

■ CONTENTS

xxv

Learn Objective-C
for Java Developers

■ ■ ■

James Bucanek

ii

Learn Objective-C for Java Developers
Copyright © 2009 by James Bucanek
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage
or retrieval system, without the prior written permission of the copyright owner and the publisher.
ISBN-13 (pbk): 978-1-4302-2369-6
ISBN-13 (electronic): 978-1-4302-2370-2
Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1
Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

Lead Editors: Clay Andres, Douglas Pundick
Technical Reviewer: Evan DiBiase
Editorial Board: Clay Andres, Steve Anglin, Mark Beckner, Ewan Buckingham,

Tony Campbell, Gary Cornell, Jonathan Gennick, Jonathan Hassell, Michelle Lowman,
Matthew Moodie, Jeffrey Pepper, Frank Pohlmann, Douglas Pundick,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Kylie Johnston
Copy Editor: Elizabeth Berry
Compositor: Lynn L’Heureux
Indexer: Ann Rogers/Ron Strauss
Artist: April Milne
Cover Designer: Anna Ishchenko
Manufacturing Director: Michael Short

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-
ny@springer-sbm.com, or visit http://www.springeronline.com.
For information on translations, please e-mail info@apress.com, or visit
http://www.apress.com.
Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional
use. eBook versions and licenses are also available for most titles. For more information, reference
our Special Bulk Sales–eBook Licensing web page at http://www.apress.com/info/bulksales.
The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author(s) nor Apress shall have
any liability to any person or entity with respect to any loss or damage caused or alleged to be
caused directly or indirectly by the information contained in this work.
The source code for this book is available to readers at http://www.apress.com.

■ CONTENTS AT A GLANCE

iii

To the memories of my brother, John, and my father, “Dr. B.”

■ CONTENTS

iv

Contents at a Glance

About the Author .. xxi

About the Technical Reviewer ... xxii

Acknowledgments ... xxiii

Introduction ..xiv

PART 1 ■ ■ ■ Language
 Chapter 1: Introduction ... 3

 Chapter 2: Java and C: Key Differences ... 11

 Chapter 3: Welcome to Objective-C .. 27

 Chapter 4: Creating an Xcode Project ... 55

 Chapter 5: Exploring Protocols and Categories .. 75

 Chapter 6: Sending Messages .. 87

 Chapter 7: Making Friends with nil ... 103

PART 2 ■ ■ ■ Translating Technologies
 Chapter 8: Strings and Primitive Values .. 117

 Chapter 9: Garbage Collection ... 135

 Chapter 10: Introspection .. 147

 Chapter 11: Files ... 163

 Chapter 12: Serialization .. 185

 Chapter 13: Communicating Near and Far .. 211

 Chapter 14: Exception Handling ... 239

■ CONTENTS AT A GLANCE

v

 Chapter 15: Threads ... 257

PART 3 ■ ■ ■ Programming Patterns
 Chapter 16: Collection Patterns ... 287

 Chapter 17: Delegation Pattern ... 315

 Chapter 18: Provider/Subscriber Pattern ... 325

 Chapter 19: Observer Pattern .. 339

 Chapter 20: Model-View-Controller Pattern .. 353

 Chapter 21: Lazy Initialization Pattern ... 403

 Chapter 22: Factory Pattern ... 411

 Chapter 23: Singleton Pattern .. 429

PART 4 ■ ■ ■ Advanced Objective-C
 Chapter 24: Memory Management ... 435

 Chapter 25: Mixing C and Objective-C .. 457

 Chapter 26: Runtime .. 465

 Index ... 477

■ CONTENTS AT A GLANCE

vii

Contents

About the Author .. xxi
About the Technical Reviewer ... xxii
Acknowledgments ... xxiii
Introduction ..xiv

PART 1 ■ ■ ■ Language
 Chapter 1: Introduction ... 3

What is Objective-C? ... 3
History ... 4
A Modern Object-Oriented Language ... 4
State of the Art Compiler .. 5
Performance .. 5
Dynamism ... 5
Developer Productivity ... 8

Learning a New Language .. 8
Terminology and Culture Shock .. 9
Defining Better .. 10
Summary ... 10

 Chapter 2: Java and C: Key Differences ... 11
Primitive Types ... 11
Constants ... 14
Typedefs .. 15
Pointers .. 15
Structures .. 16
Object References ... 17
Arrays ... 18
static ... 19
Functions ... 20
extern ... 20

■ CONTENTS

viii

Preprocessor .. 21
#include and #import ... 21
#define ... 22
#if 23

Initializing Automatic Variables .. 24
Labels: break, continue, and goto .. 24
Summary ... 26

 Chapter 3: Welcome to Objective-C .. 27
Defining an Objective-C Class ... 27
Object Pointers .. 29
Sending Messages ... 30
Naming Methods .. 31
Parameter and Return Types ... 33
Method Selectors .. 34
Instance Variables ... 34

isa35
Properties .. 35
Property Attributes ... 38

Overriding Properties ... 40
Accessing Properties ... 40
Scope .. 41

Class Name Scope ... 41
Instance Variable Scope ... 41
Method Scope ... 42

Forward @class Directive ... 43
self and super .. 44
Class Methods ... 45
Constructing Objects .. 47

Writing an init Method ... 49
Chaining Initializers ... 50
Designated Initializer ... 52
Convenience Constructors .. 52

Destructors .. 53
What’s Missing?... 54

 Chapter 4: Creating an Xcode Project ... 55
Download the Project ... 55

■ CONTENTS

ix

Creating a Project .. 56
Getting Started .. 58
Designing the Application .. 59

Designing the User Interface ... 61
Adding a Controller .. 64
Making a Binding .. 65

KVC .. 66
KVO .. 67
Controllers ... 67
Bindings ... 67

Adding an Array Controller .. 67
Getting Down to Business .. 68
Debugging Your Application .. 72
Creating Sandbox Applications ... 73
Summary ... 74

 Chapter 5: Exploring Protocols and Categories .. 75
Protocols .. 75
Informal Protocol .. 77
Combining Formal and Informal Protocols ... 78
Categories .. 79

Using Categories for Organization .. 81
Hiding Methods .. 81
Augmenting Foreign Classes .. 82
Extensions ... 84

Summary ... 85
 Chapter 6: Sending Messages .. 87

Compiling Messages ... 88
Undeclared Methods .. 88
Ambiguous Methods .. 89
Coercion .. 90

Sending Messages Programmatically .. 90
Immediate Messages .. 91
Deferred Messages .. 92

Object-Oriented Method Invocation .. 94
Calling Methods Directly .. 96

■ CONTENTS

x

Variable Arguments .. 97
Unimplemented Methods .. 100
Summary ... 102

 Chapter 7: Making Friends with nil ... 103
Messages to nil Are Safe ... 104
nil Returns Zero .. 107
Designing With nil .. 108

Property Accessors .. 111
Absent Behavior .. 111
Consistency With Nothing ... 113

No Free Rides .. 113
Summary ... 114

PART 2 ■ ■ ■ Translating Technologies
 Chapter 8: Strings and Primitive Values .. 117

Wrapping Scalar Primitives .. 117
Scalar Type Conversion .. 118
Converting Strings to Scalars ... 119

Wrapping Arrays ... 119
Wrapping Arbitrary Values ... 121
Wrapping nil .. 123
Strings .. 123

Converting Objects to Strings .. 125
C Strings ... 125

Formatting Strings .. 128
NSFormatter .. 131

NSNumberFormatter ... 132
NSDateFormatter .. 133

Summary ... 134
 Chapter 9: Garbage Collection ... 135

Choosing to Use Garbage Collection .. 136
Writing Code with Garbage Collection ... 136
Writing Finalize Methods ... 138
Creating Weak References .. 138
Creating Strong References .. 140
Encouraging Garbage Collection ... 141

■ CONTENTS

xi

GC vs. Non-GC Pointers ... 142
Write Barriers .. 142
Allocating Collectable Memory ... 142
Garbage Collection Pitfalls ... 143

Interior Pointers .. 143
Opaque Pointers ... 143
Enumerating Weak Collections ... 144
Uninitialized Stack References .. 144
Other Pitfalls .. 145

Design Patterns to Avoid .. 145
Debugging ... 145
Summary ... 145

 Chapter 10: Introspection .. 147
Testing for Methods .. 147
Testing Class Membership ... 149
Key-Value Coding ... 150

Using Key-Value Coding .. 152
Designing KVC-Compliant Classes ... 153
Custom Key Values ... 155

Inspecting Classes ... 155
Exploring Protocols... 157
Exploring Methods ... 158
Exploring Properties ... 160
Exploring Instance Variables ... 161
Summary ... 162

 Chapter 11: Files ... 163
File System APIs .. 163
Identifying Items in the File System .. 164

File and Path Names ... 165
Working Directory .. 167
File URLs .. 168
Creating and Deleting Directories ... 169
Locating Special Directories .. 169

Requesting a File from the User... 171
Symbolic Links, Hard Links, and Aliases ... 172
Working With the Contents of a Directory .. 173

■ CONTENTS

xii

File Properties ... 175
High-Level File Operations .. 177
NSWorkspace .. 178
Random File Access .. 178
NSFileManager Delegate .. 180
Alternate APIs .. 181
Summary ... 184

 Chapter 12: Serialization .. 185
Archiving.. 185

Archive Types .. 186
Archive Coders .. 187
Archives and Documents ... 188
Adding Keyed Archive Support to Your Class ... 189
Adding Sequential Archive Support to Your Class ... 192
Supporting Both Keyed and Sequential Archiving ... 192
Archiving Complications .. 193

Transient Properties ... 194
Duplicate Objects ... 195
Limiting the Object Graph ... 196
Class Version Compatibility ... 197

Objective-C Serialization .. 203
Property Lists .. 203
XML .. 206

Copying Objects .. 207
Summary ... 210

 Chapter 13: Communicating Near and Far .. 211
Communicating Within a Single Process .. 211
Communicating with Other Processes .. 212

Low-Level Communications .. 212
NSPort .. 213
NSPipe ... 213
NSFileHandle .. 214
NSStream ... 215

High-Level Communications ... 217
Distributed Notifications ... 217
Distributed Objects ... 218

■ CONTENTS

xiii

Networking .. 231
Network Services ... 231
URL Loading .. 232

Trivial URL Request .. 232
Asynchronous URL Request... 233
Writing to a URL .. 235
Downloading a URL .. 236
Caches and Cookies .. 237

Summary ... 237
 Chapter 14: Exception Handling ... 239

Using Exceptions .. 239
Exception Handling Differences .. 241

No Catch or Specify .. 241
Throw Any Object ... 241
Re-Throw an Exception .. 242
Catch Order ... 242
Chaining .. 243
Call Stack ... 243
Performance .. 244
Uncaught Exceptions ... 244

Legacy Exceptions ... 247
Assertions .. 248
Alternatives to Exceptions .. 252

Simple Errors ... 253
POSIX Error Codes .. 253
Core Foundation Error Codes .. 253
Cocoa Errors .. 253

Error Domains ... 254
Customization and Display .. 254
Localization ... 255
Recovery .. 255

Combining Errors and Exceptions .. 256
Summary ... 256

 Chapter 15: Threads ... 257
Thread API ... 257
Starting a Thread ... 258

■ CONTENTS

xiv

Managing Threads .. 260
Putting a Thread to Sleep ... 260
Thread Properties ... 263

Information ... 263
Thread-Specific Values ... 263

Priority ... 264
Stack Size ... 264
Name .. 264

Terminating a Thread ... 264
Run Loops .. 265

Starting a Run Loop .. 265
Run Loop Modes ... 267
Stopping a Run Loop .. 267
Customizing Run Loops ... 268

Thread Notifications ... 268
Thread Synchronization ... 269

The @synchronize Directive .. 270
Mutual Exclusion Semaphore Objects .. 270

NSRecursiveLock .. 271
NSLock ... 271
NSConditionLock ... 273
NSDistributedLock ... 277

Spin Locks.. 278
Operations ... 280
Timers .. 281
Summary ... 283

PART 3 ■ ■ ■ Programming Patterns
 Chapter 16: Collection Patterns ... 287

Immutable Collections ... 288
Ordered Collections .. 292

Common Methods .. 292
NSArray, NSMutableArray ... 294
NSPointerArray ... 295

Dictionary Collections .. 297
Common Methods .. 297

■ CONTENTS

xv

NSDictionary, NSMutableDictionary .. 298
NSMapTable .. 298

Set Collections ... 299
Common Methods .. 299
NSSet, NSMutableSet ... 300
NSCountedSet ... 301
NSIndexSet .. 301
NSHashTable .. 302

Composite Pattern .. 303
Collection Equality Contracts .. 303
Comparing Collections ... 305
Iterator Pattern .. 306

Using Fast Enumeration ... 306
Using Enumerators ... 307
Addressing Collection Objects ... 308
Adding Enumeration Support .. 309

Sorting Collections .. 310
Objective-C Message Sorting ... 311
C Function Sorting .. 311
Sort Descriptors .. 312

Filtering Collections ... 312
Collection Concurrency ... 313

Enumerate a Copy of the Collection ... 313
Defer Changes to the Collection .. 313
Thread Safety .. 314
Garbage Collection and Weak Collections .. 314

Summary ... 314
 Chapter 17: Delegation Pattern ... 315

Understanding Delegates ... 315
Using Delegates .. 318
Delegate Methods ... 319
Delegate Protocols .. 320
Incorporating the Delegation Pattern ... 323
Summary ... 323

 Chapter 18: Provider/Subscriber Pattern ... 325
Notifications .. 325

■ CONTENTS

xvi

Notification Centers ... 329
Posting Synchronous Notifications ... 329
Being a Discriminating Observer ... 330
Removing an Observer ... 331
Notification Queuing .. 332

Queuing a Notification ... 333
Coalescing Notifications .. 334
Dequeuing Notifications .. 334

Distributed Notifications ... 334
Distributed Notifications Center ... 336
Property List Values .. 336
Asynchronous Notification Delivery ... 336
Suspending a Distributed Notification Center ... 337

Summary ... 337
 Chapter 19: Observer Pattern .. 339

Key-Value Observing at Work .. 340
Registering a Key-Value Observer ... 343
Processing Key-Value Change Notifications .. 345
Unregistering an Observer ... 346
Making Your Classes KVO Compliant ... 347

Sending Manual KVO Notifications .. 347
Creating Property Dependencies .. 349
Overriding Key-Value Observing ... 351

Optimizing Key-Value Observing .. 352
Summary ... 352

 Chapter 20: Model-View-Controller Pattern .. 353
Understanding Model-View-Controller .. 354

MVC Variations ... 355
Combined Controller and Data Model ... 355
Mediating Controller .. 355
Direct View and Data Model Binding .. 356
Other Variations .. 356

The Advantages of MVC ... 357
Modularity ... 357
Flexibility ... 357
Reuse .. 358

■ CONTENTS

xvii

Scaling .. 358
Bindings ... 358
Interface Builder ... 360

NIB Documents .. 361
The NIB Document Window .. 361
Object Properties .. 361
Placeholder Objects .. 362
Connections .. 363

Outlets.. 363
Actions ... 364
Bindings ... 365

Owner Object .. 367
Custom Objects ... 367
Object Instantiation .. 369
NIB Object Initialization .. 369

Views .. 369
View Geometry .. 372

Coordinate Points ... 372
Coordinate System.. 373
Pen Orientation ... 374
Drawing Bounds ... 375
Drawing Lines and Shapes ... 375

Custom Views .. 376
Invalidating and Drawing Views .. 376
Graphics Context .. 377
The Graphics Context State Stack .. 378
Drawing Tools ... 380
Animation .. 381
iPhone View Classes ... 383
Advanced View Topics .. 383

Document Model .. 384
Events and Responders .. 385

The Dynamic Application .. 385
Events... 387
Event Objects .. 387
Key Events ... 388
Mouse Events .. 389

■ CONTENTS

xviii

Mouse Down Event ... 389
Mouse Drag and Mouse Up Events ... 389
Mouse Tracking .. 390

The Responder Chain ... 391
Action Messages .. 392
Sending Action Messages ... 393
Menu Actions .. 393
Disabling Action Menu Items .. 394
Designing with the Responder Chain.. 395

Data Models .. 395
Legacy Table and Tree Models .. 395
Collection Controllers .. 397
Core Data ... 398
Custom Data Model Objects .. 398

Controllers ... 399
Custom Controllers .. 399

Creating a Custom NSApplication ... 399
Creating a Custom NSDocument .. 400

NSController Controllers ... 400
About TicTacToe ... 401

Info.plist... 402
Undo .. 402
Resources ... 403
Localized Resources ... 403

Summary ... 403
 Chapter 21: Lazy Initialization Pattern ... 403

Implementing the Pattern .. 403
Lazy Initialization of Global Variables .. 404
The Class +initialize Method .. 407
Summary ... 410

 Chapter 22: Factory Pattern ... 411
URL Factory ... 411
Matrix Class ... 411

Java Matrix Factory ... 419
Objective-C Matrix Class Cluster ... 423

Summary ... 428

■ CONTENTS

xix

 Chapter 23: Singleton Pattern .. 429
Implementing Singletons ... 429
Lazy Singletons ... 430
Singleton Factory .. 431
Summary ... 432

PART 4 ■ ■ ■ Advanced Objective-C
 Chapter 24: Memory Management ... 435

C Memory Allocation .. 436
Objective-C Reference Counting ... 436
Autorelease Pools .. 437

Autorelease Pool Lifetime .. 438
Returned References .. 438
Autoreleased Objects .. 440

Managed Memory Patterns .. 441
New Object Patterns ... 441
Autoreleased Object Pattern .. 441
Returning Autoreleased Objects .. 442
Setter Patterns ... 442
init Patterns ... 444
dealloc Patterns ... 445
Implicitly Retained Objects .. 446

Managed Memory Problems .. 447
Overretained or Underreleased Objects ... 447
Overreleased or Underretained Objects ... 448
Prematurely Released Objects ... 450
Circular References ... 451

Creating Autorelease Pools .. 452
Mixing Managed Memory and Garbage Collection ... 453
Summary ... 455

 Chapter 25: Mixing C and Objective-C .. 457
Using C in Objective-C ... 457

Calling C Functions from Objective-C .. 457
Using Objective-C Objects in C ... 458

Core Foundation ... 458
The Toll-Free Bridge ... 459

■ CONTENTS

xx

C Memory Management .. 462
Using Core Foundation Memory Management Patterns 463
Using Core Foundation with Garbage Collection 463
Using Core Foundation with Managed Memory.. 464

Summary ... 464
 Chapter 26: Runtime .. 465

Process ... 465
Environment ... 466
Command-Line Arguments ... 466
Process Attributes ... 466
Version ... 467

Controlling Development and Deployment Versions 467
Testing for Classes, Methods, and Functions ... 467

Packages and Bundles .. 468
Frameworks ... 468
User Defaults ... 470
isa Swizzling .. 472
64-Bit Programming ... 473
Summary ... 475
Epilogue ... 475

 Index ... 477

■ CONTENTS

xxi

About the Author

 James Bucanek has spent the past 30 years programming and developing microprocessor systems.
He has experience with a broad range of computer hardware and software, from embedded consumer
products to industrial robotics. His development projects include the first local area network for the
Apple II, distributed air conditioning control systems, a piano teaching system, digital oscilloscopes,
silicon wafer deposition furnaces, and collaborative writing tools for K-12 education. James holds a Java
Developer Certification from Sun Microsystems and was awarded a patent for optimizing local area
networks. James is currently focused on Macintosh and iPhone software development, where he can
combine his deep knowledge of UNIX and object-oriented languages with his passion for elegant design.
James holds an Associates degree in classical ballet from the Royal Academy of Dance.

■ CONTENTS

xxii

About the Technical Reviewer

 Evan DiBiase lives in Pittsburgh, Pennsylvania with his fiancée, Ellen,
and their cat, Millie. After graduating from high school, he spent several
years working at a software startup developing machine learning
applications in Java before enrolling in the School of Computer Science
at Carnegie Mellon University, where he will graduate in May 2010. Evan
also hosted the Pittsburgh chapter of Cocoaheads from 2007 to 2009, has interned at
Apple in the Objective-C group, and enjoys programming in Cocoa for Mac OS X and
iPhone in his spare time.

■ CONTENTS

xxiii

Acknowledgments

This book would not have been possible without the tireless efforts of the Apress editors. I am
eternally indebted to my technical editor, Evan DiBiase, who painstakingly checked every symbol,
method, and line of code for accuracy. I thank Douglas Pundick for his astute structural changes,
and I would have been completely lost without the talented red pen of my copy editor, Elizabeth
Berry. The unflagging Kylie Johnson held the entire project on course and, amazingly, on schedule.
Finally, I’d like to chastise Clay Andres who once plucked me out of a WWDC conference and told
me I could write books.

■ CONTENTS

xxiv

Introduction

Objective-C is a wonderful language that has received far less attention than it deserves. It has suddenly
become (more) popular with the success of Apple’s Mac OS X and iPhone, where it is the supreme
development language. If you’re going to learn a language to write applications for Mac OS X or the
iPhone, Objective-C is the language to learn.

The Objective-C language does not feel like it was developed by a committee or a computer
science major. It’s a language for minimalists and anarchists. Yet it retains many of the features that
make Java one of the great programming languages of our time. Objective-C lets you write applications
that are every bit as structured and formal as anything you can write in Java. But at the same time, if you
want to bore a hole through the language and head off in a direction where no one has gone before, it
won’t stand in your way.

After programming in Objective-C for a few years, I was struck at how “Java-like” my programs
were. If I’d known then just how many of my Java techniques and concepts were directly transferable to
Objective-C, it would have saved me months of study and experimentation. I wrote this book so that you
can avoid the same fate.

Who This Book Is For
This book is for any Java developer interested in learning and exploring Objective-C as quickly as
possible.

How This Book Is Structured
This book is organized into four parts: the Objective-C language, translating technologies, design
patterns, and advanced Objective-C.

The first part describes the basics of the Objective-C language itself. It explains how Objective-C
is like, and unlike, Java. It details the language syntax, class declarations, inheritance, and so on.

The second part examines specific technologies, like garbage collection, the file system, and
introspection. Each chapter presents side-by-side examples of Java code and the equivalent code in
Objective-C. Tables list the Java classes that you’re familiar with along with the Cocoa classes that
perform the same role. Each chapter then goes on to advanced topics, often exploring techniques
unique to Objective-C.

The third part is organized by design pattern. Java developers use many important design
patterns, such as the factory and Model-View-Controller patterns. These chapters show how each
pattern is implemented in Objective-C—often in ways that may surprise you.

The final section of the book explores advanced Objective-C topics: memory management,
integrating Objective-C with C, and the Objective-C runtime environment.

■ INTRODUCTION

xxv

I strongly encourage you to read the first part in its entirety. The second and third parts can be
read straight through, or you can skim them and refer back to them later for solutions. The advanced
topics in the final section address specific situations, like working with the iPhone’s memory manager,
which can be explored as needed. Many chapters start out with the basics and then progress to more
esoteric features, so feel free to skip to the next chapter once you’ve learned what you want.

Prerequisites
This book assumes that you have some experience programming in Java. You should be familiar with the
basics of the language, the concepts of classes, objects, inheritance, and interfaces, and have a working
knowledge of the core Java classes. It will help if you have some functional knowledge of individual Java
technologies, like introspection and exceptions, but these aren’t absolutely necessary to learn the
Objective-C equivalents. While I would hope that you are already familiar with design patterns, they
aren’t a prerequisite.

Downloading the Code
The source code for this book is available to readers at http://www.apress.com in the Downloads
section of this book’s home page. Please feel free to visit the Apress web site and download all the code
there. You can also check for errata and find related titles from Apress.

Contacting the Author
You can reach me at james@objectivec4java.com.

P A R T 1
■ ■ ■

Language

C H A P T E R 1

■ ■ ■

3

Introduction

Welcome to Learn Objective-C for Java Developers. This book will help you transition from programming in
Java to programming in Objective-C, the primary language used to develop applications for Apple’s line of
Mac OS X—based computers and consumer products. You will learn to write effectively in a dynamic and
flexible language that powers many of today’s cutting-edge applications and mobile devices. More
important, this book will show you how to leverage the coding practices, design patterns, and problem-
solving skills you’ve learned in Java and apply them to Objective-C.

What is Objective-C?
So what, exactly, is Objective-C and what’s so great about it? Objective-C adds the concept of objects to
the standard C language. It elevates C by overlaying it with a smattering of new keywords and a
SmallTalk-esque method calling syntax. The result is an object-oriented programming language with
remarkable properties:

• Modern object-oriented design paradigms

• State of the art compiler

• Exceptional performance

• Direct access to C and C APIs

• Dynamic behavior

Unlike most other object-oriented languages, Objective-C does not create a completely new
language–it is a strict superset of C. The Objective-C keywords and syntax are quite distinct from
regular C. Listing 1-1 shows a brief snippet of Objective-C, along with equivalent Java code for
comparison. The basic control statements are plain C. The statements between brackets invoke
Objective-C methods.

Listing 1-1. Sample of Java and Objective-C Syntax

Java
public void setSize(Dimension size)
 {
 if (size.height!=0 && size.width!=0) {
 if (!this.size.equals(size)) {
 super.setSize(size);
 for (MapItem i: mapItems)
 i.resize();
 }

CHAPTER 1 ■ INTRODUCTION

4

 }
 }
Objective-C
- (void)setFrameSize:(NSSize)size
{
 if (size.height!=0.0 && size.width!=0.0) {
 if (!NSEqualSizes(self.size,size)) {
 [super setFrameSize:size];
 [mapItems makeObjectsPerformSelector:@selector(resize)];
 }
 }
}

How Objective-C came to be and what makes it special is an interesting story.

History
Brad Cox and Tim Love were the principal forces behind Objective-C. It began life as “Object-Oriented
Programming in C” or OOPC. The goal was to add the capabilities of SmallTalk–which required an
interpreter–to C, without designing an entirely new language. Cox published the first formal
description of what had by then become Objective-C in 1986. In 1988, NeXT Computer adopted
Objective-C as its primary development language. NeXT enriched Objective-C, creating a broad
collection of classes that became the foundation for new applications, development tools (most notably
Interface Builder), and a significant portion of their operating system. The NEXTSTEP operating system
eventually led to the OpenStep API, which defined a consistent set of objects and interfaces that could be
ported to multiple platforms. Ports of OpenStep, beginning with OPENSTEP, ran on Sun’s Solaris and
Microsoft’s Windows NT, among others. The GNU (GNU’s Not Unix) project eventually created an
open-source implementation called GNUstep.

Together, Objective-C and NEXTSTEP were lauded as an innovative development environment,
one of the few to truly deliver on the promise of object-oriented design. Application design and creation
was rapid and flexible. But for a variety of reasons–most notably the industry inertia behind C++–
NeXT and Objective-C remained little more than a curiosity, a shining example of what could be
accomplished, if only they had been embraced by a major segment of the industry.

That threshold was finally crossed in 1996, the year Apple bought NeXT Computer, the
NEXTSTEP operating system, and their entire suite of Objective-C based development tools. Apple
made NEXTSTEP a cornerstone of their new Mac OS X operating system. The object frameworks were
re-branded as “Cocoa” and have since grown and matured into a rich and powerful toolset–not just for
personal computer applications, but also for innovative consumer devices like the iPhone.

A Modern Object-Oriented Language
Objective-C accomplishes a rather remarkable feat. The actual language is spare, almost to the point of
being barren, yet it manages to implement a rich object paradigm that rivals far more complex
languages. The language is simple to learn and simple to implement. Many features can be added or
enhanced simply by creating new classes, rather than requiring changes to the language itself. For
example, using Objective-C you could wake up one morning and decide to instantiate objects in a new
way. Objective-C does not define how objects are created or destroyed–that’s provided by the runtime
framework via class methods. It’s unlikely you’d want to redefine object instantiation, but the example
underscores the flexibility of the language.

CHAPTER 1 ■ INTRODUCTION

5

State of the Art Compiler
Because Objective-C is a thin layer on top of C, it follows the tide of C language changes. As new features,
optimizations, target processors, and other technologies are added to C, Objective-C comes along for the
ride. This allows Objective-C to remain current with modern technology and techniques.

The state of compiler technology today also means that Objective-C code is remarkably
portable. Not too long ago, it was highly unlikely that C written for one platform would compile and run
on a different system or architecture. This was one of the joys of Java’s “write once, run anywhere”
design. Today, a single C compiler can target scores of different processors and hardware with the flick
of a (command-line) switch. Case in point: Apple decided not too long ago to convert their entire line of
personal computer systems from Motorola/IBM to Intel processors. Tens of millions of lines of
Objective-C were ported to an entirely new architecture with little or no disruption in development.
Apple did it again when they ported their Cocoa framework to the embedded processor used in the
iPhone, and might port their entire software library to yet another processor should the opportunity
arise. Today, Apple maintains a single repository of Objective-C source code that is regularly recompiled
to run on no less than five different processor architectures. Objective-C is “write once, run anywhere”
in practice, if not principle.

Performance
Language performance and benchmark wars are infamous, but few would argue that C is the fastest
high-level computer language available today. There are many that claim to be nearly as fast, but it’s
almost impossible to exceed C’s performance without resorting to hand-coded optimizations or just
trickery. It’s no wonder that almost all interpreters are written in C or C++–and that includes Java’s own
virtual machine.

Because Objective-C is also C, you can optimize your application right to the limits of the
hardware. It’s easy to start with a simple object-based design. If performance analysis shows that the
solution isn’t fast enough, it can be optimized with snippets of C. Or the code can be rewritten entirely in
C. If that’s not fast enough, the C compiler gives you direct access to the operating system kernel,
graphics coprocessors, vector unit instructions, and even raw machine code. If your goal is to create the
fastest possible application, Objective-C will not get in the way.

Programming in Objective-C also means you have direct access to the vast library of C APIs. The
POSIX C functions available today represent some of the most mature, stable, and secure code in the
industry.

Dynamism
Objective-C is often described as a dynamic language. That’s a difficult term to define. After all, every
program is dynamic in some form. The term does describe some aspects of the Objective-C language
itself, but most often refers to the design patterns embraced by Objective-C developers.

The Objective-C language is more dynamic than languages like Java and C++. In Java, the
variables and methods you define for a class are exactly those at runtime. In Objective-C, class
definitions are more malleable. Other objects and frameworks, which you may or may not have
developed, can augment your classes and objects with new capabilities. Conversely, you can augment
other classes–even system classes–with new functionality.

Another intriguing feature of Objective-C is the ability of the runtime system to modify the
behavior of an object on the fly. A particularly dramatic example of this is in the observer pattern. In
Java, an observable object is responsible for maintaining a set of listener objects and notifying them of

CHAPTER 1 ■ INTRODUCTION

6

changes to its properties. In Objective-C when an object wants to observe the property of another object,
it makes a request to the Key-Value Observing framework. This framework spontaneously subclasses the
target object, wrapping its setter method with code to notify interested observers of changes. This
remarkable ability means that every object is observable without writing a single line of code or requiring
you to do any design work ahead of time. The contrast between Java and Objective-C–in broad
strokes–is shown in Listing 1-2. The Key-Value Observing framework does all the work of maintaining
the set of observers for each object and sending the requested notifications. All you have to do is declare
the property and request to be notified of changes to it.

Listing 1-2. Observer Pattern in Java and Objective-C

public interface SecurityGateListener
{
 void gateStateChanged(SecurityGate gate);
}

public class SecurityGate
{
 private HashSet listeners;
 private boolean open;

 public void addListener(SecurityGateListener listener)
 {
 listeners.add(listener);
 }

 public void removeListener(SecurityGateListener listener)
 {
 listeners.remove(listener);
 }

 private void fireStateChange()
 {
 for (SecurityGateListener listener: listeners)
 listener.gateStateChanged(this);
 }

 public boolean getOpen()
 {
 return open;
 }

 public void setOpen(boolean open)
 {
 if (this.open!=open) {
 this.open = open;
 fireStateChange();
 }
 }

}

CHAPTER 1 ■ INTRODUCTION

7

class SecurityManager implements SecurityGateListener
{
 SecurityGate gate;

 SecurityManager()
 {
 gate = …
 gate.addListener(this);
 }

 public void gateStateChanged(SecurityGate gate)
 {
 // security gate changed ...
 }

}

@interface SecurityGate : NSObject {
 BOOL open;
}
@property BOOL open;

@end

…

@implementation SecurityManager

- (id)init
{
 if ((self=[super init])!=nil) {
 gate = …
 [gate addObserver:self forKeyPath:@"open" options:0 context:NULL];
 }
 return self;
}

- (void)observeValueForKeyPath:(NSString*)keyPath
 ofObject:(id)object
 change:(NSDictionary*)change
 context:(void*)context
{
 if (object==gate) {
 // security gate changed...
 }
}

@end

The dynamic nature of Objective-C applications often stems more from the design patterns
embraced by developers than anything inherent in the language–although Objective-C does make
those patterns easier to adopt. Take the simple example of implementing copy and paste methods for a
custom view object. The Cocoa framework defines something called the responder chain. It starts with
the view object that currently has the user’s focus, say some selected text or graphic displayed by your
custom view object. The chain consists of that object, the view object that contains it, the window that

CHAPTER 1 ■ INTRODUCTION

8

contains that, and eventually the single application object that contains all of the windows. When the
user selects the Paste command from the menu, Cocoa examines the objects in the chain to find the first
one that implements a -paste: method. Similarly, the menu item itself is enabled and disabled
automatically, based on the presence or absence of an object in the responder chain that implements -
paste:. This arrangement does not require any object to “look” for a Paste command event or register
itself with the menu item. The Paste command comes to life simply because an object implemented a -
paste: method.

But, you might ask, what if the Paste command needs to be enabled conditionally? That’s
simple: your custom view object should implement the -validateMenuItem: method. Objects in the
responder chain that implement that method are queried to determine what commands should be
enabled for the user. Otherwise, the Cocoa framework makes up its own mind.

The emphasis here is not on what an object is but what it does. The capabilities or roles of an
object are determined by examining what methods it implements, rather than what class it is or
requiring it to register itself with other objects. This philosophy has its roots in aspect-oriented
programming. Objective-C developers call these methods informal protocols.

The end result is a fluid application that adjusts itself and responds to users based largely on
what functions the objects in the program do, or don’t do. The knowledge required by one object about
another is minimal, as are its relationships to other view objects. In Objective-C, object implementations
are simpler, more encapsulated, make fewer assumptions, and are generally more reusable.

Developer Productivity
For all of the reasons just mentioned, Apple considers Objective-C its “secret weapon.” Apple regularly
produces high performance, cutting-edge applications faster, and with fewer developers, than other
major software companies. They publicly attribute Objective-C as a key component in their success.
After you begin to work with Objective-C, especially when building GUI applications, you’ll discover just
how productive and efficient you can be.

Learning a New Language
Computer systems and software change continually, and computer languages change along with them.
You will probably change computer-programming languages several times. I’ve changed my principal
programming language at least eight times during my career, with side excursions into a dozen or more
other languages along the way.

Becoming proficient in a new language requires a significant investment, so there’s a natural
resistance to migrate away from a language with which you are already comfortable and productive. Yet,
the reward for learning a new language is often access to new opportunities, technologies, and markets.
Objective-C is the preferred programming language for Apple’s Mac OS X operating system, and (as of
this writing) the only language for developing native applications for Apple’s iPhone and iPod touch
products. Given that change is inevitable, anything that will minimize the transition to a new
programming language is welcome. That is the reason I wrote this book.

It took me years to become proficient in Java. It took me years to become proficient in
Objective-C. Only afterward did I begin to see the striking similarities between the two. The similarities
are not found in the languages themselves–Java and Objective-C are as different as the Moon and
Manhattan. The similarities are in the solutions; that is, how the architects of Java and Objective-C solve
problems.

Effective software development is less a matter of knowing the syntactical details of a language
(although that’s clearly important), than the ability to create solutions. As an experienced Java

CHAPTER 1 ■ INTRODUCTION

9

programmer, you’ve accumulated a toolkit of solutions to address all kinds of common programming
problems. When you start a new language, you abandon those skills for a completely new set of tools
and techniques–which is ironic, since you’re often solving the same set of problems you were before.

This book aims to reduce that agony by providing a kind of translation service between the
solutions you already understand in Java and equivalent solutions in Objective-C. The problems are the
same and you’ll discover that the philosophies of the solutions are remarkably similar. What’s often
radically different is the technique.

To give you an example, consider the method to draw a string of characters on a graphics
display. In most object-oriented languages, the logical place to implement this method is in the drawing
object class–the class responsible for drawing primitive shapes in a graphic context. In Java, the class is
java.awt.Graphics and the method for drawing a string is drawString(String,int,int). In Cocoa, the
base graphics context class is NSGraphicsContext. But in it you won’t find any drawing primitives. The
method to draw a string is found in the NSString class itself. The methods are -
drawAtPoint:withAttributes: and -drawInRect:withAttributes:.

Being used to working in Java, you probably have a question or two. You might be wondering
how the system’s primitive string class was subclassed to include a -drawAtPoint:withAttributes:
method. Or, you might want to know what idiot system architect decided it was a good idea to include
something as domain specific as a graphic drawing primitive in the base string class. The answer is
neither. Objective-C allows arbitrary methods to be attached to other classes. In this case, the
AppKitFramework (the core framework for all GUI applications) attaches a -
drawAtPoint:withAttributes: method to the base string class. It’s called a category, and it stands the
normal rule of class method organization on its head. If you went looking for a -
drawString:AtPoint:withAttributes: method in the various NSGraphics classes you would–as I did–
waste hours of time. Eventually finding them in the NString class was my first introduction to Objective-
C categories and forever changed my approach to class method organization. It also changed my habits
for searching the documentation.

But the really valuable lesson I learned was that Java and Objective-C are still more similar than
they are different. Both embrace the Model-View-Controller design pattern. Both organize window
contents using a hierarchy of visual container objects. Each container has a -draw (paint()) method that
is called when its contents should be rendered. The -draw method uses a graphics context object to
perform the actual drawing of lines, polygons, strings, and images. The differences spring from the
design of the Java and Objective-C languages. Objective-C lets you attach methods to other classes while
Java does not. This changes how class authors organize methods, but doesn’t change their basic
purpose. As an accomplished Java developer, you don’t need a lesson in graphic containers or an
explanation of how or when to draw lines. What you need to know is that in Java the string drawing
primitives are found in the java.awt.Graphics class, and in Cocoa they’re in the NSString class. You’ll
also want to know how categories attach a method to another class and how to implement your own.

Terminology and Culture Shock
If you came to Java from the C or C++ world, moving to Objective-C will not be an earth-shaking
transition. If, however, you are exclusively a Java programmer, there are going to be things about
Objective-C that you will find odd, disappointing, confusing, or even shocking.

There are two major learning hurdles. The first is philosophy. Java is a highly structured
language designed to produce robust, predictable code. Java tries to protect the programmer from
herself by imposing a litany of rules that encourage good programming practices. In contrast, Objective-
C is a minimalist and pragmatic language that affords the programmer immense freedom and liberties.
It does little to protect you from common, and potentially disastrous, programming mistakes. The

CHAPTER 1 ■ INTRODUCTION

10

contrast reminds me of the old joke about safety scissors and scalpels: you can’t perform surgery with
safety scissors, but you also don’t have to count your fingers afterwards.

A lot of thought, effort, and academic research have gone into designing languages that
“coerce” you into writing good code. Personally, I think this approach is somewhat misguided. Sloppy
programming is sloppy programming in any language. Both Java and Objective-C require the developer
to be disciplined–just in different ways. You can write applications in Objective-C that are every bit as
robust and reliable as Java if you adhere to some consistent practices. These practices are highlighted in
each chapter.

The second hurdle is terminology. There are a lot of new terms to learn. Many new terms are
synonyms for ones you already know. In the text, a new term like protocol (interface) will be followed by
its equivalent Java term in parentheses. Once you know that “protocol” is synonymous with “interface,”
the text will use the term “protocol” exclusively.

Defining Better
Any discussion of two technologies will inevitably lead to a comparison of the two and an attempt to
ascertain which is “better.” I suppose this is human nature. I try to avoid such comparisons here for a
variety of reasons.

Java and Objective-C are, in some respects, radically different languages. In other respects, they
are virtually identical. Each has features that allow you to produce good code. Each also has limitations
and flaws that make some tasks awkward or even impossible. I enjoy writing in both for very different
reasons. I consider Java and Objective-C comparable languages, but I don’t consider either to be
categorically superior.

The problem with various “better” assessments is that they are rarely universal. When someone
states that something is better, it typically means “better for me” or “better for this particular
application.”

I’m sure you could make a compelling argument for why the Mercedes C-class sedan is one of
the best vehicles ever made. Your argument could be supported by an impressive list of design choices,
engineering specifications, safety features, and so on. It would be a persuasive position–unless you
needed to haul a half-ton of bricks up a dirt road. In that context, a luxury Mercedes sedan could quite
possibly be the worst vehicle for the task.

Several years ago, I embarked on a project to develop a backup solution for the Macintosh.
I initially started the project in Java. This was not surprising, since I considered Java the best
programming language ever created. Despite Mac OS X’s admirable support for Java, it quickly became
evident that I could not develop a compelling solution in Java. A viable commercial application would
require a native programming language and the choices were C, C++, and Objective-C. This project was
my half-ton of bricks.

Objective-C has not usurped my love of Java. Instead, it has joined it side by side as a capable
alternative. There are still situations where Java is unquestionably superior to Objective-C. There are
also situations where the opposite is equally true. Rather than obsessing about which tool is best, I focus
on which tool is best for the job.

Summary
Objective-C is a mature and powerful language with very real advantages. But you shouldn’t have to
approach it like a first-year programming student. The rest of this book is dedicated to taking your
existing Java knowledge and experience and refocusing it on Objective-C, turning you into a productive
Objective-C developer as quickly as possible.

Java and C: Key Dif ferences

This chapter highlights the important differences between Java and C. We’ll pay particular attention to
familiar syntax and keywords that mean substantially different things in C—faux amis, as the French
would say—and constructs that are foreign to Java. Where Objective-C adds to the C language in an
unambiguous way, the similarities between Java and C can be a source of confusion. So the first step in
your journey to Objective-C is to become comfortable with C.

Java and C++ are both C derivatives. Both created completely new, sophisticated, object-
oriented languages while correcting some of the perceived inadequacies of C. Each imposes and
enforces concepts such as constructors, method access, encapsulation, and so forth.

Objective-C takes a radically minimalist approach. Objective-C adds the concept of classes and
objects to traditional C by introducing a thin layer of syntax and a handful of keywords—with the
emphasis on thin. Objective-C does not change or redefine the underlying C language in any significant
way. In Java you program in Java. In C++ you program in C++. In Objective-C you program in industry
standard C overlaid with some object-oriented extras.

■Note I should probably mention that there is also an Objective-C++ language; it overlays C++ with Objective-C
objects and features. It’s primarily useful to programmers who must integrate legacy C++ code into an
Objective-C runtime environment. This book does not discuss Objective-C++, but most of the information about C
and Objective-C is applicable.

If you’ve previously programmed in C, then you can skip this chapter. Since Objective-C is C,
you won’t find any surprises. If it’s been a while, you might skim over the sections to remind yourself of
the differences.

If you’ve never programmed in C, there are differences between Java and C that you need to be
aware of. Java’s syntax is patterned after C, so you are already familiar with the structure of methods,
code blocks, conditionals, assignment statements, operators, and so on. Here’s a crash course in the key
differences between Java and C.

Primitive Types
Primitive types are the atomic types defined by the language and are the building blocks for all
computations. Most are the scalar variable types with various sizes, numerical ranges, and formats. In
general, the integer and floating-point types in Objective-C are similar to those in Java. Table 2-1 lists the
basic numeric variable types for both.

C H A P T E R 2

■ ■ ■

11

Table 2-1. Primitive Numeric Types

Java Object ive-C C Typedef Size Range

boolean 1 bit false … true

 BOOL 8 bits NO … YES

byte char int8_t 8 bits -128 … 127

 unsigned char uint8_t 8 bits 0 … 255

char int16_t 16 bits -32768 … 32767

 unichar uint16_t 16 bits 0 … 65535

short short int int16_t 16 bits -32768 … 32767

 unsigned
short int

uint16_t 16 bits 0 … 65535

int int int32_t 32 bits -2147483648 … 2147483647

 unsigned int uint32_t 32 bits 0 … 4294967295

long long long int int64_t 64 bits -9223372036854775808 …
9223372036854775807

 unsigned long
long int

uint64_t 64 bits 0 … 18446744073709551615

float float float_t 32 bits approximately +/–10+/–38

double double double_t 64 bits approximately +/–10+/–308

C does not have a strict Boolean type. In C, Boolean operators (i.e. == and &&) have integer
results. C interprets a zero value as false and any non-zero value as true. This allows you to write the
statements if (i!=0) and if (p!=nil) as if (i) and if (p), respectively. The statements are
equivalent, but I believe using the more verbose form—even though the language doesn’t require it—
makes the intent clearer. For convenience and readability, Objective-C defines a BOOL type for declaring
Boolean values. The actual type is an unsigned 8-bit integer, but you should treat it as if it were only
capable of representing YES (true) or NO (false). The C language also defines a bool type, interchangeable
with BOOL, but Objective-C programmers use BOOL almost exclusively.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

12

■Caution One of the side effects of not having a Boolean type is that C control statements accept integer
expressions. This makes it easy to use an assignment statement where you meant to write a comparison. Be
careful not to write if (i=1) when you mean to write if (i==1). The former means, “assign the value of 1 to the
variable i then test to see if that value is not zero.”

C’s long and short keywords are technically modifiers for the int type, as in short int or long
int. Java’s long, int, and short are three distinct integer types and aren’t used in combination. The int
type in C is implied wherever the keywords long or short appear, so short int and short are equivalent.
Which you use is a matter of style.

One of Java’s significant contributions to programming was to standardize the size of integer
types. Traditional C does not specify the size of types like char and int; they would vary from one
compiler or system to the next. Modern C has largely standardized on the sizes listed in Table 2-1. To
avoid any possible ambiguity, the C standard now includes typedefs (covered later in this chapter) that
result in consistent variable sizes. A variable of type int32_t will always be a signed 32-bit integer,
regardless of the compiler’s preferred word size for int or short int.

Historically, a C int was 16 bits and a long int was 32 bits. As 32- and 64-bit CPUs replaced
smaller microprocessors, the standard size of int became 32 bits. For backwards compatibility, long int
remained 32 bits and the long long int type was introduced to define a 64-bit integer.

■Caution The size of integers has changed again for 64-bit architectures. If you compile your code for a 64-bit
CPU, long int becomes a 64-bit integer—short int, int, and long long int remain the same size. If you
need an integer value that will be 32 bits on a 32-bit architecture and 64 bits on a 64-bit architecture, declare it as
NSInteger or NSUInteger. These are C typedefs that change size to match the architecture. Pay attention to the
APIs to determine the correct type. If a method returns an NSInteger, declare the variable you are assigning it to as
NSInteger. It will behave consistently when compiled for either 32- or 64-bit executables.

Java simplified traditional C by eliminating unsigned integer types. In C, integers come in both
signed and unsigned flavors. The closest equivalent to the Java char type is C’s unichar, but be careful—
char is signed and unichar is unsigned. Unsigned integers are fertile ground for subtle programming
mistakes, which is probably why Java eliminated them. Here are the most common ones.

Avoid writing nonsense inequality statements, like that shown in Listing 2-1.

Listing 2-1. Nonsense Comparison Statement

unsigned int i = 99;
while (i>=0) { … } // nonsense/always true; i can never be < 0

Be aware that the sign bit can be reinterpreted through assignment, as shown in Listing 2-2.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

13

Listing 2-2. Sign Bit Reinterpretation

int i = -3;
unsigned int j = i; // j = 4294967293

Listing 2-3 illustrates a mix of signed and unsigned types in a comparison. Avoid this or cast one

of the values so the types are compatible.

Listing 2-3. Comparing Mixed Types

int i = -3;
unsigned int j = 3;
if (i<j) { … } // unpredictable condition

Most size, index, and array counts are unsigned. When declaring a variable that will be used as

an index into a collection, declare an unsigned integer. Use signed integers just about everywhere else.

Constants
Constants are names assigned to unchanging, well-known values. Programming symbolically is easier
and more informative than working with naked numeric values—even when the value is obvious.
Modern code libraries and frameworks define thousands of constants, but the ones you use regularly are
listed in Table 2-2.

Table 2-2. Common Constants

Java Object ive-C Usage

true YES Logical truth

false NO Logical untruth

null nil Empty or Invalid Object Reference

 NULL Empty or Invalid Pointer

Technically, nil and NULL are interchangeable. For readability, use nil to set and test
Objective-C object references exactly as you would use null in Java. NULL is C’s empty pointer constant
and is used to set and test pointers. Adopting this convention underscores the distinction between
memory pointers and object references in your code.

The const keyword before an integer type means pretty much what final means in Java, but is
rarely used to define simple integer constants. Most constants in C are defined using the preprocessor
(also described later in this chapter) or using an enumeration statement.

The enumeration, or enum, in Listing 2-4 defines a numeric variable v that can hold one of the
integer constants Zero, One, or Two. Unlike Java, v is not an object. It’s just an integer. The three constants
(Zero, One, and Two) are public symbols with the values 0, 1, and 2 respectively. They can be used in any

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

14

context in which an integer constant would be acceptable. The variable is often omitted and the enum
statement is used only to define the constants.

Listing 2-4. Enumeration

enum {
 Zero = 0, // = 0 optional, enums start at 0 if omitted
 One,
 Two } v;

Typedefs
A typedef is a concept foreign to Java, but used extensively in C. In Java, new data structures and
functionality are accomplished by creating new classes. In C, you can define your own primitive data
types. The program in Listing 2-5 uses an integer value to identify an inventory part.

Listing 2-5. Typedef

typedef int PartCode;
PartCode aCode;
int bCode;

Placing the typedef keyword before a variable declaration turns it into a type definition. Instead

of defining an integer variable PartCode, the typedef statement in Listing 2-5 creates a new variable type
(PartCode) synonymous with int. Once defined, the new PartCode type can be used instead of the int
type. The declarations for aCode and bCode are identical.

Typedefs help to make your code more readable. The function prototype add(PartCode c) is
much more descriptive than add(int c). Typedefs also improve maintenance. PartCode can later be
redefined as unsigned int or long long int without needing to revise every declaration of a part code
variable.

Typedefs are often used with complex declarations such as structs and enums. The typedef
statement in Listing 2-6 simultaneously creates a new enum type (Flavor) and three integer constants
(Strawberry, Rhubarb, and Apricot). You can now write Flavor favorite = Apricot;, which will assign
the value 2 to the variable favorite.

Listing 2-6. enum typedef

typedef enum {
 Strawberry,
 Rhubarb,
 Apricot } Flavor;

Pointers
Java “protects” you from physical memory by purposefully omitting any programming construct that
gives the programmer direct access to arbitrary memory locations. In Java, you only have access to
named primitives and references to objects.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

15

C provides no such insulation between your code and physical memory. This gives you a great
amount of freedom to access and manipulate data. It also places the responsibility of not overstepping
boundaries on you, the programmer.

Think of C pointers as Java object references with two principal differences. A C pointer can
point to any kind of value or structure—not just objects. You can declare a pointer to an integer, a float, a
complex structure, a function, or even another pointer. Second, a C pointer is always a real memory
location in the process’s address space, whereas Java’s object reference is an abstract and opaque value.
Beyond that, most of the programming rules for Java references apply to pointers. For example, passing
a pointer as a parameter copies the reference to the value, not the value itself.

Since C provides both values and pointers to values, programming syntax must be used to
distinguish between the two. The unary pointer operator (*) can appear in both type definitions and
expressions. In a declaration, a pointer operator changes the variable type from a simple variable to a
pointer to that type of variable, as shown in Listing 2-7.

Listing 2-7. Using Pointers

int i = 1;
int *iptr;
iptr = &i;
*iptr = 2;

In Listing 2-7, the variable iptr is a pointer to an integer variable. The value of iptr is a memory

address where an integer value is stored, not the value of the integer stored there. In other words, it’s a
reference to a primitive integer value somewhere else in the process’s address space.

The ampersand character (&) is the unary “address of” operator. It returns the address of a
variable instead of the value of the variable. The iptr = &i statement sets the value of iptr to the
memory address, not the value, of variable i.

The unary pointer operator (*) in an expression redirects the reference to the value that the
pointer variable points to. In a sense, it’s the complement of the unary address of operator. The last
statement uses the pointer operator to redirect the assignment to the value pointed to by iptr, rather
than the value of iptr itself. In English the statement says, “store the value 2 in the integer variable
whose address is contained in iptr.” The last statement does not change the value of iptr; it changes the
value of the integer variable that iptr points to. After these four statements have executed, the value of
variable i will be 2.

Structures
C structures define the organization of a block of memory. Structures, or structs, are constructed from
other variable types. Once defined, the collection of variables can be treated as a single unit. A struct
statement is very similar to a Java class definition, sans methods. Simple struct declarations, like enums,
define a single variable with a given structure. It is far more typical to find a struct in a typedef
statement so that the structure definition can be reused by name (see Listing 2-8).

Listing 2-8. Structure

typedef struct {
 int key;
 int count;
 } KeyCount;
…

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

16

KeyCount counter;
counter.key = 1;
counter.count = 0;

The KeyCount structure shown in Listing 2-8 defines a unit of memory containing two member

variables at successive addresses, named key and count. Like Java, C uses the member operator (.) to
address a member variable within a structure. More often, a structure is referred to indirectly using a
pointer to the structure, like the one in Listing 2-9.

Listing 2-9. Structure Pointer

KeyCount *nextCounter = &counter;
nextCounter->count += 1;

The variable nextCounter is a pointer to a KeyCount structure. When a variable is a pointer to a

structure, the indirect member operator (->) is used to specify a member variable. This is technically
shorthand for (*nextCounter).count, but is easier to read and write.

Assigning one structure to another makes a copy of the entire structure. The statement KeyCount
save = counter copies both integers in the counter structure to the corresponding integers in the save
structure. Method arguments are passed by value, so passing a structure in an argument will make a
copy of the entire structure. This differs from Java, which doesn’t allow you to copy objects by value.
Consequently, most methods declare arguments that are pointers (references) to structures rather than
the structure itself. But should you need to pass a structure by value, you have that option.

Object References
If you think a C structure looks a lot like a class and a pointer to a structure acts a lot like an object
reference, you are very astute. Objective-C uses C structures to define objects and it uses structure
pointers as object references.

An Objective-C class definition essentially defines a C structure. You start by using Objective-C
syntax to define the class. Once defined, you can interact with the object using the C syntax for
structures and pointers. Both are shown in Listing 2-10.

Listing 2-10. Objective-C Class as C Structure

@interface KeyCounter {
 @public
 int key;
 int count;
}
@end

KeyCounter *countObject = …;
countObject->count += 1;

Behind the scenes, the structure created for the class includes additional member variables

which are used to define the object’s class, provide access to its methods, manage memory, and so on.
Objective-C even provides an operator that converts a class type into a C struct type, allowing you
unfettered access to the internals of an object or to treat the object as a simple C structure. This is rarely
used, but underscores the transparency of Objective-C.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

17

If all of this is becoming overwhelming, don’t fret. You can largely ignore the details of typedefs,
structs, and pointers. To program in Objective-C you need to know that classes are structures, the
pointer (*) operator is used to declare a pointer (reference) to an object, and the indirect member
operator (->) is used to directly access member variables via an object pointer (reference).

You can successfully program in Objective-C without ever creating your own structures,
defining typedefs, or using pointers to variables other than objects. You do, however, need a passing
familiarity with these concepts because you will encounter them in other Objective-C programs. I
anticipate that you will eventually want to explore C types in more detail, if only to utilize libraries with C
interfaces.

Arrays
C arrays continue in the vein of things you need to be aware of but probably don’t need to use yet. C
arrays are not like Java arrays. A C array defines a set of values that occupy successive memory
addresses. A C array is not an object, provides no bounds checking, and is often manipulated using
pointers.

The statement in Listing 2-11 declares an array of 10 integer variables, then obtains the value of
the fourth integer in the array. Like a Java array, an individual element can be addressed using array
subscript syntax (array access expression).

Listing 2-11. C Array of Integers

int numbers[10];
int j = numbers[3];

C arrays and pointers are deeply intertwined. In Listing 2-12, the symbol numbers (by itself)

evaluates to the address of the first element of the array, equivalent to the expression &numbers[0].

Listing 2-12. Array and Pointer Interchangeability

int *iptr = numbers;
iptr += 3;
if (*iptr==j) …

The pointer iptr in Listing 2-12 is first assigned to the address of the first element in the array.

The second statement adjusts the pointer using pointer math. Pointer math (adding or subtracting an
integer value from a pointer value) adjusts a pointer so that it points to the nth value after the current
address by adding n*sizeof(type) to the pointer’s address value. In this example, assuming the size of an
integer is 4 bytes, adding 3 to an integer pointer adjusts its memory address by 12 bytes. Afterward, the
iptr variable points to the fourth element of the array, and the expressions numbers[3] and *iptr are
equivalent.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

18

■Note The sizeof() operator is a compile-time function that evaluates to the size of the enclosed type in bytes.
The argument can be either a type or a variable. Using Listing 2-11 as an example, the expressions sizeof(int),
sizeof(j), and sizeof(numbers[3]) are all equivalent and evaluate to the integer constant 4—the size in bytes
of a single 32-bit integer. The expression sizeof(numbers) evaluates to 40, or 10*sizeof(int), since numbers
is an array of 10 integers. You will often see expressions such as (sizeof(numbers)/sizeof(int)) to determine
the number of elements in an array.

C pointers and array variables are essentially interchangeable. Arrays are commonly assigned
and passed as if they were pointers (the value passed will be the address of the first element of the array).
It is also permissible to use the array subscript syntax on a pointer, as in iptr[3] = 0. This is equivalent
to *(iptr+3) = 0.

Objective-C provides an object array class and object wrappers for most primitive types. These
act very much like the Java arrays and collections you are familiar with. While you need to be aware of
how C arrays are defined and accessed, you can avoid them in favor of object-oriented array classes until
you become comfortable with C arrays, memory management, and pointer arithmetic.

static
The static keyword in C has some additional meanings and is not used the way it is in Java. Java uses
static to declare a single persistent class variable within a class declaration. Objective-C does not allow
you to declare variables in a class definition. Instead, static variables are declared as global C variables or
static variables inside a code block. Listing 2-13 declares two static variables.

Listing 2-13. Global Static Variables

int scramingZombieHitCount = 1; // accessible from all modules
static int screamingZombieBounceCount; // accessible only from this module

A variable declaration outside of any method, structure, or class definition creates a global
variable, approximately equivalent to a Java static variable. Global variables are pre-initialized to zeros at
startup unless explicitly initialized to some other value. In this context, the static keyword only
determines the scope of the symbol (all global variables are “static” in the Java sense). Omitting the static
keyword makes the symbol globally accessible. Any module in the program can access it by name using
an extern statement. Including the static keyword limits the scope of the variable to the file containing
the declaration. Thus, screamingZombieHitCount can be used directly by any module in the program,
while screamingZombieBounceCount will only be accessible to the code in this file.

Inside a code block, a variable declared to be static creates a persistent static variable. The
scope of the variable is limited to the code block it is declared in. Listing 2-14 shows a static integer that
is incremented each time the code block is executed.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

19

Listing 2-14. Static Variable in a Code Block

{
 static int hitCount = 0; // global hit count initialized at startup to 0
 hitCount++; // increment global hit count variable
 return (hitCount); // return updated hit count
}

Functions
C is a procedural language with no concept of objects. In C, callable blocks of code are called functions.
A C function is equivalent to a static class method in Java; it has no object context. C function names are
not scoped within a class or package, they are not inherited, nor can they be overridden. Listing 2-15
shows a C function that compares two Objective-C date objects and returns the earlier of the two.

Listing 2-15. C Functi on

NSDate* earlierDate(NSDate* a, NSDate* b)
{
 if (a==nil)
 return (b); // returns nil if both a & b are nil
 if (b==nil || [a compare:b]==NSOrderedAscending)
 return (a);
 return (b);
}

Function calling syntax is identical to Java: NSDate *first = earlierDate(sometime,whenever).
The earlierDate() function is globally accessible to all modules. A static keyword preceding

the function definition would limit its scope to the module being compiled, just as it does for static
variables.

extern
A module uses an extern statement to access a global variable or C function defined in another module.
An extern statement is typically put in the header file of the module that defines it (see Listing 2-16). This
is only necessary for global variables and functions defined in other modules. You do not use extern
statements to declare or reference Objective-C classes.

Listing 2-16. External Variable Declaration

extern int screamingZombieHitCount;
extern void killAZombie(Zombie *victim);

The statement in Listing 2-16 declares that some other module has defined a global integer

variable named screamingZombieHitCount (from Listing 2-13) and a C function named killAZombie. The
module is compiled with the assumption that this variable and function exist in some other module, or

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

20

modules. The linker is responsible for connecting this module’s references to the actual variable location
and function address when the application is built.

Preprocessor
The C Preprocessor is a text macro language that is (conceptually) applied to the text of a source file
before it is input to the Objective-C compiler. When a source file is compiled, the preprocessor first
scans the text of the file, executing all preprocessor directives and performing any text substitutions. Java
does not have any comparable functionality.

The important preprocessor statements you should know are #include, #import, #define, and
#if. All preprocessor directives are delimited by line breaks. Java and C generally ignore line breaks,
treating them no differently than any other whitespace. The C preprocessor processes one line at a time,
so preprocessor directives cannot be mixed with Objective-C source code on the same line.

#include and #import
The #include and #import statements insert the contents of another source file into the file being
compiled, as shown in Listing 2-17. #include and #import statements can be nested. That is, a file can
#include another file, which includes a third file, and so on.

Listing 2-17. #include and #import Directives

#include <Cocoa/Cocoa.h>
#import "MyClass.h"

The C compiler knows nothing about the classes or symbols defined in other files. To use any

class or symbol, the source code being compiled must first define it. This is different than the Java
compiler which automatically finds and interprets other .java files to obtain the definitions of other
classes.

Clearly, it’s impractical to type in the definition of every class or symbol that you plan to use.
The C community long ago settled on a simple organization of files to solve this problem. Each module is
divided into two files: a source file and a header file. Objective-C source files, sometimes called
implementation files, contain the code for methods and are saved with a .m file extension. The header
file, sometimes called the interface file, contains only the class definitions, variables, and constants that
the programmer wants to make public for use by other modules.

Source files inevitably begin with a series of #include and #import statements to acquire the
definitions that the module requires, like the one shown in Listing 2-17. This is then followed by the code
to implement the methods in that module. In practice, this is analogous to Java’s import statement. But
instead of simply declaring the package names being brought into scope (and leaving Java to go find
those definitions), the #import directive inserts the contents of a module’s header file to declare the
needed classes and constants.

Java requires that an entire class be defined in a single file. While it’s possible to include more
than one Java class in a file, it is not possible to split a class up across several files.

Objective-C has no such restriction, but defining your entire class in a single source file is a
highly recommended arrangement. Objective-C’s categories—described in an upcoming chapter—are a
formal programming pattern for subdividing a single class into multiple parts. But until you start writing
categories, place all of the definitions for a class in a header file named after that class (i.e. MyClass.h),
and all of the code that implements the methods of that class in a source file with the same name (i.e.
MyClass.m). The MyClass.m file should begin by importing its MyClass.h file. Follow that with #import

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

21

directives for any other classes the implementation needs to know about. Listing 2-18 shows the
beginning of a typical pair of source files for the StringPool class.

Listing 2-18. First Lines of the StringPool Class Source Files

// StringPool.h

#include <libkern/OSAtomic.h>
#import <Cocoa/Cocoa.h>

@interface StringPool : NSObject {
@private
 NSHashTable *strings;
 OSSpinLock spinLock;
}
…

// StringPool.m

#import "StringPool.h"

#import "InverseHashTable.h"
#import "StringUtilities.h"

@implementation StringPool
…

#import is slightly different than #include. #include unconditionally inserts the contents of

another file, while #import inserts the file only if it has not already been inserted. #import should be used
for all class definition headers because it avoids the possibility of including a header file twice, which will
result in a duplicate definition error.

Both #include and #import take a filename delimited by either double quotes or angle brackets.
Use brackets when including system headers and use quotes when including files within your own
project.

#define
The #define directive creates a text macro, as shown in Listing 2-19. A text macro replaces a token in the
source code with the contents of the macro. Macros can include parameters, which look similar to
function definitions, and perform complex substitutions. More often, preprocessor macros are simply
used to define constants.

Listing 2-19. Defining Literal Constants

Java
final int MAX_ZOMBIES = 999;
final int MANY_ZOMBIES = MAX_ZOMBIES-100;

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

22

C
#define MAX_ZOMBIES 999
#define MANY_ZOMBIES (MAX_ZOMBIES-100)

Once the MAX_ZOMBIES text macro is defined, any subsequent occurrence of the token

MAX_ZOMBIES will be replaced with the text “999”. The preprocessor will rewrite the statement if
(zombieCount>=MAX_ZOMBIES) by replacing the token. The Objective-C compiler will ultimately compile
the statement if (zombieCount>=999). The Objective-C compiler never sees the MAX_ZOMBIES symbol,
since preprocessor token replacement is performed before the C language compiler phase.

Token substitution is performed on word boundaries and does not occur inside literal strings or
comments.

Token substitution is recursive. The code if (zombieCount>MANY_ZOMBIES) would be replaced
with if (zombieCount>(MAX_ZOMBIES-100)), which would then be replaced with if (zombieCount>(999-
100)). Include parentheses around any preprocessor macros that include operators to avoid unexpected
evaluation order.

Also note that preprocessor macros are not C language statements. They do not use equal signs
for assignment and are not terminated with a semicolon. Doing so would include those symbols in the
substituted text. The directive #define MAX_ZOMBIES = 999; would turn the C statement if
(zombieCount>=MAX_ZOMBIES) into if (zombieCount>== 999;), ultimately resulting in a compiler error.

#if
The #if directive has no Java analog. An #if directive includes or omits a block of text depending on the
value of an expression, as shown in Listing 2-20.

Listing 2-20. #if Preprocessor Directive

#if LOG_OUTPUT > 1
 NSLog(@"game now contains %d zombies",zombieCount);
#endif

The text between the #if directive and the #endif directive in Listing 2-20 is only compiled if

the expression evaluates to a non-zero value. The expression can only use constants that are known at
compile time. In this example, the NSLog statement will be compiled only if the LOG_OUTPUT preprocessor
macro evaluates to a number greater than one. Otherwise the text is not compiled, just as though the
NSLog statement had been commented out.

You can place an #else directive between the #if and #endif directives. The text between the
#if and #else is included if the conditional expression is true. The text between the #else and #endif is
included if it is false.

#ifdef and #ifndef are two convenient variations of the #if directive. The parameter for each is
a single preprocessor macro name. If the macro has been defined (it doesn’t matter what its value is),
#ifdef includes the text up to the #endif. #ifndef is its opposite, including the text only if that macro
name has never been defined. These are often used to alter the code for different environments, as
shown in Listing 2-21.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

23

Listing 2-21. #ifdef Preprocessor Directive

#ifdef DEVELOPMENT_VERSION
 NSAssert(poolSize<256,@"pool overflow"); // alert developer
#else
 if (poolSize>=256)
 return; // return immediately if pool overflows
#endif

Defining the preprocessor macro DEVELOPMENT_VERSION, either in a source file or via a build

setting, will compile the code to throw an assertion (program exception) if the poolSize variable is
greater than or equal to 256. If a DEVELOPMENT_VERSION macro has not been defined, the if/return
statements are compiled instead.

#if directives can be nested. Text omitted by an #if directive is also ignored by the
preprocessor, making it possible to conditionally include files or conditionally define other preprocessor
macros.

It is also common to see #if 0 … #endif used to comment out large blocks of unwanted or
experimental code.

Initializing Automatic Variables
Java ensures that all variables are initialized to a predictable value before they are used. This is Java’s
Definite Assignment rule. Similarly, Objective-C initializes all instance variables to zero when an object
is created. C initializes all static variables to zero, unless explicitly initialized to some other value.

C does not, however, initialize automatic (local) variables, nor does it require that they be
initialized before being used (see Listing 2-22).

Listing 2-22. Uninitialized Automatic Variable

{
 int i;
 while (i==0)
 …
}

The integer variable i in Listing 2-22 is an automatic (local) variable allocated on the stack

frame of the method. C does not require that it be initialized to any value. If not initialized, the value is
unpredictable. It will be whatever value previously occupied that word position in the stack or CPU
register. Make sure that you initialize automatic variables before you use them.

Labels: break, continue, and goto
The C break and continue statements perform the same function as their Java counterparts.

A Java label identifies a block of code, typically a for or while loop. A Java break or continue
statement can optionally specify the label of an enclosing control block, allowing it to exit, or jump to the
end of, the named block. C break and continue statements do not accept labels.

In C, execution control is much more permissive. Instead of limiting abnormal flow control to
just break and continue statements, C provides the all purpose goto statement. A C label identifies a

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

24

statement in the code block. The goto statement immediately transfers execution to the code identified
by the label. The label and goto statements can appear anywhere within the function or method, as
shown in Listing 2-23.

Listing 2-23. break, continue, and goto

Java
 int segment[][] = new int[100][100];
 ...
 int optimalLength = 200000;
 int lineLength = 0;
 int bestFit = 0;
lineLoop:
 for (int i=0; i<100; i++) {
 lineLength = 0;
 for (int j=0; j<100; j++) {
 int s = segment[i][j]; // get segment length
 if (s==0) // stop at zero length
 break;
 lineLength += segment[i][j]; // accumulated line length
 if (lineLength>optimalLength) // line too long
 continue lineLoop;
 if (lineLength==optimalLength) // line perfect fit
 break lineLoop;
 if (lineLength>bestFit) // remember best fit
 bestFit = lineLength;
 }
 }
return (lineLength);

C
 int segment[100][100];
 ...
 int optimalLength = 200000;
 int lineLength;
 int bestFit = 0;
 for (int i=0; i<100; i++) {
 lineLength = 0;
 for (int j=0; j<100; j++) {
 int s = segment[i][j];
 if (s==0)
 break; // Same as Java
 lineLength += segment[i][j];
 if (lineLength>optimalLength)
 goto nextLine; // Jump to end of outer loop
 if (lineLength==optimalLength)
 goto stop; // Continue after outer loop

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

25

 if (lineLength>bestFit)
 bestFit = lineLength;
 }
 nextLine:
 ;
 }
stop:
 return (lineLength);

The code fragments in Listing 2-23 demonstrate the use of break, continue, and goto

statements. The statement goto nextLine continues execution at the end of the outer loop’s control
block and is equivalent to the continue lineLoop statement in Java. The goto stop statement jumps to
the statement immediately following the outer loop and is equivalent to the break lineLoop statement.

The nextLine label illustrates a quirk of C labels; they must precede an executable statement.
Following it with an empty statement (;) satisfies the requirement.

C labels, unlike Java, are not limited to jumping to the end of code blocks. A goto statement can
jump forward or backward in the code stream, and into or out of code blocks at any level. It’s possible to
construct for, while, do, and case statements using only label, if, and goto statements—although I don’t
recommend it.

Use goto statements sparingly, if ever. They can solve very tangled code flow problems, but
should be used only as a last resort. They are easy to abuse, often defeat code optimization, and can
make execution order difficult to analyze.

