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Preface

Why would anyone feel urged to write another book on the Analytic Hierarchy
Process (AHP), given those already written? I felt urged because the existing books
on the AHP are conservative, too anchored to the original framework and do not
cover recent results, whereas lots of questions have been addressed in the last years.
Apparently, the interest in the AHP has not faded in the last years, and we shall see
that this view is also supported by other studies, as well as by the years of publication
of many of the references used in this booklet.

Now, the next question one should ask himself when writing a tutorial should
regard to whom the tutorial is for. With the premise that a decision scientist might
find these pages too simplistic, in my intentions, the readership should include the
following categories.

• Practitioners and consultants willing to apply, and software developers willing to
implement, the AHP. Some collateral issues, for instance the incompleteness of
judgments, are usually neglected in didactic expositions, but remain fundamental
in practical implementations. On the software development side, at present, there
is still not a modern and free software which covers all the aspects of the AHP
presented in this booklet

• Recent advances in the theory have been disseminated in different journals and,
as research requires, are narrow, technical, and often use heterogeneous notation
and jargon. Therefore, I also hope that students who have been introduced to the
AHP and want to have an updated exposition on, and references to, the state of
the art can find these pages useful

• Even the applied mathematicians might find it interesting. The mathematics
behind the method is simple, but some of its extensions have been a fertile ground
for the application of non-trivial concepts stemming from abstract algebra and
functional analysis, just to mention two areas of interest.

The following pages assume neither previous knowledge of the AHP, nor higher
mathematical preparation than some working knowledge of calculus and linear alge-
bra with eigenvector theory. A brief tutorial on eigenvalues and eigenvectors is pro-
vided in the appendix. Moreover, some sections are marked with the symbol � to
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vi Preface

indicate that they contain further discussions and references to research literature.
The reader interested in the fundamentals might want to skip them.
Ideally, this booklet is also articulated to suit different levels of readership. I believe
that the following three can serve as approximate guidelines:

• A basic exposition is given in Chapter 1 with the exclusion of the section marked
with �. The reader can then proceed examining Section 2.1 until the end of §2.1.1,
Section 2.2 until the end of §2.2.1, and Section 3.2 with the exclusion of the
subsection marked with �. A basic understanding allows the reader to use the
AHP only at a superficial level.

• A complete exposition of the AHP can be gained by reading this booklet in its
entirety, with the exclusion of the sections marked with �. A complete under-
standing allows the reader to choose between different tools to perform different
tasks.

• An advanced understanding of the method is like the complete, but with the
addition of the sections marked with �. Compared to the complete understanding,
in the advanced, the reader will familiarize with the most recent results and the
ongoing discussions, and will be able to orient through the literature.

I shall also spell out that I will not refrain from giving personal perspectives onto
some problems connected with the AHP, as the method has been a matter of heated
debate since its inception.

I hereby wish to thank those who helped me. Among them, I am particularly
gratetul to Michele Fedrizzi, who also taught me much of the material contained
in this booklet. I am also grateful to Springer, especially in the person of Matthew
Amboy. Furthermore, this project has been financed by the Academy of Finland.

It goes without saying that I assume the paternity of all imprecisions and mistakes
and that the reader is welcome to contact me.

Espoo, Finland, November 2014 Matteo Brunelli
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Chapter 1
Introduction and Fundamentals

Beauty started when people began to
choose.

Roberto Benigni

In a world whose complexity is rapidly growing, making the best decisions
becomes an increasingly demanding task for managers of companies, governmental
agencies and many other decision and policy makers. In recent years, this has gone
arm-in-arm with the growth of what are now known as decision analytics method-
ologies. Namely, decision makers are more reluctant to make gut decisions based of
feelings and hunches, and instead prefer to use analytic and quantitative tools, and
base and analyze their decisions on a solid ground. Many methods stemming from
applied mathematics and operations research have proved useful to help decision
makers making informed decisions, and among these methods there are also those
requiring, as inputs, subjective judgments from a decision maker or an expert. It is
in this context that the Analytic Hierarchy Process (AHP) becomes a useful tool for
analyzing decisions.

What is the AHP? Broadly speaking, the AHP is a theory and methodology for
relative measurement. In relative measurement we are not interested in the exact
measurement of some quantities, but rather on the proportions between them. Con-
sider a pair of stones. In classical measurement we might be interested in knowing
their exact weights and the pair of measurements (2,1) is not correct unless the
weight of the first stone is 2 kgs and the weight of the second is 1 kg. Conversely, in
relative measurement we confine our interest to the knowledge of how much heav-
ier each object is compared to another. Hence, the pair of measurements (2,1) is
correct as long as the weight of the first stone is double the weight of the second. It
follows that, in this example, if we use relative measurement theory the pairs of mea-
surements (2/3,1/3) (4,2), (8,4) are also correct for the two stones. Relative mea-
surement theory suits particularly well problems where the best alternative has to be
chosen. In fact, in many cases we are not really interested in the precise scores of the
alternatives but it is sufficient to know their relative measurements to know which
alternative is the best. Moreover, when attributes of alternatives are intangible, it is

c© Matteo Brunelli 2015 1
M. Brunelli, Introduction to the Analytic Hierarchy Process,
SpringerBriefs in Operations Research, DOI 10.1007/978-3-319-12502-2 1



2 1 Introduction and Fundamentals

difficult to devise a measurement scale and using relative measurements simplifies
the analysis. The ultimate scope of the AHP is that of using pairwise comparisons
between alternatives as inputs, to produce a rating of alternatives, compatibly with
the theory of relative measurement.

In what field of study do we stand when we talk of the AHP? It is the author’s
opinion that the AHP should be placed in the intersection between decision analysis
and operations research. Keeney and Raiffa [76] gave the following definition of
decision analysis:

The theory of decision analysis is designed to help the individual make a choice among a
set of prespecified alternatives.

Hence, as long as the AHP is used as a technology for aiding decisions, it seems
that its study belongs to decision analysis.

On the other hand, to justify its connection with operations research, without
going too far, we can refer to some definitions reported by Saaty, the main developer
of the AHP, in one of the first graduate textbooks in operations research [98]. In his
book, curious and thought-provoking definitions can be found: operations research
was defined as “quantitative common sense” and, perhaps in the intent of underlin-
ing its limitations, as “the art of giving bad answers to problems to which otherwise
worse answers are given”. Such definitions are surely thought-provoking but they
capture the essence of quantitative methods, which is that of helping make better
decisions. Consulting the Merriam-Webster dictionary one can find the following
definition of operations research:

The application of scientific and especially mathematical methods to the study and analysis
of problems involving complex systems.

Hence, it is straightforward to conclude that the study of the AHP belongs to
operations research too. Within operations research, two different types of studies
appeared. The classical operations research, more mathematically oriented, which
studies the modeling and solution of structured problems can be called ‘hard’ oper-
ations research. Conversely, especially recently, the effort of applying the reasoning
of operations research to problems which, by nature, are unstructured, has gone
under the name of ‘soft’ operations research. Perhaps the fact that the AHP mostly
deals with subjective judgments and intangible attributes gave the false idea that it
did not belong to the tools or ‘hard’ operations research, but rather to its ‘soft’ side.
However, in recent discussions [89] the role of the AHP has been revisited and now
it seems clearer that it has been a matter of study for ‘hard’ operations research. The
positioning of the AHP is depicted in Fig. 1.1.

Although the utility of the AHP is not limited to the following, it is safe to say
that it has been especially advocated to be used with intangible criteria and alter-
natives, and thus used to solve multi-criteria decision making (MCDM) problems,
which are choice problems where alternatives are evaluated with respect to multi-
ple criteria. Tangible properties of alternatives, for example the weight of different
stones or the salary of different employees, can be measured without ambiguity and
subjectivity. Hence, the machinery of the AHP becomes unnecessary. Conversely,
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Hard
operations
research

AHP

Decision
analysis

Hard
operations
research

Soft
operations
research

Fig. 1.1: The position of the AHP in the scientific debate

when the magnitude of some properties of alternatives, such as the dexterity of a
sportsman or the aesthetic appeal of a bridge, cannot be easily grasped and mea-
sured we are in the domain of the intangibles, which is where the AHP gives its
best.

The organization of this booklet is quite unorthodox and differs from the approach
used in other expositions [20, 21, 74, 100, 101, 104]. Here, at the very beginning,
the AHP is presented through a normative lens with lots of assumptions. That is, the
AHP is introduced as a method which works in a rational world with full informa-
tion. However, since this is clearly not the world we are living in, successively, by
pointing out the limits of this normative approach, binding assumptions are relaxed
and the AHP more fully explained. In this sense the reader should not be deceived:
the exposition of the AHP contained in this first chapter is by no means complete,
and it is even narrower than the one given originally by Saaty. But, as said, this little
trick shall hopefully help to expose the AHP in a more natural and painless way.

In the following we shall use a standard notation where vectors are noted in
boldface, e.g. w = (w1, . . . ,wn)

T and matrices (all square) in capital boldface, e.g.
A = (ai j)n×n. The set of real numbers is R and the set of positive real numbers is
R>. We shall use open square brackets to indicate open intervals, e.g. ]0,1[.

1.1 Fundamentals

As already mentioned, in our framework, the AHP can be applied to a multitude
of decision making problems involving a finite number of alternatives. Formally, in
this setting, in a decision process there is one goal and a finite set of alternatives,
X = {x1, . . . ,xn}, from which the decision maker, is usually asked to select the best
one.

Explaining the AHP is like teaching a child how to tie the shoestrings: easier to
show with an example than to explain with words. Hence, it is time to present a
prototypical example which will accompany us for the rest of this section: a family
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has to decide which European city to visit during their holidays. Reasonably, the
goal of the family is the highest satisfaction with their destination. Alternatives may
be some cities, in our simple example

X = {Rome
︸ ︷︷ ︸

x1

,Barcelona
︸ ︷︷ ︸

x2

,Reykjavik
︸ ︷︷ ︸

x3

}, (1.1)

and the structure of the problem represented in Fig. 1.2.

Overall Satisfaction

Barcelona Reykjavik Rome

Fig. 1.2: Evaluating alternatives with respect to an overall goal

Often, in decision processes, the decision maker is asked to assign a score to each
alternative and then to choose the one with the maximum value. That is, given a set
of alternatives, X = {x1, . . . ,xn}, the decision maker should provide a weight vector

w = (w1, . . . ,wn)
T , (1.2)

where wi is a value which coherently estimates the score of alternative xi. That is, the
greater wi, the better the ith alternative. Similarly to what happens for value theory
[55], the rule is that alternative xi is preferred to alternative x j if and only if wi >
wj. Weight vectors are nothing else but ratings, and their components wi are called
priorities, or weights, of the alternatives xi. For example, w = (0.4,0.2,0.3,0.1)T

implies x1 � x3 � x2 � x4 where xi � x j means that alternative xi is preferred to x j.
Possible ties are expressed as xi ∼ x j.

Example 1.1. Consider the example of the choice of the best site for holidays. If the
vector w = (0.3,0.5,0.2)T was associated with the set of alternatives

X = {Rome,Barcelona,Reykjavik}

then we would have that

Barcelona � Rome � Reykjavik

because w2 > w1 > w3.

Making decisions in this way seems easy, but it becomes a hard task when complex-
ity increases. As we will see, complexity augments arm-in-arm with the number of
alternatives and criteria.
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From the Priority Vector to the Pairwise Comparison Matrix

It is clear that a decision maker could run into troubles when asked to submit a
rating in the form of a numerical vector for a large number of alternatives. Does
not it often happen that we cannot decide among several alternatives? Even worse,
do not we decide and eventually realize that it was not the best decision? This is
a matter of fact and originates from our cognitive limits and the impossibility of
effectively comparing several alternatives at the same time.

An effective way to overcome this problem is to use pairwise comparisons. The
reason for doing so, is that this allows the decision maker to consider two alterna-
tives at a time. Thus, the strategy is that of decomposing the original problem into
many smaller subproblems and deal with these latter ones. Formally, the pairwise
comparisons are collected into a pairwise comparison matrix, A = (ai j)n×n, struc-
tured as follows

A =

⎛

⎜

⎜

⎜

⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

⎞

⎟

⎟

⎟

⎠

(1.3)

with ai j > 0 expressing the degree of preference of xi to x j. More precisely, accord-
ing to Saaty’s theory, each entry is supposed to approximate the ratio between two
weights

ai j ≈
wi

wj
∀i, j. (1.4)

This means that, if the entries exactly represent ratios between weights, then the
matrix A can be expressed in the following form,

A = (wi/wj)n×n =

⎛

⎜

⎜

⎜

⎝

w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn
...

...
. . .

...
wn/w1 wn/w2 . . . wn/wn

⎞

⎟

⎟

⎟

⎠

. (1.5)

Note that, as soon as we account for (1.4) and consider (1.5), a condition of multi-
plicative reciprocity ai j = 1/a ji ∀i, j holds, and A can be simplified and rewritten,

A =

⎛

⎜

⎜

⎜

⎝

1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

. . .
...

1
a1n

1
a2n

· · · 1

⎞

⎟

⎟

⎟

⎠

. (1.6)

In words, the simplified structure of pairwise comparison matrices in this form
follows from the assumption that if, for example, x1 is 2 times better than x2, then
we can deduce that x2 is 1/2 as good as x1.
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Let us now proceed with the example and imagine a pairwise comparison matrix
for the set of cities X as defined previously, in §1.1. In this case, and only in this
case, to facilitate the understanding, the labels x1,x2,x3 are attached to the rows and
columns of the matrix.

A =

⎛

⎝

x1 x2 x3

x1 1 3 6
x2 1/3 1 2
x3 1/6 1/2 1

⎞

⎠ (1.7)

From this matrix, in particular from entry a12, one can figure out that x1 (Rome)
is considered three times better than x2 (Barcelona). That is, a12 = 3 suggests us
that w1 = 3w2. Once a pairwise comparison matrix is completed, there are many
methods to derive the priority vector w. In the example it can be checked that the
condition ai j = wi/wj ∀i, j is satisfied by, for instance, the following vector with its
components summing up to one,

w =

⎛

⎝

6/9
2/9
1/9

⎞

⎠ ,

and thus Rome (x1) is ranked the best. To summarize, whenever the number of
alternatives is too large, pairwise comparing them is an effective way for obtaining
a rating. Perhaps we have spent a bit more of our time but the rating of alternatives
contained in w is now more robust than it would have been if it had been estimated
directly, without using A. We shall here ask the reader for a leap of faith and leave
the issue of the weight determination open and discuss it later.

From the Pairwise Comparison Matrix to the Hierarchy

At this point, it is time to wonder why the pairwise comparison matrix A was filled
in that particular way and what factors influenced the decision maker’s judgments.
Needless to say, such decision factors are few if the expert is choosing the type of
bread to buy (mainly price and quality) whereas they are several when a member of
a parliament has to vote a proposition (sake of the electors, own reputation, likeli-
hood of reelection, and surely many others). First, we should start using the word
criterion instead of factor and reckon that, if we can make decisions and account
for multiple, and possibly conflicting criteria, we are in the realm of Multi Criteria
Decision Making (MCDM) methods.

Formally, in the decision making process, the expert has to consider a set of cri-
teria C = {c1, . . . ,cm}, which are characteristics making one alternative preferable
to another with respect to a given goal. In the example, which regards the location
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for holidays, the set of criteria could be

C = {climate
︸ ︷︷ ︸

c1

,sightseeing
︸ ︷︷ ︸

c2

,environment
︸ ︷︷ ︸

c3

}, (1.8)

At this point we need at least a graphical formalism to combine alternatives, criteria
and goals and represent the structure of the problem in an intuitive way. In the AHP,
a hierarchy serves this purpose and is compounded by:

• the goal
• the set of alternatives
• the set of criteria
• a relation on the goal, the criteria and the alternatives.

A graphical example of hierarchy for the decision on the European city is depicted
in Fig. 1.3. Note that in this booklet we shall not dwell on the hierarchy in more
formal terms since it would be beyond its scope.

Overall Satisfaction

Climate Environment Cost

Barcelona Reykjavik Rome

Fig. 1.3: Hierarchy for the European city selection problem. At the top level there is
the goal, at the bottom there are the alternatives, and criteria are in intermediate lev-
els. A line connecting two elements marks the existence of a relation of hierarchical
dependence between them

The main drawback of the pairwise comparison matrix A in (1.7) is that it com-
pared alternatives without considering criteria. Simply, when filling it, the decision
maker was only thinking about the overall satisfaction with the alternatives and did
not make any separate reasoning about the criteria—cost, sightseeing and environ-
ment in the example—contributing to the global satisfaction.

Once again, complexity can be a problem and the solution is to decompose it.
This is why, at this point, Saaty [99] suggested to build a different matrix for each
criterion. Hence, in the following, a matrix A(k) is the matrix of pairwise compar-
isons between alternatives according to criterion k. For example, using the conven-
tion c = climate, s = sightseeing, e = environment, entry a13 of matrix A(c) below
entails that the decision maker prefers Rome to Reykjavik if he compares these two
cities exclusively under the climatic point of view. The following three matrices can
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be taken as examples of preferences expressed by a decision maker on the three
cities according to the three different criteria.

A(c) =

⎛

⎝

1 1 4
1 1 4

1/4 1/4 1

⎞

⎠ A(s) =

⎛

⎝

1 2 6
1/2 1 3
1/6 1/3 1

⎞

⎠ A(e) =

⎛

⎝

1 1/2 1/8
2 1 1/4
8 4 1

⎞

⎠ .

Then, we estimate (no worries for the moment about the method) their priority vec-
tors

w(c) =

⎛

⎝

4/9
4/9
1/9

⎞

⎠ w(s) =

⎛

⎝

6/10
3/10
1/10

⎞

⎠ w(e) =

⎛

⎝

1/11
2/11
8/11

⎞

⎠ .

Now we have three vectors instead of one! Their interpretation is at least twofold:
(i) as they are three vectors of dimension 3, one can imagine them as three points
in the 3-dimensional Euclidean space; (ii) vectors are ratings and they can be con-
tradictory: climate-wise Barcelona is preferred to Reykjavik, but, on the other hand,
the opposite is true if the criterion is the environment.

