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Preface

This text started as a collection of notes of the lectures on Space Robotics given by
the author to the students of the International Master on Space Exploration and De-
velopment Systems (SEEDS). The aim of the course was the study of the automatic
machines aimed to operate both autonomously and as a support to astronauts in
space exploration and exploitation missions, with particular attention to the devices
designed for planetary environment, including small planets, comets and asteroids.

This material was then completed and made more systematic so that it can hope-
fully be useful not only to the students of that course but also to those who have
an interest in the wide and much interdisciplinary field of space robotics, and in
particular in its mechanical aspects.

The focus is drawn mainly on the mechanics of space robots: the author is well
aware that, even in this specific field, it is far from being complete and that robots,
like all mechatronic systems, are so integrated that no single aspect can be dealt sep-
arately. Many important aspects are either dealt with only marginally or altogether
left out. The very important topics of the control and the behavior of robots, for in-
stance, are only marginally touched, even if their influence on the mechanical aspect
to which this book is dedicated is not at all marginal.

The structure of the book is so organized:

e Chapter 1: a very short introductory overview of human and robotic space ex-
ploration, stressing the need for man-machine cooperation in exploration. The
various types of robotic missions in LEO, deep space and on planets and their
basic requirements are shortly summarized.

e Chapter 2 deals in a synthetic way with the main characteristics of the environ-
ments space robots are facing and will face in the future. Since space environment
is a specialized subject, dealt with in many books, this subject is only briefly sum-
marized.

e The configurations of robot arms and the basic kinematic and dynamic relation-
ships needed for their design are described in Chap. 3.

e Chapter 4 is devoted to the study of mobility on planetary surfaces, using differ-
ent kind of supporting devices, like wheels, legs and aerodynamic or aerostatic
devices.

vii



viii Preface

e The basic characteristics of wheeled robots and vehicles are summarized in
Chap. 5. The behavior of wheeled devices is studied in its various aspects, like
longitudinal, lateral and suspension dynamics. The consequences of operating
wheeled machines in the various environments are analyzed in some detail. The
chapter is concluded by a description of the only vehicle that successfully carried
humans on the surface of the Moon, the Apollo Lunar Roving Vehicle.

e Vehicles and robots that use legs, tracks or other devices to move on a solid sur-
face are described in Chap. 6. Since a great number of different architectures were
proposed and sometimes even used in the past, not all the possible configurations
are illustrated: the choice was based on the actual existing applications and on the
perspectives of future use.

e Chapter 7 is devoted to a short overview of the transducers used for actuation and
sensing in space robots.

e A short overview of the energy sources and storage devices that can be used for
space robots is reported in Chap. 8.

The book includes two appendices summarizing the theoretical formulations al-
lowing to write mathematical models of space robots including a variety of mechan-
ical components, such as arms, legs, etc. The author found it necessary to include
them, since the participants to the course in Space Exploration and Development
Systems have a much varied background and what may seem obvious to some stu-
dents, could be difficult for other ones. In a similar way, some of the readers of this
book may not be familiar with the concepts of analytical mechanics or dynamics of
deformable bodies used in the text, mainly in Chaps. 3 and 5.

The author is grateful to colleagues and students of the Mechanics Department
and the Mechatronics Laboratory of the Politecnico di Torino for their suggestions,
criticism and general exchange of ideas. Students, in particular postgraduate stu-
dents, cooperated to this book with their thesis work and their questions, but mainly
with their very presence that compelled me to clarify my own ideas and to work out
all details. To all of them goes my gratitude.

Last, but far from least, this book could not have been written without the support,
encouragement and patience by my wife Franca—advisor, critic, editor, companion
and best friend since 44 years.

A Note on the Illustrations I have made every effort to seek permission from the
original copyright holders of the figures, and I apologize if there are cases where 1
have not been able to achieve my objective. This applies in particular to figures taken
from the web, like Figs. 4.10, 4.35, 4.36, 4.40, 5.2, 6.1, 6.15, 6.17, 6.21, 6.23b, 6.24,
6.25a, 6.28, 6.31a, b, c, 7.18,7.19 and 7.21.

Torino, Italy Giancarlo Genta
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length of the contact area; acceleration distance between center of mass
and front axle

acceleration vector

width of contact area; distance between center of mass and rear axle;
wingspan

cohesive bearing strength; viscous damping coefficient; wing chord
critical damping

optimal damping

soil deformation; diameter

direct piezoelectric matrix

second DH parameter: offsett

energy

error

unit vector of the ith axis

friction coefficient; rolling coefficient

rolling coefficient at zero speed

rollover factor

sliding factor

gravitational acceleration

gravitational acceleration vector

sinking in the ground

convection coefficient

grade of the road; imaginary unit (i = /—1); current

transversal grade of the road

stiffness; modulus of soil deformation

cohesive modulus

frictional modulus

length of the arm; wheelbase

third DH parameter: length

mass
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equivalent mass

sprung mass

unsprung mass

pressure

generalized momenta

angular velocities in the xyz frame
bearing capacity of the soil with no sinking
bearing capacity of the soil
eigenfunction

vector of the generalized coordinates; eigenvector
radius

vector

laplace variable

time; track; pneumatic trail; thickness
displacement

displacement vector

velocities in the xyz frame

volume

velocity of the ground due to slip
sinking; number of teeth

body-fixed reference frame
coordinate vector

state vector

area

dynamic matrix in the state space
magnetic remanence

input gain matrix

cornering stiffness; capacitance

drag coefficient

force coefficient

lift coefficient

side force coefficient

camber stiffness

longitudinal force coefficient
damping matrix; output gain matrix
aerodynamic drag; displacement
direct link matrix; dynamic matrix in the configuration space
Young’s modulus; modulus of deformation (soil); aerodynamic
efficiency

stiffness matrix of the material

force

force vector

normal force

Froude number

tangential force
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shear modulus; gravitational constant
gyroscopic matrix

coercitive magnetic field

Hamiltonian function

circulatory matrix

identity matrix; inertia matrix

moment of inertia

Jacobian matrix

stiffness

back EMF constant

torque constant

stiffness matrix; matrix of the control gains
derivative gains matrix

integrative gains matrix

proportional gains matrix

reference length; aerodynamic lift
Lagrangian function

mass

mass matrix; moment

molecular mass

Mach number

number of turns

Nusselt number

matrix of the shape functions

power

flow

radius of the wheel (unloaded); radius of the trajectory; universal gas
constant; resistance to motion; electric resistance
reluctance

rotation matrix

radius of the trajectory (low speed conditions)
Reynolds number

effective rolling radius

radius under load

first order mass moment; aerodynamic side force; reference surface
temperature; torque

torque vector; homogeneous transformation matrix
kinetic energy

potential energy

vehicle speed; volume; voltage

velocity vector

velocity of the foot relative to the body
velocity relative to the atmosphere

velocity of sound

back electromotive force
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Symbols and Acronyms

work

inertial frame

sideslip angle; grade angle of the road; angle of attack
fourth DH parameter: twist

transversal grade angle of the road
sideslip angle of the vehicle; duty factor
camber angle; inclination angle

steering angle; aerodynamic sideslip angle; resistivity
steering angle (low speed steering)
virtual work

virtual displacement

strain; deformation of the soil

strain vector

efficiency of the brake

efficiency; modal coordinate

modal coordinates vector

pitch angle; thermal resistance

first DH parameter: rotation angle
vector of the generalized coordinates at the joints
thermal conductivity

dynamic viscosity; traction coefficient
magnetic permeability of vacuum
friction coefficient

relative magnetic permeability
longitudinal force coefficient
longitudinal traction coefficient

sliding longitudinal traction coefficient
cornering force coefficient

lateral traction coefficient

sliding lateral traction coefficient
Poisson’s ratio; kinematic viscosity
density

normal pressure; stress; longitudinal slip
stress vector

shear stress; transmission ratio; time delay; nondimensional time
roll angle; friction angle (¢ = atan(u))
torsional stiffness

yaw angle

frequencys; circular frequency

natural frequency

rotational damping coefficient

increase of sinking

torsional stiffness of the tires of an axle
matrix of the eigenvectors

angular velocity
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Q@ angular velocity vector

3 imaginary part

N real part

x differentiation with respect to variable x

\Y% Laplace operator

Subscripts

d derivative

i inner; integrative

0 outer

p proportional

t tangential

Values of Some Physical Constants

G Gravitation constant 6.67259 x 10~ m3kg=!s~2
R Universal gas constant 8.314510 Jmol~! K~

7 Magnetic permeability of vacuum 1.257 x 107 Hm™!
Acronyms

ACE Advanced Composition Explorer
ACR Anomalous Cosmic Rays

AFC Alkaline Fuel Cell

AGV Automatically Guided Vehicles
Al Artificial Intelligence

AU Astronomical Unit

BAP Body Armour Powered

BEMF  Back ElecroMotive Force

CRP Carbon Reinforced Plastics

CVT Continuously Variable Transmission
DC Direct Current
DH Denavit—Hartenberg

DMFC  Direct Methanol Fuel Cell
ECU Electronic Control Unit
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Chapter 1
Introduction

1.1 Robots in Space

Books dealing with robots often start with the definition of what robots are.

The origin of the word robot dates back from 1920, when the Czech writer Karel
Kapec published his science fiction play R.U.R. (Rossum’s Universal Robots) deal-
ing with artificial men built for performing work in place of human beings. He
invented the word Robota, from the base robot-, as in robota, compulsory labor, or
robotnik, peasant owing such labor. The robots described in the play are humanoid.

The ISO (International Standards Organization) 8373 standard defines a robot
as an automatically controlled, reprogrammable, multipurpose, manipulator pro-
grammable in three or more axes, which may be either fixed in place or mobile for
use in industrial automation applications. The International Federation of Robotics,
the European Robotics Research Network (EURON), and many national standards
committees use this definition.

A broader definition is given by the Robotics Institute of America (RIA): a re-
programmable multi-functional manipulator designed to move materials, parts,
tools, or specialized devices through variable programmed motions for the perfor-
mance of a variety of tasks. The RIA subdivides robots into four classes

1. devices that manipulate objects with manual control,

2. automated devices that manipulate objects with predetermined cycles,

3. programmable and servo-controlled robots with continuous point-to-point trajec-
tories, and

4. robots of the last type which also acquire information from the environment and
move intelligently in response.

The New Oxford American Dictionary defines a robot as a machine able of car-
rying out a complex series of actions automatically, esp. one programmable by a
computer. Here the ability of manipulating objects is not required.

According to Encyclopaedia Britannica, a robot is any automatically operated
machine that replaces human effort, though it may not resemble human beings in
appearance or perform functions in a human-like manner. Here the anthropomor-
phic appearance emerges, at least for being explicitly negated.

G. Genta, Introduction to the Mechanics of Space Robots, Space Technology Library 26, 1
DOI 10.1007/978-94-007-1796-1_1, © Springer Science+Business Media B.V. 2012



2 1 Introduction

The definition from Random House Webster’s dictionary is a machine that re-
sembles a human and does mechanical, routine tasks on command (here the anthro-
pomorphic shape is needed, autonomy not) or a machine that resembles a human
and does mechanical, routine tasks on command.

Another definition, from Encyclopaedia Britannica, is a machine that looks like a
human being and performs various complex acts (as walking or talking) of a human
being.

In some definitions also virtual software agents performing the same tasks are
defined as robots (in some cases the latter are simply called bots), but here we will
strictly require that a robot is a material object. A mathematical model of a robot
implemented on a computer is thus a mathematical model of a robot, but not a robot
in itself.

While the word robot comes from science fiction, the idea of a more or less an-
thropomorphic machine or, in general, an anthropomorphic being able to substitute
humans is much older. They are present in ancient literature, as early as the Iliad
(the self-operating tools used by the god Hephaestus), and many attempts to build
automata were performed since Greek—Roman times.

In many cases these fictional robots were biological (from the Golem to the
‘thing’ of the Frankenstein novel, and more recently the replicants of the novel Do
Androids Dream of Electric Sheep by Philip K. Dick from which the movie Blade
Runner was taken) and in others they were mechanical, from the various automata
described by Heron of Alexandria, Ctesibius of Alexandria and Philo of Byzantium
to the modern droids of the Star Wars saga.

In all cases the attempt was that of describing, and in some case building, artificial
human beings, and anthropomorphism has always played a role in them. Although
in most cases the goal was an artificial being looking like, moving as and behaving
as a human, there are instances in which the similarity with humans was restricted
to the behavior or even to “the way it thinks” (mental anthropomorphism).

The real-world situation is much different. Usually robots are electromechanical
(or electrohydraulic, or electropneumatic) machines, controlled by a programmable
computer, so that they are able to do some task on their own. It is still open the
discussion whether more or less anthropomorphic devices controlled directly by hu-
mans are robots. They can be simple mechanical devices, like the arms used to ma-
nipulate radioactive substances, but also very sophisticated systems able to perform
complex tasks under the complete telecontrol from human operators. The robotic
arm of the Space Shuttle is a good example. The term felemanipulator or tele-agent
seem more adequate than robot in this case.

Since the very beginning, the devices launched into space had to perform, either
automatically or under control from Earth, a number of tasks. With the increasing
complexity of space missions these requirements became more demanding and the
complexity of automatic spacecraft increased.

The habit of calling these complex space devices robots became widespread. So
an automatic probe started to be called a robotic probe, even if it has no manipulator
arms, a small autonomy in taking decisions and obviously it has no human-like
appearance. Rovers operating on the Moon or on a planet are invariably defined
robots or robotic rovers, even when it would be better to call them automatic rovers.
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The very world robot may be in this case misleading owing to the overtones in
our cultural background and in itself is saying very little. When most of us hear
the word robot his/her mind goes to the pages of so many science fiction books or
to scenes of movies. Even if the general attitude toward robots is very different in
the various cultures, with Orientals being much more positive and Westerners more
hostile, the image of a robot, particularly if it is small and looks friendly, and is used
in some obviously innocuous activity, generates sympathetic reactions. The same
object that would generate little interest if referred to as an automatic machine, is
immediately humanized and regarded with sympathy (or fear and hostility, if big
and looking menacing) if called a robot. Sometimes it seems that these feelings are
purposely evoked to create interest or support toward a given mission.

While for specialists this problem about names creates no problem, since they
know well the performance and the limitations of these machines, misusing the
term ‘robot’ can be misleading for the general public and can create expectations
beyond the possibilities of present technology. This has in turn a potentially danger-
ous aspect: if the public has disproportionate expectation, it can become difficult to
have people to appreciate the importance of the small steps we painstakingly take
in space, and to support the expenditures required for technological and scientific
advancement. After all, why spending money to build and design better spacecraft
with more advanced technology, when we have, or at least we can build, robots that
can perform almost all important tasks in the solar system?

1.2 Humans and Robots

From the very beginning of space exploration (and even earlier), the advisability
of human beings participating directly to space missions has stirred many debates
and continues to do so. There is no doubt that the presence of people on board
a space vehicle makes its design much more complex and challenging, causing a
large increase in costs. It has been thus ever since the beginning of the space age,
and is even more so today.

First, the requirements for safety of space vehicles are greatly increased. In the
case of automatic missions, it is possible to increase the number of space probes
which are launched, decreasing their reliability. The cost reduction and the increase
of the results/costs ratio which can be achieved in this way may be important. The
large lead time between the starting of the design of a mission and its completion
may also be reduced in this way. It is inevitable that the very high reliability needed
when humans are on board increases the costs greatly.

The performance of the life-support systems required by the people aboard a
space vehicle must be guaranteed. They are usually heavy, bulky and costly; and
their complexity increases for long duration missions. The miniaturization of in-
struments and all electronic devices makes things worse from this viewpoint. As
technology advances, robotic probes become lighter, smaller and more convenient
than manned vehicles. This leads to a reduction of the size, and cost, of the launch
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Fig. 1.1 An astronaut
performing ExtraVehicular
Activity (EVA) to repair the
Hubble Space Telescope
(NASA photo)

vehicles. Furthermore, advances in electronics and computer science allow increas-
ingly complex tasks to be entrusted to robots.

However, experience has shown that the presence of humans in space is not only
popular with the public, but above all is useful; there are many cases when direct
intervention by an astronaut was essential to correct the malfunction of an automatic
device. The ability to react to unexpected situations and the ability to perform a
wide variety of tasks are two human characteristics which are precious in space
missions. Astronauts and cosmonauts have proved that they can adapt to conditions
of weightlessness and work in space without encountering too many problems. The
operations to repair and later to upgrade the Hubble Space Telescope are perhaps
the best example, but they are just two of many (Fig. 1.1).

This is even more true in the case of deep space missions. If the human explo-
ration of Mars is a very difficult enterprise, robotic exploration is not much simpler.
Any automatic probe moving on the surface of that planet must work autonomously.
While in the case of the Moon it is possible for someone on the ground to teleoper-
ate a probe, since the two-way link time is only about 3 seconds, the same cannot
be done on Mars. Several minutes elapse between the instant the camera of a rover
detects an obstacle in its path and that when the course correction commands arrive
from Earth. The automatic vehicles crawling on the surface of the planet, such as the
Sojourner (Fig. 1.2) rover of the Mars Pathfinder mission of 1997 or the more recent
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Fig. 1.2 The robotic rover
Sojourner (NASA image)

Spirit and Opportunity, are very slow and must have at least some operational auton-
omy. However, these rovers were manually teleoperated for many of their functions
in spite of the long time needed to receive the control inputs.

Many of the promises of artificial intelligence are still far from being fulfilled.
Although the power of computers goes on increasing at a quick rate, the construction
of machines simulating human logical reasoning is being delayed to an increasingly
distant future. The more the performance of computers improves, the more is it real-
ized how difficult it is to build machines displaying actual logical abilities. Although
nobody has yet succeeded in defining exactly what intelligence is, or perhaps mainly
for that reason, today the term “intelligent” is applied to a variety of situations—
intelligent machines, intelligent structures, intelligent weapons, and even intelligent
suspensions in motor vehicle technology. And perhaps that is also with good reason,
as these devices are capable of performance which was unthinkable a few years ago.
But the term ‘intelligent’ must be properly understood: many machines can perform
a wide variety of tasks in an autonomous way, but the intelligence expected from a
human being is completely different.

Similar considerations apply in the industrial world. Many discussions have taken
place on fully automated factories, in which all operations are performed without
any human intervention, and forecasts of the complete substitution of workers by
robots in many technological processes have been made. Today these perspectives
are being revised. All machines, even the smartest ones, must cooperate with hu-
mans and classical robots are often unsuitable for such a task. The word ‘cobot’,
from ‘collaborative robot’, has been invented to designate an intelligent (in the above
sense) machine capable of helping a human operator without replacing him.

The relative new field of domestic robotics or, more in general, service robotics,
is gaining momentum. The personal robot may in the future duplicate the success
of the personal computer and the goal of a robot in every house seems now to be
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not less meaningful than the goal of a computer in every house was twenty years
ago. To work in homes, offices, hospitals and man-carrying vehicles, robots must
become more reliable, user friendly and autonomous than they are at present and
must become able to mix with people, a thing industrial robots are not able—and
allowed—to do.

Similar, and contradictory, trends are also apparent in the space field. Tasks which
were in the past entrusted only to machines are now sometimes performed by human
beings, perhaps with the aim of using simpler and less costly devices, or to obtain
better performance. Attempts in this direction, even clumsy and dangerous ones,
were performed to avoid costly automatic devices. A much publicized accident oc-
curred to the Mir space station when a Progress automatic cargo vehicle failed a
docking attempt under manual guidance, hitting a solar panel and causing much
damage. In that case the docking manoeuvre was performed manually to cut costs,
without providing the pilots with the required instrumentation to perform it safely.

In other cases to put the man in the control loop is a welcome simplification,
which lowers the cost of a mission without compromising its safety. The lunar
probes planned by ESA at the end of the 1990s, for instance, were meant to be
piloted by a human operator on the ground to a greater extent than previous lunar
probes. In this perspective, the added costs due to the presence of humans on board a
spacecraft can at least partially be compensated for by a reduction of the cost of the
control systems. Many operations, which were meant to be performed under com-
pletely automatic control, can be performed more efficiently by astronauts, perhaps
helped by their ‘cobots’. The man—machine relationship, which sometimes tends to
become conflicting, must evolve toward a closer cooperation.

An example of this man—machine cooperation is the Mars Outposts approach
to Mars exploration launched by the Planetary Society. Here a number of robotic
research stations, equipped with permanent communications and navigational sys-
tems, would be sent to the red planet. They would perform research, and establish
infrastructure needed to prepare future landing sites and return vehicles for the ex-
ploration of Mars by humans.

A reduction of the cost of launching payloads into Earth orbit—of the cost of
getting out of the Earth gravitational well—is essential. This will only result from
marked progress in new launch technologies, and will make it easier for human
beings to participate directly in space exploration. And there is a cascade effect: the
more humans will live in space and settle on other celestial bodies, the less will be
the number of people and the amount of materials to be launched into space from the
Earth. What is required in our generation is a “bootstrap” effort which will slowly
gain momentum.

If space is more than a place to build automatic laboratories and to start some
industrial enterprises in the immediate vicinity of our planet, the presence of humans
is essential. Humans must learn not only how to work but also how to live in space
for many years. They must learn how to travel through space toward destinations
which will be not only scientific bases but also places to live. In other words what
humankind can do—and in the future could decide to do—is to colonize space, and
not only to send robotic devices to explore it.
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The role of robots will nevertheless be essential and it is easy to predict that,
wherever humans will go in space, they will be preceded, accompanied and tended
by automatic machinery, which will likely be referred to as robots.

1.3 Artificial Intelligence

The term Artificial Intelligence (AI) was first used in a conference held in the sum-
mer of 1956 at the Dartmouth College, New Hampshire, and has been widely used
since then. Although no definition of Artificial Intelligence (or, for that matter, even
of human intelligence) exist, there is a wide agreement in accepting that it consists
of imitating human intelligent behavior by a machine. The well known Turing test
is what is closest to a definition: a machine is intelligent if it is impossible to tell
it from a human being during an interaction based on exchanging messages on any
subject.

At the beginning, two ways were followed to reach this goal. The first consists in
writing dedicated software running on conventional, although very powerful, com-
puters, able to manipulate symbols following well established rules. At the base of
these attempts there is the assumption that intelligence is based on algorithms to
perform logical operations by manipulating symbols. The human brain is then con-
sidered as a biological computer, and the human mind is the result of a sort of soft-
ware running on it. Similar results could then be obtained by using a non-biological
computer, provided that it is powerful enough to allow a suitable software to run.

The second approach is the neural one, based on the construction of a network of
artificial neurons, simulating the structure of animal, and then also human, brains.
The Artificial Neural Networks (ANN) so devised are not running programs, but
operate by learning.

These two approaches are not as much different as they look, since very often
neural networks are simulated on computers, i.e. they are reduced to a software
running on conventional machines. In this way the second approach seems to reduce
to a particular case of the first.

At any rate the neural approach seemed to be haunted by unsolvable problems
and at the end of the 1960s it seemed to be a dead end. On the contrary the algorith-
mic approach seemed to obtain encouraging results.

By the mid 1980s the neural approach regained momentum due to the solution
of the mentioned problems, but the goal of building intelligent machines proved to
be much harder than predicted. While in the 1960s it was a common opinion that by
the year 2000 they would have been an established technological result, at present
(2010) their realization seems to be still far and many cast doubts on their possibility,
at least with present day technology.

A tentative scheme of the path leading from inert matter to intelligent and con-
scious systems is shown in Fig. 1.3.

Following this scheme, a material system, able to manipulate energy, is a dy-
namic system. If it can also receive signals and manipulate information, it can be
considered as an automatic device, and so on.
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Fig. 1.3 Tentative scheme of
the path leading from inert
matter to intelligent
autonomous and conscious
systems
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It is debatable whether the decision box should be over or under the knowledge
box. Here it is assumed that a being (living or robotic) can take decisions reacting
to the inputs from the outer world even without building an internal model of it:
this point has been controversial, but here it is assumed that a positive answer to
this problem is realistic. Moreover, sometimes it seems that there is no complete
agreement on the meaning of the terms in the boxes, so that the answer depends on
the exact interpretations of what the words knowledge and decision mean.

The boxes on the right should not be considered as separate steps in a ladder,
but rather as levels in a continuous evolutionary process, and there is an infinity of
shades between each of them.

Telemanipulators, i.e. remote controlled agents able to perform well determined
tasks, are without any doubt at the second level, automatic systems, like are many
other automatic machines of various kind. In many cases, telemanipulators display
some form of limited autonomy, being able of taking low-level decisions, while
being controlled by humans for higher level tasks.

The earliest manipulators, used for the preparation of radioactive materials, were
purely mechanical devices, made by an arm and a gripper, able to duplicate ex-
actly the motion of the arm and the hand of a human operator. Later an increasing
number of movements were performed under autonomous control, with the human
controller simply taking decisions of higher level. An analogy can be that of the
gearbox of a motor car: in basic transmissions the driver has to control the clutch
and the gearbox lever, supplying the power needed to perform the action. In semi-
automatic transmissions the driver takes the decision about which gear to engage
and the device operates the clutch and the gearbox, using a source of power. In fully
automatic gearboxes it is still the driver who controls the speed through the acceler-
ator pedal and doing so causes the gear switching. Here all low level decisions are
taken by the device, but the high level decision is still taken by the driver in real
time.

To qualify as a true robot, the device must possess a good degree of autonomy,
being able to perform its tasks without direct, real time, human intervention. A robot
must also interact with the environment and perform its tasks in a flexible, easily
reprogrammable, way. It belongs then at least to the third level in Fig. 1.3.
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Ideally a robot should be even more autonomous from human intervention and
should perform also in an intelligent way or even to be conscious. Both these char-
acteristics are still far from being present in actual robots.

An important point is: how much artificial intelligence is needed in space explo-
ration?

Generally speaking, it can be stated that the autonomy of robots must increase
with the distance they operate from the human controller. While it is possible to
conceive telemanipulators for all tasks to be performed on the Moon, the autonomy
required for Mars exploration (at least until humans will be present on that planet
or on its satellites) must be more developed. The distance of satellites and planets
of the outer solar system is such that unmanned exploration requires true robots.
The distances unmanned devices will operate when interstellar exploration will be
undertaken may make it necessary to resort to intelligent machines, in the sense
defined above.

Strong Al is based on the assumption that all human characteristics can be dupli-
cated by machines and consequently that they not only will be intelligent but also
they will possess a true mind, with the related consciousness. This is, however, an
unproved statement and, particularly the last part, quite a controversial one.

In particular, a controversial point is the use of Von Neumann machines, i.e. in-
telligent machines able to self-replicate. A Von Neumann probe is a space probe
endowed with intelligence that can replicate itself.

Once a probe of this kind reaches its target, it could land on a particular celes-
tial body, an asteroid, a planet with a solid surface or a planetary satellite, and start
building a copy of itself. A strategy for space exploration based on probes of this
kind has been proposed by Tipler.! A Von Neumann probe could be launched toward
a nearby star with a comparatively simple propulsion system so that, after several
hundreds, or even thousands, years it reaches its destination. The probe would land
and start to produce other probes, which would then leave that extrasolar system,
heading off for other nearby stars. Once its primary task of continuing the expan-
sion to other solar systems had been fulfilled, the probes would begin their scientific
tasks, sending reports back to Earth. Eventually, most of our galaxy would be set-
tled by these probes. A single intelligent species could even begin to explore the
whole Universe using Von Neumann probes. Such intelligent machines might not
just explore, but could also reproduce organic life.

But even if a Von Neumann machine can be built, we will never be sure that,
after many replications of itself, errors would not creep in. After all, this is one of
the mechanisms by which evolution creates new living beings. Moreover, it is im-
possible to be sure that a probe programmed on Earth will always perform correctly
in the new environments it will find in other planetary systems. Checking, or even
modifying, the programming of the probe by radio from Earth is possible only for
the first few replications. Then the distances in both space and time become so large
that everything must be done by the on-board artificial intelligence systems.

YE.J. Tipler, The Physics of Immortality, Macmillan, Basingstoke, 1994.
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It is impossible to say what might be the outcome of such machines, once they
stop behaving exactly as their builders envisaged, owing to random modifications of
their genetic code.

Another, more important point has to be addressed. Assuming that such intelli-
gent machines can be built, is it morally acceptable to do so? Should self-replicating
machines fill the Universe? That question has caused fierce arguments. Carl Sagan
believed the answer to be no: the advisable line for a technological civilization is
that of banning the construction of interstellar Von Neumann machines and strictly
limiting their use on its home planet. If the argument of Carl Sagan is accepted, such
an invention would jeopardize the whole Universe and the control and the destruc-
tion of interstellar Von Neumann machines would then become a task with which
all civilized countries—the more technologically advanced, in particular—would in
some way have to be involved.

Frank Tipler’s is of the opposite idea: if humankind abdicates that role, it will
miss all chances of colonizing, first, nearby solar systems and then the Universe.
Humankind will betray its cosmic duty, and condemn himself to extinction. By
Frank Tipler’s reasoning, the dissemination throughout the Universe of Von Neu-
mann machines may be considered as another aspect of that evolutionary process
which produced humankind and which may in the future produce other intelligent
species to take its place. The ultimate task of humankind would then be to create
intelligent machines, i.e. to move the evolutionary line from beings based on the
biology of carbon to beings based on the chemistry of silicon.

But these are problems for a distant future.

At present the point is not whether intelligent robots are advisable, but whether
existing, or short term, robots are adequate to space exploration tasks.

It is questionable, for example, whether one of the most important scientific goals
of space exploration, namely the search for extraterrestrial life, can be pursued using
robots. There is no doubt that it is possible to program robots for searching for living
matter of terrestrial type, but it is difficult that they can recognize life of more exotic
type. It is true that it is questionable whether even humans can perform this task, but
the probability that robots succeed is even less.

Some examples are self explanatory. The astrobiological experiments performed
by the Viking probes on Mars were inconclusive, and are still stirring strong debates.
While it is positive that they did not find life, it is questionable whether they proved
that there was no life in the landing zones. An even more striking example is that of
the alleged fossil life-forms found in the ALH 84001 meteorite from Mars. Almost
15 years after the discovery of those microscopic formations, although the meteorite
was studied in the better equipped labs and by the most qualified scientists available
on this planet, the outcome is still controversial. How can we expect that a robot,
working in difficult conditions, can succeed where human scientists working at ease
in well equipped labs failed?

Instead of building increasingly complex robots, it may be possible in the future
to build a number of simpler machines able to interact with each other so that the
swarm can exhibit a sort of collective intelligence. This is the approach that evo-
lution followed with social insects and with other animals (birds, fish) that display
quite a simple behavior at the individual level, but can perform complex tasks when
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operating in swarms, flocks or schools. The behavior of these animals is a popu-
lar subject of study in the field of the so-called science of complexity, an there are
scholars that believe that from these studies a new approach to space and planetary
robotics will evolve.

1.4 Missions for Robots and Manipulators

The types of missions requiring the use of robots and manipulators in space or on
celestial bodies can be tentatively subdivided in the following classes

. Robotic exploration missions;

. Robotic commercial and exploitation missions;

. Robotic missions to prepare the way to human missions;

. Human exploration missions with robotic devices to help humans in exploration
duties;

. Human exploration missions with vehicles to enhance human mobility;

6. Human exploration—exploitation missions requiring construction—excavation de-

vices.

W =

|91

As already stated, in the case of unmanned missions, a very important factor is
how far from Earth the device must operate: only in the case of Lunar missions
(with perhaps an extension to missions to near-Earth asteroids and comets, NEO in
general) true teleoperation is possible. In all other cases a sufficient autonomy must
be considered. In the case of the Moon there may be little difference between a
machine for missions of type (1) and (4) since there is not a very large advantage in
having a human controller close by instead of having him on Earth, while for Mars
the difference is huge, to the point that a manned mission in which the astronauts
land on a Mars satellite to teleoperate from there machines exploring the planet has
been suggested. It must be noted that it is not just a point of communication delay
due to distance (2-3 seconds for the Moon, up to half an hour for Mars and much
more for main belt asteroids and outer planet satellites) but mainly to the availability
of radio relays in orbit around the planet and/or Earth. This can be increased by
putting communication satellites in orbit around Mars, a thing that will be at any
rate needed if serious exploration of the Red Planet is undertaken.

Human presence on site greatly simplifies this issue, even if some autonomy will
at any rate be needed. For instance, low level control should not be entrusted to
humans, to allow them to perform more important tasks, but this may be relatively
easy, since high level path planning functions and occasional supervision and recov-
ery tasks are the most difficult to be performed automatically.

The devices required for missions of type (1) and (4) may in general be quite
small, since the instruments that constitute their payload can be light and not much
bulky and will be increasingly miniaturized in the future. There are two factors
limiting miniaturization: the need to collect or dig out and carry back samples and
the fact that in general the mobility and the range of a small vehicle are more limited
than those of a large one. This is, however, strictly linked to the type of environment,
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since there are places that can be managed by a small vehicle and not by a large one.
The size and the mass of the robot is also limited by the space and mass allowance
for the spacecraft.

Not considering missions of type (2) that involve small automatic spacecraft like
telecommunication, meteorological or Earth resources satellites, commercial and
exploitation missions may require a wide variety of different spacecraft and rovers.
They include, for instance, ‘virtual tourism’ on the Moon, which requires a medium
size rover with many panoramic cameras that is telecontrolled from Earth and ma-
chines able to land on the Moon or an asteroid to dig out resources from the soil
and to process them. The size of a machine to do this may vary from medium to
very large size; the long time goal being to carry huge asteroid mining robots on
NEA or main belt asteroids, able to extract, process and send to Earth or possibly
to a Lunar or Mars colony the resources that are abundantly present in those places.
Again, the autonomy required depends on the distance: while exploitation of the
Moon and some NEOs can be performed using teleoperators, more distance places
need increasing autonomy.

The automatic machines that will be used to prepare the sites for human missions
include again a wide variety of different devices. On the Moon the point is mainly
positioning and anchoring the habitats on the ground, digging the regolith needed to
shield them from radiation, and doing all the required preparatory work. On Mars the
tasks include also producing the propellant for the return journey and their energy
requirement may be much larger. The rover may thus be required to unload a nuclear
reactor from the lander, locate it in a suitable site, set it in operation and then to assist
the ISRU plant. Other tasks may be preparing the terrain for a landing pad and pos-
sibly to prepare tracks on which the vehicles can move in the vicinity of the outpost.

Missions of type (5) and (6) require large vehicles, able to carry humans on board
or earth-moving machines. All these machines may be directly operated by astro-
nauts, teleoperated or may display some grade of autonomy. In any case the more
autonomous they are, the less they require the astronaut to spend time in more or
less menial, or at least less repetitive and sometime dangerous, tasks. Since the as-
tronaut’s time will be one of the most precious commodities in outposts and space
colonies, there will be an increasing interest in autonomous operation also in mis-
sions of this type.

Space robots can be used in three distinct types of environments:

e Low Earth orbit (LEO)
e Deep space
e Planetary surfaces

1.4.1 Low Earth Orbit (LEO)

Robotic Spacecraft

Many unmanned satellites operating in low orbit work without (or with very little)
human intervention. However, most scientific and commercial satellites, although
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operating autonomously, are more automatic machines than robots, since they op-
erate along fixed lines, performing their tasks in a rigid way. When decisions must
be made the close proximity of Earth makes it possible to teleoperate them, again
in a simple way. Only very complex satellites may be considered as robots, like for
example the Hubble Space Telescope.

They will not be dealt with here.

Robotic Arms (Telemanipulators)

Telemanipulators find a large use in manned missions. The best known of such de-
vices is the Canadarm of the Space Shuttle, used for a wide variety of tasks, from
satellite deployment, retrieval and maintenance to assembly of space structures and
assistance to Extra Vehicular Activities (EVA). The International Space Station has
a multipurpose robotic arm, whose main task is maintenance of the station itself,
but can be used for many other tasks. The degree of autonomy of these devices is
different, but usually they are controlled by the astronauts.

EVA Assistants

Up to now the task of helping astronauts in their extra vehicular activity has been
performed by robotic arms, controlled directly by other astronauts (Fig. 1.1). How-
ever, free flying robots, more or less controlled by astronauts, have been proposed
and will be used in the future. Free flyers of the same kind can be used also for other
tasks, like space station maintenance, servicing and towing satellites, etc.

Robotic Space Suits

Space suits are heavy, a thing that in microgravity may not constitute a great disad-
vantage, but are also stiff and not easily operated, a thing that hampers the mobility
of astronauts in EVA. This is particularly true for the parts of the space suit covering
the arms and the hands. A motorized space suit that operates like a telemanipulator
under the direct control of the astronaut wearing it could improve greatly his/her
performance in EVA, reducing fatigue and improving safety. Several man-amplifier
exoskeletons were designed and built in the past, starting from the Hardyman, built
by GE in 1965, all aimed to be used on Earth and often with military applications in
mind. The concept can be adapted both to EVA in space and to individual mobility
on planetary surfaces, where the presence of a gravitational field makes them even
more useful.
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1.4.2 Deep Space

If with deep space we mean space beyond the Van Allen belts, i.e. where the space
environment is dominated by the Sun and not by the presence of Earth, also satel-
lites in GEO (Geostationary Earth Orbit) must be considered in deep space. They
are mostly telecommunication satellites and for them the same things said for com-
mercial satellites in LEO could be repeated.

Robotic Probes

Deep space probes are usually considered as robots, since they must operate au-
tonomously, performing a wide variety of tasks. The farther from Earth they must
operate, the more autonomous they must be. The maximum distance space probes
reached up to now is well beyond the orbit of Pluto, and they reached the boundary
of the solar system, i.e. the heliopause, where is located the interface between the
region of space dominated by the Sun and the interstellar medium.

Many probes must follow complex trajectories, with deep space manoeuvres to
perform planetary flybys to get energy from planetary assists, sometimes also en-
tering planetary orbits or navigating for years in the system of the satellites of a
giant planet. All this must be performed keeping the antenna well oriented, with
strict tolerances, toward the Earth and the sensors and cameras toward the scientific
targets.

1.4.3 Planetary Surfaces

Landers

Robots performing planetary exploration (with this term here we mean exploration
of any celestial body, be it a true planet, a satellite or even an asteroid or a comet)
must at first do a controlled descent. Unmanned landers must perform autonomously
on all bodies except the Moon, where teleoperation from Earth is possible. Depend-
ing on the type of descent planned (by parachute, ballute, airbag, or rockets) the
control, particularly during the final phase, is more or less complex. During atmo-
spheric entry a communication blackout phase may be present.

Scientific operations may start before landing, taking images and measurements.
After landing scientific operations on the surface will start. Up to now, landers per-
formed many different tasks, like deploying rovers, taking samples of the ground,
performing scientific experiments and sending images back to Earth. Future lan-
ders may perform many other tasks, like deploying exploration aircraft or balloons,
return vehicles for sending back samples, exploiting the local resources (ISRU), etc.
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Rovers

A wide variety of robotic rovers have been designed, tested and some actually used
in planetary missions. All rovers actually used where wheeled machines, with the
exception of early Mars rovers that moved on skis and jumping rovers aimed to the
satellite of Mars Phobos that never reached their destination. Rovers with tracks,
legs or jumping devices were tested on Earth, like also flying exploration vehicles
based on aerodynamic forces (aircraft) or aerostatic forces (balloons).

As already stated, except for the case of the Moon, where full teleoperation is
possible, in all other cases a good degree of autonomy is needed. However, since at
the present state of technology this is still a critical requirement, all rovers used on
Mars were very slow, so that high level control could be supplied in any case from
Earth.

Peculiar rovers will be the construction machines that will prepare the ground
infrastructure for the arrival of astronauts or will start the exploitation of asteroids
and other celestial bodies. Apart from the mobility devices, they will be supplied by
surveying instruments, to find what they are looking for, digging and earth-moving
devices and arms to move various equipment.

The size of rovers can go from much less than one meter to very large rovers able
to move and to set up habitats, nuclear reactors and other infrastructures, to grade
landing pads and roads, etc. Considering their size and mass, rovers can be classified
as

nanorovers (mass less than 5 kg),

micorovers (mass between 5 and 30 kg),
minirovers (mass between 30 and 150 kg), and
macrorovers (mass above 150 kg).

Vehicles

The only vehicle used by astronauts on the Moon, the Lunar Roving Vehicle (LRV)
of the last Apollo missions was not a robot, since it was completely controlled by
astronauts. Future man-carrying vehicles will have a certain degree of autonomy,
being able to perform also as teleoperators (i.e. to move under control of an astronaut
not on board) or as more or less autonomous vehicles. The autonomy may go from
low level autonomy, something just little more than ordinary vehicles with automatic
gear, to full autonomy, being able to carry humans under a loose control from the
latter.

Generally speaking, human-carrying vehicles can be subdivided into two cate-
gories:

e simple mobility devices, without any life-support facility, whose task is to carry
humans protected by their own space suit, and
e vehicles providing a true shirt-sleeve environment.
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The LRV belonged to the first type. These vehicles can be as small as a city car
and can be very simple and light. Vehicles of the second type are true mobile habi-
tats and are very complex machines, in a way similar to military personnel carrying
vehicles able to maintain inside an atmosphere not contaminated by possible chem-
ical or bacteriological weapons. A modular approach may be followed and a small
habitat can be carried by a vehicle of the first type.

Astronaut Assistants

Robots designed to assist astronauts on the surface of planets may span from mi-
crorovers similar to those seen for autonomous exploration, but operating under the
high level guidance of human explorers to go into the most difficult or dangerous
places, to large construction machines to build habitats and bases, to mining and
transportation machines for planetary exploitation.

Their autonomy and degree of teleoperation can be very different from case to
case. In general they will benefit from the studies aimed to build similar machines
for use in difficult and dangerous workplaces on Earth, like mines or heavy indus-
tries, and for dangerous military tasks, like demining, defusing unexploded weapons
and reconnaissance.

Assistants that will help astronauts in their exploration tasks may be similar, as
already stated, to the present exploration rovers, but with an important difference:
not to impair the movements of the astronaut they need to be much faster, at least as
fast as a walking human, and at least autonomous enough to follow their ‘master’
without needing direct guidance. These features are posing challenges still to be
met.

To work together with humans in a structured environment (an outpost, a base or
even a large spacecraft) a robot of this kind may have a humanoid shape. Like in
service robotics a humanoid body allows to perform well in environments studied
for humans and to use tools designed for them without any modification. A shape
that seems convenient in EVA is that of the so-called centaurs, legged or, more
often, wheeled rovers with four or more wheels (or legs) having in the front part a
human-like torso with arms and a head.

Another form of astronaut assistants are the already mentioned robotic space
suits, adapted to the various planetary environments. Their aim can be that of im-
proving the mobility usually hampered by the stiffness of the suit, compensating for
the weight of the latter, to allow the astronaut to perform tasks that he could not per-
form even in Earth conditions and to offer a better protection from the environment
than that offered by the usual space suits.

1.5 Open Problems

The deficiencies of artificial intelligence is not the only open problem in space
robotics. Practically all aspects involved are still needing much research. The open
problems can be classified in the following themes:
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Control
Mechanics
Transducers
Power
Communications

Many of the open problems are not much dissimilar to those still open in stan-
dard robotics, but often they are carried to higher levels. If robotic industry will
actually develop as some specialists predict (some studies assess that the industry
of personal robots will have in the 21th century a role similar to that played by au-
tomotive industry in the 20th), the large scale of production will make it possible to
perform very deep studies at a reasonable cost. Space robotics will then benefit of a
technology transfer from hi-tech non-space applications, while the latter will find in
space application a driver for the most demanding solutions.

1.5.1 Control

Both the control hardware and software need much development. Hardware is
rapidly developing, and the most recent and powerful devices are not yet qualified
for space use. Space environment, particularly for what radiations are concerned, is
very hard for electronic devices, mainly when they must operate beyond Low Earth
Orbit (LEO). Generally speaking, space robots must rely on less powerful and older
hardware than their counterparts on Earth.

Software is also critical, particularly for unconventional applications, like highly
autonomous robots, cooperative devices and, in telemanipulators, for man—-machine
interfaces that can be used in extreme environment.

1.5.2 Mechanics

The mechanical and structural components of space robots are even more difficult
than those of standard robots. Low weight and high reliability are prerequisites for
anything to be launched in space, as well as the possibility of working in space
environment. A space robot must withstand strong vibration at launch and possibly
re-entry, hard vacuum (with the ensuing lubrication problems), large temperature
variations, radiation, extreme dust on some planets, etc. for long periods of time
without maintenance.
Much work in the field of deployable and inflatable structures is still needed.
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1.5.3 Transducers

Sensors and actuators are critical components in all robotic applications. While sen-
sors may be similar to those of standard robots, actuators are much limited by the
environment and by the low power usually available in space.

Some types of actuators are not usable at all, like brush DC motors that do not
operate correctly in vacuum or shape memory alloys (SMA) that need cooling and
have very low efficiency. Also pneumatic and hydraulic devices are seldom consid-
ered, the first ones for their high air consumption and low efficiency, the second for
the need of heavy ancillary equipment. The actuators considered for most applica-
tions are restricted to electric motors (usually brushless) and electromagnetic and
piezoelectric actuators.

1.5.4 Power

Power is a very critical issue in all robotic applications, but in space things are
much worse. The transducers and the control electronics are usually energized by
batteries, but the latter must be kept in charged conditions, since only for very short
missions it is possible to use primary (non rechargeable) batteries.

The most common solution is the use of solar panels, but they can supply only
low power and their output decreases fast getting far from the Sun. On Mars their
output is half than on Earth, and they cannot practically be used in the outer solar
system (beyond the orbit of Jupiter). A good solution can be fuel cells, but they can
be used only either for short missions or in connection with the production of fuel
and oxidizer from locally available materials (in situ resource utilization, ISRU).
RTGs (Radioisotope Thermoelectric Generators) can supply low power for very
long time and are usually the best choice for robotic probes operating in deep space,
but have some limits in planetary applications. Nuclear reactors are likely to be the
best choice for producing large amounts of power both for deep space and planetary
installations, and can be used to keep the batteries of robots charged.

RHUs (Radioisotope Heat Units) can be used in thermal control to keep warm
robots, particularly in the outer solar system or on planets, like during the long lunar
nights. Supercapacitors are very good candidates to supply high peaks of power for
short times, but must be recharged.

1.5.5 Communications

The need for communications depends on the type of machine considered. Tele-
manipulators need to receive all commands, possibly in real (or almost-real) time.
The more autonomous is the robot, the lower the need of receiving communications
is. All devices need to communicate back to Earth the results of their work with
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the possible exception of highly autonomous robots able to operate by themselves,
storing information and downloading them after their return. Present technology is
adequate to send back information from the frontiers of the solar system with the
low power available on board of probes, but this requires to maintain large and costly
receiving equipment on Earth. To communicate with robots on the surface of planets
or on the far side of the Moon requires the availability of relay stations, for instance
in the Lagrange points of the Earth—-Moon system or in orbit around the planet.

Some problems related with keeping the antennas of the spacecraft pointed pre-
cisely enough toward Earth and to fold and deploy them have been successfully
solved several times but are not trivial at all.






Chapter 2
Space and Planetary Environment

The environments in which exploration and exploitation robots operate can be
roughly subdivided into four types

Low Earth orbit

Deep space

Interstellar medium

Planets and small celestial bodies

The latter can be further subdivided in

Moon

Rocky planets

Giant planets

Satellites of giant planets
Small bodies

2.1 Low Earth Orbit Environment

Usually Low Earth Orbits (LEO) are orbits with a height lower than 1,000 km.
However, the environment encountered in LEO is roughly the same encountered in
orbits up to the Van Allen belts (Fig. 2.1) surrounding our planet.

The Earth magnetosphere protects our planet and all space below the Van Allen
belts from most radiations coming from the Sun and deep space. A diagram of the
Earth’s magnetosphere is shown in Fig. 2.2.

Owing to the protection by the magnetosphere, radiation is moderate in LEO,
even during strong solar activity (solar flares). However, there is an anomaly in
Earth magnetic field off the cost of Brazil and in that zone much stronger radiation
reach the upper atmosphere. The Van Allen radiation belts are symmetric about the
Earth’s magnetic axis, which is tilted with respect to the Earth’s rotational axis by an
angle of ~11 degrees. This tilt, together with an offset of ~450 kilometers causes
the inner Van Allen belt to be closer to the Earth’s surface over the south Atlantic

G. Genta, Introduction to the Mechanics of Space Robots, Space Technology Library 26, 21
DOI 10.1007/978-94-007-1796-1_2, © Springer Science+Business Media B.V. 2012
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Fig. 2.1 (a) Schematic cross section of the Van Allen radiation belts. (b) Earth zone interested by
the South Atlantic Anomaly

Fig. 2.2 Diagram of the Earth’s magnetosphere—the volume occupied by the geomagnetic field
in space—and, in the upper left, the northern polar region. Large electric currents (millions of
Amperes) flow through space (from G. Genta, M. Rycroft, Space, The Final Frontier? Cambridge
University Press, Cambridge, 2003)
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Table 2.1 Some values of

atmospheric temperature, Altitude (km) T (K) p (Pa) p (kg/m?)

pressure and density in LEO

from the US Standard 0 288.15 1.01 x 105 1.23

atmosphere 100 195.08 3.20 x 1072 5.60 x 1077
200 854.56 8.47 x 107 2.08 x 10~°
300 976.01 8.77 x 107° 1.92 x 10711
400 995.83 1.45 x 1076 2.80 x 10~12

ocean, causing the South Atlantic Anomaly (SAA), and farthest from the Earth’s
surface over the north Pacific ocean.

Remark 2.1 The boundaries of the SAA vary with altitude and its shape changes
over time. At an altitude of 500 km, the SAA ranges between —90° and +40° in
longitude and —50° to 0° in latitude. Its extent increases with increasing altitude.

The characteristics of the upper atmosphere and of space above it are quite vari-
able, both with the altitude and time. In the zone between 90 and 1,000 km the
average values of pressure, density and temperature stated by the US Standard at-
mosphere can be used (see Table 2.1).

The atoms in the upper atmosphere are strongly ionized and the atmospheric
layer between 50 and 600 km altitude is referred to as the ionosphere. They are
mostly oxygen ions, but above 300 km the composition changes gradually to mostly
hydrogen ions.

The conditions in that zone of space are well known, but much variable depend-
ing on the space weather, a term commonly used to define the phenomena involving
ambient plasma, magnetic fields, radiation and other matter in a region of space. The
space weather close to the Earth is a consequence of the behavior of the Sun, the
Earth’s magnetic field, and our location in the solar system and affects deeply not
only the space activities of humankind, but also our planet and our technological
activities on Earth.

In the whole solar system space weather is greatly influenced by the speed
and density of the solar wind (see Sect. 2.2). Data on the current solar wind
speed and density and on solar flares are continuously available, for instance on
www.spaceweather.com.

The density reaches maxima at the peak of solar activity cycles, every 11 years.
During such periods the drag on satellites gets much stronger and the danger of los-
ing altitude and deorbiting increases. To remain in LEO between 200 and 400 km
satellites require periodical reboost, particularly if their surface/mass ratio is large.
The International Space Station (ISS) is particularly subject to high atmosphere
drag, owing to its large solar panels. Reboost becomes even more important in high
solar activity periods.

At greater altitudes the pressure and density decrease fast; at about 1000 km a
satellite may remain in orbit indefinitely (at least with reference to normal service
time of man-made machines) without reboost.
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Apart from plasma, space is full of debris of various type, both natural and ar-
tificial. Natural ones consist mainly in very small meteorites, micrometeorites and
dust grains that are captured by Earth’s gravitational field and enter the atmosphere
to be destroyed by air drag. Occasionally, larger meteorites able to reach the surface
occur.

Most items of space debris in LEO are, however, artificial. The large pieces of
space debris are accurately tracked using radars and telescopes; their number and
positions are well known. In 1996 there were about 4,000 detectable objects, and
now there are some 8,500 objects with sizes about 10 cm or greater. Although
new debris is always being produced, the older debris decays owing to upper at-
mospheric drag and eventually re-enter the atmosphere, being completely destroyed
before reaching the ground. Only meter-sized objects have some chance of getting
to the ground, and so constituting a danger for people, a danger which is much lower
than that due to natural objects.

Remark 2.2 The 11 year solar cycle has a strong effect on space debris since, as
already stated, the density of the high atmosphere is much greater near solar maxi-
mum conditions than at solar minimum. A periodic clean-up of debris in the lowest
orbits thus occurs.

Smaller pieces of debris are produced by the explosion, whether accidental or
intentional, of upper stages or satellites. It has been computed that about half of the
centimeter-sized debris has been produced in this way. Military satellites are most
responsible for this type of pollution. Dangerous debris has been produced when the
core of the nuclear reactor of military satellites is jettisoned in order to be placed
in a safe (higher) orbit after the satellite is decommissioned. While doing this, the
cooling system of the reactor lets swarms of droplets of the coolant, a liquid sodium-
potassium alloy, to escape. These liquid droplets are dangerous sub-centimetric pro-
jectiles, which can penetrate the skin of satellites.

International treaties forbidding the intentional explosion of satellites are being
prepared; they state that precautions must be taken against accidental events which
may produce space debris. They also state that decommissioned satellites must be
de-orbited and destroyed in the atmosphere or, if this is impossible as in the case of
geosynchronous satellites, moved into a less used orbit.

Remark 2.3 The most critical orbits are those lying between 1,000 and 1,400 km
altitude, where the air drag is insufficient to cause debris to decay and re-enter.

The ultimate danger is a situation in which there are so many objects that colli-
sions are frequent enough to produce new fragments continuously. This sort of chain
reaction would end up creating a debris belt in which no object could survive. But
this nightmare scenario will not occur for several centuries.

Apart from the much publicized accident when a Progress cargo craft hit a solar
panel of the Mir space station (but in this case the cause was a wrong rendezvous
manoeuvre), only two space collision between two unrelated objects involving a
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working satellite occurred to date. The first was when a suitcase-sized fragment from
the explosion of the upper stage of an Ariane rocket hit, after ten years in space, the
small French satellite Cerise. The damage in that case was not too large—a boom
protruding from the satellite for stabilization purposes was cut off—but the satellite
might well have been wiped out.

The second, occurring on February 10, 2009, involved a US commercial Iridium
satellite and an inactive Russian satellite Cosmos 2251. Both were completely de-
stroyed, generating a cloud of thousands of pieces of debris. Two other collisions
between unrelated non-working objects were also recorded. One occurred in late
December 1991, and involved a Russian decommissioned satellite (Cosmos 1934)
and a piece of debris from Cosmos 929; the other is more recent (January 17, 2005)
and involved a 31 years old US Thor rocket body and a fragment from a Chinese
CZ-4 launch vehicle.

The probability that a large piece of debris will come closer than 100 m from a
satellite in LEO is about one in 100 years. In the case of a space station, a large piece
of debris identified in advance can be avoided by suitable manoeuvres. Very small
objects do not cause damage and debris smaller than a few mm should be stopped
by the shields of the International Space Station. The most dangerous particles are
those which cannot be detected from the ground but are larger than a few mm. It has
been computed that the probability that a 1 cm sized particle will pierce through the
hull of the ISS is about 1% in its 20 years life.

There are well consolidated design practices for commercial and scientific satel-
lites in LEO, so this can be considered an environment that does not pose great
problems.

2.2 Interplanetary Medium

Space beyond the Van Allen Belts is pervaded by the solar wind, which fills the
whole solar system The solar wind is mainly made of hydrogen ions (protons)
flowing at high speed out of the Sun’s corona. The temperature of the corona is so
high that the coronal gases are accelerated to a velocity of about 400 km/s. This
component of the solar wind, the so called slow solar wind, has a temperature of
(1.4-1.6) x 10° K and a composition similar to that of the corona. Over coronal
holes the speed of solar wind can reach 750-800 km/s and a temperature of about
8 x 10° K. The composition of this fast solar wind is closer to that of Sun’s photo-
sphere. Over those parts of the outer layers of the Sun that are colder, the solar wind
can be as slow as 300 km/s.