Summary
This chapter was designed to give you just enough C that you can begin programming in Objective-C.
Programming in Objective-C liberates you from many of the arcane and mundane aspects of
programming in C. Using Objective-C classes you can largely avoid C strings, memory management,
arrays, and a raft of other constructs.

This chapter was not, by any stretch of the imagination, a comprehensive C tutorial. The C
language is vast—even more so than Java, given that one of Java’s goals was to create a simpler and more
concise version of C.

While this abbreviated introduction will give you enough knowledge that you can start
programming in Objective-C, you will eventually encounter more complex C code or need to interface
with C libraries. That will require a deeper understanding of the language. I highly recommend you
procure a book on standard C for further reading and future reference.

Now that you understand the salient differences between C and Java, you can begin to explore
the additional syntax that defines Objective-C.

CHAPTER 2 ■ JAVA AND C: KEY DIFFERENCES

26

C H A P T E R 3

■ ■ ■

27

Welcome to Object ive-C

This chapter describes the core Objective-C language and how its syntax differs from Java. Functional
differences and more esoteric language features are covered in later chapters.

Objective-C enhances C by adding an additional layer of syntax. It does not redefine C, or limit
its capabilities, in any meaningful way. Objective-C syntax is easily recognized. If Objective-C had a logo,
it would probably be the “at” sign (@); all Objective-C directives, including string constants, begin with @
(as in @interface, @selector(), @"string"). Other notable traits are the use of square brackets ([…]) to
invoke methods and very descriptive method names.

But if you ignore these peculiarities, you won’t find any significant discord between the two.
Both are object-oriented languages that let you define classes, declare instance variables and methods,
instantiate instances of those classes, inherit from subclasses, override methods, invoke methods, pass
parameters, and return values. Good Objective-C programming embraces the same design patterns and
practices that you are familiar with in Java.

Defining an Objective-C Class
Objective-C classes are defined in an @interface directive. Its implementation is defined in an
@implementation directive. This differs from Java’s single class definition, which defines both the class’s
interface and its implementation, as shown in Listing 3-1.

Listing 3-1. Objective-C Class Definition

Java
import com.apress.java.SuperClass;

public class NewClass extends SuperClass
{
 int instanceVariable;

 Object method()
 {
 return (null);
 }

 Object method(Object param)
 {
 return (null);
 }

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

28

}

Objective-C
#import "SuperClass.h"

@interface NewClass : SuperClass {
 int instanceVariable;
}

-method;
-methodWithParameter:param;

@end

@implementation NewClass

-method
{
 return (nil);
}

-methodWithParameter:param
{
 return (nil);
}

@end

Listing 3-1 shows the definition of the NewClass class in Java and an equivalent class in

Objective-C. The @interface part of a class definition is typically in a header (.h) file for inclusion by
other modules, while the @implementation portion is in a source (.m) file. See the “#include and #import”
section of the previous chapter if you need a refresher on C source file organization.

The @interface portion of a class declaration has two parts. The first part contains the instance
variable declarations surrounded by braces. This portion is similar to a C struct declaration.

Following the variable declaration are the class’s method prototypes. The hyphen prefix
indicates that the method is an instance method. A plus prefix denotes a class method, which is similar
to a static method in Java.

The @implementation directive contains the actual code for the methods that were described in
the @interface section. It is an error to declare a method and not implement it, although the opposite is
permitted. One of Java’s more elegant design features is that a class file defines both a class’s interface
and its implementation. In Objective-C, it’s the programmer’s responsibility to keep the interface and
the implementation in agreement.

Both the @interface and @implementation sections are terminated with an @end directive.
Class inheritance works the same way it does in Java. The class NewClass inherits all of the

instance variables and methods of the class SuperClass. Declaring a method in NewClass with the same
name as a method inherited from SuperClass overrides the inherited method.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

29

■Caution Always declare the superclass in the @interface declaration, even when the superclass is NSObject.
NSObject is the logical root class in the Cocoa framework, functionally equivalent to Java’s Object class. It is not,
however, the root class of Objective-C. Objective-C’s actual root class, Object, is so primitive that a direct subclass
is essentially useless. It is unlikely that you will ever want to create a direct subclass of Object.

Object Pointers
A variable containing a pointer to an Objective-C object is an object pointer (reference) or object
identifier. Both are equivalent to a Java object reference.

Listing 3-2 shows the two ways of declaring an object pointer. An object pointer can be declared
as a pointer to a specific class or as a generic object identifier (id). Both contain a pointer to the memory
address of an object. The difference is in how they are treated by the compiler.

Listing 3-2. Object Pointer Declarations

SpecificClass *specificObject;
id anyObject;

■Note Like Java, Objective-C does not permit a variable to contain the contents of an object, only a pointer
(reference) to an object. The declaration SpecificClass object is invalid. This is one case where Objective-C
objects and C structures differ; a variable can contain an entire C structure or a pointer to a C structure, but you
can only declare a pointer to an Objective-C object.

A pointer to a specific class acts mostly like a Java object reference. The compiler assumes that
the pointer refers to an object of that class, or a subclass of that class. It will warn you if you attempt to
invoke methods that are not defined or inherited by that class. It will only allow you access to instance
variables defined or inherited by that class. The pointer is implicitly compatible with a pointer to any of
its superclasses, but not with a pointer to a subclass.

The special object identifier type (id) is a non-specific object pointer (reference). It is not the
equivalent of a pointer to a base class object, e.g. NSObject *obj (Object obj). The compiler assumes
that a variable of type id could be any class. The compiler will permit you to invoke any method from
any class that’s been defined. An object identifier can be assigned to any kind of object pointer, or from
any kind of object pointer, with no compiler warning. You cannot use an object identifier to directly
access an object’s instance variables.

If you declared every object pointer as type id, programming would be similar to some scripting
languages. The compiler would make no assumptions, allowing you to invoke any method and assign
the pointer to any other object pointer variable without complaint. The appropriateness of those
methods and assignments would be vetted at run time.

At the other extreme, declaring every reference as a pointer to a specific class results in a
programming experience similar to Java. The compiler will only allow method calls to those defined for
the pointer’s class, and inappropriate assignments will be flagged. The only significant difference is that

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

30

in Java, a cast from one class to another is checked at runtime; in Objective-C a cast simply suppresses a
compiler warning.

Real-world Objective-C is a blend of these two extremes. The id type is used where the class of
an object is not known, variable, or indeterminate. Strong, class-specific pointers, are used everywhere
else. For example, an NSError object contains a recoveryAttempter object reference. It’s the object that
will take responsibility for recovering from the error. This variable has an id type since NSError makes
no assumptions about its class. Type id allows the property value to be set, assigned, or used to call any
method without casting. On the other hand, NSErrors’ domain and userInfo variables are declared as
pointers to NSString (String) and NSDictionary (Map) objects. There’s no ambiguity about what class of
objects is stored in these variables or what methods they implement.

All pointer types are functionally identical at runtime. The compiled code retains no pointer
type information. The two pointers declared in Listing 3-2 will behave exactly the same way when the
code executes.

Sending Messages
Method invocation syntax is the most dramatic difference between Java and Objective-C. A method
invocation consists of an object pointer (reference) and the name of the method to execute, surrounded
by brackets. Examples are shown in Listing 3-3.

Listing 3-3. Objective-C Message Syntax

Java
object.method();
object.method(param);

Objective-C
[object method];
[object methodWithParam:param];

Objective-C does not call object methods, as Java does. It sends messages to objects. This is

more than a semantic difference.
Java works very much like C or C++ when you call a method. The method name in the

statement identifies the method to execute. The parameters of the call are pushed onto the stack along
with a return address. Execution flow is then transferred to the method.

Objective-C invokes a method by first pushing the parameters of the method onto the stack. It
then calls a central dispatching function, passing it the object pointer and a compact method identifier
called a selector. This dispatching function uses the two to locate the object’s method and transfer
execution to the method’s code. The method executes and returns, just like any C or Java method.

The difference might seem trivial, or even pointless, but it is the key to Objective-C’s dynamism
and is critical to several important and unique language features. This will become more evident as you
work through the chapters of this book.

To underscore this concept, Objective-C uses different language to describe the process of
invoking methods. In Objective-C, you send a message to an object. The calling object is the sender and
the object whose method is being invoked is the receiver. The term receiver is used extensively in
Objective-C, especially in documentation (as in the phrase “… returns the number of Unicode
characters in the receiver”). The terms “method” and “message” are often used interchangeably.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

31

Naming Methods
Objective-C method names are verbose, consisting of one or more keywords that naturally describe each
parameter. Listing 3-4 shows four hypothetical Objective-C methods with none, one, two, and three
parameters, respectively.

Listing 3-4. Named Parameters

-method;
-methodWithParameter:parameter;
-methodWithContext:context object:object;
-methodWithDialog:dialog message:message behindWindow:window flags:mode;

The first Objective-C declaration in Listing 3-4 defines a method that takes no parameters. This

is the Java equivalent of Object method(). The second declaration defines a method taking one
parameter, equivalent to Object method(Object parameter).

The identifier following the colon is the name of the parameter variable; this is the variable
name you will use to reference the variable in the method’s code (e.g., dialog, message, window, mode).
The name of the parameter variable and the keywords that form the method’s name are in different
name spaces. They can be the same or different. Only the parameter variable name is in scope within the
body of the method’s implementation.

■Note As in Java, parameter names are in the same scope as the object’s instance variables. An instance
variable (say, cell) and a parameter variable with the same name create some ambiguity. Like Java, the symbol
name by itself will always refer to the parameter or local variable. The cell instance variable must then be
addressed indirectly using self->cell (this.cell). Unlike Java, the Objective-C compiler will complain with a
warning that “the local declaration of ‘cell’ hides instance variable.” To avoid the warning, and any possible
ambiguity, most Objective-C programmers choose parameter names that don’t conflict with any instance
variables, electing to use names like aCell or newCell instead of just cell.

Naming methods in Objective-C is a bit of an art. Objective-C method names are generally
constructed using one of the forms shown in Listing 3-5. The listing shows some abstract method names
followed by several real-world examples.

Listing 3-5. Method Naming Examples

Simple actions:
-action;
-draw;
-play;
-becomeKeyWindow;

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

32

Action methods with a parameter:
-actionParameter:param;
-drawCell:cell;
-sendEvent:event;

Actions with multiple parameters:
-actionParameter:firstParam secondParameter:secondParam;
-replaceSubview:oldView with:newView;
-postNotificationName:name object:sender;

Methods returning a value:

-value;
-key;
-window;
-stringByExpandingTildeInPath;

Methods with parameters that return a value:
-valuePrepositionParameter:parameter;
-objectForKey:key;
-stringByAppendingString:string;
-numberFromString:string;

Reading and inventing your own names isn’t too difficult if you keep the following in mind. The

general form for a method name begins with a description of the returned value (if any), followed by the
action the method performs, followed by a description of the first parameter (if any). A method named
-menuForEvent: can be reasonably assumed to take an NSEvent object as a parameter and return an
NSMenu object. Subsequent keywords describe that parameter and often include a preposition such as
“in,” “to,” or “with.” The parameter’s description is sometimes implied, as in -replaceSubview:oldView
with:newView. Avoid including superfluous verbs like “do” or “does.”

Objective-C does not the support overloading of method names that differ only in their
parameter types the way Java does. But it really isn’t necessary. If two Objective-C methods differ only in
their parameters, the methods will have different names: -drawRect:rect, -drawCell:cell,
-drawPage:page instead of the equivalent overloaded Java functions draw(Rect rect),
draw(Cell cell), draw(Page page).

There are no hard and fast rules for naming methods. The principal goal is readability.
Objective-C method names lend a refreshing verboseness to code that makes it much more self-
explanatory. Listing 3-6 shows two code fragments that extract the substring “Walrus” into a character
array.

Listing 3-6. Method Name Example

Java
char c[] = new char[20];
String s = "The time has come, the Walrus said ...";
s.getChars(23,29,c,1);

Objective-C
unichar c[20];
NSString *s = @"The time has come, the Walrus said ...";
[s getCharacters:&c[1] range:NSMakeRange(23,6)];

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

33

The code phrase getCharacters:c range:NSMakeRange(23,6) is more descriptive than

(23,29,c,1). It is clear that the first parameter involves characters and the second parameter is a range.
This becomes especially helpful with methods that have many parameters. When Objective-C method
names become exceptionally long, the formatting convention is to place each parameter on its own line,
horizontally aligning the colons as shown in Listing 3-7. The Xcode editor, as well as other Objective-C–
savvy text editors, will do this automatically.

Listing 3-7. Multiline Message

NSString *new = [s stringByReplacingOccurrencesOfString:@"Walrus"
 withString:@"Carpenter"
 options:NSLiteralSearch
 range:NSMakeRange(20,10)];

Parameter and Return Types
Like Java, an Objective-C method can return a single value to the caller. The methods presented so far
have omitted the return type and the types of the parameters. I did that intentionally to focus on the
basics of method declaration and naming. Parameter and return types are specified in parentheses
before the method name or parameter variable name, very much like a type cast. Some examples are
shown in Listing 3-8.

Listing 3-8. Parameter and Return Types

- (id)objectForKey:(id)aKey
- (NSMenuItem*)itemWithTag:(NSInteger)aTag;
- (unichar)characterAtIndex:(NSUInteger)index;
- (NSString*)stringByAddingPercentEscapesUsingEncoding:(NSStringEncoding)encoding;
- (void)runInNewThread;
- (void)addAttribute:(NSString*)name value:(id)value range:(NSRange)aRange;

If the type is omitted, the non-specific object identifier type (id) is implied. The declarations

-objectForKey:key; and -(id)objectForKey:(id)key; are identical. For clarity, Objective-C
programmers invariably specify the types of all parameters and return values, even when the type is id.

A parameter type can be any valid C or Objective-C variable type. Usually they are simple types
such as numeric primitives (int), object pointers (id or NSColumn*), or small structures (NSPoint). Method
parameters and return values are always passed by copy, so any type that can be assigned using the
assignment operator (=) can be passed as a parameter. As mentioned earlier, Objective-C does not allow
you to declare a variable to be an Objective-C object—you can only declare pointers to Objective-C
objects. By extension, you cannot pass a copy of an Objective-C object as a parameter, only a copy of the
pointer (reference) to the object. Thus, you cannot declare the method -(NSString)description, but you
can declare the method -(NSString*)description.

In addition to valid variable types, the return type of a method can also be (void), indicating
that it does not return any value. The compiler will warn you if you attempt to use the return value of a
void method. It will also warn you if you attempt to return a value from a void method, or fail to return a
value from a non-void method.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

34

Method Selectors
An Objective-C method’s complete name, sans the parameter variable names and any types, forms its
unique identifier. The identifier for the method -(NSfont*)fontWithFamily:(NSString*)family
traits:(NSFontTraitMask)fontTraitMask weight:(NSInteger)weight size:(CGFloat)size is
fontWithFamily:traits:weight:size:. This is equivalent to a method signature in Java. The concrete
embodiment of this identifier is a numeric constant called a selector. Selectors are values of type SEL.
The Objective-C directive @selector() evaluates to the selector value of the method identifier in
parentheses, as in SEL selector = @selector(fontWithFamily:traits:weight:size:).

■Note It’s tempting to think of the keywords in a method name as parameter names, but this is not technically
accurate. Unlike languages with named parameters, the parameters of an Objective-C method cannot be omitted
or rearranged. The methods -sendMessage:toRecipient:withAttachement: and
-sendMessage:withAttachement:toRecipient: are distinct methods with unique signatures.

Selectors are used internally to dispatch messages to objects. They can be used
programmatically to send messages, register for messages, perform introspection, and other tricks
described in later chapters.

In documentation and in communications between programmers, method names are often
written like an invocation with the class name and method identifier. A programmer might write
“-[NSFontManager fontWithFamily:traits:weight:size:]” when referring to the
fontWithFamily:traits:weight:size: instance method defined by the NSFontManager class. It’s nonsense
code, but concisely describes the method.

Instance Variables
Instance variables are declared in the @interface directive of the class, as was shown in Listing 3-1. This
is virtually identical to Java, with the minor restriction that all instance variable declarations are grouped
together in a single block. Like Java, instance methods access instance variables as if they were local
variables.

■Note Instance variable and method names traditionally use “camel case”—they begin with a lowercase letter
and use uppercase letters to delineate words. Instance variable and method names that begin with an underscore
(_) are reserved by the Cocoa framework and should be avoided.

You’ve also seen how the indirect member operator is used to directly address a member
variable in another object, as in object->value = 1 (object.value = 1). In Java you normally wouldn’t
do that. Good Java practices encourage the use of accessor (getter) and mutator (setter) methods to
insulate the variable’s implementation from external code. The instance variable would be declared
protected or private, and the methods int getValue() and void setValue(int value) would be used
to get and set its value.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

35

Good Objective-C follows the same practice for all of the reasons Java does and a few more. In
Objective-C, the instance variable int value would be accessible via the methods -(int)value and
-(void)setValue:(int)newValue. Objetive-C encourages the use of accessor methods so much, the
definition and construction of accessor methods has been built into the language in the form of
properties. How to declare properties is described immediately after the section on the isa variable.

■Note Objective-C uses the names “value” and “setValue” for the methods that get and set the property value,
rather than “getValue” and “setValue” which are more common in Java. Technologies that use introspection to
identify properties via accessor methods will often accept the “getValue” form as an alternative, but the “value”
form for getters is preferred.

isa
Every object in Objective-C inherits an isa instance variable; isa literally defines the class of the object.

At runtime, there is a single instance of a Class object for every class. The Class object defines
the behavior for all instances of that class. Every instance of that class refers to its defining Class object
via its isa variable.

You should not directly access an object’s isa variable. If you want to get an object’s Class, the
-(Class)class method will return it. You may also find -(NSString*)className useful: it returns the
name of the object’s class as a string.

Several technologies alter an object’s isa variable (a technique known as “isa swizzling”) to
dynamicaly alter that object’s behavior. Never change the value of an object’s isa variable yourself, until
you have a clear and deep understanding of Objective-C’s runtime architecture.

Properties
Objective-C 2.0 adds the @property and @synthesize keywords for defining object properties and
implementing their matching accessor methods. A property is a value that is fetched using an accessor
method and set using a mutator method. A property’s value is typically stored in an instance variable,
but that’s not a requirement.

The @property directive declares a property of the class. A @property directive typically appears in
the @interface directive. It does not implement the accessor methods or create any instance variables. It is
simply a promise that the class implements that property. Listing 3-9 shows the Person class, in both Java
and Objective-C. The class defines five properties: tag, firstName, lastName, fullName, and adult.

Listing 3-9. Property Declarations

Java
public class Person
{
 int tag;
 String firstName;
 String secondName;
 boolean adult;

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

36

 synchronized int getTag()
 {
 return (tag);
 }

 synchronized void setTag(int tag)
 {
 this.tag = tag;
 }

 public synchronized String getFirstName()
 {
 return firstName;
 }

 public synchronized void setFirstName(String firstName)
 {
 this.firstName = firstName;
 }

 public synchronized String getLastName()
 {
 return secondName;
 }

 public synchronized void setLastName(String lastName)
 {
 secondName = lastName;
 }

 public synchronized boolean isAdult()
 {
 return adult;
 }

 public synchronized void setAdult(boolean adult)
 {
 this.adult = adult;
 }

 public String getFullName()
 {
 return (firstName+" "+secondName);
 }
}

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

37

Objective-C
@interface Person : NSObject {
 int tag;
 NSString *firstName;
 NSString *secondName;
 BOOL adult;
}
@property int tag;
@property (copy) NSString *firstName;
@property (copy) NSString *lastName;
@property (getter=isAdult) BOOL adult;
@property (readonly,nonatomic) NSString *fullName;

@end

@implementation Person

@synthesize tag;
@synthesize firstName;
@synthesize lastName = secondName;
@synthesize adult;

- (NSString *)fullName
{
 return ([NSString stringWithFormat:@"%@ %@",firstName,secondName]);
}

@end

The @synthesize directive appears in the @implementation of the class. A @synthesize directive

tells the compiler to generate the accessor and mutator methods needed to implement the property.
In the absense of a @synthesize directive, it is up to the programmer to implement the methods

that sastify the contract declared in the @property directive. Failing to either include a @synthesize
directive or implement the expected accessor methods is an error.

■Note The special @dynamic directive suppresses the compiler’s expectation for the required accessor methods.
In some cases (i.e., class extensions, categories, subclassing, dynamically-loaded frameworks), it’s possible that
the class will implement methods at runtime that the compiler is not aware of. The @dynamic directive tells the
compiler not to worry about it; the programmer promises that the expected methods will exist when the program
executes. Use of @dynamic is rare.

The first two properties are straightforward. The @property int tag declares that the class
Person implements getter and setter methods that satisfy the contract of an integer property named tag.
The @synthesize tag directive instructs the compiler to generate the methods -(int)tag and
-(void)setTag:(int)newTag for you. The tag property will be stored in the instance variables of the same
name.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

38

The second property declaration is similar, but since the property is an object, we’re obliged to
include a property attribute clarifying how assignments are handled. The copy attribute causes the
synthesized setter to make and store a copy of the object that is passed to it (rather than storing a
reference to that object). Like tag, the value of the firstName property will be stored in the firstName
instance variable.

The third @property directive is identical to the second, except that the name of the property
doesn’t correspond to any declared instance variables. This is immaterial to the @property directive; that
statement is just a promise that the class will implement the property, not how. The @synthesize
lastName = secondName directive implements the required getter and setter methods for the lastName
property using the instance variable secondName for storage. Getting the lastName property returns the
secondName variable; setting the lastName property replaces the secondName variable with a copy of the
value passed to -setLastName:.

■Tip If you prefer really compact code, the four @synthesize directives in Listing 3-9 could have been written as
@synthesize tag, firstName, lastName=secondName, adult.

The @property (getter=isAdult) BOOL adult directive declares a Boolean property named
adult. The gettter= attribute renames the getter method to -(BOOL)isAdult, rather than the default
-(BOOL)adult. As in Java, the getter method for a Boolean property traditionally begins with “is” or “has”.

The final @property (readonly,nonatomic) NSString *fullName directive declares that the
Person object provides a string property named fullName. The property is read-only (it has a getter
method but no setter method) and the getter method is not thread safe. In the @implementation section
of the class is there no @synthesize directive for fullName. The required getter method is implemented
by the programmer.

■Caution When implementing accessor methods to satisfy a @property directive, it is up to the programmer to
fulfill the implied contract of the declaration. If you omit the nonatomic attribute, it is up to you to ensure the
methods are threadsafe. If the copy attribute is specified, the setter methods should make and store a copy of the
value, not a reference to the value (unless you can guarantee it to be immutable).

Property Attributes
The example in Listing 3-9 showed some of the common attributes used in property definitions. Table 3-
1 describes all of the property attributes that can be included in a @property directive. Multiple
properties are seperated by commas.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

39

Table 3-1. Property Attributes

Proper t y A t t r i bute Descr ipt i on

readonly Declares the property to be immutable. A @synthesize directive for a readonly
property will generate a getter method, but no setter method. readonly is mutually
exclusive with readwrite.

readwrite Declares the property to be mutable. This is the default mutability attribute. If neither
readonly nor readwrite are specified, readwrite is assumed. readwrite is mutually
exclusive with readonly.

copy Declares that the setter method makes a copy of the object passed to it and stores a
reference to that copy, not a reference to the original object. This attribute is only
appropriate for object pointer properties—primitive values are always passed by
copy. copy is mutually exclusive with assign and retain. Use copy where there is a
chance that objects used to set the property might be mutable and you do not want
the value of the reciever’s property to change if the original object is modified.

assign Declares that the setter method sets the property by keeping a pointer to the object
passed to it. In practical terms, it means that the getter and setter methods are
implemented using simple assignment (i.e., self->firstName = name). Use assign in a
garbage collection environment where you want to retain the reference to the original
object value or the object values are always immutable. assign is typically assumed if
no storage attribute is specified, but there are some environments where you must
explicitely include assign, copy, or retain. assign is mutually exclusive with copy and
retain, and is only appropriate with object pointer properties.

retain This attribute is like assign, but retains the reference to the object in a managed
memory (non-garbage collection) environment. Refer to Part 4 for information about
about non-GC memory management.

getter=name Renames the method used as the getter method. Useful when an alternate form of the
default getter method name is desired, such as -isValue, or -getValue. Use this
attribute with caution; it can break the standard pattern of getter and setter names
such that technologies like Key-Value Coding will not recognize the property.

setter=name Renames the method used for the setter method. Cannot be used if the readonly
attribute is specified. The same caution that applies to getter= applies to setter=.

nonatomic Declares that the getter and setting methods are not thread-safe. There is no “atomic”
attribute; omitting nonatomic implies the property is atomic. If omitted, the
@synthesize may wrap the getter and setter methods with code that first obtains an
object-specific lock in order to guarantee that accessor methods are well behaved in a
multi-threaded environment. It also insures that the object returned is fully realized
in the memory space of the executing thread. Use nonatomic whenever your
manually-written accessor methods do not provide these safeguards, or when such
precautions are not wanted. The thread safety features add a non-trivial amount of
runtime overhead to the accessor methods, which may have performance
implications. There are exceptions for primitive scalar properties and assign object
properties on certain platforms, where the processor guarantees atomic assignments.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

40

The copy attribute is more appropriate with string and collection objects than it is in Java. In
Objective-C, string and collection classes have mutable subclasses. So an NSString is not guaranteed to
be immutable the way a Java String object is. Making a copy ensures that the property isn’t affected by
changes to the orginal object used to set the property.

Overriding Properties
Properties are implemented by accessor methods that get and set a value in the receiver. Since they are
implemented using methods, subclasses can override those methods, essentially overriding the
property.

Overriding a property’s accessor methods can be done informally or formally. To do it
informally, simply override the appropriate accessor method. To override the setter method implied by
@property int tag, just implement a new -(void)setTag:(int)newTag method in your subclass. It
doesn’t even have to be declared in the subclass’s @interface.

To formally override a property, declare a duplicate @property directive in the subclass. The
@property directive must be identical to the one in the superclass with one exception: a subclass can
declare a property as readwrite when the superclass’s property is readonly. This supports the design
pattern of a mutable subclass of an immutable superclass. Once declared, the @synthesize directive can
be used to reimplement the accessor methods for the subclass or you can implement them yourself.

■Tip This is one practical application for the @dynamic directive. Since the superclass already implements the
accessor method for the property, the subclass can redeclare the property, use the @dynamic directive to ignore
the requirement to reimplement both accessor methods, then override just the getter or setter method.

Accessing Properties
The accessor methods for a property can be invoked like any other method. But formally declared
properties carry an additional benefit. Objective-C 2.0 extends the member variable operator (.) to allow
easy access to formally defined properties. This so-called “dot syntax” lets you interact with an object’s
property the way you would address a member variable in Java.

Using the class defined in Listing 3-9, the code in Listing 3-10 sets and accesses several
properties of a Person object. The dot syntax is expanded by the compiler to call the appropriate getter or
setter method for each property; it does not directly access the object’s instance variables as it would in
Java. This is considered “syntactic sugar,” provided to improve readability and reduce clutter. The code
produced by Listing 3-10 is identical to the code shown by Listing 3-11.

Listing 3-10. Object Properties via Dot Syntax

Person *person = ...;
person.firstName = @"James";
if (person.lastName.length==0)
 person.lastName = @"Smith";
person.tag += 3;

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

41

Listing 3-11. Dot Syntax Equivalent Code

Person *person = ...;
[person setFirstName:@"James"];
if ([[person lastName] length]==0)
 [person setLastName:@"Smith"];
[person setTag:[person tag]+3];

Scope
I’ll get the bad news out of the way first: there are no packages in Objective-C. All class names, C
functions, and global variables share a single name space. Instance variables within a class are
encapsulated by that class, and Objective-C does provide control over their scope. Objective-C does not
restrict access to class methods, but there are practical ways of emulating the kind of access restrictions
that you enjoy in Java.

Class Name Scope
Class names are all public and exist in the same globally accessible name space. To avoid naming
conflicts, Objective-C developers have adopted a naming convention for classes that must coexist with
others. Classes in a logical group all begin with a common two-character abbreviation. In Apple’s
frameworks, all of the Core Image classes begin with CI (CIColor, CIFilterShape, CIVector, . . .). Classes
for QuickTime begin with QT (QTTrack, QTMovie, QTTimeValue, . . .).

■Note If you were wondering, the NS prefix found on Cocoa foundation classes stands for NextStep. NextStep is the
Objective-C operating system developed by NeXT Computer. When Apple purchaced NeXT in 1996, it adopted
NextStep as the core technology for the nascent Mac OS X. In a feat that George Orwell would admire, almost every
reference to NeXT and NextStep was redacted from the Mac OS X source code and documentation. But it was
virtually impossible to rename every class in the gargantuan framework, so the legacy NS prefix survives to this day.

Classes developed by third parties follow the same convention. The OmniGroup makes an
extensive set of application classes available to other developers. The OmniAppKit classes all begin with
OA (OAController, OAUtilities, OAScriptMenuItem, . . .). The OmniNetworking classes all begin with ON
(ONHost, ONPortAddress, . . .).

In your development, consider the scope of the classes you are creating. If the class will be used
only in your application development environment, don’t worry about a prefix. Give your classes simple
names like Student, BoardGame, Troll, and so on. If you are developing classes that are going to be used
by other programmers, even if only within your organization, choose a prefix that is likely to be unique
and name your classes accordingly. If your company is Widget Makers, you might name your classes
WMToy, WMAlarm, etc. You also don’t have to commit to this decision now. The Xcode IDE includes
refactoring tools that make renaming your classes relatively painless.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

42

Instance Variable Scope
Access to instance variables is controlled the same way it is in Java, conveniently using the same
terminology. Rather than specifying the scope of each variable individually, Objective-C adopts the C++
style of scope directives. The directives @public, @protected, and @private can appear before any
variable declaration in the instance variable block of an @interface directive. All variables declared after
a scope directive inherit the specified visibility. Listing 3-12 shows four instance variables with varying
degrees of visibility.

Listing 3-12. Instance Variable Scope

@interface Toy : NSObject {
 NSString *name;
 @public
 int starRating;
 @protected
 NSRange recommendedAge;
 int playCount;
 @private
 NSSet *toyBox;
}

@end

The variable starRating is public. It can be accessed by any code in any context.
The scope of the name, recommendedAge, and playCount variables is protected. Methods defined

in this class, or any subclass of this class, have direct access to these variables. Protected is the default
scope of instance variables. Variables defined before the first, or in the absence of any, scope directive
are protected.

The variable toyBox is private. It can only be accessed by methods defined in this class.
Keep in mind that Objective-C variable scope only discourages access to instance variables. If

you attempt to use a member variable in a context where you do not have access to it, the compiler will
complain. It is still possible to access those variables using introspection or by coercing pointers—
Objective-C has no “security” in the Java sense. Also, the variable names are not technically scoped
within a name space of the class the way they are in Java. The toyBox instance variable exists for all
subclasses of the Toy class. A subclass of Toy cannot declare its own instance variable named toyBox; the
compiler will issue a duplicate member error.

Method Scope
Methods are always public, in the Java sense. Objective-C places no runtime restrictions on who can
invoke an object’s method given a pointer to that object. Although there’s no explicit way to restrict a
method from being invoked, there are several techniques for hiding methods to discourage their use
outside the scope they were intended for.

The simplest technique is to include the method in the @implementation section but omit the
method prototype from the @interface directive. Other modules that #import the interface for that class
will not be aware of that method’s existence, and the compiler will complain if an attempt is made to
send that message.

This technique works because a method in the @implementation section implies its own
prototype. Once the method appears in the implementation, the compiler knows about the method and
will allow you to invoke it just as if it had been predefined in the class’s interface. This technique is

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

43

casual and simple. Its biggest disadvantage is that all undeclared methods must be defined before they
can be referenced. This can make source code organization awkward. In some cases of recursion, it
makes it impossible.

A similar technique can be applied to @property directives. Earlier, I cagily stated “a @property
directive typically appears in the @interface directive.” A @property directive can also appear in an
@implementation. It has the same meaning, but omitting it from the @interface also hides the definition
from other modules.

Objective-C categories and extensions are more formal patterns for subdividing the
declarations of a class, allowing you to compartmentalize the knowledge about a class. Those techniques
and how they can be used to emulate private and protected Java methods are explained in a later
chapter.

Finally, it’s sometimes useful to create a “helper” class—a class whose purpose is internal to the
implementation of another class. A helper class can be entirely declared and implemented in the
implementation file of the class that uses it. The helper’s interface and implementation are hidden from
other classes. If the class requires an instance variable that points to a helper object, use a @class
directive—described next—or the type id.

Forward @class Directive
The @class directive declares a class name without defining the class. It permits you to declare a
reference to a class without having compiled the @interface for that class. Following a @class directive,
you can refer to the class but you cannot compile any code that assumes knowledge about that class—
since the compiler has none. You can’t send messages to an object of that class, or access any of its
properties, until the actual @interface directive for that class is compiled.

As soon as you start declaring variables that are pointers to objects, you’ll discover that the
compiler requires that those classes be defined before it will allow you to use the class name in a
statement. The natural inclination is to just #import the needed class header files for every object you
reference in your @interface directive. For smaller projects, that’s fine.

For large projects, this becomes a burden on the compiler (translation: it will slow down your
development). Every class that uses class A will import its interface (#import "A.h"). If class A has
instance variables that point to objects of classes B, C, and D, it will import all of those header files. If
classes B, C, and D collectively contain references to classes E through N, their header files will import all
of those header files, and so on. As the complexity of your project grows, the effort needed to compile
each module grows geometrically.

The @class directive can be used to lighten this load considerably. An @interface directive
rarely needs to know anything about a referenced class other than it exists. A typical application of the
@class directive is shown in Listing 3-13.

Listing 3-13. Forward @class Directive

#import "Vehicle.h"
@class Engine;
@class MoonRoof;
@class Radio;

@interface Car : Vehicle {
 Engine *engine;
 MoonRoof *moonRoof;
 Radio *radio;
}

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

44

- (void)startEngine;
- (void)stopEngine;
- (void)tuneRadio;

@end

The Car class contains references to Engine, MoonRoof, and Radio objects. A module that

#imports this @interface can use the methods and properties of Car, but knows nothing about the other
objects. The @implementation of Car, which presumably will use the other objects, begins by importing
the full definition of those classes.

As a rule, I #import the header file for the superclass, the class of all public objects, and the class
of objects returned by methods (on the assumption that the caller will use the returned object). All
remaining classes in the @interface are declared using @class.

The @class directive also makes it possible to declare classes with circular references. In other
words, class A has a reference to class B which has a reference to class A.

self and super
An Objective-C method has access to two predefined variables for referring to itself: self (this) and
super (super). They work exactly like their Java counterparts, as shown in Listing 3-14.

Listing 3-14. Use of self and super

#import "Person.h"

@interface Voter : Person {
}
- (void)setAdult:(BOOL)isAdult;

@end

@implementation Voter

- (void)setAdult:(BOOL)isAdult
{
 if (isAdult && !self.isAdult)
 [VoterRegistration registerVoter:self];
 [super setAdult:isAdult];
}

@end

The self variable is always a pointer to the reciever (the object whose method was invoked).

The type of the self variable is a pointer to the class that implemented the method. It can be used to
address instance variables defined or inherited by that class (i.e., self->secondName), but not a subclass
variable (even if the actual class of the object is a subclass).

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

45

■Caution Java programmers may initially find this bizarre, but self is a modifiable automatic variable and can
be reassigned in the body of a method. I’ll explain later why you would want to do this. For now, just be careful not
to change it inadvertently.

The statement [self method] sends an object a message to itself. The equivalent Java statement
would be this.method() or just method(). The pseudo-variable super is identical to self, but its only
practical use is when sending messages. The statement [super method] invokes the method defined by
the object’s superclass and is equivalent to the Java statement super.method().

Class Methods
So far, only instance methods have been defined for classes. To review, an instance method is declared
with a minus sign (-) prefix. It defines a message that instances of that class will respond to.

 A method name that begins with a plus sign (+) defines a class method. As described in the isa
section, each class creates a single Class object at runtime that defines the identity and behavior for all
instances of that class. A class method defines a message that the single Class object will respond to. A
class method is (technically) not the equivalent of a static method in Java, although they tend to fill the
same role.

A class name, when used in an expression, evaluates to the singleton Class object for that class.
To invoke a class method, use the class name as the receiver, as shown in Listing 3-15. Using the class
name sends the message to that class’s Class object.

Listing 3-15. Class and Instance Method Invocation

@interface RandomSequence : NSObject {
 long long int seed;
}

+ (NSNumber *)number;
+ (NSString *)string;

- (NSNumber *)nextNumber;
- (NSString *)string;

@end

…

NSNumber *n = [RandomSequence number];
NSString *s = [RandomSequence string];

RandomSequence *r = …;
n = [r nextNumber];
s = [r string];

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

46

■Note By convention, class methods are defined first, followed by the instance methods.

The method +(NSNumber*)number defines a class method that returns an NSNumber object. The
statement [RandomSequence number] sends the message number to the single Class object that defines the
RandomSequence class.

A string method has been defined for both the Class object and instances of the class. The
statement [RandomSequence string] sends the string message to the Class object and executes the code
in +(NString*)string. The statement [r string] sends the string message to an instance of the
RandomSequence class and executes the code in -(NSString*)string. There is no ambiguity or name
conflict because -string and +string are implemented for different objects.

In the body of the +(NSNumber*)number method, the self variable refers to the Class object
(RandomSignature). This is where Java class methods and Objective-C class methods differ. In Java, a class
method has no object context (it has no this variable). In Objective-C, class messages are sent to the
Class object the same way messages are sent to regular objects. The statement [self string] in the body
of the +(NSNumber*)number method would invoke the class method +(NSString*)string, not the instance
method -(NSString*)string. The true equivalent of a static Java method is a C function.

This distinction is important for inheritance. Class objects inherit class methods the same way
instance methods are inherited. If class B is a subclass of class A, and class A defines a class method,
class B inherits that class method. Class B can also override the class method. Listing 3-16 illustrates this
relationship.

Listing 3-16. Class Method Inheritance

@interface Classy : NSObject

+ (void)greeting;
+ (NSString*)salutation;

@end

@implementation Classy

+ (void)greeting
{
 NSLog(@"%@, world!",[self salutation]);
}

+ (NSString*)salutation
{
 return (@"Greetings");
}

@end

@interface Classic : Classy

+ (NSString*)salutation;

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

47

@end

@implementation Classic

+ (NSString*)salutation
{
 return (@"Hello");
}

@end

…

[Classy greeting]; // Logs "Greetings, world!"
[Classic greeting]; // Logs "Hello, world!"

The statement [Classy greeting] sends the greeting message to the Classy Class object. That

method sends itself a salutation message and uses the return value to construct the log message
“Greetings, world!”

The statement [Classic greeting] sends the greeting message to the Classic Class object.
Classic does not define a class method +(void)greeting, but it inherits one from Classy. When
+(void)greeting executes in this context, the self variable refers to Classic, not Classy. Sending self the
salutation message invokes Classic’s overridden -(NSString*)salutation method, and the message
logged is “Hello, world!”

■Note If the statement in Listing 3-16 was NSLog(@"%@, world!",[Classy salutation]) instead of
NSLog(@"%@, world!",[self salutation]), the message would always be “Greetings, world!” That’s because
Classy is a constant that always refers to the single Classy Class object, while self refers to the Class object
receiving the greeting message.

Despite the subtle technical differences, class methods in Objective-C are used for many of the
same purposes that static methods in Java are. Methods that return a singleton object, factory methods,
object pools, and convenience utilities are common uses for class methods.

Constructing Objects
You might have expected me to explain the syntax for instantiating objects much earlier in this chapter,
instead of making you wade through instance variables, explanations about the self variable, and class
methods. The reason I didn’t is simple: there is no syntax for instantiating objects.

True to its minimalist philosopy, Objective-C lets the class designer decide how objects are
created and initialized. In the Cocoa framework, that’s through a combination of a factory class method
and some conventions for writing initializer (constructor) methods.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

48

■Note You will see this minimalist pattern repeated again and again. Java defines a specific syntax and enforces
pre-determined rules for how objects are created, serialized, copied, and so on. Objective-C, in contrast, provides
only the bare essentials and leaves the implementation decisions to the class designers. You can’t change how
objects are created in Java, but you can in Objective-C. You might not need to do it often, but you can do it with
great effect.

Creating an object is a two-step process. First, the memory for the object’s structure is
allocated. The instance is then initialized. Listing 3-17 shows a rewriting of the RandomSequence class
to include two initializers (constructors).

Listing 3-17. Object Initialization

Java
public class RandomSequence
{
 long seed;

 public RandomSequence()
 {
 seed = 1;
 }

 public RandomSequence(long startingSeed)
 {
 seed = startingSeed;
 }

}

…
RandomSequence r1 = new RandomSequence();
RandomSequence r2 = new RandomSequence(-43);

Objective-C
@interface RandomSequence : NSObject {
 long long seed;
}

- (id)init;
- (id)initWithSeed:(long long)startingSeed;

@end

@implementation RandomSequence

- (id)init
{
 self = [super init];

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

49

 if (self!=nil) {
 seed = 1; // default seed
 }
 return (self);
}

- (id)initWithSeed:(long long)startingSeed
{
 self = [super init];
 if (self!=nil) {
 seed = startingSeed;
 }
 return (self);
}

@end

…
RandomSequence *r1 = [[RandomSequence alloc] init];
RandomSequence *r2 = [[RandomSequence alloc] initWithSeed:-43];
RandomSequence *r3 = [RandomSequence new];

The [RandomSequence alloc] statement begins the process by sending an alloc message to the

RandomSequence Class object. The root NSObject class implements the +(id)alloc class method,
which is inherited by all subclasses. +(id)alloc uses the class reference to allocate the required memory
for the new object, sets its isa variable, fills all remaining instance variables with zeros, and returns the
pointer to the newly allocated object. At this point, the object exists and is an object of the requested
type. However, the object has not yet been initialized.

Next, the init message is sent to the newly created object. This is the message responsible for
initializing the object. Once init returns, the object is ready to use.

The three statements in Listing 3-17 that create the objects r1, r2, and r3, demonstrate the
common ways to create new objects. Variable r1 is assigned a new object, allocated and initialized
without any parameters, equivalent to the Java statement r1 = new RandomSequence().

The r2 variation calls an alternate initializer, passing additional parameters for use in
initializing the object. Like Java, you can create whatever additional initializers (constructors) your class
needs.

The shorthand form used to create object r3 is functionally identical to the one used to create
r1. The root NSObject class implements a +(id)new class method that first calls +(id)alloc and then
sends the newly created object the -(id)init method before returning. It’s only useful for creating an
object that can be constructed using its -(id)init method (i.e., no parameters), but it does save a little
code.

■Caution Object constructor customization is always accomplished by overriding or defining -(id)init…
methods for the class. Never override or attempt to intercept the +(id)alloc or +(id)new class methods.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

50

Writing an init Method
To write an Objective-C initializer (constructor), your method must fulfill a four-part contract:

1. The initializer must call its superclass initializer.

2. It must update its self variable.

3. It must check for a nil object.

4. It must return the pointer to itself.

The first two parts of the contract are satisfied by the statement self = [super init]. It should
be obvious that every initializer must call its superclass initializer before proceeding. In Java, this
convention is guaranteed by the language. In Objective-C, you’re responsible for calling it.

Updating self might seem bizarre to a Java programmer, but it’s key to something called class
clusters. Class clusters are explained in detail in Chapter 22. You might be tempted to leave the
assignment to self out. Don’t. The code is actually smaller and faster if you leave it in, and you won’t
violate the class cluster contract.

■Note The return value for init methods is traditionally id. Logically, init should always return a pointer to the
class or a subclass. However, declaring the return value as a class pointer type (i.e., -(BaseClass*)init) makes
it difficult for subclasses. The subclass must call [super init] and assign it to self. If [super init] returns a
BaseClass* type value, the subclass can’t assign it to self without a cast.

The third step is to check for nil. The superclass init method will return nil if, for any reason, it
can’t create the requested object. For example, nil is returned if the process runs out of free memory and
a new object can’t be allocated. A class can decide not to construct an object and return nil for any
reason. Program defensively; always assume an initializer could return nil.

If the returned object is valid, your initializer should then perform whatever initialization your
object requires.

Finally, the initializer must return itself, or nil, if the initialization failed, to the caller.
Study the -(id)init method in Listing 3-17. Memorize it. Every object initializer you will ever

write should look just like it. You will undoubtedly encounter subtle variations—many programmers
combine the first two statements into if ((self=[super init])!=nil)—but every well-written init
method satisfies the four-part contract for initializers.

Chaining Initializers
Java has special syntax for explicit constructor invocation, whereby a constructor can invoke a specific
superclass constructor with parameters (super(param)) or an alternate constructor (this(param)).
Naturally, Objective-C doesn’t have any special syntax for this, but the principle is the same.

The class RepeatableSequence, shown in Listing 3-18, is a subclass of RandomSequence, shown
in Listing 3-17. The init methods for RepeatableSequence build on the init methods in its superclass as
well as the other methods in RepeatableSequence.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

51

Listing 3-18. Chained Initializers

Java
public class RepeatableSequence extends RandomSequence
{
 private long restartSeed;

 public RepeatableSequence()
 {
 this(1);
 }

 public RepeatableSequence(long startingSeed)
 {
 super(startingSeed);
 restartSeed = seed;
 }

 void restartSequence()
 {
 seed = restartSeed;
 }
}

Objective-C
#import "RandomSequence.h"

@interface RepeatableSequence : RandomSequence {
 long long restartSeed;
}

- (id)init;
- (id)initWithSeed:(long long)startingSeed;

- (void)restartSequence;

@end

@implementation RepeatableSequence

- (id)init
{
 self = [self initWithSeed:1];
 return (self);
}

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

52

- (id)initWithSeed:(long long)startingSeed
{
 self = [super initWithSeed:startingSeed];
 if (self!=nil) {
 restartSeed = seed;
 }
 return (self);
}

- (void)restartSequence
{
 seed = restartSeed;
}

@end

The -(id)initWithSeed: method invokes its superclass’s -(id)initWithSeed: method, passing

the initialization parameter to the superclass. After the superclass initialization is finished, it completes
its initialization.

The -(id)init method hands off initialization to the -(id)initWithSeed: method. Note that the
message initWithSeed: is sent to itself, not to its superclass.

Designated Initializer
When subclassing a class, read the documentation (or comments) about that class. Some Objective-C
classes have one or more designated initializers. An init method for a subclass should only initialize the
superclass using one of its designated initializers.

The documentation for many classes includes an explicit “Subclassing Notes” section that
contains important information and caveats for subclass authors.

Convenience Constructors
A very common use of class methods is to provide convenience constructors, sometimes referred to as
factories. These are class methods that return a preconfigured object of the same class, ideally using less
code than needed to formally create and initialize a new object. Listing 3-19 shows a fragment of the
NSDictionary class provided by the Cocoa framework. All of the class methods return a new
NSDictionary object.

Listing 3-19. Class Convenience Constructors

@interface NSDictionary

+ (id)dictionary;
+ (id)dictionaryWithObject:(id)object forKey:(id)key;
+ (id)dictionaryWithDictionary:(NSDictionary *)dict;
+ (id)dictionaryWithObjects:(NSArray *)objects forKeys:(NSArray *)keys;

@end

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

53

The statement [NSDictionary dictionary] is equivalent to [[NSDictionary alloc] init], and
the statement [NSDictionary dictionaryObject:@"Mary" forKey:@"Name"] is equivalent to
[[NSDictionary alloc] initWithObject:@"Mary" forKey:@"Name"]. The principal advantage is brevity.

■Caution The statement [NSDictionary dictionary] is equivalent to [[NSDictionary alloc] init] only
when using garbage collection. In a traditional managed memory environment, these two are quite different. The
former returns an autoreleased object while the latter returns a retained object. See Chapter 9 (on garbage
collection) and Chapter 24 (on memory management) for a complete explanation.

Convenience constructors are often included to construct objects that would otherwise be
awkward to create. For example, the NSString class provides the
+(NSString*)pathWithComponents:(NSArray*)components convenience constructor. It takes an array of
path components, assembles them into an absolute POSIX path, and returns the result as a single
immutable string. Trying to accomplish this using alloc and class init methods would require creating a
mutable string buffer, appending all of the components in a loop, then converting the temporary string
buffer into an immutable string object. Clearly, the single statement [NSString
pathWithComponents:array] is significantly more compact.

Destructors
Like Java, Objective-C objects can optionally override their -(void)finalize method. This message is
sent to objects before being destroyed by the garbage collector. Every finalize method must send a
finalize message to its superclass immediately before returning.

An example -finalize method is shown in Listing 3-20. Note that finalize methods should be
used only for exceptional cleanup and to provide robustness. A well-written program would not rely on
the finalize method to close a file; it should have closed the file before allowing this object to become
collectable. The finalize code simply protects against the possibility of leaking the resource in unusual
circumstances, for example, if the file was left open following a program exception.

Listing 3-20. Well-Behaved finalize Method

- (void)finalize
{
 if (file!=nil) {
 [file close];
 file = nil;
 }

 [super finalize];
}

■Caution The finalize message is sent to objects only when running in a garbage collection environment.
Objective-C applications using managed memory (sans garbage collection) implement the -(void)dealloc
method instead. See Chapter 24 for more details.

CHAPTER 3 ■ WELCOME TO OBJECTIVE-C

54

What’s Missing?
Table 3-2 has a brief list of Java features that you won’t find in Objective-C.

Table 3-2. Missing Java Features

Feature Descr ipt i on

Inner/Anonymous
Classes

You cannot define a class within a class, or a class within a method. Inner and
anonymous classes are typically used as adaptors and for code encapsulation. In
Objective-C, these patterns are implemented using informal protocols and code
blocks (a recent addition to the C language that allows an executable block of
code to be passed as a variable).

Object Arrays Objective-C has no inherit concept of an object array. Arrays of objects can be
handled as a C array of object pointers or using the NSArray collection class.

final There is no final keyword in Objective-C. You cannot prevent a class or method
from being subclassed or overridden. When applied to variables, the keyword
const is largely synonymous with final.

abstract All classes and methods in Objective-C are concrete.

package There are no packages in Objective-C, so there is no package scope.

Java interfaces, thread synchronization, and exceptions have Objective-C counterparts that are

detailed in later chapters.
Many other features of Java, such as serialization, introspection, remote method invocation,

and copying, are not defined by the Objective-C language; as it does with constructors, the Cocoa
framework implements these features using classes and methods.

In the upcoming chapters, you’ll also discover many features and capabilities unique to
Objective-C.

C H A P T E R 4

■ ■ ■

55

Creating an Xcode Project

The last couple of chapters contained a lot of theory and abstract concepts to digest, and the next few
chapters contain even more. For me, there’s nothing more frustrating than trying to learn a complex
topic without any way of exploring each individual concept. To that end, I’ll take a brief respite from the
theoretical and indulge in the purely pragmatic task of creating a working Objective-C application in
Xcode, Apple’s free software development kit.

Having a working project that you can tinker with and test on is an invaluable learning
experience. As you work through the rest of this book, I encourage you to code small examples of the
concepts you are exploring. Add the code to a test project, and step through it using the debugger. A few
lines of code can answer a lot of questions.

If you haven’t installed Apple’s Xcode development tools, do so now. Xcode is available online
at http://developer.apple.com/. This tutorial assumes that you are using a Macintosh computer
running Mac OS X 10.5 or later and are installing Xcode 3. The term Xcode actually refers to two things:
Apple’s entire suite of development tools, and the Xcode IDE (Integrated Development Environment)
application. In this book, Xcode refers to the Xcode application and Xcode development tools refers to the
entire package of development applications, utilities, documentation, example code, and other support
material.

Download the Project
This project is a simple desktop application called Scrapbook Words. Give the application a set of letters
and it will tell you what words you can spell with them. The code is small (a couple hundred lines), but it
dabbles in a number of technologies. It uses collection and string objects, reads data from a file,
schedules tasks to run asynchronously in a background thread, communicates between threads using
queued messages, and employs controllers and binding to implement a Model-View-Controller design.
You can learn more about these specific technologies in the following chapters:

• String objects are examined in Chapter 8.

• Programmatic message sending is explained in Chapter 6.

• Collections are explored in Chapter 16.

• Chapter 20 discusses data model, view, and controller objects (the Model-View-Controller

pattern), as well as bindings.

• Threads are covered in Chapter 15.

Before you start, download the finished project files at www.apress.com in the Source
Code/Download area. This chapter will walk you through the steps that were used to create this project
from scratch, but it does not include every detail. The code excerpts in this chapter are used to illustrate

CHAPTER 4 ■ CREATING AN XCODE PROJECT

56

concepts, but aren’t necessary complete. Refer to the finished project for the whole implementation.
There are a number of ways of working through this chapter:

• Read the chapter to get a feel for Xcode development. Download the finished project and play

with it.

• Copy each step in this chapter in Xcode to re-create the project on your own, copying source

code from the finished project where needed.

• Use the steps here as the starting point for your own project.

In the following sections, you’re going to create a new Xcode project, configure the project,
design an application, create controller and data model objects to implement a Model-View-Controller
design, and finally add the business logic to produce a working app. Working through this process will
take you on a mini-tour of Xcode, Interface Builder, Objective-C, and the Cocoa frameworks. There are
few comparisons to Java in this chapter, since this is more about the development tools than the
language.

Creating a Project
Once installed, launch the Xcode application.

Start by creating a new project. Choose File New Project… to open the new project assistant
(Apple’s term for a wizard). A new project is always based on one of the many templates included. Each
template creates a complete project preconfigured for a particular purpose. It’s a great head start
towards your final goal, so choose the template that most closely describes your end product. Most
projects require a non-trivial amount of configuration before they will produce anything useful, so I
strongly discourage you from choosing the Empty Project template.

For this project, choose the Cocoa Application template as shown in Figure 4-1. Name the
project Scrapbook Words and select a location where the project and its files will be stored. Xcode will
create a folder with the name of your project. The folder will contain a similarly named project
document and whatever additional resource files are included in the template. This might be nothing for
some templates, or scores of items for others.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

57

Figure 4-1. Choosing a Project Template

The project window is where all of the project’s components are organized and managed. The
project window, shown in Figure 4-2, uses the default Xcode layout. You can choose to use an all-in-one
window or multiwindow layout in Xcode Preferences, should one of those better suit your tastes and
habits.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

58

Figure 4-2. Project Window

Most templates produce a project that can be immediately built and run, but does nothing
useful. The Cocoa application template is no exception. If you like, you can build and launch the
application right now (Build Build and Run).

The Group & Files pane of the project window is where you organize the project’s assets. You
can create an arbitrarily complex hierarchy of source items by creating new groups and sub-groups, and
rearranging items by dragging. You can create new files directly in the project or import existing files. By
default, the actual files are all stored in the root project folder. It’s possible to organize the physical files
into a hierarchy or have them reside outside the project folder, but for even moderately sized projects it’s
far less complicated if you confine your organizing to the project window.

Getting Started
Before getting started on the principal design, there’s some housekeeping to do. For the most Java-like
experience, you’ll want your application to use garbage collection. As of the writing of this book, garbage
collection is opt-in; a new Cocoa project will use legacy memory management unless reconfigured.

Choose Project Edit Project Settings from the menu. Switch to the Build tab, choose All
Configurations and All Settings, and then type garbage into the search field. You should see the build
setting for Objective-C Garbage Collection as shown in Figure 4-3. Click the value pop-up and change
the setting to Required. Build setting changes occur immediately.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

59

Figure 4-3. Garbage Collection Build Setting

Feel free to explore the other build settings while you’re here (clear the search field). Build
settings are organized into a three-dimensional matrix of values. The first two dimensions are formed by
a hierarchical tree of build settings: one set for the project, one set for each target, and a limited set for
each file. Each entity can define or override any build setting. Target build settings override those in the
project, and file settings override those in the target. Before establishing a build setting, decide if it
applies to the entire project, a specific target, or just one file. The third dimension is formed by build
configurations. Each configuration contains a completely independent set of build settings for each
entity in the project. The Cocoa application template comes with two build configurations: Debug and
Release. The Debug build configuration has settings that include debugging symbols and disable most
code optimizations, suitable for debugging and profiling. The Release build configuration strips symbol
information and turns on most code optimizations. You can create your own build configurations, but
do so sparingly as it multiplies the build settings you must maintain.

Designing the Application
Now let’s move on to the application design. This application will present a graphical user interface, so it
adapts the Model-View-Controller (MVC) design pattern. Our data model is simple–a string of letters
and a list of words that can be spelled–provided by a string and an NSArray object. The
ScrapWordsController class will be our main controller object. The view objects are all subclasses of
NSView, provided by the AppKit framework.

The application will present a window with four components, as shown in Figure 4-4. An input
field lets the user type the letters they have. An output view lists the words that can be spelled with those
letters. The interface is simple; you type letters, you see words.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

60

Figure 4-4. Scrapbook Words User Interface

To get the design started, create a ScrapWordsController class. This will be our primary
controller object. Click on the Classes group to select it. Either control+click (or right-click) on the group
and choose Add New File…, or choose File New File… from the main menu. In the New File
assistant, choose the Objective-C class template from the Cocoa group. Give it the name
ScrapWordsController.m and have it create a matching ScrapWordsController.h file. Click the Finish
button and the assistant will create the new files and add them to your project.

The ScrapWordsController object will need to do the following:

1. Get the letters the user types from the input text field.

2. Clear the output list whenever the user types something new.

3. Search a list of words for those that can be spelled using those letters.

4. Add each word found to the output list for the user to see.

Listing 4-1 shows the initial version of the ScrapWordsController.h file. The version of
ScrapWordsController.h in the finished project has one additional instance variable, which you can
ignore for now. It has a letters property that holds the string of letters entered by the user. The
NSMutableArray object will contain the list of words that can be spelled. The wordsController
variable will reference an NSArrayController object that does all of the work needed to bind the data
model to the view object that will display the list words–more about that later. Finally, methods are
defined to clear and add one word to the output display list, respectively.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

61

Listing 4-1. Initial Version of ScrapWordsController Interface

@interface ScrapWordsController : NSObject {
 NSString *letters;
 NSMutableArray *words;
 NSArrayController *wordsController;
}

@property (assign) NSString *letters;
@property (assign) IBOutlet NSArrayController *wordsController;

- (void)removeWords;
- (void)foundWord:(NSString*)word;

@end

Designing the User Interface
To get this to work, the application will need an interface window with an input text field and an output
list. The user interface will be developed using Interface Builder. Interface Builder is an interface design
tool that works closely with Xcode. Interface Builder edits NIB documents. A NIB document contains an
archived (serialized) object graph. You can create whatever objects you want in a NIB document. Objects
in the NIB are created, configured, and connected together using point-and-click design tools. When the
application runs and loads a NIB document, the objects are instantiated, their properties set, and inter-
object references are connected together. NIB documents are stored as resource files in the application’s
bundle.

 Note Historically, Xcode projects would include a binary .nib document that Interface Builder would edit directly.
Xcode 3 introduced the .xib document type, a more robust and flexible XML-based Interface Builder document. An
.xib document is a source document that is compiled into a binary .nib document when the application is built. I
refer to all Interface Builder documents generically as NIB documents because that’s the language used by Cocoa
developers and in the documentation, and they are what will ultimately be loaded by your application.

Double-click on the MainMenu.xib document in the project window; you’ll find it in the
Resources group. This will launch Interface Builder and open the project’s MainMenu NIB document.
Interface Builder presents the contents of the MainMenu NIB document in a window as a hierarchical
collection of objects, as shown in Figure 4-5. Top-level visual objects in the NIB, like the window and
menu bar, are also displayed separately. Content can be edited in either one.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

62

Figure 4-5. MainMenu NIB Document and Top-Level Visual Containers

Creating the user interface is as easy as dragging and dropping. Open the Library window (Tools
 Library). In the Objects tab, find the Input & Values group under Views & Cells. Drag two Labels and a

Text Field from the Library window into the application’s window, as shown in Figure 4-6. Arrange their
position. Locate the Data Views group and drag a Table View into the window. Resize and arrange the
objects and window until these objects are in the same position as those in Figure 4-4. Edit the labels by
double-clicking on them.

Figure 4-6. Adding View Objects to the Window

CHAPTER 4 ■ CREATING AN XCODE PROJECT

63

Properties of objects are edited using a variety of inspector palettes. Choose Tools Inspector,
then select the input text field. The palette presents the properties of the selected object (or objects).

To edit the properties of the Table View object, you must first select it. In the Main Menu
document window, dig through the nested hierarchy of view objects to select the Table View objects, as
shown in Figure 4-7. An alternate method is to click once on the view in the window. This selects the top
level Scroll View object. Clicking on the interior again drills down into the view and selects the Table
View object. Clicking again would select a column within the table, and so on.

Figure 4-7. Editing the Table View Attributes

Edit the properties of the Table View: set the number of columns to 1. Turn off headers,
reordering, and resizing. Turn off column selection.

The view objects should resize when the window does. Open the Size Inspector (Tools Size
Inspector). In that palette, edit the Autosizing settings for the input text field and the scroll view, as
shown in Figure 4-8. Decide which edges of the object are anchored to the window, then choose if the
horizontal or vertical size changes with the window. You’ll want the input field to be anchored top and
sides and resize horizontally, and the output list anchored on all sides and resize both horizontally and
vertically. The animation previews the effect of the settings.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

64

Figure 4-8. Editing a View Object’s Autoresize Attributes

Adding a Controller
The application will need to create an instance of the ScrapWordsController. It will be connected to
other objects in the NIB document, so the NIB document should instantiate the controller as well. From
the Library, select the Objects & Controllers group and drag a new Object object into the MainMenu.xib
document window, as shown in Figure 4-9. Select the newly created object and switch to the Identity
inspector (Tools Identity Inspector). Set its class to ScrapWordsController. You can type it in or choose
it from the pull-down menu; Interface Builder keeps track of the classes you’ve defined in your project.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

65

Figure 4-9. Adding a Custom Object to the NIB Document

When this NIB document is loaded at runtime, it will create an instance of
ScrapWordsController, just as if your application had executed the statement
[ScrapWordsController new]. This is an important concept to grasp. All of the objects in a NIB
document represent real objects that will be instantiated when the NIB is loaded. The result is identical
to creating new instances of those objects, setting all of their properties, adding them to their container
object (for nested objects), and setting references between them. But by using Interface Builder, you
save yourself from writing a ton of code.

Making a Binding
In an MVC design, data model objects broadcast changes to view objects whenever they change. View
objects update the data model object whenever the user alters the value. This requires connections and
communications between the view and data model objects. This application’s data model is a couple of
simple values (a string and an array) created by the controller object.

There are a variety of ways of connecting the data values to the view objects, but this
application is going to use a binding. Bindings are actually a collection of technologies that support the
MVC design pattern. A binding connects two objects so that a change in a property of one object is
automatically communicated to the other object. The second object can initiate changes that alter the
property of the first object. Typically, the first object is a data model object and the second object is a
view object. Once bound together, changes to one are automatically reflected in the other. This doesn’t
require you to write any code. You need only declare the property and bind it to an object.

In Interface Builder, choose the Text Field object (either in the MainMenu.xib or in the Window
itself). Bring up the Bindings Inspector (Tools Bindings Inspector). Expand the text field’s Value
binding. Bind it to the ScrapWordsController object using a key path of letters, set it to Continuously
Update Value, and uncheck the other options so they match the ones shown in Figure 4-10.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

66

Figure 4-10. Binding the Text Field to the letters Property of ScrapWordsController

This binding is complete. Any change to the controller’s letters property (i.e. [controller
setLetters:@"hello"], or controller.letters = @"hello") will be immediately reflected in
the text field view. Editing the text field will update the value of letters in the controller.

If that seems like a lot of magic for so little code, I’ll lift the curtain a little and give you a peek at
some of what’s going on behind the scene. The key thing to keep in mind is that Interface Builder isn’t
doing anything special. The technologies that allow bindings to work –Key-Value Coding, Key-Value
Observing, and controllers–are available to you directly. They can be used individually, or in concert, to
implement a wide spectrum of solutions, beyond just making MVC designs easy.

KVC
Key-Value Coding (KVC) allows an object’s properties to be accessed interpretatively. It uses a
combination of informal protocols (explained in Chapter 5) and introspection. As an example, assume
there’s a Key-Value Coding—compliant Person class that has three properties: a string name property,
and father and mother properties that reference two other Person objects. A person’s name could be
examined using the Key-Value path @"name". Their father’s name could be addressed with the path
@"father.name", and their maternal grandfather’s name could be accessed using the path
@"mother.father.name". KVC is discussed in more detail in the Introspection chapter.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

67

KVO
Key-Value Observing (KVO) is a notification service used to observe changes in an object. The property
to observe is specified using a KVC path. Once an object begins observing a property, any change to that
property sends a notification to the observer (listener). Unlike Java, this doesn’t require the source
object to manage a set of listeners or fire notification messages itself–although it can. All it has to do is
declare a property. The KVO framework does all the work of managing the list of observers, detecting
when the property changes, and sending the appropriate notifications. KVO is explained in Chapter 19.

Controllers
The Cocoa framework defines an NSController class that provide the “glue” between data model and
view objects. The Cocoa framework provides a number of useful controllers for arrays, dictionaries
(maps), trees, and user preferences. You can subclass NSController should you need to define your own.
There’s more about controllers in Chapter 20.

Bindings
The bindings framework leverages KVC, KVO, and controllers to create a unified MVC notification and
synchronization service. Bindings can be created in Interface Builder or programmatically using the -
[NSObject bind:toObject:withKeyPath:options:] method. Bindings are also covered in
Chapter 20.

Adding an Array Controller
The binding between the Table View and Array object is, naturally, a little more complicated. To
coordinate the display with the data requires two bindings: one binding connects a column in the table
view to an array controller. A second binding connects the array controller to the actual array of value
objects. The array controller sits between the view and data model objects and maintains state
information–like the sorting order and current user selection–that doesn’t belong in either the view or
the data model. This is often called the Mediated MVC design pattern, because the controller object sits
between the view and the data model and mediates their communications.

First, add an instance of NSArrayController by dragging a new Array Controller object from the
Library into the NIB document. You’ll find Array Controller in the Controllers group. Start by selecting
the first, and only, Table Column inside the Table View object. Bind its value to the Array Controller with
a controller key of arrangedObjects and a model key path of self. The self key-value path causes
the view object to display the value of each object in the collection, rather than a property of each object.
This is appropriate because the array contains simple string objects.

Now the array controller needs to be connected to its data model object. Select the newly
created Array Controller object in the MainMenu NIB document and set its Content Array binding to
ScrapWordsController with a model key path of words. The key-value path words tells the controller
that the words property of ScrapWordsController is the data source for the array.

Finally, the ScrapWordsController will need to interact with the array controller object
programmatically. To do that, it will need an object pointer (reference) to the instance of the array
controller created by the NIB document. This is established using an outlet and a connection. An outlet
is just an instance variable that points to another object. The IBOutlet type modifier, as shown in Listing
4-1, turns the object pointer property into a public outlet in Interface Builder. A connection creates a

CHAPTER 4 ■ CREATING AN XCODE PROJECT

68

relationship in the NIB so that the instance variable will point to its connected object when the NIB
document is loaded.

Object pointers decorated with the IBOutlet keyword automatically appear as outlets in
Interface Builder. The IBOutlet keyword can be placed before an instance variable or in a @property
directive. Select the ScrapWordsController in the MainMenu NIB document and switch to the
Connections Inspector. Interface Builder lists wordsController as an outlet of the object. To connect the
outlet to the array controller object–i.e., to set the instance variable to point to the address of the array
controller object at runtime–drag the outlet’s connector to the Array Controller object and release the
mouse button, as shown in Figure 4-11.

Figure 4-11. Connecting arrayController Outlet to the Array Controller Object

The application now has an interface and runs, but it does nothing useful. All of the views and
data model object work together, but since nothing happens when you type in the input field, the
experience is underwhelming. The application needs business logic.

Getting Down to Business
The application will read in and construct a dictionary of about 200,000 common words. Whenever
letters are typed in, it will search for the words that can be spelled using those letters. There are
numerous ways of solving this kind of problem, but this application opts for the simple approach: a
brute force search of all 200,000 words. This could be time consuming, so the search shouldn’t occur on
the main UI thread of the application. Otherwise, the application will appear to freeze whenever a new
letter is typed.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

69

The solution is to perform the search on a background thread. The search thread will send
messages to the main thread whenever it finds a word. This could be accomplished with threads and
semaphores, but it’s easier to let NSOperationQueue do the heavy lifting for us.

Back in the Xcode project, select the Classes group and add a new Objective-C class file named
WordFinder.m, along with its companion WordFinder.h header file. Make the WordFinder a subclass of
NSOperation, as shown in Listing 4-2.

Listing 4-2. WordFinder Interface

@class ScrapWordsController;

@interface WordFinder : NSOperation {
 ScrapWordsController *controller; // reference to controller
 NSArray *letterSet; // set of letters to search
}

+ (NSArray*)words;

- (id)initWithLetters:(NSString*)letters
 controller:(ScrapWordsController*)windowController;

- (void)main;

@end

When the user types in some letters, the view object will update the data model by sending a
setLetters: message to the controller. The implementation of setLetters:, shown in Listing 4-3,
creates a new WordFinder operation and queues it up to execute. When the WordFinder thread runs, it
sends removeWords and foundWord: messages back to the ScrapWordsController on the main thread.
All the main application thread has to do is start the operation, then sit idly and wait for the results to
come pouring in. The application’s interface never blocks and is never unresponsive. The removeWords
and foundWords: methods must modify the data model through the array controller object. The array
controller is responsible for keeping the data model, the view, and itself in synchronization.

Listing 4-3. ScrapWordsController Implementation

@implementation ScrapWordsController

@synthesize wordsController;

 - (id) init
{
 self = [super init];
 if (self != nil) {
 words = [NSMutableArray new];
 finderQueue = [NSOperationQueue new];
 }
 return self;
}

- (NSString*)letters
{
 return (letters);

CHAPTER 4 ■ CREATING AN XCODE PROJECT

70

}

- (void)setLetters:(NSString*)newLetters
{
 if (newLetters==nil)
 newLetters = @"";
 if (![letters isEqualToString:newLetters])
 {
 letters = newLetters;

 [finderQueue cancelAllOperations];
 WordFinder *finder = [[WordFinder alloc] initWithLetters:newLetters
 controller:self];
 [finderQueue addOperation:finder];
 }
}

- (void)removeWords
{
 NSRange all = NSMakeRange(0,[words count]);
 NSIndexSet *everyItemIndex = [NSIndexSet indexSetWithIndexesInRange:all];
 [wordsController removeObjectsAtArrangedObjectIndexes:everyItemIndex];
}

- (void)foundWord:(NSString*)word
{
 if ([words count]==0 || ![[words lastObject] isEqualTo:word])
 [wordsController addObject:word];
}

@end

A skeleton of the WordFinder implementation is shown in Listing 4-4. In brief, it contains a
class method to construct and return a singleton array of all possible words. This method is
synchronized in case it is invoked from multiple WordFinder threads. The main method is invoked to
perform the operation. It simply tests each word against the letters in the set. If successful, it sends a
message to the main thread using [controller
performSelectorOnMainThread:@selector(foundWord:) withObject:candidate
waitUntilDone:YES]. See Chapter 6 for more on sending messages to objects.

