in
Fig. 5.39. The second boundary condition is satisfied only if A = 0, and by use of the
first boundary condition, the velocity becomes

qθ = − R2ω

r
. (5.169)

This velocity distribution is plotted in Fig. 5.39(b). The velocity within the solid core
increases with the radius (rω – as in solid-body rotation) but in the fluid it decreases
at a rate inverse to the distance r. This is exactly the conservation of angular momen-
tum, because we can write for two points in the fluid that

qθr
∣∣∣
1

= qθr
∣∣∣
2
. (5.170)

When vortex flows are discussed, the term “circulation” is often mentioned. The
basic definition of the circulation � is

� ≡
∮

c
�q · dl, (5.171)

where c is a closed curve. To investigate the meaning of this term, let us perform the
closed-loop integral in the same direction of ω. The path of integration is a circle
enclosing the rotating core at a distance r > R,

� =
∫ o

2π

qθrdθ =
∫ o

2π

−R2ω

r
rdθ = 2ωπ R2, (5.172)
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and this quantity is independent of r and is constant. With the help of the circulation
�, the tangential velocity can be rewritten as

qθ = − �

2πr
. (5.173)

This velocity distribution is shown in Fig. 5.39(b) and is called vortex flow. If r → 0
then the velocity becomes very large near the core, as shown by the dashed lines in
Fig. 5.39. More important, it has been demonstrated that � is the circulation gener-
ated by the rotating cylinder. Based on Eq. (5.172), the circulation is

� = 2ωS, (5.174)

and its magnitude is twice the solid-body rotation of the cylinder multiplied by the
area S of the rotating core.

5.11.1 Angular Velocity, Vorticity, and Circulation

Because the term “angular velocity” has appeared, let us elaborate on this topic a
little bit more.

In general, the arbitrary motion of a fluid element consists of translation, rota-
tion, and deformation. To illustrate the rotation of a moving fluid element, consider
at t = t0 the control volume shown in Fig. 5.40(a). Here, for simplicity, an infinites-
imal rectangular element is selected that is being translated in the z = 0 plane by a
velocity (u, v) of its corner 1. The lengths of the sides, parallel to the x and y direc-
tions, are �x and �y, respectively. Because of the velocity variations within the
fluid the element may deform and rotate, and, for example, the x component of the
velocity at the upper-left corner (4) of the element will be (u + ∂u

∂y �y), where higher-
order terms in the small quantities �x and �y are neglected. At a later time (e.g.,
t = t0 + �t), this will cause the deformation shown in Fig. 5.40(b). We can obtain the
angular velocity component ωz (note that the positive direction in the figure follows
the right-hand rule) of the fluid element can be obtained by averaging the instanta-
neous angular velocities of segments 1–2 and 1–4 of the element. The instantaneous
angular velocity of segment 1–2 is the difference in the linear velocities of the two

2

(a) (b)

2

1

1

3

3

4 4

x

y

u
t = t0

Δy

Δx t = t0 + Δt

v Δxν + ∂v
∂x Δx∂v

∂x

Δyu + ∂u
∂y Δy∂u

∂y

+ωz
Δy

Δx

Figure 5.40. Angular velocity of a rectangular fluid element.
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edges of this segment, divided by the distance (�x):

angular velocity of segment 1 − 2 ≈ relative velocity
radius

= v + ∂v
∂x �x − v

�x
= ∂v

∂x
.

The angular velocity of the 1–4 segment is

−(u + ∂u
aly�y) + u

�y
= −∂u

∂y
.

The z component of the angular velocity of the fluid element is then the average of
these two components:

ωz = 1
2

(
∂v

∂x
− ∂u

∂y

)
. (5.175)

The two additional components of the angular velocity can be obtained similarly,
and in vector form the angular velocity becomes

�ω = 1
2
∇ × �q. (5.176)

It is convenient to define the vorticity �ζ as twice the angular velocity:

�ζ ≡ 2�ω = ∇ × �q. (5.177)

In Cartesian coordinates the vorticity components are

ζx = 2ωx =
(

∂w

∂y
− ∂v

∂z

)
,

ζy = 2ωy =
(

∂u
∂z

− ∂w

∂x

)
, (5.178)

ζz = 2ωz =
(

∂v

∂x
− ∂u

∂y

)
.

Because we already introduced the term circulation [in Eq. (5.171)] let us investigate
its relation to vorticity. This relation can be illustrated again with the simple fluid
element of Fig. 5.40. The circulation � is obtained by the evaluation of the closed-
line integral of the tangential velocity component around the fluid element (Fig.
5.40a). Note that the positive direction corresponds to the positive direction of �ω:

� =
∮

c
�q · dl = u�x +

(
v + ∂v

aly
�x

)
�y −

(
u + ∂u

aly
�y

)
�x − v�y

=
(

∂v

∂x
− ∂u

∂y

)
�x�y =

∫
s
ζzdS. (5.179)
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The circulation is therefore somehow tied to the rotation in the fluid (e.g., to the
angular velocity of a solid-body-type rotation). To estimate the vorticity in the vor-
tex flow of Fig. 5.39 we observe the results of Eq. (5.174),

� = 2ωS, (5.180)

which is exactly the same result if we use ζx = 2ω. Now let us calculate the same
integral along a line (not including the origin) shown by the dashed lines in Fig.
5.39(a). Integrating the velocity in a clockwise direction and recalling that qr = 0
results in∮

�q · d�l = 0 · �r + �

2π(r + �r)
(r + �r)�θ − 0 · �r − �

2πr
r�θ = 0. (5.181)

This indicates that this vortex flow is irrotational (vorticity free) everywhere, but at
the core where all the vorticity is generated. When the core size approaches zero
(R → 0) then this flow is called an irrotational vortex (excluding the core point,
where the velocity approaches infinity). Some important conclusions can be drawn
from this example:

1. Vorticity and rotation are generated near solid boundaries, and in this case we
call the flow in these regions rotational because

∇ × �q �= 0. (5.182)

2. However, even in viscous flows, but not close to the solid-surface boundary, the
fluid will not be rotated by the shear force of the neighboring fluid elements. In
this case the flow is considered as irrotational:

∇ × �q = 0. (5.183)

3. It appears that, when the flow is irrotational, there are no viscous flow losses (or
friction) and we can define a conservative flow field. A possible benefit of that
condition is that without viscous losses the Bernoulli equation can be applied
between any two points in the flow. This will be clarified in the discussion about
potential-flow in Chapter 8.

5.12 Summary and Concluding Remarks

This chapter demonstrated several simple solutions showing the effects of viscosity
in a moving fluid. At the same time the engineering approach for treating practi-
cal fluid-flow-related problems was established. For example, the analytical solu-
tions for laminar flow clearly showed that the friction coefficient depends on the
Reynolds number. Consequently, similar relations were established for the high-
Reynolds-number turbulent flow regime, and the principal coefficients were based
on empirical data. This rationale is followed in this chapter for the open channel
flows and also is used in the following chapters when the force coefficients (e.g., on
vehicles) are calculated for a wide range of Reynolds numbers.
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PROBLEMS

5.1. A flat plate is moving at a velocity of U = 10 m/s on top of a 1-cm-thick oil film.
The density of the oil is ρ = 920 kg/m3 and viscosity μ = 0.4 kg/(m s). Calculate the
average forward velocity of the oil film, the flow rate, the force required to pull the
plate (per 1 m2), and the friction coefficient on the plate.

5.2. Consider the viscous laminar flow of oil between two stationary parallel plates
as shown in the figure (2D, ρ = 920 kg/m3, μ = 0.4 N s/m2). Assuming that the
pressure difference between station (1) and (2) is �p = 1 atm, calculate the following
values.

(a) the velocity distribution,
(b) the average and maximum velocities,
(c) the flow rate (per unit width),
(d) the shear force on the lower plate and the upper plate,
(e) the Reynolds number and the friction coefficient on the lower wall.

1

0.01 m

z

x

u(z)

5 m

2

Problem 5.2.

5.3. Consider the laminar viscous flow between two infinite parallel plates (the
lower is stationary). Assuming that fluid viscosity μ, the distance between the plates
h, and the pressure gradient dp/dx are known, provide an expression for a zero-
shear-stress condition on the upper moving plate.

h

x

U

z

u

Problem 5.3.

5.4. A flat plate is moving at a velocity of U = 5 m/s on top of a 1-cm-thick oil film.
The density of the oil is ρ = 920 kg/m3 and viscosity μ = 0.4 kg/(m s). Also, there is
a favorable pressure gradient of dp/dx = −2μU/h2. Calculate the average forward
velocity of the oil film, the flow rate, the force required to pull the upper plate (per
1 m2), and the friction coefficient on the lower surface (at z = 0).
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h

Uz

x

Problem 5.4.

5.5. A flat plate is moving at a velocity of U = 10 m/s on top of a 1-cm-thick oil film.
The density of the oil is ρ = 920 kg/m3 and viscosity μ = 0.4 kg/(m s). Next, a favor-
able pressure gradient is applied, resulting in no shear on the upper surface (see
figure). Calculate the average forward velocity of the oil film, the pressure gradient,
the flow rate, the force required to pull the upper plate (per 1 m2), and the friction
coefficient on the lower surface (z = 0).

x

h h2h1

U

F

1

z

l

2

Problem 5.5.

5.6. A 1-cm-long, 2-cm-wide slipper bearing is floating on an oil film with a viscosity
of 0.29 N s/m2. Assuming the front gap is h1 = 0.1 mm and (h2/h1) = 2.2, calculate
the allowed vertical F load on the slider at a forward speed of 10 m/s. Also estimate
the friction drag.

5.7. The laminar flow velocity profile inside a 0.1-m-diameter pipe is given by

u(x) = 5
[( r

R

)2
− 1

]
m/s.

(a) Calculate the shear force on the wall (μ = 0.3).
(b) Calculate the flow rate and the average velocity.
(c) Calculate the friction coefficient (ρ = 800).

5.8. Oil with a density of ρ = 920 kg/m3 and viscosity μ = 0.4 kg/(m s) is flowing
at an average velocity of 0.5 m/s in a 5-m-long, 0.02-m-inner-diameter smooth pipe.
Calculate the Reynolds number, the pressure gradient, and the power required to
pump the flow.

5.9. Water is flowing down from a container, between two parallel vertical plates, as
shown in the figure. Assuming the density of the water is ρ = 1000 kg/m3

, viscosity
μ = 0.001 kg/(m s), and the spacing between the plates is 1 cm, calculate the follow-
ing volues:
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(a) maximum velocity of the water film,
(b) average velocity of the water film,
(c) the flow rate,
(d) shear force on the plate (per 1 m2),
(e) the friction coefficient Cf.

1 cm

Problem 5.9.

5.10. Oil from a large container is flowing vertically down in a 3-cm inner-diameter
circular pipe, as shown in the figure. Assuming the flow is fully developed, calculate
the shear stress at the pipe inner wall. Also calculate the shear at the center of the
pipe. Estimate the shear force acting on the inner surface of a 1-m-long pipe seg-
ment. What is the flow rate and the Reynolds number? Use motor-oil properties
listed in Table 1.1.

30 m

p1 = 103 N

m2

p2 = 0.7 × 105

3 m

N

m2

Oil

r

3 cm

z

Problem 5.10. Problem 5.11.

5.11. A fluid with density ρ = 800 kg/m3 and viscosity μ = 0.8 × 10−3 is flowing
upward through an 8-cm-diameter galvanized iron pipe. If the relative roughness
inside the pipe is k/D = 0.001875, calculate the flow rate between station 1 and
station 2.
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5.12. Estimate the diameter of a cast iron pipe required for carrying water at a
discharge rate of 85 L/s and with a head loss of 1.2 m per 300 m of pipe (assume
f = 0.015). Calculate Re and check on the Moody diagram if the value used for f is
reasonable.

5.13. A fluid with a density of 800 kg/m3 is flowing in a long 0.3-m-diameter pipe. If
the maximum velocity along the centerline is 1.5 m/s and the pressure drop along a
100-m pipe segment is 1900 N/m2, then calculate the value of the viscosity μ and the
kinematic viscosity υ (assume laminar flow).

5.14. Oil flows at an average velocity of 0.3 m/s in a 3-cm-diameter pipe. Calculate
the flow rate and the pressure drop for a 4-m-long pipe. Also calculate the Reynolds
number and check if the laminar flow formula is valid. How much will the flow
increase if the pressure gradient is increased by a factor of two.

5.15. A fluid is flowing in a 2-cm-diameter pipe at an average velocity of 0.4 m/s.
The pressure drop along a 5-m-long segment is 10,000 N/m2. Assuming laminar flow,
calculate the fluid viscosity.

5.16. Water is flowing in a 3-cm-diameter pipe at an average velocity of Uav = 2 m/s.
Assuming water density of ρ = 1000 kg/m3 and viscosity μ = 10−3 N s/m2, calculate
the velocity at the center of the pipe, the shear τ at the wall, and the Reynolds
number. Assuming laminar flow, calculate friction coefficient Cf and pressure drop
dp/dx.

5.17. Water is flowing between the two reservoirs, as shown in the figure. The differ-
ence in water surface elevation between the two reservoirs is 5 m, and the horizontal
distance between them is 300 m. Determine the size (inner diameter) of steel pipe
needed for a discharge of 2 m3/s. Use the following loss coefficients for the pipe:
entrance Ke = 0.5, valve loss Kv = 0.2, and exit loss, Kex = 1.0, and f = 0.0116. Cal-
culate the Re number and check on the Moody diagram if the value used for f is
reasonable? (υ =10−6 m2/sec and ρ = 1000 kg/m3).

300 m

5 m

KexKc
Kv Valve

Problem 5.17.

5.18. A 100-m-long and 0.1-m-diameter pipe is used to water the garden near a large
dam, as shown. The water level in the reservoir is 30 m above the horizontal pipe
(ρ = 1000 kg/m3, μ = 10−3 N s/m2, and assume a friction coefficient f = 0.012).

(a) Calculate the average discharge velocity.
(b) Calculate the Reynolds number in the pipe.
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100 m

0.1 m

30 m
Water

Problem 5.18.

5.19. Water is flowing through a 0.05-m-diameter pipe from a large reservoir, as
shown. The water level in the reservoir is 25 m above the horizontal pipe segment at
the exit from the tank. The pipe initially is bent down and later up, emerging above
ground level. The loss coefficient in the three elbows is K = 0.25, and we can assume
a Darcy friction coefficient of f = 0.02. Also, for water, ρ = 1000 kg/m3, μ = 10−3 N
s/m2.

(a) Calculate the average discharge velocity and the Reynolds number in the
pipe.

(b) Calculate the height h of the water fountain above the end of the pipe.

K = 0.252.5 m

2 m

K = 0.25

h = ?

110 m

0.05 m
1 m

Problem 5.19.

5.20. Kerosene is flowing through the pipeline shown in the figure. The fluid level
in the main tank is 20 m above the exit, and along the line there is an additional
elevation drop of 2 m, as shown. The pipe diameter is 0.3 m and the inside resistance
coefficient f = 0.015. Assume the loss coefficients for the two elbows at K = 0.3 and
the properties of kerosene are ρ = 804 kg/m3 and μ = 1.9 × 10−3. Calculate the Re
of the flow and the average discharge velocity at the end of the pipe.

20 m 150 m 50 m

2 m

Problem 5.20.

5.21. The flow in the previous problem is reversed by placing a pump at the end of
the pipeline. Consequently the kerosene is now flowing into the large reservoir at
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an average velocity of 6 m/s. Calculate the power required to pump the flow (pump
efficiency is about 0.8).

5.22. Water is flowing from a large container along an inclined pipe (20◦), as shown
in the figure. The fluid level in the main tank is h = 10 m, the pipe inner diameter is
0.1 m and its horizontal length is x = 200 m. Assuming an inside resistance coefficient

h

20°
K

x = 200 m

Problem 5.22.

of f = 0.025 and an entrance loss coefficient of K = 0.5, calculate the following
values:

(a) The average discharge velocity at the end of the pipe.
(b) The Re of the flow (ρ = 1000 kg/m3 and μ = 10−3 N s/m2).

5.23. Water is flowing from a large container along an inclined pipe as shown in the
figure of the previous problem. If the water is discharging at the pipe end at a rate
of 80 L/s, then calculate the distance x in the figure ( f = 0.025).

5.24. A conical funnel of diameter D = 30 cm is filled with oil and the fluid exits at
the bottom of a long vertical pipe, as shown in the figure. The oil level in the upper
conical part is h1 = 20 cm, the pipe inner diameter is d = 1 cm, and its length is
h2 = 60 cm. Neglecting the losses in the conical section, and assuming a resistance
coefficient of f = 0.9 in the pipe and an entrance loss coefficient of K = 0.5, calculate
the average discharge velocity at the end of the pipe (assuming h1 is not changing
fast).

D

K

d
h2

h1

Problem 5.24.

5.25. A water tower supplies water to a tap through an 8-cm inner-diameter pipe.
Dimensions of the pipeline are given in the figure and the friction coefficient is f =
0.018. Assuming the three loss coefficients are K1 = K2 = K3 = 0.25, calculate the
exit velocity and the flow rate.
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40 m

Water

0.08 m
0.5 m

K1

K2

2 m

300 m

K3

Problem 5.25.

5.26. Motor oil is siphoned from a large container, as shown in the figure. The tube
inner diameter is 0.01m, the oil density is 919 kg/m3, and its viscosity is 0.29 N s/m2.
Calculate the exit velocity at the bottom of the tube and the flow rate (volume per
second). Also calculate the Reynolds number and the friction factor f.

2.0 m

0.3 m

0.
3 

m

0.01 m 0.5 m

Problem 5.26.

L

h

d

Problem 5.27.

5.27. Wine is siphoned from a large container, as shown in the figure. The tube inner
diameter is d = 0.01 m and its total length is L = 1.5 m. The elevation difference is h
= 1 m, the wine density is 1000 kg/m3, and its viscosity is 1.9 × 10−3 N s/m2. Calculate
the exit velocity at the bottom of the tube, the flow rate, the Reynolds number,
and the friction factor f. (Hint: Use the Moody diagram for smooth tubes and iterate
for the friction coefficient.)

5.28. A motorist is helping another motorist in a stranded car by siphoning gasoline
from his automobile tank, as shown. The 1.5-m-long tube inner diameter is 0.7 cm
and the friction coefficient is estimated at f = 0.018.

(a) How long does it takes to siphon 2 liters of gasoline (assuming no effect on
the fluid level in the tank and in the container)?
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(b) Repeat the calculation but assuming no friction in the pipe. How realistic is
this solution?

0.7 m

0.05 m
Fuel
tank

Problem 5.28.

5.29. An orifice with a friction loss coefficient of CD = 0.7 is placed in a pipeline.
How does this loss factor compare with the head-loss coefficient K, as defined in
this chapter?

h f = K
u2

2g
.

Note that CD was defined for an orifice–Venturi tube in this equation:

ṁ = CD

√√√√√2ρ(p1 − p2)
1

A2
2

− 1

A2
1

.

5.30. Water is flowing out of the taller container through 0.05-m-diameter pipe,
as shown in the figure. Assuming a friction factor of f = 0.03 in the pipe system,
K1 = K2 = 0.3, K3 = 0.2, and that the flow rate is not affecting the water level in the
containers, calculate the flow rate in the pipes (�x = 70 m, �z = 10 m, z1 = 12 m,
z2 = 5 m).

z1

K2 K3

K1

Δx

Δz

x

z

D

z2

Problem 5.30.

5.31. Water is flowing out of the taller container through a 0.05-m-diameter pipe,
as shown in the figure. Assuming a friction factor of f = 0.03 in the pipe system,
K1 = K2 = 0.3, K3 = 0.2, and that the flow rate is not affecting the water level in the
containers, calculate the required z1 so that the flow rate in the pipes will be 10 L/s.
(�x = 70 m, �z = 10 m, z2 = 2 m).

5.32. Water is flowing from the taller container through a long pipe that has two
segments, as shown in the figure. The inner diameter of the thicker pipe is 6 cm
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and its length is 30 m, whereas the length of the thinner pipe is 20 m and its
inner diameter is 4 cm. The loss that is due to the transition between the two
pipe diameters is K1 = 0.2 and the friction factor for both pipes is f = 0.03.
Calculate the flow rate between the two containers when z1 = 3 m and z2 =
5 m.

z1

L1

D1 D2

L2K1

z2

Problem 5.32.

5.33. Water is pumped through a 12-m long pipe (inner diameter D = 0.08 m) from
a lower reservoir into a tank. The elevation difference is z1 – z2 = 10 m and K1 = 0.2.
Estimate the power required to drive the pump for a flow rate of 10 L/s. Assume the
pump efficiency is 0.8; the fluid properties for water are listed in Table 1.1 (assume
a smooth pipe when using the Moody diagram).

z1 = 10 m

z2 = 0
Pump

K1 = 0.2

D = 0.08 m

Problem 5.33.

5.34. Water is pumped from the lower container through 0.05-m-diameter pipe, as
shown in the figure. Assuming a friction factor of f = 0.03 in the pipe system, K1 =
K2 = 0.3, K3 = 0.2, and that the flow rate is not affecting the water level in the two
containers, calculate the power required to pump a flow rate of 10 L/s (�x = 70 m,
�z = 10 m, z1 = 12 m, z2 = 5 m).

z1

K2

K3

K1

Δx

Δz

x

z

D

z2

Pump

Problem 5.34.

5.35. Under normal conditions the left-hand side of the human heart pumps blood
at a rate of about 5 L/min into the systemic circulation, which creates a pressure
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drop of about 10,600 N/m2. The right-hand side pumps at the same flow rate but at
a lower pressure of 3400 N/m2 into the pulmonary circulation.

(a) Using the preceding average values for the pressure and flow rate, calculate
the power required to pump the fluid in both sides of the human heart.

(b) Some estimate that, at the same time, the heart consumes energy at a rate
of 12 W. Estimate the pumping efficiency.

(c) If the flow exits the left-hand side into the aorta with a diameter of 22 mm,
then calculate the local Reynolds number (ρ = 1060 kg/m3, μ = 0.003 N
s/m2).

5.36. Oil flows at an average velocity of 0.3 m/s in a 4-cm-wide and 2-cm-high
elliptical pipe. Calculate the flow rate and the pressure drop for a 4-m-long pipe.
Also calculate the Reynolds number and check if the laminar flow formula is valid
(assume density = 919 kg/m3, viscosity = 0.29 N s/m2, and an ellipse circumference
of Ph = 2π

√
0.5(a2 + b2).

5.37. Oil flows at an average velocity of 0.3 m/s in a 4-cm-wide and 2-cm-high
rectangular-cross-section pipe. Calculate the flow rate and the pressure drop for
a 4-m-long pipe. Also calculate the Reynolds number and check if the laminar flow
formula is valid (assume density = 919 kg/m3 and viscosity = 0.29 N s/m2).

5.38. Oil flows at an average velocity of 0.3 m/s in a 4-cm-wide, 2-cm-high triangular-
cross-section pipe. Calculate the flow rate and the pressure drop for a 4-m-long pipe.
Also calculate the Reynolds number and check if the laminar flow formula is valid
(assume density = 919 kg/m3 and viscosity = 0.29 N s/m2).

5.39. Compare the pressure drop for two rectangular 5-m-long pipes, with oil flow-
ing at an average velocity of 0.3 m/s (assume density = 919 kg/m3 and viscosity =
0.29 N s/m2). The first pipe is 4 cm wide and 4 cm high and the other is 8 cm wide
and 2 cm high (so both have the same cross-section area).

5.40. Air at 300 K and 1 atm is flowing at an average speed of 10 m/s through a 10-m-
long air conditioning duct having a square cross section of 0.3 × 0.3 m. Calculate the
Reynolds number, based on the hydraulic diameter (assume viscosity is 1.8 × 10− 5

N s/m2). Estimate the power needed to pump the air, using the Moody diagram to
calculate the friction coefficient (assume a smooth pipe).

5.41. Water is flowing at 5 L/min into the pipe on the left. The pipe then splits into
two, as shown, but the upper valve is partially closed. All pipes have the same inner
diameter, 2 cm. Assuming a loss coefficient of K1 = 0.2 at the two junctions, K2 =
0.3 at the elbows, and K3 = 10 at the upper valve, calculate the flow rate at the upper
and lower pipes.

K1 K1

K2

K2

Q

K2

K3

K2

Problem 5.41.
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5.42. Water is flowing at 5 L/min into a 5-cm-diameter pipe at the left. The pipe then
splits into two, as shown, but the upper pipe diameter is only 3 cm. The total length
of the upper pipe L1 = 15 m, and it has two bends with a loss coefficient of K1 =
0.2. The length of the lower pipe between points A and B is 10 m. Calculate the flow
rates for the upper and lower pipes (assume f = 0.025 for both pipes).

K1 K1
D1

D2

L1

L2A B

Q

Problem 5.42.

5.43. Water is flowing at 4 L/min into a 5-cm inner-diameter pipe at the left. The
pipe then splits into two, as shown, and the upper pipe inner diameter is also 5 cm.
The total length of the upper pipe L1 = 10 m and it has two bends with a loss coef-
ficient of K1 = 0.2. The length of the lower pipe between points A and B is 8 m.
Calculate the pressure loss between point A and point B (assume f = 0.025 for both
pipes).

5.44. Water is flowing in a V-shaped channel, as shown in the figure. The channel
slope is 1.5-m drop per 1000-m length and the Manning coefficient can be estimated
as n = 0.012. Calculate the flow rate Q.

Problem 5.44.

5.45. A 60◦ triangular weir (as in Fig. 5.38b) is measuring the flow in a water channel,
where the head ahead of the weir is H = 0.5 m. Calculate the flow rate across the
weir.

5.46. A 2-m-wide rectangular weir (shown in the figure) is controlling the water flow
in a 5-m-wide water channel. Calculate the flow rate across the weir.

5 m

2 m

2 m
1.5 m

Problem 5.46.
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5.47. A rectangular weir (as shown in the figure) is measuring the flow in a water
channel. Calculate the flow rate across the weir

3 m

Weir
2 m

0.5 m

Problem 5.47.

5.48. Water is flowing in a 1-m inner-diameter concrete pipe in a slope of 2 m per
1 km. If water level inside the pipe is h = 0.3 m, estimate the flow rate (assume a
Manning roughness coefficient of 0.012).

h

R

Problem 5.48.

5.49. Water is flowing in a 1-m inner-diameter concrete pipe in a slope of 2 m per
1 km (as in the previous problem). However, this time the pipe is half full, or h =
0.5 m. Estimate the flow rate, assuming a Manning roughness coefficient of
0.012.

5.50. Calculate the fully developed average velocity and the water flow rate in a
concrete wall, trapezoidal channel, with the dimensions shown in the figure. The
slope of the channel is 0.2◦. Assume a Manning coefficient for unfinished concrete
of n = 0.012.

b = 2 m

z = 1.5 m

θ = 60°

Problem 5.50.
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5.51. Water flow from a reservoir is controlled by a θ = 60◦ weir, and the water level
is H + D = 5 m. If the opening height is H = 1 m, calculate the flow rate across the
weir.

D

H

Plate

Problem 5.51.

5.52. A small rotating rod creates a 2D vortex flow at the origin (x–z coordinates)
with an intensity of � = 5 m2/s. Calculate the velocity components at a point (5,5).

5.53. A small rotating rod creates a 2D vortex flow at the origin (x–z coordinates)
with an intensity of � = 5 m2/s. Calculate the value of the integral

∫
qdl for a circle

of radius 5 m around the origin.



6 Dimensional Analysis and
High-Reynolds-Number Flows

6.1 Introduction

We have seen in the previous chapter that for specific cases certain terms of the fluid
dynamic equations can be neglected, yet these simplified solutions still contain the
dominant physical elements. The flow in pipes was an excellent example for devel-
oping exact solutions for the low-Reynolds-number case and then the formulation
was extended to the higher-Reynolds-number cases, based on experimental obser-
vations. Also, the examples presented in the previous chapter can be considered
as internal flows. The discussion in this chapter extends the modeling capability to
include external flows as well. One of the objectives of this chapter is to demonstrate
that neglecting certain terms in the governing equations can be done systematically.
The use of dimensional analysis allows a logical approach for simplifying the govern-
ing equations and provides relative scaling for the various terms. A secondary objec-
tive of this chapter is to introduce a flow regime called the high-Reynolds-number
flow (discussed in Chapters 7 and 8) and to explain the success of incompressible
flow models. In spite of the complex equations, a reasonable solution for the flow
over bodies (and the resulting forces such as lift and drag) can be obtained and their
physical origins explained. This approach of treating high-Reynolds-number flows
provides the basis for modern aerodynamics and hydrodynamics.

The process of simplifying the fluid dynamic equations (and neglecting certain
terms) is not arbitrary. In fact, it is based on rigorous assumptions. To demonstrate
this process, let us apply dimensional analysis in the following section.

6.2 Dimensional Analysis of the Fluid Dynamic Equations

The governing equations that were developed in Chapter 2 are very complex and,
as noted, their solution, even by numerical methods, is difficult for many practical
applications. If some of the more complex terms can be neglected in certain regions
of the flow field and at the same time the dominant physical features retained, then
a set of simplified equations will result (and probably solved with less effort). This
rationale, for simplifying the governing equations, is based on comparing the mag-
nitude of the various terms in the equations. To determine the relative magnitude of

213
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the various components, the following dimensional analysis is performed. For sim-
plicity, consider the fluid dynamic equations with constant properties (μ = const.,
and ρ = const.). The continuity equation [Eq. (2.33)] in vector form is

∇ · �q = 0, (6.1)

and the momentum equation [Eq. (2.40)] is

ρ

(
∂ �q
∂t

+ �q · ∇ �q
)

= ρ �f − ∇ p + μ∇2 �q. (6.2)

The first step is to define some characteristic or reference quantities, relevant to the
physical problem to be studied:

L, reference length (e.g., length of a car).
V, reference speed (e.g., the free-stream speed).
T, characteristic time (e.g., one cycle of a periodic process, or simply L/V).
p0, reference pressure (e.g., the free-stream pressure, p∞)
f0, body force (e.g., magnitude of earth’s gravitation, g)

With the aid of these characteristic quantities we can define the following nondi-
mensional variables:

x∗ = x
L

, y∗ = y
L

, z∗ = z
L

,

u∗ = u
V

, v∗ = v

V
, w∗ = w

V
, (6.3)

t∗ = t
T

, p∗ = p
p0

, f ∗ =
�f
f0

,

If the magnitudes of the characteristic quantities are properly selected, then all the
nondimensional variables in Eqs. (6.3) will be of the order of one, O(1). Next, the
governing equations need to be rewritten using the quantities of Eqs. (6.3) . As an
example, the first term of the continuity equation becomes

∂u
∂x

= ∂u
∂u∗

∂u∗

∂x∗
∂x∗

∂x
= V

L

(
∂u∗

∂x∗

)
,

and applying this method to all three terms in the incompressible continuity equa-
tion yields

V
L

(
∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗

)
= 0. (6.4)

It appears that all terms have the same magnitude (none of the terms can be
neglected). Consequently, the continuity equation remain unchanged. As an exam-
ple for the momentum equation, only the equation in the x direction is shown. By
applying the chain derivatives to the various terms, it appears that the multiplier
can readily be written, based on the method used for the continuity equation. For
example, the first (unsteady) term becomes

∂u
∂t

= ∂u
∂u∗

∂u∗

∂t∗
∂t∗

∂t
= V

T

(
∂u∗

∂t∗

)
,
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and the momentum equation in the x direction is

ρ

(
V
T

∂u∗

∂t∗ + V
V
L

u∗ ∂u∗

∂x∗ + V
V
L

v∗ ∂u∗

∂y∗ + V
V
L

w∗ ∂u∗

∂z∗

)
(6.5)

= ρ f0 f ∗
x − p0

L
∂p∗

∂x∗ + μ
V
L2

(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
.

The corresponding equations in the y and z directions can be obtained by the same
procedure, and they will have the same multipliers. Now, by multiplying Eq. (6.4)
by L/V and Eq. (6.5) by L/ρV2, we end up with

∂u∗

∂x∗ + ∂v∗

∂y∗ + ∂w∗

∂z∗ = 0, (6.6)

(
L

TV

)
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗ (6.7)

=
(

Lf0

V2

)
f ∗
x −

(
p0

ρV2

)
∂p∗

∂x∗ +
(

μ

ρVL

)(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
.

If all the nondimensional variables in Eqs. (6.3) are of the order of one, then all
terms appearing with an asterisk (∗) will also be of the order of one, and the relative
magnitude of each group in the equations is fixed by the nondimensional numbers
appearing inside the parentheses. In the continuity equation [Eq. (6.6)], all terms
have the same order of magnitude and for an arbitrary 3D flow all terms are equally
important (so we cannot neglect any term). In the momentum equation, however,
several nondimensional numbers multiply the various terms. The first nondimen-
sional number is

� = L
TV

. (6.8)

� is often called a time constant and it signifies the importance of time-dependent
phenomena. A more frequently used form of this nondimensional number is the
Strouhal number, in which the characteristic time is the inverse of the frequency ω

of a periodic occurrence (e.g., wake shedding frequency behind a separated plate):

St = L
(1/ω)V

= ωL
V

. (6.9)

If the Strouhal number is very small, perhaps because of very low frequencies, then
the time-dependent first term in Eq. (6.7) can be neglected compared with the other
terms of the order of one. The second group of nondimensional numbers, in which
gravity is the body force and f0 is the gravitational acceleration (g), is called the
Froude number (already introduced in Section 5.10), and stands for the ratio of
inertial force to gravitational force (actually the square root is used):

Fr = V√
Lg

.

⎛
⎝=

√
V2

Lf0

⎞
⎠ (6.10)

Small values of Fr [note that Fr−2 appears in Eq. (1.50)] will mean that body forces
such as gravity should be included in the equations, as in the case of free-surface
river flows, waterfalls, ship hydrodynamics, etc. The third nondimensional number
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is the Euler number, which represents the ratio between the pressure and the inertia
forces:

Eu = p0

ρV2
. (6.11)

A frequently used quantity that is related to the Euler number is the pressure coef-
ficient Cp, which measures the nondimensional pressure difference, relative to a
reference pressure p0:

Cp ≡ p − p0
1
2ρV2

(6.12)

The last nondimensional group in Eq. (6.7) represents the ratio between the inertial
and the viscous forces and is called the Reynolds number, which was introduced in
the previous chapter:

Re = ρVL
μ

= VL
ν

. (6.13)

Here ν is the kinematic viscosity, which is often used for sake of brevity:

ν = μ/ρ. (6.14)

For the flow of gases, from the kinetic theory point of view (see [4, p. 257] in Chap-
ter 2), the viscosity can be connected to the average velocity of the molecules c and
to the mean distance λ that they travel between collisions (mean free path) by

μ ≈ ρ
cλ
2

.

Substituting this into Eq. (6.13) yields

Re ≈ 2(V/c)(L/λ).

This formulation shows that the Reynolds number represents the scaling of the
velocity times length compared with the molecular scale. Note that c is larger than
the speed of sound (see Fig. 1.16). The conditions for neglecting the viscous terms
when Re � 1 is discussed in more detail in the next section. For simplicity, at the
beginning of this analysis an incompressible fluid was assumed. However, if com-
pressibility is to be considered, an additional nondimensional number appears that
is called the Mach number, and it is the ratio of the velocity to the speed of sound a
[see Eq. (1.33) for evaluating the speed of sound for an ideal gas]:

M = V/a. (6.15)

Usually when the characteristic velocity V is much less than the speed of sound, then
the flow can be considered as incompressible (e.g., a car traveling at 150 km/h).

6.3 The Process of Simplifying the Governing Equations

The most important outcome of this dimensional analysis of the governing equations
is that now the relative magnitude of the terms appearing in the equations can be
determined and compared. If desired, small terms can be neglected, resulting in
simplified equations that are easier to solve but still contain the dominant physical
effects. As noted, in the case of the continuity equation, all terms have the same
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magnitude and none can be neglected. For the momentum equation we can obtain
the relative magnitude of the terms by substituting the nondimensional numbers
into Eq. (6.7) , and for the x direction we get

�
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗

∂y∗ + w∗ ∂u∗

∂z∗ = 1
F2

f ∗
x − Eu

∂p∗

∂x∗ + 1
Re

(
∂2u∗

∂x∗2
+ ∂2u∗

∂y∗2
+ ∂2u∗

∂z∗2

)
.

(6.16)
The first term on the left-hand side is multiplied by the time constant, and the rest of
the terms are of the order of O(1). In the case in which time-dependent changes are
small (or the time scale is very large), � is also small. Consequently for � � 1 the
first term can be neglected and we can solve the steady-state problem only. Similarly,
if the Froude number Fr is large, then body forces have negligible effects, and the
body-force term can be neglected. The Euler number Eu is usually not negligible
because the pressure is responsible for the changes in the inertia of the moving fluid.
This leaves us with the last nondimensional group, the Reynolds number. Note that
it multiplies a second-order differential term, and, if neglected, only a first-order
differential equation remains.

One important flow regime is the so-called creeping flow, in which fluid viscosity
is very high, fluid motion is slow and the inertia terms are negligible. It is usually
assumed that Re < 1 and therefore the viscous terms cannot be neglected. With
these considerations in mind, and without body forces, we find that the momentum
equation, Eq. (6.2), is reduced to

0 = −∇ p + μ∇2 �q. (6.17)

The general solution of this equation is beyond the scope of the present text, but the
viscous flow in pipes (Chapter 5), for example, represents a similar case.

6.4 Similarity of Flows

Another interesting aspect of the process of nondimensionalizing the equations in
the previous section is that two different flows are considered to be similar if the
nondimensional numbers of Eq. (6.16) are the same. For most practical cases, in
which gravity and unsteady effects are negligible, only the Reynolds and the Mach
numbers need to be matched. For example, many airplanes are tested in small scale
(e.g. 1/5 scale). To keep the Reynolds number the same, either the airspeed or the
air density must be increased (e.g., by a factor of 5). This is a typical conflict that
test engineers face, because increasing the airspeed five times will bring the Mach
number to an unreasonably high range. The second alternative of reducing the kine-
matic viscosity ν by compressing the air is possible in only a very few wind tun-
nels, and in most cases matching both of these nondimensional numbers is difficult.
Another possibility of applying the similarity principle is to exchange fluids between
the actual and the test conditions (e.g., water with air in which the ratio of kinematic
viscosity is about 1:15). Thus a 1/15-scale model of a submarine can be tested in a
wind tunnel at true speed conditions. Usually it is better to increase the speed in the
wind tunnel, and then even a smaller-scale model can be tested (of course the Mach
number is not always matched but for such low Mach number applications this is
less critical).
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Figure 6.1. Some typical fluid flows and their Reynolds numbers. High speed sometimes
means high Mach number, and therefore the relevant Mach number range is also presented.

6.5 Flow with High Reynolds Number

One of the objectives of this discussion is to demonstrate why incompressible invis-
cid models are successfully used to predict the lift of airplanes or the pressure field
around ship hulls. This is quite obvious if the Reynolds number is high and the
viscosity terms in the momentum equations can be neglected. However, when high-
Reynolds-number flows are discussed, the effect of turbulence must be considered,
and this is done briefly in the next section.

Before proceeding further, let us examine the range of Reynolds number and
Mach number for some typical engineering problems. Because the viscosity of typi-
cal fluids such as air and water is very small, a large variety of practical engineering
problems (aircraft low-speed aerodynamics, hydrodynamics of naval vessels, etc.)
fall within the large-Reynolds-number range, as shown in Fig. 6.1.

From the large variety of cases shown in Fig. 6.1, we can conclude that, for high-
Reynolds-number flows, the viscous terms become small compared with the other
terms of the order of O(1) in Eq. (6.16) . But before we neglect these terms, a closer
look at the high-Reynolds-number-flow condition is needed. As an example, con-
sider the flow near a streamlined body (e.g., a fish in this case), as shown in Fig. 6.2.
In general, based on the assumption of a high Reynolds number, the viscous terms
in the momentum equations can be neglected in the outer flow regions (outside the
immediate vicinity of a solid surface where ∇2 �q may be large). Therefore, in this
outer flow region, we can approximate the solution by solving the incompressible
continuity and the Euler equations:

∇ · �q = 0, (6.18)

∂ �q
∂t

+ �q · ∇ �q = �f − ∇ p
ρ

. (6.19)
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Figure 6.2. Two major flow regimes in a high-Reynolds-number attached flow: (a) The outer
mostly inviscid and (b) the thin inner region, shown by the dashed curves, dominated by
viscous effects.

Equation (6.18) is a first-order partial differential equation that requires a
boundary condition on the normal velocity component on a solid surface compared
with a boundary condition on all velocity components (including tangential) for the
viscous equations. Because the flow is assumed to be inviscid, there is no physical
reason for the tangential velocity component to be zero on a stationary solid surface,
and therefore what remains from the no-slip boundary condition is that the normal
component of velocity must be zero:

qn = 0 (on a solid surface). (6.20)

However, a closer investigation of such flow fields reveals that, near the solid bound-
aries in the fluid, shear flow derivatives such as ∇2 �q become large and the vis-
cous terms cannot be neglected even for high values of the Reynolds number (see
Fig. 6.2). This thin region is usually called the boundary layer and is discussed in the
next chapter. So, in conclusion, for high-Reynolds-number attached flows we can
identify two dominant regions in the flow field:

1. The outer flow (away from the solid boundaries) where the viscous effects are
negligible. A solution for the inviscid flow in this region provides information
about the pressure distribution and the related forces. Only the zero-normal-
velocity boundary condition is used [e.g., Eq. (6.19)].

2. The thin boundary layer (near the solid boundaries) where the viscous effects
cannot be neglected. Solutions of the boundary-layer equations will provide
information about the shear stress distribution, the related (friction) forces,
and the thickness of this layer. For the solution of the boundary-layer equa-
tions, the no-slip boundary condition is applied on the solid boundary. The tan-
gential velocity profile inside the boundary layer is shown schematically in the
inset to Fig. 6.2, and it is seen that, as the outer region is approached, the tan-
gential velocity component reaches the speed of the outer flow, Ue. The inter-
face between the boundary-layer region and the outer flow region is not pre-
cisely defined and occurs at a distance δ, the boundary-layer thickness, from the
wall.
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Figure 6.3. The pressure distribution
can be obtained by the solution of the
outer (irrotational) flow. The arrows
show the direction of the pressure
force.

Consequently, the classical approach for modeling the complete solution for a
high-Reynolds-number, attached flow-field proceeds as follows:

1. First, A solution is found for the inviscid flow past the body (as in Fig. 6.2). For
this solution the boundary condition of zero velocity normal to the solid surface
is applied at the surface of the body (which is indistinguishable from the edge
of the boundary layer on the scale of the body’s length). Note that the required
velocity field can be calculated with the continuity equation only [Eq. (6.17 )].
The tangential velocity component on the body surface Ue is then obtained as
part of the inviscid solution and the pressure distribution along the solid surface
is then determined. For irrotational flows the Bernoulli equation can be used
to calculate the pressure field (instead of solving the Euler equation). Figure 6.3
depicts a schematic pressure distribution obtained from the outer solution. Inte-
grating these pressure forces on the body will provide the so-called pressure lift
and pressure drag.

2. Next, the surface pressure distribution is taken from the inviscid flow solution
and inserted into the boundary-layer equations (see next chapter). Also, Ue is
taken from the inviscid solution as the tangential component of the velocity at
the outer edge of the boundary layer and is used as a boundary condition in
the solution of the boundary-layer equations. The solution for a high-Reynolds-
number-flow field with the assumption of an inviscid fluid is therefore the first
step toward the solution of the complete physical problem. In terms of results,
this solution will provide information on the boundary-layer thickness and the
skin friction, integration of which will give the viscous drag. Note that the pres-
sure field is dictated entirely by the outer solution because there are no pressure
changes across the boundary layer.

This method is very effective in modeling attached flows, and led to major devel-
opments in the fields of aero and hydrodynamics. For separated flows, however, this
modeling technique is less effective.

6.6 High-Reynolds-Number Flows and Turbulence

The concept of turbulent flow was mentioned briefly in Subsection 1.4.2 and its
effect on the flow inside pipes was discussed in Section 5.7. The internal pipe flow
example clearly demonstrates that with increased Reynolds number the flow turns
turbulent and the friction near solid surfaces increases. Because the next two chap-
ters focus on this high-Reynolds-number-flow region, the subject of turbulent flow
is revisited here briefly. Consider a velocity-measuring probe that is inserted into
the turbulent free stream shown in Fig. 1.1. Although the average speed is in one
direction only, small fluctuations in the other directions can be detected, as well. As
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Figure 6.4. Fluctuation of the u velocity com-
ponent over time and the average velocity.

an example, Fig. 6.4 shows the time-dependent recording of the momentary velocity
in the x direction.

Based on the data in Fig. 6.4, the average velocity ū for the time period between
t1 and t2 is defined as

ū = 1
t2 − t1

∫ t2

t1
udt . (6.21)

Similarly the momentary velocity vector will have perturbation components in all
directions (u′, v′, w′), and will have a form

�q = (ū + u′, v′, w′), (6.22)

and the average velocity �qav is in one direction only

�qav = (ū, 0, 0).

This short introduction suggests that turbulent flows are time dependent and three-
dimensional! This feature significantly complicates the fluid mechanic model and
usually average-flow-based models are used (as in the case of the pipe flow in Sec-
tion 5.4). The next question is related to how and under which conditions turbulence
evolves. Usually strong shear conditions near solid surfaces or in open jets can lead
to turbulence, but most laminar flows may turn turbulent if the Reynolds number is
increased (up to a point called the transition point). The Reynolds experiment (see
Section 5.7) suggested that transition from laminar to turbulent flow inside a smooth
pipe occurs at about Re = 2000. For external flows over streamlined shapes, such as
airfoils, transition occurs at much higher Reynolds numbers (e.g., Re–105–107) and
depends on the body’s shape (streamlining) and its surface roughness.

The illustration in Fig. 6.5 provides an oversimplified model for the transition
from laminar to turbulent flow near the surface of a flat plate. Initially at the front
of a body, the Reynolds number is low and the flow is laminar. Near the surface the
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y

z

u(z)
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vortex
filament

Regions of
streamwise
vorticity

Final
breakup to
turbulent
flow

Figure 6.5. Schematic description of transition to turbulent flow.
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fluid particles come to a halt (the no-slip boundary condition) and the shear flow
near the wall is described by the velocity diagram on the left. The shear naturally
creates angular momentum, or vorticity, as illustrated by the single spanwise vortex.
As the angular momentum accumulates, an instability develops, partially lifting the
vortices above the wall. Of course the velocity above the wall is faster, resulting in
the stretching and eventually the breaking up of the vortices into small segments.
These vortices are now responsible for the perturbations of the velocity vector in
the other directions.

This brief introduction suggests that in turbulent flow more momentum is lost
(larger friction), but diffusion is enhanced. So if a red drop of dye is placed on the
surface it will smear fast and will not clearly follow a streamline, as expected in
laminar flow.

One possible approach for modeling turbulent flows was proposed by Osborne
Reynolds and is based on averaging the velocity components. Based on Eq. (6.22)
the velocity vector is

�q = (ū + u′, v̄ + v′, w̄ + w′). (6.23)

For this example let us assume steady-state (average) flow and no body forces; the
incompressible momentum equation [Eq. (6.2)] in the x direction becomes

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
. (6.24)

By introducing the turbulent velocity vector of Eq. (6.23), this equation may end up
in the following form; the ( ¯) sign indicates average quantities:

ū
∂ū
∂x

+ v̄
∂ū
∂y

+ w̄
∂ū
∂z

= −1
ρ

∂ p̄
∂x

+ μ

ρ

(
∂2ū
∂x2

+ ∂2ū
∂y2

+ ∂2ū
∂z2

)
−

(
∂ū′2

∂x
+ ∂u′v′

∂y
+ ∂u′w′

∂z

)
.

(6.25)
This demonstrates the level of complication that is due to the addition of more
unknowns. The additional perturbation-based Reynolds stresses (the terms in the
right-hand parentheses) are responsible for the additional momentum transfer. In
recent years large efforts were invested in modeling turbulent flows. Because of the
highly complex nature of such models, the following two chapters are based on an
empirical approach in which turbulent flows are discussed (similar to the treatment
of turbulent flows in pipes). Therefore the discussion usually starts with a laminar
flow model, which is then extended into the turbulent flow range, based on experi-
mental data.

6.7 Summary and Conclusions

The dimensional analysis presented have provides a rational approach for simpli-
fying the governing equations. As a prelude to the following two chapters, simpli-
fied models for the high Reynolds number flows are presented. In fact, very large
percentage of fluid mechanic problems can be classified as high-Reynolds-number
flows (e.g., subsonic aerodynamics or hydrodynamics). From the historical perspec-
tive, inviscid solutions evolved rapidly and were used to calculate the flow and the
resulting pressure field over objects (without starting with the Navier–Stokes equa-
tions). One important example is the explanation of an airplane wing’s lift through



Problems 223

the use of simple vortex models. The analysis of this chapter attempts to explain
why these methods produced reasonably accurate results.

PROBLEMS

6.1. Write the Euler equations in the 2D r–θ coordinate system. [Hint: Start with
Eqs. (2.46) and (2.47)].

6.2. The incompressible, steady-state, 2D momentum equation in the x direction
(without body forces) is

u
∂u
∂x

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂z2

)
.

Derive the nondimensional form of this equation by using the following character-
istic quantities for the dimensional analysis:

x∗ = x
L

, z∗ = z
δ

u∗ = u
U

, w∗ = w

W
, p∗ = p

p0
.

Suppose that δ � L and U � W; then which terms can be neglected?

6.3. Use the characteristic quantities from the previous problem to simplify the 2D
momentum equation in the z direction

u
∂w

∂x
+ w

∂w

∂z
= −1

ρ

∂p
∂z

+ μ

ρ

(
∂2w

∂x2
+ ∂2w

∂z2

)
.

Again, assume that δ � L and W � U.

6.4. Perform a dimensional analysis on the 2D incompressible Navier–Stokes equa-
tions:

u
∂u
∂x

+ w
∂u
∂z

= fx − 1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂z2

)
,

u
∂w

∂x
+ w

∂w

∂z
= fz − 1

ρ

∂p
∂z

+ μ

ρ

(
∂2w

∂x2
+ ∂2w

∂z2

)
.

Use the following nondimensional parameters,

x∗ = x
L

, z∗ = z
L

u∗ = u
U

, w∗ = w

U
, f ∗ = f

g
p∗ = p

p0
,

but now consider the creeping flow assumptions where U2 � Lg and μ � ρUL.

6.5. In the discussion about the viscous terms in the fluid dynamic equations it
was mentioned that the Reynolds number represents the ratio between actual and
molecular scalings of length times velocity. To check this model, consider a bird with
a characteristic length of L = 0.2 m, flying at a speed of 14 m/s. Assuming standard
conditions, c = 468 m/s and λ = 6.8 × 10−8 m, calculate the Reynolds number by the
formula

Re = 2
VL
cλ

and by using the definition in Eq. (6.13) (take the density and viscosity values for
air from Table 1.1).
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6.6. Prove that the Reynolds and the Strouhal numbers are nondimensional by sub-
stituting engineering units into their definitions.

6.7. The vortex-shedding frequency ω behind a large truck traveling at a speed of U
can be estimated by the Strouhal number as

St = ω

2π

L
U

= 0.2,

where L is the truck width.
This can be felt by smaller vehicles (such as a motorcycle) traveling behind the

truck. Calculate the shedding frequency for a 2-m-wide truck traveling at 100 km/h.
Also estimate the distance D between two vortex cycles.

D

L

Problem 6.7.

6.8. A quarter-scale model of the truck in the preceding problem was placed in a
wind tunnel. If the model is tested at a true speed of 100 km/hr, calculate the vortex-
shedding frequency and the distance between two shedding cycles. If the intention
is to have the same frequency as in full scale, then what is the desirable air speed in
the wind tunnel?

6.9. The quarter-scale model of a tall cylindrical chimney was tested in a wind tunnel
at a speed of 25 km/h and the vortex-shedding frequency was measured at 3 Hz.

(a) At what wind speed will the vortex-shedding frequency be the same for the
full-scale chimney? (Hint: Keep St constant).

(b) Can you keep both the Reynolds number and the Strouhal number constant
in such a quarter-scale test?

6.10. The Froude number for an open channel flow of velocity U and a depth of h
was defined in Chapter 5 as

Fr = U√
gh

.

(a) Calculate the value of the Froude number for a 1-m-deep channel in which
the water is flowing at an average speed of 0.5 m/s.

(b) The channel shape was tested in a 1/10-scale model. What is the desirable
average velocity in order to keep the same Froude number (and not change
the surface-wave behavior)?

6.11. The length of a proposed submarine is 100 m and the planned speed is
20 km/h. To estimate the power requirements for the propulsion system, the vehicle
resistance must be evaluated. It was proposed to build a wind-tunnel model of the
submarine and test it in air. If the similitude assumption is used, what is the required
length of the wind-tunnel model if the test speed is 80 m/s?

6.12. A 0.3-m-long fish is swimming in a river at a speed of 0.2 m/s. Calculate the
Reynolds number based on its length.
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6.13. A 20-m-long boat sails at a sped of 20 km/h. Calculate the Reynolds number
(based on its length), using the seawater properties listed in Table 1.1.

6.14. To study the velocity profile of motor-oil flow in a circular pipe, it was pro-
posed to conduct a test using water (instead of oil). The oil-conducting pipe diame-
ter is 0.4 m and the expected average velocity is about 1.5 m/s. For the properties of
these two fluids, use the values listed in Table. 1.1.

(a) Suppose the same diameter pipe is used for the test with the water. What is
the average water velocity for the two flows to be similar?

(b) Would you change the pipe diameter, too, for the test with the water?

6.15. Near the radiator inlet of a car moving at a speed of U = 100 km/h the air is
stopped and the pressure coefficient is

Cp ≡ p − p0
1
2ρU2

= 1.0.

Calculate the pressure rise compared with the undisturbed surrounding pressure
p0 (ρ = 1.2 kg/m3).

Convert your results to pressure in terms of water head (water density is
1000 kg/m3).

6.16. At the roof of the car in the previous problem, a pressure coefficient of −1.0
was measured. Calculate the airspeed at that point.

6.17. Suppose a quarter-scale model of the same automobile was tested but at a true
speed of 100 km/h. Calculate the pressure in front of the radiator, where Cp = 1, and
on the roof, where Cp = −1.

6.18. The average chord of an airplane’s wing is 4 m and it flies at sea level (ρ =
1.225 kg/m3, μ = 1.78 × 10−5 N s/m2, T = 288 K, γ = 1.4) at a speed of 1000 km/h.
Calculate the Mach number and the Reynolds number based on the wing average
chord.

6.19. The airplane of the previous problem flies at the same speed of 1000 km/h, but
at an altitude of 10,000 m, where ρ = 0.413 kg/m3, μ = 1.46 × 10−5 N s/m2, T =
223 K, γ = 1.4.

(a) Calculate the Mach number and the Reynolds number based on the wing
average chord.

(b) What percentage of speed reduction is required if the airplane must fly
at the same Mach number as calculated for sea level (in the previous
problem)?

6.20. Water is flowing in a 2.5-cm inner-diameter pipe. Calculate the minimum flow
rate at which the flow is expected to be laminar (assume that transition occurs at
Re = 2000. Use fluid properties from Table 1.1).

6.21. Oil flows through a 3-mm inner-diameter tube to lubricate the bearings of a
large machine.

(a) Taking the properties of SAE 30 oil from Table 1.1, calculate the flow rate
for a laminar Reynolds number of Re = 1000.

(b) This flow is modeled by use of a larger tube of 2.5-cm inner diameter. Cal-
culate the flow rate for the same Reynolds number.
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6.22. An airplane flies at a speed of 900 km/h, at an altitude of 10,000 m, where
ρ = 0.413 kg/m3, μ = 1.46 × 10−5 N s/m2, T = 223 K, γ = 1.4. If the wing average
chord is 4 m and transition from laminar to turbulent flow is expected at Re = 106,
calculate the percentage of chord with laminar flow.

6.23. The drag of a football is investigated in a water tunnel with a quarter-scale
model and matching the full-scale Reynolds number. If the actual expected speed is
assumed at 95 km/h, estimate the ratio of the drag force between the model and the
full-size football. Use the fluid properties (for air and water) as listed in Table 1.1
and assume that the force F on the ball varies as F ∼ ρU2D2, where D is the ball
diameter.

6.24. A 5-m-wide, 2-m-deep irrigation water channel is simulated by a 1/10–scale
model. To maintain smooth flow, without strong surface waves, the Froude number
(u/

√
gh) must be kept below 1. Estimate the average speed and the water flow rate

in full scale and for the small-scale model for Fr = 0.8.

6.25. A 4-m-wide road sign oscillates heavily in a 15-km/h crosswind. To study the
problem a 1/20-scale model was placed in the water-tunnel. Estimate the water-
tunnel speed if both the Reynolds number and the Strouhal number must be kept
the same (at 0.2) as in full scale, as well as the oscillation frequency. (Use fluid
properties from Table 1.1.)

6.26. To study a small insect’s aerodynamics, helium was used instead of air in a
wind tunnel. If flow speed remains the same as in actual scale, estimate how much
the insect model size can increase and still maintain the true Reynolds number (for
helium use ρ = 0.179 kg/m3, μ = 1.9 × 10−5 N s/m2).

6.27. It is proposed to build a wind tunnel using compressed air so that smaller mod-
els can be tested (but at the same Reynolds number). Compare the power require-
ments for two wind tunnels operating at the same speed; one is using atmospheric
condition and the other (one half-width and height) has 2-atm compressed air inside.
(Assume the required power is proportional to the mass flow rate and air viscosity
is independent of pressure.)

6.28. The free-stream velocity in the test section during an early morning wind-
tunnel test was 100 km/h and the temperature was 280 K (use ρ = 1.2 kg/m3, μ =
1.8 × 10−5 N s/m2). The same test is repeated in the afternoon but now the tem-
perature was 310 K (to calculate ρ, use the ideal-gas relation, μ = 2.0 × 10−5 N
s/m2).

(a) Calculate the desirable free-stream speed to maintain the Reynolds number
of the morning test.

(b) At what speed will the forces (e.g., lift and drag) be the same as in the
morning?