While the slow solar wind is mostly ejected from the regions around the equator
of the Sun, up to latitudes of 30°-35°, the fast solar wind originates from the coronal
holes, which are located mostly in the regions about the Sun’s magnetic poles.

The interaction of the particles with different velocities and the rotation of the
Sun causes the solar wind to be quite unsteady and the space weather in the whole
solar system to be much variable. In 1997 the Advanced Composition Explorer
(ACE) satellite was launched and placed into an orbit about the L1 point between



26 2 Space and Planetary Environment

the Earth and the Sun. This point, located at about 1.5 million km from the Earth
on the line connecting the Earth with the Sun, is characterized by the equilibrium
between solar and Earth’s attraction, so that a body located there (or better in a halo
orbit about L1, since in this point the equilibrium is unstable), can remain between
the Earth and the Sun indefinitely. The ACE monitors continuously the solar wind,
providing real-time information on space weather.

From time to time, fast-moving bursts of plasma called Interplanetary Coronal
Mass Ejections ICME) may disrupt the standard pattern of the solar wind, launch-
ing in the surrounding space electromagnetic waves and fast particles (mostly pro-
tons and electrons) to form showers of ionizing radiation. When these ejections im-
pact the magnetosphere of a planet they temporarily deform the planet’s magnetic
field. On Earth they induce large electrical ground currents and send protons and
electrons toward the atmosphere, where they form the aurora.

Remark 2.4 Solar flares are one of the causes of interplanetary coronal mass ejec-
tions. They constitute a danger to spacecraft, manned and unmanned.

Owing to the motion of these charged particles, an interplanetary magnetic field
(IMF) pervades the whole solar system.

The interplanetary medium is filled by radiation, cosmic radiation, not only from
the Sun but also from extrasolar objects. The cosmic radiation that enter Earth’s
atmosphere are made up mostly by protons (90%), plus about 9% helium nuclei
(alpha particles) and about 1% of electrons (8 particles), plus photons and neutrinos.
Their energy is in the range of over 1000 eV.

Apart from the radiation from the Sun, Galactic cosmic rays (GCRs) come from
outside the solar system but generally from within our Milky Way. They are atomic
nuclei trapped by the galactic magnetic field with all of the surrounding electrons
taken away during their travel through the galaxy at a speed close to the speed of
light. As they travel through the very thin gas of interstellar space they emit gamma
rays. Their composition is similar to the composition of the Earth and solar system.

Another component of the cosmic radiation are the Anomalous Cosmic Rays
(ACRs) They are due to the neutral atoms of the interstellar matter that flow through
the solar system (the charged particle are kept outside the heliosphere (see Sect. 2.3)
by the interplanetary magnetic field), at a speed of about 25 km/sec. When closer
to the Sun, these atoms undergo the loss of one electron in photo-ionization or by
charge exchange, and are then accelerated by the Sun’s magnetic field and the solar
wind. ACRs include large quantities of helium, oxygen, neon, and other elements
with high ionization potentials.

Apart from these heavy particles, there is also the cosmic microwave background
radiation, consisting of very low energy photons (energy of about 2.78 Kelvin)
which are remnants from the time when the universe was only about 200,000 years
old. Neutrinos, photons of different energies (produced by the Sun, other stars,
quasi-stellar objects, black-hole accretion disks, gamma-ray bursts and so on), elec-
trons, muons, and other particles are also present.
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Remark 2.5 All these particles are not dangerous on Earth since they are deflected
by the Earth’s magnetic field or are stopped by the atmosphere. On other celestial
bodies, which have no magnetosphere and whose atmosphere is thin (the Moon,
Mars, etc.) they reach down to the surface and constitute a danger.

Giant planets, like Jupiter, have a strong magnetosphere, shielding the planet
but causing zones of strong radiation, like the Van Allen belts of Earth. Spacecraft
entering these zones must be designed taking this factor into account.

Apart from plasma, there is also a tiny amount of neutral hydrogen: at the dis-
tance of Earth’s orbit from the Sun, the concentration of neutral hydrogen is about
10* atoms per m>. As said above, some of these atoms come from interstellar space.

A relatively small amount of dust particles—micrometeroids—exist in the solar
system. Much of this dust is thought to have been produced in collisions between
asteroids and in the shedding of material from comets while passing close to the
Sun. About 30,000 tons of interplanetary dust particles are estimated to enter Earth’s
upper atmosphere annually.

The vacuum is much higher than in LEO, and hydrogen ions from the Sun sub-
stitute oxygen ions from Earth’s atmosphere. So, while the environment in LEO is
oxidizing, that in deep space is reducing.

2.3 Interstellar Medium

The Sun moves, with the planets and all the bodies of the solar system, through
the very rarefied medium that fills the interstellar space, the interstellar medium.
Most of this medium is gas (about 99%), and the remaining is dust. Although very
rarefied, it constitutes about the 15% of the matter of our Milky Way. The density
and composition of the interstellar medium is quite variable from place to place.
Its density ranges from a few thousand to a few hundred million particles per cubic
meter with an average value of a million particles per cubic meter.

The gas is roughly 89% hydrogen (either molecular of atomic), 9% helium and
2% heavier elements. It forms cold clouds of neutral atomic or molecular hydrogen.
Hot newly born stars ionize the gas with their ultraviolet light, giving way to hot
ionized regions. In the outer regions of the galaxy, the interstellar medium blends
smoothly into the surrounding intergalactic medium.

Interstellar dust is made of small particles, with a size of a fraction of a micron,
of silicates, carbon, ice, and iron compounds.

In its motion through the interstellar gas, the interplanetary medium creates a
shock wave ahead of it, in a way which is similar to what happens when a supersonic
aircraft flies through the air. This shock wave is called the bow shock. A sketch of
the bow shock is shown in Fig. 2.3a.

The solar system is contained in a magnetic bubble, the heliosphere, that extends
well beyond the orbit of Neptune. Although electrically neutral atoms from inter-
stellar space can penetrate this bubble, virtually all of the material in the heliosphere
emanates from the Sun itself.
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Fig. 2.3 (a) Diagram of the heliosphere, showing the termination shock, the heliopause and the
bow shock. (b) Distances (in Astronomical Units) from the Sun of the various objects up to the
nearest star. Pseudo-logarithmic scale (in a true logarithmic scale the origin cannot be represented)

The solar wind travels at supersonic speed; as it approaches the heliopause, it
slows suddenly, forming a shock wave where it passes from supersonic to subsonic.
This standing shock wave is called the termination shock.

The termination shock is believed to be 75 to 90 AU from the Sun. In 2007,
Voyager 2 passed through the Sun’s termination shock at about 84 AU from the Sun.
Since the position of the termination shock is not fixed (its distance from the Sun
changes due to changes in the solar activity), Voyager 2 actually passed through the
termination shock several times. Similar symptoms of being through the termination
shock were shown by Voyager I in 2004 at 94 AU. from the Sun. The termination
shock may be also irregularly shaped, apart from being variable in time.

Once subsonic, the solar wind may be affected by the ambient flow of the in-
terstellar medium. This subsonic region is called the heliosheath. The limit of the
heliosheath is at about 80 to 100 AU. at its closed point. Since it has a comet-like
shape, its tail trails behind the Sun for a distance of several hundreds AU.
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The outer surface of the heliosheath, where the heliosphere meets the interstellar
medium, is called the heliopause. The outer limit of the heliopause is the bow shock.
The heliopause and the termination shock are shown in the sketch of Fig. 2.3a.

A region very rich in hot hydrogen, named the hydrogen wall, is assumed to
be located between the bow shock and the heliopause. The wall is composed of
interstellar material interacting with the edge of the heliosphere.

The solar system, in logarithmic scale, showing the outer extent of the helio-
sphere, the Oort cloud and out to Alpha Centauri is shown in Fig. 2.3b. Note that
the scale is not a true logarithmic scale, since it should not show the zero, and that
o Centauri is actually not in the direction of motion of the Sun.

Remark 2.6 Most of the galactic cosmic radiation is deflected by the heliosphere,
which protects the whole solar system from this harsh galactic environment. The
Earth has thus two protective layers against cosmic radiation: its own magnetosphere
and the heliosphere. Outside the heliosphere the radiation environment is thus much
worse than in the solar system in general.

2.4 Lunar Environment

The lunar environment is dealt with separately, since it is much better known than
other planetary environments and the recent decision to return to the Moon makes it
more important.

Since the Moon is gravitationally locked in its orbit around the Earth, it shows
always the same side (the near side) to the Earth. The other side (the far side) cannot
be seen from our planet. However, small variations (libration) in the angle from
which the Moon is seen allow about 59% of its surface to be seen from the Earth.
The rotation and orbital periods are equal to 27.322 days, while the average length
of lunar day is 29.531 days.

The gravitational acceleration at the surface of the Moon is 1.62 m/s? (at the
equator), however, the lunar gravity field is not completely uniform due to mass
concentrations (mascons) beneath the surface, associated at least in part with the
presence of dense basaltic lava flows in some of the giant impact basins. Although
the variations in acceleration due to these irregularities are generally less than one-
thousandth of the surface gravity, they greatly influence the orbit of spacecraft about
the Moon.

The escape velocity is 2.38 km/s at the equator.

The atmosphere is very thin and can practically be considered as a vacuum: the
total mass of gases surrounding the Moon has been evaluated as only 104 kg. The
mean atmospheric pressure is about 3 x 10~ bar, but it has large variations mainly
with the night and day cycle. The gases come mostly from surface outgassing and
are lost in space owing to solar light pressure and, for ionized particles, solar wind
magnetic field. The elements detected, both using Earth based spectrometers and in-
struments on space probes, are hydrogen, helium-4, sodium, potassium, radon-222,
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polonium-210, argon-40 plus molecular gases like oxygen, methane, nitrogen, car-
bon monoxide and carbon dioxide. Likely, hydrogen and helium come from the solar
wind, while argon originates from the lunar interior. Vacuum must be accounted for
when choosing the materials and many common plastics and rubbers are unsuitable,
as their strength and flexibility is reduced by outgassing of their volatile compo-
nents. Even materials approved for use in LEO may not be suitable for use on the
Moon.

The thin atmosphere does not refract light, but the moon is not a black and white
world: very deep black and blinding white are accompanied by a vast range of
browns, tans, and grays, with a few shades of purple and rusty reds. There are no
blues and greens, except from objects human will bring with them.

Due to the lack of a substantial atmosphere and the long duration of the day, the
surface temperature varies greatly from day to night and also from place to place.
The average temperature is —23°C, but during the day the average surface temper-
ature is 107°C, with maximum values as high as 123°C and up to 280°C at noon
on the equator. At night, the average temperature is —153°C but can fall as low as
—233°C in the areas of the south basin that are permanently shaded. A typical non-
polar minimum temperature is —181°C (at the Apollo 15 site). During the month
long day, quite strong temperature variation rates can occur. Average temperature
also changes about 6°C between aphelion and perihelion. Temperatures just below
the surface remain relatively constant; at a depth of 1 m, it is almost constant at
—35°C.

Objects on the lunar surface are heated during the day more by the hot ground
than by direct sunlight: the sky is seen as a heat sink with a tiny hot spot, while the
ground is seen as a large hot surface, emitting strong infrared radiation.

There have been reports of lunar geothermal activity at a few locations, like
the Aristarchus Crater region, where “glowing clouds” have been reported. Pho-
tographic evidence of recent small-scale volcanic activity has also been recorded. If
these findings are confirmed, warm magma close to the surface might be exploited
as an energy source.

The Moon has a very weak magnetic field, from 3 x 1073 to 0.33 uT (as a com-
parison, the Earth’s magnetic field is 30-60 uT—more than hundred times larger)
While on Earth the magnetic field is dipolar, generated by a geodynamo in its core,
this effect is completely absent, at present, on the Moon, and the lunar magnetic
field originates in the crust and is local in nature. Possibly, it is a remnant of a global
magnetic field, which was present in the past when a geodynamo effect was active,
but this theory is debatable. The fact that the largest crustal magnetizations appear
to be located near the antipodes of the giant impact basins seems to suggest, on the
contrary, an impact origin.

Additionally, on the Iunar surface there is an external magnetic field, of about
5 x 1072-10 x 1072 T, due to the solar wind.

The main features of the lunar surface are the dark and relatively featureless
plains called maria (singular mare, Latin for sea), the lighter-colored, hilly regions
called terrae (singular terra, Latin for land), or more commonly highlands, and the
craters, almost absent on maria, but abundant on terrae. The far side almost com-
pletely lacks maria, which represent just about 2.6% of the far side, against 31.2%
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Fig. 2.4 Simplified map of the near side, with the landing point of some American spacecraft

of the near side. A map of the near side, with the landing point of some American
spacecraft, is shown in Fig. 2.4. A map of the far side is shown in Fig. 2.5.

Maria are vast solidified pools of ancient basaltic lava, containing iron, titanium,
and magnesium. In most cases these lava outflows are attributed to impacts due to
large meteorites, whose impact basins can be identified. At the periphery of these
giant impact basins many of which have been filled by basalt maria, many large
mountain ranges can be found. These are believed to be the surviving remnants
of the impact basin’s outer rims. No major lunar mountains are believed to have
formed as a result of tectonic events like on Earth. Slopes are mild, as an average,
with grade angles of 15°-20° (compared to 30°-35° on Earth) in spite of the low
lunar gravity which would allow steeper grades to be stable. Faults and depressions
on the Moon are called rilles and clefts. Snaking rilles are lava channels or collapsed
lava tubes, which were probably active during the maria formation. Lava tubes are
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supposed to be frequent and much larger than similar formations on Earth. They
may be hundreds of meters across.

Some peaks at the north pole are always in sunlight, owing to the small tilt of the
lunar axis on the ecliptic plane. Similarly, at the south pole, the rim of Shackleton
crater is illuminated for about 80% of the lunar day. The bottom of some craters in
the polar regions are always in the shade.

Highlands are thickly cratered, owing to collisions of asteroids and comets: about
half a million craters have diameters greater than 1 km. Since impact craters accu-
mulate at a nearly constant rate, the number of craters per unit area can be used to
estimate the age of the surface. The lack of an atmosphere, weather and recent ge-
ological processes ensures that many of these craters have remained relatively well
preserved in comparison to those on Earth. The largest crater on the Moon, which is
also the largest known crater in the Solar System, is the Aitken basin on the far side,
between the South Pole and equator; its diameter is about 2,240 km and its depth is
13 km. It has the lowest elevation of the whole Moon.
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Table 2.2 Grain-size

distribution of lunar regolith Grain size (mm) % by weight

taken from the landing site of

Apollo 11 104 1.67
4-2 2.39
2-1 3.20
1-0.5 4.01
0.5-0.25 7.72
0.25-0.15 8.23
0.15-0.090 11.51
0.090-0.075 4.01
0.075-0.045 12.40
0.045-0.020 18.02
Less than 0.020 26.85

Both maria and terrae are covered by regolith, i.e. pulverized rock with
grain size between less than 20 and 270 um, most grains being of the smallest
size. The grain-size distribution from specimens taken by the Apollo 11 astro-
nauts in Mare Tranquillitatis is reported in Table 2.2 (from Calina C. Seybold,
http://www.tsgc.utexas.edu/tadp/1995/spects/environment.html).

The regolith of older surfaces is generally thicker than for younger surfaces. The
thickness of the regolith layer varies from about 3-5 m in the maria, and about
10-20 m in the highlands. Beneath the finely comminuted regolith layer is what is
generally referred to as the megaregolith. This layer is much thicker (on the order
of tens of kilometers) and comprises highly fractured bedrock.

The lunar regolith is rich in sulfur, iron, magnesium, manganese, calcium, and
nickel. Many of these elements are found in oxides such as FeO, MnO, MgO, etc.
Ilmenite (FeTiO3), most common in the maria regions, is the best source of in situ
oxygen. The carbon, hydrogen, helium and nitrogen found in the soil are almost
entirely due to implantation by the solar winds.

This dust is electrically charged, so it sticks to everything and constitutes a prob-
lem for both equipment and humans. The Apollo astronauts noted that after excur-
sions dust was carried on board (they stated that is smells like spent gunpowder) and
this may constitute a health risk. The dust is mostly made of silicon dioxide glass
(810,), most likely created from the meteors that have crashed into the Moon’s sur-
face. It also contains calcium and magnesium. Electrostatic devices for collecting
the dust and preventing it from entering mechanisms and lungs of people are being
studied.

Particles in lunar regolith are very jagged and abrasive, which causes them to
interlock and increase their harmful effects on health when breathed. Unlike Earth
sand grains, they do not flow over each other. Subjected to pressure, they jam against
each other and resist like solid rock. All mechanisms must be properly sealed, par-
ticularly because, in absence of atmosphere and due to electric charge, once raised
from the ground, the particles tend to fly on parabolic trajectories. Because of the
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hard vacuum they do not remain in the ‘atmosphere’, but quickly return to the sur-
face. They usually reach no more than 1.5 m from the surface, and once they get on
any surface, they tend to stick to it and are difficult to remove.

Dust can be lifted off the lunar surface by the thrusters of a landing shuttle,
the wheels of a rover, impacts by meteorites and also by electric charging from
ultraviolet radiation from the Sun.

The porosity at the surface is about 40—43%, but decreases quickly with depth.
Owing to porosity, the density at the surface is quite low, about 1000 kg/m? but
increases quickly with depth. At 200 mm below the surface it is of 2000 kg/m>.

The cohesive bearing strength is about 300 Pa at the surface and 3 kPa at a depth
of 200 mm. Some tests on material brought by the Luna 16 and Luna 20 probes
showed a compression resistance up to 1.2 kPa. Then the regolith flows as if the
edges on the grains start to break, to lock again for pressures above 50 kPa. Lunar
regolith has thus a good carrying capacity for vehicles and structures, as seen dur-
ing the excursions in the Apollo missions, but can make digging and grading quite
difficult. Techniques based on vibrating devices may be worth experimenting.

The Moon received large quantities of water mostly by cometary bombardment,
but liquid and solid (ice) water are not stable in the conditions present on most of
the lunar surface and would quickly change to water vapor. Sunlight splits much of
this water into hydrogen and oxygen, which then escape into space, together with
water vapor, over time, because of the Moon’s weak gravity. However, since there
are regions that are permanently in the shadow, water ice can be stable for long
periods of time in some selected places.

Both the Clementine and the Lunar Prospector missions showed evidence of
small pockets of water ice just below the surface. Estimates for the total quantity
of water ice are close to one cubic kilometer, however, the question of how much
water there is on the Moon is still open.

Because the atmosphere is too weak to provide protection, sunlight, solar wind
and cosmic radiation strikes the lunar surface with its full strength (the latter is,
however, already screened by the heliosphere). The lack of a magnetic field leaves
the surface without protection to radiation, so that the radiation environment is sim-
ilar to that of deep space. Since the atmosphere is so thin, it provides no protection
against micrometeorite impacts. Lunar regolith is a good radiation shield: solar wind
penetrates much less than a micron, and only radiation from solar flares is able to
penetrate the surface by one centimeter. Hard cosmic radiation may penetrate a few
meters.

Due to the lack of plate tectonics, seismic activity is quite limited. The 500 de-
tectable moonquakes occurring each year fall within the 1-2 magnitude range on
the Richter scale and then are not detectable without instruments (by comparison
on earth there are 10,000 earthquakes/year). Only a few moonquakes up to 4 on the
Richter scale have been observed.

Seismic activity is usually caused by tidal forces and secondary effects from
impacts. Other, non-seismic activity includes astronaut activity and impacts (both
meteorite and artificial). Owing to the low damping, seismic activity is registered
over long distances. The good propagation of seismic waves suggests a possible
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communication way between places on the Moon. The very good wave propagation
may be a danger too, since seismic activity can create widespread secondary effects,
such as crater wall collapses and landslides.

The Moon is considered as a lifeless world; that not withstanding NASA imple-
mented strict quarantine procedures for the Apollo landings, and the same is likely
to be done in the future. The only fossil life-forms that may be found on the Moon
are ancient life-forms from Earth, which may have been carried there on board of
meteorites, detached from Earth by impacts and then impacting the lunar surface.
Finding them may be the only way of obtaining information on very ancient terres-
trial life, particularly if it started earlier than expected, when the initial meteoritic
bombardment subsided and then was wiped out by a huge impact.

The two-way communication delay with the lunar surface is 2.5-3 s, but to com-
municate with the far side relay satellites, either in lunar orbit or in one of the Earth—
Moon Lagrange points, must be used. In the latter case a longer delay is present.

2.5 Rocky Planets

Apart from Earth, the planets of the solar system with a hard surface are just three:
Mercury, Venus and Mars. A miscellany of data regarding these three planets is
reported in Table 2.3. The values related to Earth are reported for comparison.

2.5.1 Mars

Mars will be dealt with first, since it is the most interesting planet for both robotic
and manned missions. Mars has the largest volcano in the solar system, Olympus
Mons, 25 km tall (but there is no active volcano on Mars now), and a canyon,
Marineris Vallis, which is likely the deepest and widest in the Solar system. It
bears the traces of impressive and dramatic events in the past, which have remod-
eled its surface—the northern lowlands, Vastitas Borealis, probably due to the im-
pact of a large meteorite, the Tharsis Bulge, probably of volcanic origin, with three
huge volcanoes (Pavonis, Arsia and Ascracus Mons), and a huge number of impact
craters, chasms, and mountains. If Vastitas Borealis is considered an impact basing,
it is the largest found in the solar system, four times the size of the lunar Aitken
basin.

The poles are covered by ice caps which shrink in the summer and grow in the
winter. The northern ice cap is made mainly of water ice, while the southern one has
a frozen carbon dioxide upper layer and an underlying layer of water ice. About 25
to 30% of the atmosphere condenses during a polar winter, forming thick slabs of
CO;, ice, to sublime again when the pole is again exposed to sunlight. This creates
huge wind storms from the poles with wind velocities up to 400 km/h. Both polar
caps contain frozen carbon dioxide as well as water ice, and a figure of two million
cubic kilometers of water ice has been forwarded for the norther ice cap.
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Table 2.3 Main characteristics of the rocky planets of the solar system (the values regarding
Earth are reported for comparison). The surface acceleration at the equator, taking into account
the planet’s rotation, is also included

Mercury Venus Mars Earth
Mass (10%* kg) 0.3302 4.8685 0.64185 5.9736
Volume (10'0 km?) 6.083 02.843 16.318 108.321
Equatorial radius (km) 2,439.7 6,051.8 3,396.2 6,378.1
Polar radius (km) 2,439.7 6,051.8 3,376.2 6,356.8
Ellipticity (flattening) 0.00 0.000 0.00648 0.00335
Topographic range (km) - 15 30 20
Mean density (kg/m?) 5,427 5,243 3,933 5,515
Surface gravity (m/s2) 3.70 8.87 3.71 9.81
Surface acceleration (m/s?) 3.70 8.87 3.69 9.78
Escape velocity (km/s) 4.3 10.36 5.03 11.19
Solar irradiance (W/mz) 9,126.6 2,613.9 589.2 1,367.6
Orbit semimajor axis (10° km) 5791 108.21 227.92 149.60
Sidereal orbit period (days) 87.969 224.701 686.980 365.256
Perihelion (10° km) 46.00 107.48 206.62 147.09
Aphelion (106 km) 69.82 108.94 249.23 152.10
Synodic period (days) 115.88 583.92 779.94
Mean orbital velocity (km/s) 47.87 35.02 24.13 29.78
Max. orbital velocity (km/s) 58.98 35.26 26.50 30.29
Min. orbital velocity (km/s) 38.86 34.79 21.97 29.29
Orbit inclination (deg) 7.00 3.39 1.850 0.000
Orbit eccentricity 0.2056 0.0067 0.0935 0.0167
Sidereal rotation period (hrs) 1,407.6 —5,832.5 24.6229 23.9345
Length of day (hrs) 4,222.6 2,802.0 24.6597 24.0000
Inclination of rot. axis (deg) ~0 177.36 25.19 23.45
Min. dist. from Earth (10° km) 77.3 38.2 55.7
Max. dist. from Earth (10° km) 221.9 261.0 401.3

The difference between the two ice caps is due to the fact that the orbit of Mars
around the Sun is much more elliptical than is the Earth’s and the inclination of the
planet’s axis of rotation makes the seasons far more extreme in the southern hemi-
sphere than in the northern: Mars is near perihelion when in the southern hemisphere
it is summer and near aphelion when it is winter. This is also believed to be the ex-
planation for the occurrence of violent dust storms which can last for months at a
time.

The martian day, usually referred to as a sol, is slightly longer than Earth’s day
(24 h, 39 min, 35 s). The tilt of the rotation axis is similar to that of the Earth’s axis
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Fig. 2.6 Simplified map of the Martian surface (from a NASA image)

(25° while the latter is inclined of 23°), producing seasons similar to ours, although
they last almost twice as long, owing to the much longer duration of the year.

Mars is smaller than Earth, its surface area being about as large as the sum of all
the continents of our planet. A simplified map of the planet is given in Fig. 2.6.

Martian atmosphere is very thin: the pressure at the ground is less than one hun-
dredth of the atmospheric pressure on Earth (it roughly equals atmospheric pressure
on Earth at 35 km altitude) and has much variability with altitude and latitude. It
varies from a minimum of around 0.3 millibar on Olympus Mons to over 11.6 mil-
libar in the depths of Hellas Planitia, with a mean surface level pressure of 6.36 mil-
libar, variable from 4.0 to 8.7 millibar depending on season The average surface
density is about 0.020 kg/m?.

The composition by volume of the atmosphere is 95.32% carbon dioxide, 2.7%
nitrogen, 1.6% argon, oxygen 0.13%, carbon monoxide 0.08%, water 210 ppm; ni-
trogen oxide 100 ppm; neon 2.5 ppm, heavy water (in form of deuterium protium
oxide HDO) 0.85 ppm; krypton 0.3 ppm and traces of methane, the latter concen-
trated in a few places during the northern summer. Since methane is broken down
by ultraviolet radiation, for it to be present a mechanism producing that gas on the
planet, like volcanic activity, cometary impacts or the presence of methanogenic
microbial life forms, is needed. The mean molecular weight of the atmosphere is
43.34 g/mole.

Clouds of water ice were photographed by the Opportunity rover in 2004.

The atmosphere is quite dusty, containing particulates about 1.5 pm in diameter
which give the Martian sky a tawny color when seen from the surface.

At the Viking landing sites, wind speeds of 2—7 m/s were recorded in the summer,
5-10 m/s in the fall, with occasional 17-30 m/s dust storms.
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Remark 2.7 Although the wind speeds are high, the aerodynamic forces exerted by
the wind are modest owing to the low atmospheric density: vehicles and structures
on the Mars surface are thus not expected to be much loaded by the strong winds.

Winds carry large quantities of dusts that is even finer than the dust on the moon.
The danger to machinery and human beings due to dust rich in iron oxide must be
accounted for when planning missions to the Red Planet. Mars plains are frequently
crossed by dust devils: the solar panels of the Spirit and Opportunity rovers were
cleaned more than once by them, contributing to maintain these device operational
for a long time.

The average temperature is —63°C, with marked variation with the time of the
day and of the year. In the site of the Viking I landing diurnal variations between
—89 and —31°C were recorded. Larger variations, from —120 to —14°C were
recorded during the years-long Viking missions. In the summer, in the southern
hemisphere, temperatures as high as 20 to 30°C have been recorded. Liquid wa-
ter cannot exist on the surface at these temperature and pressure combinations and
most of the frost depicted in the images from the Viking landers is frozen carbon
dioxide.

Martian atmosphere offers very little protection from the Sun’s ultraviolet radi-
ation and there is only very limited protection from cosmic rays due to the almost
complete absence of a planetary magnetic field after Mars lost its magnetosphere
about 4 billion years ago. There is evidence that at the beginning Mars had plate
tectonics and a planetary dynamic effect, producing a global magnetic field. Some
remnants are still found in the form of local magnetization.

Remark 2.8 From the point of view of radiation, Mars is only a slightly better place
than the Moon, even if the thin atmosphere scatters light and the look from the
surface is more like that on a planet than that in space.

The geography of planet Mars is complex. The main features are shield volca-
noes, lava plains (mostly in the northern hemisphere) and highlands with a large
number of impact craters and deep canyons. The four largest volcanoes, all extinct,
have already been mentioned. A total number of 43,000 craters with a diameter of
5 km or greater have been found, together with a large number of smaller ones.

The largest canyon, Vallis Marineris, has a length of 4,000 km and a depth of up
to 7 km. It was formed due to the swelling of the Tharsis area which caused the crust
in the area of Vallis Marineris to collapse. Also Ma’adim Vallis is a canyon much
bigger than the Grand Canyon of Earth.

Pictures of entrances of large caves, 100 to 250 m wide, were transmitted by the
probes; moreover also on Mars it is possible that lava tubes exist, and are larger
than those on Earth owing to the lower gravity. The interiors of caverns and lava
tubes may be protected from micrometeoroids, UV radiation, solar flares and high
energy particles that bombard the planet’s surface and thus are good candidates for
the search of liquid water and signs of life, apart from being also possible locations
for human settlements.
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Martian rocks seem mostly basalt, although a portion of the Martian surface
seems more rich in silica than typical basalt. The plains are similar to rocky deserts
on Earth, covered by red sand, with rocks and boulders scattered all around. The
most interesting places are, however, the steep slopes of the mountains and canyons,
which are very difficult to manage for wheeled and even tracked machines.

The soil is essentially regolith, rich in finely-grained iron oxide dust, which is
thinner than on the Moon. Its granulometry and composition is more variable from
place to place, due to water erosion in ancient times when water was flowing on the
surface, and to wind erosion.

The soil of Mars is basic, and values of pH of 8.3 were obtained by the Phoenix
lander. This, together with the results of the old Viking probes seem to exclude the
possibility of finding life-forms on the surface of the planet. Even if some life-form
might be found in the future, in particular in places shaded from radiation and direct
sunlight, like the bottom of canyons or caves, it is easy to state that products of
biological origin are not a widespread constituent of the surface of the planet.

The geological history of Mars is subdivided into three main periods, namely

e Noachian epoch (named after Noachis Terra), from 3.8 billion to 3.5 billion years
ago.

e Hesperian epoch (named after Hesperia Planum): 3.5 billion years ago to 1.8 bil-
lion years ago.

e Amazonian epoch (named after Amazonis Planitia): 1.8 billion years ago to
present.

The Tharsis bulge formation and extensive flooding by liquid water are ascribed
to the Noachian epoch. Extensive lava plains are supposed to have been formed
in the Hesperian epoch, while the Olympus Mons formed during the Amazonian
epoch, along with lava flows elsewhere on Mars.

Owing to the in situ observations performed by robotic spacecraft, it is now cer-
tain that in ancient geological periods Mars had extensive water coverage, with
liquid water running on the surface and geyser-like water flows. At that time the
atmosphere was much thicker too.

Large quantities of water are thought to be trapped underground. In the northern
hemisphere an ice permafrost mantle stretches down from the pole to latitudes of
about 60° and large quantities of water ice have been observed both at the poles
and at mid-latitudes. A large release of liquid water is thought to have occurred
when the Vallis Marineris formed early in Mars’s history, forming massive outflow
channels. A much more recent (5 million years ago) outflow of water is supposed
to have occurred when the Cerberus Fossae chasm formed. There are also clues of
more recent flows of water on the surface, at least for short periods of time, but these
findings are still debated.

Once the planet was much more suitable for living organisms than today, which
does not imply that life actually existed. If so, fossil remnants may still exist. The
controversial finding of fossils in the ALH84001 meteorite, which supposedly was
blasted into space by a meteorite strike and wandered through space for 15 million
years to land finally on Earth, still stirs much debate.



40 2 Space and Planetary Environment

Table 2.4 Data of the

satellites of Mars Phobos and Phobos Deimos

Deimos
Orbit’s semimajor axis (km) 9,378 23,459
Sidereal orbit period (days) 0.31891 1.26244
Orbital inclination (deg) 1.08 1.79
Orbital eccentricity 0.0151 0.0005
Major axis radius (km) 13.4 7.5
Median axis radius (km) 11.2 6.1
Minor axis radius (km) 9.2 5.2
Mass (10 kg) 10.6 24
Mean density (kg/m3) 1,900 1,750

The two-way communication delay with Mars is much variable depending on
the positions of the two planets. It is up to 30 minutes or more. However, things
are usually much worse: taking into account the relative motions of the two planets
and the unavailability of telecommunication satellites in Mars orbit, the Pathfinder
probe had a communication window of just 5 minutes per day.

Mars has two small, irregularly shaped, moons, Phobos and Deimos, which orbit
close to the planet. Their characteristics are reported in Table 2.4. They may be cap-
tured asteroids, similar to 5261 Eureka, a Martian Trojan asteroid, but their capture
by an almost airless world is difficult to explain. Phobos’ orbit is lower than syn-
chronous orbit: it rises in the west, sets in the east, and rises again in just 11 hours.
Deimos’ orbit is just above synchronous orbit and then its apparent speed in the sky
is low. Even if the period of its orbit is 30 hours, it takes 2.7 days from rising in the
east to setting in the west.

Remark 2.9 Phobos’ orbit is unstable: it decays owing to the tidal forces and it will
either crash on the planet in about 50 million years or fragment producing a ring
around it.

2.5.2 Mercury

Mercury is an extremely hostile environment. It is a small planet, the smallest in the
solar system, very close to the Sun. Each square meter of its surface receives seven
times the energy received by a square meter of the Earth surface. Its rate of rotation
is very slow, with a sidereal rotation period of 58.7 Earth days, yielding a duration
of the day of 175.94 Earth days. It performs three rotations about its axis every two
orbits (is locked in a 3:2 resonance).

It has no true atmosphere and its general aspect is similar to that of the Moon
with many craters and some smooth plains (Fig. 2.7). The faint gases that surround
it are made by hydrogen, helium, oxygen, sodium, calcium, magnesium, silicon and



2.5 Rocky Planets 41

Fig. 2.7 Mercury as observed by Mariner 10 in 1974 (NASA photo)

potassium, with some water vapor and traces of other elements. This faint atmo-
sphere is unstable, in the sense that the matter it contains is continuously lost to
space and substituted by new matter from the solar wind, diffusing into Mercury’s
magnetosphere, and from the planet’s surface. Atmospheric pressure on the surface
is about 10™13 bar and the total mass of the atmosphere is evaluated in less than
1000 kg.

Its surface, likely covered with regolith like the Moon, has a mean temperature of
169.35°C. The slow rotation and the lack of an atmosphere cause extreme variations
of temperature, which range from 427°C on the side facing the Sun (the hottest point
being that directly facing the Sun) to —183°C during the night (the coldest points
being in the bottom of the polar craters).

Remark 2.10 Space probes have found water ice in the bottom of polar craters,
where the light of the Sun never reaches and the temperature remains below
—171°C. A figure of 10'* to 10> kg of ice has been forwarded.

The recent studies (2009) performed by the Messenger probe showed traces of
recent volcanic activity. Mercury is thus not a geologically dead planet, as was be-
lieved. As can be deduced from a comparison of the chemical composition of the
surfaces of Mercury and of the Moon, the two bodies seem to have evolved in dif-
ferent ways. Also, some findings suggest that the folds, widespread on the whole
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Fig. 2.8 Venus, as seen by
the Magellan probe using its
synthetic aperture radar
(NASA image)

surface, which were attributed to a planet’s contraction, might have been caused by
tectonic activity, although this is still a hypothesis.

Unlike the moon, Mercury has a large iron, likely molten, core, which gener-
ates a weak global magnetic field. Its strength is about 1% of that of Earth. The
magnetic field strength at the equator is about 300 nT. Mercury’s magnetic field is
dipolar, but unlike Earth’s magnetic field, its magnetic axis is nearly aligned with the
planet’s spin axis. Mercury’s magnetic field is strong enough to create a magneto-
sphere which deflects the solar wind about the planet and to supply some protection
to the surface.

Owing to the high eccentricity of the orbit, an observer would be able to see the
Sun rise about halfway, then reverse and set before rising again, all within the same
Mercurian day.

2.5.3 Venus

Venus is always covered by thick layers of clouds and its surface cannot be seen
from space by optical observation. However, the Magellan probe mapped its surface
accurately using a Synthetic Aperture Radar (SAR) (Fig. 2.8). The clouds of Venus
extend from about 50 to 70 km and may be divided into three distinct layers. Below
the clouds is a layer of haze down to about 30 km and below that it is clear.

The rotation of Venus about its axis is extremely slow, the day being about 243
Earth days long.
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The planet has a very dense atmosphere: the atmospheric pressure at the sur-
face is 92 bar and its density is 65 kg/m>. Its main constituent is carbon diox-
ide (96.5% by volume), with about 3.5% of nitrogen. Minor constituents are
sulfur dioxide (150 ppm), argon (70 ppm), water (20 ppm) carbon monoxide
(17 ppm), helium (12 ppm) and neon (7 ppm). The mean molecular weight is
43.45 g/mole.

The presence of sulfur dioxide (sulfur is likely to have a volcanic origin, dating
back from the beginning of the planet’s evolution) gives way to sulfuric acid clouds
in the high atmosphere but sulfur dioxide is also present in the haze layer.

Venus has no global magnetic field, and solar and cosmic radiation penetrates the
high atmosphere. The surface should, however, be protected by the thick and dense
gas layers.

The surface of Venus is hot, the average temperature being 464°C. Owing to the
high density and opacity of the atmosphere, temperature variations with both time
and place are limited, with maximum values of about 480°C, hot enough to melt
lead.

The velocity of the wind at the surface is low, between 0.3 and 2.0 m/s, but in the
upper layers of the atmosphere, above the clouds, jet streams, faster at the equator
and slower at the poles, as fast as 200-400 km/h, are present.

The present environment on Venus is believed to be the outcome of a runaway
greenhouse effect. An increase of the Venusian temperature caused the evapora-
tion of the seas, if they ever existed, and the production of carbon dioxide from
the carbonates in the soil. The increasing amounts of water vapor and carbon diox-
ide in the atmosphere caused a further increase of the greenhouse effect, and the
very high temperatures which we now observe. The water vapor was decomposed
by the Sun’s light into oxygen and hydrogen, the latter light gas disappearing into
space. Venus does not have more carbon dioxide than Earth; the point is that it
is all in the atmosphere instead of being fixed in the soil and absorbed in the
oceans.

The environment on the surface of Venus is harsh and the only two robotic probes
that landed on it worked for just minutes, as they were designed to do. However,
Venus is an interesting place to study and it would be interesting to perform robotic
missions on its surface.

Remark 2.11 There are little chances that life could evolve in Venus’ difficult en-
vironment, but there is some possibility that bacteria-like life-forms survive in the
relatively cool high atmosphere or at least that life evolved when conditions were
milder.

2.6 Giant Planets

The giant planets are essentially huge gas balls, without a true solid surface.
The density of the gas constituting the outer part of the planet (whether there
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Table 2.5 Main characteristics of the giant planets of the solar system. Radii, gravity and escape
velocity are referred at the level at which the atmospheric pressure is equal to 1 bar. The surface
acceleration at the equator, taking into account the planet’s rotation, is also included

Jupiter Saturn Uranus Neptune
Mass (10%* kg) 1,898.6 568.46 86.832 102.43
Volume (10'° km?) 82,713 6,833 16.318 6,254
Equatorial radius (1 bar level) (km) 71,492 60,268 25,559 24,764
Polar radius (km) 66,854 54,3648 24,973 24,341
Volumetric mean radius (km) 69,911 58,232 25,362 0.01708
Ellipticity (flattening) 0.06487 0.09796 0.02293 0.00335
Mean density (kg/m?>) 1,326 687 1,270 1,638
Surface gravity (m/s2) 24.79 10.44 8.87 11.15
Surface acceleration (m/s?) 23.12 8.96 8.69 11.00
Escape velocity (km/s) 59.5 355 21.3 23.5
Solar irradiance (W/mz) 50.50 14.90 3.71 1.51
Black-body temperature (K) 110.0 81.1 58.2 46.6
Orbit semimajor axis (10° km) 778.57 1,433.53 2,872.46 4,495.06
Sidereal orbit period (days) 4,332.589 10,759.22 30,685.4 60,189.
Perihelion (106 km) 740.52 1,352.55 2,741.30 4,444 .45
Aphelion (106 km) 816.62 1,514.50 3,003.62 4,545.67
Synodic period (days) 398.88 583.92 369.66 367.49
Mean orbital velocity (km/s) 13.07 9.69 6.81 5.43
Max. orbital velocity (km/s) 13.72 10.18 7.11 5.50
Min. orbital velocity (km/s) 12.44 9.09 6.49 5.37
Orbit inclination (deg) 1.304 2.485 0.772 1.769
Orbit eccentricity 0.0489 0.0565 0.0457 0.0113
Sidereal rotation period (hrs) 9.9250 10.656 —17.24 16.11
Length of day (hrs) 9.9259 10.656 17.24 16.11
Inclination of rot. axys (deg) 3.12 26.73 97.86 29.56
Min. dist. from Earth (10° km) 588.5 1,195.5 2,581.9 4,305.9
Max. dist. from Earth (10° km) 968.1 1,658.5 3,157.3 4,687.3

is a solid core is still debatable) increases going inside, as well as the tempera-
ture. Although the environment of the giant planets is extreme, there is no doubt
that there is a region where temperature and pressure are manageable by robotic
probes.

The characteristics of the four gas giants of the Solar system are summa-
rized in Table 2.5. Since there is no true surface, the radii, gravity and escape
velocity are referred at the level at which the atmospheric pressure is equal to
1 bar.
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2.6.1 Jupiter

Jupiter is the only giant planet whose atmosphere was directly probed by a space-
craft, the Galileo probe, which sent back many data before being crushed by the
pressure. It is the largest planet in the Solar System and its mass is equal to 70% of
all the planets combined.

It rotates so fast about its axis that its shape is an oblate spheroid. Its atmosphere
does not rotate as a rigid body, and the period of rotation changes with the latitude,
with the equator having a period about 5 min shorter than the poles. The conven-
tional period of rotation is that of the magnetosphere.

The major constituents of the atmosphere are molecular hydrogen (89.8% in vol-
ume) and helium (10.2%). Minor constituents are methane 3000 ppm, ammonia
260 ppm, hydrogen deuteride (HD) 28 ppm, ethane 5.8 ppm, water 4 ppm. The
mean molecular weight is 2.22 g/mole. To these gas fractions some aerosols must
be added, particularly in the outer layers, where they form belts of clouds: ammo-
nia ice, water ice, ammonia hydrosulfite. Darker orange and brown clouds at lower
levels may contain sulfur, as well as simple organic compounds.

The clouds are located in the tropopause and are arranged into bands of different
latitudes, known as tropical regions. These are subdivided into lighter-hued zones
and darker belts. The interactions of these circulation patterns cause storms and tur-
bulence with wind speeds of 100 m/s being common. The zones have been observed
to vary in width, color and intensity from year to year, but they have remained suf-
ficiently stable for astronomers to give them identifying designations.

The cloud layer is only about 50 km deep, and consists of at least two decks of
clouds: a thick lower deck and a thin clearer region. There may also be a thin layer
of water clouds underlying the ammonia layer. Powerful electrical discharges may
be present where water clouds form thunderstorms driven by the heat rising from
the interior.

The largest storm, which has lasted since centuries ago and may be a permanent
feature of the planet, is the Great Red Spot, a persistent anticyclonic storm located
22° south of the equator that is larger than 3 times the Earth. The Great Red Spot’s
dimensions are (24,000-40,000) km x (12,000-14,000) km and it rotates counter-
clockwise, with a period of about six days (Fig. 2.9). Its maximum altitude is about
8 km above the surrounding cloud tops.

The temperatures at 1 and 0.1 bar levels are, respectively, —108 and —161°C.
The density at 1 bar level is 0.16 kg/m>. The wind speed is up to 150 m/s in the
equatorial region (latitude less than 30°), and up to 40 m/s at higher latitudes.

Temperature and pressure increase going inwards in the atmosphere, and are so
high in the interior of the planet that matter behaves not as a gas but as a supercritical
fluid. Pressures well above 1,000 bar are predicted. At a radius of about 78% of the
planet’s radius hydrogen becomes a metallic liquid. Likely Jupiter has a molten rock
core, of unknown composition, located inside this thick metallic hydrogen layer.
The temperature and the pressure at the core are estimated at about 36,000 K and
3,000-4,500 GPa.
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Fig. 2.9 A picture of Jupiter
in which the great red spot is
well visible (NASA image,
based on a 1979 picture from
the Voyager 1 spacecraft)

Jupiter has a strong global magnetic field, 14 times as strong as the Earth’s. Its
strength ranges between 0.42 mT at the equator to 1.0-1.4 mT at the poles. It cre-
ates a large magnetosphere. The structure of the magnetosphere follows a pattern
not much different from what is seen for the solar magnetic field with a bow shock
at about 75 Jupiter radii from the planet. Around Jupiter’s magnetosphere is a mag-
netopause, at the inner edge of a magnetosheath, where the planet’s magnetic field
becomes weak and the solar wind interacts with the matter from the planet. All four
largest moons of Jupiter orbit within the magnetosphere.

Even if the presence of organic compounds has been verified, it is highly un-
likely that there is any Earth-like life on Jupiter owing to the scarcity of water in
the atmosphere. Moreover, any possible solid surface deep within Jupiter would be
under extremely high pressures. However, there are hypotheses that ammonia- or
water-based life could evolve in Jupiter’s upper atmosphere.

Jupiter has four large moons, lo, Europa, Ganymede, and Callisto, discovered by
Galileo in 1610, and a host of minor satellites, out of which 59 are known. It has
also a faint planetary ring system composed of three main segments, likely made of
dust rather than ice. The rings are related with particular satellites like Adrastea and
Metis (main ring) or Thebe and Amalthea (outer ring).

2.6.2 Saturn

Saturn is the second largest planet in the Solar System. The compositions of the
two inner gas giants are similar and that of Saturn is not unlike what was seen for
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Jupiter: mostly hydrogen, with small proportions of helium and trace elements. Also
its interior is thought to consist of a small core of rock and ice, surrounded by a thick
layer of metallic hydrogen and a gaseous outer layer. The temperatures at the core
are very high, although lower than those of Jupiter.

Also Saturn rotates fast and its shape is oblate; moreover, the rotation period
depends on the latitude. Its average density is 0.69 g/cm?>: it is the only planet of
the Solar System that is less dense than water.

The atmosphere consists of about 96.3% molecular hydrogen and 3.25% he-
lium (the latter remarkably less abundant than on Jupiter), with trace amounts of
methane (4,500 ppm), ammonia (125 ppm), hydrogen deuteride (HD, 110 ppm),
ethane (7 ppm), acetylene (CoH») and phosphine (PH3). Also aerosols, ammonia
ice, water ice, ammonia hydrosulfite are present and form clouds, like on Jupiter,
which give a band pattern to the atmosphere of Saturn too, even if the bands are
much fainter.

The mean molecular weight of the atmosphere is 2.07 g/mole.

The upper clouds on Saturn are composed of ammonia crystals, while the lower
level clouds, about 50 km thick and with a temperature of —93°C, appear to be
composed of either ammonium hydrosulfite or water. Over that, extending for 10 km
and with a temperature of —23°C, is a layer made up of water ice. The temperature
and density at the 1 bar altitude are —139°C and 0.19 kg/m?>. The temperature at
the 0.1 bar altitude is —189°C. The pressure at the surface is greater than 1000 bar.

Saturn’s winds are among the Solar System’s fastest. Voyager data indicate peak
easterly winds of 500 m/s (1,800 km/h). Average speed is 400 m/s in the equatorial
zone (latitude less than 30°) and 150 m/s at higher latitudes. A Great White Spot,
a unique but short-lived phenomenon which occurs once every Saturnian year, or
roughly every 30 Earth years, around the time of the northern hemisphere’s summer
solstice, has been observed.

Saturn has a planetary magnetic field intermediate in strength between that of
Earth and that of Jupiter. Its strength at the equator is 20 uT, slightly weaker than
Earth’s magnetic field. Its magnetosphere is much smaller than the Jovian and ex-
tends slightly beyond the orbit of Titan.

The most impressive characteristic of Saturn is its system of rings, consisting
mostly of ice particles (containing 93% percent of water ice with tholin impuri-
ties, and 7% amorphous carbon) with a smaller amount of rocky debris and dust.
They extend from 6,630 km to 120,700 km above Saturn’s equator, with an average
thickness of approximately 20 meters in thickness (Fig. 2.10a).

Sixty-one known moons orbit the planet, not counting hundreds of moonlets
within the rings.

The rings have an intricate structure of thousands of thin gaps and ringlets. This
structure is controlled by the gravitational pull of Saturn’s many moons. Some gaps
are cleared out by the passage of tiny moonlets, and some ringlets seem to be main-
tained by the gravitational effects of small shepherd satellites. Other gaps arise from
resonances between the orbital period of particles in the gap and that of a more
massive moon further out. Still more structure in the rings consists of spiral waves
raised by the moons’ periodic gravitational perturbations.
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Fig. 2.10 (a) Mosaic image obtained from 126 images acquired in two hours on October 6, 2004
by the Cassini probe from a distance of about 6.3 million kilometers from Saturn. (b) Image of
bright spokes in Saturn’s B ring taken by Cassini in August 2009 (NASA images)

The rings of Saturn possess their own atmosphere, independent of that of the
planet itself, composed of molecular oxygen gas produced when ultraviolet light
from the Sun interacts with water ice in the rings, with some molecular hydrogen
too. This atmosphere is extremely thin, so thin that if it were condensed onto the
rings, its thickness would be about one atom thick.

Radial features, dubbed spokes, were discovered in some rings and explained
exclusively as the action of gravitational forces (Fig. 2.10b). However, it seems that
some cannot be explained in this way and the precise mechanism generating the
spokes is still unknown.

The origin of the rings of Saturn (and the other Jovian planets) is unknown.
Though they may have had rings since their formation, the ring systems are not
stable and must be regenerated by some ongoing process, perhaps the breakup of
larger satellites. The current set of rings may be only a few hundred million years
old.

2.6.3 Uranus

Uranus and the other giant planet Neptune, although generally similar to the gas
giants Jupiter and Saturn, have some significant differences, to the point that for
them the term ice giants was formulated. Uranus consists of three layers: a small
rocky core in the center, an icy mantle in the middle and an outer gaseous hydrogen
and helium atmosphere.

Following the most common (but not universally accepted) model of the planet,
the core has a density of about 9,000 kg/m?, a pressure of 800 GPa and a tempera-
ture of 5,000 K. The bulk of the planet is represented by the mantle, composed of a
hot and dense fluid consisting of water, ammonia and other volatiles. This fluid layer
is sometimes called a water—ammonia ocean. Uranus has thus no solid surface: the
gaseous atmosphere gradually transitions into the internal liquid layers.
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The Uranian atmosphere, the coldest planetary atmosphere in the Solar System
(colder than Neptune’s, with a minimum temperature of —224°C), can be divided
into three layers: the troposphere, between altitudes of —300 km (the zero-altitude
level is that where the pressure equals 1 bar) and 50 km and pressures from 100 to
0.1 bar; the stratosphere, spanning altitudes between 50 and 4,000 km and pressures
of between 0.1 and 10~'° bar and the thermosphere extending from 4,000 km to as
high as 50,000 km from the surface.

The temperature and density at 1 bar level are —197°C and 0.42 kg/m?; at the
0.1 bar level the temperature is —220°C.

The atmosphere is made primarily of molecular hydrogen (82.5%), helium
(15.2%) and methane (2.3%), with traces of hydrogen deuteride (148 ppm). The
abundance of less volatile compounds such as ammonia, water and hydrogen sul-
fide in the atmosphere is poorly known. Trace amounts of various hydrocarbons are
found in the stratosphere, including ethane, acetylene, methylacetylene and diacety-
lene together with traces of water vapor, carbon monoxide and carbon dioxide.

Like in the atmospheres of the other giant planets, also in the atmosphere of
Uranus there are aerosols such as water ice, ammonia ice, ammonia hydrosulfite
and methane. Uranus has a complex, layered cloud structure, with the lowest clouds
likely made of water and the uppermost layer of clouds, possibly made of methane.

Uranus has the shape of an oblate spheroid, with different rotation periods at
different latitudes. What is unique is the tilt of the rotational axis of rotation, which
is 97.86°. Seasonal changes are completely unlike those of the other major planets.
Near the time of Uranian solstices, one pole faces the Sun continuously while the
other pole faces away. Only a narrow strip around the equator experiences a rapid
day-night cycle, but with the Sun very low over the horizon as in the Earth’s polar
regions. Each pole gets around 42 years of continuous sunlight, followed by 42 years
of darkness Near the time of the equinoxes, the Sun faces the equator of Uranus
giving day—night cycles similar to those seen on most of the other planets. The
extreme axial tilt results in extreme seasonal weather variations, with changes in
brightness and strong thunderstorms.

Uranus has a global magnetic field, but it is quite peculiar: it is tilted at 59°
from the axis of rotation and is not centered on the planet’s geometric center. The
magnetosphere is highly asymmetric and the magnetic field strength on the surface
in the southern hemisphere can be as low as 10 uT, while in the northern hemisphere
it can be as high as 110 uT, with an average field at the surface of 23 UT. In other
respects the Uranian magnetosphere is like those of other planets: it has a bow shock
located at about 23 Uranian radii ahead of it, a magnetopause at 18 Uranian radii,
a fully developed magnetotail and radiation belts.

Like the other giant planets, Uranus has a ring system, made of at least 13 dis-
tinct rings. Owing to the orientation of the axis of the planet, the rings are almost
perpendicular to the orbit, and from time to time are seen from Earth as circling the
planet. All rings of Uranus except two are extremely narrow, being a few kilometers
wide. Some of them appear to be gray, some red and some are blue, but mostly made
of quite dark matter.

Uranus has a number of moons, 27 of which were given a name.
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2.6.4 Neptune

Neptune is similar in composition and structure to Uranus. Its interior, like that of
Uranus, the other ice giant, is primarily composed of ices and rock. The pressure and
the temperature at its center are about 700 GPa and 5,400 K, respectively, following
the model at present considered as the most realistic.

Neptune’s atmosphere is made of molecular hydrogen (80.0%), helium (19.0%)
and methane (1.5%) with traces of hydrogen deuteride (192 ppm) and ethane
(1.5 ppm). It contains aerosols like ammonia ice, water ice, ammonia hydrosulfite,
methane ice in a higher proportion than that of gas giants. The absorption of red
light by the atmospheric methane is thought to be a cause of the blue color of the
planet. The difference of hue with Uranus is accredited to the fact that, being denser
and heavier, more of the methane from the mantle leaks to the surface, giving it a
richer color.

The temperature and density at the 1 bar level are —201°C and 0.45 kg/m>. At
0.1 bar the temperature is —218°C. Neptune’s outer atmosphere is one of the coldest
places in the Solar System, although warmer than Uranus’s. The mean molecular
weight of the atmosphere is 2.53-2.69 g/mole.

Neptune’s atmosphere is divided into three main regions; the lower troposphere,
where temperature decreases with altitude, and the stratosphere, where tempera-
ture increases with altitude. Their boundary, the tropopause, occurs at a pressure of
10 kPa. The stratosphere then gives way to the thermosphere at a pressure lower
than 1 to 10 Pa.

Like the other giant planets, also Neptune is an oblate spheroid and undergoes
differential rotation. Since the differential rotation is the most pronounced of any
planet in the Solar System, stronger latitudinal wind shear are present. Its axial tilt
is 29.56°, not dissimilar to that of Earth and Mars. Climate variations are thus not
so extreme as those on Uranus.