Listing 4-4. WordFinder Implementation Skeleton

static NSArray *DictionaryWords; // singleton copy of English word
list

@implementation WordFinder

+ (NSArray*)words
{
 @synchronized(self) {
 if (DictionaryWords==nil) {
 NSMutableArray *words = [NSMutableArray new];
 ...
 DictionaryWords = [NSArray arrayWithArray:words];
 }

CHAPTER 4 ■ CREATING AN XCODE PROJECT

71

 }

 return DictionaryWords;
}

- (void)main
{
 // Get the list of possible words
 NSArray* possibleWords = [WordFinder words];

 // First, signal to the controller that a new word search has started
 [controller performSelectorOnMainThread:@selector(removeWords)
 withObject:nil
 waitUntilDone:YES];

 // Brute force search of every word in the dictionary...
 for (NSString *candidate in possibleWords) {
 ...
 }
}

@end

The finished application is shown in Figure 4-12. When letters are typed, a search thread is
spawned that finds the possible words.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

72

Figure 4-12. Finished Scrapbook Words Application

Debugging Your Application
The debugger is an invaluable tool during development, and when learning a language it is also a great
sandbox. You can write code and watch it execute, examine results, and even change data. To play with
the Scrapbook Words application, make sure the build configuration is set to Debug. Do this in the Build
Results window (Build Build Results). To set a breakpoint, click in the line number margin to the left of
the code. Breakpoints are shown as blue tabs, as shown in Figure 4-13. Clicking a breakpoint again
disables it. Drag the breakpoint to relocate it, or out of the margin to discard it. Choose Run Debug to
start the application executing under the control of the debugger.

Figure 4-13. Stopped at a Breakpoint in the Xcode Debugger

Once stopped at a breakpoint, you can control execution of the application from any
source window, using menu commands, or the main Debugger window (Run Debugger) shown
in Figure 4-13. The debugger window also displays the stack and local variables.

CHAPTER 4 ■ CREATING AN XCODE PROJECT

73

Creating Sandbox Applications
When experimenting with code, a sandbox application can be very useful. Follow these steps to quickly
create a simple Cocoa application that can be used to exercise code, or even as the foundation for a full-
fledged application:

1. Create a new project using the Cocoa Application template.
2. Turn on garbage collection in the build settings.
3. Add a new class to the project. This is your test class.
4. Add an action to the class. An action is a method that takes a single object identifier as its sole

parameter and returns an IBAction, as in - (IBAction)doSomething:(id)sender. IBAction
is synonymous with void, so the action doesn’t actually return anything. The sender parameter
will be the object that sent the action (the button or menu item defined in step 8). It’s often
ignored.

5. Add your test code to the action method.
6. Open the MainMenu NIB document.
7. Create an instance of your test class in the NIB document.
8. Add a button to the window or a new menu item to a menu.
9. Select the button or menu item and connect its Sent Action to the action method defined in

step 4. Do this by dragging the Sent Action connector to your test object, releasing the mouse
button, and then choosing the action.

You now have an application that lets you exercise your code when you click the button or
choose the test command from the menu. If you need editable parameters, add input text fields,
checkboxes, sliders, or even date picker view objects to the window and bind those to IBOutlet
properties in your test class. Objective-C bindings perform obvious type conversions automatically. That
is, if you bind a text field to an integer property value, the text in the field will be translated into an
integer.

Add more test methods, buttons, or menu commands as your needs grow.
An even simpler environment can be created using a Foundation command-line tool:

1. Create a new project using the Foundation Tool template.

2. Turn on garbage collection in the build settings.

3. Add your test code to the main() function.

Foundation tools do not have any graphical user interface and are not linked to the AppKit
framework. Thus, they have no access to classes that deal with graphics or the user’s login environment.
The application’s main() function will execute immediately upon running the application.

Summary
By now you should have a feel for how applications are developed using Xcode, and the skill to create
your own applications. The basic steps and tools are pretty much the same for almost any project, be it a
browser plug-in or an iPhone application. I will warn you that this chapter merely scratched the surface
of Xcode. Xcode itself is both broad and deep–entire books have been written about it. Consider this
introduction as more of a stroll down the Champs-Élysées than an exhaustive tour of Paris.

Now that you have some grounding in practical development, the next few chapters will delve
deeper into specific Objective-C technologies.

C H A P T E R 5

■ ■ ■

75

Explor ing Protocols and
Categor ies

Objective-C provides two additional schemes for defining methods: protocols and categories. This
chapter will describe both, explain how they differ, show how they are used, and present some design
patterns that incorporate them.

Objective-C protocols are equivalent to Java interfaces. Protocols are employed just as
interfaces are in Java, although less frequently. Objective-C programmers are more likely to use a relaxed
form called an informal protocol.

Objective-C categories add methods to a class, independent of its primary class declaration
(@interface). The concept of a category may seem very foreign to a Java developer, but it’s really quite
simple. Categories are used to isolate or hide portions of a class’s implementation, break complex
classes into manageable pieces, and attach functionality to a class that would normally be outside its
domain.

Protocols
A protocol (interface) is defined using a @protocol directive, as shown in Listing 5-1. The directive lists
the methods required by the protocol. Like a Java interface, a protocol doesn’t contain any instance
variables—only methods.

Listing 5-1. Game Protocols

@interface VenusAttacks : Game
...
@end

@class Thing;

@protocol Living

- (float)age;
- (float)health;
- (NSDictionary*)healthInfo;

@end

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

76

@protocol Communicating

- (NSArray*)recipientsInRange;
- (void)sendMessage:(NSString*)messsage to:(id<Communicating>)recipient;

@end

@protocol Storing

- (NSDictionary*)inventory;
- (BOOL)giveItem:(Thing*)item to:(id<Storing>)recipient;
- (BOOL)acceptItem:(Thing*)item from:(id<Storing>)recipient;

@end

@interface Thing : NSObject
...
@end

@interface Weapon : Thing
...
@end

@interface Radio : Thing <Communicating>
...
@end

@interface StorageLocker : Thing <Storing>
...
@end

@interface Character : Thing <Living,Communicating>
...
@end

@interface Earthling : Character <Storing>
...
@end

@interface Venusian : Character
...
@end

The code in Listing 5-1 defines three protocols for objects in the VenusAttacks adventure game.

The protocols (interfaces) are Living, Communicating, and Storing. A class declares the protocols that it
implements between angle brackets following the name of its superclass. The StorageLocker class
implements all of the methods defined by the Storing protocol. The Character class implements all of
the methods defined by both the Living and Communicating protocols.

In Objective-C parlance, StorageLocker conforms to the Storing protocol.
When a class conforms to a protocol, it is required to implement all of the methods defined by

that protocol. Failing to implement a method defined in a protocol is a compile-time error. Conforming
to a protocol implies the prototypes for the methods in that protocol. Thus, it is not necessary for the

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

77

StorageLocker class @interface to explicitly declare that it implements the -(NSDictionary*)inventory
method; that is already implied by <Storing>.

Like Java Interfaces, protocols are inherited by subclasses and are additive. The Earthling class
conforms to the Storing, Living, and Communicating protocols. Venusian objects conform to the Living
and Communicating protocols, but not the Storing protocol—Venusians have no pockets.

Protocol names can be combined with a class name in a type expression. The declaration
Weapon<Communicating> *weapon = nil defines a pointer to a Weapon class object that is assumed to
implement the Communicating protocol. The compiler will allow messages from both Weapon and
Communicating to be sent to that object.

■Caution Unlike Java, Objective-C does not test objects for class or protocol membership during assignment. If
you assigned a weapon object pointer to the Weapon<Communicating> *weapon variable, and that object does not
conform to the Communicating protocol, that fact will not be discovered until the object is sent a
sendMessage:to: message (throwing an unrecognized selector exception).

In Java you can use an interface name as if it were a class type. When you want to declare or cast
an object to mean “a reference to any class of object that implements said protocol” in Objective-C,
combine the protocol name with the id type, as in id<Storing>. When id is used in this form, it loses its
normal permissiveness. A variable of this type is assumed to only accept messages defined by that protocol.

Protocols can extend and combine other protocols. Listing 5-2 defines the FTLCommunicating
protocol, which itself conforms to the Communicating protocol. Any class that conforms to FTLCommunicating
must implement all of the methods defined by FTLCommunicating and Communicating. A subprotocol doesn’t
have to declare any new methods; it can be used simply to aggregate multiple protocols.

Listing 5-2. Subprotocol

@protocol FTLCommunicating <Communicating>

- (id)receiveMessageBeforeBeingSent;

@end

Each protocol definition is typically saved in its own header (.h) file, which is then imported

(#import "Living.h") by classes that conform to or reference it.

Informal Protocol
An informal protocol is a set of methods that a programmer expects an object to implement. The set of
methods is not declared in any formal way, which is why Objective-C protocols are sometimes referred
to as formal protocols, to distinguish them from informal protocols. Informal protocols are little more
than a programming convention—hopefully, one documented by the programmer.

Informal protocols are attractive in Objective-C for two reasons. As previously mentioned,
Objective-C does not verify the class of an object when an assignment is made. Whether an object does,
or does not, implement a protocol or method is ignored until a message is actually sent to the object.
This makes it easy to define an object reference that assumes an object implements a set of methods, but
makes no assurances that it actually does.

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

78

Programmatically determining if an object implements a method is also trivial. Combining
these two features, you can effortlessly pass around an object of indeterminate aptitude, assessing the
capabilities of the object when the need arises.

To illustrate the contrast between a formal protocol (interface) and an informal protocol,
consider the task of intercepting a request to close a window. The javax.swing.JWindow class has an
addWindowStateListener(WindowStateListener l) method. To register itself as a listener, an object
must implement to the WindowStateListener interface in order to pass itself as the parameter in the
addWindowStateListener() call. Once registered, the object then receives event callbacks and watches for
WINDOW_CLOSING events.

The Cocoa framework takes a much more casual approach to the same problem. An object that
wants to intercept the closing of a window sets itself as the window’s delegate object. Before a window is
closed, NSWindow examines the delegate object to determine if it implements the
-(BOOL)windowShouldClose:(id)window method. If it does, it sends the windowShouldClose: message to
the object and examines the results. If not, it ignores the delegate and proceeds to close the window.

The -windowShouldClose: method defines an informal protocol: either the object implements
-windowShouldClose: or it doesn’t. A hypothetical implementation of the window closing logic is shown
in Listing 5-3.

Listing 5-3. Testing for an Informal Protocol

BOOL shouldClose = YES;
if ([delegate respondsToSelector:@selector(windowShouldClose:)])
 shouldClose = [delegate windowShouldClose:self]; // ask delegate for permission
if (!shouldClose)
 return;

This programming style has elements of aspect-oriented programming, where common

capabilities (“aspects”) are scattered across heterogeneous classes. This design pattern is repeated for
other window related activities. The window delegate can intervene in the resizing of a window, but only
if it implements the -windowWillResize:toSize: method. A delegate is given the opportunity to prepare
for a modal dialog sheet, but only if it implements the -window:willPositionSheet:usingRect: method.

Testing an object for class membership, protocol conformance, and method implementation is
covered in more detail in Chapter 10.

Combining Formal and Informal Protocols
Starting with Objective-C 2.0, formal and informal protocols can be combined. An example
TableDataSource protocol is shown in Listing 5-4. The protocol defines a set of methods that a data
model object should implement in order to provide data to a hypothetical Table object.

Listing 5-4. TableDataSource Protocol

@protocol TableDataSource
@required
- (int)numberOfRowsInTable:(Table*)table;
- (id)table:(Table*)table objectForColumn:(int)col row:(int)row;
@optional
- (void)table:(Table*)table setObject:(id)object forColumn:(int)col row:(int)row;
@end

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

79

This protocol has two required methods (the number of rows in the data set, and a method to
obtain the object for a specific cell) and one optional method (for setting the value of a specific cell). The
Table class uses the first two methods to obtain values in the data set, and the third to alter data in the
set. If the data source object doesn’t implement the final method, Table treats the data set as immutable.

A class that conforms to this protocol must implement all the methods declared after @required,
but may choose to implement any or none of the @optional methods. Methods declared before, or in the
absence of, either directive are @required by default.

Testing an object to determine if it conforms to the TableDataSource protocol would tell you
that the object implements all the @required methods, but not necessarily any of the @optional methods.
Those would have to be tested singly.

An important reason for declaring optional methods—besides documenting them—is for the
benefit of the compiler. The Objective-C compiler assembles method invocations most reliably when the
method has been prototyped. This is explained in more detail in Chapter 6. The TableDataSource
protocol provides prototypes for all of the methods, even those that are never implemented.

■ NNote Prior to Objective-C 2.0, it was common to declare a formal protocol that was never formally adopted by
any class, just for the purpose of providing the compiler with method prototypes. Prototypes for informal protocol
methods can also be declared using categories, described later in this chapter.

Whether you choose to use formal protocols, informal protocols, or some combination of the
two depends on your needs. Formal protocols ensure that all of the methods in the protocol are
implemented and conformance can be verified with a single test. Informal protocols are more flexible
and dynamic, but may require additional documentation and programmer cooperation.

Categories
A category is a named fragment of a class definition. In Java, a class is defined in a single monolithic
statement. In Objective-C, parts of a class definition can be split off into groups of auxiliary methods.
Each group is a category. Categories have a variety of applications.

A category is defined just like a class, using @interface and @implementation directives, except
that the category is identified using an existing class name followed by the category name in
parentheses. Like protocols (interfaces), categories cannot add new instance variables to a class—just
methods. Categories can define both instance and class methods.

The code in Listing 5-5 is the controller for a recipe management application. The
RecipeBoxController object handles the top-level application commands, like creating new recipe and
shopping list documents.

Listing 5-5. Monolithic Recipe Box Controller

@interface RecipeBoxController : NSObject {
 NSMutableArray* recipes;
 NSMutableDictionary* recipeIndex;
}

- (id)init;

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

80

- (Document*)newRecipe;
- (Document*)newShoppingList;
- (Document*)newShoppingListFromRecipes:(NSIndexSet*)recipeIndexes;

@end

@implementation RecipeBoxController

…

@end

As the program grows in complexity, it becomes cumbersome to maintain all of the controller

methods in a single class definition. Categories are used to subdivide the class definition into
manageable modules, as shown in Listing 5-6.

Listing 5-6. Recipe Box Categories

@interface RecipeBoxController : NSObject {
 NSMutableArray* recipes;
 NSMutableDictionary* recipeIndex;
}

- (id)init;

- (Document*)newRecipe;

@end

@implementation RecipeBoxController

…

@end

@interface RecipeBoxController (ShoppingLists)

- (Document*)newShoppingList;
- (Document*)newShoppingListFromRecipes:(NSIndexSet*)recipeIndexes;

@end

@implementation RecipeBoxController (ShoppingLists)

…

@end

After the reorganization, the new recipe document method is still implemented in the primary

RecipeBoxController class. All of the methods that create shopping list documents have been
sequestered into the ShoppingLists category, which can be compiled as a separate module. Methods
defined in the ShippingLists category are first-class citizens of the RecipeBoxController class. They have

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

81

the same scope and variable access as methods defined in the principal RecipeBoxController class. At
runtime, the class in Listing 5-5 functions identically to the class and category in Listing 5-6.

Using Categories for Organization
Subdividing a large class into manageable pieces is one use for categories. It is also useful for encapsulating
the knowledge or dependencies required by a functional subsection of a class. In the recipe application
example, the ShoppingLists category implementation would undoubtedly need to import class definitions
for shopping lists, ingredient lists, a grocery store editor, and so on. The implementation of the primary
RecipeBoxController class does not need to know anything about those classes.

Categories allow related methods of a class to be organized into their own module, without
requiring any additional classes or complexity. This reduces dependencies and keeps your application
design modular. This is particularly useful in collaborative development environments where one
programmer might be working on new recipe functionality while another is working on new shopping
list features. Both programmers can make changes to the same class while remaining independent of
one another.

The Builder pattern is another application for categories. The Builder pattern moves complex
object construction outside the class. In Java, the Builder pattern would normally be implemented as a
separate class (sometimes called a helper class). In Objective-C, the complex construction code can be
isolated from the main class definition via a category.

Hiding Methods
A popular use of categories is to hide portions of a class’s interface, typically to discourage the use of
methods designed for internal consumption. In Java, methods can be scoped as private or protected,
making them inaccessible outside the class. In Objective-C, you can “hide” a set of methods in a
category. Listing 5-7 shows how the internal methods of the Toaster class are isolated in the Private
category.

Listing 5-7. Methods in a Private Category

@interface ToasterController : NSObject {
 @private
 float darkness;
}

- (void)setDarkness:(float)level;
- (void)startToasting;
- (void)stopToasting;

@end

@interface ToasterController (Private)

- (float)darkness;
- (CarrierState)carrierPosition;
- (NSTimeInterval)cycleTime;
- (void)setCycleTime:(NSTimeInterval)cycleTime;
- (void)finishedToasting:(NSTimer*)timer;

@end

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

82

To make this effective, the declaration of the ToasterController (Private) category is saved in

its own header (.h) file. Modules that use the ToasterController class import only the
ToasterController.h file, which does not include any of the Private category methods. In the absence of
the Private category declaration, the compiler—and by extension the programmer—remains blissfully
ignorant of the internal control methods.

■ NNote By convention, a category is saved in a header file named after the class “+” the name of the category. In
the example in Listing 5-7, the ToasterController (Private) category would be saved in the
ToasterController+Private.h file.

This could also be done with just two source files. The ToasterController.h file would contain
only the primary @interface ToasterController declaration. The implementation (.m) file would begin
by importing its header. It would then declare the @interface for the Private category, followed by
@implementation directives for both the ToasterController class and its Private category methods. No
other module would have knowledge of these internal methods.

This is such a common use of categories that Objective-C 2.0 has added the concept of
extensions, described later in this section, which formalizes this technique.

Augmenting Foreign Classes
A feature that will seem almost bizarre to Java developers is that categories can attach methods to any
class. This permits a class to be extended without subclassing it or altering its original class definition.
More importantly, subclasses of the class inherit the category methods.

The NSArray class in the Cocoa framework defines an -(id)lastObject convenience method,
approximately equivalent to the statement [array objectAtIndex:[array count]-1]. For symmetry, I
wish the NSArray class designers had also included a -(id)firstObject method too. Objective-C grants
my wish in Listing 5-8.

Listing 5-8. NSArray Category

@interface NSArray (MyCollectionAdditions)

- (id)firstObject;

@end

@implementation NSArray (MyCollectionAdditions)

- (id)firstObject
{
 return ([self objectAtIndex:0]);
}

@end

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

83

MyCollectionAdditions dynamically alters the behavior of the operating system’s NSArray class
by inserting a new method. My application can now send the -firstObject message to any NSArray
object in my process.

■Caution When a category and class both implement the same method, the category’s method replaces the one
in the class. It does not override it; there is no way to invoke the original method. A call to [super method] in the
category’s code will invoke the superclass’s method, not the class’s original method. If two or more categories
implement the same method for the same class, which gets invoked at runtime is unpredictable.

Besides being able to decorate classes with convenience features, categories are very useful for
adding functionality to classes that are outside of their domain. Returning to the example in this book’s
introduction, the AppKit framework defines the NSStringDrawing category that extends the base
NSString class with the additional methods shown in Listing 5-9.

Listing 5-9. NSStringDrawing Category

@interface NSString(NSStringDrawing)

- (NSSize)sizeWithAttributes:(NSDictionary *)attrs;
- (void)drawAtPoint:(NSPoint)point withAttributes:(NSDictionary *)attrs;
- (void)drawInRect:(NSRect)rect withAttributes:(NSDictionary *)attrs;

@end

All NSString objects inherit these methods. This allows you to write the much more natural and

concise [string draw], rather than being forced to write [currentDrawingContext drawString:string].

■Note Categories underscore the fact that Objective-C classes are assembled dynamically at runtime. A GUI
application that loads the AppKit framework (containing the NSStringDrawing category), injects these additional
drawing methods into the base NSString class. An Objective-C command-line utility linked only to the Foundation
framework (which contains no graphic drawing classes) does not load the AppKit framework and will not have
these methods implemented for its NSString objects.

Categories allow you to implement methods where they are convenient and make sense,
without sacrificing good programming practices like encapsulation and modularity.

As you explore various frameworks, you will discover many categories that expand classes with
useful methods that would be totally inappropriate to implement in those classes. The
NSStringPathExtensions category adds a slew of file system path manipulations to NSString objects.
Similarly, the NSURLUtilities category adds URL character-encoding methods to NSString.
NSPasteboardSupport adds clipboard copy and paste methods to the NSURL class, and so on.

The important thing to remember is that methods in Objective-C classes are not confined to the
domain of the class. When looking for methods in the documentation, don’t confine your search to the
classes within the domain of responsibility. NSGraphicsContext doesn’t implement any drawing

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

84

methods. The objects that get drawn (NSString, NSImage, NSAttributedString, etc.) each have their own
-draw method, some courtesy of categories supplied by NSGraphicsContext.

As you write your own code, strive to break out of the strict Java model of method organization.
In Java, a method that encodes a game character’s name would naturally be a method in the Character
class—because that’s the class with the knowledge required to encode a character’s name. In
Objective-C, consider writing a category that adds your own -(id)encodedCharacterName method to the
core NSString class.

■Caution Take extra care and consideration when adding a category to the root NSObject class. It may cause
unanticipated, and potentially hazardous, side effects. Every Class object (the quasi-object that defines a class at
runtime) is also a subclass of NSObject, so any NSObject method becomes both an instance method and a class
method. This means that the self variable might refer to an instance object or a Class object, depending on the
context. Also, an NSObject method cannot send messages to super.

Extensions
Objective-C 2.0 introduces the concept of an extension. An extension is, essentially, an anonymous
category. An extension is used to subdivide a class’s @interface, but not its @implementation. It is
particularly useful for excluding method prototypes from a class’s public interface, as described earlier
in the “Hiding Methods” section.

The @interface directive of an extension is identical to a category, except that the category
name is empty. An extension does not have a separate @implementation. Methods declared in extensions
must be implemented in the class’s @implementation, along with the rest of the regular class methods
(see Listing 5-10).

Listing 5-10. Extension

@interface CaseDocument : NSObject {
 @private
 CaseNumber caseNumber;
}

- (CaseNumber)caseNumber;

@end

@interface CaseDocument ()

- (void)setCaseNumber:(CaseNumber)number;

@end

@implementation CaseDocument

- (CaseNumber)caseNumber { return (caseNumber); }
- (void)setCaseNumber:(CaseNumber)number { caseNumber = number; }

@end

CHAPTER 5 ■ EXPLORING PROTOCOLS AND CATEGORIES

85

It is assumed that the first @interface directive in Listing 5-10 is stored in the CaseDocument.h
file, and is imported by other modules that use the CaseDocument class. The @interface for the extension
could be in its own header file or part of the CaseDocument implementation file. Either way, the
methods in the extension are not publicly known, making the caseNumber property appear immutable to
other modules, but mutable within the implementation of the class. When compiling the extension
declaration, also compile the original class declaration. The compiler works best when it can relate the
extension to the class.

Remember that category and extensions only hide the declaration of methods from the
compiler and programmer. At runtime, all of these methods exist and can be discovered using
introspection. In the CaseDocument example in Listing 5-10, the caseNumber property will appear to be
mutable to technologies like Key Value Observing. Those technologies dynamically examine the object
at runtime to determine if it implements a matched pair of getter and setting methods for the caseNumber
property—which CaseDocument does. To make caseNumber appear read-only to introspection, the
internal setCaseNumber: method should be renamed to something like
-(void)assignToCase:(CaseNumber)number. This breaks the naming contract for the property, leaving
caseNumber with a getter but no setter.

Summary
As you can see, Objective-C protocols and categories are more flexible and dynamic than Java interfaces.
They can declare optional methods, subdivide a class’s implementation into multiple modules, and
augment other classes with new functionality.

Classes, protocols, and categories exhaust the techniques for declaring methods. The next
chapter explains the various ways of invoking them.

C H A P T E R 6

■ ■ ■

87

Sending Messages

Sending messages (calling methods) is fundamental to programming. You already know the basics of
Objective-C messages. This chapter delves into the mechanics of how messages are sent, describes three
different techniques for invoking methods programmatically, and explains how to write methods that
accept a variable number of arguments. It isn’t absolutely necessary to understand these topics in detail,
but expanding your knowledge makes technologies like notifications, actions, remote invocation, and
Key-Value Observing a little more comprehensible.

As briefly explained in Chapter 3, methods in Objective-C are not called in the Java sense.
Messages are sent to objects via a dynamic dispatching function. Sending a message to an object
involves (approximately) these steps:

1. The message parameters are assembled and copied onto the stack.

2. A pointer to the receiver and the message selector constant are copied onto the stack.

3. The message dispatch function is called. In Apple’s implementation of Objective-C the function
called is typically objc_msgSend(), but in general, it’s best to ignore the implementation details of
the runtime system.

4. If the receiver value is nil, the dispatching function returns immediately.

5. The message dispatch function uses the receiving object’s pointer to obtain its isa instance
variable. This variable points to the object’s Class object, which contains the dispatch table for
the class.

6. The selector is used to look up the address of the method’s code in the dispatch table.

7. The CPU’s program counter is loaded with the address and the method’s code begins executing.

8. Execution proceeds until the method ends, and program control returns to the code that
originally sent the message.

■Note Message dispatching might seem like a convoluted and inefficient procedure, but it is highly optimized.
Selectors are constants and the method dispatch tables are cached. In most cases, sending a message takes only
a few nanoseconds on modern systems. For performance-sensitive applications, even that can be eliminated (see
“Calling Methods Directly” at the end of this chapter). In general, don’t be overly concerned about message
performance.

CHAPTER 6 ■ SENDING MESSAGES

88

A class method receives all of the message parameters as automatic variables, including the
receiver and the selector. The self variable contains the pointer to the receiver and the _cmd variable
contains the message selector. The _cmd variable is usually uninteresting because it is always the selector
for the method.

Compiling Messages
The Objective-C compiler translates each method invocation into the machine instructions that will
send the message. In order to emit the correct machine instructions, the compiler must know the size
and type of each parameter and the type of the return value.

Java goes to some lengths to ensure that the compiler knows exactly how to construct each
method call. Java always has the details of each class, the class of an object reference is always known,
and Java method signatures ensure that there is never any ambiguity about the parameter types a
method expects. As you might imagine, Objective-C is considerably more lax. This occasionally leads to
circumstances where the exact meaning of a method invocation is ambiguous. I’ll explain why this can
happen and what you can do to rectify it.

Keep in mind that these are exceptional cases. The vast majority of the time, the compiler
knows exactly what to do. If the receiver’s variable type is a pointer to a specific class and the method
prototypes for that class have been compiled, the compiler has all of the information it needs.

However, if the compiler has not compiled a prototype for the method, or the class of the
receiver is vague (i.e., id), the compiler must either guess the types of the parameters or arbitrarily
choose a method prototype from those it knows about.

Undeclared Methods
The first case arises when a method prototype has never been compiled, either by omitting the class
definition or when a class definition is incomplete—the method might be declared in a category of that
class or not declared at all. When this occurs, as shown in Listing 6-1, the compiler infers the parameter
types from the invocation. In other words, the compiler guesses.

Listing 6-1. Undeclared Method Invocation

@class ToasterController;
ToasterController *toaster;
…
[toaster setDarkness:1];
warning: no '-setDarkness:' method found
warning: (Messages without a matching method signature will be assumed

warning: to return 'id' and accept '...' as arguments.)

The code in Listing 6-1 results in a “no method found” compiler warning. The compiler has no

knowledge of a method named -setDarkness:. Without any information, it assumes that the parameters
of the message are the same types as those in the invocation, and that the method returns an object
identifier (object pointer of type id). Assuming that the ToasterController class is the one from the
previous chapter, the compiler will generate erroneous code. That’s because the parameter in the
invocation is an integer, but the actual -setDarkness: method expects a float. Integer and floating-point
values are not interchangeable, so the -setDarkness: method will receive a garbage value instead.

The solution to this problem is simple: include the method declaration. The module that
includes this code should have used an #import directive, as shown in Listing 6-2. Now the compiler has

CHAPTER 6 ■ SENDING MESSAGES

89

the method prototype for the class. It knows that the -setDarkness: method takes a float parameter and
the compiler correctly promotes the integer constant to a floating-point value before sending the
message.

Listing 6-2. Declared Method Invocation

#import "ToasterController.h"
ToasterController *toaster;
…
[toaster setDarkness:1];

As a rule, never ignore “no method found” compiler warnings. Always import or declare the

classes and methods you employ. There’s rarely any good reason why you can’t include the needed
declarations, and it ensures correctly compiled code.

Ambiguous Methods
A subtler problem occurs when the type of the receiver is unknown (type id) or incomplete (defined only
by a @class directive), but the compiler has seen at least one method prototype matching its identifier.
In these cases, the compiler confidently assumes that the receiver implements the method you
invoked—you’re the programmer; you must know you’re doing, right? It searches through all known
method prototypes and compiles the message using the first method identifier matching the statement.

In most cases this works fine. Statistically, method identifiers tend to be unique or functionally
identical. In the entirety of the Cocoa framework (which is quite large), there is only one -setLocation:
method. There are six different -setTag: methods implemented by varying classes, but they all have the
same prototype (-(void)setTag:(int)tag). So it doesn’t matter which prototype the compiler chooses to
use; the compiled code will be correct.

The problem occurs in the rare case where there are two or more methods with identical
identifiers but with different parameter or return types (see Listing 6-3). One such case is the -options
message. There are six -options methods defined in the Cocoa framework. Two return pointers to
dictionaries, three return integers, and one returns a custom enum value.

Listing 6-3. Ambiguous Method Invocation

id mystery;
…
NSDictionary *options = [mystery options];
warning: initialization makes pointer from integer without a cast

Listing 6-3 sends the -options message to the mystery object. Without any class information,

Objective-C uses the first prototype for -options that it finds. The warning occurs because, again, the
compiler has guessed wrong. It used a prototype for -options that returns an integer instead of a pointer
to a dictionary object. It is the implied promotion of an integer to a pointer that generates the warning.

To resolve the ambiguity, cast the receiver. Casting the mystery variable in Listing 6-4 tells the
compiler to assume that the receiver is an NSTextTab object. The compiler restricts itself to using
method prototypes from the NSTextTab class. It compiles the correct code and no spurious warnings are
generated. In the second example, the sidekick variable is cast to any class conforming to the
Communicating protocol from the previous chapter. Again, the compiler restricts the receiver to
methods defined in Communicating.

CHAPTER 6 ■ SENDING MESSAGES

90

Listing 6-4. Disambiguating Messages

id mystery;
id hero, sidekick;
…
NSDictionary *options = [(NSTextTab*)mystery options];
[(id<Communicating>)sidekick sendMessage:@"Help!" to:hero];

If the message is ambiguous because the receiver is a class type that hasn’t been defined—it

was declared only by a @class directive—the solution is to #import its full declaration.

Coercion
A typecast can be used to intentionally coerce Objective-C into letting you send a method that it doesn’t
believe the object implements. A Character object does not accept the -giveItem:to: message. If,
programmatically, you discover that a Character object is actually an Earthling object (or one of its
subclasses), you may want to send it a subclass-specific message. Casting lets you override the
compiler’s normal assumptions about the receiver and compile the appropriate method invocation, as
shown in Listing 6-5.

Listing 6-5. Coercing Method Invocation

Character *player;
Earthling *hero;
Thing *secret;
…
if ([player respondsToSelector:@selector(giveItem:to:)])
 [(Earthling*)player giveItem:secret to:hero]; // assume player is Earthling

Sending Messages Programmatically
Objective-C makes sending messages to objects very easy—not just using the method invocation syntax
discussed up to this point, but programmatically allowing variables to determine what message is sent.
The ease by which messages can be composed programmatically has encouraged its adoption of
Objective-C in a wide variety of solutions and design patterns. You’ll encounter many services that send
messages to, or on behalf of, your code using a pointer to the receiver, a selector (SEL), or both. Some
examples include the following:

Controls: Every visual control object (button, menu item, checkbox, radio button, slider, …) has an
action. An action consists of a target property (the receiver) and an action property (a selector).
When the control is activated, it sends the action to the target. See Chapter 20.

Notifications: Timers and notification services send a message to an object when an event occurs.
You determine the object and the method to invoke using an object identifier and a selector. See
Chapter 18.

CHAPTER 6 ■ SENDING MESSAGES

91

Callbacks: Components like a model dialog notify your code by sending your object the message of
your choice when the dialog is dismissed.

Delegates: The delegate pattern is used extensively in the Cocoa framework. The delegate is always a
variable. Sometimes the message it receives is also variable, determined using a selector you specify.
See Chapter 17.

In Java, programmatic method invocation is complex and somewhat cumbersome, involving
several introspection objects. Often, Java interfaces are defined just so an object has a well-defined entry
point to receive messages. In Objective-C, a simple message is extremely lightweight, requiring only a
pointer to the receiver and an integer selector. In reality, message selectors are pointers to internal
runtime data structures, resolved by the linker when the program’s binary is loaded into memory. From
the programmer’s perspective, selectors should be treated as opaque integer constants.

There are basically three ways to compose and send a message programmatically. The most
common, and quickest, technique is to use one of the -performSelector: methods provided by the root
class. The most flexible and Java-like technique is to construct an NSInvocation object. Finally, an
Objective-C method can be called directly as a C function. This last technique is popular with
performance-sensitive applications.

■Caution The cardinal rule for all messages is that the parameters supplied in the message must match the
type, size, and order of the parameters the method expects. None of the programmatic message-sending
techniques provides any kind of type checking, type conversion, promotion, or auto-boxing.

Immediate Messages
The root NSObject class implements a family of -performSelector: methods. You can use them to send
any message to an object, exactly as if your code had invoked the method directly. The code in Listing 6-
6 shows the -className message being sent to an arbitrary object using a direct message, and then again
programmatically using the -performSelector: method.

Listing 6-6. Sending a Message with -performSelector:

id anything = …;
NSString *name;
name = [anything className];

SEL variableMessage = @selector(className);

name = [anything performSelector:variableMessage];

The two invocations of -className in Listing 6-6 are functionally identical. The second is

slightly slower because it sends two messages: performSelector: is sent to the object, which then
immediately sends itself the className message. The value returned by the className method is passed
back to the caller.

Sending a message using -performSelector: is quick, easy, and lightweight. The principle
drawback of -performSelector: is that it only accepts none, one, or two object identifiers as parameters
and always returns an object identifier as a return value. By casting, you can coerce the compiler to pass
or return any pointer value; all pointers are the same size and format. Listing 6-7 shows how to pass an
integer pointer instead of an object pointer. The pointer to (address of) the integer is cast to an object

CHAPTER 6 ■ SENDING MESSAGES

92

identifier so that it agrees with the parameter type of the message. This just mollifies the compiler; no
actual value conversion takes place.

Listing 6-7. Passing Other Kinds of Pointers to -performSelector:

@implementation ShiftyMethods

- (void)incrementAnInteger:(int*)valuePtr
{
 *valuePtr += 1;
}

@end

…

ShiftyMethods *shifty = [ShiftyMethods new];
int i = 1;
[shifty performSelector:@selector(incrementAnInteger:) withObject:(id)&i];

If the methods being called expect more parameters, or more exotic parameters such as long

long integers, floating point values, or structures, you will have to use one of the other techniques in this
chapter.

Table 6-1 lists the basic -performSelector: methods implemented by NSObject. All of these
methods are compatible with methods returning some kind of pointer or void. When used with a void
method, ignore the value returned by -performSelector:.

Table 6-1. Immediate Invocation Methods

Method Descr ipt i on

-(id)performSelector:(SEL)message Sends the message specified by the selector to the receiver.
The message includes no parameter and returns the object
identifier returned by the method.

-(id)performSelector:(SEL)message
withObject:(id)firstParam

Sends the message to the receiver. The message includes a
single pointer as the first parameter, and returns the
returned pointer to the caller.

-(id)performSelector:(SEL)message
withObject:(id)firstParam
withObject:(id)secondParam

Sends the message to the receiver. The message includes two
pointer parameters, returning the returned pointer to the
caller.

Deferred Messages
A message can also be queued and sent to an object at some future time. The method might be invoked
on a different thread, after some time has elapsed, or just “whenever.” To understand how messages are
deferred, you need to know a little about run loops.

A run loop is an event queue that executes in its own thread. Every Cocoa application has at
least one run loop. The first run loop started is christened the main run loop or main thread. All user

CHAPTER 6 ■ SENDING MESSAGES

93

interaction (mouse clicks, keyboard commands, display updates, animation, and so on) is fed to the
main run loop and executes in the main thread.

You can create additional threads in your process. Starting a run loop takes over a thread and
turns it into an event driven thread. A run loop’s life is spent pulling an event from its event queue,
processing it, and immediately “looping” around to process the next waiting event. If there are no
pending events, the thread suspends. You can read more about creating threads and run loops in
Chapter 15.

One type of event that can be pushed onto a run loop’s queue is a method invocation. It is little
more than a reference to an object and the message and parameters the object will receive. When an
object message event appears at the top of the event queue, the run loop sends the message to the
object.

The root NSObject class implements several methods for queuing a message on a run loop for
later execution. The principal ones are shown in Table 6-2.

Table 6-2. Deferred Invocation Methods

Method Descr ipt i on

-(void)performSelector:(SEL)message
withObject:(id)arg
afterDelay:(NSTimeInterval)delay

Queues a message that will be sent to the receiver
in the current thread. The message is not queued
until after delay seconds have elapsed.

-(void)performSelectorOnMainThread:(SEL)message
withObject:(id)arg waitUntilDone:(BOOL)wait

Queues a message that will be sent to the receiver
on the main thread. If wait is YES, the call will
suspend the current thread until the method has
finished executing.

-(void)performSelector:(SEL)message
onThread:(NSThread*)thread withObject:(id)arg
waitUntilDone:(BOOL)wait

Queues a message that will be sent to the receiver
on the run loop attached to a specified thread. If
wait is YES, the call will suspend the current
thread until the method has finished executing.

-(void)performSelectorInBackground:(SEL)message
withObject:(id)arg

Creates and starts a new thread. When the new
thread begins executing, the message and arg
argument are sent to the receiver which executes
in that thread. When the method returns, the
thread terminates.

The -performSelector:withObject:afterDelay: method pushes the message event onto the run

loop of the currently running thread. The delay time is a floating-point value expressed in seconds. The
run loop first waits for delay number of seconds to elapse then it queues the event to be executed at the
next opportunity. The method does not guarantee the time the message will be sent, just that that
message won’t be sent any earlier than delay seconds in the future. To queue a message to be sent at the
run loop’s next opportunity, pass a delay of 0.0.

The -performSelectorOnMainThread:… and -performSelector:onThread:… methods both queue a
message to be executed on a particular thread.

As described earlier, the main thread runs the primary run loop of the application. The
-performSelectorOnMainThread: message is particularly useful to auxiliary threads that need to execute
some action in the main thread (say, to update the value of a field in a window). Such methods must be
performed on the main thread. The background thread can choose to send the message asynchronously

CHAPTER 6 ■ SENDING MESSAGES

94

by passing NO in the wait argument, or suspend until the deferred message has completed by passing
YES.

The -performSelector:onThread: variant queues up a message to be executed on any thread
with a run loop. If the target thread passed to this, or implied by the -performSelectorOnMainThread:,
method is the same as the currently running thread, the message is immediately sent to the object (using
-performSelector:) without any run loop involvement.

All three of the previous methods have an alternate form that accepts an additional mode
parameter. Run loops operate in modes. A mode is a filter that ignores certain events in the queue that
aren’t appropriate in the current mode. Read more about run loop modes in the Threads chapter.

The final -performSelectorInBackground:… method sends a message to an object in a newly
created thread. This method does not use run loops. A thread is created for the sole purposes of
executing the message, and is destroyed afterwards.

All of these methods provide a single object identifier parameter that will be included with the
message. If the method being invoked doesn’t expect an argument, the value is ignored; set it to nil.

Object-Oriented Method Invocation
The role of Java’s java.lang.reflect.Method class is filled largely by NSMethodSignature and
NSInvocation in Cocoa. These classes form a high-level, object-oriented, interface to the method’s
definition, and a means to invoke it. NSMethodSignature is an immutable description of the method’s
parameters and return type. NSInvocation encapsulates the receiver, message, parameter values, and
return value that constitute an invocation of the method. Think of NSMethodSelector as the method’s
prototype and NSInvocation as the act of sending the message.

While the simple -performSelector: methods are fast and easy to use, they lack flexibility.
NSInvocation can deal with methods that take any kind or number of parameters. This includes
everything from a single byte to an entire structure.

To create an NSInvocation object you must first obtain the NSMethodSignature for the method.
Any object will return the signature for one of its methods when sent a -methodSignatureForSelector:
message. If you don’t have a representative object, send the Class object an
+instanceMethodSignatureForSelector: message. Once you’ve obtained the NSMethodSignature for the
method, create an NSInvocation object using +invocationWithMethodSignature:.

The target, parameter values, and return value are set individually and persist in the
NSInvocation object. This is different than Java. The Method object is passed the target object and all of
the parameters in the call to invoke(), which retains no information about the invocation after it returns.

NSInvocation parameter and return values are configured one at a time using
-setArgument:atIndex:. Each parameter value is set by passing -setArgument:atIndex: the address of
the parameter’s value—not the value to be passed. This is true even for object pointer values; pass a
pointer to the object pointer, not the pointer itself. NSInvocation uses its knowledge of the parameter
type to copy the value at that address into the parameter stream.

Listing 6-8 demonstrates using NSInvocation to send an NSString object the -substring:
message along with the functionally equivalent code in Java.

Listing 6-8. Object-Oriented Method Invocation

Java
try {
 String prose = "Do nine men interpret?";

 // Get Method for String.substring(int,int)
 Class[] paramTypes = { int.class, int.class };
 Method method = prose.getClass().getMethod("substring",paramTypes);

CHAPTER 6 ■ SENDING MESSAGES

95

 // Invoke prose.substring(3,7)
 Object[] paramValues = { new Integer(3), new Integer(7) };
 String count = (String)method.invoke(prose,paramValues);

 System.out.println(count+" men, I nod.");
 }
catch (Exception e) {
 e.printStackTrace();
 }

Objective-C
NSString *prose = @"Do nine men interpret?";
NSMethodSignature *signature;
NSInvocation *invocation;
NSString *count;

// Create invocation for -[NSString substringWithRange:] method
signature = [prose methodSignatureForSelector:@selector(substringWithRange:)];
invocation = [NSInvocation invocationWithMethodSignature:signature];
[invocation setSelector:@selector(substringWithRange:)];

// Set range structure as first parameter (after self and _cmd)
NSRange range = NSMakeRange(3,4);
[invocation setArgument:&range atIndex:2];

// Invoke method and extract the return value
[invocation invokeWithTarget:prose];
[invocation getReturnValue:&count];

NSLog(@"%@ men, I nod.",count);

Unlike Java’s Method object, NSInvocation does not perform any form of parameter type

conversion. You must pass -setArgument:atIndex: a pointer to the exact type of variable the method
expects. In the Java example in Listing 6-8, the parameter types are given as int.class, but the values
passed as parameters are Integer objects. Java knows that the Integer object must be converted into a
primitive int value before being passed to the substring(int,int) method. NSInvocation performs no
such conversion. If a method expects an int argument, the value passed to -setArgument:atIndex: must
be a pointer to a primitive int value (&myValue) that contains the value to send.

Variable parameter indexes start at 2. The first two parameters are always the hidden self and
_cmd parameters passed to every method. Use -setTarget: and -setSelector: to configure those two
properties. For convenience, -invokeWithTarget: sets the target and invokes the method with a single
message.

You might find it odd that you must configure the method that will be sent. After all, you used
the method selector to create the invocation object in the first place. That’s because the
NSMethodSignature isn’t associated with a particular message, it only defines the “shape” of the
parameters. You can reconfigure NSInvocation to send different messages that all expect the same type,
number, and order of parameters. For example, you could create a single NSInvocation object that sends
listeners a callback message with four parameters, but lets the clients of your service choose the message
they want to receive. The client has the flexibility to create a method with any name they want, as long as
it expects the correct parameters. Your code can efficiently reuse a single NSInvocation object for all
callbacks.

CHAPTER 6 ■ SENDING MESSAGES

96

Calling Methods Directly
Every method you write eventually gets compiled into a static C function. Pointers to these functions
populate the dispatch tables of each Class object.

The compiler hides the names of these functions, so you are never exposed to them. But
Objective-C will provide the address of each, making it possible to call methods directly—bypassing all
of the nominal message dispatch logic. This technique is somewhat technical, but is useful if you ever
need to invoke Objective-C methods from some other programming language or where message
dispatching has a significant impact on performance.

The method -methodForSelector: returns the implementation—the address of the method’s
code—that will execute when the receiver is sent that message. The class method
+instanceMethodForSelector: returns the address of the code that will nominally execute when an
instance is sent that message. I’ve chosen my words here very carefully. An individual object can be
modified so that the code executed when sent a message is different than the code executed by another
object of the same class, or even the code that the Class object assumes each instance will execute. Don’t
casually assume that the method implementation address for one object is the same as that for another
instance, or equal to the address returned by -[Class instanceMethodForSelector:]. The safest practice
is to query an individual object for its implementation address and only use that address for that object.
Read Chapter 26 (the “isa Swizzling” section) to get a better idea about how and why an object’s
methods might be dynamically altered.

The C function generated for each method expects a receiver object pointer (self) and a
selector (_cmd) as the first two parameters. Any remaining parameters mirror those defined by the
method. Listing 6-9 demonstrates calling a method via its implementation address.

Listing 6-9. Calling a Method As a C Function

@interface BezierPathMapper : NSObject {
 NSBezierPath *path;
}
@property (assign) NSBezierPath *path;

- (BOOL)containsAnyPoint:(NSPoint*)pointArray pointCount:(unsigned int)count;

@end

@implementation BezierPathMapper

@synthesize path;

- (BOOL)containsAnyPoint:(NSPoint*)pointArray pointCount:(unsigned int)count
{
 if (path==nil)
 return NO;

 // Get function address of -[NSBezierPath containsPoint:]
 typedef BOOL (*containsPointPtr)(id self, SEL _cmd, NSPoint point);
 containsPointPtr containsPointImpl =
 (containsPointPtr)[path methodForSelector:@selector(containsPoint:)];

 // Test every point in array by sending the path -containsPoint:
 unsigned int i;
 for (i=0; i<count; i++)

CHAPTER 6 ■ SENDING MESSAGES

97

 if (containsPointImpl(path,@selector(containsPoint:),pointArray[i])!=NO)
 return YES;
 return NO;
}

@end

The -containsAnyPoint:pointCount: method of BezierPathMapper tests a sequence of

coordinates to see if any reside inside its path property. The method begins by getting the
implementation address of the path’s -containsPoint: method. The crazy syntax you see surrounding
this is how you declare a pointer to a function in C. The type consists of a complete function prototype
describing the function’s parameters and return type (BOOL foo(id self, SEL _cmd, NSPoint point)),
with the name of the function replaced with a pointer declaration ((*containsPointPtr) replaces foo).
The result is a variable that points to a function with that prototype. In a typedef statement, it results in a
new pointer type. In Listing 6-9, a typedef is used so the entire function prototype doesn’t have to be
repeated when casting the value returned by -methodForSelector:. C allows a function pointer variable
to be used as a function name, just as if there was a function named “containsPointImpl.”

The receiver and selector parameters must be included in the call. While the selector is often
ignored, it’s always good programming practice to pass the selector constant of the method being called.
Since this technique bypasses the dispatcher’s nil receiver test, this code must first make sure that the
function is never called for a nil path object—that would most likely cause the program to crash.

The code in Listing 6-9 is principally to demonstrate the technique. It’s unlikely to result in any
significant performance gains, even when testing thousands of points—mostly because the
computations performed by -[NSBezierPath containsPoint:] probably far outweigh the trivial overhead
of sending the message. Nevertheless, if the code executed by the method was very fast, and it was called
millions of times, this technique could save valuable CPU time.

It should also be noted that calling a method directly might be simpler and faster than trying to
use an NSInvocation, particularly in situations where the method being called has well-understood
parameters.

Variable Arguments
One trick that Java doesn’t have is variable arguments. Granted, Java 1.5 added variable argument
syntax, but that’s just syntactic sugar for the way Java has always handled variable arguments. The
programmer (pre-Java 1.5) or the compiler (Java 1.5 and later) first creates an array to contain the
variable arguments, populates it with the parameters (wrapping primitive values in objects), and then
passes the single array object to the method.

Variable arguments in Objective-C are far more direct and raw: the sender may supply whatever
additional parameters they want in the message. The additional parameters are unaltered and are
pushed onto the stack exactly like any other parameter. The method parses the list of parameters
programmatically when it executes. The type, order, and meaning of those parameters are agreed on by
convention. Objective-C doesn’t impose any restrictions on them, nor does it supply any type
information about them. It’s up to the caller to supply the kind of parameters the method is expecting.

■Note Objective-C “borrows” variable arguments from C. Everything in this section applies equally to plain old C
functions.

CHAPTER 6 ■ SENDING MESSAGES

98

To declare a variable argument list, follow the last parameter variable name with a comma and
three periods (an ellipsis, but don’t use the Unicode ellipsis character). When invoked, the named
parameters may be followed by additional comma-separated parameters. There is no limit on the
number or kind of additional parameters. The parameters sent to the method form a kind of data
stream. The values of each parameter are extracted serially using special library functions. The process is
loosely analogous to using a java.io.ObjectInputStream to read a sequence of serialized values.

Two commonly used Cocoa methods that accept variable arguments are demonstrated in
Listing 6-10. The +[NSArray arrayWithObjects:...] method creates a new NSArray object pre-populated
with the objects passed as parameters. The +[NSString stringWithFormat:...] method creates strings
using a format string. The format string includes placeholders that are replaced with the values of the
additional parameters. The example code shown in Listing 6-10 returns the string “Dark toast will take
45 seconds.”

Listing 6-10. Variable Argument Methods in Cocoa

@interface NSArray

+ (id)arrayWithObjects:(id)firstObj, ...

@end

@interface NSString

+ (id)stringWithFormat:(NSString*)format, ...

@end

…

int toastTimes[] = { 8, 22, 35, 45, 60, 90 };
NSArray *toastDescriptions = [NSArray arrayWithObjects:@"Warm",
 @"Light",
 @"Medium",
 @"Dark",
 @"Very dark",
 @"Burnt",
 nil];

int level = 3;
int secs = toastTimes[level];
NSString *desc = [toastDescriptions objectAtIndex:level];

return [NSString stringWithFormat:@"%@ toast will take %d seconds.",desc,secs];

A method with variable arguments must assume the number and type of the parameters in the

list. The parameter list doesn’t include any type information or end-of-list indicator; it’s just a raw
sequence of bytes formed when the parameter values were pushed onto the stack. Consequently, the
method must either assume the parameter types or infer them using information supplied in the named
parameters.

The two Cocoa methods shown in Listing 6-10 demonstrate the two most common solutions to
this problem. The +arrayWithObjects: method assumes that all of the additional parameters will be
object pointers and the list is terminated by a final nil parameter.

CHAPTER 6 ■ SENDING MESSAGES

99

The +stringWithFormat: method uses the format parameter to infer the sequence of parameter
values that follow. The format string is scanned for format specifications. The first specification (%@) is an
object formatter. This tells +stringWithFormat: that the first additional parameter is a pointer to an
object. The %@ is replaced with the -description (toString()) value of the object. The next specification
encountered is %d, indicating that the next parameter is a signed int (d stands for decimal). It extracts
one int from the parameter stream and continues, until all of the format specifications in the string have
been replaced.

In both cases, a programmer’s agreement exists between the method and the caller.
+arrayWithObjects: assumes that only object pointers are passed, terminated with a nil pointer.
+stringWithFormat: assumes that the additional parameter agrees with the value types implied by the
placeholders in the format string.

■Caution The compiler has no type information about variable parameters, so it assumes that all values are of
the correct/expected type. The parameter 1 will pass an integer and 1.0 will pass a float. To remove any doubt,
cast the parameter as in [NSString stringWithFormat:@"float %f, int %d, char
%c",(float)34,(int)34,(char)34]. This will force the compiler to convert the parameter to the expected type
before pushing onto the stack.

Writing your own variable argument method is not difficult, but it does require a little planning.
You must design the method so the type and number of the additional parameters is known or can be
inferred. Listing 6-11 rewrites the containsAnyPoints:pointCount: method to use a variable argument
list, instead of an array of pointers.

Listing 6-11. Variable Argument Implementation

@interface BezierPathMapper : NSObject {
 NSBezierPath *path;
}
@property (assign) NSBezierPath *path;

- (BOOL)containsAnyOfCountPoints:(unsigned int)count, ...;

@end

@implementation BezierPathMapper

@synthesize path;

- (BOOL)containsAnyOfCountPoints:(unsigned int)count, ...
{
 va_list varList;
 BOOL hit = NO;
 NSPoint point;

 va_start(varList,count);
 while (count!=0) {
 point = va_arg(varList,NSPoint); // copy next point

CHAPTER 6 ■ SENDING MESSAGES

100

 if ([path containsPoint:point]) {
 hit = YES;
 break;
 }

 count--;
 }
 va_end(varList);

 return hit;
}

@end

…

if (![mapper containsAnyOfCountPoints:5,
 NSMakePoint(0.0,1.0),
 NSMakePoint(1.0,0.0),
 NSMakePoint(1.0,0.0),
 NSMakePoint(0.0,0.0),
 NSMakePoint(0.5,0.5)]) {
 NSLog(@"no points in path");
}

The new method is passed a list of NSPoint structures directly as parameters. The initial count

parameter tells the method how many NSPoint parameters to expect.
To implement variable arguments in your method, follow these steps:

1. Follow the last parameter variable name in the method declaration with “, ...”.

2. Define a va_list automatic variable.

3. Call va_start() with the va_list variable and the last named parameter. The parameter is just

used to tell the variable argument functions where the additional parameters begin.

4. Call va_arg() with the va_list variable and the type of the next parameter. The value returned is

a copy of the parameter.

5. When finished, call va_end().

It is not necessary to retrieve all of the parameters before calling va_end(). Calling va_arg() for
more parameter values than were passed is unpredictable and should be avoided.

Unimplemented Methods
Possibly even more interesting than how messages are sent is what happens when an object is sent a
message it doesn’t implement. If you don’t do anything special, the results are similar to Java; the
runtime throws an “unrecognized selector” exception.

But before that exception is thrown, the object is given the opportunity to handle the message
in some other way. When the message dispatch function finds that an object doesn’t implement that

CHAPTER 6 ■ SENDING MESSAGES

101

method, it converts the message into an NSInvocation object. It then passes that NSInvocation to the
object’s -forwardInvocation: method.

The root NSObject’s -forwardInvocation: simply sends itself a -doesNotRecognizeSelector:
message, which (unless overridden) throws the unrecognized selector exception. A class can override
-forwardInvocation: and intercept unimplemented messages.

As the name implies, -forwardInvocation: is designed to redirect or forward a message to
another object. The StandIn class in Listing 6-12 shows how this is accomplished. The object responds
normally to all of the methods it implements or inherits. When sent a message it does not implement, it
receives a -forwardInvocation: message. StandIn passes the message, and all of the call’s parameters, to
its actor object. If actor doesn’t implement the message, it will either throw an exception or forward the
invocation.

Listing 6-12. Forwarding an Unimplemented Message

@interface StandIn : NSObject {
 id actor;
}
@property (assign) id actor;

@end

@implementation StandIn

@synthesize actor;

- (void)forwardInvocation:(NSInvocation*)invocation
{
 if (actor==nil)
 [self doesNotRecognizeSelector:[invocation selector]]; // does not return

 [invocation invokeWithTarget:actor];
}

- (NSMethodSignature*)methodSignatureForSelector:(SEL)sel
{
 NSMethodSignature *signature = [super methodSignatureForSelector:sel];
 if (signature==nil)
 signature = [actor methodSignatureForSelector:sel];
 return signature;
}

@end

It’s also necessary to override -methodSignatureForSelector:. The message dispatcher first

sends the object -methodSignatureForSelector: and uses the returned object to create the invocation
argument passed to -forwardInvocation:.

Through a little sleight-of-hand, any value returned by the method invoked by
-invokeWithTarget: will be returned to the code that originally sent the message. For this to work, it’s
important to return immediately after sending the -invoke message. The return value will still be in the
registers or on the stack, so the caller gets them as if your handler had explicitly returned them.

CHAPTER 6 ■ SENDING MESSAGES

102

You can do lots of interesting things with -forwardInvocation::

• Wrap one object in a logger object that intercepts and records the invocation of interesting
messages.

• Implement “synthetic” messages that are handled by other methods in your class. Imagine
creating a generic database record object that catches any property message it receives (i.e.,
-saleDate, -setSaleDate:) and automatically translates it into a record query. Instead of coding
date = [record getDateFieldWithKey:@"SaleDate"], you could simply write date = [record
saleDate], without ever writing a -saleDate method. NSManagedObject and CALayer are
examples of classes that implement synthetic properties.

• Create an object that forwards the message to a hierarchy of other objects, like a responder
chain. Chapter 20 talks about responder chains. The proxy object would search a collection of
other objects looking for one that implements the message.

-forwardInvocation: will not work with variable argument methods because the NSInvocation
object won’t include a copy of the extra parameters.

Summary
While conceptually similar to Java methods, Objective-C messages are subtly different. Really start
thinking in terms of sending messages, rather than calling method. Objective-C’s lightweight method
dispatching makes it easy to send methods programmatically. Not only can a class send messages
dynamically, but it can also respond to them dynamically. The ease and efficiency by which messages
can be manipulated is why dynamic messages play such a key role in so many Objective-C solutions.

C H A P T E R 7

■ ■ ■

103

Making Fr iends wi th ni l

Dealing with nil (null) references is an inevitable part of programming. This chapter will explain how nil
and NULL pointers are handled in Objective-C, and some of the surprising consequences. Learning to
use nil object pointers to your advantage can substantially simplify—rather than complicate—your
design.

nil (null) and NULL references are sometimes treated more harshly in Objective-C than they are
in Java, but are at other times permitted—embraced, even. Java is very consistent in its treatment of null;
use of a null reference is universally considered a programming error and throws a
java.lang.NullPointerException object at runtime. Runtime exceptions typically terminate the Java
application, but can be caught, potentially recovering from the misstep.

In Objective-C, the consequences of using a nil or NULL reference are mixed. Accessing the
memory at or near address 0—which is what happens if you attempt use a pointer with a nil value—
causes a memory address violation. Address violations are detected by the hardware and cause a
SIGBUS signal to be sent to the process, resulting in its immediate termination. A system CrashReporter
daemon usually catches the SIGBUS signal and prepares a crash report document, detailing the state of
the process before it was terminated. While it’s technically possible for an application to intercept some
signals, the ability to recover from a SIGBUS signal is extremely limited.

■Note The Objective-C constants nil and NULL are technically interchangeable. By convention, nil (defined by
Objective-C) is used with object pointers and NULL (the traditional C constant) is used for all other pointer types.
Thus, you would write MyClass *object = nil and int *iPtr = NULL.

Just as you do in Java, you should avoid direct access of member variables using object pointers
(int i = object->iVar) or values via a pointer (int i = *intPtr) without first ensuring the pointer
variable contains a valid address. The code in Listing 7-1 demonstrates some typical coding strategies for
avoiding NULL pointer references.

Listing 7-1. Avoiding a NULL Pointer Reference

- (void)expandSize:(NSSize*)size
{
 if (size!=NULL) {
 area.height += size->height;
 area.width += size->width;
 }
}

- (BOOL)deleteAllReferencesToKey:(id)key error:(NSError**)outError

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

104

{
 …

 if (!successful && outError!=NULL)
 *outError = [NSError errorWithDomain:NSPOSIXErrorDomain
 code:errno
 userInfo:nil];

 return successful;
}

Messages to nil Are Safe
In stark contrast, sending a message to a nil object pointer is not only allowed, it’s encouraged! In
Chapter 6, I ignored a very important step of the message dispatch function:

4. If the receiver value is nil, the dispatching function returns immediately.

This condition makes it perfectly safe to send any message to a nil object pointer. When the
message receiver is nil, the dispatch function does nothing and returns immediately. More importantly,
it explicitly returns a value of zero, nil, or NO for senders that are expecting a return value.

Unlike typical Java code, it is not necessary to test an object pointer for nil before sending it a
message. In fact, it’s redundant since the test is performed for every message.

The code in Listing 7-2 is a fragment from our mythical Venus Attacks adventure game and
shows how nil receivers can simplify code. The TacticalDisplay object draws a map on the display, but
only if a map object is present. It also superimposes an optional location highlight drawn in either cyan
or a custom color. The Java code in the paint() method uses traditional condition statements to handle
the cases where there is no map object, or the map object doesn’t provide a location highlight shape, or
the color of the location highlight isn’t set.

Listing 7-2. Using nil Objects to Simplify Code

Java
package com.apress.java;

import java.awt.*;
import javax.swing.*;

public class TerrainMap
{
 private Color customLocationColor;
 private Shape locationHighlightShape;

 public void paint(Graphics graphics)
 {
 // ... draw the map
 }

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

105

 public Color getCustomLocationColor() { … }

 public Shape getLocationHighlightShape() { … }
}

public class TacticalDisplay extends JComponent
{
 private TerrainMap terrainMap;

 public TerrainMap getTerrainMap() { … }

 public void paint(Graphics graphics)
 {
 super.paint(graphics);
 Graphics2D g2 = (Graphics2D)graphics;
 …
 graphics.setColor(Color.CYAN); // default location color

 TerrainMap map = getTerrainMap();
 if (map!=null) {

 map.paint(graphics);

 Shape locationShape = map.getLocationHighlightShape();
 if (locationShape!=null) {
 Color customColor = map.getCustomLocationColor();

 if (customColor!=null)
 graphics.setColor(customColor);

 g2.draw(locationShape);
 }

 }

 }
}

Objective-C
#import <Cocoa/Cocoa.h>

@interface TerrainMap : NSObject
{
 NSBezierPath *locationHighlightPath;
 NSColor *customLocationColor;
}

@property (assign) NSBezierPath *locationHighlightPath;
@property (assign) NSColor *customLocationColor;

- (void)drawRect:(NSRect)dirtyRect;

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

106

@end

@implementation TerrainMap

@synthesize locationHighlightPath, customLocationColor;

- (void)drawRect:(NSRect)dirtyRect
{
 // ... draw the map
}

@end

@interface TacticalDisplay : NSView
{
 TerrainMap *terrainMap;
 …
}

@property (copy) TerrainMap *terrainMap;

- (void)drawRect:(NSRect)dirtyRect;

@end

…

@implementation TacticalDisplay

@synthesize terrainMap;

- (void)drawRect:(NSRect)dirtyRect
{
 …
 [[NSColor cyanColor] setStroke]; // set default location color

 TerrainMap *map = [self terrainMap];

 [map drawRect:dirtyRect];
 [[map customLocationColor] setStroke];
 [[map locationHighlightPath] stroke];
}

@end

The Objective-C version leverages the power of nil object pointers. A message sent to a nil pointer

does nothing. Since any message sent to nil returns nil, a nested call that sends a message to the object
returned by the previous message also does nothing. If the map object pointer in Listing 7-2 is nil, none of
the subsequent messages are sent. If the map does exist, but the message -customLocationColor returns nil,
then the -setStroke message is ignored and no custom color is set. If the -locationHighlightPath message
returns nil, the -stroke message is ignored and no location is drawn.

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

107

■Caution While a message sent to nil does nothing, this does not exclude side effects of parameters.
Parameters to a message are assembled and pushed onto the stack before the message is dispatched. Messages
sent or other side effects—such as post-incrementing a value—in the parameter expressions will still occur. One
reason to explicitly compare a receiver to nil and skip the message if it’s equal would be to avoid undesirable side
effects of assembling the parameters.

nil Returns Zero
A nil receiver always returns nil or 0 to the caller as long as the caller is expecting the message to return
one of the variable types in Table 7-1. The compatible variable types are essentially any pointer or scalar.

Table 7-1. nil Message Return Values

Return Type Returned Value

id nil

Pointer to any type NULL

BOOL NO

(unsigned) char '\0'

(unsigned) int 0

(unsigned) long int 0L

(unsigned) long long int 0LL

float 0.0f

double 0.0

long double 0.0

Callers expecting a message to return a structure are not compatible with nil receivers. In those
cases, you must avoid sending messages to nil just as you would in Java. A simple example is shown in
Listing 7-3. Structures are exchanged through the use of special “copy pad” registers that are not part of
the return value. The obscure exception to this rule is when the entire structure is returned in a register.
The mechanism for that is described in the “Mac OS X ABI Function Calling Guide,” available at
http://developer.apple.com/, and is architecture dependent.

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

108

Listing 7-3. Avoid Sending nil Messages That Return Structures

NSView *headsUpDisplay = [self headsUpDisplay];
NSRect hudRect = NSMakeRect(0.0,0.0,0.0,0.0);

if (headsUpDisplay!=nil)
 hudRect = [headsUpDisplay visibleRect];
if (hudRect.size.width>0.0 && hudRect.size.height>0.0) {
 …
}

Designing With nil
Embracing nil receivers in Objective-C will change how you write code and design classes. This section
will show how to take advantage of nil receivers to simplify your code and will introduce three design
patterns that leverage nil. Abstractly, this is about adopting the programming principle of “letting the
data make the decision” first articulated by Charles Moore, computer science pioneer and inventor of
the FORTH language. The principle avoids writing conditional statements that branch to handle
exceptional cases, in favor of data and expressions that incorporate those cases.

Contrast the two code snippets in Listing 7-4. The code is part of a recipe management
program. The makeLists method assembles a list of recipes planned for the week, along with a shopping
list of ingredients that must fit within the current budget. If the cost of all ingredients exceeds the
budget, ingredients for meals later in the week are omitted.

The program uses a number of classes, many of which have optional properties that must be
considered. There might not be a Budget object, in which case there are no budgetary restrictions on the
grocery list. There might not be any meals in the planner, in which case the resulting lists will be empty.
A meal might not have a recipe property (some meals might be take-out), in which case it would go in
the list of meals but would not add any ingredients to the shopping list.

Listing 7-4. Letting nil Receivers Make Decisions

Java
package com.apress.java;

import java.util.*;

public class Ingredient
{
 public double getCost() { ... }
}

public class Recipe
{
 protected ArrayList ingredients;

 public synchronized List<Ingredient> getIngredients() { ... }
}

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

109

public class Meal
{
 protected Recipe recipe;

 public synchronized Recipe getRecipe() { ... }
 public synchronized void setRecipe(Recipe recipe) { ... }
}

public class Budget
{
 public void planExpendature(double amount) { ... }
 public boolean isOverBudget() { ... }
}

public class RecipeBox
{
 protected ArrayList meals;

 public synchronized Budget getMealBudget() { ... }

 public synchronized List<Meal> getMeals() { ... }
 public synchronized void setMeals(List<Meal> meals) { ... }

 public void makesLists()
 {
 ArrayList mealList = new ArrayList();
 ArrayList shoppingList = new ArrayList();

 Budget budget = getMealBudget();

 List meals = getMeals();
 if (meals!=null) {
 boolean isOverBudget = false;
 for (Meal meal: getMeals()) {

 Recipe recipe = meal.getRecipe();
 if (recipe!=null) {
 List<Ingredient> ingredients = recipe.getIngredients();
 for (Ingredient ingredient: ingredients) {
 if (budget!=null) {
 budget.planExpendature(ingredient.getCost());

 if (budget.isOverBudget())
 isOverBudget = true;
 }
 }
 }

 mealList.add(meal);

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

110

 if (!isOverBudget)
 shoppingList.addAll(recipe.getIngredients());
 }

 }
 }
}

Objective-C
#import <Cocoa/Cocoa.h>

@interface Ingredient : NSObject

@property (readonly) double cost;

@end

@interface Recipe : NSObject {
 NSMutableArray *ingredients;
}

@property (assign) NSMutableArray *ingredients;

@end

@interface Meal : NSObject {
 Recipe *recipe;
}

@property (assign) Recipe* recipe;

@end

@interface Budget : NSObject

- (void)planExpenditure:(double)amount;
- (BOOL)isOverBudget;

@end

@interface RecipeBoxController : NSObject {
 NSMutableArray *meals;
}

@property (assign) NSMutableArray *meals;
@property (readonly,copy) Budget *mealBudget;

- (void)makeLists;

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

111

@end

@implementation RecipeBoxController

…

- (void)makeLists
{
 NSMutableArray *mealList = [NSMutableArray new];
 NSMutableArray *shoppingList = [NSMutableArray new];
 NSMutableArray *affordableGroceryList = shoppingList;

 Budget *budget = [self mealBudget];

 for (Meal *meal in [self meals]) {
 for (Ingredient *ingredient in [[meal recipe] ingredients])
 [budget planExpenditure:[ingredient cost]];

 if ([budget isOverBudget])
 affordableGroceryList = nil;
 [mealList addObject:meal];
 [affordableGroceryList addObjectsFromArray:[[meal recipe] ingredients]];
 }
}

@end

The Java approach uses traditional conditions that branch to each case. The Objective-C

approach largely lets the presence or absence of objects dictate its behavior. If the budget object is nil,
the -planExpenditure: message is never sent and the -isOverBudget message always returns NO. If a
meal’s recipe property is nil, no ingredients are processed. If the budget is exceeded, the
affordableGroceryList pointer is set to nil, and shoppingList stops receiving -addObjectsFromArray:
messages.

To begin designing with nil, start with these three principles: property accessors, absent
behavior, and consistency with nothing.

Property Accessors
You probably already adhere to the Java practice of writing accessor methods for all of your class
properties. Objective-C just gives you one more reason to continue that practice.

Since nil objects always return nil or 0, all property accessor methods that get or set one of the
types in Table 7-1 are safe to use with a nil receiver. In Listing 7-4, the expression [meal recipe] can be
called whether meal points to a Meal object or nil. In contrast, the expression meal->recipe would cause
the application to crash if meal was nil. Similarly, the statement [meal setRecipe:recipe] does nothing if
meal is nil.

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

112

Absent Behavior
Design optional behavior around the presence or absence of an object. In the presence of an object, the
object executes messages. In its absence, nothing happens. Simple examples are

• Logger object: Messages sent to the logger are logged, or ignored if the logger is nil.

• Listener object: Status and update messages are sent only if a listener has been established.

Setting the listener to nil suppresses the updates.

• Delegate object: Query the delegate if set, or use default answers if not. This is a combination of

the absent behavior and consistency with nothing design, discussed next.

Listing 7-5 shows a simple FIFO stack class that can operate in a thread-safe manner, but only if

the application needs it to be thread safe.

Listing 7-5. Absent Object Behavior

@interface AutoSafeFIFO : NSObject {
 NSMutableArray *stack;
 @private
 NSLock *lock;
}

- (void)push:(id)object;
- (id)pop;
- (BOOL)hasObjects;
- (void)makeThreadSafe;

@end

@implementation AutoSafeFIFO

- (id) init
{
 self = [super init];
 if (self != nil) {
 stack = [NSMutableArray new];
 }
 return self;
}

- (void)push:(id)object
{
 [lock lock];
 [stack addObject:object];
 [lock unlock];
}

- (id)pop
{

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

113

 id object = nil;

 [lock lock];
 if ([stack count]!=0) {
 object = [stack objectAtIndex:0];
 [stack removeObjectAtIndex:0];
 }

 [lock unlock];

 return object;
}

- (BOOL)hasObjects
{
 [lock lock];
 BOOL answer = ([stack count]!=0);
 [lock unlock];

 return answer;
}

- (void)makeThreadSafe
{
 lock = [NSLock new];
}

@end

The lock object is initially nil, so all messages sent to lock and unlock it do nothing. This

provides the best performance, but at the expense of thread safety. To operate safely in a multi-threaded
environment, the -makeThreadSafe method sets the lock property to a real NSLock object. Once set, the
lock and unlock messages are now sent to the NSLock object, providing the desired thread
synchronization.