It is reasonable to assume that the solution should be a compromise between
vectors w(c),w(s),w(e). However, the simple arithmetic mean is not the best way to
aggregate the vectors because, most likely, criteria have different degrees of impor-
tance. For instance, an old and rich man may not care much about the cost and
just demand a quiet and peaceful place for his holidays—in this hypothetical case
the criterion ‘environment’ would be judged more important than ‘cost’. Hence, we
need another type of averaging function and the compromise that we are looking for
is the weighted arithmetic mean, in this case a convex (linear) combination of vec-
tors. Now, the question is how to find the weights to associate to different vectors.
The only thing we know is that the weight associated to a vector should be propor-
tional to the importance of the criterion associated with it. The proposed solution is
to use the same technique used so far. First, we build a pairwise comparison matrix
Â = (âi j)n×n which compares the importance of criteria with respect to the achieve-
ment of the goal. In the example, the matrix could be

Â =

⎛

⎝

1 1/2 1/4
2 1 1/2
4 2 1

⎞

⎠ .

Then, we derive a vector ŵ = (ŵ1, ŵ2, ŵ3)
T (again, no worries on how it is derived)

ŵ =

⎛

⎝

1/7
2/7
4/7

⎞

⎠

whose components are the weights of criteria. According to this vector the decision
maker—in our case the family—is mainly interested in the third criterion, i.e. the
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environment. We proceed with the linear combination of w(c), w(s) and w(e).

w = ŵ1w(c) + ŵ2w(s) + ŵ3w(e)

=
1
7

⎛

⎝

4/9
4/9
1/9

⎞

⎠+
2
7

⎛

⎝

6/10
3/10
1/10

⎞

⎠+
4
7

⎛

⎝

1/11
2/11
8/11

⎞

⎠

≈

⎛

⎝

0.287
0.253
0.460

⎞

⎠ .

We have a final ranking and we can choose the best alternative, which is the one
rated the highest, then x3 which, in our example, is Reykjavik. Formally, the best
alternative is any element of the set {xi|wi ≥ wj, ∀i, j}.

The role of the criteria weights can be stressed by a numerical example. Consider
the priority vector for criteria (1/7,4/7,2/7)T instead of (1/7,2/7,4/7)T . Then, the
final priorities become (0.43,0.29,0.28)T and the best alternative is now x1 (Rome).

Note that hierarchies can contain more levels of criteria. For example, for the
selection of the best city for holidays, the criterion ‘climate’ could have been refined
into subcriteria such as ‘chance of rain’, ‘temperature’, ‘length of the daylight’,
each of which contributes to the concept of climate. For reasons of space we cannot
provide a numerical example of a hierarchy with more criteria levels, but we invite
the reader to consider the following exercise.

1.1. Convince yourself that the AHP can work out the hierarchy in Fig. 1.4. Note
the complication that ‘wheels’ is a subcriterion of both ‘mechanics’ and ‘aesthetics’.
Certainly, this is an ad hoc toy-example, but the reader might be interested to know
that the AHP has actually been proposed for automobile selection [33].

Overall satisfaction

Mechanics Aesthetic Comfort

Brakes Quality of 
 the shift Horse power Wheels ShapeColor Air

 conditioning Seats Other
 optionals

Car 1 Car 2 Car 3

Fig. 1.4: Selection of an automobile

Let us conclude this section by remarking that, by using naı̈ve examples we have
already seen the three basic steps of the AHP:
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1. Problem structuring and definition of the hierarchy
2. Elicitation of pairwise comparisons
3. Derivation of priority vectors and their linear combinations.

Nevertheless, so far, we have considered an idyllic situation which used various
assumptions and only in the next chapters we shall see how the AHP can be used
as a more flexible model. Even so, what we know is already sufficient to understand
the next section on some applications.

1.2 Applications

Our previous example was simple and aimed at understanding the principles behind
the AHP and, needless to say, real-world applications have presented a much higher
level of complexity. In this section we shall skim through some applications to show
their vast range and hopefully whet the readers’ appetite for the AHP, whose full
potential has not been revealed yet. Nowadays, applications are so many that no
survey can be comprehensive enough. However, albeit not recent, the surveys by
Golden et al. [64], Zahedi [140], and Vargas [129] remain the best reference points.

City Evaluation and Planning

Saaty [102] proposed to use the AHP to rank a set of cities from the most to the
least livable. In his study, he considered a set of cities in the United States. Indeed,
the satisfaction of the final goal ‘livability’ can be decomposed into the satisfac-
tion of some criteria, such as ‘environment’, ‘services’, ‘security’, and each of these
criteria can itself be decomposed into subcriteria. For instance, the ‘services’ cri-
terion might depend on subcriteria such as ‘transportation facilities’, ‘health care’,
and so forth. Some cities are undoubtedly more livable than others1. Interestingly, in
this application, the AHP questionnaire was given to six decision makers represent-
ing different demographic groups and light was shed on differences of preferences
between them. The research concluded presenting some conjectures on the reasons
behind these discrepancies.

Another innovative application was proposed by Saaty and Sagir [111]. By look-
ing at metropolitan areas, the authors were able to classify most of the world cities
into one category, out of seven, each representing an alternative model of develop-
ing a city. Some alternatives were: compact, 3-dimensional (New York City), flat
(Riyadh). The AHP was used to systematically take into account good and bad
points of each type of city by means of an AHP-based cost-benefit analysis.

1 It is the author’s of this booklet half joke to say that the choice of San Francisco as the most
livable served as a sure validation of the AHP.
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Country Ranking

Until the late Eighties, ranking of countries was based exclusively on their gross
domestic product per capita , or at least that was the most significant measure. More
recently, starting in the early Nineties, a more inclusive and composite measure
accounting for multiple criteria called Human Development Index has been popu-
larized by economists such as the Nobel laureate Amartya Sen [4]. Few know that, in
1987, the AHP was already proposed to rank countries taking into account multiple
criteria [95]. Clearly, in this study, the alternatives were the countries themselves,
and the criteria simply all those characteristics which could make one country better
than another. Indeed, with a suitable choice of criteria, this use of the AHP can be
seen as a primer in the multivariate ranking of countries.

Mobile Value Services

With the widespread use of (smart) mobile devices, mobile services and applica-
tions are becoming more and more successful and part of end-users’ everyday life,
but why are some devices and services successful while others are not? It is indeed
of great importance to identify and understand critical success factors driving the
acceptance and adoption of mobile devices and different mobile services. Tradi-
tional models mainly consider a limited set of adoption factors, focusing on the per-
ceived values of mobile services (usefulness, ease of use, cost). Nikou and Mezei
[90] proposed to use the AHP to determine the most important decision criteria
driving the customers’ adoption of mobile devices and mobile services. The main
attributes considered include payment mode, functionality, added value, perceived
quality, cost, and performance. The results of this type of studies can be essential
for various service providers (operators, mobile handset manufacturers) to design
profitable applications that generate value for the end-users.

Organ Transplant

It is a fact that there are more people needing human organ transplants than avail-
able organs, and that different allocations of organs can make the difference between
death and life. Some combinatorial optimization problems have been proposed to
match donors with organs in the best possible way, and to be fair, such algorithms
account for the fact that some patients require an organ in a shorter time than oth-
ers. In a study, Lin and Harris [83] proposed to use the AHP to decompose the four
criteria ‘urgency’, ‘efficiency’, ‘benefit’, and ‘equity’ into subcriteria and eventu-
ally estimate their importance in the donors-organs matching process. Patients were
treated as alternatives, but it is clear that their huge amount would have made the use
of subjective judgments impossible. Fortunately, in this case, the pairwise compari-
son matrices at the alternative level were filled automatically since different criteria
were quite easily quantifiable. For instance, if the life expectancies of two patients
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are 1 and 2 years, it can be automatically derived that under that criterion, the first
patient is two times more ‘urgent’ than the second.

Chess Prediction

The AHP has been used for forecasting too. In sports, athletes can be seen as alter-
natives and their characteristics as criteria, and the player rated the highest shall be
regarded as the most likely to win. Here we refer to an application of the AHP for
the prediction of winners in chess matches—The AHP was used to evaluate the out-
come of the Chess World Championships [116] as well as of the matches between
Fischer and Spassky in 1972 and Karpov and Korchnoi in 1978 [114]. A possible
hierarchy for this problem is represented in Fig. 1.5. It is interesting to see that the
values of the weights w1, . . . ,wn in this sort of problems about forecasting can be
interpreted as subjective probabilities [136]. For example, in this case, w1 and w2

could be interpreted as the subjective probabilities of the victories of the two chess
players.

Likelihood
 of victory

TechnicalBehavioral

C Ex Gh Im In Ga Lrp M Pr Q RySTE G Gnww PSt

Player 1Player 2

Rw

Fig. 1.5: A hierarchy for the chess competition problem. Abbreviations are as fol-
lows: Gamesmanship (G), Good Nerves and Will to Win (GN), Personality (P),
Stamina (ST), Ego (E), Calculation (Q), Experience (EX), Good Health (GH),
Imagination (IM), Intuition (IN), Game Aggressiveness (GA), Long Range Plan-
ning (LRP), Memory (M), Preparation (PR), Quickness (Q), Relative Youth (RY),
Seconds (S), Technique (M). For a fuller description see the original paper [116]

Facility Location

In Turku, a city in the South-West of Finland, the AHP has been used to find the best
location the new ice hockey stadium (now called Turku Arena). Several criteria were
used to evaluate different locations. Among the criteria one can find the accessibility
of the arena, the possibility of having car parking, the quality of the soil on which
the arena shall be built, and so forth. Carlsson and Walden [34] gave a frank political
account of the decision process, which involved the local administration, and whose
selected alternative was the third best ranked, and not the best.
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1.3 Criticisms and Open Debates �

Accounts of successful applications and empirical studies [71], have brought evi-
dence on the AHP as an appealing method for decision making. Notwithstanding,
as Shakespeare put it “All that glitters is not gold”.

Thus, since any fair exposition must take into account its drawbacks and open
issues, we should spell it out: the AHP is not a flawless method. Like the driver of
a race car knows the limits of the machine, users of the AHP too shall be aware of
its limitations and possible misuses. In this section we shall dwell on three of them.
Further matters and open debates will be recalled later when they are related to
specific topics of interest of some sections of this booklet. Even so, let us now focus
on the three of them which can be already understood at this stage of the exposition.

Rank Reversal

The most spirited criticisms against the AHP have been based on the rank rever-
sal phenomenon. Since the treatise of Von Neumann and Morgenstern [131] some
axioms have been required to hold for decision analysis methodologies. One of these
axioms requires that, if a new alternative is added to the original set of alternatives,
then the order relation � on the old set of alternatives should not change. Transpos-
ing this concept to our daily lives, if one has to select one meal and he prefers pasta
to soup, when they offer him fish, this should not change his original preference of
pasta to soup. Belton and Gear [15] proposed the following example to show that
the AHP can suffer of rank reversal. Consider the matrices

A(a) =

⎛

⎝

1 1/9 1
9 1 9
1 1/9 1

⎞

⎠ A(b) =

⎛

⎝

1 9 9
1/9 1 1
1/9 1 1

⎞

⎠ A(c) =

⎛

⎝

1 8/9 8
9/8 1 9
1/8 1/9 1

⎞

⎠

which compare three alternatives with respect to three criteria, respectively—
remember that a similar situation was proposed in the example of Fig. 1.3. Assum-
ing that the three criteria have equal weight, i.e. 1/3, it follows that the final priority
vector is (0.45,0.47,0.08)T , and thus the alternatives are ranked x2 � x1 � x3. So
far so good, but suppose now that a new alternative, x4, is added to the initial set,
and the new judgments are

A(a) =

⎛

⎜

⎜

⎝

1 1/9 1 1/9
9 1 9 1
1 1/9 1 1/9
9 1 9 1

⎞

⎟

⎟

⎠
A(b) =

⎛

⎜

⎜

⎝

1 9 9 9
1/9 1 1 1
1/9 1 1 1
1/9 1 1 1

⎞

⎟

⎟

⎠
A(c) =

⎛

⎜

⎜

⎝

1 8/9 8 8/9
9/8 1 9 1
1/8 1/9 1 1/9
9/8 1 9 1

⎞

⎟

⎟

⎠
.

Note that the preferences on the original three alternatives have been unchanged.
However, still considering the criteria to be equally important, the new priority vec-
tor becomes (0.37,0.29,0.06,0.29)T and thus the new ranking is x1 � x2 ∼ x4 � x3.
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Now x1 is ranked the best! The gravity of this drawback is made evident if we con-
sider the initial example of the European city, where considering one more city, say
Stockholm, might have changed the original ranking of the other three, let alone
more important real-world problems. In a scientific context, and especially in deci-
sion analysis where everything should be justifiable, the rank reversal has been piv-
otal in the debate on the theoretical soundness of the AHP. On the other hand, many
scholars ignore that the rank reversal is avoided if priority vectors are aggregated
taking their component-wise geometric mean, instead of a convex linear combina-
tion. Although opposed by some [130], the use of this technique to avoid the rank
reversal has been proven mathematically [12]. For a review of the rank reversal the
interested reader can see the original discussion [15, 16, 116], a survey [88], and an
account of the AHP versus Multi Attribute Utility Theory debate [61].

The Nature of the AHP

The discovery of the rank reversal has been the spark for further discussions. One
of the most important relates with the nature of the AHP. In other words, on what
fundamental theory is the AHP based on? As whispered before, the AHP has some-
thing in common with value theory. In both these theories, there is a set of alterna-
tives which are eventually matched with real numbers such that wi ≥ wj ⇔ xi � x j.
Ultimately, in value theory, there is a function v : X → R, where v(xi) = wi. It fol-
lows that, however complicated the function v is, rank reversal cannot happen, since
alternatives are evaluated independently one from another and hence adding real or
fictitious alternatives does not change the order of the existing ones. As seen before,
this invariance is required by one axiom of value theory, which is violated by the
AHP, because of the rank reversal. Thus, the existence of the rank reversal excludes
that the AHP belongs to value theory.

After Saaty’s [103] attempt to axiomatize it and a debate initiated by Dyer [49],
nowadays the AHP is considered to be grounded on relative measurement theory
which can be seen as a theory where what matters are only the ratios between mea-
surements of whatever entities under consideration. Hence, from a very high per-
spective, the AHP can be seen an a mathematical tool for relative measurement. The
interested reader can refer to Saaty [102, 106] for an exposition of the AHP under
this point of view and consider that, very recently, Bernasconi et al. [17] reinter-
preted the AHP using the theory of psychological measurement.

Different Scales

It does not take much to see that, in spite of the elegance of the relative measurement
theory, a decision maker could have troubles to state that, under the climatic point
of view, Barcelona is four times better than Reykjavik. In everyday life, people are
more inclined to use linguistic expressions like “I slightly prefer pasta with salmon
to pasta with cheese” or “I strongly prefer one banana to one apple”. To help the
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decision maker, some linguistic expressions have been proposed and then linked to
different values assignable to the entries ai j. Hence, the decision maker can express
opinions on pairs using linguistic terms, which are then associated to real numbers.
In his original paper on the AHP, Saaty proposed an association between verbal
judgments and values for pairwise comparisons. Other scales have been proposed
and studied, among others, by Ji and Jiang [75] to which the reader can refer for a
short overview. One of the foremost is the balanced scale proposed by Pöhjönen et
al. [96]. The balanced scale, Saaty’s scale, and their matching with verbal judgments
are reported in Table 1.1.

Table 1.1: Two scales and their association with verbal judgments

Verbal description Saaty’s scale Balanced scale

Indifference 1 1
— 2 1.22

Moderate preference 3 1.5
— 4 1.86

Strong preference 5 2.33
— 6 3

Very strong or demonstrated preference 7 4
— 8 5.67

Extreme preference 9 9

Which scale is better is still an open debate, but it is safe to say that, most likely,
Saaty’s scale is not optimal. It is a fact that it was introduced as a rule of thumbs,
whereas other scales seem to have more supporting evidence. For instance, the bal-
anced scale has been proposed on the basis of empirical experiments with people.
Reasonably, this topic will require more research from the behavioral point of view
than from the mathematical one.

One last remark is that, in spite of the open debate on the association between
linguistic labels and numerical values, there is a meeting of minds on using bounded
numerical scales, of which the most famous is the set of all integers up to nine and
their reciprocals,

{

1
9
,

1
8
, . . . ,

1
2
,1,2, . . . ,8,9

}

.

The main reason for this choice is our limited ability of processing information, also
corroborated by psychological studies according to which our capacity of reckoning
alternatives is limited to 7±2 of them [110]. Nevertheless, although in practice this
discrete scale is employed, in the following, unless otherwise specified, we shall not
restrict the discussion and adopt the more general R>. In support of this approach
comes also the fact that, mathematically speaking, the algebra of the AHP, and more
generally of relative measurement theory, builds on positive real numbers.



Chapter 2
Priority vector and consistency

The average man’s judgment is so
poor, he runs a risk every time he uses
it.

Ed Howe

It is important to reflect on the fact that in the previous chapter, almost uncon-
sciously, a number of very restrictive assumptions were imposed. Let us summarize
them within one sentence, where the assumptions are highlighted in italic.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

Some of these assumptions had already been relaxed in Saaty’s original works,
and some others were relaxed later. In this and in the next chapter we shall present
the ways in which these assumptions have been relaxed in the literature to pro-
vide the users of the AHP with a more flexible method. Everytime one assumption
is relaxed, the previous box will be presented again and the assumption at stake
emphasized in boldface. We are now ready to depart from a normative view on the
AHP (how decisions should be made in a perfect world) to adopt a more descriptive
view (how decisions are actually made).

2.1 Priority vector

We have seen that one pivotal step in the AHP is the derivation of a priority vector
for each pairwise comparison matrix. Note that if each entry ai j of the matrix is
exactly the ratio between two weights wi and wj, then all the columns of A are pro-
portional one another and consequently the weight vector is equal to any normalized

c© Matteo Brunelli 2015 17
M. Brunelli, Introduction to the Analytic Hierarchy Process,
SpringerBriefs in Operations Research, DOI 10.1007/978-3-319-12502-2 2
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column of A (see the matrices in Chapter 1). In this case the information contained
in the matrix A can be perfectly synthesized in w and there is no loss of information.
However, we do not even bother dwelling on this case and technique to derive the
weights, since it is hardly ever the case that a decision maker is so accurate and
rational to give exactly the entries as ratios between weights. In this, and in the next
section on consistency, we shall investigate how the AHP can cope with irrational
pairwise comparisons. Let us then represent again the box with the relaxed assump-
tion now in boldface.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

When the entries of the matrix A are not obtained exactly as ratios between
weights, there does not exist a weight vector which perfectly synthesize the infor-
mation in A. Nonetheless, since the AHP cannot make it without the weight vectors,
it is necessary to devise some smart ways of estimating a ‘good’ priority vector.
Several methods for eliciting the priority vector w = (w1, . . . ,wn)

T have been pro-
posed in the literature. Each method is just a rule for synthesizing pairwise com-
parisons into a rating, and mathematically is a function τ : Rn×n

> → R
n
>. Clearly,

different methods might lead to different priority vectors, except when the entries
of the matrix are representable as ratios between weights, in which case all methods
shall lead to the same vector w. Needless to say, in the case of perfect rationality,
the same vector w obtained with any method must be such that (wi/wj)n×n = A.