7 The (Laminar) Boundary Layer

7.1 Introduction

The previous chapter discussed the physical aspects of high-Reynolds-number flow
and concluded that far from a solid surface the viscous effects are negligible (and
the flow is irrotational). The models presented in this chapter and in the next are
aimed at streamlined shapes without flow separation. Based on experimental data,
these results can be later generalized to include effects of flow separation. It was also
concluded in Chapter 6 that near a solid surface the fluid particles must adhere to
the zero-slip boundary condition and therefore viscous effects cannot be neglected.
This region is called the boundary layer and is assumed to be thin compared with
the dimensions (e.g., length) of the body around which the fluid flows. To clarify the
high-Reynolds-number-flow assumption, consider a 4-m-long streamlined automo-
bile traveling at U∞ = 100 km/h (as in Fig. 7.1). Taking the density and viscosity
values for air from Table 1.1, we can calculate the Reynolds number:

Re = ρU∞L
μ

= 1.22 × 100/3.6 × 4
1.8 × 10−5

= 7.5 · 106.

This is a very large number, considering that all terms in Eq. (6.7) were of the order
of O(1), and clearly indicates that the viscous terms are negligible. The conclusion
at this point is that indeed many flows of interest fall within this high-Reynolds-
number-flow category. Figure 7.1 demonstrates the nature of the two flow regimes.
As the air moves around the body, its velocity changes and at any point we can
call this (outer) velocity Ue (how to calculate this velocity is discussed in the next
chapter). Within the thin boundary layer, denoted as δ, the velocity must change
from zero to Ue, as shown in the inset to Fig. 7.1.

Consequently the discussion in this chapter is aimed at deriving a basic
boundary-layer model and the elements necessary to explain the concept of combin-
ing the inner viscous and the outer inviscid flows. With these two (inner and outer
flow) high-Reynolds-number-flow models in mind, the information sought from the
viscous boundary-layer solution in this chapter is as follows:

1. The scale, or thickness, of the boundary layer and its streamwise growth.
2. Displacement effects (to the outer flow model) that are due to the slower veloc-

ity inside the viscous layer.

227
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Figure 7.1. Schematic descrip-
tion of a high-Reynolds-number-
flow boundary layer on the upper
surface of a car. The inset depicts
the velocity distribution near the
solid surface.

3. The skin-friction and resulting drag estimates that cannot be calculated by the
outer inviscid flow.

4. Based on the laminar boundary-layer model, parameters such as the boundary-
layer thickness or the skin friction will be extended into the turbulent flow
range, mostly by use of empirical correlations (similar to the method used for
the friction coefficient in pipes – with the Moody diagram).

It is interesting to compare the internal flow between two parallel plates in Sec-
tion 5.33 (the Poiseuille flow – between the wall and the centerline) with the cur-
rent external boundary-layer flow. In both cases the no-slip boundary condition is
applied to the solid surface resulting in a velocity profile that increases with the
distance from the solid surface. Consequently we may expect similar conclusions
regarding the skin friction and its dependence on the Reynolds number. We shall see
later that indeed the laminar friction coefficient decreases with increased Reynolds
number (see also the Moody diagram for pipe flows), as well as the trends in the
experiment-based turbulent friction coefficient.

From the historical perspective, the German scientist Ludwig Prandtl (1874–
1953) was the first to develop the 2D boundary-layer equations, circa 1904. One of
his first students, Paul Richard Heinrich Blasius (1883–1970), provided the first ana-
lytical solution (circa 1908) for these equations. This solution is quite complex and
beyond the scope of this text, but its results are described in the advanced topics
subsection, Subsection 7.6.1. Of course, nowadays we can solve the boundary-layer
equations numerically, and the results should duplicate the Blasius solution. A third
approach is called the integral approach that is quite simple to explain and is pre-
sented next.

7.2 Two-Dimensional Laminar Boundary-Layer Flow over a Flat Plate –
(The Integral Approach)

Let us propose a simple flat plate model, as shown in Fig. 7.2, in which the plate is
parallel to the free stream U∞. In actual flows, as in the case described in Fig. 7.1, the
surface is curved and the outer velocity changes locally [e.g., Ue = Ue(x, t) where x
is the coordinate along the surface]. In this case, however, we assume a thin plate
and therefore the outer velocity remains (Ue = U∞). We can select several vertical
points and inject tracers (or colored dye) at t = 0. After a while (1 s in Fig. 7.2) we
observe the location of the tracers and we can see the expected velocity profile inside
the boundary layer, so an additional objective would be to determine the shape of
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Figure 7.2. Boundary-layer model on a flat plate.

this velocity distribution. Of course, in the case shown in Fig. 7.2 such a boundary
layer will form both above and under the plate, but our discussion will focus on one
(the upper) layer only.

As noted in Chapter 2, an analytical solution of the complex fluid dynamic equa-
tions is next to impossible, but through careful modeling we may simplify them into a
form that can be solved. This case is no exception, and we can start with the assump-
tions that properties are constant (μ = const. and ρ = const.) and that body forces
such as gravity are negligible. Next we limit ourselves to a 2D laminar flow case (as
in Fig. 7.2). Another very important assumption, based on the exact solution, is that
velocity profiles u(z) at any station along the plate are similar in shape. This means
that a universal velocity profile can be assumed (when there is no pressure gradi-
ent). Also, as noted, a control-volume approach for developing the boundary-layer
integral formulation is more intuitive and much simpler to present.

This basic model is described schematically in Fig. 7.3, where a laminar bound-
ary layer develops along a flat plate, placed in a parallel free stream with a velocity
of Ue. An x–z coordinate system is placed at the leading edge of the plate, as shown
in the figure. From this point and on, a boundary layer of thickness δ(x) develops,
having a velocity profile (not yet known) with zero velocity at z = 0. A rectangular
control volume (actually a 2D control surface) of length dx is placed such that it is
bounded by the four corners 1–2–3–4. The plane 2–4 is placed above the boundary
layer, at z = ze, where there are no transverse changes in the u component of the
velocity; and a constant free-stream speed Ue prevails. Our objective is to evaluate

2 4
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zeu
δδ(x)
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Figure 7.3. The control-volume model used to develop the integral boundary-layer equa-
tions.
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the change in the momentum entering and leaving the control volume and to bal-
ance this change with the external forces (namely the shear stress on the plate and
the pressure gradient in the x direction).

Let us start by evaluating the mass flow rate entering the control element
through plane 1–2 and assume the flow is incompressible:

ρ

∫ ze

0
udz.

The flow rate leaving through plane 3–4 can be approximated by use of the first term
of a Taylor series:

ρ

∫ ze

0
udz + ρ

d
dx

(∫ ze

0
udz

)
dx.

Because there is no flow across the wall (plane 1–3), the net change in the mass flow
rate must have occurred through plane 2–4 and is

ρ
d

dx

(∫ ze

0
udz

)
dx (7.1)

In a similar manner (simply multiplying by the velocity), the momentum in the x
direction entering across plane 1–2 is

ρ

∫ ze

0
u2dz (7.2)

and leaving through plane 3–4 is

ρ

∫ ze

0
u2dz + ρ

d
dx

(∫ ze

0
u2dz

)
dx. (7.3)

The mass flow rate change through plane 2–4, expressed by Eq. (7.1), has a con-
stant speed of Ue outside the control surface. Therefore the momentum crossing
this plane is

ρUe
d

dx

(∫ ze

0
udz

)
dx. (7.4)

The time rate of the momentum change within the control surface is

ρ
∂

∂t

(∫ ze

0
udz

)
dx. (7.5)

Thus the net rate of change of the momentum in the x direction is due to the change
with time [Eq. (7.5)] and due to the difference between the momentum leaving
[Eq. (7.3)] and entering [Eqs. (7.2) and (7.4)] the control surface;

ρ
∂

∂t

(∫ ze

0
udz

)
dx + ρ

∫ ze

0
u2dz + ρ

d
dx

(∫ ze

0
u2dz

)
dx

−ρ

∫ ze

0
u2dz − ρUe

d
dx

(∫ ze

0
udz

)
dx

= ρ
∂

∂t

(∫ ze

0
udz

)
dx + ρ

d
dx

(∫ ze

0
u2dz

)
dx − ρUe

d
dx

(∫ ze

0
udz

)
dx. (7.6)
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At this point, Eq. (7.6) provides the information on the fluid acceleration. To com-
plete the momentum relation (e.g., ρax = ∑

F), the forces acting on the control
element must be added. Thus, according to the momentum principle, this change
in the linear momentum [as in Eq. (7.6)] must be equal to the forces acting on the
control volume in Fig. 7.3. Because the body forces were neglected, the only forces
acting are the pressure and the laminar shear stress on the wall. Using Eq. (1.14),
we find that the shear force on the wall, along segment 1–3, is

−τwdx = −μ
∂u
∂z

∣∣∣∣
z=0

dx. (7.7)

Because this is a thin layer and the vertical velocity components are small, all terms
in the momentum equation [Eq. (5.2c)] vanish and we conclude that the pressure
is independent of z (inside the boundary layer); then p(x) is a function of x only.
Consequently the pressure force on segment 1–2 is simply pze and on segment 3–4
is

−
(

p + dp
dx

dx
)

ze;

the net force acting on the control surface is the sum of the shear and pressure
forces: ∑

F = −τwdx − dp
dx

dxze. (7.8)

Equating the forces in Eq. (7.8) with the change in the momentum in Eq. (7.6)
results in

ρ
∂

∂t

(∫ ze

0
udz

)
dx + ρ

d
dx

(∫ ze

0
u2dz

)
dx − ρUe

d
dx

(∫ ze

0
udz

)
dx

= −τwdx − dp
dx

dxze.

Now if we let ze → δ and divide by ρdx, we obtain the von Kármán integral equation
for momentum change in the boundary layer:

∂

∂t

∫ δ

0
udz + d

dx

∫ δ

0
u2dz − Ue

d
dx

∫ δ

0
udz = −τw

ρ
− 1

ρ

dp
dx

δ. (7.9)

This equation is named after the Hungarian-born and later U.S. scientist Theodore
von Kármán (1881–1963) who completed his doctoral dissertation under Prandtl.

7.3 Solutions Based on the von Kármán Integral Equation

The shear on the wall, for example, in integral momentum equation (7.9) depends
on the velocity distribution; therefore this equation cannot be solved without addi-
tional information. The necessary information can be obtained from an assumed
similar velocity profile family f (η):

u(x, z)
Ue

= f (η), (7.10)
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where the nondimensional vertical parameter η is defined as

η = z
δ(x)

. (7.11)

This means that at any x station along the plate, the shape of the velocity distribution
[Eq. (7.10)] is uniform. For example, at z = δ, the velocity is equal to the outer
flow, u(z) = Ue, as well as the first and second derivatives of u(z) = 0. This idea was
actually presented by Blasius in his 1908 solution of the boundary-layer equations.
He too assumed that the shape of the velocity profile is uniform and will grow along
x and its nondimensional shape [as in (Eq. 7.10)] is unchanged (if there is no pressure
gradient). Consequently, the first step in the process of solving this problem is to
guess a velocity profile inside the boundary layer.

We can demonstrate the simplicity of the integral approach by suggesting an
approximate velocity distribution within the boundary layer. Then, parameters such
as the boundary-layer thicknesses and skin-friction coefficient can be readily calcu-
lated. For example, even simple polynomial velocity profiles can be used:

u
Ue

= f (η) = a0 + a1η + a2η
2 + · · · + {0 ≤ η ≤ 1}.

Let us limit the discussion to the case for the boundary layer along a flat plate,
in steady state and without a pressure gradient. For the flow between two plates
(section 5.3.3) we have seen linear and parabolic velocity distributions, so clearly the
a1 and a2 terms will be included. However, the a0 term cannot be included because
the velocity must be zero on the plate (at z = 0). In an effort to expand the number
of terms used, let us propose the following velocity distribution:

u
Ue

= a1η + a2η
2 + a3η

3 + a4η
4. (7.12)

The boundary conditions for the original boundary layer problem are

at z = 0, u = w = 0;

at z = δ, u = Ue,
∂u
∂z

= 0, (7.13)

and the requirement for smooth transition at the outer edge of the boundary-layer
dictate: ∂u/∂z = 0 at z = δ. We can generate additional boundary conditions by
observing the change of the streamwise momentum inside the boundary layer, but
without the pressure gradient. Thus assuming that (∂Ue/∂x) = 0, combined with the
previous boundary conditions, results in

at z = 0,
∂2u
∂z2

= 0;

at z = δ,
∂2u
∂z2

= 0. (7.14)

Applying at z = δ, u = Ue to Eq. (7.12), we get

1 = a1 + a2 + a3 + a4; (*)

at z = δ, (∂u/∂z) = 0,

0 = a1 + 2a2 + 3a3 + 4a4; (**)
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at z = δ, (∂2u/∂z2) = 0,

0 = 2a2 + 6a3 + 12a4, (***)

and the last boundary condition at z = 0, (∂2u/∂z2) = 0,

0 = 2a2, (****)

Solving these four equations for the four coefficients a1, a2, a3, a4 results in the fol-
lowing equation for the velocity profile:

u
Ue

= 2η − 2η3 + η4. (7.15)

As noted, this is a universal velocity distribution, which is similar along the plate.
The next step is to solve for the evolution of the boundary-layer thickness along

the plate and for the associated frictional losses. For simplicity, let us consider a
steady-state case, without a pressure gradient (e.g., ∂/∂t = 0 and dp/dx = 0). To
solve the problem for δ we substitute this velocity profile into von Kármán’s integral
equation 7.9, but first we calculate the wall shear stress by using Eq. (7.15):

τw = μ

(
∂u
∂z

)
z=0

= μ
2Ue

δ
. (7.16)

Substituting this and the velocity profile into Eq. (7.9), without the pressure term,
yields

d
dx

∫ δ

0
U2

e

[
2
(z
δ

)
− 2

(z
δ

)3
+

(z
δ

)4
]2

dz

−Ue
d

dx

∫ δ

0
Ue

[
2
(z
δ

)
− 2

(z
δ

)3
+

(z
δ

)4
]

dz = −μ

ρ

2Ue

δ
.

Evaluating the two integrals, we get

U2
e

d
dx

(0.5825δ) − U2
e

d
dx

(0.7000δ) = −μ

ρ

2Ue

δ
,

and, after rearranging,

δ
dδ

dx
= 17.021

μ

ρUe
.

Integrating with x and recalling that δ = 0 at x = 0, we get

δ2

2
= 17.021

μx
ρUe

,

and, after rearranging again, we obtain the growth of the boundary layer with x:

δ = 5.836
√

μx
ρUe

. (7.17)

This is an important result because it demonstrates that the boundary layer grows
at a rate of

√
x. This relation can further be rearranged as

δ = 5.836
√

μx
ρUe

= 5.836x
√

μ

ρUex
.
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Now, if we define a length-based Reynolds number

Rex = ρUex
μ

, (7.18)

then we can write

δ = 5.836
x√
Rex

. (7.19)

With this solution for δ and with the velocity profile of Eq. (7.15), u(x, z) is known
everywhere and the values for the boundary-layer thickness can be calculated. It is
customary to rewrite Eq. (7.19) in a nondimensional form as

δ

x
= 5.836√

Rex
. (7.20)

At this point the question about the boundary-layer thickness was answered; next
we need to develop the displacement-thickness relation. This quantity should pro-
vide “thickness-loss” information for the outer flow. Consider the velocity profile
in the boundary layer, as depicted on the left-hand side of Fig. 7.4, where the outer
velocity Ue is reduced to zero near the plate. If the plate (and resulting skin friction)
weren’t there, then the velocity would remain Ue everywhere. So the net effect of
placing the plate in the free stream is a loss of fluid flow with a thickness of δ∗ – a
quantity called the displacement thickness (as shown in the figure).

To evaluate the displacement thickness, the flow rate loss that is due to the
reduced velocity (Ue − u) in the boundary layer [see Fig. 7.4(a)] must be calculated.
This loss is ∫ ∞

0
(Ue − u)dz,

and of course the integration is from 0 to δ, but for added confidence the infinity
sign is used. Figure 7.4(b) shows the flow rate loss – which is due to not having any
flow up to a height of δ∗. This loss is Ueδ

∗, per unit width, and therefore

Ueδ
∗ =

∫ ∞

0
(Ue − u)dz.

Consequently the definition of the displacement thickness is

δ∗ =
∫ ∞

0

(
1 − u

Ue

)
dz. (7.21)

z

x x

z
Ue Ue

u(z)

(a) (b)

Figure 7.4. The concept of displacement thickness.
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z

u(z)

u

Ue

Figure 7.5. The presence of the boundary
layer reduces the flow rate (of velocity Ue) by
the displacement thickness δ∗.

Using the velocity profile of Eq. (7.15), performing the integration from 0 to δ, and
substituting the boundary-layer thickness from Eq. (7.18), we get

δ∗ =
∫ δ

0

(
1 − u

Ue

)
dz = 1.751

x√
Rex

.

Or, in nondimensional form, we have

δ∗

x
= 1.751√

Rex
. (7.22)

Now, returning to Fig. 7.1, the displacement thickness means that the body shape
effectively gained thickness and the outer flow must be solved over a thicker body
shape. Sometimes the displacement thickness at a particular x location is described
schematically, as in Fig. 7.5. The solid curve shows the actual velocity profile. How-
ever, eliminating the flow below z = δ∗ and transferring it above this line will result
in a constant-velocity profile of Ue (so the flow rate inside the two “triangular-
shaped” shaded areas is the same).

It is possible to define another boundary-layer thickness θ , representing the defi-
ciency in the momentum that is due to the presence of the boundary layer. Referring
to Fig. 7.4, we find that the calculation is similar, but now we simply multiply by the
local velocity u. Consequently the equation for calculating the momentum thickness
θ is

θ =
∫ ∞

0

(
1 − u

Ue

)
u

Ue
dz, (7.23)

and by substituting the velocity profile of Eq. (7.15), performing the integration from
0 to δ, and substituting the boundary-layer thickness from Eq. (7.19), we get

θ =
∫ δ

0

(
1 − u

Ue

)
u

Ue
dz = 0.685

x√
Rex

,

and in nondimensional form

θ

x
= 0.685√

Rex
. (7.24)
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Thin plate
x

U∞ U∞

Figure 7.6. The momentum thickness represents the momentum loss up a particular point on
the plate.

Sometimes the ratio between these two boundary-layer thicknesses is defined as H,
the shape factor, and in this case it equals 2.556:

H = δ∗

θ
= 2.556. (7.25)

The importance of the shape factor is in identifying the transition to turbulent flows
where this ratio is much smaller.

With the aid of the momentum thickness we can demonstrate the effect of fric-
tion in the boundary layer; see the schematic diagram in Fig. 7.6. At the leading edge
of the plate, the velocity is uniform and equal to the free stream. After a while the
viscous flow losses on the plate create a loss of thickness θ , as shown. Therefore the
drag force (per unit width) on the plate must be equal to this loss:

D = ṁUe = ρUeθ · Ue = ρU2
e θ. (7.26)

We can obtain the same result by applying the 1D momentum equation [Eq. (2.29)]
between the plate’s leading edge and station x on the figure.

More specifically, we can show this by integrating the loss of momentum across
the boundary layer,

D = ρ

∫ δ

0
(Ue − u)udz = ρU2

e

∫ ∞

0

(
1 − u

Ue

)
u

Ue
dz = ρU2

e θ, (7.27)

and this is the same result. The nondimensional form of the drag force is called the
drag coefficient and is defined as

CD ≡ D
1/2ρU2S

, (7.28)

where S is the reference area. Substituting the drag from Eq. (7.26) and the momen-
tum thickness from Eq. (7.24) yields

CD(x) = ρU2
e θ

1/2ρU2
e S

= 2
S

0.685√
Rex

x,

where CD(x) represent the drag up to a point x on the plate. For a plate of length
x = L and unit width (so S = l × 1) we get

CD = 1.370√
ReL

. (7.29)

Next, let us calculate the shear stress along the plate. Using the result of Eq. (7.16)
and substituting δ from Eq. (7.20), we get

τw = μ
2Ue

δ
= 2Ue

5.836

√
ρμUe

x
= 0.3427

√
ρμU3

e

x
. (7.30)
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Figure 7.7. Variation of the displace-
ment and momentum thicknesses and
the skin-friction coefficient along the
plate of length L (laminar flow).

This is again an important result because it shows that the shear force is the largest
at the plate’s leading edge and decays at the rate of

√
1/x. Next, we can use this

result to calculate the skin-friction coefficient:

C f = τw

1
2ρU2

e

= 0.3427
1
2

√
μ

ρUex
= 0.685√

Rex
. (7.31)

We can calculate the drag D on the upper surface by integrating the shear stress
along the plate [and it must verify Eq. (7.27)]

D =
∫ L

0
τwdx =

∫ L

0
μ

2Ue

δ
dx =

∫ L

0
μ

2Ue

5.836 x√
Rex

dx

= 2
5.836

√
ρμU3

e

∫ L

0

√
1
x

dx = 2
5.836

√
ρμU3

e × 2
√

L = 0.685
√

ρμU3
e L. (7.32)

To make sure that this is the same result for the drag as obtained in Eq. (7.29), we
use the nondimensional definition of the drag coefficient:

CD = D
1/2ρU2

e S
= 0.685

√
ρμU3

e L
1/2ρU2

e L× 1
= 1.370√

ReL
= 2C f . (7.33)

This is the same result of Eq. (7.29). Also note that the drag of the whole plate
(one side) is twice the local friction coefficient C f . Finally Fig. 7.7 shows the vari-
ation of some of the boundary-layer parameters along a flat plate of length L.
Clearly the boundary-layer thicknesses increase with x and the momentum thick-
ness is much smaller than the displacement thickness. The skin-friction coefficient
and shear stress are the largest at the leading edge because the boundary layer is
thin near the leading edge.
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Figure 7.8. Velocity profiles in both laminar (Blasius solution) and turbulent boundary layers
and comparison with experimental results (dots).

7.4 Summary and Practical Conclusions

Although we started with an approximate solution and an approximate and similar
velocity profile, the results generated are quite satisfactory. The exact solution pre-
sented by Blasius (in 1908) was based on a more detailed velocity distribution, and
experimental results (see the laminar flow curve in Fig. 7.8) show excellent agree-
ment with his model.

As we discussed earlier for the case of laminar flow in pipes, at higher Reynolds
number the flow can be turbulent. Even on a flat plate, as the Reynolds number
increases a transition to turbulent flow takes place. The velocity profile inside the
turbulent boundary layer is shown in Fig. 7.8 as well, and clearly the shear near
the wall is larger, suggesting significantly larger friction coefficients (also a thicker
boundary layer). An approximate formula describing the velocity profile inside the
turbulent boundary layer is

ū
Ue

= η
1
7 , (7.34)

and the turbulent shear stress based on the model discussed in Section 6.6 is

τxz = μ
∂u
∂z

− ρu′w′. (7.35)

So not only is the velocity gradient larger, but there is an additional loss of momen-
tum through the average turbulent components u′ and w′ (e.g., momentum loss in
the other directions). A quite typical situation in high-Reynolds-number flows is
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Table 7.1. Comparison among laminar, Blasius, and turbulent (based on the 1
7 -power law)

flat-plate, integral boundary-layer properties. Here δ99 is used instead of δ, representing 99%
of the boundary-layer thickness

Property Approximate solution Exact solution (Blasius) Turbulent flow

δ99

x
5.83√
Rex

5.00√
Rex

0.37
5
√

Rex

δ∗

x
1.751√

Rex

1.721√
Rex

0.046
5
√

Rex

θ

x
0.685√

Rex

0.664√
Rex

0.036
5
√

Rex

C f
0.685√

Rex

0.664√
Rex

0.0576
5
√

Rex

CD
1.370√

Rex

1.328√
Rex

0.074
5
√

Rex

H 2.56 2.59 1.28

shown schematically in Fig. 7.9. Here the simplest case of the parallel flow above a
thin plate is shown, and, as expected, at the front of the plate, a laminar boundary
layer forms. As the local Reynolds number increases (within the range of 105–107)
a transition takes place, perhaps through the sequence shown in Fig. 6.5. From this
point and on, the boundary layer is thicker (because of the lateral perturbations)
and the momentum losses increase.

The boundary-layer parameters for our approximate laminar flow solution and
for the exact Blasius solution, along with data for turbulent flow, are presented in
Table 7.1. First note the quite good agreement of the approximate model with the
exact solution for the laminar flow case. Also, the turbulent boundary layer is thicker
(Fig. 7.9) and has a larger friction coefficient (so look closer at the formulas). The
shape factor, on the other hand, is much smaller for turbulent flow, and because of
this feature, it can be used to identify transition.

From the engineering point of view, estimating the friction drag is very impor-
tant. Therefore it is desirable to provide information on the friction coefficient for
a wide range of Reynolds numbers (similar to the flow in pipes). Such data are pre-
sented in Fig. 7.10, and the laminar flow curve for the drag coefficient is the Blasisus
solution from Table 7.1. The curve for turbulent boundary layers is based on exper-
imental data and can be used reliably for engineering calculations. Also, there is
a large overlap between the laminar and turbulent flow regions (Re ∼ 105–107),
presenting an engineering opportunity to reduce skin friction by retaining longer

Transition Turbulent

x (or length)

Laminar

Flat plate

U∞

δ
Figure 7.9. Schematic descrip-
tion of transition from laminar
to turbulent flow on a flat plate.
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Figure 7.10. Drag coefficients on a smooth flat plate of length L for laminar and turbulent
flows (at M → 0).

laminar flow regions. Note that C f is the local friction coefficient and the drag coef-
ficient is for a plate of length L. According to Eq. (7.33),

CD = 2C f . (7.33)

EXAMPLE 7.1. SKIN-FRICTION DRAG OF A FLAT PLATE. A 1-m-wide, 0.5-long-thin
plate is towed in a water tank at a speed of 2 m/s. Assuming laminar flow, cal-
culate the drag force.

Solution: We use the Blasius solution for this case. First we calculate the
Reynolds number at the end of the plate:

ReL = 1000 × 2 × 0.5
10−3

= 106.

The drag coefficient, per side, is then

CD = 2C f = 2
0.664√

ReL
= 1.328 × 10−3.

The total drag on the plate (two sides) is

D = 2CD
1
2
ρU2S = 2 × 1.328 × 10−3 1

2
1000 × 4(0.5 × 1) = 2.656 N.

Next let us calculate the boundary-layer thicknesses:

δ∗ = 1.721√
ReL

L = 0.86 × 10−3 m = 0.86 mm,

and the momentum thickness is

θ = 0.664√
ReL

L = 0.33 × 10−3 m = 0.33 mm.
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Now let us repeat the same calculations but with the plate turned by 90◦, so
L = 1 m. The Reynolds number at the end of the plate is

ReL = 1000 × 2 × 1
10−3

= 2 × 106,

and the drag coefficient per side is

CD = 2C f = 2
0.664√

ReL
= 0.939 × 10−3.

The total drag on the plate (two sides) is

D = 2CD
1
2
ρU2S = 2 × 0.939 × 10−3 1

2
1000 × 4(0.5 × 1) = 1.878 N.

Next let us calculate the boundary-layer thicknesses:

δ∗ = 1.721√
ReL

L = 1.22 × 10−3 m = 1.22 mm,

and the momentum thickness is

θ = 0.664√
ReL

L = 0.47 × 10−3 m = 0.47 mm.

Therefore, although the boundary layer at the trailing edge is thicker in the
second case, the drag is lower. This is because the skin friction is larger near the
leading edge and a wider leading edge results in more drag.

EXAMPLE 7.2. TURBULENT DRAG OF A FLAT PLATE. A 12-m/s wind is blowing
parallel to the roof of an exposed carport. Its width (relative to the wind) is
10 m and its length is 4 m. Because of the surface roughness, assume the flow is
fully turbulent. Calculate the drag force on the roof.

Solution: First we calculate the Reynolds number at the end of the plate (the
properties of air are taken from Table 1.1):

ReL = 1.22 × 12 × 4
1.8 × 10−5

= 3.25 × 106.

Based on Fig. 7.10, both laminar and turbulent boundary layers are possible.
However, as stated, because of the not-so-smooth surface, we assume turbulent
flow and the value of the drag coefficient per side (from Fig. 7.10) is CD = 0.0032.
The total drag on the plate (two sides) is

D = 2CD
1
2
ρU2S = 2 × 0.0032

1
2

1.22 × 122(10 · 4) = 22.49 N.

7.5 Effect of Pressure Gradient

The boundary-layer solution in the previous section (for the sake of simplicity)
assumed a flat plate with no pressure gradient. In most practical applications, how-
ever, the surface is not flat and there is a pressure gradient. Typically in most flow
fields the pressure gradient is a function of the surface shape and both positive and
negative pressure gradients are possible. If the pressure outside the boundary layer
(along the surface) changes from high pressure to low (dp/dx < 0), then we call
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Figure 7.11. Effect of pressure
gradient on velocity profile
inside the boundary layer.

this a favorable pressure gradient. Such a pressure gradient energizes the boundary
layer and usually transition to turbulent flow is delayed.

Figure 7.11 depicts the case in which the pressure gradient (dp/dx > 0) is unfa-
vorable or adverse. In this case the pressure increases with x along the surface and
in effects slows down the flow. For example, Fig. 7.11(a) shows the velocity profile
inside the boundary layer with no pressure gradient; Fig. 7.11(b) depicts schemat-
ically the effect of an adverse pressure field. In the particular case shown here the
adverse pressure slows down the flow near the wall, and the shear stress there is zero.
This condition is usually the borderline ahead of flow separation, which is described
schematically in Fig. 7.11(c). In this case the adverse pressure forces the flow back-
ward and flow recirculation is observed. It is possible to have all the preceding cases
in one flow. For example, the boundary layer starts as in Fig. 7.11(a) and gradually,
because of the adverse pressure, transitions into zero shear stress and then to flow
separation.

In addition to the velocity profile inside the boundary layer, we can observe the
effect of pressure gradient on other parameters. As noted, if the pressure gradient
is favorable (as on the left-hand side of Fig. 7.12) then an initially laminar bound-
ary layer stays laminar up to Reynolds numbers of several millions (see Fig. 7.10).
Even if the conditions without a pressure gradient would determine transition to
turbulent flow, the presence of a favorable pressure gradient will delay the transi-
tion [and also flow separation – as depicted in Fig. 7.11(c)]. If the outer conditions
dictate an adverse pressure gradient, as shown on the right-hand side of Fig. 7.12,
then transition to turbulent flow will be soon triggered, as shown schematically in
this figure. Using these principles can lead to designs with less drag. An example
demonstrating the redesign of an airfoil such that the outer flow will have a long
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δ

dp
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< 0
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Figure 7.12. Effect of pressure gra-
dient on the boundary layer.
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Figure 7.13. High-Reynolds-number flow over a thick airfoil and effect of boundary-layer
transition and separation on pressure distribution (Re = 106).

favorable pressure distribution is shown later in Fig. 8.38). Consequently the longer
laminar flow resulted in significant reduction in the drag.

Figure 7.13 summarizes the preceding principles for a thick airfoil. The shape
of the airfoil and the nearby streamlines are shown at the center, and above it
the expected pressure distribution (which is due to the external flow). The stag-
nation streamline is shown in front and it stops at the leading edge, resulting in a
high pressure there. From that point on (on both the upper and lower surfaces) the
flow accelerates, velocity increases, and the pressure is reduced (recall the Bernoulli
equation). Throughout this initial region a favorable pressure gradient exist and the
boundary layer stays laminar! However, from the geometrical point of view, the
airfoil surface curvature must change toward the trailing edge – so that a closed
body is formed. Consequently the pressure gradient becomes positive, indicating
that the velocity slows down toward the trailing edge. In the case shown in Fig. 7.13,
the initial downward slope of dp/dx is moderate and the boundary-layer transi-
tion to turbulent flow is delayed a bit. The transition can be detected by the small
kinks in the pressure distribution curve (on both upper and lower surfaces), as indi-
cated in the figure. This kink is a result of a localized laminar separation (called
laminar bubble), which is responsible for the sudden increase in boundary-layer
thickness. Behind these transition points, the skin friction increases, increasing the
airfoil skin-friction drag. As the upper surface curvature decreases, closing in on
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the trailing edge, dp/dx is increased (see upper surface pressure distribution), lead-
ing to boundary-layer separation near the trailing edge. The reverse flow inside the
boundary layer is shown by the inset. Also, the pressure inside the separated flow
region is almost constant (negative), resulting in increased pressure drag on the air-
foil. Of course, this figure was drawn to highlight the effects of pressure gradient on
the boundary layer. However, in a good design, flow separation must be eliminated
(or reduced) for less drag and better performance.

7.6 Advanced Topics: The Two-Dimensional Laminar
Boundary-Layer Equations

From the historical point of view, the differential form of the boundary-layer equa-
tions was developed first (by Prandtl in 1904). We can derive these equations by
neglecting smaller terms in the Navier–Stokes equations. Also, this topic is included
in the advanced topics section for two reasons. First, the solution is beyond the scope
of an introductory course; the integral approach used earlier requires much simpler
mathematics. The second reason is that time is limited when one is presenting a com-
prehensive introduction to fluid flow, and a more detailed treatment usually belongs
in a more advanced viscous flow course.

For simplicity, we limit ourselves to a 2D case for the flow over a flat plate (as
in Fig. 7.2) without body forces; the incompressible fluid dynamic equations for this
case [Eqs. (5.1), (5.2)] are

∂u
∂x

+ ∂w

∂z
= 0, (7.36)

∂u
∂t

+ u
∂u
∂x

+ w
∂u
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= −1
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∂p
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ρ

(
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, (7.37)
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(
∂2w
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+ ∂2w

∂z2

)
. (7.38)

Let us reiterate that the boundary-layer thickness δ = δ(x) is much smaller than the
characteristic length, L (e.g., the plate length), along the solid surface:

δ � L. (7.39)

This is probably true everywhere except at the leading edge, where both the length
and the boundary-layer thicknesses are zero. Equations (7.36)–(7.38) can be simpli-
fied by a dimensional analysis, similar to the one used in Chapter 6, and a consider-
ation of the order of magnitude of the terms. For this analysis, a set of characteristic
quantities may be defined again: However, now we make a distinction between the
streamwise and the normal directions:

x∗ = x
L

, z∗ = z
δ
,

u∗ = u
U

, w∗ = w

W
,

p∗ = p
p0

, (7.40)

t∗ = t
T

= t
L/U

.
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Here U (instead of U∞) is the characteristic velocity in the x direction and W is the
characteristic velocity in the z direction. The flow equations are now rewritten in
terms of the new variables and the continuity equation becomes

U
L

∂u∗

∂x∗ + W
δ

∂w∗

∂z∗ = 0. (7.41)

If we assume that all nondimensional variables of Eq. (7.41) are of the order of O(1)
inside the boundary layer, then for both terms in the continuity equation to be of
the same order it is necessary that U/L be of the order of W/δ. Therefore, if δ � L,
then it follows that W � U, and the order of magnitude of W is determined as

W
U

= O
(

δ

L

)
. (7.42)

Consequently we conclude that the continuity equation is unchanged (and we can-
not neglect either of the two terms). Introducing the nondimensional variables into
the momentum equation in the x direction [similar to the treatment of Eq. (6.7)]
results in

�
∂u∗

∂t∗ + u∗ ∂u∗

∂x∗ + W
U

L
δ

w∗ ∂u∗

∂z∗ = −Eu
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∂x∗ + 1
Re

[
∂2u∗

∂x∗2
+

(
L2

δ2

)
∂2u∗

∂z∗2

]
. (7.43)

All three terms on the left-hand side of this equation appear to have the same order
of magnitude; the first (viscous) term can be clearly neglected in comparison with
the second viscous term. If we recall our basic assumption that, inside the bound-
ary layer, the inertia terms [left-hand side of Eq. (7.43)] are of the same order of
magnitude as the viscous terms, then the remaining viscous term is of the order of
1; therefore,

1
Re

(
L2

δ2

)
≈ O(1),

and it follows that

(δ/L) = O(Re−1/2), (W/U) = O(Re−1/2). (7.44)

Consequently, only one term, the first viscous term [from left in Eq. (7.43)] is
neglected in this equation! Substituting the nondimensional quantities into the
momentum equation in the z direction results in
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)
∂2w∗

∂z∗2

]
(7.45)

Again, all inertia terms on the left-hand side are of the same order of magnitude
[O(δ/L)] and are considerably smaller than the pressure term, which is multiplied by
L/δ. The viscous terms are of the same order as the inertia terms [O(δ/L)] because,
according to Eqs. (7.44), 1/Re = O(δ2/L2). Therefore all inertia and viscous terms
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appearing in this equation are much smaller than the pressure term and can be
neglected. Rearranging the remaining terms in the three equations yields for the
continuity

∂u
∂x

+ ∂w

∂z
= 0. (7.46)

For the momentum equation in the x direction, only one viscous term is neglected,

∂u
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+ u
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+ w
∂u
∂z

= − 1
ρ

∂p
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+ μ

ρ

∂2u
∂z2

, (7.47)

whereas, in the z direction, all terms but the normal pressure gradient become neg-
ligible, implying that the normal pressure gradient itself is equal to zero as well:

0 = −∂p
∂z

. (7.48)

So the pressure is dictated by the outer flow and there are no changes in p across
the boundary layer. Equations (7.46)–(7.48) define the classical 2D boundary-layer
equations proposed by Prandtl (German scientist, 1874–1953) in 1904. At the wall,
the no-slip boundary condition remains,

z = 0, u = w = 0, (7.49a)

and at the edge of the boundary layer (z = δ) the tangential velocity component
must approach the inviscid surface value of Ue(x, t),

z = δ, u = Ue(x, t). (7.49b)

We can simplify the momentum equation in the x direction by rewriting it at the
outer edge of the boundary layer (at z > δ), where there are no changes with z:

∂Ue

∂t
+ Ue

∂Ue

∂x
= −1

ρ

∂p
∂x

. (7.50)

This value can be inserted into Eq. (7.47) so that the pressure p is no longer an
unknown in the problem. With the preceding assumptions and for the case of steady-
state flow, Eq. (7.47) reduces to

u
∂u
∂x

+ w
∂u
∂z

= Ue
∂Ue

∂x
+ μ

ρ

∂2u
∂z2

. (7.51)

An exact solution for the boundary-layer equations is quite complex (and beyond
the scope of this introductory text), but it was solved by Heinrich Blasius, one of
Prandtl’s first students, circa 1908.

7.6.1 Summary of the Blasius Exact Solution for the Laminar
Boundary Layer

The key to the analytic solution of the boundary-layer equation was a uniform veloc-
ity distribution proposed by Heinrich Blasius. The assumption is that along the flat
plate (as in Fig. 7.3) the boundary layer will grow but the shape of the velocity profile
will stay similar:

u(x, z)
Ue

= f
[

z
δ(x)

]
= f (η). (7.52)
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Figure 7.14. The Blasius velocity distribution inside
the boundary layer and the simple approximation
of Eq. (7.15).

With this assumption he was able to solve the boundary-layer equations, and the
resulting velocity distribution is depicted in Fig. 7.14 (also in Fig. 7.8). Note that at
the edge of the boundary layer (z = δ) the velocity is equal to the outer velocity
(Ue), and the slope near the wall is determined by the solution for the velocity pro-
file. This velocity profile is plotted in Fig. 7.14, which also presents the approximate
polynomial profile of Eq. (7.15).

Once the velocity profile is determined, the boundary-layer growth is calculated.
Because the changes in the Blasius velocity profile near the edge of the boundary
layer are very small δ99 was calculated, a point at which 99% of the outer velocity is
reached:

δ99

x
= 5.00√

Rex
. (7.53)

This equation shows that the boundary-layer thickness increases with
√

x, as shown
schematically in Fig. 7.15. This figure also shows the growth of the displacement
thickness δ∗, which we calculate by using the definition of Eq. (7.22):

δ∗

x
= 1.721√

Rex
. (7.54)

The momentum thickness is calculated by Eq. (7.24); for the Blasius solution
it is

θ

x
= 0.664√

Rex
. (7.55)
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Figure 7.15. Schematic description of the Blasius solution for a laminar boundary layer.
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The friction coefficient is calculated next [as in Eq. (7.31)]:

C f = 0.664√
Rex

. (7.56)

We obtain the shape factor H by dividing the displacement thickness by the momen-
tum thickness:

H = 2.59. (7.57)

and these results are quite close to the results generated by the integral approach of
Section 7.3.

7.7 Concluding Remarks

This chapter follows the rationale developed in Chapter 5. Resembling the approach
for solving the laminar pipe flow, the solution of the shear stress and friction coeffi-
cients were calculated first for the laminar case. Then, based on experimental results,
the formulation was extended into the turbulent flow regime, so that the shear stress
and resulting drag can be estimated for a wide range of Reynolds numbers.

The present analysis indicates that the boundary layers in an attached flow are
thin compared with the length scale. Also, experimental results indicate that laminar
flow friction drag is significantly less than the drag in turbulent flow. Therefore the
possibility of delaying boundary-layer transition provides an opportunity for drag
reduction.

PROBLEMS

7.1. A 15-km/h wind is blowing parallel to a 5-m-long flat plate. Calculate the shear
stress at a distance of 5 cm from the leading edge, at 1 m from the leading edge,
and at the end of the plate (e.g., 5 m from the leading edge). Calculate ReL first to
ensure the use of the laminar flow formulas. Assume that μ = 1.8 × 10−5 N s/m2 and
ρ = 1.2 kg/m3.

7.2. A 15-km/h wind is blowing parallel to a 5-m-long flat plate. Calculate the
boundary-layer thickness at a distance of 5 cm from the leading edge, at 1 m from
the leading edge, and at the end of the plate (e.g., 5 m from the leading edge). Cal-
culate ReL first to ensure the use of the laminar flow formulas. Assume that μ =
1.8 × 10−5 N s/m2 and ρ = 1.2 kg/m3.

7.3. The wing of a sail plane is mostly laminar and its wingspan is 8 m. If the average
chord is 0.4 m, then calculate the laminar, skin-friction drag force on the wing at a
speed of 60 km/h (use air properties from Table 1.1). Do you think the actual drag
of the wing is higher?

7.4. The chord of an airplane’s thin wing is 2 m and it is flying at 300 km/h. Calculate
the friction drag for unit width (a) assuming laminar flow on both the upper and
lower surfaces and (b) assuming turbulent flow on both surfaces. Assume that μ =
1.8 × 10−5 N s/m2 and ρ = 1.2 kg/m3.

7.5. The chord of an airplane’s thin wing is 2 m and it is flying at 200 km/h. Using
the flat-plate model, calculate the displacement thickness and friction coefficient at
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the wing’s trailing edge (a) assuming laminar flow and (b) assuming turbulent flow.
Assume that μ = 1.8 × 10−5 N s/m2 and ρ = 1.2 kg/m3.

7.6. A typical setup for automobile model testing is shown in the figure. The model
length is L = 1.5 m, the ground clearance is h = 3 cm, and the test speed is 100 km/h
(μ = 1.8 × 10−5 N s/m2, ρ = 1.2 kg/m3). Ahead of the model, on the floor there is a
suction slot and it is assumed that the boundary layer is eliminated there. Calculate
the Reynolds number and the boundary-layer thickness on the floor at a distance
l = 2 m behind the car nose for non moving floor. Also calculate the boundary-layer
thickness on the lower surface of the model (of length L). Assume laminar flow and
use the Blasius formulas. Can these two boundary layers affect the test results?

U∞

Internal 
balance

Moving groundSuction

Sting

l
L

h

Problem 7.6.

7.7. The boundary layer on the bottom of the vehicle is tripped by a stripe of coarse
sandpaper and it is turbulent along the whole surface. Estimate the boundary-layer
thickness on the lower surface of the vehicle and the drag on this surface if model
width is 0.5 m. Would you recommend using the moving-ground simulation?

7.8. A 1-m-long, 3-m-wide plate is towed at a velocity of 2 m/s in a fluid. Assuming
laminar flow, find the boundary-layer thickness δ, displacement thickness δ∗, and
momentum thickness θ at the end of the plate. Also calculate the drag force on one
side of the plate (μ = 10−3 N s/m2, ρ = 1000 kg/m3).

7.9. A 1.5-m-long, 1-m-wide flat plate is towed in water at a speed of 0.2 m/s. Calcu-
late the drag force (resistance) of the plate and the boundary-layer thickness at its
end. Is this a laminar boundary layer?

7.10. A flat plate is towed in a resting fluid. The density of the fluid is 1.5 kg/m3 and
its viscosity is 10−3 N s/m2. Find the skin-friction drag on the plate per unit width if
the plate is 2 m long and the free-stream velocity is 20 m/s. Also calculate the wall
velocity gradient at the center of the plate (1 m from the leading edge). Assume
turbulent flow where δ = 0.16/Re1/7, CD = 0.523/ln2(0.06Re).

7.11. Assuming a laminar boundary layer exists over a submerged flat plate (in
water, ρ = 1000 kg/m3, μ = 10−3 N s/m2). If the free-stream velocity is U∞ =
10 m/s, then calculate the displacement thickness δ∗ at a distance of L = 2 m from the
plate’s leading edge. Also calculate the total friction force (on one side of the plate)
per unit width for the 2-m-long section. Use the Blasius laminar flow formulas.
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7.12. A 1-m-long, thin symmetric airfoil is placed at a free stream as shown in the
figure. Calculate Re and the drag force for the speed of U∞ = 50 m/s and U∞ =
150 m/s. Assume that the average friction coefficient per side is CD = 0.002 (μ = 1.8
× 10−5 N s/m2, ρ = 1.2 kg/m3).
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Problem 7.12.

7.13. If the flow at 40 m/s would be entirely laminar on the airfoil in the previ-
ous problem, then calculate the boundary-layer and displacement thicknesses at the
trailing edge. Calculate the shear force at the leading edge and at the trailing edge.

7.14. The airfoil shown in Problem 7.12 has a chord of 2 m, its maximum thickness
of 12% is at the center (c/2), and it is towed in water at a free-stream speed of
5 m/s. Assuming laminar flow, estimate how thick the airfoil appears at the point
of its maximum thickness (Hint: Think of the displacement thickness as an effective
increase in the body’s thickness).

7.15. Repeat the previous problem, but now the boundary-layer flow is tripped and
is turbulent along the whole length.

7.16. The drag coefficient of a NACA 0012 airfoil is 0.006 at a Reynolds number of
0.9 × 106. Estimate the drag based on both the laminar and turbulent models and
determine which is applicable (or a combination thereof )?

7.17. Suppose the wind is blowing over a mirror-smooth lake at 15 km/h. Using
the air density and viscosity values from Table 1.1, calculate Re and boundary-
layer thickness at a distance of 10 km. (Use the laminar flat-plate model with δ99

= 5.0/Re1/2.)

7.18. Several 2-m-wide, 4-m-long thin metal plates are towed for an underwater con-
struction. Assuming the tow vehicle moves at a speed of 2 m/s and the plates are
parallel to the free stream, calculate the drag force for a single plate positioned as in
cases a and b in the figure. Calculate the boundary-layer thickness at the end of the
plate (for the two cases). Assume laminar flow (Blasius solution) and use seawater
properties from Table 1.1.

a b
U∞U∞

Problem 7.18.

7.19. An airplane tows a 2-m-tall advertising banner at a speed of 160 km/h. If the
banner is flat and 5 m long, then estimate its drag assuming fully turbulent flow
(μ = 1.8 × 10−5 N s/m2, ρ = 1.2 kg/m3).
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Go Aztecs

Problem 7.19.

7.20. How thick is the boundary layer at the trailing edge of the banner in the figure
of Problem 7.19? Also calculate the shear force at the trailing edge. Use turbulent
boundary-layer properties from Table 7.1.

7.21. A carport is covered by a 20-m long, 4-m-wide flat roof (its length is parallel to
the prevailing wind). The boundary layer thickness was measured at the end of the
(20-m) roof and found to be 25 cm thick. Assuming turbulent flow along the whole
surface, estimate the wind speed and the drag force on the roof (from both upper
and lower boundary layers). Use air properties from Table 1.1.

7.22. The velocity profile above a flat plate placed parallel to a stream is

u
Ue

= 2
(z
δ

)
− 2

(z
δ

)3
+

(z
δ

)4
.

Obviously when z > δ the velocity is constant at Ue. The incoming flow rate (at
x > 0) between z = 0 and z = δ, per unit width (without the plate), is then ρUeδ.
However, when the plate is inserted, then, because of the previously described
boundary layer, the mass flow will be reduced. This new mass flow rate is simply
the integral of the velocity deficit:

ρ

∫ δ

0
(Ue − u)dz.

Calculate the percentage loss of the mass flow rate that is due to the plate (by insert-
ing the above velocity profile into this integral).

7.23. If the boundary layer thickness is given [as in Eq. (7.20)] by

δ

x
= 5.836√

Rex
,

then, by substituting the polynomial from Problem 7.22 into the definition of δ∗

[Eq. (7.21)], prove Eq. (7.22) for δ∗/x.

7.24. A laminar boundary layer develops along a flat plate and its thickness at a par-
ticular point is δ = 0.1 m. If we approximate the boundary-layer velocity distribution
by

u/Ue = 2(z/δ) − 2(z/δ)3 + (z/δ)4,

then calculate the local shear τ and friction coefficient Cf. Assume that U∞ =
30 m/s, ρ = 1.2 kg/m3, and μ = 1.8 × 10−5 N s/m2.

7.25. The sinusoidal shape is one of the simplest velocity profiles proposed for the
boundary layer. Suppose we approximate the velocity distribution as

u
Ue

= sin
(πz

2δ

)
, z ≤ δ;
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Calculate the displacement thickness and the momentum thickness in terms of the
local boundary-layer thickness δ.

7.26. Using the sinusoidal shape (u/Ue) = sin(πz/2δ), z ≤ δ, calculate the expres-
sion for the boundary-layer thickness δ by evaluating the von Kármán integral
equation.

7.27. Use the results from the previous problem to calculate the local shear on the
wall and the total drag for a plate with a length L. How does this approximation
compare with the exact result of Blasius?

7.28. Calculate the local skin friction and the local drag coefficient for a plate of
length L, using the previous sinusoidal velocity profile.

7.29. Assuming a velocity profile for the laminar flat plate in the form

u
Ue

= 2
(z
δ

)
−

(z
δ

)2
,

develop a relation for the boundary layer (δ/x) as a function of the local Reynolds
number by evaluating the von Kármán integral equation. Compare with the exact
results of Blasius.

7.30. Calculate the displacement and momentum thickness for the preceding veloc-
ity profile and compare with the exact results.

7.31. Calculate the local shear stress and friction coefficient for the preceding veloc-
ity profile and compare with the exact results.

7.32. Suppose that the velocity profile proposed for a turbulent boundary layer has
the form

u
Ue

=
(z
δ

) 1
9
.

Calculate the displacement thickness and the momentum thickness in terms of the
local boundary-layer thickness δ.

7.33. The schematic growth of the boundary layer along a flat plate is shown in the
figure. Can the Bernoulli equation provide the pressure difference between point 1
and point 2 (the latter is on the surface where we apply the no-slip boundary con-
dition)? What is the pressure difference between point 2 and point 3 and between
point 2 and point 1?

Boundary layer
x

z
U∞

δ (x)

1 3

2

Problem 7.33.

7.34. Air is entering a small 2D laminar flow wind tunnel at a speed of u1 = 10 m/s
(L = 1 m, h = 0.2 m). Calculate the boundary-layer thickness at the exit of the wind
tunnel at section 2. Also calculate the exit velocity u2.
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21
L

u1 u2 h

Problem 7.34.

7.35. Repeat the previous problem, but now the flow is forced to be fully turbulent
by placing sandpaper strips at the entrance (use Table 7.1 for the boundary-layer
properties).



8 High-Reynolds-Number Flow over Bodies
(Incompressible)

8.1 Introduction

The concept of high-Reynolds-number flows was discussed in Chapter 6 and it was
concluded that near a solid-body surface for an attached flow a thin boundary layer
exists. In Chapter 7 this boundary layer was investigated, and the small-thickness
assumption was verified. It was also concluded that the pressure distribution around
a vehicle could be obtained by the solution of the inviscid flow outside the thin
boundary layer. These modeling conclusions, along with some general features of
such flow fields, is summarized in Fig. 8.1.

In term of forces, the boundary layer solution provides the skin-friction esti-
mate and the resulting skin-friction-related drag-force component. However, vis-
cous effects, in addition to the boundary layer, can be present in the wake and
in areas of flow separation. For example, we can see the effects of viscous flow-
momentum loss by comparing the velocity distribution ahead and behind the vehi-
cle (as shown in the figure). Clearly, in the wake the flow is slower and there is a loss
of linear momentum (which is the drag, as was shown in the previous chapter).

Solution of the flow outside this viscous layer should provide information on the
velocity and pressure distributions, as depicted by the centerline pressure distribu-
tion shown in the upper part of Fig. 8.1 (recall that there is no change in the pressure
across the boundary layer). In the case in which the flow is attached, we can define
an irrotationl flow model and solve for the velocity distribution. We can then calcu-
late the corresponding pressure field by using the Bernoulli equations (instead of the
full Euler equation). This process is demonstrated in this chapter. It is expected that
the integration of the pressure will result in a force (in addition to the skin friction)
that may act in other directions (e.g., lift, side force, or drag). However, when the
flow is separated (and unsteady) as in the wake shown in Fig. 8.1, then these models
may not be accurate. The engineering approach is then to define force coefficients
for a wide range of Reynolds numbers (similar to the approach taken for pipe flows
in Chapter 5) and with such a “database” approach we can estimate the forces even
in separated, turbulent, or both types of flows.

The first task therefore is to demonstrate a solution that will provide the pres-
sure distribution for a particular geometry (even a very simple one). This model
should demonstrate the process and allow the extrapolation for treating more
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Figure 8.1. Summary of the expected results from a high-Reynolds-number-flow solution.
The pressure distribution (from the outer solution) is shown in the upper diagram and the
viscous flow effects (inner solution) are depicted in the lower diagram.

complex engineering problems. However, prior to solving the flow over a simple
shape, we must regroup the mathematical tools required for treating this problem.

8.2 The Inviscid Irrotational Flow (and Some Math)

The conclusions from the dimensional analysis in Chapter 6 is that the flow outside
the boundary layer is mostly inviscid and the simplified equations are the continuity
and the Euler equations:

∇ · �q = 0, (6.17)

∂ �q
∂t

+ �q · ∇�q = �f − ∇ p
ρ

. (6.18)

Because in this model the viscous terms are neglected, only the boundary condition
requiring zero velocity, normal to a solid surface, remains.

This set of equations is still quite complex (for exact analytic solutions) and
additional simplifications are required. For example, if the flow is irrotational, there
are no frictional losses, and we can use potential (or conservative) models. This is
similar to mechanics, when we claim that the work done by the gravitational force
is independent of the path (as long as there is no friction). So the first task is to con-
vince ourselves that the outer flow is vorticity �ζ free (e.g., irrotational). The vorticity



256 High-Reynolds-Number Flow over Bodies (Incompressible)

Rotational
motion

(a) (b)

Irrotational
motion

l
l

Figure 8.2. Roatational and ir-
rotational motions of a fluid
element.

was defined in Chapter 5 [Eq. (5.177)], and it is twice the solid-body rotation �ω
�ζ = 2�ω = ∇ × �q. (5.171)

Solid-body rotation is possible only when strong viscous forces are present. To illus-
trate the motion of a fluid with rotation, consider the control volume shown in
Fig. 8.2(a), moving along the path l. Let us assume that the viscous forces are very
large (e.g., think of it as a cup filled with jelly and the cup also rotates as it moves
along the circular path), and the fluid will rotate as a rigid body while following
the path l. In this case ∇ × �q �= 0, and the flow is called rotational. For the fluid
motion described in Fig. 8.2(b), the shear forces in the fluid are negligible (think of
it as a cup filled with water), and the fluid will not be rotated by the shear force of
the neighboring fluid elements. In this case ∇ × �q = 0, and the flow is considered
irrotational.

To further clarify our argument, let us select a fluid element of length dx, in a
boundary layer, as shown in Fig. 8.3. Recall the definition of vorticity in Cartesian
coordinates [Eq. (5.177)]:

ζy = 2ωy =
(

∂u
∂z

− ∂w

∂x

)
.

Note that inside the boundary layer w ∼ 0 and we can approximate the change in
the u velocity component between point 1 and 2 as

ζy =
(

∂u
∂z

− ∂w

∂x

)
≈ Ue

δ
,

where δ is the local boundary-layer thickness. We arrived at a similar conclusion
in the example about the flow near a rotating cylinder (the vortex in Section 5.11),
namely, that near the surface where the zero-slip boundary condition is fulfilled, the
vorticity is nonzero! However, away from the surface, the flow is irrotational. So,
to conclude this short discussion: Vorticity is generated near a solid surface (or in

dx

Ue

x
1 4

2
3

z

δ(x) Figure 8.3. Vorticity is created in the boundary
layer.
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the wakes) and the rest of the flow can be considered irrotational (a more rigorous
proof can be found in [1, Chapter 2]).

Once it is accepted that the vorticity in the high-Reynolds-number flow fields is
confined to the boundary layer and wake regions where the influence of viscosity is
not negligible, we can assume an irrotational as well as inviscid flow outside these
confined regions. Now we can return to our analogy to work done by a (conser-
vative) gravitational force (e.g., without friction) in which the force times distance
integral is independent of path. In a similar way we can consider the line integral (of
the velocity instead of the force vector) along the line C:∫

C
�q · d�l =

∫
C

udx + vdy + wdz. (8.1)

If the flow is irrotational in this region then udx + vdy + wdz is an exact differential
(see [2, p. 475]) of a potential � that is independent of the integration path C. The
potential at a point P(x, y, z) is therefore

�(x, y, z) =
∫ P

P0

udx + vdy + wdz (8.2)

where P0 is an arbitrary reference point and P is the point where the potential is
evaluated. The result of the integration, �, is called the velocity potential and the
velocity at each point can be obtained as its gradient,

�q = ∇�, (8.3)

and in Cartesian coordinates

u = ∂�

∂x
, v = ∂�

∂y
, w = ∂�

∂z
. (8.4)

The substitution of Eq. (8.3) into the continuity equation [Eq. (6.17)] leads to
the differential equation for the velocity potential (which is really the continuity
equation):

∇ · �q = ∇ · ∇� = ∇2� = 0 (8.5)

Of course, this is the Laplaces equation (named after the French mathematician
Pierre S. De Laplace, 1749–1827). It is a statement of the incompressible continuity
equation for an irrotational fluid. Note that Laplace’s equation is a linear differen-
tial equation. Because the fluid’s viscosity has been neglected, the no-slip boundary
condition on a solid–fluid boundary cannot be enforced and only the normal velocity
on a solid surface is set to zero:

qn = 0. (8.6a)

In a more general form (as shown in Fig. 8.4), we obtain this boundary condition
by simply multiplying the unit vector normal to the surface (�n) by the local velocity
vector �q

�q · �n = 0. (8.6b)

It now appears that the velocity field can be obtained from a solution of
Laplace’s equation for the velocity potential. This is a major simplification for
the solution procedure! Instead of solving for a velocity vector field (with three
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unknowns: u, v, w, at any point) we must find a scalar function � with only one
unknown per point.