Consistency With Nothing
Design your class properties so that a value of nil or 0 is consistent with the concept of a “nothing”
object. Usually this means defining properties that express positive, rather than negative, attributes—
which is a good practice in general. In Listing 7-5, the AutoSafeFIFO class defines -(BOOL)hasObjects. You
might have been tempted to define a -(BOOL)isEmpty method instead. But if the receiver were nil,
isEmpty would return NO implying that the nil object had objects, which it clearly does not.

No Free Rides
Objective-C’s treatment of nil receivers can make your code simpler, safer, and more elegant. It does
not, however, mean that nil is universally acceptable any place an object pointer is. As you’ve already
seen, trying to use a nil object pointer to access member values will result in abrupt program

CHAPTER 7 ■ MAKING FRIENDS WITH NIL

114

termination. Most method parameters that accept an object pointer generally expect an object, not nil.
The exceptions are usually documented.

For example, most Cocoa collection classes—just like Java—do not allow nil objects to be stored
as values or used as keys. So while it’s perfectly safe to send the -addObject: message to a nil receiver,
the statement [array addObject:nil] will throw a runtime exception (assuming array isn’t nil, of
course).

Summary
Coming from a Java background, I can tell you that embracing nil receivers takes some getting used to.
There is a subconscious, nearly autonomic tendency to design and write code that avoids null references
at every step. Learning to use nil objects to your advantage will take some practice, but is ultimately
rewarding.

P A R T 2
■ ■ ■

Translational Technologies

C H A P T E R 8

■ ■ ■

117

Str ings and Pr imit ive Values

Java and Objective-C take very similar approaches to primitive values. Both have direct language
support for primitive scalar values (i.e., numbers) and arrays. Both provide a set of “wrapper” objects
that encapsulate primitive values when they need to be treated as objects. Both provide syntax for
declaring string object literals.

This chapter describes the classes used to “wrap” primitive values in objects and the string
classes. The balance of the chapter focuses on converting and formatting strings.

Wrapping Scalar Primitives
Like Java, Objective-C variables can be broadly divided into primitive scalar values and object reference
values. To pass an integer value to a method that expects an object, you must “wrap” or “box” the
primitive value in an object that encapsulates the original value. Like Java, Objective-C provides a set
of classes specifically for wrapping primitive C variable types. The scalar value types were listed in
Chapter 2 Table 8-1 lists the wrapper objects for those same types.

Table 8-1. Primitive Scalar Type Wrapper Classes

Java Type Java Object ive-C

boolean new Boolean(x) [NSNumber numberWithBool:x]

byte new Byte(x) [NSNumber numberWithChar:x]

char new Character(x) [NSNumber numberWithUnsignedShort:x]

short new Short(x) [NSNumber numberWithShort:x]

int new Integer(x) [NSNumber numberWithInteger:x]

long new Long(x) [NSNumber numberWithLongLong:x]

float new Float(x) [NSNumber numberWithFloat:x]

double new Double(x) [NSNumber numberWithDouble:x]

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

118

I’m sure that you’ll notice a pattern in Table 8-1. Where Java has individual classes for each
scalar type, Objective-C uses the single NSNumber class to encapsulate all numeric types. Internally,
NSNumber stores a copy of the primitive value in its original form.

The parallel set of constructor methods for unsigned integers was omitted from Table 8-1 for
brevity, but all follow the same form: -[NSNumber numberWithUnsignedChar:], -[NSNumber
numberWithUnsignedShort:], and so on.

Scalar Type Conversion
Getting the original primitive value from a wrapper in Objective-C, or obtaining an equivalent primitive
value of a different type, is much as it is in Java. The NSNumber class has several conversion methods
that return the best possible representation of the original value. These are listed in Table 8-2.

Table 8-2. Primitive Type Conversion

Java Type Java Object ive-C

boolean value.booleanValue() [value boolValue]

byte value.byteValue() [value charValue]

char value.charValue() [value unsignedShortValue]

short value.shortValue() [value shortValue]

int value.intValue() [value integerValue]

long value.longValue() [value longLongValue]

float value.floatValue() [value floatValue]

double value.doubleValue() [value doubleValue]

Because the single NSNumber class performs all primitive scalar type conversions, type
conversion is orthogonal in Objective-C; any NSNumber object will return its value as a BOOL, char,
integer, or floating-point value. This symmetry is broken in Java, where the Boolean class does not
include an intValue() method, the Character class does not include a boolValue() method, etc.
Conversion generally follows the rules for native type conversions in C. That is, asking an NSNumber for
its intValue is no different than casting the original value to int, as in (int)original. No exceptions are
raised (thrown) if the requested type cannot represent the original value.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

119

Converting Strings to Scalars
In Java, each wrapper class has several methods for parsing strings and interpreting its scalar value,
returning either a primitive type or an object. For example, the java.lang.Integer class has a string
constructor (Integer(String)), a static method that takes a string and returns an integer primitive
(parseInt(String)), and a static method that takes a string and returns an Integer object
(valueOf(String)). The Boolean, Character, Short, Float, and Double classes contain similar methods.

In Objective-C, the NSString class implements the same scalar conversion methods listed in
Table 8-2. Send a string object the -intValue message to interpret it as an integer. Send it -floatValue to
interpret it as a float. To convert a string into an NSNumber object, create one from the converted value,
as in [NSNumber numberWithInt:[string intValue]].

Hexadecimal strings can be converted using the NSScanner object. NSScanner is a general
purpose utility class for parsing strings. To convert a string containing a hexadecimal number into an
integer, create a scanner for the string then parse it using the -[NSScanner scanHexInt:] method, as
illustrated in Listing 8-1.

Listing 8-1. Converting a Hexadecimal String Into an Integer

unsigned int i;
NSScanner *scanner = [NSScanner scannerWithString:@"cafe1234"];
[scanner scanHexInt:&i];

NSFormatter provides yet another, and progressively more sophisticated, means of converting

a string into a number. While typically used to turn numbers into strings, NSFormatters are bidirectional
and will convert strings back into scalar values as well. NSFormatters are discussed later in this chapter
in the “Formatting” section.

The Cocoa framework classes contain no general purpose numeric conversion for arbitrary
radixes, like Java’s java.lang.Integer.parseInt(String s, int radix). Formatting conversions support octal,
decimal and hexadecimal only. Arbitrary base conversion can be accomplished using the C library
function strtol(…). This would require converting the Objective-C string object into a C string—covered
later in this chapter—and then passing that to the strtol(…) function, or one of its relatives.

Wrapping Arrays
In Java, arrays are already objects so the language doesn’t need a wrapper class for them. Native arrays
in Objective-C are not objects, but they can be wrapped with the NSData class. NSData provides a
generic wrapper for any amorphous block of memory. NSData is particularly convenient for insolating
you from the underlying C memory allocation functions, letting you create and manage large structures
and native C arrays as if they were objects.

NSData encapsulates an immutable array of bytes. The NSMutableData subclass manages a
modifiable array of bytes. NSData provides methods to obtain the size and starting address of the byte
array. NSMutableData extends NSData with methods to adjust the size of the array, and the ability to
append, replace, and remove bytes. Table 8-3 lists the common ways of creating NSData objects.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

120

Table 8-3. Common NSData Constructors

Method Purpose

+[NSData dataWithBytes:length:] Creates a new NSData object that contains a copy of
the memory at the given address and length.

+[NSData dataWithBytesNoCopy:length:] This constructor wraps an NSData object around a
block of memory allocated using one of the C
malloc(…) functions—low level C memory
management. The object assumes responsibility for
the memory block and releases it when the object is
destroyed. This is a most efficient way to turn a C
allocated block of memory into an Objective-C
object.

+[NSData
dataWithBytesNoCopy:length:freeWhenDone:]

If the freeWithDone: argument is YES, this method
is equivalent to +[NSData dataWithBytesNoCopy:
length:]. If the argument is NO, it wraps an existing
block of memory with an NSData object. The new
object simply refers to the original address and
length given to it during construction. It is the
responsibility of the programmer to ensure that the
memory it refers to is valid for the lifetime of the
NSData object. This constructor is particularly
useful in avoiding the performance penalty of
making a copy of the data.

+[NSData dataWithContentsOf…:] Creates an NSData object that contains a copy of
the raw data contained in the target. This family of
convenience constructors includes
+dataWithContentsOfFile:,
+dataWithContentsOfURL:, and so on.

+[NSData dataWithData:] Creates a new NSData object that’s a copy of an
existing NSData object.

+[NSMutableData data] Creates a zero-length NSMutableData object.

+[NSMutableData dataWithLength:] Creates a mutable byte array wrapper of the given
length, filled with zeros.

Since NSMutableData is a subclass of NSData, all of the NSData constructors apply equally to
NSMutableData, such as using [NSMutableData dataWithData:data] to create a mutable copy of an
existing NSData object. In fact, the +data constructor is actually defined by NSData, where it has limited
utility.

In principle, the contents of an NSData object are immutable. In reality, there is nothing
(beyond hardware) that prohibits its contents from being modified. The -[NSData bytes] method

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

121

returns the address of the first byte in the array. Once obtained, there is nothing preventing you from
modifying any of the values at that address. I prefer to construct NSData objects for memory that I do
not intend to modify, and NSMutableData objects for modifiable memory, but there’s nothing that
dictates this in practice.

NSData objects treat their contents as a single contiguous byte array. You will often want to
treat it as something else—an array of some other type or a structure. Listing 8-2 demonstrates the use of
NSMutableArray to store an array of NSPoint structures.

Listing 8-2. Using NSMutableData to Wrap an Array of Structures

NSArray *objects = ... // array of objects with a coordinate
unsigned int count = [objects count];
NSMutableData *data = [NSMutableData dataWithLength:count*sizeof(NSPoint)];
NSPoint *points = (NSPoint*)[data bytes];
unsigned int i;
[data retain];
for (i=0; i<[objects count]; i++) {
 points[i] = [[objects objectAtIndex:i] coordinate];
}
[data release];

The code in Listing 8-2 allocates an empty array of bytes large enough to contain count number

of NSPoint structures. Once allocated, the address of the array is cast as a pointer to an NSPoint
structure. C pointers are interchangeable with array variables, so the pointer is used to address the
individual elements of the array. This technique will work for a single structure or an array of any type.

■Caution In Listing 8-2 you’ll notice two odd statements: [data retain] and [data release]. Due to a quirk
of Objective-C 2.0’s garbage collector, the variable (points) that points to the interior of the NSData object is not
sufficient to keep the object from being recycled by the garbage collector immediately following the [data bytes]
statement. These extraneous statements prevent the NSData object from being collected by keeping its object
reference in scope. This is only a problem for transient NSData objects. If the NSData object was returned from
this function, stored in a globally reachable variable, or referenced in any other way following the for loop, it
wouldn’t be a problem. The -retain and -release methods are for traditional memory management and do
nothing when running in a garbage collection environment. See Chapter 9 for an explanation and for an alternate
solution, described in the “GC vs. Non-GC Pointers” section of that chapter.

Wrapping Arbitrary Values
C allows you to define your own memory structures and variable types using struct and typedef
declarations. Consequently, there’s more that can be wrapped than just the integer and float types
supplied by the language. That’s the job of NSValue.

NSValue wraps any C data type. This includes all non-object types defined by the language or
the programmer. The principal method for creating NSValue objects is +[NSValue
valueWithBytes:objCType:]. This method is passed the address of the value—not the value itself—and
an Objective-C type value. The type value is generated using the Objective-C @encode() directive. This
evaluates to a constant C string that formally identifies the type of the value. From this information,

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

122

NSValue determines the size of the value and makes a copy of it. Listing 8-3 shows how an arbitrary C
structure is wrapped in an NSValue object and than added to a collection.

Listing 8-3. Wrapping an Arbitrary Structure in NSValue

typedef struct {
 int population;
 long long hectares;
 BOOL landLocked;
} CountryStats;

...

CountryStats stats;
stats.population = 195450000;
stats.hectares = 859250000;
stats.landLocked = NO;

NSValue *value = [NSValue valueWithBytes:&stats objCType:@encode(CountryStats)];
NSMutableArray *array = [NSMutableArray array];
[array addObject:value];

...

CountryStats lastStats;
value = [array lastObject];
[value getValue:&lastStats];
return (lastStats.population);

The key points in Listing 8-3 are as follows:

• An NSValue is constructed by passing it the address of the value, not the value itself.

• The size of the value is implied by the Objective-C type generated by the @encode() directive.

• Once encapsulated, NSValue can be treated like any other object.

• To examine the value stored in NSValue, send it the -getValue: message—again passing the

address of the variable to be overwritten with a copy of the value stored in the object.

NSValue has several convenience constructors for commonly used structures, such as
+valueWithPoint:(NSPoint)point, +valueWithRange:(NSRange)range, +valueWithSize:(NSSize)size, and
so on. Note that these all take a copy of the original value, not an address.

NSNumber is actually a subclass of NSValue. In a way, everything in NSNumber can be
considered convenience methods for dealing with native data types. Internally, NSNumber uses
NSValue to store its value. You can send an NSNumber or NSValue object an -objCType message to
determine the type of its original value.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

123

Wrapping nil
Objective-C provides the NSNull class as an object placeholder for nil values. This provides an object
that can be stored in collections, archived (serialized), or otherwise used to represent “nothing” where
nil is unacceptable.

The method +[NSNull nil] returns the singleton instance of NSNull created by the Objective-C
runtime. The single NSNull object is immutable and immortal.

Listing 8-4 demonstrates a simple technique for writing a method that accepts an object, an
instance of NSNull, or nil—treating the last two equally.

Listing 8-4. Method That Accepts an Object, nil, or NSNull

- (void)doSomethingWithObject:(id)object {
 if (object==[NSNull null])
 object = nil;
 …
}

Strings
Strings are the odd duck in both Java and Objective-C. They are so fundamental to programming that
both languages include special syntax for declaring string literals. Yet beyond declaring string literals, the
languages provide little direct support for strings, expecting the programmer to manipulate them as
objects. The exception to this is Java’s string concatenation operator (+), which Objective-C does not
include. This section covers string literals, string comparison, string manipulation, converting strings to
and from scalar values, and complex formatting.

At many levels, strings in Objective-C follow the familiar patterns they do in Java. All
Objective-C strings are objects of class NSString. NSString characters are represented internally using
Unicode. NSString objects are immutable. Literal Objective-C string objects are written using the
@"string" directive. Table 8-4 lists common string operations and their Objective-C counterparts.

Table 8-4. Common String Classes and Methods

Java Object ive-C

"string" @"string"

java.lang.String NSString

java.lang.StringBuffer NSMutableString (although not thread safe)

java.lang.StringBuilder NSMutableString

Object.toString() -[NSObject description]

new String(byte[],String) +[NSString stringWithCString:(const char*)cString
encoding:(NSStringEncoding)enc]

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

124

String.length() -[NSString length]

String.charAt(int) -[NSString characterAtIndex:(int)index]

String.equals(String) -[NSString isEqualToString:(NSString*)string]

String.compareTo(String) -[NSString compare:(NSString*)string]

String.compareToIgnoreCase(String) -[NSString caseInsensitiveCompare: (NSString*)string]

String.concat(String) -[NSString stringByAppendingString:(NSString*)string]

String.substring(int) -[NSString substringFromIndex:(int)index]

String.substring(int,int) -[NSString substringWithRange:(NSRange)range]

String.toLowerCase() -[NSString lowercaseString]

String.toUpperCase() -[NSString uppercaseString]

String.trim() -[NSString stringByTrimmingCharactersInSet:
(NSCharacterSet*)set]

String.format(String,Object…) +[NSString stringWithFormat:(NSString*)format, …]

You will find many other analogous methods in String and NSString. NSString tends to prefer
more generic methods that handle a wide variety of cases, where the Java classes implement many
simplistic methods. A good example is java.lang.String.trim(). The Objective-C equivalent is
-stringByTrimmingCharactersInSet:, which takes an NSCharacterSet object as a parameter. To
accomplish exactly what String.trim() does, use [string stringByTrimmingCharactersInSet:
[NSCharacterSet characterSetWithRange:NSMakeRange(0,0x20+1)]]. While more verbose, it has the
advantage of being able to trim any arbitrary set of characters from a string. If you do this a lot, use a
Category to add your own -trim method to NSString, as explained in Chapter 5.

■Note Modern Objective-C development tools coalesce identical literal strings when your application is built. No
matter how many times the string literal @"Welcome" appears in your application, every occurrence will refer to a
single instance at runtime.

There are, however, several key differences between String and NSString that you need to be
aware of:

• There are subclasses of NSString.

• A string object might be mutable.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

125

• There are two kinds of strings: Objective-C strings and C strings.

• The additional operator (+) will not concatenate two strings.

• Objective-C string literals do follow the C language’s compile-time string concatenation syntax.

The literal string expressions @"Hello" @", World!" and @"Hello, World!" are identical.

NSString follows a consistent pattern in the Cocoa class framework; when a class has
immutable and mutable variants, the mutable class is the subclass of the immutable class. This has three
important consequences. First, the class for mutable string objects is the NSMutableString subclass. Use
NSMutableString where you would use java.lang.StringBuilder.

The second consequence is that any NSString pointer or parameter could potentially contain a
reference to a mutable subclass. In Java, the java.lang.String class is final and cannot be subclassed,
guaranteeing that all String objects are immutable. To dynamically create a string requires first
constructing a StringBuffer object, then converting that into a String object using toString(). In
Objective-C, you can use NSMutableString to assemble a string then simply return it or use it as a regular
NSString object. If you do not modify it thereafter, it’s indistinguishable from an immutable string. In
the situation where you must guarantee that a string object is immutable, construct a copy of the
suspicious string object using [NSString stringWithString:possiblyMutableString]. Also, see Chapter
12 for information about copying objects.

The last consequence is more of a benefit. Since NSMutableString is a subclass of NSString, it
inherits all of the methods of NSString. This includes methods added to NSString by categories.

Converting Objects to Strings
Just as every Java object inherits a toString() method, every Objective-C object inherits the
-(NSString*)description method. Its purpose and use is virtually identical to toString() in Java.
Notably:

• The base class implementation of -[NSObject description] returns a string containing the

name of the object’s class and its address. Unless overridden, this is an object’s default

description.

• String formatting functions and the debugger send objects a -description message whenever

they need their string representation.

• -[NSString description] returns itself.

• -[NSNumber description] returns a string representation of the original value.

• Many classes override -description to provide a more informative string representation. For

example, the collection classes return a string describing all of the objects in the collection—

recursively sending -description to each object.

C Strings
Finally, there’s the added confusion of having two types of strings: Objective-C string objects and
traditional C strings. A C string is just the address of an array of characters, and is more of a
programming convention than a defined entity. The C language’s only concession to strings is the syntax
for declaring a literal string ("hi!"), equivalent to allocating a null-terminated array of characters (char
string[] = { 'h', 'i', '!', '\0' }).

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

126

■Tip As a Java programmer, you will undoubtedly compile an Objective-C program and encounter the message
“warning: initialization from incompatible pointer type” or “warning: passing argument from
incompatible pointer type.” This is typically because you omitted the ‘@’ before an Objective-C string literal.
Instead of declaring a literal string object (@"Hello", of type NSString*), you declared a literal C string ("Hello",
of type const char*). Don’t feel bad. Even after years of Objective-C programming, I still make this mistake about
once a week.

Converting C Strings into NSString Objects

While you can program for ages in Objective-C without ever touching a C string, inevitably the day will
come when you need to interact with C functions that expect or return C strings. The principal methods
for constructing a new NSString object from a C string are listed in Table 8-5. These are very similar to
the Java constructors for creating String objects from byte or character arrays.

Table 8-5. Constructing NSString Objects from Character Arrays

Java Object ive-C

new String(byte[],String) +stringWithCString:(const char *)cString
encoding:(NSStringEncoding)enc

 +stringWithUTF8String:(const char*)utf8String

new String(char[],int,int) +stringWithCharacters:(const unichar*)chars length:(int)length

Traditional C strings use 8-bit char values, are typically encoded using ASCII, and are
terminated with a single null ('\0') character. This is by far the most common representation of C
strings. To create an NSString from a traditional C String, use [NSString stringWithCString:cString
encoding:NSASCIIStringEncoding]. Because of the null termination character, the length of the string is
implied. If the string is encoded using some other encoding, specify that encoding instead. The
documentation for NSStringEncoding lists the encodings supported by the Cocoa framework.

The other popular 8-bit encoding is UTF-8, which consists of Unicode characters translated
into a stream of 8-bit bytes. Most UTF-8 strings are also null terminated. The +stringWithUTF8String:
message will create an NSString object from a null-terminated UTF-8 character array and is equivalent
to [NSString stringWithCString:utf8String encoding:NSUTF8StringEncoding].

Finally, you may occasionally encounter arrays of Unicode characters—the true equivalent of a
Java char. Use the +[NSString stringWithCharacters:(const unichar*)chars length:(int)length]
method to construct an NSString object from the array. You will have to supply the constructor with the
number of characters in the array.

There are other NSString constructors for more specialized situations. Consult the NSString
documentation for the details.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

127

Converting NSString Objects into C Strings

Converting the characters in an NSString into a char or unichar array mirrors the methods in Table 8-5.
Table 8-6 lists the common methods of extracting the characters in an NSString along with some
convenience converters.

Table 8-6. Extracting Characters from NSString Objects

Java Object ive-C

getBytes(String) -getCString:(char*)buff maxLength:(int)len
encoding:(NSStringEncoding)enc

 -cStringUsingEncoding:(NSStringEncoding)enc

 -UTF8String

 -fileSystemRepresentation

 -dataUsingEncoding:(NSStringEncoding)enc

getChars(int,int,char[],int) -getCharacters:(unichar*)buffer range:(NSRange)range

toCharArray() -getCharacters:(unichar*)buffer

When converting an NSString into a C string you have the option of allocating the char array
yourself and then using -getCString:maxLength:encoding: to extract the characters into it, or letting the
string object allocate a character array for you using -cStringUsingEncoding:, -UTF8String, or
-fileSystemRepresentation. These three methods allocate a temporary character array buffer, extract
the characters into it, terminate it with a null character, and return the address of the first character. The
-dataUsingEncoding: method returns an NSData object containing the encoded string. Only
-dataUsingEncoding: is a true substitute for Java’s getBytes(String) method, because it’s the only one
that returns an object.

■ CCaution The lifetime of the C string pointer returned by -cStringUsingEncoding: et al is tied to the lifetime of
the string object. The temporary string buffer is released when the string object is destroyed. Do not continue to
use the pointer after the string object reference has gone out of scope, or the garbage collector might recycle the
object—destroying its temporary C string buffer—prematurely.

The -cStringUsingEncoding:, -UTF8String, and -fileSystemRepresentation messages are
extremely convenient for passing an NSString object to any method or function that expects a traditional
C string. Listing 8-5 demonstrates how temporary C strings can be generated and passed to a traditional
C function. The -fileSystemRepresentation method should be used when the string object is a file or
path name. If the string only contains ASCII characters, -UTF8String and
-cStringUsingEncoding:NSASCIIStringEncoding are equivalent.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

128

Listing 8-5. Passing NSString Object as C Strings

NSString *filePath = @"/tmp/somefile.dat";
NSString *fileMode = @"w+";
...
FILE *file = fopen([filePath fileSystemRepresentation],[fileMode UTF8String]);

The length of an encoded string will often be different—typically longer—then the number of

Unicode characters in the NSString object. Either of the
-lengthOfBytesUsingEncoding:(NSStringEncoding)enc or
-maximumLengthOfBytesUsingEncoding:(NSStringEncoding)enc methods can be used to determine the
number of 8-bit characters that will be needed to contain the encoded string. The latter is faster, but
often overestimates the number of bytes required. Neither method includes the terminating null
character in its count. An example of extracting a C string with a specific encoding into a dynamically
allocated buffer is shown in Listing 8-6.

Listing 8-6. Extracting a C String from an NSString

NSString *unicodeString = …

int len = [unicodeString lengthOfBytesUsingEncoding:NSWindowsCP1250StringEncoding];
NSMutableData *buffer = [NSMutableData dataWithLength:len+1];
[unicodeString getCString:(char*)[buffer bytes]
 maxLength:len+1
 encoding:NSWindowsCP1250StringEncoding];
// [buffer bytes] now contains a null-terminated C string version of unicodeString
// encoded using the Windows Central and Eastern European character set.

If the Unicode characters of a string cannot be represented by the requested encoding, the

previous messages will return NO or NULL. You can preflight the conversion using
-canBeConvertedToEncoding:(NSStringEncoding)enc, or consider using
-dataUsingEncoding:(NSStringEncoding)enc allowLossyConversion:(BOOL)flag. Passing YES for
allowLossyConversion will always return an encoded string, omitting or simplifying any characters that
can’t be encoded. Also be aware that NSNonLossyASCIIStringEncoding along with the family of
NSUTF…StringEncoding encodings can represent the entire range of Unicode characters and will
always return a successfully encoded string.

The last two methods, -getCharacters:(unichar*)buffer range:(NSRange)range and
-getCharacters:(unichar*)buffer, are the complements to +stringWithCharacters:length:. Both
extract Unicode values into a unichar array. These methods do not perform any encoding. The number
of unichar characters extracted will always be the same as the source range.

Formatting Strings
Creating strings from other values can be accomplished in a dizzying number of ways, but by far the
most versatile method is +[NSString stringWithFormat:(NSString*)format, …]. The Java counterpart is
java.lang.String.format(String,Object…). It has the same purpose and use, but the format specifiers in
the formatting string are slightly different.

Similar to Java, the format string parameter is a template of the resulting string, embedded with
format specifiers (i.e., %d) that are replaced using the values in the argument list. Unlike Java, the values
in the variable argument list are either object pointers or primitive values that are not wrapped in
objects. In fact, wrapping them in objects severely limits the utility of -stringWithFormat:. Avoiding the

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

129

need to convert primitive values into objects makes -stringWithFormat: much more convenient—and
efficient—to use. So much so, that you’ll find yourself using it in many places where you would have
used java.lang.StringBuffer or some other technique.

Format specifiers follow this generalized syntax:

%[argument_index$][flags][width][.precision][length]conversion

The only significant difference is the optional length modifier, which Java doesn’t need. The
common conversion format specifiers and their Java equivalents are listed in Table 8-7.

Table 8-7. Format Conversion Specifiers

Java Java Type Object ive-C Object ive-C

Type

Replaced With

%s/%S object %@ object object’s -description (toString())

 %p any pointer hexadecimal memory address

 %s char* Null-terminated ASCII C string

 %S unichar* Null-terminated Unicode C string

 %c char 8-bit ASCII character

%c char %C unichar 16-bit Unicode

%d any integer %d/%D/%i int signed decimal value

 %u/%U unsigned int unsigned decimal value

%o any integer %o/%O unsigned int octal value

%x/%X any integer %x/%X unsigned int hexadecimal value

%e/%E float, double %e/%E float, double value in scientific notation

%f float, double %f/%F float, double decimal value

%g/%G float, double %g/%G float, double decimal value or scientific notation

%a/%A float, double %a/%A float, double hexadecimal value

%% %% Literal ‘%’ character

The most notable difference is Objective-C’s use of the %@ conversion specifier for object
descriptions; this replaces Java’s %s specifier. Use %@ for all Objective-C strings and object arguments. All

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

130

other format specifiers expect a primitive scalar or pointer. The flags, width, and precision modifiers all
behave much as they do in Java.

Variable argument lists in C provide no type or size information about the individual
arguments. The mechanics are explained in the Variable Arguments section of Chapter 6. The type and
size of each argument is inferred from the length and conversion specifier found in the format string.
This imposes two important restrictions.

The first restriction is on the optional argument index modifier: you can’t “skip” arguments.
Take the statement [NSString stringWithFormat:@"%d-%3$d",1,2,3] as an example. The format string
provides no information about the type or size of the second variable parameter. Without it, the
formatter doesn’t have enough information to extract the third variable argument, so the format
operation fails.

The second restriction is that the combination of the length modifier and the conversion
specifier must agree with the type of the parameter. The formatter blindly assumes that each argument
agrees with the type implied by the specifier, and will interpret it accordingly. This is the single most
common cause of garbled strings, and can occasionally cause catastrophic runtime errors (say, trying to
interpret an integer as a pointer to an object). Table 8-8 lists the length modifiers and the argument type
that each implies. If the length modifier is omitted, the argument type is assumed to be compatible with
the type listed in Table 8-7.

Table 8-8. Conversion Length Modifiers

Modif ier Appl i cable Conversions Argument Type

hh d, i, o, u, x, X char, unsigned char

h d, i, o, u, x, X short int, unsigned short int

l d, i, o, u, x, X long int, unsigned long int

ll, q d, i, o, u, x, X long long int, unsigned long long int

L a, A, e, E, f, F, g, G long double

To format a char as an unsigned numeric value, use the specifier %hhu. To format a 64-bit long
long integer in hexadecimal, use the specifier %llx or %qx. If you are unsure if the type of an argument
will match its specifier, force it using a typecast, as in [NSString stringWithFormat:@"%hi",(short
int)i].

In 32-bit CPU architectures, the long int type is 32-bits, so int and long int mean the same
thing. Nevertheless, it’s good programming practice to match the correct length modifier (%ld) when
passing a long int argument, even though the simpler form (%d) is compatible.

Objective-C string formatting does not provide format specifiers for Boolean values, dates, or
times. The -[NSDate description] method returns the date and time using an ISO-like international
format. If that’s sufficient, the date object can be formatted using %@. For more complex date formatting,
use NSDateFormatter, the results of which can then be inserted into a format string using %@. When
formatting Boolean values, I typically use a trinary conditional expression, as in [NSString
stringWithFormat:@"%@",(t?@"YES":@"NO")].

This is by no means a comprehensive exploration of formatting strings. The Cocoa framework
implements the IEEE printf specification, with some additional Objective-C–specific extensions. This
IEEE standard is extensive and includes many obscure options, features, and specifiers. The “Format

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

131

Specifiers” section of “String Programming Guide for Cocoa”1, published by Apple, and “Standard
1003.1,”2 published by the IEEE and The Open Group, contain complete descriptions.

NSFormatter
The NSFormatter class is the abstract base class for objects used to convert value objects into strings and
vice versa. Don’t confuse it with the java.util.Formatter class. Java’s Formatter is where the formatting
logic described in the previous section is implemented. Cocoa’s NSFormatter class defines an abstract
interface for creating formatter objects. NSFormatter objects perform the conversion between what the
user sees and types and (potentially) complex values such as currency, calendar dates, and clock times.
NSFormatter objects are intended to encapsulate features such as normalization, localization, and user
display preferences—transformations too complex for simple format specifiers. They can be used in
isolation or attached to certain view objects, where they are invoked automatically to translate between
the data model and the view.

The Cocoa framework provides two concrete implementations: NSNumberFormatter and
NSDateFormatter. If you have the need, you can subclass NSFormatter and create your own.

Significant changes have been made to some NSFormatter classes over the years. For
backwards compatibility, these classes may exhibit legacy behavior unless configured otherwise. Review
the NSFormatter behavior for your programming environment. For the best experience, use the modern
behavior when available. If this is not the default, Listing 8-7 shows how to set the modern behavior
before you begin using them.

Listing 8-7. Setting Modern Formatting Behavior

// Send these two messages before creating any date or number formatter objects.
// A good place to do this is in your application initialization.
// This will set the behvior mode for all new date & number formatter objects.
[NSDateFormatter setDefaultFormatterBehavior:NSDateFormatterBehavior10_4];
[NSNumberFormatter setDefaultFormatterBehavior:NSNumberFormatterBehavior10_4];

// Or, you can individually set the behavior of each date & number
// formatter after it is created.
NSDateFormatter *dateFormatter = [NSDateFormatter new];
[dateFormatter setFormatterBehavior:NSDateFormatterBehavior10_4];

NSNumberFormatter *numberFormatter = [NSNumberFormatter new];
[numberFormatter setFormatterBehavior:NSNumberFormatterBehavior10_4];

Formatters are configured with the desired formatting options, and then repeatedly used to

convert values. The -(NSString*)stringForObjectValue:(id)value method uses the currently
configured format to turn an object value into a string. The -(BOOL)getObjectValue:(id*)object
forString:(NSString*)string errorDescription:(NSString**)error performs the opposite conversion,
returning a value for the given string. It returns YES if the conversion was successful. If unsuccessful, it
returns NO and creates an error object describing the problem.

1 Apple, Inc., “String Programming Guide for Cocoa,” http://developer.apple.com/documentation/
Cocoa/Conceptual/Strings/index.html, 2008.
2 The IEEE and The Open Group, “The Open Group Base Specification Issue 6, IEEE Std 1003.1,”
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html, 2004.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

132

NSNumberFormatter
NSNumberFormatter formats decimal numbers. It implements two convenience methods:
-stringFromNumber: and -numberFromString:. The easiest way to configure a formatter is to use one of
the predefined formatting styles using -setNumberStyle:. Styles take into account the user’s language,
cultural conventions of the user’s locale, and their global display preferences. Table 8-9 lists some of the
predefined number format styles.

Table 8-9. Predefined Number Formatting Styles

Style Use for

NSNumberFormatterDecimalStyle Decimal numbers

NSNumberFormatterCurrencyStyle Local currency

NSNumberFormatterPercentStyle Percentages

NSNumberFormatterScientificStyle Scientific notation

NSNumberFormatterSpellOutStyle Natural language (i.e., “twenty-two”)

If one of the predefined styles is insufficient, you can configure a formatter using a number
format pattern. Number format strings use the Unicode Number Format Patterns standard (Unicode
Technical Standard #353), and should not be confused with the format specifiers used by
-stringWithFormat: and similar methods. Number format patterns form a template describing how
many significant digits to display, what punctuation to use, and may contain alternate templates for zero
and negative values. Table 8-10 shows some sample number format patterns and the resulting string
when formatting numbers for an English-speaking user in the US. Table 8-11 shows the same results for
a user in Spain.

Table 8-10. Example Number Format Patterns in English (US)

Number Format 7 1234.56 0 -0.98765

#,##0.5 7.0 1,234.6 0.0 -1.0

#,##0.###;zero;#,##0.###- 7 1,234.56 zero 0.988-

000000.0000 000007.0000 001234.5601 000000.0000 -000000.9876

00.0% 700.0% 123456.0% 00.0% -98.8%

3 Mark Davis, “Unicode Technical Standard #35, Locale Data Markup Language,” http://unicode.org/reports/tr35/
tr35-6.html, 2006.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

133

Table 8-11. Example Number Format Patterns in Spanish (Spain)

Number Format 7 1234.56 0 -0.98765

#,##0.5 7,0 1.234,6 0,0 -1,0

#,##0.###;zero;#,##0.###- 7 1.234,56 zero 0,988-

000000.0000 000007,0000 001234,5601 000000,0000 -000000,9876

00.0% 700,0% 123456,0% 00,0% -98,8%

Finally, you can take extremely fine-grained control over the formatting by individually setting
any of the nearly forty properties of NSNumberFormatter directly.

Number format styles localize the results automatically. The format strings localize some
elements for you, like the decimal separator character, but not all. Individually setting the various
NSNumberFormatter properties gives you the ultimate control, but ignores the localization and display
preferences set by the user.

NSDateFormatter
Similar to NSNumberFormatter, NSDateFormatter is a specialized formatter for translating calendar
dates and clock times. It can also be configured using predefined styles, a date format pattern, or
through individual properties. The predefined styles are listed in Table 8-12, along with the results for an
English-speaking user in the United Kingdom.

Table 8-12. Predefined Date Formatting Styles in English (UK)

Date Style Februar y 15, 2005

NSDateFormatterShortStyle 15/02/2005

NSDateFormatterMediumStyle 15 Feb 2005

NSDateFormatterLongStyle 15 February 2005

NSDateFormatterFullStyle Tuesday, 15 February 2005

Unicode Technical Standard #35 also defines date format patterns. They are very similar to the
date and time format specifiers supported by java.util.Formatter. Objective-C string formatting does not
attempt to support even simple date and time formatting, electing to delegate that to the more capable
NSDateFormatter class. Some simple date format patterns are shown in Table 8-13. The results are for
an English speaking user in the USA.

CHAPTER 8 ■ STRINGS AND PRIMITIVE VALUES

134

Table 8-13. Example Date Format Patterns in English (US)

Date Format Februar y 15, 2005 1:40:59 PM

yyyy-MM-dd 'at' HH:mm 2005-02-15 at 13:40

EEEE MMMM d, yyyy Tuesday February 15, 2005

'millisecond' A 'of Julian day' g millisecond 49259000 of Julian day 2453417

QQQQ 1st quarter

Summary
The string and wrapper classes in Objective-C aren’t conceptually much different than those in Java. The
wrapper classes are more generic and can wrap more than just the built-in value types. Unlike Java,
Objective-C strings can be subclassed. This means that they might be mutable, but generally aren’t, and
can usually be treated the same way they are in Java. Remember to use %@ instead of %s in format strings,
and use the NSFormatter classes for sophisticated value conversion.

C H A P T E R 9

■ ■ ■

135

Garbage Col lect ion

Garbage object collection is most notable for what you, the programmer, don’t have to do. In a perfect
world, you just ignore the mechanics of garbage collection and let the run time system take care of the
details. But there are situations when you do need to pay attention to garbage collection. Weak
references and finalize methods require some understanding of what causes objects to become garbage
and how they get collected.

Garbage collection in Objective-C 2.0 is broadly similar to what you experience in Java. Most of
the time, you simply forget about it and “just works.” Objective-C’s garbage collector is on a par with
modern Java implementations. It’s a conservative, multi-generational, garbage collector that runs in the
background on a separate thread. It handles all of the typical programming problems, like circular
references, with aplomb. It’s efficient, and rarely gets in the way of your application.

Later in the chapter you’ll learn how to write -finalize methods and use weak references. If
you write only “pure” Objective-C—you only deal with objects and object pointers—that’s probably all
you’ll need to know and you can skip to the next chapter when you’ve learned what you want. You’ll only
need to read further if you step outside Objective-C into the wilderness of C pointers.

The devil, as the saying goes, is in the details. Objective-C’s garbage collection is complicated by
C’s permissive—some would say anarchic—memory access. Without the strict isolation between the
programmer and physical memory imposed by Java, there is no possible way of determining definitively
what objects are being referenced and which ones aren’t. Objective-C uses a best effort approach that
balances efficiency with convenience. There are, however, subtle holes in this approach that can cause
objects to leak or be prematurely collected. Learning how to recognize and avoid these situations is the
focus of the last half of this chapter.

THE THEORY OF GARBAGE COLLECTION

Modern garbage collection systems function by determining the graph of reachable objects. This is the set
of objects that your application has references to, or can obtain a reference to via some other reference.
The graph starts with the root set of objects. This includes the object pointers in global (static) variables,
the object pointers in every thread’s stack, and any object pointers in CPU registers. The set is then
expanded by adding in all of the objects referenced by the root objects, and all of the objects referenced by
those objects, and so on, until there are no more object references that aren’t in the set. This forms the
complete set of reachable objects. Any objects not in that set are eligible to be collected and destroyed.

To cause an object to be collected involves nothing more than clearing—sometimes referred to as
“forgetting”—all reachable references to that object. The object falls outside the set of reachable objects
and gets collected.

CHAPTER 9 ■ GARBAGE COLLECTION

136

Choosing to Use Garbage Collection
Objective-C garbage collection is not universally available. Not all development and runtime
environments support it, and when they do it is often not the default memory management service. As of
this writing, Objective-C garbage collection is a feature, not a standard. Review the capabilities of your
deployment environment (platform and operating system versions) to determine if garbage collection is
supported. If it is, make sure it is enabled for your project—see Chapter 4 for an example. If garbage
collection is not available, you will have to resort to using traditional Objective-C memory management.
This is explained in more detail in Chapter 24.

In most runtime environments, such as a Cocoa application, the garbage collector is started
automatically for you. If you are building a command-line tool that uses Objective-C, you must start the
garbage collector by calling the C function objc_startCollectorThread() at the earliest reasonable point in
your tool’s startup.

Writing Code with Garbage Collection
Choosing to use garbage collection or not will dictate your coding style. It’s possible to write Objective-C
code that will function in both a GC (garbage collected) and non-GC (managed memory) runtime
environment, but it’s complicated and rarely necessary to do so. An example would be a plug-in
framework that is loaded dynamically by other applications—some using GC, others not. For
straightforward application development, write all of your code assuming either garbage collection or
managed memory. This chapter provides guidance on writing Objective-C in a garbage collection
environment. Chapter 24 explains traditional managed memory.

The common ways of creating new objects in Objective-C are as follows:

[SomeClass new]

[[SomeClass alloc] init]

[[SomeClass alloc] initWith:…]

[SomeClass someConvenienceConstructor]

These are identical to the ways objects are created in a non-GC environment. In a GC

environment, you’re pretty much done. You don’t have to do anything else once the object is created;
the garbage collector will take care of it when you no longer reference it.

■Note If you are reading code that was written for a non-GC environment, you’ll see objects sent the messages
-retain, -release, and -autorelease. In a garbage-collected environment, these messages are ignored. If you
are porting code from a non-GC to a GC environment, you can safely remove all -retain, -release, and
-autorelease messages. In addition, the -retainCount and -dealloc messages are blocked. The value returned
by -retainCount is meaningless. An object’s -dealloc method will never be executed, even if you try to send it a
-dealloc message yourself—which you should never do anyway.

Properties and hand-coded setter methods in a GC environment should use simple
assignments. Listing 9-1 shows a property and a manually implemented setter method that was written
assuming garbage collection. For contrast, an implementation appropriate for a non-GC environment is
also included. Both implementations have equivalent behavior and are thread safe.

CHAPTER 9 ■ GARBAGE COLLECTION

137

Listing 9-1. GC and Non-GC Property Implementations

GC Environment
@interface Doll : NSObject {
 NSColor *hairColor;
 NSColor *eyeColor;
}
@property (assign) NSColor *hairColor;
@property (assign) NSColor *eyeColor;

@end

@implementation Doll

@synthesize hairColor;

- (NSColor*)eyeColor
{
 return eyeColor;
}

- (void)setEyeColor:(NSColor*)color
{
 eyeColor = color;
}

@end

Non-GC Environment
@interface Doll : NSObject {
 NSColor *hairColor;
 NSColor *eyeColor;
}
@property (retain) NSColor *hairColor;
@property (retain) NSColor *eyeColor;

@end

@implementation Doll

@synthesize hairColor;

- (NSColor*)eyeColor
{
 @synchronized(self) {
 return [[eyeColor retain] autorelease];
 }
}

CHAPTER 9 ■ GARBAGE COLLECTION

138

- (void)setEyeColor:(NSColor*)color
{
 @synchronized(self) {
 if (eyeColor!=color) {
 [eyeColor release];
 eyeColor = [color retain];
 }
 }
}

@end

Writing Finalize Methods
When all references to an object are gone, the object is eligible to be collected and destroyed. In
Objective-C, just as in Java, the garbage collector sends each collectable object a -finalize message
before it is destroyed. The rules for well-behaved finalize methods are very similar to those in Java, so I’ll
just summarize them here:

• Don’t attempt to perform time-consuming clean-up or resource recovery. That should be done

before the object is forgotten.

• Don’t disconnect object graphs or set instance variables to nil in an attempt to help the garbage

collector (it’s redundant).

• Don’t attempt to remove the object from collections or view hierarchies (it’s redundant).

• All weak references to the object will be disconnected before it is sent a -finalize message.

• It’s generally safe to send messages to other objects, but keep it to a minimum.

• Objects may be finalized in any order, so your object should be prepared to receive messages

(from other collectable objects) before or after receiving -finalize.

• Objects receiving the -finalize message should not attempt to resurrect collectable objects or

attempt to resurrect themselves by creating a strong reference to self.

• Only one -finalize message is sent to each object.

• An object’s -finalize methods must be thread safe.

Creating Weak References
There are situations where your application wants to maintain a reference to an object but does not
want to prevent the garbage collector from collecting it. The typical situation is a cache or pool of objects
(let’s say they are graphic images) that are used by many other objects. A single cache or pool of resource
objects makes it convenient for individual objects to obtain references to those common resource
objects. When all of the objects in the application are done with a resource, they all “forget” the object.

CHAPTER 9 ■ GARBAGE COLLECTION

139

Ideally, the resource object should now be reclaimed, but the single reference from the pool to the object
keeps the resource object from being collected.

This is solved using a weak reference. A weak reference is a pointer to an object that the garbage
collector does not traverse when building the set of reachable objects. From the garbage collector’s
perspective, it is not a reference and does not prevent the object from being collected.

In Java, weak references are established via java.lang.ref.WeakReference objects. To create a
weak reference, a WeakReference object is created to hold the reference to the weakly referenced object,
as shown in Listing 9-2. In Objective-C, appending the __weak modifier to any object pointer creates a
weak reference.

Listing 9-2. Creating Weak References

Java
String name = "Clarence";
WeakReference weakName = new WeakReference(name);
name = null;

...

name = (String)weakName.get();
if (name!=null) {
 // ... name has not been collected
 }

Objective-C
__weak NSString *name = @"Clarence";

...

if (name!=nil) {
 // ... name has not been collected
 }

A __weak object pointer is set to nil by the garbage collector whenever it determines that there

are no other strong references to that object and the object is eligible for collection. The garbage
collector guarantees that all __weak references to an object are set to nil before the object is finalized and
destroyed.

For the sake of clarity, all non-weak references are strong references. Objective-C does not
support soft references or phantom references. Nor are there any reference queues, so your objects are
not notified when the garbage collector decides to collect an object.

To make it easy to manage groups of objects via weak references, both Java and Objective-C
provide specialized collections that hold weak references to a set of objects, gracefully removing them
when they are collected. These are listed in Table 9-1.

CHAPTER 9 ■ GARBAGE COLLECTION

140

Table 9-1. Weak Collection Classes

Weak Java Col l ect i on Weak Object ive-C Col lect ion

 NSHashTable

WeakHashMap NSMapTable

 NSPointerArray

The NSHashTable implements a general-purpose set collection. It is largely consistent with the
traditional NSMutableSet class, but can be programmed with different “personalities” that define how it
treats each element of the set. One of the more useful options is to configure the set to use weak
references to all of its objects using the constructor [NSHashTable hashTableWithWeakObjects]. This
creates a mutable set of objects that can be collected if they lack any strong references. When collected,
an object simply disappears from the set.

Similarly, NSMapTable is a mutable dictionary (map) of key/value pairs. Unlike
java.util.WeakHashMap, an NSMapTable can be created with strong or weak references to its keys, and
strong or weak references to its values, as listed in Table 9-2. A key/value pair in the collection is
removed if either object is collected.

Table 9-2. NSMapTable Constructors

Constructor Key Pointers Value Po inter s

[NSMapTable mapTableWithStrongToStrongObjects] strong strong

[NSMapTable mapTableWithWeakToStrongObjects] weak strong

[NSMapTable mapTableWithStrongToWeakObjects] strong weak

[NSMapTable mapTableWithWeakToWeakObjects] weak weak

Finally, the NSPointerArray collection is similar to the NSMutableArray collection, except that it
permits items in the collection to be nil (or NULL). It is intended to be used with generic pointers—normally
outside the scope of garbage collection—but can be programmed to use weak object pointers using the
constructor [NSPointerArray pointerArrayWithWeakObjects]. When an object is collected, its pointer entry
in the collection is set to nil. This does not alter the number of items in the collection, just its content.

See Chapter 16 for more about collection classes.

Creating Strong References
You can programmatically create a strong reference by dynamically promoting an object pointer to the
root set of objects, even if your application does not maintain a strong reference to it. This might be
useful, for example, if you created an autonomous controller that performs actions on its own—possibly

CHAPTER 9 ■ GARBAGE COLLECTION

141

responding to notifications or C callbacks, which are themselves weak references—and you don’t need a
reference to it. The code in Listing 9-3 prevents an object from being garbage collected using the
-disableCollectorForPointer: method. To make the object collectable again, balance each
-disableCollectorForPointer: message with an -enableCollectorForPointer: message.

Listing 9-3. Preventing an Object from Being Collected

EventDaemon *eventDaemon = [EventDaemon new];
[[NSGarbageCollector defaultCollector] disableCollectorForPointer:eventDaemon];
eventDaemon = nil; // EventDaemon will not be collected

The __strong type modifier is the counterpart to __weak. All object pointers and identifiers (id)

in Objective-C are __strong by default. Declaring them __strong is redundant, but permissible. The
__strong modifier exists principally for use with other types of pointers that are neither __strong nor
__weak, allowing you to use Objective-C’s garbage collector to manage non-object memory allocations.
See the “Allocating Collectable Memory” section of this chapter, and the section on using garbage
collection to manage Core Foundation structures in Chapter 24.

Encouraging Garbage Collection
You normally do not need to interact with the garbage collection system directly. If you do, the
NSGarbageCollection class provides an object-oriented interface to the service. As in Java, there are
methods that will encourage the garbage collector to start collecting objects. These methods don’t force the
garbage collector to do anything—for example, it might have just finished collecting objects, so collecting
again would be waste of time. It just suggests to the GC that it might be an opportune time to do so.

In addition, you can temporarily disable garbage collection in Objective-C by sending the
-disable message. You might do this during an extremely performance-sensitive section of code, but I
won’t suggest leaving it off for very long. Send an -enable message to resume collection. The common
methods for controlling the garbage collector are listed in Table 9-3.

Table 9-3. Garbage Collector Control Methods

Method Descr ipt i on

+[NSGarbageCollector defaultCollector] Returns the singleton instance of NSGarbageCollector for
your process.

-[NSGarbageCollector disable] Turns off garbage collection.

-[NSGarbageCollector enable] Starts garbage collection again after sending -disable.
Each -disable must be balanced by one -enable.

-[NSGarbageCollector collectIfNeeded] Suggests that the garbage collector begin a collection cycle
if the memory consumption thresholds have been
exceeded.

-[NSGarbageCollector collectExhaustively] Suggests that the garbage collector begin a complete and
thorough collection cycle.

CHAPTER 9 ■ GARBAGE COLLECTION

142

GC vs. Non-GC Pointers
Garbage collection in Java is both determinate and homogenous; all references refer to objects. In
Objective-C, pointers can point to just about anything. They can point to objects, blocks, structures on
the stack, structures within other structures, elements of an array, or even be filled with random
meaningless values. It is demonstrably impossible, therefore, to determine with absolute certainty the
set of reachable objects.

Objective-C’s solution to this is to ignore most pointers and pay attention only to pointers that
(should) reference objects. This results in a mixture of memory management techniques. Objective-C
objects use the garbage collector, while conventional C memory allocations are managed using their
traditional design patterns.

This section explains which pointers are naturally managed by the garbage collection service,
which ones aren’t, and what control you have over that. It also highlights situations where non-managed
pointers can be a problem and how to deal with them.

Write Barriers
Objective-C keeps track of the pointer references that it manages using a technique called a write
barrier. The compiler replaces all assignments to __strong and __weak pointers with a fast function call
that makes the assignment and registers the pointer with the garbage collection system. Remember that
all Objective-C object pointers are __strong by default. Every object pointer assignment is registered
with the garbage collector, which uses that information to determine the set of reachable objects.

Allocating Collectable Memory
You can also have the garbage collector manage any pointer to an allocated block of memory by
explicitly typing it as __strong or __weak, then setting the pointer to a managed block of memory. The
garbage collector will treat the pointer like any other object reference and dispose of the memory once
it’s no longer reachable. This technique has two prerequisites:

• All pointers to the memory allocation must be typed __strong (or __weak, as appropriate).

• Allocate the memory using NSAllocateCollectable(int size, int options).

• If the contents of the collectable memory block contain __strong or __weak pointers, the options
parameter of NSAllocatableCollectable should be NSScannedOption. Otherwise, pass 0. Listing 9-
4 demonstrates the allocation of an arbitrary block of memory that will be managed by the
garbage collector. Note that this is a rewriting of the code fragment from the last chapter that
used an NSMutableData object to contain the array.

CHAPTER 9 ■ GARBAGE COLLECTION

143

Listing 9-4. Allocating Garbage Collected Memory Blocks

- (__strong NSPoint*)pointsForObjects:(NSArray*)objects
{
 __strong NSPoint *points;
 unsigned int count = [objects count];
 unsigned int i;

 points = (NSPoint*)NSAllocateCollectable(count*sizeof(NSPoint),0);
 for (i=0; i<[objects count]; i++) {
 points[i] = …
 }
 return points;
}

Garbage Collection Pitfalls
Here’s a short collection of the most common garbage collection–related hazards and how to resolve
them.

Interior Pointers
Pointers that point to structures inside a collectable object do not prevent that object from being
collected. If the object is prematurely collected, the pointer becomes invalid. The example shown in
Listing 9-5 demonstrates this problem.

Listing 9-5. Interior Pointer

NSData *data = [NSData dataWithData:originalData];
const char *bytes = [data bytes];

Let’s assume that the data variable in Listing 9-5 is never referenced again. Immediately

following these two lines of code, the NSData object could be collected leaving the bytes variable
pointing to invalid memory. The reason is because the [data bytes] statement is the last reachable
reference to the NSData object in the method. The Objective-C compiler can be extremely aggressive
about reclaiming automatic variables. The compiler could very likely assign both data and bytes to the
same CPU register, since their lifetimes don’t overlap. Thus, by the time the bytes assignment is
complete, the NSData object pointer is gone and the object becomes collectable.

The solution is to reference the data object at least once after the last use of any interior
pointers. It doesn’t matter how the reference is accomplished. This includes sending it gratuitous
-retain and -release messages. I personally prefer this technique, because these messages are used for
classic memory management and they scream, “I’m doing memory management here,” which is true.

An alternative solution is to use a collectable memory block, described earlier in the Allocating
Collectable Memory section.

CHAPTER 9 ■ GARBAGE COLLECTION

144

Opaque Pointers
Objects assigned to pointers that are neither __strong nor __weak (i.e., not write barrier protected) are
not considered by the garbage collector. This can be a problem when passing an object via a void* or
some other opaque pointer type. Listing 9-6 demonstrates the problem in passing a dictionary object as
the context for a message that will be sent at some later time. The void* to the object does not prevent it
from being collected before the message is sent.

Listing 9-6. Assigning an Object to an Opaque Pointer

NSDictionary *info = …;
[NSApp beginSheet:sheetWindow
 modalForWindow:window
 modalDelegate:delegate
 didEndSelector:@selector(sheetDidEnd:returnCode:contextInfo:);
 contextInfo:(void*)info];

…

- (void)sheetDidEnd:(NSWindow*)sheet
 returnCode:(int)returnCode
 contextInfo:(void *)contextInfo
{
 NSDictionary *info = (id)contextInfo;
 id value = [contextObject objectForKey:@"Value"];
 …
}

In the first part of Listing 9-6, a dictionary is created to pass one or more values to the modal

sheet completion method designated in the didEndSelector: parameter. However, since the
contextInfo: parameter is not a __strong pointer, the NSDictionary object becomes unreachable—in
the eyes of garbage collector—immediately following the beginSheet:… message.

There are two simple solutions to this problem. The first is to use the Core Foundation
functions CFRetain(id) and CFRelease(id) to give the object a non-zero retain count. As mentioned
earlier, Objective-C’s garbage collector coexists with traditional C memory management. CFRetain
increments the retain count of the object—as if the object were also in use by C code—preventing it from
being collected. A more object-oriented solution would be to use +[NSGarbageCollector
disableCollectorForPointer:] to prevent the object from being collected, and +[NSGarbageCollector
enableCollectorForPointer:] in the model sheet completion method to make it collectable again.

Enumerating Weak Collections
Care must be taken when enumerating through collections of weak object pointers. Their contents, and
element count, can spontaneously change as objects are collected. This can cause enumerator objects
and for(;;) loops to behave erratically.

To avoid this, either use Objective-C’s fast enumeration or create a temporary immutable
collection that uses strong references until your enumeration is finished. Fast enumeration is covered in
Chapter 16.

CHAPTER 9 ■ GARBAGE COLLECTION

145

Uninitialized Stack References
Due to the way that the Objective-C garbage collector detects strong references in automatic variables
on the stack, it can be tricked into thinking that an uninitialized automatic variable contains a strong
reference. You can religiously initialize all automatic variables, or simply call the C function
objc_clear_stack(0) occasionally. It should be called at the lowest reasonable stack frame—ideally from
the thread’s top-level loop. When the function is called, all of the methods on the stack should have as
few uninitialized automatic variables as possible. If the thread is running a run loop, you don’t need to
do this. Each run loop automatically calls objc_clear_stack(0) for you.

Other Pitfalls
There are other, progressively more obscure, situations that can cause objects to leak or be prematurely
collected. If you believe you are having problems with garbage collection, review the Garbage Collection
Programming Guide published by Apple.1

Design Patterns to Avoid
Here are a few programming patterns that should be avoided when writing programs that use garbage
collection:

• You cannot override, intercept, or send the -release, -dealloc, or -retainCount methods.

• Delegate, parent, and observer references are often described as “weak” when using managed
memory because they are not retained—to avoid circular retains. These are not, in fact, weak
references and should not be typed as __weak. The garbage collector has no problem dealing
with circular references.

• Do not use the lifetime of an object to manage an expensive resource. Often, an object will be
created just to manage a large buffer or pool of computed objects. Once all of the references to
the object are released, it releases the underlying resource. When using garbage collection,
implement your own reference counting or create a dictionary (map) that contains each client
object as keys and a reference to the resource as values. Each client object should remove itself
from the collection when finished with the resource, allowing the resource to be collected when
the last client is removed.

• Don’t use allocation zones for Objective-C objects. The garbage collector requires that all
managed objects be allocated in the default zone.

Debugging
There are also a couple of debugging aides. If the OBJC_PRINT_GC environment variable is set to YES, the
garbage collection framework will print diagnostic information to the console.

If you believe that a pointer is, or is not, being protected by a write barrier, the -Wassign-intercept
compiler flag will help you discover where write barriers are being inserted into your code.

1
Apple, Inc., Garbage Collection Programming Guide, http://developer.apple.com/documentation/Cocoa/
Conceptual/GarbageCollection/, 2008.

CHAPTER 9 ■ GARBAGE COLLECTION

146

Summary
At the surface, Objective-C garbage collection is on a par with Java’s—you just need to turn it on. Strong
and weak references are concepts Java programmers are comfortable with, and behave almost
identically in Objective-C. You just need to be careful when working with other pointer types, as non-
object pointers are not normally managed for you, and be conscious of the pitfall that can occur when
working with pointers that are not managed by the garbage collector.

C H A P T E R 10

■ ■ ■

147

Int rospect ion

Introspection (reflection) is the act of exploring information about an object, often referred to as its
metadata: the class of the object, the methods it implements, what properties it declares, the protocols
(interfaces) it conforms to, and so on. The common questions (“What class is this object?,” “Can I treat
this object as a specific class?,” and “Does this object implement a specific method?”) are all easy to
answer. This chapter will first tell you how to answer those common questions. It will then look into the
deeper exploration of objects and classes.

This chapter will also explore Key-Value Coding, a technology closely related to introspection.
Key-Value Coding, or KVC, allows you to access the properties of an object symbolically. As a trivial
example, take a Person class that has NSString *name, Person *mother, and Person *father properties.
KVC would allow you to get a person’s name with the path @"name", and the name of their mother with
the path @"mother.name". KVC isn’t introspection; KVC won’t tell you what properties an object
implements. But it is so closely related to introspection that it’s useful to understand what it can do for
you. You might prefer to use KVC rather than perform your own introspection. You’ll also want to know
how to design your classes so that they work with KVC.

For reasons both pragmatic and philosophical, Objective-C introspection techniques focus
more on discovering individual traits than determining what class an object is, and then inferring what
methods and properties it has from that. If you want to know if an object can open a URL, you should
determine if the object implements an -openURL: method. This is preferable to testing its class against
those that you believe implement an -openURL: method. The fewer assumptions you make about an
object’s class, the more robust and flexible your code will be. Here are the most common questions
you’ll want to ask about an object:

• Does this object implement a specific method?

• Is this object an instance of a specific class?

• Is this object an instance of a specific class, or any subclass of that class?

These three questions are the easiest to answer in Objective-C. They are listed in order of

efficiency and speed. Determining if an object implements a particular method, rather than if it’s a
member of a class, has two advantages. It more directly addresses the question of the object’s
functionality, and it’s considerably more efficient.

This isn’t to say that you shouldn’t test an object’s class. There are many valid reasons to do so.
But if you are testing an object’s class to infer that it implements some method, consider testing the
more direct assertion.

Testing for Methods
Java doesn’t have a simple, concise method for determining if an object implements a specific method.
Instead, Java programs tend to create classes and interfaces that implement functional groups of

CHAPTER 10 ■ INTROSPECTION

148

methods. The programmer then tests an object for membership in those classes or interfaces. This works
well in Java because of its strong type checking and strict inheritance model.

Objective-C’s class structure is much more relaxed and dynamic, so the assumptions one can
make in Java are not as applicable. The preferred method of determining if an object implements a
particular method is to test that directly, as shown in Listing 10-1.

Listing 10-1. Testing for the Implementation of a Specific Method

Java
Method method = null;
try {
 Class objectClass = object.getClass();
 Class[] paramTypes = { };
 method = objectClass.getMethod("intValue",paramTypes);
 }
catch (Exception e) {
 }
if (method!=null)
 … // object can convert itself into an int

Objective-C
if ([object respondsToSelector:@selector(intValue)])
 … // object can convert itself into an int

The -respondsToSelector: message takes a selector constant and returns YES if the receiver

responds to (implements) that method. The parameter can be a selector constant generated using the
@selector() directive, or a value of type SEL. Listing 10-2 demonstrates using -respondsToSelector: to
selectively send messages to a group of listeners. The method sends a notification to all of its listeners
that implement a specific method. This allows each listener to receive specific messages simply by
electing to implement those methods. The listener is ignored when the sender broadcasts a message that
it doesn’t implement.

Listing 10-2. Sending a Message Only to Objects That Implement It

- (void)updateListenersUsingSelector:(SEL)sel
{
 for (id listener in listeners) {
 if ([listener respondsToSelector:sel])
 [listener performSelector:sel withObject:self];
 }
}

Sending the message -updateListenersUsingSelector:@selector(startingChat:) sends every

listener that implements the -startingChat: method a notification. The practice of recognizing object
roles based on what methods they implement is called an informal protocol, and was described in more
detail in Chapter 5.

CHAPTER 10 ■ INTROSPECTION

149

Testing Class Membership
Java’s instanceof operator tests an object to determine if it is an instance of a class, a subclass of that
class, implements an interface, or a subinterface of that interface. True to its minimalist roots, the
Objective-C language has no membership operator. Instead, the class framework implements the
methods listed in Table 10-1 in the root NSObject class.

Table 10-1. Class and Protocol Membership Tests

Message Test s

-isKindOfClass:(Class)class The object is an instance of the class, or a subclass of the
class.

-isMemberOfClass:(Class)class The object is a specific class.

-conformsToProtocol:(Protocol*)protocol The object adopts the protocol, or inherits from a class
that adopts the protocol.

Objective-C treats class membership and protocol (interface) adoption differently, both

internally and syntactically. So there is no single equivalent to the instanceof operator. Use
-isKindOfClass: when testing for class membership, and -conformsToProtocol: when testing for
protocol adoption. Listing 10-3 illustrates the different methods and syntax to use for each. The Class
object for a specific class is usually obtained by sending a -class message to either the class itself, or any
instance of that class. Use the @protocol() directive to generate a protocol identifier constant.

Listing 10-3. Testing and Casting Class Membership and Protocol Adoption

Java
Object object = …

if (object instanceof MyClass) {
 MyClass myObject = (MyClass)object;
 …

if (object instanceof MyInterface) {
 MyInterface myObject = (MyInterface)object;
 …

Objective-C
id object = …

if ([object isKindOfClass:[MyClass class]]) {
 MyClass *myObject = object;
 …

if ([object conformsToProtocol:@protocol(MyProtocol)]) {
 id<MyProtocol> myObject = object;

CHAPTER 10 ■ INTROSPECTION

150

Key-Value Coding
As mentioned at the beginning of this chapter, Key-Value Coding is not an introspection technology per
se; it won’t describe what properties an object supports. KVC is, however, so intimately entwined with
introspection that it’s difficult to relate it to any other topic.

KVC is a powerful tool that’s the foundation for many other technologies such as Key-Value
Observing, bindings, and scripting. Before implementing your own property introspection solution, first
consider if KVC already solves your problem. Designing your properties to be compatible with KVC gives
your objects the greatest interoperability with other technologies. This section will explain the basics of
Key-Value Coding, along with techniques to make your classes KVC compliant.

In its simplest terms, Key-Value Coding allows you to access (get and set) the properties of an
object using a string (key) that identifies the property by name. For example, an object’s name property
could be set using [object setValue:@"Earnest" forKey:@"name"], and is equivalent to [object
setName:@"Earnest"]. If that was all KVC could do, it would have some limited utility. KVC gets really
interesting when property names are combined into paths and applied to collections.

The best explanation is an example. Listing 10-4 shows the objects that might make up a school
management program. It defines Person, Student, Parent, Teacher, and Period classes. Student, Parent,
and Teacher objects are all subclasses of Person.

Rachael, one of the teachers, is planning a family field trip that will include all of the students in
her homeroom, along with their siblings and stepsiblings. She needs the names of her homeroom
students and their siblings.

Listing 10-4. Using KVC to Access Object Properties

Java
package com.apress.java.school;

public class Person
{
 public String name;
}

public class Parent extends Person
{
 public ArrayList<Student> children;
}

public class Teacher extends Person
{
 public ArrayList periods;
 public Period homeroom;
}

public class Student extends Person
{
 public ArrayList<Parent> parents;
 public ArrayList classes;
 public Period homeroom;
}

CHAPTER 10 ■ INTROSPECTION

151

public class Period
{
 public ArrayList<Studen> students;
 public Teacher teacher;
}

...

// Assemble the names of siblings from the students in Rachael's homeroom Class
Teacher teacher = School.teacherWithName("Rachael");
Period homeroom = teacher.homeroom;
HashSet siblingNames = new HashSet();
for (Student student : homeroom.students) {
 for (Parent parent : student.parents) {
 for (Student child : parent.children) {
 if (!siblingNames.contains(child.name)) {
 siblingNames.add(child.name);
 }
 }
 }
}
return siblingNames;

Objective-C
@class Period;

@interface Person : NSObject {
 NSString *name;
}
@end

@interface Parent : Person {
 NSMutableArray *childen;
}
@end

@interface Teacher : Person {
 NSMutableArray *periods;
 Period *homeroom;
}
@end

@interface Student : Person
{
 NSMutableArray *parents;
 NSMutableArray *classes;
 Period *homeroom;
}
@end

CHAPTER 10 ■ INTROSPECTION

152

@interface Period : NSObject {
 NSMutableArray *students;
 Teacher *teacher;
}
@end

...

// Assemble the set of siblings from the students in Rachael's homeroom Class
Teacher *rachael = [School teacherWithName:@"Rachael"];
return [rachael valueForKeyPath:
 @"homeroom.students.@distinctUnionOfArrays.parents.@unionOfArrays.children.name"];

The Java implementation uses a traditional procedural solution to iterate through the students

in Rachael’s class, their parents, and their children, and assemble a set of unique names. The
Objective-C solution leverages the power of KVC. Each identifier in the path addresses a property of the
receiver or preceding object. Properties that are collections of objects apply the remainder of the path to
each item in the collection, assembling the results into a new collection. Thus, the path children.name
returns a collection populated with the name property of each Student object in the children property.
Special path operators, such as @distinctUnionOfArrays, perform transformations or calculations on the
results. In this example, the return value is reduced to a single array of unique objects, eliminating any
duplicate names and collections of collections.

More importantly, a list view object on the screen, or a scripting property, could be bound using
that same path. The list would display, or the scripting property would return, the result of the search
without writing a single line of code.

Using Key-Value Coding
Using Key-Value Coding is straightforward. The root NSObject class defines the
-valueForKey:(NSString*)key and -valueForKeyPath:(NSString*)path methods. Send either of these
methods to retrieve an object’s property value. Mutable values can be set by sending either
-setValue:(id)value forKey:(NSString*)key or -setValue:(id)value forKeyPath:(NSString*)path.
A key is a single property name, while a key path may be a simple property name or a complex path of
multiple property names and operations. Primitive property values are automatically converted to and
from NSNumber or NSValue objects.

Table 10-2 lists some of the KVC operations implemented by the Cocoa framework. An operator
transforms the result of the path that follows the operator. All of the operators in Table 10-2 transform a
collection (set or array) of values.

Table 10-2. Key-Value Coding Path Operators

Operator Resul ts

@count Count of objects

@avg Numeric average of values

@max Largest value in a collection

@min Smallest value in a collection

CHAPTER 10 ■ INTROSPECTION

153

@sum Numeric sum of the values in a collection

@distinctUnionOfArrays Single array of unique objects from a collection of arrays

@distinctUnionOfObjects Array of unique objects

@distinctUnionOfSets Single set of unique objects from a collection of sets

@unionOfArrays Single array of objects from a collection of arrays

@unionOfObjects Single array of objects

@unionOfSets Single set of objects from a collection of sets

You will most likely use KVC indirectly when working with technologies like Key-Value

Observing, binding, and scripting. These all use KVC paths to identify the property being observed,
bound, or scripted. For your objects to work with these technologies, you’ll want them to be KVC
compliant.

Designing KVC-Compliant Classes
Most properties you define will be KVC compliant without any additional work. At a minimum, simply
declaring an instance variable—like NSString *name in Listing 10-4—defines a KVC-compliant property.
KVC will use instance variable introspection to find and use the property.

If you follow the practice of using @property declarations, these too will be KVC compliant. Just
avoid non-standard getter and setter names. KVC prefers accessor methods, and will use them over an
instance variable with the same name. If you implement your own accessor methods, they must follow
the standard getter and setter patterns. Table 10-3 lists the acceptable accessor method names for use
with KVC. Replace the italicized Property in each with the actual name of your property (paying
attention to case). Implement exactly one getter for immutable properties, and one of the getters and a
setter for mutable properties.

Table 10-3. KVC-Compliant Single Value Accessor Names

Method Name Role

-property Getter

-getProperty Getter

-isProperty Boolean getter

-setProperty: Setter

Properties that are arrays or sets (i.e., @property NSArray *teachers or @property NSSet

*teachers) are automatically Key-Value Coding–compliant. To implement a KVC-compliant collection

CHAPTER 10 ■ INTROSPECTION

154

property that is not one of the standard array or set types, you will need to implement a number of
special methods. To implement a custom array property, implement these methods:

-(unsigned int)countOfProperty

Implement at least one of

• -(Class*)objectInPropertyAtIndex:(NSUInteger)index

• -(NSArray*)propertyAtIndexes:(NSIndexSet*)indexes

For improved getter performance, you can optionally implement

• -(void)getProperty:(id*)array range:(NSRange)range

Mutable properties must implement at least one of the following:

• -(void)insertObject:(Class*)object inPropertyAtIndex:(NSUInteger)index

• -(void)insertProperty:(NSArray*)objects atIndexes:(NSIndexSet*)indexes (better

performance)

Mutable properties must implement at least one of the following:

• -(void)removeObjectFromPropertyAtIndex:(NSUInteger)index

• -(void)removePropertyAtIndexes:(NSIndexSet*)indexes (better performance)

For improved performance, a mutable property may optionally implement any of the following:

• -(void)replaceObjectInPropertyAtIndex:(NSUInteger)index withObject:(Class*)object

• -(void)replacePropertyAtIndexes:(NSIndexSet*)indexes withProperty:(NSArray*)objects

In each of these methods, the italicized Property name is replaced with the name of the
property being defined, as in -(NSUInteger)countOfTeachers. Note that if you choose a singular property
name, consistently use the singular—not the plural—form when constructing KVC-compliant method
names. Replace Class with the class of the property object, as in
-(Teacher*)objectInTeachersAtIndex:(NSUInteger)index.