2.1.1 Eigenvector method

The most popular method to estimate a priority vector is that proposed by Saaty
himself, according to which the priority vector should be the principal eigenvector
of A. In linear algebra it is often called the Perron-Frobenius eigenvector, from
the homonymic theorem [70]. The method stems from the following observation.
Taking a matrix A whose entries are exactly obtained as ratios between weights and
multiplying it by w one obtains

Aw =

⎛

⎜

⎜

⎜

⎝

w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn
...

...
. . .

...
wn/w1 wn/w2 . . . wn/wn

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎝

w1
...

wn

⎞

⎟

⎠=

⎛

⎜

⎝

nw1
...

nwn

⎞

⎟

⎠= nw.

From linear algebra, we know that a formulation of the kind Aw = nw implies that
n and w are an eigenvalue and an eigenvector of A, respectively 1. Moreover, by

1 A short overview of eigenvector theory in the AHP can be found in the Appendix.
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knowing that the other eigenvalue of A is 0, and has multiplicity (n− 1), then we
know that n is the largest eigenvalue of A. Hence, if the entries of A are ratios
between weights, then the weight vector is the eigenvector of A associated with
the eigenvalue n. Saaty proposed to extend this result to all pairwise comparison
matrices by replacing n with the more generic maximum eigenvalue of A. That is,
vector w can be obtained from any pairwise comparison matrix A as the solution of
the following equation system,

{

Aw = λmaxw
wT 1 = 1

where λmax is the maximum eigenvalue of A, and 1 = (1, . . . ,1)T . Although this
problem can easily be solved by mathematical software and also spreadsheets, its
interpretation remains cumbersome for practitioners.

2.1.2 Geometric mean method

Another widely used method to estimate the priority vector is the geometric mean
method, proposed by Crawford and Williams [43]. According to this method each
component of w is obtained as the geometric mean of the elements on the respective
row divided by a normalization term so that the components of w eventually add up
to 1,

wi =

(

n

∏
j=1

ai j

) 1
n / n

∑
i=1

(

n

∏
j=1

ai j

) 1
n

︸ ︷︷ ︸

normalization term

. (2.1)

Example 2.1. Let us take into account the following matrix

A =

⎛

⎜

⎜

⎝

1 1/2 1/4 3
2 1 1/2 2
4 2 1 2

1/3 1/2 1/2 1

⎞

⎟

⎟

⎠
(2.2)

for which, by using (2.1), one obtains

w ≈ (0.119,0.208,0.454,0.219)T

2.1. Prove that, if ai j = wi/wj ∀i, j, then the geometric mean method (2.1) returns
the vector w whose ratios between components are the elements of A.

By looking at (2.1) it is apparent that the geometric mean method is very appeal-
ing for practical applications since, in contrast to the eigenvector method, the
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weights can be expressed as analytic functions of the entries of the matrix. Fur-
thermore, even the final weights of the whole hierarchy can be expressed as analytic
expressions of the entries of all the matrices in the hierarchy. This is particularly
important since it opens avenues to perform efficiently some sensitivity analysis.
Moreover, on a more mathematical note, it is interesting to note that the vector w
obtained with this method, can equivalently be obtained as the argument minimizing
the following optimization problem

minimize
(w1,...,wn)

n

∑
i=1

n

∑
j=1

(lnai j + lnwj − lnwi)
2

subject to
n

∑
i=1

wi = 1, wi > 0∀i

(2.3)

2.2. Prove that the argument optimizing (2.3) is the same vector (up to multiplication
by a suitable scalar) which could be obtained with the geometric mean method.

This optimization problem has some interpretations, the following being quite
straightforward. We know that, in the case of perfect rationality, ai j = wi/wj ∀i, j.
Indeed, it is fair to consider ∑n

i=1 ∑n
j=1 (ai j −wi/wj)

2 as a distance between A and
the matrix (wi/wj)n×n associated with the weight vector w. Another metric can be
found by using the natural logarithm ln, which is a monotone increasing function,
thus obtaining ∑n

i=1 ∑n
j=1 (lnai j − ln(wi/wj))

2. The rest is done by observing that
the logarithm of a quotient is the difference of the logarithms. Then the minimiza-
tion problem (2.3) is introduced to find a suitable priority vector associated to a
‘close’ consistent approximation (wi/wj)n×n of the matrix A.

2.1.3 Other methods and discussion �

A large number of alternative methods to compute the priority vector have been
proposed in the literature. Choo and Wedley [40] listed 18 different methods and
proposed a numerical and comparative study. Lin [82] reconsidered and simpli-
fied their framework. Another comparative study was offered by Ishizaka and Lusti
[73]. Instead, Cook and Kress [41] presented a more axiomatic analysis where some
desirable properties were stated. From all these studies it appears that, besides the
eigenvector and the geometric mean method, other two methods have gained some
popularity.
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• The so-called least squares method where the priority vector is the argument
solving the following optimization problem

minimize
(w1,...,wn)

n

∑
i=1

n

∑
j=1

(

ai j −
wi

wj

)2

subject to
n

∑
i=1

wi = 1, wi > 0∀i .

(2.4)

In spite of its elegance, this optimization problem can have local minimizers
where the optimization algorithms get trapped. For a discussion on this method
and its solutions the reader can refer to Bozóki [23].

• The other one is the normalized columns method which requires the normaliza-
tion of all the columns of A so that the elements add up to 1 before the arithmetic
means of the rows are taken and normalized to add up to 1 to yield the weights
w1, . . . ,wn. This is the simplest method but lacks solid theoretical foundation.

Example 2.2. Consider the pairwise comparison matrix (2.2) already used to
illustrate the geometric mean method. Then, the matrix with normalized columns
and the priority vector are the following, respectively,

⎛

⎜

⎜

⎝

3/22 1/8 1/9 3/8
6/22 2/8 2/9 2/8

12/22 4/8 4/9 2/8
1/22 1/8 2/9 1/8

⎞

⎟

⎟

⎠
, w =

⎛

⎜

⎜

⎝

21/163
42/163
84/163
16/163

⎞

⎟

⎟

⎠
.

Nevertheless, in spite of the great variety of methods, it is safe to say that the eigen-
vector and the geometric mean method have been the most used and therefore it
is convenient to confine further discussions to these two. Saaty and Vargas [115]
claimed the superiority of the eigenvector method and concluded that:

In fact it is the only method that should be used when the data are not entirely consistent in
order to make the best choice of alternative.

Saaty and Hu [109] proposed a theorem claiming the necessity of the eigenvec-
tor method, and Saaty [105] also proposed ten reasons for not using other methods.
Fichtner [53] proposed some axioms and showed that the eigenvector method is the
only one satisfying them. Curiously, supporters of the geometric mean method have
used similar arguments. For instance, Barzilai at al. [11] proposed another axiomatic
framework and proved that the geometric mean method is the only one which sat-
isfies his axioms. Seemingly, the existence of two axiomatic frameworks leading to
different conclusions suggest that the choice of the method depends on what set of
properties we want the method to satisfy. Supporters of the geometric mean method
also gave precise statements on the use of this method and, to summarize one of his
papers, Barzilai [9] wrote:

We establish that the geometric mean is the only method for deriving weights from multi-
plicative pairwise comparisons which satisfies fundamental consistency requirements.
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Bana e Costa and Vansnick [7] also moved a criticism against the eigenvector
method based on what they called the condition of order preservation (COP). The
COP states that, if xi more strongly dominates x j than xk does with xl , it means
that ai j > akl , and then it is natural to expect that the priority vector be such that
wi/wj > wk/wl . Formally,

ai j > akl ⇒
wi

wj
>

wk

wl
∀i, j,k, l.

Bana e Costa and Vansnick showed some examples of cases where, given a pair-
wise comparison matrix A, the eigenvector method does not return a priority vector
satisfying the COP, although there exists a set of other vectors satisfying it.

On a similar note, a recent discovery related to what economists call Pareto effi-
ciency. The reasonable idea behind this is suggested also by (2.3) and (2.4) and is
that, having estimated the priority vector w, the matrix (wi/wj)n×n should be as
near as possible to the original preferences in A. Blanquero et al. [19] showed that,
if w is estimated by the eigenvector method, in some cases there exists a vector
v = (v1, . . . ,vn)

T �= w such that
∣

∣

∣

∣

vi

v j
− ai j

∣

∣

∣

∣
≤
∣

∣

∣

∣

wi

wj
− ai j

∣

∣

∣

∣
∀i, j.

The fact that w �= v implies that the inequality is strict for some i, j. To summarize,
this means that there can be vectors which are closer than the eigenvector to the
preferences expressed in A. At the time of writing this manuscript, it seems that in
some cases the differences between v and w can be relevant [24].

2.2 Consistency

A perfectly rational decision maker should be able to state his pairwise preferences
exactly, i.e. ai j = wi/wj ∀i, j. So, let us consider the ramifications of this condition
on the entries of the pairwise comparison matrix A. If we write ai ja jk and apply the
condition ai j = wi/wj ∀i, j, then we can derive the following

ai ja jk =
wi

wj

wj

wk
=

wi

wk
= aik.

Hence, we discovered that, if all the entries of the pairwise comparison matrix A
satisfy the condition ai j = wi/wj ∀i, j, then the following condition holds 2,

aik = ai ja jk ∀i, j,k , (2.5)

2 As we will see, the ‘if’ condition is in fact an ‘if and only if’.
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which means that each direct comparison aik is exactly confirmed by all indirect
comparisons ai ja jk ∀ j. Formally, a decision maker able to give perfectly consistent
pairwise comparisons does not contradict himself. A matrix for which this transitiv-
ity condition holds is called consistent.

Example 2.3. Consider the characteristic ‘weight’ of three stones x1,x2,x3. If the
decision maker says that x1 is three times heavier than x3 (a13 = 3), and then also
says that x1 is two times heavier than x2 (a12 = 2), and x2 is also two times heavier
than x3 (a23 = 2), then he contradicts himself, because he directly states that a13 = 3,
but indirectly states that the value of a13 should be a12a23 = 2 ·2 = 4 and not 3.

Evidently the whole reasoning can be translated into the language of pairwise com-
parison matrices.

Example 2.4. Consider this other example with the two pairwise comparison matri-
ces ⎛

⎝

1 2 4
1/2 1 2
1/4 1/2 1

⎞

⎠

⎛

⎝

1 2 1/2
1/2 1 2
2 1/2 1

⎞

⎠

for which we have the two diagrams in Figure 2.1 respectively.

(a) The matrix is consistent (b) The matrix is inconsistent

Fig. 2.1: Examples of consistent and inconsistent transitivities.

Being consistent is seldom possible because many factors can determine the emer-
gency of inconsistencies. For instance, the decision maker might be asked to use
integer numbers and their reciprocals; in this case if ai j = 3 and a jk = 1/2 it is
impossible to find a consistent value for aik. Moreover, the number of independent
transitivities (i, j,k) in a matrix of order n is equal to

(n
3

)

, thus evidencing the diffi-
culty of being fully consistent.

Example 2.5. In a matrix of order 6, there are
(6

3

)

= 20 independent transitivities;
that is the number of possible assignments of values to i, j,k such that 1 ≤ i < j <
k ≤ 6. In a matrix of order 4, there are

(4
3

)

= 4 transitivities. They are (1,2,3),
(1,2,4), (1,3,4) and (2,3,4).

In spite of the difficulty in being fully transitive, it is undeniable that consis-
tency is a desirable property. In fact, an inconsistent matrix could be a symptom
of the decision maker’s incapacity or inexperience in the field. Additionally, it is
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A

B

C

I (A)

I (B)

I (C)

Fig. 2.2: An inconsistency index can be seen as a ‘thermometer’, which takes pair-
wise comparison matrices as inputs and evaluates how inconsistent the judgments
are.

possible to envision that violations of the condition of consistency (2.5) can be of
different extent and gravity and imagine inconsistency as a gradual notion. Hence,
on the ground that a matrix should deviate as less as possible from the condition of
transitivity, a number of inconsistency indices have been proposed in the literature
to quantify this deviation. Formally, an inconsistency index is a function mapping
pairwise comparison matrices into the real line (see Figure 2.2 for an oversimplifi-
cation).

There exist various inconsistency indices in the literature and this variety is in
part justified by the fact that the condition of consistency can be formulated in many
equivalent ways. Among them, it is the case to reckon the following four:

i) aik = ai ja jk ∀i, j,k,
ii) There exists a vector (w1, . . . ,wn)

T such that ai j = wi/wj ∀i, j,
iii) The columns of A are proportional, i.e. A has rank one,
iv) The pairwise comparison matrix A has its maximum eigenvalue, λmax, equal to

n.

In this section we explore some inconsistency indices, each inspired by one of these
equivalent consistency conditions.

2.2.1 Consistency index and consistency ratio

According to the result that given a pairwise comparison matrix A, its maximum
eigenvalue, λmax, is equal to n if and only if the matrix is consistent (and greater
than n otherwise), Saaty [99] proposed the Consistency Index

CI(A) =
λmax − n

n− 1
. (2.6)
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However, numerical studies showed that the expected value of CI of a random matrix
of size n+1 is, on average, greater than the expected value of CI of a random matrix
of order n. Consequently,CI is not fair in comparing matrices of different orders and
needs to be rescaled.

The Consistency Ratio, CR, is the rescaled version of CI. Given a matrix of order
n, CR can be obtained dividing CI by a real number RIn (Random Index) which is
nothing else but an estimation of the average CI obtained from a large enough set of
randomly generated matrices of size n. Hence,

CR(A) =
CI(A)

RIn
(2.7)

Estimated values for RIn are reported in Table 2.1. Note that the generation of ran-
dom matrices requires the definition of a bounded scale where the entries take val-
ues, for instance the interval [1/9,9]. According to Saaty [100], in practice one
should accept matrices with values CR ≤ 0.1 and reject values greater than 0.1. A
value of CR = 0.1 means that the judgments are 10% as inconsistent as if they had
been given randomly.

n 3 4 5 6 7 8 9 10
RIn 0.5247 0.8816 1.1086 1.2479 1.3417 1.4057 1.4499 1.4854

Table 2.1: Values of RIn [3].

Example 2.6. Consider the pairwise comparison matrix

A =

⎛

⎜

⎜

⎝

1 2 9 1
1/2 1 1/3 1/6
1/9 3 1 2
1 6 1/2 1

⎞

⎟

⎟

⎠
. (2.8)

It can be calculated that its maximum eigenvalue is λmax = 5.28. Using the formula
for CI, we obtain CI(A) = 0.42667. Dividing it by RI4 one obtains CR(A) ≈ 0.48
which is significantly greater than the threshold 0.1. In a decision problem it is
common practice to ask the decision maker to revise his judgments until a value of
CR smaller than 0.1 is reached.

2.2.2 Index of determinants

The index of determinants was proposed by Peláez and Lamata [93] and comes from
the following property of a matrix of order three. Expanding the determinant of a
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3×3 real matrix one obtains

det(A) =
a13

a12a23
+

a12a23

a13
−2.

If A is not consistent, then a13 �= a12a23 and det(A) > 0, because, in general,
a
b +

b
a −2 > 0 ∀a �= b, a,b > 0.

It is possible to generalize this result to matrices of order greater than three and
define this inconsistency index as the average of the determinants of all the possible
submatrices Ti jk of a given pairwise comparison matrix, constructed as follow,

Ti jk =

⎛

⎝

1 ai j aik

a ji 1 a jk

aki ak j 1

⎞

⎠ , ∀i < j < k.

The number of so constructed submatrices is
(n

3

)

= n!
3!(n−3)! . The result is an index

whose value is the average inconsistency computed for all the submatrices Ti jk (i <
j < k)

CI∗(A) =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

(

aik

ai ja jk
+

ai ja jk

aik
−2

)

︸ ︷︷ ︸

det(Ti jk)

/(

n
3

)

. (2.9)

Example 2.7. Consider the matrix A in (2.8). It is then possible to calculate the
average of the determinants of all the submatrices Ti j k with i < j < k.

CI∗(A) =

det

T123
︷ ︸︸ ︷
⎛

⎝

1 2 9
1/2 1 1/3
1/9 3 1

⎞

⎠+ · · ·+ det

T234
︷ ︸︸ ︷
⎛

⎝

1 1/3 1/6
3 1 2
6 1/2 1

⎞

⎠

4
=(11.5741+ 1.3333+16.0556+34.0278)/4= 15.7477.

Interestingly, CI∗ is proportional to another inconsistency index called c3 [28].
The coefficient c3 of the characteristic polynomial of a pairwise comparison matrix
was proposed to act as an inconsistency index by Shiraishi and Obata [122] and
Shiraishi et al. [123, 124]. By definition, the characteristic polynomial3 of a matrix
A has the following form

PA(λ ) = λ n + c1λ n−1 + · · ·+ cn−1λ + cn,

with c1, . . . ,cn that are real numbers and λ the unknown. Shiraishi et al. [123] proved
that, if c3 < 0, then the matrix cannot be fully consistent. In fact, this is evident
if one reckons that—in light of the Perron-Frobenius theorem—the only possible

3 See appendix on eigenvalues and eigenvectors
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formulation of the characteristic polynomial which yields λmax = n, is

PA(λ ) = λ n−1(λ − n). (2.10)

Thus, the presence of c3 < 0 contradicts this last formulation and is certainly a
symptom of inconsistency. Moreover, Shiraishi et al. [123] also proved that c3 has
the following analytic expression

c3 =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

(

2− aik

ai ja jk
− ai ja jk

aik

)

(2.11)

which highlights its proportionality with CI∗.

2.2.3 Geometric consistency index

This index was introduced by Crawford [42] and reexamined by Aguarón and
Moreno-Jiménez [2]. It considers the priority vector to be estimated by the geo-
metric mean method (2.1). With the so estimated weights it is possible to build a
local quantification of inconsistency ei j for each entry ai j such that

ei j = ai j
w j

wi
, i, j = 1, . . . ,n. (2.12)

Obviously, for consistent matrices the value of ei j is equal to 1 because it becomes
the multiplication of an entry times its reciprocal. Note that,

ai j =
wi

wj
⇒ lnei j = 0.