Note that we have not yet used the Euler equation that connects the velocity
to the pressure. Once the velocity field is obtained it is necessary to also obtain
the pressure distribution on the body surface to allow for a calculation of the fluid
dynamic forces and moments.

For completeness (and we shall need this later) the 2D continuity and Laplace
equations are rewritten in cylindrical coordinates:

1. The continuity equation, based on Eq. (2.45), is:

∂qr

∂r
+ 1

r
∂qθ

∂θ
+ ∂qx

∂x
+ qr

r
= 0. (8.8)

2. The Laplace equation in cylindrical coordinates [using Eq. (2.43)] is

∇2� = ∂2�

∂r2
+ 1

r
∂�

∂r
+ 1

r2

∂2�

∂θ2
+ ∂2�

∂x2
= 0. (8.9)

8.3 Advanced Topics: A More Detailed Evaluation
of the Bernoulli Equation

The objective of this section is to arrive at the Bernoulli equation directly from
the Euler equation [Eq. (6.19)]. Now that we understand the connection between
the effects of viscosity and vorticity, it will be easier to understand the limitation
that applies to the usage of this relation. Simple vector algebra can show that the
steady-state inertia term in the Navier–Stokes equation can be rewritten by use of
the following vector identity:

�q · ∇�q = −�q × ∇ × �q + ∇ q2

2
= −�q × �ζ + ∇ q2

2
. (8.10)

The incompressible Euler equation can now be rewritten with the use of Eq. (8.10)
as

∂ �q
∂t

− �q × �ζ + ∇ q2

2
= �f − ∇ p

ρ
. (8.11)

For irrotational flow �ζ = 0! This is a major simplification of the momentum equa-
tion. Instead of a differential equation an algebraic relation results! Next, the time
derivative of the velocity can be written as

∂ �q
∂t

= ∂

∂t
∇� = ∇

(
∂�

∂t

)
. (8.12)
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Let us also assume that the body force is conservative with a potential gh:

�f = −∇(gh). (8.13)

The Euler equation for incompressible irrotational flow with this conservative body
force [by substituting Eqs. (8.12) and (8.13) into Eq. (8.11)] then becomes

∇
(

gh + p
ρ

+ q2

2
+ ∂�

∂t

)
= 0.

This is true only if the quantity in parentheses is a function of time only:

gh + p
ρ

+ q2

2
+ ∂�

∂t
= C(t).

This is the more general Bernoulli equation for inviscid, incompressible, irrotational
flow. We obtain a more useful form of the Bernoulli equation by comparing the
quantities on the left-hand side of this equation at two points in the fluid; the first is
an arbitrary point and the second is a reference point at infinity. The equation then
becomes (

gh + p
ρ

+ q2

2
+ ∂�

∂t

)
=

(
gh + p

ρ
+ q2

2
+ ∂�

∂t

)
∞

. (8.14)

At this point we can conclude that

1. the Bernoulli equation is valid between two arbitrary point in an incompressible
irrotational fluid, and

2. If the flow is steady and incompressible but rotational, the Bernoulli equation
[Eq. (8.14)] is still valid with the time-derivative term set equal to zero if the
constant C(t) on the right-hand side is now allowed to vary from streamline
to streamline [see Eq. (2.8)]. This is because the product �q × �ζ is normal to
the streamline d�l and their dot product vanishes along the streamline. Conse-
quently, Eq. (8.14) can be used in a rotational fluid between two points lying on
the same streamline.

For the cases discussed here we use only the steady-state form of the Bernoulli
equation (as in Section 4.2) and we can write

gh + p
ρ

+ q2

2
= const. (8.15)

8.4 The Potential Flow Model

In the last three chapters we have established the notion that outside viscous regions
(such as the boundary layer) the flow can be considered irrotational and, for sub-
sonic flows, also incompressible. With the definition of the velocity potential, this
model is called potential flow and the governing equations can be summarized (in
Cartesian coordinates) as follows:

∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0. (8.16)
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This is of course the continuity equation and its solution will yield the velocity field.
The boundary condition, as stated in Eq. (8.6b) is

∇� · �n = 0. (8.17)

Once the velocity field is known the pressure can be calculated at any point by use
of the Bernoulli equation (which is now replacing the momentum equation):

gh + p
ρ

+ q2

2
= const. (8.15)

Note that the 2D potential flow problem can be stated in terms of the stream func-
tion, which immediately depicts the streamlines. This method is not easily extended
to three dimensions and therefore is not discussed here (recall that this is an intro-
ductory text). More information on this attractive approach can be found in [1, Sec-
tion 2.13] and in the 2D discussion in Chapter 3.

8.4.1 Methods for Solving the Potential Flow Equations

There are various approaches to solve the Laplace equation. Of course, a sim-
ple trial-and-error approach may work, and by substituting various functions into
the Laplace equation, feasible solutions can be found. Plotting the corresponding
streamlines can show the nature of the solutions, and polynomial functions are prob-
ably the first candidates for such an exercise. A more systematic method is based
on the Green’s identity [after the British physicist George Green (1793–1841)], by
which generic flow fields can be constructed by the superposition of several basic
solutions. From the fluid dynamic point of view, the need to solve the flow for an
arbitrary geometry (e.g., the flow over a car) is probably the top priority. Such an
approach, in the spirit of the Green’s identity, is described in [1] and in Subsection
8.5.5 of this chapter. Therefore, prior to attempting the solution of any practical
problem, some of the elementary solutions to Eq. (8.16) are sought, We already
have seen that the flow near a vortex (see Section 5.11) is irrotational, and therefore
the vortex could qualify as an elementary solution. We shall develop two additional
elements (the source and the doublet) and, combined with a free-stream model, the
flow over many practical shapes can be solved (we can view those basic solutions
as individual tools in a toolbox). The basic approach then is to combine these ele-
mentary solutions in a manner such that the zero normal flow on a solid surface
boundary condition is satisfied. In fact, this process can be automated and several
computer codes work using these principles. The first step, however, is to establish
that several basic (or elementary) solutions of the Laplace equation can be added
or combined.

8.4.2 The Principle of Superposition

If �1,�2, . . . , �n are solutions of the Laplace equation [Eq. (8.16)], which is linear,
then a linear combination of those solutions,

� =
n∑

k=1

ck�k, (8.18)
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Figure 8.5. Velocity potential of a free
stream (a) parallel to the x axis and (b)
parallel to the z axis.

is also a solution for that equation in that region. Here c1, c2, . . . , cn are arbitrary
constants and therefore

∇2� =
n∑

k=1

ck∇2�k = 0.

This principle is a very important property of the Laplace equation, paving the way
for solutions of the flow field near complex boundaries. In principle, by using a set
of elementary solutions, the solution process (of satisfying a set of given boundary
conditions) can be reduced to an algebraic search for the right linear combination
of these elementary solutions.

8.5 Two-Dimensional Elementary Solutions

The principle of superposition allows us to combine elementary solutions and calcu-
late the flow over various body shapes. The next step therefore is to develop those
solutions, and for simplicity we limit ourselves to 2D flows only. A polynomial series
can be a good start and clearly low-order terms should work – so let us suggest such
a solution next.

8.5.1 Polynomial Solutions

Because Laplace’s equation is a second-order differential equation, a linear function
of position will be a solution, too. So let us propose a first-order polynomial:

� = Ax + Bz. (8.19)

The velocity components that are due to such a potential are

u = ∂�

∂x
= A ≡ U∞, w = ∂�

∂z
= B ≡ W∞, (8.20)

where U∞ and W∞ are constant-velocity components in the x and z directions. Hence
the velocity potential that is due to a constant free-stream flow in the x direction is

� = U∞x. (8.21)

The velocity field that is due to the potential of Eq. (8.21) is described in
Fig. 8.5(a). Similarly, a free-stream in the z direction can be defined by the velocity
potential,

� = W∞z, (8.22)
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which is shown in Fig. 8.5(b). From the principle of superposition we can combine
the two, and in general

� = U∞x + W∞z. (8.23)

This potential describes a free stream in the combined directions. For example, if
U∞ = W∞, then the free stream will be at 45◦ between the x and z axes.

Along the same lines, additional polynomial solutions can be sought. As an
example, let’s consider the second-order polynomial, with A and B being constants:

� = Ax2 + Bz2. (8.24)

To satisfy the continuity equation,

∇2� = A + B = 0.

The solution to this equation is

A = −B, (8.25)

and by substituting this result into Eq. (8.24) the velocity potential becomes

� = A(x2 − z2). (8.26)

The velocity components for this 2D flow in the x–z plane are the derivatives of
Eq. (8.26):

u = 2Ax,

w = −2Az. (8.27)

To visualize this flow, the streamlines can be plotted. Recall Eq. (2.9), indicating
that the flow is parallel to the streamline,

dx
u

= dz
w

, (2.9)

and substituting the velocity components yields

dx
2Ax

= dz
−2Az

.

Integration by separation of variables results in

xz = const. = D. (8.28)

The streamlines for different constant values of D = 1, 2, 3 . . .are plotted in
Fig. 8.6 and, for example, if only the first quadrant of the x–z plane is considered,
then this potential describes the flow around a corner. If the upper half of the x–z
plane is considered, then this flow describes a stagnation flow against a wall. Note
that when x = z = 0, the velocity components u = w = 0 vanish too – which means
that a stagnation point is present at the origin, and the coordinate axes x and z are
also the stagnation streamlines.
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8.5.2 Two-Dimensional Source (or Sink)

A source is a point from which fluid flows in the radial direction in straight lines.
Thus, in the 2D r–θ coordinate system the tangential velocity component vanishes
(e.g., qθ = 0). Because we are searching for a potential flow solution, this flow field
must be irrotational! Therefore we can start with the definition of vorticity (repre-
senting rotation), and require it to be zero!

ζy = 2ωy = −1
r

[
∂

∂r
(rqθ ) − ∂

∂θ
(qr )

]
= 1

r
∂

∂θ
(qr ) = 0. (8.29)

Thus the velocity component in the r direction is a function of r only [qr = qr (r)].
Also, the remaining radial velocity component must satisfy the continuity equation
[Eq. (8.8)], which in the r–θ coordinate system (without the tangential velocity
component) is

∇ · �q = dqr

dr
+ qr

r
= 1

r
d
dr

(rqr ) = 0. (8.30)

This indicates that

rqr = const. = A.

Using this constant, the velocity components are

qθ = 0, qr = A
r

. (8.31)

Let us call the flow rate passing through an arbitrary circle at a distance r1 as σ ,
and according to the continuity equation it is the same as the flow rate at a different
distance r2:

σ = qr 2πr = A
r1

2πr1 = A
r2

2πr2 = 2π A.
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From this we conclude that the constant in Eq. (8.31) is

A = σ

2π
, (8.32)

where σ represents the volume flow rate introduced by the source. The resulting
velocity components for a source element at the origin are

qθ = 0, qr = σ

2πr
. (8.33)

This element is described in Fig. 8.7; the streamlines are clearly straight radial lines
and the velocity decays as a function of 1/r [see Fig. 8.7(b)]. At the center of the
source (origin in this case) the velocity goes to infinity, and these types of elements
are called singular solutions. In terms of the velocity potential in the r–θ coordinate
system,

qr = ∂�

∂r
= σ

2πr
, (8.34)

qθ = 1
r

∂�

∂θ
= 0. (8.35)

By integrating these equations, we find the velocity potential,

� = σ

2π
ln r + C, (8.36)
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and the constant C can be set to zero. Also a source is emitting fluid while a sink is
removing fluid at a rate of σ . The only difference is the sign, and in general we can
write

� = ± σ

2π
ln r, (8.37)

where the minus sign is for a sink.
Equations (8.34)–(8.37) describe a source–sink placed at the origin, and for any

other location (as in r0 ) we can replace the distance r with r − r0 . Similarly, in
Cartesian coordinates the distance r between two points (x, z) and (x0, z0) is

r =
√

(x − x0)2 + (z − z0)2.

Based on this, the corresponding equations for a source located at (x0, z0) are

�(x, z) = σ

2π
ln

√
(x − x0)2 + (z − z0)2, (8.38)

and the velocity components obtained by deriving the velocity potential are

u = ∂�

∂x
= σ

2π

x − x0

(x − x0)2 + (z − z0)2
, (8.39)

w = ∂�

∂z
= σ

2π

z − z0

(x − x0)2 + (z − z0)2
, (8.40)

Note that the source here is placed at (x0, z0) and the velocity is evaluated at (x, z).
If placed at the origin then clearly x0 = z0 = 0.

A sink is the same as a source but the flow direction is reversed. The only dif-
ference is that instead of positive flux a negative sign is added (−σ ) in the source
equations! In this case σ represents the flow disappearing at the point sink.

EXAMPLE 8.1. VELOCITY INDUCED BY A SOURCE. A source of strength σ = 5 m2/s
is located at a point (1,1). Calculate the velocity at (0, − 1)

Solution: Using the velocity equations for the source and substituting the values
for the two points we get

u = 5
2π

0 − 1
(0 − 1)2 + (−1 − 1)2

= −0.159
m
s

,

w = 5
2π

−1 − 1
(0 − 1)2 + (−1 − 1)2

= −0.318
m
s

.

8.5.3 Two-Dimensional Doublet

A doublet is like a small jet engine emitting fluid in one direction and sucking the
same amount of flow from behind (so no fluid is introduced as in the case of a source
or sink). Consequently we can obtain the 2D doublet by letting a point source and
a point sink (of equal strength) approach each other, as depicted in Fig. 8.8.
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Figure 8.8. A doublet is a product of a source and a
sink placed next to each other.

The velocity potential at an arbitrary point P because of the two point elements
is [based on Eq. (8.37)]

� = σ

2π
(ln r2 − ln r1) = − σ

2π
ln

r1

r2
, (8.41)

and the source is located forward. So the fluid is ejected into the +x direction.
Because r1 is only a bit longer in the figure (e.g., �x is small) we can write

r1

r2
= 1 + �r

r
,

where r is the average distance to P and
�r
r

� 1. Consequently we can rewrite

Eq. (8.41) as

� = − σ

2π
ln

(
1 + �r

r

)
,

and expanding the log term, assuming �r is small, we get

� = − σ

2π
ln

(
1 + �r

r

)
= − σ

2π

[
�r
r

− 1
2

(
�r
r

)2

+ 1
3

(
�r
r

)3

− · · ·
]

.

Next, observing the geometry in Fig. 8.8, it appears that

�r = �x cos θ.

Taking the limit process as �x → 0, neglecting smaller terms, and assuming that the
source–sink strength multiplied by their separation distance becomes the constant
μ (e.g., σ�x → μ), we get

� = lim
�x→0

−σ

2π

[
�x cos θ

r
− 1

2

(
�x cos θ

r

)2

+ 1
3

(
�x cos θ

r

)3

− · · ·
]

= −μ cos θ

2πr
.

Consequently the velocity potential for a doublet at the origin becomes

�(r, θ) = −μ

2π

cos θ

r
. (8.42)
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We can obtain the velocity field that is due to this element by differentiating the
velocity potential:

qr = ∂�

∂r
= μ cos θ

2πr2
, (8.43)

qθ = 1
r

∂�

∂θ
= μ sin θ

2πr2
. (8.44)

Again, the preceding doublet is placed at the origin. In Cartesian coordinates the
sin and cos functions are (also see Fig. 8.8)

cos θ = x − x0√
(x − x0)2 + (z − z0)2

sin θ = z − z0√
(x − x0)2 + (z − z0)2

and recall the expression for the distance r:

r =
√

(x − x0)2 + (z − z0)2.

Using the preceding expressions, we find that the velocity potential in Cartesian
coordinates for such a doublet at a point (x0, z0) is

�(x, z) = −μ

2π

x − x0

(x − x0)2 + (z − z0)2
, (8.45)

and the velocity components are

u = ∂φ

∂x
= μ

2π

(x − x0)2 − (z − z0)2

[(x − x0)2 + (z − z0)2]2
, (8.46)

w = ∂φ

∂z
= μ

2π

2(x − x0)(z − z0)
[(x − x0)2 + (z − z0)2]2

. (8.47)

The velocity field and constant-potential lines for this doublet are depicted schemat-
ically in Fig. 8.9. The streamlines are circles originating at the doublet front and
returning at its back. The constant-potential lines are normal to the streamlines and
consist of similar circles, but rotated by 90◦, as shown in the figure.

The arrow in Fig. 8.9 indicates that a doublet is directional, and the one formu-
lated here points in the positive x direction. Doublets pointing into other directions
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can be derived by simple (rotational) transformation of the preceding equations.
The simplest case is the one in which the doublet formulas are multiplied by –1 to
get a doublet pointing in the −x direction.

EXAMPLE 8.2. VELOCITY INDUCED BY A DOUBLET. Calculate the velocity induced
by a doublet of strength μ = 1 m3/s located at the origin at a point x = 1, z = 0.

For the solution let us use the Cartesian form of the velocity formulas:

u = μ

2π

(x − x0)2 − (z − z0)2

[(x − x0)2 + (z − z0)2]2
= 1

2π

12 − 02

[12 + 02]2
= 1

2π

m
s

,

w = μ

2π

2(x − x0)(z − z0)
[(x − x0)2 + (z − z0)2]2

= 1
2π

2 × 1 × 0
[12 + 02]2

= 0.

Suppose we want to find the velocity at a point located at x = 1, z = 1. Then,
from Fig. 8.9, we suspect that the velocity vector will point straight up (because
we are at a 90◦ position on the streamline):

u = 1
2π

(12 − 12)
[12 + 12]2

= 0,

w = 1
2π

2 × 1 × 1
[12 + 12]2

= 1
4π

m
s

,

and this result verifies the expected direction of the velocity vector.

8.5.4 Two-Dimensional Vortex

The velocity field that is due to a 2D vortex was developed in Section 5.11. It was also
demonstrated that the flow that is due to a rotating vortex core is vorticity free when
the vortex core is excluded. We would like to develop the same 2D vortex element,
but using the approach used for the source element (in this section). We can start
by searching for a singularity element with only a tangential velocity component, as
shown in Fig. 8.10(a), whose velocity will decay in a manner similar to the decay of
the radial velocity component of a 2D source (e.g., it will vary with 1/r).

Streamlines

Lines of constant potential

Velocity
due to
positive Γ

θ

(b)(a)

r

z

qθ

qθ = − Γ
2πr

Figure 8.10. Streamlines and equipotential lines for a 2D vortex placed at the origin. Note
that the tangential velocity decays as 1/r .
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The expected velocity components are then

qr = 0,

qθ = qθ (r, θ).

Substituting these velocity components (e.g., qr = 0) into the continuity equa-
tion [Eq. (2.45)] results in qθ being a function of r only:

qθ = qθ (r).

Similar to the approach used to develop the source, we can substitute these relations
into the vorticity expression and require that the rotation be zero:

ζy = 2ωy = −1
r

[
∂

∂r
(rqθ ) − ∂

∂θ
(qr )

]
= −1

r
∂

∂r
(rqθ ) = 0.

By integrating with respect to r, we get

rqθ = const. = A. (8.48)

This, of course, is the conservation of angular momentum, and the magnitude of the
velocity varies with 1/r , similar to the radial velocity component of a source. The
value of the constant A can be calculated by use of the definition of the circulation
�, as in Eq. (5.171):

� =
∮

c
�q · d�l =

∫ 0

2π

qθ × rdθ =
∫ 0

2π

A
r

rdθ = −2π A.

Note that positive � is defined according to the right-hand rule (positive clockwise);
therefore, in the x–z plane, as in Fig. 8.10(a), the line integral must be taken in the
direction opposite to that of increasing θ . Also, recall that the circulation represents
the solid-body rotation times the core area (� = 2ωS) as shown by Eq. (5.174). The
constant A is then

A = − �

2π
, (8.49)

or in terms of the solid body rotation of the “core” ω,

A = −2ωS
2π

. (8.49a)

and the velocity field is

qr = 0, (8.50a)

qθ = − �

2πr
. (8.50b)

As expected, the tangential velocity component decays at a rate of 1/r , as shown in
Fig. 8.10(b). The velocity potential for a vortex element at the origin can be obtained
by use of the basic definition of the velocity potential, that is, by the integration of
Eq. (8.50):

� =
∫

qθrdθ = − �

2π
θ + C, (8.51)
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where C is an arbitrary constant that can be set to zero. Equation (8.51) indicates
too that the velocity potential of a vortex is multivalued and depends on the number
of revolutions around the vortex point. So when integrating around a vortex, we
do find vorticity concentrated at a zero area point, but with finite circulation (see
Section 5.11). However, if integrating �q · d�l around any closed curve in the field
[not surrounding the vortex – see Eq. (5.181)] the value of the integral will be zero.
Thus the vortex is a solution to the Laplace equation and results in an irrotational
flow, excluding the vortex point itself. Equations (8.50) and (8.51) are for a vortex at
the origin. For a vortex located at an arbitrary point (x0, z0) expressed in Cartesian
coordinates, the formulation is

� = − �

2π
tan−1 z − z0

x − x0
, (8.52)

u = ∂φ

∂x
= �

2π

z − z0

(x − x0)2 + (z − z0)2
, (8.53)

w = ∂φ

∂z
= − �

2π

x − x0

(x − x0)2 + (z − z0)2
. (8.54)

EXAMPLE 8.3. VELOCITY INDUCED BY A VORTEX. A vortex with a circulation of
� = 5 m2/s is located at a point (1,1). Calculate the velocity at (0, −1) and (3,
0).

Solution: Using the velocity equations for the vortex, for the first point we get

u = 5
2π

−1 − 1
(0 − 1)2 + (−1 − 1)2

= −0.318
m
s

,

w = −5
2π

0 − 1
(0 − 1)2 + (−1 − 1)2

= 0.159
m
s

,

and for the second point we get

u = 5
2π

0 − 1
(3 − 1)2 + (0 − 1)2

= −0.159
m
s

,

w = −5
2π

3 − 1
(3 − 1)2 + (0 − 1)2

= −0.318
m
s

.

EXAMPLE 8.4. A VORTEX IS A SOLUTION FOR THE LAPLACE EQUATION. Prove that
the vortex of Eq. (8.51) satisfies the Laplace equation.

Solution: Let us substitute vortex equation (8.51) into Eq. (8.9):

∇2� = ∂2
(− �

2π
θ
)

∂r2
+ 1

r

∂
(− �

2π
θ
)

∂r
+ 1

r2

∂2
(− �

2π
θ
)

∂θ2
= 0 + 0 + 0.

8.5.5 Advanced Topics: Solutions Based on the Green’s Identity

Another method, with a much wider application range, is based on the Green’s iden-
tity (see [1]). This approach is the basis for numerical methods, called panel meth-
ods, and can be used for solving the flow over complex shapes. One form of this
identity, stated in Eq. (8.55), postulates that the velocity potential representing the
flow over a solid body can be constructed by adding the contribution of sources and
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U∞

S
Φi =  const

=  0
∂φ
∂n

Thick surface Thin surface
(wake)

n

Figure 8.11. Schematic description
for the use of the Green’s identity to
solve the flow over a 2D body.

doublets with a free stream. According to this 2D Green’s formula, the potential at
an arbitrary point (x, z) in the fluid can be constructed by the following summation:

�(x, z) = 1
2π

∫
SB

[
σ ln r − μ

∂

∂n
(ln r)

]
dS + �∞. (8.55)

Here r, as before, represents the distance between the element and the point of
interest (x, z) and SB is the body’s surface (or even its wake, as shown in Fig. 8.11).

At first it appears that this formulation is identical to the principle of superpo-
sition. However, it is also implied that the sources and doublets must be placed on
the surface.

The first term in this equation, (σ ln r) is the source as given by Eq. (8.37); how-
ever, the doublet μ ∂

∂n (ln r) is not immediately recognizable. This is because the dou-
blet in this formula is normal to the surface (in the direction of �n). However, if the
derivative of ln r is taken in the x direction, then clearly the doublet potential of
Subsection 8.5.3 is obtained [compare Eq. (8.38) with Eq. (8.45)].

The application of the Green’s identity is shown schematically in Fig. 8.11. The
correct combination of sources and doublet can be found by fulfilling the zero-
normal-flow boundary condition on the surface S:

∂�

∂n
= 0 on S,

and this velocity-based formulation is usually called the Neumann boundary condi-
tion (after Carl Neumann, German mathematician, 1832–1925). In the case of flow
with forces into the vertical direction (lift) usually a zero pressure jump is forced at
the sharp trailing edge where a thin wake is formed, as shown in the figure (this is
called the Kutta condition). Now, if (∂�/∂n) = 0 on the surface of the thick body,
then the internal potential is unchanged, as shown in Fig. 8.11:

�i = const. (8.56)

This is called the Dirichlet boundary condition (after the German mathematician,
Johann Peter Gustav Lejeune Dirichlet, 1805–1859), which in this case is much sim-
pler than the Neumann condition. Usually the inner potential value in Eq. (8.56) is
set as zero. The application of this type of boundary condition is beyond the scope
of this chapter but is described in detail in [1]. This topic will be revisited in Chap-
ter 9, when the numerical solution of potential flows is discussed.

The concept introduced by the Green’s formula in Eq. (8.55) contains the prin-
ciple of superposition [as in Eq. (8.18)]. Therefore the following example serves to
demonstrate the method for obtaining a solution for the potential flow by use of the
principle of superposition. Although this clarifies somewhat the Green’s identity
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Figure 8.12. Schematic description
of combining a free stream with a
source and a sink.

approach, the singular elements are not placed on the solid boundary, as suggested
by Eq. (8.55).

EXAMPLE 8.5. THE SUPERPOSITION OF A SOURCE, A SINK, AND A FREE STREAM.

Find the velocity potential and the velocity distribution for the combination of
a source, a sink, and free stream.

Solution: To demonstrate the principle of superposition, let us place a source
with a strength σ at x = −x0 and a sink with a strength −σ at x = +x0, both on
the x axis (as shown in Fig. 8.12). The free stream with a speed U∞ is flowing in
the x direction as shown in the figure.

The velocity potential at an arbitrary point P(x,z) is obtained by combining
the three separate potentials:

�(x, z) = U∞x + σ

2π
ln (r1) − σ

2π
ln (r2), (8.56)

where r1 =
√

(x + x0)2 + z2, and r2 =
√

(x − x0)2 + z2. With these relations the
velocity potential in Cartesian coordinates becomes

�(x, z) = U∞x + σ

2π
ln

√
(x + x0)2 + z2 − σ

2π
ln

√
(x − x0)2 + z2. (8.56a)

We obtain the velocity field that is due to this potential by differentiating the
velocity potential:

u = ∂�

∂x
= U∞ + σ

2π

x + x0

(x + x0)2 + z2
− σ

2π

x − x0

(x − x0)2 + z2
, (8.57a)

w = ∂�

∂z
= σ

2π

z
(x + x0)2 + z2

− σ

2π

z
(x − x0)2 + z2

. (8.57b)

It appears that, ahead of the source, along the x axis, there must be a point (let
us call it x = −a) where the velocity is zero (stagnation point). Based on these
equations, the w component of the velocity along the x axis is automatically
zero. To find the location of the stagnation point we equate the u component to
zero:

u(−a, 0) = U∞ + σ

2π

1
(−a + x0)

− σ

2π

1
(−a − x0)

= U∞ − σ

π

x0(
a2 − x2

0

) = 0,

and a is

a = ±
√

σ x0

πU∞
+ x2

0 . (8.58)
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Figure 8.13. Streamlines de-
scribing the flow of combined
source, sink, and free stream.

This suggests that there is a fore–aft symmetry about the vertical z axis and
another stagnation point exists at x = a. To visualize the streamlines, we can
start at a point far to the left and, based on Eq. (2.9a), march forward, using the
following procedure:

xi+1 = xi + u�t,

zi+1 = zi + u�t . (8.59)

Here i is a virtual time interval counter and �t is a small time interval. The
resulting streamlines are shown in Fig. 8.13, based on the results from [1].

As seen, the stagnation streamline includes a closed oval shape (called
Rankine’s oval, after W. J. M. Rankine, a Scottish engineer who lived between
1820 and 1872). This flow can therefore be considered to model the flow past an
oval of length 2a. For this application, the streamlines inside the oval have no
physical significance. By varying the parameters σ and x0 or a, the flow past a
family of such ovals can be derived.

Also note that the velocity normal to the stagnation streamline is zero!
Therefore this example demonstrates how the flow over a particular body can be
obtained by the principle of superposition and by fulfilling the zero-normal-flow
boundary condition. In the next section the limiting case of a circle is studied, in
which the source and the sink coincide and form a doublet.

8.6 Superposition of a Doublet and a Free Stream: Flow over a Cylinder

The basic solutions developed in Section 8.4 can be combined (by use of the princi-
ple of superposition) to simulate the flow over complex shapes. The general method
for doing this (for arbitrary geometries) is beyond the scope of this text, but the fol-
lowing examples in this section demonstrate the approach. The potential flow model
assumes no flow separation, and therefore this method is powerful for attached flow
cases such as the flow over airplane wings or submarine hulls. This first case, the
flow over a cylinder, serves to show how the flow field over a practical shape can be
obtained. However, in reality the flow over a cylinder is separated throughout most
of the Reynolds number range. In spite of this model leading to an incorrect physical
solution, the results create a systematic approach for developing a database for the
fluid dynamic forces such as lift and drag. (In other words, if we could solve here the
flow over a thick airfoil at a small angle of attack, then the calculated results would
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Figure 8.14. Combination of a free stream
U∞ with a doublet pointing in the −x
direction.

be very close to the experimental data. Unfortunately the math involved is beyond
the scope of this chapter).

Let us consider the superposition of the free-stream potential of Eq. (8.21), with
the potential of a doublet [Eq. (8.42)] pointing in the negative x direction, as shown
in Fig. 8.14. However, it is much easier to use the r–θ coordinate system and instead
of x in Eq. (8.21) we use x = r cos θ . Consequently the velocity potential of the free
stream blowing into the positive x direction is

� = U∞r cos θ. (8.60)

Next we add a doublet at the origin but pointing in the −x direction (see coordinate
system in Fig. 8.14), resulting in the change of sign for the doublet potential. The
combined flow has the following velocity potential:

� = U∞r cos θ + μ

2π

cos θ

r
. (8.61)

We can obtain the velocity field of this potential by differentiating Eq. (8.61):

qr = ∂�

∂r
=

(
U∞ − μ

2πr2

)
cos θ, (8.62)

qθ = 1
r

∂�

∂θ
= −

(
U∞ + μ

2πr2

)
sin θ. (8.63)

To visualize this flow we can use the property of streamlines, as stated in Eqs. (2.9)
[or Eqs. (8.59)], and the result is shown in Fig. 8.15. Basically the doublet (recall
the jet engine model) is blowing into the free stream. At a certain point (see P1

in the figure) the velocity stops, and this point is called the stagnation point. It
appears that a circle of radius R is dividing the streamlines of the inner flow solu-
tion from the outer one, which line is often called as the staguation streamline. We
show later that there is no flow crossing this circle, and therefore we can consider
the outer flow as the solution for the flow over a cylinder.

R

x

rz

P2P1

U∞
θ

Figure 8.15. Streamlines for the
combination of a free stream and a
doublet (flow over a cylinder).
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To verify the assumptions that there is no flow across the cylinder boundaries,
let us check Eq. (8.62) for qr = 0:

qr =
(

U∞ − μ

2πr2

)
cos θ = 0.

Suppose we wish to describe the flow over a cylinder of radius R; then we can use
this equation to determine the strength μ of the doublet for this condition. Thus,
substituting r = R as the radius of the circle and solving for the strength of the dou-
blet μ, we get

μ = U∞2π R2. (8.64)

Substituting this value of μ into the velocity potential and its derivatives [Eqs.
(8.61)–(8.63)] results in the flow field around a cylinder of radius R:

� = U∞ cos θ

(
r + R2

r

)
, (8.65)

qr = U∞ cos θ

(
1 − R2

r2

)
, (8.66)

qθ = −U∞ sin θ

(
1 + R2

r2

)
, (8.67)

and the flow of interest is when r ≥ R. The stagnation points on the circle are found
by letting qθ = 0 in Eq. (8.67), and because of the sin θ term they are located at
θ = 0 and θ = π . To obtain the pressure distribution over the cylinder, the velocity
components are evaluated at r = R:

qr = 0, qθ = −2U∞ sin θ. (8.68)

This example represents a general approach for obtaining a solution for the poten-
tial flow problem posed in Section 8.8. Instead of solving the Laplace equation
directly, we combine known solutions by using the principle of superposition in a
manner such that boundary condition (Eq. 8.17) is satisfied. This is exactly the con-
dition, shown by Eq. (8.68) (e.g., qr = 0), that states that the velocity normal to the
surface of the cylinder is zero!

We now obtain the pressure distribution at r = R by applying Bernoulli’s equa-
tion on the surface of the cylinder. We take a reference point far left, where the flow
is undisturbed (p = p∞ and u = U∞), and the other point is on the surface of the
cylinder (where we have only qθ ):

p∞ + ρ

2
U2

∞ = p + ρ

2
q2

θ . (8.69)

Substituting the value of qθ at r = R yields

p − p∞ = 1
2
ρU2

∞(1 − 4 sin2 θ). (8.70)

This equation describes the pressure distribution on the surface of the cylinder. In
terms of the pressure coefficient, when p∞ is used as the reference pressure,

Cp = p − p∞
1
2ρU2∞

= 1 − 4 sin2 θ. (8.71)
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Figure 8.16. (a) Theoretical pressure distribution around a cylinder [Eq. (8.71)] and (b) com-
parison with experimental data. The solid curve shows the ideal-flow solution and the broken
curve represents the high-Reynolds-number experimental data.

Note that by taking p − p∞ directly from Eq. (8.69) and substituting into the defini-
tion of the pressure coefficient we get

Cp = 1 − q2

U2∞
. (8.72)

The results of Eq. (8.71) are plotted schematically in Fig. 8.16(a) showing positive
pressure at the front and at the back of the cylinder. As the flow accelerates around
the top (or bottom) of the cylinder, the velocity increases and a large suction force
results.

The same pressure distribution [of Eq. (8.71)] is also shown in Fig. 8.16(b) by
the solid curve. It can be easily observed that at the stagnation points θ = 0 and π

(where both components of the velocity are zero: q = 0), the pressure coefficient is
the highest at Cp = 1. Also, the maximum speed occurs at the top and bottom of
the cylinder (θ = π

2 , 3π
2 ) and the pressure coefficient there is −3. Note that there is

a fore–aft symmetry as well as a top–bottom symmetry (suggesting no lift or drag).
To evaluate the components of the fluid dynamic force acting on the cylinder,

the preceding pressure distribution must be integrated. Let L be the lift acting in the
z direction and let D be the drag acting in the x direction. Integrating the compo-
nents of the pressure force on an element of length Rdθ leads to

L =
∫ 2π

0
−pRdθ sin θ =

∫ 2π

0
−(p − p∞)Rdθ sin θ =

−1
2

ρU2
∞

∫ 2π

0
(1 − 4 sin2 θ)Rsin θdθ = 0. (8.73)

D =
∫ 2π

0
−pRdθ cos θ =

∫ 2π

0
−(p − p∞)Rdθ cos θ =

−1
2

ρU2
∞

∫ 2π

0
(1 − 4 sin2 θ)Rcos θdθ = 0. (8.74)

Here the pressure is replaced with the pressure difference p − p∞ term, and this
has no effect on the results because the integral of a constant pressure p∞ around a
closed body is zero. As noted, because of the fore and aft symmetry the calculated
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Figure 8.17. Experimental visualization of the high-Reynolds-number flow over a cylinder.

pressure loads cancel out. In reality, the flow separates (and is also unsteady) and
will not follow the cylinder’s rear surface, as shown in Fig. 8.17. The pressure distri-
bution that is due to this real flow and the results of Eq. (8.71) are plotted in Fig. 8.16.
This shows that, at the front section of the cylinder, where the flow is attached, the
pressures are well predicted by this model. However, behind the cylinder, because
of the flow separation, the pressure distribution is different. For example, near the
rear stagnation point (θ = 0) the experimental pressure coefficient in Fig 8.16 is
negative, compared with +1 predicted by the ideal-flow solution. Consequently the
pressure drag in an actual flow is not zero!

Note that the inviscid flow results do not account for flow separation and vis-
cous friction near the body’s surface, and therefore the calculated drag coefficient
for the cylinder is zero. This fact disturbed the French mathematician Jean le Rond
d’Alembert (1717–1783), who arrived at a similar conclusion that the drag of a
closed body in 2D inviscid incompressible flow is zero (even though he realized that
experimental results indicate that there is drag). Ever since those early days of fluid
dynamics, this problem has been known as the d’Alembert’s paradox.

Although the flow over a sphere was not solved here the method of solution is
very similar and the resulting pressure distribution is

Cp = 1 − 9
4

sin2 θ. (8.75)

Because of the fore–aft symmetry of the potential flow, drag is zero; the two the-
oretical pressure distributions (for one side – say, upper) are depicted in Fig. 8.18.
The important observation here is that the maximum velocity (and the correspond-
ing pressure coefficients) is much smaller in the 3D case, because the flow can move
around the sides as well.

8.7 Fluid Mechanic Drag

This first example of the flow over a cylinder may not be the best when compared
with experiments. As noted earlier, a solution of a streamlined shape (such as an
airfoil) would be a much better example, but the mathematical formulation is far
more complicated. Nevertheless, this solution provides the approach for calculating
engineering quantities such as the pressure distribution and the force coefficients.
Let us start by observing the drag of simple shapes like the cylinder and flat plate,
and then extend the method to include more complex shapes (the discussion on the
lift will be resumed later).
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8.7.1 The Drag of Simple Shapes

In a manner similar to plotting the friction coefficient for pipes or for the boundary
layer versus the Reynolds number, we can plot the experimental drag coefficient of
the cylinder versus a wide range of the Reynolds number (see Fig. 8.19). In addition,
the drag coefficient of a sphere is shown, and the trends in both curves are similar.
This graph seems quite complicated, and in the next paragraph an attempt is made
to provide some observation-based explanations (based on the flow over a cylinder).

At a very low Reynolds number we expect laminar flow, and the drag (as
the friction coefficient in the previous chapter) should decrease with increasing
Reynolds number. This was validated by experiments, and flow visualizations indi-
cated that the flow is attached up to Re < 4. This is described schematically in
Fig. 8.20(a) and marked as region a in Fig. 8.19. For the case of the sphere in this low
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Figure 8.19. Experimental drag coefficient of a cylinder and a sphere over a wide range of
Reynolds numbers.
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Figure 8.20. Schematic description of the var-
ious observed flow fields over a cylinder (ver-
sus Reynolds number).

Reynolds number range, Stokes (1819–1903), of Navier–Stokes fame, developed a
closed-form solution, resembling the results for the friction coefficient on plates and
in pipes:

CD = 24
Re

. (8.76)

This equation compares well with the experimental data in Fig. 8.19, up to a
Reynolds number of about 4.

As the Reynolds number increases, the flow will separate behind the cylinder
and a “stationary” separation bubble is observed [see Fig. 8.20(b)]. This condition
remains up to Reynolds numbers of about 40. At the next range of Reynolds number
(up to say 400) alternate vortex shedding begins [Fig. 8.20(c)] with a laminar sepa-
ration bubble behind. As the Reynolds number further increases (up to 0.3 × 106),
wake vortices become more turbulent, but the front is still laminar [Fig. 8.20(d)].
The separation point is actually a few degrees (up to 8) ahead of the top, which
explains the larger drag (of over 1.0). The next important region is one order of
magnitude larger (about Re > 3 × 106) when the boundary layer becomes turbulent
at the front and as a result the rear separation area is reduced (up to 30◦ back from
the top). Turbulent vortex shedding continues, but the reduced area of flow separa-
tion results in much lower drag, as shown in Fig. 8.20(e) (see also the sharp drop in
drag in Fig. 8.19).

This example provides valuable insight about the resistance force in a moving
fluid. The skin friction originating at the boundary layer is clearly one component.
However, the separated flow creates a pressure distribution that results in drag. This
component of the drag is called the pressure drag or sometimes form drag and in
many practical cases (e.g., a car) it is much larger than the drag that is due to skin
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Figure 8.21. Potential flow solution of the flow over a streamlined shape and calculated pres-
sure coefficient (which are close to experimental data). Note that the upper and lower pres-
sure distributions are identical.

friction. Figure 8.20 clearly demonstrates that it depends on the Reynolds number
and on whether the flow is laminar or turbulent. Note that this pressure drag is zero
for 2D shapes in fully attached flows (as suggested by the present potential flow
model – the fact that puzzled d’Alembert).

As a conclusion, a “good example” is presented in which the flow is attached.
Naturally, a streamlined shape, such as shown in Fig 8.21, can qualify. The potential
flow pressure distribution shown by the dashed line (calculated by adding sources
and sinks to a free stream) compares well with experimental data and the drag force
can be estimated by use of the skin friction data from the boundary-layer section
(see Example 8.6). Consequently there is no form drag (if there is no flow sepa-
ration), and the approach used in this section will be successful in predicting the
pressure distribution and resulting loads.

EXAMPLE 8.6. DRAG DUE TO SKIN FRICTION ONLY. Estimate the drag coefficient
at a Reynolds number of 3 × 106 on a streamlined shape, such as shown in
Fig. 8.21.

Solution: In this case we assume that the flow is attached and the drag is a
result of the skin friction only. We can estimate the drag coefficient from the
boundary-layer data of Fig. 7.10, where we get CD ∼ 0.004 for turbulent flow;
for laminar flow we use the Blasius formula:

CD = 2
0.664√
3 × 106

= 0.00077.

Based on the shape of the pressure distribution, the gradient is favorable for
about 40% of the length, so we can assume that the boundary layer is laminar
there, whereas it is turbulent along the rest of the surface. The total drag per
side is

CD = 0.4 × 0.00077 + 0.6 × 0.004 = 0.0027.

And for the two sides (2 × 0.0027) the drag coefficient is estimated at

CD = 0.0054,

and this number is very close to experimental results (for this airfoil).
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EXAMPLE 8.7. DRAG OF A POLE. A 15-m-tall vertical pole of diameter 0.25 m
is exposed to winds of up to 30 m/s. Calculate the force on the pole and the
moment at the base (assuming a 2D cylinder model). Assume air density is
ρ = 1.2 kg/m3 and viscosity μ = 1.81 × 10−5 N s/m2.

Solution: First we need to check the Reynolds number:

Re = 1.2 × 30 × 0.25
1.81 × 10−5

= 0.497 × 106.

In this Reynolds number range the flow is turbulent and the drag coefficient is
about 0.7 (from Fig. 8.19) Note that here the drag coefficient is based on the
frontal area whereas in the previous example the drag is based on the length
of the streamwise surface. Nevertheless the drag numbers in this example are
much larger (than in the previous one) because of the flow separations. Now we
can calculate the drag force:

D = CD
1
2
ρU2S = 0.7 × 1

2
× 1.2 × 302 × 0.25 × 15 = 1417.5 N.

For the moment at the base we may assume that the resultant force acts halfway
to the top:

M = h
2

D = 15
2

1417.5 = 10,631 N m.

EXAMPLE 8.8. TERMINAL VELOCITY OF A SPHERE [RE ∼ O(1)]. An aluminum ball
of 0.5-cm diameter was dropped into a container filled with motor oil. Calculate
how fast the ball will sink in the oil. Note that the density of aluminum is ρ =
2700 kg/m3 and the properties of oil are taken from Table 1.1.

Solution: This is an important example because it requires the calculation of
terminal velocity (and the Reynolds number cannot be readily calculated). Let
us assume that the Reynolds number is less than 4 and we can use the Stokes
formula [Eq. (8.76)]. The force pulling the ball down is its weight minus the
buoyancy:

(ρAl − ρoil)Vg = (ρAl − ρoil)
4
3

R3g,

and the force acting upward is the resistance to the motion,

D = CD
1
2
ρoilU2(π R2) = 24

ReD

1
2
ρU2(π R2) = 6πUμ.

During equilibrium these two forces are equal. Solving for U we get

U = 2
9μ

(ρAl − ρoil)gR2. (8.77)

Now this formula can be used to calculate the aluminum ball’s sinking speed:

U = 2
9 × 0.29

(2700 − 919)9.8 × 0.00252 = 0.084
m
s

.
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Figure 8.22. Flow normal to a
flat plate and the resulting pres-
sure distribution.

Next the Reynolds number must be calculated to validate the Stokes flow
assumption,

Re = 919 × 0.084 × 0.005
0.29

= 1.33,

and clearly the assumption was reasonable.

EXAMPLE 8.9. FLOW NORMAL TO A 2D FLAT PLATE. This is an important case
because the flow separates at the two edges, as shown in Fig. 8.22a. Because the
separation points are fixed, the drag coefficient is not changing significantly with
Reynolds number, and CD ∼ 1.2 is a good estimate for Re > 104 (for a width-
to-height ratio of up to 5). This example also demonstrates how to extend the
method to shapes other than a cylinder. Of course, tables documenting experi-
mental results for the drag coefficient of various shapes are provided in the next
section.

The measured centerline pressure distribution is shown in the lower part
of the figure, and it clearly indicates that inside the aft separation bubble the
pressure is almost unchanged. At the center (front) a stagnation point is present
and the pressure coefficient there is about +1.0. As the fluid particles move to
the sides, their velocity increases, resulting in high speed and low pressure at
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the edges. This low pressure prevails at the back and is the reason for the high
drag.

Let us try to estimate the drag coefficient based on the pressure distribution
in Fig. 8.22. The drag force is basically the average pressure difference between
the front and the back of the plate multiplied by the area:

D = (pfront − prear)S.

For the pressure at the front and rear we can use the average pressure coeffi-
cient:

pfront − p∞ = C p

∣∣∣∣
front

1
2
ρU2S,

prear − p∞ = C p

∣∣∣∣
rear

1
2
ρU2S,

and the drag is

D = (pfront − prear)S =
(

C p

∣∣∣∣
front

− C p

∣∣∣∣
rear

)
1
2
ρU2S,

or in nondimensional form

CD = C p|front − C p|rear.

Now, based on Fig. 8.22, the average quantity for C p
∣∣
rear is about –1.1, and for

the front it must be C p
∣∣
front ∼ +0.1 in order for the drag coefficient to be 1.2.

This is possible only if the suction at the edges of the forward-facing side is quite
large, so this can counteract the high pressure at the center.

For a numerical example, assume that workers are moving a 1 m × 1 m glass
plate and a wind of 15 km/h is blowing normal to it. The force on the plate is
then

D = CD
1
2
ρU2S = 1.2

1
2

1.2
(

15
3.6

)2

1 × 1 = 12.5 N.

8.7.2 The Drag of More Complex Shapes

In the previous cases of the cylinder, the airfoil, and the flat plate, we used the pres-
sure distribution in order to explain the resulting drag (mostly pressure drag in the
case of the cylinder and the flat plate). Let us next analyze a more complex shape
(as in Fig. 8.23).

The argument here is that the lessons learned from the ideal-cylinder case are
applicable to more complicated shapes [as shown in Fig. 8.23(a)]. For example, at
the front of the cylinder the flow faces a concave curvature and the pressure is
higher. At the top, the curvature is convex, the velocity increases, and the pressure is
lower (recall Bernoulli’s model of molecules impinging on the surface, as discussed
in Section 1.6). The same observations can be made for the automobile shape, in
which the suction peaks occur where the surface is convex, as shown in Fig. 8.23(b).

When discussing the boundary-layer flow (Section 7.4), we observed that the
favorable pressure gradient energizes the boundary layer and flow separation is
unlikely. This is indicated in Fig. 8.23(b), in the front the pressure coefficient slopes
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Figure 8.23. Pressure distribu-
tion (2D) on an automobile
shape.

upward (hence the pressure goes from high to low = favorable). At the aft section of
the cylinder and of the car, the pressure distribution is unfavorable (or adverse) and
flow separation is likely. Consequently the flow separates in both cases, resulting in
pressure drag (which for high-Re flows is much larger than the skin-friction drag).

To demonstrate the effect of flow separation on drag, Fig. 8.24 shows a small
cylinder and a much larger airfoil shape. The high-Reynolds-number drag of both
shapes is the same! The drag of the airfoil is mostly due to the skin friction in the
boundary layer, whereas pressure (or form) drag is the main contributor to the drag
of the cylinder.

Figure 8.25 shows the drag and lift coefficients of various and more complex
configurations.

U∞
Figure 8.24. The drag of the small
cylinder and that of the much larger
streamlined airfoil are the same (at
about Re = 105).
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Figure 8.25. High-Reynolds-number force coefficient for various shapes (based on frontal
area A apart from the flag).

Note: In most of the preceding cases the drag and lift coefficients are based on
the frontal area. In certain applications the top view is used (so always verify which
of the two is used).

EXAMPLE 8.10. AERODYNAMIC DRAG. My neighbor rides his bicycle at 25 km/h for
1 h. Calculate air resistance, power required, and total calories invested during
1 h.

Solution: The average frontal area of a bicycle rider is 0.36 m2 and based on Fig
8.25, the drag coefficient is about 0.88. Using this information, we can calculate
the drag force:

D = CD
1
2
ρU2S = 0.88

1
2

1.2
(

25
3.6

)2

0.36 = 9.17 N.
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The power P required is simply the force times velocity,

P = DU, (8.78)

and therefore

P = 9.17
25
3.6

= 63.65 W.

in terms of horsepower (hp) we divide by 745, and this is equal to 0.085 hp (and
this isn’t much). Also 1 cal = 4.2 J ( joule) and therefore in 1 h (3600 s) the total
energy spent is

E = P × t = 63.65 W × 3600 s = 229.2 KJ = 54.6 K cal.

So now he can eat his ice cream.

EXAMPLE 8.11. HYDRODYNAMIC DRAG. A submarine is cruising underwater at
20 km/h and its drag coefficient (based on frontal area) is 0.15. If its frontal area
is 4 m2 and the seawater density is 1025 kg/m3, calculate the drag force and the
power required for propelling the submarine.

Solution: The drag force on the submarine is

D = CD
1
2
ρU2S = 0.15

1
2

1025
(

20
3.6

)2

4 = 9491 N.

The power P required is simply the force times velocity:

P = 9491
20
3.6

= 52.7 kW,

and this is about 71 hp.

EXAMPLE 8.12. TERMINAL VELOCITY OF A PARACHUTE. A 90-kg paratrooper
jumps out of an airplane. If the chute diameter is 6 m, calculate his sinking–
descent speed.

Solution: First we find that the drag coefficient of a parachute (from Fig. 8.25)
is 1.2. In steady state the drag of the parachute is equal to the weight mg of the
parachutist (we neglect the weight of the chute):

mg = CD
1
2
ρU2S.

Solving for U and substituting the numerical values we get

U =
√

2mg
CDρS

=
√

2 × 90 × 9.8
1.2 × 1.2 × π × 32

= 6.58
m
s

.

Based on my experience, this is too fast (4 m/s is better) and the paratrooper
must lose some weight.

EXAMPLE 8.13. POWER REQUIREMENT FOR A CRUISING AUTOMOBILE. The drag
coefficient of your sports car is 0.32 and its frontal area is 1.8 m2. Although the
engine output is rated at 300 hp, how much power is required for cruising at
100 km/h?
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Solution: Let us first calculate the drag:

D = CD
1
2
ρU2S = 0.32

1
2

1.2
(

100
3.6

)2

1.8 = 266.7 N;

the power is then simply the drag times velocity:

P = 266.7
100
3.6

= 7.4 kW = 9.9 hp.

So you can probably use only one cylinder.
Now let us repeat the same exercise for a race car traveling at 300 km/h and

having a frontal area of 1.4 m2. If we assume a moderate drag coefficient of
0.75 for an open-wheel race car (and they have large drag because of the
exposed wheels and wings), then the drag is

D = 0.75
1
2

1.2
(

300
3.6

)2

1.4 = 4375 N,

and the required power is

P = 4375
300
3.6

= 364.6 kW = 489 hp,

and this car definitely needs the power.

8.8 Periodic Vortex Shedding

The experimental results for the flow over a cylinder indicated that, beyond
Reynolds numbers of 40–90, a periodic vortex wake develops, as shown in Fig. 8.20.
This is true in fact for other shapes (such as the flat plate in Fig. 8.22) in which such
alternating vortices are visible. This phenomenon, seen on ocean currents flowing
around islands or when winds cause the vibrations of telephone cables, is called the
Kármán vortex street, after Theodore von Kármán (1881–1963), who also developed
the boundary-layer integral formulation.

Figure 8.26(a) shows the alternating vortices behind the cylinder. As noted,
when flow separation exists in a high-Reynolds-number flow, such a vortex street
can develop; as an example, the vortices behind a large truck are shown schemat-
ically in Fig. 8.26(b). The shedding frequency is quite well defined by the Strouhal

Truck

(a)

(b)

D

l

U∞

Figure 8.26. Vortex shedding behind a cylinder and a large truck.
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Figure 8.27. Nondimensional vortex-shedding frequency (St) versus Re for a 2D cylinder.

number (St) [Eq. (6.9)], which is very close to the value of 0.2. Figure 8.27 shows the
range of observed St. versus Re, and indeed the variation is not large (the shaded
area shows the range or spread of different experimental data).

The Strouhal number is defined here as

St = f D
U∞

, (8.79)

and f is the frequency in hertz (Hz) (cycles per second) and D is the approxi-
mate lateral spacing between the separation points (for a cylinder we take D, the
diameter). The spread in experimental results usually narrows if the lateral spacing
between the vortices [D in Fig. 8.26(b)] is used instead of the actual width of the
body responsible for shedding the vortices. From the engineering point of view it is
important to know the fluid mechanic frequencies in order not to design structures
with similar frequencies (and ending with mechanical resonance). If the distance [l in
Fig. 8.26(b)] between the vortices is sought, it can be calculated as

l = U∞
f

. (8.80)

Let us demonstrate the applicability of this simple formula by the following
examples.

EXAMPLE 8.14. VORTEX-SHEDDING FREQUENCY OF A FLAGPOLE. Calculate the
vortex-shedding frequency from a 0.3-m-diameter flagpole at a maximum wind
speed of 35 m/s.

Solution: Let us first calculate the Reynolds number and then look up the St
from Fig. 8.27:

Re = 1.2 × 35 × 0.3
1.81 × 10−5

= 0.7 × 106.
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Using this value in Fig. 8.27 we estimate St ∼ 0.23. We then calculate the fre-
quency by using Eq. (8.79):

f = St
U∞
D

= 0.23
35
0.3

= 27 Hz.

So there are 27 full cycles per second.

EXAMPLE 8.15. FLOW OSCILLATION BEHIND A LARGE TRUCK. A motorcycle travels
behind a large truck and the rider feels the flow oscillations. If the truck is 2 m
wide and travels at a speed of 100 km/h, calculate the shedding frequency and
the spacing l between the oscillation cycles.

Solution: Let us refer to the schematics in Fig. 8.26(b). Using the width of the
truck as D and calculating the Reynolds number as in the previous example, we
get Re = 3.6 × 106. Let us use the same St of 0.23. The oscillation frequency is
then

f = St
U∞
D

= 0.23
100/3.6

2
= 3.19 Hz.

The distance l between the two cycles is

l = U∞
f

= 100
3.19 × 3.6

= 8.69 m.

EXAMPLE 8.16. ACOUSTIC EFFECTS OF VORTEX SHEDDING. As a musical example,
calculate the “singing telephone wires” frequency in a 50-km/h crosswind. The
wire diameter is 0.65 cm.

Solution: Let us calculate the Reynolds number first:

Re = 1.2 × 50/3.6 × 0.0065
1.81 × 10−5

= 5985.

The Strouhal number from Fig. 8.27 is about 0.21, and the vortex shedding fre-
quency is

f = St
U∞
D

= 0.21
50/3.6
0.0065

= 449 Hz,

and this is close to middle C (about 440 Hz).

8.9 The Case for Lift

We used the simple solution for the flow over a cylinder to calculate the pressure dis-
tribution and then present an explanation for the form or pressure drag. The same
approach may be used for estimating the lift. This is done not only because these
simple solutions are (probably) the only ones that can be presented at this introduc-
tory level, but because the lifting case contains the basic mechanism responsible for
the upper–lower asymmetry in the flow field, explaining this effect.

8.9.1 A Cylinder with Circulation in a Free Stream

Up to this point the discussion was focused on the drag force; however, it is possible
to create forces normal to the flow direction, and this is the topic of this subsec-
tion. For convenience we continue with the approach in which the free stream is
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U∞ Figure 8.28. Streamlines for the flow over a cylin-

der with circulation.

flowing along the x axis and the normal force in the z direction is called the lift.
The approach so far was to study the flow over a geometry (cylinder) that can be
solved and then extrapolate (based on experimental and other data) to cases involv-
ing more complex geometries. Consequently, we can start again with the flow over
a cylinder (which has upper–lower symmetry – and no lift) and search for a method
to generate lift. A lifting condition can be obtained by the introduction of an asym-
metry, in the form of a clockwise vortex with strength � situated at the origin (see
Fig. 8.28). The velocity potential for this case is

� = U∞ cos θ

(
r + R2

r

)
− �

2π
θ. (8.81)

Note that we use the velocity potential of the flow over the cylinder, and the addition
of the tangential vortex flow is not expected to affect the normal flow’s boundary
condition on the cylinder’s surface at r = R. We can verify this by differentiating the
velocity potential to get the velocity components:

qr = ∂�

∂r
= U∞ cos θ

(
1 − R2

r2

)
. (8.82)

The radial component remains the same as for the cylinder without the circulation.
The tangential velocity is

qθ = 1
r

∂�

∂θ
= −U∞ sin θ

(
1 + R2

r2

)
− �

2πr
. (8.83)

As expected, this potential still describes the flow around a cylinder because at r =
R the radial velocity component becomes zero. We can obtain the stagnation points
by finding the tangential velocity component at r = R,

qθ = −2U∞ sin θ − �

2π R
, (8.84)

and by solving for qθ = 0 we can see that they moved to a lower point on both sides
of the cylinder:

sin θs = − �

4π RU∞
. (8.85)

These stagnation points (located at an angular position θs) are shown by the
two dots in Fig. 8.28, and they lie on the cylinder as long as � ≤ 4π RU∞. We find
the lift and drag by using Bernoulli’s equation. Substituting the tangential velocity of
Eq. (8.84) yields the pressure distribution:

p − p∞ = 1
2
ρU2

∞

[
1 −

(
2 sin θ + �

2π RU∞

)2
]

.
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Because of the fore and aft symmetry, no drag is expected from this calculation. For
the lift, the tangential velocity component is substituted into the Bernoulli equation
and

L =
∫ 2π

0
−(p − p∞)Rdθ sin θ = −

∫ 2π

0

[
ρU2

∞
2

− ρ

2

(
2U∞ sin θ + �

2π R

)2
]

sin θ Rdθ.