The atmosphere of Neptune carries visible weather patterns. The Great Dark Spot
is an anticyclonic storm system spanning 13,000 x 6,600 km and is comparable to
the Great Red Spot on Jupiter. Other climate patterns were dubbed Scooter and
Small Dark Spot, a southern cyclonic storm. These weather patterns, which seem
not being permanent (they are thought to last for several months), are driven by the
strongest sustained winds of any planet in the Solar System, with average speeds
from 400 m/s along the equator to 250 m/s at the poles. Wind speeds as high as
600 to 2,100 km/h were, however, recorded. Most of the winds on Neptune move
in a direction opposite the planet’s rotation at low latitudes, while blowing in the
rotation direction at high latitudes. These patterns are thought to be driven by inter-
nal heat generation. Both Uranus and Neptune radiate more heat than that received
by the Sun, but Neptune much more than Uranus. The process in which this heat is
generated is not yet known.

Neptune’s troposphere is banded by clouds of varying compositions depending
on altitude. The upper-level clouds occur at pressures below one bar (100 kPa),
where the temperature is suitable for methane to condense. For pressures between
100 and 500 kPa clouds of ammonia and hydrogen sulfide are believed to form.
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Above a pressure of 500 kPa the clouds may consist of ammonia, ammonium sul-
fide, hydrogen sulfide and water. Deeper clouds of water ice should be found at
pressures of about 5.0 MPa, where the temperature reaches 0°C. Underneath, clouds
of ammonia and hydrogen sulfide may be found. High-altitude clouds on Neptune
have been observed casting shadows on the opaque cloud deck below. There are also
high-altitude cloud bands that wrap around the planet at constant latitude. These cir-
cumferential bands, with widths of 50—150 km, lie about 50—110 km above the cloud
deck.

The magnetosphere resembles that of Uranus, with a magnetic field strongly
tilted relative to its rotational axis at 47° and offset at least 0.55 radii from the
planet’s geometric center. The dipole component of the magnetic field at the mag-
netic equator of Neptune is about 14 UT, but the magnetic field has a complex ge-
ometry that includes relatively large contributions from non-dipolar components, in-
cluding a strong quadrupole moment that may exceed the dipole moment in strength.

Neptune’s bow shock occurs at a distance of 34.9 times the radius of the planet.
The magnetopause lies at a distance of 23-26.5 times the radius of Neptune. The
tail of the magnetosphere extends out to at least 72 times the radius of Neptune, and
very likely farther.

Neptune too has a planetary ring system. The rings may consist of ice particles
coated with silicates or carbon-based material, and have a reddish hue. The rings
were given names like Adams (at 63,000 km from the center) Le Verrier Ring,
(at 53,000 km), Galle (42,000 km), Lassell (a faint outward extension to the Le
Verrier Ring) and Arago (at 57,000 km). Other larger incomplete rings were named
Courage, Liberté, Egalité 1, Egalité 2 and Fraternité. Their shape can be explained
by the gravitational effects of Galatea, a moon just inward.

2.7 Satellites of Giant Planets

As already stated, the giant planets have a large number of satellites, some of which
are larger than Earth’s Moon and even than Planet Mercury. The majority of them,
however, are similar to asteroids and some are very small and have an irregular
shape. Actually, the number of the small satellites of giant planets is unknown, and
new ones are continuously discovered.

Jupiter has 63 satellites (data referred to the beginning of 2009), but only 4
of them, the Galilean satellites, have a diameter larger than 500 km (Fig. 2.11).
The fifth one in size, Amalthea, is quite irregular, having dimensions 250 x 146 x
128 km.

In order of distance from the planet they are Metis, Adrastea, Amalthea,
Thebe, lo, Europa, Ganymede, Callisto, Themisto, Leda, Himalia, Lysithea, Elara,
S/2000 J 11, Carpo, S/2003 J 12, Euporie, S/2003 J 3, S/2003 J 18, Thelxinoe, Eu-
anthe, Helike, Orthosie, Iocaste, S/2003 J 16, Praxidike, Harpalyke, Mneme, Her-
mippe, Thyone, Ananke, S/2003 J 17, Aitne, Kale, Taygete, S/2003 J 19, Chaldene,
S/2003 J 15, S/2003 J 10, S/2003 J 23, Erinome, Aoede, Kallichore, Kalyke, Carme,
Callirrhoe, Eurydome, Pasithee, Kore, Cyllene, Eukelade, S/2003 J 4, Pasiphag,
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Fig. 2.11 Images of the four Galilean Satellites of Jupiter shown in the same scale. Pictures taken
by the Galileo probe (NASA images)

Hegemone, Arche, Isonoe, S/2003 J 9, S/2003 J 5, Sinope, Sponde, Autonoe, Mega-
clite, S/2003 J 2.

Saturn has 61 confirmed satellites: Pan, Daphnis, Atlas, Prometheus, Pandora,
Epimetheus, Janus, Aegaecon, Mimas, Methone, Anthe, Pallene, Enceladus, Tethys,
Telesto, Calypso, Dione, Helene, Polydeuces, Rhea, Titan, Hyperion, lapetus,
Kiviug, Ijiraq, Phoebe, Paaliaq, Skathi, Albiorix, S/2007 S 2, Bebhionn, Erriapus,
Skoll, Siarnaq, Targeq, S/2004 S 13, Greip, Hyrrokkin, Jarnsaxa, Tarvos, Mundil-
fari, S/2006 S 1, S/2004 S 17, Bergelmir, Narvi, Suttungr, Hati, S/2004 S 12, Far-
bauti, Thrymr, Aegir, S/2007 S 3, Bestla, S/2004 S 7, S/2006 S 3, Fenrir, Surtur,
Kari, Ymir, Loge, Fornjot. To these a number of moonlets must be added.

Many of the Saturn’s moons are very small: 34 are less than 10 km in diameter,
and another 14 less than 50 km. Only seven are massive enough to have collapsed
into hydrostatic equilibrium under their own gravitation. Out of them, 6 (Enceladus,
Tethys, Dione, Rhea, Titan and Iapetus) have a diameter larger than 500 km and
Mimas is only slightly smaller.
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Table 2.6 Diameter d, mass m, gravitational acceleration g, escape velocity V, and orbital data
(semimajor axis a, period 7', inclination i and eccentricity e) of the satellites of the giant planets
having a diameter larger than 500 km. A negative orbital period indicates retrograde motion

Name d m g Ve a T 1 e
(km) (10" kg) (m/s?) (km/s) (km) (days) ~ (deg)
Jupiter
To 3,643 89 1.80 2.56 421,700 1.769 0.050 0.0041
Europa 3,122 48 1.32 2.02 671,034 3.551 0471 0.0094
Ganymede 5,362 150 1.43 2.74 1,070,412  7.154 0.204 0.0011
Callisto 4,821 110 1.24 2.45 1,882,709 16.689 0.205 0.0074
Saturn
Enceladus 504 0.108 237,950 1.370 0.010 0.0047
Tethys 1,066  0.617 294,619 1.887 0.168  0.0001
Dione 1,123 1.095 377,396 2.737 0.002  0.0022
Rhea 1,529 2307 527,108 4518 0.327 0.0013
Titan 5,151 134.520 1.35 1.86 1,221,930 15.945 0.3485 0.0280
Iapetus 1,472 1.806 3,560,820 79.321 7.570  0.0286
Uranus
Ariel 1,157.8 1.35 191,020 2.520 0.260 0.0012
Umbriel 1,1694 1.17 266,300 4.144 0.205 0.0000
Titania 1,577.8 3.53 435910 8.706 0.340 0.0011
Oberon 1,522.8 3.01 583,520 13.463 0.058 0.0014
Neptune
Triton 2,707 214 0.78 1.45 354,800 —5.877 156.8

Uranus has 27 known satellites, whose names are chosen from characters from
the works of Shakespeare and Alexander Pope. They are Cordelia, Ophelia, Bianca,
Cressida, Desdemona, Juliet, Portia, Rosalind, Cupid, Belinda, Perdita, Puck, Mab,
Miranda, Ariel, Umbriel, Titania, Oberon, Francisco, Caliban, Stephano, Trinculo,
Sycorax, Margaret, Prospero, Setebos and Ferdinand.

Only 4 of them (Ariel, Umbriel, Titania and Oberon) are larger than 500 km
diameter, while Miranda is slightly smaller.

Neptune has 13 satellites: Naiad, Thalassa, Despina, Galatea, Larissa, Proteus,
Triton, Nereid, Halimede, Sao, Laomedeia, Psamathe and Neso. Only Triton ex-
ceeds 500 km diameter, while Proteous is slightly smaller.

The main characteristics of the satellites of the four giant planets larger than
500 km diameter are listed in Table 2.6.

The largest satellites are characterized by a gravitational acceleration similar to
that of the Moon.
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The satellites of the giant planets are quite different from each other and many
of them are interesting targets for exploration missions. Some are here dealt with in
some detail.

2.7.1 Io

The orbits of Io, Europa, and Ganymede form a pattern known as a Laplace res-
onance; for every four orbits that o makes around Jupiter, Europa makes exactly
two orbits and Ganymede makes exactly one. This resonance causes the gravita-
tional effects of the three large moons to distort their orbits into elliptical shapes.
The tidal force from Jupiter, on the other hand, works to circularize their orbits. The
eccentricity of their orbits causes strong tidal effects that heat the moons’ interiors
via friction. This is seen most dramatically in the extraordinary volcanic activity of
innermost lo.

Io orbits close to the cloud tops of Jupiter, within an intense radiation belt. The
magnetosphere of Jupiter strips away about 1 ton per second of volcanic gases and
other materials from the satellite, which remain in orbit about the planet, inflating
its magnetosphere. Io is supposed to have a metallic (iron, nickel) core surrounded
by a partially melted silicate rich mantle and a thin rocky crust.

Owing to the heat generated by tidal deformations, Io is the most volcanic body
in the solar system. Volcanic plumes extending for more than 100 km have been
recorded. The plumes are rich in sulfur dioxide, which forms clouds that rapidly
freeze and snow back to the surface. The dark areas in the floors of the calderas that
were discovered by the Voyager and Galileo probes may be pools of molten sulfur,
a very dark form of sulfur.

Apparently about 15% of Io is made of water ice, and the presence of hot parts
suggests that zones where liquid water can form may exist on the surface or un-
derground. Owing to the absence of an atmosphere, water should evaporate quickly
on the surface, but underground lakes cannot be excluded. Io is thus a candidate for
the search of life-forms in the solar system, provided that these underground pockets
supply some protection from the strong radiations due to the Jupiter magnetosphere.

2.7.2 Europa

Europa is very different from Io. It is covered by a layer of water ice that reminds us
of our polar ice-pack and contains large quantities of water, probably 15% or more
of the total mass of the satellite. Its surface is thus among the brightest in the solar
system, owing to the fact that this ice layer is relatively young and smooth.

The high resolution images taken by the Galileo probe show that the ice is frac-
tured in a way suggesting that some plates can move, floating on an underlying
layer of water or more plastic ice, as happens with glaciers on Earth. Studies per-
formed using radar altimeters and measuring the magnetic and gravitational fields
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also suggest that there is an ocean of water under the layer of ice, although neither
the thickness of the ice nor the depth of the ocean are known.

The satellite is supposed to have a metallic core made, possibly, of iron and
nickel, surrounded by a shell of rock and then by a layer of water in liquid form
or ice. This ocean of liquid water, perhaps hundreds of kilometers deep, is then
surrounded by a layer of ice whose thickness may be some kilometers, even ten or
more.

A very tenuous oxygen atmosphere has been recently detected.

Europa is thus another candidate for the search of extraterrestrial life, in spite of
its distance from the Sun, being heated by tidal effects caused by the proximity of
Jupiter.

2.7.3 Ganymede

The two last Galilean satellites, Ganymede and Callisto, have a heavily cratered
appearance.

Ganymede, the largest moon of Jupiter and in our solar system, is most likely
composed of a rocky core with a very thick (about 50% of the outer radius) water/ice
mantle and a crust of rock and ice. It has no known atmosphere, but recently a thin
ozone layer was detected at its surface. This suggests that also Ganymede probably
has a thin tenuous oxygen atmosphere.

The geological history of Ganymede is complex, with mountains, valleys, craters
and lava flows and it shows light and dark regions. Contrary to the Moon, where the
darker regions are the most recent, here the dark regions are more cratered, implying
ancient origin. The bright regions show a grooved terrain with ridges and troughs.

At the center a dense metallic core seems to exist, which is the source of a global
magnetic field discovered by the Galileo probe. Surrounding the metallic core, there
should be a rock layer, overlaid by a deep layer of warm soft ice. Above it the surface
is made by a water ice crust; images show features showing geological and tectonic
disruption of the surface in the past.

2.7.4 Callisto

Callisto is about the same size as Mercury. It orbits just beyond Jupiter’s main radia-
tion belt. Its icy crust is very ancient and dates back 4 billion years, just shortly after
the solar system was formed and is the most heavily cratered surface in the solar sys-
tem. The largest craters have been erased by the flow of the icy crust over geologic
time. Two enormous concentric ring shaped impact basins are Valhalla, with a bright
central region 600 kilometers in diameter and rings extending to 3,000 kilometers
in diameter, and Asgard, about 1,600 kilometers in diameter.
Callisto has the lowest density (1,860 kg/m?) of the Galilean satellites.
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The surface layer of ice is thought to be about 200 kilometers thick. Beneath
this crust it is possible that a salty ocean more than 10 kilometers deep exists. The
clues of this ocean are the Callisto’s magnetic field variations in response to the
background magnetic field generated by Jupiter.

Beneath the ocean, Callisto seems to have a not entirely uniform interior, com-
posed of compressed rock and ice with the percentage of rock increasing toward the
center.

2.7.5 Enceladus, Tethys, Dione, Rhea and lapetus

These satellites of Saturn are heavily cratered icy worlds. Tethys has a large impact
crater and many valleys and troughs stretching three quarters of the way around the
satellite.

Dione and Rhea have bright, heavily cratered leading hemispheres and darker
trailing hemispheres with thin streaks that are thought to be produced by deposits of
ice inside surface troughs or cracks. The latter may have a tenuous ring system of
its own.

Iapetus, the outermost of the large icy satellites, has a dark leading hemisphere
and a bright trailing hemisphere.

Encedalus is the innermost of the large Saturn’s satellites and is more heated than
the others by the planet’s tidal effects. The Cassini probe found evidence of liquid
water reservoirs that erupt in geysers. Images had also shown particles of water in
its liquid state being emitted by icy jets and towering plumes.

Many of the icy satellites of the giant planets, which are all more or less heated
by tidal effects, may have liquid water oceans under a kilometers deep icy crust. In
the case of Encedalus the icy crust above the ocean, or at least local liquid water
pockets, may be no more than tens of meters deep below the surface.

Some broad regions of Enceladus are uncratered, showing that geological activity
has resurfaced areas of the satellite within the last 100 million years.

At the beginning of the space Age, in 1958, when planning the Project Orion,
Freeman Dyson chose Encedalus as the destination for a manned mission with a
10,000 tons interplanetary ship propelled by 15 kiloton nuclear explosions.

2.7.6 Titan

Titan, by far the largest of the satellites of Saturn, is larger than the planet Mercury
and is the only moon in the Solar System to possess a significant atmosphere.
While apparently being similar to Earth’s environment, the surface of Titan is
completely different. The role played on the former by rock, on the latter is played
by water ice. The hard cobblestones in the floodplain in the pictures taken by the
Huygens probe that landed on its surface in 2005 (Fig. 2.12a) are actually chunks of
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Fig. 2.12 Images of Titan taken by the Huygens probe. (a) Image of the ground taken after landing.
(b) Image taken during the descent (images ESA/NASA/Univ. of Arizona)

ice, and the volcanoes (cold volcanoes) that remodel the surface erupt water mixed
to ice (slush) which is the local equivalent of lava.

The liquids on the surface are hydrocarbons (methane and ethane), which show
an evaporation-condensation cycle similar to the water cycle on Earth. The ground
in the landing site of Huygens is soaked in liquid methane, but free from the dark
hydrocarbon particles that fall from the sky, like snow on Earth. These hydrocarbon
grains collect in some areas and are driven by the wind forming tall dunes.

Likely there are no tall mountains, although a range 150 km long, 30 km wide
and 1.5 km high was discovered in the southern hemisphere by Cassini in 2006.
Some impact craters have been discovered, but their small number shows that the
surface is relatively young.

The temperature is in the range of —180°C. At this temperature water ice does
not sublimate or evaporate, so the atmosphere is nearly free of water vapor. The
haze in Titan’s atmosphere cause an effect that is opposite to the greenhouse effect,
reflecting sunlight back into space and making its surface significantly colder than
its upper atmosphere. The clouds on Titan, probably composed of methane, ethane
or other simple organic materials, are scattered and variable, punctuating the overall
haze. This atmospheric methane conversely creates a greenhouse effect on Titan’s
surface, without which Titan would be far colder.

Hydrocarbon lakes, seas and rivers, mostly of liquid methane but with ethane and
dissolved nitrogen, were discovered near Titan’s north pole; the largest of the seas
is almost the size of the Caspian Sea.

Titan’s atmosphere is denser than Earth’s, with a surface pressure more than one
and a half times that of our planet. It supports opaque haze layers that block most
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visible light from the Sun and other sources. Titan’s lower gravity means that its
atmosphere is far more extended than Earth’s; even at a distance of 975 km.

The atmosphere is 98.4% nitrogen with the remaining 1.6% composed of
methane and trace amounts of other gases such as hydrocarbons (including
ethane, diacetylene, methylacetylene, acetylene, propane), cyanoacetylene, hydro-
gen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium.

Titan has no magnetic field, although it seems to retain remnants of Saturn’s
magnetic field in occasions when it passes outside the Saturn’s magnetosphere and
is directly exposed to the solar wind.

2.7.7 Miranda, Ariel, Umbriel, Titania and Oberon

These moons of Uranus are ice-rock conglomerates composed of roughly fifty per-
cent ice and fifty percent rock. The ice may include ammonia and carbon dioxide.
Ariel appears to have the youngest surface with the fewest impact craters, while Um-
briel’s appears oldest. Miranda possesses fault canyons 20 kilometers deep, terraced
layers, and a chaotic variation in surface ages and features. Miranda’s past geologic
activity is believed to have been driven by tidal heating at a time when its orbit was
more eccentric than currently, probably as a result of a former 3:1 orbital resonance
with Umbriel. Extensional processes associated with upwellings of ice are the likely
origin of the moon’s racetrack-like coronae. Similarly, Ariel is believed to once have
been held in a 4:1 resonance with Titania.

2.7.8 Triton

Triton, the only large satellite of Neptune, has a retrograde orbit, indicating that it
was captured rather than formed in place; it probably was once a small body of the
Kuiper belt. It is close enough to Neptune to be locked into a synchronous rotation,
and it is slowly spiraling inward because of tidal effects. It will eventually fall on
the planet, or more likely be torn apart, in about 3.6 billion years, when it reaches
the Roche limit. No other large satellite in the solar system has a retrograde motion.

A value of the surface temperature of —235°C was estimated for Triton, the low-
est temperature recorded in the solar system, although it is likely that the Kuiper
belt objects are colder.

It has an extremely thin atmosphere, with a pressure at the surface of about 15 mi-
crobars. Nitrogen ice particles might form thin clouds a few kilometers above the
surface.

The higher density suggest that Triton contains more rock in its interior than the
icy satellites of Saturn and Uranus.

Triton is scarred by enormous cracks. Active geyser-like eruptions spewing nitro-
gen gas and dark dust particles several kilometers into the atmosphere were imaged
by Voyager 2.
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2.8 Small Bodies

Apart from the satellites of the planets, there are many other small objects in the
solar system. They can be roughly subdivided into some categories:

Main belt asteroids
Kuiper belt objects (KBO)
Trojan asteroids

Other asteroids

Comets

The asteroids and Kuiper belt objects come in different sizes. The largest are
spherical bodies, with characteristics not dissimilar to small planets or large satel-
lites. The largest main belt asteroids are Ceres, Vesta, Pallas, and Hygiea, whose
total mass amounts roughly to half the mass of all main belt objects. Ceres is now
classified as a dwarf planet. Also a number of objects of the Kuiper belt, like Pluto.
Quaoar, Eris, Sedna, Haumea, and Makemake are large enough to be spherical and
to be given the status of dwarf planets. Pluto was considered the ninth planet of the
solar system until the large objects of the Kuiper belt were discovered. Owing to
their distance from the Sun, they are poorly seen, and it is likely that many other,
yet undiscovered, large KBO exist.

The characteristics of some large minor bodies orbiting the Sun (dwarf planets
and large asteroids) are reported in Table 2.7.

Smaller objects have an irregular shape.

2.8.1 Main Belt Asteroids

With a diameter of about 950 km, Ceres is by far the largest and most massive body
in the asteroid belt and is assumed to be a surviving protoplanet, which formed
4.57 billion years ago in the asteroid belt. Like the planets, its structure should con-
sist of a crust, a mantle and a core. The amount of water on Ceres is larger than that
on Earth; it is possible that some of this water is (or at least was) in liquid form,
an ocean located between the rocky core and ice mantle like the one that may exist
on Europa. Ammonia may be dissolved in the water. Like for Europa, the possible
existence of this liquid water layer suggests the possibility of finding extraterrestrial
life.

The surface composition contains hydrated materials, iron-rich clays and carbon-
ates which are common minerals in carbonaceous chondrite meteorites.

The surface of Ceres is relatively warm, with temperatures ranging from —106
to —38°C.

Ceres may have a tenuous atmosphere and water frost on the surface, which is
expected to sublimate when exposed directly to solar radiation. Its rotational period
is 9 hours and 4 minutes and the tilt of its rotation axis is about 3°.

Vesta, too, has a differentiated interior, though it is devoid of water and its com-
position is mainly basaltic rock such as olivine.
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Table 2.7 Diameter d, mass m, gravitational acceleration g, escape velocity V, and orbital data
(semimajor axis a, period T, inclination to the ecliptic i and eccentricity ¢) of some large minor
bodies orbiting the Sun (dwarf planets and large asteroids)

Name d m g Ve a T i e
(km)  (10*'kg) (m/s?) (km/s) (10°km) (days) (deg)

Main belt
Ceres 974.6 0943 0.27 0.51 413.833 1680.5 10.585 0.079
Vesta 560 0.267 0.22 0.35 353.268 1325.2 7.135  0.089
Pallas 556 0.211 0.18 0.32 414.737 1686.0 34.838 0.231

Hygiea 407 0.0885 0.091 0.21 469.580 2,031.01 3.842 0.117

Kuiper belt
Pluto 2,303  13.14 0.6 5,906.438 90,589 17.140 0.249
Haumea 1,518  4.01 0.44 0.84 6,452.000 103,468 28.22 0.195
Quaoar 1,260 6,524.262 105,196  7.985 0.037
Makemake 1,276  4.18 6,850.086 113,191  28.963 0.159
Eris 2,600 16.7 10,120.000 203,600  44.187 0.441
Sedna ~1,500 78,668.000 4,404,480 11.934 0.855

Vesta’s shape is relatively close to a gravitationally relaxed oblate spheroid, but
its irregularity precluded it from being considered a dwarf planet. It has a very large
impact basin of 460 kilometers diameter at its southern pole. Its width is 80% of the
diameter of Vesta, its floor is about 13 kilometers deep, and its rim rises 4—12 km
above the surrounding terrain. A central peak rises 18 kilometers above the crater
floor.

Vesta is thought to consist of a metallic iron—nickel core, an overlying rocky
olivine mantle, with a surface crust. The impact crater at the south pole is so deep
that it exposed part of the inner core. The eastern and western hemispheres are
markedly different; the former seems to be similar to lunar highlands while large
regions of the latter are covered with more recent basalts, perhaps analogous to the
lunar maria.

The rotation period is 5.342 h, with a tilt of the rotation axis of 29°. Temperatures
on the surface have been estimated between —190°C and a maximum of —20°C.

Pallas is unusual in that it rotates on its side (the axis is tilted by 78°, with some
uncertainty), like Uranus and its rotation period is 0.326 days. Its orbit has an un-
usually high inclination to the plane of the main asteroid belt, and eccentricity, the
latter being nearly as large as that of Pluto. As a consequence, Pallas is a difficult
target for space probes. Its composition is similar to that of Ceres: high in carbon
and silicon.

Hygiea is largest of C-type asteroids with a carbonaceous surface and, unlike the
other largest asteroids, lies relatively close to the plane of the ecliptic. Its rotation
period is 27.623 h, and its surface temperature is between —26 and —109°C. Water
ice might have been present on its surface in the past.
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Hundred thousands asteroids are currently known, over 200 of them being larger
than 100 km, and the total number ranges in the millions or more.

Remark 2.12 The asteroids are spread over such a large volume that the main belt
is mostly empty: the popular idea of the main asteroid belt as a portion of space
full of objects is thus a misconception. To reach an asteroid requires very careful
navigation, and hitting one by chance is unlikely.

Most main belt asteroids belong to three wide categories: C-type or carbonaceous
asteroids, S-type or silicate asteroids, and M-type or metallic asteroids.

Over 75% of the visible asteroids are C-type asteroids; they are rich in carbon and
dominate the belt’s outer regions. They are more red in hue than the other asteroids
and have a very low albedo. Their surface composition is similar to carbonaceous
chondrite meteorites.

About 17% of the asteroids are S-type. They are more common toward the inner
region of the belt. Their spectra show the presence of silicates and some metal, but
no significant carbonaceous compounds. They have a relatively high albedo.

Less than 10% of the asteroids are M-type; their spectra being similar to those of
iron—nickel meteorites. However, there are also some silicate compounds that can
produce a similar appearance. For example, the large M-type asteroid 22 Kalliope
does not appear to be primarily composed of metal. M-type asteroids at any rate
seem to contain a huge quantity of useful, and even precious, metals.

Remark 2.13 A standard 1 km diameter M-type asteroid is assumed to contain
200 million tonnes iron, 30 million tonnes nickel, 1.5 million tonnes cobalt and
7,500 tonnes of metals of the platinum group. Only the latter are worth 150 billion $
at current prices.

Clearly, if such asteroids can be mined, the price of precious metals would de-
crease sharply, but this would allow to use them for many technical applications at
present impossible owing to their high cost. Mining asteroids is a possible future
use for space robots.

Within the main belt, the number distribution of M-type asteroids peaks at a
semimajor axis of about 2.7 AU. It is not yet clear whether all M-types are compo-
sitionally similar, or whether they are simply asteroids which do not fit neatly into
the main C and S classes.

There are many other types, including G-type asteroids, similar to the C-type ob-
jects, but with a slightly different spectrum, D-type, A-type and V-type, or basaltic,
asteroids. The latter were assumed to be the products of the collision that produced
the large crater on Vesta and thus to be younger than other asteroids (about 1 billion
years or less). This origin is, however, now less certain.

Some objects in the outer part of the asteroid belt show cometary activity. Since
their orbits are different from the orbits of classical comets, it is likely that many
asteroids in that region are icy, with the ice occasionally exposed to sublimation
through small impacts.
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The structure of irregular asteroids is not known in general. In the past, asteroids
were often assumed to be mostly rubble piles, but now it is certain that many of
them are more or less solid bodies.

The asteroid belt is quite wide, so that the temperature of the asteroids varies
with the distance from the Sun. The temperature of dust particles located at the
distance from the Sun of the asteroid belt ranges from —73°C at 2.2 AU to —108°C
at 3.2 AU. The actual temperature of the surface of asteroids, however, changes
while the asteroid rotates.

The orbits are not evenly distributed: orbital resonances with Jupiter destabilize
some orbits, giving way to gaps, named Kirkwood gaps. They occur where the pe-
riod of revolution about the Sun is an integer fraction of Jupiter’s orbital period.

Collisions between main belt bodies with a mean radius of 10 km are expected to
occur about once every 10 million years, which can be defined frequently, on astro-
nomical time scales. As a result, an asteroid may fragment into numerous smaller
pieces, leading to the formation of a new asteroid family. If the relative speed is low,
the two asteroids may also join together.

Some asteroids, even small ones, have one or more satellites, usually just tiny
rocks orbiting about them.

2.8.2 Kuiper Belt Objects

In the outer solar system there is a region where orbits have a 2:3 resonance with
Neptune. These asteroids are said to be Plutinos, since are in the same resonance as
Pluto. Other asteroids are in orbits with a 1:2 resonance with Neptune’s orbit (they
are said twotinos). All these asteroids, and others with orbits outside that of Neptune
out to about 55 AU from the Sun are said to be Kuiper Belt Objects (KBOs). The
region where they orbit is said the Kuiper Belt.

Many Plutinos, including Pluto, have orbits crossing that of Neptune, though
their resonance means they can never collide. The eccentricity of their orbit is large,
suggesting that they are not native to their current positions but migrated there under
the gravitational pull of Neptune.

Apart from twotinos, whose orbits have a semimajor axes of about 47.7 AU, other
resonances also exist at 3:4, 3:5, 4:7 and 2:5.

Kuiper belt objects are icy worlds, usually larger than the asteroids in the main
belt. Like Jupiter’s gravity dominates the asteroid belt, Neptune’s gravity dominates
the Kuiper belt. Also here there are zones where the orbits are unstable, and the
Kuiper belt’s structure has gaps, like the region between 40 and 42 AU.

Three of the KBO—Pluto, Haumea and Makemake—are classified as dwarf
planets. They, and many smaller and irregular objects orbiting so far from the Sun,
are different from the main belt asteroids: the former are mostly rock and metal,
while the Kuiper belt objects are composed largely of frozen volatiles such as light
hydrocarbons (like methane), ammonia and water, a composition not much different
from that of comets. These substances are in ice form since the temperature of the
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belt is only about —220°C. Also the signature of amorphous carbon was discovered
in the spectra of some Kuiper belt objects.

To distinguish these objects from asteroids and from comets, they are often re-
ferred to as cometoids.

At present over a thousand KBOs have been discovered and more than 70,000
other objects over 100 km in diameter are believed to exist between the orbit of Nep-
tune and 100 AU from the Sun. Triton, the largest satellite of Neptune, is believed
to be a captured KBO.

Pluto has a rotation period of 6.387 days. It has three satellites, the largest of
which, Charon, has a diameter of 1,207 km, a mass of 1.9 x 102! kg and could be
considered as a dwarf planet if it were not orbiting Pluto. The Pluto—Charon system
can be considered as a double planet, like other KBO. Nix follows a circular orbit in
the same plane as Charon and, with an orbital period of 24.9 days is close to a 1:4
orbital resonance with Charon. Hydra orbits in the same plane as Charon and Nix,
but on a less circular orbit. Its orbital period of 38.2 days is close to a 1:6 orbital
resonance with Charon.

Also Eris and Haumea have satellites. Haumea has a very elongated orbit, and is
the farthest object in the solar system, except for comets.

2.8.3 Trojan Asteroids

A trojan minor planet, asteroid or satellite is a celestial body that shares an orbit with
a larger planet or satellite, but does not collide with it because it is located in one of
the two stable Lagrangian points L4 or L5, which lead or lag by 60° the larger body.
Actually, a trojan is not located exactly in the Lagrangian point, but orbits about
it with a complex dynamics, also for the perturbations due to other bodies. Three-
dimensional halo orbits are periodic, while other types of orbits are quasi periodic.
This allows a large number of bodies to coexist in different orbits about the same
Lagrange point without colliding. Trojans located at a certain Lagrange point are, at
any moment, actually spread out in a wide arc on the orbit of the main body.

The term originally referred to two groups of asteroids orbiting the Sun in the
same orbit as Jupiter. The first of them, lagging Jupiter by 60°, was discovered in
1904 by the German astronomer Max Wolf and named Achilles. The others were
named after Greek (those lagging Jupiter) and Trojan heroes (those leading Jupiter)
from the Iliad, with the exceptions of Hector and Patroclus, which are in the *enemy
camp’. Those later discovered on the orbits of other planets or satellites could be
designated in a more generic way as Lagrangian asteroids, but the term trojans at
the end prevailed. Currently over 1,800 trojan asteroids associated with Jupiter are
known. About 60% of them are in L4, leading Jupiter in its orbit, while the other
40% are about LS and trail the planet, like Achilles.

Eureka, discovered in 1990, is the first Mars trojan to be found (5 of them, all
located at L5, are known at present). Six Neptune trojans were then discovered and
now is believed they are much more numerous than those of Jupiter. Apparently
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Saturn and the Earth have no trojans, but clouds of dust were fond at the Lagrange
points L4 and L5 on the Earth’s orbit and even on the Moon’s orbit.

Four examples of trojan satellites are known: Telesto and Calypso, satellites of
Saturn, are trojans to Tethys, and Helene and Polydeuces, are trojans to another
Saturn’s satellite, Dione.

The composition of Trojan asteroids is similar to that of the nearby asteroids, so
those on Jupiter’s orbit are likely to be similar to those of the outer main belt and
those on Neptune’s orbit are likely to be similar to KBOs. Some trojans, like Patro-
clus, seem to have a comet-like composition. Achilles, Hector and other Jupiter’s
trojans are D-type asteroids (a rare, low albedo, carbon rich, type). Eureka is an
A-type asteroid.

2.8.4 Other Asteroids

Among the other asteroid, not belonging to the above categories, Near-Earth As-
teroids (NEA), and more in general, Near-Earth Objects (NEO), i.e. objects whose
orbit passes close to that of Earth. are the most important. NEOs having a diameter
less than 50 meters are said to be Near-Earth Meteoroids (NEMs).

All NEOs have a perihelion distance less than 1.3 AU, and include (at the end of
2008), 5,857 NEAs and 82 Near-Earth Comets (NECs), for a total of 5,939 NEOs.
Their number is, however, quickly growing with new discoveries. Out of them, up
to 1,000 have a diameter equal to or larger than one km and are potentially able to
cause a global catastrophe on Earth. 943 asteroids have been classified as poten-
tially dangerous (PHA, Potentially Hazardous Asteroids), because they could get
dangerously close to Earth.

To assess the potential danger posed by PHAs, a scale, named the Torino Scale,
was devised. This scale, of the type of the Richter scale for earthquakes, aims to
classify the danger represented by the asteroids and comets that are discovered. It
has 11 degrees (from 0, no risk, to 10, certainty of generalized destruction), and five
colors, (from white, certainty of no impact, to red, certainty of impact). The useful-
ness of this type of scale derives from the fact that when an asteroid is discovered,
its orbit can only be calculated in an approximate way and the potential danger it
represents may only be assessed in statistical terms. Even when the orbit is better
known, it can be changed by gravitational perturbations of the planets or even of
the Earth in such a way that the danger it represents changes. These perturbations
cannot be computed with the required precision: a variation of a few thousand km,
a trifle on an astronomic scale, may transform a harmless asteroid into a serious
danger.

None of the known objects has a degree higher than one on the Torino scale. An
example of an asteroid with a Torino Scale value equal to 1 is 2004 MN4 Apophis,
which will make several close passes, coming very close in 2029, and has some
probability of hitting the Earth on April 13, 2036. Its estimated diameter is 390 m.

Some NEOs are easier to reach than the Moon, since they require a lower AV.
Not only they may present interesting scientific targets for direct geochemical and
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astronomical investigation, but are also potentially economical sources of extrater-
restrial materials for human exploitation. Two near-Earth objects have been visited
by spacecraft: 433 Eros, by NASA’s Near Earth Asteroid Rendezvous probe, and
25143 Itokawa, by the JAXA Hayabusa mission.

Depending on their orbits, NEA are subdivided into three families

e Atens, orbiting inside Earth orbit (average orbital radii closer to the Sun than one
AU and aphelia outside Earth’s perihelion, at 0.983 A.U.). 453 Atens were known
in May 2008.

e Apollos, whose orbit has an average orbital radius greater than that of the Earth
and perihelion less than Earth’s aphelion at 1.017 A.U. 2,053 Apollos were known
in May 2008.

e Amors, orbiting outside Earth orbit (average orbital radii in between the orbits of
Earth and Mars and perihelia slightly outside Earth’s orbit (1.017-1.3 AU). They
often cross the orbit of Mars. 2,894 Amors were known in May 2008.

Remark 2.14 Many Atens and all Apollos have orbits that cross that of the Earth,
so they are a threat to impact the Earth on their current orbits. Amors do not cross
the Earth’s orbit and are not immediate impact threats.

However, their orbits may evolve into Earth-crossing orbits in the future. NEOs’
orbits are actually the result of the gravitational perturbations of the outer planets,
mainly Jupiter, and these objects come from the asteroid belt or even the outer solar
system. The Kirkwood gaps, where orbital resonances with Jupiter occur, are the
places from where most of them come. Their orbits are bound to change again in
the future: new asteroids are constantly moved into near-Earth orbits and the present
ones are moved away, even ejected from the solar system or sent into the Sun.

2.8.5 Comets

Comets are small bodies which, when get close enough to the Sun, exhibit a visible
coma, and sometimes a tail, both because of the effects of solar radiation upon the
comet’s nucleus. Comet nuclei are themselves loose collections of ice, dust and
small rocky particles, ranging from 100 m to more than 40 km across.

Remark 2.15 Comet nuclei are often described as ‘dirty snowballs’, but observation
by spacecraft showed that their surface is made of dry dust or rock, suggesting that
the ices are hidden beneath the crust.

The results of the Deep Impact probe suggest that the majority of a comet’s water
ice is below the surface, and that these reservoirs feed the jets of vaporized water
that form the coma.

The nucleus is made of rock, dust, water ice, and frozen gases such as carbon
monoxide, carbon dioxide, methane and ammonia. It contains also a variety of other
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organic compounds including methanol, hydrogen cyanide, formaldehyde, ethanol
and ethane, and perhaps more complex molecules such as long-chain hydrocarbons
and amino acids. Cometary nuclei are among the darkest objects known to exist in
the solar system: Halley’s Comet nucleus, for instance, reflects approximately 4%
of the incoming light, and the surface of Borrelly’s Comet is even darker, reflecting
2.4 to 3.0% of the incoming light. This darkness is ascribed to complex organic
compounds.

Like small asteroids, comets have irregular shapes.

A wide variety of orbits of comets exists. Some of them dwell in the inner solar
system and in the Kuiper belt, with orbital periods of a few years, while others
get quite far from the Sun, with periods of hundreds of thousands years. Some are
believed to pass only once through the inner Solar System before being thrown out
into interstellar space.

Short-period comets are thought to originate in the Kuiper Belt, beyond the orbit
of Neptune. Long-period comets are believed to originate in the Oort cloud, con-
sisting of debris left over from the condensation of the solar nebula, located well
beyond the Kuiper Belt. Comets are thrown toward the Sun and the inner solar sys-
tem by gravitational perturbations from the outer planets (in the case of Kuiper Belt
objects) or nearby stars (in the case of Oort Cloud objects), or as a result of collisions
between objects within these regions.

The difference between asteroids and comets lies in their orbit and composi-
tion, but the latter distinction is more and more blurred, since outer solar system
asteroid are now understood to contain much frozen volatile substances. In particu-
lar, centaurs are comet-like bodies that orbit among the gas giants, between Jupiter
and Neptune. Their orbits are unstable and have dynamic lifetimes of a few million
years. Until they remain so far from the Sun, they have no coma and seem to be
asteroids, but when such bodies enter the inner solar system their cometary nature
unfolds. Chiron, for instance, and other centaurs are listed both as asteroids and as
comets.

In May 2009, 3,648 known comets had been reported, about 400 being short-
period comets. This number is believed to represent only a tiny fraction of the total
potential comet population: the outer solar system may contain something like one
trillion cometary bodies.

As a comet approaches the inner solar system, solar radiation causes the volatile
materials within the comet to vaporize and stream out of the nucleus, carrying dust
away with them. Since the gases are not ejected from the comet in an isotropic
way, they exert a thrust, so that the orbit of comets is affected by this sort of rocket
propulsion.

The streams of dust and gas form a huge, extremely tenuous atmosphere around
the comet and, under the pressure of the Sun’s light, an enormous tail pointing away
from the Sun. The streams of dust and gas form two distinct tails, pointing in slightly
different directions.

Even if the coma and the tail are very thin by the standards we are used to,
the region of space close to an active comet is believed to be dangerous for any
spacecraft.
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Fig. 2.13 (a) Asteroid 243
Ida imaged by Galileo
spacecraft on August 28,
1993. The asteroid is 52 km
long, and the image is a
mosaic of five pictures
acquired from distances from
3,057 to 3,821 kilometers
(NASA-JPL image).

(b) Ellipsoidal body attracting
gravitationally point P

While the solid nucleus of comets is generally less than 50 km across, the coma
may be larger than the Sun, and ion tails have been observed to extend 1 astronom-
ical unit (150 million km) or more. Ionized gas particles attain a positive electrical
charge which in turn gives rise to an ‘induced magnetosphere’ around the comet.
A bow shock is thus formed upstream of the comet, in the flow direction of the solar
wind.

Comets are also known to break up into fragments, as happened with Comet
73P/Schwassmann-Wachmann 3 starting in 1995. This breakup may be triggered by
tidal gravitational forces from the Sun or a large planet, by an explosion of volatile
material, or for other reasons not fully explained.

2.8.6 Gravitational Acceleration on the Surface of Non-regular
Asteroids

The irregular shape of all asteroids, but the largest ones, causes the gravitational
acceleration to be variable from place to place and to be not perpendicular to the
ground. For instance, the gravitational acceleration on Eros varies between 0.0023
and 0.0055 m/s>. A picture of asteroid Ida as imaged by Galileo probe is shown in
Fig. 2.13a.

It is well known that in case of spherical bodies (with mass axial symmetry)
the gravitational acceleration at the surface and above is exactly the same as that
of a point mass located at its center. All major bodies and the dwarf planets are
close enough to be spherical, to the point that it is possible to consider their mass
concentrated at their center, at least for first approximation evaluations. When the
precision required is such that the deviation from a spherical shape (and constant
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density) must be taken into account, it is possible to proceed using a perturbation
approach, considering the gravitational field of a sphere and applying subsequent
small correction terms, obtained from the potential of the gravitational field.

Consider the generic body in Fig. 2.13b (in the figure the body is plotted as an
ellipsoid, but the computation holds in general) and assume that a generic point Q
inside the body has coordinates x, y, and z. The external point P where the field
has to be computed has coordinates xp, yp, and zp. The reference frame Oxyz is
centered in the center of mass of the body and vectors (P — O), (Q — O) and (P — Q)
are indicated as rp, r, and d.

The gravitational potential per unit mass in point P due to mass dm located in Q
is

G
dU = — dm, @.1)
d]

where G is the gravitation constant.
The potential per unit mass in point P due to the whole body is

G
U= —dm. 2.2
/M a " (&2

Since

ld| = \/(X —xp)?+(y— )2+ (z—zp)? = \/II'PI2 + |r|? = 2Jr][rp| cos(6),

(2.3)
where 6 is the angle defined in Fig. 2.13b, it follows that
G
=2 / S — 2.4)
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where p is the density of the body, in general a function of space coordinates, and

|r| xxp+ yyp + zzp
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Since g < 1 and, in case of points outside the body, « < 1 the square root at the

denominator can be written as a Taylor series in «. The potential can thus be written

as!

|rP|Z/ pPatdV = Zu (2.5)

The first term is easily computed, obtaining

Py=1, Uyp= —. (2.6)

TAE. Roy, Orbital Motion, Adam Hilger, Bristol, 1991.
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The first term is thus the potential of a point mass with the same mass of the
body, located in its center.

Since O is the center of mass of the body, the second term (i = 1) can be shown
to vanish:

P =g, U =0. 2.7
The third term can still be obtained with straightforward computations, obtaining
| G
Py=-03q"— 1), Uy = ——=(Jx + Jy + J: = 3Jop), (2.8)
2 2|rp|

where the various J; are the moments of inertia about the axes and about line OP.

Note that also this term vanishes for spherical bodies.

The fourth term can be shown to vanish if the body is symmetrical about the
coordinate planes, like in the case of a homogeneous ellipsoid. The same can be
shown to happen for the sixth, eighth, etc. terms, i.e. all terms If; with odd i. If the
body is a revolution solid, but is pear-shaped, like in the case of Earth, these terms
do not vanish.

This approach, based on the series expansion of the potential, is increasingly
difficult when the higher order terms become important, i.e. when

e point P is close to the surface
e the shape of the body departs from a sphere by a non small quantity or the density
is not constant

When computing the gravitational acceleration on the surface of very small bod-
ies, like asteroids and comets, a large number of terms should be accounted for.
Even if their shape is approximated as a spheroid (something that can be done only
as a theoretical example), this approach becomes unpractical.

A different approach will be followed here to show that the non-spherical shape
causes the gravitational acceleration at the surface not only to change from point to
point, but also to be not perpendicular to the surface even in the case of a homoge-
neous spheroid.

Using the same notation as above (Fig. 2.13b), the gravitational force exerted on
a mass m located in point P outside the body can be computed as

1
F=m1VU=—Gm1f —3ddm. 2.9)
m |d]
The local gravitational acceleration at point P is
1
g:_G/ L adm. 2.10)
m ldP

If the coordinates of point P are xp, yp and zp, it follows that

X — Xp

0

g=—Gf y—yp ¢ dxdydz, (2.11)
vIVE—xp)2+ -2+ @ -2 P | ;2

were V is the volume occupied by the body.
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If the body is a homogeneous sphere with radius R and p is a constant, the in-
tegration can be performed in closed form, although not in rectangular coordinates.
Using cylindrical coordinates, and setting x axis along the line connecting point P
with the center of the sphere, it follows that

1 1
47 GpR3 MG
TP tot="F ot (2.12)
3XP 0 .XP O

This amounts to state that the body behaves as a point mass located at its center,
as stated above.

Consider a body whose shape is an ellipsoid with semi-axes a, b and c, respec-
tively, in the direction of x, y and z axes, and assume that its density is constant.
The gravitational acceleration is thus

a b /T=G7 re/T=CP-GP | [*¥—xp
g:-G,o/ f [ == 1Y~y ¢ dxdydz. (2.13)
—a b ST=( J—e /== I | 5 _ 7

The innermost integral can be performed in closed form, yielding

(x—xp) A B
df ( d}+ A * \/d12+32)
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where
X2 2
A=c l_a_z_ﬁ_zp’
2 2
B=c\[l-—— 5+, (2.15)

di = \/(x —xp) + (y — yp)*.

The other two integrals cannot be performed in closed form, but there is no dif-
ficulty in obtaining a numerical result, once the position of P and the geometrical
characteristics of the ellipsoid are known.

For example, the gravitational acceleration on the surface of a prolate spheroid,”
with the larger axis in x direction (i.e. b = ¢ < a) is reported as a function of the

2 A spheroid is an ellipsoid with two equal axes. If the third axis is smaller than the other two, the
spheroid is oblate; if it is longer it is prolate.
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Fig. 2.14 Gravitational acceleration on the surface of a prolate spheroid. (a) Sketch; nondimen-
sional value of the gravitational acceleration (b) and angle between the perpendicular to the ground
and the vertical direction (i.e. the direction of the gravitational acceleration) (c) as functions of the
nondimensional coordinate x*

nondimensional x* = x /a coordinate of point P in Fig. 2.14b. The nondimensional
value of the gravitational acceleration is

a2

*
8 =8Cuy (2.16)
i.e. is made nondimensional by dividing it by the gravitational acceleration at the
surface of a spherical body with the same mass and a radius equal to the semimajor
axis of the spheroid.

The angle between the perpendicular to the ground and the vertical direction
(i.e. the direction of the gravitational acceleration) is reported as a function of the
nondimensional coordinate x* in Fig. 2.14c.

It is clear that on a spheroidal body what matters is not so much the variability
of the gravitational acceleration as the angle between the vertical direction and the
perpendicular to the ground. Angles as large as 20° or even 30° are present.
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Remark 2.16 An angle of 20° corresponds to a 18% grade. In places where the
perpendicular to the flat ground has such an inclination with respect to the local
vertical, any modest terrain irregularity may be very difficult or even impossible to
overcome.

Remark 2.17 Actual asteroids are much more irregular than this and above all their
shape may not be convex everywhere. There may be large zones where locomotion
on the ground is very difficult and places that may be accessed, but from which it is
quite difficult to get out.



Chapter 3
Manipulatory Devices

Space robots are often provided with manipulatory devices, which are essential to
perform tasks like grasping spacecraft or specimens, operating tools or cameras for
inspection and many other duties. In most cases these manipulatory devices are
open kinematic chains, which may bear some similarity with human arms or at least
animal limbs. The generic term arm is used for manipulators that follow the scheme
of an open kinematic chain, even if their structure is not anthropomorphic.

The arms of space robots are similar, at least conceptually, to those of industrial
robots. The main task of arms is carrying an end effector of some sort, able to
perform the required task, moving it to a prescribed point in space, with a given
orientation and often following a well determined trajectory.

The same anthropomorphic nomenclature used in industrial robots applies also
to space robots: an arm starts at the shoulder, the middle joint is an elbow and the
joint at the end effector is a wrist. If the latter is a manipulator, it is defined as a
hand, and usually has fingers.

In some specialized applications, the wrist carries a specific tool to perform a de-
termined job instead of a generic hand, and there are cases where different effectors
may be mounted in an automatic way.

3.1 Degrees of Freedom and Workspace

An arm is usually assumed to be an open kinematic chain, made of rigid bodies
(links) connected to each other by hinges (joints). The first link is hinged to the
base, the last carries an end effector of some sort.

The position of the end effector is defined by a point P, characterized by coordi-
nates

X=[x v zI7 (3.1

in a reference frame fixed to the base.
If the arm must reach a generic point in the three-dimensional space, it must have
a minimum of three degrees of freedom. The corresponding generalized coordinates,

G. Genta, Introduction to the Mechanics of Space Robots, Space Technology Library 26, 73
DOI 10.1007/978-94-007-1796-1_3, © Springer Science+Business Media B.V. 2012
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Fig. 3.1 Some possible arrangements of robotic arms to let them to reach a point in three-dimen-
sional space. The three generalized coordinates are also shown

either rotational or translational coordinates, defining the positions of the joints, can
be written in a vector

0=[0, 6, 631". (3.2)

They are referred to as the joint coordinates of the arm.

A human arm, from the shoulder to the wrist (the latter not included), has three
degrees of freedom: two rotational degrees of freedom at the shoulder plus another
rotational degree of freedom at the elbow.

The joints can be materialized with cylindrical hinges (rotoidal joints) or linear
motion sliders, and the corresponding generalized coordinates can consequently be
angles or linear displacements. If two cylindrical hinges with orthogonal axes are
located in the same point, the resulting articulation is a spherical hinge, an example
being the human shoulder. Usually, a spherical hinge is modeled as two coinci-
dent cylindrical hinges. This implies that the link between the two hinges has zero
length.

The possible general configurations for three degrees of freedom arms are many;
some of them are shown in Fig. 3.1:
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Fig. 3.2 Symbols for a revolute (a) and a prismatic (b) joint. From (c) to (g): symbolic represen-
tation of the arms of Fig. 3.1

e Rectangular coordinates arm: all joint coordinates are displacements, and the po-
sition of the end effector is directly expressed by a set of three Cartesian coordi-
nates. It is also called a Cartesian arm.

e Cylindrical coordinates arm: the whole arm is pivoted on its support, and the first
coordinate is thus a rotation angle. The other two coordinates are linear displace-
ments and can be thought as Cartesian coordinates in a plane identified by the
two arm segments. The position of the end effector is expressed in cylindrical
coordinates.

e Spherical coordinates arm: the first two coordinates are two angles, while the
third one is a displacement that can be materialized by a telescopic arm. The first
link can be very short or even, as a limiting case, have vanishing length and the
first two cylindrical joints become a spherical hinge. In this case the position of
the end effector is expressed in spherical coordinates.

e Revolute arm: the first two coordinates are angles at the shoulder, while the third
one is an angle too (at the elbow). It is often called an anthropomorphic arm,
since the arrangement is that of a human limb. Again, the axes of the two cylin-
drical hinges at the shoulder may intersect, and the shoulder can be thought as a
spherical hinge.

e Selective Compliance Articulated Robot Arm (SCARA): the first two coordinates
are angles, while the third one is the linear displacement of the end effector. The
axes of the two cylindrical hinges are parallel.

Usually the layout of an arm is represented in a symbolic way by a diagram in
which cylindrical hinges and sliders (prismatic joints) are represented by the sym-
bols of Figs. 3.2a and b. Another way is by stating the sequence of rotational (R)
hinges and sliders (L), indicating whether the various axes are parallel (||), orthog-
onal (F, i.e. intersecting at a right angle) or perpendicular (L, i.e. at right angle to
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Fig. 3.3 The lander of the Viking probe with a spherical coordinates arm. The detail of the exten-
sible arm is also shown (NASA image)

their common normal). A revolute arm is thus RFR L R,! while a Cartesian arm
is LELFL. The layouts of Fig. 3.1 are shown in symbolic form in Fig. 3.2 from c
to g.

An example of spherical coordinates arm is the arm of the Viking lander
(Fig. 3.3). It is pivoted at the shoulder so that it can be rotated about a vertical
and a horizontal axis. The third motion is obtained by extending and contracting
the arm, like in telescoping devices. However, it does not have the limitations of
telescopic devices for what the ratio between the folded and the extended length is
concerned: the boom is made by two seam-welded steel strips that can be rolled on
a reel and when unrolled, the cross section springs back becoming almost circular
and regaining its stiffness. Each one of the two halves of the arm is similar to a metal
measuring tape.

The end effector cannot obviously reach any point in space: the part of the tridi-
mensional space that can be actually reached is called workspace. The workspace
of an arm based on a number of revolute joints is shown in Fig. 3.4. The workspace
is a torus, whose cross section is the curved quadrilateral shown with dashed lines.

! Actually two parallel axes are, following this definition, also perpendicular, since they are, by
definition, at right angle to their common normal. A revolute arm can thus be R-R LR, but also
RFR || R. Parallel axes are thus a particular case of perpendicular axes, as defined above. To avoid
this potentially confusing definition, often only two cases are defined: parallel (||), and perpendicu-
lar (L) axes, the latter with the meaning we here give to normal axes. However, in this way general
skew axes cannot be included.
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Fig. 3.4 Workspace of an arm based on three revolute joints

At first sight, the arm in the figure is not a revolute arm: the four bar linkage
transforms the rotations about the two hinges A and B in a different way than in
Fig. 3.1 and is not possible to identify an elbow. Moreover, the linkage is not an
open kinematic chain, and the approach seen below cannot be used.

Remark 3.1 As stated above, a robotic arm is, when possible, modeled as an open
kinematic chain, constituted by a number of rigid links. Even cases that apparently
are not such, in many instances can be reduced to this model.

The arm of Fig. 3.4 can be reduced to a revolute arm, made by the two rigid links
BC and CE. The hinge in B is the second hinge of the shoulder, while that in C
is the elbow. The links GAF and FD are just a transmission system connecting the
motor M to the second link, while the first motor M actuates directly the first link
in H.

3.2 End Effectors

The aim of a robotic arm is usually either to perform some operation on a workpiece
or to move objects. In the first case, very common in industrial robotics, the end
effector is a tool. There are specialized robots, like welding or painting robots, that
carry just one type of tool; in this case the tool can be directly a part of the arm. In
other cases, the robot may carry different tools to perform different tasks. The arm
may be able of performing the change of tool by itself, in a more or less automatic
way.
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Fig. 3.5 The NASA Robonaut has two anthroporphic arms provided with human-like hands
(NASA image)

Space robots often perform the general task of picking up and moving objects,
and in this case the end effector is a gripper. Also in this case the gripper may be
specialized, to get only a class of objects, perhaps provided with a suitable fixture
that matches the gripper, or be designed to get objects of various type or size.

There are cases where the gripper is modeled after a human hand, which is
considered a very good universal gripper. Anthropomorphic robots, like the NASA
Robonaut, are provided with hands that are as close as possible in shape, but above
all in function, to human hands (Fig. 3.5).

The main feature of the human hand is to have a thumb that opposes to the other
fingers, and this is replicated by most anthropomorphic hands. The number of fin-
gers may by less than four, to simplify the design and to reduce the number of
degrees of freedom. Solutions with two fingers plus the thumb, are quite common.