To implement a custom set property, implement these methods:

-(NSUInteger)countOfProperty

-(NSEnumerator*)enumeratorOfProperty

-(Class*)memberOfProperty:(Class*)object

Mutable properties must implement at least one of the following:

• -(void)addPropertyObject:(Class*)object

• -(void)addProperty:(NSSet*)objects

CHAPTER 10 ■ INTROSPECTION

155

Mutable properties must implement at least one of the following:

• -(void)removePropertyObject:(Class*)object

• -(void)removeProperty:(NSSet*)objects

For improved performance, a mutable property may optionally implement

• -(void)intersectProperty:(NSSet*)set

Custom Key Values
In addition, named properties can be implemented programmatically by overriding
-(id)valueForUndefinedKey:(NSString*)key and -(void)setValue:(id)value
forUndefinedKey:(NSString*)key. These message are sent to an object whenever an attempt is made to
get or set a property that KVC doesn’t recognize. Your code can translate the name or synthesize a value.
KVC also defines a standard for validating properties. Consult the Key-Value Coding Programming
Guide published by Apple for additional details.1

Inspecting Classes
This section describes the primary functions for obtaining information about a Class. The next few
sections will describe how to perform the most common and useful introspections. More advanced
developers are encouraged to read the Objective-C 2.0 Runtime Reference published by Apple.2

Just as in Java, advanced introspection begins with the Class object. Class introspection in Java
is neatly and logically organized into a class hierarchy starting with the java.lang.Class class, and working
down through java.lang.reflect.Method, java.lang.reflect.Field, and so on.

In Objective-C, this is where things get a little obscure. Up until now, I’ve discussed the single
Objective-C Class object that defines each class, and is referenced by each object’s isa variable. This was
somewhat misleading. There actually isn’t a Class class, in the strictest sense. The Class type is a C
structure pointer to the opaque objc_class structure. Readers with a particularly keen eye will have
noticed that references to Class, like those in Table 10-1, are always just Class not Class*, as they would
be for a true Objective-C object pointer.

I could get away with this deception because a pointer to an objc_class structure responds to
messages much like any Objective-C object. This is why you can send it messages using Objective-C
method invocation syntax, as in [MyClass new].

So the Class type exists in a kind of twilight zone between a real class and a C structure,
generally behaving as an object, but without any formal class definition. Deeper introspection into
classes and objects involves C functions that take an objc_class structure pointer and return information
about it. This information will often be in the form of other C structures or C strings. This isn’t
particularly difficult, but be aware that you’re stepping outside the bounds of object-oriented
programming and into the bowels of the Objective-C runtime system.

1
 Apple, Inc., Key-Value Coding Programming Guide, http://developer.apple.com/documentation/Cocoa/
Conceptual/KeyValueCoding/, 2009.
2
 Apple, Inc., Objective-C 2.0 Runtime Reference, http://developer.apple.com/documentation/Cocoa/
Reference/ObjCRuntimeRef/, 2008.

CHAPTER 10 ■ INTROSPECTION

156

■Note Objective-C’s runtime system is designed to be completely transparent. Unlike Java’s
java.lang.ClassLoader—the internals of which are shrouded in secrecy—the functions by which Objective-C
classes are created, registered, modified, instantiated, and sent messages are all directly available through the
Objective-C runtime API. Advanced programmers who want to implement scripting languages, or dynamically
define and augment classes at runtime, have unfettered access to the same APIs used by the Cocoa frameworks.

Table 10-4 lists a few functions that are useful in exploring information about classes. The first
four functions in the table translate names into Class or Protocol pointers, and back again. This is how
you could obtain a Class reference from nothing but a name. The second four functions are just
wrappers that perform the same functions, taking and returning Objective-C string objects. The wrapper
function simply calls one of the first four, converting the strings for you. Finally the
class_getSuperclass(Class) function returns a class’s superclass reference, or Nil if the class is the root
class. It’s equivalent to sending the -superclass message to an object.

Table 10-4. Functions for Inspecting Classes

Funct ion Returns

objc_getClass(const char*) Class with that name

class_getName(Class) The name of the Class

objc_getProtocol(const char*) Protocol with that name

protocol_getName(Protocol) The name of the Protocol

NSClassFromString(NSString *name) Class with that name

NSStringFromClass(Class) The name of the Class

NSProtocolFromString(NSString *name) Protocol with that name

NSStringFromProtocol(Protocol*) The name of the Protocol

class_getSuperclass(Class) Superclass of Class

Listing 10-5 shows how to iterate through the classes an object inherits.

CHAPTER 10 ■ INTROSPECTION

157

Listing 10-5. Walking Up the List of Superclasses

Java
Class objClass = object.getClass();
while (objClass!=null) {
 …
 objClass = objClass.getSuperclass();
}

Objective-C
Class class = [object class];
while (class!=Nil) {
 …
 class = class_getSuperclass(class);
}

■Note Objective-C defines the Nil constant for use with Class pointers. Use Nil with Class pointers exactly as
you would use nil with object pointers.

Exploring Protocols
Formal protocols (interfaces) are defined separately from classes. You may want to know what protocols
a class conforms to, or the methods that a protocol declares. The functions in Table 10-5 will identify the
protocols that a class conforms to, and let you explore those protocols. If you just want to know if an
object conforms to a specific protocol, use the -[NSObject conformsToProtocol:] method described
earlier.

Table 10-5. Protocol Introspection Functions

Funct ion Returns

objc_getProtocol(const char*) The protocol with that name

NSProtocolFromString(NSString*) Same as objc_getProtocol, but accepts an
Objective-C string object

class_copyProtocolList(Class,unsigned int*) The list of protocols the class conforms to

protocol_conformsToProtocol(Protocol*,Protocol*) YES if the protocol conforms to another protocol

protocol_getName(Protocol*) The name of the protocol

protocol_isEqual(Protocol*,Protocol*) YES if the protocols are equivalent

CHAPTER 10 ■ INTROSPECTION

158

class_copyProtocolList returns a NULL-terminated C array of Protocol pointers. This block of
memory must be released using the free(void*) function when you are finished with it. The number of
protocols in the array is returned in the unsigned integer located at the address passed in the second
parameter. If that parameter is NULL, no count is returned. You can use either the returned count or the
NULL-terminating pointer to determine the length of the list, as shown in Listing 10-6.

Listing 10-6. Listing the Protocols of a Class

unsigned int protocolCount;
Protocol **protocols = class_copyProtocolList(class,&protocolCount);
NSMutableString *list = [NSMutableString new];
unsigned int i;
for (i=0; i<protocolCount; i++) {
 Protocol *p = protocols[i];
 if (i!=0)
 [list appendString:@", "];
 [list appendFormat:@"%s",protocol_getName(p)];
}
if (protocolCount!=0)
 NSLog(@"Class %s implements the protocols: %@",class_getName(class),list);
free(protocols);

Points of interest in Listing 10-6: the name returned by protocol_getName and class_getName

are C strings, formatted using the %s format specifier. The list variable is a string object, formatted using
%@. Protocol is a structure type, not an opaque pointer type like Class and Method. As such, references
are declared as pointers to Protocol (Protocol*), rather than just the type (Class, Method). Confusing,
isn’t it?

Exploring Methods
I’ve already shown you how to easily determine if an object implements a specific method. Using the
functions in Table 10-6 you can obtain a list of all of the methods a class implements. From a Method
value you can get a method’s name, selector, implementation address, and parameter information.

Table 10-6. Common Method Introspection Functions

Funct ion Returns

class_copyMethodList(Class,unsigned int *) NULL-terminated Method array

class_getClassMethod(Class,SEL) Method if selector was sent to the class

class_getInstanceMethod(Class,SEL) Method if selector was sent to an instance of class

method_getName(Method) Selector constant for Method

sel_getName(SEL) Name for selector

CHAPTER 10 ■ INTROSPECTION

159

NSStringFromSelector(SEL) Name for selector

NSSelectorFromString(NSString*) Selector for name

class_getMethodImplementation(Class,SEL) Address of code that implements selector

method_getImplementation(Method) Address of code that implements Method

The class_copyMethodList function works similarly to class_copyProtocolList. It returns a
NULL-terminated array of Method references, which should be released using free(void*) when done.
The class_getClassMethod function obtains a single Method for a specific selector constant. Note that
these functions only return the methods defined by that class, not inherited by that class. To discover
inherited methods, you must examine all of its superclasses.

The two functions class_getClassMethod and class_getInstanceMethod consider the difference
when sending a message to class object ([MyClass message]), or an instance of the class ([myObject
message]). Class and instance methods are implemented for different objects, so the results of the two
functions will be different.

The method_getName function, despite its name, returns the selector constant associated with
the Method—not the name of the method. To turn the selector into a name, call sel_getName or
NSStringFromSelector. To do the opposite, call NSSelectorFromString.

An example of these functions in action can be found in Listing 10-7.

Listing 10-7. Listing the Methods Implemented by a Class

unsigned int methodCount;
Method *methods = class_copyMethodList(class,&methodCount);
NSMutableString *list = [NSMutableString new];
unsigned int i;
for (i=0; i<methodCount; i++) {
 Method m = methods[i];
 if (i!=0)
 [list appendString:@", "];
 [list appendFormat:@"%s",sel_getName(method_getName(m))];
}
if (methodCount!=0)
 NSLog(@"Class %s implements the methods: %@",class_getName(class),list);
free(methods);

The functions class_getMethodImplementation and method_getImplementation both do the

same thing: they return the execution address of the code that implements the method. The Sending
Messages chapter explained how to call a method directly using its implementation address.

With a Method reference, there are a score of C functions for examining its parameter list, the
types and sizes of each parameter, and so on. Instead of diving into these functions, I encourage you to
use the method -[NSObject methodSignatureForSelector:] to obtain an NSMethodSignature object.
NSMethodSignature substantively represents all of the information embodied by the Method structure,
but in an object-oriented interface. If you have a need to stick with the C functions, refer to the
Objective-C 2.0 Runtime Reference document.

CHAPTER 10 ■ INTROSPECTION

160

With an NSMethodSignature object, you can get the type of each argument (i.e., its @encode()
constant) using -getArgumentTypeAtIndex:. The message -methodReturnType returns the C type of the
method’s return value. To invoke a method using NSMethodSignature, use it to create an NSInvocation
object. This was also demonstrated in Chapter 6.

Exploring Properties
In Objective-C 2.0, the @property directive attaches metadata to the class that is available to the
programmer at runtime. These are called formal properties. Naturally, the set of properties will overlap
instance variables and methods, since most properties are implemented using instance variables along
with getter and setting methods. Table 10-7 lists the common methods for examining the formal
properties of a class.

Table 10-7. Common Formal Property Introspection Functions

Funct ion Returns

class_copyPropertyList(Class,unsigned int *) NULL-terminated array of objc_property_t
structure pointers

protocol_copyPropertyList(Protocol*,unsigned int *) NULL-terminated array of objc_property_t
structure pointers

class_getProperty(Class,const char*) objc_property_t structure for a named property

protocol_getProperty(Protocol*,const
char*,BOOL,BOOL)

objc_property_t structure for a named property

property_getName(objc_property_t) name of property

property_getAttributes(objc_property_t) attribute string that describes the property

The …_copyPropertyList and …_getProperty functions obtain an array or a single property
description. You can inspect the properties for a class or a protocol. Lists must be released using
free(void*).

The function property_getName returns the name of the property. The property_getAttributes
function returns a string that describes the property. The description includes an encoded form of the
property’s type, attributes, and name. The string always begins with a T followed by the @encode()
constant for its type. Attributes such as readonly, copy, and retain add R, C, and & characters,
respectively. Other attributes are also represented. A V and the property’s formal name follow the type
and attributes. A few examples are listed in Table 10-8. Note that BOOL values are always encoded as
signed characters.

CHAPTER 10 ■ INTROSPECTION

161

Table 10-8. Example Property Attribute Descriptions

Proper ty Declarat ion At t r ibute Str ing

@property int someInt; Ti,VsomeInt

@property id (assign) anyObject T@,VanyObject

@property(readonly) int ceiling; Ti,R,Vceiling

@property(getter=isRunning) BOOL running; Tc,GisRunning,Vrunning

@property(nonatomic,readonly,copy) id safe; T@,R,C,Vsafe

Exploring Instance Variables
The introspection functions for instance variables follows the same pattern as those for methods,
protocols, and properties. There are functions, listed in Table 10-9, to obtain a list of Ivar structures that
describe all instance variables defined by a class, or just one. The functions ivar_getName,
ivar_getOffset, ivar_getTypeEncoding will reveal the name, byte offset within the object’s structure, and
type of each Ivar—but these latter two should not generally be used to access the variable. To get or set
an instance variable, call object_getIvar(id,Ivar) or object_setIvar(id,Ivar,id). The value returned or
passed is an object that is converted, as needed, to the actual type of the variable (a.k.a. auto-boxing).

Key-Value Coding is implemented using these low-level instance variable introspection
functions. If you need to programmatically get or set the value of instance variables, you might find it
easier to use the higher-level KVC methods. Listing 10-8 demonstrates setting the name instance variable
to the string @"Hugh" via introspection, and is equivalent to the statement object->name = @"Hugh".

Listing 10-8. Programmatically Setting an Instance Variable

Ivar ivar = class_getInstanceVariable([object class],"name");
object_setIvar(object,ivar,@"Hugh");

As an alternative to object_getIvar and object_setIvar, the functions

object_getInstanceVariable(id,const char*,void**) and object_setInstanceVariable(id,const char*,void*)
get or set instance values directly, without using intermediate objects. Both return, as a side effect, the
Ivar describing the variable they identified as the target. The getter function accepts the address of a
pointer, which will be set to point to the actual variable in the object, and the setter function accepts a
pointer to a value to copy into the object.

CHAPTER 10 ■ INTROSPECTION

162

Table 10-9. Common Instance Variable Introspection Functions

Funct ion Returns

class_copyIvarList(Class,unsigned int*) NULL-terminated array of Ivar pointers

class_getInstanceVariable(Class,const char*) Ivar pointer describing the named variable

ivar_getName(Ivar) Name of the variable

object_getIvar(id,Ivar) The value of the object’s variable as an object

object_setIvar(id,Ivar,id) Nothing; Sets the value of the object’s variable

object_getInstanceVariable(id,const char*,void**) Ivar of the named variable and a pointer to its value

object_setInstanceVariable(id,const char*,void*) Ivar of the named variable, copying a new value
into it

Summary
There are many other methods and functions for manipulating the structures that define classes and
objects at runtime. The functions highlighted in this chapter let you perform the common forms of
introspection, through which you can examine almost every aspect of an object and its class. If you need
to dig even deeper (no pun intended), I highly recommend reading Apple’s Objective-C 2.0 Runtime
Reference.3

3
 Apple, Inc., Objective-C 2.0 Runtime Reference, http://developer.apple.com/documentation/Cocoa/Reference/
ObjCRuntimeRef/, 2008.

C H A P T E R 11

■ ■ ■

163

Fi les

File systems are essential to virtually every computer operating system. It’s where the operating system
itself, applications, documents, and other information persist. Conceptually, files are very simple: a file
is a named sequence of bytes, organized hierarchically in a file system.

You’d think this would be a short chapter, but it’s not. Probably because of their importance,
file systems have been the focus of much development. They have steadily evolved over the decades and
are now quite complex. Files have sophisticated permissions, attributes, and multiple data forks. There
are device files, memory files, serial communication files, and symbolic link files. File systems
incorporate advanced caching, asynchronous data transfer, journaling, and change tracking. Much of
this complexity has spilled into APIs and objects that interface with the file system.

There are more details to contend with when using files in Objective-C than there are in Java.
To be portable, Java tries to hide or abstract as many of the underlying file system details as possible.
Objective-C exposes all of the underlying POSIX file system details in all their glory. On the other hand,
Objective-C provides many more high-level methods that allow you to read, write, or access the contents
of an entire file with as little as a single statement.

This chapter will cover the basics of file and path names, how to process files in a directory, the
manipulation of file metadata, and various ways of reading and writing data files. Along the way, it will
also touch on some alternate APIs.

File System APIs
The functions, classes, and methods you use to interact with the file system are collectively referred to as
the file system’s application programming interface (API). In Java, the file system API is neatly organized
in the java.io package. Not so in Objective-C. The Objective-C Cocoa framework provides a simple
interface to the file system that’s adequate for most needs. Parallel to that is the Core Services
framework. Core Services provides numerous advanced file system functions along with a set of C APIs
that mimic the original file services of the classic Macintosh operating system (often referred to as the
Carbon API). Underneath both of these APIs is the core BSD API. These are the C functions that actually
implement most of the file services in Mac OS X. Much of the Cocoa and Core Services are just
compatibility APIs that do little more than call a BSD function to get the work done.

A conceptual difference between Objective-C and Java is that much of Java is organized around
abstract classes that read and write serial data (java.io.Reader, java.io.Writer, java.io.InputStream,
java.io.OutputStream), with subclasses that work with data files. Objective-C (and C) tend to use
purpose-built functions for working with data files, and reserve the use of data stream classes for
network ports and communication pipes. There is some overlap, but much less than in Java.

CHAPTER 11 ■ FILES

164

Figure 11-1. File System API Organization in Mac OS X

Every Objective-C process has a singleton instance of the NSFileManager class, obtained by
sending [NSFileManager defaultManager]. NSFileManager implements most of the global file system
methods. This chapter presents Objective-C solutions to common file system tasks whenever possible,
but a few useful features are only available through C functions in the Cocoa, Core Services, or BSD
frameworks.

A Java virtual machine can be hosted on a variety of computing platforms, all with different
underlying file systems. Consequently, the Java file APIs tend to be general and make as few assumptions
as possible. The Objective-C and BSD APIs, in contrast, unambiguously assume a POSIX-compatible file
system. You will find no variable that’s equivalent to java.io.File.pathSeparatorChar in Objective-C. All
file and directory paths in Objective-C are POSIX paths and the path component separator is, and will
always be, a single ‘/’ character. The Core Services framework largely assumes an HFS+ file system,
although mostly for compatibility with legacy code, as most of the HFS+ file specifiers and data
structures are simply translated into BSD calls.

While the programming interfaces explicitly assume a POSIX file system, the underlying file
services framework allows for a great deal of latitude on how file system API calls are translated into
action. Ultimately, all file system calls make some change to the contents of a volume—a logical
partition of a physical storage device. The format of that volume can vary dramatically. The HFS+
volume format is the native format for the Mac OS X operating system, but the BSD file system
framework is perfectly happy to work with UFS volumes, Samba volumes, AppleShare volumes,
Windows volumes, and so on. The file system APIs you call are automatically translated into the
appropriate action for the format of the volume through a plug-in architecture called the Virtual File
System (VFS). The only time you would need to be conscious of this is when dealing with obscure
features that are foreign to the volume format being used. For example, a UFS volume might not support
access control lists and the file names on HFS+ volumes may, or may not, be case sensitive. You can
usually ignore the implementation details of the underlying volume format; just be aware that some
features might not be implemented by every volume format supported by the operating system.

Identifying Items in the File System
This section explains the basic rules for how items in a file system are named and how to construct paths
to those items. It also details how to get and set the working or default directory. In addition to string
paths, files are also identified using URL objects and aliases. This section explains how file URLs and
aliases are used and how to convert them to string paths. Finally, Mac OS X defines a number of
standard directories whose location can be requested symbolically, avoiding the need to hard-code

CHAPTER 11 ■ FILES

165

paths to system resources that might change in the future or are variable by nature. This section
describes the functions used to obtain those directory paths.

File and Path Names
Welcome to POSIX File Names 101. Let’s start with a quick review of the basics, so there’s no confusion
later. To work with any entity on a volume you must identify it by name. A file name can be just about
any string, with the restriction that it can’t contain the ‘/’ path separator character, be one of the
reserved names (“.” or “..”), be an empty string, or be too long (no more than 255 Unicode characters).
The string @"notes.txt" is a valid file name.

A path is one or more concatenated names, delineated by the ‘/’ path separator character. The
string @"james/Documents/Publications" is a path. The last element of a path names a file. All of the
names before the final one must name directories or some other kind of file system container, such as a
mount point.

■Note Objective-C file classes are built on POSIX file concepts, and inherit many of the notions of the original UNIX
operating system. Most important is the concept that everything is a file. In UNIX, the file system is not a concrete
collection of data files on a disk drive, but an abstract naming system for identifying any source of serial data. “Files”
in UNIX can be data files, directories, network sockets, serial ports, semaphores, random number generators, blocks
of RAM, logical console devices, and so on. Think of the term “file” as being the base class of any named entity in the
file system hierarchy. Directories, data files, and FIFO pipes are all specialized subclasses of a “file.” This terminology
percolates through the APIs. For example, the -[NSFileManager removeFileAtPath:handler:] method deletes
much more than just data files. If passed the path to a directory, it will delete it and every item it contains. It would
also delete a named socket or semaphore. In this book, I adhere to the UNIX nomenclature of “file” to mean virtually
any named entity in a file system—it just gets too confusing otherwise. When referring to an actual document file on
a volume, I’ll use the term data file.

Paths can be absolute or relative. A path that begins with a ‘/’ is an absolute path specifying a
series of directories beginning at the root directory of the file system. Otherwise, the path is a relative
path specifying a series of directories starting in the current working directory. Some file system
functions recognize paths that begin with a tilde, as in “~/Documents/Publications”, to mean an
absolute path beginning with the home directory of the current user.

For better or worse, the UNIX naming convention of extensions has followed us into the
twenty-first century. File name extensions intimate the kind of information a file contains. They are
typically short identifiers—three or four alphabetic characters—appended to the end of a file name
following a period (.). The extension of the name @"Outline.doc" is @"doc", and the extension of the
name @"Letter to Jake 2.0.pages" is @"pages".

Java’s java.io.File object is largely the fundamental object used to identify files in the file system.
A File object can be created for nonexistent files. Path manipulations are accomplished by extracting
properties of a File or creating new File objects based on an existing File object. For example, the parent
directory of a path can be determined by creating a File object to the path then calling getParent().

Objective-C does not have an object that can represent abstract or nonexistent files. Strings are
used to represent file names and paths. How you assemble path or file name strings is entirely up to you.
You can use any of the string manipulation methods, but there are a few provided by the Cocoa
framework specifically for working the paths. The methods are attached to the NSString class via the
NSPathUtilities category. The commonly used ones are listed in Table 11-1. Listing 11-1 illustrates the

CHAPTER 11 ■ FILES

166

contrast between Java and Objective-C path manipulation. As an example, both the Java and
Objective-C methods in Listing 11-1 generate a path to a nonexistent file.

Table 11-1. Path and File Name Methods of NSString

Method Descr ipt i on

+(NSString*)pathWithComponents:(NSArray*)components Constructs a path from an array of file names. To
construct an absolute path, set the first element
in the array to the string @"/".

-(NSArray*)stringsByAppendingPaths:(NSArray*)paths Appends the file names in the array to the path
in the receiver.

-(NSString*)pathComponents Decomposes the path into individual file names,
returned in an array. If the path is absolute, the
first element in the array is @"/".

-(BOOL)isAbsolutePath Returns YES if the path is absolute (begins with
@"/").

-(NSString*)lastPathComponent Extracts the last file name from a path.

-(NSString*)stringByDeletingLastPathComponent Removes the last file name in the receiver’s path.

-(NSString*)stringByAppendingPathComponent:
(NSString*)str

Appends an additional name to end of a path.

-(NSString*)pathExtension Extracts the extension from that last name in a
path.

-(NSString*)stringByDeletingPathExtension Removes the extension, if any, from the last
name in a path.

-(NSString*)stringByAppendingPathExtension:
(NSString*)str

Appends a new extension to the last name in a
path.

-(NSString*)stringByAbbreviatingWithTildeInPath If the receiver’s path begins with the current
user’s home directory path, it is replaced with
the shorthand @"~".

-(NSString*)stringByExpandingTildeInPath Replaces the @"~" at the beginning of the
receiver’s path with the path to the current
user’s home directory, or replace @"~account"
with the path to the home directory of user
“account”.

-(NSString*)stringByStandardizingPath Simplifies and normalizes the path of the
receiver.

CHAPTER 11 ■ FILES

167

Most of these methods are self-explanatory. None of them modifies the receiver. As the

-stringBy… method names imply, each returns a new string object with the results of the transformation.
The first few convert arrays of names into complete paths and vice versa. The bulk of the methods
extract, delete, or append a single name or file name extension to an existing path. The
-stringByStandardizingPath method “normalizes” a path string by replacing the @"~" or @"~user"
shorthand with an explicit path, replacing any relative path references and symbolic links with their
physical (nonsymbolic) equivalent, and removing any extraneous path elements. In short, it’s a
“cleanup” method that reduces a path to its simplest, most explicit, form.

Listing 11-1. Generate a Path to a Nonexistent File

Java
public String autoName(String parentDir, String baseName, String ext)
{
 int suffix = 0;
 File parentFile = new File(parentDir);
 File testFile = new File(parentFile,baseName+"."+ext);
 while (testFile.exists()) {
 suffix += 1;
 testFile = new File(parentFile,baseName+"-"+suffix+"."+ext);
 }
 return testFile.getAbsolutePath();
}

Objective-C
- (NSString*)autoNameInDirectory:(NSString*)parentDir
 name:(NSString*)name
 extension:(NSString*)ext
{
 int suffix = 0;
 NSString *testPath = [parentDir stringByAppendingPathComponent:name];
 testPath = [testPath stringByAppendingPathExtension:ext];
 while ([[NSFileManager defaultManager] fileExistsAtPath:testPath]) {
 NSString *newName = [NSString stringWithFormat:@"%@-%d",name,++suffix];
 testPath = [parentDir stringByAppendingPathComponent:newName];
 testPath = [testPath stringByAppendingPathExtension:ext];
 }
 return testPath;
}

Working Directory
Every process maintains a default directory path, referred to as the current directory or working
directory. This is the directory used to resolve relative paths. All relative paths are concatenated with the
current working directory path to obtain the file’s explicit path. Table 11-2 shows the two
NSFileManager methods used to get and change the current working directory path in Objective-C.

CHAPTER 11 ■ FILES

168

Table 11-2. Working Directory Messages

Method Descr ipt i on

-(NSString*)currentDirectoryPath Returns the current working directory path

-(BOOL)changeCurrentDirectoryPath:(NSString*)path Sets the working directory path

If the path specifies an accessible directory in the file system, this method sets the current
working directory to the one identified by the path and returns YES. Otherwise, it does nothing and
returns NO.

The equivalent functionality in Java is accomplished by setting the "user.dir" system property.
The only significant difference is that the user.dir property is just a string and isn’t evaluated until a file
operating needs to resolve a relative path. The -changeCurrentDirectoryPath: method qualifies the path
and rejects the change if the path is unusable. Listing 11-2 modifies the current working directory so that
it refers to a “temp” subdirectory, but only if that subdirectory exists.

Listing 11-2. Changing the Current Working Directory

Java
String workingPath = System.getProperty("user.dir");
File testFile = new File(workingPath,"temp");
if (testFile.exists()) {
 System.setProperty("user.dir",testFile.getAbsolutePath());
}

Objective-C
NSString *current = [[NSFileManager defaultManager] currentDirectoryPath];
NSString *temp = [current stringByAppendingPathComponent:@"temp"];
[[NSFileManager defaultManager] changeCurrentDirectoryPath:temp];

The initial current directory for a Mac OS X process is inherited from the environment of the

process that started it. For a command-line tool, it will be the working directory of the shell that
launched the tool. For application bundles, the OS normally sets the working directory to the directory
that contains the application bundle before launching the process.

File URLs
A few major versions ago, the Cocoa framework began to adopt Universal Resource Locators (URLs) as
the preferred identifier object for data sources. For example, the original -[NSDocumentController
openDocumentWithContentsOfFile:display:] method has been deprecated in favor of
-openDocumentWithContentsOfURL:display:error:. This has increased the flexibility of many classes, as
URLs can refer to data from a variety of sources—not just data files in the file system. But it also means
that you many need to convert a file system path into a URL and back again.

Java’s java.net.URL object can refer to a file, but is not typically used in conjunction with the
java.io.* classes. About the only concession to URLs, or more correctly URIs (Universal Resource

CHAPTER 11 ■ FILES

169

Identifiers) is in the java.io.File class. It supports constructing a File object from a URI and the
File.toURI() and File.toURL() methods for obtaining the URL of a File. Table 11-3 lists the basic
methods for converting between paths and file URLs in Cocoa.

Table 11-3. File Related NSURL Methods

Method Descr ipt i on

+(NSURL*)fileURLWithPath:(NSString*)path Creates a file URL to a given file.

-(BOOL)isFileURL Returns YES if the receiver is a file scheme URL.

-(NSString*)path If the receiver is a file scheme URL, -path returns the
file system path to the item.

Creating and Deleting Directories
The method -[NSFileManager createDirectoryAtPath:withIntermediateDirectories:attributes:error:]
creates a new directory. If the withIntermediateDirectories: parameter is YES, any missing intermediate
directories are also created. For example, if the path /Users/daphne/Music exists, sending
-createDirectoryAtPath:withIntermediateDirectories:attributes:error: with a path of
@"/Users/daphne/Music/Albums/Cocteau Twins" and YES for withIntermediateDirectories: would create
an Albums directory within Music, and then create a Cocteau Twins directory within Albums. In this mode,
the message is equivalent to the java.io.File.mkdirs() method. If withIntermediateDirectories: was NO,
it would return an error, as the parent directory would be expected to exist. That would be equivalent to
calling java.io.File.mkdir(). The attributes: parameter is a dictionary of attributes to be set. See the
“File Properties” section later in this chapter for information about attribute dictionaries.

Delete a directory, like any file, using -[NSFileManage removeItemAtPath:error:].

Locating Special Directories
It’s generally considered bad form to hard-code paths to well-known directories as string constants.
These have a habit of changing over time, breaking your application in the process. The Mac OS X
operating system defines a number of directories with specific purposes. In addition, it defines a set of
domains that form a hierarchy that define the scope of the resource. For example, a font is installed by
placing a font file in the Fonts folder. A user has a Fonts folder, all users have a shared Fonts folder, the
system has a Fonts folder, and the network has a Fonts folder. Which Fonts folder the font is copied into
determines its scope.

Special directories are located by calling NSSearchPathForDirectoriesInDomains(…) with three
arguments: a constant describing the well-known directory, a bit mask of acceptable domains, and a flag
to automatically expand the “~” shorthand in returned paths. Listing 11-3 shows how to use
NSSearchPathForDirectoriesInDomains(…) to get the path of the user’s desktop directory.

CHAPTER 11 ■ FILES

170

Listing 11-3. Locating the User’s Desktop Directory

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDesktopDirectory,
 NSUserDomainMask,
 YES);
if ([paths count]>0) {
 NSString *desktopPath = [paths objectAtIndex:0];
 …
}

NSSearchPathForDirectoriesInDomains(…) returns an array containing the paths of the directory

in each of the requested domains, in the order they should be searched, from the most specific to the
most general. Table 11-4 lists the commonly used directory constants. The domain argument can be any
combination of the domains in Table 11-5 OR’d together, or the constant NSAllDomainsMask.

Table 11-4. Common Directory Constants

Directory Constant Descr ipt i on (example path)

NSApplicationDirectory Applications (/Applications)

NSLibraryDirectory User resources such as fonts, preferences, and log files (~/Library)

NSUserDirectory The folder containing all home folders (/Users)

NSDocumentDirectory Documents (~/Documents)

NSDesktopDirectory The desktop (~/Desktop)

NSCachesDirectory Cache files (~/Library/Caches)

NSApplicationSupportDirectory Ancillary files used by an application (/Library/Application Support)

NSDownloadsDirectory The download folder (~/Downloads)

Table 11-5. Directory Domains

Domain Descr ipt i on

NSUserDomainMask The current user

NSLocalDomainMask The users of this system

NSSystemDomainMask The entire system

NSNetworkDomainMask All systems on the local network

CHAPTER 11 ■ FILES

171

There are also two special-purpose functions that return variable paths. NSHomeDirectory()

returns the path to the current user’s home directory. NSTemporaryDirectory() returns a path to
directory specifically set aside for creating temporary files.

Requesting a File from the User
Prompting the user to select a file interactively is remarkably similar in Java. Java uses the JFileChooser
class to choose an existing file or allow the user to enter the name of a new file. Cocoa supplies the
NSSavePanel class to enter a new file name and its NSOpenPanel subclass to select an existing one.
Listing 11-4 shows equivalent code for prompting the user to choose a single data file or directory from
the file system.

Listing 11-4. Choosing a Single File

Java
JFileChooser chooser = new JFileChooser();
chooser.setFileSelectionMode(JFileChooser.FILES_AND_DIRECTORIES);
chooser.setMultiSelectionEnabled(false);
int result = chooser.showOpenDialog(null);
if (result==JFileChooser.APPROVE_OPTION)
 return chooser.getSelectedFile().getAbsolutePath();
return null;

Objective-C
NSOpenPanel *panel = [NSOpenPanel openPanel];
[panel setCanChooseFiles:YES];
[panel setCanChooseDirectories:YES];
[panel setAllowsMultipleSelection:NO];
NSInteger result = [panel runModal];
if (result==NSFileHandlingPanelOKButton)
 return [panel filename];
return nil;

Each class has numerous properties that determine the type of items that can be selected.

Filtering and other dynamic customization is done through the NSSavePanel delegate. To filter items in
the display, create an object that implements the -(BOOL)panel:(id)sender
shouldShowFilename:(NSString*)filename method and set it as the delegate property of the panel object.
See the Delegate Methods section of the NSSavePanel documentation for a complete list of the informal
protocols a delegate object can implement.

While the Objective-C code in Listing 11-4 is equivalent to the Java code, it isn’t the preferred
method for presenting a file dialog. The code in Listing 11-5 will suspend the entire application until the
user chooses a file. If a file selection is associated with a window, it is much more desirable to use a
sheet—a model child window attached to a specific window—so that the high-level application interface
isn’t blocked. Listing 11-5 starts a model sheet with the same panel used in Listing 11-4. The beginSheet…
message returns immediately so that the main application run loop continues uninterrupted. When the
user makes a selection in the sheet, the message specified in the didEndSelector: parameter is sent to
the modalDelegate: object. These can be any object and message you choose, as long as the method
arguments match those defined by the informal protocol.

CHAPTER 11 ■ FILES

172

Listing 11-5. Using a File Selection Sheet

NSOpenPanel *panel = [NSOpenPanel openPanel];
[panel setCanChooseFiles:YES];
[panel setCanChooseDirectories:YES];
[panel setAllowsMultipleSelection:NO];
[panel beginSheetForDirectory:nil // use default directory
 file:nil // don't preselect any file
 modalForWindow:documentWindow // sheet attached to this window
 modalDelegate:self
 didEndSelector:@selector(myOpenDidEnd:returned:context:)
 contextInfo:NULL];

...

- (void)myOpenDidEnd:(NSSavePanel*)sheet returned:(int)code context:(void*)ignored
{
 if (code==NSOKButton) {
 NSString *file = [sheet filename];
 …
 }
}

Symbolic Links, Hard Links, and Aliases
The Mac OS X operating system provides three types of files that reference another file. The first are
symbolic links. These are special files that contain the path to another directory in the file system.
Generally, a symbolic link acts as if it were the directory to which it refers. For example, the directory
/Users/hannah/Documents/Updates contains the file Monday.doc, and the file /Users/hannah/Public/New is
a symbolic link containing the path /Users/hannah/Documents/Updates. In this situation, the paths
/Users/hannah/Documents/Updates/Monday.doc and /Users/hannah/Public/New/Monday.doc are
functionally equivalent and refer to the same file.

NSFileManager provides methods for creating symbolic links and obtaining their contents.
Most file operations traverse symbolic links transparently. A path that ends with a symbolic link usually
refers to the link file itself, not the directory that it refers to. For example, the statement [[NSFileManager
defaultManager] removeItemAtPath:@"/Users/hannah/Public/New" error:NULL] would delete the
symbolic link file, not the Updates folder. The notable exception is the -[NSFileManager
fileAttributesAtPath:traverseLink:] method. Its second BOOL parameter determines if it will return
the attributes of the symbolic link file or the attributes of the file the symbolic link refers to. Table 11-6
lists the methods for creating and reading the contents of symbolic links.

CHAPTER 11 ■ FILES

173

Table 11-6. NSFileManager Symbolic Link Methods

Method Descr ipt i on

-(BOOL)createSymbolicLinkAtPath:(NSString*)path
withDestinationPath:(NSString*)destPath
error:(NSError**)error

Creates a symbolic link file at path
that refers to the file at destPath.

-(NSString*)destinationOfSymbolicLinkAtPath:(NSString*)path
error:(NSError**)error

Extracts the path that the symbolic
link file refers to.

One of the primary purposes of -stringByStandardizingPath, described in Table 11-1, is to
replace any symbolic links in the path with their originals. Using the previous example, passing
@"/Users/hannah/Public/New/Monday.doc" to -stringByStandardizingPath would return
@"/Users/hannah/Documents/Updates/Monday.doc".

The second kind of file that stands in for another is an alias file. The concept and data structure
are inherited from the classic Macintosh operating system. An alias file contains a serialized AliasRecord
structure. To use them, you must read the contents of the file and resolve the alias using Core Services
functions. The advantage of aliases is that they are quite intelligent. For example, if you create an alias to
a document file, that document file can later be renamed and moved to another directory on the same
volume and the alias will still locate it. Furthermore, if the original file was on an external or network
volume, an alias can automatically remount the volume restoring access to the original file.

From the perspective of the Cocoa and BSD frameworks, alias files are just plain data files and
are not automatically recognized or resolved. The exceptions are a few very high-level file classes such as
NSOpenPanel, which was just discussed. NSOpenPanel has a resolvesAliases property that, if set, will
automatically resolve any alias the user selects, returning the item the alias refers to rather than the alias
file itself. Some basic functions for using alias records are described later in this chapter.

Finally, some volume formats support hard links. A hard link describes two or more files in the
file system that share the same content. Changing the data of one changes both. Unlike aliases and
symbolic links, hard-linked files are peers and each is indistinguishable from a regular file. One file does
not “point” to the other file; both files encapsulate the same physical data on the volume. In practice,
hard linked files aren’t used that often. The NSFileManager method for creating a hard link is
-(BOOL)linkItemAtPath:(NSString*)srcPath toPath:(NSString*)dstPath error:(NSError**)error. To
“break” a hard link, delete one of the files. Deleting a hard-linked file doesn’t dispose of any data,
because it is still contained in the other file.

Working With the Contents of a Directory
Discovering files by reading the contents of a directory is a common programming task. This is usually
done to perform some action on each file in the directory, possibly recursively processing the files
contained in any subdirectories of the directory as well. The former constitutes a shallow examination of
the directory, while the latter is a deep examination.

The three basic methods of obtaining the contents of a directory are listed in Table 11-7.
-contentsOfDirectoryAtPath:… returns just the immediate contents of the directory as an array of file
names (not paths). -subpathsOfDirectoryAtPath:… returns an array of complete paths to each file in the
directory, any subdirectories of the directory, sub-subdirectories, and so on.

CHAPTER 11 ■ FILES

174

Table 11-7. NSFileManager Directory Content Methods

Method Returns

-(NSArray*)contentsOfDirectoryAtPath:(NSString*)path
error:(NSError**)error

Shallow list of files in the directory

-(NSArray*)subpathsOfDirectoryAtPath:(NSString*)path
error:(NSError**)error

Deep list containing the path of every
file enclosed by the directory

-(NSDirectoryEnumerator*)enumeratorAtPath:(NSString*)path A directory item enumerator

The -enumeratorAtPath: method returns a stateful NSDirectoryEnumerator object that’s ready

to iterate through the items in the directory. The enumeration can be shallow, deep, or an arbitrary
mixture by strategically sending the enumerator object the -skipDescendents message. Listing 11-6
shows code that iterates through a hierarchy of directories, processing all “txt” files, but ignoring the
contents of any directory with a “private” extension.

Listing 11-6. Recursively Processing Directory Contents

Java
scanDirectory("/Users/ann/Documents");

…

void scanDirectory(File directory)
{
 File[] files = directory.listFiles();
 for (File file: files) {
 if (file.isFile()) {
 if (file.getName().endsWith(".txt"))
 scanTextFile(file);
 }
 else if (file.isDirectory()) {
 if (!file.getName().endsWith(".private"))
 scanDirectory(file);
 }
 }
}

void scanTextFile(File textFile)
{
 …
}

CHAPTER 11 ■ FILES

175

Objective-C
NSString *path = @"/Users/ann/Documents";
NSDirectoryEnumerator *e = [[NSFileManager defaultManager] enumeratorAtPath:path];
while ((path=[e nextObject])!=nil) {
 NSString *type = [[e fileAttributes] objectForKey:NSFileType];
 if ([type isEqualToString:NSFileTypeRegular]) {
 if ([[path pathExtension] isEqualToString:@"txt"])
 [self scanTextFile:path];
 }
 else if ([type isEqualToString:NSFileTypeDirectory]) {
 if ([[path pathExtension] isEqualToString:@"private"])
 [e skipDescendents];
 }
}

…

- (void)scanTextFile:(NSString*)textFilePath
{
 …
}

The most significant difference between the Java and Objective-C code in Listing 11-6 is that

the Java solution used a recursive method, while the linear Objective-C loop delegated directory
recursion to the NSDirectoryEnumerator object.

File Properties
A file’s properties, or metadata, are information about a file. Java’s java.io.File object is the principal
interface for obtaining the properties of a file. It implements a variety of specific methods (i.e., boolean
isFile(), long lastModified(), long length()) that describe the various properties of the file.
Objective-C has a single -[NSFileManager fileAttributesAtPath:traverseLink:] method that accepts a
file path and returns an immutable dictionary containing all salient properties of the file. The
traverseLink: argument determines what to do if the path specifies a symbolic link file. If YES, the
attributes returned will be for the file the symbolic link refers to; if NO, the attributes describe the
symbolic link file.

To examine a particular property, retrieve its value from the dictionary collection. An example
using the attributes of a file was already demonstrated listing 11-6. The keys are string constants to
values that are NSNumber, NSDate, or NSString objects. Table 11-8 lists the property methods in
java.io.File and their Objective-C equivalent. Some are methods, while others are keys into the attribute
dictionary.

CHAPTER 11 ■ FILES

176

Table 11-8. File Attribute Keys

java. io.Fi le Method Object ive-C Method or Key Descr ipt i on

exists() -[NSFileManager fileExistsAtPath:] File exists

canRead() -[NSFileManager
isReadableFileAtPath:]

File is readable

canWrite() -[NSFileManager
isWritableFileAtPath:]

File is writable

 NSFilePosixPermissions integer containing user, group, and global
read/write/execute permission bits

isFile() NSFileType True if type is NSFileTypeRegular

isDirectory() NSFileType True if type is NSFileTypeDirectory

isHidden() LSCopyItemInfoForURL(…) Launch Services API provides display
information

lastModified() NSFileModificationDate NSDate file was last modified

length() NSFileSize logical length of file

 NSFileCreationDate NSDate file was created

 NSFileOwnerAccountID Account number of file’s owner

 NSFileOwnerAccountName Account name of file’s owner

 NSFileGroupOwnerAccountID Group number of file’s group

 NSFileGroupOwnerAccountName Group name of file’s group

The type of a file is determined by examining its NSFileType attribute. The attribute value will
be one of NSFileTypeDirectory, NSFileTypeRegular, NSFileTypeSymbolicLink, NSFileTypeSocket,
NSFileTypeCharacterSpecial, NSFileTypeBlockSpecial, or NSFileTypeUnknown. Detailed information
about an item’s display name, whether the file’s extension should be hidden from the user, or if the
entire file should be hidden, is available through various Launch Services functions. See the
NSFileManager documentation for a complete list of file attribute keys.

Most file attributes can be modified using the -[NSFileManager setAttributes:ofItemAtPath:
error:] method. You provide a dictionary containing the attributes you want modified and a file path.
Some attributes, such as NSFileType and NSFileSize, cannot be modified using -setAttributes:…. The
security policy may conditionally inhibit modification of other attributes, such as NSFileOwnerAccountID.

CHAPTER 11 ■ FILES

177

The method returns YES if all attributes changes were effected successfully. If it returns NO, the changes
were indeterminate.

High-Level File Operations
Objective-C applications tend to deal with files in a holistic fashion, rather than the more traditional
approach of opening the file, reading some or all of its data, and closing it again. Application classes, like
the document management classes, tend to favor reading an entire file into a single data object. The
typical life cycle of a document file is to be read—in its entirety—into a single NSData object, edited, and
then written back out, overwriting the original file.

In modern file systems, it is also difficult to “correctly” perform even simple operations, such as
copying a file. Extended metadata, access control lists, file ownership, multiple data forks, display
properties, and remote file copying protocols are just a few of the seemingly endless details that must be
considered just to duplicate a file.

To spare you from these burdens, the Cocoa framework provides a number of high-level methods
that correctly perform a variety of atomic actions on whole files. The common ones are listed in Table 11-9.

Table 11-9. Common High-Level File Operations

Method Descr ipt i on

-[NSFileManager contentsAtPath:] Returns the contents of the entire file as an
NSData object

+[NSData dataWithContentsOfFile:] Creates a new NSData object with the
contents of a file

+[NSData dataWithContentsOfMappedFile:] Creates a virtual memory region mapped to
the data in a file

-[NSData writeToFile:atomically:] Writes the contents of the data object to a file

+[NSString stringWithContentsOfFile:
encoding:error:]

Creates a new NSString object with the
contents of a file

-[NSString writeToFile:atomically:encoding:error:] Writes the contents of a string to a file

-[NSFileManager copyItemAtPath:toPath:error:] Copies a file

-[NSFileManager moveItemAtPath:toPath:error:] Moves or rename a file

-[NSFileManager removeItemAtPath:error:] Deletes a file

-[NSFileManager contentsEqualsAtPath:andPath:] Compares the contents of two files or two
directories

-[NSWorkspace performFileOperation:source:
destination:files:tag:]

Moves, copies, links, or trashes a set of files

CHAPTER 11 ■ FILES

178

There are numerous methods for reading the entire contents of a file into an NSData or

NSString object, not all of which are listed here. Look for subtle variations of these methods in the
NSData and NSString documentation if the ones in Table 11-9 don’t satisfy your needs. Write methods
that accept an atomically: parameter can optionally perform a so-called “safe save”; they write the data
to a temporary file, exchange the temporary file with the destination file, then delete the original file. If
anything unexpected happens during the save, the original file is not lost.

NSFileManager methods that copy, move, or delete a file, or compare two files, work equally
well on data files and directories.

The -performFileOperation:source:destination:files:tag: of NSWorkspace can also be used
to move, copy, or link files depending on the constant passed in the operation parameter. These
operations are equivalent to methods provided by NSFileManger. Its one exceptional talent is the
NSWorkspaceRecycleOperation operation that will move files to the trash. Moving a file to the trash is
actually a complex procedure best left to the operating system.

NSWorkspace
The NSWorkspace class provides a number of high-level file- and user-related functions that are only
relevant within the context of a graphical application. For example, the method -[NSWorkspace
iconForFile:] will return an NSImage object with the file’s icon and -[NSWorkspace
launchApplication:] will launch a different GUI application. This information is not available to
daemons or processes that aren’t running in the context of a graphical interface. So you can’t use
NSWorkspace in a daemon, but you can use NSFileManager. Additional file display details are available
through the Launch Services API, visited at the end of this chapter. This is the kind of information that
you would use javax.swing.filechooser.FileSystemView to obtain.

Random File Access
Should you need a more traditional open-read-write-close interface to files, Cocoa provides the
NSFileHandle class, roughly equivalent to java.io.RandomAccessFile. NSFileHandle is more general than
RandomAccessFile because it’s essentially an object wrapper for a BSD file descriptor. A “file” in a POSIX
file system can be a data file, a serial communication port, or a pipe. By extension, an NSFileHandle
object can be used to interact with all of those constructs. The basic NSFileHandle methods are listed in
Table 11-10.

Table 11-10. File Methods

RandomAccessFi l e NSFi leHandle Descr ipt i on

new
RandomAccessFile(…,"r")

+fileHandleForReadingAtPath: Opens a file for reading

new
RandomAccessFile(…,"w")

+fileHandleForWritingAtPath: Opens a file for writing

new
RandomAccessFile(…,"rw")

+fileHandleForUpdatingAtPath: Opens a file for reading and
writing

CHAPTER 11 ■ FILES

179

close() -closeFile Closes file

getFD() -fileDescriptor Returns underlying file
descriptor

length() use -seekToEndOfFile or
get attributes

readFully(byte[]) -readDataOfLength: Reads some number of
bytes

read(byte[]) -availableData Reads as much data as is
available

 -readInBackgroundAndNotify Reads available data
asynchronously

 -readToEndOfFileInBackgroundAndNotify Reads all data
asynchronously

 -waitForDataInBackgroundAndNotify Waits for data to become
available

getFilePointer() -offsetInFile Current file position

seek(long) -seekToFileOffset: Sets file position

-- -seekToEndOfFile Sets file position to length

setLength() -truncateFileAtOffset: Sets the file’s logical length

skipBytes() use -seekToFileOffset:

write(byte[]) -writeData: Writes bytes

The asynchronous methods return immediately after spawning a new thread that will
ultimately perform the action. When the action is complete, your application receives a notification. In
the case of the read actions, the notification contains the acquired data. Notifications are covered in
Chapter 18. There are also asynchronous notifications specifically for when NSFileHandle is used to
wrap a communications socket file. See the NSFileHandle documentation for additional details and the
specific notifications sent.

For more fine-grained control, you can turn to the BSD file functions. You can perform all file
operations using BSD functions, or obtain the file descriptor from the NSFileHandle object when you
need to perform specialized actions.

CHAPTER 11 ■ FILES

180

NSFileManager Delegate
Like many Objective-C objects, NSFileManager supports the delegate pattern. Your delegate object can
pre-flight specific actions and intercept, or attempt to recover from, certain failures. Table 11-11 lists the
messages that, if implemented, the file manager will send to your delegate object.

NSFileManager employs both persistent and ephemeral delegates. The object set as the
delegate of the singleton NSFileManager object receives relevant messages about general file manager
operations. A few NSFileManager methods accept a temporary delegate object, designated as its
handler. These are -copyPath:toPath:handler:, -movePath:toPath:handler:,
-removeFileAtPath:handler:, and -linkPath:toPath:handler:. In these methods, the delegate messages
are sent to the handler object instead of the global delegate.

Table 11-11. NSFileManager Delegate Methods

Method Receiver Sent

-fileManager:willProcessPath: handler Before attempting to copy, move,
delete, or create a hard link to a file

-fileManager:shouldCopyItemAtPath:toPath: delegate Before copying a file

-fileManager:shouldMoveItemAtPath:toPath: delegate Before moving a file

-fileManager:shouldRemoveItemAtPath: delegate Before deleting a file

-fileManager:shouldLinkItemAtPath:toPath: delegate Before creating a hard link

-fileManager:shouldProceedAfterError: handler After an error copying, moving,
deleting, or linking a file

-fileManager:shouldProceedAfterError:
copyingItemAtPath:toPath:

delegate After an error copying a file

-fileManager:shouldProceedAfterError:
movingItemAtPath:toPath:

delegate After an error moving a file

-fileManager:shouldProceedAfterError:
removingItemAtPath:

delegate After an error deleting a file

-fileManager:shouldProceedAfterError:
linkingItemAtPath:toPath:

delegate After an error creating a hard link

The should…AtPath: methods are sent before the action begins and permit your delegate the
opportunity to prohibit the action from occurring. You can use this to monitor the file manager’s
progress or filter the items that it processes. The shouldProceedAfterError:… methods are sent when an
action encounters an error processing an item, allowing your handler to log the offense, recover from the
failure, or ignore it.

CHAPTER 11 ■ FILES

181

Alternate APIs
This chapter has concentrated on the Objective-C classes and methods that interact with the file system.
These are adequate for most purposes, but a lot of important functionality is only available through the
Core Services and BSD APIs.

There is a lot of overlap between the functionality of the various frameworks. For example, the
Core Services framework provides the FSCopyObjectSync function that is roughly equivalent to
-[NSFileManager copyItemAtPath:toPath:error:]. However, it also includes FSCopyObjectAsync, which
performs the copy in its own thread. So which API you choose to use will largely depend on the special
features or capabilities you need.

The Core Services framework is actually a framework of frameworks that include basic file I/O
functions. The subframeworks of interest are the Carbon Core and Launch Services frameworks. The
Carbon functions provide basic file functions in addition to backwards compatibility with applications
written for the classic Macintosh OS. Launch Services provide functions instrumental when a user is
interacting with the file system. This includes information about a file’s visibility, it’s display name, icon,
what application will launch when the user opens a document, what applications are capable of opening
a given document, and so on. Some common Core Services functions are listed in Table 11-12. As a rule,
the file system functions in the Carbon framework all begin with “FS” and Launch Servcies functions
begin with “LS.”

■ NNote Every file in the classic Macintosh OS had two forks: a data fork and a resource fork. While the resource
fork is assumed to have a specific structure, the essential fact is that every file is potentially two files. When you
open a file using the Carbon functions, you specify not only the file to open but which fork. The API was later
generalized to support any number of file forks. But in practice, only the two original forks are consistently
supported. The data fork is the unnamed fork of the file, and is the fork accessed by the BSD functions and Cocoa
methods. The virtual file system may emulate multi-fork files on file systems that don’t inherently support them by
creating additional, invisible, files to accommodate the data. BSD and Cocoa functions can access a file’s resource
fork using a synthetic path name of the form file.data/rsrc. The syntax essentially treats every data file as a
directory containing an arbitrary number of named fork files.

Table 11-12. Core Services

Funct ion Descr ipt i on

FSPathMakeRef Creates an FSRef from a POSIX path

FSRefMakePath Returns the POSIX equivalent to the FSRef

FSMakeFSRefUnicode Creates a new FSRef from a parent FSRef and file name

FSCompareFSRefs Determines if two FSRef structures refer to the same entity

FSGetCatalogInfo Gets the catalog information about a file

FSGetCatalogInfoBulk Gets the catalog information for many files at once

CHAPTER 11 ■ FILES

182

FSSetCatalogInfo Changes the catalog information for a file

FSGetVolumeInfo Gets information about a volume

FSSetVolumeInfo Changes information about a volume

FSCreateFileUnicode Creates a new, empty file

FSDeleteObject Deletes a file

FSExchangeObjects Swaps the data contents of two files

FSCreateFork Creates a data or resource fork

FSOpenFork Opens a data or resource fork

FSReadFork Reads data from a file

FSWriteFork Writes data to a file

FSGetForkPosition Gets the current file position

FSSetForkPosition Changes the file position

FSGetForkSize Gets the file’s logical length

FSSetForkSize Changes the file’s logical length

FSFlushFork Writes any cached changes to physical media

FSCloseFork Closes the file

FSNewAlias Creates an alias record to a file

FSResolveAlias Gets the file best described by an alias record

FSResolveAliasFile Gets the file best described by an alias file

FSMatchAliasBulk Gets the list of all files that could be described by an alias record

LSCopyDisplayNameForRef The file name that should be displayed to the user

LSCopyItemInfoForRef Gets display properties for a file (invisible, bundle, …)

LSGetExtensionInfo Gets the file extension and display information for a file

LSGetApplicationForItem Gets the application that will launch when the user opens the file

CHAPTER 11 ■ FILES

183

Many Core Services functions accept or return an FSRef (file system reference) data structure.
An FSRef is an opaque and nonportable structure that uniquely identifies a file in the file system. You
cannot interpret the contents of the structure (the opaque part), nor can you use the structure outside
the memory address of the current process (the nonportable part). So don’t even think about trying to
save it to disk or copy it to another process. There are no calls to initialize or dispose FSRef structures, so
they can be declared as uninitialized variables, set, used, copied by value, and eventually just forgotten.
FSRefMakePath and FSPathMakeRef are the principal functions for converting a C path string into an
FSRef structure and vice versa.

The sample code in Listing 11-7 starts with a POSIX path in an Objective-C string object and
converts that into a portable alias record. The record is stored in a structure allocated by the FSNewAlias
function. A “handle” is just a pointer to a pointer. The alias is later resolved and turned back into a path
string, suitable for use in NSFileManager messages. In the process, the code illustrates converting an
Objective-C path string to and from an FSRef structure. Note that code in Listing 11-7 could have saved
the first step of converting the path into an FSRef by using the FSNewAliasPath function instead, but was
included to illustrate this common practice.

Listing 11-7. Objective-C Path to Alias

NSString *path = @"/Users/james/Desktop";
OSStatus err;

// Convert a POSIX path string into an alias record
FSRef pathRef;
AliasHandle aliasHndl;
err = FSPathMakeRef((const UInt8*)[path fileSystemRepresentation],&pathRef,NULL);
if (err!=noErr)
 /* error */;

err = FSNewAlias(NULL,&pathRef,&aliasHndl);
if (err!=noErr)
 /* error */;

/* success */

…

// Resolve aliasHndl and get its POSIX path string
FSRef originalRef;
Boolean aliasWasUpdated;
err = FSResolveAlias(NULL,aliasHndl,&originalRef,&aliasWasUpdated);
if (err!=noErr)
 /* error */;

NSMutableData *pathBuffer = [NSMutableData dataWithLength:2048];
char *pathBytes = (char*)[pathBuffer bytes];
err = FSRefMakePath(&originalRef,(UInt8*)pathBytes,[pathBuffer length]);
if (err!=noErr)
 /* error */;

CHAPTER 11 ■ FILES

184

NSFileManager *fm = [NSFileManager defaultManager];
NSString *originalPath = [fm stringWithFileSystemRepresentation:pathBytes
 length:strlen(pathBytes)];

/* success */

Table 11-12 lists only a tiny fraction of the functions implemented in the Core Services

framework. There are many variations of the functions listed, and hundreds of others. Core Services
provides functions to get and set volume information, mount and eject volumes, receive file system
notifications, track changes in real time, record optical media, and perform operations on remote
volumes—just to name a few. Your best resource for these specialized functions is the Mac OS X
documentation.

Underneath all of these frameworks are the core BSD functions that implement the underlying
file system. These are the traditional open(…), read(…), write(…), close(…) functions that have been
around since the origin of UNIX. Entire books have been written about this API, they are amply
documented, and there are numerous on-line tutorials and resources—so I won’t bother going into
details. If you have an NSFileHandle object and need to apply a BSD function to the underlying file, send
it the -fileDescriptor message. The integer returned is the BSD file descriptor token used to identify the
open file. If you already have a BSD file descriptor, you can wrap it in an NSFileHandle using
[[NSFileHandle alloc] initWithFileDescriptor:fd].

Summary
You should now have a good grounding in the basic file I/O facilities of Objective-C, the Cocoa
framework, and Mac OS X. The principal differences are the use of strings instead of java.io.File objects
to manipulate paths, attribute dictionaries instead of File object properties, and the reliance on C
functions for advanced features. Beyond that, you won’t find that the basic file-related tasks (reading
data files, writing data files, deleting files) changes in any significant way.

C H A P T E R 12

■ ■ ■

185

Ser ial izat ion

Serialization is the process by which the properties of an object, or objects, are converted into a
transportable series of bytes that capture their internal state and relationships. The serialized data can
be saved or transmitted to another process or system, where the data can later be used to re-create the
original set of objects.

Object serialization is one of the defining features of Java. It is largely implemented by the Java
runtime. True to its minimalist nature, object serialization is not part of the Objective-C language.
Object archiving (serialization) is accomplished by a set of classes that implement the serialization
process, and a protocol (interface) that an object must implement in order to be archived (serialized).

Java’s biggest advantage is that serialization is part of the language. All of an object’s member
variables are serialized automatically. In Objective-C, nothing about an object is serialized until the
programmer provides the code to do it. Beyond that, the steps you must take to prepare an object for
serialization, serialize, and de-serialize it are remarkably similar. Both Java and Objective-C let you
customize the serialization process, and each provides some means for dealing with forward and
backward compatibility.

This chapter covers Objective-C archiving (serialization) and Objective-C serialization—not to
be confused with Java serialization. It explains the different types of archiving that Objective-C provides,
and what steps you must take to make your class archivable. It will also cover common archiving
problems and how to solve them. Finally, it will briefly describe the support for Objective-C serialization
and XML documents—alternate forms of serialization—along with how to make simple in-memory
copies of objects.

Archiving
What you think of as serialization in Java is called archiving in Objective-C; a graph of objects is encoded
into a non-human-readable stream of binary data. This architecture-independent data can later be
decoded to instantiate an equivalent graph of objects. What Objective-C calls serialization is slightly
different and is described later in this chapter.

In Java, the classes largely responsible for serializing objects are java.io.ObjectOutputStream
and java.io.ObjectInputStream. These take object references and primitive values and “flatten” them
into a serial java.io.OutputStream, or read serialized data from a java.io.InputStream and turn it back
into objects. For an object to be included in the stream, it must implement the java.io.Serializable
interface. The Java runtime uses introspection to automatically encode the object’s instance variables.
You can influence this using Java’s transient keyword or by customizing the serialization process.

In Objective-C, the classes that implement serialization are subclasses of NSCoder.
Conceptually, NSCoder implements the functionality of both ObjectOutputStream and
ObjectInputStream. The NSCoder base class implements abstract methods used to encode and decode
objects, but subclasses of NSCoder may elect to implement only half of its functionality. Like Java,
Objective-C classes that support archiving must conform to the NSCoding protocol (interface). Unlike
Java, NSCoding is not an empty protocol; it declares two methods, -initWithCoder: and
-encodeWithCoder:, that must be implemented by the class. The -encodeWithCoder: message is sent to

CHAPTER 12 ■ SERIALIZATION

186

archive the receiver. -initWithCoder: is an alternate -init method, sent to initialize a new object created
during decoding.

Archive Types
Objective-C actually provides three different types of archiving, listed in Table 12-1.

Table 12-1. Archive Types

Type NSCoder Class Descr ipt i on

Keyed Archive NSKeyedArchiver,
NSKeyedUnarchiver

Archives object properties using key/value pairs.
This is the preferred method for archiving
document data or other persistent objects.

Sequential Archive NSArchiver, NSUnarchiver Archives objects by writing property values in a
specific order. Its use is deprecated as a persistent
storage format.

Distributed Objects NSPortCoder Archives objects using sequential encoding for
exchange with other threads, processes, and
remote systems.

Keyed archiving associates each property value with a “key” string assigned by the programmer.
Java serialization is similar, but the keys are always the names of the member variables. It is a
particularly flexible and robust format that tolerates changes to the class definition. By using keys, the
order in which the properties are encoded in the stream is irrelevant. This permits you to add new
properties, or reorder existing properties, without breaking compatibility with archives created using an
older version of the class. You can also provide forward compatibility, allowing older versions of your
application to decode an archive written by a newer version. Keyed archiving produces more serialized
data, but is ultimately much more flexible and stable. For this reason, it’s the recommended archive
format for document data or any set of objects that are intended to be stored on persistent media for
later reconstitution.

Sequential archiving encodes unadorned values into the data stream in a predetermined order.
No property names or keys are used to identify the values, nor does it include any type information. To
reconstruct the object, the values must be decoded in the same order. While fast and compact, the data
format is “fragile.” Any change to the order, number, or type of values will make it incompatible with an
archive data stream created by a different version. Objective-C addresses this problem by using class
versions. A newer version of a class can recognize and assimilate archive data created by an older
version. While providing backward compatibility, it does not provide forward compatibility and the
solutions tend to be awkward. For these reasons, sequential archiving is not recommended for
document data or other persistent objects. However, that’s not to say that sequential archiving isn’t
used.

Distributed objects uses sequential archiving—with a few extra wrinkles—to quickly and
efficiently exchange objects with other processes. It might be another thread in the same process,
another process on the same system, or a remote system half way around the world. The encoding and
decoding technique remains the same, only the data transport changes. Because distributed objects uses
sequential archiving, it is subject to all of the same disadvantages. However, version differences between

CHAPTER 12 ■ SERIALIZATION

187

processes are often limited or can be tightly controlled. For example, a client application might launch a
helper process and communicate with it using distributed objects. The helper executable is part of the
application’s resource bundle, so is guaranteed to contain the same version of the classes being used by
the client—making data compatibility immaterial.

Documentation for Objective-C archiving will repeat, ad nauseam, that sequential archiving is
deprecated and you should implement keyed archiving instead. That is true for data model objects that
you intend to store in document files, preferences, or other persistent locations. However, distributed
objects uses sequential archiving. To use your objects in a distributed environment, your classes must
implement sequential archiving, and understanding distributed objects requires a firm grasp of
archiving. This chapter will explain how to implement both. The features that distinguish distributed
objects from plain sequential archiving are described in Chapter 13.

Archive Coders
Using the archive coder classes to encode and decode objects isn’t all that much different than it is in
Java. Listing 12-1 shows how to archive (serialized) and unarchive a single object in both Java and
Objective-C.

Listing 12-1. Archiving and Unarchiving an Object

Java
Object something = …
ByteArrayOutputStream outStream = null;
ObjectOutputStream objectEncoder = null;
try {
 outStream = new ByteArrayOutputStream();
 objectEncoder = new ObjectOutputStream(outStream);
 objectEncoder.writeObject(something);
 objectEncoder.close();
}
catch (IOException ioException) {
 ioException.printStackTrace();
}
byte[] bytes = outStream.toByteArray();

…

ByteArrayInputStream inStream = null;
ObjectInputStream objectDecoder = null;
try {
 inStream = new ByteArrayInputStream(bytes);
 objectDecoder = new ObjectInputStream(inStream);
 something = objectDecoder.readObject();
 objectDecoder.close();
}
catch (Exception exception) {
 exception.printStackTrace();
}

CHAPTER 12 ■ SERIALIZATION

188

Objective-C
id something = …
NSData *bytes = [NSKeyedArchiver archivedDataWithRootObject:something];

…

something = [NSKeyedUnarchiver unarchiveObjectWithData:bytes];

The Objective-C code in Listing 12-1 is particularly brief because NSKeyedArchiver and

NSKeyedUnarchiver provide convenience methods that create a temporary coder object, encode or
decode a single object, and return the result. There are also a pair of methods that will write or read the
data directly to a file. The Objective-C code in Listging 12-2 more closely parallels the Java code in
Listing 12-1. This is the form you would use if you needed to customize the coder before encoding or
decoding any objects, or if you needed to encode multiple root objects.

Listing 12-2. Archiving and Unarchiving Multiple Objects

id something = …
id somethingElse = …

NSKeyedArchiver *archiver;
NSMutableData *bytes = [NSMutableData data];
archiver = [[NSKeyedArchiver alloc] initForWritingWithMutableData:bytes];
// customize |archiver| here...
[archiver encodeObject:something forKey:@"Something"];
[archiver encodeObject:somethingElse forKey:@"Alternate"];
[archiver finishEncoding];
// |bytes| now contains the encoded object stream

…

NSKeyedUnarchiver *unarchiver;
unarchiver = [[NSKeyedUnarchiver alloc] initForReadingWithData:bytes];
// customize |unarchiver| here...
something = [unarchiver decodeObjectForKey:@"Something"];
somethingElse = [unarchiver decodeObjectForKey:@"Alternate"];
[unarchiver finishDecoding];

Archives and Documents
The NSDocument classes are designed to work hand-in-hand with archiving to implement a simple, and
seamless, document storage solution for your application. The basic concept is that your document’s
data model will consist of a graph of archivable objects. To save your document in a file, those objects
are archived into an NSData object that is then written to disk. To open the document again, the
document’s data file is read into a new NSData object and unarchived to re-create your document’s data
model.

Listing 12-3 demonstrates the minimal implementation for an NSDocument object that can
read and write its content to a document file. This tiny bit of “glue” is all that’s required to implement all
of the standard document commands (Open…, Save, Save As…, Revert) in a Cocoa application.

CHAPTER 12 ■ SERIALIZATION

189

Listing 12-3. Using Archiving to Implement a Document Class

@interface SimpleDocument : NSDocument {
 id dataModel;
}

@end

@implementation SimpleDocument

- (NSData*)dataOfType:(NSString*)typeName error:(NSError**)outError
{
 return [NSKeyedArchiver archivedDataWithRootObject:dataModel];
}

- (BOOL)readFromData:(NSData*)data
 ofType:(NSString*)typeName
 error:(NSError**)outError
{
 dataModel = [NSKeyedUnarchiver unarchiveObjectWithData:data];
 return (dataModel!=nil);
}

@end

Adding Keyed Archive Support to Your Class
As in Java, classes are not archivable by default. Your class must conform to the NSCoding protocol and
implement the -initWithCoder: and -encodeWithCoder: methods. An example is shown in Listing 12-4.
The Java equivalent is omitted, because in the simple case there’s no Java code to write.

Listing 12-4. Class Supporting Keyed Archiving

typedef struct {
 unsigned int buildingNo;
 unsigned int roomNo;
} RoomIdentifier;

@interface ScheduledEvent : NSObject <NSCoding> {
 @private
 NSDate *startTime;
 NSTimeInterval duration;
 RoomIdentifier room;
}

@end

CHAPTER 12 ■ SERIALIZATION

190

@implementation ScheduledEvent

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {
 startTime = [decoder decodeObjectForKey:@"Start"];
 duration = [decoder decodeDoubleForKey:@"Duration"];
 room.buildingNo = [decoder decodeInt32ForKey:@"Room.building"];
 room.roomNo = [decoder decodeInt32ForKey:@"Room.number"];
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:startTime forKey:@"Start"];
 [encoder encodeDouble:duration forKey:@"Duration"];
 [encoder encodeInt32:room.buildingNo forKey:@"Room.building"];
 [encoder encodeInt32:room.roomNo forKey:@"Room.number"];
}

@end

ScheduledEvent objects can now be archived using the NSKeyedArchiver class. The code in

Listing 12-4 only supports keyed archiving, so the object still isn’t usable with a sequential archive or
distributed objects. The basic steps for creating an archivable class are as follows:

• Conform to NSCoding, or subclass a class that conforms to NSCoding.

• Implement an -initWithCoder: method that initializes the new object using the data in the
decoder. If the class inherits NSCoding, the method should begin with self = [super
initWithCoder:decoder].

• Implement an -encodeWithCoder: method that encodes the object. If the class inherits
NSCoding, the method should begin with [super encodeWithCoder:coder].

• Encode or decode all persistent member variables by sending the appropriate -encode… or
-decode… message to the coder object. Complex variables, like structures, must be decompiled
into their constituent primitive values. The coding methods are listed in Table 12-2.

NSCoding methods for use with keyed archivers should only send the -encode…:forKey: and
-decode…ForKey: messages. Classes that encode sequential archives or are used as distributed objects
should only send the -encode…: and -decode… messages. How a class supports both is described a little
later.