But the integrals
∫ 2π

0 sin θ = ∫ 2π

0 sin3 θ = 0, and the lift integral reduces to

L = ρU∞�

π

∫ 2π

0
sin2 θdθ = ρU∞�

π

∫ 2π

0

1
2

(1 − cos 2θ)dθ = ρU∞�. (8.86)

This very important result states that the force in this 2D flow is directly proportional
to the circulation and acts normal to the free stream. A generalization of this result
was discovered independently by the German mathematician M. W. Kutta (1867–
1944) in 1902 and by the Russian physicist N. E. Joukowski (1847–1921) in 1906.
They observed that the lift per unit span on a lifting airfoil or cylinder is proportional
to the circulation. Consequently the Kutta–Joukowski theorem is as follows: The
resultant aerodynamic force in an incompressible, inviscid, irrotational flow in an
unbounded fluid is of magnitude ρU∞� per unit width and acts in a direction normal
to the free stream:

L = ρU∞�. (8.87)

The connection between circulation and angular rotation was established in Sec-
tion 5.11. So the conclusion here is that this is a mechanism to create force in a
fluid by introducing angular momentum. Consequently a fore–aft symmetry of the
flow exists and no pressure drag results (if the flow is attached). Of course, this very
efficient principle is used by flying birds and swimming fish (and airplanes). This
remark about the efficiency can be demonstrated by considering the streamlines in
Fig. 8.28 far ahead and far behind the rotating cylinder (this region is not shown in
the figure). Because there is no vertical deflection of the flow, at a distance ahead
and behind, the flow will be parallel to the x coordinate and there is no change in
the linear momentum (hence no drag – in terms of ideal flow). This is depicted in
the schematics of Fig. 8.29(a). In terms of pressure distribution the fluid particles
move faster on the upper surface than on the lower one and there is a net lift force
(although from a distance no change is detected between the incoming and outgoing
free-stream velocity direction). On the other hand, when force is created by chang-
ing the linear momentum as in the case of an impinging jet on a deflector [see Eq.
(4.8) and as shown in Fig 8.29(b)], there will be a drag force, even if the incoming
and exiting velocities remain the same.
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Figure 8.30. Lift and drag of rotating cylinder and sphere. Note that ω is measured in radians
per second! (Re = 0.4–6.6 × 105, after [3, Chapter 21].)

This principle of creating lift in an attached flow is utilized by airplane wings
and is discussed in the next section. However, it is interesting to examine the results
for lift and drag created by both a rotating cylinder and a sphere, as depicted in
Fig. 8.30. As expected, the flow over both cases is separated and therefore the
drag is larger than zero and the lift is considerably less than estimated by the cur-
rent model. This effect is called the Magnus effect, after German physicist Heinrich
Gustav Magnus (1802–1870), who described this phenomenon in 1853. A similar
spin effect is responsible for the curved balls in baseball or in soccer, or for the
dispersion of artillery shells that is due to side winds.

To estimate the effect of flow separation on the theoretical results for an
attached flow, recall Eq. (5.172), which estimates the circulation created by a rotat-
ing cylinder as

� = 2π R2ω. (5.172)

The lift calculated by Eq. (8.81) on the rotating cylinder with the attached flow is
then

L = ρU∞2π R2ω,

and the lift coefficient is

CL = 2π
Rω

U∞
,

which is much larger than the values shown in Fig. 8.30 (so flow separation signifi-
cantly reduces the lift). As noted, in addition to flow separation, surface roughness
also has an effect on the lift and drag data in Fig. 8.30 (and this can be considered as
a first-order estimate).

EXAMPLE 8.17. LIFT OF A ROTATING BALL. Estimate the lift and drag of a 3-cm-
diameter ping-pong ball flying at 11 m/s and rotating at 7000 RPM.
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Solution: First we need to calculate the lift and drag coefficients from Fig. 8.30.
The nondimensional rotational parameter is

Rω

U∞
= 0.015 × 2π × 7000/60

11
= 1.0.

The lift and drag coefficients are obtained from Fig. 8.30(b) as CL = 0.27
and CD = 0.63. The corresponding forces are then

L = CL
1
2
ρU2S = 0.27

1
2

1.2 × 112 × π × 0.0152 = 0.014 N,

D = CD
1
2
ρU2S = 0.63

1
2

1.2 × 112 × π × 0.0152 = 0.032 N.

If the ball moves to the left and the rotation is in the direction shown in
Fig. 8.30(b), then the ball will experience lift.

8.9.2 Two-Dimensional Flat Plate at a Small Angle of Attack
(in a Free Stream)

The rotating cylinder example demonstrated the concept of lift; however, because
of flow separation the estimated lift didn’t compare well with experimental results.
A flat plate at a small incidence (or angle of attack) as shown in Fig. 8.31 is a much
better example in the absence of flow separation. The solution of this problem can
be obtained by use of vortices on the flat plate combined with a free stream; how-
ever, the math involved is beyond the scope of this text. The circulation for a flat
plate with a chord c and at an angle of attack α (see Ref. [1, Chapter 5]) is

� = πU∞cα. (8.88)

The lift is calculated with Eq. (8.87),

L = ρU∞� = πρU2
∞cα, (8.89)

and the 2D lift coefficient per unit width is

CL = L
1
2ρU2c × 1

= 2πα. (8.90)
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Figure 8.31. Potential flow model of a 2D flat plate at (a) an angle of attack and (b) the
resulting pressure difference along the plate.
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This result is amazingly close to experimental results as long as the flow is attached
(up to α ∼ 5◦–7◦ for a thin, flat plate). The pressure difference resulting from this
solution is shown in Fig. 8.31(b), and it appears that most of the lift is generated
at the front. The calculated center of pressure is at the quarter chord – and this is
close to experimental results as well. Also note that, in effect, the flat plate creates
circulation of the magnitude given by Eq. (8.88) and the lift mechanism is similar to
the lift of the rotating cylinder (however, now there is no massive flow separation).
Consequently the drag CDi (which is due to the pressure distribution) is zero (as in
the case of the ideal flow over the cylinder)!

CDi = 0. (8.91)

Note that the drag that is due to skin friction (let us call it Cd0) is not included, and
for calculating the total 2D drag it must be added:

CD = CDi + Cd0. (8.92)

EXAMPLE 8.18. LIFT OF A 2D FLAT PLATE. The chord of a carport roof in an apart-
ment complex is c = 3.5 m and its span is very wide (consider b ∼ ∞). Calculate
the lift per unit span for a 20-km/h wind blowing at α = 5◦ (straight on).

Solution: For this 2D case we use Eq. (8.90):

CL = 2πα = 2π
5π

180
= 0.548.

Note that α is calculated in radians. The lift per unit span is

L = CL
1
2
ρU2S = 0.548

1
2

1.2
(

20
3.6

)2

3.5 × 1 = 35.53 N.

8.9.3 Note about the Center of Pressure

Calculating the resultant force and its action point is very important for many engi-
neering applications. The discussion on fluid statics (Chapter 3) demonstrated the
method for the center-of-pressure calculation (albeit for simple pressure distribu-
tions only). In the case of a moving fluid over an objet, such as a baseball, a car, or an
airplane, the resulting pressure distribution is complex, and the center-of-pressure
calculation requires elaborate integration schemes. However, the previous examples
provide some useful hints about the expected location of the center of pressure, as
demonstrated in Fig. 8.32. Here the pressure distribution on the upper and lower
surfaces of a flat plate are shown at the left, and the pressure distribution on one
half cylinder is shown at the right.

As noted in the previous section, the center of pressure for a flat plate at an
angle of attack is at 1/4 chord length from the leading edge. This location does not
move when the angle of attack is changed, and aerodynamicists call it the aerody-
namic center because the moments are not affected by the plate angle. Also note
that a larger portion of the lift is due to the suction on the upper surface and not due
to the high pressure on the lower surface [see Fig. 8.32(a)]!
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Figure 8.32. Schematic description of the pressure distribution (a) over a flat plate and
(b) over the upper surface of half a cylinder in potential flow.

Figure 8.32(b) shows the pressure distribution over the upper surface of half a
cylinder. The lift can be obtained by use of the integration of Eq. (8.73) between
the limits: θ = 0, θ = π , and results in CL = 5/4. Because of the fore–aft symmetry,
the center of pressure is located at the center (e.g., c/2 in the figure). The important
conclusion is that for lifting surfaces and wings the center of pressure is between
the 1/4 and 1/2 chord. In the case of flat surfaces (or symmetric airfoils) it is at
1/4 chord and for cambered surfaces (or cambered airfoils) the center of pressure
moves backward [but not as much as shown in Fig. 8.32 (b)].

8.10 Lifting Surfaces: Wings and Airfoils

The previous discussion about the flat plate (at a small angle of attack) established
the approach for generating efficient fluid dynamic lift. Because of the importance
of this topic, a short discussion on lifting surfaces (e.g., wings) is presented. Let us
start with some definitions, as shown in Fig. 8.33.

A 3D wing of chord c and span b is shown at the top of the figure. The 2D
cross section of a 3D wing is frequently called an airfoil, and a generic airfoil shape
is shown by the shaded cross section in Fig. 8.33(a). Thus a 2D airfoil can be viewed
as the cross section of a rectangular wing with an infinite span, and the side view of
this infinitely wide wing is shown in Fig. 8.33(b) (also showing the definition of angle
of attack α). The leading edge is usually rounded and the trailing edge is pointed; the
letter t is used to denote the airfoil’s maximum thickness. The thickness is usually
measured in percentages of t/c. Figure 8.33(c) shows that an airfoil can be symmetri-
cal or it can have a camber, and the shape of the camber line (centerline) is depicted
by the dashed line.

It is interesting to look back at history, particularly at the efforts to understand
the fluid mechanics of wings. Between 1914 and 1917, the group lead by Ludwig
Prandtl in Göttingen, Germany, developed the so-called lifting-line theory to calcu-
late the lift and drag of wings. One of the main outcomes of those studies is that for
typical wings (when b/c > 5), the 2D airfoil-shape development can be separated
from the wing planform (or top-view) shape. Following in their footsteps, we also
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Figure 8.33. Basic definitions used to des-
cribe the shape of a wing.

discuss the flow over 2D airfoils first, and only later the effects of the 3D planform
shape.

8.10.1 The Two-Dimensional Airfoil

The streamlines over a generic airfoil moving through a fluid (such as air) are pre-
sented in Fig. 8.34. As in the case of the rotating cylinder, the streamlines far ahead
and behind remain parallel to the free stream. The streamline that stops under the
leading edge is called the stagnation streamline because the flow stagnates (stops) at
this point. The point itself is called a stagnation point. The overall effect of the air-
foil on the surrounding fluid results in a faster flow above it and a slower flow under
it. Because of this velocity difference the pressure above the airfoil will be lower
than under it, and the resultant force (lift) will act upward. Also when comparing
(from a distance) the ideal-flow streamlines in Fig. 8.34 with those for the lifting
cylinder (Fig. 8.28) there is no change in the linear momentum. So from a distance
the attached-flow airfoil appears as a rotating cylinder.

The shape of the pressure distribution is a direct outcome of the velocity dis-
tribution near the airfoil. For example, a fluid particle traveling along a streamline
placed slightly above the stagnation streamline (in Fig. 8.34) will turn sharply to the
left near the stagnation point. Because this turn is against the solid surface of the
airfoil, the particle will slow down, resulting in a larger pressure near this point on
the lower surface. But as it reaches the leading edge, it is forced to turn around
it (but now the particle wants to move away from the surface), and therefore its
acceleration increases, resulting in a very low pressure near the leading edge. A
similar particle moving under the stagnation streamline experiences no major direc-
tion changes and will generally slow down near the airfoil and increase the pressure
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Figure 8.34. Schematic description of
(a) the streamlines near an airfoil and
(b) the resulting pressure distribution.

on the airfoil’s lower surface. Thus the (+) sign in Fig. 8.34(b) represents the area
where the pressure is higher than the free-stream static pressure, whereas the (–)
sign represents the area with lower pressure. Also, in most cases the contribution of
the suction side (–) to the airfoil’s lift is considerably larger than that of the pressure
side (+).

Next we try to demonstrate how an airfoil’s geometry affects the shape of the
pressure distribution. First, a typical pressure distribution on a symmetric airfoil at
an angle of attack is shown in the left-hand side of Fig. 8.35. The vertical arrows
show the direction of the pressure force acting on its surface. The shape of the pres-
sure distribution on an airfoil with a cylindrical arc-shaped camber, at zero angle of
attack, is shown in the center of the figure. These two generic pressure distribution
shapes can be combined to generate a desirable pressure distribution, as shown on
the right-hand side of the figure. Because of this observation, airfoils are frequently
identified by their thickness distribution (which is a symmetric airfoil) and by an

−

+
+ =

Pressure side

Suction side

−

+
+

−

Figure 8.35. The effect of an airfoil’s shape on the resulting pressure distribution.
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additional centerline camber shape [the camber line shown in Fig 8.33(c)]. In con-
clusion, the angle of attack, the camber-line shape, and the thickness distribution
determine an airfoil’s pressure distribution.

The center of pressure of the symmetric airfoil is at the quarter-chord point
(x/c = 0.25) as mentioned in the discussion about the flat plate (Subsection 8.9.3).
This is verified in Fig 8.36 where the moments about the quarter chord are zero,
as long as the flow is attached. On the other hand, the shape of the pressure distri-
bution (at zero angle of attack) on the circular arc suggests that its center of pres-
sure is located at the center (because of symmetry). Consequently it appears that by
increasing the camber of an airfoil the center of pressure will shift backward. Also,
the portion of the lift that is due to the symmetric airfoil, whose center of pressure is
not affected by the change in angle of attack, remains at the quarter chord (a point
we called earlier the aerodynamic center). This is based on the potential flow model,
which permits the superposition of the symmetric and cambered airfoil’s solution.

8.10.2 An Airfoil’s Lift

To calculate the lift of a 2D symmetric airfoil we can start with the results for the
flat plate [Eq. (8.90)]:

Cl = 2πα. (8.93)

The lowercase subscript l is usually used for the 2D case whereas the subscript L
(e.g., CL) is used for the 3D wing. Consequently, when Eq. (8.93) is used, the refer-
ence area becomes the chord c multiplied by a unit width, and the lift is also mea-
sured per unit width. Note that α is measured in radians! As an example, consider a
symmetric airfoil at an angle α = 8◦; the lift coefficient is then

Cl = 2π

(
8π

180

)
= 0.877.
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Figure 8.36. Typical data for the NACA
0009 airfoil (the last two digits, 09, mean
that the airfoil is 9% thick).
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of attack, but it does not change
the lift slope.

Figure 8.36 shows the experimental data for a typical symmetric airfoil, and the lift
slope (2π) is amazingly close to the experimental results (up to stall, which in this
case is beyond 10◦ angle of attack).

An interesting observation is that for a cambered airfoil the coefficient 2π does
not change, but there is an increment in the effective angle of attack by αL0. Thus the
symmetric airfoil will have zero lift at α = 0 whereas the cambered airfoil will have
a lift of 2παL0, even at zero angle of attack. Consequently, for a cambered airfoil,
Eq. (8.93) can be rewritten as

Cl = 2π(α − αL0). (8.94)

This is shown by the experimental data in Fig. 8.37 for two 12% thick airfoils. Note
that the effect of camber can be calculated accurately by use of a combination of
elementary solutions (e.g., doublets and sources).

Finally we can generalize the airfoil lift equation by using a single formula that
is good for symmetric (αL0 = 0) and cambered airfoils:

Cl = Clα(α − αL0), (8.95)

and for the 2D case the lift slope is

Clα = 2π. (8.96)
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8.10.3 An Airfoil’s Drag

The high-Reynolds-number model developed in this chapter postulates that there
is no pressure drag in ideal 2D flows (and flow separation is excluded). The exper-
imental data in Fig 8.36 show that there is drag, and this is due to the shear stress
in the boundary layer. Of course, at the higher angles of attack, flow separation
results in pressure drag, which is much larger, as shown in the figure. Although the
drag numbers are low, we can obtain improvements by reducing the skin friction in
the boundary layer. Figure 8.38 shows two 15% thick NACA (National Advisory
Committee for Aeronautics) airfoils with similar shapes. In the more recent design
(NACA 642-415) an effort was made to keep a longer laminar region on the air-
foil. This was achieved by a slight change in the shape of the upper surface so that
a longer region will be exposed to a favorable pressure gradient. Because the skin
friction is lower in the laminar boundary layer, visible drag reduction was achieved.
This advantage is limited to a narrow range, and at higher angles of attack the gain
is lost.

Note that the viscous drag shown in these two figures is the Cd0 term in
Eq. (8.92)! Here we use the lowercase d to emphasize the 2D geometry!

EXAMPLE 8.19. SIZING OF AN AIRFOIL. Frequently, experimental airfoil data, as
in Fig. 8.38, are used for wing design. Suppose the design of a small airplane
is aimed at low drag and therefore a lift coefficient of 0.5 is selected for cruise,
using the NACA 642-415 airfoil. Calculate the required chord length for a lift of
50 kgf (per unit span) at a speed of 150 km/h. Also, what is the lift-to-drag ratio
at this condition?
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Figure 8.38. Longer laminar flow on the airfoil results in a lower drag coefficient. Of course, at
larger angles of attack the boundary-layer thickness increases and the advantage disappears.
(Note: You can view this graph as CD versus α, because the lift coefficient in an ideal flow
varies linearly with the angle of attack.)
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Attached flow Separated flow

Figure 8.39. Schematic description of the streamlines near an airfoil in an attached flow and
in a separated flow.

Solution: From the definition of the lift coefficient we can write

c = L
0.5ρU2Cl

= 50 × 9.8

0.5 × 1.2
(

150
3.6

)2

0.5

= 0.94 m.

To estimate the drag we simply look at the figure, and it is about 0.005. Note
that this represents the viscous friction drag (Cd0). The lift-to-drag ratio is then

L
D

= 0.5
0.005

= 100,

and the viscous drag, per unit span, is 0.5 kgf.

8.10.4 An Airfoil Stall

The models developed in this Chapter were aimed at predicting the attached flow
over streamlined shapes. Figures 8.36 and 37 show excellent agreement in the pre-
diction of the lift, but the model fails when the flow separates. This condition is
called stall, and airplanes or ships are not supposed to operate within this region.
The streamlines for an attached airfoil are shown schematically on the left-hand side
of Fig. 8.39, and they follow the shape of the airfoil. Usually when angle of attack
is significantly increased, the streamlines will not follow the airfoil shapes and the
flow will be separated. This will result in a dramatic loss of lift (stall) and a sudden
increase in drag (see data in Fig. 8.36 for angles larger than 12◦).

As the Reynolds number increases, there is a slight delay in the onset of stall;
also, drooping the leading edge of the airfoil can delay the stall. The effect of stall
on the pressure distribution is demonstrated in Fig. 8.40. The dashed curves shows a
hypothetical shape for the pressure distribution, which would be expected without
flow separation. The experimental data, however, show a sharp drop in the suction
behind the separation point, an effect that is reducing lift. Also note that inside the
separated flow region the pressure is not changing much.

8.10.5 The Effect of Reynolds Number

The discussion on high-Reynolds-number flows throughout the last three chapters
suggests that the boundary-layer flow and flow separation are the main parameters
affected by the Reynolds number (and the transition to turbulent flow). Although
such flow fields are quite complex, in general, flow separation is delayed in turbulent
flow because of the momentum exchange with the outer flow (but skin friction will
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Figure 8.40. Hypothetical attached
flow pressure distribution (dashed
curves) on a general aviation air-
foil GA(W) − 1, compared with
the actual separated flow pressure
distribution (triangles).

increase). On the other hand, if the flow is attached then maintaining longer laminar
flow regions results in less drag. These conflicting observations indicate that optimiz-
ing a design for best L/D ratio is not trivial. Nevertheless, the effect of increasing
Reynolds number can be demonstrated by testing the same airfoil at various speeds,
as shown in Fig. 8.41. Again, note that when the flow is attached, the lift slope is
unchanged, and the lift is the same as predicted by the outer flow model [Eq. (8.93)].

The first and most prominent effect seen on this figure is the onset of separation,
which starts at smaller angles of attack for the lower Reynolds numbers. A more
careful observation of this case indicates that flow separation starts at the trailing
edge. By increasing the Reynolds number the trailing-edge separation is delayed
and higher angles of attack can be reached without flow separation (hence the higher
maximum lift). This trend continues, but near α = 16◦ flow separation cannot be
avoided and the lift loss is much sharper. This condition when the flow separates
near the leading edge is naturally called leading-edge stall, as shown in the figure.
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Figure 8.41. Effect of Reynolds
number on the lift coefficient
of a symmetric NACA 0012
airfoil (reproduced from
[1, Fig. 15.16]).
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8.10.6 Three-Dimensional Wings

The formulation used for the 2D airfoil can be extended to include 3D wings; how-
ever, an important wingtip effect must be taken into consideration. We can specu-
late that the airfoil pressure distribution (as depicted in Fig. 8.34) will be reduced if
wingspan is reduced because of this wingtip effect. The lift, as before, is a result of
high pressure below the wing and the low pressure above it. However, near the tips
the higher pressure (below) creates a flow that escapes and rolls upward, generating
a trailing vortex, as shown in Fig. 8.42. So it is clear that the lift will be less than the
2D value because of this edge effect. In other words, the pressure difference at the
tip cannot be maintained and the lift there drops to zero. Therefore it is logical to
assume that the pressure difference between the upper and the lower surfaces will
increase with increased distance from the tip (and the same can be assumed for the
local lift).

The geometry of a finite wing shape is usually identified by the 2D airfoil section
(or sections), and by the planform (top view) shape. The influence of airfoil shape
on the aerodynamic properties was discussed in the previous section, and the effect
of planform shape is discussed briefly here. In principle, Fig. 8.42 shows that the
two large tip vortices induce a downward velocity on the wing (downwash), thereby
reducing its lift (and increasing the drag). Therefore it is clear that the wider the
wing the less effect these tip vortices will have. This explains why sail planes have a
short chord and very large span. The relative width of a 3D wing is usually identified
by its aspect ratio, AR, which is defined as

AR = (b2/S). (8.97)

Of course, for a rectangular wing,

AR = b2

b c
= b

c
. (8.98)

Several generic planform shapes of planar wings are shown in Fig. 8.43. The simplest
shape is the rectangular wing with a span b and a constant chord c [Fig. 8.43(a)].
The AR is then a measure of the width of the wingspan compared with its chord
[Eq. (8.98)]. The wing can be swept, and in Fig. 8.43(b) the wing leading edge is

Trailing
vortex

c

b

U∞

Figure 8.42. Nomenclature for the finite
flat plate at an angle of attack. Note the
edge effect, forming a trailing-tip vortex.
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b Figure 8.43. Generic planform shapes
of 3D wings.

swept backward by an angle �. In this case the wing has a taper as well, and the
tip chord ct is smaller than the root chord c0. The taper ratio λ simply describes the
ratio between the tip and root chord lengths:

λ = (ct/c0). (8.99)

The wing planform can have an elliptic shape, as shown in Fig. 8.43(c), and in this
case the wing chord varies along the span, in a manner similar to an ellipse. The tri-
angular shape of Fig. 8.43(d) is seen on many high-speed aircraft and can be viewed
as a swept-aft rectangular wing with a taper ratio of zero. Any wing can be twisted
so that the tip has a different angle of attack from its root chord, and it can be tilted
upward at its tips (called dihedral) or downward at the tip, compared with the wing
root (called anhedral). By tailoring the previously mentioned geometrical parame-
ters, engineers can control the spanwise lift distribution on the wing. In most cases,
however, the lift is the largest at the centerline and is zero at the tip (as discussed
earlier).

The 3D lift and drag are calculated in a manner similar to the method used for
the 2D airfoil. For the lift we may use Eq. (8.95) (but we use an uppercase L):

CL = CLα(α − αL0), (8.100)

where the subscript L represents the total lift of the wing with an area S. The 3D
effect (which is due to the tip vortices) that is reducing the lift slope is then included
in a modified lift slope that depends on the wing AR. For most wings we can use the
following simple equation:

CLα = 2π

1 + (1 + δ1)
2

AR

. (8.101)

This equation was developed for elliptic wings, where δ1 = 0. In other cases δ1 is
small, and its evaluation is beyond the scope of this text (so we can approximate
δ1 = 0). As discussed in the case of the flat plate, the tip vortices bend the streamlines
behind the wing, creating an induced drag (which is an inviscid effect). This drag is

CDi = 1 + δ2

πAR
C2

L. (8.102)

Again, this equation was developed for elliptic wings where δ2 = 0. In other cases
δ2 is small, and its evaluation is again beyond the scope of this text (so, again, we
can approximate δ2 = 0). The total drag of the wing then includes the airfoil-section
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viscous drag Cd0 (as in Figs. 8.36 and 8.38) and the induced drag [as in Eq. (8.102)
(but using an uppercase D)]:

CD = CD0 + CDi . (8.103)

EXAMPLE 8.20. LIFT OF A 3D FLAT PLATE. The chord of a carport roof (from the
example of Section 8.9) in an apartment complex is c = 3.5 m but its span is now
b = 10 m. Calculate the lift of the roof for a 20-km/h wind blowing at α = 5◦

(straight on).

Solution: This is now a finite plate, and because there is no camber αL0 = 0.
Next, we use Eq. (8.101) to approximate the 3D lift slope,

CL = 2πα

1 + 2c
b

=
2π

5π

180

1 + 2 × 3.5
10

= 0.322,

and indeed the lift coefficient is much smaller than in the 2D case. Next we
calculate the lift of the roof as

L = CL
1
2
ρU2S = 0.322

1
2

1.2
(

20
3.6

)2

3.5 × 10 = 209.05 N,

and for the average lift per unit width we divide by 10 to get 20.90 N, which is
significantly less than in the previous example (where it was 35.53 N).

To calculate the induced drag coefficient we use Eq. (8.102) and AR =
10/3.5 = 2.86,

CDi = 1
πAR

C2
L = 0.0155,

and the induced drag is then

Di = CDi
1
2
ρU2S = 7.499 N.

To calculate the total drag [as in Eq. (8.103)] we can estimate CD0 by using the
boundary-layer calculations of Chapter 7.

The approach presented here simplifies the process for estimating the lift and
drag generated by lifting surfaces. The lift slope for complex shapes can be evaluated
by computations, and typical results for a rectangular wing (with or without sweep)
are shown in Fig. 8.44. The reduction in the lift with reduced AR [as predicted by
Eq. (8.101)] is quite large, and the addition of sweep reduces the lift even further.
Note the dashed line, which shows the 2D value of 2π and demonstrates the sharp
loss in CLα with reduced AR!

In general, the preceding formulation was developed for wings with AR larger
than 7. For the very low range of AR < 1, a simple formula was developed by NASA
scientist R. T. Jones (1910–1999):

CL = π

2
ARα, (8.104)
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Figure 8.44. Effect of AR and
sweep � on the lift slope of a pla-
nar rectangular wing.

and the induced drag is still calculated by Eq. (8.102). The lift slope predicted by
this formula is also shown in Fig. 8.44. This formulation, however, holds for only
very small angles of attack (e.g., α < 4◦).

This range of very small-AR wings is important for high-speed flight, and super-
sonic aircraft (such as the Concord) have such small-AR wings. At slightly higher
angles of attack (e.g., α > 7◦) a leading-edge separation takes place as shown in Fig.
8.45. The side vortices then roll up and induce low pressure on the upper surface
of the wing. The result (contrary to high-AR wing stall) is a significantly higher lift
than predicted by Eq. (8.104). This phenomenon is called vortex lift and sometimes
such highly swept surfaces are used ahead of larger-AR wings (called strakes).

Slender rectangular wing

Core of
vortex wake

Slender delta wing

L.E. separation
bubble

U∞

U∞

Figure 8.45. Schematic description of
leading- and side-edge separation on
slender wings.
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For the case of these very slender wings (AR < 1) the following formulations
can be used:

CL = (a1 + a2AR) sin α, (8.105)

CD = CL tan α, (8.106)

and the constants are a1 = 0.963 and a2 = 1.512 for delta wings and a1 = 1.395 and
a2 = 1.705 for slender rectangular wings.

The fact that such highly swept (or small-AR) surfaces can generate signif-
icant vortex lift, at very high angles of attack, was realized by aircraft design-
ers, and most modern military airplanes have such highly swept strakes (see
Fig. 8.46). For example, if such a strake is added in front of a less-swept-back wing,
then the vortex originating from the strake will induce low pressures on the upper
surface of the main wing, and the total gain in lift will surpass the lift of the strake
alone.

This gain in lift, as shown in Fig. 8.46, begins at an angle of attack of 10◦ and
has a significant effect up to angles of about 40◦. A more careful examination of
this figure reveals that the highly swept wing also stalls, but at a fairly large angle of
attack. This stall, though, is somewhat different from the unswept-wing stall and is
due to “vortex burst” (or breakdown). This condition is shown schematically in Fig.
8.47(a), and at a certain point the axial velocity in the vortex core is reduced and
the vortex becomes unstable, its core bursts, and the induced suction on the wing
disappears. So, as a result of the vortex burst, the lift of the wing is reduced and a
condition similar to stall is observed (but, as noted, this takes place at a very high
angle of attack).

The onset of vortex burst was investigated by many investigators, and the
results for a delta wing can be summed up best by the schematic diagram in
Fig. 8.48. The abscissa in this figure shows the wing AR, and the ordinate indicates
the angle-of-attack range. The curve on the right-hand side indicates the boundary

0
0

0.5

1.0

1.5

2.0

10 20 30 40

α, deg

Strake

Lift gain due to
interaction

CL

Figure 8.46. Effect of strakes on the lift
of a slender wing–body configuration.
(From Skow, A. M., Titiriga, A., and
Moore, W. A., “Forebody/ wing vortex
interactions and their influence on depar-
ture and spin resistance,” published by
AGARD/NATO in CP 247, High Angle
of Attack Aerodynamics, 1978.)
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Vortex
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(a) (b)

U∞

Rear view

Vortex asymmetry
Figure 8.47. Possible high-
angle-of-attack instabilities of
the flow over slender wings:
(a) leading-edge vortex break-
down, and (b) leading-edge
vortex asymmetry (rear view).

at which the vortex burst will reach the wing’s trailing edge. As an example for how
to read this figure, consider a slender delta wing with, AR = 1, and let us gradually
increase its angle of attack. Initially, say at α = 15◦, a vortex burst may appear, but
it will be far behind the trailing edge, not affecting the lift. As the angle of attack is
further increased, this vortex burst will move toward the trailing edge, and accord-
ing to this figure, will reach the trailing edge near α = 35◦. Once the vortex burst
moves ahead of the trailing edge, the vortex suction and resulting lift increase will be
reduced, and slender-wing stall will begin. Also, based on this figure, for larger-AR
wings (less leading-edge sweep) the burst will occur at lower angles of attack. On
the other hand, as the wing becomes very slender, the leading-edge vortices become
very strong and the burst is delayed. But for these wings another flow phenomenon,
called “vortex asymmetry,” is observed. This situation [shown schematically in
Fig. 8.47(b)] occurs when the physical spanwise space is reduced and consequently
one vortex raises above the other. The onset of this condition is depicted by the
left-hand curve in Fig. 8.48. For example, if the angle of attack of an AR = 0.5 delta
wing is gradually increased, then above α ≈ 20◦ this vortex asymmetry will develop.
If the angle of attack is increased, say up to α = 40◦, the lift will still grow and prob-
ably near α = 45◦ the vortex burst will advance beyond the trailing edge and wing

40

30

20

10

0 0.5 1.0 1.5 2.0 2.5

Vortex
asymmetry

Stable symmetric
vortex pattern

AR

α (deg)

Vortex
breakdown

Figure 8.48. Stability boundaries of leading-edge vortices for flat delta wings in incompress-
ible flow (adapted from [2]).
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Figure 8.49. The horseshoe
model for a lifting wing and its
trailing vortex wake.

stall will be initiated. In general, the condition of an asymmetric vortex pattern is
nondesirable because of the large rolling moments caused by this asymmetry. Fur-
thermore, the pattern of asymmetry is sensitive to disturbances and can arbitrarily
flip from side to side. The presence of a vertical fin (e.g., a rudder) between the two
vortices or a central body (as in missiles) can have a stabilizing effect and delay the
appearance of this vortex asymmetry.

Before concluding the discussion on 3D lifting surfaces, we discuss again the
effect of the wingtip vortices and the wake. Flow visualizations, such as water-vapor
condensation near the wingtips of airplanes, clearly demonstrate the existence of
tip vortices. Early models, as proposed by British engineer Frederick Lanchester
(1886–1946), represent the lifting wing by a horseshoe-shaped vortex, as shown in
Fig. 8.49, and this model is quite useful for simple, preliminary calculations (this
model was later refined by Prandtl). Recall the Kutta–Joukowski theorem of Eq.
(8.87), which connects the lift to the circulation (or angular momentum). For exam-
ple, the conservation of angular momentum principle suggests that the lifting vortex
(representing the wing) cannot stop at the wingtip, and it is bent into the free stream
and trails behind the wing, as shown (also, because the wake vortex is parallel to the
free stream it creates no force).

The first effect of these trailing vortices is to create a downwash and reduce
the wing’s lift (as discussed earlier). But at a large distance behind the airplane the
vortices continue to create a velocity field, as suggested by the figure. Between the
vortices there is a strong downwash, whereas outside there is an upwash. Because of
this principle, air controllers delay subsequent landings and takeoffs of airplanes
to reduce the effect of the wake vortices. Probably, similar reasons encourage
bird flocks to fly in a close V-shaped formation.

To demonstrate the applicability of the equations developed for the lift and drag
of 3D wings, several examples are presented.

EXAMPLE 8.21. WING TRAILING VORTICES. To demonstrate the effect of an air-
plane trailing vortices, consider a large 100-ton airplane (such as the Boeing
767) taking off at 200 km/h. If the wingspan is b = 47 m (in Fig. 8.49) let us
calculate the downwash far behind the airplane centerline (as in point A in
Fig. 8.49).
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Solution: The Kutta–Joukowski theorem of Eq. (8.87) determines the cir-
culation per unit length, based on the lift (or the weight of the airplane).
Therefore

� = L
ρU∞b

= 100000 × 9.8
1.22(200/3.6)47

= 307.63 m2/s.

The resulting downwash at point A is then [based on Eq. (8.50)]

w = 2
�

2π(b/2)
= 2

307.63
π23.5

= 8.33 m/s (30 km/h).

This could be significant for a following smaller airplane.

EXAMPLE 8.22. EFFECT OF ASPECT RATIO. Compare the lift and drag coefficients
of two rectangular wings at α = 5◦, both having a symmetric airfoil and chord
of 0.5 m. One wing has a span of b = 2 m and the other has a span of b = 4 m.

Solution: Let us approximate the lift slope by Eq. (8.101). The aspect ratios of
the two wings are

wing 1, AR = 2
0.5

= 4; wing 2, AR = 4
0.5

= 8.

The corresponding lift slope are, respectively,

CLα = 2π

1 + (2/4)
= 4.19, CLα = 2π

1 + (2/8)
= 5.02.

The lift coefficients are then

CL = 4.19
8π

180
= 0.585, CL = 5.02

8π

180
= 0.599.

The induced drags are

CDi = 1
π4

0.5852 = 0.027, CDi = 1
π8

0.5992 = 0.014,

and the lift-to-induced-drag ratios are

L
Di

= 21.66,
L
Di

= 42.78.

Clearly the higher-AR wing is more efficient.

EXAMPLE 8.23. THE NEED FOR HIGH-LIFT DEVICES. Before landing, a 747 jet
weights 250 tons. Its wingspan is 64.4 m, its wing area is 541 m2, and its aver-
age wing chord is c = 8.4 m. Assuming air density at 1.1 kg/m3 and a speed of
600 km/h, calculate the lift coefficient and estimate the lift slope.

Solution: The lift coefficient is calculated as follows:

CL = L
1
2
ρU2S

= 250,000 × 9.8

1
2

1.1
(

600
3.6

)2

541

= 0.296.

Let us estimate the lift slope based on the rectangular wing formula (but we
know that this is a bit off because the airplane has swept wings). The aspect
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ratio is then

AR = 64.42

541
= 7.66,

and the lift slope is

CLα = 2π

1 + 2
AR

= 2π

1 + 2
7.66

= 4.98.

From Eq. (8.100) we can estimate the airplane angle of attack:

α − αL0 = CL

CLα

= 3.4◦.

In reality, the airplane fuselage at cruise is at near-zero angle relative to the free
stream, and this angle represents mainly the camber effects.

Now let us repeat the same calculations for a landing speed of 220 km/h and
assume that the flaps are not used. In this case the lift coefficient is

CL = L
1
2
ρU2S

= 250,000 × 9.8

1
2

1.1
(

220
3.6

)2

541

= 2.2.

Suppose we didn’t change the wing geometry and the lift slope is unchanged;
then the estimated angle of attack is

α − αL0 = CL

CLα

= 25.3◦.

Of course, both the lift and the required angle of attack are too high and the
airplane must use flaps for landing. The flaps are the surfaces that extend at the
trailing edge and significantly increase the lift coefficient (and also wing area).

This example demonstrates the need for high-lift devices on airplanes.
Clearly, during high-speed cruise, less lift is needed (recall that lift increases
with the square of speed) and wing size is designed for this condition to opti-
mize drag. However, as this example shows, at low speed, the required lift coef-
ficient increases dramatically, to a level that cannot be attained by simple fixed
wings. The widely used solution is to change the wing geometry in order to both
increase the airfoil’s lift and to increase the wing area. A typical three-element
airplane airfoil is shown in Fig. 8.50. By extending the rear flap the airfoil cam-
ber is increased, increasing the lift coefficient as shown by the upper curve. As
the lift increases, the front stagnation point moves lower (as in the case of the
circle in Subsection 8.9.1) and the leading-edge slat must be drooped to avoid
stall. Note that the leading-edge element is mainly protecting against stall and
thereby extending the useful range of angle of attack, but not directly increasing
the lift. Also the 2D lift slope is still the same as predicted by the simple linear
theory (Clα = 2π)!
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Figure 8.50. Effect of high-lift de-
vices on the lift coefficient of a
three-element airfoil (here δ repre-
sents, flap deflection).

EXAMPLE 8.24. HYDROFOIL BOAT. A high-speed hydrofoil boat is using two rect-
angular hydrofoils (each is 4 m wide, has a 0.5 chord, and α = 5◦ ) to elevate
it above the water level. Assuming a symmetric airfoil shape and a speed of
12 m/s, calculate the boat’s weight and the power required for overcoming the
induced drag.

Solution: Let us approximate the airfoil’s lift slope by Eq. (8.101). The hydrofoil
aspect ratio is

AR = 4
0.5

= 8,

and the lift slope (approximating with the elliptic loading equation) is

CLα = 2π

1 + 2
8

= 8π

5
.

The lift coefficient is then

CL = 8π

5
5π

180
= π2

22.5
.

The weight of the boat is calculated with the seawater density from Table 1.1
(1030 kg/m3):

W = CL
1
2
ρU2S = π2

22.5
1
2

(1030)122(2 + 2) = 130,120 N,

which is about 13.3 tons (and here we used the combined area of the two hydro-
foils). To calculate the power, the induced drag is calculated:

CDi ≈ 1
πAR

C2
L = 1

π8

(
π2

22.5

)2

= 0.0077.



8.11 Summary and Concluding Remarks 313

We assume that most of the drag is induced drag, and for the total drag we
must add the contribution of the viscous effects (e.g., skin friction), as stated in
Eq. (8.103). The induced drag is then

Di = CDi
1
2
ρU2S = 0.0077

1
2

(1030)122(2 + 2) = 2271 N,

and the power required for overcoming the induced drag is

P = Di V = 2271 × 12 = 27,252 W,

which is 27.25 kW or about 37 hp.

EXAMPLE 8.25. LIFT OF A SLENDER WING. A supersonic delta-winged airplane is
landing at a speed of 70 m/s at an angle of attack of 20◦. Wing span is 15 m and
wing chord is 25 m. Calculate airplane weight and its drag.

Solution: Let us first calculate the wing aspect ratio:

AR = b2

S
= b2

0.5bc
= 2b

c
= 30

25
= 1.2.

For the lift coefficient at such high angles of attack, we use Eq. (8.105):

CL = (0.963 + 1.512 × 1.2) sin 20◦ = 0.95.

The airplane weight is then

W = CL
1
2
ρU2S = 0.95

1
2

1.2(702)
15 × 25

2
= 523,687.5 N,

which is about 53.4 tons. The drag is calculated with Eq. (8.106):

D = Ltan α = 190,606.7 N,

which is about 19.45 tons. So lift-to-drag ratio is quite low!

8.11 Summary and Concluding Remarks

The topics discussed in this chapter have important engineering implementations.
The high-Reynolds-number-flow region includes a large variety of day-to-day appli-
cations, including road, sea, and airborne vehicles. From the mathematical point of
view, the governing equation can be simplified significantly. For example, we can
evaluate the velocity field by solving the uncoupled continuity equation. Then we
can calculate the pressures and fluid dynamic loads as a second step by using the
Bernoulli equation (and not using the momentum equation – e.g., Euler). Of course
all this works for attached flows. However, the method of using experimental coeffi-
cients for the lift and drag forces facilitates acceptable engineering prediction capa-
bility, even for separated and turbulent flows.

The force vector acting on a body moving through a fluid is traditionally divided
into a force parallel to the free stream (drag) and into a normal component (lift).
The modeling results presented here lead to a simple formulation for the drag on
moving objects. For two dimensions we can write:

CD = CD0,
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and CD0 can be further split into drag that is due to skin friction and into form drag
that is due to flow separations. Note the aerospace engineers use lowercase D (drag)
and L (lift) for the 2D coefficients. For the 3D case a new element that is due to lift
is added, the induced drag (and this is true for shapes other than wings):

CD = CD0 + CDi .

The lift of most objects (and certainly wings) depends on their angle of attack, and
the camber effects can be included as a zero-lift angle αL0. The lift slope CLα is larger
for wider objects (and the largest for the 2D case) and can be obtained by means of
computations or experiments. With these assumptions, the lift can be calculated as

CL = CLα(α − αL0).
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PROBLEMS

8.1. Prove that a 2D source fulfills the Laplace equation. The source equation in
Cartesian coordinates is

�(x, z) = σ

2
ln

√
(x − x0)2 + (z − z0)2

.

8.2. Prove that a 2D doublet fulfills the Laplace equation. The doublet equation in
Cartesian coordinates is

�(x, z) = −μ

2π

x − x0

(x − x0)2 + (z − z0)2
.

8.3. The velocity components of a 2D vortex located at (x0, z0) are

u = �

2π

z − z0

(z − z0)2 + (x − x0)2
,

w = �

2π

x − x0

(z − z0)2 + (x − x0)2
.

Prove that these velocity components fulfill the continuity equation.

8.4. Prove the following vector identity. Use 2D Cartesian coordinates �q · ∇�q =
−�q × ∇ × �q + ∇ �q2

2
.

8.5. If the velocity potential of a 2D flow is given by the function

� = U∞ cos θ

(
r + R2

r

)
.
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Then around the circle r = R.

(a) Plot the pressure coefficient for the range of θ = 0 to 180◦.
(b) calculate the velocity and pressure at θ = 0, 90◦, and 180◦.

8.6. The velocity potential of a 2D flow is given by the function

� = 5(x2 − z2).

(a) Derive an expression for the velocity components (u, w) in the x–z
plane.

(b) Sketch the streamlines in the first quadrant (e.g., x > 0 and z > 0).

8.7. The velocity potential of a free stream is �1 = 5x and for a doublet is

�2 = 5
x

x2 + z2
.

(a) Write the velocity potential for the combined doublet and free stream (e.g.,
� = �1 + �2).

(b) Calculate the velocity distribution (u, w) that is due to this velocity poten-
tial.

(c) Find the stagnation points along the x axis.
(d) What kind of flow field is described by �?

8.8. The velocity potential in the first quadrant is given by �2 = 5(x2 − z2). Provide
an expression for the velocity vector along a line z = 2.

8.9. A source of strength σ = 10 m2/s is located at a point (5,1). Calculate the veloc-
ity at point (0, –2).

8.10. Calculate the velocity induced by a doublet of strength μ = 1 m3/s pointing in
the −x direction, at a point x = 1 and z = 1. The doublet is placed at (5, 2).

8.11. A 2D vortex with a circulation of � = 10 m2/s is located at a point (0,0).
Calculate the velocity at (10, 0).

8.12. Calculate the velocity components (u, v, w) that are due to a semi-infinite (but
3D) vortex line with strength � = 1.0 at a point (0,0,0.5).

x

y

z

P

Γ

0

0.5

1.0

Problem 8.12.

8.13. A 2D vortex with strength � = 1.0 is placed at point (3,3), as shown in the
figure. Find the value of the integral

∫
q dl along the spiral path circling twice around

the point P.
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Problem 8.13.

8.14. Write the expression for the combination of a free stream of velocity U∞ par-
allel to the x axis and a source of strength of K placed at (5, 0). Also calculate the
velocity at a point (3, 3).

8.15. Find the location of the stagnation point (where the velocity is zero) for the
flow described in the previous problem.

8.16. Calculate the value of the integral
∮

c �q · dl for a vortex of strength � = 10
placed at the origin. The path and direction for the integration is shown in the figure.

1

1

2 3 4 x−4 −3 −2 −1
−1

−2

−3

Γ

2

3

Problem 8.16.

8.17. Consider the 2D flow along a wall with a circular hump of radius R, as shown
in the figure.

(a) What is the velocity potential for such a flow?
(b) Calculate the lift coefficient that is due to the upper surface of the semicir-

cular hump.

U∞

R

Problem 8.17.

8.18. Water flows at a velocity of 10 m/s normal to a cylinder of radius R = 20 cm.
Using the potential flow formulas, estimate the pressure difference between the far
field and points A and B.
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U∞ R

B

A

Problem 8.18.

8.19. The pressure distribution on the lifting airfoil of a hydrofoil boat is shown in
the figure. Assuming the boat operates in a 40 ◦C warm, sweat water and the foil is
about 1 m below the water surface, estimate at what speed would cavitation begin
(and where). (The vapor pressure from Fig. 1.13, at 40 ◦C, is about 0.1 atm.)

1.0

0.5

0.0
0.50.0 x

c

Cp

1.0

−0.5

−1.0

−1.5

−2.0

x
c

Problem 8.19.

8.20. A 40-km/h wind is blowing parallel to a storage facility, as shown in the figure.
Estimate the normal force on a 0.5-m-high, 1-m-long window if the front door is left
open. Assume the wind speed along the outside of the window is 1.2 U∞ and take
air density from Table 1.1.

1 m

0.5 m

U∞

Problem 8.20.

8.21. A tall, cylindrical chimney has a 3-m diameter. Assuming wind speed is
40 m/s, calculate Re and vortex-shedding frequency. What is the distance between
two subsequent vortices? (μ = 1.8 × 10−5 N s/m2, ρ = 1.2 kg/m3.)
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8.22. A long cylindrical antenna of 4-mm (0.004-m) diameter is mounted vertically
on a vehicle moving at 100 km/h. If the Strouhal number is estimated at 0.18, then
calculate the vortex-shedding frequency. Also calculate the length in centimeters
between two adjacent vortices (e.g., the spacing).

8.23. Calculate the vortex-shedding frequency from a 0.5-cm-diameter vertical
antenna mounted on a car traveling at 100 km/h. What is the distance between two
cycles? (Use air properties from Table 1.1 and St = 0.2.)

8.24. The antenna of a car traveling at 90 km/h is resonating (vibrating violently)
at a frequency of 500 Hz. Estimate the antenna’s diameter (or which diameter to
avoid).

8.25. Estimate the wind forces on a billboard 10 ft high and 30 ft wide when a 50-
mph wind is blowing normal to it.

8.26. Calculate the resistance force when a 1-m-diameter submerged disk is towed
behind a boat at a speed of 5 m/s. Assume the disk is perpendicular to the stream.
(Use water properties from Table 1.1).

8.27. A large 1.9-m-wide, 0.5-m-high plate is carried above a truck perpendicular
to the vehicle motion (like a flat plate normal to the free stream). Calculate the
additional power required for carrying the plate at a speed of 72 km/h. Use the air
properties from Table 1.1 and estimate the drag coefficient from Fig. 8.25.

8.28. Assume a person’s drag coefficient is CD ∼ 1.2, frontal area is 0.55 m2, and air
density is 1.2 kg/m3. Calculate the wind forces on the person’s body when the stormy
wind speed reaches 108 km/h.

8.29. A bicyclist is coasting down a hill with a slope of 8◦ into a head wind of
5 m/s (measured relative to the ground). The bicycle + rider mass is 80 kg and the
coefficient of rolling friction is 0.02. Assuming that the frontal area is about 0.5 m2

and the drag coefficient is about 0.5, calculate the bicycle speed (for air use μ =
1.8 × 10−5 N s/m2, ρ = 1.2 kg/m3).

8.30. A 0.7-cm-diameter telephone wire is stretched between two poles, set 40 m
apart. At what wind speed (blowing normal to the wire) will the wire “sing” at a
frequency of 450 Hz? Also calculate the drag on the wire (use air properties from
Table 1.1).

8.31. A 7-cm-diameter hockey ball is launched at a speed of 50 m/s and a spin rate
of 1000 RPM. Estimate the lift and drag forces, based on Fig. 8.30, and use the air
properties from Table 1.1.

ω
U∞

Problem 8.31.

8.32. A soccer player kicks a 22-cm-diameter ball at a speed of 30 m/s and a spin rate
of 1000 RPM with the intention of creating a curved trajectory. If the ball weight is
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0.45 kg, estimate the percentage of the resulting side force-to-weight ratio. (Esti-
mate the lift force based on Fig. 8.30 and use the air properties from Table 1.1.)

8.33. The wingspan of the first successful human-powered airplane was about 30 m
and the wing chord was 2.2 m. If the structural weight is about 32 kg and the pilot
weight is 68 kg, calculate the lift coefficient and the induced drag coefficient. If the
additional viscous drag is CDO = 0.01, calculate the power required for a steady
cruise at a speed of 16 km/h. (use the elliptic wing equations and air properties from
Table 1.1).

Problem 8.33.

8.34. A large cruise ship is cruising at an average speed of 40 km/h and the power
supplied to the propellers is 42 MW. The sunken frontal area of a cruise ship can
be estimated at 340 m2, and the propulsion efficiency is about 0.8. Based on these
numbers, estimate the hull drag coefficient.

8.35. Calculate the drag force on the ship under the conditions of Problem 8.34.

8.36. The frontal area of a 58-m-long blimp can be approximated by a circle with an
8-m radius. If the total drag coefficient is CD = 0.07, estimate the power required
for cruising at 60 km/h (use air properties from Table 1.1).

Problem 8.36.

8.37. The combined weight of a parachute and the jumper is 80 kg. Calculate the
required chute diameter for a desirable sinking speed of 5 m/s (take air properties
from Table 1.1).

8.38. An 80-kg (combined weight) skydiver jumps out of an airplane with his head
initially pointing down.

(a) Calculate his terminal speed at this condition when his frontal area is about
0.22 m2 and the drag coefficient is 1.3.

(b) After a while he changes into a prone position (looking down) and his
frontal area is 0.8 m2 with a drag coefficient of 1.2. What is his terminal
speed?

(c) Finally a 7-m-diameter parachute opens; estimate his descent speed. (Take
air density from Table 1.1.)
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8.39. A steel ball of 3-mm diameter was dropped into a 0.5-m-deep container filled
with motor oil. Assuming that the ball’s sinking speed is the same from the moment
it hits the oil surface, calculate how long it will take for the ball to sink to the bottom
of the container. Note that the density of steel is ρ = 7850 kg/m3; the properties of
oil are taken from Table 1.1. Also calculate the Reynolds number.

8.40. A student is rolling down a slope of 5◦ with his skateboard. Neglecting the
friction in the wheels and assuming he weighs 70 kg, his frontal area is 0.7 m2, and
his drag coefficient is 1.1, calculate his terminal velocity (ρ = 1.2 kg/m3).

8.41. The frontal area of a small motorcycle is 0.60 m2, its drag coefficient is 0.62,
and its maximum speed is 150 km/h. Next the driver lowers his head and effec-
tively reduces the frontal area to 0.58 m2 and the drag coefficient to 0.60. Assum-
ing the power of the engine is unchanged, estimate the new maximum speed (ρ =
1.2 kg/m3).

Problem 8.41.

8.42. A 50-km/h wind is blowing on a 10-m-tall vertical pole of 0.2 m diameter.

(a) calculate the Reynolds number (ρ = 1.22 kg/m3, μ = 1.8 × 10−5 N s/m2).
(b) Calculate the Strouhal number, based on Fig. 8.27, and the drag coefficient

from Fig. 8.19.
(c) What is the wake oscillation frequency f ?
(d) What is the total drag of the pole?

8.43. Air is drawn into a wind tunnel during automobile testing, as shown in the fig-
ure. A simple manometer measures the velocity in terms of water-column height
h = 7 cm. If the drag coefficient of the car is CD = 0.4 and its frontal area is
1.5 m2, calculate the drag force acting on the vehicle (ρwater = 1000 kg/m3, ρair =
1.22 kg/m3).

pa

pa

h

U∞ Wind tunnel

Water

Problem 8.43.
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8.44. A 0.1-m-diameter cannon ball is flying at 150 m/s and spins about a horizontal
axis at 3600 RPM. Based on Fig. 8.30, estimate the vertical force on the ball. (Use
ρ = 1.1 kg/m3.)

8.45. An airplane has a rectangular wing with an elliptic spanwise loading. The mass
of the airplane is 1200 kg, its wing area is 20 m2, its wingspan is 14 m, and it is flying
at a speed of 60 m/s. If the form drag is 0.01, calculate the total drag (e.g., calculate
the induced drag) and the power required for propelling the airplane. (Use ρ =
0.88 kg/m3.)

8.46. The rectangular roof of a carport is 2 m wide and 6 m long and has an incidence
angle of 5◦. If a 20-m/s wind blows, as shown in the figure, calculate the lift force on
the roof. Approximate the lift coefficient by using the elliptic wing formula, and use
ρ = 1.2 kg/m3.

U∞
5°

2 m

Problem 8.46.

8.47. Students built a small airplane with a rectangular wing having a span of
b = 1.5 m and a chord of 0.4 m. They designed it to fly at a speed of 60 km/h, and the
wing is at an angle of α = 1◦ relative to the free stream. If the zero-lift angle αL0 =
−5◦ then calculate the lift coefficient (assume ρ = 1.2 kg/ m3). Also, calculate the
weight of the airplane.

8.48. After experimenting with the airplane in Problem 8.47, the students found
that it cannot fly at angles larger than α = 10◦ (or it stalls). Calculate the lowest
flight speed called “stall speed.”

8.49. Let us approximate the wing of the Concord airplane by a triangle with a span
of 25.6 m and a root chord of 27.6 m. Calculate the wing aspect ratio, wing area,
and lift line slope CLα (based on the equation given for slender wings). Suppose
the airplane takes off at α = 17◦ and at a speed of 300 km/h – estimate its weight.
(Use ρ = 1.2 kg/m3.)

8.50. The space shuttle Orbiter lands at about 340 km/h and weighs about 100 tons.
Approximating the wing shape with a triangle of 18-m span (the actual span with
the fuselage is 23.8m) and an area of 220 m2, calculate the angle of attack during
landing. (Use the equations for slender delta wings at a high angle of attack and
ρ = 1.2 kg/m3.)

8.51. A 2 × 2 m glass plate is carried on top of a pickup truck. As the truck travels at
80 km/h, it hits a bump and the angle of the glass relative to the free stream is about
5◦. Calculate the aerodynamic force lifting the glass (ρ = 1.2 kg/m3).

8.52. John bought a 1-m-wide, 2.5-m-long door and decided to bring it home on
top of his truck (he also placed it a 4◦ angle of attack). If his maximum speed on the
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highway was 100 km/h then calculate (ρ= 1.22 kg/m3, μ = 10−3 N s/m2) the following
values:

(a) the lift and induced drag coefficients of the door (assuming no interaction
with the cabin),

(b) the drag coefficient that is due to skin friction (use the Blasius formula for
Cf),

(c) the total lift and drag on this surface.

U∞

1 m

4°

Problem 8.52.

8.53. A hydrofoil boat weights 10 tons and when fully submerged its maximum
frontal area (of the submerged portion) is S = 1.5 m2. When the hydrofoil is
retracted, the boat’s maximum speed is 20 km/h. Assuming a drag coefficient of
CD = 0.2 (based on S) calculate the following values.

(a) The power required for propelling the boat with the hydrofoils retracted.
(b) Suppose the boat can use two hydrofoils with a chord of 0.5 m and 2 m wide

that lift the hull out of the water. Then calculate the maximum speed of the
boat using the same power as in (a) (the drag is due to the hydrofoils only).
Estimate the lift and drag of the hydrofoils by using Eqs. (8.101) and (8.102)
(with δ = 0) and assume the angle of attack is 10◦.

0.5 m 0.5 m

Problem 8.53.

8.54. A large bird is soaring horizontally at a speed of 25 km/h. We can approximate
the wingspan at about 0.6 m and wing chord at 0.12 m. Assuming that air density is

10°

U∞

Problem 8.54.
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ρ = 1.2 kg/m3, angle of attack is 10◦, and using the lift coefficient formulas devel-
oped for finite wings (elliptic), calculate the lift coefficient. Also calculate the bird’s
weight.

8.55. A 70-kg ski jumper leaves the ramp at a speed of 120 km/h and at this posi-
tion, his body is at a 30◦ angle of attack relative to the free stream. Calculate the
lift by comparing his body to a 0.6-m-wide and 1.8-m-long plate and by using the
formulation of Eq. (8.105) (use air density from Table 1.1). Is the lift larger than his
weight?

8.56. A small-airplane weight is 1.5 tons and it flies at sea level at a speed of
270 km/h. Its wing can be approximated by a 10-m-wide, 1.6-m-chord rectangle.