It is now possible to define an index of global inconsistency as the normalized sum
of the local contributions to the inconsistency of A. This index of global inconsis-
tency, the Geometric Consistency Index (GCI), is the following:

GCI(A) =
2

(n− 1)(n− 2)

n−1

∑
i=1

n

∑
j=i+1

(lnei j)
2 . (2.13)

Example 2.8. We refer to the matrix A presented in (2.8). By using the geometric
mean method, the priority vector is w ≈ (2.06,0.408,0.904,1.316)T. Next, it could
be convenient to collect values ei j obtained with (2.12) into the following auxiliary
matrix

E = (ei j)n×n =

(

ai j
w j

wi

)

n×n
=

⎛

⎜

⎜

⎝

1 0.3964 3.9482 0.6389
2.5227 1 0.7379 1.8612
0.2538 1.3554 1 2.9129
1.5651 1.8612 0.3432 1

⎞

⎟

⎟

⎠
.
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Finally, the last computation is achieved applying formula (2.13), which yields
GCI(A)≈ 1.52.

2.2.4 Harmonic consistency index

If and only if A is a consistent pairwise comparison matrix, then its columns are
proportional and rank(A) = 1. Therefore, it is fair to suppose that the less pro-
portional are the columns, the less consistent is the matrix. An index of incon-
sistency loosely based on proportionality between columns was then proposed by
Stein and Mizzi [125]. Given a matrix A, they proposed to construct an auxiliary
vector s = (s1, . . . ,sn)

T with s j = ∑n
i=1 ai j ∀ j. It was proven that ∑n

j=1 s−1
j = 1 if and

only if A is consistent, and smaller than 1 otherwise. The harmonic mean of the
components of vector s is then the result of the following

HM(s) =
n

∑n
j=1

1
s j

. (2.14)

The function HM itself could be an index of inconsistency, but the authors,
according to computational experiments, proposed a normalization in order to align
its behavior with that of CI. The Harmonic Consistency Index is then

HCI(A) =
(HM(s)− n)(n+1)

n(n− 1)
. (2.15)

Example 2.9. Considering the matrix A in (2.8), then the vector s is

s =
(

47
18

,12,
65
6
,

25
6

)T

whose harmonic mean is

HM(s) =
4

1
47
18
+ 1

12 +
1
65
6
+ 1

25
6

=
733200
146387

= 5.00864

Now it is possible to derive the value of the harmonic consistency index by plugging
the value HM(s) into (2.15) and obtain HCI(A)≈ 0.42.

2.2.5 Ambiguity index

Salo and Hämäläinen [119, 120] proposed an ambiguity index which can be used
as an inconsistency index too. It requires the construction of an auxiliary interval-
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valued matrix

Ā = (āi j)n×n =

⎛

⎜

⎝

[aL
11,a

R
11] . . . [a

L
1n,a

R
1n]

...
. . .

...
[aL

n1,a
R
n1] . . . [a

L
nn,a

R
nn]

⎞

⎟

⎠

where aL
i j = min{aikak j|k = 1, . . . ,n} and aR

i j = max{aikak j|k = 1, . . . ,n}. Namely,
each interval’s lower (upper) bound aL

i j (aR
i j) is the smallest (greatest) possible value

assignable to the entry if it was estimated indirectly using a transitivity of the pair-
wise comparison matrix. Surely, if A is consistent, then all the intervals collapse
into real numbers. From this insight, Salo and Hämäläinen deduced that the wider
the intervals, the more inconsistent A should be. Hence, they presented their consis-
tency measure,

CM(A) =
2

n(n− 1)

n−1

∑
i=1

n

∑
j=i+1

aR
i j −aL

i j
(

1+aR
i j

)(

1+aL
i j

) ,

Example 2.10. Salo and Hämäläinen proposed the following simple example [120].
Consider

A =

⎛

⎝

1 7 4
1/7 1 1/5
1/4 5 1

⎞

⎠

from which one can derive

Ā =

⎛

⎝

1 [7,20] [7/5,4]
[1/20,1/7] 1 [1/5,4/7]
[1/4,5/7] [7/4,5] 1

⎞

⎠ . (2.16)

It follows that

CM(A) =
2

3 ·2

(

20− 7
(20+ 1) · (7+ 1)

+
4− 7

5

(4+ 1) · (7+1)
+

4
5 −

1
5

( 4
7 +1) · ( 1

5 +1)

)

= 0.16 .

2.2.6 Other indices and discussion �

Many other inconsistency indices have been proposed. For instance, Koczkodaj
[80] proposed an inconsistency index for matrices of order three which was later
extended to matrices of greater order [48]. Golden and Wang formulated an index
which considers a metric between the normalized columns of the matrix and the
priority vector obtained either with the eigenvector or the geometric mean method
[63]. Cavallo and D’Apuzzo proposed an interpretation of pairwise comparison
matrices using group theory and introduced their own index [36, 37]. Barzilai, first
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transformed the entries of the matrix by means of a logarithmic function and then
proposed another index [10]. Gass and Rapcsák [62] defined an index based on
the singular value decomposition of matrices. Furthermore, consider that even the
objective functions of the optimization problems of the logarithmic least squares
(2.3) and the least squares (2.4) used in §2.1 to derive the priority vector can be con-
sidered inconsistency index. The interested reader can refer to a survey paper with
numerical tests on various indices [27].

More broadly, and to include the most updated results, it is the case to remark
that recently some questions have been answered.

• Some questions were open on the behavioral side of consistency. For instance,
does the order in which questions are asked affect the final inconsistency? Does
inconsistency increase with the order of the matrix? These, and other ques-
tions, have been answered by means of empirical experiments with real decision
makers [25].

• It used to be unclear whether different inconsistency indices were similar or
choosing one or another really made a difference. Namely, the formulations
of the indices are often so dissimilar that we cannot understand if they tend to
give similar results. By means of numerical simulations it was discovered that
some indices are very similar whereas some others can give very different results
[27]. Curiously, some indices have even been proved to be proportional, and thus
equivalent, in estimating inconsistency [28].

• Inconsistency indices have been introduced empirically and an inquisitive reader
might not take their validity for granted. Clearly, functions like the product of all
the entries of a matrix, Π(A), or the trace of a matrix tr(A) cannot capture the
inconsistency of a matrix. Five axioms were proposed and considered necessary
to characterize inconsistency indices and it was proved that, in fact, some incon-
sistency indices fail to satisfy some of them and can be suspected of ill-behavior
in some situations [29]. Figure 2.3 is a snapshot of the axiomatic system and its
role.

CI

CI*

GCI

det

tr

Σ

Π

Axiomatic
system

Fig. 2.3: The axiomatic system [29] defines a set of functions suitable to estimate
inconsistency

In the literature it is often assumed that one inconsistency index together with
a threshold value should be used to test whether the inconsistency of a matrix is
tolerable or not. At least three points can be raised in connection with this standard
procedure.
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Firstly, unlike for the Consistency Index, thresholds have been rarely presented
for inconsistency indices. That is, indices were introduced tout court, without dis-
cussions on acceptance rules for sufficiently consistency matrices. Hence, presently,
without thresholds the use of many indices is limited to stating if a matrix is more
(or less) inconsistent that another.

Secondly, a wise proposal would be that of using two indices, perhaps quite dis-
similar, to test if a matrix is not too inconsistent. New acceptance rules might be
devised too; considering two indices, one could for instance accept matrices respect-
ing the threshold value for both the first and the second inconsistency index.

Thirdly, it is simple to envision that a decision maker can hardly ever be com-
pletely consistent, and therefore, instead of requiring him to achieve a sufficiently
low value for an inconsistency index, one might want to lower the bar and intro-
duce less demanding conditions which can realistically be fully satisfied. This kind
of reasoning has pushed some authors to research on weaker conditions of consis-
tency. One natural way to force transitivity, but in a weaker sense, would be that of
doing without the degrees of preference and simply require that if a decision maker
prefers xi to x j and x j to xk, then it should also prefer xi to xk. This condition, which
is nothing else but a restatement of ordinal transitivity for binary relations, can be
formalized as follows:

ai j > 1 and a jk > 1 ⇒ aik > 1 ∀i, j,k.

This condition can be strengthened into the more restrictive weak consistency con-
dition:

ai j > 1 and a jk > 1 ⇒ aik > max{ai j,a jk} ∀i, j,k.

A deeper analysis of weaker consistency conditions, and their implications on the
stability of the ranking of alternatives, can be found in [13, 14].



Chapter 3
Missing comparisons and group decisions

3.1 Missing comparisons

Having, and manipulating, a complete and consistent pairwise comparison matrix
means dealing with rich and reliable information and therefore it represents the most
desirable situation in a decision making problem with the AHP. However, some-
times, it is not possible for the decision maker to express all the pairwise compar-
isons and therefore, it is nowadays common practice to accept that some entries of
a pairwise comparison matrix be missing. Let us now reprise the famous box and
highlight the assumption that we are going to relax.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

In complex problems like those considered in §1.2, it may happen that the deci-
sion maker cannot complete a preference relation due to lack of time, the typology
of problem, his incapacity in comparing two alternatives of different nature, and
so forth [30]. Besides, sometimes, even if it was possible to obtain all the pairwise
comparisons, doing so could be discouraged, since, due to information overload,
the last ones could be given with less attention and care [35]. Certainly, it might be
better to have few pairwise comparisons carefully given, than many, but given with
scarce attention.

Hereafter, we shall call incomplete pairwise comparison matrix any pairwise
comparison matrix with some missing entries. Considering all the diagonal elements
of the matrix as given and the fact that, thanks to reciprocity, we only need to know
ai j to derive its reciprocal a ji, then a pairwise comparison matrix of order n requires
n(n−1)/2 independent comparisons.

c© Matteo Brunelli 2015 33
M. Brunelli, Introduction to the Analytic Hierarchy Process,
SpringerBriefs in Operations Research, DOI 10.1007/978-3-319-12502-2 3
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Example 3.1. Consider a decision problem with 6 alternatives evaluated with respect
to 5 criteria. Then, the number of independent comparisons is

5
6(6− 1)

2
+

5(5− 1)
2

= 75+10= 85.

3.1. How many independent comparisons are required by the hierarchy in Figure
1.4 used in Exercise 1.1?

All in all, the range of reasons for leaving a matrix incomplete is wide and the real
problem is how to derive a priority vector when there is not full information about
the preferences on alternatives. In fact, we have seen that the eigenvector method
and the geometric mean method were defined only for complete matrices. Several
methods have been implemented to face this problem and, despite their diversi-
ties, considering A and Ȧ to be a complete and an incomplete pairwise comparison
matrix, respectively, the decision maker can proceed in one of the two following
alternative ways:

• Complete the matrix by means of the information provided by the existing com-
parisons, ➀. This operation is usually carried out following some principles of
consistency, in the sense that the missing comparisons should be as coherent as
possible with the existing ones. Having done this, it is possible to estimate the
priority vector by means of one of the methods discussed earlier in §2.1 ➁

• Estimate directly the priority vector by means of some modified algorithms
which work even when some comparisons are missing, ➂.

These two ways of proceeding are illustrated in the diagram below.

Ȧ ➀ ��

➂ ���
��

��
��

� A

➁
��

w

(3.1)

The following two subsections describe an algorithm of the first kind as well as one
of the second kind.

3.1.1 Optimization of the coefficient c3

The name c3 refers to the coefficient of λ n−3 in the characteristic polynomial of the
matrix A. Shiraishi et al. [124] observed that c3 can be considered an inconsistency
index for a pairwise comparison matrix. This was already discussed in §2.2.2 and the
analytic formula of c3 was given in (2.11). Then, in order to complete Ȧ following
a principle of consistency, the authors considered the m missing comparisons as
variables α1, . . . ,αm and proposed to maximize c3 (reckon that the greater c3 the
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smaller the inconsistency) as a function of these variables, thus obtaining the values
of the missing comparisons by solving

maximize
(α1,...,αm)

c3

subject to α1, . . . ,αm > 0 .
(3.2)

Note that there always exists an optimum for (3.2), but when there are too many
missing comparisons uniqueness is not guaranteed [122].

Example 3.2. First, we present an incomplete pairwise comparison matrix Ȧ

Ȧ =

⎛

⎜

⎜

⎝

1 2 4 ȧ14

1/2 1 1/3 1
1/4 3 1 2

1/ȧ14 1 1/2 1

⎞

⎟

⎟

⎠
. (3.3)

Its missing comparison can be estimated by solving (3.2) with α1 = ȧ14. The plot
of c3 as a function of ȧ14 is depicted in Figure 3.1a. The optimal solution is ȧ14 = 4.
If we further assume that also ȧ13 is missing, then the new incomplete pairwise
comparison matrix becomes

Ȧ =

⎛

⎜

⎜

⎝

1 2 ȧ13 ȧ14

1/2 1 1/3 1
1/ȧ13 3 1 2
1/ȧ14 1 1/2 1

⎞

⎟

⎟

⎠
. (3.4)

and the plot of c3 as a function of both ȧ13 and ȧ14 is in Figure 3.1b. In this case, the
optimal solution is ȧ13 ≈ 0.763143 and ȧ14 ≈ 1.74716.

(a) Plot of c3 as a function of ȧ14 (b) Plot of c3 as a function of ȧ14 and ȧ13

Fig. 3.1: Plots of c3

3.2. Consider the matrix Ȧ in (3.3). Find a way to recover ȧ14 = 4 as the analytic
solution of the nonlinear optimization problem (3.2).

The optimization of the coefficient c3 provides values for the missing entries,
and, upon completion of the matrix, it becomes straightforward to derive a priority
vector.



36 3 Missing comparisons and group decisions

3.1.2 Revised geometric mean method

This method, proposed by Harker [68], is not explicitly based on the optimization of
an objective function, but refers to the eigenvector approach by Saaty. Practically,
it extends Saaty’s approach to non-negative quasi-reciprocal matrices, in order to
apply it to the case of incomplete preferences. Unlike the optimization of c3 pro-
posed in (3.2), this method does not reconstruct the matrix but instead finds a pri-
ority vector using less information. The algorithm requires to construct an auxiliary
matrix C = (ci j)n×n as follows

ci j =

⎧

⎨

⎩

1+mi, ∀i = j
ȧi j, ∀i �= j and ȧi j not missing
0, ȧi j is missing

where mi is the number of missing comparisons on the ith row. Having done this, the
priority vector can be estimated by means of the eigenvector method. The following
case, proposed by Harker [68], provides a numerical toy example and more insight
on the method.

Example 3.3. Consider the following pairwise comparison matrix,

A =

⎛

⎝

1 2 ȧ13

1/2 1 2
ȧ31 1/2 1

⎞

⎠ ,

and replace the missing comparison and its reciprocal entry with their theoretical
values wi/wj so that the new matrix B is

B =

⎛

⎝

1 2 w1
w3

1/2 1 2
w3
w1

1/2 1

⎞

⎠ .

It is possible to observe what is obtainable through the operation Bw

Bw =

⎛

⎝

1 2 w1
w3

1/2 1 2
w3
w1

1/2 1

⎞

⎠

⎛

⎝

w1

w2

w3

⎞

⎠=

⎛

⎝

2w1 +2w2

w1/2+w2 +2w3

w2/2+2w3

⎞

⎠ .

We can reach the same result considering Cw with

C =

⎛

⎝

2 2 0
1/2 1 2

0 1/2 2

⎞

⎠ .

Finally, we can certainly state that

Bw = Cw. (3.5)
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We can proceed with the elicitation of weights, extending what was stated above.
Therefore,

Bw = Cw = λmaxw. (3.6)

Since B has some non-numerical entries, we can solve the eigenvector problem for
C. Needless to say, the result is w = (4,2,1)T .

3.3. Formulate the auxiliary matrix C associated with A in (3.4).

3.1.3 Other methods and discussion �

There are other methods, of both types. For instance, Harker proposed the applica-
tion of the concept of connecting path. A connecting path of length r between i and
j is a product aii1ai1i2 · · ·air−2ir−1air−1 j, where the special case with r = 2 collapses
to the consistency condition aik = ai ja jk. Harker proposed to compute the missing
entries taking the geometric mean of all their connecting paths. Although sound, this
proposal suffers of computational complexity when the size of the matrix is large
enough, and is difficult to implement when several comparisons are missing.

It seems that one natural way to estimate missing comparisons is that of using
some principles of consistency. For example, an inconsistency index can be opti-
mized and the missing comparisons be used as variables. True, the foremost incon-
sistency index has been the CI which, fixed a value of n, is a positive affine trans-
formation of the maximum eigenvalue λmax, which in turn is a root of a polynomial
of degree n, hence impossible to be expressed analytically, except in few cases.
In spite of this problem, using some convexity properties, Bozóki et al. [26] were
able to formulate an optimization problem and a special algorithm to minimize λmax

keeping the missing comparisons as variables. It is indeed a very valuable proposal,
but remains too cumbersome to be explained in this booklet.

On a more general level, a deeper discussion on missing comparisons goes back
to the philosophy of the AHP and questions how many comparisons the decision
maker should provide. Is it carved in stone that the matrix has to be complete? Can,
instead, some comparisons be missing? How many? This question has at least two
possible answers, one algorithmic and one connected with common sense.

• From the algorithmic point of view, different methods for dealing with incom-
plete pairwise comparisons give different answers. Considering the revised geo-
metric mean method presented in §3.1.2 one can observe that, in fact, this method
works even when all the nondiagonal entries of Ȧ are missing, in which case it
returns a priority vector where all the weights are equal. More generally, it was
also shown that one needs only (n− 1) independent comparisons to complete a
matrix and make it consistent in a univocal way [69]. In fact, the knowledge of a
set of comparisons, as for instance the set of entries right above the main diago-
nal, {a12,a23, . . . ,an−1n}, or the set of non-diagonal entries on, say, the first row,
{a12,a13, . . . ,a1n} suffices to reconstruct the missing entries using the condition
aik = ai ja jk ∀i, j,k.
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3.4. Consider the following matrix Ȧ and reconstruct its missing entries using
the consistency condition aik = ai ja jk ∀i, j,k.