The control of the gripper is straightforward in case of a telemanipulator, while
the difficulties are still large if it must be performed autonomously.

For the manipulation of large objects or for performing difficult tasks the use of
two or more cooperating arms may be needed. Telemanipulators with two cooperat-
ing gripper arms controlled by a human operator with his two hands were common
in the nuclear industry since the 1960s; however, the difficulties linked with the
construction of autonomous cooperating arms are still large.

One of the reasons is that when two or more arms grip an object the kinematic
chain contains loops and it is difficult to avoid that large forces circulate in these
loops. In other words, it is difficult to make the arms really to cooperate and not to
work one against the other.
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Fig. 3.6 Sketch of a six-degrees of freedom arm, based on revolute joints

3.3 Orientation of the End Effector

Up to now the arm was considered as a device whose goal is to position the end ef-
fector in a certain position in space. If the end effector is considered as a rigid body,
its orientation in space must be considered too. Since a rigid body has six degrees
of freedom in the tridimensional space, vector X in (3.1), in which the generalized
coordinates of the end effector are listed has now six components.

The association of an orientation to a position is usually defined a pose.

To achieve a general pose of the end effector in any point of the workspace a
robotic arm must have six degrees of freedom (joint degrees of freedom, Fig. 3.6).
In a human arm, for instance, the wrist has three additional degrees of freedom to
obtain the required orientation of the hand, although the amplitude of the rotation
about the axis perpendicular to the plane of the hand is not large.

Unlike the human arm, it is not said that three degrees of freedom are associ-
ated with the arm, and three with the wrist: as shown in the figure, many different
arrangements are possible.

In the figure, the rotations are named

e roll, when about the x axis,
e pitch, when about the y axis,
e yaw, when about the z axis.

They are referred to a fixed xyz frame and to the arm in a reference position.

An example of a six-degrees of freedom arm is the Shuttle Remote Manipulator
System (SRMS), or Canadarm (Fig. 3.7). It is a telemanipulator attached to the
cargo bay of the Space Shuttle, used to move a payload from the cargo bay to its
deployment position and then to release it, or to catch a free-flying payload and
store it in the orbiter. As clearly visible from the figure, the degrees of freedom are
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Fig. 3.7 Sketch of the telemanipulator of the Space Shuttle. It is shown in the rest position, where
it is supported at 3 location (plus the shoulder) on the orbiter longeron

yaw and pitch rotation of the shoulder, pitch of the elbow and pitch, yaw and roll of
the wrist. It is a fully anthropomorphic arm.

The Canadarm is 15.2 m long and 380 mm in diameter, has a mass of 410 kg and
is capable of deploying or retrieving payloads up to 29,000 kg in space. However,
its motors are unable to lift the arm’s own weight when on the ground.

Often, however, the rotation of the end effector about an axis located in the di-
rection of the last part of the arm is not important. In this case, the arm has only five
degrees of freedom.

3.4 Redundant Degrees of Freedom

With six joint degrees of freedom it is possible to put the end effector in any place
within the workspace and to orient it in the required way, i.e. to reach the required
pose. To each set of joint degrees of freedom corresponds a pose of the end effector.

Remark 3.2 In many cases, owing to the nonlinearity of the kinematic equations,
there may be more than one set of the joint coordinates yielding a given pose of the
end effector.

If the space where the arm operates is not free, the arm must act to avoid obstacles
or forbidden areas. In this case a larger flexibility than that allowed by the basic six
joint degrees of freedom must be present and a larger number of degrees of freedom
must be provided.

If the number of degrees of freedom of the joints 6; is larger than the number
of degrees of freedom of the end effector, the kinematic relationships cannot be in-
verted (see below). This means that, although once the coordinates of the joints 6;
are stated it is possible to find the position and the orientation of the end effector
(direct kinematics), if the latter is stated an infinity of different sets of joint coordi-
nates 6; can be found. This is exactly the flexibility that was sought to go around
obstacles: there are many possible positions of the arm yielding the same position
of the end effector.
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Fig. 3.8 Serpentine robot
arm, shown in vertical
position. Also the workspace
is shown

Fig. 3.9 The NASA Space Crane: a serpentine robot arm for space applications (NASA image)

To choose one of them, other conditions must be stated.

There is no limit to the number of degrees of freedom that can be used, other than
the ensuing mechanical and control complexity. An example from nature of a device
with redundant degrees of freedom is the trunk of elephants. A robot arm based on
a serpentine configuration is shown in Fig. 3.8, together with its workspace.

A simple example of an arm with many degrees of freedom is the Space Crane
designed by NASA, although never actually built (Fig. 3.9). Each degree of freedom
is controlled by an electric motor at the shoulder through tendons. If the links in the
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arm are seven, like in the figure, and no part has a roll degree of freedom, the total
number of degrees of freedom is 16.

In space robotics arms are usually installed on movable carriers (e.g. space vehi-
cles or rovers), so that the motion of the carrier can help in obtaining the required
position and orientation of the end effector. Even if there are obstacles, it is pos-
sible to avoid them by changing the position of the platform. For this reason, the
arms of moving robots can in many cases avoid the complexities of redundant co-
ordinates. This simplifies not only the mechanical structure and the actuators, with
a related mass saving, but also the control hardware and software. After all, this is
the case of human limbs, which do not have redundant degrees of freedom: to reach
difficult positions with our hand, we often displace our whole body or change our
posture.

3.5 Arm Layout

A robot arm is essentially a device that must carry a payload to a determined posi-
tion, perhaps following a given trajectory, in a certain time under the effect of given
forces acting on it.

In industrial robotics the payload is usually a tool, but may also be a an object that
the end effector has picked up. In space robotics very often the payload is an object
the arm is manipulating. If the space around the arm is empty often only the final
position must be stated and the trajectory followed to reach it has little importance.
If on the contrary there are obstacles, the trajectory needs to be stated, at least in
terms of a number of waypoints that must be reached in succession.

An important factor is the time required to perform the task, which determines
the speed at which the various joints must move. In space robotics the speed is gen-
erally less important than in industrial robotics, where fast movements are generally
required for productivity reasons. With few exceptions, in space the speed is not an
important factor and space robots are usually slow.

Apart from inertia forces, the forces acting on the arm are usually of two types:
the weight of the payload and of the arm itself and the forces due to the end effec-
tor. The latter usually are present only when the arm has reached the final position
and the tool has started its work. There is a large difference between arms that must
work in space, where the prevalent conditions are microgravity (with the exception
of arms that must operate during propelled phases of spaceflight), and those intended
for planetary surfaces. However, in the most interesting locations, gravitational ac-
celeration is much lower than on Earth.

When the arm moves, it is loaded by inertia forces that increase fast with increas-
ing speed of the arm. In space, particularly for manipulators, inertia forces may be
the only forces acting on the arm and low operating speed may be mandatory to
keep the stressing and deformations of the arms within reasonable limits without
increasing the mass of the arm and not to exert large inertia forces on the spacecraft
or the rover. Moreover, increasing the strength and stiffness of the arm results in
increasing its mass and hence the inertia forces.
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The stiffness of the arm is an important requirement, both to allow to posi-
tion precisely the end effector under the loads due to gravity and forces applied
to the end effector and to avoid vibration, or at least to increase their frequency.
Low stiffness can be compensated, up to a certain point, by suitable control actions
aimed at compensating for static deflection under load and actively damping vi-
bration. The dynamic behavior of the arm strongly influences its speed, since little
damped vibrations may force to slow down the motion or to wait that vibration dies
out before starting to perform the tasks after the arm has reached a certain posi-
tion.

The joints may be powered by rotational or linear actuators. In a way this is a
consequence of the type of motion the joint must perform, but only up to a certain
point. A rotary joint may be powered by a linear actuator, like in the example in
Fig. 3.4, or a linear motion can be obtained by a rotary motor, like in the extending
arm of the Viking lander (Fig. 3.3) that unreels from a spool.

As already stated, space robots are mostly powered by electric motors, which can
drive directly rotary joints, possibly through a reduction gear or through a screw,
in general a ball or planetary roller screw. The motor, reduction gear and screw
assembly is usually referred to as an electric cylinder, since it performs the same
task as pneumatic or hydraulic cylinders.

The torque required at the revolute joints, and often also on the screw of electric
cylinders, is usually quite high and is accompanied by a low rotational speed. In this
case areduction gear is often used to avoid massive electric motors. High ratio gears
may be of the planetary or harmonic drives types, the latter in particular where cost
is not a major problem. The development of low speed, high torque motors (often
referred to as torque motors) is an important issue in robotics (see Chap. 7).

The actuator is in general a massive components, and it is better placed where
it must not be moved much. Instead of locating actuators directly at the joints (dis-
tributed actuators) it may be advisable to put the actuators on the fixed part of the
arm, and to drive the joints through a linkage, as in Fig. 3.4, or through tendons
(Fig. 3.9).

3.6 Position of a Rigid Body in Tridimensional Space

As already stated, the end effector must be put in a certain position in space, with a
certain orientation, i.e. in a certain pose.

Consider a rigid body free in tridimensional space. Define a fixed” reference
frame OXY Z and a frame Gxyz fixed to the body and centered in a point G that
may be its center of mass, but may be any other point. The position of the rigid
body is defined once the pose of frame Gxyz is defined with respect to OXY Z,

2Here the generic term ‘fixed’ is used. In dynamics, the equations of motion are usually written
with reference to an inertial frame, however, here frame OXY Z is not required to be such. It is
simply a frame that does not follow the rigid body in its motion, and in which the motion of the
body is described.
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which is once the transformation leading OXY Z to coincide with Gxyz is defined.
It is well known that the motion of the second frame can be considered as the sum
of a displacement plus a rotation and then the parameters to be defined are six: three
components of the displacement, two of the components of the unit vector defining
the rotation axis (the third component needs not to be defined and may be computed
from the condition that the unit vector has unit length) and the rotation angle. A rigid
body has thus six degrees of freedom in tridimensional space.

There is no problem in defining the generalized coordinates for the translational
degrees of freedom, since the coordinates of G (that may be the center of mass) in
any fixed reference frame (in particular, in frame OXY Z) are usually the simplest,
and the most obvious, choice. For the other generalized coordinates the choice is
much more complicated. It is possible to resort, for instance, to two coordinates of
a second point and to one of the coordinates of a third point, not on a straight line
through the other two, but this choice is far from being the most expedient.

An obvious way to define the rotation of frame Gxyz with respect to OXY Z is to
express directly the rotation matrix linking the two reference frames. It is a square
matrix of size 3 x 3 (in tridimensional space) and thus has nine elements. Three of
them are independent, while the other six may be obtained from the first three using
suitable equations.

Alternatively, the orientation of the body-fixed frame can be defined with a se-
quence of three rotations about the axes. Since rotations are not vectors, the order in
which they are performed must be specified.

Start rotating, for instance, the fixed frame about X-axis. The second rotation
may be performed about axes Y or Z (obviously in the position they take after the
first rotation), but not about X-axis, since in the latter case the two rotation would
simply add to each other and would amount to a single rotation. Assume for instance
to rotate the frame about Y -axis. The third rotation may occur about either X -axis or
Z-axis (in the new position, taken after the second rotation), but not about Y -axis.

The possible rotation sequences are 12, but may be subdivided into two types:
those like X — Y — X or X — Z — X, where the third rotation occurs about the
same axis as the first one, and those like X — Y — Z or X — Z — Y, where the
third rotation is performed about a different axis.

In the first cases the angles are said to be Euler angles, since they are of the same
type of the angles Euler proposed to study the motion of gyroscopes (precession ¢
about Z-axis, nutation 6 about X-axis and rotation i, again about Z-axis). In the
second case they are said to be Tait—Bryan angles.

The possible rotation sequences are reported in the following table

First X Y Z
Second Y Z X Z X Y
Third X | z XY |Y| Z Y| X |Z]|Y |Z]| X

Type E|TB|E|TB|E|TB|E | TB|E | TB | E | TB

3Sometimes all sets of three ordered angles are said to be Euler angles. With this wider definition
also Tait—Brian angles are considered as Euler angles.
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Fig. 3.10 Definition of the yaw ¢ (a), pitch 6 (b) and roll ¢ (c¢) angles

Remark 3.3 Euler angles have the drawback of being indeterminate when plane
x;x; of the rigid body is parallel to X; X j-plane of the inertial frame (assuming that
the first rotation occurs about X axis.

Often Euler angles yield indications that are less intuitively clear than Tait-Bryan
angles.

In the study of robots the most common approach is that of using Tait-Bryan
angles of the type Z — Y — X so defined (Fig. 3.10):

e Rotate frame XY Z about Z-axis until axis X coincides with the projection of
x-axis on plane XY (Fig. 3.10a). Such a position of X-axis can be indicated
as x*; The rotation angle between axes X and x* is the yaw angle . The rotation
matrix allowing to pass from x*y*Z frame, which will be defined as intermediate
frame, to the inertial frame XY Z is

cos(y) —sin(yr) O
Ry ={sin(y¥y) cos(y¥y) O0]. 3.3)
0 0 1

e The second rotation is the pitch rotation 6 about y*-axis, leading axis x* in the
position of x-axis (Fig. 3.10b). The rotation matrix is

cos(f) O sin(9)
R, = 0 1 0 . (3.4)
—sin(@) 0 cos(f)

e The third rotation is the roll rotation ¢ about x-axis, leading axes y* and z* to
coincide with axes y and z (Fig. 3.10c). The rotation matrix is

1 0 0
R;=(0 cos(¢p) —sin(¢) |. 3.5)
0 sin(¢p) cos(¢)
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The rotation matrix allowing one to rotate any vector from the body-fixed frame
xyz to the inertial frame XY Z is clearly the product of the three matrices

R=R|R;R;. (3.6)
Performing the product of the rotation matrices, it follows that

c(W)e@) c()s@)s(@) —s@W)c(@) c(¥)s@)c(@) +s()s(P)
R=1|sW)c®) s@)s@)s(@) +c¥)c(@) s@)s@)c(P) —c(W)s(@) |,
—s(0) c(@)s(®) c(0)c(9)
3.7
where symbols cos and sin have been substituted by ¢ and s.
The columns of the rotation matrix are nothing else than the unit vectors of the
three body-fixed axes

1 0 0
e =307}, ey=11 and e¢,={0
0 0 1

expressed in the fixed reference frame OXY Z.

Conversely, the rows of the rotation matrix are the unit vectors of the three fixed
axes ey, ey and ez expressed in the body-fixed frame.

An inverse relationship allowing to obtain the Tait-Bryan angles from the ro-
tation matrix can be obtained. From the elements Ri; and R,; of the matrix it is
possible to obtain value of the yaw angle

¥ = atan [ Ror ] (3.8)
R | .
Similarly, from the elements R3; and R33 it follows that
R
¢ = atan| —= (3.9)
| R33 |

and from the elements R3; and Ry, it follows that

0 =atan|:—M] =atan[¢:|. (3.10)

Ry 2 2
Y Ry, + R3,

Remark 3.4 These relationships may yield indeterminate relationships for certain
values of the angles. In this case they must be substituted by other relationships
obtained from the nonzero elements of the rotation matrix.

3.7 Homogeneous Coordinates

Rotation matrix R allows to transform any vector x written in the body-fixed frame
Gxyz into a vector X written in the fixed frame OYY Z. The coordinates of any point
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in the fixed frame can thus be expressed starting from the position in the body-fixed
frame by the relationship

X=Rx+d, (3.11)

where
X=[x Y zI", x=[x y zI", d=[X¢ Yo ZgI"

are, respectively, the position of the point in the fixed frame, the position of the same
point in the body-fixed frame and the displacement of the second frame with respect
to the first. Note that this relationship is linear in the translational coordinates Xg,
Yg and Zg but strongly nonlinear with respect to the rotational coordinates ¥, 6
and ¢.

To perform the whole coordinate transformation, which includes a displacement
and a rotation, homogeneous coordinates have been introduced. Equation (3.11) can

be written as
X R df|x
b a1

The four-elements vectors (or 4-vectors)
X=[Xx Y z 17, x=[x y z 17

are the homogeneous coordinates of the point in the fixed and in the body-fixed
frame, respectively, and the 4 x 4 matrix

=0 ]

is the homogeneous transformation matrix.
Remembering that the inverse of a rotation matrix coincides with its transpose,

ie. R-! = R7, the inverse transformation matrix allowing to express a 4-vector
expressed in the fixed frame into the body-fixed frame, is
RT -RTd
-1 _
T = [ 0 ) . (3.13)

3.8 Denavit—-Hartenberg Parameters

As already stated, each link of the chain is considered as a rigid body, and a reference
frame is attached to it. If the arm is made by # links there are thus n 4 1 frames:

e frame xgypzo (base frame), fixed to the base of the arm, which is assumed as
link 0;
e frames x;y;z; (with 1 <i <n), fixed to each one of the n links (Fig. 3.11).
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Fig. 3.11 Sketch of the ith Zi1
link with its DH parameters

Joint i+1

Link i+1

¥i

Frame x,y,z, is often defined as the rool or end effector frame, assuming that
the end effector is rigidly attached to the last link.

Assume that the z; axis has the direction in space of the rotation axis of the joint
between the ith and the (i + 1)th link. The ith link is thus hinged at one end on the
zj—1-axis, and at the other end at the z;-axis. In general these two axes are skew
in space. Since it is possible to define a common perpendicular between two skew
straight lines, this common perpendicular can be assumed as x; axis. A third axis y;
can thus be stated and the reference frame O;x; y; z; is obtained.

Remark 3.5 The origin of this frame lies on the (i + 1)th hinge axis (z; axis); x;
axis is not said to lie within the link or to be its longitudinal axis.

The directions of x¢ and y axes are arbitrary, but can be chosen so that x( coin-
cides with x1 in a particular position of the arm (6; = O in that position, see below).
Each link is characterized by its four Denavit—Hartenberg (DH) parameters:

e Angle 6;, defined as the rotation about z;_; axis leading axis x;_; to be parallel
to axis x;. It is called the rotation angle of the ith link.

e Distance d;, between points O;_; and 0271 or, better, a translation along. z;_1
axis to bring point O; 1 on point O;_, . It is called the offset of the ith link.

e Distance /;, between points O;_l and O; or, better, a translation along. x; axis to
bring point O}_, on point O;. It is called the length of the ith link.

e Angle «;, defined as the rotation about x; axis leading axis z;_1 to be parallel to
axis z;. It is called the twist of the ith link.

To pass from the frame O;_1x;_1y;_1z;—1 to frame O;x; y;z; four operations are
needed:

e arotation of angle 6; about z;_; axis;

e a translation of distance d; along z;_; axis;
e a translation of distance /; along x; axis;

e arotation of angle «; about x; axis.
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In terms of homogeneous coordinates, the position of a point expressed in frame
O;_1x;—1yi—1zi—1 can be obtained from the position of the same point expressed in
frame O;x; y;z; by the relationship

cos(6;) —sin(6;) 0 O 1 0 0 O
Xi—1| _ |sin(@) cos@@) O 0||0 1 0 O
1 | 0 0 1 0{]0 O 1 4
0 0O 1/]0 O 0 1
1 0 0 I 1 0 0 0
01 0 O[O0 cos(ej) —sin(e;j) O |x;
“lo 0 1 0||0 sin@) cos@) 0 {1} (3.14)
0 00 1(]0 0 0 1

(10

cos(9;) —sin(#;)cos(a;)  sin(f;)sin(e;)  I; cos(6;)
sin(f;)  cos(#;)cos(a;)  —cos(0;)sin(e;) [; sin(6;) X;
0 sin(o;) cos(a;) d; { 1 } ’
0 0 0 1

(3.15)
where T; is the homogeneous transformation matrix of the ith link.

The two rotations and two translations are thus equivalent to a single rotation
with matrix

cos(6;) —sin(f;)cos(e;)  sin(6;) sin(er;)
sin(6;)  cos(f;)cos(e;)  —cos(8;)sin(;)
0 sin(c;) cos(;)

followed by a translation

a; cos(6;)
a; sin(6;) ¢ . (3.16)
d

The inverse transformation can be easily computed using (3.13)

= ]

cos(6;) sin(6;) 0 —1I;
—sin(6;) cos(eo;)  cos(9;)cos(er;)  sin(a;) —d; sin(e;) X;_1
sin(0;) sin(c;) —cos(6;) sin(o;) cos(a;) —d;cos(a;) 1 ’
0 0 0 1

(3.17)
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The link of Fig. 3.11 has two rotational joints at its end. In this case 3 of the DH
parameters, namely d;, [; and «; are constants defined once the geometry of the link
is stated. The remaining DH parameter, 6;, is one of the generalized coordinates of
the system, that corresponding to the ith degree of freedom.

The same approach can be used for a link connected to the preceding links
through a prismatic joint. In this case 6; is a constant, defined by the geometry
of the system, while /; is the ith generalized coordinate.

3.9 Kinematics of the Arm

The position of the end effector is defined by a point P, characterized by the coordi-
nates shown in (3.1) expressed in a fixed frame.

As already stated, the positions point P can actually take during the motion of the
arm, define the workspace of the arm.

If the pose of the end effector is considered, the position and orientation of the
end effector are defined by six coordinates. If the yaw, pitch and roll angles are
chosen as coordinates for the rotational degrees of freedom, the vector defining the
pose of the end effector is

X=[X Y Z ¢ 6 vl (3.18)

The six-dimensional vector X defines the task space or operational space.

The volume of space the end effector can reach with at least one orientation is
usually referred to as the reachable workspace, while the volume of space it can
reach with any one orientation is the dexterous workspace. The latter is a subspace
of the former.

The order of the rotations are in a way arbitrary, and their name too. In some texts
the name roll is given to the rotation about z axis, since this is the axis about which
the link rotates, when using the DH convention. Here the pose of the end effector
is referred to a fixed frame of the kind shown in Fig. 3.6, with the same name for
the rotations. In this case it does not follow the DH conventions for the first frame
X0Y020, whose zg axis is horizontal.

The six generalized coordinates at the joints are

0=[01 6, 63 64 65 Ol (3.19)

The components of # may be angles or distances, depending on the type of joints.
The coordinates at the joints can be chosen in different ways; for instance in Fig. 3.4
the angles about points A and B, together with the angle of rotation of the while arm
about the vertical axis, seem to be a natural choice, but also the lengths of the linear
actuators driving the joints or even the rotation of the electric motors driving the
actuators can be used.

The n-dimensional space defined by the n joint coordinates is called the joint
space. Also in the joint space there is a zone that can be reached and a zone that
cannot, owing to the limited rotations or displacements of the joints.
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Fig. 3.12 Kinematics and Direct kinematics
inverse kinematics —

) Ta@

Joint space

Inverse kinematics

Fig. 3.13 Revolute arm:
geometrical definitions and
degrees of freedom

The relationship linking X to 6

X = f(0) (3.20)

defines the direct kinematics (or simply kinematics) of the arm. The kinematics of
the arm allows thus to compute the pose of the end effector in the physical space
(i.e. its position in the task space), once the joint coordinates (i.e. the position in the
joint space) are known (Fig. 3.12).

The kinematic relationship allowing to compute the position of the end effector
once that the coordinates at the joints are stated, is usually nonlinear.

If (3.20) is solved in 6

0=7F"'X) (3.21)

the inverse kinematic, i.e. the relationship yielding the values of # needed to reach
a given point, is obtained. Since the relationship is nonlinear, it is not said that such
a solution exists for all values of 8, and, in general, this solution exists only if point
P belongs to the dexterous workspace.

If a solution exists, it may be non unique and in general it cannot be obtained in
closed form.

Example 3.1 Compute the kinematics and inverse kinematics of the revolute arm
shown in Fig. 3.13.

Let the position of point P to be expressed in the fixed reference frame Oxyz
(coinciding with frame Ox(ypzo, i.e. with the base frame), and the joint coordinates
be the rotations 6;. The reference frame Oxyz may be an inertial frame, but, partic-
ularly in the case the arm is installed on a rover or a space vehicle, may be a moving
frame too.
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Define an auxiliary frame Ox*y*z* by rotating frame Oxyz about z-axis by an
angle 6. Points O and D define the shoulder and point E defines the elbow.
The coordinates of the elbow in x*z* plane are

x| 1 cos(67)
e L +hsin@) |-

In a similar way, the coordinates of point P in the same reference frame are

{x*} :{ I cos(62) + 13 cos(0 + 03) }
P

z* l1 + I sin(67) + I3 sin(0; + 63)

The coordinates of P in the reference frame Oxyz are

X x*cos(67)
y{ =1 x"sin(6) ¢,
), z*
i.e.
X [l> cos(6r) + I3 cos(Br + O3)] cos(61)
y ¢ =3 [l2cos(62) 4 I3 cos(02 + 63)]sin(6r)
Zp l1 + I sin(67) + I3 sin(0; + 63)

The inverse kinematics can be solved in closed form. By dividing the second equa-
tion (3.9) by the first, angle 6; is obtained

01 = artg(X).
X

x* can thus be computed and, remembering that z* = z, (3.9) can be used to compute
6, and 65.
Equation (3.9) can be rewritten as

x* — Iy cos(6r) =I3cos(6r + 03),
¥ =1y — ysin(6r) = I38in(62 + 63),

i.e.

x*2 4 Z% cos2(62) — 2x*1, cos(6r) = 132 cos2(6 + 63),
(" — 1) + 3 sin®(02) — 2(z* — 1)) sin(02) = 13 sin® (62 + 63).

By adding the two equations and rearranging it follows that
2D [x* cos(6) + (z* — 1) sin(62)] = x4 (*— 11)2 +15 -1
By remembering that

1—1¢2 2t

cos(th) = m7 sin(6;) = m,
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%
t= tan<—2)
2

e G DR EE
= 20, ’

where

and stating

(3.9) becomes

(L=t +2(z* =)t =a(l —12),
ie.

(o) +2(z* — )t —x* +a=0.

The solution in ¢ is thus

@ EVE -0 x? —a?
- X4+ '

The value of 6, is thus

@ =) V)2 +x2—a?
0, = 2artg .
x*+o

From the first equation (3.9) the value of 85 can thus be obtained

[x* — 1 cos(6r)] B

6.
I 2

03 = arcos
The =+ sign shows that there are two sets of angles 6; that yield the same position x
of the end effector.
Note that the inverse kinematics is fairly complex, but it is at any rate possible,
in this case, to solve it in closed form.

If an arm consists of an open kinematic chain made of n links, the transformation
between the reference frame attached to the last link (the end effector frame) and
that fixed to the base (base frame) is

{ﬁo}:T1T2T3-~~Tn{Xl"}=lj!Ti{Xln}- (3.22)

The global transformation matrix is thus the product of the transformation matri-
ces of all the links. It is a function of the geometrical parameters of the system and of
the generalized coordinates of the various links 6; for links with rotational joints and
l; for those having prismatic joints. The coordinates x,, are constant values, defining
the position of a point in the reference frame of the last link.
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Usually the origin of the last reference frame is located in the end effector, so that
the coordinates of the end effector in the end effector frame and in the base frame
are

{Xl”}z[o 0o 0 17, (3.23)
x| _ T , r_ | )
{1}_111[0 0 0 1] _{ 1 } (3.24)

where all joint coordinates (rotational as well as translational) are indicated with
symbol 6;.

This relationship defines the first three relationships of the direct kinematics of
the arm.

Example 3.2 Repeat the computation of the kinematics of the revolute arm shown
in Fig. 3.13 seen in Example 3.1, using the DH parameters.

To be fully consistent with the DH conventions, the axes of the first hinge should
be written as xgygzo and not xyz. The DH parameters are listed in the following
table

Link  Variable «; I d;

1 01 90° 0 [
0 0 153
3 03 0 I3 0

The end effector is located at the end of the third link, i.e. in the origin of the
reference frame x3y3z3. The coordinates of the end effector in the reference frame
XxoYozo are easily computed through the homogeneous transformation matrices of
the three links:

cos(f1) O  sin(6y) 0
{xo}z sin(@;) 0 —cos(®;) O

1 0 1 0 dy
0 0 0 1
[cos(8;) —sin(@2) 0 1rcos(6r)]
« sin(6hb) cos(6h) 0 Ipsin(6y)
0 0 1 0
| 0 0 0 I
[cos(83) —sin(@3) 0 Iz3cos@3)] [0
« sin(f3) cos(@3) 0 I3sin(63) 0
0 0 1 0 0
| 0 0 0 Lt
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The total transformation matrix is thus

c@)c®) —c@)s) s@1) cO@Dlac(02) + 13¢(6)]
s@c®) —sO1)s) —c@1) sODI2c(02) +13¢(6;)]
s(6;) c(6r + 63) 0 1 +12s(02) + 13s(6;)
0 0 0 1

where ¢ and s stand for cos and sin, respectively, and 6; = 6, + 65.
By multiplying it by the vector [0 0 0 1]7, the direct kinematics is immediately
obtained:

X0 cos(01)[l2 cos(6) + 13 cos(6r + 63)]
yo ¢ = % sin(01)[l2cos(6r) +I3cos(62 +03)] ¢,
20 Iy + I sin(8y) + I3 sin(0, + 63)

that coincides with the direct kinematics of the arm computed in Example 3.1.

The rotation matrix is made by the first three rows and columns of the total
transformation matrix. The orientation of the end effector is thus immediately ob-
tained:

R

Y = atan £i| =46y,
| Ru1
[ Raisin(y)

6 = atan

= —(62 +63),
Ry }

'R
¢ = atan ﬁj| =90°.
| R33

Remark 3.6 As clearly shown in Example 3.2, the component d of the total transfor-
mation matrix (elements 14, 24 and 34) yields the first three elements of vector X,
while the component R (upper left 3 x 3 submatrix) yields the orientation, i.e. the
last three elements of vector X.

In the case of six degrees of freedom arms, vector X, expressing the pose of
the end effector, must be obtained by multiplying six homogeneous transformation
matrices. Although the computations are more complex, they can be performed in
closed form, obtaining the equations yielding the pose as a function of the six joint
coordinates, i.e. the direct kinematics of the arm.

The inverse kinematics equation (3.21) may have multiple solutions, since the
equations are nonlinear, meaning that different sets of joint coordinates may yield
the same pose of the end effector. For instance, in the case of an arm with six
degrees of freedom, it has been shown that if the joints are all revolute there is a
maximum of 16 solutions. The inverse kinematic equation may also have no solu-
tion, as when the required position of the end effector lies outside the workspace,
or if the orientation requested is inconsistent with the possibilities of the arm (in
general, when the position required lies outside the dexterous workspace).
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If the arm has redundant degrees of freedom, the inverse kinematics is undeter-
mined, and an infinity of solutions exist. This, as already said, can be exploited to
avoid obstacles or, generally, to increase the flexibility of the system.

The inverse kinematic of a revolute arm was obtained in closed form in Exam-
ple 3.1. This is, however, not a general case and closed form inverse kinematics
relationships can be obtained only in special cases.

There are cases where the inverse kinematic problem can be split into two distinct
subproblems, one involving the orientation that depends only on the generalized co-
ordinates of the wrist, and one regarding the position, depending on the generalized
coordinates of the arm.

A case of this type is that of a revolute arm with a spherical wrist, i.e. a wrist in
which the rotation axes converge in a single point: the orientation is solved first and
then the equations already seen for the position can be used.

When no analytical solution exists, a numerical approach must be used. In gen-
eral numerical methods are iterative, and start from an initial guess, converging to
one of the solutions, if multiple solutions exist. The simplest numerical method
is the Newton—Raphson algorithm for solving sets of nonlinear equations. The re-
lationship linking the solution §**1 after the kth iteration with the solution %)
before the same iteration can be obtained by developing (3.20) in Tailor series trun-
cated after the first term

X=£(0©) +J© (9%*+D —9®), (3.25)

where the Jacobian matrix at the ith iteration

of(0)
" — [ —= 3.26
! < a6 )0:0(’0 (320

can be computed from the forward kinematic equations.
Equation (3.25) can be solved in g*+D obtaining

0*+h —® _ ()" [8(6®) — X]. (3.27)

The Newton—Raphson method is reliable, although the basins of attraction of
the solutions are usually complex and have a fractal geometry. There are also cases
where the iterative procedure locks in a loop, without reaching any solution, but in
these cases usually it is enough to change the initial guess, repeating the computa-
tion. Convergence can be slow when the equations are highly nonlinear and, close
to a singularity, the inverse of the Jacobian is ill-conditioned and may cause the
algorithm to fail.

This approach can, however, be applied only when the number of links (and thus
of unknowns) is equal to the number of components of the pose vector X (and thus of
equations). In this case the Jacobian matrix is square and can be inverted, provided
it is not singular.

In case of redundant arms, the Jacobian matrix is not square (it has as many row
as the number of elements in X and as many columns as the number of generalized



3.9 Kinematics of the Arm 97

B | dq dg

AT “ S
(@ 'i m

Fig. 3.14 Sketch and dimensions of an arm similar to the Canadarm

degrees of freedom 6;) and cannot clearly be inverted. A possibility of overcoming
this difficulty is by resorting to the pseudo-inverse

Jr=1"(317)"
instead of the inverse. This yields one of the infinite solutions, restricting the flexibil-
ity granted by the redundant configuration. An additional problem of this approach
is the computational complexity linked with the computation of the pseudo-inverse.
An approximated approach aimed at solving this problem is substituting the inverse
with the transpose of the Jacobian matrix.

Alternatively, the inverse kinematics problem can be converted into a differential
equation in terms of 6 and 6 or into a nonlinear optimization problem.*

Example 3.3 Compute the direct kinematics of an arm with the same configuration
as the Canadarm. Verify the results computing the direct kinematics in the rest po-
sition, and then compute the kinematics and the inverse kinematics in the positions
defined below.

The origin of the reference frames of the joints 4 and 5 coincide, and as a conse-
quence both /5 and ds vanish.

With reference to Fig. 3.14, the DH parameters, with their numerical values (they
are not the actual values of the Canadarm), and the data for the direct kinematics
computations are

Link  Variable ¢«; l; d; Values of 6; at rest

1 01 90° 0 di=08m 0

2 (%) 0 lh=7Tm 0 —asin(k/lp) = —1.637

3 03 0 [3=65m O asin(h/lp) + asin(h/I3) = 3.4005
4 04 —90° I4=04m O —asin(k/[3) = —1.763

5 05 90° 0 0 90°

6 06 0 0 de=1m 0

The offset i of the third joint is 4 = 0.2 m.

4See, for instance, D. Tolani, A. Goswami, N.L. Badler, Real-Time Inverse Kinematics Techniques
for Anthropomorphic Limbs, Graphical Models, Vol. 62, pp. 353-388, 2000.
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The values of the joint coordinates for the direct kinematics computations are
01 =30°, 6, =45°, 63 = —10°, 64 = 100°, 65 = 20° and 6¢ = —35°. The pose of
the end effector for the computation of the inverse kinematics is xo = 7 m, yp =2 m,
20=5m,¢=90°60=0,y =90°.

Performing the relevant computations, the elements R;; of the rotation matrix
(upper 3x3 submatrix of the total transformation matrix) are (¢ and s stand for cos
and sin):

Ryt = c(01)[c(B)c(B5)c(6r) — 5(06)5(6:) ] — c(B6)s (61)s (65),
Ry1 = 5(61)[c(B6)c(B5)c(6;) — 5(86)s(6:)] + c(B6)c(61)s (65),
R31 = ¢(05)c(66)s(0;) + 5(66)c(6;),
Ri2 = c(01)[—s(06)c(05)c(6;) — c(B6)s(6:)] + 5(06)s(61)s5(65),
Ry = 5(61)[—5(66)c(05)c(6;) — c(86)s(6:) ] — 5(66)c(61)s5(65),
R3y = —c(05)s(06)s(6) + c(B6)c(6r),
Ri3 = s5(05)c(01)c(6;) + 5(01)c(05),
Ry3 = 5(05)s(01)c(0;) — c(81)c(6s),
R33 = s(0;)s(65),

where

0y =62 4 63 4 6,4.

From the fourth column of the total transformation matrix the first three functions
fi(6;) are readily obtained

J1(0:) = ds[sB5)c(01)c(0;) + 5(61)c(65)]

+14c(01)c(Or) + [3¢(01)c(62 + 63) + e (B1)c(62),
f2(6;) = dg[s(B5)s(01)c(6,) — c(B1)c(65)]

+145(01)c(6r) + [35(01)c (02 + 63) + 125 (B1)c(62),
13(0i) = des(05)s(6:) +1as (0r) + 135 (02 + 63) + [25(02) + di1.

The last three functions f;(6;) defining the orientation of the end effector in the
fixed reference frame are

R3»
fa(6) == atan[R—] = atan|:

—c(65)s(06)s (01) + C(96)C(9t)]
33

5(0;)s(65)
R3;

v R}, + R%l)
]

11

f5(6;) =6 = atan(—
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The closed form computation of the kinematic is quite complex, and the numerical
computation of the inverse kinematics requiring the computation of the Jacobian
matrix of functions f;(6;) is even more complex, even in the case of non-redundant
arms.

The position of the end effector at rest is

X0 R N N 14.894
Yo (= 0 = 0 m.
20 d; 0.8

The rotation matrix of the end effector is

S = O
- o O
S O =

The first column is the unit vector of the x axis of the end effector (x¢): it coincides
with axis yp.. In a similar way axes y¢ and z¢ coincide with axes zp and xg. The
angles giving the orientation of the end effector are thus

R
¢ = atan[R;n] =90°,

33

—R3)

@ = atan[ ——— | =0,
/2 2
Ry + R3,
21

¥ = at Ra | _gpe
= atan = .
R

11

The direct kinematic computations for the case with the values of 6; reported
above yield the following rotation matrix:

—0.2602 —0.9298  0.2604
0.1733  —0.3103 —0.9347 |,
0.9499 —0.1981 0.2418

xo yo zo0l" =[8.913 4.061 10.003]7 m.
The angles defining the orientation of the end effector are
¢ =—39.32°, 0 =-71.78°, ¥ =146.34°.
The inverse kinematics computations were performed using the Newton—Raphson

technique. The Jacobian matrix is computed numerically, by first computing the val-
ues of the function f;(6;) with the relevant values of the unknowns. Then each one
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of one the unknowns is incremented by 0.001 rad and the computation is repeated
and the relevant row of the Jacobian is computed as the ratio between the increment
of the functions and that of the independent variable.

To avoid an initial guess too close to a singular configuration, the initial unknown
vector assumed was

6© =110 10 10 10 100 10]” deg.
After one iteration we found:
0V =[13.49 —30522 687.63 —384.04 83.46 —12.08]" deg.

After 5 iterations, the error, computed as the sum of the squares of the differences
between the results at the current iteration and at the previous one, is below 0.001
rad. The result is

00 =[18.43 —270.48 60496 —334.48 71.57 0.00]" deg,

i.e., unwrapping the angles,

0 =[18.43 89.52 —115.04 2551 71.57 0.00]" deg.
As a confirmation, the direct kinematic computation with these values of the angles
yields xo = 7.0001 m, yop = 1.9995 m, z9p =4.9991 m, ¢ = 90.01°, 6 =0.003, ¢ =
90.000°, a result quite close to the correct one.

This solution is not, however, unique. If the starting configuration were
09 =30 30 30 30 90 30]” deg

the result would have been

0©® =[1843 —18.85 115.04 —96.18 71.57 0.00]" deg
which satisfies the requirements of the problem. No wonder that such a nonlinear

problem has multiple solutions, and that the Newton—Raphson algorithm converges
on different results.

3.10 Velocity Kinematics

The velocity of a point located on the kth link is easily obtained by differentiating

its position:
. d k
{§}=E[<HT,->{X{‘}:|. (3.28)
i=1
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By introducing in this equation the coordinates of the end effector and extending
the product to the whole arm, from (3.24) it follows that

X =10)=1J©)8, (3.29)

where J(@) is the Jacobian matrix defined in the previous section computed in the
relevant position. This relationship holds both for the case in which the number of
joint coordinates is equal to that of the components of X and for redundant arms.
Both X and @ are generalized velocities: if the first three components of X define the
position and the last three define the orientation, the first three velocities are linear
velocities and the last three are angular velocities. In the same way, the elements of
0 corresponding to rotational joints are angular velocities, those corresponding to
sliders correspond to linear velocities.

The Jacobian matrix defines the velocity kinematics of the arm, i.e. allows to
compute the velocities in the task space once the joint velocities are known. This is
clearly an instant velocity, and depends on the position of the arm.

In general (3.29) can be written as

C Jp@) 7.
X v z 6 ¥1' = 9. 3.30
[ $ 6 vl [ o) (3.30)
where Jp(6) and Jr (@) are, respectively, the displacement and the rotational Jaco-

bian matrices.
To compute the angular velocity of the end effector instead of the derivatives of
the Tait-Brian angles, the rotational Jacobian matrix can be computed by matrix A7

defined in (A.146)

(3.31)

X ¥ Z 2. 2 .QZ]T=|: Ip®) }é.

ATJR(0)

Matrix A7 depends explicitly on ¢ and 6, which must be computed through the
direct kinematic of the arm.

Consider an arm with a spherical wrist. In this case the position of the end effector
is determined by the arm and its orientation by the wrist. The displacement Jacobian
matrix depends only on the generalized coordinates of the arm, and the displacement
velocity is

(X Y Z1" =J561,62,60)[60 6 6517, (3.32)

where J7, is a 3 x 3 matrix containing the nonzero elements of Jp.
The angular velocity, on the contrary, depends on all joint generalized coordi-
nates

(2. 2, 207 =ATJr6)0. (3.33)

If the Jacobian matrix is not singular, it is possible to write the inverse velocity
kinematics of the arm

6=J"10)X. (3.34)
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The points where the Jacobian matrix is singular are the singular points of the
arm, and can be of two kinds:

e boundary singular points, located at the boundaries of the workspace
e internal singular points

Often the arms are lined up in the singular points.
Example 3.4 Compute the velocity kinematics of the revolute arm studied in Exam-
ple 3.1 and find its singular points.

The position of point P in the fixed frame was computed in the mentioned ex-

ample. By differentiating the expressions there obtained with respect to the joint
coordinates 01, 6 and 03, the Jacobian matrix is obtained:

—asin(@;) bcos(0y) —I3sin(fr + 63)cos(0)
J=| acos(0y) bsin(0)) —I3sin(6r + 63)sin(0y) |,
0 c I3 cos(62 + 63)

where

a = [lpcos(62) + 13 cos(62 + 63)]
b = —[lrsin(6) + I3 sin(6> + 63)]
¢ =1 cos(0y) + I3cos(0 + 63)

The determinant of the Jacobian matrix is
det(J) = —I3l5 sin(63)[ 2 cos(62) + I3 cos(62 + 63)].
The determinant vanishes when either
sin(63) =0
or
l> cos(0y) + I3 cos(6r + 63) = 0.
The first equation leads to the condition
63 =0, 63 = 180°.

These are boundary singular points located at the outer and inner surfaces of the
workspace, which is an hollow sphere with outer radius /, + /3 and inner radius
I — 3]

The other condition is satisfied by all points laying on the Z axis, and hence are
internal singular points.

3.11 Forces and Moments

Consider a robot arm at standstill in any given position and neglect the weight of
the arm, the end effector and the payload. A force F and a moment M act on the
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end effector and a number of generalized forces My (in general moments) act on the
joints. The former can be said to be the contact forces on the end effector, while the
second are the joint torques.

If a virtual displacement &6 is given to the joints, the virtual displacement or the
end effector is

8X = J(6,)50. (3.35)

By listing the components of forces and moments in the generalized force vector
F, the virtual work done by forces at the end effector

$L=38X"F=50"J'F (3.36)
must be equal to the virtual work done by the moments at the joints
8L =56"Ms,. (3.37)

In case of a prismatic joint, the relevant My is a force instead of being a moment,
but the equation is unchanged.

By equating the two expressions of the virtual work a relationship yielding the
joint torques as functions of the contact forces is obtained

My =J'F. (3.38)

3.12 Dynamics of Rigid Arms

In the previous sections only the kinematics of the robotic arm was considered, and
when forces and torques were introduced, they were referred to a situation in which
the arm was not moving. When studying the motion of the arm, on the contrary,
the effects of the motion must be accounted for and inertia forces play an important
role.

The dynamic study can be formulated in two different ways. In the direct problem
the time histories of the joint torques My (¢) are stated, and the aim is to compute
the trajectory of the arm either in the joint space (and thus functions 6(z), é(t)
and 6(z) are the unknowns) or in the task space, obtaining functions X(¢), X(1)
and X(1).

In the inverse problem the trajectory is stated (i.e. 6(z), 9([) and é(t) or X(1),
X(t) and X(t) are known) and the aim of the study is to obtain the torques at the
joints My (¢) that cause the arm to follow the required trajectory.

In the present section the links will be assumed to be rigid bodies, and no al-
lowance is taken for their compliance.

An arm made of rigid parts can be modeled in two basic ways. Each part can be
considered as a rigid body with its six degrees of freedom in the three-dimensional
space. After stating a set of six generalized coordinates to define its position, there is
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no difficulty in writing the six relevant equations of motion. The equations of motion
so obtained contain more coordinates than the degrees of freedom of the arm and
must be complemented with a number of constraint equations.

As an example, in the case of an anthropomorphic arm (the revolute arm in
Fig. 3.1) there are two rigid elements, so a set of 12 differential equations in 12
generalized coordinates must be written. Clearly, since the arm has three degrees
of freedom, nine of such generalized coordinates are redundant and must be elimi-
nated by writing the constraint equations. The shoulder joint constrains four degrees
of freedom, while the elbow constrains five, so the constraints equations are nine and
allow one to eliminate all the redundant degrees of freedom.

This approach is usually referred to as multibody approach and there are several
commercial codes that operate along these lines.

However, a robot arms can usually be modeled as a kinematic chain in which the
bodies are connected in series and the constraints between them are holonomic. In
this case it is possible to consider the bodies one after the other, assuming that they
have only the degrees of freedom allowed by the constraints. In this way a minimum
set of equations is obtained and no constraint equations and redundant coordinates
are used.

To write the n equations of motion for an arm with n links, in terms of joint
variables, the kinetic and potential energies of the system can be written in terms of
the joint variables and velocities 6 (t), é(z) and then introduced into the Lagrange
Equations.

Each link is a rigid body, and thus the kinetic energy of the system is simply

n n
1 1
T=) :EmiV(T;iVGi + Esz,.TI,-szi, (3.39)

i=1 i=1

where

m; is the mass of the ith link,

Vg, is the velocity of point G;, center of mass of the link, referred to an inertial
reference frame,

I; is the inertia tensor of the link, referred to its own reference frame,

2; is the absolute angular velocity of the link.

The position of G; in the base frame is simply

{"10} :]_[T,»{Xli} , (3.40)
G =1 G;

and, assuming that the base frame is an inertial frame, its velocity is

VG,' _i ! ) X;
{ 0 }Gi = (ET) { ) }G,-' (3.41)
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Proceeding in the same way as seen for the end effector, it follows that
Ve, =Jpi(9)8. (3.42)

where Jp; (0;) is the displacement Jacobian matrix referred to the center of mass of
the ith link defined as in (3.30).

Since each joint rotates about its own z axis, the angular velocity of the ith link,
referred to its own reference frame, is

0 0 0
@ =Ri-1-i{0¢+R-2-i7 0 ¢+Ri3-;7 0 p+--, (3.43)
0; 0i—1 0i—2

where the rotation matrix R;;_; is the rotation matrix allowing to express a vec-
tor written in the frame fixed to the (i — j)th body, in the frame of the ith body. It
is the transpose of the rotation matrix obtained by multiplying the transformation
matrices from the (i — j)th to the ith body and taking the upper left 3 x 3 subma-
trix.

The angular velocity is thus

Q; =P;(0)0, (3.44)

where matrix P; is a matrix that corresponds to matrix A7 Jr defined in (3.31).
Matrix AT is, however, now defined with reference to the joint space, while in (3.31)
it was defined with reference to the Tait—Brian angles.

The kinetic energy of the arm is thus

_ N 6Tyt 06+ LS TR P 000 = LT M0
T_zl;m,o JDi(a)JD,(0)0+2;0 P/ (O)LPi(0)6 = 6" M®). (3.45)

Matrix M(0) is the mass matrix of the arm.

Remark 3.7 The kinetic energy is a quadratic form in the joint velocities and the
mass matrix is a positive defined matrix, function of the joint variables.

The gravitational potential energy is easier to compute:
n
U=-> mig"xc, = f;(6). (3.46)
i=1

where g is a vector containing the gravitational acceleration in the base frame.
The equations of motion can be written directly using Lagrange equations

d (dT\ 9T U
( ) =Q,. (3.47)

ai\ag;, ) " o8 a6,
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Fig. 3.15 Revolute arm with
three degrees of freedom

Since the generalized variables are the rotations at the joints, the generalized
forces Q; are the torques applied at the joints My .
By introducing the expressions of the potential and kinetic energies, it follows
that
d 1

. 0 .T . ou
E[M(())O] — 58—9,[0 M(0)0] + E[fgw)] =M. (3.48)

The structure of this equation of motion is
M(0)6 + B(0)(6:0 ) + C(0) {07} + G(6) = My, (3.49)

where

e B(0) is a matrix with n rows and n(n — 1)/2 columns. Its terms are usually re-
ferred to as Coriolis coefficients;,

{9,-9 i} is a vector with n(n — 1)/2 rows containing the products (but not the
squares) of the joint velocities:

{éiéj}=[91020103...0203...0n,10n]r; (3.50)

C(0) is an n x n square matrix. Its terms are usually referred to as centrifugal
coefficients;

{67} is a vector with n rows containing the squares of the joint velocities;
G(6;) is a vector with n rows containing the gravity terms.

Remark 3.8 The equation of motion is thus nonlinear, and its dependence on the
generalized coordinates may be complex.

Example 3.5 Write the dynamic equation of the revolute arm studied in Example 3.1
(Fig. 3.13) The position of the centers of mass of the various links are shown in
Fig. 3.15 and the directions of the body fixed axes of the links are parallel to those
of the baricentric principal axes of inertia.
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Link. 1
The reference frame attached to the first link is frame x| y;z1. Since its origin is at
the end of the first link, the position of the center of mass G is

T
xig, =0 a1 -4 0].
The transformation matrix for the first link is the first transformation matrix in

Example 3.15. The position of G; (in terms of 4-vectors) in the base frame is
thus

cos(f;) O  sin(6y) 0 0 0
_|sin(@;) 0 —cos(@) O ag—hL| _)O
XG=| o 1 0 I 0o [T a
0 0 0 1 1 1

The corresponding velocity is equal to zero
VOG] =0.

The angular velocity of the first link is

Tcos(@)) 0 sin@) 17 (0
Q= |sin(@;) 0 —cos(6r) 0
0 1 0 6y
0 0 07 (6
=10 0|{6
10 0 0] |6;

Assuming that the axes of the frame fixed to the first link are principal axes of
inertia, the inertia tensor is diagonal

Jag 0 0
L= 0 Ju 0],
0 0 Jg
the kinetic energy of the first link is
NG "ro o 01" 0 o0
Ti=3 6, 1 00 0 Jyu O
63 00 0 0 0 Jg
. . T .
0 0 O 91 1 91 Jyl 0 0 91
=1009'2—§é2 0 0 0[{6
0 0 0f|6; 63 0 0 0|6
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The gravitational acceleration vector is
g=[0 0 —gl”.
The potential energy of the first link is thus
Uy=-ml0 0 —g]0 0 @]’ =mag.

Link. 2
The origin of frame x;y,z» is again at the end of the link and the position of the
center of mass G, is

X6, =[aa—5L 0 0]".

The transformation matrix for the second link is the product of the first and second
transformation matrices in Example 3.15. The position of G; in the base frame is
thus

cos(f1) O  sin(6;) 0
sin(@y) 0 —cos(@;) O

X0 = o9 1 0 I
0 0 0 1
[cos(8;) —sin(@) 0 1rcos(6r)
y sin(6h) cos(6r) 0 Ipsin(6y)
0 0 1 0
| 0 0 0 1
a) — 1 ap cos(61) cos(6r)
o 0 _} azsin(61) cos(62)
0 B 11 + ap sin(63)
1 1

The corresponding velocity is

—az'él sin(0)) cos(62) — azéz cos(61) sin(62)
V()G2 = a291 COS(¢91) COS(@z) - a292 sin(91) Sin(@z)
a292 COS(92)

—aysin(61) cos(62) —azcos(B1)sin(6z) O [ 6
= | apcos(01)cos(fy) —apsin(@y)sin(6r) O 6>
0 az cos(62) 0] | 6

The translational kinetic energy of the second link is
. T 2
1 9_1 cos“(6r) 0 O
Tr = 5"120% () 0 1 0 6>
03 0 0 0
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The angular velocity of the second link is
cos(6y) —sin@) 017 [0
Q) = | sin(6,) cos(@) O 0

0 0 1 0

cos(f1)cos(fr) —cos(fy)sin(By)  sin(Hy) Tro
+ | sin(6;) cos(6>) sin(61) sin(6;) —cos(61) 0

sin(6,) cos(6) 0 6,
61 sin(62) sin() 0 0] (6
= Qlcqs(el) =|cos(6h) 0 O 9,2
6, 0 1 0|6

The inertia tensor of the link is again a diagonal matrix, and thus the rotational
kinetic energy of the second link is

L6 [sin@) 0 0] [/ 0 0
TZR:E 6r cos(p) 0 O 0 Jy O
b3 0 10 0 0 U

sin@) 0 0] (6
x [ cos(@) O O 6>
0 1 0||6;

61" [a2sin®©@) + Jyocos?@) 0 0] [ 6
6> 0 Ja 0| {6
b5 0 0 ol]é

| =

The potential energy of the second link is

0 T as cos(6;) cos(6r)
U=—-—my{ O ap sin(01) cos(62) ¢ =mag[li + azsin(6,)].
—g l1 + apsin(6r)1

Link. 3
In the same way seen for the other links, the position of the center of mass G3 is

x3g; =laz—1z 0 0]7.

The transformation matrix for the third link is the total transformation matrices in
Example 3.15. By performing the product, the position of G3 in the base frame is

cos(61)[lr cos(6r) + a3z cos(6 + 63)]
sin(61)[l> cos(62) + a3 cos(6 + 63)]
1 + 1o 8in(6) + a3 sin(6; + 63)

1

X0G3 =
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The corresponding velocity is

—61asin(0;) — 6b cos(61) — 63 cos(61)[az sin(02 + 63)]
Vo, = { 6@racos(8)) — 62bsin(6y) — 65 sin(8))[a3 sin(@s + 63)]
6ha + 63[az cos(62 + 63)]

—asin(@)) —bcos(0;) —azcos(0;)sin(6r + 63) 6,
= | acos(¥y) —bsin(@y) —ajzsin(f1)asin(f; + 63) 6, },
0 a a3 cos(62 + 63) 63

where

a =1l cos(6r) + az cos(6r + 03),

b =1 sin(0) + a3 sin(6y + 63).

The translational kinetic energy of the third link is

1 é‘ !
T3R=§m3 Qz
03
cl2 0 0 9'1
x| 0 BB+ad+2a3lc0863) af+aslacos(63) | 62
0 a3 +ashcos(6s) a3 63

The angular velocity of the third link is
cos(63) —sin@3) 077 (0
Q3 = |sin(63) cos(@3) O 0

0 0 1 65

Ccos(By +63) —sin@r+63) 077 (0
+ [ sin(6, +63) cos(6r+63) O 0
0 0 1 6>

[[cos(01) cos(Br + 63) —cos(9;)sin(P, +63)  sin(6y)
+ | sin(6;) cos(6, + 603) sin(f) sin(6, +603)  —cos(6y) 0

=)

sin(fs + 63) cos(6h + 63) 0 6,
6 sin(6> + 63) sin(@,+63) 0 07 (6
=16 cos(f; +603) ¢ =|cos(B+63) 0 O 6,

éz—l—é3 0 1 1 93
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The inertia tensor of the link is again a diagonal matrix, and thus the rotational
kinetic energy of the second link is
T . T
1 Q] sin(@p +63) 0 O Jo 0 0
Tr==136 cos(p+63) 0 O 0 Jp O
2 | 6 0 L1l o 0 I,

sin(2+63) 0 07 [6
x | cos(@+63) 0 0f16,

0 1 1] |6
L0 [Tasin?@: +63) + Jyzcos*@+65) 0 0] (6
:E 9_2 0 J3 I3 Q2
03 0 Jz T | | 63

The potential energy of the third link is

T [ cos(01)[l> cos(62) + az cos(0 + 63)]
sin(01)[l2 cos(8,) + az cos(6y + 03)]
I1 + I sin(67) + az sin(6r + 63)
1

U3 = —m3 0

=m3g[ly + I sin(62) + a3 sin(6; + 63)].