(a) Estimate the lift coefficient and power required for overcoming the induced
drag (use δ2 = 0 and air density from Table 1.1).

(b) The power of the engines is about 150 kW. What percentage of available
power is needed to overcome the induced drag?

8.57. It is said that some race cars develop so much downforce that they can run on
an inverted (upside-down) road. If a 750-kg race car’s frontal area is 1.5 m2 and its
lift coefficient is −3.5 (downforce), then how fast should it go in order to be able to
drive upside down (e.g., on the ceiling)?

8.58. The pressure coefficient distribution on the upper and lower surfaces of a 2D
lifting surface is approximated by a straight line, as shown in the figure. Calculate
the lift coefficient and the center of pressure.

+1

0 c c2

Cp

−1

−2
Upper surface

Lower surface

x

−3

Problem 8.58.

8.59. The chord of the lifting surface shown in the previous figure is 1 m and the
free-stream speed is 50 m/s. Calculate the lift of the lifting surface (assume standard
air conditions).



9 Introduction to Computational
Fluid Dynamics

9.1 Introduction

The fluid dynamic equations developed in Chapter 2 are complex and cannot be
solved analytically for an arbitrary case. Up to this point, the classical approach was
presented in which major simplifications allowed some partial solutions. In recent
years, however, numerical techniques and computational power have improved sig-
nificantly. This facilitated the solution of the nonlinear fluid dynamic equations,
which now can be added to the growing number of practical engineering tools.

There are two major advantages to the numerical approach when one is
attempting to solve the fluid dynamic equations. The first is the possibility of solving
these complex equations, which cannot be solved analytically. The process begins
with a numerical approximation for the fluid dynamic equations. The fluid domain
is then discretized into small cells or into a grid, where the equations are applied.
By specifying the equations at each cell or point, we reduce the partial differential
equations to a set of algebraic relations. Thus the second major advantage of the
numerical approach is the ability to replace the nonlinear partial differential equa-
tions with a set of algebraic equations, which are usually solved by iterative methods.
There are a large number of methods for approximating the equations, for grid gen-
erations, and for solution methodology. This chapter attempts to explain the generic
principles of the numerical approach and the process leading to the numerical solu-
tions. A more comprehensive discussion on computational fluid dynamics (CFD)
can be found in texts such as [1] or [2].

For a typical CFD solution, the computational domain must be defined (e.g.,
the region of interest in the flow, as shown in Fig. 9.1). In addition, the bound-
ary or initial conditions must be specified (solid symbols) in a physically correct
manner (to avoid impossible solutions). In this case the outer symbols represent
points where a free-streams condition is prescribed and the inner solid symbols rep-
resent the “no-slip” boundary condition. Actual grids are significantly denser than
the schematic grid shown in Fig. 9.1. For a 3D incompressible problem there are
at least four unknowns (u, v, w, and p at each computational node, as shown), and
therefore four equations are needed at each point or element. In general, the three
directions of the momentum equation and the continuity equation can satisfy this
requirement. The numerical solution then provides the values of the unknowns at
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Computational nodes (u, v, w, p are unknowns)

U∞

U∞

Figure 9.1. Schematic descrip-
tion of the grid for numerical
solutions (the solid symbols
represent the boundary nodes
and the open circles the compu-
tational nodes).

the nodal points. Extrapolating in between the grid points or integrating the pres-
sure field in order to obtain the forces is usually done by a postprocessor (which may
introduce additional inaccuracies).

A generic process leading to the formulation of a CFD method is described
next by use of the finite-difference model. This model is probably the simplest to
present, but other methods (such as the finite-volume model) are more flexible for
solving the flow over complex geometries. Two types of those “other methods” are
discussed briefly toward the end of the chapter. Thus the objective of this chapter
is to introduce the concept, particularly for those students who will not attend more
advanced fluid dynamic courses (but may one day use CFD as part of a more com-
prehensive design package).

9.2 The Finite-Difference Formulation

There are several approaches for the numerical solution of the fluid dynamic equa-
tions, and most are based on a basic element. For example, the conservation equa-
tions can be applied to a fluid element by use of an integral or differential represen-
tation. Some methods that apply the integral form of the equation to a basic element
are called finite volume. Another approach uses the finite-difference approximation
for the fluid dynamic equations. As noted, for simplicity, let us follow here this latter
method.

The first step of the process is to develop the numerical representation of the
various terms (derivatives) in the fluid dynamic equations. Let us do this by using
a 1D model as depicted in Fig. 9.2, where u(x) is an analytic function along the

u

i + 1i

x

u(x)

x

Figure 9.2. Illustrating the method for
approximating the derivatives of the
function u(x).
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coordinate x. Next we select several nodal points on the function u(x) separated by
the distance �x.

The objective is then to relate the function to its derivatives, based on the func-
tion values at the nodal points. For small �x, u(x) can be expanded in a Taylor series
about x:

u(x + �x) = u(x) + �x
∂u
∂x

+ (�x)2

2!
∂2u
∂x2

+ (�x)3

3!
∂3u
∂x3

+ · · · . (9.1)

For example, we can find the first derivative, ∂u/∂x, expressed in terms of the values
at the nearby nodal points, by simple algebraic operation. Using first-order terms
from Eq. (9.1) (and neglecting the higher-order terms) and solving for ∂u/∂x, we
get

∂u
∂x

= u(x + �x) − u(x)
�x

+ O(�x), (9.2)

where we assume that �x is small and all higher-order terms combined are of the
order of �x [so the order of the error is O(�x)]. Note that this is equivalent to a
straight-line curve fit between the two adjacent points. Equation (9.2) is called a
forward-difference approximation, and by using the same method we can derive a
backward-differential approximation:

∂u
∂x

= u(x) − u(x − �x)
�x

+ O(�x), (9.3)

where the error is of the same magnitude as before. Also note that we are not dis-
cussing the actual “error” but the relation between the interval �x and the error
(or how fast it is reduced with reduced mesh size). We can generate a central-
differential approximation by combining these two expressions [using Eq. (9.1)
twice for forward and backward differences] to get

∂u
∂x

= u(x + �x) − u(x − �x)
2�x

+ O(�x2). (9.4)

Note that the error is reduced for the central difference formulation (see [1]). So it
is better to use this formula and retain the forward–backward formulation for the
boundaries of the problem (this is usually true for evenly distributed grids where,
say, �x is constant). For the second derivative we again use a Taylor expansion,
similar to Eq. (9.1):

u(x + 2�x) = u(x) + 2�x
∂u
∂x

+ (2�x)2

2!
∂2u
∂x2

+ (2�x)3

3!
∂3u
∂x3

+ · · · . (9.5)

By combining Eqs. (9.1) and (9.5) and solving for ∂2u/∂x2, we get the forward-
differencing formula:

∂2u
∂x2

= u(x + 2�x) − 2u(x + �x) + u(x)
(�)2

+ O(�x). (9.6)
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Along the same lines, for first-order central and backward differencing we can write

∂2u
∂x2

= u(x + �x) − 2u(x) + u(x − �x)
(�x)2

+ O(�x2), (9.7)

∂2u
∂x2

= u(x) − 2u(x − �x) + u(x − 2�x)
(�x)2

+ O(�x). (9.8)

Note again that the central differencing is more accurate. For simplicity, let us label
the first three values in Fig. (9.1) using the index i:

u(x + �x) → ui+1,

u(x) → ui ,

u(x − �x) → ui−1. (9.9)

Equations (9.4) and (9.7), the first-order central derivatives (actually have a second-
order accuracy) can be expressed as

∂u
∂x

= ui+1 − ui−1

2�x
+ O(�x2), (9.10)

∂2u
∂x2

= ui+1 − 2ui + ui−1

(�x)2
+ O(�x2). (9.11)

Higher or mixed partial derivatives can be derived with the same method. Also,
these relations are called first order because higher-order terms in the Taylor expan-
sion were neglected. For example, we can derive the central-difference represen-
tation for the second order by not neglecting the second-order terms; for central
differencing they are

∂u
∂x

= −ui+2 + 8ui+1 − 8ui−1 + ui−2

12�x
+ O(�x4), (9.12)

∂2u
∂x2

= −ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12(�x)2
+ O(�x4), (9.13)

and the error is of fourth order with �x. In conclusion, the accuracy increases with
reduced �x (finer grid!) and with the higher-order approximation. Accuracy also
improves when central differences are used, mainly when the grid points are evenly
distributed.

9.3 Discretization and Grid Generation

One of the most important parts of a numerical solution is the grid generation. The
grid can be structured or nonstructured, as shown in Fig. 9.3. Structured grids have
a clear order, as shown in Fig. 9.3(a), and the discretization of the equations is sim-
pler. However, for complex shapes, the creation of a well-structured grid becomes
difficult and will require more nodal points than an unstructured grid [Fig. 9.3(b)].
These advantages of the unstructured grid are somewhat reduced by the more com-
plex formulation of the governing equation. Usually finite-volume elements (based
on the integral formulation) are used with an unstructured grid.
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(a)

(b)

Figure 9.3. (a) Structured and (b) unstructured grids. (Courtesy of Dr. Gustaaf Jacobs, San
Diego State University.)

For the numerical solution, the computational domain must be defined. A
schematic description is provided in Fig. 9.4. In this case we consider the flow over
a solid body, and the solution grid must extend far enough so we can consider the
perturbations (which are due to the object) to be negligible. This problem in case
of a subsonic flow (which is of the the elliptic equations type) requires the bound-
ary conditions to be specified along all boundaries, as shown. Consequently, on the
outer boundary we specify a constant free stream (inflow at the left and outflow at
the right) and a constant pressure (see also Fig. 9.1). On the body surface we define
the zero velocity (tangential and normal), as shown schematically in Fig. 9.4.

Of course, the grid generation requires a certain level of knowledge about the
solution, and near areas of fast change a denser grid is required. Also note that in
Eqs. (9.10)–(9.13) the error is reduced with reduced �x; this means that, in general,
the solution will improve with a finer grid. Thus the first step for generating a numer-
ical solution is to investigate the grid. In principle, grid density should be increased
until the solution appears to be independent of the grid!

9.4 The Finite-Difference Equation

At this point it is clear that the computational domain is subdivided into small ele-
ments where the equations will be specified. To demonstrate how the equations can
be converted into algebraic representation at the solution cell level, let us follow the
finite-difference approach (and not the finite-volume method). Therefore the first
step in this process is to replace the terms in the fluid dynamic equations with their

Computation domain

Outer boundary
of computational
domain

U∞

pa

U∞

paqn = 0

qt = 0

Figure 9.4. The computational
domain.
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j + 1

i + 1i

j

Figure 9.5. Typical explicit iteration scheme; the unknown is the open circle.

finite-difference equivalent, in effect creating a set of algebraic equations. This is a
major simplification and allows the solutions of problems that cannot be solved ana-
lytically. For simplicity let us consider the 2D incompressible continuity equation
[Eq. (8.16)]:

∂2�

∂x2
+ ∂2�

∂z2
= 0. (9.14)

Replacing the terms with their finite- (central-) difference equivalent results in

�i+1, j − 2�i, j + �i−1, j

(�x)2
+ �i. j+1 − 2�i, j + �i, j−1

(�z)2
+ O((�x)2, (�z)2) = 0. (9.15)

This equation must be specified for all the grid points in Fig. 9.1 or Fig. 9.3. Note that
near the boundaries either the forward or backward difference must be used for one
of the terms in Eq. (9.14). One approach for the solution of similar equations is the
explicit formulation in which only one unknown per equation remains. For example,
an iteration scheme in the x direction [based on Eq. (9.15)] can be proposed such
that

�n+1
i+1, j =

[
2�ui, j − �i−1, j −

(
�x
�z

)2

�i. j+1 − 2�ui, j + �i, j−1

]n

,

error ≈ O((�x)2, (�z)2) (9.16)

where n represents the iteration counter.
The solution must start from the boundaries where the values at the nodal

points are known (boundary conditions). The finite-difference formulation near the
boundaries may use a different scheme, depending on the type of boundary con-
dition (e.g., if � is given then this is a Dirichlet condition, and if ∂�/∂x is given
then this is called the Neumann condition). The process is described schematically
in Fig. 9.5, where the solid dots represent known values. By use of the informa-
tion from the neighboring point, the solution can march forward (to the right) as
depicted by the small open circle. This example serves only to demonstrate the
explicit approach and will not work without using some of the tricks of numeri-
cal analysis. The major advantage of the explicit formulation is its simplicity, but
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=

Figure 9.6. A typical set of linear algebraic equations resulting from the discretization of the
fluid dynamic equations.

the solutions are usually less stable and more denser grids are required (and usually
used for time-dependent problems).

An alternative approach, called the implicit formulation, has more than one
unknown per node, as expressed in Eq. (9.15). Then, when this relation is specified
for each of the N unknown grid points, N equations of the following form will result
[based on Eq. (9.15)]):

�i, j = 1[
2 + 2

(
�x
�z

)2
]
[
�ui+1, j + �i−1, j +

(
�x
�z

)2

(�i. j+1 + �i, j−1)

]
,

error ≈ O[(�x)2, (�z)2] (9.17)

Of course, in this case too, the boundary conditions are used near the boundaries
of the computational domain. In practice, the number of such equations can be of
the order of several thousands or even millions (depending on the number of grid
points and the computational power). The final algebraic problem has the form
of a matrix in which the unknowns are centered near the diagonal, as shown in
Fig. 9.6.

In principle, all unknowns are solved at once (with the matrix inversion), and
therefore the implicit method is usually more stable than the explicit one and also
requires a less dense grid. On the other hand, because all equations are solved at
once, the programming effort is much larger and the required computation time is
longer.

Because of the large size of the matrix, iterative solvers are used, but, as shown,
the matrix is usually diagonally dominant and otherwise mostly contains zeros,
which simplifies the solution.
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Note that in this very simple example [of Eq. (9.14)] only one unknown per
point is solved. To demonstrate the approach used with more unknowns, let us con-
sider the x component of the steady-state, 2D, incompressible Navier–Stokes equa-
tion [from Chapter 5, Eq. (5a)]:

u
∂u
∂x

+ w
∂u
∂z

= −1
ρ

∂p
∂x

+ μ

ρ

(
∂2u
∂x2

+ ∂2u
∂z2

)
. (9.17)

Replacing the partial derivatives with their corresponding central-difference repre-
sentation, we get the following finite-difference equation:

ui, j
ui+1, j − ui−1, j

2�x
+ wi, j

ui, j+1 − ui, j−1

2�z

= −1
ρ

pi+1, j − pi−1, j

2�x
+ μ

ρ

[
ui+1. j − 2ui, j + ui−1, j

(�x)2
+ ui. j+1 − 2ui, j + ui, j−1

(�z)2

]
+ O((�x)2, (�z)2). (9.18)

This shows that at each point there are three unknowns (u, w, p) and therefore three
equations are needed. Of course, there are the continuity and the momentums equa-
tions in the z direction that must be used. In practice, several algebraic substitutions
are used to simplify the resulting equations (or the solution matrix).

9.5 The Solution: Convergence and Stability

In the previous sections the principle of the numerical approach was presented
briefly by use of the finite-difference formulation. The grid generation and oversee-
ing the solution process are usually left for the end user of a CFD program. There-
fore, first, the grid must be evaluated in terms of density, particularly in regions of
rapid change. The objective is for the solution to be independent of the grid, a pro-
cess that usually increases the number of grid points. Once the grid geometry is set,
the unknown quantities at each nodal point are solved with an iterative scheme.
The solution process may involve large matrices and various iterative methods. The
applicability of the method often depends on the actual fluid dynamic problem. At
the end, after a certain numbers of iterations, a solution is expected. For example,
if we attempt to calculate the drag force on a sphere, then we can define an error as
the difference between a known value and the calculated one:

error = Dcalculated − Dmeasured

Dmeasured
. (9.19)

If there are no experimental data, then an average of the recent calculations can
be used for Dmeasured and the difference in the numerator can be replaced with the
change during the last iteration. Most computer programs will display the residue
of the solution, which is the normalized difference between the previous and the
current iteration. The residual principle can be applied to the equations; then, for
example, the residues of the continuity and the momentum equations are provided.
A desirable convergence of the solution is shown by curve 1 in Fig. 9.7. In this case
the numerical solution gradually approaches a value that can be defined as the “solu-
tion.” For example, if the drag coefficient of an object is estimated, then the error
bar could be set at a few percent.
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convergence and instability of numer-
ical solutions.

In the case of nonlinear equations, the solution may end with a false solution,
as shown by curve 2. This may be a result of wrong formulations, wrong boundary
conditions, or even a bad grid. In the worst-case scenario the results will diverge
with an increasing number of iterations, and this process could be gradual (curve 3)
or completely unstable and oscillatory as in curve 4. This suggests that we must have
an idea about the expected results and should be able to recognize convergence and
stability issues. This is why the programmer must be familiar with the analytical
models presented in the previous chapters.

Even if a solution is obtained we must remember that this is an approximate
approach and there are several sources for an error the most common of which are
subsequently listed:

1. Errors that are due to the model (e.g., the equations used do not contain all
required physics). Typical examples include the modeling of boundary-layer
transition, turbulence modeling, or vortex flow (and vortex breakdown).

2. Errors that are due to discretization, such as shown by Eqs. (9.1)–(9.13). These
equations clearly indicate that the solution improves with a finer grid (smaller
�x in our 1D example).

3. Errors that are due to computer accuracy, such as roundoff or truncation errors.
4. Errors that are due to numerical convergence, as depicted in Fig. 9.7.
5. Errors in postprocessing – integration of shear and pressure, etc.

In spite of this list of errors, computational tools are quite accurate when the proper
model is used (e.g., laminar flow model when the flow is expected be to laminar, or
turbulence modeling when the flow is expected to be turbulent, etc.). Typical areas
of weakness are cases with flow separation or in which transition from laminar to
turbulent flow takes place.

9.6 The Finite-Volume Method

The main elements of a generic numerical solution were demonstrated in the previ-
ous sections. The discussion was based on the differential form of the Navier–Stokes
equations, leading to the finite-difference discretization scheme. It is possible, how-
ever, to use the integral form of the equations [see Eqs. (2.20) and (2.24)] and their
discretization is obtained by the so-called finite-volume approach. So for the finite-
difference method the differentials are approximated, whereas for the finite-volume
methods the integrals are approximated. The finite-volume methods are gaining
popularity, mainly because of the inherent flexibility of using nonuniform grids and
because the integral formulation conserves mass and momentum. Such grids are
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necessary when one is modeling the flow over complex shapes, so that grid smooth-
ness is not a major concern. As noted, by solution of the integral form, properties
such as mass or momentum are conserved compared with other methods (in which
numerical errors can introduce excess mass, etc.). Therefore finite-volume methods
are considered to be more suitable for the solution of fluid mechanics problems.
Because of the significance of the finite-volume-based methods, a brief description,
highlighting the element of the model, is presented next.

As noted, the finite-volume model is based on the integral form of the fluid
mechanic equations, which were applied to a control volume (see Section 2.6). To
demonstrate the discretization process, based on this model, consider the incom-
pressible, steady-state continuity equation from Eq. (2.25):∫

c.s.
ρ(�q · �n)dS = 0. (9.20)

As in all numerical solutions, the flow field is subdivided into small cells, or
control volumes, and this equation is then applied to that finite-volume element.
In practice, the grid can consist of different shape elements and usually tetrahe-
dral, triangular (in two dimensions), or any polygon shape can be used. For sim-
plicity, however, a 2D rectangular element is used here, as shown at the center of
Fig. 9.8.

Of course, the element could be trapezoidal or triangular, but then the formu-
lation becomes more complex. Each of these cells will have a finite volume or a
finite area in the 2D case. In one approach, the cell-centered model, a central point
(marked with the open circle in the figure) is assigned to each cell. The indexes i, j
are used to refer to the cell, and the average variables u, w, etc., for the whole cell
are assigned at this central point. Also, for this simple case it is assumed that, along
each of the cell surfaces, the properties are constant, and this will be clarified later.
Next the integral of Eq. (9.20) is applied to the control volume (cell), but because
the changes are small it is approximated by the following summation:∫

cell
ρ(�q · �n)dS ≈

∑
sides

ρ(�q · �n)S = 0. (9.21)

This is a vector expression and for a complex cell shape must be applied accord-
ingly. For the present simple 2D presentation, a perfectly aligned (with the
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x–z coordinates) i–j cell is used. The four corners of the cells are marked by a, b,
c, and d, respectively, and constant velocity is assumed along the cell boundary. For
example uad represents the velocity in the x direction along the line a–d. For this per-
fect cell, therefore, the dot product can be separated into the x and the z directions,
as follows (also, a constant density is assumed):∑

sides

(�q · �n)S = −uad · �z + ubc · �z − wdc · �x + wab · �x = 0. (9.22)

However, this relation for the cell must be related to the properties in the centroid.
This can be approximated (first order) as the average between the adjacent cells
(even if their shapes are not exactly the same as the shape of the i–j cell):

uad = 1
2

(ui−1, j + ui, j ),

ubc = 1
2

(ui, j + ui+1, j ),

wdc = 1
2

(wi, j + wi, j−1),

wab = 1
2

(wi, j+1 + wi, j ). (9.23)

Substituting these into Eq. (9.22) results in

(ui+1, j + ui−1, j )
2�x

+ (wi, j+1 + wi, j−1)
2�z

= 0. (9.24)

This is the finite-volume representation of the incompressible continuity equation at
cell i–j. It looks similar to the finite-difference representation, but the difference is
that the variables (e.g., u and w) represent an average for the cell and not the value
of the same variable at a nodal or grid point (as in the case of finite differences).
This representation is more flexible when unstructured grids are used. Also, this is a
first-order representation, and for higher-order and 3D tetrahedral elements more
complex formulations are used.

This short description serves only to demonstrate the application of the integral
approach in CFD. Once the governing equations are converted to the algebraic form
[as in Eq. (9.24)], the solution methods are similar to those described for the finite-
difference approach. The applicability of the method, using the finite-volume model,
is demonstrated in the next section.

9.7 Example: Viscous Flow over a Cylinder

As an example, let us solve the flow over a 2D cylinder. This type of flow was dis-
cussed in Section 8.6, and experimental results for the drag coefficients are pro-
vided in Section 8.7. By selecting a Reynolds number of 100, we can use the lam-
inar momentum equations, but because of the vortex shedding behind the cylin-
der, we use an unsteady solver. For simplicity, a structured grid, shown in Fig. 9.9,
is selected with about 50,000 cells. This number is considered low resolution, par-
ticularly behind the cylinder, in the wake, where asymmetric vortex shedding is
expected. The boundary conditions are simple inflow (free stream) from the left
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U∞

Figure 9.9. Structured grid used for calculating the laminar flow over a cylinder (Re = 100).
Only a small portion of the grid is visible!

and exit from the right, and constant pressure at the outer boundaries was also
specified.

For the solution, a first-order finite-volume method is used, with 200 iterations
per time step, and the solution’s convergence history is shown in Fig. 9.10. The time
frame shown in this figure represents a total of about 270,000 iterations. The drag
coefficient stabilized first at a value close to Cd = 1.1, which is close to the experi-
mental values shown in Fig. 8.19. The residuals of the continuity equations are also
shown, indicating a stable convergence to the solution presented here.

The calculated streamlines are presented in Fig. 9.11. The computations clearly
capture the asymmetric vortex shedding, and the Strouhal number is close to the
values indicated in Fig. 8.30. Because of the radial grid that lacked sufficient resolu-
tion in the wake, the finer details of the vortex streets were not captured. However,
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Figure 9.10. Reduction in the residuals (and the error) with iteration number. The data in the
figure is obtained after a restart after a nondimensional time of 130.
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Figure 9.11. Display of the streamlines obtained from the numerical solution.

near the cylinder the flow compares well with experimental results. For example,
the separation line is ahead of the top, as discussed in reference to Fig. 8.20.

The computed pressure distribution around the cylinder is plotted in Fig. 9.12
with the same format that was used in Fig. 8.16. The ideal-flow “exact” solution of
Eq. (8.71) is shown by the solid curve, and the dashed curve describes the time-
averaged pressure coefficient. The θ = 180◦ position represents the front centerline
and θ = 0◦ is at the back. Because of the aft-flow separation, the pressure does not
recover to the values of the ideal flow and remains near Cp ∼ −1.1. Of course, the
high pressure at the front and the low pressure at the back are the sources of the
calculated drag force. Also, comparing the computations with the high-Reynolds-
number experimental results of Fig. 8.16 shows earlier flow separation here, result-
ing in a higher suction behind the cylinder and in a higher drag coefficient.

This example served to demonstrate the type of expected results from CFD
computations. The presented results could be improved, by refining the grid behind
the cylinder. Also, in this type of grid, the cell size increases with the distance from
the cylinder. To improve resolution in the wake, fairly dense and constant-size cells
should be used in the separated wake area behind the cylinder. For more details on
the separation point, a denser grid near the cylinder surface could be used. In spite
of all the preceding inaccuracies, the major features and even the magnitude of the
forces was captured reasonably well with this simple (low-resolution) solution.

0

1
180

Cp

90

Equation 8.71
CFD
Re = 100

0 270 180

Figure 9.12. Comparison between the average pressure coefficient distribution predicted by
CFD with the ideal flow results of Eq. (9.71).
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Figure 9.13. Schematic description of the potential flow over a closed body.

9.8 Potential Flow Solvers: Panel Methods

The computational methods presented so far are used for solving the viscous
Navier–Stokes equations. In Chapter 6, however, it was shown that, for high-
Reynolds-number attached flows, the viscous terms can be neglected outside of a
thin boundary layer. This assumption led to the potential flow model, presented
in Chapter 8, which allows a simple and efficient numerical solution for 3D exter-
nal flows over complex shapes. These methods, called panel methods, are based on
using the surface singularity distributions (see Section 8.5). The advantage, com-
pared with the finite-difference (or finite-volume) approach, is that the unknown
elements are distributed on the surface and not in the whole fluid volume, thereby
significantly reducing computational effort. Another advantage is that the velocity
field is obtained by solution of the continuity equation only (decoupled from the
momentum equation), and instead of three velocity components at each point (e.g.,
u, v, w) only one unknown, namely the velocity potential, is sought. In conclusion,
these methods are very efficient numerically but applicable only to inviscid, attached
flows.

The theoretical background of such panel methods is shown schematically in
Fig. 9.13. A coordinate system is attached to the body, whose surface is subdivided
to panel elements, as shown. The steady-state free-stream magnitude and direc-
tion, expressed in this frame of reference, is Q∞ = (U∞, V∞, W∞) and the continuity
equation is

∇2� = 0, (9.25)

where � is the velocity potential in the body’s frame of reference. The boundary
conditions [see Eq. (8.17)] require that the normal component of velocity on the
solid boundaries of the body be zero:

∇� · �n = 0, (9.26a)

where �n is an outward normal vector to the surface (as shown for one panel in Fig.
9.9). An alternative form of this boundary condition, called the Dirichlet condi-
tion, was introduced in Eq. (8.56). This alternative boundary condition requires that
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the potential inside a closed body be constant. By setting the constant to zero, this
boundary condition becomes

�i = 0. (9.26b)

Another form of the boundary condition is possible by setting the perturbation
potential to zero inside the body (since the total potential = � + �∞):

�i = �∞. (9.26c)

The solution of Eqs. 9.26 provides the velocity field through the whole fluid domain.
The pressures and corresponding fluid dynamic loads are then calculated separately
by the use of the Bernoulli equation (recall that the continuity and momentum equa-
tions are not coupled for ideal flow).

There are a large number of numerical methods for solving the preceding prob-
lem. They can be based on source, doublet, or vortex distributions (or a combina-
tion of all of the above) and can use various forms of the boundary conditions or
shapes of the panel elements. The solution methodology is usually very similar, and
here only one variant is presented. Because the Green’s theorem [Eq. (8.55)] pos-
tulates that the solution of the problem consists of sources and doublets distributed
on the surface, the problem reduces to finding a singularity distribution that will
satisfy Eqs. (9.26) (because the sources and doublets are already a solution of the
Laplace equation). Once this distribution is found, the velocity �q at each point in
the field is known and the corresponding pressure p can be calculated from steady-
state Bernoulli equation (8.15). With the preceding stipulations the velocity poten-
tial, based on the Green’s theorem, can be constructed as a sum of source σ and
doublet μ distributions placed on the surface S: The three-dimensional version of
Eq. (8.55) is then

� = −1
4π

∫
S

[
σ

1
r

− μ
∂

∂n

(
1
r

)]
dS + �∞. (9.27)

We can find the values of the unknowns (σ, μ) by applying the boundary condi-
tions, and r is the distance between the element at (x0, y0, z0) and an arbitrary point
(x, y, z) that is placed sequentially on the other panels. The free-stream potential,
based on Eq. (8.23), is

�∞ = U∞x + V∞y + W∞z. (9.28)

The unknowns are then the strengths of the sources and doublets assigned to each
panel. However, if the source and doublet strengths on each surface panel are
known, then the potential at any point can be calculated by Eq. (9.27). By apply-
ing the boundary condition of Eq. (9.26c) inside the closed body and setting the
inside potential as �i = �∞, we find that Eq. (9.27) becomes

−1
4π

∫
S

[
σ

1
r

− μ
∂

∂n

(
1
r

)]
dS = 0. (9.29)

In this case, however, the source distribution is known (see [1, p. 209] of Chapter 8),

σ = �n · �Q∞, (9.30)

and only the unknown doublet distribution remains to be solved. The solution is
then based on discretizing Eq. (9.29) and the methodology is described next.
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The numerical solution begins with a surface grid of N elements (called panels),
as shown in Fig. 9.13. The surface can be made of flat rectilinear panels or more
complex shapes (called higher-order panels). Similarly, for each panel the singular-
ity distributions (source and doublets) are specified. If a constant strength source σ

or doublet μ for a particular panel is assumed, then this is usually called a first-order
method. Higher-order approximations are usually based on a polynomial distribu-
tion of the source or doublet strength within the panel. Thus one of the most basic
components of the method is the panel element, which is shown schematically in
Fig. 9.14. At the centroid of the panel, a collocation point is placed where the bound-
ary conditions will be applied (see also small circles in Fig. 9.13). For example, when
solving Eq. (9.29), instead of performing the integral over the whole surface S, we
calculate this integral for a generic panel element, as shown in the figure.

The results for a generic panel with a constant source distribution and an index
k will have the form (see [1, p. 214] in Chapter 8)

−1
4π

∫
1,2,3,4

(
1
r

)
dS

∣∣∣∣
k

≡ Bk, (9.31)

where the constant Bk depends on the panel’s four corner points and on the field
point (5) where the potential that is due to this panel is evaluated. Similarly, the
influence of a constant doublet distribution at point 5 (Ck) can be calculated by the
integral

1
4π

∫
1,2,3,4

∂

∂n

(
1
r

)
dS

∣∣∣∣
k

≡ Ck. (9.32)

The most important feature of these influence coefficients (e.g., Bk, Ck) is that this
calculation is based on the geometry only (e.g., the location of the preceding five
points) and we can execute it without knowing the strength of the singularity ele-
ments. As an example let us use the boundary condition of Eq. (9.29), which is based
on an unknown doublet distribution. The influence coefficients Ck are precalculated
and do not depend on the strength μ. Next, for each collocation point (in Fig. 9.13)
the potentials due to all elements must add to zero inside the body (so the colloca-
tion point is assumed to be on the inner surface of the body). Consequently, when
Eq. (9.29) is specified at one collocation point with the index, j, it will have the form

N∑
k=1

Bjkσk + Cjkμk = 0. (9.33)

This equation basically states that the potential at the collocation point of panel k
is the sum of the potentials of all the surface panels [note that the source strength
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Figure 9.15. Nomenclature for calculating the local
(perturbation) tangential velocity. Note that the nor-
mal velocity is zero [see boundary condition (9.26a)].

is known and given by Eq. (9.30)]. This equation is then applied at all N collocation
points with the N unknowns μk , thus reducing the integral in Eq. (9.29) into a set of
linear algebraic equations (matrix of the order of N). By solving the N equations,
we calculate the unknown doublets for each panel, and therefore the potential �

is known everywhere. In reality, vortex wakes must be modeled too, and this is
explained in [1, Section 9.3] of Chapter 8. Let us reiterate that this method is based
on the principle of superposition. Instead of solving the continuity equation, only the
strengths of the elementary solutions (sources and doublets) is obtained by using the
boundary conditions.

Once Eq. (9.33) is solved, the unknown singularity values are obtained (μk in
this case), and the local velocity components can be evaluated. Also note that the
doublet in Eq. (9.33) represents the potential jump between the outside and the
inside of the body (where �i = �∞). Therefore the perturbation velocity compo-
nents are the derivatives of the velocity potential [see Eq. (8.4)], and in terms of the
panel local coordinates (l, m, n) the two tangential velocity components are

ql = −∂μ

∂l
, qm = − ∂μ

∂m
. (9.34)

The differentiation is done numerically by use of the values on the neighbor panels,
as shown in Fig 9.15. Once we calculate the velocity (and the free-stream velocity
is added), we can calculate the surface pressure and resulting lift and drag by using
Bernoulli equation (8.15) or in terms of the pressure coefficient [Eq. (8.72)]:

Cp = 1 − q2

U2∞
. (9.35)

The matrix representing Eq. (9.33) is usually diagonally dominant, because the
influence of the panel on itself is the largest. Also, the number of unknowns is sig-
nificantly less than in the finite-difference or finite-volume methods, and therefore
numerical convergence and stability issues are almost nonexistent. The main sources
of errors when calculating the velocity field are then due to insufficient or incorrect
grid distribution. Additional errors can occur during the pressure integration over
complex shapes. Of course, the main limitation of the method is the significantly
simplified physics (e.g., neglecting viscosity as discussed in Chapter 6).

9.9 Summary

Computational fluid mechanics has changed the face of the discipline. Instead of
using considerably simplified models involving complex mathematics, CFD provides
an easily accessible tool to solve a large variety of fluid mechanics problems. At the
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beginning of the third millennium, however, the method is still not fully developed
and is still controlled by available computer power and the abundance of various
methods. It is expected that in the future artificial intelligence can control processes
such as numerical modeling and grid generation and optimize solution algorithms
on the fly (and therefore less programmer interference will be required).

In the meantime, (until CFD is perfected) there is no replacement for studying
classical fluid dynamics. The potential user of such computational methods must
be prepared with the knowledge of the classical models and also understand the
hierarchy of approximations in CFD, which can be summarized as follows:

1. The actual, true physics may be more complex than the most advanced models.
2. The equations solved by CFD are approximations to the physics mentioned in

1. For example, in the Navier–Stokes equations, we assume a Newtonian fluid.
3. Many computer models solve a simpler model (such as laminar, incompressible,

or inviscid flow, and for high-Reynolds-number flow there are various models
for turbulence).

4. At the next level, where the equations are discretized (finite difference, finite
volume, or element, etc.), additional inaccuracies are introduced.

5. Grid generation, particularly when inappropriately done, can introduce further
errors.

6. The numerical solution of a large number of equations can create another form
of errors (such as roundoff errors, convergence, stability, etc.).

7. Finally, once a solution is obtained, the postprocessing can further reduce accu-
racy (e.g., errors that are due to integrating pressures and shear stresses).

At each level of the preceding hierarchy, some portion of the true physics is
compromised. Being aware of this and understanding the implication is necessary
for obtaining good results. At the time of writing this text, there are still many
unresolved issues such as boundary-layer transition, turbulence modeling, and the
preservation of vorticity. In spite of the shortcomings just listed, CFD is a powerful
tool in the hands of a knowledgeable fluid dynamicist.
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PROBLEMS

9.1. Develop a finite-difference representation for

∂g
∂x

= k
∂2g
∂y2

.

Use forward differencing for the x derivative and central differencing for the y
derivatives.

9.2. Modify the proposed finite-difference scheme for the boundary at y = 0.
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9.3. Develop a finite-difference representation for

∂ f
∂t

= k
(

∂2 f
∂x2

+ ∂2 f
∂z2

)
.

Use forward differencing for the time derivative and central differencing for the
spatial terms.

9.4. Calculate the first derivative of the function f (x) = sin(πx) at x = 0.25:

(a) using a forward-difference approximation with �x = 0.01,
(b) using a central-difference approximation with �x = 0.01,
(c) using the exact value.

9.5. Calculate the first derivative of the function f (x) = cos(πx) at x = 0.3 for three
different increments of �x = 0.02, 0.01, and 0.005, and compare with the exact result
(use forward-difference scheme).

9.6. The oscillation of a mass M suspended on a spring K is described by the equa-
tion Md2x

dt2 + Kx = 0, where the spring length x is a function of time x(t).

(a) Derive a finite-difference representation of this problem.
(b) Describe the first step using the numerical values for t = 0: �t = 0.01, M =

1, and K = 1. Assume initial conditions: x = 0.1, dx/dt = 0.1.

For the following problems the students must have access to computational
tools (either locally or from the Internet).

9.7. Use a laminar CFD solver to calculate the flow over a 2D cylinder and compare
the results for the drag coefficient with the experimental data in Fig. 8.19. Study two
cases: (a) Re = 1 and (b) Re = 5. Also plot the surface pressure distribution.

9.8. Use a laminar CFD solver to calculate the flow over a 2D cylinder at a Reynolds
number of 40. Repeat the computations three times and increase grid density twice
(second computation) and four times (third computation). Compare the results for
the drag coefficient with the experimental data in Fig. 8.19 and discuss the effect of
grid density on the solution.

9.9. Calculate the viscous laminar flow on a sphere at a Reynolds number of 1, and
compare your results for the drag coefficient with the Stokes formula [Eq. (8.76)].

9.10. Calculate the 2D flow normal to a flat plate (as in Fig. 8.22), and compare the
drag results with the value of CD = 1.17 from Fig. 8.25. Assume Re = 100.

9.11. Use a time-dependent CFD model to calculate the flow over a cylinder at
Re = 60. Compare the drag coefficient and the Strouhal number with the experi-
mental data presented in Chapter 8.

9.12. Use a 3D panel code to calculate the lift and (induced) drag of a rectangular
wing at an angle of attack of 5◦. Assume aspect ratios of 5, 7, and 10, and compare
with calculated results based on Eqs. (8.101) and (8.102).

9.13. Calculate the laminar flow inside a long cylindrical pipe for Re = 50, based on
the pipe diameter. Assume uniform velocity profile at the entrance to the pipe. How
long does it take along the pipe (in terms of diameters) before the velocity profile
becomes parabolic, as in Eq. (5.79)?



10 Elements of Inviscid Compressible Flow

10.1 Introduction

The fluid dynamic models presented so far, for both liquids and gases, were based
on negligible fluid compressibility. However, there are certain cases, mostly related
to gas flow, in which compressibility cannot be neglected. In these situations, the
internal energy (and temperature) changes are not negligible, requiring a more
careful observation of the fluid properties. For example, let us assume that the
cylinder in Fig. 10.1 is filled with an ideal gas. By compressing the cylinder from
point 1 to point 2, more molecules will hit the wall and both pressure and tempera-
ture will increase. The relation among the various ideal-gas properties was given by
Eq. (1.11) as

p
ρ

= RT. (10.1)

The density, however, is the inverse of the volume per unit mass ρ = 1/v, and the
relation between the two points in Fig. 10.1 is

p1v1

T1
= R = p2v2

T2
. (10.2)

Next, the process involving the motion of the piston from point 1 to point 2
must be addressed. For example, if the gas temperature is kept constant during the
compression by cooling the walls we get

p1v1 = p2v2, (10.3)

which indicates that, by reducing the volume, the pressure will increase by the same
ratio. If the process is adiabatic (no heat transfer) then based on thermodynamics
(see [1] in Chapter 1), the process is

p
ργ

= const. = C1, (10.4)

and γ is the specific heat ratio defined by Eq. (1.19). In terms of the volume per unit
mass Eq. (10.4) yields:

pvγ = const. = C1. (10.5)

343
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Figure 10.1. Gases inside a sealed cylinder.

Using the ideal-gas relation from Eq. (10.1) to replace the pressure with the tem-
perature, we get

Tvγ−1 = const. = C2 (10.6)

or by replacing v with p [from Eq. (10.5)], we get

Tp
γ−1
γ = const. = C2. (10.7)

If one of the fluid properties will change through an adiabatic process (no heat
exchange), then the preceding formulas allow the calculation of the other fluid
properties.

The following topics are based on the simple 1D inviscid flow concept, and the
main objective is to demonstrate the elementary effects of compressibility on the
fluid flow.

10.2 Propagation of a Weak Compression Wave (the Speed of Sound)

Small compression perturbations, such as sound, move in a fluid at a finite speed
approximated by Eq. (1.30). To evaluate this speed of sound, let us consider a cylin-
der filled with stationary gas, as shown in Fig. 10.2. Because of an infinitesimal move-
ment �u of the piston (much as in a loudspeaker’s membrane) a weak compression
front forms that travels forward at a speed of a. It is assumed that the compression
process is isentropic (adiabatic and reversible), so there are no losses in this process.
Also, it appears that the speed on the left-hand side of the sound wave is a−�u
whereas on the right-hand side it is a.

By using the 1D continuity equation, Eq. (2.26), we find that the flow rate on the
left-hand side becomes (ρ + �ρ)(a − �u)A, where A is the cylinder cross-section
area. This flow rate is equal to the flow on the right-hand side of the pressure jump
ρa A and, from the 1D continuity equation we can write

(ρ + �ρ)(a − �u)A = ρa A. (10.8)

Stationary
gas

Pressure wave

pp + Δp

ρ + Δ ρΔu ρ
a

Figure 10.2. A weak compres-
sion wave traveling at a speed a
in a stationary fluid.
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Solving for �u and after neglecting the smallest term, we approximate �u as

�u = a
�ρ

ρ
. (10.9)

Assuming no friction or body force, we can write the 1D momentum equation
[Eq. (4.6)] for the two sides of the pressure wave:

0 = ṁa − ṁ(a − �u) + pA − (p + �p)A. (10.10)

Because the mass flow rate is the same on both sides of the pressure wave we can
write ṁ = ρa A, and momentum equation (10.10) reduces to

0 = ρa A�u − �pA

or

a = �p
ρ�u

. (10.11)

Substituting �u from Eq. (10.9) yields

a2 = �p
�ρ

.

We can conclude that for an isentropic process the speed of sound is

a =
√

∂p
∂ρ

, (10.12)

which is the same result presented in Eq. (1.30). This indicates that the speed of
sound is a result of the compressibility. If in the previous chapters we often used
the incompressible flow assumption, this meant that the speed of sound there is
infinite! For an ideal gas undergoing an isentropic process, the relation between
pressure and density is given by Eq. (10.4). We then obtain the derivative appearing
in Eq. (10.12), by deriving Eq. (10.4):

∂p
∂ρ

= γ C1ρ
γ−1 = γ

p
ργ

· ργ−1 = γ
p
ρ

.

However, for an ideal gas, (p/ρ) = RT, and therefore

∂p
∂ρ

= γ RT.

Substituting this into Eq. (10.12) results in

a =
√

γ RT, (10.13)

confirming that the speed of sound in an ideal gas is a function of temperature only!

EXAMPLE 10.1. THE SPEED OF SOUND IN AIR. Calculate the speed of sound in air
at a temperature of 300 K.

Solution: Substituting the value of γ = 1.4 for air and R from Eq. (1.13) into
Eq. (10.13) results in

a =
√

1.4 × 286.6 × 300 = 346.95 m/s.
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Because the speed of sound is finite, the ratio between the local velocity q in the
fluid to the speed of sound a can signal the importance of compressibility effects.
This ratio, called the Mach number, after Ernst Mach (Austrian physicist, 1838–
1916) was already defined by Eq. (6.15):

M = q
a

. (10.14)

For example, if M < 0.5 everywhere in the flow, it can be considered incompressible.
In general, flows in which 0 < M < 0.8 are called subsonic.

0 < M < 0.8, subsonic.

However, above Mach numbers of M = 0.5, the compressibility effect may become
noticeable. If the local speed in the fluid exceeds the speed of sound, then the
flow is called transonic. For example, an airplane can fly at M = 0.85, but the flow
over the wing can accelerate beyond M = 1. Consequently this region is defined as
transonic:

0.8 < M < 1.2, transonic.

Because the local Mach number in transonic flow can be above 1, shock waves
may be present. When the flow is significantly faster, then this flow regime is called
supersonic:

1.2 < M < 3.0, supersonic.

Some very fast airplanes do operate within this flow range. For much faster flows,
a serious temperature increase may take place and this flow regime is called hyper-
sonic. Some researchers define this range as being above M = 3.0 and some define it
as being above M = 5.0 So, let us call the range 3.0 < M < 0.5 high supersonic and

5.0 < M, hypersonic.

There is another interesting aspect to the fact that the velocity of sound is finite. For
example, let us consider an airplane flying at a subsonic speed, as depicted schemat-
ically in Fig. 10.3(a). We can start our observation at point 1 and assume that after 1
s the airplane will be at point 2 and after another second at point 3, and so on. The
perturbation is generated by the motion or the engine noise propagates at the speed
of sound, and after 4 s, the four circles represent the regions where this information

+
3

+
4

+
2

(b)(a)

+
4

μ
+
3

+
2

Mach cone

Observer

++
1++

1

a.t

Figure 10.3. Propagation of (a) subsonic and (b) supersonic disturbances.
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Figure 10.4. Model for 1D isentropic com-
pressible flow.

(or noise) is heard. Of course the noise generated at point 1 has the longest time to
spread and is represented by the largest circle. Now if the airplane flies at subsonic
speeds, as depicted by Fig. 10.3(a), then the airplane stays inside these “informa-
tion” circles – meaning that the noise it generates propagates faster than the flight
speed (so the pilot can hear the engine jet noise). It is also clear that the faster the
airplane moves, the more the left-hand side of each circle is shifted to the left; at
M = 1 they will coincide so that no information is passed forward of the flight
direction.

As the airplane moves faster than the speed of sound (M > 1) the picture
described in Fig. 10.3(b) evolves. In fact, the airplane moves outside the circle rep-
resenting the region where the disturbance created by it can be heard (so the pilot
cannot hear the engine jet noise). The circles shown in the figure (actually spheres
in three dimensions) create a cone inside which the sound generated by the airplane
can be heard, but no disturbance can be felt outside this cone, called the Mach cone.
An observer on the ground may look and see the airplane passing by but cannot
hear its noise. It may take a short while before the edge of the cone reaches him, so
that he can hear the engine noise (but by then the airplane is long gone).

The half-angle of the Mach cone is called the Mach angle μ, and we can calculate
it by observing that the distance between the apex and point 1 is U∞�t , where U∞
is the airplane speed and �t is the flight time between these two points. During the
same time, the sound traveling to the edge of the cone is a�t . Consequently, from
the geometry, we can write

sin μ = a�t
U∞�t

= 1
M

. (10.15)

The angle μ is shown in Fig. 10.3(a) (and can be defined for M ≥ 1).

10.3 One-Dimensional Isentropic Compressible Flow

The simplest case involving fluid compressibility is the 1D ideal flow. To visualize
such a flow, consider the 1D flow in the x direction, as shown in Fig. 10.4. At the left
there is a large container where the velocity is zero. In this tank, the gas properties
will not change with time because of its large volume compared with the volume
of the flow escaping on the right-hand side. The fluid properties inside the tank are
called stagnation conditions because the velocity there is zero and denoted by the
subscript 0. At the other end of the axisymmetric circular tube, the pressure is very
low, causing the flow to move to the right. Flow velocity will change mainly because
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of the cross-section-area variations, as we shall see later. The objective now is to
evaluate the changes in fluid properties and the resulting velocity.

For the present model we assume that the fluid inside the tank is an ideal gas
and the process is isentropic (adiabatic and reversible). Therefore the schematics in
Fig. 10.4 can be reversed to simulate an inlet, capturing high-speed flow and slowing
it down to zero velocity inside a large container. Because no energy is lost we can
first observe the changes in the enthalpy h of the gas (see [1, p. 85] of Chapter 1):

dh = cpdT. (10.16)

The change between two section along the tube is then

h2 = h1 +
∫ T2

T1

cpdT.

The total energy of the fluid at any section is constant and also includes the kinetic
energy; per unit mass at an arbitrary point 1, it becomes

h1 + (u2
1/2).

If we write this relation for a point inside the stagnation tank where the velocity is
zero and for an arbitrary point inside the tube, then

h0 = cpT0 = cpT + (u2/2), (10.17)

and here we assume a constant cp. Rearranging this equation provides the relation
between the velocity and the temperature in the expansion tube:

T0

T
= 1 + u2

2cpT
. (10.18)

However, we can rewrite the velocity u by using the speed of sound and the Match
number,

u = Ma = M
√

γ RT, (10.19)

and therefore

T0

T
= 1 + M2γ RT

2cpT
.

Next, we rearrange Eq. (1.20), connecting the gas constant R with the heat capacity,

R = cp
γ − 1

γ
, (10.20)

and after substituting this into the temperature ratio we get

T0

T
= 1 + γ − 1

2
M2. (10.21)

Note that the x coordinate in Fig. 10.4 can be replaced with a corresponding Mach
number coordinate. So if we know the local Mach number, the temperature ratio is
given by Eq. (10.21). To calculate the pressure at each point along the tube, we use
Eq. (10.7) for the isentropic process,

p0

p
=

(
T0

T

) γ

γ−1

=
(

1 + γ − 1
2

M2
) γ

γ−1

, (10.22)
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and the variation in density is obtained by use of the ideal-gas equation:

ρ0

ρ
= p0

p
T
T0

=
(

1 + γ − 1
2

M2
) 1

γ−1

. (10.23)

To calculate the mass flow, we use the continuity equation,

ṁ = ρuA,

where A is the cross-section area, and the local velocity is given by Eq. (10.19):

u = M
√

γ RT. (10.19)

We obtain the velocity, in terms of the stagnation conditions, by using Eq. (10.21),
to replace T:

u = M

√
γ RT0

1 + γ−1
2 M2

. (10.24)

EXAMPLE 10.2. TEMPERATURE INCREASE IN SUPERSONIC SPEEDS. Assume that,
for structural reasons, the temperature at any point on an airplane cannot be
above 850 K. Calculate the maximum flight speed of such an airplane operating
at an ambient temperature of 270 K.

Solution: At any stagnation point on a moving object, such as the wing leading
edges, the temperature will reach the stagnation temperature. Therefore, by
using Eq. (10.21) (γ = 1.4), we get

M =
√

2
(γ − 1)

(
T0

T
− 1

)
=

√
2

(1.4 − 1)

(
850
270

− 1
)

= 3.28,

so at this speed portions of the wing, if made of aluminum, may melt. Along the
same line we can explore another speed “limit” and use this model for reverse
flow (recall that the flow is isentropic). In this case we model the inlet of a high-
speed airplane, and the flow is slowed down by such a diffuser to subsonic speeds
as it reaches the combustion chamber. Suppose the temperature of the combus-
tion products inside a jet engine is 2500 K. At what Mach number will the air
heat up to this temperature behind the diffuser, and therefore fuel cannot be
burned (in a subsonic combustion chamber) to generate thrust?

Again, using the same equation, we get

M =
√

2
(1.4 − 1)

(
2500
270

− 1
)

= 6.42.

EXAMPLE 10.3. PRESSURE AND TEMPERATURE RATIO AT M = 1. A large tank con-
tains compressed air at 300 K and at 4 atm (1 atm = 101,300 N/m3). Assuming
the flow escapes through a small circular tube (as shown in Fig. 10.4), calculate
the pressure and temperature at a section where M = 1.
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Solution: Assuming γ = 1.4 for air and using Eqs. (10.22) and (10.23), we get

T0

T
= 1 + γ − 1

2
M2 = 1.2,

p0

p
=

(
1 + γ − 1

2
M2

) γ

γ−1

= 1.893.

The pressure at this section therefore is 4/1.893 = 2.11 atm and the temperature
is 250 K. Note that a pressure ratio that is slightly less than 2 is sufficient to
accelerate the flow to sonic velocities.

10.3.1 Critical Conditions

The condition at which M = 1 is called the critical condition, and usually an asterisk
is used to note the properties in this section. Based on Eq. (10.21), the temperature
ratio is then

T0

T∗ = γ + 1
2

, (10.25)

the pressure ratio, based on Eq. (10.22) is

p0

p∗ =
(

γ + 1
2

) γ

γ−1

, (10.26)

and the density ratio, based on Eq. (10.23), is

ρ0

ρ∗ =
(

γ + 1
2

) 1
γ−1

. (10.27)

The local velocity is calculated with the temperature ratio from Eq. (10.24):

u∗ = a∗ =
√

γ RT =
√

2γ RT0

γ + 1
. (10.28)

Up to this point the cross-section area or the shape of the tube in Fig. 10.4 has not
been discussed. To evaluate the area changes, we observe the continuity equation:

ṁ = ρuA.

This relation holds at any section of the tube, and by substituting the velocity from
Eq. (10.24) and the density from Eq. (10.23), we get

ṁ
A

= ρu = ρ0(
1 + γ − 1

2
M2

) 1
γ−1

M

√√√√√ γ RT0

1 + γ − 1
2

M2
= ρ0 M

√
γ RT0(

1 + γ − 1
2

M2
) γ+1

2(γ−1)

.

(10.29)
It is much easier to evaluate this ratio at the critical section, where M = 1 and
A = A∗:

ṁ
A∗ = ρ0

√
γ RT0(

γ + 1
2

) γ+1
2(γ−1)

. (10.29a)
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Figure 10.5. Parameters for a 1D isentropic compressible flow of an ideal gas.

We obtain the area ratio by dividing Eq. (10.29a) by Eq. (10.29):

A
A∗ = ṁ

A∗
A
ṁ

= 1
M

⎛
⎜⎝1 + γ − 1

2
M2

γ + 1
2

⎞
⎟⎠

γ+1
2(γ−1)

and after some algebra inside the parentheses we get

A
A∗ = 1

M

{
1

γ + 1
[2 + (γ − 1)M2]

} γ+1
2(γ−1)

. (10.30)

This is a very interesting result, and this area variation and the pressure, density, and
temperature are plotted in Fig. 10.5 versus the Mach number. These values for the
isentropic 1D flow are also presented in a table form in Appendix B. Also note that
we can replace the x coordinate with the Mach number coordinate in Fig. 10.4, and
clearly, with an increasing Mach number, the pressure, density, and temperature
will be reduced (as expected). However, the cross-section area has a converging–
diverging shape, with the smallest cross section being at M = 1.
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The smallest area, A∗, is the throat area, and based on Eq. (10.29a), it fixes the
mass flow rate. Using the ideal-gas relation of Eq. (10.1) to replace the density in
Eq. (10.29a), with p0

RT0
we get

ṁ = p0 A∗
√

γ

RT 0

(
2

γ + 1

) γ+1
2(γ−1)

, (10.31)

and this equation clearly indicates that, for a given set of stagnation conditions, the
mass flow rate depends on the throat area.

The terms containing γ are sometimes combined to simplify the preceding
formula:

ṁ = p0 A∗
√

RT0
�, (10.31a)

and the definition of � is then

� = √
γ

(
2

γ + 1

) γ+1
2(γ−1)

. (10.32)

Equation (10.31a), in its second form, shows more clearly the linear dependence
between stagnation pressure and mass flow rate (and the same can be stated about
the throat area). To simplify the calculations involving �, we construct Table 10.1.

Returning to Figs. 10.4, and 10.5, it is obvious that a subsonic nozzle has a con-
verging shape. However, to accelerate the flow to a supersonic condition, a diverging
section is required. Therefore in a supersonic nozzle the cross-section area increases,
with an increased Mach number.

Because the assumption so far is that the flow is isentropic (e.g., also reversible),
the picture in Fig. 10.4 can be reversed such that the flow is flowing into the
container. In this case the supersonic converging section is a supersonic diffuser,
whereas the diverging section (behind the throat) is a diverging subsonic diffuser!
In practice, however, a supersonic converging–diverging diffuser is prone to internal
shock waves and seldom used.

10.3.2 Practical Examples for One-Dimensional Compressible Flow

Compressed gases are used in numerous engineering disciplines, and the preceding
formulation is applicable for several applications. For example, Eq. (10.26) shows

Table 10.1. Numerical values for
the γ and � terms

γ �

1.10 0.6284
1.15 0.6386
1.20 0.6485
1.25 0.6581
1.30 0.6674
1.35 0.6761
1.40 0.6847
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Figure 10.6. Flow from a high-
pressure tank.

that compressed air can reach sonic velocities because of pressure ratios near 2!
This indicates that compressible flow is present in a large number of gas flows, as
demonstrated in the following examples.

EXAMPLE 10.4. FLOW FROM A HIGH-PRESSURE TANK. Consider a high-pressure
tank, such as used in the welding industry, or a solid-propellant rocket engine
immediately after burnout. The conditions of an ideal gas inside the tank are
known as p0, T0, and the volume V0 (and the flow is choked, p0/pa � 2). At this
point the flow exits through a small nozzle because of the high internal pressure.
Assuming frictionless flow, calculate the momentary pressure in the tank, the
mass flow rate (versus time), and the force F (shown in Fig. 10.6) required for
holding the tank in place.

Solution: With the preceding assumptions, the exit mass flow rate can be esti-
mated by Eq. (10.31). However, as the flow leaves the tank, the pressure will
be gradually reduced. The mass inside the tank is ρ0V0 and the conservation of
mass (the continuity equation) requires that the reduction of mass inside the
tank be equal to the flow ṁout leaving through the nozzle:

d
dt

(ρ0V0) = −ṁout.

Replacing the density with the ideal-gas relation and ṁout with Eq. (10.31), we
get

d
dt

(
p0

RT0
V0

)
= −p0 A∗

√
γ

RT 0

(
2

γ + 1

) γ+1
2(γ−1)

.

After rearranging the terms and separation of the variables we get

dp0

p0
= − A∗

V0

√
γ RT0

(
2

γ + 1

) γ+1
2(γ−1)

dt.

The integration between the initial pressure p0(0) and the momentary pressure
p0(t) yields

ln
p0(t)
p0(0)

= − A∗

V0

√
γ RT0

(
2

γ + 1

) γ+1
2(γ−1)

t. (10.33)

This equation clearly describes an exponential decay of the pressure inside the
tank. We can simplify this equation by using the definition of � from Eq. (10.32):

ln
p0(t)
p0(0)

= −
(

A∗�
V0

√
RT0

)
t. (10.33a)

Once the momentary pressure variation is solved, the momentary flow rate and
axial force can be calculated (although this requires extensive algebra). First,
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we can estimate the change in stagnation temperature T0 by using the ideal-
gas relation (the volume V0 and the momentary mass inside the tank determine
the density). Next, we can calculate the nozzle mass flow rate ṁ by using Eq.
(10.31a). Finally, we evaluate the axial force on the tank by using Eq. (2.29):

F = ṁue + (Pe − Pa)Ae,

and we can calculate the exit conditions (ue and Pe) by using Eqs. (10.22) and
(10.24.)