Ȧ =

⎛

⎜

⎜

⎝

1 2 4 3
1/2 1 ȧ23 ȧ24

1/4 1/ȧ23 1 ȧ34

1/3 1/ȧ24 1/ȧ34 1

⎞

⎟

⎟

⎠

• On the common sense side of the subject matter, one would surely refrain from
estimating the priority vector from a totally incomplete matrix, and probably even
question the convenience of reconstructing a (consistent) matrix from (n− 1)
comparisons, since at that point the original (n− 1) comparisons would have
been sufficient to estimate the priority vector directly. Moreover, by giving up
a large number of comparisons one also gives up the possibility to estimate the
inconsistency of preferences and thus to detect potential flaws in the decision
maker’s judgments. One last reason for not leaving too many comparisons miss-
ing is that evaluation errors can better compensate, and tend to cancel each other,
when there are many comparisons then when there are few.

Another open question regards what comparisons should be elicited and what can
be left missing. For example, knowing that the decision maker is willing to express
his opinions on a subset of pairwise comparisons, but not all, then which ones should
he express, and in what order? The quest for optimal completion rules and optimal
completion paths has inspired some papers, as for instance those by Harker [67] and
Fedrizzi and Giove [52].

There are various research papers on methods for dealing with incomplete pref-
erences but very few investigated the relation between the number of missing com-
parisons and the stability of the obtained priority vector. One of these rare studies
was by Carmone et al. [35] and it is safe to say that there is need and space for
further investigation.

3.2 Group decisions

A further assumption was made regarding the number of decision makers: so far
opinions have been given by a single decision maker. Even in the introductory
exposition of the AHP given in Chapter 1, in the example of the European city,
the family was considered as an unique entity and we did not account for possi-
bly different opinions of family members. However, in many real-world contexts,
decisions are made by groups of people, committees, boards, teams of experts, and
so forth. Whenever there is a multitude of experts bringing diverse evidence on a
problem, it is good practice to account for them.
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A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

In his popular book The Wisdom of the Crowd, Surowiecki [126] argued that
collective intelligence often outperforms individual one. An anecdote, originally by
Galton [60], is reported in the introductory part of the book: at a county fair, indi-
viduals were asked to estimate the exact weight of an ox. Remarkably, by averaging
the responses of the crowd members, they could obtain an estimate of the weight
of the ox which was closer to the true weight then any of the individual judgments
which were instead given by a number of cattle experts. In other words, the collec-
tive wisdom of the crowd was more accurate than the estimates of true experts in
the field. The problem of the ox was a problem of measurement, and we should not
forget that the AHP is a theory of relative measurement.

The AHP for group decisions has been acclaimed by some researchers, for
instance Dyer and Forman [50]. Peniwati [94] proposed some desirable proper-
ties, e.g. ‘Scientific and mathematical generality’, ‘psychophysical applicability’,
and ‘applicability to conflict resolution’, for group decisions with MCDM methods,
and according to her qualitative analysis, the AHP is a valuable decision methodol-
ogy for group decisions.

The AHP can be used in many different ways as a group decision making method
and it can be implemented in the so-called Delphi method [84]. In a nutshell, the
Delphi method prescribes a number of meetings led by a moderator, where, after
each meeting, the decision makers can revise their opinions. The role of the mod-
erator is to make the opinions of different decision makers converge towards a con-
sensual solution. Nonetheless, in spite of its seeming triviality, any short description
of the Delphi method would be an oversimplification, and any lengthy one would
go beyond the scope of this exposition. We shall therefore use some mathematical
notation and focus on another way to make sense of the AHP in group decisions.

Suppose that m (m ≥ 2) decision makers are involved in a decision and we want
to take into account and synthesize their opinions, i.e. we want to aggregate them.
This suggests that we ought to average different opinions. More specifically, starting
from their pairwise comparison matrices

(

a(1)i j

)

n×n
︸ ︷︷ ︸

A1

, . . . ,
(

a(m)
i j

)

n×n
︸ ︷︷ ︸

Am

we eventually want to obtain one representative group priority vector wG =(wG
1 , . . . ,

wG
n )

T . According to Forman and Peniwati [57] there are two methods to derive a
vector wG from a set of pairwise comparison matrices A1, . . . ,Am and they differ in
where the aggregation takes place.

• Aggregation of individual judgments (AIJ): Matrices A1, . . . ,Am can be aggre-
gated into a single pairwise comparison matrix, AG = (aG

i j), and then the priority
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vector be calculated from AG with any of the methods described in §2.1. In this
case the aggregation happens before the elicitation of the priorities

• Aggregation of individual priorities (AIP): Priority vectors w1, . . . ,wm can be
derived from the original set of matrices. These vectors are then aggregated into
wG. In this case, the aggregation happens after the derivation of the priority
vectors.

The following scheme shall clarify the difference between AIJ and AIP. Also, it
should be evident that, either way, going from a set of pairwise comparison matrices
to a single priority vector entails a double process of aggregation.

A1, . . . ,Am
§2.1 ��

AIJ
��

w1, . . . ,wm
AIP �� wG

AG

§2.1
��

wG

(3.7)

Obviously, the crucial point is that of finding a suitable aggregation function.
For the aggregation of individual judgments (AIJ), the reader can check that a basic
function like the arithmetic mean fails since the resulting matrix AG would not be
reciprocal. Aczel and Saaty [1] and Saaty and Alsina [108] proposed a set of reason-
able properties for the aggregation of preferences and, by using functional analysis,
proved that in this context the only meaningful and non-trivial aggregation method
is the weighted geometric mean. Namely, entries of the group matrix AG = (aG

i j)n×n

are obtained using the following parametric formula,

aG
i j =

m

∏
h=1

a(h)i j

λh

with λh > 0 ∀h and λ1+ · · ·+λm = 1. The most common interpretation of a given λh

is that it should be proportional to the importance of the hth decision maker. When
λh = 1/m ∀h then all the decision makers have the same importance. Conversely, if
λh > λk, then the relative importance of the hth decision maker is greater than that
of the kth.

Example 3.4. Consider the very simple case of two decision makers with prefer-
ences expressed as

A1 =

⎛

⎝

1 2 1/2
1/2 1 3

2 1/3 1

⎞

⎠ A2 =

⎛

⎝

1 7 2
1/7 1 1/4
1/2 4 1

⎞

⎠ (3.8)
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and suppose that the first decision maker should be twice as influential as the second.
This suggests the use of λ1 = 2/3 and λ2 = 1/3. Hence, the group matrix computed
with AIJ is

AG =

⎛

⎜

⎝

1 2
2
3 7

1
3 (1/2)

2
3 2

1
3

(1/2)
2
3 1/7

1
3 1 3

2
3 (1/4)

1
3

2
2
3 (1/2)

1
3 (1/3)

2
3 4

1
3 1

⎞

⎟

⎠≈

⎛

⎝

1 3.04 0.79
0.22 1 1.31
1.26 0.76 1

⎞

⎠ ,

from which a group priority vector be easily derived.

If we turn our attention to the aggregation of priorities (AIP), two formulas are
accepted, the weighted geometric mean and the weighted arithmetic mean,

wG
i =

(

m

∏
h=1

w(h)
i

λi

)

, wG
i =

(

m

∑
h=1

λiw
(h)
i

)

.

These two formulas clearly lead to different priority vectors, but they are both
accepted in the literature, perhaps with a slight preference for the geometric mean
[18].

Example 3.5. Consider the two matrices in (3.8) and their priority vectors

w1 ≈ (0.331313,0.379259,0.289428)T

w2 ≈ (0.602629,0.082342,0.315029)T

obtained with the eigenvector method (but we could have used any other method).
At this point the geometric mean aggregation can be applied component-wise to w1

and w2 to estimate the group priority vector

wG =

⎛

⎜

⎝

0.331313
2
3 0.602629

1
3

0.379259
2
3 0.082342

1
3

0.289428
2
3 0.315029

1
3

⎞

⎟

⎠≈

⎛

⎝

0.404429
0.227945
0.297722

⎞

⎠ .

It is noteworthy that, when the geometric mean method is used to derive the
priorities and the geometric mean is used to aggregate judgments, the diagram (3.7)
becomes commutative, as depicted in (3.9), and thus using AIP or AIJ makes no
difference.

A1, . . . ,Am
§2.1 ��

AIJ
��

w1, . . . ,wm

AIP
��

AG §2.1 �� wG

(3.9)

An interesting question could then refer to how much difference there is between
weight vectors wG when the geometric mean method is not used, and perhaps the
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eigenvector method is employed. According to a recent study [18], in these cases,
the differences between vectors are often negligible.

Compatibility index

Very often, it is desirable that a sufficient level of consensus is reached, before opin-
ions of different experts are aggregated. Namely, in many procedures different deci-
sion makers are encouraged to discuss, clarify issues and make their opinions con-
verge towards a consensual solution. Therefore, it is important to define an index of
similarity between opinions of decision makers. One of these indices was defined by
Saaty [107] and goes under the name of compatibility index. Recall that, given two
matrices of the same order A = (ai j)n×n and B = (bi j)n×n, their Hadamard product
A ◦B is defined as the entry-wise multiplication, i.e. A ◦B = (ai j · bi j)n×n. At this
point the compatibility index of two pairwise comparison matrices of order n was
defined in a matrix form as

comp(A,B) =
1
n2 1T (A◦BT)1,

where 1 = (1, . . . ,1)T . Note that it can be rewritten as

comp(A,B) =
1
n2

n

∑
i=1

n

∑
j=1

(ai j ·b ji).

Example 3.6. For illustrative simplicity, let us consider two matrices differing only
for one entry and its reciprocal,

A =

⎛

⎝

1 2 3
1/2 1 5
1/3 1/5 1

⎞

⎠ B =

⎛

⎝

1 2 3
1/2 1 2
1/3 1/2 1

⎞

⎠ .

By using the definition of compatibility index we obtain

comp(A,B) =
1
n2 (1,1,1)

⎛

⎝

1 2 3
1/2 1 5
1/3 1/5 1

⎞

⎠◦

⎛

⎝

1 1/2 1/3
2 1 1/2
3 2 1

⎞

⎠

⎛

⎝

1
1
1

⎞

⎠ .

Proceeding by solving the Hadamard product,

comp(A,B) =
1
n2 (1,1,1)

⎛

⎝

1 1 1
1 1 5/2
1 2/5 1

⎞

⎠

︸ ︷︷ ︸

A◦BT

⎛

⎝

1
1
1

⎞

⎠ .
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At this point the remaining simplifies to taking the arithmetic mean of all the entries
of A◦BT , which returns comp(A,B) = 99/90 = 1.1.

The example shows that the minimum value attained by the compatibility index
is 1 and it represents perfect consensus. Additionally, it was proven by Saaty (see
Theorem 1 in [107]) that there is a connection between this metric and the method of
the eigenvector. Considering W the matrix constructed by using the priority vector
of A obtained by using the eigenvector method, then comp(A,W) = λmax/n. In
this sense, this quantification of consensus results appealing to those who prefer
the eigenvector method. It goes without saying that many other metrics, e.g. matrix
norms of (A−B), can be used to estimate the distances between preferences of
experts.

3.2.1 Integrated methods �

More models have been built to deal with many relaxations at once. These mathe-
matical models can be called integrated, in the sense that they incorporate different
purposes in the same model. Many times, integrated models can be formulated in
very simple forms1 and here we can even make up one of them for the purpose of
the exposition. In this case we are interested to derive the priority vector from a
set of incomplete pairwise comparison matrices Ȧ1, . . . , Ȧm. Hence, two problems,
the incompleteness of preferences and the multiplicity of decision makers, can be
accommodated in one single optimization problem as, for example, the following

minimize
(wG

1 ,...,w
G
n )

n

∑
i=1

n

∑
j=1

m

∑
h=1

δ (h)
i j

(

log ȧ(h)i j + logwG
j − logwG

i

)2

subject to
n

∑
i=1

wG
i = 1,

(3.10)

with

δ (h)
i j =

{

1, if ȧ(h)i j is given

0, if ȧ(h)i j is missing

Note that the constrained optimization problem (3.10) aims at finding the clos-
est (using a logarithmic metric) possible matrix (wG

i /wG
j )n×n to the preferences

expressed by the decision makers and the variables δ (h)
i j ∈ {0,1} make all the terms

containing a missing comparison vanish.

Example 3.7. Suppose that three decision makers, which could be the three mem-
bers of the family of the initial example, express their preferences on three alterna-

1 However, it is the opinion of the author of this manuscript that recently, in several papers, an
apparent effort has been made to complicate things which could have been left simple.
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tives in the form of the following incomplete pairwise comparison matrices,

Ȧ1 =

⎛

⎜

⎝

1 2 ȧ(1)13
1/2 1 3

ȧ(1)31 1/3 1

⎞

⎟

⎠ Ȧ2 =

⎛

⎜

⎝

1 ȧ(2)12 1/2

ȧ(2)21 1 3
2 1/3 1

⎞

⎟

⎠ Ȧ3 =

⎛

⎜

⎝

1 ȧ(3)12 ȧ(3)13

ȧ(3)21 1 5

ȧ(3)31 1/5 1

⎞

⎟

⎠ .

Then, solving the optimization problem (3.10), one obtains

wG = (0.312391,0487379,0.20023)T.

Surely the reader can imagine more integrated models and the next section, on exten-
sions of the AHP, will hopefully provide more food for thought also under this lens.



Chapter 4
Extensions

In this chapter we shall proceed and analyze further extensions for pairwise com-
parison matrices. The common denominator of the following extensions is that they
all involve the domain of representation of the pairwise comparisons ai j, that is the
set of possible values attained by ai j.

4.1 Equivalent representations

So far we have expressed pairwise comparisons using the so-called multiplicative
scale, i.e. the judgments have been expressed by means of positive real numbers,
ai j > 0 ∀i, j. The multiplicative scale is often taken from granted, but here we shall
keep our minds open and observe that this should not be the case. Let us follow the
tradition and highlight the assumption which will be relaxed in this section.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

Alternative numerical representations have been proposed to model pairwise
comparisons. The most popular and studied are the additive representation and the
one based on reciprocal relations. In this section we shall discuss these two, see that
concepts as reciprocity and consistency can be similarly replicated in these other
two frameworks, and finally suggest that there is a deeper connection among these
representations which can be formalized by using abstract algebra.

c© Matteo Brunelli 2015 45
M. Brunelli, Introduction to the Analytic Hierarchy Process,
SpringerBriefs in Operations Research, DOI 10.1007/978-3-319-12502-2 4
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4.1.1 Additive pairwise comparison matrices

The so-called additive representation of preferences by means of additive pairwise
comparison matrices was well-presented by Barzilai [10] and has been used in meth-
ods alternative, yet very similar, to the AHP such as the Simple Multi-Attribute
Rating Technique (SMART) [85] and the Ratio Estimations in Magnitudes or deci-
Bells to Rate Alternatives which are Non-Dominated Technique (REMBRANDT)
[8, 91]. The domain of representation of preferences is the real line, indifference
is represented by 0 and, if we call P = (pi j)n×n the additive pairwise comparison
matrix containing the preferences in this form, then the condition of reciprocity
becomes pi j + p ji = 0 ∀i, j, whence the name ‘additive’. The condition of consis-
tency becomes

pik = pi j + p jk ∀i, j,k. (4.1)

If and only if a matrix is consistent, then there exists a priority vector u =
(u1, . . . ,un)

T such that pi j = ui − u j ∀i, j. One natural question regards the relation
between pairwise comparison matrices and their additive representations. Namely,
is there a way to associate a pairwise comparison matrix to its additive version and
vice versa? A minimum requirement is that this transformation could map consis-
tent pairwise comparison matrices into their consistent counterparts. The answer is
positive and any logarithmic function would make it. For instance, using the natural
logarithm, given a pairwise comparison matrix A, we can obtain its additive repre-
sentation P = (pi j)n×n with pi j = lnai j. Conversely, to go back to the multiplicative
representation one can use its inverse, the exponential transformation ai j = epi j .

Example 4.1. Consider the consistent pairwise comparison matrix

A =

⎛

⎝

1 2 8
1/2 1 4
1/8 1/4 1

⎞

⎠ . (4.2)

Using the logarithm in base 2 one obtains the following skew-symmetric matrix

P =

⎛

⎝

log2 1 log2 2 log2 8
log2 1/2 log2 1 log2 4
log2 1/8 log2 1/4 log2 1

⎞

⎠≈

⎛

⎝

0 1 3
−1 0 2
−3 −2 0

⎞

⎠ ,

for which the additive consistency condition (4.1) holds, e.g. 1+ 2 = 3. Moreover,
one can check that the priority vector associated with P is

u = (2,1,−1)T .

4.1. Can you find a way to derive the vector u from a consistent additive pairwise
comparison matrix P?

One convenient fact about this representation is that, fixed a value for n, the set of all
additive pairwise comparison matrices P of order n is a subspace of the linear space
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R
n×n. Note that also the set of consistent additive pairwise comparison matrices is a

subspace of Rn×n [81]. Thus, the possible loss of results that we get from giving up
working with positive matrices is here compensated by the gain of the suite of tools
from linear algebra. To explain it with an example, remember that the inconsistency
index CI for pairwise comparison matrices was based on some results on positive
square matrices (the fact that λmax of A is always a real number) and therefore they
are not directly replicable for additive pairwise comparison matrices. On the other
hand, additive pairwise comparison matrices P form linear spaces, which allows us
to draw from linear algebra to obtain original results. The interested reader might
want to see, for instance, the inconsistency index defined by Barzilai [10] as it relies
on considerations stemming from linear algebra.

The priority vector u has a different interpretation than w. In u the information is
captured by the differences (ui − u j) between priorities and not their ratios. Unlike
for the components of w, the ratio between ui and u j has no meaning. Consider that
some components ui can be negative too.

One last remark regards the apparent similarity of this approach to the one with
pairwise comparison matrices. In a consistent pairwise comparison matrix each col-
umn is equal to any other column multiplied times a suitable scalar. In the additive
approach each column is equal to any other plus a suitable scalar. The same rea-
soning affects also the priority vectors. Priority vectors w of consistent pairwise
comparison matrices are unique up to multiplication, whereas vectors u are unique,
but up to addition.

4.1.2 Reciprocal relations

Another prominent representation of preferences is based on reciprocal relations
[44], often called fuzzy preference relations [69] in the fuzzy sets literature. The
notion of reciprocal relation became popular in the framework of fuzzy sets, but it
can be verified that its inception dates back, at least, to the study by Luce and Suppes
[87] on probabilistic preference relations.