Dynamics of the arm
The mass matrix is then easily obtained by adding together all the expressions of
the kinetic energy

J6) 0 0
M= 0 J3+2J55¢c08(03)  J3+ Jy5c08(63) |,
0 J§ + J35 cos(63) Ji

where
JE0;) = J5y 4 T c0s?(B2) 4 Ji cos? (B2 + 63) + 2055 cos(62) cos(6a + 63),
I=dn+Jdo+la, =T+ Ja+mas +ms(a3 +13),
Jh=0o— T+ maa3 +msl3, Ji=Js+ m3a§,
J5=03— T3+ mgag, J35 =m3asls.

The total potential energy, written neglecting the constant terms, which have no
influence on the equations of motion, is

U = g[moay + m3ly]sin(0y) + m3gas sin(6; + 63).



112 3 Manipulatory Devices
The derivatives entering the Lagrange equations are
i(£> = i[11*(91')9.1] = J (661 + B11(6))0102 + B12(6;)0165,
dt \ 00, dt
where
B11(6) = —2[]1*2 sin(6y) cos(62) + J15 sin(62 + 63) cos(62 + 63)
+ J35sin(26; + 63)],
Bi2(6;) = —2[J5sin(02 + 63) cos(02 + 63) + J35 cos(62) sin(62 + 63)],
0T _ i _
60, 96, ’

a\as ) = [V + 2735 c08(03) |62 + [ I + J55 cos(63) )63
2

+ B23(6;)62605 + C23(6;)63,

where
Ba3(6;) = —2J35sin(63),
C3(0;) = —Jy5sin(63),
0T _ C1(61)6?
892 - 21\U; 1>
where
C21(6;) = Jj5sin(62) cos(62) + J {5 sin(@2 + 63) cos(6> + 63)
+ J35cos(62) sin(260, + 63),
ou
6, G2(6;) = glmaaz + m3la] cos(62) +m3gaz cos(6z + 03),
d (0T . . . .
— <—> =[5 + J35c08(63)]6> + J363 + BL) (6:)6:63,
dt \ 363
where
M pN * s
B3, (8;) = —Jy;3sin(63),
o7 . . ..
56 = —C31(6)67 — C32(6)62 — B (61)6263,
where

2 .
B3 (6) = J3sin(63),

C31(6;) = J1*3 sin(6, + 63) cos(6r + 63) + .12*3 cos(6;) sin(6; + 63),
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C3(0;) = Jy35in(63),

ou
P G3(6;) =m3gasz cos(tr + 63).

The equations of motion are thus

JE(0:)61 + B11(6:)6162 + B12(6,)6163 = M1,
[ + 203 cos(63) |62 + [ J5 + T35 cos(63)]63 + Ba3 (6:)6263
+ C23(01)02 + C21(6)6? + G2(6;) = Ma,

[J5 + 55 cos(03) 0 + J503 + C31(6,)6F + C32(0,)63 + G3(6;) = M3.

The equation of motion (3.49) is a set of nonlinear differential equations of order
2n. In some instances it is written in a simpler form:

M(@©)8 + V8, 0) +G(@) =My, (3.51)

where all terms that above were included in the Coriolis and centrifugal terms are
now all included in the vector function V((), 0).

By inverting the mass matrix and introducing the joint velocities as auxiliary
coordinates, it is possible to transform it in the state space:

71=1£(z) + B*0)u, (3.52)

where

e z=1[0" 9717 is the state vector, of order 2n,

e vector
_M-! 9.0 - )2
) — { M- @)BO)(0:0;) +CO0°) +GO)] } 353
0
has 2n rows,
e matrix B*(#) (not to be confused with matrix B(#)) is the input gain matrix de-
fined as
-1
B*(0) = [M 0(")} (3.54)

has 2n rows and »n columns,
e u(r) is a vector with n rows containing inputs, i.e., in the present case, the joint
torques.

Instead of writing the equations of motion in the joint space, it is possible to write
them in the task space

M, (@)X +V,(0,0)+G,(0) =F, (3.55)
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where X is the position vector of the end effector (or the pose, if also the orienta-
tion is considered), F is the vector containing the force (and possibly the moments)
applied to the end effector and matrices and vectors with subscript x are referred to
the task space.

Since

My =J'F (3.56)

if the Jacobian matrix can be inverted, (3.51) can be premultiplied by J~7, (the
symbol ~7 indicates the inverse of the transpose), obtaining

JT™M@)6+3TVE0.0)+3TG@O) ="My =F. (3.57)

The acceleration in the joint and task space can be related to each other by writing
(3.29)

X =J)6
and differentiating with respect to time
X=J6)0+J©0)6. (3.58)
Solving for the joint space accelerations
b=3"'OX-J"0)J0)0 (3.59)
and substituting into (3.57)
JTTM@)J @)X - T TM®)I ' (0)J(6)6
+J7TV,0)+17G@®) =F. (3.60)
By comparing (3.55) with (3.60) it follows
M., (0) =3 "M©®)J'®).
Vi0,0)=J"T[V(@,0) —M©®I ' ©)J©®)8], (3.61)
G, 0)=JTG®).

3.13 Low Level Control

The motion of the arm is determined by the actuators, which apply given forces or
moments to the links. The result is a trajectory that should follow a pattern that can
be pre-programmed or generated following some rules in the case of autonomous
robots. In the case of a telemanipulator the trajectory is determined in real time by
a human controller.

Modern robots are not controlled continuously, but at discrete time intervals: the
trajectory generator supplies the coordinates of the end effector or the coordinates of
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the joints (depending whether it works in the task or in the joint, space) and the low
level controller of the arm tries to comply with these instructions by applying the
required forces to the various links. This is what is usually called position control.

There are instances, in particular when the end effector must follow the outer
surface of a workpiece, where it is impossible to state a trajectory, and the control
must be based on the force the end effector exert against the workspace. This way
of operating is called force control.

It is possible to control some degrees of freedom following the force control
strategy, while others are controlled in position: this is called hybrid control.

In any case, it is possible to use a linear control or a nonlinear control: owing to
the nonlinearity of the system, theoretically a nonlinear control is needed. However,
to simplify the control task, it is possible to use a linear control strategy, provided
that it is robust enough to tolerate the changes in the linearized dynamics of the
system due to the changes of the position of the links.

In this section a position control is assumed. The trajectory generator supplies
the controller of the arm a number of subsequent sets of coordinates, which act
as reference inputs. They may be in the task space or in the joint space, but in the
former case the controller must perform the inverse kinematic computation to obtain
the reference inputs for the joints.

3.13.1 Open Loop Control

Assume that the required trajectory in the joint space is defined by function 6, (¢). It
is possible to compute the joint torques My (¢) using either (3.49) or (3.51). In this
latter case the torques are

My =M@®,)8, +V(@,,0,)+G@®,). (3.62)

This type of control is said to be open-loop or feedforward control, since the ac-
tual trajectory is not measured and the torques exerted by the actuators on the joints
are computed using a model of the robot. This type of control is bound to introduce
errors in the actual motion of the robot, which are large (perhaps unacceptably so) if
the model of the robot is inaccurate. In practice a fully feedforward cannot accom-
modate for the unavoidable unmodeled dynamics present in all actual machines and
for the uncertainties of many parameters.

3.13.2 Closed-Loop Control

Robot controllers work mostly in closed-loop or feedback: the actual position and
possibly also the velocity of the joints are measured, and the joint actuators are
controlled so that the position, and possibly the velocity are corrected toward the
values required to follow the stated trajectory.
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Fig. 3.16 Prismatic,
homogeneous beam hinged at
one end

Assume that each joint is provided with a sensor able to measure the coordinate
0; and that the controller has the goal of obtaining the reference value 6;y of such a
coordinate.

An error can be defined as

e=0—0. (3.63)

If also the velocity of the joint is measured, and the reference input includes also
the velocities, also the velocity error

e=60-—46, (3.64)

is known.

The simplest linear position controller is an ideal PID (proportional, integral,
derivative) controller, i.e. a controller that causes the motors to supply a torque
vector

My = —er - Ky —K; / edt, (3.65)

where K, K; and K; are the matrices where the proportional, derivative and in-
tegrative control gains are listed. If they are diagonal, each degree of freedom is
controlled independently from the others and the control is said to be decentralized.

Example 3.6 To understand the effect of the various control gains, consider the
prismatic, homogeneous beam hinged at one end shown in Fig. 3.16. Study the
cases in which the hinge is controlled by a PD and a PID controller. The data are
I=1m,m=>5kg, g=9.81m/s’.

Since the beam is prismatic, the center of mass is at mid-length and the moment
of inertia about the hinge is

The equation of motion is

.. mgl
Jo + TCOS(Q) =M.
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The controller is required to bring the beam at the reference angle 8y and to keep
it there.

PD controller
Using the expression of the error given by (3.63) and remembering that the refer-
ence 6 is constant, the control torque is

T=—Ky0—60)— Kab.

The equation of motion of the controlled system is thus
. . mgl
JO+ K40 + K0 + TCOS(@) = K ,00.

The derivative gain plays the same role as that of a damping coefficient and the
proportional gain as that of a stiffness. The larger is the second one, the quicker is
the tendency toward the reference position, but also the stronger is the oscillatory
behavior of the system. Derivative damping is needed to avoid strong oscillation.
Neglecting the nonlinear part of the system, the natural frequency is

These two relationships can be used to design the controller, i.e. to chose the values
of the gains.
The position at rest can be computed by assuming that  and 6 vanish, obtaining

I
o+ % cos(6) = .

A PD controller is then unable of reaching the reference position, if the system is
subjected to external forces. The final position can be written as

0 =06+ A6,

where A#@ is the error in the final position. The equation yielding the equilibrium
position can be written as

20+ "L o500 + A0) = 0
——CoS =0.
2K, 0
If A6 is small,

cos(8p + AB) ~ cos(fy) — Ab sin(Hp)



118 3 Manipulatory Devices

a5 T 150 T T

6 [deg)
PP ¢ [degs]
B0 e PID |

PD

[y —
100}

201

1504

50
10+

0 1 2 t[s] 3 0 0.2 0.4 086 0.8, &l 1

Fig. 3.17 Arm controlled using a PD and a PID control: time histories of the position and the
velocity (the latter is reported for a shorter time). Reference value 6y = 30°, initial value 8 =0

and thus the error can be computed easily

mgl cos(6p)
2K, —mglsin(6p)

Af =

To compute the proportional gain assume a natural frequency of w, = 2 Hz

= 12.57 rad/s. The value of the proportional gain is thus K, = 263 Nm/rad. As-

suming that the system is critically damped (¢ = 1), the value of the derivative

gain is Ky =41.9 Nm s/rad.

Assume a reference value is 8y = 30°. The value of angle 6 computed using the

equation above is 8 = 25.17°, and then the steady-state error is A8 = 4.83°. The

approximated value of Af obtained using the approximated relationship is 4.85°,

a very good approximation.

Consider the arm at rest with 6 = 0 and apply the reference 6y = 30°. The results

of the numerical integration are reported in Fig. 3.17. The steady-state value of

25.17° is quickly reached.

The poles of the linearized system are s; = —12.12 1/s and s = —13.02 1/s. They

are almost equal, since the system is only very slightly overdamped (¢ = 1.0006).
PID controller

Using again the expression of the error given by (3.63) and remembering that the

reference 6 is constant, the control torque is

t
My =—K,(0 —6p) — Kab — K,-/ 6 — 6p)du.
0
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The equation of motion of the controlled system is thus
.. . ! mgl
JO + K460+ K0 + K; Qdu-i-TCOS(@):Kp@o-i-Kieot.
0

The equation of motion is then an integro-differential equation, and must be written
in the state space. Introducing two auxiliary variables

t
v:é, r:/ 0du,
0
the equation becomes
. mgl
Ju+ Kgv+ K0 + Kir + - cos(0) = K ,00 + K, 6ot

or, in matrix form,

Ky K K;

v -5 =7 —T||V
0t = 1 0 0 0
F 0 1 0 r
"21—5}1 cos(9) + %9@ + %901‘
+ 0
0

Add an integrative gain K; = 200 Nm/rad s to the gains considered above, assume
a reference value 6y = 30° and compute the time history of the angle with the
arm starting with 6 = 0. The results of the numerical integration are reported in
Fig. 3.17.

The steady-state value now coincides with the reference value and is quickly
reached.

The equation of motion of the controlled system in the configuration space is
M(9)8 +V(@,6) +G(®)

=K, —00) —Ky(0 — bo) —K,-/(o —09) dt. (3.66)

The equation of motion can be written in the state space by introducing the aux-
iliary variables

t
v=20, r=/ 0du. (3.67)
0

The state variables are thus 3n.
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Assuming a constant reference input 8¢, the state space equation of motion is

v -M'K; -M'K, -M7K;]|[v
0= I 0 0 0
y 0 I 0 r
M~'[V +G] MK, + M~ IK;z
+ 0 + 0 0o.  (3.68)
0 0

Example 3.7 Consider the revolute arm studied in Example 3.5 (Fig. 3.15).

Study its motion in the vertical plane with angle 61 locked in any position when
joints 2 and 3 are driven by a PID controller. Assume the following data: /1 = 1
m, I =0.6 m, m; =5 kg, my =3 kg, g =9.81 m/s2. Assume that the arms are
prismatic and the hinges are at their ends. Assume that the booms can be modeled as
one-dimensional objects (i.e., that their transversal dimensions are negligible) and,
as a consequence, neglect the moment of inertia of the links about their longitudinal
axis.

The moments of inertia of the links about their centers of mass are

m,‘ll.2

127

Jyi =0, inZJziZ

Apply a decentralized controller, with proportional gains yielding natural fre-
quencies of about 2 Hz and derivative gains yielding a damping close to critical.

Compute the time history of the generalized coordinates of the arm and the
torques of the motors to perform a given manoeuver.

‘When the first link is locked, the mass matrix reduces to

M= J¥+2J55¢c08(03)  J§ 4 J35cos(63)
| JF 4 55 cos(63) Ji ’

where
Jz* =Jop+J3+ mzag + m3(a§ + l%),
J:’:k =Jz3 + m3a:’%a
]2*3 = m3zazl;.

Vector V(élﬁj) + G(0 ) reduces to

ViG= { —2J5; sin(03)6,05 — J3; sin(63)(6,)03 + G }

J3 sin(63)03 + m3gas cos(6> + 63)
where

G = glmaay + m3lp] cos(82) + m3gas cos(0z + 03).
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The proportional gains are computed by assuming a natural frequency of 2 Hz for
both uncoupled linearized systems. The two values of the gains so obtained are
K1 =794 Nm/rad, K, =57 Nm/rad.

Assuming a unit damping ratio for both uncoupled linearized systems it follows
K41 =126 Nms/rad, K;» =9 Nm s/rad.

The integrative gains are arbitrarily assumed: K;; = 1000 Nm/rads, K;» =
120 Nm/rad s.

The matrices and vectors to be introduced into (3.65) are thus

_ | Kpi 0 | Kai 0
KP_[O sz]’ K“_[o Kd2:|’

Ki=|:Ki1 01|7 e={91—910}'
0 Kiz 02 — 620

The equation of motion can be written in the state space by introducing the aux-
iliary variables of (3.67). The state variables to be introduced into the state equation
(3.68) are thus six.

Since the equation is nonlinear, numerical integration in time must be performed.
As an example, a maneuver aimed to bring the end effector to point with coordinates
x =300 mm, y = 800 mm starting from an horizontal position will be performed.

Since the destination point is within the workspace, the manoeuver is possible.
The end values of the generalized coordinates can be computed from the inverse
kinematic relationships and are, in degrees,

00 — 106.1
= -1217
The steady-state torques at the motors are those needed to counterbalance the weight

of the arms. They can be computed from the equation of motion by stating that all
derivatives of the generalized coordinates vanish:

Mpy = g[(m1dy + maly) cos(61) + mada cos(61 + 62)],
My = gmads cos(01 + 62).

Using the values of 8y mentioned above, the values of the motor torques are
My = —6.50 Nm and Mgy = 8.51 Nm.

The time history of the torques can be obtained simply by extracting vector My
during the numerical integration.

The results of the numerical integration are reported in Fig. 3.18.

The steady-state values now coincide with the reference values and the final po-
sition is quickly reached without oscillation, although with an overshot.

The trajectory of the end point and of the elbow are plotted in Fig. 3.19.

The control of the arm was performed giving the final position as a reference
input, without any attempt to define the trajectory of the end effector.

This way of controlling an arm is very rough and can be used only as a simplified
example: in any actual application the low level controller receives its reference
from an higher level controller, the trajectory generator.
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Fig. 3.18 Planar arm with two degrees of freedom controlled using a PID control. Final position
x =300 mm, y =80 mm. Time histories of the angles and of the motor torques

Fig. 3.19 Trajectory of the y[m]
end point of the arm and of

. Q8F ]
the elbow in the maneuver
described in the previous asl. - j
figure

The motors are required to supply large torques during the first phase of the
manoeuver, when the errors are large, and later they settle at about the steady-state
values that are reached within a few seconds.

Example 3.8 Repeat the computations of the previous example, assuming that the
motors cannot supply the large torques needed to follow the PID strategy.

Assume the following values for the saturation torques: Mpj,,, = 110 Nm,
Mg, =20 Nm.

The problem becomes more nonlinear and, as a consequence, the gains cannot be
introduced in the dynamic matrix. The motor torques My must be computed explic-
itly at each integration step, taking into account also saturation, and then introduced
into the state space equation

v 0 0 0] (v M-'f M~'My
6ty=|1 0 0|0}t +{ 0 !+ 0
¥ 01 0f]r 0 0

The results are shown in Fig. 3.20.
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Fig. 3.20 Planar arm with two degrees of freedom controlled using a PID control with saturation.
Final position x = 300 mm, y = 80 mm. Time history of the angles and of the motor torques

Saturation slows down the reaching of the final position, as expected, but its
effect is mainly restricted to the first moments. After the arm has started, the effect
of saturation on the motion reduces, while the effect on the torques remains large.

3.13.3 Model-Based Feedback Control

The equation of motion (3.51) can be used to improve the performance of the con-
troller. Since at each instant the values of the joint coordinates are known, the ac-
tuators can supply a set of control moments equal to G(@): this amounts to have
the actuators exerting torques compensating for the gravitational forces. In a similar
way, if also the joint velocities are known, the actuators can supply a set of torques
equal to V(b;,0), compensating for Coriolis and centrifugal forces too. The joint
torques are thus

M, =V, 0)+G@®) +M,, (3.69)

where M, are the control torques, i.e. the torques exerted by the actuators that ex-
ceed those needed to compensate for gravitational, Coriolis and centrifugal forces.
In the simplest case, the control torques can be obtained through a PID algorithm
(Fig. 3.21) and thus the joint torques are

My =V(,0)+ G(6) —er—Kdé—Ki/edt, (3.70)

The equation of motion thus reduces to

M(8)6 = M.. (3.71)
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Fig. 3.21 Block diagram of a

model-based controller. To System

simplify the scheme, the 9

control is based on a PD B

strategy -

viB.0pe0) |
The dynamics of the controlled system is thus described by the linear equation

6 =M"1(0)M.. (3.72)

To perform this model-based control two conditions must be verified: the con-
troller must be able to perform all the required computations in real time and the
characteristics of the system must be known accurately. The first condition is now
not difficult to be implemented, owing to the power of the microprocessors used to
control robots, even if it must be remembered that the computers used in space ap-
plications are much less advanced than those used in industrial plants. A long time
usually elapses before computers are space qualified and in applications beyond
Earth orbit radiation hardened electronics must be used.

The second point is much more critical. As a first point, there are details of the
dynamic of the arm that are difficult to model accurately. For instance, the resistance
to motion of the joint has not been introduced explicitly in the models above: it was
assumed implicitly that all friction and resistance torques in the joints were included
in the joint torques My. When building the mathematical model for the control of
the arm, these effects must be included, and this can introduce large errors.

Another source of model uncertainties is the variability of the mass of the ma-
nipulator when the gripper picks up an object. Since the mass of the object may, in
general, be unknown, this introduces an unmodeled dynamics.

However, even if the model-based controller does not completely compensate for
nonlinearities, it makes anyway the system more linear than if no compensation at
all were used, and the feedback control is usually able to manage the situation if its
design is robust enough.

3.13.4 Mixed Feedforward and Feedback Control

The two basic strategies of feedforward and feedback control can be mixed to dif-
ferent extents. Assume for instance that the required trajectory in the joint space is
defined by function €, (f). In an open loop strategy the joint torques My () were
computed using (3.62) from the desired trajectory. It is possible to add a feedback
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component to the open loop component, obtaining
My =M(8,)8, +V(0,,0,) +G@®,) — K e — Ksé — K; /edt, (3.73)

where the error is the same defined above and the feedback strategy is based on a
PID controller.

While in the strategy described in the previous section the torque V(@,0)+G(®)
was computed using the actual (measured) values of the joint coordinates and ve-
locities, now the values used are the reference ones.

The equation of motion of the controlled system is

M(8)d +V(8,0) +G(8)
=M@®,)8, +V@,,0,)+G@®,)

—Kp(0—0,)—Kd(9—9,)—Ki/(0 —0,)dr. (3.74)

A strategy of this kind can work only if the error is, in each instant of the motion,
small enough to avoid that the feedforward control introduces forces that may cause
further errors. For instance, it is impossible to use a strategy of this kind when giving
directly the end position as a reference input at the beginning of the motion.

3.14 Trajectory Generation

In the previous examples no attempt to follow a given trajectory is done: only the
point the end effector has to reach is defined, and the arm is left free to reach it
(asymptotically) in any way. Usually a better definition of the motion is needed, and
a trajectory must be computed, at least by defining a number of waypoints.

The simplest trajectory is a straight line in the physical space, with the end ef-
fector accelerating at constant acceleration for the first half of the motion and then
decelerating at a constant deceleration, equal in absolute value to the previous one.
This is possible only if the straight line connecting the starting and ending points
(A and B) is all within the workspace and does not go through any singular points.

Assume that at time ¢ = 0 the end effector is in A (position XA ) and at time ¢ it
stops in B (position Xg).

Owing to the assumption of constant acceleration a, the velocity is easily com-
puted

. t
X=at forOftSEf,

(3.75)

. t t t
X:a<§f—l+5f):a(lf—t) fOI‘EfStftf.
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By integrating, it follows that

1 t
X:XA+§at2 for0<t < Ef
(3.76)
X=Xa+a(r;—22-12) oL <r <
A V) 2 ==
From the last equation it follows that
1 5
Xg =Xp + Zatf, (3.77)
ie.
4Xpa —X
Iy

The trajectory of the end effector can thus be computed, and easily transformed
into the joint space.

The controller is supplied a variable reference in terms of 6¢(f) and of éo(t).
When using a PID controller, the variability of the reference input must be ac-
counted for in the computation of the integral error, and thus the state space equation
of motion (3.68) becomes

v -M~'K;, -M7'K, -M7K;]|[v
0 ; = I 0 0 0
r 0 | 0 r
M~V +G]
+ 0
0
MK ,00(t) + K, 00(t) + K; [00(r)dr]
+ 0 ) (3.79)
0

The time history of the trajectory assumed above is quadratic in time, so that
the resulting acceleration is constant. Often this strategy is referred to as bang—
bang control, and can be shown to yield the fastest motion for a given maximum
value of the acceleration. However, it causes abrupt changes of acceleration (i.e. a
theoretically infinite value of the jerk) at the beginning and at the end of the motion
and when the shift from acceleration to braking occurs. To obtain a more gradual
start and stop of the arm a time history that contains higher powers of time can be
used, for instance a time history that is cubic in time.

In a similar way, also a trajectory that is not straight can be assumed. A common
way to define smooth curved trajectories is by stating a number of waypoints and
then by resorting to cubic splines passing through them.
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Fig. 3.22 Same arm with two degrees of freedom of the previous examples controlled using a PID
control along a rectilinear trajectory of the end effector. Time histories of the angles and of the
motor torques

Example 3.9 Repeat the computations of Example 3.7, assuming that the end effec-
tor must move between the initial and the end point along a straight line, in a time
of 2s.

The acceleration is easily computed

4 { -1.3 }
08 |-

Assume [1,600 0]7 mm as coordinates of point A and [300 800]7 mm as coordi-
nates of point B and assume a duration of 2 s for the manoeuver. Compute the input
reference in both displacement and velocity every 0.1 s, and supply these values to
the controller of the arm.

Larger values of the gains are assumed, since now the arm must follow more
promptly the reference input: k,; = 3,200 Nm/rad, k> = 227 Nm/rad, k41 =
2,500 Nm s/rad, ks = 18 Nm/rad, k;; = 2,000 Nm/rad s, k;» =240 Nm/rads.

The results are plotted in Fig. 3.22. In the figure the laws 6¢;(¢) and 6, (¢) are
also reported as dotted lines, but the actual trajectories in the joint space are almost
completely superimposed to the reference trajectories. The joint torques, and above
all My, show a strong ripple: this is due to the fact that the reference input is given
every 0.1 s and not in a continuous way. As expected, the joint torques are much
smaller than those obtained by supplying the endpoint coordinates directly to the
controller, leaving the arm free to move for the whole time.

The trajectory is shown in Fig. 3.23. The reference trajectory (a straight line)
is plotted as a dotted line: the end effector follows quite accurately the reference
trajectory.
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Fig. 3.23 Trajectory of the 1
end point of the arm and of yIml
the elbow in the maneuver 0.8r
described in the previous 06
figure ’
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End point
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Remark 3.9 The trajectory can be much more complex than a straight line: several
waypoints can be stated, and the trajectory can be obtained using splines or other
geometrical interpolation curves.

3.15 Dynamics of Flexible Arms

No truly rigid body exists in the actual world and robot arms are no exception. In
robotic arms two kinds of flexibility may be present: the flexibility of the structural
parts like the beams constituting the various parts of the arm and that of the joints
and the actuators. While the structural elements can often be modeled as linear sys-
tems, the joints contain many elements whose behavior is more or less nonlinear:
bearings, gear wheels, chains, etc. In particular, clearances and nonlinear elasticity,
possibly due to contact phenomena, are the main causes of nonlinearities.

In most cases the flexibility of the robot structure is neglected. This can be done
if the structure is stiff enough so that the natural frequencies linked to deformation
modes are much higher than those linked with the rigid-body and control dynamics.
As a general rule, the lowest flexible body natural frequency must be at least twice
the highest natural frequency linked with the controlled rigid manipulator.

While this is easily implemented for industrial robots, it is less easy for moving
robots and above all for space robots. Very rigid arms are quite heavy and this re-
quirement conflicts with the needs of weight reduction in all movable machines and,
even more, in space hardware.

Some space manipulators have quite a long arm, which must operate in low grav-
ity (or microgravity) conditions. The static loads are low and this allows one to de-
sign lightweight structures, that in turn are much more flexible. If also the control is
designed to keep its natural frequencies correspondingly low, a very slow manipu-
lator is obtained.

The needs of improving the performance of the manipulator while decreasing
its mass result in the impossibility of neglecting the flexibility of the structural ele-
ments: the compliance of the arms and the joints must be accounted for both in the
design of the mechanical subsystems and in the design of the control.

The dynamics of a flexible body can be studied by modeling it as a continuous
system or by resorting to some discretization technique, like the Finite Element
Method (FEM).



3.15 Dynamics of Flexible Arms 129

Fig. 3.24 Compliant link.
Position of point P belonging
to the ith link in the body
fixed and base frames

Consider the generic link of a kinematic chain (the ith link, Fig. 3.24). At time ¢
the position and the velocity of its center of mass, the rotation matrix and the angular
velocity of the body-fixed reference frame are given by X, V, R, and 2. The body-
fixed frame may be a principal frame of inertia of the link, but this is actually not
needed.

The position of a generic point P of the link in its deformed configuration is

P-0)=X+R(x+nu), (3.80)

where

e X=[XY Z]g is the vector defining the position of the center of mass G of the
link in the base frame. Generally speaking, it is a function of the joint variables of
the first i links, plus the deformation coordinates expressing the deformation of
the endpoints of the previous n — 1 links. In the three-dimensional space, the latter
are generally speaking 6(n — 1), if rotations are accounted for, and are usually
considered as small quantities. Storing these variables in vector X4, it is possible
to define an augmented vector of generalized coordinates

—[pT <I17
o =[0" xi].
containing all coordinates defining the position of the center of mass of the ith
link
X:X(O*). (3.81)
e R is the rotation matrix of the link. It is a function of the same variables as X.
e r=[x; y z,-]g is the vector defining the position of point P in its reference po-
sition, usually corresponding to the undeformed configuration if the link is not a

rigid body. It is expressed in the body-fixed frame, which in the present case has
its origin in the center of mass of the link.
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o u=J[uyuy uZ]ET, is the displacement vector of the same point expressed in the
same frame. In many cases, the displacement u may be considered as a small
displacement.

The generalized coordinates of each point of the link are thus

T
q=[0*" '] . (3.82)
The discrete part of the link has the same number of degrees of freedom as the
components of vector 8%, the joint coordinates of the links from the first to the ith,
plus another 6(n — 1) coordinates x4. Vector u(x, y, z, f) contains the generalized
coordinates of the continuous part and, in three-dimensional space, has three com-

ponents.
Remark 3.10 This formulation of the problem is partially written in terms of a dis-
crete system and partially in terms of a continuous system. This formulation is usu-
ally referred to as hybrid.

The velocity of point P expressed in the body-fixed frame is

Vp=R'X + QA(r +u) +u. (3.83)

By expressing the vector product in matrix notation, it follows that

Vp=V+GFE+a) Q+u, (3.84)
where
0 -z vy
F=|z 0 —x|, (3.85)
-y X 0

and u is defined in a similar way.
Velocities X and £ can be written as

X=P(07)0", @=P,(6%)0". (3.86)
The velocity can be expressed in terms of 0" as

Ve =RTP10" + F+ 1) P,(0%)8" + 0. (3.87)

The kinetic energy of the infinitesimal volume dv about point P is

1
dT = EpVngdv

1 . . . .
= 2p[6" P{P16" + 67 P] (i + 250" + )b
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+ula+20" PTR(E +a")P,0" + 20" P Ru
+26*"PL (F + W] dv. (3.88)

The kinetic energy of the link is thus

1 . . 1. . 1
T = Eme*TP{ma* + 5(;v*T1>2TJP249* + 5/,oﬁwazv

v

1 Y .
+ - O*TP2 (/p(Zf—i—ﬁ)ﬁT dv>P20*+0*TP{R</ i’ dv>P2(o*)0
v v
+9*TP1Tprﬁdv+9*TP2T/p(f+ﬁ)ﬁdv. (3.89)
v v

The global inertia properties of the link in the reference (undeformed) configura-

tion are
:/,odv, J:/icf{pdv.
v v

Moreover, since point G is the mass center of the link,

/pr dv=0.
v

Given a set of virtual displacements §X, §6 and du, the virtual displacements
dxp, expressed in the body-fixed frame, is

sxp =RTP 180" + (F + 1) P250* + Su. (3.90)

The virtual work of a distributed force f(x, y, z, ) applied to the flexible link in
the direction of the axes of the body-fixed frame is

8L = /(Sx fdv_/ (56*"P{RE+ 80*TPL (F + Wf +6u’f)dv,  (3.91)

where v is the volume occupied by the compliant part of the system.

If a concentrated force F and a moment M act on the link (the force is ap-
plied in its center of mass G), the total virtual work acting on the system is
thus

8L = 56*TP] RF + 66*" P (¥ .F + M)

+ f [6*TPTRE + 50*" P] (F + )f + su” f] dv. (3.92)

v
The gravitational potential energy of the infinitesimal volume dv about point P
is

duly = —g" [X + R(r +w)]dm. (3.93)
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Fig. 3.25 Rotating elastic
beam

Since point G is the center of mass of the link,

/prdv =0 (3.94)
v
and, by integrating on the whole body, it follows that

Uy =—mg' X — gTR/ pudv. (3.95)

v

The elastic potential energy due to the deformation of the rigid body is not af-
fected by generalized coordinates 8*, but only by the coordinates u and their deriva-
tives with respect to the spatial coordinates.

Remark 3.11 Usually the first and the second derivative u’ and u” are included, but
there may be cases in which also higher order derivatives are present

U, =U, (u, u/, u”). (3.96)

It may be necessary to take into account also nonlinear terms in the strains to in-
clude effects like the influence of inertia forces on the elastic behavior of some parts
of the system. This may be accounted for easily through a geometric matrix, but in
general this matrix may be a function of the accelerations acting on the system.

Also a Rayleigh dissipation function, which is independent from generalized co-
ordinates #* and from velocities 9*, can be defined. It is a function only of u (and
possibly of u) and of their derivatives with respect to space coordinates.

Example 3.10 Consider the same beam studied in Example 3.6. The beam is now
a structural member moved by an actuator that exerts a torque at the hinged end
(Point O in Fig. 3.16 and Fig. 3.25).

Compute its kinetic energy and the gravitational potential energy.

The system has just one rigid-body degree of freedom (6), plus a single defor-
mation degree of freedom (u(x)).
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The various parameters of the system are

cos(6) . X
W _ b . __|cos(@) —sin(0) _
X(0%) = 5 sin(9) }, R= |:sin(9) cos(8) ], r=4{0},
0 0
0 0 0 O 0 0 u
u=13uy, r=(0 0 —x]|, a=| 0 0 0],
0 0 x O —u 0 0
) —sin(#) 0
X=-{ cos(@) ;0, Q=10;86,
0 1
and hence
—sin(0) 0
P = 3 cos(9) ., P,=10
0 1

Since the beam has a constant cross section A, the kinetic energy expressed by
(3.89) reduces to

1 l2 . 1 1/2 1. 1/2
T= —m—62+ —pA/ u®dx + —02,0A/ u*dx
23 2 —1)2 —1/2
RV . 12
+0,0A—/ L'tdx+9,oA/ ixdx.
2 )0 —i2

The same result could be obtained directly by writing the position in the inertial
(non-rotating) reference frame XY of a point of the beam, located at coordinate x:

{ X } (x + %)COS(G) — usin(9)
vl (x+ %) sin(f) + u cos(f) ’

where u(¢) is the displacement due to the bending of the beam. By differentiating
the position, the velocity is readily obtained
—[6(x + £) + 1] sin(0) — u cos(6)

X
{ Y } B { 0(x + %) + it] cos(0) — Hu sin(0) } .

The kinetic energy of a length dx of beam with material density p and area of
the cross section A, is readily obtained

dT = %pAdE(Xz +71?)

1 . 1\? i I\ .
=§pA|:02<x+§) +ﬁ2+u292+2<x+5>91}t:|dx.
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/1 Alx+ ] 2d ml®
x4+ = X =—"),
b ° 2 3

the kinetic energy of the beam is then

1ml*> ., 1 1/2 1. 12 . 12 I
T:——92+—,0A/ uzdx—l——észf uzdx—i—O,oAf <x+—>adx.
23 2 vy 2 ) vy 2

Since

The first term is that expressing the rigid-body dynamics, while in structural dy-
namics only the second term is present.
The gravitational acceleration vector is

g=[0-¢g0]"

and thus the gravitational potential energy of the length dx of beam is

dU, = ,ogA|:<x + %) sin(0) + u cos(@)] dx.

The gravitational potential energy is thus

I 12
Uy = me? sin(0) + mg Cos(@)/ udx.
2 l ~1/2

Since the beam is an elastic body, an elastic potential energy must be added to the
gravitational potential energy. If the damping of the structure is taken into account,
also a Rayleigh dissipation function can be introduced.

The flexible body dynamics is often studied by using a modal approach. First
the free vibration problem of the various links is studied, obtaining the eigenvalues
and the eigenfunctions, if the system is modeled as a continuous system, or the
eigenvalues and the eigenvectors if a discretization technique is employed. In the
first case there is an infinity of eigenvalues and eigenfunctions, in the second case
there are n eigenvalues and n eigenvectors, where # is the number of deformation
degrees of freedom.

The displacement u(x, y, z, ) (in the general tridimensional case u is a vector
with three components) of any point of each link can be expressed as a linear com-
bination of the eigenfunctions ¢; (x, y, z)

u(x, y, 2,0 =Y mi0gi(x,y,2), (3.97)

i=1

or, by truncating the modal expansion after a number of terms,

u(x,y,z,t) =¢(x,y, 2)n),
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where 7(f) is a column matrix containing the n modal coordinates retained and
¢(x, v, z) is a matrix containing n columns (in each column an eigenfunction) and
three rows (the three components of the eigenfunction) in the case of a continuous
system.

In the case of discrete systems, the displacement vector u(¢) can be expressed as
a linear combination of the eigenvectors

u(t) =Y ni(t)q = dn(). (3.98)

i=1

The functions of time n; (¢) are the modal coordinates and the square matrix ® is
the eigenvector matrix, a matrix whose columns are the eigenvectors of the system.

Remark 3.12 If all modes are accounted for, (3.97) and (3.98) are exact even if
the system is damped and nonlinear. If, on the contrary just a limited number of
eigenfunctions or eigenvectors are considered, as it is usually the case, they are
approximated. In the case of a moving structure, this approximation is worse than
usual, and a larger number of modes may be needed.

Once the number of eigenfunctions (eigenvectors) to be used has been stated,
the generalized coordinates of the system are those corresponding to the rigid-body
coordinates used for studying the rigid-body dynamics, plus the modal coordinates
corresponding to the deformation of the system.

By introducing the eigenfunctions in the expression of the kinetic energy, the
latter becomes

1 . . 1. . 1
T = Emo*T1>1TI’1(f“ 4 5(;V“TPZTJPZ(;'* n Ei,T</ p¢T¢dv)i1
v

+ é*TP{R(/ il dv>P2(0*)é + ()*TP{R(/ od dv)iy
v v
+6P7 (f pqudv)iy +9*TP2T/pﬁudv. (3.99)
v v
One of the integrals is immediately computed:

M= f pdl ¢ dv (3.100)

is the (diagonal) modal mass matrix of the compliant system.
Other integrals are straightforward:

M, :[pquU, Mzzfpf'(bdv. (3.101)
v v
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It thus follows that

1 . . 1. . 1
T = Em¢9*TP1TP16v* + E()"‘T1>2TJP29* + 50" Mi
y L .
4507 ¥ ( / ,0(2f‘+ﬁ)ﬁTdv)P20* o7 TpT R< / pﬁTdv>P2(0*)9
v v

+ 0 PTRM, ) + 6" PI ML + 67 PT / piiidv. (3.102)

v

The other integrals containing  must be solved for the various cases, so that to
obtain an expression of the kinetic energy in terms of the rigid-body coordinates §*
and the modal coordinates 7.

By integrating over the whole body, it follows that

Uy =—mg' X — gTR</ ) dv)n. (3.103)

The elastic potential energy in terms of modal coordinates is simply

1

51" K, (3.104)

Ue

where K is the (diagonal) modal stiffness matrix of the compliant system.

If the links can be modeled as prismatic homogeneous Euler—Bernoulli beams,
clamped on one side (to the previous joint) and free at the other end, the modal
approximation is particularly simple. The eigenfunctions are

1
qi(¢) = » {sin(Bi¢) — sinh(B;¢) — Ni[cos(B;¢) —cosh(Bi0)]},  (3.105)

where

_sin(By) + sinh(8))
' cos(Bi) + cosh(Br)’

N> = sin(f;) — sinh(f;) — Ni[cos(B;) — cosh(B;)],

the nondimensional variable ¢ is

_x+1
gh_l 2

and parameters §; for he various modes are summarized in the following table:

Mode number k1 2 3 4 >4

Bi 1.875 4.694 7.855 10.996 (k—0.5)7w
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These numerical values were obtained by solving numerically the characteristic
equation.

Example 3.11 Write the equations of motion for the beam of the previous example,
using a modal approximation and retaining » bending modes.
Since the displacement u has only one component, that in y direction, matrix ¢
has the first and last row all full of zeros, and n columns to account for the n modes.
The kinetic and gravitational potential energy are easily computed by simply
introducing the modal approximation into the expressions obtained in the previous
example and here reported:

Lmi? . 1 12 1. 12
T:-m—92+—pA/ dzdx+§92,oA/ u? dx

23 2 —1)2 —1/2
X 1/2 l
+9pA/ (x + —)L’tdx,
—1/2 2
I 12
U, = me? sin(9) + %Cos(e)f udx.
2 l )
The first yields
Imi?., 1 2
T=-—06>+ 37 A/ Tdx )i
ERAREL (p |, dx )i

1o g vz ] 1/2 , I )
+ =6°p" pA qq’ dx |p+6pA q (x4 )dx|n.
2 "y —12 2

Once the eigenfunctions are known, the integrals

L 12 ! i
M:pA/ qq’ dx, Mlz,oA/ q<x+—) dx
—1/2 0 2

are known constants. They are, respectively, the modal mass matrix (a diagonal ma-
trix owing to the m-orthogonality properties of the eigenfunctions) and a vector.
Their size is theoretically infinite, but practically is equal to the number of deforma-
tion modes considered.

The kinetic energy is thus

. 1, — 1. — .
T=——20%+—7"Mj+ =6%9 "My +6M7 5,
273 +277 77+2 n Mn+ n
or, better,

1— (6|7 M| [
T:—M{Q} i {Q}—i——@znTMn,
2 M, M |[li] "2
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where
mi?

J=—
3

is the moment of inertia of the beam about its rotation axis.
The gravitational potential energy becomes

/ 1/2
Uy = 25 sin(0) + =2 cos(@)(/ q’ dx)r],
2 l "y
or
mgl . T
Uy = Tg sin(#) + g cos(9)M,; 1,

where
m 12
Mp;=— qdé.
L Joip
The elastic potential energy is the same as that of the stationary vibrating beam,

i.e.

1 —
Ug = EﬂTKﬂ,

where K is the modal stiffness matrix. Owing to the k-orthogonality properties of
the eigenfunctions, it is a diagonal matrix.

Since the beam is clamped at the left end, no rotation is possible there due to
flexibility, and the generalized torque appearing there in the first equation is the
motor torque My. No generalized force is present in the other equations.

The first equation is thus

oo pe— T < p—. mgl . T
JO + 0y My +M;j i) + 209" My + Tcos(@) — gsin(@)M; n = Mp.
The derivatives appearing in the other equations are
0T —. .
on
d (0T — .
—| = )| =Mij +6M;,
i ( o ) LG
T -U)

5 ézﬁn — gcos(0)M; — En.
n

The relevant equations are thus
Mij + 6M; — 6*Mp + g cos(0)Ms + Kn =0,

i.e. a set of nonlinear equations in the variables 6 and 5.
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If the term Gy My in the first equation is neglected, by separating the linear from
the nonlinear part, it follows that

Mx+Kx=f+4T,

where the mass matrix is constant

J M’ 0 0 6
M: —1 ) K: | = b
[M M] [04 X{J

o —209TMj — Sgcos(0) + g sin(G)MzTn T— My
N +6?Mpy — g cos(9)M, ’ 10 |

If on the contrary the term @57 My is not neglected, the mass matrix is not con-

stant,
Mo |d T ™M MY
M, M |

a thing that, however, is not very problematic since the equation is at any rate non-
linear and numerical integration is required also for the simplified version.

The eigenfunctions are expressed by (3.105) and following. The value of N, is
such that the maximum value of the eigenfunctions, occurring at the free end (at
¢ =1), is equal to unity. In this way each modal coordinate is the contribution of
the relevant mode to the displacement at the end of the beam. Remembering that the
beam is prismatic and homogeneous, it follows that

— 12 —  BYEIL,—
m
MF—/ gidx,  Kj="1—2My,
[ —1/2 [ ,OA

12 / m 12
M1,-=Iﬂ/ q,-<x+—>dx, Mz,~=—/ gidx.
12 2 L Jip

To avoid integrating complex harmonic and hyperbolic functions, the integration
can be easily performed numerically. The modal masses and stiffness are simply

4
m — BEI
M;; = T Kii = :”3 .

Example 3.12 Compute the time history of the beam of the previous example, using
a PID controller to reach and maintain the final position. Assume that at time r =0
the beam is undeflected and lies on the x-axis.

The data are the same as in Example 3.6 ( =1 m, m =5 kg, g = 9.81 m/s2,
K, =263 Nm/rad, K; = 41.9 Nms/rad, K; = 200 Nm/rad s) The data related to the
material are p = 2,700 kg/m3, E =7.2 x 10'0 N/m?2. The area of the cross section
is A = 1,851 mm? and the area moment of inertia of the cross section is assumed to
be I =7,410 mm*. With these data a very slender and flexible beam is obtained. Its
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slenderness, i.e. the ratio between the length and the radius of gyration of the cross
section, is 500, a very high value that justifies the use of the Euler—Bernoulli beam
model.

As a first attempt assume that the sensor measures angle 6. Clearly in this way
there will be a positioning error, due to inflection of the beam. Using a PID con-
troller, the motor torque is

t
My =—K,(0 —6p) — Kab — Ki/ (6 —6p) du.
0

The auxiliary variables that can be introduced into the equation of motion are

t
V=X, r=/xdu,
0

obtaining a set of 3(n + 1) equations, where n is the number of modes considered.
Actually, the variables r linked with the integrals of the coordinates need not to be n:
since the integral control applies only to one coordinate, vector r needs to have just
one element. Operating in this way, however, a simpler formulation of the equations
is obtained.

The vector T to be introduced into the equations of motion is

T=-K,x - Kyv—K;r +K,xo + K;xot,
where the gain matrices, all with n + 1 rows and columns, are
_|K, O _|Ka 0 _|Ki 0
S U R

The state space equation of the system is thus

v -M 'K, -M'K,+K) -M'K/] (v
X ¢ = I 0 0 X
P 0 I 0 r
M-t M (K, +K;1)xo
+1 0 ¢+ 0
0 0

The results of the numerical integration performed taking into account the first
4 flexible modes are reported in Fig. 3.26. Angle 6 is reported in degrees, while
instead of plotting the modal coordinates 7;, ratios n; /[ are reported. Their meaning
is the angle under which the tip displacement due to the ith mode is seen from
point O.

The vibrations of the beam as a flexible body are limited: the amplitudes of the
flexible modes are small, and die out very quickly. The final value of 6 after 20 s is
30°, however, taking into account all four modes, the angle at which the tip is seen
from point O is 29.43° corresponding to an error at the tip of the beam of 0.57°, i.e.
of 8.6 mm.
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Fig. 3.26 Results of the numerical integration: angle 6 and 5, /! for 4 modes. In (b), (¢), and (d)
enlargements related to the deformation modes just after t = 0 are reported

Example 3.13 Repeat the computations of the previous example, using a sensor that
measures the displacement at the tip of the beam.
The angle between line OA and x-axis is the reference 8. The error is thus

1 n
€=9+TZ:771—90

Assuming that the derivative control, which has no effect on the final value of the
position, is done only on €, the motor torque is

1 n . t 1 n
Mg:—](p(9+7i21:ni—90>—KdQ—Ki/O<0+7;ni—90)du.

Proceeding in the same way as above, and introducing the same auxiliary vari-
ables, it follows that the vector T to be introduced into the equations of motion is

T=-K,x —Kyv—-Kir+ K0+ K;fot.
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where the gain matrices, all with n + 1 rows and columns, are

1 B Ks 0 1 B
KPZKP [0 0:| ’ Ki= |: Od 0:| ’ K;=K; |:0 0:| s

where
1
,9:7[1 1 1 1 ... 1]

The state space equation of the system is thus

v -M 'K, -M'K,+K) -M7K|[v
X = I 0 0 X
r 0 I 0 r
M-It M1
+1 o 4] o {(KP+0Kf’)9°}.
0 0

The results of the numerical integration are not reported in detail, since the dif-
ference from those reported in Fig. 3.26 is very small. However, the final value of
0o after 20 s is 30.57°, which is slightly larger than the required value in order to
compensate for the flexible displacements due to the static force (weight). Taking
into account all 4 modes, the angle at which the tip is seen from point O is 30.00°
showing that this kind of control can compensate completely for the error due to the
compliance of the beam.

Example 3.14 Consider the same beam of the previous examples, but control it us-
ing an open-loop system that governs the actuator torque following a predetermined
pattern.

Assuming that the torque is controlled following either a square-wave pattern
(bang-bang control) (Fig. 3.27a) or a more elaborate double-versine time history
(Fig. 3.27b) and neglecting weight, compute the maximum torque needed to achieve
a rotation of 45° in 1 s and the time history of the tip of the beam during and after
the maneuver.

In particular, study the vibration of the beam occurring after it has stopped in the
end position.

The problem will be split into two separate problems related to rigid-body dy-
namics and beam vibration.

Rigid-Body Dynamics
The equation of motion of the beam as a rigid body can be obtained from the first
equation of motion in the previous examples, by simply neglecting the terms in 3:

.. mgl
JO + TCOS(Q) =Mjy.
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Fig. 3.27 Beam rotating about one of its ends under the effect of the driving torque 7 (¢):
(a) and (b) time histories of the control torque during the maneuver: square-wave and double-ver-
sine patterns; (¢) time history of the displacement of the free end: displacement from the rigid-body
position, computed by numerically integrating the equations of the first five modes; (d) modal re-
sponse: second mode

Neglecting the weight, in the case of the bang—bang control the time history of the
torque is

1
Mp = Mgmax for0<t < mT

tmax

My = —Mpmax for <t < tmax-

Note that the square-wave law is that which allows the minimum travel time for
a given value of the maximum driving torque. The control law is symmetrical in
time and the speed of the beam at time f,,x reduces to zero. By integrating the
equation of motion, the time history of the displacement is

= 3Tmaxt2 forOftStm—aX,
2mi? 2
3Tmax 2 2 tmax
ami2 (_tmax + 4tmaxt — 2t ) for T =1 = fmax.

The relationship linking the torque with the displacement 6p,,x and the time needed
for rotation is
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In the case of the double-versine control, the time history of the torque is

M 4
My = %[1 —cos( id

tmax

M, 4
My = — 0 max |:1—cos< id
2 tmax

t
t>] forOftf%,

f
t>i| for mzax <1< fmax-

Also in this case the control law is symmetrical in time and the speed of the beam
at time fmax reduces to zero. By integrating the equation of motion, the time history
of the displacement is, for 0 < ¢ < fiyax/2 and tax/2 < t < fmax, respectively,

a2
tmax

= ami? 872

3Tmax [ , 12, 47
0= —F1—t2, At paxt — 2t~ — 24X t)—11%.
g2 | max T Hmax 472 |

The relationship linking the torque with the displacement 0.« and the time needed
for rotation is

8m120max

2
3tmax

My max =

The values of the maximum torque are thus Mypmax = 13.09 Nm for the square
wave and Mymax = 26.17 Nm for the double versine.

Vibration
By assuming that the law 6(¢) is stated, the previously computed equation of mo-
tion reduces to

Mij + (K — 6*M + g cos(§)Mz) 5 = OM;.

The first and the second terms are the usual ones that appear in the equation of
motion of the stationary beam. The third term is a centrifugal stiffening due to the
component of the centrifugal force due to rotation acting in a direction perpendic-
ular to the y-axis.

This effect can be neglected, since the stiffening effect due to the centrifugal field
is small, if the angular velocity is small enough. Actually, in the small movement
studied, the acceleration is high but the angular velocity maintains a low value.
Moreover, the aim of the study is mainly to predict the free behavior of the beam
after the required position is reached and this effect stops acting. Clearly the ne-
glected term is not noninfluent, because the behavior after the beam has stopped
depends on what happens during the motion, but the assumption that its effect is
small can be accepted, at least in a first-approximation study.

Then there is a term due to weight, which is here neglected, and a term due to
the acceleration of the beam that can be accounted for as an external excitation,
because it does not contain the deformation of the beam.
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The beam can thus be studied as a beam at standstill, under the effect of the inertia
force M

Mﬁ-l—ii]:éM].

The solutions of the modal equations for the two cases obtained through the numer-
ical integration of the first five modes are shown in Fig. 3.27¢ (total displacement
at the end of the beam) and Fig. 3.27d (displacement at the end of the beam due to
the second mode).

From the figure, it is clear that the double-versine control succeeds in positioning
the beam without causing long-lasting vibrations as in the case of the bang—bang
control pattern. The latter, however, strongly excites the first mode, which is little
damped. The results are linked with the particular application, because a control
input of the versine type can also excite some modes; however, the fact that the
square-wave control input is more prone to exciting vibrations than more smooth
control laws is a general feature.

In many cases, particular control laws that are much better than both the square-
wave and versine ones are used, and much theoretical and experimental work has
been devoted to identifying optimal control laws. Note that no damping of the
beam material has been considered. In practice, the vibration of the beam is more
damped than what has been computed.

In a practical case, a closed-loop control must be associated with the open-loop
control to achieve a sufficient positioning accuracy.

3.16 High Level Control

Up to now, only the lowest level of control has been shown. The feedback control
loop that uses the position and velocity signal from the sensors of the arm to drive
the actuators to a given position, perhaps complemented by a feedforward action, is
simple and does not require sophisticated control algorithms.

If the arm is a telemanipulator, the human in the control loop provides the high
level control, setting the targets that the arm must reach and stating the position
toward which the motion must be directed.

Industrial robots are often thought by a human master: this is particularly the case
when the arm must move autonomously, but has just to perform repetitive tasks.
The operator moves the arm along a given trajectory, often through a keyboard,
memorizing a number of keypoints and then the controller repeats the movements
autonomously without any change.

This strategy is, however, unsuitable when the various working cycles are not
identical or the robot has to face unexpected situations. This is what usually occurs
in the case of space robots.

If the robot must move in an autonomous way without repeating a fixed scheme,
the difficulties quickly increase. Very complex control algorithms are required for
the higher level tasks and the whole matter is still object of research.
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Another difficulty comes from the need of understanding the presence of the
object on which the arm must operate, its location and position. A camera (or better
two cameras for stereoscopic vision) can be used in conjunction with a computer that
elaborates the images but the whole field of robot vision is still a research topics.

As already stated, when the arm must follow a surface or must remain in touch
with an object, the control is based on the force it exerts and not on the position. In
this case, more than being based on vision, the control is based on touch.

Remark 3.13 The definition of the trajectory of a robotic arm is quite similar to that
of the trajectory of a moving robot or an automatic vehicle.

3.17 Parallel Manipulators

Up to this point manipulators were assumed to be open kinematic chains. This is
not always the case, and also closed kinematic chains can be used as manipulators,
particularly when large loads must be handled with precision.

Parallel manipulators have a larger load capacity, stiffness, accuracy and speed
than corresponding open chain manipulators, but their workspace, both in term of
position and orientation, is usually much more limited. The Stewart platform is the
better known parallel manipulator and is made of a rigid body (the platform) con-
nected to a base through six links whose length can be changed at will. It has six
joint coordinates (the lengths of the links) that determine the pose of the platform
and thus it has as many joint coordinates as space coordinates of the end effector.

The Stewart platform was first used by Gough for a tire testing machine he built
in the 1960s at Dunlop to position the tire and keep it in the required orientation.
It has since used for many applications, also in the aerospace field. Although the
name Hexapod (not to be confused with the same term used in walking machines
technology to define a machine with six legs) is a trademark of Geodetic Technology
for a Stewart platform, this name has been widely used.