CHAPTER 12 ■ SERIALIZATION

191

Table 12-2. Encoding Methods

Object ive-C Type Keyed Encoder Sequent ial Encoder

id encodeObject:forKey: encodeObject:

NSInteger encodeInteger:forKey:

int encodeInt32:forKey:

long long int encodeInt64:forKey:

BOOL encodeBool:forKey:

byte array encodeBytes:length:forKey: encodeBytes:length:

double encodeDouble:forKey:

float encodeFloat:forKey:

NSPoint encodePoint:forKey: encodePoint:

NSRect encodeRect:forKey: encodeRect:

NSSize encodeSize:forKey: encodeSize:

any C type encodeValueOfObjCType:at:

The values you choose for keys are entirely arbitrary. You can choose to use any keys you like,
they just have to be consistent and unique within the scope of the object.

Unlike typical Java serialization, you are in control of what values are encoded and how they are
interpreted when decoded. You are free to choose how your object is represented in the data stream. As
an example, take a publishing application that has an ink color object. The object’s -encodeWithCoder:
method could simply encode all of the properties of the ink color (amount of Cyan, Magenta, Yellow,
Black, and so on) or it could encode just the Pantone® name of the color. When the object is decoded, it
would use the color’s name to initialize itself with equivalent color values. Techniques like this can make
the encoded version of your objects more transportable and durable.

■Caution Avoid sending messages to object pointers returned by -decodeObject... within the scope of your
-initWithCoder: method. Circular references may cause the object pointer returned by -decodeObject… to refer
to a partially initialized object.

CHAPTER 12 ■ SERIALIZATION

192

Both NSCoding methods receive an NSCoder object. This can be the same object, but is often
different. In the case of a keyed archive, -initWithCoder: will receive an NSKeyedUnarchiver object and
-encodeWithCoder: will receive an NSKeyedArchiver object. NSKeyedArchiver only implements the
-encode…:forKey: methods and any attempt to send it any of the -decode… messages will raise an
exception. NSKeyedUnarchiver only implements the complementary set of -decode…ForKey: methods.

Adding Sequential Archive Support to Your Class
Adding sequential archive support, which includes distributed objects, is almost identical to adding
keyed archive support, with two exceptions:

• Sequential archiving uses the sequential encoding methods in Table 12-2.

• The order and type of properties encoded in -encodeWithCoder: must exactly match the order
and type that they are decoded in -initWithCoder:. Unlike keyed encoding, you cannot ignore
values or decode them in a different order than they were encoded.

You’ll notice that there are far fewer sequential encoding methods. Most obvious is the lack of

methods for encoding the primitive C types. That’s because sequential encoders provide the catch-all
-encodeValueOfObjCType:at: method. This takes an encoded C variable type string (generated using the
@encode() directive), and the address of a variable. To encode the duration property in Listing 12-4, you
would write [encoder encodeValueOfObjCType:@encode(NSTimeInterval) at:&duration]. While it’s
conceivable to pass the type string of any C type—say, for an arbitrary structure like
@encode(RoomIdentifier)—coders normally only implement the primitive types defined by the
language. In the previous example, NSTimeInterval is synonymous with double so
@encode(NSTimeInterval) and @encode(double) are interchangeable. You can encode an entire array of
primitive values using -encodeArrayOfObjCType:count:at:.

Supporting Both Keyed and Sequential Archiving
But what if you want your class to support keyed archiving, sequential archives, and distributed objects?
It’s easy: send the coder an -allowsKeyedCoding message to determine if it supports keyed archiving, and
then use the appropriate coder methods. An expanded implementation of the ScheduledEvent class that
supports both keyed and sequential archiving is shown in Listing 12-5.

Listing 12-5. Class Supporting Keyed and Sequential Archiving

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {
 if ([decoder allowsKeyedCoding]) {
 startTime = [decoder decodeObjectForKey:@"Start"];
 duration = [decoder decodeDoubleForKey:@"Duration"];
 room.buildingNo = [decoder decodeInt32ForKey:@"Room.building"];
 room.roomNo = [decoder decodeInt32ForKey:@"Room.number"];
 } else {
 startTime = [decoder decodeObject];
 [decoder decodeValueOfObjCType:@encode(NSTimeInterval) at:&duration];

CHAPTER 12 ■ SERIALIZATION

193

 [decoder decodeValueOfObjCType:@encode(unsigned int) at:&room.buildingNo];
 [decoder decodeValueOfObjCType:@encode(unsigned int) at:&room.roomNo];
 }
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 if ([encoder allowsKeyedCoding]) {
 [encoder encodeObject:startTime forKey:@"Start"];
 [encoder encodeDouble:duration forKey:@"Duration"];
 [encoder encodeInt32:room.buildingNo forKey:@"Room.building"];
 [encoder encodeInt32:room.roomNo forKey:@"Room.number"];
 } else {
 [encoder encodeObject:startTime];
 [encoder encodeValueOfObjCType:@encode(NSTimeInterval) at:&duration];
 [encoder encodeValueOfObjCType:@encode(unsigned int) at:&room.buildingNo];
 [encoder encodeValueOfObjCType:@encode(unsigned int) at:&room.roomNo];
 }
}

Sequential coders do not implement any of the …forKey: methods, and attempting to send one

will raise an exception. Similarly, keyed coders don’t implement any of the sequential methods, so make
sure you know which kind of coder you are using.

If you want to programmatically limit your object’s archive support, you can conditionally raise
an exception in your -encodeWithCoder: method. The class in Listing 12-6 supports both keyed and
sequential archiving, but will not allow itself to be copied through a distributed objects connection. This
is equivalent to overriding your Java object’s writeObject(ObjectOutputStream) method and throwing a
NotSerializableException.

Listing 12-6. Programmatically Limiting Archive Support

- (void)encodeWithCoder:(NSCoder*)encoder
{
 if ([encoder isKindOfClass:[NSPortCoder class]])
 [NSException raise:NSInvalidArchiveOperationException
 format:@"%@ not distributable",[self className]];

 if ([encoder allowsKeyedCoding]) {
 // Keyed encoding...
 } else {
 // Sequential encoding...
 }
}

Archiving Complications
As with almost everything in software engineering, the simple cases are easy; it’s the boundary
conditions that get tricky. Archiving (serialization) is no exception. There are a number of confounding
issues to deal with. Java and Objective-C handle most in a similar fashion. These include transient

CHAPTER 12 ■ SERIALIZATION

194

values, compatibility between saved data and different class versions, shared objects, objects outside the
object graph, and duplicate objects.

Transient Properties
Java provides the transient keyword to mark instance variables that should not be included in the
serialized data stream. In Objective-C, the solution is to simply ignore the property during encoding and
decoding. Listing 12-7 shows a modified version of the ScheduledEvent class that includes a screen
coordinate property that holds the position where the scheduled event was last displayed. This value is
irrelevant when the event object is stored in a document, so it’s omitted from the data stream.

Listing 12-7. Transient Properties

Java
public class ScheduledEvent implements Serializable {
 Date startTime;
 double duration;
 RoomIdentifier room;

 transient java.awt.Point lastScreenPopupPosition;

 …

}

Objective-C
@interface ScheduledEvent : NSObject <NSCoding> {
 NSDate *startTime;
 NSTimeInterval duration;
 RoomIdentifier room;
 NSPoint lastScreenPopupPosition;
}

@end

@implementation ScheduledEvent

…

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:startTime forKey:@"Start"];
 [encoder encodeDouble:duration forKey:@"Duration"];
 [encoder encodeInt32:room.buildingNo forKey:@"Room.building"];
 [encoder encodeInt32:room.roomNo forKey:@"Room.number"];
 // do not encode lastScreenPopupPosition
}

@end

CHAPTER 12 ■ SERIALIZATION

195

Duplicate Objects
The object that you use to create an archive is called the root object. It forms the anchor point in an
undirected graph of objects that include all of the objects the root object refers to, any objects those
objects refer to, and so on. The object graph might be simple, like an array or tree, but can also form
loops and circular references. If the encoder blindly followed every object reference, multiple references
to a single object would encode the object’s data multiple times, and circular references would cause
infinite recursion. Java’s java.io.ObjectOutputStream and Objective-C’s NSCoder classes solve this
problem almost identically. The first time an object is sent to the coder via the -encodeObject: message,
the coder recursively sends that object an -encodeWithCoder: message to encode its data in the stream.
The coder also remembers that object instance. All subsequent -encodeObject: messages that refer to
the same object simply insert a reference to the original object in the data stream. When decoding, all
-decodeObject messages return a pointer to the instance of the single unarchived object. You don’t have
to do anything to get this behavior; it’s just good to know how it works.

Decoding an archive can unintentionally create duplicate objects. This can happen if encoded
objects refer to objects in a shared pool. The decoder will create new instances of every unique object in
the data stream. This leaves your application with duplicates of the shared objects. There are several of
ways of dealing with this. One is to use an encoding scheme like the Pantone color example given earlier;
encode some symbolic representation of the object, and then obtain its actual contents from a common
resource. Another solution is to override the -(id)awakeAfterUsingCoder:(NSCoder*)decoder method.
This message is sent to an object after it has been decoded. The object identifier returned by the method
replaces the decoded object. The default implementation returns self (i.e., no replacement), but if you
override it you can return any equivalent object instead. Listing 12-8 demonstrates an Attendee class
that avoids creating duplicate Attendee objects and adds any new Attendee objects to the common pool.

Listing 12-8. Decoding Shared Objects

@interface Attendee : NSObject <NSCoding> {
 NSString *name;
 NSString *uuid;
 NSMutableSet *scheduledMeetings;
}

@end

@implementation Attendee

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {
 name = [decoder decodeObjectForKey:@"Name"];
 uuid = [decoder decodeObjectForKey:@"UUID"];
 scheduledMeetings = [decoder decodeObjectForKey:@"Meetings"];
 }
 return self;
}

CHAPTER 12 ■ SERIALIZATION

196

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:name forKey:@"Name"];
 [encoder encodeObject:uuid forKey:@"UUID"];
 [encoder encodeObject:scheduledMeetings forKey:@"Meetings"];
}

- (id)awakeAfterUsingCoder:(NSCoder*)decoder
{
 ScheduleAssets *assets = [ScheduleAssets sharedAssets];
 Attendee *existingAttendee = [assets attendeeWithUUID:uuid];
 if (existingAttendee==nil) {
 // Add this attendee to the pool of attendees
 [assets addAttendee:self];
 } else {
 // Replace this attendee with the one that already exists
 self = existingAttendee;
 }
 return self;
}

@end

Limiting the Object Graph
Sometimes archiving a root object archives much more than you intended. Archiving a root object
normally archives all of the objects it refers to. In our hypothetical scheduling application, a
ProjectMeeting object associates a meeting with a project task. It would be convenient to archive a
ProjectMeeting object and send it vie e-mail to a team member inviting them to the meeting. The
problem is, the ProjectMeeting object in Listing 12-9 contains a reference to the ProjectTask object the
meeting relates to. The task object would naturally contain a reference to its project, that would contain
references to all of the project’s tasks, its milestones, the team members working on the project, the
other meetings scheduled for the project, and so on. In short, our attempt to send someone a single
meeting object would result in archiving the entire project scheduling system, possibly even the
application itself.

Objective-C’s solution is to conditionally encode objects. The graph of objects that gets
encoded consists only of non-conditional objects added to the stream using -encodeObject: or
-encodeObject:forKey:. Conditional objects are encoded using -encodeConditionalObject: or
-encodeConditionalObject:forKey: (see Listing 12-9). These objects are included in the archive if, and
only if, they have been unconditionally encoded at least once. If all of the inclusions of the object are
conditional, the object is omitted from the archive. When the graph is decoded, the -decodeObject…
requests for the omitted object return nil.

Listing 12-9. Encoding Conditional Objects

@interface ProjectMeeting : ScheduledEvent {
 NSString *meetingDescription;
 ProjectTask *task;
}

@end

CHAPTER 12 ■ SERIALIZATION

197

@implementation ProjectMeeting

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super initWithCoder:decoder];
 if (self != nil) {
 meetingDescription = [decoder decodeObjectForKey:@"Description"];
 task = [decoder decodeObjectForKey:@"Task"];
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [super encodeWithCoder:encoder];
 [encoder encodeObject:meetingDescription forKey:@"Description"];

 [encoder encodeConditionalObject:task forKey:@"Task"];
}

@end

The code in Listing 12-9 solves the problem by conditionally encoding the reference

to its ProjectTask object. If you archive a single ProjectMeeting object, the ProjectTask object
is never unconditionally encoded and is omitted. When unarchived, the statement [decoder
decodeObjectForKey:@"Task"] returns nil. The resulting object wouldn’t be connected to the
project scheduling data model, but would be sufficient for inviting someone to the meeting.

When the scheduling system server archives the entire project data model, it will encode
the project, its tasks, milestone, and team member objects unconditionally. When it gets to the
ProjectMeeting objects, the conditional object references are encoded normally because the
ProjectTask objects have been unconditionally encoded elsewhere in the graph. When the project
data model is unarchived the next day, the ProjectMeeting’s reference to its ProjectTask is restored.

Encoding an object conditionally is usually appropriate when the object pointer is a __weak
reference, or when the object is a delegate, a parent, owner, or container.

Class Version Compatibility
The problem with persistent data is that it’s persistent. It could persist for days or even years, while your
application continues to evolve. Eventually, your class will attempt to decode an archive written by an
earlier version of itself. On occasion, it might even be necessary to decode an archive created by some
later version of the same class.

Java addresses compatibility using a combination of class versions and key/value encoding. Java’s
class versions are used strictly to inhibit the decoding of data that might be incompatible with the class. Java
serialization also uses key/value encoding, just like an Objective-C keyed archive. But in Java’s case the keys
are always the names of the instance variables. Java will automatically restore the variables in common with
its predecessors, and simply ignore variables not encoded in the data stream. More complicated
compatibility problems require that you implement a custom readObjects(ObjectInputStream) method. I’m
going to skip the lengthy details, because this isn’t a book about Java.

CHAPTER 12 ■ SERIALIZATION

198

■Note Backward compatibility is the ability of a newer version of a class/application to interpret data created by
an older version. Forward compatibility is the ability of an older version of a class/application to, at least partially,
interpret the data created by a newer version.

How you provide backward, or forward, compatibility in Objective-C depends on the archive
type.

Forward and Backward Compatibility in Keyed Archives

Keyed archives confer one huge advantage: flexible compatibility between class versions. An improved
version of the ScheduledEvent class, shown in Listing 12-10, has changed a little from the initial version
in Listing 12-4. It contains a new time zone object and the duration value has been replaced with an end
time object.

Listing 12-10. Forward and Backward Compatibility in a Keyed Archive

@interface ScheduledEvent : NSObject <NSCoding> {
@private
 NSDate *startTime;
 NSDate *endTime;
 NSTimeZone *timeZone;
 RoomIdentifier room;
}

@implementation ScheduledEvent

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {

 if ([decoder containsValueForKey:@"TimeZone"])
 timeZone = [decoder decodeObjectForKey:@"TimeZone"];
 else
 timeZone = [NSTimeZone localTimeZone];

 startTime = [decoder decodeObjectForKey:@"Start"];
 if ([decoder containsValueForKey:@"End"]) {
 endTime = [decoder decodeObjectForKey:@"End"];
 } else {
 NSTimeInterval duration = [decoder decodeDoubleForKey:@"Duration"];

 endTime = [startTime addTimeInterval:duration];
 }

CHAPTER 12 ■ SERIALIZATION

199

 room.buildingNo = [decoder decodeInt32ForKey:@"Room.building"];
 room.roomNo = [decoder decodeInt32ForKey:@"Room.number"];
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:startTime forKey:@"Start"];
 [encoder encodeObject:endTime forKey:@"End"];
 [encoder encodeObject:timeZone forKey:@"TimeZone"];
 [encoder encodeInt32:room.buildingNo forKey:@"Room.building"];
 [encoder encodeInt32:room.roomNo forKey:@"Room.number"];

 [encoder encodeDouble:[endTime timeIntervalSinceDate:startTime]

 forKey:@"Duration"];
}

@end

The implementation in Listing 12-10 provides both forward and backward compatibility with

its initial version. That is, the new version of the class can decode archives created by the original
version, and the original version can decode archives created by the new version. This is accomplished
through judicious use of archive keys.

The new version of ScheduledEvent has a time zone object that the old version lacks. The new
version uses the -containsValueForKey: method to determine if the archive it’s decoding contains a
value for that key. If it does, it reads the value. If not, it assumes that the archive was created by an earlier
version of the class and supplies a reasonable default. An old version of the class reading a newer archive
ignores the value, knowing nothing about time zones.

The replacement of the duration variable with endTime requires a little more work. Again,
-initWithCoder: uses [decoder containsValueForKey:@"End"] to determine if the archive contains an
“End” value. Modern archives would, but old archives wouldn’t. The new class assumes that a missing
“End” value implies that it’s reading an older version of the archive; it uses the “Duration” value written
by the old version to construct an equivalent endTime object.

To provide forward compatibility, it archives the endTime value twice. Once as an NSDate
object and again as an NSTimeInterval compatible with the class’s original duration value. An alternate
way of maintaining compatibility would be to not encode the endTime object at all and continue to
encode the “Duration” value, compatible with the old version. This would be the preferred solution
when the new property is logically equivalent to the old one, and easily converted.

Here are a few tips for maintaining backward, and potentially forward, compatibility in keyed
archives:

• Test for the existence of keys added in later versions of the class. The absence of a key indicates
the archive was created with an earlier version.

• If a value changes type, encode it using a new key.

• The integer and floating point decoding methods perform some modest type conversion. All of
the integer encoding and decoding methods are interchangeable, as are the floating-point
methods. Thus, you can encode a number as a 32 bit integer, then decode it as a 64-bit integer
and vice versa.

• Initialize values for missing keys with something reasonable.

CHAPTER 12 ■ SERIALIZATION

200

• For forward compatibility, continue to write the keys and values that earlier versions of the class
expect, or translate newer values into values compatible with older classes.

• Consider inserting a “version” value, or any other kind of hint, that would help future classes
determine how the archive values should be interpreted. The statement [encoder
encodeBool:YES forKey:@"isTimeZoneSavvy"] would inform future decoders that this archive
was created with a version of the class that understands time zones.

Backward Compatibility in Sequential Archives

In a sequential archive, backward compatibility is accomplished using class versions, somewhat similar
to Java. In Java, each class is automatically assigned a class version—that amounts to a hash code of the
class definition. By default, the Java runtime will only reconstruct an object if its version exactly matches
the one used to create the serialized data. So any change to the class makes it incompatible with
serialized data from a previous version. This is extremely limiting, but very safe. The programmer can
override this by declaring a permanent serialVersionUID constant for the class. It is up to the
programmer to ensure that all versions of the class with the same serialVersionUID are compatible.

Objective-C uses class versions, but in an entirely different way. Every class has a version
property that the coder includes in the archive. Objective-C does not care if the version of your class is
different than the one being decoded. At decode time, your class can query the coder to determine the
version of the class that was used to encode the archive. You can use this information to decode the
values in a way that is compatible with your previous versions.

For this to be effective, you must assign each functionally different version of the class a unique
version number, and the version property of the class must be set before any archives are encoded. By
default, the version of every class is 0. Listing 12-11 shows the implementation of the ScheduledEvent
class from Listing 12-5, rewritten to provide backward compatibility. Keyed archive support has been
removed for clarity.

Listing 12-11. Backward Compatibility in a Sequential Archive

+ (void)initialize
{
 [ScheduledEvent setVersion:1]; // second version
}

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self!=nil) {
 startTime = [decoder decodeObject];
 if ([decoder versionForClassName:@"ScheduledEvent"]==1) {
 endTime = [decoder decodeObject];
 timeZone = [decoder decodeObject];
 } else {
 NSTimeInterval duration;
 [decoder decodeValueOfObjCType:@encode(NSTimeInterval) at:&duration];

 endTime = [startTime addTimeInterval:duration];
 timeZone = [NSTimeZone localTimeZone];
 }

CHAPTER 12 ■ SERIALIZATION

201

 [decoder decodeValueOfObjCType:@encode(unsigned int)
 at:&room.buildingNo];
 [decoder decodeValueOfObjCType:@encode(unsigned int)
 at:&room.roomNo];
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:startTime];
 [encoder encodeObject:endTime];
 [encoder encodeObject:timeZone];
 [encoder encodeValueOfObjCType:@encode(unsigned int) at:&room.buildingNo];
 [encoder encodeValueOfObjCType:@encode(unsigned int) at:&room.roomNo];
}

The +initialize class method is used to set the version of the class before any instances of the

class are created. See Chapter 21 for more about the +initialize method. At decode time, the object
queries the coder to discover the version number of the class used to create the archive, and adjusts its
decoding accordingly.

Every time the encoding of your class changes, you must establish a new class version and
update the decoder to handle all of the earlier formats you want to support. Class versioning cannot
provide forward compatibility. That would require a time machine.

Class Replacement

Sometimes the changes to an application involve more than just adding or redefining member variables.
Refactoring an application might involve renaming or retiring classes altogether. This is a problem when
attempting to decode an archive written by an earlier incarnation of the application, because the class
recorded in the archive no longer exists. This problem can often be solved using class substitution
during encoding or decoding.

Class Subs t i t ut i on During Decoding

Let’s say that our scheduling application has been refactored, completely eliminating the
ScheduledEvent class. It has been replaced by an AbstractEvent class with MeetingEvent, ProjectEvent,
and HolidayEvent subclasses. Any attempt to decode an archive containing a ScheduledEvent object will
fail, because there is no ScheduledEvent class for the decoder to create. There are three solutions,and all
of them involve creating a stand-in ScheduledEvent class that exists solely to provide backward
compatibility.

The first solution is to implement a shell ScheduledEvent class with a legacy -initWithCoder:
method. It would also override the -awakeAfterUsingCoder: method as described earlier in the
“Duplicate Objects” section. In the latter method, an equivalent object would be created to replace the
original.

A more direct approach takes its queue from class clusters—see Chapter 22—to perform an
object substitution directly in the -initWithCoder: method, as shown in Listing 12-12. When the coder
attempts to initialize a newly created ScheduledEvent object, the constructor destroys the temporary
object and creates a new object with the correct class instead.

CHAPTER 12 ■ SERIALIZATION

202

Listing 12-12. Replacing a Class During Decoding

@interface ScheduledEvent : NSObject <NSCoding>
@end

@implementation ScheduledEvent

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {
 // read the properties of the obsolete ScheduledEvent
 NSDate *startTime = [decoder decodeObjectForKey:@"Start"];
 NSTimeInterval duration = [decoder decodeDoubleForKey:@"Duration"];
 RoomIdentifier room;
 room.buildingNo = [decoder decodeInt32ForKey:@"Room.building"];
 room.roomNo = [decoder decodeInt32ForKey:@"Room.number"];

 // replace it with an equivalent MeetingEvent object
 id replacement = [MeetingEvent new];
 [replacement setStartTime:startTime];
 [replacement setEndTime:[startTime addTimeInterval:duration]];
 [replacement setRoom:room];
 self = replacement;
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [NSException raise:NSInvalidArchiveOperationException
 format:@"ScheduledEvent obsolete"];
}

@end

It’s also possible for the unarchiver’s delegate object to perform decode-time object

substitution without requiring the object’s cooperation. When an object is decoded, the unarchiver’s
delegate object is sent an -unarchiver:didDecodeObject: message. The delegate may elect to return a
different object than the original, thereby replacing it. The unarchiver must be customized by setting its
delegate property prior to decoding any objects. Use the code in Listing 12-2 as a template for creating a
customized decoder. Chapter 17 explains delegate objects in more detail.

■Caution Object replacement during decoding won’t work reliably if objects contain circular references. Circular
references cause objects to be constructed recursively. The object reference returned to the nested constructor
will be the partially initialized object, before it has finished executing -initWithCoder: or been sent the
-replacementObjectForCoder: message. The second object created will refer to the original object even after
the first object has replaced itself.

CHAPTER 12 ■ SERIALIZATION

203

Class Subs t i t ut i on During Encoding

In other situations, a class might not want to archive itself. The class may be a private subclass of a class
cluster—see Chapter 22 for more about class clusters. Or, it might want to archive itself as though it were
a different class for forward compatibility with earlier designs. Whatever the reason, a class can choose
to “pretend” to be another class during encoding, or provide a completely different object that will be
encoded in its place. There are three ways to accomplish encode-time substitution.

The first is to override the -classForCoder method. This message is sent to an object during
encoding. The class of the object in the archive is determined by the returned value. The base class
implementation returns [self class], which causes objects to be recorded with their actual class. If an
object’s -classForCoder method returns a different class, that’s the class that will be created when the
object is decoded. Note that the data encoded in the -encodeWithCoder: method must be compatible
with the class returned by -classForCoder:. -classForCoder affects all archive types. If you only want to
limit class substitution to a particular archive type, override -classForArchiver,
-classForKeyedArchiver, or -classForPortCoder instead. If not overridden, these methods return the
value of -classForCoder.

The second technique allows an object to substitute a completely different object to be encoded
in its place. This is accomplished by overriding -replacementObjectForCoder, which normally returns
self (thus encoding the original object). If it returns a different object, that proxy object is encoded
instead. -replacementObjectForCoder: will perform this substitution for all archive encodings, but the
alternate methods -replacementObjectForKeyedArchiver:, -replacementObjectForArchiver:, or
-replacementObjectForPortCoder: can be overridden to perform replacement only for particular archive
types. By default, the first two of these methods invoke -replacementObjectForCoder:. The
-replacementObjectForPortCoder: method is a critical mechanism in distributed objects. Its default
implementation substitutes a remote proxy object for the original. See Chapter 13 for the reasons you
would want to override it.

As if that wasn’t enough flexibility, the encoder’s delegate object can also perform object
substitution by implementing an -archiver:willEncodeObject: method. The delegate can return a
replacement object, performing substitutions ad hoc without the need to modify the class being
encoded.

Objective-C Serialization
In Objective-C parlance, serialization converts a set of data objects into a transportable byte stream,
often in a human-readable format. There are two standard forms of serialization in Objective-C:
property lists and XML. Property lists are simplistic, but very convenient, and form the foundation for
the user defaults (preferences) service. Cocoa’s XML support includes the familiar DOM and event-
based XML parsing and encoding. Objective-C serialization does not encode arbitrary objects as
archiving does. Property lists are limited to property-list objects, and XML DOM encoding is restricted to
the XML document object model classes.

Property Lists
A property list is a text or binary representation of the values in one or more property-list objects.
Property-list objects are, self referentially, those objects that can be encoded into a property list. Table
12-3 lists all the property-list objects.

CHAPTER 12 ■ SERIALIZATION

204

Table 12-3. Property-List Objects

Object Class Descr ipt i on

NSDictionary Key/value mapping of property-list objects

NSArray Sequential list of property-list objects

NSString A string

NSNumber An integer, floating-point, or Boolean value

NSDate A date and time

NSData Any arbitrary byte array

Property lists are used for a variety of purposes. They are used to store user defaults, as
described in Chapter 26. They are also particularly convenient for encoding collections of simple values
for persistence or interpretation by other applications.

Typically, a property list is a dictionary of key/value pairs containing property-list objects,
which can include other arrays and dictionaries. This allows property-list objects to form arbitrarily
complex trees, the leaf values consisting of strings, numbers, dates, or opaque data. Virtually any object
can be stored in a property list by first archiving the object, and then storing the resulting NSData object
in the property-list tree. Listing 12-13 creates a tree of property-list objects and serializes it into a
property list.

Listing 12-13. Generating a Property List

NSArray *attendees = [NSArray arrayWithObjects:
 @"Randy",
 @"Joy",
 @"Douglas",
 @"Heather",
 @"Jon",
 nil];
NSDictionary *invitation = [NSDictionary dictionaryWithObjectsAndKeys:
 @"X-Prize Launch Strategy", @"Description",
 [NSDate dateWithString:@"2009-04-02 10:00:00 -0700"], @"StartTime",
 [NSNumber numberWithInt:55], @"Duration",
 attendees, @"Attendees",
 @"Room 312", @"Location",
 nil];
NSData *data = [NSPropertyListSerialization dataFromPropertyList:invitation
 format:NSPropertyListXMLFormat_v1_0
 errorDescription:NULL];

CHAPTER 12 ■ SERIALIZATION

205

data now contains:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Attendees</key>
 <array>
 <string>Randy</string>
 <string>Joy</string>
 <string>Douglas</string>
 <string>Heather</string>
 <string>Jon</string>
 </array>
 <key>Description</key>
 <string>X-Prize Launch Stratagy</string>
 <key>Duration</key>
 <integer>55</integer>
 <key>Location</key>
 <string>Room 312</string>
 <key>StartTime</key>
 <date>2009-04-02T17:00:00Z</date>
</dict>
</plist>

The Objective-C interface for encoding and decoding property lists is the

NSPropertyListSerialization class. It provides three methods:

+dataFromPropertyList:format:errorDescription: encodes objects into a property list.

+propertyListFromData:mutabilityOption:format:errorDescription: decodes a property list.

+propertyList:isValidForFormat: determines if the data contains a valid property list.

For all transformations, you must specify the format of the property list. The possible formats

are listed in Table 12-4.

Table 12-4. Property List Formats

Format Descr ipt i on

NSPropertyListXMLFormat_v1_0 XML representation of property values

NSPropertyListBinaryFormat_v1_0 Compact binary representation of property values

NSPropertyListOpenStepFormat Deprecated ASCII format; can be used for reading legacy .plist
files, but cannot be use to encode new property lists

Both NSDictionary and NSArray accept a -writeToFile:atomically: or -writeToURL:atomically:
message. This will serialize their content and write the resulting XML property list to a file or URL. These
messages can succeed only if the collection contains property-list objects; any non-property-list objects will

CHAPTER 12 ■ SERIALIZATION

206

cause the operation to fail and return NO. Do not confuse these methods with -writeToFile:atomically:
and -writeToURL:atomically: implemented by NSData and NSString. These latter methods write the raw
contents of the object to a file—not a property list.

The complements of the -writeTo…:atomically: messages are the +[NSArray
arrayWithContentsOfFile:], +[NSArray arrayWithContentsOfURL:], +[NSDictionary
dictionaryWithContentsOfFile:] and +[NSDictionary dictionaryWithContentsOfURL:] convenience
constructors. These methods create a new collection, populated by interpreting the contents of a
property list.

Property-list collection objects created by decoding a property list are, by default, immutable—
irrespective of the mutability of those originally used to create the property list. To create mutable
property-list objects, use +[NSPropertyListSerialization
propertyListFromData:mutabilityOption:format:errorDescription:] and pass either
NSPropertyListMutableContainers or NSPropertyListMutableContainersAndLeaves in the
mutabilityOption: parameter. The former will return mutable collection objects with immutable leaf
values. The latter will cause all objects in the tree to be mutable, where possible. This option does not
affect NSNumber or NSDate objects, which are inherently immutable. You can also create a top-level
mutable collection by explicitly creating one, as in [NSMutableDictionary
dictionaryWithContentsOfFile:propertyFilePath].

XML
Like Java, the Cocoa framework provides a set of classes for creating, manipulating, encoding, and
decoding XML files. While XML-formatted property lists are an expedient way to encode very simple
values into XML, the NSXML classes can interpret any XML- or HTML-formatted data.

As with Java, Objective-C can digest an entire XML document producing a document object
model (DOM). Or it can interpret an XML stream incrementally using an event-driven parser. While
many of the details are different, the overarching interface that Java and Objective-C provide for XML
processing is almost identical.

Listing 12-14 shows the code used to create a document object model from an XML file, and
then encode that DOM back into an XML file.

Listing 12-14. XML Using Document Object Models

Java
String filePath = …
Document document = null;
DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
factory.setValidating(false);
factory.setNamespaceAware(true);
try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(filePath));
}
catch (Exception e) {
 e.printStackTrace();
}

…

CHAPTER 12 ■ SERIALIZATION

207

try {
 Source source = new DOMSource(document);
 Result result = new StreamResult(new File(filePath));
 Transformer transformer = TransformerFactory.newInstance().newTransformer();
 transformer.transform(source,result);
}
catch (Exception e) {
 e.printStackTrace();
}

Objective-C
NSString *filePath = …
NSXMLDocument *document;
NSURL *furl = [NSURL fileURLWithPath:filePath];
document = [[NSXMLDocument alloc] initWithContentsOfURL:furl
 options:NSXMLNodePreserveAll
 error:NULL];

…

NSData *xmlData = [document XMLData];
[xmlData writeToFile:filePath atomically:YES];

Objective-C coding is somewhat simpler, because the NSXMLDocument class provides the

DOM translator automatically. To transform an XML or HTML file into a document object model, simply
initialize a new NSXMLDocument object with the contents of the XML source. Similarly, transforming
an existing DOM into its XML representation is simply a matter of asking the NSXMLDocument for its
NSData representation. An alternate method, -[NSXMLDocument XMLDataWithOptions:], accepts a set of
flags that influence how the XML is encoded.

Objective-C event-driven XML parsing parallels its Java cousin SAX (Simple API for XML). In
Java, you create a custom object that implements the org.xml.sax.ContentHandler interface. This
interface defines a number of callback methods (startDocument(),
startElement(String,String,String,Attributes), characters(char[],int,int), etc.) that are invoked as
each XML element is parsed. Your implementation of these methods would typically use the parsed
content to create custom data model objects or feed the information to another object.

In Objective-C the process is nearly identical, except that delegate methods—defined by an
informal protocol—receive the parsing events. To parse an XML file using Objective-C, implement the
appropriate delegate methods (-parserDidStartDocument:,
-parser:didStartElement:namespaceURI:qualifiedName:attributes:, -parser:foundCharacters:, and so
on) in your class. Create an instance of the NSXMLParser object using -initWithData: or
-initWithContentsOfURL: to specify a source for the XML. Set your custom object as the delegate of the
parser ([xmlParser setDelegate:myParser]) and then send it a parse message to begin decoding.

Copying Objects
Archiving and serialization essentially copy an object. If you just need to efficiently copy an object,
Objective-C provides the -copy message that will duplicate an object in almost exactly the same way as
Java’s Object.clone() method. In addition, Objective-C defines a protocol for obtaining mutable copies
of immutable objects.

Copying an object may produce a shallow copy or a deep copy. Which depends on the nature of
the object. A shallow copy is the default in both Java and Objective-C. A shallow copy creates a new object

CHAPTER 12 ■ SERIALIZATION

208

whose instance variables contain the same values as the original. It’s shallow because the duplicate object
will refer to all of the same objects that the original does. For references to immutable objects, that’s the
preferred result as it avoids unnecessary object duplication. For mutable objects, however, changing a
property value affects the value of the copy too. To be truly independent of the original, the copied object
must recursively copy any mutable objects it refers to. This is called a deep copy.

In Java, a clonable object must implement java.lang.Cloneable. If you do nothing else, calling
Object.clone() will produce a shallow copy of the object. If the object needs to perform a deep copy, it
must override Object.clone() and perform whatever additional duplication is required.

Objective-C is very similar. For an object to be copyable, it must conform to the NSCopying
protocol and implement the -copyWithZone: method. To perform a shallow copy, -copyWithZone: can
call NSCopyObject(…) to produce and return a duplicate of the object. If a deep copy is needed,
additional copy operations or other memory management should be performed before returning.
Listing 12-15 shows a simple object that performs a deep copy of itself.

Listing 12-15. Copying Objects

Java
public class StormTrooper implements Cloneable
{
 ArrayList evilOrders;

 public Object clone() throws CloneNotSupportedException
 {
 try {
 StormTrooper clone = (StormTrooper)super.clone();
 clone.evilOrders = (ArrayList)this.evilOrders.clone();
 return (clone);
 }
 catch (CloneNotSupportedException e) {
 throw new InternalError(e.toString());
 }
 }

}

Objective-C
@interface StormTrooper : NSObject <NSCopying> {
 NSMutableArray *evilOrders;
}

@end

CHAPTER 12 ■ SERIALIZATION

209

@implementation StormTrooper

- (id)copyWithZone:(NSZone*)zone
{
 StormTrooper *clone = NSCopyObject(self,0,zone);
 if (clone!=nil)
 clone->evilOrders = [evilOrders copy];
 return (clone);
}

@end

To copy an object that conforms to NSCopying, send it the -copy message. The object will send

itself a -copyWithZone: message, or raise an exception if the object doesn’t conform to NSCopying. Do
not customize object copying by overriding -copy.

NSCopyObject creates a new object. If an object inherits from a class that already implements
-copyWithZone: it should create the copy by sending its superclass -copyWithZone:, as in MyClass *clone
= [super copyWithZone:zone], and then proceed with any subclass-specific copying.

NSCopyObject is convenient, but you don’t have to use it. You can elect to create and initialize
an equivalent object using any means available. For example, you could create a new object using
something like [[[self class] alloc] init], and then initialize the new object so that it is equal to the
original. You could pull an already created object from a pool of similar objects and set its properties to
match. An immutable object may elect to return self, instead of actually making a copy.

Objective-C also defines an interface for obtaining mutable copies of immutable objects. If you
implement a copyable immutable class that has a mutable subclass, you should follow this design:

• The immutable superclass should also conform to NSMutableCopying and implement
-mutableCopyWithZone:.

• In the immutable superclass, -mutableCopyWithZone: should create an instance of the mutable
subclass, duplicate the relevant data, and return the new instance.

• In the mutable subclass, -mutableCopyWithZone: should mimic -copyWithZone:, returning a
mutable copy of itself.

Your object will now intelligently respond to the -mutableCopy message.

CHAPTER 12 ■ SERIALIZATION

210

Summary
Objective-C archiving fills the role of Java serialization. Creating an archivable class requires a little more
work up front, but follows the same basic pattern as it does in Java. It is not difficult to provide backward,
and potentially forward, compatibility with archived data. Objective-C provides the added benefit of
restricting the graph of encoded objects to just those relevant to the root object, and there is a flexible
framework for substituting and simplifying objects during encoding and decoding.

Objective-C serialization is, as you’ve now discovered, not the equivalent of Java serialization,
but it does provide a simple and convenient means of encoding data using XML. You also learned the
basics of making in-memory copies of objects.

With a firm understanding of message dispatching and object archiving, you can now
appreciate the simplicity of distributed objects, discussed in the next chapter, which combines these two
features to great effect.

C H A P T E R 13

■ ■ ■

211

Communicat ing Near and Far

Communication is a very broad term. In an abstract sense, sending an Objective-C object a message is
“communicating” with that object. At the other extreme, burning a file to a compact disc that’s later read
by another program “communicates” data to that application. This chapter focuses on communication
technologies that exchange data directly between objects via an independent agent or service.

Within that scope, communications can be roughly divided into three domains: the exchange of
messages between objects in the same process, the exchange of messages between objects in different
processes, and the exchange of data over a network. This chapter will survey the common Objective-C
technologies used for all three, although the details of some are covered in other chapters. The groups
overlap somewhat. There are technologies that are used almost exclusively to exchange messages
between objects running in the same process, but that can also be used to send messages to other
processes, and vice versa. So take a moment to familiarize yourself with all of them before settling on a
solution.

Communicating Within a Single Process
There are several technologies for exchanging messages with objects in your process’s memory address
space. Fundamental Objective-C message dispatching is one, but this section is going to review the
following technologies that send messages to an object on behalf of another object:

• Deferred messages

• Notifications

• Key-Value Observing

• Distributed Objects

Deferred messages were discussed in Chapter 6. Deferred messages are sent using the
-performSelector:… family of methods. This is the simplest form of inter-object communication. It
queues up an Objective-C message that will be sent to an object at some later time. The message is
usually sent in the same thread, but some variants will send it to the object in a different thread.

Notifications send NSNotification objects to the objects interested in receiving them. An
NSNotification is a named message container that can include whatever arbitrary information you want
to provide the receivers. Notifications are Objetive-C’s embodiment of the Provider/Subscriber pattern,
and are described in Chapter 18. The most notable differences between notifications and other
communication techniques is that notifications are a one-to-many communications path, and the
provider and subscriber objects aren’t required to have any direct knowledge of each other. Notifications
are distributed through NSNotificationCenter objects. The sender describes the nature of the
notification it wants to distribute, and the receiver describes the types of notifications it would like to
receive. The notification center matches the senders to the receivers and delivers the requested
notifications.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

212

Key-Value Observing (KVO) is a specialized notification service that communicates changes
about an object’s properties. An observer object can attach itself to a particular property of another
object. Once attached, any change to that property is immediately sent to the observer in the form of an
-observeValueForKeyPath:ofObject:change:context: message. Key-Value Observing is particularly
attractive because there are no prerequisite design requirements on the part of the object being
observed—other than it must implement a KVO-compliant property. Thus, your object can request to be
notified about changes to virtually any property of any object. Key-Value Observing is described in
Chapter 19.

Distributed objects (DO) is usually employed to send messages between objects in separate
processes or across networks to other systems. However, it can also be used to send messages between
threads of the same process. This use of distributed objects is an easy way of adding asynchronous
message processing to your design. Inter-thread DO is described and demonstrated in the next section.

Communicating with Other Processes
Communicating with other processes is severely limited by the fact that an address in the local process’s
memory address space is meaningless to any other process. To exchange information with another
process, all data must be in, or converted into, a transportable form that is meaningful outside the
process. This usually takes the form of byte arrays that are interpreted serially by the receiving process.
Fortunately, in the previous chapter you just learned about two key technologies that perform this
transformation for objects—archiving and serialization.

Ports, pipes, and sockets are the low-level tools for exchanging blocks of bytes between
processes. Ports refer to Mach kernel ports, the fundamental mechanism by which messages are sent to
the kernel and, by extension, other processes. Technically, all extra-process communications are
performed through Mach ports, since that’s the only means by which a process can communicate with
the outside world. Layered on top of ports are the POSIX concepts of pipes and sockets. Pipes are,
conceptually, a unidirectional serial communications conduit with a process connected to each end.
Bytes injected into the pipe by one process instantly appear as readable data to the other. Sockets are
unidirectional or bidirectional communications conduits between two processes. While pipes are
limited to two processes running on the same system, sockets can be connected—via data networks or
another transport medium—to a process running on a completely different computer system, possibly
quite remote. Sockets are more packet oriented, sending and receiving discrete blocks of information
rather than individual bytes.

Distributed notifications and distributed objects are the two principal high-level inter-process
communications technologies. These are both object-oriented facilities that automatically archive or
serialize object data so that it can be transported to another process or system. Ports, pipes, or sockets
are employed to transport the serialized data.

This section will briefly describe the Objective-C interfaces to ports, pipes, and sockets. It will
then touch on distributed notifications before getting to distributed objects. Distributed objects are the
apex of object-oriented inter-process communications, and consume most of the rest of this chapter.

Low-Level Communications
Objective-C has four key classes that represent a source of serial or sequential data:

• NSPort

• NSPipe

• NSStream

• NSFileHandle

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

213

There is a huge amount of overlap between the capabilities and functionality of these classes.
It’s possible, for example, to connect to a BSD socket using NSPort, NSPipe, and NSFileHandle. All allow
you to send and receive serial data through the conduit. Which you use will be dictated largely by the
context of where you need them. A data source that will be processed by a run loop must be a subclass of
NSPort. The POSIX pipes that connect processes (better known as standard in, standard out, and
standard error) can be either NSPipe or NSFileHandle objects. Network services provide NSStream
objects for communicating with the connected process.

NSPort
NSPort is the base class that connects a data source to a run loop. Messages pushed onto the port are
processed by the run loop. NSMachPort is a subclass that connects to a Mach kernel port for direct
process-to-process communications. NSSocketPort can be connected to BSD pipes or sockets providing
equivalent functionality between processes and systems. NSPorts are the foundation for distributed
objects, several of which are demonstrated in the “Distributed Objects” section later in this chapter.

NSMachPort is extremely efficient and the most common type of port used by run loops. User
events, system events, deferred messages, timer events, and many other low-level messages are all
processed by an application through its run loop. Most events are pushed onto the run loop’s Mach port
by the system or from within the application. Mach ports can also be used to send messages between
processes. The one limitation is the security model of the operating system. All Mach kernel ports exist
within a domain called a bootstrap namespace. A bootstrap namespace is created for each user that logs
into a Mac OS X system. A process can only connect with the Mach ports in its namespace and its parent
namespaces. Thus, an application could use Mach ports to establish communications with another
process started by the same user, or a system daemon, but not with a process started by another user.

NSSocketPorts are used when a run loop needs to communicate with a process outside its
bootstrap namespace or possibly with another computer system. NSSocketPorts can be connected to a
variety of different sources; the two most useful are BSD pipes and sockets. A pipe can be a named pipe
in the file system. File system names are public to all processes, and provide a means for two processes
in different bootstrap namespaces to communicate. Network sockets allow two processes to exchange
data using a network transport protocol. The advantage is that the other process could be running on the
same machine or one thousands of miles away. The disadvantage is that network ports are typically
accessible from outside the computer system, which might not be appropriate for some
communications and has security implications.

NSPipe
NSPipe is little more than a wrapper for a pair of NSFileHandle objects. An NSPipe is used to interact
with BSD pipes. Often, these are the traditional standard in, standard out, and standard error pipes that
connect processes. Listing 13-1 shows how to launch an executable and capture the text output of the
new process.

Listing 13-1. Capturing Standard Out

Java
ProcessBuilder pb = new ProcessBuilder("/bin/echo","Hello, Objective-C");
try {
 Process echo = pb.start();
 InputStream stdOut = echo.getInputStream();
 int c = (int)' ';
 System.out.print("echo says:");

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

214

 do {
 System.out.print((char)c);
 c = stdOut.read();
 } while (c!=(-1));
} catch (IOException e) {
 e.printStackTrace();
}

Objective-C
NSTask *echo = [NSTask new];
NSPipe *stdOut = [NSPipe pipe];
[echo setLaunchPath:@"/bin/echo"];
[echo setArguments:[NSArray arrayWithObject:@"Hello, Objective-C"]];
[echo setStandardOutput:stdOut];
[echo launch];

NSFileHandle *outStream = [stdOut fileHandleForReading];
NSData *output = [outStream readDataToEndOfFile];
NSLog(@"echo says: %@",[NSString stringWithCString:[output bytes]
 length:[output length]]);

 In Java, the java.lang.Process object creates the required java.io.InputStream or
java.io.OutputStream objects and provides them to you. In Objective-C, everything is backwards. You
create the NSPipe or NSFileHandle object you want to communicate through, then pass it in a
-setStandardInput:, -setStandardOutput:, or -setStandardError: message. This must be done before
the process is launched. When launched, NSTask will connect the pipe or file handle you provided to the
actual pipe attached to the process. Also note that the terminology is reversed. In Objective-C, the
standardOut property is the standard out of the process (i.e., the process’s output). In Java,
java.lang.Process.getInputStream gets the InputStream connected to the process’s standard out. In
other words, pipe identities in Objective-C are from the perspective of the process. In Java, they are from
the perspective of the parent process.

To get the actual input data, the NSFileHandle for reading is obtained from the pipe. It’s
possible to bypass using NSPipe altogether, as the -setStandardInput:, -setStandardOutput:, and
-setStandardError: messages all accept NSFileHandle objects too. So the code in Listing 13-1 could be
easily rewritten to set an NSFileHandle as its connection to standard out. The effect would be the same.

NSFileHandle
NSFileHandle is the general purpose wrapper for a POSIX file. When used with pipes and sockets, they
become stream interfaces. NSFileHandle methods were described in the Files chapter. When used with a
pipe file, methods that don’t make sense on a serial data—particularly -offsetInFile,
-seektoFileOffset:, and -seekToEndOfFile—should not be used. Unidirectional output pipes should
not be sent any -read… messages, and unidirectional input pipes will not accept the -writeData:
message.

As with Java InputStreams, the logical end of file (EOF) condition only exists when the input
side of the pipe is closed. Thus, the -[NSFileHandle readDataToEndOfFile] method in Listing 13-1
suspends until the other end of the pipe is closed, even if all of the data in the pipe has already been
read.

The NSFileHandle methods -readInBackgroundAndNotify,
-readToEndOfFileInBackgroundAndNotify, and -waitForDataInBackgroundAndNotify become particularly
useful when used with pipes and sockets. These messages create a new thread that waits for data to
appear in the pipe, and then posts a notification which your application can observe. -waitForData…

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

215

merely notifies you that data has become available, but doesn’t read any of it. -readInBackground…
immediately reads what’s available and supplies that in the notification. -readToEndOfFile… waits until
the pipe is closed, then sends a notification containing all of the remaining data in the pipe.

NSStream
Where NSFileHandle is a generic wrapper that can be used with data streams, NSStream is a specialized
class designed exclusively for use with serial data streams. NSStream has two usable subclasses:
NSInputStream and NSOuputStream. These are the closest Objective-C equivalents of
java.io.InputStream and java.io.OutputStream. The base NSStream class defines the methods common
to both subclasses (i.e., -open, -close, -streamStatus). Naturally, NSInputStream defines a -read:…
method and NSOutputStream defines a -write:… method, along with other methods applicable only to
input or output streams.

Like their Java counterparts, NSInputStream and NSOutputStream can be connected to a
variety of sources including pipes, sockets, data files, and memory buffers. But instead of defining
explicit subclasses for each variation, Objective-C presents a single class that operates in different
modes. The object you use might actually be a private subclass, but that’s an implementation detail that
should be ignored. Table 13-1 shows the Java stream classes and the equivalent NSInputStream or
NSOutputStream constructor.

Table 13-1. Creating Stream Objects

Java Object ive-C

new ByteArrayInputStream(bytes) [NSInputStream inputStreamWithData:bytes]

new FileInputStream(path) [NSInputStream inputStreamWithFileAtPath:path]

new ByteArrayOutputStream() [NSOutputStream outputStreamToMemory]

new ByteArrayOutputStream(size) [NSOutputStream outputStreamToBuffer:buffer capacity:size]

new FileOutputStream(path) [NSOutputStream outputStreamToFileAtPath:path append:NO]

The specific Java subclasses include methods applicable to that type of data stream. For
example, the java.io.ByteArrayOutputStream includes a toByteArray() method that retrieves the
collected output data as a byte array object. The NSStream classes relate stream-specific information via
their properties dictionary. To obtain the data collected by an NSOutputStream initialized with
+outputStreamToMemory, obtain the stream’s NSStreamDataWrittenToMemoryStreamKey property, like
this:

NSData *bytes = [outStream propertyForKey:NSStreamDataWrittenToMemoryStreamKey];

Similarly, the current file position for a stream attached to a data file can be examined, or
modified, by manipulating the stream’s NSStreamFileCurrentOffsetKey property; the value is an
NSNumber object. These are the only two stream properties of general interest. Other properties are
concerned with network socket configuration.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

216

Like Java, other services may create and return specialized subclasses of NSInputStream or
NSOutputStream—subclasses that you can’t, or shouldn’t attempt to, create yourself. These opaque
subclasses are usually how NSStreams are attached to pipes, or how network socket ports are obtained.

A significant difference between NSFileHandle and the NSStream classes is the way
asynchronous data is processed. NSFileHandle has methods that create a temporary thread that waits
for data to become available, and then sends a notification. NSStream objects are designed to work
within run loops to provide event-driven stream processing without the need to create additional
threads. To take advantage of this, you must attach the stream to a working run loop, as shown in
Listing 13-2.

Listing 13-2. NSStream Event Handling

NSInputStream *inStream = …
MyStreamHandler *delegate = [MyStreamHandler new];

[inStream setDelegate:delegate];
[inStream scheduleInRunLoop:[NSRunLoop currentRunLoop]
 forMode:NSDefaultRunLoopMode];
[inStream open];

…

@implementation MyStreamHandler

- (void)stream:(NSStream*)stream handleEvent:(NSStreamEvent)eventCode
{
 switch (eventCode) {
 case NSStreamEventHasBytesAvailable:
 {
 uint8_t buffer[1024];
 NSUInteger length;
 length = [(NSInputStream*)stream read:buffer
 maxLength:sizeof(buffer)];
 if (length!=0) {
 // do something with data in buffer[]...
 }
 break;
 }
 case NSStreamEventEndEncountered:
 {
 // do something at end-of-stream...
 break;
 }
 case NSStreamEvent…:
 …
 break;
 }
}

@end

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

217

Once scheduled, the run loop will send stream event messages to your delegate, just as it
dispatches other kinds of events. Using stream events is the most efficient, and the preferred, method for
stream data processing. It is possible to poll the stream by repeatedly sending it -hasBytesAvailable
messages in a tight loop, but this would most likely be a horrific waste of CPU resources.

High-Level Communications
The high-level communication frameworks are an object-oriented interface for exchanging messages
and objects. There are two principal high-level communication facilities:

• Distributed Notifications

• Distributed Objects

These frameworks use the low-level communication classes described in the previous section
to perform the actual data exchange, shielding you from most of the unpleasant details. The high-level
frameworks all have some form of registry or automatic discovery to connect the sender with the
receiver. Most of the time, the client and remote service need only agree on a common identifier; the
framework will take care of connecting the two.

Distributed Notifications
Distributed notifications are described in the Chapter 18, but there’s not much to tell. Distributed
notifications are just like regular notifications, with two key differences:

• Notifications are broadcast to all processes.

• Notification content is restricted to property-list objects.

Distributed notifications use Mach ports, which limits them to communicating with processes
in the same bootstrap namespace. They use serialization to convert the data into a form suitable for
inter-process exchange, so the notification’s name, source object, and information must all be property-
list objects, as described in the section “Objective-C Serialization” in Chapter 12. Listing 13-3 shows how
to send a notification to any number of observer processes running on the same system.

Listing 13-3. Sending a Distributed Notification

NSDictionary *info = [NSDictionary dictionaryWithObjectsAndKeys:
 @"Meeting Reminder", @"Message",
 @"X-Prize Launch Stratagy", @"Description",
 [NSDate dateWithString:@"2009-04-02 10:00:00 -0700"], @"StartTime",
 @"Room 312", @"Location",
 nil];
[[NSDistributedNotificationCenter defaultCenter]
 postNotificationName:@"PSEventReminder"
 object:@"com.apress.schedule"
 userInfo:info];

Distributed notifications are extremely easy to post and subscribe to. For self-contained,
infrequent, unidirectional, broadcast-style messages, they are by far the simplest inter-process
communication solution.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

218

Distributed Objects
Distributed Objects (DO) is the apex of inter-object communications, and is equivalent to Java’s Remote
Method Invocation (RMI) technology. Distributed objects is more flexible and easier to use than RMI,
making it a convenient solution to a wide variety of design problems. This section will describe the
basics of how distributed objects works, several different ways of establishing a connection to a remote
object, how to send and receive messages, and how you can influence object exchange between
processes.

How Distributed Objects Works

Using Remote Method Invocation in Java generally involves the following:

 1. Create an interface that defines the methods your remote object implements.

 2. Create a class that implements the interface in step 1.

 3. Execute the rmic utility to generate a _Stub class from the implementation class.

 4. Make all objects that are passed to, or returned from, methods in the interface Serializable.

 5. Start the rmiregistry process.

 6. Create an instance of the implementation class in your server process.

 7. Register that object as a named service.

 8. In your client process, request the proxy object for the service.

 9. Call methods of the proxy object to invoke those same methods on the instance of the object

in the server process.

Using distributed objects in Objective-C follows the same general workflow, except that
Objective-C eliminates steps 3 and 5, and makes steps 1, 2, 4, and 7 optional. In Objective-C, the
minimum required to use distributed objects is:

 1. Vend any object via a connection object attached to a run loop.

 2. The client requests the proxy object for the vended object from the connection.

 3. The client sends the proxy object messages.

The key differences are that you don’t have to do anything special to create a proxy of a remote
object—Objective-C creates proxy objects spontaneously—and objects do not have to be archivable in
order to be passed to, or returned from, remote messages. Although there can be advantages to making
objects archivable, as explained in the “Passing Objects by Copy” section.

Listing 13-4 contrasts Java RMI with Objective-C distributed objects. The complete source code
and projects for these demonstrations is available at http://www.apress.com/ in the Source
Code/Downloads area. Shell scripts to compile and run the examples are included. To try the
Objective-C examples one at a time, open and build the Xcode project. Open a Terminal window and cd
to the build directory that contains the Greeter and Guest executables. Run the commands from the
shell using ./Greeter or ./Guest. You will want to open multiple windows to play with communications
between processes, or copy the executable to another computer on the same network to experiment
with network connections. Type Control-C to stop a running server process.

The Java implementation is functionally similar to the Objective-C version. Both examples run
in two separate processes: a Greeter server and a Guest client. The Greeter process creates and publishes
a single Greeter object. The client application connects to the remote process by looking up the Greeter
service by name. It obtains a proxy for the Greeter object that exists in the server and interacts with it.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

219

The output from these programs is shown in Listing 13-5. The server and client form a one-to-many
relationship. You can start as many client processes as you like; they will all connect and interact with
the single Greeter object.

Listing 13-4. Remote Method Invocation

Java: Greeter and Guest Classes
public interface Greeter extends Remote {
 public void sayHello() throws java.rmi.RemoteException;
 public void greetGuest(Guest listener) throws java.rmi.RemoteException;
 public String sayGoodbye() throws java.rmi.RemoteException;
}

public class GreeterImpl extends UnicastRemoteObject implements Greeter {

 private static final long serialVersionUID = 999010092613539924L;

 public static void main(String[] args)
 {
 String greeterServiceURI = makeServiceURI(null,null);

 try {
 Greeter greeter = new GreeterImpl();
 System.out.println("Starting Greeter service at "+greeterServiceURI);
 Naming.rebind(greeterServiceURI,greeter);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public static String makeServiceURI(String host, String name)
 {
 if (host==null)
 host = "localhost";
 if (name==null)
 name = "JavaGreeter";
 return "rmi://"+host+"/"+name;
 }

 public GreeterImpl() throws RemoteException
 {
 super();
 }

 public void sayHello() throws RemoteException
 {
 System.out.println("Greeter "+getClass().getName()
 +" was asked to sayHello()");
 }

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

220

 public void greetGuest(Guest guest) throws RemoteException
 {
 System.out.println("Greeter "+getClass().getName()
 +" was asked to greetGuest("+guest+")");
 guest.listen("I'm pleased to meet you, "+guest+"!");
 }

 public String sayGoodbye() throws RemoteException
 {
 System.out.println("Greeter "+getClass().getName()
 +" was asked to sayGoodbye()");
 return "It was a pleasure serving you.";
 }

}

public class Guest implements Serializable {

 private static final long serialVersionUID = -478469725382736366L;

 public static void main(String[] args)
 {
 String greeterServiceURI = GreeterImpl.makeServiceURI(null,null);

 try {
 System.out.println("Looking up greeter at "+greeterServiceURI);
 Greeter greeter = (Greeter)Naming.lookup(greeterServiceURI);
 Guest guest = new Guest();

 greeter.sayHello();
 greeter.greetGuest(guest);
 String lastWord = greeter.sayGoodbye();
 System.out.println("Greeter's final response was \""+lastWord+"\"");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void listen(String message)
 {
 System.out.println(getClass().getName()+" heard \""+message+"\"");
 }
}

Objective-C: Greeter Program
@class Guest;

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

221

@interface Greeter : NSObject

- (void)sayHello;
- (void)greetGuest:(Guest*)guest;
- (NSString*)sayGoodbye;

@end

@implementation Greeter

- (void)sayHello
{
 NSLog(@"Greeter %@ was asked to sayHello",self);
}

- (void)greetGuest:(bycopy Guest*)guest
{
 NSLog(@"Greeter %@ was asked to greetGuest:%@",self,guest);
 [guest listen:[NSString stringWithFormat:@"Pleased to meet you, %@!",guest]];
}

- (NSString*)sayGoodbye
{
 NSLog(@"Greeter %@ was asked to sayGoodbye",self);
 return @"It was a pleasure serving you.";
}

@end

int main (int argc, const char * argv[])
{
 NSConnection *connection = [NSConnection defaultConnection];
 [connection setRootObject:[Greeter new]];
 if ([connection registerName:SERVICE_NAME_DEFAULT]) {
 NSLog(@"Starting Greeter service '%@'",name);
 [[NSRunLoop currentRunLoop] run]; // never returns
 }
 return 0;
}

Objective-C: Guest Program
@interface Guest : NSObject

- (void)listen:(NSString*)message;

@end

@implementation Guest

- (void)listen:(NSString*)message
{
 NSLog(@"%@ heard \"%@\"",self,message);
}

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

222

@end

int main (int argc, const char * argv[])
{
 NSConnection *connection = nil;

 NSLog(@"Connecting to greeter '%@' via Mach ports",name);
 connection = [NSConnection connectionWithRegisteredName:SERVICE_NAME_DEFAULT
 host:nil];
 Greeter *greeter = (Greeter*)[connection rootProxy];
 Guest *guest = [Guest new];

 [greeter sayHello];
 [greeter greetGuest:guest];
 NSString *lastWord = [greeter sayGoodbye];
 NSLog(@"Greeter's final response was \"%@\"",lastWord);

 return 0;
}

Listing 13-5. Output of Greeter Demonstration

Java GreeterImpl:
$ java com.apress.java.rmi.GreeterImpl
Starting Greeter service at rmi://localhost/JavaGreeter
Greeter com.apress.java.rmi.GreeterImpl was asked to sayHello()
Greeter com.apress.java.rmi.GreeterImpl was asked to talkBackTo(Guest@e9cb75)
com.apress.java.rmi.Guest heard "I'm pleased to meet you, Guest@e9cb75!"
Greeter com.apress.java.rmi.GreeterImpl was asked to sayGoodbye()

Java Guest:
$ java com.apress.java.rmi.Guest
Looking up greeter at rmi://localhost/JavaGreeter
Greeter's final response was "It was a pleasure serving you."

Objective-C Greeter:
$./Greeter --mach
Starting Greeter service 'ObjCGreeter'
Greeter <Greeter: 0x1011bf0> was asked to sayHello
Greeter <Greeter: 0x1011bf0> was asked to greetGuest:<Guest: 0x1014bc0>
Greeter <Greeter: 0x1011bf0> was asked to sayGoodbye

Objective-C Guest:
$./Guest --mach
Connecting to greeter 'ObjCGreeter' via Mach ports
<Guest: 0x1014bc0> heard "I'm pleased to meet you, <Guest: 0x1014bc0>!"
Greeter's final response was "It was a pleasure serving you."

Java and Objective-C remote method invocations are, conceptually, quite similar: a server
process instantiates an object that implements a service. One or more client processes connect to the

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

223

service and obtain a proxy object. The proxy object doesn’t implement any of the server’s code. Instead,
the proxy forwards any method invocations through the connection to the server process, where the
desired method is actually executed. Any parameters and return values are similarly encoded and
transported through the connection.

There are two significant differences between the Java and Objective-C implementations. The
first is how proxy objects are created. In Java, you must first design an interface that defines the methods
for the server object, along with a class that implements them. The Java rmic compiler then creates a
special _Stub class suitable for use as a proxy object. The client process obtains the proxy object and
invokes its methods, which are forwarded back to the server for execution.

Objective-C provides the NSProxy class. This is a very special class, because it is not a subclass
of NSObject. NSObject and NSProxy are both subclasses of the root Object class. Most of what you
consider to be base-class methods are defined in NSObject, not Object. Consequently, NSProxy inherits
no methods—which makes it perfect for what it does.

NSProxy overrides the -forwardInvocation: method described in Chapter 6. Since it
implements almost no methods, virtually any method you send it will end up invoking
-forwardInvocation:. NSDistantObject, the useable subclass of NSProxy, connects an NSProxy with an
NSConnection. Any message sent to the proxy object is archived and transported through the
NSConnection for execution by the remote process. By leveraging Objective-C’s unimplemented
method handling, a lightweight proxy object can be spontaneously created for any Objective-C object.
This means that you can share virtually any object through an NSConnection.

■Caution NSProxy objects do not contain any of the instance variables of the objects they stand in for. For
convenience, proxy object pointers are often cast as a pointer to the actual object type. Be careful not to directly
access any instance variable of the object using a pointer to its proxy, as in distantObject->value. This will
most certainly have disastrous results. Use property accessors instead ([distantObject value] or
distantObject.value) as these translate into messages, or use the object identifier type (id) which inherently
prohibits direct variable access. When designing distributed objects, program defensively. Make all instance
variables @protected or @private and provide accessor methods for all public properties.

The other significant difference is how parameters and return values are exchanged. In Java, all
parameters and return values are passed by copy, and must therefore be serializable. It also means that
the classes that implement those values must exist in the server. Find the “Guest heard ‘I’m pleased to
meet you, Guest!’” message for both Java and Objective-C in the example output in Listing 13-5. In the
Java version, the message is emitted by the server process. The client statement
greeter.greetGuest(guest) serialized a copy of the Guest object and sent it to the server. When the
Greeter executed guest.listen("I'm pleased to meet you, guest!"), the listen(…) method executed
on the server’s local copy of the guest object.

In the Objective-C output, the “Guest heard ‘I’m pleased to meet you, Guest!’” message is
emitted by the client. That’s because Objective-C’s default is to pass values by reference. The [greeter
greetGuest:guest] statement passed a reference to the guest object to the server. The server’s -
greetGuest: method received a proxy NSDistantObject to the instance of Guest that exists in the client.
When the server sends the message [guest listen:@"I'm pleased to meet you, guest!"], the message
invocation is intercepted, archived, and sent back to the client for execution, where the output appears.

This allows you to pass virtually any object to a remote method. The object doesn’t have to be
archivable, you just need to be aware that the receiver will get a proxy to the original object,
spontaneously created by NSDistantObject. If you need objects to be passed by copy, you can do that by
making them conform to NSCoding and implement sequential archiving, as described in Chapter 12.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

224

Your object will also have to implement code to decide under what circumstances it should be passed by
copy or by reference. All of that is explained in the “Passing Objects by Copy” section.

Making a Connection

Using distributed objects is kind of like dating; you first have to find a suitable partner before you can
begin a conversation. You can use a third-party matchmaking service, or you can do it yourself if you
have firsthand knowledge about the other’s existence.

Java’s java.rmi.Naming class performs the role of matchmaker, allowing the server process to
publish its existence. For the client, it locates the desired server process and returns a proxy object.
Through the proxy object, the client is connected to the server.

In Objective-C, NSConnection is the central actor that connects two processes via distributed
objects. NSConnection does not, by itself, provide any registration services—although it does provide
convenience constructers to commonly used ones. To establish a connection between a server and a
client, you must create an NSConnection object that uses two unidirectional NSPort objects, or one
bidirectional NSPort object. The NSConnection uses the NSPort objects to communicate data and
invocation information to the remote process. The general arrangement is shown in Figure 13-1. The
solid arrows are object references within the process. The hollow arrows show the direction of data
exchanged through some port or socket.

Figure 13-1. Objects in an NSConnection

How you create your NSConnection object depends on the type of connection you want to
create. You can create NSPort objects directly, or obtain connected NSPort objects from a registration
service, and then use those to create an NSConnection. There are also some facilities that will create a
preconfigured NSConnection object for you. Four common NSConnection configurations are listed in
Table 13-2.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

225

Table 13-2. Common NSConnection Configurations

Connect ion Type How to Create I t

Two objects in the same process Create two NSPort objects, then use those to create an
NSConnection.

Connection via Mach ports Let +[NSConnection connectionWithRegisteredName:host:]
create a preconfigured NSConnection for you.

Connection via IP socket Obtain an NSPort from NSSocketPortNameServer and use it to
create an NSConnection.

The role of matchmaker is usually performed by one of the NSPortNameServer subclasses. Each
name server provides a registration and discovery service for a particular class of ports.
NSMachBootstrapServer registers Mach message ports. The scope of Mach ports is limited to the
bootstrap namespace of the current process. NSSocketPortNameServer registers TCP ports on a local
area network. Services registered with NSSocketPortNameServer are accessible by any computer on the
local network.

Once the NSConnection object is created, the server object is vended. This makes the object
available to any clients that connect to the server’s NSConnection. This is done using -[NSConnection
setRootObject:]. Once set, the client sends its NSConnection a -rootProxy message to obtain the
NSDistantObject of the server’s root object. Any other object the client and server need to exchange is
accomplished by sending messages to the server’s root object. The server can change its rootObject at
any time, but that doesn’t affect any proxy objects clients have previously obtained.

The demonstration project includes examples of four common connection methods. You can
try them out using the command’s mode argument. Each is described below.

Inter - thread Connect i on

Distributed objects’ focus is inter-process communications, but DO works just as well between threads
in the same process. Using DO, it is relatively easy to create a class that receives and executes messages
in its own thread, making powerful multi-threaded services as easy to use as simple objects. It also
provides a flexible deployment environment for remote services. A service designed to run on a remote
computer could just as easily run in a separate process on the same machine, or as a thread in the local
process for testing. The client’s interface to all three would be identical.

Creating an inter-thread connection is simple. Create two generic NSPorts to provide the
communications, and use those to create the NSConnection objects, as shown in Listing 13-6. To run
this example in the demonstration project, issue the command ./Guest --thread.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

226

Listing 13-6. Inter-Thread DO Connection

NSPort *receivePort = [NSPort port];
NSPort *sendPort = [NSPort port];
NSConnection *clientConnection;
NSConnection *serverConnection;

clientConnection = [NSConnection connectionWithReceivePort:receivePort
 sendPort:sendPort];

serverConnection = [NSConnection connectionWithReceivePort:sendPort
 sendPort:receivePort];
[serverConnection setRootObject:[Server new]];
[serverConnection runInNewThread];

…

id server = [clientConnection rootProxy];
[server doSomething];

Note that the port order is reversed in serverConnection. The client’s receive port is connected
to the server’s send port, and vice versa. The -runInNewThread method detaches a new thread, running
its own run loop, attached to the connection. There are lots of variations to this code. Some
programmers prefer to create their own thread, pass it the NSPort objects, and let the server object
create its NSConnection. It doesn’t matter, as long as the end result is the same.

Mach Por ts Connect ion

Mach ports provide extremely efficient inter-process communications within the scope of a single user
or with a system process. The NSMachPortNameServer registers server processes by name, and any
client can connect to it easily. The code for both client and server are shown in Listing 13-7. Try it
yourself by executing the demonstration commands ./Greeter --mach and ./Guest --mach in separate
terminal windows.

Listing 13-7. DO Connection Through Mach Ports

Server
NSConnection *connection = [NSConnection defaultConnection];

[connection setRootObject:[Server new]];
if ([connection registerName:@"Server"])
 [[NSRunLoop currentRunLoop] run];

Client
NSConnection *connection = [NSConnection connectionWithRegisteredName:@"Server"
 host:nil];
id server = [connection rootProxy];
[server doSomething];

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

227

The server creates it server object and registers it with its public name. The client uses the
convenience constructor -connectionWithRegisteredName:host: to obtain an NSConnection,
preconfigured with NSPorts connected to the Mach ports registered under the name @"Server".

It’s also possible that both server and client could be running in two threads of the same
process. The service, registered with the NSMachBootstrapServer, would be accessible to other
processes, but could just as easily be connected from another thread.

Network Connec t ion

The flexibility of distributed objects becomes particularly keen when used to interact with objects over a
network. The NSSocketPortNameServer provides registration and discovery services accessible from all
the systems on a local area network, as shown in Listing 13-8. The ./Greeter --network and ./Guest --
network demonstrations can be run on the same computer, or on multiple computers on the same
network.