A reciprocal relation can be represented by a matrix R = (ri j)n×n with ri j ∈]0,1[
satisfying the reciprocity condition ri j + r ji = 1 and with the indifference repre-
sented by the value 0.5. The consistency condition for reciprocal relations is

rik

rki
=

ri j

r ji

r jk

rk j
∀i, j,k. (4.3)

Most of the references to this condition refer to Tanino [127] but the very same
condition was already used by Luce and Suppes [87] and Shimura [121]. Fur-
thermore, to make it more homogeneous with respect to the conditions of consis-
tency for pairwise comparison matrices and additive pairwise comparison matrices,
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Chiclana et al. [39] showed that (4.3) can be equivalently written as

rik =
ri jr jk

ri jr jk +(1− ri j)(1− r jk)
∀i, j,k. (4.4)

If and only if this consistency condition is satisfied, then there exists a weight
vector w such that ri j = wi/(wi +wj). The problem of finding the weight vector
arises also for reciprocal relations and even in this environment many methods have
been proposed. Among them, the most straightforward is probably the following,

wi =

(

n

∏
j=1

ri j

1− ri j

) 1
n

,

which was proven [51] to be the counterpart of the geometric mean method for
pairwise comparison matrices. Similarly to what was established for additive pair-
wise comparison matrices, pairwise comparison matrices can be transformed into
reciprocal relations by means of the following function

ri j =
ai j

1+ ai j
, (4.5)

and its inverse ai j = ri j/r ji can be used to transform reciprocal relations to pairwise
comparison matrices.

Example 4.2. Consider the consistent pairwise comparison matrix A in (4.2). Using
the transformation (4.5) one obtains

R ≈

⎛

⎝

1/2 2/3 8/9
1/3 1/2 4/5
1/9 1/5 1/2

⎞

⎠ ,

for which the consistency condition (4.4) holds (check!). Moreover, one can check
that the priority vector associated with R is w = (8/13,4/13,1/13)T and corre-
sponds to the vector that would have been obtained from A.

The reader should be aware that another type of consistency condition, called
additive consistency [127], for reciprocal relations was proposed and later devel-
oped, but we shall not dwell on it in this booklet. The reader can refer to [51] for
an overview of transformations between pairwise comparison matrices and recipro-
cal relations and a method to derive the priority vector from these latter, and to Xu
[135] for a survey which elaborates on different representations of pairwise pref-
erences. Table 4.1 draws a parallel and summarizes the different representations of
preferences and their main characteristics.

The transformations between different representations are instead depicted in
Figure 4.1. These three representations of preferences have different origins, but,
if we look backwards, their similarities were already visible years ago. Consider,
for example, that the problem of inconsistency and intransitivity, which can occur
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Multiplicative Additive Reciprocal

Domain of representation R> R ]0,1[
Reciprocity condition ai j = 1/a ji pi j =−p ji ri j = 1− r ji

Value for indifference between
alternatives

1 0 0.5

Consistency condition aik = ai ja jk pik = pi j + p jk rik =
ri j r jk

ri j r jk+(1−ri j)(1−r jk)

Weight vector characterization ai j =
wi
w j

pi j = ui −u j ri j =
wi

wi+w j

Table 4.1: Representations of pairwise preferences and their properties.

in all three representations, was in fact considered and received a similar treatment
in each of them. As Gass [61] noted, Fishburn [56], whose skew symmetric repre-
sentation of preferences is the progenitor of additive pairwise comparison matrices,
wrote:

r
ij =

a
ij

1+
a
ij

a
ij =

r
ij

1−
r
ij

P

p ij
=
log

b
a ij

a ij
=
b
p i

j

A

R

Fig. 4.1: Transformations between different representations of valued preferences.

Transitivity is obviously a great practical convenience and a nice thing to have for mathe-
matical purposes, but long ago this author ceased to understand why it should be a corner-
stone of normative decision theory.

Even Luce and Raiffa [86] whose work can be seen as an inception of reciprocal
relations, wrote:

No matter how intransitivities arise, we must recognize that they exist, and we can take a
little comfort in the thought that they are an anathema to most of what constitutes theory in
the behavioral sciences today.

The same view was also shared by Saaty who, already in his seminal paper on the
AHP [99], wrote:

As a realistic representation of the situation in preference comparisons, we wish to account
for inconsistency in judgments because, despite their best efforts, people’s feelings and
preferences remain inconsistent and intransitive.
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4.1.3 Group isomorphisms between equivalent representations �

It is apparent that these three representations of preferences are very similar and
we can shift from one approach to another, but to what extent are they interchange-
able? The non-trivial, yet elegant answer, is to the extent to which the domains of
representations of preferences, together with their conditions of consistency are iso-
morphic groups. Recall that, in group theory, a group is a set S equipped with a
binary operator ∗ : S× S → S such that

• the set S is closed under the operator ∗, i.e. a ∗ b ∈ S ∀a,b ∈ S
• the operator ∗ is associative, i.e. a ∗ (b ∗ c) = (a∗b)∗ c ∀a,b,c ∈ S
• there exists an identity element e such that s∗ e = s ∀s ∈ S
• for each s ∈ S there exists an inverse element s−1 ∈ S such that s∗ s−1 = e.

A group is represented by a pair (S,∗) where the first component is the set and the
second is the operator. Two groups (S,∗) and (Q,�) are group isomorphic if and
only if there exists a bijection (group isomorphism) f : S → Q such that, for all
x,y ∈ S, it is

f (x)∗ f (y) = f (x� y) .

Now, if we look at Table 4.1 we shall check that each domain of representation
together with its consistency operation is a group where the identity element e is the
value expressing indifference between alternatives and where the inverse element is
determined by means of the reciprocity condition. Moreover, it can be checked that
they are isomorphic groups, the isomorphisms being the functions in Figure 4.1.

Example 4.3. The logarithm relates (R>, ·) with (R,+) and is perhaps the most
famous group isomorphism. In fact, from basics of calculus we know the rule

log(x)+ log(y) = log(x · y) ∀x,y > 0 ,

which exposes the relation between pairwise comparison matrices and additive pair-
wise comparison matrices.

The reader familiar with group theory must have understood the strength and the
implication of group isomorphism which, in words, was described by Fraleigh in his
textbook [58] as “the concept of two systems being structurally identical, that is, one
being just like the other except for names”. The existence of group isomorphisms
between different representations of preference is not a mere theoretical exercise but
a precious result as it helps to naturally extend concepts from one representation to
another one. For a deep and theoretical analysis of the group isomorphisms between
these representations of preferences the reader might find the papers by Cavallo and
D’Apuzzo [36, 37] enlightening.
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4.2 Interval AHP

In §2.2.5 the reader was already presented with a pairwise comparison matrix whose
entries were intervals instead of real numbers. In that case the interval-valued matrix
was functional in the definition of an inconsistency index, but it is natural to imagine
that a decision maker could express his judgments by means of intervals. This is
natural to cope with uncertainty and imprecision. In this and in the next section we
shall dwell on representations of preferences when the decision maker cannot state
them precisely and with absolute certainty and see what the literature has to offer.

A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

This section shall introduce the principles behind what probably is the most
widely known extension of the AHP with intervals. Salo and Hämäläinen consid-
ered interval judgments āi j = [aL

i j,a
R
i j] as bounds for the values of the ‘true’ weights,

i.e. the interval-valued comparison āi j = [aL
i j,a

R
i j], entails that aL

i j ≤ wi/wj ≤ aR
i j. At

this point, it is important to know what values different weights can attain, given
the constraints imposed by the interval pairwise comparisons. What is, for instance,
the maximum possible value of wi given an interval-valued matrix Ā? To solve this
problem, we first need to define the set of all normalized priority vectors with n
components as

Wn =

{

(w1, . . . ,wn)
T

∣

∣

∣

∣

n

∑
i=1

wi = 1, wi > 0 ∀i

}

,

Such a set is depicted in Figure 4.2 for the case with n = 3. Furthermore, the set of
feasible weight vectors according to the interval-valued pairwise comparison matrix
Ā is

SĀ =

{

(w1, . . . ,wn)
T

∣

∣

∣

∣
aL

i j ≤
wi

wj
≤ aR

i j ∀i < j

}

As showed in Figure 4.3, adding the constraints characterizing SĀ to W obviously
reduces the set of feasible solutions. It follows that the ‘true’ normalized weight
vector must be an element of the set Wn ∩ SĀ, as pictured in Figure 4.4. Then it is
possible to construct an interval-valued vector w̄ = (w̄1, . . . , w̄n)

T with w̄i = [wL
i ,w

R
i ]

where wL
i and wR

i are the smallest and the greatest possible values for wi respectively.
Hence, they can be computed as follows,

wL
i = minimize

w∈Wn∩SĀ

wi i = 1, . . . ,n, (4.6)

wR
i = maximize

w∈Wn∩SĀ

wi i = 1, . . . ,n. (4.7)
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w1

w2

w3

W3

Fig. 4.2: Graphical representation of W3

w1

w2

w3

w1
w2

= aRij

(a) Application of the constraint w1 w/ /2 ≤
aRi j

w1

w2

w3

w1
w2

= aRij

w1
w2

= aLij

(b) Adding the constraint w1 w2 ≥ aLi j

Fig. 4.3: The sequential application of the constraints reduces the region of feasible
solutions

Example 4.4. Considering the matrix

Ā =

⎛

⎝

1 [7,20] [7/5,4]
[1/20,1/7] 1 [1/5,4/7]
[1/4,5/7] [7/4,5] 1

⎞

⎠ (4.8)
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w1

w2

w3

W3 ∩ SĀ

Fig. 4.4: The set W3 ∩SĀ.

already used in (2.16). Then the weight wR
1 is the optimal value of the following

optimization problem.

maximize
(w1,w2,w3)

w1

subject to 7 ≤ w1/w2 ≤ 20,

7/5 ≤ w1/w3 ≤ 4,

1/5 ≤ w2/w3 ≤ 4/7,

⎫

⎪
⎬

⎪
⎭

⇒ (w1,w2,w3)
T ∈ SĀ

w1 +w2 +w3 = 1,

w1,w2,w3 > 0

}

⇒ (w1,w2,w3)
T ∈W3

(4.9)

By proceeding in this way, we ask what the greatest possible value achievable by w1

is, when (w1,w2,w3) ∈ Wn ∩SĀ. The interval-valued priority vector derivable from
Ā in (2.16) is

w̄ =

⎛

⎝

[0.54,0.77]
[0.04,0.10]
[0.18,0.38]

⎞

⎠ (4.10)

In the example, the vector (4.10) provides enough information and we know that
the best alternative was x1 since its weight cannot be smaller than the weights of
the other alternatives. However, in other cases, when intervals overlap, selection of
the best alternative is non-trivial. To solve this problem one can use different strate-
gies. Firstly, the decision maker can be asked to refine his judgments until the best
alternative is clearly identified. Secondly, when this is not a viable solution, some
methods for ranking intervals can be employed. Among such methods, there are the
pairwise dominance [119] and the methods for ranking fuzzy quantities [133].

In this section we described a method for deriving weights which can be used
on a single interval-valued pairwise comparison matrix and not on a whole hier-
archy. The extension to the whole hierarchy is methodologically straightforward
but quite lengthy to be explained, and therefore the reader can refer to the original
contribution [119].
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Euclidean center of Wn ∩SĀ

The problem of ranking interval weights and their hierarchical composition can be
solved by means of a shortcut, which is used to derive real valued weights from
interval valued comparison matrices. The following is due to Arbel and Vargas [6].
Their solution is based on the fact that the set of constraints characterizing Wn ∩
SĀ can be equivalently stated as a set of linear constraints since those containing
ratios can be splitted into two linear constraints. Considering for instance the first
constraint in (4.9), one can see that

7 ≤ w1/w2 ≤ 20 ⇔ 7w2 ≤ w1 and w2 ≤ 20w1

⇔ 7w2 −w1 ≤ 0 and w2 −20w1 ≤ 0.

Hence, since Wn ∩SĀ is a bounded set defined by linear constraints it is a polytope.
Arbel and Vargas proposed to take the real valued weights w1, . . . ,wn as the coor-
dinates of the Euclidean center of the polyhedron Wn ∩SĀ. In words, the Euclidean
center of a polytope is the center of the maximum radius ball which can be inscribed
in the polytope and it can be found by solving a linear optimization problem 1.
Figure 4.5 reports a graphical example of the Euclidean center of a 2-dimensional
polytope, i.e. a polygon.

Polyhedron

Euclidean center

Ball

Fig. 4.5: Graphical example of the Euclidean center of a polygon.

Let us see how to write down a linear optimization problem to find the ball with
the largest radius r in Wn∩SĀ. Since Wn∩SĀ is a polytope, it can be defined by a set
of inequalities aT

i w ≤ bi. The problem is how to model the constraints with respect
to the center of the ball. Consider a single constraint. A ball of radius r pointed in
w, B(r,w), satisfies the ith inequality, if aT

i y ≤ bi ∀y ∈ B(r,w). The trick is to write
the inequality in such a way that we consider a point y∗ which is the point in B(r,w)
with the greatest value when multiplied by aT

i , i.e. aT
i y∗ ≥ aT

i y ∀y ∈ B(r,w). This

1 Note that in some other sources it is referred to as the Chebychev center. See, for instance, the
book by Boyd and Vandenberghe [22].
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point is the point y∗ = w+ r ai
‖ai‖ (convince yourself graphically in 2-dimensions)

and therefore the inequality can be written as

aT
i

(

w+ r
ai

‖ai‖

)

︸ ︷︷ ︸

y∗

≤ bi .

Hence, the optimization problem becomes

maximize
r,w

r

subject to aT
i

(

w+ r
ai

‖ai‖

)

≤ bi i = 1 . . . ,N
(4.11)

where N is the number of inequalities used to define P. The optimization problem
(4.11) can be seen as max-min optimization problem too. In fact, the variable r,
which is maximized, eventually is the distance between the center of the ball w and
the closest (least distant) face of the polyhedron W ∩SĀ.

Example 4.5. For sake of homogeneity we still consider the matrix Ā from (2.16).
Then we have

maximize
r,w

r

subject to (−1,7,0)

(

w+ r
(−1,7,0)T

5
√

2

)

≤ 0,

(1,20,0)

(

w+ r
(1,20,0)T
√

401

)

≤ 0,

(−1,0,7/5)

(

w+ r
(−1,0,7/5)T

√
74/5

)

≤ 0,

(1,0,−4)

(

w+ r
(1,0,−4)T

√
17

)

≤ 0,

(0,−1,1/5)

(

w+ r
(0,−1,1/5)T

√
26/5

)

≤ 0,

(0,1,−4/7)

(

w+ r
(0,1,−4/7)T

√
65/7

)

≤ 0,

⎫

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

⇒ (w1,w2,w3)
T ∈ SĀ

w1 +w2 +w3 = 1,

w1,w2,w3 > 0

}

⇒ (w1,w2,w3)
T ∈W3

(4.12)
Note that the constraints defining W3 are left unchanged: the constraint w1 +

w2 +w3 = 1 is an equality and therefore it must hold exactly, and the positivity
constraints w1,w2,w3 > 0 could even be deleted since they are made redundant by
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those defining SĀ. The vector maximizing r in the optimization problem is w ≈
(0.72,0.07,0.21)T .

This approach to interval judgments, which considers intervals as implicitly
defining bounds for weights, was initially proposed by Arbel [5]. Conversely, for
a probabilistic approach to interval pairwise comparisons the reader can refer to
Saaty and Vargas [117].

4.3 Fuzzy AHP

The fuzzy AHP is an even more popular methodology to account for uncertainty.
In the fuzzy AHP entries of the pairwise comparison matrices are expressed in the
form of fuzzy numbers. A function μ : R → [0,1] is a fuzzy number if and only if
there exists an x0 such that μ(x0) = 1 and all the upper level sets of μ are convex,
i.e. the set {x ∈ R|μ(x) ≥ α} is convex for all 0 < α ≤ 1. Figure 4.6 reports some
instances of fuzzy numbers. Also a real interval can be treated as a fuzzy number;
considering the interval [a,b]⊂R, then the value of its membership function is 1 for
all x ∈ [a,b] and 0 otherwise. The fuzzy AHP draws from the theory of fuzzy sets
initiated by Zadeh [137] and described, for instance, in the excellent monographs
by Klir and Yuan [79] and Dubois and Prade [47]. Even so, to keep the description
short and self-contained we shall here skip all the unnecessary details on fuzzy sets
theory and go straight to the point.

(a) Cuspidal fuzzy number (b) Bell shaped fuzzy number

(c) Piecewise linear fuzzy number (d) Trapezoidal fuzzy number

Fig. 4.6: Four examples of fuzzy numbers.
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4.3.1 Fuzzy AHP with triangular fuzzy numbers

One of the most used shapes of fuzzy numbers for modeling preferences, and more
generally to represent uncertain quantities, is triangular. A triangular fuzzy number
is defined by the following function

μ(x) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

0, x ≤ aL

(x− a)/(b− a), aL ≤ x ≤ aC

(c− x)/(c− b), aC ≤ x ≤ aR

0, x ≥ aR

with aL ≤ aC ≤ aR. Observe that there exists a one-to-one correspondence between
triangular fuzzy numbers and triples ã = (aL,aC,aR) with aL ≤ aC ≤ aR. An exam-
ple of triangular fuzzy number is reported in Figure 4.7. To many, the shape of
a triangular fuzzy number might resemble a probability distribution, just with the
normalization such that the area subtended by the curve is equal to one replaced
by the condition supx∈R μ(x) = 1. True, a fuzzy number can be seen as a distri-
bution indicating the likelihood of events, but within the framework of possibility
theory [139], and not probability. According to Klir [77] the value 1 − μ(x) can
be interpreted as the degree of surprise to discover that x is the ‘true’ value of the
variable under observation. Leaving aside the technicalities of this theory, for which
the reader can be referred to the monograph by Klir [78], for practical purposes it
is common to interpret the three values aL,aC,aR characterizing a triangular fuzzy
number as the smallest possible, the most likely, and the greatest possible values
for the uncertain quantity under study. The use of triangular shapes for fuzzy num-
bers has been advocated by many, for instance Pedrycz [92], and a whole arithmetic
has been developed to perform operations on fuzzy sets and fuzzy numbers in par-
ticular. In one of the first papers on fuzzy AHP, van Laarhoven and Pedrycz [128]
defined the operations of addition (⊕), multiplication (⊗), logarithm (˜ln), inversion,
and power as follows, respectively:

ã⊕ b̃ =(aL + bL,aC +bC,aR +bR)

ã⊗ b̃ ≈(aL ·bL,aC ·bC,aR ·aR)

˜ln(aL,aC,aR)≈(lnaL, lnaC, lnaR)

ã−1 ≈
(

1
aR ,

1
aC ,

1
aL

)

e(a
L,aC,aR) =(eaL

,eaC
,eaR

)

(4.13)

The primal issue with a fuzzy pairwise comparison matrix is that of deriving the
priority vector, and one straightforward approach could be that of using these oper-
ations on matrices with triangular fuzzy entries, i.e. Ã = (ãi j)n×n = (aL

i j,a
C
i j,a

R
i j)n×n,

in the same way their corresponding operations were used with pairwise compari-
son matrices. Hereafter, we shall focus on the problem of finding a suitable priority
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Fig. 4.7: Triangular fuzzy number ã = (2,4,8)

vector for a fuzzy pairwise comparison matrix. To this scope, we should distinguish
a priori between two types of methods:

• Methods to derive a vector of fuzzy weights.
• Methods to derive a vector of weights expressed as real numbers.