As already stated, in a Stewart platform six linear actuators connect the base to
the platform, whose position is determined by the length of the former (Fig. 3.28a).
The points in which the actuators are connected to the base and to the platform
can lie in two planes, like in the figure. In this case the base and the platform can
have the shape of hexagons, but it is possible to demonstrate that if they are regular
hexagons the platform is singular.

In parallel manipulators, the inverse kinematics is easier than the direct kinemat-
ics, which involves the solution of a complex set of nonlinear equations. The Stewart
platform is no exception.

Chose point O on the base and a point G on the platform and state a base
reference frame OXYZ and a platform reference frame Gxyz. Defining vectors
(G—-0) =X, (Py; —O) =rppi, (Ppi — O) =rpp;, the latter expressed in the plat-
form reference frame, as in Fig. 3.28a, the length of the generic ith actuator can be
expressed as

li = X+ Rrpp; — rppil. (3.106)



3.17 Parallel Manipulators 147

Z
{
3) b)
Z I
Platform f
= ‘_" Zi e :
A
< ’/// -P Pi
\ -;."I/ T
O (T 2
Base bi T bi
/
|
I'|I
c)

Fig. 3.28 (a) Generic Stewart platform. (b) Platform in which the base and the platform have the
shape of triangles. (¢) An irregular hexagon that can be inscribed in a circle

If the base is planar and lies in the XY plane, vector rpp; can be expressed as
. T
Ippi = [Rbi cos(Bpi) Rpi sin(Bp;) O] . (3.107)

In the same way, if the platform is planar and lies in the xy plane, vector rp); can
be expressed as

I'ppi = [Rpi COS(Gpi) Rpi sin(ep,-) O]T (3108)

The pose of the platform is defined by the coordinates of point G (vector X) and
by the roll, pitch and yaw angles that are included in the expression of matrix R (3.7)
If the points in which the actuators are connected to the base and to the platform lie
on two circles centered in O and G, respectively, (Fig. 3.28c), the distances Rp; and
R ; are all equal.

By introducing the expression of the rotation matrix into (3.28) and perform-
ing the relevant computations, the six equations defining the inverse kinematics
are

li = {X* + Y2+ Z* + Rpi® + Rpi® — 2Y Ry; sin(0p;) — 2X Ry; cos(Opy)
+2XRp; [cos(lp) cos(0) cos(Bp;) — sin(Bp;) sin(yr) cos(¢)



148 3 Manipulatory Devices

b)

3%
1-7 i
[
L

Fig. 3.29 (a) Sketch of the arm on board of the rover. (b) Sketch of the first part of the arm and its
principal axes of inertia

+ sin(Bp;) cos(¥) sin(0) sin(¢) | + 2Y R i [sin() cos(0) cos(6;)
+ sin(6;) cos(¥) cos(@) + sin(8,;) sin(y) sin(0) sin(¢) ]
+2YRy; [cos(@) sin(¢) sin(6p;) — sin(6) cos(GPi)]

— 2R i Rp; sin(6p;) sin(ep,-)[sin(l//) sin(0) sin(¢) + cos(yr) cos(ri))]
— 2R i Ry cos(8);) cos(6)[cos(¥) cos(Bp;) + sin(y) sin(6p;) ]

+ 2R i Ryi cos(0p;) sin(6,;) [sin() cos(¢p) — cos() sin(6) sin(¢p) | }1/2’
(3.109)

fori=1,...,6.

These six equations must be solved in X, Y, Z, ¢, 6 and i to yield the direct
kinematic, a thing that must be done numerically.

The inverse of the Jacobian can be computed in closed form, although not easily,
by computing the derivatives of the expressions for /;, and this allows to compute
directly the velocity in the joint space from those in the physical space. The Jacobian
for the opposite transformation can be obtained by numerical inversion.

Example 3.15 As a final example consider the arm of a rover operating on the sur-
face of Mars (g = 3.77 m/s?) that from its storage position must pick up a rock on
the ground and then put it in the specimen basket on board (Fig. 3.29a).

The arm is an anthropomorphic arm with the first joint a spherical joint (I; = 0)
and the following data: [, = 1.5m,dy =09 m, my =5kg, I3 =1.3m,d3 =0.75 m,
m3 =3 kg. Axes 1, 2 and 3 of each section of the arm are assumed to be principal
axes of inertia. The moment of inertia about axis 1 is assumed to be so small to
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be neglected. The other two moments of inertia are equal and their values are J, =
1.25 kgm? and J3 = 0.81 kg m? for the two parts.

The mass of the specimen is m; = 10 kg.

The arm is controlled by a PID controller, but the motors have a limited
torque.

The rest position of the arm is characterized by the following values of the an-
gles:

0o=[0 90° —150°]".

Each maneuver is performed assuming two waypoints and the final point and by

stating a straight trajectory with constant acceleration and deceleration between
them. They are:

e pick up run:
waypoint 1 (get clear of the rover) [200 —400 60017 mm, reached in 3 s;
waypoint 2 (get close to the target) [—1000 —1000 —700]7 mm, reached in

further 5 s;

target (specimen) [—1000 —1000 —800]7 mm, reached in further 2 s;

e return run:
waypoint 3 (get over the rover) [—200 —400 60017 mm, reached in 3 s;
waypoint 4 (get close to the target) [—400 0 10]7 mm, reached in further 5 s;
target (specimen basket) [—400 0 0] mm, reached in further 2 s.

The gains of the controller are K, = 2000 Nm/rad, K; = 4000 Nm s/rad,
K; =600 Nm/rad s for all joints. The saturation torques of the electric motors are

My max =[80 30 15]7 Nm.

The arm stops when the target is reached with an error of 10 mm.

The kinematics and the inverse kinematics of the arm were dealt with in Exam-
ple 3.1, while its open loop dynamics was studied in Example 3.5.

Since the motors are assumed to be limited in torque, the motor torques must
be computed at each integration step and then corrected if the maximum toque is
reached.

By introducing the usual auxiliary variables, the closed-loop equation of motion
is

\ 0 0 O] (v M-It MMy
0t=11 0 of|le6}+ 0 + 0 ,
T 0 I 0f|r 0 0

where M and f are the mass matrix and the vector obtained in Example 3.5, and the
motor torques are

t
M9= —Kp(e—90)—Kd(V—V())—K,'<I'—[ 00du>,
0
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Fig. 3.30 Time history of the angles (a), motor torques (b) and coordinates of the tip of the arm
(c) during the maneuver to get the specimen. (d) Trajectories of the elbow and the tip of the arm
and sketch of the arm in the final position

if their absolute value does not exceed the saturation level, otherwise they are
M9i = Mﬂimax Sign(MHic)’

where My;. stands for the value computed using the PID algorithm.

First Part of the Manoeuvre
The time required to reach the target within the required tolerance is 9.33 s. The
time histories of the angles, motor torques and coordinates of the tip of the arm are
reported in Figs. 3.30a, b and c. The trajectories of the elbow and the tip of the arm
are reported in Fig. 3.30d. The theoretical straight trajectories, plotted with dashed
lines, are practically overwritten by the actual trajectories.
It can be clearly seen that the motion of the arm is smooth, without oscillations
and that the torque required from the motors is not large. An exception is actuator
for angle 6, that must bear the weight of the arm. There are some torque spikes
due to the fact that the reference signals defining the trajectory are supplied every
0.1 s and not continuously.

Second Part of the Manoeuvre
After picking up the specimen, the inertial properties of the second part of the
arm increase. Now my = 13 kg, d» = 1.173 m and J, = 1.51 kg m2. Note that the
torque at the first joint to keep the arm in horizontal position is 148 Nm, greater
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Fig. 3.31 Same as Fig. 3.30, but for the return run

than the saturation torque. It means that the arm cannot pick up such an heavy
object at full elongation, a reasonable result. Owing to the saturation of the motor
actuating angle 6,, the error is now larger in the first part of the manoeuver, as seen
by the fact that the dashed lines are not completely covered by the full lines.

The time required to reach the target is 12.70 s. The time history of the angles,
the motor torques and the coordinates of the tip of the arm are plotted in Fig. 3.31
together with the trajectories of the tip and the elbow.

Now strong saturation occurs at the beginning, when the arm must lift the speci-
men. However, the manoeuver goes on and is completed successfully in a reason-
able time.






Chapter 4
Mobility on Planetary Surfaces

4.1 Mobility

Exploration vehicles, either manned or automatic, can use a variety of means of
locomotion to achieve their goal. A first distinction must be made between ground
vehicles, i.e. vehicles supported by a solid surface, atmospheric or sea vehicles, i.e.
vehicles that move in a fluid without contact with the surface, be it a gas or a liquid,
and space vehicles that move in the vacuum of space close to the surface.

The performance of ground vehicles is usually defined in terms of

o trafficability, defined as its ability to traverse difficult soil without loss of traction
or even complete loss of mobility,

e maneuverability, which defines the ability of the vehicle to navigate through the
environment, and

e terrainability, which defines the ability to negotiate terrain irregularities.

Ground vehicles may be supported and propelled by
wheels,

tracks,

legs, or

snakelike devices.

Other means of locomotion, often referred to as unconventional, may be used.
They include, but do not reduce to, magnetic suspension, air-cushions, hopping de-
vices and balloon (spherical) wheels. Often the devices that insure mobility (wheels,
tracks etc.) are referred to as the running gear of the vehicle.

Vehicles moving in fluids may be supported by aerostatic (in general fluidostatic)
or aerodynamic (in general fluid-dynamic) forces. Also here there are other alterna-
tives like jet sustentation.

Finally, vehicles moving in space close to the surface of an airless body like the
Moon are often referred to as hoppers, since they take off under rocket propulsion,
perform a parabolic flight and then land braked by the same rocket used to take off.
Hoppers can also be propelled by springs or electromagnetic actuators, particularly

G. Genta, Introduction to the Mechanics of Space Robots, Space Technology Library 26, 153
DOI 10.1007/978-94-007-1796-1_4, © Springer Science+Business Media B.V. 2012
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in the case of low gravity bodies. Other possibilities like electromagnetic propulsion
have been proposed but seldom studied in detail.

4.2 Vehicle-Ground Contact

All wheeled, tracked or legged vehicles moving on a solid surface use the contact
with the ground as support mechanism, but often also to generate the forces in a
direction parallel to the ground needed for propulsion. Normal and tangential forces
are thus equally important to insure ground locomotion.

As stated in Chap. 2, most of the bodies to be explored in the solar system are
characterized by a gravitational acceleration lower, in many cases much lower, than
that of Earth. As a consequence the normal forces at the vehicle—ground contact
are much lower than those encountered in traditional vehicle technology, at least
with comparable vehicle mass. Tangential forces due to friction are correspondingly
lower; but also in the case they are due to other mechanisms, like the so-called
bulldozing force or the adhesion force, tangential forces are expected to be low in
low gravity.

Low gravity simplifies the design of vehicles, since all contact forces and all
stresses decrease with decreasing gravitational acceleration, but also sets limits to
vehicle performance to correspondingly low levels. The limiting case is that of as-
teroids and comets, where locomotion on the ground may be problematic and where
some sort of anchoring may be needed to avoid being projected into space.

Another difference between moving on Earth and on other celestial bodies is that
most of the ground travel on Earth is done on prepared, often truly artificial, surface
or at least on semi-prepared surface, while elsewhere vehicles and robots will have
to manage unprepared ground.

Remark 4.1 In a sense, planetary mobility is similar to off-road locomotion on
Earth, but with a number of differences.

Apart from the already mentioned lower gravitational acceleration, the main dif-
ference is due to the absence of humidity. The Moon, Mars and asteroid surface
soil is completely free from liquid water. Since the presence of water is one of the
main parameters in determining the characteristics of the soil, this makes a large
difference between locomotion on Earth and on other bodies.

Cometary surface is very rich in water ice and little is known on the soil of the
satellites of outer planets, except that there should be much ice too. However, ice
is of hindrance to locomotion only at temperatures close to melting: the unique
characteristic of water of decreasing its density when freezing causes the formation
of a film of liquid water at the surface of the frozen soil under the running gear of
the vehicle. The contact is then similar to a lubricated contact between solids and
friction and adhesion forces are low. The higher the pressure, the more marked is this
phenomenon. At low temperatures (e.g. at —40°C at Earth atmospheric pressure)
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this phenomenon does not take place at the contact pressures exerted by wheels and
tracks and water ice is a very good surface to move onto.

Ice due to other substances, like frozen carbon dioxide common on Mars, does
not melt under the running gear as a result of pressure, but it may do so due to heat-
ing: a film of liquid or vapor can form, reducing friction, if the part of the vehicle
contacting the frozen ground is warm enough. This is, however, a different phe-
nomenon and can be cared of simply by thermally insulating the parts of the vehicle
in contact with the ground.

Titan soil may contain liquid hydrocarbons, producing effects like those of water
on Earth, and surely contains a mixture of water and ice (slush) in the proximity of
cold volcanoes. How this affects locomotion is still unknown.

Another point is the absence of products of biological origin, very important
in giving peculiar characteristics to the wide variety of soils that can be found on
Earth. The Moon and Mars are covered with regolith and so should be the sur-
face of Mercury, of most asteroids and many satellites. Other satellites, comets and
transneptunian objects should be covered with ice of different types.

Remark 4.2 1t is likely that the variety of ground properties that may be found on a
given body is much more limited than that found on our planet.

A further difference between the Earth and most other bodies is that the pressure
and density of the atmosphere is much lower on the second ones: little atmosphere
means low aerodynamic drag, and no constraint to the outer shape of the vehicle.
However, this may be a negligible advantage, since all planetary exploration vehi-
cles built up to now, and those that will be built in the predictable future, operate at
a speed at which aerodynamic drag would at any rate be negligible.

Moving on unprepared ground means dealing with rough terrain and obstacles of
different types. On the Moon and Mars there are stretches of fairly flat country, with
many stones and boulders scattered on the ground, which proved to be manageable
with confidence by wheeled vehicles. Lunar highlands and other zones on Mars
are much more cratered and there are steeper slopes and more frequent obstacles,
including ditches and cliffs.

As already stated, planetary soil is mostly made of regolith, an incoherent ma-
terial, and its properties are mainly influenced by its granulometry and apparent
density. The apparent density is the density of a given volume of soil taking into
account also the voids between particles, while the effective density is the average
density of the grains constituting the soil.

An incoherent soil deforms when the running gear of a vehicle exerts a pres-
sure on it, owing to the sliding of the grains along their contact surface. The forces
between grains that oppose to deformation are due to cohesion and increase with de-
creasing grain size: the smaller are the grains, the larger their surface/volume ratio
is and the smaller the deformation under load.

Apart from cohesion, also friction forces between grains oppose to soil deforma-
tion.
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Fig. 4.1 Sinking of a pad into a homogeneous ground. (a) Pressure as a function of the sinking.
(b) Pressure distribution in the various phases (from G. Genta, L. Morello, The Automotive Chassis,
Springer, New York, 2009)

The study of the interaction between the running gear of the vehicle and the
terrain is usually referred to as terramechanics' and has been developed for the
rational study and design of off-road vehicles, in particular in the last 50 years.

Remark 4.3 Terramechanics relies mostly on empirical models, and different for-
mulations can be found in the literature.

4.2.1 Contact Pressure

Consider a pad with area A that applies on the ground an average pressure p. A sit-
uation of this kind can occur when a rigid foot or a low pressure pneumatic tire are
in contact with the ground. The experimental relationship between the pressure p
and the sinking z is reported in Fig. 4.1a.

The sinking process can be divided into 3 phases. When the pressure on the
ground is low, the soil is sheared at the periphery of the contact zone and is com-
pressed. The pressure concentration at the periphery of the contact (Fig. 4.1b) in-
creases at increasing cohesivity of the ground. A zone of compacted ground is
formed at the center of the contact, and it compresses the ground at greater depths.
The sinking is more or less proportional to the pressure, i.e. the behavior of the
ground is linear.

The ground then starts behaving in a plastic way and larger and larger volumes
of soil are interested by plastic deformations (phase 2). When all the ground in the
contact zone is in plastic conditions (phase 3), an almost hydrostatic behavior is
reached and the pressure does not increase any more with sinking. The pressure

IPerhaps the better known contributions to terramechanics are due to Bekker (e.g. M.G. Bekker,
Theory of Land Locomotion, The University of Michigan Press, Ann Arbor, 1956; M.G. Bekker,
Off-the Road Locomotion, The University of Michigan Press, Ann Arbor, 1960), who dealt also
with the problem of ground locomotion on the lunar surface.
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Fig. 4.2 Sinking as a

function of the contact a0
pressure, for a sandy ground.

(a) Loose sand, with a depth z {mm)
of 200 mm; (b) compacted

sand (from G. Genta, [0
L. Morello, The Automotive

Chassis, Springer, New York, a

2009) 0 e

0.3
0.2 o {MPa)

at which the phase 2 starts depends largely on the condition of the ground at the
beginning of the contact: this explains why it is convenient to put a foot in the
footprint of an earlier step.

A simple idealization that neglects phase 2 is that of a perfectly elastic—perfectly
plastic ground: the ground is assumed to yield in a linear way up to a certain pressure
po and then the pad sinks without any increase in the reaction force. The maximum
pressure pg the ground can exert is defined as the bearing capacity of the soil. Such
an idealized behavior is shown by the dashed line in Fig. 4.1a.

The z(p) curves for actual soils may deviate in different ways from the ones
shown in the figure: as an example the curves for sandy soil (loose and compacted)
are shown in Fig. 4.2.

In the first part of the curve in Fig. 4.1a (phase 1), where the soil behaves as an
elastic material, it is possible to define a coefficient of proportionality, sometimes
called the stiffness of the soil or the modulus of soil deformation

k=~—. 4.1)
b4
Remark 4.4 The stiffness k does not depend only on the elastic characteristics of
the ground (its Young’s modulus E and its Poisson’s ratio v), but also on the area
and the shape of the loading pad.

The stiffness k can be subdivided into k. and kg, the cohesive and the frictional
moduli, obtaining
ke
b

where b is the width (i.e., the smallest of the dimensions) of the pad. Operating
in this way, k. and kg4 are practically independent of the size of the pad, for small
values of z.

k=5 +kg, 4.2)
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Consider a pad exerting a constant pressure p on the soil. In Phase 1 the sinking
z reduces to the elastic sinking z, defined as

o = % 4.3)

The sinking z in the subsequent phases 2 and 3 may be expressed as

Ze PO 1
= =Z€ .
pPo—p 1 —p/po

4.4)

where z, is the elastic part of the soil deformation computed above, while pg is the
bearing capacity of the soil. Obviously this formula is valid for p < pg only.

A more common empirical nonlinear expression used for approximating the law
linking the pressure with the sinking into the ground is

ke
p= (; + k¢)z”, 4.5)

that can be inverted, yielding the sinking of the pad as a function of the pressure

( 1/n
2= ) . (4.6)
B Tk

The equation written in this way distinguishes between the reaction to the load
due to cohesion and that due to the internal friction of the material. If the former
is more important than the second the ground is said to be cohesive, otherwise it is
frictional. While clay, particularly if wet, is a cohesive terrain, dry sand and regolith
are mainly frictional.

Remark 4.5 The moduli k. and k4 have dimensions that depend on the exponent 7.

Cohesive soils, like clay, have a low value of exponent n, in many cases as low
as % Frictional soils have larger values ad lunar regolith is characterized by a value
of n closeto 1.

The parameters entering into (4.5) are reported in Table 4.1 for dry sand and
lunar regolith.

Remark 4.6 The values reported in the table are just typical values, and patches
where the characteristics of the ground are quite different can be found both on
Earth and on the Moon.

A model different from that shown in Fig. 4.1 and that of (4.5) is based on the
assumption that when a pad is pressed on the ground the deformation is initially
limited to small elastic deformation, which can be neglected. Then at a certain point,
when a certain value of the pressure is reached, the soil starts yielding. This value
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Table 4.1 Characteristics of dry sand and lunar regolith

P n ke ke c ¢ K

kg/m> N/m"+! N/m"+2 Pa deg mm
Regolith 1,500-1,700 1 1,400 820,000 170 35-40 18
Dry sand 1,540 1.1 990 1,528,000 1,040 28-38 10-25

of the pressure under a plate with width (the smaller dimension) b and the ground
can be referred to as the bearing capacity with no sinking

1
ps =cJINg + EpngzN , “4.7)

where N, and N,, are nondimensional coefficients that are functions of the friction
angle of the soil

¢ = artg(u*), 4.8)

and p* is the internal friction coefficient.? J; and J, are two other nondimensional

coefficient that depend on the shape of the pad: for a long plate, like a track, J; =

Jo = 1; for a square plate J; = 1.3 and J, = 0.8; for a circular shape, like the

contact area of a circular footplate or, approximately, a tire, J;1 = 1.3 and J, = 0.6.
In general, for a rectangular plate with length / and width b,

[+Db l
+ J.

" rrosy 2701040

The value of bearing capacity factor N, was computed by Terzaghi® as

N, = cot(¢) |:e” an(@) tan? (45 + %) — 1}, (4.9)

while there is no explicit formula for computing coefficient N,. N. and N,, are
tabulated in Table 4.2.*

Regolith is a frictional soil but, in spite of the low value of ¢, on the Moon the
second term in (4.7) may be comparable with the first (or even smaller) owing to the
low gravitational acceleration. On asteroids the only term that does not vanish may
be the first.

In cohesive soils the only thing that matters is the area of the pad, since the
limitation to the supported load comes only from the pressure. On the contrary, on
frictional soils the shape of the contact area matters, since the bearing capacity is

2The symbol ;* is here used for the internal friction coefficient to avoid confusion with the traction
coefficient u defined later.

3K. Terzaghi, Theoretical Soil Mechanics, Wiley, New York, 1943; K. Terzaghi, R.B. Peck,
G. Mesri, Soil Mechanics in Engineering Practice, Wiley, New York, 1996.

4D.P. Coduto, Geotechnical Engineering, Prentice Hall, Upper Saddle River, 1998.
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Table 4.2 Values of the coefficients N, N, and N, for different values of the friction angle ¢

¢ (deg) N, N, Ny ¢ (deg) N, N, Ny
0 5.7 0 1 20 17.7 4.4 7.4
1 6 0.1 1.1 21 18.9 5.1 8.3
2 6.3 0.1 1.2 22 20.3 5.9 9.2
3 6.6 0.2 1.3 23 21.7 6.8 10.2
4 7.0 0.3 1.5 24 234 7.9 114
5 7.3 0.4 1.6 25 25.1 9.2 12.7
6 7.7 0.5 1.8 26 27.1 10.7 14.2
7 8.2 0.6 2.0 27 29.2 12.5 15.9
8 8.6 0.7 2.2 28 31.6 14.6 17.8
9 9.1 0.9 24 29 342 17.1 20.0
10 9.6 1.0 2.7 30 37.2 20.1 22.5
11 10.2 1.2 3.0 31 40.4 23.7 25.3
12 10.8 1.4 33 32 44.0 28.0 28.5
13 114 1.6 3.6 33 48.1 33.3 322
14 12.1 1.9 4.0 34 52.6 39.6 36.5
15 12.6 2.2 44 35 57.8 473 414
16 13.7 2.5 4.9 36 63.5 56.7 47.2
17 14.6 2.9 5.5 37 70.1 68.1 53.8
18 15.5 33 6.0 38 71.5 82.3 61.5
19 16.6 3.8 6.7 39 86.0 99.8 70.6

proportional to the width (the minimum dimension) of the pad: a square pad has a
much higher carrying capacity than a long and narrow one.

The working condition of a vehicle that does not sink, i.e. if the bearing capacity
with no sinking of the soil is not exceeded, is called surface crossing: this condition
is very convenient, since it reduces the energy needed for motion and generally
improves the performance of the vehicle.

When the pressure becomes larger, the pad starts sinking, while the pressure
still increases: this condition is referred to as subsurface crossing. The relationship
between the pressure and the plastic yield z is

1
p=cJiNc+ EpngZNy + pgzNg, (4.10)

where N, is a third coefficient depending on ¢ (see Table 4.2). An expression for
Ny is

Ny = ™ @) tan? <45 + %) 4.11)

Other expressions for these coefficients can be found in the literature.’

STa.S. Ageikin, Off-the-Road Mobility of Automobiles, Balkema, Amsterdam, 1987.
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Remark 4.7 While (4.7) can be used in this context without doubts, the use of (4.10)
is questionable. The equation was developed for evaluating the bearing capacity of
a foundation located a certain depth z, and not the bearing capacity of a pad set on
the ground and then sinking to a depth z, which is clearly another thing.

Remark 4.8 Some doubts can also be cast on the applicability of these equations
to situations in which the gravitational acceleration is very low, and certainly to the
case where g — 0, even if Terzaghi quotes as an example a weightless soil. In his
book this reference is made for a soil in which the cohesive term dominates, and not
to an actual very low gravity condition.

The first term of (4.10) depends on the cohesion of the soil, the second one on
the density and the gravitational acceleration and the third one on the depth of pen-
etration of the pad and also on the density and gravitation.

Equation (4.10) and the related coefficients are just approximations, and other
formulae are also available. Moreover, in the case of low gravity bodies the apparent
density and the cohesion of the material increase with the depth, even starting from
the first few centimeters below the surface. An approach like the present one that
assumes that the properties of the soil are constant is bound to yield conservative
results. This is true not only for the third term, yielding the increase of carrying
capacity with the depth of sinking, but also the other two that are anyway obtained
integrating the characteristics of the material along the vertical direction.

Although newer, less empirical, methods are required to improve this situation,
this approach allows to evaluate a conservative estimate of the carrying capacity of
the soil.

The empirical equation (4.6) is usually applied instead of (4.10) to compute sink-
ing.

Example 4.1 Consider a vehicle on the surface of the Moon, The running gear con-
tacts the ground with 4 pads 200 mm wide and 200 mm long. Compute the maxi-
mum pressure on the soil that can be exerted without any plastic sinking.

If the mass of the vehicle is 1 ton, what is the safety factor against reaching the
condition for starting sinking? Compute the depth of sinking using (4.6).

Assume g = 1.62 m/s?> and the following data for the lunar soil: n = 1,
p = 1600 kg/m3, ¢ = 170 Pa, ¢ = 37°, k. = 1,400 N/m?, k, = 820,000 N/m?.
Since the plates are square, J; = 1.3 and J> =0.8.

From Table 4.2 it follows that N}, = 68.1, N. =70.1.

The contribution to the bearing capacity with no sinking due to friction is
14,210 Pa, that due to cohesion is 15,490 Pa, for a total bearing capacity of
29,600 Pa. The force that can be withstood by the four plates is thus 4,738 N. Since
the weight of the vehicle on the Moon is 1,620 N, the safety factor against sinking
is 2.92.

The sinkage obtained from (4.6) is z = 12 mm.
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4.2.2 Traction

Assuming no sinkage in the ground, i.e. neglecting the bulldozing component of the
tractive force, the tangential force F; that can be exerted by a wheel, track or foot
with area A pressed on the ground with normal force F, is given by the equation®

Fi=cA+ F,u*. (4.12)
The tangential (or shear) pressure

T A

T (4.13)
has then a maximum value, usually referred to as specific shear resistance of the
soil:

790 = ¢ + ptan(g). 4.14)

Remark 4.9 The traction that can be exerted at the vehicle—ground interface has thus
two components. The first, due to cohesion, depends only on the supporting surface
but not on the pressure exerted on the ground. The second one, due to friction, can
be considered as a Coulomb friction and then does not depend on the contact area.

In case of purely frictional soil, like sand, the first term vanishes and the available
traction depends only on the weight of the vehicle. In purely cohesive soils the effect
of the normal force is nil and an heavy vehicle may experience large difficulties in
proceeding; on the contrary what matters is the contact area of the vehicle with the
ground. In the case of dry sand, the friction angle is about 35° and the corresponding
friction coefficient is 0.7. In low gravity, the effect of friction can be small owing
to the low load, and the cohesion forces can become important even in soils which
would otherwise show low cohesion.

The ratio between the tangential and the normal force is the traction coefficient

F, cA *
=% " F +u. (4.15)

Due to cohesion, the traction coefficient can increase in low gravity when the
normal force is low even on soils whose cohesion is not high.

The value of the traction coefficient mentioned above is the maximum possible
value, which is obtained when the shear resistance of the soil is reached simultane-
ously in the whole contact area.

The actual traction depends on the slip of the running gear (be it a foot, a track or
a wheel) on the ground. To define the slip it must be remembered that the ground is
a compliant body, and thus the part in contact with the running gear can move with

5M.G. Bekker, Off the Road Locomotion, The Univ. of Michigan Press, Ann Arbor, 1960.
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a) v

Fig. 4.3 Longitudinal slip in the case of a foot (a) and a track (b)

respect to a frame fixed to the ground and thus the presence a slip does not mean
that the running gear slides on the surface of the soil.

Consider a foot of a vehicle traveling at a speed V (Fig. 4.3a). The foot is moving
backward at a velocity V¢ with respect to the body.” If V = V' there is no slip, but
in general the part of the ground in contact with the foot moves backwards at a speed

ve=Vs—V. (4.16)

The speed of the contact area is an absolute velocity, and is possible only because
the ground under the foot is compliant. The longitudinal slip can be defined as
1%
c=8 1L 4.17)
Vy Vy
The distance traveled backward by the contact area, i.e. the soil deformation, at
time ¢ is

d=vgt=0Vyt, (4.18)

where ¢ is the time elapsed from the instant the foot is pressed against the ground.
The shear stress of the ground can be expressed as a function of the soil defor-
mation by the empirical formula due to Bekker,

t - >— ~Ka— /K3~
r = CEPEND) Kot KE-DK1d _ (—KamfK3-DK10) (4.19)

ymax

where ymax 1S the maximum value of the function within braces.

The values of the two coefficients K| and K, must be measured on the particular
soil: values K1 =1 and K, = 1.1 are mentioned for undisturbed, firmly settled silt
and K1 =0.32 and K, = (.76 for sandy loam.

7V is the absolute velocity of the vehicle (or better, the velocity of the vehicle with respect to the
ground, assumed as fixed), while V is the relative velocity of the foot with respect to the vehicle.
It is assumed to be positive when the foot moves backwards with respect to the body.
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The tangential force thus starts from O at the instant when the foot enters contact
with the ground (i.e. when d = 0), to increase until a maximum is reached and then
decreases.

A simpler expression mentioned by Wong? is

r=[c+ ptan@][1 — e %], (4.20)

where K is the modulus of shear deformation (see Table 4.1 for the values for sand
and lunar regolith). With this expression the tangential force starts from zero to
increase asymptotically until the maximum value is reached for d — oo.

In the case of a foot, the pressure can be assumed to be constant and d increases
linearly in time from the instant the foot touches the ground. In this case, the traction
of a foot with area A on which a normal force F; acts is

oVt

Fe=[Ac+ Fan@][1—e 7 ] .21

In case of a track or a wheel the situation is different. The soil deformation d
is zero in the point the running gear touches the ground (point A in Fig. 4.3b), and
grows along the contact area, reaching a maximum in point B. Equation (4.18) still
holds, but now ¢ is the time elapsed from the instant a portion of the track touches
the ground and that it reaches point P:

r= (4.22)
Vi

The deformation in point P is thus
d=vgt=0x. (4.23)
Using the formula suggested by Wong, the shear stress at point P is
t=[c+ ptan@)][1 —e %], (4.24)

and the expression of the longitudinal force is

l .
Fy= b/ [c+ ptan(@)][1 — e~ % ] dx. (4.25)
0

This integral can be performed once the pressure distribution under the track is
known.
If the pressure is constant, it follows that

K _al
Fy=[cA+F. tan(qb)][l Lo )] (4.26)

81Y. Wong, Theory of Ground Vehicles, Wiley, New York, 2001.
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The traction coefficient is thus
K _al
Px = Mo [1 ——(1-e% )} (4.27)
ol
where
cA
e tan(¢) |- (4.28)
z

A nondimensional plot (i, /py,,,, as a function of ol/K is reported in Fig. 4.4.
For low values of the longitudinal slip the traction coefficient is almost linear with
the slip and can be approximated as

wx =Cso0, (4.29)

where the longitudinal force stiffness is

() _[eA il
Co = ( Py )a—O = [Fz +tan(¢)] K (4.30)

For large values of the slip, the traction coefficient tends to a maximum value for
o — 00, since (4.20) was used. If the law 7(d) were expressed by (4.19), the law
Iy (o) would have reached a maximum for a finite value of o, to decrease in a more
or less pronounced way.

Example 4.2 Compute the maximum value of the traction coefficient © = F;/ F, as
a function of the normal pressure p for 3 different values of ¢ (25°, 30° and 35°) on
lunar regolith with ¢ = 170 Pa.

The results are reported in Fig. 4.5. The maximum traction coefficient increases
strongly with decreasing pressure on the ground owing to the cohesive term that
would lead to an infinitely large traction coefficient when the normal force tends to
Zero.
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Fig. 4.5 Ratio between 1
tractive and normal force E/E \\
F,/ F, as functions of the tn \\\
normal pressure on the 0.8 ~
ground for 3 different values 07 \\“-— 35"
of the friction coefficient SN
0.6 e
' S~ 30°
0.5 —
4=25°
0-4 [P S . - VR S Y
03 ..... .
0.2
0. 1  E— - .............. - - - [P S — [ —
0 i i H
4] 2 4 Li] 8 p [KPal 10

When the pad sinks in the ground or is provided with spuds or threads that sink in
the ground, another form of traction force is present, the so-called bulldozing force.

A formula proposed to take into account also the bulldozing force due to ridges
or treads protruding into the ground for a depth £ under a plate with width b is

szch%+o.64FnM*%[% —ang(%)]. 4.31)
Also this expression is made by a component due to cohesion, proportional to
¢ and to the contact area but independent from the load, and a friction component,
proportional to the normal force and to u* but independent from the area.
The cohesion term is proportional to the relative depth of the ridges /4 /b while
the friction term grows initially almost linearly, but then much more slowly. The
expressions

AR, =2" AF=0.64" | % ang( " (4.32)
‘T PR TG '

are the factors by which the components of the traction force due, respectively, to
cohesion and friction must be multiplied to take into account the effect the ridges.
They are plotted as functions of /b in Fig. 4.6.

Remark 4.10 The presence of spuds is much more effective on cohesive soil than
on frictional soil, where they can produce only a moderate increase in traction due
to internal friction.

If the contact area is loaded not only by a normal force but also by a tangen-
tial force, the sinking increases, as shown by some experimental curves reported in
Fig. 4.7. The figure is referred to a sandy soil and curves a, b and c refer to values
of the normal pressure p of 0.02, 0.03 and 0.04 MPa, respectively.
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Fig. 4.6 Relative increase of
the components due to
cohesion and to friction of the
tangential force at the
vehicle—ground interface, due
to the presence of ridges as
function of the depth/width
ratio h /b

Fig. 4.7 Sinking of a plate
on sand under the
simultaneous effect of a
normal pressure p and a
tangential pressure t. Curves
a, b and c refer to values of
the pressure p of 0.02 MPa,
0.03 MPa and 0.04 MPa,
respectively
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The bearing capacity of the soil decreases with increasing tangential force and
(4.10) may be modified by introducing two correction factors® K g1 and Kg»

1
po=cJiN:Kg1 + E,Ogb]zNyKﬁz + pgaNy. (4.33)

Their values depend on the angle 8

the resultant force makes with the perpendicular to the ground:

K/g1=

= art L2 4.34

ps g(Fn) @3

in — 2,3’ 4= T —4p tan(¢>)' 4.35)
T+2p 7 +4p tan(¢)

91a.S. Ageikin, Off-the-Road Mobility of Automobiles, Balkema, Amsterdam, 1987.
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4.3 Wheeled Locomotion

Most planetary rovers and vehicles, from the Russian Lunokhod and the American
Apollo Roving Lunar Vehicle (RLV) of the 1970s to the recent robotic rovers such
as Spirit and Opportunity and those still in the design stage are wheeled. Basically
wheels are best suitable for prepared ground, but their simple mechanical design
and control makes them a good choice also for off-road locomotion, in particular
for dry ground.

4.3.1 Stiff Wheels Rolling on Stiff Ground

If arigid wheel, which can be thought as a short cylinder, rolls on a rigid flat ground,
the contact occurs along a line and the pressure is infinitely large, an impossible re-
sult. The high contact pressure at the wheel—-ground interface leads to deformations
of both bodies that reduce substantially the contact pressure.

The vehicle—soil contact must thus be considered as the interaction between com-
pliant bodies. Even in the case their compliance is low, like in the contact between
steel wheels and steel rails, the relevant phenomena can be understood only taking
into account their compliance.

The Hertz theory for the contact between elastic bodies can be used for a cylin-
drical object pressed against a flat surface without rolling on it if

e the materials behave in a linear way,
o the deformations are small when compared with the size of the objects, and
e the bodies exchange no tangential force.

The contact area between two general bodies in contact, once projected on a
plane perpendicular to the line connecting the centers of curvature in the contact
point, has the shape of an ellipse. If the contact surfaces are two cylinders whose
axes are parallel (or a cylinder and a plane, as a limiting case of a cylinder with a
vanishing curvature) the ellipse degenerates into a rectangle.

The wheel-ground contact may thus be modeled as that of a cylinder with radius
R and width b contacting, under the action of a force F},, a planar strip with width b:
clearly this is a further approximation, since in the real world the width of the plane
simulating the ground is much larger than that of the wheel, but in this way it is
possible to assume that in all planes perpendicular to the cylinder axis the situation
is the same, and is equal to that occurring with an infinite cylinder contacting a
semi-space.

The length of the contact zone a (Fig. 4.8a) is given by

F,RO, 10
a—2 RO+ (4.36)
b
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Fig. 4.8 Contact zone and pressure distribution for a cylinder pressed against a plane. (a) Elastic
bodies, no rolling; (b) rolling with energy dissipation; (c¢) length of a contact zone and maximum
pressure for an aluminum wheel pressed against a stone flat surface

where 6; is a coefficient depending on the Young’s modulus E; and the Poisson’s
ratio v; of the material constituting the ith body:

1 —v?
L. 4.37)

6 =4
E;

The average pressure on the ground is

E, 1 F,
gt _ [ T (4.38)
ab 2\ Rb(6; + 6)

The pressure distribution along the longitudinal direction is

4F, 4x2 F, 4x2
o= P [T (4.39)
wab a? TRb(6 +65) a?

and its maximum value is

4
Omax = —O. (4.40)
s

In case the two bodies are made by the same material, the expressions simplify

as
4F,R(1 —1?
a=q | HnRA=VD (4.41)
nbE
fnk (4.42)
[of = —_— 5. .
ax 2nrh(l —v2)
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This leads to the obvious consideration that the stiffer are the wheel and the
ground, the smaller is the contact area and the greater is the contact pressure. An-
other, less obvious, consideration is that the contact pressure grows, for a given pair
of bodies in contact, as the square root of the load.

The displacement in a direction perpendicular to the ground cannot be easily
computed in the case of contact between a cylinder and a plane. From purely geo-
metrical considerations, the displacement corresponding to a contact length a is

Az = R{l — cos[arsin(%)} } (4.43)

Since a/2R is a small quantity,

a> _ Fu (01 +6)

Az~
“T %R 27b

(4.44)
This result is just a rough order of magnitude evaluation.

Example 4.3 Consider a solid aluminum (£ = 72 GPa, v = 0.33) wheel with a
diameter of 200 mm and a width of 30 mm, supported on a flat volcanic stone with
E =25 GPa, v = 0.3. Compute the length of the contact area and the pressure on
the ground with increasing load up to 2,000 N.

The results are shown in Fig. 4.8c. Note that the length of the contact zone is quite
small (about 1 mm, leading to a 30 mm? contact area, when the load is 1,000 N)
and the contact pressure is correspondingly quite high. For the highest values of
the pressure, plasticity of the materials starts entering the picture and the elastic
approximation becomes less accurate. The assumption that the deformations are
small if compared with the size of the objects is on the contrary applicable.

In case of a rigid wheel rolling on a rigid surface, the center of rotation is located
at the wheel-ground contact point and the rolling radius coincides with the wheel
radius R. Taking into account the deformation of the two bodies, the rolling radius
decreases slightly and the center of rotation is located slightly below the ground
surface.

If the wheel is rolling and the material is perfectly elastic, the situation is essen-
tially the same and very little energy is lost, only due to the small sliding occurring
at the contact. However, no material is exactly elastic and some energy is lost in the
deformation and release cycles occurring in both the ground and the wheel. This en-
ergy dissipation is the main cause of rolling resistance, with sliding at the interface
contributing only to a lesser extent.

As it will be seen in greater detail below, owing to energy dissipation, the pres-
sure distribution, which in case of elastic, non-rolling, cylinders had an elliptical
pattern (4.39), is no more symmetrical and its resultant displaces forward in the di-
rection of motion (Fig. 4.8b). The resultant is no more passing for the center of the
wheel, and this displacement causes a torque that hampers motion. This torque is
seen on the vehicle as rolling resistance.
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The rolling resistance is usually expressed in terms of the rolling coefficient de-
fined as the ratio between the rolling resistance and the load acting on the wheel
f= (4.45)
=F .
In general the rolling coefficient depends on many parameters, and also on the
load acting on the wheel.

The value of the rolling coefficient for a steel wheel rolling on a steel rail is
between 0.001 and 0.005.

4.3.2 Compliance of the Wheel and of the Ground

The Hertz theory is based on the assumption that the deformations are much smaller
than the dimensions of the bodies in contact. This occurs only when a stiff wheel
rolls on stiff ground as in rail transportation or in the case of a metal wheel rolling
on a slab of stone. In all other cases, and above all in motion on unprepared ground,
the deformations of the soil are such that the Hertz theory cannot be applied.

Three cases can be added to that of a stiff wheel rolling on a stiff ground studied
above:

1. a stiff wheel rolling on compliant ground;
2. acompliant, possibly elastic, wheel rolling on stiff ground, and
3. acompliant wheel rolling on a compliant ground.

As a general rule, the resistance to motion encountered by the wheel is caused
by the energy dissipation in both the wheel and the ground. Since the wheel can be
designed in such a way that energy dissipations are as small as possible, while there
is little to do to change the properties of natural ground, it is expedient that the latter
deforms as little as possible, while all deformations are concentrated in the wheels
(case 2).

Case 2 is typical of automotive technology, where low stiffness, mostly pneu-
matic, wheels are used on prepared road covered with tarmac or concrete that is
quite stiff.

Case 3 occurs in off road locomotion, where the ground is compliant, but the
wheels are as compliant as possible.

Case 1 is regarded as the worst situation, since the rigid wheel causes much
permanent deformation in the ground and resistance to motion is large.

As already stated, the wheel must be compliant to prevent the ground from de-
forming too much. Usually this is achieved by building the wheel in two parts:
a stiff, usually metallic, hub inset into a tire that supplies the required elasticity.
The importance of the compliance of the wheel was realized long time ago and was
at the base of the patent of the aerial wheel by Robert William Thomson, the first
pneumatic tire. In 1849 he published some experimental results showing a decrease
of the rolling resistance with respect to a wooden wheel with steel tire by 60% on
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hard macadam and 310% on broken flint, a type of ground not much different from
some stretches of regolith with larger stones.

Thomson’s pneumatic tire was, however, unpractical since it was made of a belt
of leather riveted to the rim of the wheel, with an inner airtight, rubberized, fabric,
tube and had no success. In 1888 the pneumatic tire was re-invented by John Boyd
Dunlop and was a success, even if it was hardly more practical than that invented
by Thomson. Since then, it has become the standard tire for vehicles of all kinds. At
present the production of pneumatic tires is of about one billion per year.

In the beginning, however, pneumatic tires were not the only design and two other
design trends were started in the nineteenth century: solid rubber tires and elastic,
mainly metallic, tires in which deformations were due to spring-like mechanisms.
Around this elastic structure there was at any rate either a compliant layer of solid
rubber, or a pneumatic tire, usually thinner than the pneumatic tires used directly on
the rigid hub. Pneumatic tires were initially used on bicycles, which were enjoying
a growing popularity. Only later they could be used on heavier vehicles.

When a wheel with a pneumatic or elastic tire rolls on a prepared surface, like
concrete of tarmac, the deformation of the wheel is large and the ground can be
considered as a rigid surface. When the same wheel rolls on a natural surface, both
objects in contact must be considered as compliant. On some robotic rovers wheels
with no compliant tire are used: in this case the deformations are localized only in
the ground.

As already stated, the wheel—-ground contact is the contact between compliant
bodies and this feature is essential to understand how a wheel works. The larger is
the compliance of the bodies in contact, the larger is the contact area and thus the
smaller is the contact pressure, at a given value of the contact force.

Remark 4.11 Not only the rolling resistance reduces when the tire is a compliant
body, but also the generation of tangential forces in longitudinal and transversal
direction improves.

In standard vehicles used on Earth, both on and off road, non-pneumatic tires
have been abandoned since the 1920s, except in those cases where the vulnerability
of tires may present an unacceptable disadvantage, like in some military vehicles.
The rigid structure of the wheel, made by the disc and the rim, is thus surrounded
by a compliant element, made by the tire and the tube. The latter can be absent in
tubeless wheels, in which the tire fits airtight on the rim and the carcass contains
directly the air. The tire is a complex structure, made by several layers of rubberized
fabric, with a large number of cords running in the direction of the warp and only a
few in that of the weft. The number of plies, their orientation, the formulation of the
rubber and the material of the cords are widely variable: these are the parameters
giving its peculiar characteristics to each tire.

Independently from their use, structurally tires belong mainly to two types: bias
tires and radial tires, although a sort of in-between type is constituted by belted tires.
In the older bias tires the carcass was made by a number of plies whose reinforce-
ment runs at an angle of 35°-40° with respect to the circumferential direction. In
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Fig. 4.9 (a) Picture of the wheel of the Lunar Roving Vehicle on display at the U.S. Space &
Rocket Center in Huntsville; (b) an elastic motorized wheel designed by the Author for a small
rover

the case of belted tires, a number of plies run under the tread with a small angle,
about 15° from the circumference. This belt gives the tire a higher circumferential
stiffness. Radial tires are made by plies oriented in direction perpendicular to the
circumference and by belt plies. This structure leads to more compliant sidewalls
and to a tread band which is stiffer in circumferential direction.

Remark 4.12 Presently radial tires have almost completely substituted the other
types, owing to their superior comfort and performance.

Apart from the already mentioned main function of the tire, i.e. distributing the
vertical load on a large enough area, a secondary function is that of insuring an ade-
quate compliance, needed to absorb the irregularities of the road. It is essential that
the compliance in different directions is suitably distributed: a tire must be compli-
ant in vertical direction, while being stiffer in circumferential and lateral directions.
This second function of the compliance of the tires is increasingly important with
increasing speed: at the speed all present robotic rovers operate rigid wheels are
adequate from this point of view.

When designing the LRV (Lunar Roving Vehicle) for the Apollo missions, some
sort of elastic tires were needed but pneumatic or solid rubber tires were discarded
mainly for reducing the vehicle mass. Designers resorted to metal elastic tires, of the
kind that were widely tested at the end of the nineteenth century, when alternatives
to pneumatic wheels were sought.

Tires made by an open steel wire mesh, with a number of titanium alloy plates
acting as tread in the ground contact zone, were then built. Inside the tire a second
smaller more rigid frame acted as a stop to avoid excessive deformation under high
impact loads (Fig. 4.9a).
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Fig. 410 The ‘twheel’ by Michelin, an airless tire being developed for automotive applications

Pneumatic tires designed to operate at Earth gravity may prove to be too stiff for
the Lunar or Mars environment and, above all, elastomeric material used in tires are
not suitable for the much more harsh space environment. It is still to be understood
whether it is possible to obtain rubber formulations suitable for prolonged use in
lunar or martian environment: if this can be done the long experience available in
the field of tire design and construction will allow to build pneumatic wheels for
planetary rovers and robots, a much desirable solution. Such pneumatic tires would
be an enabling technology for planetary exploration.

In the recent years there was a revival of the research on non-pneumatic tires.
Michelin presented a non-pneumatic tire, named twheel (tire-wheel, Fig. 4.10),
whose design is based on a very flexible rim, carrying a thin solid rubber tire, at-
tached to the hub through springs. The rim and the springs may be made from metal
or composite material (CRP, carbon reinforced plastics, or GRP, glass reinforced
plastics). The twheel, or similar structures, may be good solutions for planetary ve-
hicles and robots.

4.3.3 Contact Between Rigid Wheel and Compliant Ground

Consider a rigid wheel, rolling on compliant soil (Fig. 4.11): the wheel is free to
roll and is pulled in x direction by the force F, while being pressed on the ground
by force F.. If the deformation is partially anelastic, there is some elastic return
of the ground, as in Fig. 4.11a, and z, is not 0. If the deformation of the soil is
fully anelastic, its deformation is permanent and the contact is restricted to arc AB
(zr =6, = O)

The wheel exchanges with the ground a force per unit area o, directed radially.

Assuming that the wheel is a cylinder with radius R and width b, the equilibrium
equations of the wheel in x and z directions are

2}
F, = bR/ o, sin(0) do, (4.46)
0r
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Fig. 4.11 Sinking of a rigid wheel into compliant, anelastic soil. (a) Geometry of the contact;
(b) forces acting on the wheel, in the case of no elastic return of the ground

o
F, =bR/ o, cos(0) db. 4.47)
o

The equilibrium for rotation is always satisfied, since both forces F, and F, and
pressures o, act through the center of the wheel O.
Assuming that the pressure is expressed in each point by (4.5),

or = (% + k¢>h” =R" (% + k¢> [cos(8) — cos(80)]". (4.48)
the forces are

Fe = R" (k¢ + bky) /6 "’ [cos(8) — cos(6p)]" sin(0) dz, (4.49)

F, = R" (ke + bky) 900 [cos(8) — cos(6p)]" cos(8) dz. (4.50)

Force F), is the resistance to motion due to the anelastic deformation of the soil. It
is referred to as compaction resistance.

The elastic return of the ground must be stated to compute the forces. Three cases
are possible:

e Perfectly elastic ground: the elastic return is complete and z, = zo or 6, = —6.
This is just an ideal case that cannot occur in practice when the wheel is moving.

e Perfectly anelastic ground: the elastic return is null and z, = 0 or 8, = 0. This
condition may be close to the actual situation, and often the ground is assumed to
be anelastic since the computations are much easier in this way and anyway there
are no data about the elastic return.

e Partially elastic ground: the elastic return is incomplete. It is usually assumed that
Zr = AZ0, A being a parameter that depend on the soil characteristics, but also on
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the wheel pattern and, for braking or driving wheels, on the slip ratio (see below).
In the latter case, if the wheel digs in the ground and accumulates material behind
itself, it may be even larger than 1 (but in this case it is not a result of elasticity).

Angles 6y and 6, can be written as functions of zg:

A
6o = arcos(l — %0) 6, = —arcos(l - %) “4.51)

The vertical force

arcos(lf%))
F, = R" ™ (k; + bky) ~ [cos(®) — cos(@0)]" cos(0) dz (4.52)

—arcos(1—=2)

acting on the wheel is known and this equation allows to compute the sinking of the
wheel zg. Its solution must be performed numerically.

This approach has, however, an inconsistency: the contact pressure does not go
to zero at the point the wheel parts contact with the ground. Some modifications,
based on empirical results, have been proposed to overcome this difficulty.

Following Ishigami et al.,'? it is possible to define an angle

Om = (ap + a10)0o, (4.53)

where ap and a; are parameters depending on the ground-wheel interaction (sug-
gested values are ap = 0.4, 0 < a; <0.3) and o is the longitudinal slip, at which the
pressure on the ground reaches its maximum value. The pressure distribution, to be
substituted to (4.48), is

k.
o, = R" <—° + k¢> [cos(@) — cos(8)]"  for 6, <6 < 6o,

b
o | LT )

for 6, <6 <6,,.

Since the forces must be anyway computed numerically, the use of this more
complex relationship does not complicate the study.

If the soil is considered as perfectly anelastic (Fig. 4.11b), things get much sim-
pler. The forces can be written as

20

0o
F, :bR/ o, sin(0) d6 :b/ o,dz, (4.55)
0 0

10G, Ishigami, A. Miwa, K. Nagatani, K. Yoshida, Terramechanics-Based Model for Steering Ma-
neuver of Planetary Exploration Rovers on Loose Soil, Journal of Field Robotics, Vol. 24, No. 3,
pp. 233-250, 2007.
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6o X0
F,= bR/ o, cos(0) dO = b/ o, dx. (4.56)
0 0

Using (4.48) for the pressure, the horizontal force is

kC @ n
Fy=b i + kg (zo —2)" dz, (4.57)
0
ie.:
b ke
Fy = = tkg )zo" 4.58
X nt 1 ( b + ¢)ZO ( )

The vertical force distribution is
dF, =bo, dx:b(% +k¢>(zo —2)"dx. (4.59)
The relationship between x and z is
x>+ (R—2)*=R?, (4.60)
which, in case of small sinking, can be simplified as
x2 ~2Rz. (4.61)

The maximum vertical pressure occurs for x = 0 and has the value

k
Pmax = (f + k,,,)zg. (4.62)

The force distribution in vertical direction is thus

2 n
X
dF, = pmaxb<1 - 2RZ()) dx. (4.63)

This is just an approximation as is shown by the fact that the vertical force van-
ishes for

x =+/2Rz, (4.64)

while it should vanish in point B, i.e. for

x=./2Rz0 — 2} (4.65)

For instance, if the sinkage is 20%, i.e. zo/R = 0.2, the correct value of x/R
is 0.49, while (4.64) yields 0.63. If the sinkage is 10%, the error becomes almost
negligible: 0.44 against 0.45.

The approximated vertical pressure distribution is shown in Fig. 4.11b.
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The expression of the vertical force is thus

2Rz X2 n
F, = 1-— . 4.66
? = Pmaxb /0 ( ZRZ()) dx ( )
In case n = 1, as often occurs for regolith, the vertical force is
2b+/2Rz k.
Fo= 2200 (2 k). (4.67)
3 b
If n # 1, it is possible to write the series for (1 — 2;;0 )
P AP S, ek Y (5 2+ (4.68)
— —1—n . )
2Rzo 2Rz 2 2Rz

and to retain only the first two terms, obtaining

LGy )

F; (4.69)

Py i
3 o\ b
By solving this equation in z(, the sinkage of the wheel is obtained as a function

of the load

[ 3t ]M (4.70)
Tl —m&G v kobvaR] '

The resistance to motion, in this case referred to as compaction resistance, is
obtained by introducing (4.70) into (4.58)

2(n+1)

F 1 |: 1 :|zn+1|: 3F, ] rEs] @71
oLk ky) (3 —n)v2R ' '
If n = 1 the compaction resistance is
1 1 3, \*
Fr=="° ( : ) ) (4.72)
T2 bk 4 k) \2V2R
The rolling coefficient
Feoo1 [ R (R 3 pE
n+ n
f=—= [ T L j| |: ] (4.73)
Fy n+1Lb(GE +kg) (3—n)v2R

is thus a function of the vertical force and, in case of n = 1, is proportional to J/F;.

Since the rolling coefficient is a function of the vertical force, from the viewpoint
of the rolling resistance it is expedient to subdivide the load on a larger number of
less loaded wheels: in this way the wheels sink less and the deformation of the
ground is smaller. This is, however, true only at equal wheel diameter.
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Example 4.4 Consider a Mars rover with 6 rigid wheels operating on a ground
whose characteristics are similar to lunar regolith. Assume the following data:

General: m = 150 kg, g =3.77 m/sz; wheels: R = 150 mm; b = 80 mm; soil:
n=1, c=200Pa, ¢ =35° k. = 1,400 N/m?, kg = 820,000 N/m?3.

Compare the compaction resistance of the rover with 6 wheels with that of a
rover with 4 wheels having the same characteristics.

Assuming that the load is equally subdivided on the six wheels, the force on each
of them is F, = 94.25 N. The maximum sinkage of the wheels in the ground is
zo = 25 mm, corresponding to 0.164 R. The approximation of the formulae seen
above is thus not too bad.