EXAMPLE 10.5. FLOW THROUGH A CONVERGING–DIVERGING NOZZLE. The stag-
nation conditions in a large container, shown in Fig. 10.7, are p0 = 4 atm and
T0 = 300 K. The flow is exhausted through a circular nozzle having a throat
area of At = 5 cm2 and exit area Ae = 10 cm2. Assuming that the exit pressure
(or back pressure) can be controlled, calculate the exit Mach numbers.

Solution: Case 1. Suppose the back pressure at the exit is set at p1 = 3.8 atm; then
the exit Mach number can be calculated from Eq. (10.22) or from the tables in
Appendix B. For the pressure ratio,

p0

p
= 4

3.8
= 0.95.

From Appendix B we get M1 = 0.26 and (Ae/A∗) = 2.32 therefore A∗ for this
case is

A∗ = 10
2.32

= 4.31 cm2.

This area is smaller than the throat area At, and we can calculate the area ratio
at the throat

At

A∗ = 5
4.31

= 1.16.

Therefore the Mach number at the throat is Mt = 0.64 [this can be calculated
with Eq. (10.31) as well, but the algebra is quite complex].

So when the pressure ratio p/p0 at both ends of the tube is larger than
the one shown by the line marked p2 in Fig. 10.7, the flow is entirely subsonic.
Initially the flow accelerates into the throat because of the converging shape and
the pressure is reduced. However, the diverging section appears as a diffuser to
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this subsonic flow, and in this section the speed is reduced and the pressure
increases to match the exit pressure p1.

Case 2. This is the limiting case in which the back pressure p2 is lowered to
a level at which a sonic speed is reached at the throat. Therefore the throat area
is the same as the critical area (e.g., A∗ = At ).

The area ratio at the exit is therefore (Ae/At ) = (Ae/A∗) = 2.00 from
Appendix B. For this ratio at the exit we get M2 = 0.3 and p2/p0 = 0.939.

The exit back pressure for this case is therefore

p2 = 0.939p0 = 3.75 atm.

So when the pressure at the exit is lowered a bit, the velocity at the throat
becomes sonic. The diverging section of the tube is still a diffuser and the flow
velocity is slowing down toward the exit.

Case 3. The next question is this: How low should the pressure p3 at the
exit be in order to generaste supersonic speeds at the exit (so that the diverging
section becomes a supersonic nozzle). Again, instead of using the equation, we
use the supersonic side of the table in Appendix B. The area ratio at the exit
is: (Ae/At ) = (Ae/A∗) = 2.00 from Appendix B. From the supersonic part, we
get M2 = 2.2 and p3/p0 = 0.094.

The exit back pressure for this case is therefore

p2 = 0.094p0 = 0.376 atm.

So the pressure ratio P3
P0

at the two ends of the tube must be significantly smaller
to create a supersonic nozzle. It is also clear from this example that, if the exit
pressure drops below 0.376 atm, the flow inside the tube will not change. As a
matter of fact, the same flow exit conditions are expected in vacuum as well.

The more difficult question, though, is what happens if the back pressure is
in between case 2 and case 3 (or between p2 and p3)? According to our model so
far, only the previously described conditions are possible. Consequently, if the
back pressure is higher (say 1 atm), then an adjustment in the form of a shock
wave can take place. This type of discontinuity (shock wave) causing a sharp
pressure change is discussed next.

10.4 Normal Shock Waves

The ideal-flow model developed in the previous section indicates that the local Mach
number in a nozzle, as seen in Fig. 10.4, depends mainly on the area ratios. Once the
nozzle geometry is fixed, then the pressure ratio is also determined by the ideal-flow
equations (see Fig. 10.5). However, if at the nozzle exit the pressure is higher, then
usually a shock wave pattern will correct the pressure differences. Such a scenario
is shown schematically in Fig. 10.8(a), where a supersonic flow velocity is reduced
to subsonic by means of a shock wave. Another possibility of creating normal shock
waves is when a blunt object or an inlet flies at supersonic speeds [Fig. 10.8(b)]. In
this case the velocity near the inlet must slow down to subsonic velocities, or even
to zero in the case of a blunt object. This sudden reduction in flow speed usually
results in a normal shock wave, and the main objective of this section is to determine
the changes in velocity and fluid properties across the shock wave. Note that this
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Figure 10.8. Possible occurrence of normal shock waves: (a) converging–diverging nozzle,
(b) ahead of a nacelle or a blunt object.

is a nonreversible phenomenon and a subsonic flow cannot become supersonic by
crossing a shock wave!

A simple 1D model for a normal shock wave is depicted in Fig. 10.9. Here the
flow is captured between two parallel stream lines, and the normal shock repre-
sents a thin discontinuity, normal to the streamlines. Again, note that this is a strong
discontinuity and the changes are not isentropic or reversible (also meaning that
stagnation pressure losses are expected). Consequently the simple isentropic model
used for a weak pressure disturbance in Section 10.2 cannot be used. On the left-
hand side of the model in Fig. 10.9, a supersonic flow is entering the control volume
(which includes both sides of the shock wave) and the subsonic flow leaves at the
right-hand side.

The fluid properties and incoming Mach number M1 are known on the left-hand
side of the shock wave. It is also assumed that the fluid is an ideal gas. The proposed
model should provide the fluid properties and the Mach number on the other side of
the shock wave. The first equation used for this model is the steady-state continuity
equation,

ρ1u1 A1 = ρ2u2 A2,

but the area A is the same on both sides of the discontinuity and we can simply
write

ρ1u1 = ρ2u2. (10.34)

Similarly, the 1D momentum equation reduces to

p1 + ρ1u2
1 = p2 + ρ2u2

2. (10.35)

Normal shock

p1

T1

ρ1

p2

T2

ρ2

u1

(M1)

u2

(M2)

Figure 10.9. 1D model for a normal
shock wave.
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Also there is no heat exchange (adiabatic flow) and the stagnation enthalpy is
unchanged (e.g., conservation of energy). Because we approximated the enthalpy
of an ideal gas by Eq. (10.17), we can write

T01 = T02. (10.36)

With the aid of these equations, we calculate the changes across the shock wave,
knowing the conditions ahead of the shock. For example, the temperature ratio can
be formulated, based on the Mach numbers on both sides [and using the isentropic
relations from Eq. (10.21)]:

T2

T1
=

T01

T1
T02

T2

=
1 + γ − 1

2
M2

1

1 + γ − 1
2

M2
2

. (10.37)

and we shall calculate M2 later. Of course, according to Eq. (10.36), T02 = T01. If the
Mach number is known, then the velocity ratio is easily calculated:

u2

u1
= M2

√
γ RT2

M1
√

γ RT1
= M2

M1

√
T2

T1
. (10.38)

The density ratio is calculated with the continuity equation (Eq. 10.34):

ρ2

ρ1
= u1

u2
= M1

M2

√
T1

T2

Using the temperature ratio from Eq. (10.37), we get

ρ2

ρ1
= M1

M2

√√√√√√1 + γ − 1
2

M2
2

1 + γ − 1
2

M2
1

. (10.39)

We then obtain the pressure ratio from momentum equation (10.35), and by using
the ideal-gas relation ρ = (p/RT), we get

p1 + p1

RT1
u2

1 = p2 + p2

RT2
u2

2.

Now recalling that the term

u2

RT
= M2γ RT

RT
= M2γ

and substituting this into the momentum relation, we get

p1
(
1 + M2

1 γ
) = p2

(
1 + M2

2 γ
)
.

The static pressure ratio is then

p2

p1
=

(
1 + M2

1 γ
)

(
1 + M2

2 γ
) . (10.40)
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The last missing unknown is the Mach number behind the shock, M2. For this we
can use the ideal-gas relation, namely,

T2

T1
=

p2

ρ2 R
p1

ρ1 R

= p2ρ1

p1ρ2
.

Next we substitute the pressure and density ratios from Eqs. (10.39) and (10.40):

T2

T1
= p2ρ1

p1ρ2
=

(
1 + M2

1 γ
)

(
1 + M2

2 γ
) M2

M1

√√√√√√1 + γ − 1
2

M2
1

1 + γ − 1
2

M2
2

.

Substituting the temperature ratio from Eq. (10.34) into the left-hand side we get an
equation relating M1 to M2:

1 + γ − 1
2

M2
1

1 + γ − 1
2

M2
2

=
(
1 + M2

1 γ
)

(
1 + M2

2 γ
) M2

M1

√√√√√√1 + γ − 1
2

M2
1

1 + γ − 1
2

M2
2

or

√√√√√√1 + γ − 1
2

M2
1

1 + γ − 1
2

M2
2

=
(
1 + M2

1 γ
)

(
1 + M2

2 γ
) M2

M1
.

By squaring both sides of the equation we get a quadratic equation for M2
2 that

provides two solutions. The first is M2
2 = M2

1 , which is trivial, and the second solution
is

M2
2 = 2 + (γ − 1) M2

1

γ
(
2M2

1 − 1
) + 1

. (10.41)

Last, the stagnation pressure loss is evaluated. This can be done again by use of the
isentropic relation [Eq. (10.22)] on both sides of the shock wave:

p02

p01
=

p02

p2
p01

p1

p1

p2
=

(
1 + γ − 1

2
M2

2

) γ

γ−1

(
1 + γ − 1

2
M2

1

) γ

γ−1

(
1 + M2

2 γ
)

(
1 + M2

1 γ
) (10.42)

and the static pressure ratio is taken from Eq. (10.39).
At this point, all quantities at the other side of the shock wave are calculated.

However, it is more practical to rearrange the equations in terms of the incoming
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Figure 10.10. Changes in flow proper-
ties across a normal shock wave.

Mach number M1. The algebra involved is quite elaborate and therefore only the
final results are summarized:

p02

p01
=

⎛
⎜⎝

γ + 1
2

M2
1

1 + γ − 1
2

M2
1

⎞
⎟⎠

γ

γ−1

(
2γ

γ + 1
M2

1 − γ − 1
γ + 1

) 1
γ−1

. (10.43)

T2

T1
=

[
2 + (γ − 1) M2

1

] (
2γ M2

1 − γ + 1
)

(γ + 1)2 M2
1

, (10.44)

p2

p1
= 2γ

γ + 1
M2

1 − γ − 1
γ + 1

, (10.45)

ρ2

ρ1
= u1

u2
= (γ + 1) M2

1

2 + (γ − 1) M2
1

, (10.46)

and M2 is given by Eq. (10.41). These equations are tabulated in Appendix C as a
function of the incoming Mach number M1. The results are also plotted in Fig. 10.10.

The data plotted in Fig. 10.10 clearly indicate the large changes across the shock
wave. For example, the static pressure jump is the highest, but the static temperature
increase is also significant. Consequently the density jump is also very high. These
large increments result in a sharp loss in velocity and the Mach number behind the
shock wave is always subsonic. As a matter of fact, the faster the incoming flow M1,
the weaker the exiting Mach number M2. The loss in stagnation pressure is increas-
ing with M1 and clearly indicates the loss of usable energy (or the irreversibility of
the flow).
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At

M = 1.3

p = 0.8 atm
T = 270°K

Ai

M2 Figure 10.11. Schematic description of an inlet operat-
ing slightly above the speed of sound.

10.5 Some Applications of the One-Dimensional Model

There are several practical cases in which such 1D models provide feasible pre-
liminary engineering data. When the pressure gradient is favorable, as in the case
of nozzles, these tools are considerably better compared with the adverse pressure
cases found in diffusers. Also, in most cases oblique shocks are present (which are
beyond the scope of this text) but if the normal shock model is used, preliminary
designs of diffusers and nozzles is still possible. As an example for the successful use
of this model the following examples are presented.

10.5.1 Normal Shock Wave ahead of a Circular Inlet

Airplanes with a circular inlet (like the first supersonic fighters of the 1950s) were
capable of flying at low supersonic speeds. The inlet is basically a subsonic diffuser
and at speeds above Mach 1, a normal shock forms ahead of the inlet. Because the
losses below M = 1.3 are quite small, such an approach was workable, particularly
when supersonic speeds were used only in extreme distressed conditions.

For a numerical example, consider an airplane with a circular inlet (as shown in
Fig. 10.11) that is flying at M = 1.3 and the smallest cross-section area in the inlet
is At = 0.15 m2. As discussed earlier, a normal shock wave is present ahead of the
inlet. The most important question then relates to the stagnation pressure loss that
is due to the shock wave. Also it is important to calculate the Mach number behind
the shock, the capture area Ai, and the mass flow rate.

The condition depicted in Fig. 10.11 is called a detached shock wave and the
Mach number at the smallest area At is equal to 1. The Mach number behind the
normal shock is easily calculated by Eq. (10.40) or from the tables in Appendix C
(γ = 1.4):

M2
2 = 2 + (γ − 1) M2

1

γ
(
2M2

1 − 1
) + 1

= 0.618

or M2 = 0.786.
At the same time the stagnation pressure ratio is given in the same Appendix C

or can be calculated from Eq. (10.43) as

p02

p01
= 0.979.
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So the stagnation pressure loss is not too high (e.g., about 2%). Because the flow
behind the shock wave is subsonic, by assuming ideal flow, we can calculate the area
ratio from Appendix B or from Eq. (10.31):

Ai

At
= A

A∗ = 1
M2

{
1

γ + 1

[
2 + (γ − 1)M2

2

]} γ+1
2(γ−1)

= 1.05.

Note that the area Ai ahead and behind the shock is unchanged and therefore the
capture area is

Ai = 1.05 × 0.15 = 0.1575 m2.

We now calculate the mass flow rate by using the information ahead of the shock
wave [and the velocity from Eq. (10.19)]. Let us assume that the static temperature
is T = 270 K and the pressure is p = 0.6 atm:

ṁ = ρuAi = ρM
√

γ RT Ai = p
RT

M
√

γ RT Ai = pMAi

√
γ

RT

= 0.6 × 105 × 1.3 × 0.1575

√
1.4

286.6 × 270

= 52.25 kg/s,

and here we assume that 1 atm = 105 N/m2.
This example clearly shows that this model allows the sizing of inlets, even in

the presence of a normal shock.

10.5.2 The Converging–Diverging Nozzle (de Laval Nozzle)

Rockets and high-pressure jet engines use converging–diverging nozzles to generate
supersonic exit velocity and high thrust. Such designs are often called in the litera-
ture the de Laval nozzle, after Karl Gustaf Patrik de Laval (1845–1913), the Swedish
engineer who improved steam turbine performance by using converging–diverging
nozzles. This concept was already discussed in relation to the 1D compressible isen-
tropic flow (see Fig. 10.7), and for the present analysis, the converging–diverging
nozzle was redrawn in Fig. 10.12. In this case, however, back-pressure conditions
for a wider range are considered. Let us assume that the flow is entering the nozzle
with given stagnation pressure p0 and temperature T0 at the left, and by gradually
lowering the back pressure, the flow rate through the nozzle can be increased. Of
course if p1 = p0 there will be no flow, but by lowering p1 a bit, the flow will acceler-
ate toward the throat and then slow down (because of the area change) toward the
exit. Note that the flow in this case is entirely subsonic (e.g., when the exit pressure
is p1). The two diagrams below the nozzle show the variations of the pressure (with
the area change) and the velocity, in terms of the Mach number, along the nozzle.
The next interesting condition is when the back pressure at the exit is lowered to
p2 and the velocity at the throat reaches sonic speed, but behind the throat the flow
will slow down and stay subsonic all the way to the exit as discussed in reference to
Fig. 10.7. Also, based on Eq. (10.26), the pressure ratio at the throat (where now
M = 1) is p∗/p0 = 0.528, as shown (for γ = 1.4). Up to this point, the 1D isentropic
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Figure 10.12. The de Laval nozzle and corre-
sponding pressure and Mach number variations
along the nozzle.

flow model is applicable and local velocities (or Mach numbers) can be calculated
by this model.

To create supersonic flow in the diverging section, a significantly lower back
pressure is needed, as shown schematically by the pressure p4 in the figure (and M4

is the exit mach number). If the pressure outside the nozzle is lower than p4 then the
flow inside the nozzle will not change and an external expansion will adjust for the
pressure outside. This condition is called underexpanded, meaning that larger exit
area could have been used for the nozzle. Also note that, if the pressure outside is
less than p2, all flow parameters in the nozzle remain unchanged!

Of particular interest is the case in which the pressure at the exit is between p2

and p4. In this case a fully developed supersonic flow cannot exist and a shock wave
will adjust the pressures, as shown in the figure. To match an exit pressure of p3,
the flow behind the shock wave becomes subsonic and the diverging section actually
becomes a diffuser (because, owing to the increased cross-section area, the pressure
will increase toward the exit). This condition is called an overexpanded nozzle and
is highly undesirable for all sorts of propulsion application (because thrust will be
reduced).

EXAMPLE 10.6. THRUST OF A SMALL CONTROL ROCKET. The stagnation condi-
tions inside the combustion chamber of a small satellite control rocket are
T0 = 2100 K and p0 = 3.5 atm. The nozzle throat area is At = 4 cm2 and the
exit-to-throat-area ratio is Ae/At = 4.0. Calculate thrust of this module in space
and on Earth where pa = 1 atm (for simplicity use the properties of air).

Solution: To calculate the thrust in space the nozzle exit velocity must be calcu-
lated. From the isentropic flow relations (or by using the tables from Appendix
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B) and scanning the area ratio column we get for (Ae/At ) = (A/A∗) = 4,

isentropic flow ⇒
⎧⎨
⎩

Me = 2.94
pe/p0 = 0.030.

Te/T0 = 0.366

This condition corresponds to the supersonic curve (p4) in Fig. 10.12 and the
exit pressure is pe = 0.030 × 3.5 = 0.105 atm. Also note that in space the back
pressure is zero and therefore this is an underexpanded condition. To calculate
the thrust we use Eq. (2.29);

Fx = ρeu2
e Ae + (pe − pa)Ae.

The exit velocity can be calculated as

ue = M
√

γ RT = 2.94
√

1.4 × 286.6(2100 × 0.366) = 1632.7 m/s,

and the exit density is then (using the ideal-gas relation)

ρe = pe

RTe
= 0.105 × 105

286.6 × 2100 × 0.366
= 0.04766 kg/m3,

and here we assume that 1 atm = 105 N/m2. The thrust in space can now be
calculated:

Fx = 0.0476 × 1632.72 × 16 × 10−4 + (0.105 × 105 − 0) × 16 × 10−4 = 219.82 N.

Next the thrust of the same unit at sea level is investigated. The previous cal-
culations showed that, to maintain supersonic flow, the exit pressure should be
pe = 0.105 atm. Because sea-level pressure is assumed to be 1 atm, then clearly
an overexpanded condition exists (as marked by the p3 line in Fig. 10.12). To
calculate this conditions, it is best to use an iterative method in conjunction with
the tables in Appendices B and C. Because the exit Mach number for the ideal
supersonic case is Me = 2.94 the normal shock occurs at a lower Mach number.
The iterative process begins with guessing the location of the shock (in terms of
M1) and then calculating the pressure at the exit. If the resulting exit pressure
is too high, a stronger shock is guessed next. Usually two to three iterations are
required, and the final result can be obtained by simple extrapolation. For sim-
plicity let us present only the final (actually third) iteration and assume that the
normal shock is in the section where M1 = 2.9. Based on this assumption, the
normal shock tables in Appendix C provide the values behind the shock wave:

M1 = 2.9, normal shock ⇒
{

M2 = 0.481
p02/p01 = 0.358

Next, the location of section A1 must be identified. From the isentropic tables
for the supersonic flow (in Appendix B) scanning down the Mach number col-
umn, we get

M1 = 2.9, isentropic flow ⇒ A1

A∗ = 3.85.

Knowing the nozzle geometry, we can calculate A1 as A1 = 3.85A∗. Next, the
condition at the same cross section but in the subsonic side is explored by
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use of the subsonic tables (in Appendix B) scanning down the Mach number
column,

M2 = 0.481, isentropic flow ⇒ A1

A∗∗ = 1.38.

Here A∗∗ is the (imaginary) throat area for the flow behind the shock wave. Next
the pressure at the exit must be calculated to see if it matches the pe = 1 atm
condition. Knowing that the flow behind the shock wave is subsonic, we estimate
the exit Mach number by first evaluating the area ratio and then scanning down
the area ratio column in Appendix B to Match Ae/A∗∗:

Ae

A∗∗ = A1

A∗∗
A∗

A1

Ae
A∗ = 1.433; isentropic flow ⇒

⎧⎨
⎩

Me = 0.45
pe/p02 = 0.870.

Te/T0 = 0.961

With the area ratio information the exit conditions can be calculated, using
the ratios shown to the right of the curly brace. Foremost, the exit pressure is

pe = p0
p02

p0

pe

p02
= 3.5 × 0.358 × 0.870 = 1.09 atm.

This is very close to the target pe = 1 atm (taking into account the accuracy
of the numbers in the Appendices B and C) and we conclude that this is an
acceptable iteration for the solution. In reality, after two or three iterations, a
curve fit can be used for a more accurate solution.

To calculate the thrust at sea level we need to calculate the exit conditions.
The exit temperature (note that the stagnation temperature does not change
across the shock wave) is

Te = 0.961T0 = 2018 K.

The exit velocity is then

ue = M
√

γ RT = 0.45
√

1.4 × 286.6(2100 × 0.961) = 404.9 m/s,

and the exit density is

ρe = pe

RTe
= 1.09 × 105

286.6 × 2100 × 0.961
= 0.18845 kg/m3.

The thrust at sea level is then

Fx = 0.1884 × 404.92 × 16 × 10−4 + (1.09 × 105 − 1.00 × 105)16 × 10−4 = 63.83 N,

and this is significantly less than the previously calculated thrust in space! The
conclusion is that, when possible, either matched or underexpanded designs
should be used.

10.5.3 The Supersonic Wind Tunnel

A quite popular supersonic wind-tunnel design is based on the blow-down concept,
shown in Fig. 10.13. In this case, high-pressure gas is introduced into a large stag-
nation chamber, from where the flow is accelerated along a converging–diverging
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Figure 10.13. Schematic description
of a (blow-down) supersonic wind
tunnel.

nozzle. Next a nearly constant-area test section follows (see A1) where the flow is
supersonic and various models can be tested. Behind the test section a converging–
diverging diffuser is placed, which is supposed to slow down the flow and create an
exit pressure, matching the outside condition. If properly designed, no shock wave
will be present in the diffuser. However, a slightly off design conditions can create
shock waves in the diffuser, as shown. Also note that such wind tunnels operate for
only a short time until the pressure in the compressed air reservoir is depleted.

For a numerical example, let us investigate the parameters of such a wind tun-
nel with a test section speed of M1 = 3. Note that the subscript 1 is used for the test
section, subscript 2 for the normal shock section, and subscript 3 for the exit sec-
tion. The throat-to-test-section cross-section area can be obtained by scrolling down
the Mach number column in the supersonic portion of the isentropic flow model
(in Appendix B):

M1 = 3.0, isentropic flow ⇒

⎧⎪⎪⎨
⎪⎪⎩

A1

A∗ = 4.23

p1/p02 = 0.027.

T1/T0 = 0.357

Based on these numbers, the temperature drops over 60% and the pressure is only
about 3% from the full stagnation pressure value. The throat at the diffuser, in prin-
ciple, is the same as the throat in the nozzle, but because of boundary-layer and
other losses it is slightly larger. Suppose the exit area A3 is designed to be at atmo-
spheric pressure, and for practical reasons it has the same size as the test section.
Because we fixed the exit area ratio by using the subsonic section of the isentropic
flow tables in Appendix B, we get

A3

A∗ = 4.23, isentropic flow ⇒
⎧⎨
⎩

M3 = 0.14
p3/p0 = 0.986.

T1/T0 = 0.9961

Based on this, if p3 (at exit section 3) is atmospheric, only a small amount for pres-
sure is required for driving this wind tunnel. In reality, pressure ratios of larger
than 2 are needed to establish sonic speed in the nozzle [Eq. (10.26)] and to over-
come friction. As a numerical example, let us estimate the conditions in this wind
tunnel for a stagnation pressure of p0 = 2 atm and a temperature of T0 = 300 K.
The pressure in the test section is calculated based on the pressure ratio obtained
earlier,

p1 = 0.027 × 2 = 0.054 atm,
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and for an ideal flow across the wind tunnel with a subsonic diffuser the pressure at
the exit would be

p3 = 0.986p0 = 1.972 atm.

Of course this is too high, and based on the de Laval nozzle example, it is clear
that a shock wave must adjust for the excess pressure. In this case the flow remains
supersonic through the diffuser up to section A2, as shown. Based on Appendix C,
a stagnation pressure loss of near 50% is possible only for Mach numbers near 2.65.
Therefore the first guess assumes a shock where M2 = 2.65, and based on Appen-
dix C and scrolling down the Mach number column, we find

M2 = 2.65, normal shock ⇒
{

M2a = 0.4996
p02/p01 = 0.4416

,

where M2a is the Mach number in the subsonic side of the normal shock wave at
section 2. Next, the location of section A2 must be identified. Based on the isentropic
tables for the supersonic flow (for the left-hand side of the shock) we get (Appen-
dix B):

M2 = 2.65, isentropic flow ⇒ A2

A∗ = 3.04.

Knowing the throat area, we can calculate A2 as A2 = 3.04A∗. Next, we explore the
condition at the same cross section, but on the subsonic side, by using the subsonic
tables in Appendix B:

M2a = 0.499, isentropic flow ⇒ A2

A∗∗ = 1.34.

Here again A∗∗ is the (imaginary) throat area for the flow behind the shock wave.
Next the pressure at the exit must be calculated to see if it matches the pe = 1 atm
condition. Knowing that the flow behind the shock wave is subsonic, we estimate
the exit Mach number by first evaluating the area ratio there, and with this ratio
scrolling down the area ratio column in Appendix B, we find:

A3

A∗∗ = A2

A∗∗
A∗

A2

A3

A∗ = 1.866, isentropic flow ⇒
{

Me = 0.33
pe/p02 = 0.9274

.

With this information the exit conditions can be calculated. Therefore the exit pres-
sure is

pe = p0
p02

p0

p3

p02
= 2 × 0.4416 × 0.9274 = 0.819 atm.

This pressure is too low and a weaker shock (with less losses) can increase the
exit pressure. Therefore, for the next iteration, a weaker shock (at A2) is selected.
Assuming that the shock there is at M2 = 2.44 and from Appendix C, we get

M2 = 2.44, normal shock ⇒
{

M2 = 0.5189
p02/p01 = 0.5234

.

Next the location of the section A2 must be identified. From the isentropic tables for
the supersonic flow (Appendix B), we get

M2 = 2.44, isentropic flow ⇒ A2

A∗ = 2.493.
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Knowing the nozzle geometry, we can calculate A2 as A2 = 2.493A∗. Next, we
explore the condition at the same cross section, but on the subsonic side, by using
the subsonic tables (Appendix B):

M2a = 0.5189, isentropic flow ⇒ (A2/A∗∗) = 1.30.

Here again A∗∗ is the (imaginary) throat area for the flow behind the shock wave.
Next the pressure at the exit must be calculated to see if it matches the pe = 1 atm
condition. Knowing that the flow behind the shock wave is subsonic, we estimate
the exit Mach number by first evaluating the area ratio:

A3

A∗∗ = A2

A∗∗
A∗

A2

A3

A∗ = 2.210, isentropic flow ⇒
{

Me = 0.27
pe/p02 = 0.951

.

With this information the exit conditions can be calculated. The exit pressure for
this iteration is

pe = p0
p02

p0

p3

p02
= 2 × 0.523 × 0.951 = 0.99 atm,

which is quite close, and we assume that this last iteration represents the condition
along this supersonic wind tunnel.

10.6 Effect of Compressibility on External Flows

The 1D ideal-flow models discussed so far in this chapter have demonstrated the
effect of compressibility, but mainly internal flow examples were presented. The
external compressible flows that are due to speeds near and above Mach 1 are also
important, but their analytical treatment is more complex. For completeness, how-
ever, a brief discussion follows that shows some basic features of high-Mach-number
external flows. As an example, the trends in the drag coefficient of a sphere and of
a slender missile configuration versus Mach number are depicted in Fig. 10.14. The
change in angle of attack for the case of the missile configuration does not affect the
basic variations, which show a large increase near the transonic region.

To gain some insight, particularly into the high subsonic side of the diagram,
let us return to the 1920s. As mentioned in Section 8.10, the pioneering group
of Prandtl in Göttingen, Germany, was busy laying the foundations for analytical
aerodynamics. By this time, airplane propeller tip speeds had begun to reach sonic
velocity, experiencing performance losses, as expected from the data in Fig. 10.14.
In an effort to understand the phenomenon and to extend the potential flow the-
ory (Section 8.5) into the compressible flow regime, the Prantl-Glauert correction
was developed. (Ludwig Prantl, 1875–1953 and Hermann Glauert, a British scien-
tist, 1892–1934.) This correction provided an early explanation for the increase in
fluid dynamic forces and is valid for the range of M < 0.8 (for small angles of attack
and for slender configurations, as in the missile sketched in Fig. 10.14).

The method is based on the ideal-flow model of Section 8.4, but now the high-
speed free stream is aligned with the x axis (M is the Mach number of the free
stream), and the velocity components (perturbations) in the other directions are
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Figure 10.14. Effect of compressibility on the drag coefficient of a sphere and a slender rocket
(Re > 106).

much smaller. After neglecting the smaller terms, we find that the continuity equa-
tion for the perturbations becomes (see [1, Chapter 11)]:

(1 − M2)
∂u
∂x

+ ∂v

∂y
+ ∂w

∂z
= 0. (10.47)

For an irrotational flow a velocity potential � can be defined [see Eqs. (8.4)] such
that

u = ∂�

∂x
, v = ∂�

∂y
, w = ∂�

∂z
. (10.48)

Substituting these into the continuity equation results in the following expression:

(1 − M2)
∂2�

∂x2
+ ∂2�

∂y2
+ ∂2�

∂z2
= 0. (10.49)

The idea behind the Prandtl–Glauert correction is to define a new set of spatial
variables in which the x coordinate is being stretched as the Mach number increases;

x′ = x√
1 − M2

, y′ = y, z′ = z. (10.50)

By use of these variables, the (1 – M2) term cancels, and the continuity equation
returns to the incompressible flow format:

∂2�

∂x′2 + ∂2�

∂y′2 + ∂2�

∂z′2 = 0. (10.51)

The outcome of this analysis is that now we can use the results of incompressible
ideal (potential) flow and simply correct the results by using the Prandtl–Glauert
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correction. For example, if we find the pressure coefficient by using the methods of
Chapter 8 (e.g., at M = 0), the pressure coefficient at higher Mach numbers is

Cp = Cp(M = 0)√
1 − M2

. (10.52)

The same correction applies to the integral of the pressures, namely, the lift and the
drag coefficients:

CL = CL(M = 0)√
1 − M2

, (10.53)

CD = CD(M = 0)√
1 − M2

. (10.54)

This correction explains the initial increase in the forces as the Mach number
increases (see Fig. 10.14) and can be used as an initial approximation as long as
shock waves are not present.

EXAMPLE 10.7. EFFECT OF COMPRESSIBILITY ON THE LIFT OF A FLAT PLATE. Con-
sider the case of the flat plate at M = 0, as presented in Subsection 8.9.2. The lift
coefficient, based on Eq. (8.90), is

CL = 2πα.

This 2D formula is valid in the subsonic flow range, but for M = 0.7 the Prandtl –
Glauer correction yields

CL = 2πα√
1 − M2

= 1.40 × 2πα.

This is a significant increase and follows the trends shown in Fig. 10.14.

At this point let us take a closer look at Eqs. (10.52)–(10.54), mainly because at
M = 1 the lift and drag approach infinity! It was already stated that this correction
is not valid close to M = 1; however, in the 1930s and even later this was interpreted
as the sound barrier. Also, if the molecules in a gas move at a velocity close to the
speed of sound than they cannot escape and will accumulate near the nose of an
airplane flying near or above the speed of sound, effectively creating a “brick wall.”
This line of thought suggested that supersonic flight is impossible.

Let us move a few years forward, knowing that supersonic flight is a daily event,
and try to understand the increase in the drag coefficients near the sonic speed. For
the discussion, consider the flow over an airfoil, as depicted in Fig. 10.15. Because
the flow accelerates near the airfoil, sonic (and above sonic) speeds can be reached

M > 1
Shock wave

Shock wave

Sonic line

Flow separationM > 1

M < 1

Figure 10.15. Schematic description
of the supersonic Mach contour
(dashed curve), at speeds slightly
above the critical Mach number on a
transonic airfoil.
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even at subsonic flight speeds. The flight speed where local supersonic flow begins
on an airfoil is called the critical Mach number and can be as low as M = 0.7 or
as high as M = 0.9. This region is often called “transonic,” as noted earlier, char-
acterized by the sharp increase in drag. It is clear that the speed is higher around
a thick airfoil than a thin one, or on those having a sharp suction peak near the
leading edge (see Fig. 8.34). Therefore the critical Mach number can be delayed
by use of thinner airfoils and by elimination of the sharp suction peaks (these air-
foils are sometimes called critical or transonic airfoils). In the case shown in Fig.
10.15, supersonic conditions exist on both the upper and lower surfaces, resulting
in shock waves. As the free-stream Mach number increases toward M = 1, the
shock wave strength increases (more losses) and also flow separation may result
behind the shock wave, significantly increasing the drag. Once the flight Mach num-
ber increases above M = 1, oblique shock waves form and the drag coefficient is
reduced (actually following the trend shown by the Prandtl–Glauert correction but
using

√
M2 − 1)). In this higher supersonic range (e.g., M > 1.2) the lift coefficient

of a flat plate, at small angles of attack, can be estimated by the following formula
([1, Chapter 12]):

CL = 4α√
M2 − 1

. (10.55)

Also, at supersonic speeds the pressure distribution acts normal to the plate and the
drag is the projection into the flight direction (e.g., lift times tan α). Assuming small
α, and tan α ≈ α, we get:

CD = 4α2

√
M2 − 1

. (10.56)

This is in contrast to the subsonic case in which the ideal 2D pressure drag (see
Subsection 8.9.2) is zero!

As a summary of the preceding discussion, it is obvious that the lift and mainly
the drag will increase significantly near transonic conditions. The supersonic drag
will be larger than the subsonic value, making commercial supersonic flight con-
siderably more expensive. Also, supersonic airfoils will be thinner than subsonic
designs and supersonic wings will be swept. Although this was not discussed, by
sweeping the leading edge more than the Mach cone, the flow normal to the air-
foil may appear as subsonic, reducing shock wave effects. Therefore supersonic air-
planes use highly swept slender wings, and some of the simple formulas [e.g., Eq.
(8.104)] may still be applicable.

10.7 Concluding Remarks

This chapter served to demonstrate certain effects of compressibility. The first effect
discussed is the speed of sound, which indicates that information, such as a weak
pressure perturbation, is traveling at a finite speed in a fluid. If a vehicle speed
exceeds the speed of sound, perturbations such as the sound cannot reach certain
areas in the fluid.
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The 1D isentropic flow model developed provided information on temperature
and pressure changes in fast-moving flows. Also, a converging subsonic nozzle may
turn into a diffuser in a supersonic flow. The 1D shock wave model, which is non-
reversible, introduced the concept of strong discontinuities in high-speed flows and
the resulting stagnation pressure losses.

Finally, the effect of compressibility in external flows was addressed and the
sharp increase in drag near the transonic region was discussed.
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PROBLEMS

10.1. A commercial airplane is designed to cruise at a Mach number of M = 0.8.
Calculate its actual speed at sea level (p = 1 atm, T = 300 K), at an altitude of 5 km
(p = 0.53 atm, T = 255 K), and at an altitude of 10 km (p = 0.26 atm, T = 223 K).

10.2. Airplanes have many aluminum parts on them, including most of the skin.
If pure aluminum melts at 933 K, then calculate the speed (and Mach number)
at which this temperature is reached near the stagnation points on the airplane.
Use the atmospheric conditions at an altitude of 5 km, where p = 0.53 atm and
T = 255 K.

10.3. Some of the fastest airplanes can cruise at a Mach number of 3. If such an
airplane flies at an altitude of 10 km (p = 0.26 atm, T = 223 K) then calculate the
stagnation temperature along the wing leading edges.

10.4. A reentry vehicle gliding down from its orbit reaches an altitude of 30 km at
a Mach number of 5. If the ambient temperature at this altitude is T = 226 K, then
calculate the stagnation temperature (near the nose and the leading edges).

10.5. A supersonic airplane flies horizontally at an altitude of 7 km and at a Mach
number of 2. A bystander looks up and sees the airplane exactly above him. How
long does it take (in seconds) for the bystander to hear the airplane’s noise and how
far away is the airplane at this moment? Also calculate the Mach angle μ (assume
that the average speed of sound is 320 m/s).

Mach cone

1

Observer

++++

23

μ

4

a.t

Problem 10.5.



372 Elements of Inviscid Compressible Flow

10.6. An airplanes flies at an altitude of 5 km where the atmospheric conditions are
p = 0.53 atm and T = 255 K. By the time the sonic shock reaches an observer’s ears
on the ground, the airplane reached a distance of 10 km to the left. Calculate the
Mach number, Mach angle, and airplane speed (assume that the speed of sound is
not changing much as it travels down from an altitude of 5 km).

Mach cone

1

Observer

++++

23

μ

4

a.t

Problem 10.6.

10.7. The performance of a nozzle with an area ratio of Ae/At = 6.5 is investi-
gated. The stagnation chamber conditions are p0 = 50 atm, ρ0 = 55 kg/m3, and
T0 = 300 K. If the throat area is At = 2 cm2 and the ambient pressure is pa = 1
atm, then calculate the nozzle exit velocity and the thrust of this unit (γ = 1.4, R =
287 m2/s2 K).

10.8. A 50-L container (as shown in Fig. 10.6) is filled with air at a pressure of 40 atm
and a temperature of 300 K. Suddenly a small nozzle with a throat area of 1 cm2 is
opened, allowing the air to flow outside (where the pressure is 1 atm). Calculate
the variation of the pressure with time inside the tank and the axial force it creates
(γ = 1.4, R = 287 m2/s2 K).

10.9. A 50-L container (as shown in Fig. 10.6) is filled with air at a pressure of
50 atm and at a temperature of 300 K. Suddenly a small nozzle with a throat area of
2 cm2 is opened, allowing the air to flow outside (where the pressure is 1 atm).
How long it will take for the pressure in the tank to reach 25 atm (γ = 1.4, R =
287 m2/s2 K).

10.10. An airplane flies at M = 1.42 and a normal shock wave is formed ahead of
the engine inlet lip. Calculate the capture-area-to-throat ratio Aa/At, the stagnation
pressure loss, and the Mach number behind the shock wave.

10.11. Compare the static thrust generated by two nozzle geometries. The stagna-
tion conditions ahead of the nozzle are p0 = 25 atm, T0 = 2000 K, and at the exit pa

= 1atm. The first design is a converging nozzle, with At = 0.05 m2, and the second is
a converging–diverging nozzle, having the same At, and Ae/At = 2.5.

10.12. Calculate the thrust generated by compressed air blowing through a converg-
ing nozzle into the atmosphere where pa = 1 atm. The stagnation conditions ahead
of the nozzle are p0 = 30 atm and T0 = 300 K, and the converging nozzle throat area
is A∗ = 3 cm2.
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Problem 10.12.

10.13. Calculate the thrust generated by the previous compressed air nozzle, but
now a diverging section is added, as shown. Exit and stagnation conditions are, as
before, pa = 1 atm, p0 = 30 atm, and T0 = 300 K. The converging nozzle area is
A∗ = 3 cm2 and the diverging nozzle area ratio is Ae/A∗ = 3.

u

Large container

u
x

u = 0

p0

pa

pa

A*

A* Ae

T0
ρ0

Problem 10.13.

10.14. A thrust chamber is tested statically by use of a high-pressure air supply at
p0 = 50 atm (T0 = 300 K, ρ0 = 50 kg/m3). Calculate the thrust if Ae/At = 5.5 and At

= 0.0005 m2, γ = 1.4, R = 286.78 m/s K, pa = 0.9 atm.

Large
container
u = 0 p0 T0

u
x

At
Ae

Problem 10.14.

10.15. The stagnation conditions inside a large container are p0 = 1.5 atm, ρ0 =
1.82 kg/m3, T0 = 300 K, and the ambient pressure is pa = 1 atm. If the nozzle throat
area is A∗ = 3 cm2 and the diverging nozzle area ratio is Ae/A∗ = 2, calculate the
exit Mach number and the thrust of this nozzle.

Large
container
u = 0 p0 T0

u
x

At
Ae

Problem 10.15.
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10.16. Repeat the previous problem but now the stagnation conditions inside a large
container are p0 = 15 atm, ρ0 = 18.30 kg/m3, T0 = 300 K, and the ambient pressure
is pa = 1 atm. If the nozzle throat area is A∗ = 3 cm2 and the diverging nozzle area
ratio is Ae/A∗ = 2, calculate the exit Mach number and the thrust of this nozzle.

10.17. The thrust of a rocket engine is a result of the pressure distribution on the
inner and outer surfaces of the thrust chamber, as shown in the figure. It is logical
to assume that the thrust is close to the open area times the internal pressure (e.g.,
thrust = p0 × At ). In fact, the thrust coefficient CT is defined as thrust = CT × p0 ×
At . Consider a case in which p0 = 50 atm, T0 = 2000 K, pa = 1 atm, At = 0.0004 m2,
and throat-to-exit-area ratio is At/Ae = 0.5 (assuming γ = 1.4). Calculate the thrust
and the thrust coefficient.

At

pa

Pe

Ue

et

P0

Problem 10.17.

10.18. Calculate the thrust and the thrust coefficient for the previous problem, but
now the nozzle is converging only (so the exit area is equal to 0.0004 m2). Is the
thrust coefficient still larger than 1.0?

10.19. The pressure inside the thrust chamber of a rocket engine is 100 atm and
the combustion temperature is T0 = 2000 K. The nozzle-throat-to-exit-area ratio is
A∗/Ae = 0.1342 and the exit area is Ae = 0.02 m2. Assuming γ = 1.4 estimate the
thrust at sea level where pa = 1 atm and the thrust in space.

10.20. An airplane is cruising at Ma = 0.8 where the outside pressure is 0.7 atm and
its inlet geometry is shown schematically. The inlet area ratio is A2/A1 = 1.3 and it
is slowing down the airspeed to M2 = 0.4 at station 2.

(a) Calculate the pressure at station 2.
(b) What is the Mach number at station 1?
(c) Calculate the area ratio A2/Aa.

Ma

a 1 2

Problem 10.20.

10.21. An airplane is cruising at Ma = 0.9, where the outside pressure is 0.8 atm and
its inlet geometry is shown schematically. The inlet area ratio is A2/A1 = 1.3 and it
is slowing down the airspeed to M2 = 0.4 at station 2.
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(a) Calculate the pressure at station 2.
(b) What is the Mach number at station 1?
(c) Calculate the area ratio A2/Aa.

Ma

Normal
shock

a 1 2

Problem 10.22.

10.22. An airplane is cruising at Ma = 1.42 and a normal shock is formed ahead of
the inlet. If the inlet area ratio is A2/A1 = 1.24, calculate the following values:

(a) The area ratio A1/Aa.
(b) The stagnation pressure loss.
(c) The Mach number M2 at station 2.

10.23. An airplane is cruising at Ma = 1.6 and a detached normal shock is formed
ahead of the inlet. Ambient conditions are pa = 0.25 atm and T = 230 K. If
the inlet’s smallest cross-section area (at station 1) is 300 cm2 calculate the mass
flow rate for this case (γ = 1.4). Estimate the capture area Aa in the figure for
Problem 10.22.

10.24. In the early days of jet airplanes, a converging diverging inlet was proposed
for airplanes flying faster than the speed of sound. Consider the case shown in the
figure in which the flight speed is M = 1.42 and the area ratio is Ai/At = 1.24. Assum-
ing a normal shock wave will form ahead of the inlet, calculate the stagnation pres-
sure loss, the area ratio Aa/At, and the inlet Mach number Mi.

Aa

M = 1.42

Ai At Az

Problem 10.24.

10.25. At what speed the detached shock in the figure for Problem 10.24 will reach
the inlet lip (just before the shock will be swallowed)?

10.26. The capture area ratio of the cooling air inlet on a supersonic jet (see previous
figure) is Aa/At = 1.2. Calculate the flight Mach number and the stagnation pressure
loss that is due to the shock wave.

10.27. A supersonic airplane is cruising at a Mach number of 3 at an altitude of
10 km (p = 0.26 atm, T = 223 K) and a normal shock is present ahead of its nose.
Calculate the stagnation temperature and pressure behind the shock wave.
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10.28. An airplane flies at a supersonic speed and a normal shock is present at the lip
of the converging diverging diffuser. If the Mach number ahead of the compressor
is M2 = 0.4, then find the area ratio At/A2. Also, if A1 = 0.75 A2, calculate the flight
Mach number and the stagnation pressure ratio ahead of the compressor p2/p0a.

Ma

Ta pa
AtA1

21

Problem 10.28.

10.29. The area ratios for the diffuser described in the previous problem are
At/A1 = 0.85 and At/A2 = 0.63. Calculate the flight Mach number and the stag-
nation pressure ratio ahead of the compressor p2/p0a.

10.30. Calculate the lift (per unit width) of a 1-m-long flat plate at a
1◦ angle of attack and at a Mach number of 0.8 (ρ = 1.22, T = 300 K, and γ =
1.4).

10.31. Calculate the lift and drag (per unit width) of a 1-m-long flat plate at a 1◦

angle of attack and at a Mach number of 1.8 (ρ = 1.22, T = 300 K, and γ = 1.4).



11 Fluid Machinery

11.1 Introduction

The need to channel water flow and other fluids must have originated in the early
civilizations, and one of the better-known inventions, the Archimedes screw, dates
back to the third century b.c.e. The Archimedes screw, or screwpump, shown in
Fig. 11.1, was used to transfer water from lower reservoirs into higher irrigation
ditches.

Over the years, many inventions focused on developing various machines
either for pumping fluids or using fluid energy to drive other machinery (e.g., tur-
bines). These machines may be classified as positive-displacement or continuous-
flow machines. Some mechanical solutions using these two types of hardware are
shown schematically in Fig. 11.2.

For example, the most basic configuration is a piston sliding inside a cylinder,
as shown in Fig. 11.2(a). If this schematic is considered a pump, then while the pis-
ton is moving to the left it is pushing the fluid out of the cylinder through an open
valve. The pumping operation of fresh fluid can continue when the piston is mov-
ing backward, closing this (exhaust) valve and opening the intake valve, creating a
reciprocating cycle. This type of machine is called a positive-displacement machine
because a fixed volume of fluid is captured in the cylinder and then transferred
across the pump. Another example is the rotating-gear pump, shown in Fig. 11.2(b).
This is also a positive-displacement machine, because there are fixed volumes of
fluid between the outer wall and the gears. Figures 11.2(c) and 11.2(d) show two
types of continuous-flow machines; the first is an axial fan, and the second is a cen-
trifugal compressor. In this type of machinery, the fluid is not contained inside an
enclosed volume and, for example, pressure cannot be maintained if the machine is
not running (whereas a cylinder can hold a compressed fluid). Also note that any of
these machine principles can be used as a pump or as an engine or turbine.

The difference in the performance between these two types of mechanical
solutions is demonstrated schematically in Fig. 11.3. Assume that the positive-
displacement pump of Fig. 11.2(a) is delivering an incompressible fluid through
a pipe, which has a valve on it. When the valve is partially closed, the pressure
increases, but the volume of the flow (per cycle) remains constant. This is shown
schematically by the vertical line in Fig. 11.3. In continuous-flow pumps, however,

377



378 Fluid Machinery

Figure 11.1. The Archimedes screwpump used to pump water to higher elevations.

when a rotor moves the fluid, the rotor can rotate even when the valve stops the flow
entirely. In such pumps usually the mass flow rate will increase when the restric-
tor valve is opened, resulting in the other type of curves shown in Fig. 11.3. In the
case of an axial pump, as shown in Fig. 11.2(c), the pressure decreases with increas-
ing mass flow rate, whereas with the centrifugal pump design of (Fig. 11.2(d) the

(b)

(d)
(c)

(a)

Suction Discharge

Rotor
Outlet

Casing

Flow

Hub Rotor axis

Stator blades

Rotor blades

Inlet
valve

Exhaust
valve

Piston

Cylinder

Figure 11.2. Various types of fluid machinery: (a), (b) Positive displacement; and (c), (d) con-
tinuous flow.
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Figure 11.3. Schematic description of the perfor-
mance difference between positive-displacement
and continuous-flow pumps.

pressure changes are much smaller. Actually, the centrifugal pump curve depends
on the impeller shape, as explained in Subsection 11.4.2. These types of continuous-
flow machines require deeper understanding of the fluid dynamic design and are
discussed next.

The objective of this chapter is to provide an introductory level formulation
to estimate the power requirements, the pressure ratios, and some of the fluid
mechanic principles needed to design such a machine. Consequently ideal-flow mod-
els with constant properties are used in the following formulations. This need to
estimate fluid pumping power was addressed briefly in Chapter 5 when the power
requirements for an elementary pump were discussed. Equation (5.109) was derived
for an incompressible fluid pump for which the work W is simply the pressure dif-
ference times the volume of the liquid:

W = �p V. (5.109)

If the conditions inside a moving cylinder are changing, then this can be expressed
in terms of the integral:

W =
∫

cycle
pdV. (11.1)

From the thermodynamic point of view, the work in general is related to the change
in stagnation enthalpy, h0, which includes the internal energy as well. Consequently
we can write for an incompressible fluid (and recall that m/ρ = V)

W = m�h0 ≈ m
�p0

ρ
= V�p0, (11.2)

which is the same result obtained from mechanical considerations leading to
Eq. (5.109). In the case of a compressible fluid, the change in enthalpy can be esti-
mated by �h0 ≈ cp�T0, and the work of the machine is then

W = m�h0 ≈ m cp�T0, (11.3)

where cp is the heat capacity, as defined in Eq. (1.17) (we also assume that cp is
constant). Note that the fluid stagnation–enthalpy includes the energy of the moving
fluid; hence, for an incompressible fluid having a velocity q, the stagnation pressure
is

p0

ρ
= p

ρ
+ q2

2
, (11.4)
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Figure 11.4. An axisymmetric control volume
for calculating the torque and power of rotating
turbomachinery.

and for a compressible fluid the stagnation temperature is

cpT0 = cpT + q2

2
. (11.5)

As noted earlier, this chapter focuses on the continuous-flow design often called
turbomachinery. The basic approach is developed first for an axial compressor and
then extended to centrifugal compressors and axial turbines. To estimate machine
performance, the relation between the fluid flow and power requirement must be
established. For a successful design the effects of component geometry on perfor-
mance must be clarified as well. (Note that propellers and wind turbines are not
discussed here because of the difficulty in modeling blade-tip effects – similar 3D
wingtip effects were discussed briefly in Subsection 8.10.5).

The first-order approach presented in the following sections is based on simpli-
fications such as the average radius and the steady flow assumption. More accurate
models are beyond the scope of this text and require complex numerical solutions.
However, in spite of the simplicity, the relation between turbomachinery geometry
and its performance is established, providing a satisfactory preliminary design tool.

11.2 Work of a Continuous-Flow Machine

The first task is to develop a relation between the work of a rotating shaft and fluid
motion. Let us consider the axisymmetric control volume shown in Fig. 11.4. The
fluid enters at ring-shaped section 1 and leaves at section 2. Note that the flow is
continuous across the control volume and there are no changes with time. However,
a particle entering at one side will experience accelerations because of the changes
between the two stations (1 and 2). The cylindrical coordinate system is placed on
the rotating axis (z) and the r–θ coordinates are as shown in the figure. A particle of
mass �m can enter the control volume at section 1 and leave at section 2 (one par-
ticle is shown leaving at section 2), and its velocity components �c are also depicted
in the figure.

This velocity vector is measured in an inertial frame of reference, which is not
rotating with the shaft:

�c = (cr , cθ , cz). (11.6)
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To calculate the tangential force (in the θ direction) we can use the momentum
principle,

�Fθ = d
dt

(�m cθ ),

and the torque Tq required for accelerating this particle is

�Tq = r �Fθ = r
d
dt

(�m cθ ).

The unit normal vectors �n of the inlet–exit areas (of the control volume) point in
the ±z direction, and based on Eq. (2.19) the fluid flow rate entering or leaving the
control volume is

d
dt

�m ≡ �ṁ = ρ(�q · �n)dS = ρczdS.

As noted, the fluid exchange takes place only through the two ring-shaped surfaces
at stations 1 and 2 and if �r is small cθ is constant at each station. To calculate the
total torque applied to the fluid in the control volume, the contributions of the mass
elements �m must be added by integrating over the control surface (c.s.):

Tq =
∫

cs
�Tq dS =

∫
cs

r cθ ρczdS =
∫

s2
(r cθ )ρczdS −

∫
s1

(r cθ )ρczdS. (11.7)

Next let us introduce the mean-radius approximation. This is equivalent to stating
that the ring-shaped inlet and exit surfaces are very thin and the radial variations
in the velocity of the fluid elements are negligible. Consequently all particles at sta-
tion 1 are considered as entering as r = r1 and having a tangential velocity of cθ1.
Assuming the same for the exit (station 2) we get

Tq = r2 cθ2

∫
s2

ρczdS − r1 cθ1

∫
s1

ρczdS = ṁ(r2 cθ2 − r1 cθ1), (11.8)

and of course the mass flow rate entering and leaving the control volume is the
same: ∫

s1
ρczdS =

∫
s2

ρczdS = ṁ.

For cases with significant radial variations, we can use Eq. (11.8) by creating sublay-
ers inside the control volume (see later Subection 11.3.3). The power P required is
simply the product of torque times the rotation speed.

P = Tq · � = ṁ�(r2 cθ2 − r1 cθ1). (11.9)

It is convenient to define a tip velocity U such that

U ≡ r�, (11.10)

and with this definition the power equation becomes

P = ṁ(U2 cθ2 − U1 cθ1) (11.11)

and the work per unit mass flow wc is

wc = (P/ṁ) = (U2 cθ2 − U1 cθ1). (11.12)
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Figure 11.5. Schematics of a typical multistage compressor assembly.

Equations (11.8)–(11.12) state that the torque and the work are related to the
change in angular momentum. Because the focus of this book is on fluid mechan-
ics, the next step is to relate these quantities to the internal geometry of the
turbomachinery.

11.3 Axial Compressors and Pumps (The Mean-Radius Model)

The objective of this section is to formulate a preliminary design approach for an
axial compressor or pump geometry, along with the ability to estimate the compres-
sion ratio and the required power. This method can be extended later to study the
performance of centrifugal compressors and axial turbines. Because the discussion
is now focused on continuous-flow machinery, the fluid mechanics of the inner com-
ponents (e.g., rotor and stator blades) must be clarified. The cross section of a typical
multistage axial compressor is shown in Fig. 11.5. It consists of a rotating shaft with
airfoil-shaped rotor blades attached to a central hub. In between each row of rotors
there is a row of airfoil-shaped stator vanes attached to the outer casing – which
are stationary. Naturally the flow is highly unsteady, mainly because of the multiple
blades in each rotor and stator row. In the following model, however, a steady flow
model is assumed in which, for example, the tangential velocity cθ is not changing
tangentially (when z = const.).

A schematic cross section of this multistage compressor is shown in Fig. 11.6.
For example, the entrance to one of the rotor stages is marked as station 1 in
Fig. 11.6, and the exit, as station 2 (which is also the entrance to the stator behind
it). A typical axial compressor stage consists of a combination of a rotor and sta-
tor. Thus the rotor–stator assembly between sections 1 and 3 can be considered a
typical stage. Similarly, the stage between sections 3 and 5 (and so on) can also be
considered a typical stage.
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Figure 11.6. Cross section of a typical axial compressor assembly. Note section AA cuts at the
average radius at each stage.

To relate to the “mean-radius” approach of the previous section, let us create
a cut (through section AA) looking down from the top, as shown in Fig. 11.6. This
view is described schematically in Fig. 11.7, showing stations 1–5, and now the airfoil
shape of both rotor and stator blades is visible. Because the cut is at a constant
radius, the 2D z − θ coordinate system is also shown in this figure. Our viewpoint
is stationary and therefore the rotor blades appear to move at a velocity of U =
r� into the tangential direction. For proper operation, the flow direction must be
reasonably aligned with the airfoil-shaped blades of both the rotor and stator, but
this is not clearly visible at this point. Consequently the velocity vectors at each
station must be identified.

For example, we can define a velocity vector �w in a frame of reference attached
to the rotor blade; its velocity components are

�w = (wr , wθ ,wz). (11.13)

Rotor RotorStator

Section AA

Stator

zUU

θ

1 2 3 4 5

Figure 11.7. 2D view of the rotor and stator blades at section AA.
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w1
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c2

c3
1 2 3

β1

β2 α2

α3

rotor stator

Figure 11.8. Velocity vectors entering
and leaving the rotor–stator blades.

Most textbooks on turbomachinery use the symbol �w for the rotor velocity (not to
be confused with the velocity in the z direction, as used in this book). Consequently
this nomenclature is used in this chapter only!

Returning to the geometry in Fig. 11.7 and assuming attached flow over the
rotor and stator blades, we can sketch the schematic diagram of Fig. 11.8.

It is expected that the velocity vector w1 ahead of the rotor blade will have
a moderate angle of attack and the exit velocity w2 is parallel to the trailing-edge
bisector for an attached flow (as shown in Fig. 11.8). The same is assumed for the sta-
tionary stator, but now the velocity �c is measured at the inertial frame (because the
stator is not rotating). Note the definition of the inlet and exit angles α and β, as
shown in Fig. 11.8. Next, let us think about an experiment in which we seed the
flow with a visible tracer so that when we are looking at section AA (Fig. 11.7)
the velocity vector �c (in the inertial frame) becomes visible. This is described in
Fig. 11.9, where the velocity c1 leaves parallel to the trailing edge of the previous
stator. Observe the 2D coordinate system used (because r = const.), where z points
into the horizontal direction and the tangential coordinate points down. Once the
fluid passed through the rotor rows the particles must have increased their tangential
velocity, and their exit velocity c2 is pointing more in the tangential direction. To
view this velocity from the frame of reference attached to the rotor (as shown on the
left-hand side of Fig. 11.8), the velocity diagram shown in Fig. 11.9 is constructed.
This is based on the kinematic transformation between the velocity �w measured in

w2

w1
U

z

z

U

U c2

c1

1

2

β1

β2

α2

α1

Station

Station

Rotor
Stator

θ

θ

Figure 11.9. Velocity triangles ahead
and behind the rotor.
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β2

θ
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α2

cθ2Figure 11.10. The average-radius velocity trian-
gle for one rotor stage (between stations 1 and
2).

a moving frame of reference, and the velocity �c measured in the stationary (inertial)
frame of reference:

�c = �qorigin + �w.