We shall here dwell a bit more on these two methodologies by explaining how they
have been treated in the literature.

Obtaining fuzzy weights

One straightforward solution to this problem was recently suggested by Ramı́k and
Korviny [97]. According to this method, the components of the priority vector are
fuzzy numbers and can be estimated by an extension of the geometric mean method.
Namely, the priority vector appears as w̃ = (w̃1, . . . , w̃n)

T , where the components
w̃i = (wL

i ,w
C
i ,w

R
i ) themselves are triangular fuzzy numbers. Following this method,

the priority vector with triangular fuzzy components is estimated as the minimizer
of the following constrained optimization problem.

minimize
(w̃1,...,w̃n)

n

∑
i=1

n

∑
j=1

(
(

lnaL
i j − lnwL

i + lnwL
j

)2
+
(

lnaC
i j − lnwC

i + lnwC
j

)2
+

(

lnaR
i j − lnwR

i + lnwR
j

)2
)

subject to
n

∑
i=1

wC
i = 1,

wU
i ≥ wC

i ≥ wL
i > 0 ∀i.

(4.14)
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Ramı́k and Korviny proved (see Theorem 1 in their paper [97]) that the analytic
solution of this optimization problem is

wL
k = cmin ·

(

∏n
j=1 aL

i j

) 1
n

∑n
i=1

(

∏n
j=1 aC

i j

) 1
n

∀k, (4.15)

wC
k =

(

∏n
j=1 aC

i j

) 1
n

∑n
i=1

(

∏n
j=1 aC

i j

) 1
n

∀k, (4.16)

wR
k = cmax ·

(

∏n
j=1 aR

i j

) 1
n

∑n
i=1

(

∏n
j=1 aC

i j

) 1
n

∀k, (4.17)

where

cmin = min
i=1,...,n

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

∏n
j=1 aC

i j

) 1
n

(

∏n
j=1 aL

i j

) 1
n

⎫

⎪
⎪
⎬

⎪
⎪
⎭

cmax = max
i=1,...,n

⎧

⎪
⎪
⎨

⎪
⎪
⎩

(

∏n
j=1 aC

i j

) 1
n

(

∏n
j=1 aU

i j

) 1
n

⎫

⎪
⎪
⎬

⎪
⎪
⎭

Example 4.6. Consider the following matrix

Ã = (ãi j)3×3 =

⎛

⎝

(1,1,1) (1/2,2,3) (1,1,2)
(1/3,1/2,2) (1,1,1) (1/3,2,4)
(1/2,1,1) (1/4,2,3) (1,1,1)

⎞

⎠ (4.18)

Then, the weight vector obtained by using (4.15)–(4.17) is

w̃ = (w̃1, w̃2, w̃3)
T =

⎛

⎝

(0.412599,0.412599,0.412599)
(0.249914,0.32748,0.454124)
(0.259921,0.259921,0.32748)

⎞

⎠ (4.19)

For a critical analysis of this method and a broader overview on the use of fuzzy
sets in decision making, the interested reader can refer to the recent paper by Dubois
[45].

One method was proposed by van Laarhoven and Pedrycz [128] themselves, but
a lot has happened since then and their proposal has been refined a number of times.
Here we should present one of the most recent refinement, which can be seen as
a fuzzy extension of the geometric mean method in the optimization form that we
encountered in (2.3) and seemingly resembles the optimization problem (4.14). Note
that, again, the solution is itself a priority vector whose components are triangular
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fuzzy numbers and is here denoted as w̃ = (w̃1, . . . , w̃n)
T with w̃i = (wL

i ,w
C
i ,w

R
i ).

minimize
(w̃1,...,w̃n)

n

∑
i=1

n

∑
j=1, j �=i

(
(

lnaL
i j − lnwL

i + lnwL
j

)2
+
(

lnaC
i j − lnwC

i + lnwC
j

)2
+

(

lnaR
i j − lnwR

i + lnwR
j

)2
)

subject to wL
i +

n

∑
j=1, j �=i

wU
j ≥ 1, ∀i

wU
i +

n

∑
j=1, j �=i

wL
j ≤ 1, ∀i

n

∑
i=1

wC
i = 1,

n

∑
i=1

(

wL
i +wR

i

)

= 2,

wU
i ≥ wC

i ≥ wL
i > 0 ∀i.

(4.20)
Since all these methods return a vector w̃ whose components are fuzzy numbers,
the question on how to select the best alternative remains. In fact, if there exists a
universally accepted order on the set R—that is, given two different real numbers
we can always say which one is the greatest—the situation is more ambiguous in the
case of fuzzy numbers. Consider, for instance, the weights in (4.19). If it is intuitive
to say that w̃1 is greater than w̃3, then the situation between w̃1 and w̃2 is much
more ambiguous. Which one should be considered greater, and which one be the
best between x1 and x2? Although much research has been done on the topic, there
is still not a meeting of minds on how to order fuzzy numbers. The interested reader
can refer to Wang and Kerre [133] and Brunelli and Mezei [31] for an axiomatic and
a numerical study of methods for ranking fuzzy numbers, respectively.

4.3.1.1 Obtaining a real-valued priority vector

From the literature, it seems that the problem of ranking fuzzy numbers and its
ambiguity can be bypassed by using methods which recover real valued priority
vectors. There are few doubts that the most popular method for deriving a real valued
priority vector w for a pairwise comparison matrix with fuzzy entries Ã is the so
called extent analysis, proposed by Chang [38]. The extent analysis can be described
in five algorithmic steps.

1. For each row, calculate its sum s̃i = ãi1 ⊕·· ·⊕ ãin.
2. Normalize all the s̃i’s in the following way: r̃i = s̃i ⊗ (s̃1 ⊕·· ·⊕ s̃n)

−1.
3. Calculate the degree of possibility that r̃i be greater than r̃ j as follows
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Pos
(

r̃i ˜≥ r̃ j

)

=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1, if rC
i ≥ rC

j
rR
i −rL

j

(rR
i −rC

i )+(rC
j −rL

j )
, if rC

i < rC
j and rL

j ≤ rU
i

0, otherwise

The second case looks cumbersome but has a simple geometric interpretation:
it is the value of the membership function for which the ‘right leg’ of r̃i and the
‘left leg’ of r̃ j intersect. The concepts is illustrated in Figure 4.8.

Pos r̃i ≥ r̃j

µ(x)
r̃i r̃j

rLi rCi rRi rCjrLj rRj
x

Fig. 4.8: Assessing the degree of possibility that the fuzzy number r̃i be greater than
r̃ j.

4. Generalize the previous step by considering that

Pos
(

r̃i ˜≥ r̃ j | j = 1, . . . ,n , j �= i
)

= min
j∈{1,...,n}, j �=i

Pos
(

r̃i ˜≥ r̃ j

)

.

5. The real valued priority vector w is obtained by normalizing the values obtained
in the previous steps:

wi =
Pos
(

r̃i ˜≥ r̃ j| j = 1, . . . ,n , j �= i
)

∑n
k=1 Pos

(

r̃i ˜≥ r̃ j| j = 1, . . . ,n , j �= k
) .

Let us check the extent analysis method with a numerical example.

Example 4.7. Consider the matrix Ã in (4.18) as the starting point. Then, the sums
of the fuzzy numbers on the rows are calculated by means of the operation at step 1
and can be collected in the following vector,

⎛

⎝

s̃1

s̃2

s̃3

⎞

⎠=

⎛

⎝

(2.5,4,6)
(5/3,3.5,7)
(7/4,4,5)

⎞

⎠ .
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To normalize the components of this vector, one calculates (s̃1 ⊕ ·· · ⊕ s̃n) =
(

71
12 ,10,18

)

where 71/12 = 2.5+ 5/3+ 7/4 and uses it to obtain, as described in
the step 2,

⎛

⎝

r̃1

r̃2

r̃3

⎞

⎠=

⎛

⎝

(0.138889,0.4,1.01408)
(0.0925926,0.35,1.1831)
(0.0972222,0.25,0.84507)

⎞

⎠

Then we can construct the matrix of possibilities according to step 3

V =

⎛

⎝

− 1 1
0.954305 − 1
0.824804 0.882695 −

⎞

⎠ (4.21)

where each nondiagonal entry is a value Pos
(

r̃i ˜≥ r̃ j

)

. Now, considering the algo-

rithmic steps 4 and 5 together we can obtain the following priority vector,

w =

⎛

⎝

1
1+0.954305+0.824804

0.954305
1+0.954305+0.824804

0.824804
1+0.954305+0.824804

⎞

⎠=

⎛

⎝

0.359828
0.343385
0.296787

⎞

⎠ .

More on the extent analysis will follow in the next section. For the moment it is
sufficient to observe that, although an algorithm for ranking fuzzy numbers has not
been explicitly mentioned, it has nevertheless been implicitly used. The matrix V in
(4.21) is, de facto, a representation of a fuzzy ordering relation [138] which does
induce a ranking on the fuzzy numbers r̃1, r̃2, r̃3. Hence, we can conclude that, even
by using the extent analysis, the ambiguity inherent to the ranking of fuzzy numbers
is not avoided, but rather swept under the carpet.

4.3.2 Is the fuzzy AHP valid? �

The question posed in the title of this subsection is as provocative as still standing,
and it has definitely been answered in a negative sense by many. Since the seminal
papers by van Laarhoven and Pedrycz [128] and Buckley [32], the fuzzy AHP has
attracted most of the criticisms directed to the AHP plus a good deal of original
others due to the (mis)use of fuzzy sets.

The first criticism is that the operations for triangular fuzzy numbers commonly
used in the fuzzy AHP, and here reported in (4.13), are only approximations of the
correct operations. The correct operations are defined by means of the extension
principle and, according to these latter, for instance, the product of two triangular
fuzzy numbers is not a triangular fuzzy number, but something nonlinear. Part of the
scientific community accepts the approximations (4.13) as a necessary compromise
to mitigate computational complexity while the other part does not. The reader can
refer to Dubois and Prade [46] and Klir and Yuan [79] for a correct definition of
arithmetic operations with fuzzy sets and fuzzy numbers.
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Saaty and Tran [113] criticized the fuzzy AHP by saying that the traditional and
real valued AHP suffices to account for all the imprecision in human judgments.
Ramı́k and Korviny [97] rebutted that the traditional AHP can be seen as a special
case of the fuzzy AHP—and not as a different method—and therefore it is difficult
to see how the fuzzy AHP, which is more general, could perform worse than the
AHP, which is the less general of the two.

A delicate point in the fuzzy AHP is that of ranking the components of the prior-
ity vector, when these are fuzzy numbers. Although it is not a real drawback, the fact
that different ranking methods for fuzzy numbers could give very different results
[31] can be perceived as a lack or robustness of the method, especially because there
is not a prime ranking method. On the other hand, also methods which derive a real
valued priority vector such as the extent analysis are not immune to criticisms. For
instance, the extent analysis was criticized by Wang et al. [134] as, among many crit-
icisms, they pointed out that the final weights are surely useful to rank alternatives
but they cannot be interpreted as weights in a multiplicative sense. It is sufficient to
see that in the extent analysis some weights can be equal to zero. However, in the
case of null weights this does not mean that one alternative is infinitely better than
another.

Recently, Zhü [141] moved some criticisms to the AHP, but it seems that many
of them are pretentious and unsupported and others stem from a very narrow view
of the method, which differs in large part from the more open minded view offered
in this booklet. For instance, one of the criticisms moved by Zhü is that there is
not an unique inconsistency index for fuzzy pairwise comparison matrices. This,
clearly, stems from a vision of the AHP (very much à la Saaty) where, as Zhü [141]
admitted, the Consistency Index CI is considered as the only reasonable consistency
index and all others considered inferior.



Chapter 5
Conclusions

As reported by Saaty and Sodenkamp [112], in 2008 Saaty was awarded by the
INFORMS for the inception and development of the AHP. Part of the motivation for
the award was the following:

The AHP has revolutionized how we resolve complex decision problems... the AHP has
been applied worldwide to help decision makers in every conceivable decision context
across both the public and private sectors, with literally thousands of reported applications.

Moreover, from a survey by Wallenius et al. [132] it seems that the AHP has been
by far the most studied and applied MCDM method, at least judging by the num-
ber of publications. The reader should have noticed that only basic mathematical
and technical knowledge is required to use the AHP. For instance, if we consider
that the priority vector can be derived using the method of the normalized columns,
mentioned in §2.1.3, and consistency can be estimated by using the harmonic con-
sistency index, in §2.2.4, then one can use the AHP at a basic level by using only
elementary operations! Nevertheless, in spite of this possible simplicity, it is diffi-
cult to find an aspect of the AHP, or of pairwise comparison matrices, which has
not been object of heated debates. Many of these debates are still open and probably
will be so for much longer. However, even if inconclusive, it would be a mistake
to regard them as pointless, since they contributed to create awareness around the
AHP. Still, for the same sake of awareness, in this last part we shall overview some
aspects of the AHP which have not been considered in the exposition.

Analytic Network Process

The observant reader might have also noticed that one of the assumptions has not
been relaxed yet. Let us do it now.
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A single decision maker is perfectly rational and can precisely express his
preferences on all pairs of independent alternatives and criteria using positive
real numbers.

It is possible that, in some decisions, two criteria might affect each other. For
instance, considering the selection of a resort for holidays, one can envision that the
two criteria ‘cost’ and ‘environment’ are not independent since, probably, ceteris
paribus, the resort in the best environment will also be more expensive. The best-
known methodology for dealing with interdependencies between parts of the hierar-
chy is the Analytic Network Process (ANP), which can be seen as a generalization
of the AHP. That is, the AHP is a special case of the ANP without dependencies.
Although more general than the AHP, the ANP still lacks a fundamental discussion
and an axiomatization. Also, a self contained exposition of the ANP would require
the introduction of new concepts, some of which of difficult digestion for those who
are not in the field. For these reason, and the fear of making a sloppy job and possi-
bly not do justice to the method, we shall here not dwell on the ANP. The interested
reader can refer to a dedicated book by Saaty and Vargas [118] or, for an easier and
more superficial treatment, to the book by Ishizaka and Nemery [74]. Let us inci-
dentally note that the term Analytic Network Process was not coined by Saaty but,
instead, by Hämäläinen and Seppäläinen [66].

Alternative methods

The AHP is a decision analysis methodology, but it is not the only one. Although
nowadays geographical distinctions are arguably meaningless, for historical rea-
sons, in decision analysis there has been two schools, the American and the French
[54]. Here we shall touch upon one method of each type.

• Multi-Attribute Value Theory (MAVT) belongs to the so-called American school
of decision analysis [76] and assumes that alternatives are fully described by their
attributes. Then, each attribute state is mapped into a real number, and finally the
numerical expressions of the different attributes are aggregated into a unique
representative value. We shall now change notation and consider x the alterna-
tive and xi as the state of the ith attribute in the alternative x. Consider a car,
represented by the following list of characteristics:

x = (x1,x2,x3) = (blue,180,3)

where the attributes are ‘color’, ‘max speed in km/h’ and ‘safety level’, respec-
tively. Consider Xi as the set of possible states of the ith attribute. Then, accord-
ing to value theory, for each attribute, there is a function ui : Xi → [0,1]. The
greater the value, the greater the satisfaction of the attribute. Given the existence
of these functions, we can suppose that the car represented by x be mapped into
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the following vector,

x = (u1(blue),u2(180),u3(3)) = (0.5,0.7,0.6)∈ [0,1]3.

At this point, the values attained for the attributes, in this case three, are aggre-
gated into a single value by means of a function v : [0,1]3 → [0,1] and a single
real number is used to synthesize the value of an alternative. This process is
represented in Figure 5.1. Functions u1, . . . ,un,v are defined once for all, and
therefore their application is automatic when new alternatives are considered.
The selection rule is simple: the greater the value, the better the alternative, i.e.
with x = (x1, . . . ,xm) and y = (y1, . . . ,ym), which are two alternatives described
by m attributes,

x � y ⇔ v(u1(x1), . . . ,um(xm)
︸ ︷︷ ︸

x

)≥ v(u1(y1), . . . ,um(ym)
︸ ︷︷ ︸

y

)

A strength of value theory is its elegance and explanatory power on how decisions
are made. Conversely, practical uses of this theory are limited by the difficulties
in the estimation of the functions u1, . . . ,un,v.

• The acronym ELECTRE stands for ELimination Et Choix Traduisant la REalité,
and it is used to denote a family of methods from the French school. Nowadays
many variants of the original ELECTRE methods exist and are applied to prob-
lems of ranking and also sorting. These methods are based on pairwise compar-
isons between alternatives, and to each comparison degrees of concordance and
discordance are attached. A number of parameters and a non-trivial algorithm are
necessary for the implementation of these methods, whose interpretation, possi-
bly due to the aforementioned reasons, is not as straightforward as the one of the
AHP.

x

0.7

0.6

0.5

u1

u2

u3

v : [0, 1]3 → [0, 1]
v(x )x = (blue, 180, 3)

Fig. 5.1: A list of attribute states x is mapped into an x ∈ [0,1]3, which, in turn, is
synthesized into v(x).
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Software

It is difficult to say whether much software appeared thanks to the popularity of the
AHP or the popularity of the AHP is due to the wealth of software. Perhaps both
propositions are to some extent true and the popularity of the method and of its
software have gone arm-in-arm and boosted each other.

The foremost software is called Expert Choice and was first developed by Saaty
and Forman in 1983. Expert Choice adopts Saaty’s approach, according to which
the priority vector is calculated with the eigenvector method and CI is used to esti-
mate the inconsistency of preferences. Expert Choice was described and discussed
by Ishizaka and Labib [72]. Expert Choice’s natural evolution and generalization
to the ANP is called SuperDecisions. The name of the software comes from the
‘supermatrix’, which is a special matrix used in the ANP.