The maximum pressure on the ground is pmax = 20.6 kPa, which should be com-
pared with the bearing capacity of the ground.

The compaction resistance is Fy = 20.2 N per wheel, i.e. 121.2 N for the whole
rover.

The rolling coefficient is f = 0.21.

If the rover has 4 wheels, the same values are: zg = 32 mm, pmax = 27 kPa,
Fy=34.74N, f =0.25.

If the wheel sinks in the ground another form of resistance to motion is present:
bulldozing resistance. Bulldozing resistance is particularly important if the ground
is pushed forward by the wheel and is mitigated by the lateral flow that occurs if the
wheel is not too wide. As a consequence, it is not very important in case of large
diameter, narrow wheels, while can become a dominating factor if a wide wheel
with a small diameter travels on loose soil, in particular if a layer of loose soil rests
on a harder surface.

A formula for bulldozing resistance reported by Bekker is

bsin(o + ¢) 2
xb 2sin(a)cos(¢>)[ 2eKe + pgzpKy]
2 o 2
wtpg(90° —p) mct 2 0]
t“tan| 45° + — 4.74
* 540 o T ) 74
where
o= arcos(l — Z—0> 4.75)
R

is the angle of approach. This expression holds for rigid wheels only. Constants K,
and K, depend on the coefficients N. and N,, defined in Table 4.2

Ke=[N. —tan(¢)] cos*(¢), (4.76)
K —[ 2Ny 1| cos>(¢) 4.77)
ye = tan(q>)+ j|COS b), .

t = 7o tan’ <45° - %) (4.78)
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Fig. 4.12 (a) Pneumatic tire: pressure distribution at the wheel-road contact. (b) Solid rubber
elastic wheel: geometrical definitions. (¢) Pressure o, in the contact zone for a pneumatic rolling
wheel (from G. Genta, L. Morello, The Automotive Chassis, Springer, New York, 2009)

4.3.4 Contact Between Compliant Wheel and Rigid Ground

The pressure that a compliant wheel exerts on a rigid ground depends on the wheel’s
structure and its computation can be quite complex. If the wheel is not rolling, the
pressure distribution is symmetrical with respect to the Y Z plane (Fig. 4.12a). If the
wheel is perpendicular to the ground and symmetrical with respect to X Z plane, the
pressure distribution is symmetrical with respect to this plane as well.

An ideal pneumatic wheel is made by a toroidal membrane with negligible bend-
ing stiffness filled with air under pressure. In this case the pressure it exerts on the
ground is constant and is equal to the inflation pressure p;.

The force F, corresponding to this pressure depends only on the area A of the
contact surface with the ground and thus on the deflection /¢ of the tire.

Remark 4.13 The relationship between A and hg is quite complex and has little
physical significance, since the tire structure has its own stiffness and this deeply
affects the pressure distribution on the ground.

As seen in Fig. 4.12a, the pressure is constant and close to the inflation pressure
only at the center of the contact area, while on the sides the stiffness of the carcass
deeply affects the pressure on the ground.

While the contact between a pneumatic tire and the ground is difficult to be stud-
ied, the pressure distribution on the ground of a solid tire made of low stiffness ma-
terial (in terrestrial applications solid rubber) is much easier to study (Fig. 4.12b).
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Assuming that the pressure is proportional to the vertical deformation of the material

p=ch, 4.79)

where ¢, is a constant of the material, the maximum pressure occurs at the center of
the contact

Pmax = ¢rho. (4.80)

The relationships between the local deformation #, the total deformation /¢ and
angles 6 and 6 are

ho = R[1 — cos(6p)], h = R[cos(0) — cos(6o)]. (4.81)
The loaded radius R; is defined as the height of the center of the wheel on the
ground:
R; =R — hy. (4.82)
Assuming that angles 6 and 6 are small, it follows that

crR

R 5
P~

63 —6%), P~ =06 (4.83)

Under the same assumption, the vertical force acting on the ground is linked with
angle 6y by the relationship

12 bR (/2
F.~ b/ pdx=— (63 — 6%) dx. (4.84)
—i2 2 Jp
Since
[l =2Rsin(6y) ~ 2RO, x =2Rsin(0) ~ 2R0, (4.85)
the force can be written as
bR%c, [%
F.= Cr/ (02 — 62)do, (4.86)
2 J g
ie.
_ 2, 02 03
F, = 3bR o0 (4.87)
Since
0
ho= R (4.88)

the relationship linking the force with the deformation of the tire is

2
F, = gb«/ 8Rcr\/;g. (4.89)
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This formula can be written in the usual form linking the maximum pressure with
the force and the deformation of the tire

/?zg 0.53F,
Pmax =1/ == = . (4.90)
32bvhoR  by/hoR

In the case of an actual pneumatic tire the situation is intermediate between that
of an ideal pneumatic tire and a solid rubber tire: the pressure on the ground is due
to both the inflation pressure and the stiffness of the structure. An empirical formula
is

"o VA4Rr —2ho(R 491
o+ 1 r o(R+r), (4.91)
where r is the transversal radius of the tire and p. is the mean vertical pressure of
the uninflated carcass.

In general, the force the tire receives from the ground is assumed to be located
at the center of the contact area and can be decomposed along the axes of the XY Z
frame of Fig. 4.12a, where axes X and Y lie on the ground, respectively, in longitu-
dinal and transversal direction (i.e. in the midplane of the wheel and perpendicular
to it) and Z has a direction perpendicular to the ground. The longitudinal force F,,
the lateral force Fy and the normal force F, are so obtained. Similarly, the moment
the tire receives from the road in the contact area can be decomposed along the same
directions, yielding the overturning moment M, the rolling resistance moment M,
and the aligning torque M. The moment applied to the tire from the vehicle about
the spin axis is referred to as wheel torque 7.

The situation described above is related to a stationary wheel. If the wheel rolls
on a level road with no braking or tractive moment applied to it and its mean plane
perpendicular to the road, the distribution of the normal force is no more symmet-
rical with respect to the Y Z plane, and a rolling resistance moment is originated
(Fig. 4.12c).

While the relationship between the angular velocity §2 and the forward speed V
of a rolling rigid wheel of radius R is simply

F,=(pi +pc)

V =02R,

for a compliant wheel an effective rolling radius R, can be defined as the ratio
between V and §2

R, =V/$. (4.92)

This amounts to define as effective rolling radius the radius of a rigid wheel
which travels and rotates at the same speed as the compliant wheel.

The wheel-road contact is far from being a point-contact and the tread band is
compliant also in circumferential direction; as a consequence radius R, coincides
neither with the loaded radius R; nor with its unloaded radius R and the center of
instantaneous rotation is not coincident with the center of contact A (Fig. 4.13).

Owing to the longitudinal deformations of the tread band, the peripheral veloc-
ity of any point of the tread varies periodically: when it gets close to the point in
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Fig. 4.13 Compliant wheel
rolling on a flat road:
geometrical configuration and
peripheral speed in the
contact zone (from G. Genta,
L. Morello, The Automotive
Chassis, Springer, New York,
2009)

Circumference -

which it enters the contact zone it slows down and consequently a circumferential
compression results. In the contact zone there is no or limited sliding between tire
and road.

Remark 4.14 The peripheral velocity of the tread (relative to the wheel center) in
that zone coincides with the velocity of the center of the wheel V.

After leaving the contact zone, the tread regains its initial length and its peripheral
velocity 2R is restored. As a consequence of this mechanism, the spin speed of a
compliant wheel tire is smaller than that of a rigid wheel with the same loaded
radius R; (and faster than that of a rigid wheel with radius R) and traveling at the
same speed

Ry <R, <R.

The center of rotation of the wheel lies then under the surface of the road, at a
short distance from it.

The stiffer is the thread band circumferentially, the closest is R, to R. Owing to
their lower vertical stiffness, radial tires have a lower loaded radius R; than bias-
ply tires with equal radius R but their effective rolling radius R, is closer to the
unloaded radius, as the tread is circumferentially stiffer. For instance, in a bias-ply
tire R, can be about 96% of R while R; is 94% of it, while in a radial tire R, and
R; can be, respectively, 98% and 92% of R. This effect can be even larger in elastic
wheels like the twheel: if the external rim is circumferentially stiff, R, can be equal
to R, while R; depends on the stiffness of the radial springs.

Remark 4.15 The effective rolling radius depends on many factors, some of which
are determined by the tire as the type of structure, the wear of the tread, and others
by the working condition as load, speed and, in pneumatic tires, inflation pressure.
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An increase of the vertical load F, and a decrease of the inflation pressure p
lead to similar results: a decrease of both R; and R.. With increasing speed, the
tire expands under centrifugal forces, and consequently R, R; and R, all increase.
This effect is larger in bias-ply tires while, owing to the greater stiffness of the tread
band, radial tires expand to a very limited, and usually negligible, extent.

As will be shown in the following sections, any tractive or braking torque applied
to the wheel will cause strong variations of the effective rolling radius.

The rolling resistance of an elastic wheel rolling on a hard surface is mostly due
to the energy dissipated in the tire. Other mechanisms, like small sliding between
road and wheel, aerodynamic drag on the disc and friction in the hub are responsible
for a small contribution to the overall resistance, of the order of a few percent. The
resultant F, of the contact pressures moves forward (Fig. 4.12c) producing a torque

My =—F,Ax

with respect to the rotation axis that is seen as rolling resistance.

To maintain a free wheel spinning, a force at the wheel-ground contact is re-
quired and then some of the available traction is used: on the free wheel, to supply
a torque which counteracts the total moment My, and on the driving wheels which
must supply a tractive force against the rolling resistance of the former. On driving
wheels the driving torque is directly applied through the driving shafts to overcome
rolling resistance moment. Rolling resistance of driving wheels thus does not in-
volve forces acting at the road-wheel contact and does not use any of the available
traction.

The rolling resistance is thus

—F,Ax
Fr= .
R;

(4.93)

Equation (4.93) is of limited practical use, since Ax is not easily determined.
For practical purposes, rolling resistance is usually expressed as

F=—fF, (4.94)

where the rolling resistance coefficient (or simply rolling coefficient) f must be
determined experimentally. The minus sign in (4.94) comes from the fact that tradi-
tionally the rolling resistance coefficient is expressed by a positive number.

Coefficient f depends on many parameters, like the traveling speed V, the infla-
tion pressure p (in pneumatic tires), the normal force F,, the size of the wheel and
of the contact zone, the structure and the material of the tire, the working tempera-
ture, the road conditions and, last but not least, the forces Fy and F exerted by the
wheel.

The rolling resistance coefficient f generally increases with the speed V' of the
vehicle, at the beginning very slowly and then at an increased rate (Fig. 4.14).

The law f(V)) can be approximated by a polynomial expression of the type

f=fo+KV or f=fo+KV? (4.95)

the second being generally preferred.
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The values of fy and K must be measured on any particular tire; as an example,
the tire of Fig. 4.14 is characterized, in the test conditions reported, by the values:
fo=0.013, K =6.5 x 107 s>/m?.

A semi-empirical expression of the same kind is suggested by the Society of
Automotive Engineers (SAE) to take into account the influence of both load and
pressure on the rolling resistance coefficient:

f

K’ 5.5x 105+ 90F, 1,100+ 0.0388F
(5.1+ XA AP + ZV2>, (4.96)

~ 1,000 p p

where coefficient K’ takes the value 1 for conventional tires and 0.8 for radial tires.
The normal force F, the pressure p and the speed V must be expressed respectively
in N, N/m? (Pa) and m/s.

The speed at which the curve f (V) shows a sharp bend upward is generally said
to be the critical speed of the wheel (not to be confused with the critical speed of
the vehicle). Its presence can be easily explained by vibratory phenomena which
take place in the tire at high speed. Non-pneumatic elastic wheels may have a low
damping and thus be even more prone to vibrate: in the design of such wheels care
must be given to assess their vibrational characteristics. However, the critical speed
is usually much higher than the speed that can be reached by rovers and moving
robots, so it may be of little relevance in the present context.

The type of structure and the material used for the construction of the tire play
an important role in determining the rolling resistance. Even small differences like
ply orientation or exact rubber composition can cause strong differences. However,
most existing data are for standard pneumatic tires and specific designs departing
from the usual approach must be tested to assess their rolling resistance.

At low speed, typical values for the rolling coefficient of standard tires are in-
cluded between

Jfo =10.008-0.02
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for good concrete or tarmac surfaces and
fo=10.04-0.1

for hard and flat natural surfaces.

Wear, temperature, inflation pressure (in pneumatic tires), load and other op-
erating conditions cause changes in the rolling resistance: tires must be tested in
conditions simulating as closely as possible the operating ones.

4.3.5 Contact Between Compliant Wheel and Compliant Ground

If both the wheel and the ground are compliant both may undergo deformation. This
can, however, occur only if the maximum pressure exerted by the ground exceeds
the pressure needed to deform the tire, which in (4.91) was expressed as p; + p.. If
this pressure is not exceeded the situation is that shown in Fig. 4.11. If it is exceeded
in point A of the contact zone, the situation is that shown in Fig. 4.15.

Assuming that the deformation is linked to the pressure by (4.5) and that angle
0 is small, so that its cosine is close to 1, the pressure in point A is

ke n
OrA = B +ky |h| = pi + pec- (4.97)

The sinkage of the wheel is thus

1/n
Di + Pc
h=|b——— . 4.98
! <kc+bk¢> (4.98)

If n = 1 the sinkage is linear in the total pressure p; + p. exerted by the tire.

Remark 4.16 When traveling on soft ground the inflation pressure p; is usually
reduced to decrease sinking.
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The coordinate x5 of point A is linked with the vertical deformation of the tire
by the relationship

X +[R—(o—hD] =R (4.99)

If the deformation of the wheel is small when compared with its radius, it follows

that
XA~ +/2R(zo — hy). (4.100)

Assume that the wheel is free to roll and is pulled in x direction by the force Fy
while being pressed on the ground by force F,. Assume again that the deformation
of the soil is anelastic and thus its deformation is permanent. In this situation the
contact occurs only along arc A’ AB. The wheel exchanges with the ground a force
per unit area

ke
o, = (f + k¢)h" (4.101)

directed radially along arc AB, plus a force
Fi; =bl(pi + pc) (4.102)

along line A’A. The latter is directed in z direction.
The equilibrium equations of the wheel in x and z directions are

6o 20
F, =bR/ o, sin(6) do =b/ o, dz, (4.103)
61 §
6o XB
F.=Fi, + bR/ o, cos() d6 = bl(p; + pe) + bf o dx.  (4.104)
61 XA

In the latter equation it has been explicitly assumed that the pressure acting on
the whole line A’A is constant, which is consistent with the simplified model of the
tire here used.

The equilibrium for rotation is always satisfied, since both forces Fy and F, and
pressures o, act through the center of the wheel O, while the pressure acting on line
A’A is symmetric about the center of the wheel.

The horizontal force is

20
Fy = (kc + bkg) / h"dz, (4.105)
8

20
Fy = (ke + bk¢) (zo — Z)n dz. (4.106)
Z()—hl

By performing the integration, it follows that the compaction resistance is

n+1

Fy = (ko + bky) ——, 4.107
X (c+ ¢)n+l ( )
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i.e.
. n+1/n
p. i+ po)] _ 4.108)
(n+ 1) (ke + bkg)!/"

If n =1 the expression for the compaction resistance is

_ bX(pi + pe)?

= S e (4.109)

X

The compaction resistance can thus be computed without obtaining explicitly the
sinkage of the wheel.

The explicit computation of the vertical force is not reported here, since in the
present case the sinkage depends only on the pressure, which is known, and the
computation of the force is not needed.

The resistance to motion given by (4.108) takes into account only the compaction
of the ground; to it the rolling resistance due to the deformation of the tire must be
added. When the deformation of the ground is small, the value obtained for the elas-
tic wheel on rigid ground can be assumed, while it reduces with increasing ground
deformation, until it vanishes when the deformation of the wheel § (see Fig. 4.11)
becomes negligible.

To take into account that the resistance of the wheel increases with decreasing
inflation pressure, Bekker in the mentioned books suggests to add a term

_ Fu

Fi= (4.110)

a*
i

where u and a™ are empirical coefficients related to the internal structure of the tire.

Remark 4.17 The application of this formula, with the coefficients obtained from a
test in which the tire is rolling against a hard surface, is questionable.

While for small values of the pressure the deformations of the wheel are large
(although less than when rolling against a hard surface), when the pressure increases
the deformations are small and the formula gives a rolling resistance which can be
larger than the correct value. In particular, when the pressure approaches the value
at which the wheel is not deformed, this component of the rolling resistance should
tend to zero.

For a 7.00-16 tire the values suggested are u = 0.12 and a* = 0.64, when the
pressure is measured in psi. The corresponding values for pressure measured in kPa
are u = 0.413 and a* = 0.64. Tires designed for low gravity applications should
have much lower values of u, which must be obtained experimentally for each case.

The total rolling resistance is thus

. ‘n+1/n F.
Fo—p_ Pt P + = 4.111)

(n+ D&+ pf
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Fig. 4.16 Sinking and rolling coefficient as functions of the inflation pressure for a pneumatic
wheel

Example 4.5 Consider the same Mars rover with 6 wheels of the previous example,
but now assume that the wheels are elastic. The characteristics of the ground and all
the other data are the same:

General: m = 150 kg, g =3.77 m/s2; wheels: R = 150 mm; b = 80 mm; soil:
n=1,c=200Pa, ¢ =35 k. = 1,400 N/m?, k, = 820,000 N/m?.

Assume that the tire has been specifically designed for the application, and the
values of p., a* and u are, respectively, p. = 5 kPa, a* = 0.64 and u = 0.05 kPa.
The inflation pressure varies from 0 to 15.6 kPa (the latter value corresponds to
the maximum pressure computed in the previous example and thus if the inflation
pressure exceeds this value the wheel remains rigid).

Plot the sinking of the wheels and the rolling coefficient as functions of the infla-
tion pressure p;.

Assume that p; = 5 kPa. Compute the sinkage of the wheels and the rolling
coefficient.

Assuming that the load is equally subdivided on the six wheels, the force on
each of them is F, = 94.25 N. The maximum sinkage of the rigid wheels was
zo = 25 mm, the compaction resistance was Fy = 20.2 N per wheel, and the corre-
sponding rolling coefficient was f = 0.21.

The results for various values of p; are reported in Fig. 4.16. Note that for values
of the pressure approaching 15.6 kPa, the deformation component of the rolling
coefficient should approach zero.

At a pressure p; =5 kPa the sinkage is 11.9 mm and the compaction component
of the rolling coefficient is 0.05. The total rolling coefficient is 0.069.
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Fig. 4.17 Force distributions and peripheral velocity in a braking (a) and in a driving (b) wheel
operating on a hard surface. Note that the equivalent rolling radius R, differs from R, defined
for free straight rolling conditions (force F, lies on the ground) (from G. Genta, L. Morello, The
Automotive Chassis, Springer, New York, 2009)

4.3.6 Tangential Forces: Elastic Wheels on Rigid Ground

Longitudinal Forces

A wheel can produce tractive or braking forces only if a longitudinal slip is present,
i.e. if the wheel rotates (slightly) faster (for tractive forces) or slower (for braking
forces) than a wheel when in pure rolling.

Consider a compliant wheel rolling on a level hard surface. If a braking moment
M), is applied to it, the distributions of normal pressure and longitudinal forces re-
sulting from that application are qualitatively sketched in Fig. 4.17a.

The tread band is circumferentially stretched in the zone in front of the contact
with the ground, while in free rolling the same part of the tire was compressed.
The peripheral velocity of the tread band in the leading zone of the contact 2 R, is
consequently higher than that the peripheral velocity £2 R of the undeformed wheel.
The effective rolling radius R),, whose value R, in free rolling was between R;
and R, grows toward R and, if M), is large enough, becomes greater than R.

The instantaneous center of rotation is consequently located under the road sur-
face (Fig. 4.18). The angular velocity §2 of the wheel is lower than that characteriz-
ing free rolling in the same conditions (£20 = V/R,).
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Fig. 4.18 (a) Braking wheel, center of instantaneous rotation and slip speed. (b) Position of the
center of instantaneous rotation in free rolling C, braking C’ and driving C” (from G. Genta,
L. Morello, The Automotive Chassis, Springer, New York, 2009)

In such conditions it is possible to define a longitudinal slip as

R -V v
o=——=—, (4.112)
Vv \4
where v is the linear speed at which the contact zone moves on the ground. The
longitudinal slip is often expressed as a percentage; in the present book, however,
the definition of (4.112) will be strictly adhered to.

Remark 4.18 The slip here defined is due to the deformation of the wheel, while
that defined in the case of a rigid wheel is due to the deformation of the soil. The
two definitions are slightly different, but their meaning is essentially the same.!!

The limiting case is that of a wheel that slides on the ground without rotating: the
longitudinal slip is 0 = —1 and the center of rotation is at infinity below the road.

If instead of braking, the wheel is driving, the leading part of the contact zone is
compressed instead of being stretched (Fig. 4.17b). The value of the effective rolling
radius R/, is smaller than that characterizing free rolling and is usually smaller
than R;; the angular velocity of the wheel is greater than 2.

" This definition, suggested by SAE, is different from that of (4.17), which in this case is
_R2-V
- R

The two formulations are essentially equivalent for small values of the slip.
Often they are both used for braking and driving, respectively:

R -V . R -V .
= ——— fordriving and o =——— for braking.
RS2 14

(o

(o2



192 4 Mobility on Planetary Surfaces

Here the limiting case is that of a wheel that spins without moving forward: the
longitudinal slip is 0 = 0o and the center of rotation is in the center of the wheel.

The slip defined by (4.112) is positive for driving conditions and negative for
braking. The presence of the slip velocity!? v does not mean, however, that there
is an actual sliding of the contact zone as a whole. The peripheral velocity of the
leading part of that zone is actually

V =0R,,
and consequently in that zone no sliding can occur. The speed of the tread band
starts to decrease (in braking, increase in driving) and sliding begins only at the
point indicated in Fig. 4.17 as point A. The slip zone, which extends only to a
limited part of the contact zone for small values of o, gets larger with increasing
slip and, at a certain value of that parameter, reaches the leading part of the contact
zone and global sliding of the tire occurs (Fig. 4.19a).

The longitudinal force F, the wheel exchanges with the ground is a function
of o. It vanishes when o = 0 (free rolling conditions)'? to increase almost linearly
for values of o from (—0.15)—(—0.30) to 0.15-0.30.

The longitudinal force can be approximated in this range by a linear expression

F, = Cyo, (4.113)

where C, is usually referred to as the longitudinal force stiffness of the wheel.

Outside this range, which depends on many factors, the absolute value of the
force increases less sharply, then reaches a maximum and eventually decreases. In
braking the maximum value of |o| occurs for o = —1, characterizing free sliding
(locking of the wheel), while in driving o can have any positive value, up to infinity
when the wheel spins while the vehicle is not moving.

As a first approximation, force F can be considered as roughly proportional to
the load F;, at equal value of . It is consequently useful to define a longitudinal
force coefficient

[y = —. 4.114)

The qualitative trend of such coefficient is reported against o in Fig. 4.19b.

Two important values of 1 can be identified on the curve both in braking and in
driving: the peak value 1, and the value s characterizing pure sliding. The first
is referred to as driving traction coefficient when the wheel is exerting a positive
longitudinal force and as braking traction coefficient, usually reported in absolute
value, in the opposite case. The second is the sliding driving traction coefficient or
the sliding braking traction coefficient.

12The slip velocity is defined by SAE Document J670 as £2 — 2o, i.e. the difference between the
actual angular velocity and the angular velocity of a free rolling tire. Here a definition based on a
linear velocity rather than an angular velocity is preferred: v = R, (§2 — §2).

13 Actually free rolling is characterized by a very small negative slip, corresponding to the rolling
resistance. This is, however, usually neglected when plotting curves Fy (o).
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Fig. 4.19 (a) Slip zone at the wheel-road contact with different values of the longitudinal slip o.
(b) Qualitative trend of the longitudinal force coefficient 1, as a function of the longitudinal slip o
(from G. Genta, L. Morello, The Automotive Chassis, Springer, New York, 2009)

The part of the curve (o) which lies beyond the range included by the two peak
values, represented by a dashed line in Fig. 4.19b, is a zone of instability. When
the peak value of o, characterized by u,,, is exceeded, the wheel locks in a very
short time. In order to prevent the locking of wheels, devices generally defined as
antilock or antiskid systems are widely used in the automotive field. The traction
and braking control device of robots must also take into account this phenomenon.
To do so, it is possible to detect the deceleration of the wheel and, when it reaches
a predetermined value, to decrease the braking moment avoiding the locking of the
wheel. Antilock devices can operate on each wheel separately or, more often, on
both wheels of an axle.

Similarly, to avoid that a wheel slips under the effect of a driving torque applied
to it, antispin devices limit the driving moment (or apply a braking torque) when the
acceleration of the wheels exceeds a stated value.

The curves usually show a certain symmetry between the braking and driving
conditions and often the maximum braking and driving forces are assumed to be
equal. The values of function u, (o) depend on a number of parameters, such as
the type of wheel, ground conditions, speed, magnitude of the side force F), exerted
by the tire and many others. Moreover, there is a significant difference between the
curves obtained by different experimenters in conditions not exactly comparable.

The maximum value of the longitudinal force decreases with increasing speed
but this reduction is much influenced by operating conditions. Generally speaking,
it is not very marked on dry hard surfaces, while it is greater on wet or dirty roads.
Also the difference between the maximum value and the value related to sliding is
more notable in these cases.

Remark 4.19 High performance tires show peak values of w, that can be as high
as 1.5-1.8 on hard surfaces, but even these tires do not reach very high values of
longitudinal force coefficient in sliding condition.
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Remark 4.20 On hard surfaces tread wear has a great influence on the longitudinal
forces, particularly at high speed. Worn tires have a larger traction coefficient on dry
roads.

The presence of a film of liquid can change drastically these results. If the liquid
film is thick, the tire can lift from the road surface as a result of hydrodynamic lift
(hydroplaning). A liquid film can slip between the tire and the ground thus reducing
the contact area. With increasing speed the area of the contact zone further reduces,
until a complete lifting of the tire takes place. True hydrodynamic lubrication con-
ditions can be said to exist in this case and consequently the force coefficient or,
better, the friction coefficient as in this condition sliding usually occurs, reduces to
very low values, of the order of 0.05.

Remark 4.21 This is why traction on ice at a temperature high enough to cause
melting under pressure is so low.

Remark 4.22 The only place in the solar system (apart from Earth) where there
might be danger of hydroplaning is Titan, owing to the presence of liquid hydrocar-
bons.

The assumption, in a way implicit in the definition of the longitudinal force co-
efficient, that longitudinal forces are proportional to the normal force acting on the
wheel is only a crude approximation. Actually the longitudinal force coefficient de-
creases with increasing load as shown in Fig. 4.20.

The curves p, (o) can be approximated by analytical expressions. One of the
formulas which can be used in the range —1 <o < 1is

e =A(1—eB7) + Co? — Do, (4.115)

K 1/n
B =
(oz+d>

where
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is a factor which takes into account the interaction between the longitudinal slip o
and the sideslip « (see Sect. 4.3.6). The derivative in the origin is

9
( “x> —AB—D. (4.116)
do o=0

Coefficients A, C, D, K, d and n must be obtained from the experimental curves
and have no physical meaning. They depend not only on the ground conditions
but also on the load. Two curves (o) obtained through (4.115) are reported in
Fig. 4.21. Curve B refers to a racing tire, with high traction.

A very good approximation of longitudinal force F, as a function of the slip o
can be obtained through the empirical equation introduced by Pacejka'* and known
as the magic formula. Such mathematical expression allows one to express not only
force Fy as function of the normal force F; and the longitudinal slip o, but also the
side force F, and the aligning torque M, as functions of various parameters (see
below).

The equation yielding the longitudinal force F, as a function of the slip o, is

F, = Dsin(Carctan{B(1 — E)(c + Si) + E arctan[ B(o + Sp)]}) + Sy, (4.117)

where B, C, D, E, S, and §), are six coefficients which depend on the load Fy.
They must be obtained from experimental testing and do not have any direct physical
meaning. In particular, S, and S, have been introduced to allow nonvanishing values
of F, when o =0.

Coefficient D yields directly the maximum value of Fy, apart from the effect
of §,. The product BC D gives the slope C, of the curve for o + S = 0. The values
of the coefficients are expressed as functions of a number of coefficients b; which
can be considered as characteristic of any specific tire, but depend also on ground
conditions and speed

C = by, D=pu,F,,
where for by a value of 1.65 is suggested and
mp=>b1F; +ba,
BCD = (b3sF? + by F;)e 5",
E=DbF. +b7F, +bs,
Sp = by F; + by, Sy =0.

If a symmetrical behavior for positive and negative values of force X is accepted,
this model can be used for both braking and driving. The curve is usually extended
to braking beyond the point where o = —1, to simulate a wheel rotating in backward
direction while moving forward.

14E, Bakker, L. Lidner, H.B. Pacejka, Tire Modelling for Use in Vehicle Dynamics Studies, SAE
Paper 870421; E. Bakker, H.B. Pacejka, L. Lidner, A New Tire Model with an Application in Vehicle
Dynamics Studies, SAE Paper 890087.
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Fig. 4.21 (a) Curves pu, (o) for a pneumatic tire 145/80 R 13 4.5J obtained through (4.115)
(curve A) and a tire 245/65 R 22.5 obtained through (4.117) (curve B). (b) Curves Fy(o) for
different values of the load obtained using (4.117) for a radial tire 205/60 VR 15 6J (from G. Genta,
L. Morello, The Automotive Chassis, Springer, New York, 2009)

A set of curves F, (o) obtained for vertical loads F, =2, 4, 6 and 8 kN for a
radial tire 205/60 VR 15 6] is shown in Fig. 4.21b.

Remark 4.23 The coefficients introduced in (4.117) and the results obtained from it
are usually expressed in non consistent units: force F; is in kN, longitudinal slip is
expressed as a percentage and force F) is in N.

Remark 4.24 The importance of the model expressed by (4.117) is mainly linked
to the fact that tire manufacturers are increasingly giving the performances of their
tires in terms of the coefficients to be introduced into it and in the similar expressions
for the cornering force and the aligning torque. The magic formula is a simple and
accurate model for tire behavior and, which is even more important, one for which
the data are readily available.

Rolling resistance can also be defined when tractive or braking moments are
applied to the wheel. In this case the power dissipated by rolling resistance F,V can
be expressed as

|Fp|V — [Mp|S2 (braking)

|M;|$2 — |F;|V  (traction) (@.118)

|F r | V= {
where Fj, Fy, M, and M; are, respectively, the braking and tractive forces and
moments. Equations (4.118) should be applied only in constant speed motion, since
they do not include tractive (braking) moments needed to accelerate (decelerate)
rotating parts.

In general rolling resistance increases with both tractive or braking longitudinal
force F, and this effect is not negligible in case of strong longitudinal forces, par-
ticularly in the case of braking. This is due mainly to the fact that the generation of
longitudinal forces is always accompanied by the presence of sliding in at least a
part of the contact zone. The minimum rolling resistance may, however, occur not
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when the wheel exerts no driving force but when it exerts a very small tractive force.
This is, however, a small effect and depends on the structure of the wheel.

Lateral (or Cornering) Forces

Pure rolling condition is characterized by no longitudinal slip and by the velocity V
of the center of the wheel being contained in the midplane of the wheel. In this case
there is rolling without sliding. It has already been stated that to produce longitudinal
force a longitudinal slip must be present. In the same way, to produce a lateral force
a lateral slip must be present, i.e. the velocity of the center of the wheel must make
an angle with respect to the midplane of the wheel, the X Z plane of Fig. 4.12. The
angle between X Z plane and the direction of the velocity of the center of the wheel
is the sideslip angle « of the wheel. Another characteristic angle is that between
X Z plane and the mean plane of the wheel: it is called the inclination (or camber')
angle of the wheel and symbol y is used for it.

The fact that the wheel has a sideslip angle, i.e. is not in pure rolling, does not
mean that in the contact zone the tire slips on the ground: also in this case, as seen
for longitudinal forces, the compliance of the tire allows the tread to move, relatively
to the center of the wheel, with the same velocity as the ground. The generation of
tangential forces in the rigid ground—wheel contact is thus directly linked with the
compliance of the tire. However, some localized sliding between the wheel and the
road can be present and, with increasing sideslip angle, they become more and more
important, until the whole wheel is in actual, macroscopic sliding.

If the velocity of the center of the wheel does not lie in its midplane, i.e. if
the wheel travels with a sideslip angle, the shape of the contact zone is distorted
(Fig. 4.22). Consider a point belonging to the midplane on the tread band. Upon ap-
proaching the contact zone it tends to move in a direction parallel to the velocity V,
relatively to the center of the wheel, and consequently goes out of the midplane.

After touching the ground at point A, it continues following the direction of the
velocity V (for an observer fixed to the ground, it remains still) until it reaches
point B. At that point, the elastic forces pulling it toward the midplane are strong
enough to overcome those due to friction, forcing it to slide on the ground and to
deviate from its path. This sliding continues for the remaining part of the contact
zone, until point C is reached. The contact zone can thus be divided into two parts:
a leading zone where no sliding occurs and a trailing one where the tread slips
toward the midplane. This second zone grows with the sideslip angle (Fig. 4.22b),
until it includes the whole contact zone and the wheel actually slips on the ground.

The lateral deformations of the tire are plotted in a qualitative way in Fig. 4.23,
together with the distribution of the normal and tangential forces per unit area o,
and 7y, and of the lateral velocity. The resultant F), of the distribution of side forces

150ften the sign of the inclination angle is defined with reference to frame XY Z, while the sign
of the camber angle depends on whether the wheel is at the right or left side of the vehicle. Here
reference to frame XY Z will always be made.
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Fig. 4.22 Wheel-ground contact when a sideslip angle is present. (a) Contact zone and path of a
point belonging to the midplane of the tread band. (b) Contact and slip zones at various sideslip
angles o (from G. Genta, L. Morello, The Automotive Chassis, Springer, New York, 2009)
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is not applied at the center of the contact zone but at a point which is located behind
it at a distance . Such a distance is defined as the pneumatic trail.
The moment

M, = Fyt

is the aligning moment as it tends to force the mean plane of the wheel toward the
direction of the velocity V. At first the absolute value of the side force Fy grows
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Fig.4.24 Side force Fy and aligning moment M, for pneumatic tires of the same size but different
type. Tire 5.60-13; F; =3 kN, p = 170 kPa; V =40 km/h (from G. Genta, L. Morello, The
Automotive Chassis, Springer, New York, 2009)

almost linearly with «, then, when the limit conditions of sliding are approached,
in a slower way. Eventually it remains constant, or decreases slightly, when sliding
conditions are reached.

The side force F) is plotted as a function of « for the cases of a radial and a bias-
ply pneumatic tire in Fig. 4.24a. Radial tires show a “stiffer”” behavior than bias-ply
ones for what side forces are concerned, as they require smaller sideslip angles to
produce the same side force.

With increasing sideslip angle, 7y is more evenly distributed and the pneumatic
trail decreases. The aligning moment is thus the product of a force which increases
with « and a distance which decreases; its trend is consequently of the type shown in
Fig. 4.24b. At high values of «, M, can change direction, as is shown in the figure.

The side force coefficient

is often used for the side force. Its maximum value py, is usually defined as the laz-
eral traction coefficient, while the value of the lateral traction coefficient in sliding
conditions is [y, .

The cornering force increases linearly with o for low values of the sideslip angle.
The slope d Fy /0« of the curve in the origin is usually defined as cornering stiffness
or cornering power and written as C. Since the cornering stiffness is expressed as
a positive number while, at least in the initial part of the curve Fy (o) the derivative
0F)/0a is always negative, the cornering force can be expressed, for low values
of «, as

F, = —Ca. 4.119)

Expression (4.119) is quite useful to study the dynamic behavior of vehicles un-
der the assumption of small sideslip angles, as it actually occurs in normal driving
conditions. In particular, it is essential in the study of the stability of linearized mod-
els.

Also the aligning moment can be expressed by a linear law

M, = (M) o, (4.120)
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where (M) o is the derivative d M, /da computed for vanishingly small @ and is
defined as aligning stiffness coefficient or simply aligning coefficient. This linear re-
lationship holds for a much more restrict range of sideslip angles than that regarding
the cornering force.

Remark 4.25 Both force Fy and moment M, depend on many factors, besides the
angle o, as normal force F;, speed, pressure p, ground conditions etc.

At increasing speed, the curve Fy () lowers, mainly in the part corresponding to
the higher values of the sideslip angle. The linear part remains almost unchanged.
Also the pneumatic trail ¢ decreases with increasing speed and consequently the
aligning torque shows a decrease which is more marked than that of the side force.

The decrease of Fy, t and M, is more pronounced in the case of bad ground con-
ditions. As far as hydrodynamic lifting (hydroplaning) is concerned, the same con-
siderations seen for the longitudinal force Fy can be repeated for the side force F).

If the mean plane of the wheel is not perpendicular to the ground, i.e. if an incli-
nation or camber angle y (Fig. 4.25a) is present, the wheel produces a lateral force,
even if no slip angle is present. It is usually said camber thrust or camber force,
as distinct from the cornering force, due to sideslip angle alone. The total side or
lateral force is given by the camber force added to the cornering force. The camber
force is usually far smaller than the cornering force, at least at equal values of angles
o and y. It depends on the load F;, is practically linear with it (Fig. 4.25), and is
strongly dependent on the type of tire considered.

Remark 4.26 The camber and sideslip force act in the same direction (i.e. the cam-
ber force helps in producing the lateral force needed to bend the trajectory) if the
wheel leans toward the inside of the bend, like in motorcycles. If the wheel leans
outwards, the camber thrust detracts from the cornering force.

The camber thrust is usually applied in a point leading the center of the contact
zone, producing a small moment M, that is usually neglected, due to its small
value. Bias-ply tires usually produce greater camber thrusts and moments than radial
ones.

Usually both sideslip and camber are simultaneously present. Ideally, when both
sideslip and camber angle are equal to zero the lateral force and the aligning torque
should be vanishingly small. In pneumatic tires, this is in practice not true for a
number of reasons. Firstly, the lateral behavior of tires exhibits a hysteresis, in such
a way that when the zero sideslip angle condition is reached from a condition in
which a force was exerted in a certain direction, a small residual force in the same
direction remains. This can give a feeling of lack of precision of the steering system
and compels the driver or the control system to make continuous corrections.

Moreover, the center of the hysteresis cycle is not at the point in which both angle
and force are equal to zero: owing to lack of geometrical symmetry, a tire working in
symmetrical conditions may produce a side force. A first effect is due to a possible
conicity of the outer surface of the tire: a conical drum would roll on a circular
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path whose center coincides with the apex of the cone. Conicity is due to lack of
precision during the manufacturing process and hence is linked with manufacturing
quality control; its direction is random and its amount changes from tire to tire of the
same model. If a tire is turned on the rim of the wheel, the direction of the conicity
is reversed, as is the force it causes when the tire rolls along a straight path.

In pneumatic tires, another unavoidable lack of symmetry is linked with the an-
gles of the various plies and their stacking order; the effect it causes is called ply
steer. If the wheel rolls free, ply steer causes it to roll along a straight line angled
with respect to the plane of symmetry; if the wheel rolls with no sideslip angle the
generation of a side force results. If a tire is turned on the rim the direction of the
force due to ply steer is not reversed. As it is caused by a factor included in the tire
design, unlikely the effect of conicity, that of ply steer is consistent between tires of
the same model.

Generally speaking, the lateral force offset is subdivided into two parts: the part
which does not change sign when the wheel is turned on the rim is said to be ply-
steer force, while the part that changes sign is said to be conicity force.

Conicity effects may be present also in non-pneumatic tires, while ply steer is
too dependent on the structure of the wheel to say anything before the exact design
is defined. While conicity can be included into the models of the tire only in a
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statistical way, ply steer is one of the peculiarities of each tire and can be accounted
for with precision.

Remark 4.27 While these effects are usually considered as a nuisance, opposite ply
steer of the wheels of a given axle can be used as a substitute for toe-in or toe-out.
While the latter two increase the rolling resistance the former has no effect on it.

The ratio between the cornering stiffness and the normal force is usually referred
to as cornering stiffness coefficient (the term cornering coefficient is also used but
SAE recommendation J670 suggests to avoid it for clarity). For bias-ply tires it is of
the order of 0.12 deg ™' = 6.9 rad ™! and for radial tires of the order of 0.15 deg™! =
8.6rad ™.

In the same way the camber stiffness can be defined as the slope of the curve
Fy(y) for y =0:

oFy
Ty

The camber thrust produced by a positive camber angle is negative and hence
the camber stiffness is negative. The ratio between the camber stiffness and the
normal force is usually referred to as camber stiffness coefficient. This coefficient
is higher for bias-ply tires than for radial tires: in the first case an average value
is of the order of 0.021 deg™! = 1.2 rad~! and in the second is of the order of
0.01 deg~! = 0.6 rad™".

The value of the camber stiffness is important in the case a wheel rolls on a road
with a transversal slope with its midplane remaining vertical: in this case there is a
component of the weight which is directed downhill and the camber thrust which is
directed uphill. The net effect can be in one direction or the other depending on the
magnitude of the camber stiffness coefficient: the downhill component of the weight
is

4.121)

w Sin(a[) ~ WOl[,

where «; is the transversal inclination of the road while the camber thrust is equal
to the weight multiplied by the camber stiffness coefficient and the angle. It is clear
that if the value of the camber stiffness coefficient is larger than one (measured in
rad™1), as it occurs for bias ply tires, the net force is directed uphill; the opposite
occurs for radial tires. This situation occurs when a rut is present in the road: a radial
tire tends to track in the bottom while a bias-ply tire tends to climb out of the rut.
To include camber thrust into the linearized model, (4.119) can be modified as

Fy=—Ca+C,y. (4.122)

It can be used with confidence for values of « up to about 4°and of y up to 10°.
The effect of the camber angle can be included in the linearized expression of the
aligning torque by modifying (4.120) as

MZ = (Mz),aa + (Mz),y Y, (4.123)
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where (M), is the derivative 0 M, /0y computed for vanishingly small o and y
but, as already stated, the second effect is so small that is usually neglected.

Equation (4.123) supplies a good approximation of the aligning torque for a range
of « far more limited than that in which (4.119) holds. It must, however, be noted
that the importance of the aligning torque in the study of the behavior of the vehicle
is limited and consequently a precision lower than that required for side forces can
be accepted. Practically, a good approximation of the aligning torque is important
only when studying the steering mechanism.

The aligning stiffness coefficient due to sideslip angle is of about 0.01 m/deg
(Nm/N deg) for bias ply tires and of 0.013 m/deg for radial tires while that due to
camber (aligning camber stiffness coefficient) is approximately of 0.001 m/deg for
the first ones and of 0.0003 m/deg for the latter.

A small aligning moment is due to the curvature of the path even if the sideslip
angle is equal to zero; however, this effect is not negligible only if the radius of
the trajectory is very small, of the order of a few meters, and consequently it is
present only in low speed manoeuvres. It may be important for the dimensioning
the steering system for the mentioned conditions.

The definition of the cornering coefficient implies that the cornering stiffness is
linear with the normal load F;; actually the cornering stiffness behaves in this way
only for low values of force F, and then increases to a lesser extent (Fig. 4.26).
When the limit value has been reached it remains constant or slightly decreases. It
is often expedient to approximate the cornering stiffness as a function of the load
with two straight lines, the second of which is horizontal. Note that in the figure
the line corresponding to a sideslip angle of 2° refers to the true cornering stiffness
while the other curve (@ = 10°) is related to a sort of ’secant’ stiffness.

When the need for a more detailed numerical description of the lateral behavior
of a tire arises, there is no difficulty, at least in theory, to approximate the experimen-
tal law Fy(a, y, F;, p, V,...) and the similar relationship for the aligning torque,
using the algorithms which are common in numerical analysis. This approach can
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be used with success in the numerical simulations of the behavior of the vehicle,
even if it is often quite expensive in terms of time needed for data preparation and
computation. A problem which is common to many numerical approaches like this
is that of requiring a great amount of experimental data, which are often difficult, or
costly, to obtain.

Polynomial approximations, with terms including the third power of the slip an-
gle a, can be used.

As already stated, (4.117) can also be used to express the cornering force and the
aligning moment as function of the various parameters.

In the case of the side force, the magic formula is

Fy = Dsin(Carctan{ B(1 — E)(c + S;) + E arctan[ B(e + Sp)|}) + Sy, (4.124)

where the product of coefficients B, C and D yields directly the cornering stiffness.
The values of the coefficients are

C=ay, D=p,,F,
where a value of 1.30 is suggested for ap and py, = a1 F; + az,

E=acF; + ay,

. F;
BCD = azsin| 2arctan( — ) (1 —as|y|),

as
Sy =agy +ayF; + ayo,
Sy =anyF; +ank; +as.

To obtain a better description of the camber thrust, the constant aj; is often sub-
stituted by the linear law

air =amF; +an.

Coefficients Sy and S, account for ply steer and conicity forces.
Similarly, in the case of the aligning torque the formula is

M = Dsin(C arctan{B(1 — E)(« + Sp,) + E arctan[ B(« + Sp)]}) + Su. (4.125)
C =y, D=c1F22+c2FZ,
where a value of 2.40 is suggested for cg,
E = (e7F? +csF. + o) (1 = caoly),
BCD = (c3F? + c4F.) (1 — coly|)e 5",
Sp=cny +c2F; +ciz,
Sy = (014FZ2 +ci5F,)y +ci6F: +c17.
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Fig. 427 Curves Fy(a) and M, () obtained by using the “magic formula” (4.124) and (4.125).
Radial tire 205/60 VR 15 6] (from G. Genta, L. Morello, The Automotive Chassis, Springer, New
York, 2009)

Also in this case the units introduced into the magic formula (4.124) and (4.125)
are usually not consistent: the load F; is often expressed in kN, angles & and y are
in degrees, Fy and M are obtained in N and Nm, respectively.

The curves Y (o) and N, (o) for values of the vertical load F; equal to 2, 4, 6 and
8 kN for a radial tire 205/60 VR 15 6] are shown in Fig. 4.27.

It is also possible to build structural models of the tire to express the forces it
exerts by taking into account the deformations and stresses their structure is sub-
jected to. Apart from very complex numerical models, mainly based on the finite
element method, which allow one to compute the required characteristics but are so
complex that they are of little use in vehicle dynamics computations, it is possible
to resort to simplified models, dealing with the tread band as a beam or as a string
on elastic foundations.'® These models allow one to obtain interesting results, par-
ticularly from a qualitative viewpoint, as they link the performance of the tire with
its structural parameters, but their quantitative precision is usually smaller than that
of empirical models, in particular of those based on the magic formula which is now
a standard in tire modeling.

If the wheel travels with a sideslip angle «, as it is the case any time it exerts a
side force F)y, a strong increase of rolling resistance can be expected. The force in
the mean plane of the wheel increases but above all the transversal force Fy has a
component which adds to the rolling resistance (Fig. 4.28). The rolling resistance is
by definition the component of the force due to the road-tire contact directed as the
velocity V; it can thus be expressed as

F, = Fycos(a) + Fy sin(@). (4.126)

16Gee, for instance, J.R. Ellis, Vehicle Dynamics, Business Books Ltd., London, 1969; G. Genta,
Meccanica dell’ autoveicolo, Levrotto & Bella, Torino, 1993. In the case of elastic non-pneumatic
wheels such models may be more accurate than for pneumatic tires.
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Fig. 4.28 Rolling resistance coefficient as a function of the slip angle «. Pneumatic tire 7.50-14,
F, =4 kN, p =170 kPa (from G. Genta, L. Morello, The Automotive Chassis, Springer, New
York, 2009)

If the component in the plane of symmetry of the wheel Fy were independent of
the sideslip angle and the cornering force Fy were linear with it, (4.119), for small
values of « the rolling resistance would follow a quadratic law

F.=F, — Ca’. (4.127)

If the mean plane of the wheel is not perpendicular to the ground, a component
of the aligning torque M, contributes to rolling resistance. Equation (4.93) becomes

—F,Ax cos(y) — M, sin(y)
F. = R .

(4.128)

Remark 4.28 This effect is usually small, due to the fact that y is usually small. It
is, however, dependent on the sideslip angle « through the aligning torque M.

Interaction Between Longitudinal and Side Forces

The considerations seen in the preceding sections apply only in the case in which
longitudinal and side forces are generated separately. If the tire produces simultane-
ously forces in longitudinal and lateral direction the situation can be different as the
traction used in one direction limits that available in the other.

By applying a driving or braking force to a tire that is rolling with a sideslip
angle, the cornering force reduces and the same applies to the longitudinal force a
tire can exert if it is called to exert also a lateral force.

It is possible to obtain a polar diagram of the type shown in Fig. 4.29a in which
the force in Y direction is plotted versus the force in X direction for any given value
of the sideslip angle «. Each point of the curves is characterized by a different value
of the longitudinal slip o. In a similar way it is possible to plot a curve F)(Fy) at
constant o
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Fig. 4.29 Polar diagrams of the force exerted on the wheel with constant sideslip angle. (a) Ex-
perimental plots; (b) elliptic approximation (from G. Genta, L. Morello, The Automotive Chassis,
Springer, New York, 2009)

Remark 4.29 The curves are not exactly symmetrical with respect to the Fy-axis:
Usually tires develop the maximum value of the force F, when they exert a small
longitudinal force, particularly at a moderate sideslip angle.

If F is the total force exerted on the wheel by the road while Fy and F), are its
components, the resultant force coefficient is

F 2 2
u:F:‘/ux—i—uy. (4.129)
Z

The various curves plotted for different values of « are enveloped by the polar
diagram of the maximum force the tire can exert. If it were a circle, the so-called
traction circle, as in simple models it can be assumed to be, the maximum force
coefficient would be independent of the direction.

Actually, not only the value of iy is greater than that of u, but, as already stated,
there is some difference in longitudinal direction between driving and braking con-
ditions. The envelope, as well as the whole diagram, is a function of many param-
eters. Apart from the already mentioned dependence on the type of tire and road
conditions, there is a strong reduction of the maximum value of force F' with the
speed, which is particularly strong in conditions of low traction.

A model allowing one to approximate the curves F), (F)) at constant o with sim-
ple functions can be quite useful. This can be obtained by using the elliptical ap-

proximation (Fig. 4.29b)
F, 2 F, 2
L) +(=) =1, (4.130)
F)’O FXO

where forces F, and Fy, are, respectively, the force Fy exerted, at the given sideslip
angle, when no force Fy is exerted and the maximum longitudinal force exerted at
zero sideslip angle. The envelope curve is then elliptical, the traction ellipse.

If (4.130) is used in order to express function Fy (FY), the cornering stiffness of
a tire which is exerting a longitudinal force Fy can be expressed as a function of
the cornering stiffness Cy (i.e. the cornering stiffness when no longitudinal force is
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produced) by the expression

Fy \?
C=Col1— , (4.131)
upFy

where force Fy, has been substituted by 1, F.

Although a rough approximation, particularly for the case in which the longitu-
dinal force approaches its maximum value (the differences between the curves of
Fig. 4.29a and those of Fig. 4.29b are evident), the elliptical approximation is often
used for all the cases where the concept of cornering stiffness is useful.

The empirical model expressed by (4.117) and (4.124) can be modified to allow
for the interaction between longitudinal and lateral forces in a better way than that
of computing separately the two forces and then using the elliptic approximation.

4.3.7 Tangential Forces: Rigid Wheel on Compliant Ground

The situation of a wheel rolling on unprepared ground is similar to that described
above, but the longitudinal and lateral slip is larger and the maximum force that can
be obtained is usually smaller.

Consider a rigid wheel rolling on compliant ground or, as it is sometimes the
case, a compliant wheel rolling on ground that is so soft that the wheel remains
undeformed. In this case the deformation and the slip occur in the ground instead of
occurring in the wheel and the situation is that shown in Fig. 4.11a.

If a driving or braking torque is applied to the wheel, in the contact area the wheel
exerts on the ground a longitudinal shear stress 7y, while a lateral shear stress ty is
exerted in presence of a sideslip angle «.

The maximum shear stress that the wheel can withstand is expressed by the spe-
cific shear resistance of the soil (4.14):

70 = ¢ + o tan(¢),

where the pressure o is in general not constant in the contact area. To the thrust

supplied by the resultant of such shear stresses a further force due to the spuds that

may be present at the periphery of the wheel, expressed by (4.31), must be added.
A longitudinal slip can be defined as seen in (4.17)!”

_QR-V _ V¥

o=——=1-—. (4.132)
2R 2R

17 As already stated, this definition is equivalent but not identical to that suggested by SAE. How-
ever, at the denominator both the velocity of the wheel V or the peripheral velocity §2R can be
used.
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Fig. 4.30 Rigid wheel on z
compliant ground with no
elastic return: geometrical
definitions

The slip velocity at point P (see Fig. 4.30, in which the elastic return has been
neglected) is

V=80R—Vcos() =R2R[1 - (1 —0)cos(®)]. (4.133)

The distance traveled backward by point P, i.e. the soil deformation is

t 6
d:f vgdtzRf 0[1—(1—0)005(9)]d9, (4.134)
0 0

ie.
d=R(y—06)—R( — a)[sin(@o) - sin(@)]. (4.135)
Using the formula suggested by Wong (4.20), the shear stress at point P is

7:(0) = [c + o, tan(@) ][ 1 — e‘%{‘90‘9>‘(‘“’)[Sm%)‘““(@)”]. (4.136)

The longitudinal modulus of shear deformation K, has been used instead of K,
to take into account the fact that the modulus of shear deformation in x direction
may be different from that in y direction.

The pressure is a function of 6, for instance expressed by (4.48)

o, =R" (%‘ + kd,) [cos(8) — cos(80)]". (4.137)

The more complex expression (4.54) can be used as an alternative.
The forces in x and z directions are thus obtained by performing the integrals

6
F, = Rb/ 0[az(e) cos(0) + 7.(0) sin(9) ] db, (4.138)
0y

[
F.=Rb / "[~02(60) sin(0) + 7, (0) cos(8)] de. (4.139)
o,
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The wheel torque is
o
M, = R%b f T(0)d6. (4.140)
0y

These integrals must be performed numerically. The normal force F; is usually
known and (4.138) can be used to compute the sinkage of the wheel, i.e. to compute
6o as a function of F, and of the longitudinal slip ¢. This implies to compute the
integral for various values of zg, i.e. of 6y and 6,, and then to find the value that
corresponds to the given force F,. Once the sinking of the wheel has been obtained,
the other two equations allow one to compute the longitudinal force and the moment
as functions of the slip.

Remark 4.30 The longitudinal force so obtained is the total longitudinal force, ex-
erted by the driving wheel with the compaction resistance already accounted for.
The net longitudinal force is usually referred to as the drawbar pull.

The computation has been performed assuming that the wheel is driving, and the
conditions are different from those of a towed wheel: in particular, in the case of a
towed wheel the shear stresses are not directed in the same direction in the whole
contact zone.

If angle 6y is small, the normal component of the tangential forces can be ne-
glected, and the vertical force can be assumed not to be influenced by the longitudi-
nal slip. The sinkage can thus be computed as seen in Sect. 4.3.3.

For the evaluation of the longitudinal force the pressure can be considered a
constant in the contact zone, obtained by dividing the normal force by the contact
area. Assuming that the ground is perfectly anelastic (6, = 0), the expression of Fy
reduces to

FZ 90 Ro
Fy ~ Rb|:c + tan(¢)i| / [1—e & @N]as. (4.141)
0
This yields
F K Ro
F, %bR@o[wl— ftan(¢):| [1 — W(l _6—790)]’ (4.142)

which coincides with (4.27).

Remark 4.31 To obtain the drawbar pull, the compaction resistance should be sub-
tracted from the force so computed, but this approach introduces further errors, since
the former was obtained assuming that the wheel is towed.