Therefore �qorigin is the velocity of the origin of the frame of reference where �w is
measured (and �w is the relative velocity in this frame). The velocity of the origin is

�qorigin = (0, r�, 0).

But the tip speed was already defined in Eq. (11.10), and based on this, the
origin’s velocity vector is defined as

�U = (0, r�, 0) (11.14)

and the transformation of the velocities between the two frames of reference
becomes

�c = �U + �w. (11.15)

This formula allows the construction of the velocity diagrams in the moving rotor
frame of reference and the observation of the proper flow angles β, as shown in
Figs. 11.8 and 11.9. Consequently, when a compressor rotor is designed, the blade
orientation can be properly aligned to ensure desirable performance (and to avoid
blade stall). Note that the direction of U points down but, relative to the rotating
blade, its direction is reversed.

11.3.1 Velocity Triangles

Based on Eq. (11.15), the rotor velocity triangle shown in Fig. 11.10 can be drawn.
In this case both the incoming (station 1) and exiting (station 2) velocity diagrams
are superimposed on a z–θ coordinate system. It is assumed that the axial velocity
is not changing much so cz is the same for incoming and exiting flows. Note that,
to calculate the power in Eq. (11.11), the change in tangential velocity is required.
Therefore cθ1 and cθ2 are shown in the figure, basically allowing the calculation of
the power.
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Figure 11.11. Stator velocity vectors of the incoming
(station 2) and exiting flows (at station 3). Note that c3

is parallel to the stator trailing edge.

The torque on the rotor stage is then calculated by use of Eq. (11.8), assuming
no change in the radius across the rotor blade (for axial design only),

Tq = ṁr(cθ2 − cθ1) = ṁr�cθ , (11.16)

and the power required for driving the rotor is calculated with Eq. (11.11),

P = ṁU(cθ2 − cθ1) = ṁU�cθ . (11.17)

A similar representation of the velocity vectors for the stator (between stations 2
and 3) is shown in Fig. 11.11. Because the stator is not moving, both vectors are
viewed in the stationary frame of reference. The tangential velocity components are
shown in the figure and no change in the axial velocity cz is assumed here as well.

The torque on the stator can be calculated with Eq. (11.8), and it is similar to
the formulation for the rotor,

Tq = ṁr(cθ3 − cθ2), (11.18)

and because the stator is not rotating, U = 0. Based on Eq. (11.11), the power is
therefore zero!

P = 0. (11.19)

EXAMPLE 11.1. SIMPLE AXIAL FAN. A simple cooling fan with symmetric airfoil-
shaped blades is pumping air for a cooling system, as shown in Fig. 11.12. The
rotor with an average radius of 0.3 m rotates at 3000 RPM and the axial velocity
is 61 m/s. Draw the velocity diagram and calculate the flow angle β1 ahead of
the rotor blade.

Solution: First let us calculate the blade velocity U:

U = 2πr� = 2π0.3
3000

60
= 94.25

m
s

.

RPM = 3000 Heat
exchanger

cz=61 m
s

45°rav Figure 11.12. A single-stage fan
rotating in a cooling duct.
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Figure 11.13. Velocity triangles for the cool-
ing fan shown in Fig. 11.12.

Because there is no turning vane ahead of the rotor, the incoming flow is
assumed to have no swirl (e.g., α1 = 0). This means that �c1 = (0, 0, cz). With
this information, the velocity diagram can be constructed (see Fig. 11.13). First,
the vector U = 94.25 m/s and c1 = cZ = 61 m/s are drawn. And by closing the
triangle, we find the vector w1. The incoming relative angle is then

β1 = tan−1 U
cz

= 57◦.

Because the blade is oriented at 45◦, the blade angle of attack is 17◦, which is
a bit high but workable if there is a dense cascade (called high solidity). Next,
assuming the flow is attached, it leaves the blade parallel to the trailing edge at
β2 = 45◦ and w2 can be drawn, as shown. It is possible to calculate the change
in the tangential velocity because wθ2 = 61 (= cz, because of the 45◦ angle) and
wθ1 = U = 94.25 m/s. Thus the change in tangential velocity is

�cθ = cθ1 − cθ2 = wθ1 − wθ2 = 94.25 − 61 = 33.25 m/s.

11.3.2 Power and Compression-Ratio Calculations

Based on the first law of thermodynamics and assuming an adiabatic system (with-
out heat transfer), the work done on the fluid is equal to the change in the fluid
enthalpy. This was already stated by Eqs. (11.2) and (11.3) for incompressible and
compressible flows, respectively. The power P is then the time derivative of the
work W:

P = d
dt

W = ṁ�h0. (11.20)

At this point the stage compression efficiency ηc is defined as the ratio between
the enthalpy change in an isentropic compression �h0s over the actual enthalpy
change �h0 (note that isentropic means adiabatic and reversible, so no losses). Also
the stage efficiency represents the combined losses across the rotor and stator (for
one stage):

ηc = �h0s

�h0
. (11.21)
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Consequently the power per unit mass invested in the rotor is calculated with
Eq. (11.17):

(P/ṁ) = �h0 = U�cθ . (11.22)

The ideal increase in enthalpy (and in the compression ratio) is less because of the
losses, such as friction. From Eq. (11.2) for the ideal compression of an incompress-
ible fluid we get

�h0s = �p0

ρ
. (11.23)

Combining Eqs. (11.21)–(11.23) provides the pressure rise for the incompressible
case (pump):

�p0

ρ
= ηcU�cθ . (11.24)

Note that Eq. (11.24) is based on the enthalpy increase in the rotor only. How-
ever, because the work in the stator is zero, this represents the change in the whole
stage (rotor and stator). Consequently Eq. (11.24) shows the stagnation pressure
rise in the whole stage! For a compressible fluid, the change in enthalpy, based on
Eq. (11.3), is

�h0 = cp�T0, (11.25)

and by using Eq. (11.22) we get

cp�T0 = cp(T02 − T01) = U�cθ . (11.26)

To calculate the pressure rise we assume an isentropic process for which the relation
between the temperature and pressure change is

p02

p01
=

(
T02s

T01

) γ

γ−1

. (11.27)

Here T02s is the isentropic value of the temperature for the compression to p02 and
γ = cp/cv , as defined in Eq. (1.19). However, because of the losses in the system,
such as friction, the process efficiency is defined as in Eq. (11.21)

ηc = �h0s

�h0
= cp(T02s − T01)

cp(T02 − T01)
, (11.28)

and of course T02 is larger than T02s . By combining Eqs. (11.27) and (11.28), we
calculate the compression ratio as

p02

p01
=

(
T02s

T01

) γ

γ−1

=
(

1 + T02s − T01

T01

) γ

γ−1

=
(

1 + ηc
T02 − T01

T01

) γ

γ−1

,

and here the actual stagnation temperature rise is exchanged with the isentropic
ratio, as stated in Eq. (11.28). The actual temperature ratio is given by Eq. (11.26)
as

(T02 − T01)
T01

= U�cθ

cpT01
.
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Substituting this into Eq. (11.29) we get the pressure rise for the compressible case
(for gases):

p02

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

. (11.29)

Equations (11.24) and (11.29) calculate the stagnation pressure rise across the
single-stage rotor. Again, the stator is not moving, and its power (and work) is zero!
Because the stage efficiency accounts for the losses in both the rotor and the sta-
tor, there is no change in the stagnation quantities in the stator. Consequently, the
stagnation pressure rise in the rotor is the same as for the whole stage (between
station 1 and station 3, in Fig. 11.7 or 11.8). In summary, the pressure rise for an
incompressible pump stage is then [Eq. (11.24)]

p03 − p01

ρ
= ηcU�cθ , (11.30)

and for a compressible fluid

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

. (11.31)

Quite often engineers need to estimate the power required for a specified flow rate
and pressure ratio. For the incompressible case this is obtained from Eqs. (11.30)
and (11.22),

P = ṁ
p03 − p01

ηcρ
, (11.32)

and for the compressible case, from Eqs. (11.31) and (11.22),

P = ṁ
cpT01

ηc

[(
p03

p01

) γ−1
γ

− 1

]
. (11.33)

EXAMPLE 11.2. PRESSURE RISE IN AN AXIAL COMPRESSOR. The axial velocity
across the third stage of an axial compressor is cz = 120 m/s, the average radius
is rav = 0.5 m, and the stagnation temperature ahead of the rotor is T01 =
300 K (see Fig. 11.14). If the compressor rotates at 4000 RPM, the stator angle
from the previous stage is α1= 22◦, and the flow leaves the rotor at an angle

21 3

rav = 0.5 m

Rotor
Stator

r2

r1

Ω

Figure 11.14. Schematic description of a
typical compressor stage for example 11.2.
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Figure 11.15. Velocity triangles for Example 11.2.

β2 = 27◦, draw the velocity diagram and calculate the stagnation pressure rise
p03/p01 across this stage [ηstage = 0.98, cp = 0.24 kcal/(kg ◦C), γ = 1.4].

Solution: Let us start with calculating the tip speed U:

U = 2πr� = 2π0.5
4000

60
= 209.43

m
s

.

Now we can start constructing the velocity diagram as shown in Fig. 11.15.
Because cz is known, by drawing a line pointing down at α1 = 22◦, we define
the vector c1. By adding the vector U, we complete the inflow (station 1) veloc-
ity triangle (by drawing w1). We form the exit-velocity triangle by drawing a line
at β2 = 27◦, ending at cz = 120 (see the vector w2). This also defines c2.

Now that the velocity triangles are complete, the pressure rise can be calcu-
lated. First let us calculate �cθ based on simple trigonometrical relations in the
diagram:

�cθ = U − cz(tan α1 + tan β2) = 99.80 m/s,

and the compression ratio is then

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.98
209.43 × 99.80

0.24 × 4200 × 300

)3.5

= 1.26.

Note that 1 kcal = 4200 J.

11.3.3 Radial Variations

The “average-radius” assumption used so far ignores several important variations
in compressor performance along the blade at different radial positions. We could
partially address this by subdividing the compressor inner volume into several radial
layers (e.g., hub, average, and tip as shown in Fig. 11.6) and analyzing each sepa-
rately with the average-radius approach. The radial variations in a typical compres-
sor stage can be separated into the following categories:
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1. Effects that are due to radial variations in the axial velocity. So far our assump-
tion has been that the axial velocity cz is constant along the blade; however,
it may change if the blade-tip-to-hub ratio is large. Also, near the compressor
walls (hub and outer casing) the boundary layer slows down the axial flow and
compression is reduced.

2. Static pressure varies with the radius because of the fluid tangential rotation.
This is simply the centrifugal acceleration term resulting in increased pressure

with increasing radius (e.g., dp
dr ≈ ρ

c2
θ

r , as in solid-body rotation).
3. Effect of tangential velocity. This is explained best by observation of the

stagnation–enthalpy increase in Eq. (11.22):

�h0 = U�cθ . (11.22)

Clearly the tangential velocity will increase with r (U = r�) and usually also
�cθ will increase, resulting in a radial increase in the compression ratio.

4. The increase in blade speed U: This was mentioned in the previous paragraph.
However, the increase in radius also results in blade twist. This can be explained
by dividing the rotor into three layers (hub, average radius, and tip) as shown
in Fig. 11.16. This also demonstrates the approach of using three sublayers (and
assuming average radius in each) to better model a compressor stage with sig-
nificant radial variations.

To explain this last argument, the incoming-velocity triangles for the rotor blade
are sketched at three radial positions (namely, at the hub, at the tip, and at the
average radius). Assuming constant axial velocity cz and no initial swirl (e.g., no
turning vanes ahead of rotor and therefore α1 = 0), then only the blade velocity U
will increase with r (U = r�). The effect of this change in U on the incoming flow
velocity triangles is shown on the right-hand side of the figure. This variation not
only increases the velocity w1 facing the blade but also changes the angle β1. This
angle change dictates a blade twist and even increased camber toward the hub, as
shown in the figure (recall that a too large angle will stall the airfoil). Of course,
propellers and cooling fans will have blade twist for exactly the same reason.

In multistage high-compression-ratio compressors, the designers reduce the
radial variations by simply increasing the hub diameter (if possible) as shown in
Fig. 11.6. In conclusion, the effect of radial variations cannot be eliminated entirely,
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Figure 11.17. Typical pressure distribu-
tion on a rotor blade.

and one of the most common compromises is the “free-vortex” design, in which the
product rcθ is kept constant along the rotor blade exit.

11.3.4 Pressure-Rise Limitations

The previous sections established the relation between the velocity vectors and the
rotor–stator blade components, leading to estimated pressure-rise calculations. It is
clear that the airfoil-shaped blade performance is similar to the fluid mechanics of
airfoil, as discussed in Section 8.10. Also, the discussion here is limited to subsonic
flows without shock waves. Because of the close spacing between the rotor (or sta-
tor) blades, instead of a single airfoil, a cascade of airfoil is tested. In spite of the
close proximity between the blades and the pulsating flow effects as the rotor blades
rotate relative to the stator blades, the average pressure distribution resembles the
attached airfoil case as shown in Fig. 11.17. The airfoil shapes usually have more
camber and because of the denser cascade (called solidity) the flow is attached for
a wider range of angles of attack than for a similar but isolated airfoil (see Sec-
tion 8.10).

The next question is about how to relate the airfoil angle of attack (as discussed
in Section 8.10) to the performance of a cascade. For example, a cascade of airfoils
is depicted in Fig. 11.18(a), where the blade mounting angle, λ, called a stagger
angle, is shown. Clearly the angle of attack is β1 − λ! However, instead of using

(a) (b)

Flow
separation

Flow
separation

Surge
(“positive” stall) Negative stall

w1w1

β1 β1λ

Figure 11.18. Effect of incoming
flow angle on cascade perfor-
mance. If the angle is too high
the flow separates and (a) posi-
tive stall is observed. However,
if the incoming flow angle is too
small, separation on the lower
surface is possible, or (b) nega-
tive stall.
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a lift coefficient as a measure of the loading on an isolated airfoil, a pressure-rise
coefficient CP is defined for the cascade of airfoils:

CP = p2 − p1
1
2ρw2

1

. (11.34)

Now return to Fig. 11.18(a), where the incoming flow angle of attack appears to be
too high, causing partial stall. Of course, for proper performance the angle of attack
must be reduced, and in cascade terminology this is approximated as

CP < CP|max . (11.35)

For most airfoil shapes a safe empirical assumption is that

CP|max = 0.6;

however, highly cambered and optimized airfoils can generate larger pressure-rise
coefficient values. Now, recall that the discussion on cascades includes stators and
rotors as well (so this condition applies to both). If we assume a small compres-
sion ratio, or “almost incompressible flow,” then by applying the Bernoulli equation
between stations 1 and 2 we get

CP = p2 − p1
1
2ρw2

1

≈
1
2ρ

(
w2

1 − w2
2

)
1
2ρw2

1

= 1 − w2
2

w2
1

, (11.36)

or by applying the same consideration to the stator stage (between stations 2 and 3)
we get

CP = p3 − p2
1
2ρc2

2

≈ 1 − c2
3

c2
2

. (11.37)

This can be rewritten in terms of the cascade angle. For example, based on trigono-
metrical relations, the rotor angles are (see Fig. 11.10)

cos β1 = cz

w1
, cos β2 = cz

w2
. (11.38)

By substituting this into Eq. (11.36) we can calculate the pressure-rise coefficient
based on rotor angles only:

CP = 1 − w2
2

w2
1

= 1 − cos β2
1

cos β2
2

. (11.39)

This equation, when combined with the limitation of Eq. (11.35), limits the angular
change across the cascade. As noted, a similar argument is also valid for the stator
row.

Turbomachinery performance may be limited by other parameters. For exam-
ple, if the airfoil upper surface pressure (as shown in Fig. 11.17) drops below the
vapor pressure in a pump, cavitation will result (bubbles will be created), even if the
flow is attached. In the case of compressible gases, at very high speeds sonic shocks
may reduce performance. Consequently a limiting Mach number M1 is defined by
use of the local sonic speed a1:

M1 = (w1/a1) < 0.85. (11.40)
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This provides the limit for subsonic compressor performance, although some tran-
sonic compressors operate at speeds closer to the speed of sound. By combining
this with the pressure-rise limit [Eq. (11.35)], an approximate maximum compres-
sion ratio can be calculated. First, let us rearrange the definition of the pressure-rise
coefficient [Eq. (11.34)]:

p2 − p1 = CP
1
2
ρw2

1.

Next, dividing by p1, we get

p2

p1
= 1 + CP

2
ρ

p1
w2

1 = 1 + CP

2
w2

1

RT1
= 1 + CP

2
γw2

1

γ RT1
= 1 + γ CP

2
M2

1 . (11.41)

Here we first use the ideal-gas assumption and then we use the definition of the
speed of sound from Eq. (1.33):

a1 =
√

γ RT1. (1.33)

For a numerical example, consider an airplane multistage compressor, compressing
air, for which γ = 1.4. Using the limits for M1 from Eq. (11.40) and for the pressure-
rise coefficient from Eq. (11.35a) we get

p2

p1
= 1 + γ CP

2
M2

1 = 1 + 1.4 × 0.6
2

0.852 = 1.3.

Assuming similar high loading in the stator, the maximum compression ratio of a
single-stage axial compressor is

p3

p1
= p2

p1
× p3

p2
= 1.3 × 1.3 = 1.69.

This condition represents a case in which both stator and rotor are on the verge of
stall, and for maximum stage efficiency, compression ratio is much lower (e.g., 1.1–
1.4).

11.3.5 Performance Envelope of Compressors and Pumps

From the fluid mechanics point of view, continuous-flow machines can be designed
to operate near an optimum performance point. However, quite often, actual oper-
ation dictates conditions (e.g., in terms of axial velocity or rotation speed) that are
far from ideal. To understand the effect of these off-design conditions, let us discuss
the effect of changing the axial velocity.

Figure 11.18a can help in explaining the effect of changing the axial velocity
cz on the incoming flow angle β1. For simplicity, let us consider a single stage com-
pressor as shown in Fig. 11.19a. Assuming a constant rotation speed (which makes
U = const.), then β1 depends on the horizontal component of the velocity triangle,
namely the axial velocity (or mass flow rate). If cz is too small, the angle β1 is large
and the cascade may stall, as shown at the left-hand side of Fig. 11.19(b). At a higher
flow rate (than design) the angle β1 is much smaller, and this may result in negative
stall, as shown in Fig. 11.18(b). This could also be explained by the hypothetical
experiment shown in Fig. 11.19(a). Here a single-stage axial compressor pumps air
into a duct, at the end of which there is a large valve. Assuming a constant rotation
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Figure 11.19. Estimated performance curves of a single-stage axial compressor.

speed, the mass flow rate across this system can be controlled by closing or opening
this valve. For example, if the valve is slightly closed, then the axial flow is reduced
and the pressure will increase because β1 will increase as shown in Fig. 11.18(a). At
a certain point, while the valve is closing, the axial velocity is too slow and the rotor
will stall. In practice, when several blades are stalled, then the axial velocity will
increase across the rest of the blades on the same rotor disk (reattaching the flow).
This is a quite complex fluid mechanic phenomenon called rotating stall. As the
flow rate is further reduced, a strong vibration may develop and a surge line can be
defined. When compressor or pump performance is plotted versus mass flow rate, as
in Fig. 11.19(b), then this surge line can be identified by the dashed line, as shown.
In general we can conclude that the pressure ratio will increase with reduced mass
flow rate. Now if the valve behind the compressor is opened, then the axial velocity
will increase, β1 will decrease, and the compression ratio will decrease. If the valve
is fully opened and there is no resistance, negative stall may be present (it depends
on the design point of the system – or on the blade stagger angle). Compressor
operation in this region (sometimes called the chocked region) is not recommended
and the boundaries are shown schematically by the dashed line in Fig. 11.19(b).
Based on the preceding considerations, Fig. 11.19(b) can be viewed as a generic
(continuous-flow) compressor–pump map. The same behavior is observed at other
rotation speeds and, for example, RPM1 is larger than RPM2 in Fig. 11.19(b).

EXAMPLE 11.3. EFFECT OF RADIAL VARIATIONS. To demonstrate the effects of
radial variations and the importance of pressure-rise limitations, consider the
first fan stage of a turbofan engine (Fig. 11.20). For simplicity let us assume

r2
r1

Rotor Stator

Figure 11.20. A generic single-stage compressor stage used
for Example 11.3.
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Figure 11.21. Generic velocity diagram for the first stage in
Example 11.3.

that the rotor blade airfoil shape is the same along the blade and it turns the
flow by β1 − β2 = 15◦. The tip radius is r2 = 0.5 m, the hub radius is r1 = 0.2 m,
rotation speed is 5500 RPM, and the axial velocity of cz = 120 m/s. Calculate
the pressure-rise coefficient at the hub and at the tip and the corresponding
compression ratios (assume the air temperature is T = 350 K, γ = 1.4, and the
stage efficiency is ηc = 0.98).

Solution: To use Eq. (11.39), the velocity triangles must be constructed. The
blade velocity U vectors at these two radial locations are

Uhub = 2πr2� = 2π0.2
5500

60
= 115.19

m
s

,

Utip = 2πr2� = 2π0.5
5500

60
= 287.98

m
s

.

The velocity triangles for the hub and tip can now be constructed because there
is no turning blade ahead of the rotor and therefore α1 = 0. This is shown
schematically in Fig. 11.21. By connecting the U vector with the c1 vector, we
identify the incoming velocity w1 and its direction β1. We obtain the velocity
vector w2 by simply reducing the angle β1 by 15◦, as shown (assuming constant
cz).

Let us check if the tip velocity is close to sonic (because the velocities are
always the highest at the tip). The tip velocity is then

w1 =
√

U2 + c2
z = 311.95

m
s

.

We calculate the speed of sound by using Eq. (1.33):

a1 =
√

γ RT =
√

1.4 × 286.6 × 350 = 374.75
m
s

,

where R was taken from Eq. (1.13). The local Mach number is then

M1 = w1

a1
= 0.83,
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which is slightly less than the limit stated in Eq. (11.40). Once the velocity trian-
gles are established, the pressure-rise coefficients can be calculated. Let us start
at the hub:

β1 = tan−1 Uhub

cz
= 43.83◦, β2 = β1 − 15◦ = 28.83◦.

The pressure-rise coefficient is

CP = 1 − cos β2
1

cos β2
2

= 0.32,

and this is far from stall. To calculate the compression ratio, the tangential veloc-
ity change is calculated based on the velocity triangle geometry:

�cθ = U − cz tan β2 = 49.1 3 m/s,

and the compression ratio is then

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.98
115.19 × 49.13

0.24 × 4200 × 350

)3.5

= 1.056.

Next, we repeat these calculations for the rotor tip. The blade angles there are
calculated as follows:

β1 = tan−1 Utip

cz
= 67.38◦, β2 = β1 − 15◦ = 52.38◦,

and the pressure-rise coefficient at the tip is

CP = 1 − cos β2
1

cos β2
2

= 0.60,

which is on the verge of stall. Next we calculate �Cθ :

�cθ = U − cz tan β2 = 132.27 m/s.

The compression ratio is then

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.98
287.98 × 132.27

0.24 × 4200 × 350

)3.5

= 1.42.

Note that, even if the same airfoil shape is used, the tip compression ratio is
significantly higher. Usually a higher camber and a higher blade incidence at
the hub can increase the compression ratio there.

EXAMPLE 11.4. EFFECT OF CHANGING THE AXIAL VELOCITY. Large changes in axial
velocity are encountered during the starting process of multistage compressors
of jet engines and on high-speed military airplanes that operate over a wide
range of flight speeds. For example, the compressor’s compression ratio of a
typical airplane engine is over 30, and, as a result, the density toward the rear
stages is very high (compared with the first stage). When the engine is started,
however, the density is almost the same across all stages and even if the axial
velocity at the aft stages is larger than “design,” the mass flow rate is significantly
less! This dramatic reduction in mass flow rate results in similar reduction of the
axial velocity in the early compressor stages. Consequently, the rotor inflow
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Figure 11.22. Effect of axial velocity
change on rotor performance (velocity
diagram for example 11.4).

angle changes accordingly, bringing it closer to stall condition. A possible rem-
edy for large axial velocity changes is to use rotating stators to reduce the flow
angle ahead of the rotor. This approach is used on military aircraft engines
that must perform well for a wide range of axial velocities in the compressor
(because of large thrust and flight speed changes). As an example, consider the
flow conditions in the second stage of a typical jet engine:

Assume that the average radius at this stage is r = 0.5 m, the axial velocity
is cz = 140 m/s, and the rotor turns at 4000 RPM. The stagnation temperature
ahead of the rotor is T0 = 300 K, the incoming velocity angle is α1 = 20◦, and
the pressure rise coefficient for this rotor stage is Cp = 0.45.

First, let us calculate the stagnation pressure rise p03/p01 across this stage
(using the values ηc = 0.98, cp = 0.24, γ = 1.4).

Second, assume that during the starting process the axial velocity is reduced
to cz = 100 m/s but the rotation stays at the operational level of 4000 RPM. How
many degrees should the stator blade (ahead of this rotor) be rotated so that the
rotor blade angle β1 will not change?

Solution: First, we need to generate the velocity diagram for the rotor under
nominal operational conditions. The rotation speed is then

U = r� = 0.5 × 2π
4000

60
= 209.43 m/s.

Because the axial velocity and α1 are known, the velocity triangle for the rotor
inlet can be drawn (see Fig. 11.22), and the angle β1 can be calculated:

tan β1 = U − cz tan α1

cz
= 209.43 − 140 tan 20◦

140
= 1.131 ⇒ β1 = 48.5◦.
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Because the pressure-rise coefficient is given, the angle β2 can be calculated
too:

CP = 1 − cos β2
1

cos β2
2

= 0.45 = 1 − cos 202

cos β2
2

⇒ β2 = 26.7◦.

With the aid of this angle the vector w2 can be drawn and the rotor velocity
diagram is complete. To calculate the compression ratio we first calculate the
change in the tangential velocity,

�cθ = U − cz (tan α1 + tan β2) = 88.12 m/s

and the compression ratio is

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.98
209.43 × 88.12

0.24 × 4200 × 300

)3.5

= 1.22.

For the second part of this problem, the axial velocity is reduced to 100 m/s,
as shown in the velocity diagram. If no action is taken, then the w1 vector tip
will be at point A on the diagram; a significant increase in the angle of attack.
To avoid such high angles of attack on the rotor blade, the angle β1 must be kept
unchanged (at 48.5◦). This is accomplished by turning the stator ahead of this
stage to adjust the incoming anlge α1, as shown by the dashed line in the figure.
Based on the new triangle geometry, the incoming flow angle is calculated:

tan α1 = U − cz tan β1

cz
= 209.43 − 100 tan 48.5◦

100
= 0.964 ⇒ α1 = 43.9◦.

Therefore the stator ahead of this stage must be rotated, as shown in the
figure by

�α = 43.9◦ − 20◦ = 23.9◦.

To calculate the compression ratio for this second case we calculate the
change in the tangential velocity

�cθ = U − cz (tan α1 + tan β2) = 62.90 m/s,

and the compression ratio is

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.98
209.43 × 62.90

0.24 × 4200 × 300

)3.5

= 1.15.

And by adjusting the stator angle α1, rotor stall is avoided and compression
ratio stays close to the design condition.

11.3.6 Degree of Reaction

Many axial compressors consist of multiple stages and from the fluid dynamic point
of view (also from the manufacturing point of view), similar rotor and stator blades
are desirable (although they may not result in the most efficient design). In Subsec-
tion 11.3.2, using the thermodynamic point of view, it was concluded that there is
no stagnation pressure rise in the stator. Therefore, the first impression is that stator
design is less important. The rotor and the stator in a compressor, in fact, are similar
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fluid dynamic components, and therefore it is useful to define the static pressure rise
in the rotor versus the whole stage. This is done by the degree of reaction, R, which
is the ratio of enthalpy increase in the rotor versus the whole stage. For simplicity,
by assuming “almost incompressible flow” in one stage, we can estimate the static
enthalpy change as:

h2 − h1 ≈ 1
ρ

(p2 − p1),

and the total stagnation enthalpy change in the whole stage is

h03 − h01 ≈ 1
ρ

(p03 − p01).

Thus the degree of reaction is defined as

R = p2 − p1

p03 − p01
. (11.42)

Using the incompressible Bernoulli relation for the numerator,

p2 − p1 = ρ

2

(
w2

1 − w2
2

)
,

and Eq. (11.24) for the denominator

�h0 ≈ p03 − p01

ρ
= U(cθ2 − cθ1),

we get a relation, using rotor parameters only!

R = w2
1 − w2

2

2U(cθ2 − cθ1)
. (11.43)

Because the velocity vector in the z–θ coordinate system has two components, we
can write

R = w2
1z + w2

1θ
− w2

2z − w2
2θ

2U(cθ2 − cθ1)
= w2

1θ
− w2

2θ

2U(cθ2 − cθ1)
= (wθ1 − wθ2)(wθ1 + wθ2)

2U(cθ2 − cθ1)

= (wθ1 + wθ2)
2U

, (11.44)

and here the tangential velocity difference (wθ1 − wθ2) = (cθ2 − cθ1) is the same. We
can obtain a more informative expression by observing the velocity triangles (e.g.,
in Fig. 11.15). For the two tangential components of the rotor velocity,

wθ1 = U − cz tan α1,

wθ2 = cz tan β2.

Substituting these relations into Eq. (11.44) yields

R = 1
2

− cz

2U
(tan α1 − tan β2). (11.45)

This equation clearly shows that for a 50% degree-of-reaction stage (e.g., R = 1
2 ),

in which the static pressure rise is the same for the rotor and the stator, the velocity
diagram is symmetric (α1 = β2) and both rotor and stator airfoils see similar incom-
ing and exiting flow angles (see Fig. 11.23)! This condition is desirable in the inner
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Figure 11.23. Velocity diagram for a 50% degree-
of-reaction compressor stage for Example 11.5.

stages of a multistage compressor because the aerodynamics of both rotor and sta-
tor blades is the same. The aerodynamic symmetry, in terms of the velocity triangle,
is demonstrated by the symmetry (about an imaginary horizontal line), shown in
Fig. 11.23.

EXAMPLE 11.5. 50% DEGREE-OF-REACTION COMPRESSOR. The fourth stage of an
axial compressor is designed to have a degree of reaction of R = 0.5. The veloc-
ity leaving the stator ahead of this stage is c1 = 150 m/s and the rotor blade
velocity (at the average radius) is U = 290 m/s. The angle behind the rotor is
β2 = 37◦ and the air temperature is T01 = 280 K (also γ = 1.4 and stage effi-
ciency is ηc = 0.85). Draw a velocity diagram and calculate the compression
ratio.

Solution: For a 50% degree-of-reaction compressor, according to Eq. (11.45)
α1 = β2. Consequently the velocity triangle for the incoming flow can be drawn
(e.g., U = 290 m/s, c1 = 150 m/s and α1 = 37◦). Because β2 = 37◦ the exit-velocity
triangle can be drawn as well, and clearly there is a symmetry about a horizontal
centerline. The rotor and stator blades are drawn as well, and clearly, from the
fluid dynamic point of view, the rotor and stator airfoil shapes are the same
(assuming that the stator at station 3 is the same as in station 1, α1 = α3).

Once the velocity diagram is established the change in tangential velocity
can be calculated by means of trigonometric relations:

cθ1 = c1 sin α1 = 150 sin 37◦ = 90.27 m/s,

�cθ = U − 2c1 sin α1 = 109.46 m/s.

To calculate the pressure-rise coefficient, β1 must be calculated:

tan β1 = U − cθ1

cz
= U − cθ1

c1 cos 37◦ = 1.67 ⇒ β1 = 59.04◦.

The pressure-rise coefficient is then

CP = 1 − cos β2
1

cos β2
2

= 0.584.
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This is high loading but probably will not stall. The compression ratio is
then

p03

p01
=

(
1 + ηc

U�cθ

cpT01

) γ

γ−1

=
(

1 + 0.85
290 × 109.46

0.24 × 4200 × 280

)3.5

= 1.38.
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Figure 11.24. Schematic description of a centrifugal compressor–pump.

11.4 The Centrifugal Compressor (or Pump)

Centrifugal compressors and pumps are less sensitive to design parameters such as
the rotor blade angle of an axial compressor. They are capable of significantly higher
compression ratios than a single-stage axial compressor or pump and are usually less
expensive to manufacture. Consequently they are used in numerous applications,
spanning domestic, automotive, or agricultural applications. In jet engines they are
used less because of the large frontal area and difficult multistaging. A centrifugal
design usually consists of a rotor (often called an impeller) with radial vanes that is
rotating inside an outer casing (see Fig. 11.24).

The fluid enters at the center inlet, and then it is captured by the rotating radial
vanes, accelerating it toward the outer collector. This collector (called a diffuser)
slows down the flow and increases the pressure toward the exit. The schematics in
Fig. 11.24 show only one exit, but multiple exits are possible. Also note that, at the
inlet to the rotor, the radial vanes are turned “into” the flow to reduce local flow
separation. This is clearly shown in Fig. 11.25 where an impeller was photographed
outside the casing.

Figure 11.25. Typical geometry of a centrifugal pump
impeller. Note how the leading edge of the blade is turned
toward the incoming flow direction.
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Figure 11.26. Schematic des-
cription of the rotor (impeller).

In spite of the different geometry, the model developed for the axial turboma-
chinery is applicable here as well. A typical single-stage compressor therefore con-
sists of a rotor and a stator and with the geometry shown in Fig. 11.24 the entrance
can be identified as rotor station 1, the exit from the rotor is station 2, and the exit
from the diffuser is station 3. These stations are described with more detail in the
following subsections.

11.4.1 Torque, Power, and Pressure Rise

Because the outer housing (casing) is stationary, only the rotor is turning and there-
fore the torque, power, and work per unit mass flow can be readily calculated (based
on rotor parameters only). For example, the torque required for turning the impeller
is calculated using Eq. (11.8):

Tq = ṁ(r2 cθ2 − r1 cθ1). (11.46)

The subscript 1 relates to the rotor inlet, as shown in Fig. 11.26 and similarly station
2 is the rotor exit. Note that at the inlet we used the maximum radius instead of the
average radius – but this is only a small inaccuracy, as we shall see later.

Once the torque is estimated, the power (P) is given by Eq. (11.9) as

P = Tq� = ṁ�(r2 cθ2 − r1 cθ1). (11.47)

Again, the impeller tip speeds at the inlet and exit are defined (as shown in
Fig. 11.26):

U1 = r1�,

U2 = r2�. (11.48)

With these definitions the power equation becomes

P = ṁ(U2 cθ2 − U1 cθ1) (11.49)

and the work per unit mass flow wc is

wc = P
ṁ

= (U2 cθ2 − U1 cθ1). (11.50)

The calculation of the pressure rise is similar to the axial compressor–pump case.
The work per unit mass flow, according to Eq. (11.2), is equal to the increase in
stagnation enthalpy:

wc = �h0. (11.51)
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Combined with the definition of stage efficiency ηc [Eq. (11.23)], the pressure rise
for the incompressible case [see Eq. (11.26)] is

�p0

ρ
= ηc(U2 cθ2 − U1 cθ1) (11.52)

and for a compressible fluid [as in Eq. (11.31)] is

p02

p01
=

(
1 + ηc

T02 − T01

T01

) γ

γ−1

. (11.53)

The stagnation temperature change is calculated by Eq. (11.28):

cp(T02 − T01) = (U2 cθ2 − U1 cθ1). (11.54)

The pressure rise is therefore related to the change in the angular velocities. For
example, Eq. (11.54) can be rearranged such that

T02 − T01

T01
= (U2 cθ2 − U1 cθ1)

cpT01
= U2

2

cpT01

[
cθ2

U2
−

(
U1

U2

)2 cθ1

U1

]

= U2
2

cpT01

[
cθ2

U2
−

(
r1

r2

)2 cθ1

U1

]
. (11.55)

To calculate the pressure rise for the compressible flow case, Eq. (11.55) must be
substituted into Eq. (11.53) (although it is simpler to evaluate these two equations
separately):

p02

p01
=

{
1 + ηc

U2
2

cpT01

[
cθ2

U2
−

(
r1

r2

)2 cθ1

U1

]} γ

γ−1

. (11.53a)

When the same algebra is applied to Eq. (11.52), the pressure rise in a pump (incom-
pressible) becomes

�p0

ρ
= ηcU2

2

[
cθ2

U2
−

(
r1

r2

)2 cθ1

U1

]
. (11.52a)

Now if there are no turning vanes ahead of the rotor inlet then cθ1 ≈ 0. In addition
(r1/r2)2 � 1, and therefore an approximate relation for the temperature rise is

T02 − T01

T01
= U2

2

cpT01

cθ2

U2

in case of straight vanes only; then (cθ2/U2) ≈ 1 and the pressure rise for a com-
pressible fluid is

p02

p01
≈

(
1 + ηc

U2
2

cpT01

) γ

γ−1

(11.56)

and for an incompressible fluid is

�p0

ρ
= ηcU2

2 . (11.57)

This indicates that a centrifugal compressor–pump performance can be easily
estimated based on rotation speed and rotor exit radius (and not on inlet radius).
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Figure 11.27. Rotor (impeller) inlet
geometry and the reason for the
leading-edge twist shown in Fig. 11.24.

This is why, in many applications, portions of the impeller inlet are eliminated.
Some air conditioning centrifugal fans have only the exit tip vanes for the same
reason.

11.4.2 Impeller Geometry

The formulation for the pressure rise in the centrifugal compressor is readily trans-
ferred from the axial compressor model. The rotor geometry, however, is somewhat
different and the inlet (station 1) and exit (station 2) velocity triangles cannot be
superimposed (as in the case of the axial design). In spite of Eqs. (11.56) and (11.57)
implying that the compression ratio is not much affected by the inlet condition, a
poor inlet can cause flow separations and reduce pump–compressor efficiency. The
velocity vectors at the inlet can be drawn exactly as was done for the axial compres-
sor case (as in Fig. 11.9). To investigate the radial variations, the velocity triangles
are shown schematically in three radial locations along the rotor (impeller) leading
edge (Fig. 11.27). It is assumed that there are no turning vanes ahead of this stage
(no swirl) and cθ1 = 0; therefore c1 = cz, as shown. The blade velocity U, however, is
changing along the blade, resulting in an increase in the flow angle β1 relative to the
rotor blade. In order not to stall the blade leading edge, it must be turned into the
flow, and more turning is required with increasing radius. This is the reason for
the increasing twist (with increasing radial position) at the impeller inlet, as shown
in the impeller’s front view in Fig. 11.25.

Next, a limit on the rotor leading-edge droop is addressed. This could be viewed
as the lower limit on the mass flow rate, for a given RPM, prior to leading-edge stall
(or what is the maximum value of β1 before stall). To clarify this, the inlet area of
the impeller is drawn separately in Fig. 11.28. For a fixed radial position, the inlet
segment of the rotor can be viewed as an axial compressor with the inlet at sta-
tion 1 and the exit section is immediately behind, as the blade becomes straight (let
us call this station ∗, as shown in Fig. 11.28). The incoming velocity triangle is exactly
the same as drawn in Fig. 11.27. At the exit (station ∗), however, the flow must leave
parallel to the blades, which are basically pointing straight backward (as shown).
Consequently the exit velocity has only an axial component and β∗ = 0.
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Figure 11.28. Rotor (impeller) inlet geometry. Note that the section between station 1 and
station ∗ was stretched at the left-hand side (for illustration purpose only).

Assuming no major changes in the cross-section area, the axial velocity will not
change much, and therefore

c1 = wz1 = w∗,

or

w∗ = w1 cos β1.

where w∗ is the exit-velocity vector. To estimate the maximum turning angle β1

we can use the limits applied to the axial flow machines. The pressure coefficient
[Eq. (11.39)] written for this case is

CP = 1 − w2
∗

w2
1

= 1 −
(

w1 cos β1

w1

)2

= 1 − cos2 β1. (11.58)

Using the empirical limit for the pressure-rise coefficient (e.g., 0.6), as given by
Eq. (11.35a), provides an estimate for the maximum turning angle:

CP = 1 − cos2 β1 = 0.6,

β1 = 50.8◦. (11.59)

This allows the calculation of the lowest axial velocity (or mass flow rate) for a given
rotation speed of the impeller. In the case of a compressor, the inlet tip velocity
should be subsonic to avoid shock waves and flow separation, and we can write,
similar to Eq. (11.40),

M1 = w1

a1
< 0.9. (11.60)

For pumps the vapor pressure must be checked at this point to avoid cavitation.
As noted earlier, the rotor exit velocity cannot be drawn in the z–θ plane

because the flow is turned entirely in the radial direction. Consequently the exit-
velocity triangles are plotted in the r–θ plane, as shown in Fig. 11.29.

This view clarifies the effect of the flow exit angle β2. For example, considering
three impellers that have the same dimensions, apart from the shape of the blades
(near the exit), the resulting velocity triangles are as shown in Fig. 11.29. The exit
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Figure 11.29. Effect of rotor blade exit orientation on a velocity triangle.

radial velocity wr2 depends on the blade height b, as shown in Fig. 11.27, and from
a simple continuity consideration it can be calculated as

wr2 = ṁ
ρ22πr2b

. (11.61)

If the three rotors in Fig. 11.29 have the same radial velocity, then (assuming the
flow leaves parallel to the vane’s trailing edge) the forward-leaning blades will pro-
duce the highest tangential velocity component and the highest compression ratio
[see Eqs. (11.52)–(11.54)]. Quite often, from the manufacturing point of view, the
blades are straight, as shown in the middle. The backward-leaning design is also
quite popular because of quieter operation (but with a lower compression ratio). If
the exit angle β2 is defined as positive for the forward-leaning blades, then, based
on the velocity triangle, the tangential velocity component is

cθ2 = U2 + wr2 tan β2. (11.62)

Substituting the radial velocity from Eq. (11.61), we get

cθ2 = U2 + ṁ
ρ22πr2b

tan β2. (11.63)

Substituting this into Eq. (11.52a) for the incompressible case, we get

�p0

ρ
= ηcU2

2

[
1 + ṁ tan β2

ρ22πr2bU2
−

(
r1

r2

)2 cθ1

U1

]
, (11.64)

and for a compressible fluid [using Eq. (11.53)], we get

p02

p01
=

{
1 + ηc

U2
2

cpT01

[
1 + ṁ tan β2

ρ22πr2bU2
−

(
r1

r2

)2 cθ1

U1

]} γ

γ−1

. (11.64)

As noted earlier, the last term, ( r1
r2

)2 cθ1
U1

, is negligible, and therefore increasing the
mass flow rate will increase the pressure rise for the forward-leaning blades and the
opposite for the backward-leaning blades. For straight blades, the compression ratio
will not be affected by a change in the mass flow rate [however, inlet flow angles
cannot be larger than 50◦, as determined by Eq. (11.59)].
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Figure 11.30. The diffuser of the centrifugal pump–compressor.

11.4.3 The Diffuser

The fluid leaving the rotor at station 2 is slowed down by the diffuser, increasing
the pressure at the exit (station 3). The velocity vector �c is shown schematically
in Fig. 11.30(a) and it has two components, one in the radial direction and one in
the tangential directions. Because the diffuser (collector) is stationary, there is no
velocity triangle. The radial velocity at station 2 is the same as the exit velocity of
the rotor,

cr2 = wr2, (11.65)

and the tangential velocity is given by Eq. (11.62),

cθ2 = U2 + wr2 tan β2. (11.62)

There are two major types of diffusers; those without internal turning vanes,
as shown in Fig. 11.30(a), or those with guide (or turning) vanes, as shown in
Fig. 11.30(b). Turning vanes can reduce the size of the diffuser, but they also add
weight and marginally reduce efficiency (more friction). Vaneless diffusers are pre-
ferred (if size is not an issue) because they allow a wider operation range than a
diffuser with turning vanes. Figure 11.30(c) shows the side view of a typical centrifu-
gal pump, and the width of the collector [(b) in the figure] is increasing to further
slow down the radial flow. In the case of a vaneless design and where b = const.,
the exit velocity can be approximated as follows. For the radial velocity component,
consider the continuity equation:

ρcr 2πrb = const.

Applying this between station 2 and exit station 3,

ρcr 2πrb|2 = ρcr 2πrb|3 ,

or assuming incompressible flow (and b = const.), we get

cr3

cr2
= r2

r3
. (11.66)
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Figure 11.31. The centrifugal com-
pressor for Examples 11.5 and 11.6.

Similarly, for the tangential velocity component of the vaneless diffuser, the
conservation of angular momentum can be applied:

cθr = const.

Applying this between station 2 and station 3, we get
cθ3

cθ2
= r2

r3
. (11.67)

Because both velocity components are being reduced inversely with the radius,
the angle α between these components is the same at any station in the diffuser, as
shown in Fig. 11.30(a). In conclusion, we can write for this case that

c3

c2
= r2

r3
. (11.68)

For example, to reduce the impeller exit velocity by two, the radius of the exit
must be twice as large as the impeller diameter. In airborne applications, such as
turbojets, a reduction in diffuser size is desirable and internal turning vanes are
used.

EXAMPLE 11.6. CENTRIFUGAL COMPRESSOR. Estimate the compression ratio of a
centrifugal compressor rotating at 5000 RPM (see Fig. 11.31). The fluid is air, the
impeller dimensions are r1 = 0.1 m and r2 = 0.4 m, and the tangential velocity
at the impeller inlet is negligible. At the exit, the blade is leaning forward at
β = 15◦ and we assume that wr2 = U2/2. Also, ηc = 0.90, cp = 0.24, γ = 1.4, and
T01 = 300 K.

Solution: The compression ratio can be calculated with Eqs. (11.53) and (11.55),
but first the exit-velocity diagram must be constructed (as shown in Fig. 11.31).
The blade tip velocity at station 2 is

U2 = 2π0.4
5000

60
= 209.44 m/s.

The exit radial velocity is then

wr2 = U2/2 = 104.72 m/s.

The exit tangential velocity is calculated based on the velocity triangle at the
exit

cθ2 = wr2 tan 15 + U2 = 237.50 m/s.
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The stagnation temperature rise is calculated with Eq. (11.55),

T02 − T01

T01
= (U2 cθ2 − U1 cθ1)

cpT01
= (209.44 × 237.50 − 0)

0.24 × 4200 × 300
= 0.1645,

and the pressure rise, based on Eq. (11.53), is

p02

p01
=

(
1 + ηc

T02 − T01

T01

) γ

γ−1

= (1 + 0.9 × 1.645)3.5 = 1.62.

EXAMPLE 11.7. CENTRIFUGAL PUMP. Estimate the compression ratio of a cen-
trifugal pump rotating at 1000 RPM. The fluid is water, the impeller dimensions
are r1 = 0.05 m and r2 = 0.10 m, and the exit blade is straight (β = 0). Also, inlet
swirl is negligible and ηc = 0.90.

Solution: To calculate the pressure rise in the pump, Eq. (11.52) is used. Note
that, for straight blades, at the exit U2 = cθ2 = 2πr2�,

�p0

ρ
= ηc(U2 cθ2 − 0) = 0.90

(
2π × 0.1 × 1000

60

)2

= 174.53
(m

s

)2

and the pressure rise is

�p0 = 1000 × 174.53 = 174,532.3
(

N
m2

)
, or ∼1.78 atm.

Next, let us estimate the lowest mass flow rate, on the verge of inlet stall
[e.g., when β1 ≈ 50◦, based on Eq. (11.59)]. The tip speed at the inlet is then

U1 = 2π 0.05
1000

60
= 5.24 m/s.

The axial velocity is then calculated, based on the inlet velocity triangle at the
tip (see Fig. 11.28),

c1 = U1 tan(90 − β1) = 5.24 × tan 40 = 4.39 m/s,

and the mass flow rate is

ṁ = ρc1S = 1000 × 4.39 × π × 0.052 = 34.50 kg/s.

The minimum power at this RPM is then calculated with Eq. (11.49),

P = ṁ(U2 cθ2 − 0) = 34.50
(

2π 0.1
1000

60

)2

= 3783.35 W,

which is about 5.14 hp.
This example shows again that a centrifugal compressor performance

depends mainly on the impeller exit radius.

11.4.4 Concluding Remarks: Axial versus Centrifugal Design

After this brief survey of the design principles of continuous-flow pumps–
compressors, our next question is this: Which type of machinery is preferred for
a particular application? When we compare the centrifugal and the axial designs,
which deliver the same mass flow rate and pressure ratio, there are no major dif-
ferences in efficiencies. This is probably true when both designs are optimized for
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a specific operation point. In general, however, the axial design tends to achieve
higher efficiencies. In terms of weight, there is also no major difference; however,
the shape quite frequently dictates the applications. Usually the axial design is
longer and its smaller frontal area makes it more attractive for aircraft compressors.
On the other hand, the compression ratio of centrifugal design is significantly higher
(per stage). If we consider the compression of air, then the maximum compression
ratio of a single-stage axial compressor was estimated in the previous section at
about 1.7, but more realistically it is closer to 1.2. At the same time, a centrifugal
compressor stage can generate a compression ratio of 4! This is why most automo-
tive or hydraulic pumps have a centrifugal design. Another consideration is multi-
staging, particularly for very high compression ratios (as in jet engines). Stacking up
rows of compressor stages, one behind the other, is natural for the axial design but
quite awkward for the centrifugal machine.

11.5 Axial Turbines

Turbines are machines that extract power from a moving fluid and were used for
centuries, mainly in form of a large bladed wheel rotated by falling water. In modern
times turbines are used for power generation, in jet engines, or even to drive the
turbochargers in passenger cars. A turbine design can be of the axial or centrifugal
or even mixed geometry, and the discussion is similar to the approach used for the
axial and centrifugal compressors. Also, because the pressure drop across a turbine
is favorable (from high to low) it is less sensitive to flow separation compared with a
similar compressor or pump. Therefore turbine efficiencies are usually higher than
for an equivalent compressor. In many applications in which the turbine is driven
by combustion products (such as gas turbines of jet engines) blade cooling is also
a very important aspect of the fluid dynamic considerations. Because the axial and
centrifugal designs were discussed in detail, only the axial turbine is discussed here,
and the formulation can be easily extended to treat centrifugal designs as well (as
was done for the compressors).

A schematic description of a single-stage axial turbine is shown in Fig. 11.32.
Although the approach is the same as used for the axial compressor in Section 11.3,
there are some minor differences:

1. A typical stage consists of rotor and stator blade rows; however, the stator
(called now the nozzle) is ahead of the rotor. Consequently station 2 is the exit
from the nozzle and the rotor is between stations 2 and 3.

Nozzle

High-pressure
flow

Rotor

A

U

A

1 2 3

Nozzle

Section AA

Rotor

1 2 3

(a) (b)

Figure 11.32. Schematic des-
cription of (a) a single-stage
turbine and (b) the blade
geometry as seen from section
cut AA.
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2. Because the fluid works on the rotor (a change in sign from the thermodynamic
point of view), the direction of rotation is reversed to highlight this (also the
direction of the coordinate θ is reversed).

Blade shape and orientations are shown through cut AA in Fig. 11.32(b). This
is a 2D representation of the average-radius model, and radial variations can be
treated following the approach presented in Subsection 11.3.3. There are also mul-
tistage turbines, and then a stator (nozzle) row will follow station 3 in Fig. 11.32.

11.5.1 Torque, Power, and Pressure Drop

The torque on the row of stators or rotors can be calculated by Eq. (11.8). When
applied between station 2 and station 3 (rotor),

Tq = ṁ(r2 cθ2 − r3 cθ3). (11.69)

The power for the rotor is then calculated by Eq. (11.9) (or by simply multiplying
the torque by the rotation speed):

P = Tq � = ṁ�(r2 cθ2 − r3 cθ3). (11.70)

Similarly for the nozzle (stator row) we can write

Tq = ṁ(r1 cθ1 − r2 cθ2). (11.69a)

and the torque acting on the nozzle is in the direction opposite to the torque on the
rotor. Also, because the nozzle is stationary, it generates no power:

P = 0. (11.70a)

At this point, if we limit the discussion to axial turbines and introduce the
average-radius assumption, then the rotor blade speed is defined as before:

U = r�. (11.71)

With this definition, the equation for the power generated becomes

P = ṁU(cθ2 − cθ3), (11.72)

and the work per unit mass wt is

wt = P
ṁ

= U(cθ2 − cθ3). (11.73)

The calculation of the pressure drop would be similar to the axial compressor–pump
case. However, the stage efficiency ηt now represents the ratio between the actual
work of the turbine divided by the work invested. In terms of the enthalpy change
this becomes

ηt = �h0

�h0s
. (11.74)
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Note that the losses through both the nozzle and rotor rows are included in this
formulation. The actual work invested, per unit mass, is

�h0 = �p0

ρ
. (11.75)

The work generated by the turbine wt is less (because of the losses) and
therefore

wt = ηt
�p0

ρ
.

Substituting wt from Eq. (11.73) shows that, for the incompressible case, the stagna-
tion pressure drop (for a given power) is increased with reduced efficiency!

�p0

ρ
= U

ηt
(cθ2 − cθ3). (11.76)

In the case of a turbine it is more useful to rewrite the power generated as a function
of the actual pressure drop. We do this by combining Eqs. (11.76) and (11.73):

P = ṁηt
�p0

ρ
= ṁU(cθ2 − cθ3). (11.78)

For the compressible case we can rewrite Eq. (11.74) in terms of the stagnation
temperature as

ηt = �h0

�h0s
= cp(T01 − T03)

cp(T01 − T03s)
. (11.79)

Note that the enthalpy change is calculated across the whole stage, including both
rotor and stator. The actual temperature change (for calculating �h0) is equal to the
work per unit mass, in Eq. (11.72):

�h0 = cp(T01 − T03) = wt = U(cθ2 − cθ3). (11.80)

Consequently we can write

�T0

T01
= T01 − T03

T01
= U(cθ2 − cθ3)

cpT01
. (11.81)

As noted earlier, it is more useful to relate the work to the pressure drop across the
turbine. This can be accomplished by use of the isentropic (adiabatic and reversible)
process as defined by Eq. (11.27):

p03

p01
=

(
T03s

T01

) γ

γ−1

. (11.82)

The ideal temperature change can be replaced with the actual values, based on
Eq. (11.79):

p03

p01
=

(
T01 − T01 + T03s

T01

) γ

γ−1

=
(

1 − T01 − T03s

T01

) γ

γ−1

=
(

1 − T01 − T03

ηt T01

) γ

γ−1

.

(11.83)

Substituting the temperature change from Eq. (11.81), we find that the pressure drop
across the turbine becomes

p03

p01
=

[
1 − U(cθ2 − cθ3)

ηt cpT01

] γ

γ−1

. (11.84)
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Figure 11.33. Schematic description of an axial turbine nozzle and rotor and resulting rotor
velocity triangle.

In the case of the compressible flow turbine it is also of interest to estimate the power
generated for a given pressure drop across the whole stage (nozzle and rotor). We
do this by combining Eqs. (11.72) and (11.84):

P = ṁcpT01ηt

[
1 −

(
p03

p01

) γ−1
γ

]
. (11.85)

11.5.2 Axial Turbine Geometry and Velocity Triangles

To calculate the pressure drop or the power generated by the turbine, the various
velocity components must be identified. Furthermore, drawing of the velocity dia-
grams allows the proper alignment of the turbine blades relative to the local veloc-
ity components. This is needed from the blade airfoil section point of view (to avoid
flow separations). A typical axial turbine velocity diagram is shown in Fig 11.33. The
stationary nozzle is accelerating the high-pressure fluid between stations 1 and 2 and
the exit velocity c2 is shown in the figure (and the positive direction for measuring
α). The velocity triangles for the rotor are shown in Fig. 11.33(b). Note the direc-
tion of the U vector, and, of course, in the rotor frame of reference the direction
is reversed. By adding the blade velocity to the incoming velocity c2, we obtain the
relative rotor inlet velocity w2. This clarifies the orientations of the rotor blades and
the rotor exit-velocity w3 direction (which for attached flow should be parallel to
the rotor trailing-edge bisector). Once the incoming- and exiting-velocity triangles
are drawn [as in Fig. 11.33(b)], assuming no change in cz between stations 2 and 3,
the tangential velocity components are identified. These components (cθ2, cθ3) then
can be used in the pressure-drop and power calculations developed in the previous
section.

EXAMPLE 11.8. AXIAL TURBINE. A turbine wheel shown in Fig. 11.34(a) is oper-
ated by a water jet with a cross section of 3 cm2 and a flow rate of 15 kg/s.
The nozzle angle is α2 = 68.5◦ and the blade inflow and outflow angles are the
same (β2 = −β3). The average radius of the turbine blades is r = 0.3m. The tur-
bine operates a pulley, which is lifting a mass of 100 kg [see Fig. 11.34(a)], and
the rotation rate is stabilized at 1000 RPM. Calculate the blade angle β2 and
how fast the weight is being lifted.



11.5 Axial Turbines 415

(a) (b) (c)

α2 α2 = 68.5

β2
β2

β3

c2 = 50
U

100 kg

w3

w2

cz

r

Figure 11.34. An axial turbine operated by a water jet, raising a mass of 100 kg.

Solution: The rotor velocity triangle can be established by the calculation of U
and c2. The blade-tip speed is then

U = r� = 0.3 2π
1000
60

= 31.41 m/s.

The nozzle velocity is calculated with the continuity equation (the water density
is 1000 kg/m3):

c2 = ṁ
ρS

= 15
1000 × 0.0003

= 50.00 m/s.

Knowing the magnitude of two vectors; the tip speed U, the jet speed c2 and the
nozzle angle α2, we can draw the velocity triangle [see Fig. 11.34(c)]. The angle
β2 is now easily calculated based on the triangle trigonometry; but first the axial
velocity is calculated:

cz = c2 cos α2 = 18.32 m/s.