Listing 13-8. DO Connection Through Local Network

Server
NSSocketPort *port = [NSSocketPort new];
NSConnection *connection = [NSConnection connectionWithReceivePort:port
 sendPort:nil];
[connection setRootObject:[Server new]];
if ([[NSSocketPortNameServer sharedInstance] registerPort:port name:@"Server"])
 [[NSRunLoop currentRunLoop] run];

Client
NSPort *port = [[NSSocketPortNameServer sharedInstance] portForName:@"Server"
 host:@"*"];
NSConnection *connection = [NSConnection connectionWithReceivePort:nil
 sendPort:port];
id server = [connection rootProxy];
[server doSomething];

The network version is just a subtle variation on the previous themes. Here, the server and
client interact directly with the NSSocketPortNameServer to register and obtain NSSocketPort objects
directly. The ports are then used to create NSConnection objects.

NSSocketPortNameServer will locate any computer on the local network that has registered a
@"Server" service if the host is @"*". The host parameter can also be a specific machine domain name or
an IP address if you want to connect with a specific target machine.

BSD Pipe Connec t ion

The final example is a bit more exotic. It demonstrates connecting two processes using a named BSD
pipe “file” in the file system. A pipe file looks like a data file, but is actually a live buffer between two
processes. Bytes written to the “file” immediately appear as data to the other process, but are never
written to any storage device. This demonstrates the flexibility of distributed objects. Essentially any
communications conduit that can be connected to an NSPort can be used to create an NSConnection.
Since you can create your own subclasses of NSPort, the possibilities are unlimited.

The project commands that demonstrate this technique are ./Greeter --socket and ./Guest -
-socket. The code can be found in the Greeter_main.m and Guest_main.m files.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

228

Run Loops

Run loops are the engine that drives distributed objects. Run loops are described in more detail in
Chapter 15.

In the server examples above, the last step is to start a run loop that will process the events
received by its NSPort object. To receive and dispatch asynchronous messages, an NSConnection must
be driven by a run loop. Messages sent by clients are pushed onto the server’s NSPort. The run loop pops
them off one at a time and dispatches them to the root object.

It’s obvious that the server must use a run loop. What’s not obvious is that the client is also
running a run loop. When the client sends a synchronous message (i.e., [server doSomething]), it
pushes the message onto the NSPort and then starts a temporary run loop to wait for the response. The
server receives the message and replies by sending a message back to the client. The client’s temporary
run loop pops the reply off its NSPort and returns to the sender.

Look again at the code for the Greeter and Guest example in Listing 13-4. Consider the
possibility that Greeter keeps a reference to the proxy Guest object and uses it to send another -listen:
message after -greetGuest: has returned. If the client process was not running a run loop, the -listen:
message would sit in the client’s NSPort forever, never to be executed. Since the method is synchronous,
the Greeter object would hang, waiting for the Guest object to respond—or at least until the
NSConnection timed out.

To implement asynchronous, bidirectional, messaging between distributed objects, both
processes must have active run loops.

Asynchronous Messages

As alluded to earlier, messages sent through an NSProxy can be synchronous or asynchronous. To create
an asynchronous message, add the oneway keyword to the return value of the method’s interface.

- (oneway void)doSomething;

The message will be sent to the remote object, but execution will return immediately to the
sender. oneway methods should always have a void return type. As mentioned in the “Run Loops”
section, the client must be running its own run loop if it expects to receive any asynchronous replies
from the server. The oneway modifier, along with the other parameter modifiers described later, only
affect messages sent through NSProxy objects. The behavior of regular Objective-C messages (i.e.,
[object doSomething]) does not change.

Passing Objects by Copy

Objects passed in parameters or returned from messages can be exchanged with the remote object by
copy or by reference. Sending an object by reference entails creating an NSDistantObject proxy for the
object and sending that to the receiver.

To pass an object by copy, the object is archived using sequential archiving, then reconstructed
at the receiving end. This places three requirements on the class. First, the class must conform to
NSCoding and implement sequential archiving, as described in the Serialization chapter. Second, the
code for the class must exist in the receiving process—otherwise, there’s no way to instantiate the object.

Finally, the class must override its -replacementObjectForPortCoder: method to decide when it
should be copied and when it should be passed by reference. Objective-C can provide hints to the class
with the bycopy and byref modifiers. These type modifiers augment object parameters and return values
in the method’s implementation, as in

- (bycopy ProjectStatus*)statusForProject:(byref Project*)project { …

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

229

The demonstration project includes an implementation of -replacementObjectForPortCoder:
for the Guest object, shown in Listing 13-9.

Listing 13-9. Guest Class bycopy Implementation

- (id)replacementObjectForPortCoder:(NSPortCoder*)coder
{
 if ([coder isBycopy])
 return self;
 return [super replacementObjectForPortCoder:coder];
}

From the perspective of distributed objects, all objects are passed by copy. The archived copy of
the object is produced using sequential archiving. As you learned in Chapter 12, an NSPortCoder
encoder will first invoke -replacementObjectForPortCoder: to allow an object to substitute a different
object in the archive. NSObject’s default implementation substitutes an NSDistantObject for the object.
The distributed objects framework does not perform the substitution of proxy objects for their originals;
each object individually decides whether to copy itself or provide a proxy object.

The code in Listing 13-9 makes the by-copy decision for the Guest object based on the hint
embedded in the method definition. If the argument or return value type includes the bycopy keyword,
the NSPortCoder used to archive the object will return YES when sent -isBycopy. -isBycopy will return
NO if the byref modifier, or no modifier, was specified. Or you can test -isByref, which always returns
!isBycopy.

Alternatively, you can choose to ignore the recommendation of the coder and return self,
[super replacmentObjectForPortCoder:coder], or any other functional substitute. Some objects, like
NSString, elect to always send themselves bycopy, ignoring any byref hint. By default, subclasses of
NSObject always send themselves by reference, even when the method requests bycopy. Your code can
use any criteria to make its decision. An object might send itself by copy if the NSPortCoder is connected
to a service over a network, but choose to send a reference if connected to another process in the same
system.

Passing Po in te rs

Passing C pointers as parameters presents another problem. Pointers can’t be copied by value—since
the local address will be meaningless to the receiving process. Nor is there any way to create the
equivalent of a proxy object for a remote structure. Distributed objects solves this problem by copying
the value of the structure the pointer parameter points to— unless the pointer is NULL, in which case it
simply sends NULL to the receiver.

- (void)rectToLocalCoordinates:(NSRect*)rectangle;

When the -rectToLocalCoordinates: message is sent to a distant object, the contents of the
NSRect structure are copied, verbatim, to the remote process and the C pointer the receiver gets points
to a local copy allocated by distributed objects. When the method returns, the (possibly modified)
contents of the NSRect structure are copied back to the sender, and the temporary copy is destroyed.

This isn’t particularly efficient, but it’s safe. For methods that only reference the contents of
the structure, or ignore its original content, Objective-C provides the parameter modifiers listed in
Table 13-3.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

230

Table 13-3. Pointer Parameter Type Modifiers

Modif ier Ef fect

in Structure is copied to receiver, but not back to the sender.

out Structure is not copied to the receiver, but the modified structure
is copied back to the sender upon return.

inout Structure is copied to the receiver, then back again when the
method returns. This is the default.

Use the in modifier for parameters that pass information to the receiver, when the receiver
doesn’t use the pointer to modify the contents of the structure. An example method would be

- (BOOL)isValidPoint:(in NSPoint*)inPoint;

Use the out modifier for parameters used to point to an uninitialized structure that will be filled
in by the receiver. An example method would be

- (void)getSize:(out NSSize*)outSize;

The inout modifier is the default. Including it won’t change the method, but makes your intent
clear.

■Caution Structures are sent by copy to the receiver. The structure can only contain primitive values. It cannot,
for obvious reasons, contain pointers to other structures or objects. If the structure is that complex, it will need to
be reengineered as an object or first translated into some portable format, before it can be used with distributed
objects.

Pointer value modifiers are also applicable to method return values. There are similar problems
with parameters that are pointers to pointers. These, and other esoteric cases, are discussed in the
Remote Messaging section of The Objective-C 2.0 Programming Language.1

Is it an Object or a Proxy?

The NSObject protocol defines a special method, -isProxy, for determining whether an object is actually
an NSProxy object. It will return YES if the object reference is not an instance of NSObject, or a subclass
of NSObject. It’s impossible to determine if an object is a proxy using any of the -class, -className,
-isMemberOfClass:, or -isKindOfClass: methods; the proxy will simply forward these messages to the
original object, which will return the obvious answer. Use -isProxy, for example, to determine if it’s safe

1 Apple, Inc., The Objective-C 2.0 Programming Language, http://developer.apple.com/documentation/Cocoa/
Conceptual/ObjectiveC/Articles/ocRemoteMessaging.html, 2009.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

231

to directly access the member variables of an object, as in if (![character isProxy]) character-
>hitCount++.

Networking
There are a number of classes for communicating over a network. Two worth mentioning are Network
Services, which assist in registering and locating services on a network, and the URL Loading System,
which implements various network protocols such as HTTP and FTP.

Network Services
Network Services doesn’t have a good analog in Java. It works kind of like java.rmi.Named, in that it will
publish services on a local area network, and make it easy for remote clients to browse and connect with
those services. However, network services is much more generic. It’s built on Bonjour, also know as
Zeroconf. The NSSocketPortNameServer class, demonstrated earlier, uses network services to register
and find distributed object services on the network.

Network Services has two principal classes. An NSNetService object represents a single service.
Much like NSConnection, the server and client process each creates an NSNetService object to either
publish the service or connect with an existing service. NSNetServiceBrowser performs the role of
matchmaker. An NSNetServiceBrowser object will help your application discover services immediately
available to it. It can describe all of the resources available, search out specific services, and connect with
them.

There are three operational phases to using network services:

 1. Publication

 2. Discovery

 3. Resolution

Publication is the act of registering your service so that it is publicly visible to other processes
and computers on the network. You must first create a socket, such as an NSSocketPort, by which clients
can communicate with your service. You then create a NSNetService object, connected to that port, that
describes the service. You then publish the service by sending the NSNetService object a -publish or
-publishWithOptions: message. Once published, remote clients can find, connect, and communicate
with your service.

Use the NSNetServiceBrowser class to find services on your network. You start by creating an
instance of NSNetServiceBrowser and then configure it to find the types of services you are interested in.
The browser goes to work and reports services as it discovers them.

Once you know about a remote service, by browsing or some other means, the last step is to
resolve it. Again, you create an NSNetService object and configure it with the information it needs to
locate the remote service. You then send it a -resolveWithTimeout: message. The NSNetService object
then proceeds to establish a connection. When successful, the message -getInputStream:outputStream:
will return the input and output stream objects, through which you can communicate with the remote
service.

Network service publishing and discovery can be very time consuming, and new services can
appear and disappear spontaneously. Consequently, virtually all network services methods execute
asynchronously. The results are communicated through a delegate object that you provide. For example,
the -resolveWithTimeout: message returns immediately, but starts the resolution process in the
background. When finished, your delegate object will receive either a -netServiceDidResolveAddress:
message or a -netService:didNotResolve: message if the resolution failed.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

232

The NSNetServices Programming Guide2 provides detailed information about how Network
Services work, along with copious code examples.

URL Loading
Both Java and Objective-C provide a set of classes that assist in accessing the services and entities
identified by Uniform Resource Locators (URLs). Both have built-in support for the HTTP, HTTPS, FTP,
and FILE protocols. URL protocols are often complex, but these classes conveniently internalize those
intricacies so that you can interact with them easily. This makes it possible to send a web server request
to a URL, such as http://www.apress.com, and receive the response with just a few lines of code.

The organization and roles of URL classes in Java and Objective-C are almost identical,
although Objective-C is a little more granular. The NSURL (java.net.URL) class defines a single URL.
NSURLConnection (java.net.URLConnection) manages the communications with the remote service
described by the URL. Objective-C decomposes Java’s single URLConnection object into three objects;
NSURLConnection is only concerned with the state of the connection. The request parameters are
encapsulated in NSURLRequest, and the service’s reply is contained in an NSURLResponse. Any data—
the “body” of the request or response—are exchanged through streams or events.

This section will illustrate several common URL loading techniques and how they contrast with
similar Java implementations.

Trivial URL Request
The simplest URL interaction is to just obtain the contents of a URL. This can be easily accomplished in
either language, as shown in Listing 13-10.

Listing 13-10. Trivi al URL Request

Java
try {
 URL url = new URL("http://www.apress.com/");
 Reader inStream = new InputStreamReader(url.openStream());
 int c;
 System.out.print("URL Response: ");
 while ((c=inStream.read()) != -1)
 System.out.print((char)c);
 inStream.close();
} catch (Exception e) {
 e.printStackTrace();
}

Objective-C
NSURL *url = [NSURL URLWithString:@"http://www.apress.com/"];
NSURLRequest* request = [NSURLRequest requestWithURL:url];
NSURLResponse *response = nil;

2 Apple, Inc., NSNetServices and CFNetServices Programming Guide, http://developer.apple.com/documentation/
Networking/Conceptual/NSNetServiceProgGuide, 2008.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

233

NSData *data = [NSURLConnection sendSynchronousRequest:request
 returningResponse:&response
 error:NULL];
NSLog(@"URL response: %@",[NSString stringWithCString:[data bytes]
 length:[data length]]);

 The Java code takes advantage of the convenience method java.net.URL.openStream(), which
creates an URLConnection object, initiates the request, and returns an InputStreamReader object
connected to the response stream. The Objective-C code is a little more complex to set up, first requiring
the creation of an NSURLRequest object. With that accomplished, the entire transaction is performed
using the +[NSURLConnection sendSynchronousRequest:returningResponse:error:] class method. A
transient NSURLConneciton object is created, the request is sent, and the response is returned in two
objects: An NSURLResponse object containing the reply headers and an NSData object containing the
response body.

Asynchronous URL Request
URL interaction in Java is inherently synchronous. If the URL data being loaded takes a long time to
obtain, the code in Listing 13-10 would block until the data was received. This might be appropriate if
the time it took to load the URL was inconsequential. Often, it is not. To avoid hanging the main
application, the code in Listing 13-10 could be executed in its own thread. In Java, this would be the
preferred solution.

In Objective-C, the natural way to use an NSURLConnection is asynchronously. Most
NSURLConnection methods initiate asynchronous operations—synchronous operations are the
exception. Just like NSStream, described earlier in this chapter, NSURLConnection communicates its
progress by sending messages to its delegate. The code for reading the contents of a URL
asynchronously is shown in Listing 13-11.

Listing 13-11. Asy nch ronous UR L Requ est

@interface URLGetter : NSObject {
 NSMutableData *body;
 NSURLConnection *connection;
}

- (void)loadURL:(NSString*)string;

@end

@implementation URLGetter

- (void)loadURL:(NSString*)string
{
 NSURL *url = [NSURL URLWithString:string];
 NSURLRequest *request = [NSURLRequest requestWithURL:url];
 // allocate buffer to store the received data
 body = [NSMutableData data];
 connection = [NSURLConnection connectionWithRequest:request
 delegate:self];
}

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

234

- (void)connection:(NSURLConnection*)connection didReceiveData:(NSData*)data
{
 [body appendData:data];
}

- (void)connection:(NSURLConnection*)connection
didReceiveResponse:(NSURLResponse*)response
{
 // The response headers and metadata were successfully received
 // Successive responses preceed each new body, so reset the buffer
 [body setLength:0];
}

- (void)connectionDidFinishLoading:(NSURLConnection*)connection
{
 // URL loading is complete; NSURLConnection is closed, |body| is complete
}

- (void)connection:(NSURLConnection*)connection didFailWithError:(NSError*)error
{
 // URL failed to load; reason is in |error|
}

@end

The +connectionWithRequest:delegate: convenience constructor creates an NSConnection
object and immediately initiates the request. The response is communicated to the delegate object
through a sequence of events. The NSURLConnection must be created within the context of an active
run loop.

■Tip When an NSURLConnection is created from a NSURLRequest, the connection makes a deep copy of the
request object. Subsequent changes to the request do not influence the connection. The NSURLRequest object can
be immediately modified and used to create another connection without affecting any previously created
connections.

The delegate receives a -connection:didReceiveResponse: message once the initial headers and
metadata have been read and assembled into an NSURLResponse object. Following that, zero or more
-connection:didReceiveData: messages pass the balance of the content to the delegate. Finally, a
-connectionDidFinishLoading: message signifies that the transaction is complete. At any point, the
receipt of a -connection:didFailWithError: message indicates that the request did not complete
successfully, and why.

It’s possible to receive multiple -connection:didReceiveResponse: messages if the service
redirects the request to another URL, which essentially restarts the connection.

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

235

Writing to a URL
So far, only the most basic requests have been made. To define a more complex request, or to include
additional data with the request, requires more granular object construction. An example that posts a
byte array containing form data to an HTTP server is shown in Listing 13-12.

Listing 13-12. Posting Form Data to an HTTP Server

Java
public byte[] submitForm(byte[] formData)
{
 byte[] response = null;
 try {
 URL url = new URL("http://localhost/form.jsp");
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();
 connection.setDoOutput(true);
 connection.setRequestMethod("POST");
 // (configure any additional headers or properties here)

 OutputStream requestStream = connection.getOutputStream();
 requestStream.write(formData);

 InputStream responseStream = connection.getInputStream();
 ByteArrayOutputStream buffer = new ByteArrayOutputStream();
 int c;
 while ((c=responseStream.read()) != -1)
 buffer.write(c);
 response = buffer.toByteArray();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return (response);
}

Objective-C
- (NSData*)submitForm:(NSData*)formData
{
 NSURL *url = [NSURL URLWithString:@"http://localhost/form.jsp"];
 NSMutableURLRequest* urlRequest = [NSMutableURLRequest requestWithURL:url];
 [urlRequest setHTTPMethod:@"POST"];
 [urlRequest setHTTPBodyStream:[NSInputStream inputStreamWithData:formData]];
 // (configure any additional headers or properties here)

 NSURLResponse *response = nil;
 NSData *responseData = [NSURLConnection sendSynchronousRequest:urlRequest
 returningResponse:&response
 error:NULL];
 return responseData;
}

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

236

The two significant differences between Objective-C and Java are as follows:

• In Java, the URLConnection object is used to configure the request. In Objective-C, you create

an NSMutableURLRequest in order to customize the request.

• Java’s URLConnection creates OutputStream and InputStream objects, connected to the

request data and response data streams, respectively. Objective-C is completely reversed.

Instead of getting an OutputStream to write request data to, you supply an input stream object

that the NSURLConnection will read in order to obtain the request data.

Downloading a URL
The Cocoa framework provides a handy utility class specifically designed to download files from a URL.
You construct an NSURLDownload object very much like you would an NSURLConnection object, but
in addition to a request object you also supply a destination file path. The download will start
automatically and send your delegate object either a -downloadDidFinish: message if successful, or a
-download:didFailWithError: message if not. The code for a simple downloader class is shown in
Listing 13-13.

Listing 13-13. Si mple Fi le D ownloader Class

@interface FileDownloader : NSObject

- (void)downloadURL:(NSString*)source toPath:(NSString*)destination;

@end

@implementation FileDownloader

- (void)downloadURL:(NSString*)source toPath:(NSString*)destination
{
 NSURL *url = [NSURL URLWithString:source];
 NSURLRequest *urlRequest = [NSURLRequest requestWithURL:url];
 NSURLDownload *download = [[NSURLDownload alloc] initWithRequest:urlRequest
 delegate:self];
 [download setDestination:destination allowOverwrite:YES];
 // download starts automatically
}

- (void)download:(NSURLDownload*)download didFailWithError:(NSError*)error
{
 // download failed
}

- (void)downloadDidFinish:(NSURLDownload*)download
{
 // download finished successfully
}

@end

CHAPTER 13 ■ COMMUNICATING NEAR AND FAR

237

NSURLDownload supports a number of other delegate methods for monitoring the progress of
the download, responding to authentication challenges, and for interactively deciding on a destination
file path. It also supports resumption of an interrupted download through the
-initWithResumeData:delegate:path: constructor.

Caches and Cookies
Like Java, Objective-C URL connections support local caches and cookies. In Java, caching is configured
using java.net.URLConnection.setUseCaches(boolean) and cookies are handled automatically.

Objective-C provides a per-process cache manager that will keep frequently requested data in
memory or on disk for improved performance. You can influence how a request uses the cache in two
ways. The first is to specify the NSURLRequestCachePolicy when the NSURLRequest is created, or by
setting the policy of the NSMutableURLRequest before the request is sent. The policy can choose to use
an optimal default—the recommended choice—or choose from a number of policies, from ignoring all
cached data to only responding with cached data. More sophisticated cache management can be
performed by implementing the -connection:willCacheResponse: method in your NSURLConnection
delegate object. This message is sent to the delegate before storing any received data in the cache. It can
permit it to be stored as is, prevent it from being stored, or provide altered data to store in its place.

Cookies are automatically supplied from a system-wide cookie storage service. The default is to
handle cookies according to the user-selected security policy. You can disable cookies for a single
request by creating an NSMutableURLRequest object and sending it [request
setHTTPShouldHandleCookies:NO]. You can also change the cookie policy, but doing so changes the
policy for all processes on the system.

Summary
Objective-C provides a variety of communication technologies, which reflect the wide range of
communication problems facing modern applications. From simple notifications to distributed objects,
the solution you choose will depend on the kind of problem you’re trying to solve. In most cases,
Objective-C solutions will parallel the ones you’re familiar with in Java, although the implementation
details may vary substantially.

C H A P T E R 14

■ ■ ■

239

Except ion Handl ing

Exception handling in Objective-C is almost identical in capacity with that in Java. Objective-C is,
naturally, more casual about exceptions and makes none of the demands that Java does. You can design
and write code using Objective-C exceptions exactly as you would in Java, completely ignore them, or
settle somewhere in between. This chapter will briefly compare the similarities between Objective-C and
Java exception handling—of which there are many—and then explain some of the subtle differences.
Later sections will discuss assertions and alternatives to exceptions.

Using Exceptions
Creating, throwing, and catching exceptions are virtually identical in Objective-C and Java. Listing 14-1
shows some simple exception handling.

Listing 14-1. Exception Handling

Java
public class Tosser
{
 public void catcher() throws Exception
 {
 try {
 System.out.println("Tosser.catcher(): trying");
 thrower();
 } catch (SpecificException se) {
 System.out.println("caught SpecificException: "+se);
 } catch (Exception e) {
 System.out.println("caught Exception: "+e);
 throw e;
 } finally {
 System.out.println("Tosser.catcher(): finished");
 }
 }

 public void thrower() throws Exception
 {
 throw new Exception("thrower() does not work");
 }

}

CHAPTER 14 ■ EXCEPTION HANDLING

240

Objective-C
@interface Tosser : NSObject

- (void)catcher;
- (void)thrower;

@end

@implementation Tosser

- (void)catcher
{
 @try {
 NSLog(@"%s trying",__func__);
 [self thrower];
 } @catch (SpecificException *se) {
 NSLog(@"caught SpecificException: %@",se);
 } @catch (NSException *e) {
 NSLog(@"caught NSException: %@",e);
 @throw e;
 } @finally {
 NSLog(@"%s finished",__func__);
 }
}

- (void)thrower
{
 @throw [NSException exceptionWithName:@"MyException"
 reason:@"-thrower does not work"
 userInfo:nil];
}

@end

The similarities are much more pronounced than the differences. Specifically, the @try, @catch,

and @finally blocks have the same syntax, order, and execution flow that the try, catch, and finally
blocks do in Java. You throw exception objects using the Objective-C @throw directive exactly as you
would with Java’s throw statement. Caught exceptions can be processed or re-thrown in the same way.

If you want to employ exceptions in Objective-C the way you do in Java, you’re welcome to do
so. The capabilities of Objective-C exceptions are so close to that of Java’s that you probably won’t notice
any significant difference. There are, however, some differences—mostly in what Objective-C will allow
you to do that Java doesn’t. The next section explains exactly what those differences are and what impact
they might have on your design.

CHAPTER 14 ■ EXCEPTION HANDLING

241

Exception Handling Differences
Objective-C is much more relaxed about exceptions than Java. One could argue that it’s too relaxed, but
that’s an academic debate. Most of the differences between Java and Objective-C exception handling fall
outside the bounds of what Java allows.

No Catch or Specify
The Java language has a “Catch or Specify” rule that requires you to either declare the exceptions that a
method throws or catch those exceptions within the body of the method. Objective-C doesn’t check to
see if your code catches exceptions, and it doesn’t even have syntax for declaring what exceptions a
method throws. This is mostly because (due to the dynamic nature of class methods) it has no way of
knowing. To use Java parlance, all Objective-C exceptions are unchecked exceptions.

Throw Any Object
Objective-C can throw or catch any object, unlike Java, which requires the object of a throw statement to
implement the Throwable interface. If an NSString object is sufficient to convey all of the information
you want about an exception, then the following code is perfectly valid:

@throw @"Something went wrong";

Your code may, for example, throw an exception if an NSOperation failed. But instead of

throwing an NSException that referenced the NSOperation, you could throw the NSOperation object
itself. What you throw will, of course, depend on what you’re trying to accomplish, but you aren’t limited
to NSException and its subclasses.

■Note Speaking of subclasses, there are very few subclasses of NSException. In Java, you create different
types of exceptions by subclassing java.lang.Exception. NSExceptions have a name property, and it is far more
common to identify the type of an exception using its name than its class. That’s not to say that you shouldn’t
subclass NSException. I often do, but it’s limited to situations where I want to add functionality to the NSException
object or I want to create a broad category of exceptions. The Cocoa framework defines commonly used
exception names, which you can find in the Introduction to Exception Programming Topics for Cocoa.1

If you can throw any kind of object, you might be wondering what the exact role of the
NSException class is. For starters, NSException is purpose built for conveying the details of an exception.
It contains useful information, like a stack trace and exception description, and it can participate in the
unhandled exception mechanism described later in this section. Originally, NSException was the only
mechanism for throwing exceptions. See the Legacy Exceptions section towards the end of the chapter
for the details. Because of this, many older frameworks are only prepared to catch NSExceptions. If you
throw an object that might not be caught by your code, make sure it is an NSException object.

1 Apple, Inc., Introduction to Exception Programming Topics for Cocoa, http://developer.apple.com/documentation/
Cocoa/Conceptual/Exceptions/, 2007.

CHAPTER 14 ■ EXCEPTION HANDLING

242

Re-Throw an Exception
Objective-C includes a convenient syntax for re-throwing the exception caught in a catch block, as
shown in Listing 14-2.

Listing 14-2. Re-throwing an Exception

@try {
 …
} @catch (NSException *exception) {
 …
 @throw;
}

An empty @throw directive re-throws the exception caught by its enclosing catch block. In

Listing 14-2, the statement @throw is identical to @throw exception.

Catch Order
Like Java, the order of catch blocks must be from the most specific to the most general. Said another
way, a catch block the catches a particular class cannot be followed by a catch block that catches a
subclass of that class. Catch blocks are tested in sequential order, and the first catch block would prevent
the later one from ever executing.

In Java, improperly ordered catch blocks result in a fatal compiler error. The Objective-C
compiler merely issues a warning—and it can only issue that warning if it knows the class’s pedigree.
Take the code in Listing 14-3 as an example.

Listing 14-3. Out of Order catch Blocks

@class MysteryException

…

@try {
 …
} @catch (NSObject *anything) {
 …
} @catch (MysteryException *exception) {
 …
}

The second catch block will never be executed, because MysteryException is a subclass of

NSObject. But this code won’t generate a compiler warning. That’s because the @class statement lets the
compiler know that the MysteryException class exists, but doesn’t tell anything about it. As a rule,
include the class definition for all objects you intend to catch.

CHAPTER 14 ■ EXCEPTION HANDLING

243

Chaining
The NSException class does not have a cause property, like the one in java.lang.Throwable. Instead,
NSException objects have a dictionary (map) object that allows you to provide arbitrary context for the
exception. If you want to throw an exception that references another exception, include it—along with
any other pertinent details—in the exception’s info dictionary, as shown in Listing 14-4.

Listing 14-4. Chaining Exceptions

Java
try {
 …
} catch (Exception e) {
 throw new SpecificException("encountered exception",e);
}

Objective-C
@try {
 …
} @catch (NSException *exception) {
 NSDictionary *userInfo = [NSDictionary dictionaryWithObject:exception
 forKey:@"RootCause"];
 @throw [SpecificException exceptionWithName:@"MySpecialException"
 reason:@"encountered exception"
 userInfo:userInfo];
}

Call Stack
Objective-C’s NSException object provides a callStackReturnAddresses property that returns an array of
NSNumber objects containing the return addresses of the stack’s call chain when the exception was
thrown. Unlike Java, Objective-C provides no facility for interpreting these values. An Objective-C
program, being compiled machine code, might not even include any symbolic function information,
making interpretation impossible.

The Introduction to Exception Programming Topics for Cocoa2 guide includes sample code that
uses the atos development tool to translate these numeric stack addresses into program symbols—if
possible. If you maintain a copy of your compiled application with debugging symbols, you can
manually use the atos tool to perform the same translation for post-mortem analysis of exceptions.

2 Apple, Inc., Introduction to Exception Programming Topics for Cocoa, http://developer.apple.com/documentation/
Cocoa/Conceptual/Exceptions/, 2007.

CHAPTER 14 ■ EXCEPTION HANDLING

244

Performance
Another reason that exceptions are used less frequently in Objective-C is performance. Setting up and
throwing exceptions costs more in Objective-C than in Java. Alternatives to using exceptions are
outlined in the “Alternatives to Exceptions” section later in this chapter.

Don’t let the above dissuade you from using exceptions in Objective-C. I use exceptions a lot—
probably because of my experience programming in Java. I’ve never seen Objective-C exception
handling become a performance liability. My advice is to program using the coding style you are most
comfortable with, and if that includes exceptions then by all means use exceptions. If, and only if, a
performance analysis shows exception handling to be a performance problem, would I advise
considering an alternative error-handling solution.

Uncaught Exceptions
An uncaught exception is one that is allowed to pass outside your application code to the runtime
framework. Exceptions can also be generated in response to system events and runtime errors.
Uncaught exception processing can be broadly divided into four categories:

• Exceptions thrown on the main thread of a GUI application

• Exceptions thrown in all other situations

• Exceptions generated by system events, such as an invalid memory access

• Exceptions generated by runtime events, like sending a message to a freed object

By default, exceptions thrown in the main thread of an application are absorbed by the
NSApplication framework and ignored. For example, an action invoked by the user choosing a menu
command throws an uncaught exception. The application’s main run loop will discard the exception
and continue running. There will be no indication that a problem occurred, with the possible exception
of a message logged to the system console. You may have encountered this behavior in an application.

In almost all other circumstances, an uncaught exception terminates the thread, or the process
if the exception is thrown in the main thread. System and runtime events immediately terminate the
process.

You can intercept these events using the optional ExceptionHandling framework. Using the
exception handling framework you can:

• Log or post-process uncaught exceptions thrown on the main thread of a GUI application

• Log or post-process uncaught exceptions thrown any other time

• Cause system events to be converted into uncaught exceptions for logging or post-
processing

• Cause runtime events to be converted into uncaught exceptions for logging or post-
processing

• Cause the process to hang instead of terminate, allowing you to attach a debugger or other
development tool for post-mortem analysis

CHAPTER 14 ■ EXCEPTION HANDLING

245

To change how uncaught exceptions are handled, follow these steps:

1. Link your application to the ExceptionHandling framework.

2. #import <ExceptionHandling/NSExceptionHandler.h>

3. Use [NSExceptionHandler defaultExceptionHandler] to obtain the singleton
NSExceptionHandler object for your process.

4. To cause special handling of uncaught exceptions, system, or runtime events, logically OR
together any combination of constants in T able 14-1 and pass the value to -[NSExceptionHandler
setExceptionHandlingMask:]. See Listing 14-5.

5. As an alternate to step 4, the exception handling flags can be set in the user defaults property
NSExceptionHandlingMask. See the “User Defaults” section of Chapter 26 for more details about
user defaults and how a process acquires them.

6. To individually filter the exception handling enabled in step 4 or 5, create an object that
implements -exceptionHandler:shouldHandleException:mask: and -exceptionHandler:
shouldLogException:mask: and make it the NSExceptionHandler’s delegate object. All exceptions
are first passed to the delegate for inspection. The delegate can process the exception, let the
NSExceptionHandler perform its default processing, neither, or both.

7. To cause the process to hang—rather than terminate—for debugging purposes, logically OR
together any of the constants in Table 14-2 and pass the value to -[NSExceptionHandler
setExceptionHangingMask:].

The best place to set the exception handling behavior is in your application’s initialization code.
Here, the term “handling” means that NSExceptionHandler will pass the exception to its

delegate for post-processing and optionally log its details before continuing. NSExceptionHandler
doesn’t really do anything significant with the exceptions, although your delegate object could.

Logging or handling top-level exceptions and low-level exceptions in an NSApplication—the
last four options in Table 14-1—should be used only during development. These options can cause a
tremendous amount of debug output to be sent to the system console, which would not be appropriate
for a shipping application. Furthermore, intercepting, modifying, or ignoring these exceptions can
change how the application frameworks normally function.

Your NSExceptionHandler delegate object will only be sent the exceptions whose logging or
handling has been enabled in steps 4 or 5. If you enable the flags, but don’t set a delegate object,
exceptions are only logged.

■Note NSExceptionHandler will process an exception before the finally block of your code executes.

If system and runtime event handling is not set in step 4 or 5, these events are not translated
into exceptions. They are processed normally, as they would be in the absence of an
NSExceptionHandler.

CHAPTER 14 ■ EXCEPTION HANDLING

246

Table 14-1. Exception Handling Flags

Constant Ef fect

NSLogUncaughtExceptionMask Logs uncaught exceptions.

NSHandleUncaughtExceptionMask Handles uncaught exceptions.

NSLogUncaughtSystemExceptionMask Turns system events into exceptions and logs them.

NSHandleUncaughtSystemExceptionMask Turns system events into exceptions and handles them.

NSLogUncaughtRuntimeErrorMask Turns runtime events into exceptions and logs them.

NSHandleUncaughtRuntimeErrorMask Turns runtime events into exceptions and handles them.

NSLogTopLevelExceptionMask Logs uncaught exceptions thrown in the main run loop of
the application.

NSHandleTopLevelExceptionMask Handles uncaught exceptions thrown in the main run
loop of the application.

NSLogOtherExceptionMask Logs all other exceptions thrown in the main run loop of
the application, which includes caught exceptions.

NSHandleOtherExceptionMask Handles all other exceptions thrown in the main run loop
of the application, which includes caught exceptions.

You can also cause the NSExceptionHandler to “hang” instead of terminate the process for
certain kinds of exceptions. Set the desired hang conditions by logically ORing together any of the
constants in Table 14-2 and passing the value to -[NSExceptionHandler setExceptionHangingMask:].
This is strictly for debugging and allows you to launch your application normally. If an uncaught
exception causes the application to hang, you can still attach a debugger to the process to investigate the
cause, since the process is (technically) still running.

CHAPTER 14 ■ EXCEPTION HANDLING

247

Table 14-2. Process Hang Condition Flags

Constant Ef fect

NSHangOnUncaughtExceptionMask Hangs the process if an uncaught exception is encountered.

NSHangOnUncaughtSystemExceptionMask Hangs the process if a system event occurs.

NSHangOnUncaughtRuntimeErrorMask Hangs the process if a runtime event occurs.

NSHangOnTopLevelExceptionMask Hangs the process if the main run loop encounters an
uncaught exception.

NSHangOnOtherExceptionMask Hangs the process if any other kind of exception is thrown.

Listing 14-5 shows the initialization code for an application that wants to have all uncaught
exceptions, system events, and runtime events logged.

Listing 14-5. Initializing Uncaught Exception Handling

#import <ExceptionHandling/NSExceptionHandler.h>

@implementation MyApplicationDelegate

- (void)applicationWillFinishLaunching:(NSNotification*)notification
{
 // Log all uncaught exceptions, but not low-level exceptions
 [[NSExceptionHandler defaultExceptionHandler] setExceptionHandlingMask:
 NSLogUncaughtExceptionMask
 |NSLogUncaughtSystemExceptionMask
 |NSLogUncaughtRuntimeErrorMask
 |NSLogTopLevelExceptionMask
 /*|NSLogOtherExceptionMask*/
];
}

@end

Legacy Exceptions
The exception syntax in Objective-C is relatively recent. Before it was added, the Objective-C language
had no direct support for exceptions. Instead, exception handling was provided by a set of classes and
some clever preprocessor macros. Listing 14-6 shows what legacy exception handling looked like.

CHAPTER 14 ■ EXCEPTION HANDLING

248

Listing 14-6. Legacy Exception Handling

NS_DURING
 NSLog(@"%s trying",__func__);
 [self thrower];
NS_HANDLER
 NSLog(@"caught NSException: %@",localException);
 [localException raise];
NS_ENDHANDLER

The legacy NS_DURING, NS_HANDLER, and NS_ENDHANDLER preprocessor macros expanded to C code

that used the C longjmp(…) functions to create the necessary execution flow control. There was only one
handler block, which caught all exceptions. The variable localException contained the caught
exception. There was no finally block. Exceptions were thrown by sending the -raise messages to an
NSException object.

Table 14-3 shows the legacy exception syntax and its modern equivalent.

Table 14-3. Legacy and Modern Exception Syntax

Legacy Syntax Equi valent Modern Syntax

NS_DURING @try {

NS_HANDLER } @catch (NSException *localException) {

NS_ENDHANDLER }

[exception raise] @throw exception

NS_VALUERETURN(value,type) return (value)

NS_VOIDRETURN return

You were required to use the NS_...RETURN macros if you wanted to return from the block of
code between NS_DURING and NS_HANDLER.

If your Objective-C compiler has modern exception handling enabled—which it probably
does—the preprocessor macros in Table 14-3 will expand into the modern syntax instead. Thus, there’s
no penalty or incompatibility with code written for legacy exceptions, and you can freely mix the two.
The one minor difference is that the -raise method performs a @throw, but the modern @throw directive
does not send a -raise message to the object being thrown. This could have implications for subclasses
that have overridden -raise.

Assertions
Assertions is a programming technique that lets you define your own runtime exceptions. An assertion is
a statement that confirms (asserts) that a condition the programmer expects to be true is true. If the
statement is found to be false, an NSInternalInconsistencyException exception is thrown. The assertion
in Listing 14-7 ensures that the class of the object obtained from the collection is of the expected type.

CHAPTER 14 ■ EXCEPTION HANDLING

249

Listing 14-7. Confirming Class Membership with an Assertion

NSDictionary *dictionary = …
NSNumber *value = [dictionary objectForKey:@"Value"];
NSAssert([value isKindOfClass:[NSNumber class]],@"wrong class");

Failed Assertion Output:
*** Assertion failure in -[Tosser catcher], Tosser.m:45
*** Terminating app due to uncaught exception 'NSInternalInconsistencyException',
 reason: 'wrong class'

Assertions are a practical way of introducing some of Java’s sanity to Objective-C. Objective-C

does not test the class of an object during assignment, but an assertion can. Objective-C doesn’t test the
index in C array statements to ensure they are within bounds, but an assertion can. In short, almost any
runtime check that you would expect Java to perform for you can be stated as an assertion.

Assertions can be stated for any expected program condition. If a parameter is assumed to be
non-nil, assert it. If an integer value should be positive, assert it.

■Caution Assertions are exceptions, like any other. Most Java runtime exceptions are unchecked, and are
usually left uncaught. If you want your application to terminate when an exception is encountered, be careful
not to swallow the exception in your catch block. See the RethrowAssertion macro in the Listing 14-8.

One particularly attractive feature of assertions is they can be turned off, en masse. The assertion
macros provided by the Cocoa framework, listed in Table 14-4, are all conditionally defined based on the
NS_BLOCK_ASSERTIONS preprocessor macro. If that macro is defined—the value is immaterial—all of the
NSAssert… macros get redefined to nothing. This means your assertion statements effectively disappear, as
if they never existed. You can fill your application with thousands of assertion statements that are active
during development, then turn them all off when compiling your release version. This is usually
accomplished by defining the NS_BLOCK_ASSERTIONS macro in the Preprocessor Macros build settings
of the Release configuration. During development, your application checks for any unexpected conditions,
but the release version is free of the excess code and performance penalty of each assertion.

Table 14-4. Standard Assertion Macros

Macro Descr ipt i on

NSAssert(condition,description) Tests a condition, throwing an exception with the description
if false.

NSAssert1(condition,format,arg1) If condition is false, throws an exception with the description
created by formatting a string with one argument.

NSAssert2(condition,format,arg1,arg2) If condition is false, throws an exception with the description
created by formatting a string with two arguments.

NSParameterAssert(condition) If condition is false, throws an exception with the description
that the given condition was not true.

CHAPTER 14 ■ EXCEPTION HANDLING

250

There are actually six NSAssert macros: NSAssert, NSAssert1, NSAssert2, NSAssert3, NSAssert4,
and NSAssert5. They differ only in the number of arguments following the format string. (Preprocessor
macros are not capable of variables arguments.) These assertions can only be used in the body of an
Objective-C method. A parallel set of NSCAssert… macros can be used in C functions.

I highly recommend defining your own assertion macros. Concise, specific assertion statements
are more likely to be used. Listing 14-8 shares a few of my favorites, along with some code that uses them.

Listing 14-8. Custom Assertion Macros

#if !defined(NS_BLOCK_ASSERTIONS)
#define RethrowAssertion(EXCEPTION) \
 if ([[EXCEPTION name] isEqualToString:NSInternalInconsistencyException]) \
 [EXCEPTION raise]
#define AssertObjectIsClass(OBJECT,CLASS) \
 do { \
 if (![OBJECT isKindOfClass:[CLASS class]]) { \
 [[NSAssertionHandler currentHandler] handleFailureInMethod:_cmd \
 object:self \
 file:[NSString stringWithUTF8String:__FILE__] \
 lineNumber:__LINE__ \
 description:@"object isa %@@%p; expected %s", \
 [OBJECT className],OBJECT,#CLASS]; \
 } \
 } while(NO)
#define AssertObjectIsNilOrClass(OBJECT,CLASS) \
 do { \
 if ((OBJECT!=nil) && ![OBJECT isKindOfClass:[CLASS class]]) { \
 [[NSAssertionHandler currentHandler] handleFailureInMethod:_cmd \
 object:self \
 file:[NSString stringWithUTF8String:__FILE__] \
 lineNumber:__LINE__ \
 description:@"object isa %@@%p; expected %s", \
 [OBJECT className],OBJECT,#CLASS]; \
 } \
 } while(NO)
#define AssertObjectRespondsTo(OBJECT,MESSAGE) \
 do { \
 if (![OBJECT respondsToSelector:@selector(MESSAGE)]) { \
 [[NSAssertionHandler currentHandler] handleFailureInMethod:_cmd \
 object:self \
 file:[NSString stringWithUTF8String:__FILE__] \
 lineNumber:__LINE__ \
 description:@"object %@@%p does not respond to %s", \
 [OBJECT className],OBJECT,#MESSAGE]; \
 } \
 } while(NO)

CHAPTER 14 ■ EXCEPTION HANDLING

251

#define AssertNotNil(OBJ) NSAssert1(OBJ!=nil,@"%s is nil",#OBJ)
#define ParameterAssert NSParameterAssert
#else
#define RethrowAssertion(EXCEPTION)
#define AssertObjectIsClass(OBJECT,CLASS)
#define AssertObjectIsNilOrClass(OBJECT,CLASS)
#define AssertObjectRespondsTo(OBJECT,MESSAGE)
#define AssertNotNil(OBJ)
#define ParameterAssert NSParameterAssert
#endif

…

// make sure the delegate is set and implements to informal protocol
AssertNotNil(delegate);
AssertObjectRespondsTo(delegate,lookupPartNumber:);

PartNumber part = [delegate lookupPartNumber:inventoryCode];
NSAssert(part>=100000&&part<=999999,@"invalid part number");

Record *partRecord = [PartsDatabase recordForPartNumber:part];
AssertObjectIsClass(partRecord,Record);

You can define the macros in terms of other macros—like the AssertNotNil and

ParameterAssert macros—or you can define them to invoke the singleton NSAssertionHandler that
should be used to throw assertion exceptions. Always design your macros so they act like a single C
statement when expanded.

These macros use a number of advanced preprocessor features:

• The single \ at the end of a line continues the #define statement to the next line, as if it
had been written as a single line.

• A macro can take the form of a C function with parameters. The parameters create
temporary macro definitions that exist during the expansion of the macro’s body. The
statement #define DO(THIS) [self THIS] will replace the code DO(something) with [self
something].

• Macro expansion is recursive. Given #define A B and #define B(X) return X, the
statement A(3) will be replaced with B(3), which will be replaced with return 3.
Definition order isn’t important.

• The special syntax #TOKEN in the macro’s text will be replaced with a C string constant
containing the text of TOKEN. #define RETURN_STR(S) return (#S) will replace the
source code RETURN_STR(100-1) with return ("100-1"). It’s particularly handy for
converting things like a condition statement into a string that describes the condition.

• The special macros __FILE__ and __LINE__ are generated by the compiler and evaluate to
the file name and line number of the source file being compiled. __func__, __DATE__, and
__TIME__ are also very useful. __func__ is replaced with the current Objective-C method
name as a C string. __DATE__ and __TIME__ expand to the date and time the compile was
performed.

CHAPTER 14 ■ EXCEPTION HANDLING

252

I usually take the macros in Listing 14-8 one step further, defining a set of macros that are only
compiled during development (DevAssert, DevAssertObjectIsClass, …), a set that are compiled during
development and beta testing (BetaAssert, BetaAssertObjectIsClass, …) and a set that are always
compiled (RelAssert, RelAssertObjectIsClass, …). This allows me to graduate my use of assertions,
producing progressively smaller and faster versions of my application, at the expense of safety.

Alternatives to Exceptions
Some Objective-C APIs, and many programmers, adhere to the traditional C error-handling pattern; the
return value of a function or method is tested to determine success or failure. Some prototypical
examples are shown in Listing 14-9. The programming philosophy at work here is that exceptions should
be reserved for runtime errors (index out of bounds, invalid object, missing application resource, out of
memory) and other programming mistakes that should ideally be eliminated from the application
during development. Anticipatable failures that could reasonably be expected to occur (file not found,
empty database, duplicate name) should be handled using error codes or error objects. This section
describes the most commonly used techniques for dealing with errors without using exceptions, and
later explains how to combine the two.

Listing 14-9. Examples of Error Handling

// Simple Error
NSString *imagePath = [[NSBundle mainBundle] pathForImageResource:@"picture.png"];
if (imagePath==nil) {
 NSLog(@"missing image resource");
 return;
}

// POSIX Error
int fd = open("filename",O_RDONLY);
if (fd<0) {
 NSLog(@"open() failed with error %d",errno);
 return;
}

// Core Foundation Error
QTUUID quickTimeUUID;
OSErr err = QTCreateUUID(&quickTimeUUID,0);
if (err!=noErr) {
 NSLog(@"could not create UUID, error %d",err);
 return;
}

// Cocoa Error
NSError *error = nil;
NSDictionary *attributes;
attributes = [[NSFileManager defaultManager] attributesOfItemAtPath:@"filename"

CHAPTER 14 ■ EXCEPTION HANDLING

253

 error:&error];
if (error!=nil) {
 NSLog(@"could not get attributes of file: %@",[error localizedDescription]);
 [self presentError:error];
 return;
}

Simple Errors
Simple errors occur when any function or method fails to achieve its objective and returns an empty
value. The -pathForImageResource: message in Listing 14-9 is a good example. This method returns the
path of the desired image file, or nil if no such file could be located. Your code should probably test the
results—unless you’ve designed your code to use absent behavior, described in Chapter 7—and either
provide a default, return an NSError, throw an exception, or raise an assertion.

POSIX Error Codes
Most BSD and POSIX functions return a value that will indicate the success or failure of the function. In
Listing 14-9, the open(…) function returns a file descriptor integer if successful, or a negative value if it
fails. The code that describes the reason for the failure is read from the per-thread errno variable. Note
that errno isn’t actually a variable, but a preprocessor macro that expands to a function call that obtains
the error code. This variable is only guaranteed to contain the error code until the next POSIX function is
called, so fetch the code and save it immediately after the failure.

Core Foundation Error Codes
Many Core Foundation functions return a result code directly to the caller. Result codes have the type
OSError or OSStatus, and are usually negative numbers. The success of the function is indicated by the
value noErr, as demonstrated in Listing 14-9. Because functions like this return the error code, pointers
to variables are used to return any additional values.

Cocoa Errors
Modern Cocoa classes and functions prefer to return NSError objects when the operation could not be
completed successfully. Invariably, the sender of the message includes a pointer to a nil NSError pointer
variable, as shown in Listing 14-9. If the operation fails, the method creates a new NSError object and
stores its address in the sender’s variable. The sender can examine its variable to see if the receiver
returned an NSError.

Use of NSErrors is encouraged whenever the details of the failure will be presented to the user.
The NSError class incorporates a number of design features that makes it integral to a well-designed and
flexible error handling system. Integrating NSError objects into your application is not a trivial task, but
it is highly recommended if your goal is to provide consistent, localizable, modular, and flexible error
display and recovery.

CHAPTER 14 ■ EXCEPTION HANDLING

254

This book is too short to go into all the details of NSError objects, but the following sections will
give you enough of an overview to appreciate their utility. Before designing NSError management in
your application, take a good look at the Error Handling Programming Guide For Cocoa.3

Error Domains
Each NSError object has a domain. The domain influences how its properties, particularly numeric error
codes, are interpreted. For example, both the POSIX and Foundation functions return an integer error
value describing the failure. The domain determines which set of constants should be used to interpret
the value. The principle domains are listed in Table 14-5. You are encouraged to define your own
domain for application-specific errors.

Table 14-5. Cocoa Error Domains

Domain Descr ipt i on

NSMachErrorDomain Error codes returned by the kernel.

NSPOSIXErrorDomain Error codes returned by POSIX and BSD functions

NSOSStatusErrorDomain Error codes returned by Core Foundation functions

WebKitErrorDomain Errors generated by WebKit

NSURLErrorDomain URL-related errors

NSXMLParserErrorDomain XML parser errors

NSCocoaErrorDomain All Cocoa framework errors not belonging to one of the more specific
domains

Customization and Display
One of the chief roles of NSError objects is not simply to handle an error—exceptions do that nicely—but to
display the error to the user and take action based on the user’s input. The first two steps in the process are
performed through the responder chain. The responder chain is the chain of components in the visual
hierarchy that leads to the currently active interface element. It is described fully in Chapter 20.

To display an error to the user, pass the NSError to any object in the responder chain—
preferably the leaf-most component—by sending it a -presentError: message. The responder will pass
the NSError to each object in the responder chain via the -willPresentError: message. This gives each
layer of your application a chance to intercept the error and replace it with something more specific. For
example, an “Add Soundtrack” button could replace a generic “File not found” NSError with a
“Soundtrack not available. Would you like to choose another song or use the default soundtrack?” error

3 Apple, Inc., Error Handling Programming Guide For Cocoa, http://developer.apple.com/documentation/
Cocoa/Conceptual/ErrorHandlingCocoa/, 2009.

CHAPTER 14 ■ EXCEPTION HANDLING

255

object. After all responder objects have had a go at the error, the final one is presented to the user in a
modal dialog. If the error occurs in the context of a window, the preferred message is
-presentError:modalForWindow:delegate:didPresentSelector:contextInfo:, which presents the error in
a modal sheet attached to the window.

Localization
The NSError class provides a mechanism for localizing error messages. The localized messages can be
stored in the NSError’s userInfo dictionary using predefined keys or it can be generated dynamically by
overriding its methods. Which you use will depend on your needs. Table 14-6 lists the four messages that
will be shown to the user, and the method that returns them. The default implementation of each
property accessor is to retrieve the value in the third column from the error’s userInfo dictionary.

Table 14-6. NSError Localization Methods and userInfo Keys

Dialog

Text

NSError

Proper ty

NSError user Info Key Descr ipt i on

Error
Description

-localized
Description

NSLocalized
DescriptionKey

The primary error message
presented to the user.

Failure Reason -localized
FailureReason

NSLocalized
FailureReasonErrorKey

A brief sentence explaining the
reason for the failure. Optional.
Not all error dialogs display this
property.

Recovery
Suggestion

-localized
RecoverySuggestion

NSLocalized
RecoverySuggestionErrorKey

A sentence describing what
actions the user can take to
recover from the error.
Optional.

Recovery
Options

-localized
RecoveryOptions

NSLocalized
RecoveryOptionsErrorKey

An array of button names that
correspond to the user’s
options described in the
recovery suggestion. If nil, the
only option will be “OK.”

Recovery
An NSError object can provide a recovery attempter object, and should if the error includes recovery
options. The -presentError: message will pass the user’s recovery choice to the recovery attempter
object, which is expected to carry out the user’s wishes. The recovery attempter object must implement
one of the methods in the informal NSErrorRecoveryAttempting protocol.

CHAPTER 14 ■ EXCEPTION HANDLING

256

Combining Errors and Exceptions
Academic arguments about the superiority of exceptions and traditional error handling will continue to
rage on. In the meantime, I’m a big fan of combining the two. NSError objects have clear advantages in
complex applications that must be localized. Java-style exception handling has clear advantages for
simplifying code and execution flow. Listing 14-10 shows one way in which traditional C error handling,
NSError objects, and exceptions can be combined.

Listing 14-10. Mixing Error Handling

@try {
 const char *path = …
 int fd = open(path,O_RDONLY);
 if (fd<0) {
 NSString *errorPath = [NSString stringWithCString:path];
 NSDictionary *info = [NSDictionary dictionaryWithObject:errorPath
 forKey:@"Path"];
 NSError *error = [NSError errorWithDomain:NSPOSIXErrorDomain
 code:errno
 userInfo:info];
 @throw error;
 }

 …

 close(fd);

} @catch (NSError *error) {
 [self presentError:error];
}

Summary
Objective-C exception handling is robust, simple, and on a par with that provided by Java. Much of
Objective-C’s permissiveness can be reined in with the liberal use of assertions. POSIX, BSD, Core
Foundation, and most Cocoa methods only use exceptions for (what are considered to be) runtime
errors or programming mistakes. You can embrace this philosophy, or continue to program using
exceptions by combining them with traditional design patterns.

C H A P T E R 15

■ ■ ■

257

Threads

Java was one of the first programming languages to support threads and thread synchronization directly.
It was a very forward-looking decision. Multicore, multiprocessor computer systems have become the
norm, rather than the exception. Efficient multi-threaded programming is now essential to effective
program development, and it’s a trend that continues to accelerate.

Threads and semaphores are conceptually simple, and the high-level differences between Java
and Objective-C are trivial. Objective-C also makes extensive use of run loops, which transform a thread
into an event processor. Beyond the basic @synchronize directive built into the language, the Cocoa
framework provides a number of additional synchronization tools, each tailored to a specific need. And
finally, there are classes that perform deferred actions, manage independent threads for you, and
perform timed tasks relieving you of the burden of creating and managing your own threads.

This chapter begins by describing how threads are created, run, and destroyed in Objective-C. It
also explains run loops and tells you why you would need to create one, and how. After that, it details
various ways to synchronize multiple threads and make your code thread safe. Finally, it presents a few
useful classes that can make thread management simpler, or possibly unnecessary.

Thread API
Thread management and control is centered on the NSThread Objective-C class, and closely resembles
Java’s java.lang.Thread class. The equivalent methods are listed in Table 15-1.

Table 15-1. Equivalent Thread Methods

java. lang.Thread NSThread Descr ipt i on

currentThread() +currentThread The thread object for the currently executing
thread

start() -start Starts a thread

run() -main The code to execute

isAlive() -isExecuting, -isFinished Determines if the thread has started or
finished

sleep(long) +sleepUntilDate:,
+sleepForTimeInterval:

Suspends the thread for a period of time

getPriority() +threadPriority The thread’s priority

CHAPTER 15 ■ THREADS

258

setPriority(int) +setThreadPriority Changes a thread’s priority

getName() -name The name of the thread

setName(String) -setName: Sets the name of the thread

getStackTrace() +callStackReturnAddresses Gets the array of return addresses on the stack

Here are the key differences between threads in Objective-C and Java:

• There are no thread groups in Objective-C.

• The Objective-C interface does not provide a method for obtaining the list of existing threads.

• There is no security model. Some operations—like setting a thread’s priority—can only be
performed from the currently running thread, whereas in Java they can be performed on
arbitrary threads.

• You cannot interrupt a thread. NSThread does provide a canceled property that can be set and
tested, but canceling a thread will not unblock it.

• There are no daemon threads. An Objective-C process runs as long as the main thread is
running, and all threads terminate when the process terminates.

• There is no join() function, but the same functionality can be easily accomplished using
NSConditionLock, as explained later in this chapter.

• There is no yield() method or any equivalent.

The life cycle of an Objective-C thread is broadly the same as it is in Java. You create a thread that
will execute a method of an object. When the method returns, the thread is terminated and destroyed. Any
interaction with objects shared with other threads must be coordinated using semaphores.

If that’s all you need from threads, read the sections “Starting a Thread” and “Thread
Synchronization.” If you want to consider ready-made classes that will manage threads for you, check
out the “Operations” section. The rest of this chapter explores mostly esoteric details of threads that are
less relevant to most programmers.

Starting a Thread
Starting a new thread in Objective-C is even easier than it is in Java—which is saying something, since
thread creation in Java is already pretty simple. There are three ways of creating a thread in Objective-C:

• Create and immediately start a thread executing by sending the message
+detachNewThreadSelector:toTarget:withObject:. The message identifies the object and
method that contains the thread’s code and an optional parameter that will be passed to the
thread when it begins execution.

• Create a new NSThread object using -initWithTarget:selector:object:. This is identical to the
first technique, except that the thread is not started. You can customize the thread object before
starting it with the -start message.

• Define your own subclass of NSThread, override the -main method, and create your instance
using -init. This is equivalent to subclassing java.lang.Thread and overriding run(). When the
object receives the -start message, it creates a new thread and executes its -main method in the
new thread.

CHAPTER 15 ■ THREADS

259

■Note The constructors that create and return an NSThread object are fairly recent additions to the operating
system. In versions of Mac OS X prior to 10.5, only +detachNewThreadSelector:toTarget:withObject: could
create new threads. You could not subclass NSThread or customize a thread before starting it.

Objective-C threads are easy to create because the thread’s code can be any method of any
object. In Java, the object containing the code must implement the Runnable interface and implement
that code in its run() method. Objective-C’s only modest requirement is that the method containing the
thread’s code accept a single object parameter (which it can ignore) and return void. Listing 15-1 shows
how to start a thread.

Listing 15-1. Starting a Thread

Java
public class Runner implements Runnable
{
 public void run()
 {
 System.out.println("Running with threads.");
 }
}

…

Runner runner = new Runner();
Thread thread = new Thread(runner);
thread.start();

Objective-C
@implementation Runner

- (void)runMe:(id)ignored
{
 NSLog(@"Running with threads.");
}

@end

…

CHAPTER 15 ■ THREADS

260

Runner *runner = [Runner new];
[NSThread detachNewThreadSelector:@selector(runMe:)
 toTarget:runner
 withObject:nil];

THE MAIN THREAD

The main thread is the first thread started when the process is created, and is special. All user input and events are
sent to the run loop running on the main thread. All changes to the user interface must occur on the main thread; the
user interface frameworks are not thread safe. Your application’s process is, for all intents and purposes, the main
thread. When the main thread finishes, the process terminates—instantly killing all other threads.

There are numerous methods that reference, target, test for, or return the main thread. These allow you to
easily target the main thread, or its run loop, when necessary.

Managing Threads
The best advice for managing threads is “don’t.” Threads do not respond well to being micro-managed,
and it makes your code fragile and less portable. Above all, do not try to second guess the kernel’s thread
scheduler or try to coerce it into a particular behavior. As kernel thread scheduling has become more
sophisticated, the number of application programmer interfaces for manipulating running threads has
decreased. For example, Objective-C has no yield() equivalent, and the java.lang.Thread methods
stop(), suspend(), and resume() have all been deprecated.

Threads should be organized around clearly defined, antonymous tasks. They should
communicate minimally and coordinate their work with other threads using semaphores. Beyond that,
you should simply let threads run when they have work to do, and let them suspend when they don’t. If
you find yourself interjecting sleep statements or creating semaphores just to force the kernel to switch
tasks, then you should revisit the design of your tasks.

Having said that, there are some special circumstances where you may need to alter the task’s
properties or put it to sleep. Putting a thread to sleep is explained next. Thread properties are discussed
in the sections that follow.

Putting a Thread to Sleep
Putting a thread to sleep for a period of time is one of the few thread state manipulations remaining.
Putting a thread to sleep suspends the thread until the time interval has elapsed. Afterward, the thread is
made “runnable” again, and the kernel will add the thread back into its rotation of running threads. Said
another way, the thread isn’t guaranteed to start running again immediately after the time interval has
elapsed; it just won’t run again before the time interval has elapsed.

The NSThread methods +sleepUntilDate: and +sleepForTimeInterval: will cause the current
thread to sleep, unconditionally, for the given period of time. This can be an NSDate object in the future
or an NSTimeInterval value expressed in seconds. Dates and time intervals use double floating-point
values to express seconds, so time intervals down to the nanosecond range can be specified. The kernel
doesn’t guarantee the accuracy of the time, only that the thread won’t execute again until that amount of
time has elapsed.

CHAPTER 15 ■ THREADS

261

There are also many methods—most of which are described in later sections—that will
conditionally put a thread to sleep for a period of time. These messages accept an NSDate object that
specifies a time in the future to abandon waiting for the condition and resume. The simplest example are the
methods -[NSLock lock] and -[NSLock lockBeforeDate:(NSDate*)limit]. Both attempt to obtain a lock on
an NSLock semaphore. The -lock method will wait forever to obtain the lock. In contrast, -lockBeforeDate:
will return when either the lock is obtained or the time specified by the NSDate is reached.

■Tip To create an NSDate object with a time two and a half seconds in the future, use [NSDate
dateWithTimeIntervalSinceNow:2.5]. To get an NSDate object with a time that will never be reached (in your
lifetime), use [NSDate distantFuture].

Put threads to sleep when they need to perform actions at timed intervals. Listing 15-2
demonstrates a simple class that runs a “heartbeat” thread which updates a progress indicator no more
than twice per second.

Listing 15-2. Heartbeat Thread

@interface Process : NSObject
@property double progress;
@end

@interface Heartbeat : NSObject {
 NSThread *thread;
 Process *monitor;
 NSProgressIndicator *indicator;
}

+ (Heartbeat*)startHeartbeatProcess:(id)process
 withIndicator:(NSProgressIndicator*)progress;

- (void)stop;
- (void)heartbeatThread:(id)ignored;
- (void)updateIndicator;

@end

…

@implementation Heartbeat

+ (Heartbeat*)startHeartbeatProcess:(id)process
 withIndicator:(NSProgressIndicator*)progress

CHAPTER 15 ■ THREADS

262

{
 Heartbeat *heartbeat = [Heartbeat new];
 heartbeat->monitor = process;
 heartbeat->indicator = progress;
 heartbeat->thread = [[NSThread alloc] initWithTarget:heartbeat
 selector:@selector(heartbeatThread:)
 object:nil];
 [heartbeat->thread start];

 return heartbeat;
}

- (void)stop
{
 [thread cancel];
}

- (void)heartbeatThread:(id)ignored
{
 while (![thread isCancelled]) {
 [self performSelectorOnMainThread:@selector(updateIndicator)
 withObject:nil
 waitUntilDone:YES];
 [NSThread sleepForTimeInterval:0.5];
 }
}

- (void)updateIndicator
{
 [indicator setDoubleValue:monitor.progress];
}

@end

…

Process *process = …
NSProgressIndicator *indicator = …
Heartbeat *heartbeat = [Heartbeat startHeartbeatProcess:process
 withIndicator:indicator];

…

[heartbeat stop];

CHAPTER 15 ■ THREADS

263

The message +startHeartbeatProcess:withIndicator: creates a Heartbeat object and starts its
-heartbeatThread: method running in a new thread. Approximately every half-second, the thread
queues an -updateIndicator message to be executed on the main thread. The thread runs until the
Heartbeat object receives a -stop message.

Note that the example in Listing 15-2 is far from the most effective use of a thread. While it
would work, a much more sensible solution is provided in the Timer section at the end of this chapter.

Thread Properties
Thread objects have a number of properties that relate pertinent information. The caveats about
superfluous thread management withstanding, there are also a few thread properties that you might
need to alter. Some can only be set before the thread is started, while others can only be set after.

Information
The thread informational properties are listed in Table 15-2. You can use them to obtain relevant
NSThread objects or inspect the state of a thread. The class methods return global values or information
about the currently executing thread. Instance methods can be sent to any NSThread object, from any
thread.

Table 15-2. Informational Thread Properties

NSThread Method Descr ipt i on

+currentThread The NSThread object of the currently executing thread

+mainThread The NSThread object of the main thread

+isMainThread Returns YES if the current thread is the main thread

+isMultiThreaded Returns YES if another thread, beyond the main thread, has ever been started
by NSThread

-isMainThread Returns YES if the thread object represents the main thread

-isExecuting Returns YES if the thread has been started and has not finished

-isFinished Returns YES if the thread has executed and exited

-isCancelled Returns YES if the thread has ever received a -cancel message

Thread-Specific Values
Sometimes you need a global variable, but only within the context of a specific thread. Each NSThread
object has a threadDictionary property exactly for this purpose. The property is a mutable dictionary
that your application can use to store whatever values it needs. The example in Listing 15-3 creates an
NSNotificationCenter object for a single thread.

CHAPTER 15 ■ THREADS

264

Listing 15-3. Storing a Thread Specific Value

NSMutableDictionary *threadLocal = [[NSThread currentThread] threadDictionary];
[threadLocal setObject:[NSNotificationCenter new]
 forKey:@"NotificationCenter"];

The purpose is to create a notification center that will be used to send and observe notification

within the thread. Any object can obtain its thread-specific notification center using the statement:
[[[NSThread currentThread] threadDictionary] objectForKey:@"NotificationCenter"]

Priority
The priority of the currently running thread can be altered using the +[NSThread setThreadPriority:]
message. The priority is a floating point value between 0.0 and 1.0, 1.0 being the highest. You can obtain
a thread’s current priority with +[NSThread threadPriority]. The typical default priority is 0.5. The
actual range of priorities—if they’re acknowledged at all—is operating system and kernel dependent.

The kernel makes few guarantees about thread priority other than it will tend to give threads
with a higher priority more CPU time than those with a lower priority. Use thread priorities judiciously.

Stack Size
Another rarely used property is the thread’s stack size, which must be set before the thread is started.
This requires that you create an NSThread object, set its stack size, and then start the thread using the
-start message. Stack sizes must be set in even multiples of 4K (4096) bytes and currently default to
512K.

The two situations where you would want to change the stack size are:

• A thread is overflowing its stack. In this situation, increase its stack size before starting the
thread.

• You create lots of threads that don’t use much stack space, and the stack space allocated to
each is impacting address space allocation. Reduce the default stack size so that each thread
allocates less memory.

Name
Each thread also has a mutable -name property that’s an arbitrary NSString value. Thread names are
largely ignored by the operating system, so use them for whatever purpose you wish.

Terminating a Thread
A thread stops running when

• The thread’s -main method, or the method specified when the thread was created, returns

• The thread’s code throws an uncaught exception

• The process terminates

CHAPTER 15 ■ THREADS

265

In the first two situations, the thread is destroyed and its resources reclaimed. The uncaught
exception handler, described in Chapter 14, handles uncaught exceptions. An NSThread object cannot
be restarted. Create a new NSThread object if you want to start another thread.

When the process terminates, all threads are abandoned, regardless of their state. This is not
like Java, whose virtual machine will run until all non-daemon threads have finished. If you’ve created
background threads, you do not need to arrange for them to finish for your application to terminate.
Conversely, if your background threads need to finish before your application terminates, you will have
to coordinate that through semaphores or other means.

Run Loops
Run loops are an integral part of the Cocoa framework. They are the principal event dispatching
mechanism for applications, user interface events, distributed objects, timers, deferred object messages,
and distributed notifications.

A run loop is an event processing service that synchronously processes events from one or more
asynchronous sources. Event sources are referred to as input sources, and there are several predefined
kinds:

• User interface events (mouse events, keyboard events, etc.)

• Deferred method invocation (-performSelector:withObject:afterDelay:, etc.)

• Distributed object messages

• Timer events

There are other input sources and it’s possible to develop your own, although that’s
exceptional.

There is one (optional) run loop object associated with every thread. The code +[NSRunLoop
currentRunLoop] will return the single run loop object associated with the current thread, and
+[NSRunLoop mainRunLoop] returns the run loop for the main thread. Run loops are created lazily; if no
run loop object exists for the thread, one is created when you send the message. The run loop associated
with the main thread is called the main run loop.

■Caution NSRunLoop is not thread safe. Manipulations of a run loop object should be done from the thread it
belongs to.

Run loops are very efficient. They block the thread until an event appears on one of their input
sources. The run loop then immediately processes the event, taking whatever action is appropriate, and
then “loops” around to wait for the next event. Run loops also take care of periodic housecleaning, like
managed memory and stack object garbage collection. You can hand off control of your thread entirely
to the run loop, or write your own loop to keep the run loop working.

Starting a Run Loop
You normally don’t need to start a run loop. If you are writing a standard application, the NSApplication
object will start the main run loop automatically. The main run loop will process all of the significant
events of your application. Modal dialogs and NSConnections will also start run loops.

CHAPTER 15 ■ THREADS

266

You would need to start your own run loop under the following circumstances:

• You have created a new thread that needs to fire timers or send deferred messages to objects.

• You are vending a distributed object in its own thread, or have passed objects by reference that
might receive asynchronous messages from a remote process.

• You are writing a command-line tool or daemon that does not use the application framework
and needs to process deferred method invocations, timer events, or distributed objects on the
main thread.

The third case is just a special instance of the first two, since the main thread of a command-
line tool does not automatically start a run loop.

A run loop requires input sources, and runs only as long as it has input sources. To start a run
loop, you must first provide it with one or more input sources. Otherwise, the run loop will do nothing
and end immediately.

• Creating and scheduling a timer, described later in this chapter, will create a timer input source
for the current run loop.

• Queuing a deferred method invocation will add a message dispatch source to the run loop.

• An NSConnection will add its communication ports to the current run loop.

• The main thread has several input sources already created by the Objective-C framework. A run
loop started on the main thread will always start and run forever.

By starting a run loop, you essentially relinquish control of the thread to the run loop. The
thread will block until it receives an event from its input sources. To start a run loop and let it run
forever—or at least while it has input sources—execute the following:

[[NSRunLoop currentRunLoop] run];

The message -runUntilDate: is a slight variation that runs the run loop for a period of time. You

can use this to perform periodic actions, but using timers is preferable.
To be a little more involved, use something like the code shown in Listing 15-4. This second

example “drives” the run loop using your own loop. The -runMode:beforeDate: message suspends the
thread until a single event is processed or the beforeDate time has occurred. This allows your code to
perform actions between each event or at periodic times, and you can also test any global condition that
might be used to halt the run loop or thread.

Listing 15-4. Starting a Run Loop

static BOOL keepRunning = YES;

…

while (keepRunning
 && [[NSRunLoop currentRunLoop] runMode:NSDefaultRunLoopMode
 beforeDate:[NSDate distantFuture]]) {
 …
}

CHAPTER 15 ■ THREADS

267

Finally, the -[NSConnection runInNewThread] convenience function does everything needed to

start a distributed object server: it creates and starts a new thread, adds the NSConnection’s ports to the
run loop of the new thread, and sends the run loop a -run message.