On compliant ground, usually characterized by high rolling drag and low avail-
able traction, in most cases motion is possible only if all wheels are driving wheels.
If some of the wheels are not driving, the traction the driving wheels can supply may
not be sufficient to overcome the drag (mostly compaction, but also bulldozing) of
the free wheels and motion may be impossible, even on level road.
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If the wheel works with a non negligible sideslip angle, a lateral force results.
Since the wheel sinks for a certain depth in the ground, a bulldozing force acting on
the side of the wheel must be added to the force exerted on the cylindrical surface
of the wheel owing to the tangential stresses in lateral direction T, .

The total lateral force is thus

0o o
Fy = Rbf 7,(0) dO + / Fyp [R —h COS(@)] deo. (4.143)
6, 6,

The lateral tangential stresses 7, are expressed by a relationship similar to (4.136)
in which the lateral displacement

d=R(1 —0)(6 — ) tan(cx) (4.144)

is introduced in place of the longitudinal displacement:

_R q_ _
7,(0) = [c + o, tan(¢) ][ 1 — ¢~ Ky (177 E@] (4.145)

The second part of the expression of the lateral force is the bulldozing force,
expressed following Ishigami et al.,'® where / is the depth of sinking

h(0) = R[cos(6) — cos()]

and Fyy, is the bulldozing force per unit width

ph*(©)
Fyp=Dy|ch(9) + D, > , (4.146)
where p is the ground density and
_ o @ o @
D =cot{ 45 —3 + tan| 45 +§ , 4.147)
D, = cot(45° - %) + tan(¢) cot’ <45° — %) (4.148)

This formulation relies on the same approximation for the destructive angle given
by Bekker as the expression of the bulldozing resistance in (4.74).

The bulldozing component of the side force does not depend on the sideslip an-
gle: it is zero if the latter vanishes, and has the mentioned value if o # 0. A smoother
behavior is to be expected in actual conditions, but this drawback is not very impor-
tant: the bulldozing component is quite small anyway and could even be neglected
except in the case of large sinking, particularly in frictional soil.

183, Ishigami, A. Miwa, K. Nagatani, K. Yoshida, Terramechanics-Based Model for Steering Ma-
neuver of Planetary Exploration Rovers on Loose Soil, Journal of Field Robotics, Vol. 24, No. 3,
pp- 233-250, 2007.
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Another point must be considered: while the lateral force depends on the longi-
tudinal slip, the longitudinal and vertical forces do not depend on the sideslip angle.
This type of interaction between the longitudinal and lateral forces is questionable.

Example 4.6 Consider the Mars rover with 6 rigid wheels already studied in Ex-
ample 4.4. It operates on the same ground whose characteristics are similar to lunar
regolith. The data are:

General: m = 150 kg, g =3.77 m/s2; wheels: R = 150 mm; b = 80 mm; soil:
n=1, ¢ =200 Pa, ¢ =35° k. = 1,400 N/m?, kg = 820,000 N/m3, K, =
Ky =18 mm, ap = 0.4, a; = 0.1 and p = 1,700 kg/m3. Assume that the soil
is either perfectly anelastic (A = 0) or has a weak elastic return (A = 0.2).

Plot the longitudinal force and driving moment as functions of the longitudinal slip
and compare them with those obtained using the simplified models. Plot also the
lateral force as a function of the sideslip angle.

Assuming that the load is equally subdivided on the six wheels, the results ob-
tained in the previous example for rigid wheels on anelastic ground were F, =
94.25 N, zo = 25 mm, pmax = 20.6 kPa. The compaction resistance was 20.2 N
per wheel. The value of 6y corresponding to a sinkage of 25 mm is

00 = arcos(l —_ %) —0.586 rad = 33.26°.

The vertical force can be obtained by integrating numerically equation (4.138).
Since the value of the vertical force is known, for each value of the slip it is thus
possible to obtain the value of 6y, i.e. of the sinking of the wheel.

The results are reported in Fig. 4.31a: in the present case the sinking is almost
independent from o, while in most cases it decreases with increasing longitudinal
slip showing that the wheel floats better when exerts a driving force.

This result depends much on the pressure distribution assumed, and in particular
on the value of coefficient a;. The sinking computed using the present formulas
(for A = 0) is larger than that obtained in Example 4.4, since there the pressure was
assumed to be distributed on the ground in a different way.

Equations (4.139) and (4.140) are integrated for different values of the slip to
yield the longitudinal force and the moment. The results are plotted as functions
of the slip in Fig. 4.31b. When the slip is small, the longitudinal force is the draw-
bar pull and is negative, i.e. the wheel is exerting a resisting force, the compaction
resistance, and not an actual traction.

The net traction coefficient, obtained by dividing the drawbar pull by the normal
force, is reported as a function of the slip in Fig. 4.31c. In spite of the fairly large
sinking, the net traction coefficient is not too low.

The pressure and the tangential stress are reported as functions of angle 6 in
Fig. 4.31d: the computation has been performed for o = 0.2.

The lateral force was computed by integrating (4.143) for different values of o
and «. The results are reported in Fig. 4.32. From the figure it is clear that in the
present case the influence of the bulldozing force on the results is marginal and can
be neglected.
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Fig. 4.32 Cornering force as a function of the side slip angle for different values of coefficient A
and of the longitudinal slip o

4.3.8 Tangential Forces: Compliant Wheel on Compliant Ground

The two cases here studied, compliant wheel on rigid ground and rigid wheel on
compliant ground, are limiting cases. If both are compliant some slip occurs in both
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and the situation is more complicated. A much simplified model in which the slip is
assumed to occur only in the ground is, however, reported here on the grounds that
the stiffness in longitudinal and lateral direction of the tire is much higher than the
stiffness in radial direction.

As a consequence, the outer part of the wheel, i.e. the thread band, behaves as a
rigid body in circumferential and axial direction, while bending in the plane of the
wheel, and each one of its points travel at a constant speed equal to §2 R.

The situation may be modeled as shown in Fig. 4.15, and the pressure can be
assumed to be constant and equal to the pressure p; + p. causing the elastic wheel
to yield in the second part of the contact. In the first part the pressure is given by the
usual expression

o = (% + k¢>h" =K (k? + ’%) [cos(8) = cos@0)]".

As already stated, if angle 67 is small enough to assume that its cosine is nearly
equal to 1, point A can be obtained from the equation

ke n
OrA = z"‘kqb h] =pi+ Pc

yielding

hy = b—pi+pc v
ke + bky ’

This approach has the disadvantage of yielding a pressure that does not vanish in
the point where the contact is released. The x coordinate of point A is

xA = Rsin(6y). (4.149)
The longitudinal slip length is
d= () —0) — (1 —o)[sin(6) — sin(®)], (4.150)
along arc AB (i.e. for 6] <0 < 60p) and
d=c61—60)+6o—01)— (1 — o)[sin(@o) — sin(@l)], (4.151)

along line A’A (i.e. for —0; <0 <6y).

If angle 6 is small enough to linearize its trigonometric functions (sin(8) ~ 6),
the expression of the longitudinal shear stresses at a generic point of the contact
zone is

Ro

7:(0) = [c + o tan(@)|[1 — e K @], (4.152)

In a similar way, the lateral shear stress is

R
7,(0) = [c + o, tan(g) ][ | — ¢~ Ky 177D @7, (4.153)
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The forces can thus be obtained by integrating the pressures on the contact zone:

[
F, = Rb/ 0[0, (B)cos(0) + t,(0) sin(G)] dO +2Rbx(p; + pc), (4.154)
0

1

0 01
F, = Rb/ 0[—(;,(9) sin(8) + 7 (6) cos(9)] d6 + Rb/ :(0)do, (4.155)
0 —6;

1

0o
Fy= Rb/ 7,(60) do. (4.156)
-6

In the last equation the bulldozing force has been neglected.

The first equation allows to compute the value of 6y from the known value of the
normal force F,, while the other two equations allow to compute the longitudinal
and transversal forces Fy (o) and Fy(«, o).

In this case the sinking of the wheel /] is almost independent of o and may be
considered as a constant, while 6, although depending on the load, is little affected
by the slip.

This model, however, is just a first approximation and its results must be consid-
ered as indicative.

Remark 4.32 In general, when a compliant wheel travels on soft ground, the de-
formation of the soil contributes to the sideslip and the cornering stiffness can be
expected to decrease. The picture is made more complex by the possibility of the
presence of a bulldozing component of the side force. The latter consideration holds
particularly in the case of a rigid wheel on very soft ground.

Example 4.7 Consider the same elastic wheel for a Mars rover seen in Exam-
ple 4.5 and assume the same data for vehicle, wheels and soil: number of wheels
n==6m=150kg, g =3.77 m/s>, R =150 mm; b = 80 mm, p. =5 kPa, n =1,
¢ =200 Pa, ¢ = 35°, k. = 1,400 N/m?, kg = 820,000 N/m>. Assume an inflation
pressure p; =5 kPa and moduli of shear deformation Ky = K, = 18 mm.

Compute the longitudinal force as a function of the longitudinal slip and the
lateral force as a function of the sideslip angle.

Since the force acting on each wheel is F; = 94.25 N, the sinkage of a rigid
wheel (i.e. a wheel inflated at more than 15.6 kPa) was computed in Example 4.5 as
zo =25 mm. At a pressure p; = 5 kPa a sinkage of 11.9 mm was obtained.

The results for rigid wheels (p; > 15.6 kPa) are different from those obtained in
Example 4.6 since in that example a different distribution of the vertical pressure
was assumed.

The results for p; =5 kPa are plotted in Fig. 4.33.

4.3.9 Tangential Forces: Empirical Models

The models seen above for compliant ground rely on the terramechanics approach
and are based on many crude assumptions. Models of this kind require experimental
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Fig. 4.33 Tangential force and aligning moment on a compliant wheel rolling on compliant
ground. (a) Longitudinal force and aligning moment as functions of the longitudinal slip; (b) cor-
nering force as a function of the side slip angle for different values of the longitudinal slip 0. The
results of the approximated empirical formulae are also reported (dotted lines)

validation performed in conditions simulating as closely as possible the actual situ-
ation.

Once the forces acting between the wheel and the ground have been measured,
it is possible to compute the coefficients to be introduced into equations of the type
of the magic formula to summarize the experimental results in a few equations that
can be included in the model of the vehicle.

The magic formula is known to yield accurate results, but requires many experi-
mental data from which to compute the tens of coefficients involved.

A simple, although much less accurate approach is that of using the following
exponential expressions:

e Longitudinal force (drawbar pull):

__GCo
Fo(0) =sgn(o)pe, F.[1—¢ 707 "= |F, |, (4.157)

where C, is the longitudinal force stiffness, which can be computed from the
slope of the curve in the point for o = 0, | Fy, | is the resistance to motion at c =0
and /iy, F; is the force at the horizontal asymptote. It can be computed from an
experimental value of the longitudinal force Fy; and the corresponding value of
the slip o from the equation

— ol
sgn(ol)uprz[l —e Mtz ] — Fy —|F, | =0. (4.158)
e Lateral force (at 0 = 0):
,L‘(ﬂ
Fy(a) = —sgn(@)py, F [l —e v, (4.159)

where C is the cornering stiffness, computed from the slope of the curve in the
point for & = 0 (changed in sign) and 1, F is the force at the horizontal asymp-
tote. It can be computed from an experimental value of the cornering force Fy
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and the corresponding value of the sideslip angle «; from the equation
— ol
—sgn(a)py, F:[1—e "7 ] = Fy; =0. (4.160)
e Aligning moment

__C
M. (a) = sgn(a))M.ge~ ! |°“|[1 —e Mpfs \oul]’ (4.161)

where C is the cornering stiffness computed above, parameter M,y can be com-
puted from the slope in the origin from the equation

//Lprz dMZ
M,y=—L = 4.162
0 C ( da ( )

and C; can be computed from a pair of experimental values Mo and «.

The aligning moment is, however, more difficult to predict and the last expres-
sion can give only an indication. In case of compliant wheel on rigid road Mg
can be approximated as

My = é“yﬂ F.a (4.163)
where a is the length of the contact area. This expression comes from the as-
sumption that at small sideslip angles the lateral stress distribution is triangular.
If the ground is compliant, the contact area displaces forward (in some simplified
models it lies all forward of the intersection of the z axis with the ground) and the
aligning torque is negative even for small sideslip angles.

e Longitudinal-lateral forces interaction.

A simple way to account for the interaction is the already mentioned elliptic
approximation, yielding

Fe \?
(Fy)oz0 = (Fy)g=0,/1 — <N«x,, Fz) ) (4.164)

This approach yields only a first approximation evaluation.

Example 4.8 Approximate with exponential functions the longitudinal and lateral
forces of the elastic wheel seen in Example 4.7 as functions of the longitudinal slip
and the sideslip angle.

From the plots obtained in the previous example, it is possible to obtain

Drawbar pull: Co =240 N, puy, F; =61.8 N (i.e. px, = 0.66), |Fy, | =4.68 N.
Cornering force: C =254 N/rad, Ky, Fz = 68.0N (i.e. Ky, = 0.72).

The results obtained through these approximated formulae are plotted in Fig. 4.33,
dotted lines. The results are quite close to the ones previously obtained, particularly
for the longitudinal force.

In the same figure the interaction between longitudinal and lateral forces obtained
using the elliptical approximation are also reported. Here the results are clearly less
accurate, in particular for values of o larger than 0.2.



218 4 Mobility on Planetary Surfaces

4.3.10 Dynamic Behavior of Tires

Elastic wheels are prone to vibrate and their dynamic behavior is important in de-
termining the forces transferred to the vehicle.

In particular, the forces the wheel exchanges with the ground in dynamic condi-
tions are different from those characterizing steady-state running. If the geometrical
parameters (slip, slip angle and camber angles) or the forces in X and Z directions
are variable during motion, the values of the longitudinal and side force and of the
aligning moment at any instant are usually lower than those which would character-
ize stationary conditions with the same values of all parameters. As an example, if
a tire is tilted about the vertical axis at standstill and then it is allowed to roll, the
side force reaches the steady-state value only after a certain time, after rolling for
a certain distance, usually referred to as relaxation length. This effect is usually not
noticeable in normal driving as the time delay is very small, but the fact that there
is a delay between the setting of the sideslip angle and the force generation is very
important in dynamic conditions.

If the sideslip angle is changed with harmonic law in time, the side force and
the aligning torque follow the sideslip angle with a certain delay, function of the
frequency, and their value is lower than that obtained in quasi-static conditions, i.e.
with very low frequency.

If the frequency is not very high, at the speeds encountered in normal driving
the average values are not much lower than those characterizing static conditions,
but a certain phase lag between the sideslip angle and the Fy force remains. More
important for what practical applications are concerned is the case in which the
load F, applied by the wheel on the ground is variable, as is the case of rolling on
uneven ground (Fig. 4.34). The frequency may be high, if the speed is high enough,
and the decrease of lateral force due to dynamic effects may be large. In the figure
the law z(¢) of the vertical displacement of the hub of the wheel is harmonic with
a frequency of about 7 Hz while the response £y (#) has a more complicated time
history, with even an inversion of sign occurring at each cycle. The decrease of the
average value of the lateral force at increasing frequency is shown in Fig. 4.34b.

Strictly linked with the dynamic behavior of the tire are the self-excited vibra-
tions of the wheel and the whole steering mechanism known as wheel shimmy. Such
vibrations are today mainly of historical interest, as modern vehicles are free from
this problem which was very important about half a century ago when it represented
an actual danger in the automotive and aeronautical fields.

Remark 4.33 If elastic non-pneumatic wheels are used at high speed on future
rovers, wheel shimmy may become again an actual danger.

4.3.11 Omni-Directional Wheels

It is possible to arrange wheels that have the possibility to roll freely in two di-
rections, i.e. omni-directional wheels. The simplest way this can be accomplished
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Fig. 4.34 (a) Lateral force generated by a pneumatic tire working with constant slip angle but
with the hub moving vertically with harmonic law z(¢). (b) Average value of the lateral force F)
as a function of the ratio between the circular frequency w of the law «(¢) and the speed V (from
G. Genta, L. Morello, The Automotive Chassis, Springer, New York, 2009)

Fig. 4.35 Omni-directional wheels. (a) Wheel with a row of rollers (VEX Robotics); (b) wheel
with two rows of rollers (North American Roller Products). In both cases the axes of the rollers lie
in the rotation plane of the wheel; (c) wheel with skew rollers (Airtrax)

is by locating rollers at the periphery of the wheel like in the examples shown in
Fig. 4.35 so that the motion in the plane of rotation is allowed by the rotation of the
wheel, while the motion in axial direction is allowed by the rollers. Omni-directional
wheels may then be considered as wheels with vanishing cornering stiffening.

The wheel may have a single row of rollers (Fig. 4.35a) or two rows (Fig. 4.35b)
so that at least one roller is always in contact with the ground in any position.

Usually omnidirectional wheels are propelled only in the longitudinally direc-
tion, while the rollers are free-wheeling. If the wheels of a vehicle are of this kind,
they must be set with their midplanes not parallel to each other, otherwise the mo-
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tion in a direction perpendicular to their midplanes is not controllable. Similarly, the
perpendicular to the midplanes of the wheels must not converge in a point, otherwise
rotation about that point cannot be controlled.

Another possibility is orienting the axes of the roller in a direction at an angle
with the symmetry plane of the wheel (Fig. 4.35¢). In this case the midplanes of the
wheels may be parallel and it is possible to produce lateral motion by differential
rotation of the wheels.

Omni-directional wheels have severe limitations. First, the rollers have a small di-
ameter (at least if compared with the diameter of the wheel), causing and increase of
the pressure on the ground and limiting their mobility on uneven ground. Moreover,
it is very difficult to protect the mechanisms of the roller from dust and dirt. Omni-
directional wheels are suitable only for motion on hard, flat and possibly horizontal
surfaces and thus they are seldom considered for planetary vehicles and robots. They
will no more be dealt with here.

4.4 Tracks

The main disadvantage of wheels in off road locomotion is the relatively high pres-
sure they exert on the ground. To decrease the pressure on the ground it is possible
to increase the size of the wheels, both in diameter and axial thickness, or to use
some unconventional layouts, like spherical wheels. However, this is a disadvantage
more felt in terrestrial applications than in planetary exploration vehicles, mainly
for two reasons:

e As already stated, all celestial bodies of the solar system that are possible targets
for exploration are characterized by fairly low gravity. The weight of even large
vehicles is much lower than on Earth and consequently the pressure the running
gear exerts on the ground is lower.

e The worst conditions encountered on Earth occur when the soil is very wet and
rich in organic material. But there is no mud on the surface of other planet and
the bearing capacity of regolith is much higher than that encountered in bad con-
ditions on our planet.

To reduce the pressure on the ground it is possible to use tracks instead of wheels:
a tracked vehicle is essentially a vehicle that lays a hard surface under its own wheels
that distributes the pressure on the ground on a larger area, and then removes it.

The pressure distribution on the ground depends on many parameters, like the
tightness and the flexibility of the track, the distance between the wheels or rollers
and the characteristics of the soil. The distribution of the tractive force depends
on the same parameters and also on the presence of treads or plates in a direction
perpendicular to the ground.

With respect to wheels, tracks are usually heavier, mechanically more complex
and produce a greater resistance to motion, at least on a soil with good carrying ca-
pacity. They become more convenient than wheels only when the carrying capacity
is low, causing the wheels to sink.
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Fig. 4.36 The tracked
microrover Nanokhod

For all these reasons tracks are seldom considered for planetary exploration ve-
hicles except when the particular characteristics of the vehicle would lead to unac-
ceptably high contact pressure if wheels where used.

Remark 4.34 Patches of very fine regolith with a low carrying capacity were anyway
found both on the Moon and on Mars, in particular close to the rim of some craters.
They resulted in severe mobility problems for wheeled vehicles. Tracks may prove
to be more suitable than wheels on these patches.

A further disadvantage of tracks is the difficulty of protecting the mechanisms,
and particularly the zone where the wheels are supported by the track, from sand and
dust. This is already a serious problems on Earth, but becomes much more severe
on planets where in general the dust is finer and the environment is much drier.

Tracks may be made of rigid plates hinged to each other or by a flexible ele-
ment, similar to a belt. In the first case the tracks are heavier, cause a larger energy
consumption and are subjected to a quicker wear in dusty environment.

One or the few examples of tracked rovers designed and built (but never used in
actual missions) is the Nanokhod microrover (Fig. 4.36).

Since tracks seem to be little suited for planetary exploration and exploitation
machines, they will not be further dealt with. The required details can be obtained
from the many books devoted to off-road locomotion, agricultural machinery and
military vehicles.

4.5 Legged Locomotion

Legged locomotion is the most common way of moving on the surface of our planet
used by animals of all kind. Continuous rotational motion is unknown in nature, ex-
cept for some microscopic animals which are propelled by the continuous rotation



222 4 Mobility on Planetary Surfaces

of cilia or flagella,'® and nothing similar to wheels was developed by evolution. The
number of legs on which animals support their weight during walking has contin-
uously reduced during evolution, while their layout assumed the configuration of
a chain of rigid segments, connected by cylindrical or spherical hinges—from the
filaments (parapods) of Annelida (e.g. the millipedes) to the articulated legs of the
arthropods. In the latter a continuous reduction of their number (ten in the crustacea,
eight in the Arachnida, six in the insects) has occurred. With terrestrial vertebrates
the number of legs reduced to four.

A high number of legs, together with a low position of the center of mass (i.e. a
small height of the center of mass if compared with the ‘track’ of the legs) allows the
animal to remain easily in static equilibrium conditions during all phases of walk-
ing. A quadruped, particularly if its center of mass is high, usually goes through
positions that are not of equilibrium and therefore must coordinate its movements
with a greater precision and have quicker reactions than a hexapod or an octopod.
Besides, the larger is the animal and the lower is the gravity of the planet, the easier
is to remain in equilibrium on fewer legs, in the sense that the response of the ner-
vous system to avoid tipping over may be less quick. From this point of view low
gravity simplify the operations linked with motion.

On the other hand, however, a maximum walking speed exists for any animal; to
go faster the animal must change its gait and perform a transition from walking to
running or jumping. This speed depends on the size of the animal and on the gravity
of the planet on which it moves. This dependence can be expressed by the Froude
number?’

Fr=— (4.165)

where V, g and L are, respectively, the speed, the gravitational acceleration and a
characteristic length, in this case the length of the legs.>! When the Froude number
reaches a value of about 0.7, a change of gait occurs: the animal starts running (in
some cases jumping), indicating that running becomes more efficient than walking.
Another important value is 1: when the Froude number is equal to unity walking is
no more possible. These considerations come from modeling the legs as pendulums
or inverted pendulums: when the speed reaches a value equal to /gL, i.e. F, =1,
the centrifugal acceleration of the inverted pendulum of length L, V?/L, equals the
gravitational acceleration and the pendulum lifts off the ground, which is incompat-
ible with walking. This means that the transition and the maximum walking speed
for a human with a leg length of 0.8 m are, on the surface of the Earth, 2 and 2.8 m/s
(7.1 and 10.1 km/h), respectively.

19A. Azuma, The Biokinetics of Flying and Swimming, Springer, Tokyo, 1992.
20The Froude number can be also defined as Fr = g—z, i.e. the square of that defined above. With
this definition it can be interpreted as the ratio between inertial and gravitational forces.

21G.A. Cavagna, P.A. Willems, N.C. Heglund, Walking on Mars, Nature, Vol. 393, p. 636, June
1998; A.E. Minetti, Invariant Aspects of Human Locomotion in Different Gravitational Environ-
ments, Acta Astronautica, Vol. 39, No 3-10, pp. 191-198, 2001.
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The energy requirements for motion is an important parameter, and from this
viewpoint locomotion on a solid surface is more expensive than swimming in water
or flying. The energy needed to move on level ground ideally should compensate
for the aerodynamic drag and energy losses at the foot—ground contact, mainly due
to irreversible deformations on the bodies in contact. Both these sources of losses
are small, at least in low speed walking on a hard surface. Most of the energy is
lost by internal friction and by the need to accelerate and decelerate continuously
some of the parts of the system (mainly the legs, but also the body, since usually
a walking animal or machine does not move at constant speed). Recovery of the
kinetic energy of the legs can thus be important from the energetic viewpoint and can
be achieved through their pendular motion. The optimal speed from this viewpoint
can be shown to correspond to F, = 0.5. For a human on Earth this speed is about
1.4 m/s (5§ km/h).

The energy dissipated for motion in the case of a walking vehicle is linked with
the irreversible deformation of the ground, compressed by the feet. If the soil is very
compliant there is a definite advantage with respect to wheeled vehicles: a walking
machine compresses just some small zones of soil where it puts its feet, while a
wheeled machine compresses a continuous strip of ground. Another advantage is
that the tractive force exerted by feet may be larger than that due to wheels in soft
and slippery ground. The bulldozing force due to the sinking of the feet may be
much larger than the traction force exerted by a wheel.

Another advantage is the possibility of adequately choosing where to put the feet:
just a number of ‘good’ spots are required and not a continuous strip. Similarly, also
the capability of overcoming obstacles is much better.

These advantages are often compensated by the much greater complexity of both
the mechanical design and the control system, which depend strictly on the exact
leg kinematics. These topics will be dealt with when dealing with the architecture
of walking machines.

Another weak point of legged locomotion is the need that the actuators supply
forces to support the weight of the machine even when non moving, or moving
very slowly. Natural actuators (muscles) do this with high efficiency, while most
artificial actuators, like electric motors, have a very low (even zero) efficiency in
this case.

Legged locomotion was often considered for planetary rovers, but seldom used
for prototypes and never in actual missions. This is justified considering that
wheeled vehicles have a tradition that cannot be matched by other configurations
and the designer can rely on a well consolidated technology, without the need of
resorting to simulations, experimental tests and other studies, slowing down the de-
sign process and increasing costs. But it is not just a matter of a consolidated design
practice: legged vehicles are usually highly stressed, have reciprocating parts un-
dergoing a large number of fatigue cycles, require complex control systems and in
some cases have a higher energy consumption in actual working, in spite of a greater
theoretical efficiency.
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4.6 Fluidostatic Support

If the solid surface of a celestial body is covered by a layer of fluid, be it a liquid or
a gas, it is possible to exploit fluidostatic forces to support a vehicle. On our planet
ships, balloons and blimps are all examples of fluidostatic vehicles.

The force a fluid exerts on any body immersed in it is the so-called Archimedes’
force:

F=pgV, (4166)

where p is the density of the fluid and V is the volume of the object, or better, of
the displaced fluid. The force is directed vertically upwards and (4.166) holds only
if the gravitational acceleration is constant in all the zone occupied by the body.

In such a case, the force is applied in the geometric center of the volume of
displaced fluid or center of buoyancy. If the body is only partially immersed in the
fluid, like in the case of surface ships, the position of the center of buoyancy changes
when the object rolls. Assume that the body has a longitudinal plane of symmetry,
and that in normal conditions it floats with the plane of symmetry vertical. To assess
the stability of this equilibrium position for small roll motions a point, which in
ship technology is referred to as the metacenter, is defined as the intersection of
the vertical passing through the center of buoyancy in a position characterized by
a small roll angle and the symmetry plane. The hull is stable if the metacenter is
located above the center of mass.

Remark 4.35 From (4.160) it is clear that, while in liquids it is possible to obtain
large forces even with relatively small volumes, owing to their high density, in gases
aerostatic support requires to displace large volumes of fluid.

The bodies of the solar system where large surfaces covered with a liquid exist
are very few, so hydrostatic support is seldom considered. Two possible exceptions
are Titan and Europa. On Titan there are lakes of liquid hydrocarbons (methane and
ethane), and it is possible to consider robotic boats or submarines to explore them.
But it is on Europa that exploration submarines will be perhaps more useful, if under
the ice surface there is a water ocean, where there are chances to find life.

Aerostatic robots have been proposed for Mars and Titan. If robots will be sent
to explore the upper layers of the atmosphere of gas giants it is likely that they will
be aerostatic vehicles.

Aerostatic vehicles are usually subdivided in balloons and blimps (airships). The
former have no propulsion and are just carried by atmospheric winds, while the
second have a propulsion device and can maintain a given course.

Usually the atmosphere is assumed to be made by a mixture of perfect gases. The
pressure p and the density p are linked by the relationship

P _ per, (4.167)
o

where T is the absolute temperature and R* is a constant characterizing the given
gas or mixture of gases. It is the ratio between the universal gas constant R =
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8,314 J/(mol K) and the average molecular mass of the gas.The average molecu-
lar mass for Earth’s atmosphere is 29 and thus R* = 287 m?2/s2 K. On Mars, for
instance, the atmosphere is made mainly by carbon dioxide with molecular mass 44
and hence R* = 188 m?/s”> K.

Consider an aerostat filled with a gas with molecular mass M flying in an at-
mosphere made by gases with an average molecular mass M. Assuming that the
pressure of the gas in the aerostat and outside it are equal and that also the tempera-
tures are equal, the lift is the difference between the aerostatic force and the weight
of the gas:

y
F=ng(po—pi)=%(M0—Mi), (4.168)

where subscripts o and i refer to the gases outside and inside the aerostat.

Remark 4.36 1t may seem strange that aerostats have been proposed for planets with
a very thin atmosphere, but the low temperature and the atmospheric composition
may produce a density high enough to sustain a vehicle: the colder is the planet and
the higher is the molecular mass and the pressure of the atmosphere, the larger is
the lift produced.

Example 4.9 Compute the volume of a balloon filled with hydrogen or helium able
to lift a payload of 100 kg (including the structure of the balloon) on Mars. Assume
a pressure of 600 Pa and a temperature of —50°C =223 K.

Since g = 3.77 m/s?, the weight to be lifted is 377 N. The volume is then

Ve FRT
B pg(Mo_Mi)’

i.e. 7,721 m? if the balloon is filled with helium (molecular mass 4) or 7,354 if it is
filled with hydrogen. If the balloon is spherical, its diameter is 24.5 m for helium
and 24.1 m for hydrogen.

The difference between the two cases is marginal.

The formulas above assume that the balloon is in equilibrium of pressure and
temperature with the surrounding atmosphere. The lift increases if the gas is heated
so that it expands: either the balloon can increase its volume or some of the gas is
vented out and the balloon gets lighter. An interesting possibility is a balloon that
heats strongly and expands by day, rising in the atmosphere, to land by night when
it cools.

It is unlikely that hot air balloons are used on Mars or on other planets: a hot
air balloon uses the same gas of the atmosphere that is heated and thus has a lower
density. On Earth this solution is easy, since air is heated by combustion (early
balloons used straw as a fuel, modern ones use propane), but in a non oxidizing
atmosphere everything is more difficult. A possibility on Titan might be to burn the
methane existing in the atmosphere by mixing oxygen to it. The very low outside
temperature might make possible to reach a good temperature difference, producing
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a good lift, but the amount of methane in the atmosphere is low and a way to enrich
the gas must be found.

Both balloons and airships have a long history of technological developments.
This old technology may prove to be useful for planetary exploration.

4.7 Fluid-Dynamics Support

On Earth both hydrodynamic and aerodynamic forces are used for transportation.

Generally speaking, fluid-dynamic forces exerted on an object moving in the
fluid are proportional to the square of the relative speed, the density of the fluid and
the square of the linear dimension of the object

1
F= 5pvzscf, (4.169)

where coefficient 1/2 is included just for historical reasons, surface S is a reference
surface and C is a coefficient depending on the shape of the body and its position
with respect to the direction of the relative velocity. However, C s depends also on
two nondimensional parameters, the Reynolds and the Mach numbers:

VL 14
Re - v ’ Mll - VS ’

where v is the kinematic viscosity of the fluid, L is a reference length and Vj is
the speed of sound in the fluid. The first one is a parameter showing the relative
importance of the viscous and inertial effects in determining the aerodynamic forces.
If its value is low the former are of great importance while if it is high aerodynamic
forces are mainly due to the inertia of the fluid.

The Mach number shows the importance of the effects due to fluid compressibil-
ity.

The reference surface S and length L are arbitrary, to the point that in some cases
a surface not existing physically is used, like in the case of airships where S is the
power 2/3 of the displacement. It is, however, clear that the numerical values of the
coefficients depend on the choice of S and L, which must be clearly stated. In the
case of airplane wings, S is the wing surface and length L is the mean chord c, i.e.
the average width of the wing. The wing area is then

S =bc,

where b is the wingspan.

The study of the aerodynamic forces is performed using a reference frame Gxyz
fixed to the body and moving with it (Fig. 4.37). It is centered in the center of
mass G, the x-axis has the direction of the resultant air velocity vector V, of the
object with respect to the atmosphere. The z-axis is contained in the symmetry plane
of the body (if it exists), perpendicular to the x-axis and the y-axis is perpendicular
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Fig. 4.37 Aerodynamic forces: reference frame and components. (a) Aircraft (the sketch is that
of the UAV NASA planned to launch on Mars in 2003); (b) parachute

to the other two. Angle «, referred to as the angle of attack, is the angle between
the x-axis and a reference direction in the symmetry plane, usually located so that if
a = 0 the lift vanishes. Another angle is often defined, the sideslip angle 5, between
the x-axis and the symmetry plane; if there is no symmetry plane it is defined so
that if § = O the side force vanishes.

If the aerodynamic force is decomposed along the axes of frame xyz, the compo-
nents are referred to as drag D, side force S and [ift L. In the figure the drag points
backwards, as physically does; however, it would have been more consistent with
sign conventions to plot it pointing forward and stating it is negative.

The expressions of the components of the aerodynamic force is the same equation
(4.169), where instead of the generic force coefficient C s, the drag coefficient Cp,
the lift coefficient C; and the side force coefficient Cg are introduced. As a first
approximation, for small angles « and §, the lift can be considered as proportional
to « and the side force to 8.

Remark 4.37 The reference situation is often that occurring in the a wind tunnel,
with the object stationary and the air rushing against it; the velocity of the air relative
to the body is then usually displayed, instead of the velocity of the body.

The aerodynamic force is the resultant of the forces the fluid exerts in a direction
perpendicular to the surface (pressure forces) and those exerted in a direction tan-
gential to it. The latter are nil if there is no relative velocity between the body and
the fluid.

If the fluid were inviscid, i.e. if its viscosity were nil, no tangential forces could
act on the surface of the body and it can be demonstrated that no force could be
exchanged between the body and the fluid, apart from aerostatic forces, at any rela-
tive speed, since also the resultant of the pressure distribution always vanishes. This
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Boundary layer

Separation point

Fig. 4.38 Boundary layer: velocity distribution in direction perpendicular to the surface. The sep-
aration point is also represented (from G. Genta, L. Morello, The Automotive Chassis, Springer,
New York, 2009)

result, due to D’ Alembert, was formulated in 174422 and then again in 1768.23 It is
since known as the D’ Alembert Paradox.

In the case of a fluid with no viscosity, the pressure p and the velocity V can be
linked by the Bernoulli equation,

p+ %pvzzconstantzpo—i— %pvoz, (4.170)
where po and Vj are the values of the ambient pressure and of the velocity far
enough upstream from the body.

The Bernoulli equation, which holds along any streamline, has been written with-
out the gravitational term, the one linked with aerostatic forces. It states simply that
the total energy is conserved along any streamline.

No fluid has actually zero viscosity and the paradox is not applicable to any real
fluid. Viscosity has a twofold effect: it causes the tangential forces giving way to
the so-called friction drag and modifies the pressure distribution, whose resultant
is no longer equal to zero. The latter effect, which for fluids with low viscosity is
generally more important than the former, generates the lift, the side force and the
pressure drag. The direct effects of viscosity (i.e. the tangential forces) can usually
be neglected while its modifications on the aerodynamic field must be accounted for.

Owing to viscosity, the layer of fluid in immediate contact with the surface tends
to adhere to it, i.e. its relative velocity vanishes, and the body is surrounded by a
zone in which there are strong velocity gradients. This zone is usually referred to
as the boundary layer (Fig. 4.38) and all viscous effects are concentrated in it. The
viscosity of the fluid outside the boundary layer is usually neglected and Bernoulli
equation can be used in this region.

22D’ Alembert, Traité de I’équilibre et du moment des fluides pour servir de suite un traité de
dynamique, 1774.

23D’ Alembert, Paradoxe proposé aux geometres sur la résistance des fluides, 1768.
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Fig. 4.39 (a) Lift and drag coefficients and efficiency of a wing as functions of the angle of attack.
(b) Polar diagram of an airplane

The thickness of the boundary layer increases as the fluid in it loses energy owing
to viscosity and slows down. If the fluid outside the boundary layer increases its
velocity, a negative pressure gradient along the separation line between the external
flow and the boundary layer is created, and this decrease of pressure in a way helps
the flow within the boundary layer contrasting its slowing down. On the contrary, if
the outer flow slows down, the pressure gradient is positive and the airflow in the
boundary layer is hampered.

At a certain point, the flow in the boundary layer may stop causing a zone of
stagnant air to form in the vicinity of the body: the flow separates from the surface
possibly starting the formation of a wake. This is particularly important when takes
place on the wing: at increasing angle of attack the lift increases initially in a lin-
ear way and this is accompanied by a moderate, although increasingly important,
increase in drag. Then the lift increase becomes slower, and the drag grows more
substantially. Finally, when a critical value of the angle of attack is reached, the flow
detaches from the upper surface and the wing stalls. The lift abruptly decreases and
an even more marked increase of drag occurs.

The lift and drag coefficients of a wing are plotted as functions of the angle of
attack in Fig. 4.39a. On the same plot also the efficiency of the wing

L_CL

= _ ="t 4.171
D= Ch ( )

is reported. The curves are for a given wing, but are typical.

Remark 4.38 The curves Cr(«) and Cp() are influenced by many characteristics
of the wing, like the airfoil and the planform. In particular, the drop of the lift after
the stall is reached can be more or less abrupt.
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It is possible to increase the lift coefficient, although at the expense of an increase
of the drag coefficient, by using suitable moving surfaces located at the trailing edge
(flaps) or at the leading edge (slats), which change the airfoil characteristics. These
high lift devices, used in all modern aircraft for take-off and landing, may be even
more important in case of planets with low atmospheric density like Mars.

The dependence of the aerodynamic characteristics of a body on the angle of
attack can be summarized in the polar diagram: a plot of the lift coefficient as a
function of the drag coefficient. The polar diagram for an aircraft is reported in
Fig. 4.39b.

There is some difference between aerodynamic vehicles operating in a fluid at a
certain distance from the ground and vehicle operating just above the surface. Close
to a surface the lift strongly increases and the overall aerodynamic performance
changes (ground effect). Close to the ground it is also possible to produce a gas
cushion, using suitable fans, which can be used for hovering vehicles (hovercraft).

The most common types of aircraft are fixed wing (aeroplanes) and rotary wing
(autogyros and helicopters) craft. Both have been considered for planetary explo-
ration robots and vehicles.

The speed at which a fixed wing aircraft must fly to sustain itself can be easily
computed by equating the weight with the aerodynamic lift

1
mg = EpvzscL. (4.172)

2
v= | & (4.173)
pSCL

The minimum take-off speed can thus be computed by introducing the maximum
value of the lift coefficient into (4.173). At higher speeds the aircraft can fly with a
lower lift coefficient.

The drag at the flight speed is

This yields the flying speed

p="1pv2sc o (4.174)
= — =m _ =, .
5P p=mg - ="p

i.e. is equal to weight divided by the aerodynamic efficiency.

Remark 4.39 The reciprocal of the efficiency is thus a sort of a friction coefficient,
i.e. a number that multiplied by the weight gives the force that opposes to motion.

Remark 4.40 The attitude (i.e. the angle of attack) of the aircraft that minimizes the
drag is that characterized by the maximum aerodynamic efficiency.
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The power required for flight is the product of the drag by the speed

P=DV=m

Cp |2 2m3g3C?
D | m8 —\/mg D (4.175)
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Remark 4.41 The attitude of the aircraft that minimizes the power required for mo-
tion is that at which the product

C3
—~ =\/CLE
CD

is maximum. Such attitude is also that allowing the maximum flight duration for a
given quantity of energy stored on board.

The time a glider (an unpowered aircraft) can fly losing an altitude Az (Az must
be small enough to consider the density p as a constant) can be easily computed by
equating the loss of potential energy with the energy required for flying for a time ¢

mgAz = Pt, (4.176)

A SC3
=T pg [ L 4.177)
P 2mgCy,

The attitude maximizing the flight time is the same as the one that minimizes the
power required for flight. If a glider is released in the high atmosphere of a planet,
the time it takes to reach the surface can be easily computed by integrating (4.177),
taking into account that the density of the atmosphere changes with the altitude.

Other aerodynamic devices used in planetary atmospheres are parachutes. The
drag coefficient of a domed parachute is about 1.5, but there are other types of
parachute with different shape. Inflatable devices that combine the ways of working
of parachutes and balloons have been suggested; they are usually referred to as
ballutes.

Seldom rotary wing aircraft (helicopters or autogyros) are considered as plane-
tary exploration rovers. This can be justified by the difficulty of flying such machines
in the low density atmosphere of Mars, but the possibility of taking off and landing
with a very short run (autogyros) or even vertically and flying without moving for-
ward (helicopters) is an important advantage. They are, however, fully adequate to
the thick atmosphere of Venus and low gravity and dense air of Titan. A configu-
ration for unmanned rotorcraft that is now quite popular is the so-called quadrotor
or quadrocopter, generally consisting of a cruciform structure with a rotor at the
end of each one of the four arms. Quadcopter UAVs (Unmanned Aerial Vehicles) or
drones have usually fixed pitch rotors, that in the smallest models usually reduce to
four propellers rotating about vertical axes. Their control is much simpler than that
of single or twin rotors helicopters, whose rotors have a variable pitch with both

i.e.
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Fig. 4.40 (a) A miniature quadcopter UAV; (b) the Parrot AR.Drone, a commercial quadcopter
UAV

collective and cyclic pitch control. A picture of a miniature quadcopter is shown in
Fig. 4.40a (the size of the machine is just a few centimeters across), while a larger
machine (the Parrot AR.Drone) is shown in Fig. 4.40b.

The control of a quadcopter is achieved by varying the relative speed, and thus
the thrust, of each rotor, a thing which is easy if electric motors are used. With
reference to Fig. 4.40a, rotors 1 and 4 rotate in one direction while rotors 2 and 3
rotate in the opposite direction, so that the reaction torques are balanced and no tail
rotor is needed, as in single rotor helicopters. By

— reducing the speed of rotors 1 and 3 and increasing that of rotors 2 and 4, a roll
rotation (rotation about x axis) to the left is obtained, while the torques are still
balanced;

— reducing the speed of rotors 1 and 2 increasing that of rotors 3 and 4, a pitch
rotation (rotation about y axis) to dive is obtained, while the torques are still
balanced;

— reducing the speed of rotors 1 and 4 increasing that of rotors 2 and 3, a yaw
rotation (rotation about z axis) is obtained. The direction of the yaw rotation
depends on the direction of the rotation of the rotors.

By using a simple control electronics and sensors (generally rate gyros) a quadcopter
can be easily controlled, achieving a good maneuverability, being able to fly in any
direction and turn on the spot. They are scalable from miniature to large machines.
Even in the thin air on Mars, it is conceivable to build a small quadcopter carried
by a wheeled rover, which can take off vertically and remain a few meters over the
machine on the ground, powered and controlled through an umbilical. The batteries
and the controller need not to be carried on the flying machine, which can be light
enough to fly. The quadcopter can lift a camera and an antenna, so that the rover
can see much farther and remain in contact with a fixed antenna at a much larger
distance.

Example 4.10 Consider a UAV (unmanned aerial vehicle) designed for flying at low
altitude in the Mars atmosphere.
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As in the previous example, assume a pressure of 600 Pa and a temperature of
—50°C =223 K.

The aircraft has a wingspan of 10 m, a mean wing chord of 1.5 m and a ready-
to-fly mass of 150 kg. Assuming a lift coefficient at take-off (with extended flaps)
Cr = 1.4 and a corresponding drag coefficient Cp = 0.15, compute the minimum
take-off speed and the power needed to take off.

The atmospheric density, computed as in the previous example, is

__P _ 3
p= W =0.0142 kg/m".

The wing area is § = 15 m”. The minimum take-off speed

2
v = |8
pSCyr

is thus Vipin = 61.6 m/s =221 km/h.
The drag at this speed is

1
D= 5pv2scD =60.58 N.

The power is thus
P=VD=3.73kW.

This value does not include the power needed to accelerate and at any rate the power
needed to fly at a safely higher speed is larger.

Example 4.11 Compute the minimum diameter of a parachute allowing to land a
mass of 100 kg on Mars with a vertical speed of 5 m/s. Assume the same data for
Mars atmosphere as before.

The system descends at constant speed when the drag is equal to the weight

1
mg = E'OVZSCD'

The surface of the parachute is thus

2
=8 1 416m>

pV3Cp
The diameter is 42.4 m. The speed so computed is the asymptotic speed reached in
steady-state conditions; during the descent the speed is higher, since the atmospheric
density decreases with increasing altitude.
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4.8 Other Types of Support

Many other types of vehicles have been suggested for planetary exploration, even
if they have seldom been seriously considered for actual projects. Many of them
work on principles similar to those described above: for instance, jumping vehicles
that use ground—vehicle contact forces are not dissimilar to walking machines, the
difference being not in the type of contact forces, but in the mechanism that pro-
vides propulsion and controls the trajectory. Another case is that of snake robots:
the contact area with the ground is similar to that of tracks, the difference being that
in this case the motion is obtained by deforming the body and changing the pressure
in selected points of the contact area.

Hydrostatic vehicles, ships and submarines, normally move under the action of
propellers or hydrojets, but swimming vehicles, which are propelled by waving mo-
tions of the body like fish have been designed and tested.

It is, however, possible to conceive vehicles that work on principles that are alto-
gether different.

Magnetic levitation for instance is usually considered suitable only for guided
vehicles, and requires the construction of fixed infrastructures. It may well be the
best way to support vehicles in low gravity: the strength of the magnetic fields is
lower and above all it is possible to exert traction, braking and cornering forces
much higher than those available using other supporting principles in low gravity.
However, it is conceivable that the required infrastructures may be built only after
the colonization of other celestial bodies is quite advanced.

Other devices use jets. Jet hopping vehicles can be used on the Moon or low
gravity bodies, in spite of the need of using rockets: low gravity can make this way
of moving convenient, and progress in magnetic materials may make possible to use
also some sort of electromagnetic launchers to propel hopping vehicles.



Chapter 5
Wheeled Vehicles and Rovers

5.1 Introduction

At present there is a limited experience in operating rovers on Mars and an even
smaller experience on robotic Moon rovers, while the experience regarding man-
carrying vehicles is limited to the Moon and a single case (although with some
differences between a mission and another): the LRV (Lunar Roving Vehicle) of the
last Apollo Missions.

Remark 5.1 All the successful machines used up to now in planetary exploration
are wheeled devices.

The rovers used in Mars exploration are three: the Sojourner rover (Microrover
Flight Experiment, MFEX, Fig. 5.1a) and the two MERs (Mars Exploration Rovers)
Spirit (Fig. 5.1b) and Opportunity. The latter two machines are still operating at the
time of writing (2011; actually one of them is bogged down and unable to move),
and their expected operating life has been exceeded by several times. Earlier devices,
based on skis, carried by the Russian Mars 2 and 3 probes in 1971 had a limited
mobility (about 15 meters from the lander) and could not be tested in operation since
Mars 2 crash-landed on the planet and Mars 3 ceased transmissions 20 seconds after
landing.

These wheeled machines have a similar architecture: they are all based on rigid
wheels and articulated non elastic suspensions, of the rocker bogie type (patented
by NASA). Their size is, however, different, the Sojourner being much smaller than
the MERs. Some of their main characteristics are summarized in Table 5.1.

The only robotic rover used on the Moon is the Russian Lunokhod (Fig. 5.2).

The only man-carrying vehicle ever used outside our planet is the Lunar Rover
(Lunar Roving Vehicle, LRV) used by the astronauts of the last three Apollo mis-
sions to move on the lunar surface. It incorporated the top automotive technology
of its times, blended with aerospace technology. It was an outstanding success and
constitutes a reference for any kind of human rated vehicle that in the future will be
used on celestial bodies, but it is now outdated in the light of the recent advances of
current motor vehicles. It will be dealt with in detail in Sect. 5.7

G. Genta, Introduction to the Mechanics of Space Robots, Space Technology Library 26, 235
DOI 10.1007/978-94-007-1796-1_5, © Springer Science+Business Media B.V. 2012
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Fig. 5.1 Rovers for Mars: (a) Sojourner; (b) Spirit (NASA images)

Table 5.1 Main characteristics of the robotic rovers actually used in Mars and Moon exploration

Mars Moon
Sojourner Spirit & Lunokhod 1 & 2
Opportunity
Year 1997 2004 1970-1973
Mass (kg) 11.5 185 840
Size (L x W x H) (m) 0.68 x 0.48 x 0.28 1.6 x23x1.5 1.7 x 1.6 x 1.35
Max. speed (km/h) 0.0036 0.018 2
Locomotion devices Wheels (6) Wheels (6) Wheels (8)
Suspensions Rocker bogie Rocker bogie Independent
Power source GaAs/Ge GaAs/Ge Solar panels
solar cells solar cells
Power (W on Mars) 16.5 140 -
Batteries Lithium Lithium ion Rechargeable
non-rechargeable rechargeable

While the examples of rovers actually used in space exploration are few, the
number of designs is quite large. Many of them remained at the level of paper study,
while a certain number were implemented in the form of demonstrators or engineer-
ing models. Here the variety of types is large and almost every kind of possible lo-
comotion device has been used, particularly in the case of the designs that remained
on paper. Demonstrators and engineering models are mostly based on wheels and
legs.

Two basic functions can be identified in all types of vehicles: propulsion and tra-
jectory control. In case of wheeled devices they are usually implemented through the
wheel—-ground contact, i.e. through the forces applied by the wheels on the ground,
which, as seen in the previous chapter, are caused by the deformation of the wheel
and of the ground. As a consequence, the wheels of a vehicle are always operating
with some sideslip and longitudinal slip and are never in pure rolling.



5.2 Uncoupling of the Equations of Motion of Wheeled Vehicles 237

Fig. 5.2 The Russian
Lunokhod rover

5.2 Uncoupling of the Equations of Motion of Wheeled Vehicles

Consider the body of a vehicle! as a rigid body. Assume at first that also the wheels
and the ground are rigid bodies and that the ground is flat. If the wheels are attached
to the vehicle in a rigid way, the motion is planar and the vehicle can be considered
as a system with three degrees of freedom.

Let Gxy be a reference frame fixed to the vehicle with x and y axes parallel to the
ground and centered in its center of mass G. By using the inertial reference frame>
XY shown in Fig. 5.3, it is possible to use the coordinates X and Y of the center of
mass G of the vehicle and the yaw angle ¢ between X and x axes as generalized
coordinates.

The components of the velocity in the body-fixed frame u and v can be expressed
as functions of the components of the absolute velocity as

{u}z[cos(lﬂ) —sin(w)]{{(} 5.1
v sin(v/)  cos(y) Y| ’

Instead of writing the equations of motion in the inertial reference frame, it is pos-
sible to write them in the body-fixed frame: velocities u# and v are not the derivatives
of actual coordinates, but the equations can be written using pseudo-coordinates
without any problem (see Appendix A).

In most working conditions of vehicles, particularly in high speed motion, the
sideslip angles of the wheels « and of the vehicle 8 are small, and it is possible to

!In the following the term vehicle is always used for any moving machine, be it a human-carrying
vehicle, a rover, a moving robot, etc.

2Strictly speaking such reference frame is not inertial, as it is fixed to the ground and hence it
follows the motion of the planet. It is, however, “enough” inertial for the problems here studied
and this issue will not be dealt with any further.
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Fig. 5.3 Reference frame for
the study of the motion of a
rigid vehicle. The vehicle has
three degrees of freedom and
the coordinates X and Y of
the center of mass G and the
yaw angle i can be used as
generalized coordinates

linearize their trigonometric functions, while clearly the yaw angle ¥ can assume
any value from O to 360°.

In these conditions it is well known? that the three equations of motion uncouple
into two separate sets:

e A single equation in the forward velocity u describing the longitudinal behavior.
e A set of two equations in the lateral velocity v and the yaw angle v describing
the lateral behavior or, as it is usually referred to, the handling.

A similar situation occurs if the presence of compliant suspensions and possibly
the compliance of the wheels is accounted for. In this case the body of the vehicle is
assumed to be a rigid body moving in three dimensions and its number of degrees of
freedom is 6. Three of them can be considered as translational and the corresponding
generalized coordinates can be the coordinates of its center of mass in any suitable
inertial reference frame. For the three rotational degrees of freedom a set of three
Tait—Brian angles can be chosen (see Sect. 3.6).

As seen in Sect. 3.6, the yaw angle v, the pitch angle 6 and the roll angle ¢ can
be defined.

Again, instead of using the coordinates X, ¥ and Z of the center of mass of
the vehicle together with the three angles ¥, 6 and ¢, it is possible to write the
equations of motion with reference to the non-inertial frame x*y*Z (Fig. 3.10b).
The velocities u and v directed along axes x* and y* are the derivatives of pseudo-
coordinates.

Often, not only the sideslip angles are small, but also the pitch and roll angles
6 and ¢ can be considered as small angles. If this occurs, and if the vehicle is
symmetrical with respect to xz plane, the six equations of motion can be subdivided
into three uncoupled sets of equations:

e A single equation in the forward velocity u# describing the longitudinal behavior.
e A set of three equations in the lateral velocity v, the yaw angle ¥ and the roll
angle ¢ describing the lateral behavior or, as it is usually referred to, the handling.

3G. Genta, Motor Vehicle Dynamics, Modelling and Simulation, World Scientific, Singapore, 2005;
G. Genta, L. Morello, The Automotive Chassis, Vol. 2, Springer, New York, 2009.
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e A set of two equations in the vertical displacement Z and the pitch angle 6 de-
scribing the suspension motion of the vehicle, usually referred to as its ride (or,
for human-carrying vehicles, comfort) behavior.

This uncoupling is strictly linked with a number of assumptions and, as a con-
sequence, becomes inapplicable if one of them is dropped. As already stated, the
first is the existence of a plane of symmetry, namely xz plane. Usually the lack of
inertial symmetry of the structure and the differences between the characteristics of
the individual components located at opposite sides of the vehicle are small enough
to be neglected.

A second assumption is that of a perfect linearity of all compliant and damping
components. The linearity of the elastic behavior of springs and wheels is an ac-
ceptable assumption in the motion about any equilibrium position, provided that its
amplitude is small enough. On the contrary, the nonlinearity of the shock absorbers
used in most vehicles can be a factor that cannot be neglected even in the motion in
the small if their force—velocity characteristic is unsymmetrical, since in the jounce
and rebound movements they act with different damping coefficients even if the
amplitude of the motion tends to zero.

A third assumption regards all angles except the yaw angle i, which must be
small enough to allow the linearization of their trigonometric functions. This as-
sumption holds only for small displacements from the equilibrium position and de-
pends also on the characteristics of the vehicle: the harder the suspensions, the more
extended is the range in which the uncoupling assumption holds. However, in gen-
eral the mentioned angles are small enough, except for vehicles with two wheels
which can work with large roll angles.

On the contrary, the linearization of the wheel-ground contact is not strictly re-
quired for uncoupling: even if the forces exchanged by the wheels and the ground
are not linear in the sideslip and inclination angles, the three sets of equations would
remain uncoupled, although nonlinear. This last statement is important, since the
linear model for the behavior of the tires holds only for values of angles « and y
that are far smaller than those for which the trigonometric functions can be lin-
earized.

This uncoupling is, however, more general and can be extended to vehicles that
cannot be considered as rigid bodies. If the vehicle has a symmetry plane, the vibra-
tion modes can be subdivided into symmetrical and skew symmetrical modes. The
dynamics of a compl