The rotor inlet angle is

tan−1 β2 = c2 sin α2 − U
cz

= 0.824,

β2 = 39.5◦.

and this angle is shown in Fig. 11.34(b). The power of the turbine is calculated
with Eq. (11.72):

P = ṁU(cθ2 − cθ3) = ṁU(2cz tan β2) = 15 × 31.41 × 30.22 = 14,238.15 W,

which is about 19.35 hp. The power required for lifting the mass at a velocity of
v is

P = mgv,

and therefore

v = P
mg

= 14,238.153
100 × 9.8

= 14.52 m/s.

11.5.3 Turbine Degree of Reaction

The degree of reaction was used in Subsection 11.3.5 to define the pressure-drop
ratio between the rotor and the entire stage (including the stator). Similarly, the
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Figure 11.35. Generic velocity triangles for an axial turbine.

degree of reaction R can be defined for a turbine as the enthalpy drop in the rotor
versus the stagnation enthalpy change in the whole stage. We approximated the
changes by using the pressure changes in Subsection 11.3.5, and using the same
approach we get

R = h2 − h3

h01 − h03
≈ p2 − p3

p01 − p03
. (11.86)

We can estimate the rotor pressure drop across the rotor by using the incompressible
Bernoulli equation (note that this is an approximation only!):

h2 − h3 = 1
ρ

(p2 − p3) = 1
2

(
w2

3 − w2
2

)
,

and the total stage stagnation enthalpy change is taken from Eq. (11.80) [e.g., p01 −
p03 = U(cθ2 − cθ3 )]; therefore

R = w2
3 − w2

2

2U(cθ2 − cθ3)
. (11.87)

We can rewrite the numerator, similar to the case of the axial compressor
[Eq. (11.44)], in terms of the velocity components:

w2
3 − w2

2 = w2
θ3

+ w2
z3

− w2
θ2

− w2
z2

= w2
θ3

− w2
θ2

= (wθ3 + wθ2 )(wθ3 − wθ2 ),

but the tangential velocity difference is the same: (wθ3 − wθ2 ) = (cθ2 − cθ3) and
therefore the degree of reaction is

R = wθ3 + wθ2

2U
. (11.88)

Observing the velocity triangles in Fig. 11.35, we can write

wθ3 = cz tan β3,

wθ2 = U − cz tan α2.

Consequently the sum in the numerator becomes

wθ3 + wθ2 = cz tan β3 + U − cz tan α2.

With this in mind, the expression for the degree of reaction becomes

R = wθ3 + wθ2

2U
= cz tan β3 + U − cz tan α2

2U
= 1

2
− cz

2U
(tan α2 − tan β3). (11.89)

This indicates that if a 50% degree-of-reaction design is sought (e.g., R = 1/2), then
the two angles α2 and β3 must be equal (and of course pointing in opposite direc-
tions, as shown in Fig. 11.36.
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Figure 11.36. (a) 50% degree-of-reaction turbine and (b) corresponding rotor velocity
triangle.

Such a design is shown schematically in Fig. 11.36a, and the nozzle (stator) and
rotor incoming- and exiting-velocity vectors are the same (but reversed in direction).
Consequently the rotor velocity diagram [(Fig. 11.36(b)] is symmetrical about an
imaginary horizontal line, as shown in the figure. This implies that the blades of the
nozzle and of the rotor are exposed to similar angles of attack and therefore their
shape is the same, as well. Figure 11.36(a) depicts this condition in which the nozzle
exit at station 2 is the same as the nozzle exit at station 4, and so on. Using the
symmetry assumption, we find that the tangential velocities of the rotor are

cθ2 − cθ3 = 2(cz tan α2 − U) + U.

Substituting this into Eq. (11.81), we get

�T0

T01
= U(cθ2 − cθ3)

cpT01
= U

cpT01
[2(cz tan α2 − U) + U]

= U2

cpT01

[
2

cz

U
tan α2 − 1

]
. (11.90)

This equation indicates that larger nozzle angles α2 result in more power. Of course,
that will reduce the axial velocity, and α2 = 70◦ is considered to be the maximum
nozzle angle.

EXAMPLE 11.9. MULTISTAGE AXIAL TURBINE. The average radius of the second
stage in a multistage axial turbine is r = 0.3 m, rotation speed is 7000 RPM, and
the hot gas flow leaves the nozzle at a temperature of T01 = 1200 K (and ρ2 =
0.5 kg/m3). Assuming that this is a 50% degree-of-reaction design, the rotor
inflow angle is β2 = 30◦, and the exit angle is β3 = 60◦, calculate the following
values:

(a) The power per unit mass generated by this turbine (η = 0.90, γ = 1.4, cp = 0.24).
(b) The stagnation pressure drop in the turbine. How much of the static pressure

drop takes place in the rotor?
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Figure 11.37. Velocity triangles for a 50% degree-of-reaction turbine
(in Example 11.9).

Solution: To establish the rotor velocity triangle, we calculate the local blade
speed U:

U = r� = 0.3 2π
7000
60

= 219.91 m/s.

Using the symmetry of the velocity triangle in Fig. 11.37, we conclude that α2 =
|β3| = 60◦. In terms of a graphical solution we plot the vector U on the θ axis and
then draw a 30◦ line from the top, representing the direction of w2. Similarly, a
60◦ line is drawn at the bottom to represent the direction of the c2 vector. As
the two curves intersect, the axial velocity is found and the velocity triangle
for station 2 is complete. We draw the velocity triangle next at the turbine exit
(station 3) by using the symmetry principle (dashed lines).

An algebraic solution can also be based on the velocity diagram at station
2. For example, we can write for the tangential component wθ2

U − c2 sin 60◦ = w2 sin 30◦

and for the axial component cz

c2 cos 60◦ = w2 cos 30◦.

Solving these two equations for the unknowns c2 and w2 results in

w2 = U/2,

c2 = 0.866U.

The tangential velocity difference is therefore

cθ2 − cθ3 = U − 2w2 sin 30◦ = U/2 = 109.95 m/s.

The power of the turbine (per unit mass) is calculated with Eq. (11.73):

wt = U(cθ2 − cθ3) = 219.91 × 109.95 = 24,179.10 m2/s2.

Next, the temperature drop is calculated with Eq. (11.93),

�T0

T01
= U(cθ2 − cθ3)

cpT01
= 219.91 × 109.95

0.24 × 4200 × 1200
= 0.02,

and the pressure ratio with Eq. (11.83),

p03

p01
=

(
1 − T03 − T01

ηt T01

) γ

γ−1

=
(

1 − 0.02
0.9

)3.5

= 0.924.
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Figure 11.38. Impulse turbine
and corresponding rotor velocity
triangle.

Because this is a 50% degree-of-reaction turbine, half of the pressure drop takes
place in the turbine.

Another interesting example is the impulse turbine. In this case, all of the stag-
nation pressure drop takes place in the nozzle and the pressure energy is converted
entirely into velocity. Impulse turbines are usually selected for single-stage designs
or the last stage of a multistage turbine. This concept is also the oldest form of tur-
bine used with water jets (see Fig. 11.34). It is clear that the best results could be
obtained when all the energy in the water is converted into velocity (or a jet) and
then this jet impinges on the turbine blade. Such a design is less sensitive to the
delicate airfoil shape of more complex turbine designs. Because all the stagnation
pressure drop takes place in the nozzle, the static pressure change in the rotor is
zero! Consequently, the degree of reaction, according to Eq. (11.86), is zero as well.
For an impulse turbine,

R = p2 − p3

p01 − p03
= 0. (11.91)

Recalling Eq. (11.87) and equating it to zero yields

R = w2
3 − w2

2

2U(cθ2 − cθ3)
= 0,

and therefore the incoming- and exiting-velocity vectors are of the same magnitude.
So for the case of an impulse turbine:

w2 = w3. (11.92)

As a result the velocity triangles will have the shape depicted in Fig. 11.38. The rotor
blade shape will reflect this fore–aft symmetry, as shown schematically in the figure.

From the velocity diagram shown in Fig. 11.38 and assuming that the rotor
incoming- and exiting-velocity vectors have the same magnitude, we can write:

cθ2 − cθ3 = 2(cz tan α2 − U),

and after substituting this into Eq. (11.81), we get

�T0

T01
= U(cθ2 − cθ3)

cpT01
= 2U2

cpT01

(cz

U
tan α2 − 1

)
. (11.93)
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Again, this equation indicates that larger nozzles angles α2 result in more power.
And the maximum recommended nozzle angle is α2 = 70◦.

EXAMPLE 11.10. IMPULSE TURBINE. An impulse turbine with an average radius of
r2 = 0.1 m is operated by a hot gas flow at a rate of ṁ = 1 kg/s and a temperature
of T01 = 1200 K. The jet leaves the nozzle at an angle of α2 = 65◦ and a speed
of c2 = 330 m/s (ρ2 = 0.5 kg/m3).

(a) If the flow at the exit has no swirl, then calculate the power generated by this
turbine (η = 0.90, γ = 1.4, cp = 0.24).

(b) Calculate the stagnation pressure drop in the turbine. How much of the static
pressure drop takes place in the rotor?

(c) Calculate shaft RPM.

Solution: If the exit velocity c3 has no swirl then α3 = 0, and by observing the
velocity diagram in Fig. 11.39(a) for the impulse turbine with α3 = 0 only; we
get

cθ2 − cθ3 = 2U = c2 sin 65 = 299.08 m/s.

The power of the turbine is calculated with Eq. (11.72):

P = ṁU(cθ2 − cθ3) = 1.00
299.08

2
299.08 = 44,724.8 W,

which is about 60 hp. The stagnation temperature drop is calculated with
Eq. (11.93),

�T0

T01
= U(cθ2 − cθ3)

cpT01
=

299.08
2

299.08

0.24 × 4200 × 1200
= 0.037,

and the pressure ratio from Eq. (11.83),

p03

p01
=

(
1 − T03 − T01

ηt T01

) γ

γ−1

=
(

1 − 0.037
0.9

)3.5

= 0.863.

This is an impulse turbine and all the stagnation pressure drop takes place in
the nozzle (e.g., zero pressure drop in the rotor). Because the vector U and the
rotor radius are known, the rotation rate can be calculated as

RPM = U
2πr

= 299.08/2
2 × 3.14 × 0.1

60 = 14,280.

Usually in the last turbine stage, or if there is only one stage, it is desirable
for the exit flow to leave without swirl (or zero tangential velocity). In terms of
the velocity diagram this means that α3 = 0. Such a condition is sketched in Fig.
11.39 for a 50% degree-of-reaction and an impulse turbine. Assuming that both
have the same radius, rotation speed (same U), and axial velocity, we can see that
for the R = 50% design the tangential velocity difference is equal to the blade speed
(cθ2 − cθ3 = U). For the impulse turbine, the tangential velocity difference is twice
the rotation speed (cθ2 − cθ3 = 2U), suggesting that it generates twice the power of
the R = 50% design. This is true for the conditions shown in Fig. 11.39, but at the
same time the nozzle exit speed c2 is significantly higher for the impulse turbine.
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Figure 11.39. Schematic comparison between a 50% degree-
of-reaction and an impulse turbine, with no swirl at the exit
(same cz, radius, and RPM).

Also the fluid crossing the turbine blades is turned more sharply by the impulse
turbine (more camber). In spite of these considerations, the impulse turbine has the
potential to generate more power.

EXAMPLE 11.11. THE PELTON WHEEL. One important form of the impulse tur-
bine, called the Pelton wheel (after Ohio-born Lester Allan Pelton, 1829–1908),
is used in power-generating plants and is shown schematically in Fig. 11.40(a).
In this case all the pressure drop takes place in the nozzle and the turbine
blade is simply changing the direction of the jet. This is shown schematically in
Fig. 11.40(b).

The velocity diagram in the z–θ coordinate system is shown schematically in
Fig. 11.40(c) and the jet velocity c2 has no velocity component in the z direction!
Still, the treatment of this turbine is no different from that of the axial impulse
turbine. As an example, consider a Pelton wheel with an average radius of r =
0.1 m, which rotates at 1000 RPM by a water jet with an exit velocity of c2 =
30 m/s (assume the jet cross section is 2 cm2). Also, the angle of the flow leav-
ing the blade in this example is β3 = 60◦. Because this is a Pelton wheel and
the nozzle is aligned with the wheel (α2 = 90◦), the velocity relative to the

Ω

θ

w2
w2

w3

β3

c3

U

zc2

r

w3

30°

Turbine
blade

(a) (b) (c)

c2
Δcθ

Figure 11.40. (a) Schematic description of the Pelton wheel, (b) the rotor blade geometry,
and (c) the velocity diagram.
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Figure 11.41. Typical performance curves for a single-stage axial turbine.

blade (w2) is the difference between the jet and the wheel tip speeds, as shown
Fig. 11.40(c):

w2 = c2 − U.

The blade tip velocity is

U = r� = 0.1 × 2π
1000

60
= 10.47 m/s.

and w2 is

w2 = c2 − U = 30 − 10.47 = 19.53 m/s.

Because this is an impulse turbine the exit velocity is unchanged,

w3 = w2 = 19.53 m/s.

and the torque and power can be calculated with Eqs. (11.69) and (11.70). The
change in tangential velocity is therefore [see Fig. 11.40(c)],

�cθ = cθ2 − cθ3 = 19.53(1 + sin 60) = 36.44 m/s.

The mass flow rate is

ṁ = ρc2S = 1000 × 30 × 2 × 10−4 = 6 kg/s.

The torque and power now can be calculated as

Tq = ṁr�cθ = 6 × 0.1 × 36.44 = 21.86 Nm,

P = ṁU�cθ = 6 × 10.47 × 36.44 = 2289.16 W.

Now that the relation among turbine geometry, power, and pressure drop is
established, we can discuss the generic shape of a typical performance map. Usually,
turbine mass flow rate can be controlled, thereby dictating the incoming velocity c2

and the pressure drop across the stage. Consequently a typical turbine performance
map will show the pressure drop versus mass flow rate across the stage (as shown
schematically in Fig. 11.41). The rotor blade geometry is depicted in Fig. 11.41(a)
and the solid-line velocity triangle represent a lower mass flow rate (point A). If
mass flow rate increases at a constant RPM1, so will c2, as shown by the dashed line
(point B). Because the incoming flow angle α2 (nozzle angle) remains unchanged,
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Figure 11.42. The effect of an exposed tip on rotor performance.

c2 in the second case is longer, as shown. This increases the angle of attack of the
rotor blade, resulting in a higher load (e.g., higher lift coefficient) and a higher pres-
sure ratio. Therefore, at the higher mass flow rate, the compression ratio will also
increase, as shown by point B on the performance map. Now, if rotation is reduced
to RPM2, then the same trend is observed, but at a slightly lower pressure ratio. If
the mass flow rate is further reduced, the incoming flow angle of attack is reduced,
up to a point where the turbine cannot generate power (so no airfoil lift – this is
where the lines end at the lower mass flow rates). At the higher mass flow rates, a
point is reached at which the nozzle is chocked, and this represents the highest mass
flow rate point in Fig. 11.41(b).

11.5.4 Remarks on Exposed Tip Rotors (Wind Turbines and Propellers)

The discussion so far has focused on turbomachines in which the rotor is enclosed in
an outer casing and the discussion has been limited to simple 2D models (as demon-
strated with the rotor velocity diagrams). However, frequently seen, similar devices
such as wind turbines, propellers, and many cooling fans have no outer shroud.
The question then is this: Why wasn’t the simple analysis of this chapter extended
to include those cases, as well? The main reason is that with open-tip rotors the
flow is highly 3D and more advanced analysis methods are required (such as CFD
in Chapter 9). These effects can be grouped into two main categories that can be
addressed here briefly, mainly as a prelude for more advanced course work. First, at
the tip, no pressure difference between the upper and lower surfaces can be main-
tained. Therefore the loading drops to zero (at the tip) compared with the shrouded
case, in which high loading can be present. This is depicted schematically in
Fig. 11.42(a), where the expected pressure rise is shown for a shrouded compres-
sor. On the right-hand side [Fig. 11.42(b)], the same rotor is shown but without the
shroud. In this case the tip effect is reducing the loading (or pressure rise) not only
at the tip but along the whole blade. So, in principle, ducted (or shrouded) fans can
generate more thrust (or pressure rise) but will also require more torque because of
higher loading at the larger-radius stations. Therefore the efficiency of open rotors
is not necessarily inferior, particularly in airplane applications (because of the added
drag and weight of the nacelle).
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Figure 11.43. Visualization of the spiral wake behind a rotor (rotor geometry is shown on the
right).

The second major feature of open-tip rotors is the creation of a strong vortex
wake (which effect is negligible in the shrouded case), as shown in Fig. 11.43. This
is similar to the tip effect of a finite wing, discussed in reference to Fig. 8.42, in
which the pressure difference between the pressure and suction sides of the airfoil
results in a rotating flow near the tip. A simple modeling of this wake is shown in
Fig. 11.43, and the velocity field induced by this vortex wake has a strong effect
as well. For example, when the forward speed is slow compared with the rotor-tip
speed (as for a hovering helicopter) this wake-induced velocity may have the same
order of magnitude as that of the free stream.

In spite of the previously mentioned modeling difficulties, simple stream-tube-
based models were developed in the past to estimate both propeller and wind tur-
bine performance. These approaches fail to connect blade geometry to parameters
such as the pressure rise, but at least one, which discusses the maximum efficiency
of a wind turbine, is worth mentioning.

This (anecdotal) model of a wind turbine is shown in Fig. 11.44 and is based on
the 1D stream-tube model presented earlier in Chapter 2.

The flow enters the stream tube at station 1 at a speed of U∞ and crosses
through the propeller with a disk area of S. As the flow drives the rotor it slows
down (between stations a and b) and the stream tube becomes wider at exit station 2

uav

Wind

Propeller’s
stream tube

u2

1

2

a
b

U∞

p∞

P

Figure 11.44. Simple stream-tube model for a wind turbine.



11.5 Axial Turbines 425

(recall the continuity equation), where the velocity is u2. The force on the turbine
must be equal to the momentum loss of the stream-tube flow:

F = ṁ(U∞ − u2),

where ṁ is the mass flow rate. The power given away by the flow is the force times
the average velocity (uav) across the rotor:

P = F uav.

For this 1D model the mass flow rate is

ṁ = ρuav S,

and an effort is made to use the rotor disk area instead of the conditions at station 1.
Substituting the mass flow rate and the force term into the power expression yields

P = ρuavS(U∞ − u2)uav = ρu2
av S(U∞ − u2).

Next, the average velocity across the rotor disk is estimated as

uav = 1
2

(U∞ + u2).

With this average velocity the power relation becomes

P = ρ

(
U∞ + u2

2

)2

S(U∞ − u2) = ρS
4

(U∞ + u2)2(U∞ − u2). (11.94)

The importance of this relation is that it provides a hint about the best wind turbine
performance. To find the maximum of this expression, a derivative of the power
relative to the exit velocity u2 yields

dP
du2

= ρ

4

[
(U∞ + u2)2(−1) + 2(U∞ + u2)(U∞ − u2)

] = 0,

and by solving this equation, we find that the condition for the maximum power
becomes

u2 = U∞
3

. (11.95)

Substituting this result into the power relation provides the maximum wind turbine
power:

P = ρS
4

(U∞ + u2)2(U∞ − u2) = 8
27

ρU3
∞S. (11.96)

To place this result in perspective, consider the total kinetic energy entering the
stream tube at station 1

Pavail = 1
2

ṁU2
∞ = 1

2
ρU3

∞S.

Therefore, based on this simple analysis, the maximum energy that a wind turbine
can extract from a stream having the same cross-section area S (let us call this the
maximum efficiency) is

ηmax = P
Pavail

= 16
27

. (11.97)
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Now, 16/27 is about 59.26%, and this number is usually called the Betz number
or Betz efficiency (dating from circa 1926), after Albert Betz (1885–1968) who suc-
ceeded Ludwig Prandtl as the head of the Göttingen Center in Germany.

The important part of this discussion is that wind turbine performance is
evaluated by a similar nomenclature. Typical values for the efficiency defined by
Eq. (11.97) are near 20%–40%, which are significantly less than the Betz value.

EXAMPLE 11.12. SIZING OF A WIND TURBINE. It is proposed to build a small wind
turbine capable of producing 5-kw power. If the average wind speed is 30 km/h
and the expected design is capable of extracting 70% of the power predicted by
the Betz formula (ηp = 0.7) calculate the wind turbine diameter.

Solution: Based on Eq. (11.96), the power is

P = ηp
8

27
ρU3π R2.

Solving for the propeller radius, we get

R =
√

P × 27
8 × ηp × ρ × (U/3.6)3π

,

R =
√

5000 × 27
8 × 0.7 × 1.22 × (30/3.6)3π

= 3.29 m.

11.6 Concluding Remarks

The formulation presented in this chapter establishes the relation between turbo-
machinery component geometry and the expected performance. It allows proper
orientation of the airfoil-shaped blade components and clearly explains undesir-
able conditions such as compressor surge (or blade stall). Furthermore, this method
allows the preliminary design of compressors, pumps, and turbines, and the ability
to size their components. Power requirements and expected pressure ratios are esti-
mated, based on parameters such as the geometry and rotation speed. Such data
for commercially available turbomachinery are provided in performance maps, typ-
ically connecting pressure ratio to mass or volumetric flow rate for several rotation
speeds. The trends in these performance maps are also explained, relating compo-
nent geometry to performance for both compressors–pumps and turbines.
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PROBLEMS

11.1. It is required to pump 2 L/s water from a pool into a container 7 m above
the water level in the pool. If the overall efficiency of the pump is 0.7, estimate the
continuous power required for pumping the water.
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11.2. A segment of an axial compressor with six identical stages has a compres-
sion ratio of 3 (all stages with degree of reaction of R = 1/2, and with the same
velocity diagrams, compression ratio, average radius, etc.). The shaft rotates at
8000 RPM and the average blade radius is rm = 0.3 m. The axial velocity across these
stages is assumed to be constant at cz = 120 m/s. The first-stage inlet temperature is
T01 = 360 K, the efficiency of all stages is ηst = 0.95, and γ = 1.4.

(a) Calculate the rotor blade angles β1 and β2.
(b) Calculate the rotor pressure coefficient Cp.
(c) Calculate power (per unit mass flow rate) required for driving all six stages?

11.3. The axial velocity across the second stage of an axial compressor is cz =
120 m/s, the average radius is rm = 0.4 m, and the stagnation temperature ahead
of the rotor is T0 = 300 K. If the compressor rotates at 5000 RPM, the angle α1 =
25◦, and the pressure coefficient of this rotor stage is Cp = 0.5, calculate the follow-
ing values.

(a) The angles β1 and β2.
(b) The stagnation pressure rise p03/p01 across this stage (ηstage = 0.98, cp =

0.24, γ = 1.4).
(c) Degree of reaction R.
(d) During the starting process the axial velocity is reduced to cz =

80 m/s but RPM = 5000. How many degrees should the stator blade (ahead
of this rotor) be rotated so that the rotor blade angle β1 will not change?

11.4. The average radius of an axial compressor blade is rav = 0.6 m and it rotates at
a constant speed of 3500 RPM. The axial velocity through this stage is cz = 130 m/s
and the two rotor angles are β1 = 55◦ and β2 = 35◦. Also assume that γ = 1.4, cp =
0.24, and T01 = 300 K.

(a) Draw a velocity diagram for the compressor blade.
(b) Calculate the stagnation pressure ratio p03/p01 (ηst = 1.0).
(c) Calculate the pressure coefficient (Cp) for this rotor. Does blade stall seem

likely?

11.5. A turbofan jet engine operates at a flight speed of Ma = 0.7 and the ambient
conditions are Ta = 300 K and pa = 1 atm. The axial fan has no stator ahead of
the rotor, and the average radius of the fan blade is rav = 0.7 m and it rotates at
3600 RPM [γ = 1.4, cp = 0.24, R = 286.78 (m/s)2/K].

(a) Assuming η = 1.0 and the inlet area ratio is Aa/A2 = 0.63 (A2 is ahead of
the fan and Aa is in the free stream), calculate the axial velocity ahead of
the fan blade.

(b) If the pressure coefficient of the fan rotor blade is Cp = 0.55, calculate the
stagnation pressure ratio p03/p0a for the fan (for simplicity, assume ηstage =
1.0).

11.6. A single-stage axial compressor rotates at 4000 RPM. The incoming flow speed
is cz = 40 m/s, the rotor average radius is rm = 0.25 m, and the rotor blade consists
of a symmetric airfoil shape oriented at 60◦ (β2 = 60◦). Also, ηst = 0.85, γ = 1.4,
cp = 0.24 kcal/kg K, and T01 = 300 K.

(a) Draw the velocity diagram for the rotor (assume no stator ahead of this
stage, α1 = 0).
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(b) Calculate rotor angle β1.
(c) Calculate stagnation pressure ratio p02/p01.
(d) Calculate torque and power requirements.

11.7. The average radius of an axial compressor blades in the first row of a jet engine
compressor is rm = 0.7 m and the local Mach number is M = 0.45.

(a) Calculate the axial velocity ahead of the rotor (T01 = 356 K, ηst = 0.95, γ =
1.4, cp = 0.24).

(b) Calculate the stagnation pressure rise across this stage at 3300 RPM if the
rotor pressure-rise coefficient is Cp = 0.5.

(c) Calculate degree of reaction.

11.8. An axial water pump with an average radius of 0.05 m rotates at 1000 RPM
and the incoming axial velocity is 1.5 m/s. If the blades turn the flow by β2 − β1 = 10◦

and the pump efficiency is η = 0.8, calculate pressure rise and power per unit mass.

rav
50° RPM

cz

1 2

Problem 11.8.

11.9. The axial pump shown in the previous problem is pumping 25 L/s water in a
12-cm-diameter pipeline and the required head is hf = 0.8 m of water. If the rotation
rate is set by the motor at 1200 RPM, calculate the symmetric blade angle β2 (assume
that the pump average radius is 0.05 m, the efficiency is 0.75, and the average velocity
in the pipe is the same as the axial velocity entering the rotor). Also calculate the
pressure-rise coefficient and estimate whether blade stall is likely.

11.10. The axial velocity across an axial compressor blade is cz = 43.5 m/s, the aver-
age radius is rav = 0.2 m, and the stagnation temperature ahead of the rotor is T0 =
300 K. The rotor blade is a symmetric untwisted airfoil that rotates at 3600 RPM;
the angle β1–β2 = 10◦. Calculate the following values:

(a) The angles β1 and β2.
(b) The change in the rotor tangential velocity, �cθ .
(c) The pressure coefficient of this rotor stage, Cp.
(d) The stagnation pressure rise p03/p01 across this stage (ηstage = 0.98, cp =

0.24, γ = 1.4).
(e) Degree of reaction R.
(f) During the starting process the axial velocity is reduced to cz = 20 m/s but

the RPM stayed at 3600. How many degrees should the stator blade (ahead
of this rotor) be rotated so that the rotor blade angle β1 will not change?

11.11. A centrifugal compressor rotates at 7000 RPM and compresses 6-kg/s air.
The impeller dimensions are r1 = 0.1 m, r2 = 0.35 m, and the blade height at the
exit is b2 = 0.015 m. The tangential velocity at the impeller inlet is negligible, inlet
temperature is T01 = 300 K, and the air density at the impeller exit is 2.5 kg/m3.
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Also, at the exit, the blade is leaning backward at β = 5◦, and η = 0.93, cp = 0.24,
γ = 1.4.

(a) Calculate the stagnation pressure rise p03/p01 across this stage.
(b) Calculate the power required to drive this compressor.

11.12. What is the minimum flow rate for the centrifugal compressor described in
the previous problem? Assume air density at the impeller inlet is 1.22 kg/m3.

11.13. A centrifugal water pump rotates at 750 RPM. The impeller inlet radius is
0.04 m, the exit radius is 0.10 m, and it has straight vanes. The water enters the inlet
at an average velocity of 2.5 m/s (without swirl). Calculate pressure rise and the
power required for operating the pump (η = 0.95). Also estimate the angle β1 at the
inlet tip.

RPM

r1

r2 

Problem 11.13.

11.14. A 0.1-m-diameter centrifugal pump (straight exit vanes) is used to pump 2-L/s
water from a pool into a container 5 m above the water level in the pool. Calculate
the required power and RPM if overall pump efficiency is 0.7.

11.15. A centrifugal pump is used to pump water from a lower to a higher reservoir,
as shown in the figure. The impeller has simple straight vanes, diameter D2 = 12 cm,
and its inlet diameter is D1 = 6 cm. If z1 = 2 m, z2 = 10 m, and the friction losses can
be summarized as a head loss of hf = 0.5 m, calculate the required RPM (assume
efficiency η = 0.8). Estimate the power requirement when the flow rate is 12 L/s.

D1

z2

z1

D2

Problem 11.15.

11.16. Calculate the inlet velocity c1, impeller inlet tip angle β1, and the pressure
coefficient [Eq. (11.58)] for the previous problem. Can the flow rate be reduced to
8 L/s?

11.17. A centrifugal water pump is designed to provide a pressure jump equivalent
to a 2-m water column. The motor designated to run the pump provides a constant
rotation speed of 800 RPM. If efficiency is estimated at 0.75, calculate the straight-
vane impeller diameter.
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11.18. Estimate the compression ratio of a centrifugal compressor with straight
impeller exit blades operating at 6000 RPM. The inlet radius is 0.05 m and the
impeller exit radius is 0.30 m. The compressed fluid is air (T01 = 300 K, η = 0.90,
cp = 0.24, γ = 1.4).

11.19. Suppose a pump with the dimensions used in the previous problem rotates at
1500 RPM, but this time the fluid is water. Estimate the pressure rise.

11.20. Estimate the compression ratio of a centrifugal compressor with forward-
leaning blades β = 15◦ at the impeller exit, rotating at 5000 RPM. Assume the exit
radial velocity wr2 = U2/2. The inlet radius is 0.10 m and the impeller exit radius is
0.40 m. The compressed fluid is air (T01 = 300 K, η = 0.90, cp = 0.24, γ = 1.4).

11.21. A centrifugal water pump rotates at 3000 RPM. The impeller inlet radius is
0.04 m, the exit radius is 0.10 m, and it has straight vanes. The water enters at the
inlet at an average velocity of 1.5 m/s (without swirl). Calculate mass flow rate, the
pressure rise, and the power required for operating the pump (η = 0.95).

11.22. A small impeller (of the centrifugal compressor shown in Fig. 11.25) with the
dimensions r1 = 12 mm and r2 = 18 mm is used to compress air, and its rotation
speed is 130,000 RPM. (Assume that γ = 1.4, ρp = 1.0 kg/m3, cp = 0.24, T01 =
300 K, and compressor efficiency is η = 0.85.)

(a) Draw the velocity diagrams at the tip of the impeller inlet and impeller exit.
Assume that β1 = 48◦ and cθ1 = 0 at the inlet and the blades are turned back
10◦ at the exit. (Also, blade height at the exit is b2 = 3 mm).

(b) Calculate mass flow rate and exit velocity wr2.
(c) How much power is needed to drive this impeller and what is the compres-

sion ratio of this compressor?

11.23. The impeller of a centrifugal compressor stage with the dimensions r1 =
0.08 m and r2 = 0.32 m rotates at a constant speed of 5000 RPM. The fluid that
is being compressed has the following properties: γ = 1.4, ρ1 = 1.2 kg/m3, cp = 0.24,
T01 = 300 K, and the compressor efficiency is η = 0.85.

(a) Draw the velocity diagrams at the tip of the impeller inlet and impeller exit.
Assume that β1 = 45◦ and cθ1 = 0 at the inlet and the blades are turned
back 10◦ at the impeller exit. (Also, blade height at the exit is b2 = 0.01 m,
and the fluid density there is ρ2 = 1.5 kg/m3).

(b) Calculate mass flow rate and exit velocity wr2.
(c) How much power is needed to drive this impeller and what is the compres-

sion ratio of this compressor?
(d) Calculate compression ratio and power if the blades lean forward by 10◦ at

the impeller exit (instead of backward).

11.24. A centrifugal compressor rotates at 5000 RPM and compresses 5-kg/s air. The
impeller dimensions are r1 = 0.1 m, r2 = 0.3 m, and the blade height at the exit is b2 =
0.015 m. The tangential velocity at the impeller inlet is negligible, inlet temperature
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is T01 = 300 K, and the air density at the impeller exit is 2.4 kg/m3. Also, at the exit,
the blade is leaning forward at β = − 5◦, and η = 0.90, cp = 0.24, γ = 1.4.

(a) Calculate the stagnation pressure rise p03/p01 across the compressor.
(b) Calculate the power required for driving this compressor.

11.25. An axial turbine with an average radius of r2 = 0.3 m is operated by a hot
gas flow at a temperature of T01 = 1200 K and ρ2 = 1.0 kg/m3. The jet leaves the
nozzle at an axial velocity of cz = 300 m/s. The nozzle total exit area (normal to c2) is
A2 = 0.03 m2.

(a) Draw the rotor velocity diagram based on β2 = 38◦, β3 = − 40◦, and c3 has
no tangential component. Based on the velocity diagram, calculate rotor
RPM and nozzle angle α2.

(b) Based on your finding, sketch the turbine blade shape and calculate mass
flow rate.

(c) How much power is generated by this turbine? Calculate the degree of
reaction.

11.26. The average radius of a 50% degree-of-reaction axial turbine is r = 0.2 m and
rotation speed is 8000 RPM. The hot gas flow leaves the nozzle at a temperature
of T01 = 1200 K (ρ2 = 0.5kg/m3) and at an angle of β2 = 30◦. If the rotor trailing
edge is aligned such that β3 = 60◦, calculate the power per unit mass generated by
this turbine (η = 0.90, γ = 1.4, cp = 0.24) and the stagnation pressure drop in the
turbine.

11.27. An impulse turbine with an average radius of r2 = 0.25 m is operated by a
water jet. The nozzle area is 3 cm2, its jet angle is α2 = 60◦, and the water flow rate
is 5 kg/s (ρ = 1000 kg/m3).

(a) If the flow at the exit has no swirl, then calculate the power generated by
this turbine.

(b) The turbine operates a lift, raising a mass of 75 kg, at sea-level conditions.
If the mechanical efficiency of the gear system is assumed to be 1.0, then
calculate how fast the mass could be lifted.

11.28. An impulse turbine with an average radius of r2 = 0.2 m is operated by a hot
gas flow at a rate of m = 1 kg/s and a temperature of T01 = 1200 K. The jet leaves
the nozzle at an angle of α2 = 60◦ and speed of c2 = 300 m/s (ρ2 = 0.5 kg/m3).

(a) If the flow at the exit has no swirl, then calculate the power generated by
this turbine (η = 0.90, γ = 1.4, cp = 0.24).

(b) Calculate the stagnation pressure drop in the turbine. How much of the
static pressure drop takes place in the rotor?

(c) Calculate shaft RPM.

11.29. A Pelton turbine wheel with an average radius of r = 0.2 m rotates at
800 RPM; it is operated by a water jet with a cross section of 3 cm2 and exit velocity
c2 = 25 m/s. The nozzle is aligned with the wheel (α2 = 90◦) and the blade outflow
angle is β3 = 60◦. Calculate the torque and the power of the turbine.
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Ω w2

c2

r

w3

30°

Turbine
blade

Problem 11.29.

11.30. The turbine wheel shown in Fig. 11.33 rotates at 1000 RPM and is operated
by a water jet with a velocity of c2 = 30 m/s. The nozzle angle is α2 = 60◦ and the
blade inflow and outflow angles are the same (β2 = −β3). The average radius of the
turbine blades is r = 0.2 m. Calculate the blade angle β2, the pressure drop in the
nozzle, and the power per unit mass (η = 0.9).

11.31. It is proposed to build a small wind turbine capable of lighting up a 100-W
lightbulb. If the average wind speed is 30 km/h and the expected design is capable
of extracting 80% of the power predicted by the Betz formula, calculate the wind
turbine diameter.



APPENDIX A

Conversion Factors

Length 1 m = 3.281 ft
1 cm = 0.3937 in
1 km = 3281 ft = 0.6214 mi
1 in = 2.54 cm = 25.4 mm
1 mi = 5280 ft = 1.609 km

Mass 1 kg = 2.2046 lbm = 0.06853 slug
1 lbm = 453.59 gm = 0.45359 kg = 0.03108 slug
1 slug = 32.17 lbm = 14.59 kg

Density 1 kg/m3 = 0.06243 lbm/ft3 = 0.001941 slug/ft3

1 slug/ft3 = 32.17 lbm/ft3 = 515.36 kg/m3

Force 1 N = 0.2248 lbf = 105 dynes
1 lbf = 4.448 N
1 kgf = 9.81 N

Pressure 1 Pa = 1 N/m2 = 0.02089 lbf/ft2

1 kPa = 0.14504 lbf/in2

1 lbf/in2 (psi) = 6.8948 kPa
1 lbf/ft2 (psf) = 47.88 Pa
1 atm = 101.3 kPa = 14.696 psi = 760 mm Hg @ 0◦

Temperature T (K) = T (◦C) + 273.15
T (K) = T (◦R)/1.8
T (◦C) = [T(◦F) − 32]/1.8
T (◦F) = 1.8 T(◦C) + 32
T (◦R) = T(◦F) + 459.67

Velocity 1 m/s = 3.281 ft/s = 3.6 km/h
1 ft/s = 0.3048 m/s
1 mi/h = 0.4470 m/s = 1.609 km/h = 1.467 ft/s
1 RPM = 0.1047 rad/s
1 rad/s = 9.549 RPM

Energy/Work 1 J = 1 N m = 0.7376 ft-lbf = 0.9478 × 10−3 Btu
1 Btu = 778.17 ft-lbf = 1055 J

Power 1 W = 1 J/s = 0.7376 ft-lbf/s = 1.341 × 10−3 horsepower
1 horsepower = 550 ft-lbf/s = 0.7457 kW
1 Btu/s = 1.415 horsepower
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434 Appendix A: Conversion Factors

Viscosity 1 Pa · s = 0.02089 lbf · s/ft2

1 m2/s = 10.764 ft2/s
1 lbf · s/ft2 = 47.88 Pa · s
1 ft2/s = 0.09290 m2/s

Angle 1 degree = 0.01745 rad
1 rad = 57.30 degrees



APPENDIX B

Properties of Compressible Isentropic Flow

M A/A∗ p/p0 ρ/ρ0 T/T0

0.00 1.000 1.000 1.000
0.01 57.87 0.9999 0.9999 0.9999
0.02 28.94 0.9997 0.9999 0.9999
0.04 14.48 0.999 0.999 0.9996

0.06 9.67 0.997 0.998 0.999
0.08 7.26 0.996 0.997 0.999
0.10 5.82 0.993 0.995 0.998
0.12 4.86 0.990 0.993 0.997

0.14 4.18 0.986 0.990 0.996
0.16 3.67 0.982 0.987 0.995
0.18 3.28 0.978 0.984 0.994
0.20 2.96 0.973 0.980 0.992

0.22 2.71 0.967 0.976 0.990
0.24 2.50 0.961 0.972 0.989
0.26 2.32 0.954 0.967 0.987
0.28 2.17 0.947 0.962 0.985

0.30 2.04 0.939 0.956 0.982
0.32 1.92 0.932 0.951 0.980
0.34 1.82 0.923 0.944 0.977
0.36 1.74 0.914 0.938 0.975

0.38 1.66 0.905 0.931 0.972
0.40 1.59 0.896 0.924 0.969
0.42 1.53 0.886 0.917 0.966
0.44 1.47 0.876 0.909 0.963

0.46 1.42 0.865 0.902 0.959
0.48 1.38 0.854 0.893 0.956
0.50 1.34 0.843 0.885 0.952
0.52 1.30 0.832 0.877 0.949

0.54 1.27 0.820 0.868 0.945
0.56 1.24 0.808 0.859 0.941
0.58 1.21 0.796 0.850 0.937
0.60 1.19 0.784 0.840 0.933

0.62 1.17 0.772 0.831 0.929
0.64 1.16 0.759 0.821 0.924

M A/A∗ p/p0 ρ/ρ0 T/T0

0.66 1.13 0.747 0.812 0.920
0.68 1.12 0.734 0.802 0.915

0.70 1.09 0.721 0.792 0.911
0.72 1.08 0.708 0.781 0.906
0.74 1.07 0.695 5.771 0.901
0.76 1.06 0.682 0.761 0.896

0.78 1.05 0.669 0.750 0.891
0.80 1.04 0.656 0.740 0.886
0.82 1.03 0.643 0.729 0.881
0.84 1.02 0.630 0.719 0.876

0.86 1.02 0.617 0.708 0.871
0.88 1.01 0.604 0.698 0.865
0.90 1.01 0.591 0.687 0.860
0.92 1.01 0.578 0.676 0.855

0.94 1.00 0.566 0.666 0.850
0.96 1.00 0.553 0.655 0.844
0.98 1.00 0.541 0.645 0.839
1.00 1.00 0.528 0.632 0.833

1.02 1.00 0.516 0.623 0.828
1.04 1.00 0.504 0.613 0.822
1.06 1.00 0.492 0.602 0.817
1.08 1.01 0.480 0.592 0.810

1.10 1.01 0.468 0.582 0.805
1.12 1.01 0.457 0.571 0.799
1.14 1.02 0.445 0.561 0.794
1.16 1.02 0.434 0.551 0.788

1.18 1.02 0.423 0.541 0.782
1.20 1.03 0.412 0.531 0.776
1.22 1.04 0.402 0.521 0.771
1.24 1.04 0.391 0.512 0.765

1.26 1.05 0.381 0.502 0.759
1.28 1.06 0.371 0.492 0.753
1.30 1.07 0.361 0.483 0.747
1.32 1.08 0.351 0.474 0.742
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M A/A∗ p/p0 ρ/ρ0 T/T0

1.34 1.08 0.342 0.464 0.736
1.36 1.09 0.332 0.455 0.730
1.38 1.10 0.323 0.446 0.724
1.40 1.11 0.314 0.437 0.718

1.42 1.13 0.305 0.429 0.713
1.44 1.14 0.297 0.420 0.707
1.46 1.15 0.289 0.412 0.701
1.48 1.16 0.280 0.403 0.695

1.50 1.18 0.272 0.395 0.690
1.52 1.19 0.265 0.387 0.684
1.54 1.20 0.257 0.379 0.678
1.56 1.22 0.250 0.371 0.672

1.58 1.23 0.242 0.363 0.667
1.60 1.25 0.235 0.356 0.661
1.62 1.27 0.228 0.348 0.656
1.64 1.28 0.222 0.341 0.650

1.66 1.30 0.215 0.334 0.645
1.68 1.32 0.209 0.327 0.639
1.70 1.34 0.203 0.320 0.634
1.72 1.36 0.197 0.313 0.628

1.74 1.38 0.191 0.306 0.623
1.76 1.40 0.185 0.300 0.617
1.78 1.42 0.179 0.293 0.612
1.80 1.44 0.174 0.287 0.607

1.82 1.46 0.169 0.281 0.602
1.84 1.48 0.164 0.275 0.596
1.86 1.51 0.159 0.269 0.591
1.88 1.53 0.154 0.263 0.586

1.90 1.56 0.149 0.257 0.581
1.92 1.58 0.145 0.251 0.576
1.94 1.61 0.140 0.246 0.571
1.96 1.63 0.136 0.240 0.566

1.98 1.66 0.132 0.235 0.561
2.00 1.69 0.128 0.230 0.556
2.02 1.72 0.124 0.225 0.551
2.04 1.75 0.120 0.220 0.546

2.06 1.78 0.116 0.215 0.541
2.08 1.81 0.113 0.210 0.536
2.10 1.84 0.109 0.206 0.531
2.12 1.87 0.106 0.201 0.526

2.14 1.90 0.103 0.197 0.522
2.16 1.94 0.100 0.192 0.517

M A/A∗ p/p0 ρ/ρ0 T/T0

2.18 1.97 0.097 0.188 0.513
2.20 2.01 0.094 0.184 0.508

2.22 2.04 0.091 0.180 0.504
2.24 2.08 0.088 0.176 0.499
2.26 2.12 0.085 0.172 0.495
2.28 2.15 0.083 0.168 0.490

2.30 2.19 0.080 0.165 0.486
2.32 2.23 0.078 0.161 0.482
2.34 2.27 0.075 0.157 0.477
2.36 2.32 0.073 0.154 0.473

2.38 2.36 0.071 0.150 0.469
2.40 2.40 0.068 0.147 0.465
2.42 2.45 0.066 0.144 0.461
2.44 2.49 0.064 0.141 0.456

2.46 2.54 0.062 0.138 0.452
2.48 2.59 0.060 0.135 0.448
2.50 2.64 0.059 0.132 0.444
2.52 2.69 0.057 0.129 0.441

2.54 2.74 0.055 0.126 0.437
2.56 2.79 0.053 0.123 0.433
2.58 2.84 0.052 0.121 0.429
2.60 2.90 0.050 0.118 0.425

2.62 2.95 0.049 0.115 0.421
2.64 3.01 0.047 0.113 0.418
2.66 3.06 0.046 0.110 0.414
2.68 3.12 0.044 0.108 0.410

2.70 3.18 0.043 0.106 0.407
2.72 3.24 0.042 0.103 0.403
2.74 3.31 0.040 0.101 0.400
2.76 3.37 0.039 0.099 0.396

2.78 3.43 9.038 0.097 0.393
2.80 3.50 0.037 0.095 0.389
2.82 3.57 0.036 0.093 0.386
2.84 3.64 0.035 0.091 0.383

2.86 3.71 0.034 0.089 0.379
2.88 3.78 0.033 0.087 0.376
2.90 3.85 0.032 0.085 0.373
2.92 3.92 0.031 0.083 0.370

2.94 4.00 0.030 0.081 0.366
2.96 4.08 0.029 0.080 0.363
2.98 4.15 0.028 0.078 0.360
3.00 4.23 0.027 0.076 0.357



APPENDIX C

Properties of Normal Shock Flow

M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

1.00 1.000 1.000 1.000 1.000
1.02 0.980 1.047 1.013 1.000
1.04 0.962 1.095 1.026 1.000
1.06 0.944 1.144 1.039 1.000

1.08 0.928 1.194 1.052 0.999
1.10 0.912 1.245 1.065 0.999
1.12 0.896 1.297 1.078 0.998
1.14 0.882 1.350 1.090 0.997

1.16 0.868 1.403 1.103 0.996
1.18 0.855 1.458 1.115 0.995
1.20 0.842 1.513 1.128 0.993
1.22 0.830 1.570 1.140 0.991

1.24 0.818 1.627 1.153 0.988
1.26 0.807 1.686 1.166 0.986
1.28 0.796 1.745 1.178 0.983
1.30 0.786 1.805 1.191 0.979

1.32 0.776 1.866 1.204 0.976
1.34 0.766 1.928 1.216 0.972
1.36 0.757 1.991 1.229 0.968
1.38 0.748 2.055 1.242 0.963

1.40 0.740 2.120 1.255 0.958
1.42 0.731 2.186 1.268 0.953
1.44 0.723 2.253 1.281 0.948
1.46 0.716 2.320 1.294 0.942

1.48 0.708 2.389 1.307 0.936
1.50 0.701 2.458 1.320 0.930
1.52 0.694 2.529 1.334 0.923
1.54 0.687 2.600 1.347 0.917

1.56 0.681 2.673 1.361 0.910
1.58 0.675 2.746 1.374 0.903
1.60 0.668 2.820 1.388 0.895
1.62 0.663 2.895 1.402 0.888

1.64 0.657 2.971 1.416 0.880
1.66 0.651 3.048 1.430 0.872

M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

1.68 0.646 3.126 1.444 0.864
1.70 0.641 3.205 1.458 0.856

1.72 0.635 3.285 1.473 0.847
1.74 0.631 3.366 1.487 0.839
1.76 0.626 3.447 1.502 0.830
1.78 0.621 3.530 1.517 0.821

1.80 0.617 3.613 1.532 0.813
1.82 0.612 3.698 1.547 0.804
1.84 0.608 3.783 1.562 0.795
1.86 0.604 3.869 1.577 0.786

1.88 0.600 3.957 1.592 0.777
1.90 0.596 4.045 1.608 0.767
1.92 0.592 4.134 1.624 0.758
1.94 0.588 4.224 1.639 0.749

1.96 0.584 4.315 1.655 0.740
1.98 0.581 4.407 1.671 0.730
2.00 0.577 4.500 1.688 0.721
2.02 0.574 4.594 1.704 0.711

2.04 0.571 4.689 1.720 0.702
2.06 0.567 4.784 1.737 0.693
2.08 0.564 4.881 1.754 0.683
2.10 0.561 4.978 1.770 0.674

2.12 0.558 5.077 1.787 0.665
2.14 0.555 5.176 1.805 0.656
2.16 0.553 5.277 1.822 0.646
2.18 0.550 5.378 1.839 0.637

2.20 0.547 5.480 1.857 0.628
2.22 0.544 5.583 1.875 0.619
2.24 0.542 6.687 1.892 0.610
2.26 0.539 5.792 1.910 0.601

2.28 0.537 5.898 1.929 0.592
2.30 0.534 6.005 1.947 0.583
2.32 0.532 6.113 1.965 0.575
2.34 0.530 6.222 1.984 0.566
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M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

2.36 0.527 6.331 2.003 0.557
2.38 0.525 6.442 2.021 0.549
2.40 0.523 6.553 2.040 0.540
2.42 0.521 6.666 2.060 0.532

2.44 0.519 6.779 2.079 0.523
2.46 0.517 6.894 2.098 0.515
2.48 0.515 7.009 2.118 0.507
2.50 0.513 7.125 2.139 0.499

2.52 0.511 7.242 2.157 0.491
2.54 0.509 7.360 2.177 0.483
2.56 0.507 7.479 2.198 0.475
2.58 0.506 7.599 2.218 0.468

2.60 0.504 7.720 2.238 0.460
2.62 0.502 7.842 2.260 0.453
2.64 0.500 7.965 2.280 0.445
2.66 0.499 8.088 2.301 0.438

2.68 0.497 8.213 2.322 0.431

M1 M2 p2/p1 T2/T1 (p0)2/(p0)1

2.70 0.496 8.338 2.343 0.424
2.72 0.494 8.465 2.364 0.417
2.74 0.493 8.592 2.396 0.410

2.76 0.491 8.721 2.407 0.403
2.78 0.490 8.850 2.429 0.396
2.80 0.488 8.980 2.451 0.389
2.82 0.487 9.111 2.473 0.383

2.84 0.485 9.243 2.496 0.376
2.86 0.484 9.376 2.518 0.370
2.88 0.483 9.510 2.541 0.364
2.90 0.481 9.645 2.563 0.358

2.92 0.480 9.781 2.586 0.352
2.94 0.479 9.918 2.609 0.346
2.96 0.478 10.055 2.632 0.340
2.98 0.476 10.194 2.656 0.334

3.00 0.475 10.333 2.679 0.328



Index

Acceleration of fluid particle, 46
Adiabatic process, 343, 344
Adverse pressure gradient, 242
Aerodynamic center, 294
Airfoil, 295
Angle of attack, 293, 296
Angular velocity, 197, 198
Archimedes, 2, 88
Aspect ratio, 303
Atmosphere, 71
Avogadro number, 4
Avogadro, Amadeo, 4
Axial compressor, 382
Axial Turbine, 411

Bernoulli, Daniel, 2, 18
Bernoulli’s equation, 112, 113, 258, 259
Betz, Albert, 426
Betz number, 425
Blasius formula, 239
Blasius, Paul, 228
Body forces, 41
Boundary conditions, 47
Boundary layer, 228
Buoyancy, 87, 88

Camber, 296
Capillary effect, 15
Cavitation, 18
Center of pressure, 79, 294, 295
Centrifugal pump/compressor, 402
Chezy, Antoine, 184
Chezy coefficient, 184
Chord, 296
Circular cylinder flow:

lifting, 283
non-lifting, 273

Circulation, 196
Collocation point, 339
Compressibility, 16, 345
Compressor, 382
Concentric cylinders, 161

Contact angle, 15
Continuity equation, 40, 45
Converging diverging nozzle, 361
Corner flow, 262
Couette flow, 143–145
Couette, Maurice, 143
Creeping flow, 217
Critical conditions, 350
Cylinder, flow over, 273–276

d’Alembert, Jean, 277
d’Alembert’s paradox, 277
da Vinci Leonardo, 2
Darcy’s formula, 163
Darcy, Gaspard, 163
Degree of reaction, 400, 416
de Laval, Karl, 361
de Laval nozzle, 361
Del, operator:

cartesian coordinates, 45
cylindrical coordinates, 48
spherical coordinates, 49

Delta wing, 306–308
Density, 7
Detached shock wave, 360
Diffuser, 360, 408
Dimensional analysis, 213
Dirichlet boundary conditions, 271
Dirichlet, Johanne, 271
Discharge coefficient, 124
Displacement thickness, 234, 235, 239
Divergence theorem, 45
Doublet, 265–267
Downwash, 303, 309
Drag:

friction drag, 236
induced drag, 304
coefficient, 236, 285

Dynamic pressure, 113

Efficiency, 387, 412
Elliptic wing, lift distribution, 304
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Euler equations, 48
Euler, Leonhard, 2
Euler number, 216
Eulerian method, 34, 35

Favorable pressure gradient, 242,
243

Finite difference method, 325–327
Finite volume method, 332–334
Flap, 312
Flat plate:

airfoil, 293
boundary layer, 228
drag, 282, 370
lift, 293, 370

Flow meter, 123, 125
Flow similarity, 217
Free stream, 261
Friction coefficient, 146, 237
Friction drag, 236
Friction factor, 165, 166
Froude number, 181, 191, 215
Froude, William, 181

Gas constant, 9, 12
Green’s identity, 271, 338
Guide vanes, 398

Hagen, Gotthilf, 157
Hagen-Poiseuille flow, 157
Head loss, 163
Heat conduction, 12
Heat transfer coefficient, 12
High lift devices, 312
Horseshoe vortex, 309
Hydraulic diameter, 171
Hydraulic jump, 188–192
Hydraulic perimeter, 171
Hydraulic radius, 183
Hydrostatic force, 77
Hypersonic flow, 346

Ideal gas, 9
Impulse turbine, 419
Incompressible flow, 48
Induced drag, 304
Injector, 127
Irrotational flow, 255, 256
Isentropic flow, 347–349

Jets, 114
Jones, R. T., method of, 305

Karman vortex street, 287
Kelvin, degree, 9
Kinematic viscosity, 11
Kinetic theory of gases, 18
Knudsen, Martin, 5
Knudsen number, 5
Kutta-Joukowski theorem, 291

Lagrange, Joseph, 33
Lagrangian method, 33
Laminar bubble, 243
Laminar flow, 5
Laplace’s equation:

cylindrical coordinates, 258
definition, 257

Laplace, Pier, 257
Leading edge separation, 301, 302
Lift, 289–292
Lift coefficient:

two-dimensional, 293, 298, 299
three-dimensional, 304, 307

Lift slope, 299, 304
Lubrication theory, 151–156

Mach angle, cone, 346
Mach number, 216
Magnus effect, 292
Manning coefficient, 184, 185
Manning, Robert, 184
Manometer, 69
Material derivative, 46, 50
Maxwell, James, 20
Mean free path, 5, 216
Material derivative, 45
Modulus of elasticity, 16
Molecular speed, 20
Moment of inertia, 80, 81
Momentum equation, 41, 46, 47
Momentum thickness, 235, 239
Moody chart, 166
Multielement wing, 312

Navier, Claude Louis, 2
Navier-Stokes equations, 47
Neumann boundary condition, 271
Newton, Sir Isaac, 2
Newton’s second law, 3
No-slip boundary condition, 47
Noncircular duct, 171
Normal shock, 355–359
No-slip condition, 47
Nozzle, 127, 354, 361

One-dimensional flow, 111
Open channel flow, 179–194
Orifice, 125
Overexpanded nozzle, 362

Panel methods, 337–340
Pascal, Blaise, 67
Pathlines, 36
Pelton, Lester, 421
Pelton wheel, 421
Pipe flow, 163, 171
Pitot, Henry, 122
Pitot tube, 122
Poiseuille flow, 148, 149, 157
Poiseuille, Jeane, 148, 157
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Potetial flow, 259–261
Prandtl-Glauert correction, 369
Prandtl, Ludwig, 3, 228
Pressure, 3, 8
Pressure coefficient, 216, 276
Pressure drag, 276
Pressure rise coefficient, 393
Propeller, 423
Pump, 170, 378
Pump, axial, 389
Pump, centrifugal, 402

Rankine’s oval, 272, 273
Rankine, W. J. M., 273
Rectangular duct flow, 171
Relative roughness, 166, 185
Reynolds number, 147, 216
Reynolds lubrication theory,

151–156
Reynolds, Osborne, 2, 147
Reynolds pipe flow experiment, 164
Rotor, 383

Sea water properties, 10
Separated flow, 6
Separation point, 242, 243, 302
Shape factor, 236, 239
Shear stress, 10
Shock wave, 355
Similarity of flows, 217
Sink, 263
Skin friction, 237
Slat, 312
Slender wings, 306
Slipper bearing, 151–156
Sluice gate, 126
Source, 263, 264
Specific heat, 12
Specific heat ratio, 12
Speed of sound, 17, 345
Sphere, flow past, 279
Stability, 91, 92
Stagnation flow, 263
Stagnation point, 274
Stall, 301
Static pressure, 113
Stator, 383
Stokes, George Gabriel, 2

Stokes formula, 279
Streak lines, 36
Streamline, 36
Stress vector, 38
Strouhal number, 215
Superposition principle, 260, 261
Surface roughness, 166
Surface tension, 13
Swept wings, 306
Symmetric airfoil, 296

Tangential stress, 38
Taper ratio, 304
Terminal velocity, 281, 286
Thermal conductivity, 12
Throat in a nozzle, 354
Time constant, 215
Total pressure, 113
Transition, 164, 243
Transonic flow, 346
Trailing vortex, 303, 309
Turbines, 411
Turbulent boundary layer, 238

Underexpanded nozzle, 362
Uniform flow, 261
Universal gas constant, 9

Vapor pressure, 17
Velocity diagrams, 385
Velocity potential, 257
Venturi, Giovanni, 123
Venturi tube, 123
Viscosity coefficient, 10, 216
von Karman, Theodore, 231
Vortex, 194–197, 268–270
Vortex burst (breakup), 308
Vortex shedding, 287, 288
Vorticity, 198, 256

Wake, 303, 309
Weirs, 192–194
Wetted, nonwetted contact, 15
Wetted perimeter, 171
Wind turbines, 424
Wings, 296, 304

Zero-lift angle of attack, 299
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