A direct and recent competitor of Expert Choice is MakeItRational, which was
described by Ishizaka and Nemery [74]. One of the characteristics of MakeItRa-
tional is its ease of use, together with a captivating interface.

The software listed so far is not free and the user has to pay for its use. Among the
free available software there is HIerarchical PREference analysis on the World Wide
Web (Web-HIPRE) software which is part of Decisionarium [65], an online platform
offering software for decision-making. Web-HIPRE allows the use of both the orig-
inal scale of Saaty and the balanced scale (see §1.3). Two inconsistency indices
can be used in Web-HIPRE: Saaty’s CI and the index CM by Salo and Hämäläinen
[120]. Web-HIPRE was the first online platform for decision making with the AHP
and has a module which supports group decision making.

A comparative study between three software for the AHP was proposed by
French and Xu [59]. Although other software exist, at present there is not an updated
and free software for the AHP. An auspicable characteristic of such a free software
is that it include different inconsistency indices, prioritization method, and methods
to deal with with incomplete pairwise comparison matrices.

Sensitivity analysis

A module which is included in most AHP software allows for sensitivity analysis.
In mathematical modeling, sensitivity analysis studies how the output of a math-
ematical model reacts to variations in the inputs. In the introductory chapter we
encountered a numerical case where three weight vectors rating alternatives with
respect to three criteria were aggregated using the weighs of criteria as factors in a
linear combination.
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w =

⎛

⎝

w1

w2

w3

⎞

⎠= ŵ1w(c) + ŵ2w(s) + ŵ3w(e)

=
1
7

⎛

⎝

4/9
4/9
1/9

⎞

⎠+
2
7

⎛

⎝

6/10
3/10
1/10

⎞

⎠+
4
7

⎛

⎝

1/11
2/11
8/11

⎞

⎠≈

⎛

⎝

0.287
0.253
0.460

⎞

⎠ .

Now, we can assume that we want to see what happens to the final ranking of alter-
natives if we allow the weight of the third criterion to take values in [0,1] and rescale
the weights of the other two criteria accordingly. In this case, the final rating can be
expressed as follows and it becomes a function of ŵ3,

w =

⎛

⎝

w1

w2

w3

⎞

⎠=
1
3
(1− ŵ3)

⎛

⎝

4/9
4/9
1/9

⎞

⎠+
2
3
(1− ŵ3)

⎛

⎝

6/10
3/10
1/10

⎞

⎠+ ŵ3

⎛

⎝

1/11
2/11
8/11

⎞

⎠ .

For example the weight of the first alternative is

w1 =
74(1− ŵ3)

135
+

ŵ3

11
=

74
135

− 679
1485

ŵ3,

that is, an affine function of the weight of the third criterion ŵ3. The same property
of affinity holds also for w2 and w3 and, when the dimension of the problem allows
it, sensitivity analysis lends itself nicely to graphical interpretations. In this case the
graphical interpretation of w1, w2 and w3 as functions of ŵ3 is in Figure 5.2, which
we should briefly comment.

Fig. 5.2: Sensitivity analysis.
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The original weight assigned to ŵ3 was 4/7 ≈ 0.51. From the picture we can see
that, if ŵ3 ≥ 4/7, then the solution is stable and alternative x3 is always the best.
Conversely, if the weight ŵ3 is decreased, then, at some point, alternative x1 will
prevail. Sensitivity analysis is a precious tool for testing the robustness of solutions
and their stability with respect to the inputs, in this case subjective judgments of
experts. Moreover, here we have only presented the most popular way of performing
sensitivity analysis, but it is easy to figure out that, by using the geometric mean
method as the prioritization method, we can make the final ranking depend directly
on entries of pairwise comparison matrices.

Future studies

The AHP is a fundamentally simple method which, in its simplest implementations,
consists of three steps:

1. Problem structuring and definition of the hierarchy
2. Elicitation of pairwise comparisons
3. Derivation of priority vectors and their linear combinations.

In spite of its ease of interpretation, research has been going on for the last forty
and more years and although many issues are still open, and perhaps are bound to
be open for very long, nowadays it is safe to say that this technology has reached
the maturity. We have seen in this booklet that a wide range of methods have been
proposed to perform tasks within the AHP. Consider, for example, the wide range of
methods for estimating the priority vector or the wealth of the inconsistency indices.

Unlike for some other areas of applied mathematics and mathematical modeling,
in the case of the AHP, more often than not, new methods, indices, and extensions
have been introduced heuristically and without results showing their originality and
superiority. This practice generated an overabundance of material. In the future, it
is auspicable that new numerical and axiomatic studies clarify and polish the state
of the art, and when new methods are introduced, clear evidence on their originality
and feasibility be provided.



Appendix A
Eigenvalues and eigenvectors

The AHP is an important field of application of linear algebra, and especially of
its theory regarding positive matrices. This appendix contains an introduction to
eigenvalues and eigenvectors focused on their relevance for the AHP. At present,
there are many ways to work out the AHP without getting dirty with eigenvalues and
eigenvectors. Thus, in a certain sense knowing about them is superfluous. However,
by knowing them the reader will figure out the connection between AHP and linear
algebra and hopefully see the AHP from a higher observation point.

Definition A.1 (Eigenvalues and eigenvectors). Consider an n×n square matrix A
and an n-dimensional vector w. Then, w and λ are an eigenvector and an eigenvalue
of A, respectively, if and only if

Aw = λ w. (A.1)

Example A.1. Consider the matrix and the vector as follows

A =

(

1 2
1/2 1

)

w =

(

2
1

)

.

Then, one reckons that w is an eigenvector of A for λ = 2. In fact
(

1 2
1/2 1

)(

2
1

)

= 2

(

2
1

)

.

Note that, if w is an eigenvector of A, then all vectors αw for α ∈R are also eigen-
vectors of A, we call this set of vectors the eigenspace of A associated to that eigen-
vector (or its respective eigenvalue). Now one natural question arises; how to find
the eigenvalues and the eigenvectors of a given matrix. By considering the identity
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matrix I and the null vector 0 = (0, . . . ,0)T , we can rewrite (A.1),

Aw = λ w

Aw−λ w = 0

Aw−λ Iw = 0

(A−λ I)w = 0 (A.2)

Now, from the basics of linear algebra we know that, if det(A−λ I) �= 0, then
there is only one solution to (A.2), which is the trivial solution w = (0, . . . ,0)T .
We are instead interested in the case where other solutions exists, then to the case
det(A−λ I) = 0. Hence, by changing notation ρA(λ ) := det(A−λ I), we need to
find the roots of ρA(λ ). Such a polynomial is called the characteristic polynomial
of A.

Example A.2. Reprising the matrix of the previous example

ρA(λ ) = det

(

1−λ 2
1/2 1−λ

)

= (1−λ )(1−λ )− 1
2

2

= λ (λ − 2)

and by imposing λ (λ −2) = 0 it follows that ρA(λ ) = 0 for λ = 0,2. Now, consid-
ering for example the eigenvalue λ = 2 the associated eigenvector can be found by
solving

(

1 2
1/2 1

)(

w1

w2

)

= 2

(

w1

w2

)

from which we derive that w1 = 2w2 and that w = (2,1)T is the eigenvector associ-
ated to λ = 2. Clearly, also all the eigenvectors of the eigenspace spanned by w are
eigenvectors of λ = 2, e.g. (1,0.5)T .

Note that the eigenvalues can be ordered from the greatest to the smallest accord-
ing to their absolute value. We call maximum eigenvalue the one with the greatest
absolute value and we denote it as λmax. In Example A.2, we have λmax = 2. Going
back to the computational part, with the increasing size of a matrix, things get more
complicated, especially when it comes to find the roots of the characteristic polyno-
mial. However, the idea remains the same.

Example A.3. Consider the following matrix

A =

⎛

⎝

1 2 8
1/2 1 4
1/8 1/4 1

⎞

⎠ .

Then, by putting its characteristic polynomial equal to 0, and by skipping the ele-
mentary steps, one recovers

ρA(λ ) = λ 2(3−λ ) = 0 (A.3)
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The eigenvalues are then λ = 0,3. In this case we say that the algebraic multiplicity
of λ = 0 is equal to 2. Roughly speaking, with algebraic multiplicity we indicate the
number of times that a solution appears in the equation. In this case the multiplicity
2 of λ = 0 is obvious if we rewrite (A.3) as follows,

ρA(λ ) = λ λ (3−λ ) = 0 (A.4)

Note that in the previous example one eigenvalue was equal to n, and the other, with
multiplicity (n−1) was equal to 0. This is not a case, but a more general result.

Proposition A.1. Given a pairwise comparison matrix A, if and only if A is con-
sistent, then one eigenvalue, λmax is equal to n and the other is equal to 0, with
multiplicity (n−1).

Proceeding further, another question arises and regards the behavior of λmax when A
is not consistent. As λmax cannot be equal to n, then what else can it be? Eigenvalues
are roots of polynomials and it is natural to suspect that λmax could be a complex
number. Fortunately, this cannot happen for pairwise comparison matrices and we
can restrict the search to real numbers. This is formalized in the following theorem.

Theorem A.1 (Perron-Frobenius). Given a square matrix A, if A is positive, i.e.
ai j > 0 ∀i, j, then its maximum eigenvalue is real, λmax ∈R.

Example A.4. Consider the following matrix

A =

⎛

⎝

1 2 8
1/2 1 1/4
1/8 4 1

⎞

⎠

Using the rule of Sarrus we compute

ρA(λ ) = (1−λ )3 +

(

2 · 1
4
· 1

8

)

+

(

8 · 1
2
·4
)

− (1−λ )− (1−λ)− (1−λ)

= (1−λ )3 +
2

32
+

32
2

− 3(1−λ )

=
225
16

+ 3λ 2 −λ 3.

By solving 225
16 +3λ 2 −λ 3 = 0 we find that λmax ≈ 3.9167. The other two roots are

conjugate complex and we are not interested in them. Such solution can be easily
found by any mathematical software. Now, with this solution, we need to solve the
equation system

⎛

⎝

1 2 8
1/2 1 1/4
1/8 4 1

⎞

⎠

⎛

⎝

w1

w2

w3

⎞

⎠= 3.9167

⎛

⎝

w1

w2

w3

⎞

⎠ .
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To aid the process and avoid the problem of infinitely many solutions we add the
condition w1 +w2 +w3 = 1 and solve

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

w1 + 2w2 + 8w3 = 3.9167w1
1
2 w1 +w2 +

1
4 w3 = 3.9167w2

1
8 w1 + 4w2 +w3 = 3.9167w3

w1 +w2 +w3 = 1

from which we obtain

w ≈ (0.660761,0.131112,0.208127)T.

Note that in the this last example A was inconsistent and λmax > n. The following
proposition clarifies the range of possible values attained by λmax.

Proposition A.2 (Saaty [99]). Let A be a pairwise comparison matrix. Then λmax =
n if and only if A is consistent and strictly greater than n otherwise.

Nowadays, all textbooks on linear algebra cover the theory of eigenvalues and eigen-
vectors. For a less didactic and more involving exposition of eigenvalues and eigen-
vectors with an eye on positive matrices the reader can refer to the book by Horn
and Johnson [70].
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Solutions

2.1 Consider that we assumed ai j = wi/wj ∀i, j. Then we write wi and wj as the
respective geometric means and see what happens if we account for the assumption.

ai j =
(∏n

k=1 aik)
1/n

(

∏n
k=1 a jk

)1/n
=

(

ai1ai2 · · ·ain

a j1a j2 · · ·a jn

) 1
n

.

Since we assumed that ai j = wi/wj we can substitute these in the equation and
rewrite it as

ai j =

( wi
w1

wi
w2

· · · wi
wn

w j
w1

w j
w2

· · · w j
wn

) 1
n

=

⎛

⎝

wn
i

w1w2···wn

wn
j

w1w2···wn

⎞

⎠

1
n

=
wi

wj
.

The original assumption is correctly recovered and therefore, when ai j = wi/wj

∀i, j, the geometric mean method returns the correct vector.

2.2 The proof was provided by the Crawford and Williams [43]. See Theorem 3 in
their paper.

3.1 Underbraced are the numbers of independent comparisons for each level of the
hierarchy, starting from the top.

3(3−1)
2

︸ ︷︷ ︸

3

+
4(4− 1)

2
+

3(3− 1)
2

+
3(3−1)

2
︸ ︷︷ ︸

12

+9
3(3−1)

2
︸ ︷︷ ︸

27

= 42

Solution to Problem 3.2: Consider the analytic formula of c3, that is,

c3 =
n−2

∑
i=1

n−1

∑
j=i+1

n

∑
k= j+1

(

2− aik

ai ja jk
− ai ja jk

aik

)

.
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At this point, consider the matrix Ȧ with the entry ȧi j missing. The sum contains
four transitivities and we can expand it

c3 = 6

(

8− ȧ13

ȧ12ȧ23
− ȧ12ȧ23

ȧ13
︸ ︷︷ ︸

− 37
6

− ȧ14

ȧ12ȧ24
− ȧ12ȧ24

ȧ14
︸ ︷︷ ︸

− ȧ14
2 − 2

ȧ14

− ȧ14

ȧ13ȧ34
− ȧ13ȧ34

ȧ14
︸ ︷︷ ︸

− ȧ14
8 − 8

ȧ14

− ȧ24

ȧ23ȧ34
− ȧ23ȧ34

ȧ24
︸ ︷︷ ︸

− 13
6

)

= 6

(

− 5x
8
− 10

x
− 1

3

)

=−15ȧ14

4
− 60

ȧ14
−2.

Let us inspect the first and second derivatives of c3 in ȧ14:

∂c3

∂ ȧ14
=

60

(ȧ14)
2 − 15

4
,

∂ 2c3

∂ ȧ2
14

=− 120

(ȧ14)
3 .

The second derivative is strictly negative for positive values of ȧ14, which means
that the function is strictly concave for ȧ14 > 0 and that, if there is a maximum, then
it is unique. By equating the first derivative to zero, we recover that (ȧ14)

2 = 16. Of
the two solutions we take the positive one, which is ȧ14 = 4.

3.3

C =

⎛

⎜

⎜

⎝

3 2 0 0
1/2 1 1/3 1

0 3 2 2
0 1 1/2 2

⎞

⎟

⎟

⎠

3.4

A =

⎛

⎜

⎜

⎝

1 2 4 3
1/2 1 2 3/2
1/4 1/2 1 3/4
1/3 2/3 4/3 1

⎞

⎟

⎟

⎠

4.1 If the matrix is consistent, then any column can act as the priority vector. An
alternative method, which is also used to derive the vector from inconsistent matri-
ces, is the arithmetic mean of the rows,

ui =
1
n

n

∑
j=1

pi j.

In the case of consistent matrices, this method returns exactly the correct vector. The
proof is similar to the one used to solve Problem 2.1.
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2. J. Aguarón and J. M. Moreno-Jiménez. The geometric consistency index: Approximated
thresholds. European Journal of Operational Research, 147(1):137–145, 2003.

3. J. A. Alonso and M. T. Lamata. Consistency in the analytic hierarchy process: a new
approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
14(4):445–459, 2006.

4. S. Anand and A. Sen. Human development index: methodology and measurement. Techni-
cal report, Human Development Report Office (HDRO), United Nations Development Pro-
gramme (UNDP), 1994.

5. A. Arbel. Approximate articulation of preference and priority derivation. European Journal
of Operational Research, 43(3):317–326, 1989.

6. A. Arbel and L. Vargas. Interval judgments and Euclidean centers. Mathematical and Com-
puter Modelling, 46(7):976–984, 2007.

7. C. A. Bana e Costa and J.-C. Vansnick. A critical analysis of the eigenvalue method used
to derive priorities in AHP. European Journal of Operational Research, 187(3):1422–1428,
2008.

8. M. B. Barfod and S. Leleur. Scaling transformation in the REMBRANDT technique: exami-
nation of the progression factor. International Journal of Information Technology & Decision
Making, 12(5):887–903, 2013.

9. J. Barzilai. Deriving weights from pairwise comparison matrices. The Journal of the Oper-
ational Research Society, 48(12):1226–1232, 1997.

10. J. Barzilai. Consistency measures for pairwise comparison matrices. Journal of Multi-
Criteria Decision Analysis, 7(3):123–132, 1998.

11. J. Barzilai, W. D. Cook, and B. Golany. Consistent weights for judgements matrices of the
relative importance of alternatives. Operations Research Letters, 6(3):131–134, 1987.

12. J. Barzilai and B. Golany. AHP rank reversal, normalization and aggregation rules. INFOR-
Information Systems and Operational Research, 32(2):57–64, 1994.

13. L. Basile and L. D’Apuzzo. Weak consistency and quasi-linear means imply the actual
ranking. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(3):227–240, 2002.

14. L. Basile and L. D’Apuzzo. Transitive matrices, strict preference order and ordinal evaluation
operators. Soft Computing, 10(10):933–940, 2006.

15. V. Belton and T. Gear. On a short-coming of Saaty’s method of analytic hierarchies. Omega,
11(3):228–230, 1983.

16. V. Belton and T. Gear. The legitimacy of rank reversal—a comment. Omega, 13(3):143–144,
1985.

c© Matteo Brunelli 2015 77
M. Brunelli, Introduction to the Analytic Hierarchy Process,
SpringerBriefs in Operations Research, DOI 10.1007/978-3-319-12502-2



78 References

17. M. Bernasconi, C. Choirat, and R. Seri. The analytic hierachy process and the theory of
measurement. Management Science, 56(4):699–711, 2010.

18. M. Bernasconi, C. Choirat, and R. Seri. Empirical properties of group preference aggrega-
tion methods employed in AHP: Theory and evidence. European Journal of Operational
Research, 232(3):584–592, 2014.

19. R. Blanquero, E. Carrizosa, and E. Conde. Inferring weights from pairwise comparison
matrices. Mathematical Methods of Operations Research, 64(2):271–284, 2006.

20. L. Bodin and S. I. Gass. On teaching the analytic hierarchy process. Computers & Operations
Research, 30(10):1487–1497, 2003.

21. L. Bodin and S. I. Gass. Exercises for teaching the analytic hierarchy process. INFORMS
Transactions on Education, 4(2):1–13, 2004.

22. S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
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25. S. Bozóki, L. Dezső, A. Poesz, and J. Temesi. Analysis of pairwise comparison matrices: an
empirical research. Annals of Operations Research, 211(1):511–528, 2013.
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