Run Loop Modes
Run loops run in modes. Run loop input sources have modes. A run loop only processes the events from
the input sources consistent with its current mode. Normally you don’t need to know anything about
run loop modes, other than that they exist. The basic run loop modes are listed in Table 15-3.

Table 15-3. Run Loop Modes

Mode Descr ipt i on

NSDefaultRunLoopMode This is the default mode, and the mode used by any run loop
method that doesn’t accept a mode parameter.

NSModalPanelRunLoopMode Processes only events relevant to a modal dialog.

NSEventTrackingRunLoopMode Processes only events relevant to active mouse tracking.

NSConnectionReplyMode Processes only distributed object reply events.

Run loop modes are used to defer those events that aren’t appropriate to the circumstances.
The top-level run loop invariably runs in the NSDefaultRunLoopMode mode, processing all events. If the
user interface causes a modal dialog to be displayed, the AppKit framework will start a nested run loop
running in NSModalPanelRunLoopMode. This ignores all events that don’t pertain to the modal dialog,
essentially freezing the rest of the application. Similarly, when a mouse click/drag begins its progress it is
tracked using NSEventTrackingRunLoopMode. The NSConnectionReplyMode is used when you’ve sent
a message to a distant object. The distant object starts a nested run loop, ignoring all queued events save
the reply from the remote object.

Stopping a Run Loop
Stopping a run loop is actually a little problematic. Earlier, I stated that run loops run as long as they
have input sources. That’s correct, except that all manner of obscure features will add custom input
sources to your run loop. Many of those sources persist for very long periods, if not forever, keeping the
run loop alive indefinitely. The most direct solution is to design your thread so the run loop does not
need to be stopped. Let the thread sit idle when not doing anything useful, and disappear when the
application terminates. For distributed objects, close the NSConnection object when you want to stop
sharing your root distributed object. You can always reregister the connection or set a new root object to
resurrect the service.

CHAPTER 15 ■ THREADS

268

If you must stop a run loop, there are three basic techniques:

• Use code like that in Listing 15-4 to periodically check to see if the run loop should stop. The
problem is that the loop will only execute once per event or after the time out. You don’t want
to make the time out short—this constitutes polling—because it wastes resources.

• Call the Core Foundation function CFRunLoopStop(), passing it the CFRunLoopRef value
obtained via -[NSRunLoop getCFRunLoop].

• Create a custom run loop input source and combine it with the technique in Listing 15-4. Your
custom input source’s event handler can set a flag indicating that the run loop should stop,
which will immediately cause -runUntilDate: to return, where your outer loop can exit.

Customizing Run Loops
The NSRunLoop class is a simplistic wrapper around the Core Foundation run loop functions and types.
If you want to get involved with run loops at a deeper level, possibly developing your own input sources,
read the “Run Loop Management” section of the Threading Programming Guide.1

Thread Notifications
NSThread sends two notifications, listed in Table 15-4. See Chapter 18 for more about notifications.

Table 15-4. Thread Notifications

Not i f icat ion Descr ipt i on

NSThreadWillExitNotification Sent after a thread’s code has returned, but before the
thread is destroyed. This notification is sent to all observers
on the thread about to be destroyed.

NSWillBecomeMultiThreadedNotification Sent to all observers before the first new (non-main) thread
in the process is created. The notification is sent on the
main thread, and is only sent once.

Back in Chapter 7, I presented a FIFO class that could optionally operate in a thread-safe
environment. Let’s modify that class a little—making it truly automatic—by rewriting its -init method
and adding a notification observer, as shown in Listing 15-5.

1 Apple, Inc., Threading Programming Guide, http://developer.apple.com/documentation/Cocoa/Conceptual/
Multithreading/, 2008.

CHAPTER 15 ■ THREADS

269

Listing 15-5. Additions to an Automatic Thread-Safe FIFO Class

@implementation AutoSafeFIFO

- (id) init
{
 self = [super init];
 if (self != nil) {
 stack = [NSMutableArray new];
 if ([NSThread isMultiThreaded]) {
 [self makeThreadSafe];
 } else {
 NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
 [center addObserver:self
 selector:@selector(willBecomeMultiThreadedNotification)
 name:NSWillBecomeMultiThreadedNotification
 object:nil];
 }
 }
 return self;
}

- (void)willBecomeMultiThreadedNotification:(NSNotification*)notification
{
 [self makeThreadSafe];
}

…

@end

The object’s constructor determines if the application is already running with multiple threads.

If it is, it makes itself thread safe. If not, it subscribes to NSWillBecomeMultiThreadedNotification. If a
second thread is created any time after the FIFO is created, the FIFO object automatically switches to
thread-safe mode.

Thread Synchronization
Concurrent access to objects from two or more independent threads presents a consistent set of
problems across almost all programming languages. Java and Objective-C both provide language
support in the form of a @synchronized (synchronized) directive. Any block of code marked as
@synchronized is protected against being executed by more than one thread at a time.

This section will review the synchronization support in Objective-C. In addition to the
@synchronized directive, the Cocoa frameworks provide several utility classes that implement different
kinds of mutual exclusion semaphores, a set of classes for organizing concurrent tasks, and timers.

CHAPTER 15 ■ THREADS

270

The @synchronize Directive
Objective-C’s @synchronized directive is almost identical to Java’s synchronized keyword, with only one
minor exception: @synchronized can’t be used as a method modifier. To accomplish the equivalent, use
@synchronized(self) as the outermost block of your method, as shown in Listing 15-6.

Listing 15-6. Synchronized Method

Java
public class Timing
{
 public synchronized void safe()
 {
 // thread safe code
 }
}

Objective-C
@interface Timing : NSObject

- (void)safe;

@end

@implementation Timing

- (void)safe
{
 @synchronized(self) {
 // thread safe code
 }
}

@end

Beyond that minor limitation, you can use @synchronized exactly as you would use

synchronized in Java.

Mutual Exclusion Semaphore Objects
Java 5.0 has introduced a wealth of new concurrent process control classes, including various mutual
exclusion semaphores, queues, resource counters, and so on. Objective-C has always had the NSLock,
NSRecursiveLock, and NSConditionLock classes. Recent versions of the operating system added
NSOperation for managing complex sets of tasks. NSOperation is discussed in the next section.

Each of the three NS…Lock classes offers a different kind of mutual exclusion semaphore, or
mutex for short. They all work by obtaining a lock, approximately equivalent to entering a @synchronized
block of code. All other threads attempting to acquire a lock on the same object will be suspended until

CHAPTER 15 ■ THREADS

271

the original lock is released. Once the semaphore is unlocked, one of the other threads will be granted
the lock and resume execution.

All of the mutex semaphore classes have several things in common:

• They all conform to the NSLocking protocol, which defines the fundamental -lock and -unlock
methods.

• They all implement -lockBeforeDate: and -tryLock methods.

• They all implement -name and -setName: methods.

The -tryLock and -lockBeforeDate: messages attempt to acquire the lock and return YES if
successful. -tryLock returns immediately, while -lockBeforeDate: will suspend until either the lock is
acquired or the time in the NSDate object occurs. This is one of the significant advantages of using
NS…Lock objects over @synchronized directives.

Finally, you can name your locks for whatever reason.

NSRecursiveLock
NSRecursiveLock objects behave pretty much like @synchronized blocks. An NSRecursiveLock is a
mutual exclusion semaphore between threads, but within a single thread it can be locked as many times
as desired. The lock is acquired once during the initial -lock message, equivalent to entering a
@synchronized block. Subsequent -lock messages sent on the same thread increment a counter. Once
the lock has received one -unlock message for every -lock message, the lock is released.

The one significant difference is that a @synchronized block will automatically catch an
exception and release the lock before rethrowing the exception. If you use NSRecursiveLock objects
around code that could throw an exception, make sure you catch the exception and clean up your locks.

NSLock
NSLock is the simplest mutex semaphore and only implements the basic -lock, -tryLock,
-lockBeforeDate:, and -unlock methods. Objective-C code written before the @synchronized directive
was added would most likely use NSLock objects instead of @synchronized blocks, even though the
behavior of @synchronized is closer to NSRecursiveLock.

■Caution An NSLock must always be unlocked from the same thread that locked it. Some programmers, in a
misguided attempt to implement cross-thread synchronization, will lock an NSLock object twice on the same
thread—causing a deadlock—then release it by unlocking the object from another thread. This is not guaranteed
to work and may cause fatal program errors. The correct solution is to use an NSConditionLock, described later.

The primary advantages of NSLock are speed and simplicity. Unlike an NSRecursiveLock, an
NSLock can only be acquired once before being unlocked again. Consider the code in Listing 15-7.

CHAPTER 15 ■ THREADS

272

Listing 15-7. Recursive Mutex Semaphore

@interface ZombieController : NSObject {
 NSMutableArray *nearbyZombies;
 double totalDamage;
 NSLock *lock;
}

- (void)inflictDamage:(double)damage onZombieAtIndex:(NSUInteger)index;
- (void)detonateFlashBomb;

@end

@implementation ZombieController

- (id)init
{
 self = [super init];
 if (self!=nil) {
 lock = [NSLock new];
 …
 }
 return self;
}

- (void)inflictDamage:(double)damage onZombieAtIndex:(NSUInteger)index
{
 [lock lock];
 Zombie *zombie = [nearbyZombies objectAtIndex:index];
 [zombie inflictDamage:damage];
 totalDamage += damage;
 [lock unlock];
}

- (void)detonateFlashBomb
{
 // Inflict 10 points of damage on all nearby zombies
 NSUInteger i;
 [lock lock];
 for (i=0; i<[nearbyZombies count]; i++) {
 [self inflictDamage:10.0 onZombieAtIndex:i];
 }
 [lock unlock];
}

@end

CHAPTER 15 ■ THREADS

273

The code in Listing 15-7 will deadlock (i.e., seize, never to run again) when the
detonateFlashBomb message is received. The [lock lock] statement in detonateFlashBomb will acquire
the NSLock, preventing other threads from executing the method until it is done. When the object sends
itself the inflictDamage:onZombieAtIndex: method, the attempt to acquire the lock a second time will
permanently suspend the thread while it waits for itself to release the original lock—which will never
happen.

This code could be fixed by replacing the NSLock with an NSRecursiveLock, or by rewriting it to
use @synchronized directives.

NSConditionLock
The NSConditionLock class acts like an NSLock with an added condition property. The condition is an
arbitrary integer state value. When you request a lock on the object, you can specify the condition value
that must be set before the lock is acquired. This provides a simple, flexible, and efficient means to
coordinate state information or synchronize events between threads. For example, NSThread does not
have a Java-like join() method, but this is trivial to implement using an NSConditionLock object, as
shown in Listing 15-8.

Listing 15-8. Performing a join()

Java
public class Party implements Runnable {

 public static void main(String[] args) {
 Party party = new Party();
 Thread thread = new Thread(party);

 try {
 System.out.println("Party starting");
 thread.start();
 thread.join();
 System.out.println("Party is over");
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }

 public void run() {
 System.out.println("partying...");
 }
}

Objective-C
@interface Party : NSObject {
 NSConditionLock *joinLock;
}

CHAPTER 15 ■ THREADS

274

+ (void)main;

- (id)init;
- (void)party:(id)ignored;

@end

implementation Party

+ (void)main
{
 Party *party = [Party new];

 NSLog(@"Party starting");
 [NSThread detachNewThreadSelector:@selector(party:)
 toTarget:party
 withObject:nil];
 [party->joinLock lockWhenCondition:YES];
 [party->joinLock unlock];
 NSLog(@"Party is over");
}

- (id) init
{
 self = [super init];
 if (self != nil) {
 joinLock = [[NSConditionLock alloc] initWithCondition:NO];
 }
 return self;
}

- (void)party:(id)ignored
{
 NSLog(@"partying...");

 [joinLock lock];
 [joinLock unlockWithCondition:YES];
}

@end

The agreed-upon condition is a BOOL value. The NSConditionLock is initially created with a

condition of NO. The main thread starts the Party thread, then attempts to acquire a lock on the
joinLock object, but only when its condition is YES. The main thread blocks until the mutex semaphore

CHAPTER 15 ■ THREADS

275

is both available and in the desired state. This happens only after the -party method is finished, which
ends by acquiring the lock and releasing it with a new condition. The lock is now free and the condition
is satisfied, so the lock in the main thread can be acquired.

You can conditionally (-lockWhenCondition:) or unconditionally (-lock) acquire a lock. You can
examine the state of the condition at any time using -condition—just be aware that if you don’t own the
lock on the object the condition could change at any time. You can only change the condition when
unlocking the mutex by sending -unlockWithCondition:.

NSConditionLock is a powerful way to coordinate states between threads. The fanciful example
in Listing 15-9 presents an object that manages a background thread. The background thread produces a
single result and then suspends. The result is collected on the main thread. As soon as it is, the
background thread immediately goes back to work generating the next result.

Listing 15-9. Thread State Management Using NSConditionLock

enum {
 BusyBeeStateNone,
 BusyBeeStateIdle,
 BusyBeeStateBuzzing
};

@interface BusyBee : NSObject {
 NSConditionLock *state;
 BOOL stopGathering;
 id pollen;
}
- (id)init;

// Sent on main thread
- (id)collectPollen;
- (void)start;
- (void)stop;

// Background thread
- (void)gatherPollenThread:(id)ignored;

@end

@implementation BusyBee

- (id) init
{
 self = [super init];
 if (self != nil) {
 state = [[NSConditionLock alloc] initWithCondition:BusyBeeStateNone];
 }
 return self;
}

CHAPTER 15 ■ THREADS

276

- (id)collectPollen
{
 [self start];

 // Collect one object of pollen
 [state lockWhenCondition:BusyBeeStateIdle];
 id returnPollen = pollen;
 pollen = nil;
 // Start thread looking for more pollen
 [state unlockWithCondition:BusyBeeStateBuzzing];

 return returnPollen;
}

- (void)start
{
 [state lock];
 NSInteger condition = [state condition];
 if (condition==BusyBeeStateNone) {
 [NSThread detachNewThreadSelector:@selector(gatherPollenThread:)
 toTarget:self
 withObject:nil];
 condition = BusyBeeStateBuzzing;
 }
 [state unlockWithCondition:condition];
}

- (void)stop
{
 [state lock];
 NSInteger condition = [state condition];
 if (condition!=BusyBeeStateNone) {
 stopGathering = YES;
 if (condition==BusyBeeStateIdle)
 condition = BusyBeeStateBuzzing; // wake up to stop
 // wait until thread stops, i.e. join()
 [state unlockWithCondition:condition];
 [state lockWhenCondition:BusyBeeStateNone];
 stopGathering = NO; // reset for next start
 }
 [state unlock];
}

CHAPTER 15 ■ THREADS

277

- (void)gatherPollenThread:(id)ignored
{
 [state lock];

 while (!stopGathering) {
 id foundPollen = pollen;
 [state unlock];

 if (foundPollen==nil) {
 // search for pollen...
 foundPollen = …
 }

 [state lock];
 // make pollen available, transition to idle
 pollen = foundPollen;
 if (stopGathering) // could have been set while searching
 break;
 [state unlockWithCondition:BusyBeeStateIdle];

 // wait to begin gathering again
 [state lockWhenCondition:BusyBeeStateBuzzing];
 }

 [state unlockWithCondition:BusyBeeStateNone];
}

@end

The NSConditionLock object provides both the mutual exclusion semaphore needed to make

this code thread safe, as well as communicating and controlling the state of the -gatherPollenThread.
The initial state transition from BusyBeeStateNone to BusyBeeStateBuzzing is performed by -start.
After the thread is running, the thread starts working whenever its state is changed to
BusyBeeStateBuzzing, and transitions back to BusyBeeStateIdle when it’s done.

NSDistributedLock
NSDistributedLock is a special kind of mutex semaphore that uses file system objects to coordinate
actions between processes, or even other computer systems via a shared file system. It does not conform
to NSLocking protocol and has no -lock method. You initialize it by specifying a path to a file on a
writeable file system. The -tryLock method will test the object and attempt to acquire the lock. If
unsuccessful, your code must try again later at whatever interval makes sense for your application.
Listing 15-10 shows NSDistributedLock used to prevent a group of database files from being modified
during a backup.

CHAPTER 15 ■ THREADS

278

Listing 15-10. Using Distributed Locks

NSString *dbPath = …
NSString *lockPath = [dbPath stringByAppendingPathComponent:@".dblock"];
NSFileManager *fileManager = [NSFileManager defaultManager];

// lock the database directory
NSDistributedLock *lock = [NSDistributedLock lockWithPath:lockPath];

while (![lock tryLock])
 [NSThread sleepForTimeInterval:1.0];

// Copy all .index files to .backup
NSArray *dbFiles = [fileManager contentsOfDirectoryAtPath:dbPath
 error:NULL];
for (NSString *file in dbFiles) {
 if ([[file pathExtension] isEqualToString:@"index"]) {
 NSString *srcPath = [dbPath stringByAppendingPathComponent:file];
 NSString *dstPath = [[srcPath stringByDeletingPathExtension]
 stringByAppendingPathExtension:@"backup"];
 [fileManager removeItemAtPath:dstPath
 error:NULL];
 [fileManager copyItemAtPath:srcPath
 toPath:dstPath
 error:NULL];
 }
}

[lock unlock];

Spin Locks
Both the @synchronized directive and the family of NSLock classes are easy to use and efficient, but being
really fast is not one of their benefits. The operating system provides a very special kind of mutex
semaphore for high-performance thread synchronization called a spin lock. All of the mutex semaphores
discussed so far suspend the thread if the lock can’t be acquired. Suspending, switching, and resuming a
thread is an expensive operation. If a heavily used method is acquiring and releasing a lock to
accomplish some trivial task, the overheard of the semaphore and any associated thread switching can
become a significant performance drain.

When a spin lock can’t be acquired (because some other thread has locked it), the thread
“spins”—continuously polling the status of the semaphore until it is unlocked. The thread is not
suspended and continues to run at full speed, using CPU resources at the expense of other threads. If
this sounds like a horrific waste of resources, it is. The advantage of spin locks is that time required to
acquire and release an uncontested lock is minuscule compared to the high-level mutex semaphores. So
the nominal, uncontested case runs much faster and the performance gain ultimately exceeds the
performance loss of the occasional contest.

CHAPTER 15 ■ THREADS

279

Spin locks are effective when

• The chance that two threads will attempt to acquire the same semaphore at the same time is
very small.

• Locks are acquired and released with a high frequency.

• The time between acquiring a lock and releasing it is always very short—less than a few
hundred nanoseconds.

Spin locks are used by the operating system wherever contention probability is low, blocking
time is minimal, and performance is paramount. For example, the operating system’s low-level memory
allocation routines all use spin locks to coordinate memory requests from multiple threads.

Listing 15-11 rewrites the FIFO class—yet again—this time using spin locks instead of
semaphore objects. To use spin locks, your code must first #include <libkern/OSAtomic.h>.

Listing 15-11. Fast FIFO Class

#include <libkern/OSAtomic.h>
#import <Cocoa/Cocoa.h>

@interface FastFIFO : NSObject {
 NSMutableArray *stack;
 OSSpinLock spinLock;
}

@end

@implementation FastFIFO

- (id) init
{
 self = [super init];
 if (self != nil) {
 stack = [NSMutableArray new];
 }
 return self;
}

- (void)push:(id)object
{
 OSSpinLockLock(&spinLock);
 [stack addObject:object];
 OSSpinLockUnlock(&spinLock);
}

CHAPTER 15 ■ THREADS

280

- (id)pop
{
 id object = nil;

 OSSpinLockLock(&spinLock);
 if ([stack count]!=0) {
 object = [stack objectAtIndex:0];
 [stack removeObjectAtIndex:0];
 }
 OSSpinLockUnlock(&spinLock);

 return object;
}

- (BOOL)hasObjects
{
 OSSpinLockLock(&spinLock);
 BOOL answer = ([stack count]!=0);
 OSSpinLockUnlock(&spinLock);

 return answer;
}

@end

The OSSpinLock structure is opaque, but should be initialized to zero before being used. The

functions OSSpinLockLock(), OSSpinLockUnlock(), and OSSpinLockTry() perform the same function as
-[NSLock lock], -[NSLock unlock], and -[NSLock tryLock], respectively. Each spin lock function is
passed the address of the spin lock semaphore structure.

Operations
As you can see from the BusyBee example in Listing 15-9, managing even a “simple” background worker
thread is not a trivial undertaking. Mac OS X 10.5 and Java 5.0 both recognize this and have added
classes that provide management of antonymous background processes for you.

Java 5.0 added a dizzying array of new classes and interfaces to manage tasks. The principal
interface is the ExecutorService, of which there are several implementations. The executor services
manage a set of tasks to be executed at some future time. Concrete subclasses like ThreadPoolExecutor
execute the tasks asynchronously in separate threads.

In Objective-C, the picture is considerably simpler. The NSOperationQueue class manages a set
of NSOperation objects. Each NSOperation object defines one task to be performed. An NSOperation
object has state properties that indicate when it is has started, is executing, or has finished.

CHAPTER 15 ■ THREADS

281

Using NSOperationQueue can be very simple, or quite complex, depending on your needs. The
minimum steps to use NSOperationQueue are as follows:

1. Create an instance of NSOperationQueue.

2. Create an instance of NSInvocationOperation (a concrete subclass of NSOperation)

specifying the object and method to invoke. Or, create a subclass of NSOperation and

override its -main method.

3. Send -addOperation: to the NSOperationQueue, passing the operation object created in

step 2.

Without doing anything else, the NSOperationQueue will create new threads and use them to
execute the code in your NSOperation objects. The sample project used in Chapter 4 demonstrates how
simple NSOperationQueue is to use. Using NSOperationQueue has several advantages:

• NSOperationQueue will automatically maintain an efficient pool of threads, creating and
destroying threads for you.

• NSOperationQueue scales automatically based on the system resources—like the number of
CPU cores—and will perform load balancing.

• Operations can be made dependent on other operations, allowing you to define complex trees
of operations that must be performed in the correct order.

• You can limit the number of concurrent operations, or let the operation queue determine an
optimal number automatically.

• Operations can be prioritized.

• By subclassing NSOperation, you have extensive control over your operation’s behavior. You
can also implement code that permits your operation to be prematurely canceled.

See the “Creating and Managing Operation Objects” section in the Threading Programming
Guide for more details.2

Timers
Timers are objects that post method invocations to a run loop at specific time intervals. They are
incredibly simple to use, and can often replace much more elaborate solutions based on threads or other
mechanisms.

Timers run on run loops. They come in two flavors: repeating timers and one-shot (non-
repeating) timers. A repeating timer fires an Objective-C message at regular intervals until stopped. A
one-shot timer sends one message, and then invalidates itself. When a timer is invalidated, it stops
sending messages and removes itself from the run loop.

To use a timer:
1. Create a timer object.

2. Schedule it to run on the current run loop.

3. To stop the timer, send it an -invalidate message.

2 Apple Inc., Threading Programming Guide, Managing Operation Objects, http://developer.apple.com/
documentation/Cocoa/Conceptual/Multithreading/OperationObjects/, 2008

CHAPTER 15 ■ THREADS

282

When creating a timer object, you specify the time interval in seconds, an optional context
object, and a flag that determines if the timer repeats. The target of the timer is either an NSInvocation
object or a receiving object pointer and method identifier pair. The method must expect to receive the
NSTimer object pointer as its only parameter and return void. The receiver can use the timer object’s
userInfo property to retrieve the supplementary context object.

NSTimer objects can be created using any of the +timerWithTimeInterval:… messages and later
scheduled to run on a run loop using -[NSRunLoop addTimer:forMode:]. However, it is simpler to create
and schedule the timer to run using a single +scheduledTimerWithTimeInterval:… message.

Listing 15-2 used a separate thread to invoke a heartbeat message on the main thread approximately
every half-second. Listing 15-12 provides an equivalent, and far more frugal, solution using a timer.

Listing 15-12. Heartbeat Timer

@interface Process : NSObject
@property double progress;
@end

@interface Heartbeat : NSObject {
 NSTimer *timer;
 Process *monitor;
 NSProgressIndicator *indicator;
}

+ (Heartbeat*)startHeartbeatProcess:(id)process
 withIndicator:(NSProgressIndicator*)progress;

- (void)stop;
- (void)heartbeatTime:(NSTimer*)timer;

@end

@implementation Heartbeat

+ (Heartbeat*)startHeartbeatProcess:(id)process
 withIndicator:(NSProgressIndicator*)progress
{
 Heartbeat *heartbeat = [Heartbeat new];
 heartbeat->monitor = process;
 heartbeat->indicator = progress;
 heartbeat->timer = [NSTimer scheduledTimerWithTimeInterval:0.5
 target:heartbeat
 selector:@selector(heartbeatTime:)
 userInfo:nil
 repeats:YES];

 return heartbeat;
}

CHAPTER 15 ■ THREADS

283

- (void)stop
{
 [timer invalidate];
}

- (void)heartbeatTime:(NSTimer*)timer
{
 [indicator setDoubleValue:monitor.progress];
}

@end

Timers are not exceedingly accurate, and their accuracy decreases as the time interval

increases. Timers can fire before, or after, their scheduled time depending on a number of factors. Since
timers are essentially deferred messages, they are inherently thread safe.

Summary
Basic thread creation and synchronization is very similar to Java. You can create threads and control
their access to critical code using @synchronized directives. If you need finer-grained control over thread
synchronization, the Objective-C frameworks provide a variety of mutually exclusion semaphores, each
with unique capabilities.

Like Java, the modern Objective-C frameworks now provide utility classes for simplifying the
complex job of creating and controlling operations in multiple threads. Finally, don’t forget the
extremely useful NSTimer class. Simple tasks that need to be performed at some future time, or at
regular intervals, can be easily scheduled using timers.

P A R T 3
■ ■ ■

Programming Patterns

C H A P T E R 16

■ ■ ■

287

Col lect ion Patterns

Organizing collections of objects is a fundamental part of everyday programming. The class frameworks
provide several classes for organizing objects into arrays, dictionaries (maps), and sets. Objects in an
array have a specific order, addressed by a numeric index. Dictionaries (maps) organize objects into
unordered pairs, each pair being a unique key object and a value object. The key object is used to
identify and address the value object. Finally, sets are amorphous collections that are neither ordered
nor addressable; an object is simply in a set or it’s not. The Cocoa framework doesn’t provide any tree,
linked list, or stack collections.

Collection patterns in Objective-C will present Java programmers with a number of challenges.
The biggest will be a false sense of familiarity—faux amis, as the French would say. So much of the
collection classes resemble Java that it’s easy to forget the subtle differences: the base classes of
collections are immutable, keys in a dictionary (map) are always copied, collections can’t be modified
during enumeration, and so on. Many of these behaviors are only footnotes in the regular
documentation. This chapter will highlight these differences so that you’ll be acutely aware of them.
Some differences are blessings, most require slight changes to your programming habits, and a few can
profoundly affect your design.

This chapter will explain the collection classes, listed in Table 16-1. It will describe how
Objective-C collections are alike and different from their Java siblings, the equality and hash contracts,
and how collections are enumerated, sorted, and filtered. The later sections cover enumeration
concurrency and thread safety considerations.

Table 16-1. Java and Objective-C Collection Classes

Java Object ive-C

ArrayList NSArray, NSMutableArray

 NSPointerArray

HashMap NSDictionary, NSMutableDictionary

WeakHashMap NSMapTable

HashSet NSSet, NSMutableSet, NSHashTable

 NSCountedSet

BitSet NSIndexSet

CHAPTER 16 ■ COLLECTION PATTERNS

288

Immutable Collections
In Java, all collection classes are mutable. It’s possible to create an immutable collection using a special
method like java.util.Collections.unmodifiableCollection(Collection), but that’s rare. For the most
part, you design your code with the assumption that all collections are mutable, paying special attention
to when collections are passed by reference to other methods.

Most Objective-C collection classes adhere to an immutable base class, mutable subclass
design pattern. The base classes of the traditional collection classes (NSArray, NSDictionary, NSSet,
and NSIndexSet) are truly immutable. They lack any methods that can modify the collection. When a
method accepts or returns one of these classes, it is implicitly immutable—removing most pass-by-
reference concerns that Java programmers contend with. You might be wondering just how useful an
immutable collection class is, but they’re quite handy. They use many of the same programming
patterns as java.lang.String objects.

To interactively construct or manipulate a collection, you must create one of the mutable
subclasses: NSMutableArray, NSMutableDictionary, NSMutableSet, or NSMutableIndexSet. These
subclasses define all of the methods used to alter the contents of the collection. Being subclasses, you
can pass any mutable collection object as an immutable type. However, you should take some care
when doing this. In Objective-C, the receiver of an immutable collection will likely assume it to be
immutable, whereas in Java it would rightly assume it to be mutable. If the receiver keeps a reference to
the original object, it may behave erratically if its immutable collection is arbitrarily altered. You can
safely pass mutable collections as immutable collections as long as nothing else modifies the collection,
or the receiver understands that it might actually be a mutable collection. Otherwise, convert the
collection into an immutable collection using one of the lightweight collection copy constructors.

To make immutable classes useful and easy to work with, Objective-C provides an extensive set
of constructors and methods that create and return an immutable collection. These convenience
constructors make it easy to create immutable copies of other collections or make a single change to an
immutable collection by creating a new collection. The immutable collection constructors are listed in
Table 16-2.

Table 16-2. Immutable Collection Constructors

Method Descr ipt i on

+[NSArray arrayWithArray:] Creates an immutable, shallow copy of another
array.

-[[NSArray alloc] initWithArray:copyItems:] Same as [NSArray arrayWithArray:] if the
copyItems parameter is NO. If copyItems is YES, it
makes a deep copy of the array by sending a
-copyWithZone: message to every object in the
collection.

+[NSArray arrayWithObject:] Creates an immutable array containing one object.

+[NSArray arrayWithObjects:] Creates an immutable array of objects. The objects
are passed as a variable argument list, terminated
by with a nil value.

+[NSArray arrayWithObjects:count:] Creates an immutable array from a C array of object
pointers. The parameters are the address of the first
element in the array and the element count.

CHAPTER 16 ■ COLLECTION PATTERNS

289

-[NSArray arrayByAddingObject:] Creates a new immutable array that’s a shallow
copy of the receiver’s array plus one additional
object.

-[NSArray arrayByAddingObjectsFromArray:] Creates a new immutable array by concatenating
the receiver’s collection with the objects in the
parameter.

-[NSArray subarrayWithRange:] Creates a new immutable array that contains a
shallow copy of a subset of the receiver’s array.

-[NSArray filteredArrayUsingPredicate:] Returns an immutable array containing the objects
in the receiver’s array that match the predicate
expression.

-[NSArray sortedArrayUsing…:] Any of four different methods that create a new
immutable array with the sorted contents of the
receiver’s array.

+[NSDictionary dictionaryWithDictionary:] Creates an immutable, shallow copy of another
dictionary.

-[[NSDictionary alloc]
initWithDictionary:copyItems:]

Same as [NSDictionary dictionaryWithDictionary:]
if copyItems is NO. If copyItems is YES, the new
dictionary is a deep copy of the original dictionary,
made by sending every value object a -copyWithZone:
message. Key objects are always copied.

+[NSDictionary dictionaryWithObject:forKey:] Creates an immutable dictionary containing a
single key/value pair.

+[NSDictionary dictionaryWithObjects:forKeys:] Creates an immutable dictionary from two arrays,
one containing the keys and the other the values.

+[NSDictionary
dictionaryWithObjects:forKeys:count:]

Creates an immutable dictionary from two C
arrays, one containing keys and the other values.

+[NSDictionary dictionaryWithObjectsAndKeys:] Creates an immutable dictionary from an arbitrary
number of value/key pairs in a variable argument
list. The list is terminated by a single nil value.

+[NSSet setWithSet:] Creates an immutable, shallow copy of another set.

-[[NSSet alloc] initWithSet:copyItems:] Same as +[NSSet setWithSet:] if copyItems is NO.
If copyItems is YES, the new set is a deep copy
made by sending each object in the set a -
copyWithZone: message.

+[NSSet setWithArray:] Creates an immutable set from an array.

CHAPTER 16 ■ COLLECTION PATTERNS

290

+[NSSet setWithObject:] Creates an immutable set containing a single object.

+[NSSet setWithObjects:] Creates an immutable set containing the objects in
the variable argument list. The list is terminated by
a nil object value.

+[NSSet setWithObjects:count:] Creates an immutable set from a C array of object
pointers. The parameters are the address of the
first element in the array and the element count.

-[NSSet setByAddingObject:] Creates a new immutable set that’s a shallow copy
of the receiver plus one additional object.

-[NSSet setByAddingObjectsFromSet:] Creates a new immutable set that’s a union of the
receiver’s set and the parameter set.

-[NSSet setByAddingObjectsFromArray:] Creates a new immutable set that’s a union of the
receiver’s set and the objects in the array.

-[NSSet filteredSetUsingPredicate:] Creates a new immutable set containing the
objects in the receiver’s set that match the
predicate expression.

+[NSIndexSet indexSetWithIndex:] Creates an immutable index set containing a
single index.

+[NSIndexSet indexSetWithIndexesInRange:] Creates an immutable index set with all of the
indexes in the given range.

-[[NSIndexSet alloc] initWithIndexSet:] Creates an immutable index set that’s a copy of
another index set.

Collections created from other collections usually make shallow copies of the original
collection, by simply copying the object pointers. This is highly optimized and is usually very fast. It is
quite common to create a mutable collection to assemble a set of objects, and then return an immutable
copy, as shown in Listing 16-1. This is comparable to creating a java.lang.StringBuilder object, building
the string, then returning an immutable String via StringBuilder.toString().

Listing 16-1. Returning an Immutable Collection

- (NSArray*)guestList
{
 // Assemble array of guests
 NSMutableArray *scratchArray = [NSMutableArray new];

CHAPTER 16 ■ COLLECTION PATTERNS

291

 for (…) {
 …
 [scratchArray addObject:…];
 }

 // Return immutable array of guests
 return [NSArray arrayWithArray:scratchArray];
}

A few constructors make deep copies. These have a copyItems parameter. When dictionaries are

duplicated, the key objects are always copied.
Since the mutable subclasses inherit all of the methods of their superclass, the mutable

collection classes can use any of the class methods in Table 16-2 to pre-populate a new, mutable
collection. You typically do this when you have an immutable collection that you need to make changes
to, as shown in Listing 16-2.

Listing 16-2. Creating a Mutable Copy of an Immutable Collection

- (void)hardwareNotification:(NSNotification*)notification
{
 NSDictionary *hwInfo = [notification userInfo]; // details of hardware problem
 NSMutableDictionary *adminInfo = nil;

 // If the hardware alert is serious enough to notify the administrators,
 // post a new notification with the hardware failure and a time stamp.
 int alertLevel = [[hwInfo objectForKey:@"Level"] intValue];
 if (alertLevel>=notifyAlertLevel) {
 // Make a mutable copy of the hardware failure info dictionary
 adminInfo = [NSMutableDictionary dictionaryWithDictionary:hwInfo];
 // Add a time stamp to the hardware info dictionary
 [adminInfo setObject:[NSDate date] forKey:@"Date"];
 [[NSNotificationCenter defaultCenter] postNotificationName:@"AdminAlert"
 object:[notification object]
 userInfo:adminInfo];
 }
}

Objective-C has recently acquired some new collection classes: NSPointerArray, NSMapTable,

and NSHashTable. These classes are inherently mutable and are more like the Java collection classes in
that respect. They all have the ability to be “programmed” with a particular personality, such as
maintaining weak references to objects, allowing memory blocks or primitive integers to be used as
values, or permitting nil object pointers to be stored. The differences between these new classes and the
old ones are detailed in the sections that discuss them.

CHAPTER 16 ■ COLLECTION PATTERNS

292

Ordered Collections
NSArray, NSMutableArray, and NSPointerArray organize ordered collections of values, equivalent to
java.util.ArrayList. Specifically, Objective-C and Java array classes have these common features:

• Values in the collection are object references.

• Values are addressed by index.

• The same value can be stored at more than one index.

• New values can be appended to the end of the array, or inserted at an existing index pushing
existing values up one index. Values cannot be inserted beyond the end of the array.

• Removing a value shifts all subsequent values down to occupy the vacated index.

• NSArray collections can be searched to locate the index of a known value.

There are a number of key differences:

• NSArray objects cannot be used to store nil (null) values. Consequently, operations that would
pad the array with nil values, like -setCount:, are not implemented.

• NSPointerArray objects will not search their content for values. Thus, methods like
-containsObject, indexOfObject:, and removeObject: are not implemented. You can iterate over
its content to find values.

• NSPointerArray can store much more than object pointer values.

• An NSMutableArray can be initialized with a predetermined capacity. But beyond that, the
capacity of the array is opaque, save for the single -compact method implemented by
NSPointerArray.

Common Methods
Tables 16-3 and 16-4 list the common array methods in Java and Objective-C. The messages in
Table 16-3 do not alter the collection and are implemented for both mutable and immutable
collections. The messages in Table 16-4 can only be sent to mutable arrays.

Table 16-3. Common Array Collection Methods

java. lang.ArrayList NSArrary NSPointerArray

size() count count

get(int) objectAtIndex: pointerAtIndex:

objectsAtIndexes:

contains(Object) containsObject:

indexOf(Object) indexOfObject:

indexOfObject:inRange:

CHAPTER 16 ■ COLLECTION PATTERNS

293

indexOfObjectIdenticalTo:

indexOfObjectIdenticalTo:inRange:

lastObject:

lastIndexOf(Object)

toArray() getObjects: allObjects

subList(int,int) getObjects:range:

Table 16-4. Common Mutable Array Collection Methods

java. lang.ArrayList NSMutableArray NSPointerArray

add(Object) addObject: addPointer:

addAll(Collection) addObjectsFromArray:

add(int,Object) insertObject:atIndex: insertPointer:atIndex:

insertObjects:atIndexes:

setCount:

clear() removeAllObjects

removeLastObject

remove(Object) removeObject:

removeObject:inRange:

remove(int) removeObjectAtIndex: removePointerAtIndex:

removeObjectsAtIndexes:

removeObjectIdenticalTo:

removeObjectIdenticalTo:inRange:

removeRange(int,int) removeObjectsFromIndices:numIndices:,
removeObjectsInRange:

removeObjectsInArray:

CHAPTER 16 ■ COLLECTION PATTERNS

294

set(int,Object) replaceObjectAtIndex:withObject: replacePointerAtIndex:
withPointer:

replaceObjectsAtIndexes:withObjects:

replaceObjectsInRange:
withObjectsFromArray:range:

replaceObjectsInRange:
withObjectsFromArray:

exchangeObjectAtIndex:
withObjectAtIndex:

setArray:

trimToSize() compact

A few of the methods in Tables 16-3 and 16-4 aren’t one-to-one replacements for Java methods,
although most are. For example, toArray() returns an array object whereas -getObjects: populates a C
array with the collection values. Trivial expressions like arrayList.isEmpty() are easily replaced with
[array count]==0. Most methods are self-explanatory.

NSArray, NSMutableArray
Except for not allowing nil (null) values, NSMutableArray is probably as close to java.lang.ArrayList as
you’re going to get. As you can see from the earlier tables, there are far more convenience methods, so
look for an array method before writing your own code to, say, exchange two elements in the collection.

NSArray makes the distinction between two objects that are equal (-indexOfObject:) and two
objects that are identical (-indexOfObjectIdenticalTo:). The latter compares object pointers for
equality, while the former compares the object’s value for equality. See the “Collection Equality
Contracts” section later in this chapter.

A number of methods, like -removeObjectsAtIndexes:, operate on an arbitrary list of indexes
defined by an NSIndexSet object—another collection class discussed later in the Unordered Collections
section. Methods like -objectsAtIndexes: are particularly powerful; it will return a new NSArray object
that’s an arbitrary subset of the receiver’s collection, chosen using the indexes in an NSIndexSet.

CHAPTER 16 ■ COLLECTION PATTERNS

295

COCOA COLLECTION CLASS ORGANIZATION

Java collection classes are neatly organized into inheritance trees. The base Collection interface has List, Map, and
Set sub-interfaces, which are embodied in AbstractCollection, AbstractList, AbstractMap, and AbstractSet classes
that are eventually implemented as the concrete collection classes we use every day.

Objective-C classes have almost no hierarchy. Most are direct subclasses of NSObject. The fact that they all
implement a -count method is by convention, not formal design. Most of the time this makes little or no
difference. Objective-C does lack methods like Java’s addAll(Collection) because it has no base class that
encompasses all collection classes.

One of the reasons for this is that many of the Objective-C collection classes are actually implemented in C.
For example the Core Foundation CFArray type implements NSArray, and the two are interchangeable. See the
“Toll-Free Bridge” section of Chapter 25 for more details.

NSPointerArray
NSPointerArray is a newer collection class. It has no immutable base class, so in that respect it is more
like Java’s ArrayList class. What sets NSPointerArray and its siblings NSMapTable and NSHashSet apart
from other collection classes is the ability to “program” the collections. The collection is initialized with
a set of delegate functions that define its personality. NSPointerArray objects are constructed using an
NSPointerFunctions object that contains a set of callback functions that will be used to manipulate the
values in the collection. The callback functions are: hash, isEqual, size, description, acquire, and
relinquish. When you add a value to the array, the value is passed to the acquire function. When the
value is removed, it is processed through relinquish. When comparing values in the collection, the
candidate values are passed to the isEqual function for comparison.

■Note You might be wondering why the function pointer set includes delegate functions that perform hash and
comparisons when NSPointerArray provides no means for searching the collection. This is for consistency with the
map and set collections. The latter classes use the same pointer function objects and do use the hash and
comparison functions extensively.

By employing a set of delegate functions, the collection can tailor itself to a wide variety of
solutions. To make the new collection easy to use, the Cocoa framework includes predefined pointer
function sets that can be selected by mixing pointer function option constants, some of which are listed
in Table 16-5. These predefined functions sets implement most of the collection behaviors that you’re
ever likely to need. The two most common NSPointerArray personalities have convenience constructors:
[NSPointerArray pointerArrayWithStrongObjects] creates a regular object array and [NSPointerArray
pointerArrayWithWeakObjects] creates an object array that uses weak references.

CHAPTER 16 ■ COLLECTION PATTERNS

296

Table 16-5. Common NSPointerFunctionsOptions

Opt ion Ident i f ier Descr ipt i on

NSPointerFunctionsStrongMemory Values are pointers, stored using strong references. This
is the default memory option if no memory option is
specified.

NSPointerFunctionsZeroingWeakMemory Values are pointers, stored using weak references.

NSPointerFunctionsObjectPersonality Values are object pointers. Objects are compared using
an -isEqual: message. The -description message is
used to generate object descriptions. This is the default
personality if no personality is specified.

NSPointerFunctionsObjectPointerPersonality Values are object pointers. Objects are compared by
testing their pointers for equality. The -description
message is used for object descriptions.

NSPointerFunctionsCStringPersonality Values are pointers to C strings. Values are compared
using the strcmp() function, and descriptions are
generated by converting the C string into an NSString
object.

NSPointerFunctionsIntegerPersonality Values are integers.

NSPointerFunctionsCopyIn Values are copied when added to the collection. If the
values are object pointers, they must conform to
NSCopying.

You can also create an NSPointerArray by combining one memory storage option, one

personality option, and the optional “copy in” option from the list in Table 16-5. The code in Listing 16-3
creates an NSPointerArray collection that makes copies of objects added to the collection, and keeps
strong references to those copies.

Listing 16-3. Custom NSPointerArray

NSPointerArray *array = [NSPointerArray pointerArrayWithOptions:
 (NSPointerFunctionsObjectPersonality
 |NSPointerFunctionsStrongMemory
 |NSPointerFunctionsCopyIn)];

There are even more progressively esoteric options that allow NSPointerArray to store pointers

to C structures, contain copies of whole C structures, use memory managed with C’s calloc() and free()
functions, and so on. See the documentation for NSPointerFunctionsOptions for a complete list. For the
ultimate control, you can create your own NSPointerFunctions objects if the predefined functions don’t
meet your needs.

CHAPTER 16 ■ COLLECTION PATTERNS

297

Dictionary Collections
NSDictionary, NSMutableDictionary, and NSMapTable organize unordered pairs of objects, equivalent
to java.util.HashMap. Each pair consists of a key object and a value object. Values are addressed using
objects equal to their keys. Keys in the collection are unique, but values can be duplicated. Specifically,
Objective-C and Java dictionary classes have these common features:

• Keys and values in the collection are object references.

• Key objects should not change value.

• Keys must adhere to the equality and hash contracts.

• Keys are unique. Storing a new value for an existing key replaces the exiting key/value pair with
the new one.

• A single value can be stored more than once with different keys.

• NSMapTable can use strong or weak references for its key and/or value objects, making it a
flexible replacement to java.util.WeakHashMap.

There are two key differences:

• Value objects cannot be nil (null). A nil value indicates the absence of a key. To store a nil value,
remove the key from the collection.

• Key objects are always copied and must conform to NSCopying. The collection retains the copy
of the Key object, not the instance used to add the key/value pair.

Common Methods
Tables 16-6 and 16-7 list the common dictionary (map) methods in Java and Objective-C. The messages
in Table 16-6 do not alter the collection and are implemented for both mutable and immutable
collections. The messages in Table 16-7 can only be sent to mutable dictionaries.

Table 16-6. Common Dictionary Collection Methods

java. lang.HashMap NSDict i onary NSMapTable

size() count count

keySet() allKeys

allKeysForObject:

values() allValues

dictionaryRepresentation

getObjects:andKeys:

keysSortedByValueUsingSelector:

get(Object) objectForKey: objectForKey:

objectsForKeys:notFoundMarker:

CHAPTER 16 ■ COLLECTION PATTERNS

298

Table 16-7. Common Mutable Dictionary Collection Methods

java. lang.HashMap NSMutableDict i onary NSMapTable

put(Object,Object) setObject:forKey: setObject:forKey:

putAll(Map) addEntriesFromDictionary:

setDictionary:

remove(Object) removeObjectForKey: removeObjectForKey:

clear() removeAllObjects removeAllObjects

removeObjectsForKeys:

Dictionary collections will not store nil values; a nil value is used to indicate the absence of a
key. The Java statement dictionary.contains(key) can be written as [dictionary
objectForKey:key]!=nil. If you must store a key without a value, use NSNull.

-allKeysForObject: returns an array containing all of the keys that map to a given value. The
Java statement dictionary.containsValue(object) can be written as [[dictionary
allKeysForObject:object] count]!=0.

-keysSortedByValueUsingSelector: returns the keys of an NSDictionary as an array sorted into
a particular order, allowing you to iterate through the collection in a well-defined order. See the “Iterator
Pattern” and “Sorting” sections.

NSDictionary, NSMutableDictionary
Except for not allowing nil (null) values, NSMutableDictionary is almost identical to java.lang.HashMap.
The biggest differences are the handling of nil values and the copying of keys.

You can use any object as a key as long as it can be copied—that is, conforms to NSCopying—
and the copy retained by the collection is never modified. When a dictionary is copied, all of the keys are
copied.

Like NSArray, NSDictionary has a few methods that operate on groups of entries. For example,
-objectsForKeys:notFoundMarker: takes an array of key objects, performs a batch search, and returns an
array of value objects. Each entry in the new array corresponds to the value for that key, or the “not
found marker” object. Before writing code to iteratively look up, add, or remove sets of objects, check to
see if there’s a collection method that might do the work for you. Consider the statement:

[dictionary removeObjectsForKeys:[dictionary allKeysForObject:value]];

NSMapTable
NSMapTable is a newer collection class. Like NSPointerArray, it has no immutable base class, just like
Java’s HashMap class. Also like NSPointerArray, an NSMapTable is constructed with a set of delegate
functions that defines its behavior.

An NSMapTable instance is created using an NSPointerFunction object, or the
NSPointerFunctionOptions listed in Table 16-5. Refer to the NSPointerArray section for a description of

CHAPTER 16 ■ COLLECTION PATTERNS

299

the NSPointerFunctions class and pointer function options. There are two significant differences
between initializing an NSMapTable and an NSPointerArray.

First, NSMapTable only accepts a narrow subset of the function pointer options supported by
NSPointerArray. The options in Table 16-8 are the only ones supported by NSMapTable, along with a
synonymous symbol for use with NSMapTable constructors. Basically, map tables only support object
values, with either strong or weak references, and you have the option of storing a reference or copy of
the object. If you restrict yourself to using the NSMapTable option synonyms, you won’t accidentally
choose an NSPointerFunctions option that isn’t supported.

Table 16-8. NSMapTable Options

NSMapTable Synonym NSPointerArray

NSMapTableStrongMemory NSPointerFunctionsStrongMemory

NSMapTableZeroingWeakMemory NSPointerFunctionsZeroingWeakMemory

NSMapTableCopyIn NSPointerFunctionsCopyIn

NSMapTableObjectPointerPersonality NSPointerFunctionsObjectPointerPersonality

The second difference is that NSMapTable objects are initialized with two sets of function
pointers: one set for the keys and one set for the values. This allows you to define a map that stores
copies of keys using strong references and weak references to values, references to key and copies of
values, weak keys and weak values, or any other combination that makes sense to your application.
There are four convenience constructors for the most common configurations:
+mapTableWithStrongToStrongObjects, +mapTableWithWeakToStrongObjects,
+mapTableWithStrongToWeakObjects, and +mapTableWithWeakToWeakObjects.

Set Collections
NSSet, NSMutableSet, NSCountedSet, NSIndexSet, and NSHashTable organize sets of unordered
objects, broadly equivalent to java.util.HashSet and java.util.BitSet. The set collections adhere to the
mathematical concept of a set: an object is a member of a set or it’s not. The objects aren’t organized in
any particular order, nor are they addressable. You can add an object to the set, test for its presence, and
remove it. NSIndexSet applies the same concepts to integer values, and NSCountedSet is a special set
that allows an object to occur more than once in a collection. Specifically, Objective-C and Java set
classes have these common features:

• Values in the collection are object references or integers.

• A value can be stored in a set only once. Adding a duplicate value does nothing. (NSCountedSet
is an exception to this rule.)

Common Methods
Tables 16-9 and 16-10 list the common set methods in Java and Objective-C that apply to collections of
objects. The messages in Table 16-9 do not alter the collection and are implemented for both mutable
and immutable collections. The messages in Table 16-10 can only be sent to mutable sets.

CHAPTER 16 ■ COLLECTION PATTERNS

300

Table 16-9. Common Set Collection Methods

java. lang.HashSet NSSet NSHashTable

size() count count

toArray() allObjects allObjects

anyObject anyObject

contains(Object) containsObject: containsObject:

containsAll(Collection) isSubsetOfSet: isSubsetOfHashTable:

intersectsSet: intersectsHashTable:

setRepresentation

Table 16-10. Common Mutable Set Collection Methods

java. lang.HashSet NSMutableSet NSHashTable

add(Object) addObject: addObject:

remove(Object) removeObject: removeObject:

clear() removeAllObjects removeAllObjects

addAll(Collection) addObjectsFromArray:

addAll(Collection) unionSet: unionHashTable:

removeAll(Collection) minusSet: minusHashTable:

intersectSet: intersectHashTable:

setSet:

The Objective-C classes include some high-level methods, like -intersectSet:, that make it
easy to perform set operations. They also include the amusing -anyObject message that returns an
arbitrary member of the set.

NSSet, NSMutableSet
The NSSet classes are virtually identical in behavior to java.util.HashSet. The statement set.isEmpty()
can be replaced by [set count]==0.

CHAPTER 16 ■ COLLECTION PATTERNS

301

Mutable set objects can be initialized with an initial capacity, which can help optimize its
performance. An accurate initial capacity is most helpful when creating large sets.

NSCountedSet
NSCountedSet is a subclass of NSMutableSet that allows a single object to be added to the set multiple
times. In essence, it treats every object added to the set as a distinct, although indistinguishable, entity.
Internally, the set maintains a single reference to the object and a count of the number of times it has
been added to the set. To remove an object, the set must receive one -removeObject: message for each
-addObject: message previously received. The method -countForObject: will return the number of
-addObject: messages, less the number of -removeObject: messages, received for that object.

NSIndexSet
NSIndexSet is a special collection class that maintains a set of integer values, much like java.util.BitSet.
Tables 16-11 and 16-12 list the common methods in Java and Objective-C.

Table 16-11. Common Index Set Collection Methods

java.ut i l .B i tSet NSIndexSet

cardinality() count

countOfIndexesInRange:

get(int) containsIndex:

containsIndexes:

containsIndexesInRange:

intersects(BitSet)

intersectsIndexesInRange:

firstIndex

length() lastIndex

indexLessThanIndex:

indexLessThanOrEqualToIndex:

nextBitSet(int) indexGreaterThanOrEqualToIndex:

indexGreaterThanIndex:

get(int,int) getIndexes:maxCount:inIndexRange:

CHAPTER 16 ■ COLLECTION PATTERNS

302

Table 16-12. Common Mutable Index Set Collection Methods

java.ut i l .B i tSet NSMutableIndexSet

set(int) addIndex:

or(BitSet) addIndexes:

set(int,int,true) addIndexesInRange:

clear(int) removeIndex:

andNot(BitSet) removeIndexes:

clear() removeAllIndexes

clear(int,int) removeIndexesInRange:

shiftIndexesStartingAtIndex:by:

The common functionality of NSIndexSet and java.util.BitSet is smaller than most of the other
collection classes. The Java class has a number of methods for flipping bits and performing Boolean
operations that the Objective-C class lacks.

The primary use of NSIndexSet is to efficiently encapsulate an arbitrary subset of an ordered
collection. The NSArray classes and user interface display classes use them extensively. For example, a
table view returns the user’s current selection as an NSIndexSet that identifies the selected rows. The
interface has a number of methods, such as -indexLessThanIndex:, that make it easy to iterate through
the collection in any direction.

NSHashTable
NSHashTable is the sister class to NSMapTable. Like NSMapTable, it is constructed using a set of
delegate functions that define its behavior. Also like NSMapTable, it only accepts a limited number of
function pointer options, listed in Table 16-13. See the sections NSMapTable and NSPointerArray for an
explanation of these function pointer options.

Table 16-13. NSMapTable Options

NSHashTable Synonym NSPointerArray

NSHashTableStrongMemory NSPointerFunctionsStrongMemory

NSHashTableZeroingWeakMemory NSPointerFunctionsZeroingWeakMemory

NSHashTableCopyIn NSPointerFunctionsCopyIn

NSHashTableObjectPointerPersonality NSPointerFunctionsObjectPointerPersonality

CHAPTER 16 ■ COLLECTION PATTERNS

303

The only significant difference between NSHashTable and NSMapTable is that NSHashTable is
a set and only needs a single set of function pointers to define its behavior.

■Note Don’t confuse NSHashTable (the class) with NSHashTable (the C type). The latter belongs to an older C API
that implements low-level hash tables. The Objective-C NSHashTable class subsumes much of its functionality.

Composite Pattern
One aspect of the Composite Pattern is the ability to interact with groups of objects through a single
object. The NSArray and NSSet classes each provide two methods that let you send a single messages to
all of the objects in a collection:

- (void)makeObjectsPerformSelector:(SEL)aSelector

- (void)makeObjectsPerformSelector:(SEL)aSelector withObject:(id)anObject

The code in Listing 16-4 demonstrates how to send a message to every object in a collection.

Listing 16-4. Composite Message

Java
ArrayList<Example> array = …
for (Example example : array) {
 example.setDelegate(this);
}

Objective-C
NSArray *array = …
[array makeObjectsPerformSelector:@selector(setDelegate:) withObject:self];

Collection Equality Contracts
Collection search and sorting features depend on objects responding to the -isEqual: message in a
consistent and reasonable manner. This is called the equality contract. The set and dictionary
collections locate objects through the use of a hash table. This depends on an object’s -hash message
returning a consistent value that has a predictable relationship to the -isEqual: response. This is called
the hash contract.

The equality and hash contracts are identical to those in Java. The equality contract is as
follows:

1. Two objects with equivalent values must return YES from -isEqual:, and NO otherwise.

2. Two object pointers that are equal are always considered equal, and identical. Thus,
[self isEqual:self] always returns YES.

3. A valid object pointer and a nil object pointer are always considered not equal. The statement [self
isEqual:nil] must always return NO.

CHAPTER 16 ■ COLLECTION PATTERNS

304

4. [a isEqual:b] must always return the same value as [b isEqual:a].

The equality contract rules must be considered in order. For example, rule 2 supersedes rules 3
and 4 in the special case where both object pointers are nil; nil is always equal to nil.

The hash contract is simple and also consistent with Java’s:

1. Two objects that are equal ([a isEqual:b]==YES) must return the same hash value ([a hash]==[b hash]).

2. Ideally, objects that are different ([a isEqual:b]==NO) should return hash values that are
significantly different and evenly distributed across a large integer range.

The -isEqual: and -hash methods are defined in NSObject, so every object inherits them. The
default implementation of -hash is not, however, suitable for use in sets and dictionaries. If you create a
subclass of NSObject that you plan to use in a collection, you should override -isEqual: and implement the
equality contract. If the object will be stored in a set or used as a key in a dictionary, you must also override
-hash to implement the hash contract. Listing 16-5 shows correctly implemented equality and hash methods.

Listing 16-5. Equality and Hash Methods

@interface AircraftIdentifier : NSObject {
 NSString *registrationNumber;
 unsigned int transponderCode;
}

@property (readonly) NSString *registrationNumber;
@property unsigned int transponderCode;

- (id)initWithRegistrationNumber:(NSString*)registration;

@end

@implementation AircraftIdentifier

@synthesize registrationNumber, transponderCode;

- (id)initWithRegistrationNumber:(NSString*)registration
{
 self = [super init];
 if (self != nil) {
 registrationNumber = registration;
 transponderCode = 1200; // default for VFR
 }
 return self;
}
- (BOOL)isEqual:(id)object
{
 if (self==object) // identity rule

CHAPTER 16 ■ COLLECTION PATTERNS

305

 return YES;
 if (object==nil) // nil rule
 return NO;
 if (![object isKindOfClass:[AircraftIdentifier class]])
 return NO; // unrecognized class

 // Aircraft identifiers are the same if their registration numbers are equal
 AircraftIdentifier *r = (AircraftIdentifier*)object;
 return [registrationNumber isEqualToString:r->registrationNumber];
}

- (NSUInteger)hash
{
 // Return a hash of the properties used to determine equality
 return [registrationNumber hash];
}

@end

In the AircraftIdentifier class, the value assigned to the transponderCode is not considered to be

significant when comparing two identifier objects for equality. That’s because this value can change, but
doesn’t materially change the identity of the aircraft. How you determine equality for your classes will
vary; just remember that the -hash method must always return a value consistent with -isEqual:.

Comparing Collections
Collections themselves can be compared to like collections. The methods in Table 16-14 list the
collection comparison methods.

Table 16-14. Collection Comparison Methods

Classes Method

NSArray, NSMutableArray -isEqualToArray:

NSDictionary, NSMutableDictionary isEqualToDictionary:

NSSet, NSMutableSet, NSCountedSet isEqualToSet:

NSIndexSet, NSMutableIndexSet isEqualToIndexSet:

NSHashTable isEqualToHashTable:

Two object collections are considered equal if they contain the same number of objects and

every object in the collection return YES when sent an -isEqual: message with the corresponding object
in the other collection.

CHAPTER 16 ■ COLLECTION PATTERNS

306

Some set collections have inequality comparisons that determine if a set is a subset or superset
of another set. These are -[NSSet isSubsetOfSet:], -[NSHashTable isSubsetOfHashTable:], and
-[NSIndexSet containsIndexes:].

Iterator Pattern
Probably the most common programming task of all time is to iterate through the elements of a
collection, performing some test or action on each member. Both Java and Objective-C have recognized
this and have made significant language changes designed to simplify this tedious and repetitive (no
pun intended) programming pattern. You can iterate through the collection using the new syntax, with a
legacy enumeration class, or by addressing each member object directly. This section will explain how
each is done, and what it takes to add enumeration support to your classes.

The major differences between Objective-C enumeration and Java iterators are

• Objective-C collections are not typed.

• An Objective-C collection must not be modified during enumeration.

Java added parameterized types to collections, removing much of the tedium required to use
the collection classes. A parameterized collection ensures that all objects added to the collection are of
the correct type, and automatically casts objects extracted from the collection to a base type. Objective-C
does not need any such constructs because it doesn’t verify the class of an object during assignment. All
collection classes accept and return the anonymous id object identifier, which the compiler assumes to
be freely interchangeable with any class. If you want to ensure that an object added to, or obtained from,
a collection is the correct class, add an assertion. See Chapter 14 for more about assertions.

The section “Collection Concurrency” describes how to deal with the limitation of not being
able to modify a collection during enumeration. This also means that the Objective-C enumeration
classes have no methods to modify the collection.

Using Fast Enumeration
Fast enumeration was added in Objective-C 2.0. It is a shorthand for(…) loop syntax for enumerating
through the objects in a collection. Java has something very similar, called For-Each Loop syntax.
Examples of both are shown in Listing 16-6. The use, syntax, and behavior of the two are practically
identical.

Listing 16-6. Fast Enumeration Syntax

Java
for (Object object : collection) {
 …
}

Objective-C
for (id object in collection) {
 …
}

The “fast” in fast enumeration is more than a euphemistic reference to the time saved typing

code. Fast enumeration is actually fast. The fast enumeration interface allows collections to fetch objects

CHAPTER 16 ■ COLLECTION PATTERNS

307

in batches, reducing overhead and improving performance. In all but a few cases, fast enumeration is
the fastest way to iterate through the objects in a collection.

This makes fast enumeration far and away the preferred method of iterating arrays, since it is
the easiest to write, most readable, and most efficient solution.

Using Enumerators
Before fast enumeration, Objective-C collections were enumerated via the NSEnumerator class.
NSEnumerator is very similar in function to java.util.Iterator. Instead of Iterator’s two methods, next()
and hasNext(), NSEnumerator has a single -nextObject method. The -nextObject message returns a
non-nil pointer until the enumeration is exhausted. This is possible because the collection classes that
support NSEnumerator do not allow nil values. The collections that do allow nil values, like
NSPointerArray, do not support NSEnumerator. The code in Listing 16-7 demonstrates using
enumerator objects.

Listing 16-7. Enumerating Through a Collection with NSEnumerator

Java
ArrayList<Object> array = …
for (Iterator<Object> i = array.iterator(); i.hasNext();) {
 Object object = i.next();
 …
}

Objective-C
NSArray *array = …
NSEnumerator *e = [array objectEnumerator];
id object;
while ((object=[e nextObject])!=nil) {
 …
}

You obtain an NSEnumerator object just as you obtain an Iterator in Java—by asking the

collection to provide you with one. Collections may provide several different kinds of enumerators.
NSDictionary will produce a -keyEnumerator and an -objectEnumerator object that will iterate its key or
value objects, respectively. The NSArray class provides -objectEnumerator and
-reverseObjectEnumerator objects.

There are a few special-purpose subclasses of NSEnumerator, such as NSDirectoryEnumerator.
In addition to enumerating through the contents of a directory, it implements additional methods for
controlling recursion and obtaining the attributes of the current file. See Chapter 11 for an example of
NSDirectoryEnumerator.

The only other method defined by NSEnumerator is -allObjects. This message is somewhat of
a misnomer, because it returns an array of the objects the enumerator has yet to return. It really should
have been named -remainingObjects.

Enumerator objects cannot be reset or restarted. Once they have finished their enumeration
they become inert. Enumerator objects retain a reference to the collection that they are enumerating
until the enumeration is finished.

CHAPTER 16 ■ COLLECTION PATTERNS

308

Addressing Collection Objects
Collections of addressable objects (arrays and dictionaries) can also be iterated by addressing each
member object individually. This gives you the ultimate control, although it might not be as efficient as
using one of the earlier enumeration methods.

Array collections are the easiest to process in this way, and are not much less efficient than
using an enumerator. Listing 16-8 shows a typical example.

Listing 16-8. Array Index Loop

Java
ArrayList<Object> array = …
for (int i=0; i<array.size(); i++) {
 Object object = array.get(i);
 …
}

Objective-C
NSArray *array = …
NSUInteger i;
for (i=0; i<[array count]; i++) {
 id object = [array objectAtIndex:i];
 …
}

Dictionary values are addressed by their keys. Iterating through a dictionary via its keys requires

a combination of enumeration and collection addressing, as shown in Listing 16-9.

Listing 16-9. Enumerating a Dictionary by Key

Java
HashMap<Object,Object> dictionary = …
for (Iterator<Object> i = dictionary.keySet().iterator(); i.hasNext();) {
 Object key = i.next();
 Object object = dictionary.get(key);
 …
}

Objective-C
NSDictionary *dictionary = …
NSEnumerator *e = [dictionary keyEnumerator];
id key;
while ((key=[e nextObject])!=nil) {
 id object = [dictionary objectForKey:key];
 …
}

CHAPTER 16 ■ COLLECTION PATTERNS

309

The code in listing 16-9 becomes particularly interesting if you replace the NSEnumerator

assignment statement with the code in Listing 16-10. The -keysSortedByValueUsingSelector: message
returns a sorted array of keys, allowing you to iterate the values of the dictionary in a predictable order.
See the “Sorting Collections” section about how to control the sorting order.

Listing 16-10. Ordered Dictionary Enumeration

NSEnumerator *e = [[dictionary keysSortedByValueUsingSelector:@selector(compare:)]
 objectEnumerator];

■Tip A little known fact is that NSEnumerator also conforms to NSFastEnumeration. This allows any

NSEnumerator object to be the collection in a fast enumeration statement. In Listing 16-9, the while(…) statement
could be replaced with for (key in e). The enumerator object assumes the role of the collection. This is not

optimized—the enumerator simply sends -nextObject messages to itself—so don’t expect performance typical

of fast enumerations.

There is no Objective-C equivalent to the java.util.Map.Entry object. The closest you can
achieve is to use -[NSDictionary getObjects:andKeys:] to populate two C arrays, one with the keys and
the other with the values, as shown in Listing 16-11.

Listing 16-11. Enumerating Dictionary Key/Value Pairs

NSDictionary *dictionary = …
NSUInteger count = dictionary.count;
__strong id *keys = NSAllocateCollectable(sizeof(id)*count,NSScannedOption);
__strong id *values = NSAllocateCollectable(sizeof(id)*count,NSScannedOption);
[dictionary getObjects:values andKeys:keys];
NSUInteger i;
for (i=0; i<count; i++) {
 id key = keys[i];
 id object = values[i];
 // ...
}

Adding Enumeration Support
You can easily subclass NSEnumerator to implement your own enumerators. It really only has to
implement a -nextObject method. Implement the rarely used -allObjects method only if you find it
useful, or your enumerator object is meant for a wide audience. See the TicTacToe project in Chapter 20
for an example of custom NSEnumerators. And, as mentioned in the earlier Tip, any NSEnumerator can
be used in a fast enumeration statement.

CHAPTER 16 ■ COLLECTION PATTERNS

310

Providing fast enumerator support for a custom object is a little more involved. In concept, it’s easy;
simply conform to the NSFastEnumeration protocol and implement the -countByEnumeratingWithState:
objects:count: method.

The fast enumeration code sends this message to your object repeatedly until it returns 0. Each
time your collection receives the message, it must assemble the next batch of objects to be processed in
a C array and return the number prepared. Fast enumeration is most efficient when your class assembles
batches of objects, but a simple non-optimized implementation can be achieved by returning one object
at a time.

The progress of an individual iteration is maintained in an NSFastEnumerationState structure.
This structure is empty when first passed to your method, and the same structure is passed again with
each subsequent message. Your collection must update the structure to keep track of the enumeration’s
progress and protect against the collection changing during the enumeration. Fast enumerations are
expected to throw an exception if the collection is modified during the course of the enumeration.

See the documentation for the NSFastEnumeration protocol for a complete description of the
-countByEnumeratingWithState:objects:count: method and NSFastEnumerationState structures.

Sorting Collections
Ordered collections provide three basic techniques for sorting member objects into order: sort using an
Objective-C message, sort using a C callback function to compare objects, and sort using sort
descriptors. The methods that sort collections are listed in Table 16-15.

Table 16-15. Sort Methods

Method Descr ipt i on

-[NSArray sortedArrayUsingDescriptors:] Returns a copy of the array sorted using the sort
descriptors.

-[NSArray sortedArrayUsingSelector:] Returns a copy of the array, sorted using an
Objective-C message.

-[NSArray sortedArrayUsingFunction:context:] Returns a copy of the array, sorted using a C
function to compare objects.

-[NSArray
sortedArrayUsingFunction:context:hint:]

Same as -sortedArrayUsingFunction:context:
except that it accepts an optimization hint
obtained with -sortedArrayHint.

-[NSMutableArray sortUsingDescriptors:] Sorts the array in situ using the sort descriptors.

-[NSMutableArray sortUsingFunction:context:] Sorts the array in situ using a C function to
compare objects.

-[NSMutableArray sortUsingSelector:] Sorts the array in situ using an Objective-C
message.

-[NSDictionary
keysSortedByValueUsingSelector:]

Returns a copy of the keys in a dictionary as an
array, sorted using an Objective-C message.

CHAPTER 16 ■ COLLECTION PATTERNS

311

Objective-C Message Sorting
The methods -sortedArrrayUsingSelector:, -sortUsingSelector:, and -keysSortedByValueUsingSelector:
sort an array of objects using an Objective-C message to compare objects. You can use any message you want,
as long as it’s compatible with the following prototype and all of the objects in the collection respond to it:

-(NSComparisionResult)comparisonMethod:(id)object

The left hand object receives the message along with a pointer to the right hand object. It compares

itself to the other object and returns an NSComparisionResult value. The return value must be one of
NSOrderedAscending, NSOrderedSame, or NSOrderedDescending. The receiver returns NSOrderedAscending
if it considers itself to be before the other object, NSOrderedSame if equal, and NSOrderedDescending
otherwise. The canonical example of a suitable sort message is the -compare: method implemented by
NSString, NSNumber, and NSDate. A mutable array of NSString objects can be sorted using [array
sortArrayUsingSelector:@selector(compare:)], [array sortArrayUsingSelector:@selector
(caseInsensitiveCompare:)], [array sortArrayUsingSelector:@selector (localizedCompare:)], and so on.

C Function Sorting
A sorting technique that doesn’t require the object to implement its own comparison method is to
supply a C function that accepts two Objective-C object pointers, compares them, and returns the
results. The function must have a prototype compatible with

NSInteger comparisonFunction(id leftObject, id rightObject, void *context)

The function performs the same comparison that the comparison message does; it compares

the left hand object to the right hand object and returns NSOrderedAscending, NSOrderedSame, or
NSOrderedDescending. The optional context pointer passed to the sort method is passed along to the
comparison function, allowing your function to tailor its behavior or implement different sorting
schemes using a single function. Listing 16-12 sorts an array of strings by order of length.

Listing 16-12. String Sort Function

static NSInteger sortStringsByLength(id left, id right, void *ignored)
{
 // Order objects first by length, then by content
 NSUInteger lLength = [left length];
 NSUInteger rLength = [right length];
 if (lLength<rLength)
 return NSOrderedAscending;
 else if (lLength>rLength)
 return NSOrderedDescending;
 return [left compare:right];
}

…

NSMutableArray *array = …
[array sortUsingFunction:sortStringsByLength context:NULL];

CHAPTER 16 ■ COLLECTION PATTERNS

312

Sort Descriptors
Finally, the collection classes provide a more object-oriented sorting alternative to the C function
method that uses sort descriptors. Sort descriptors are instances of NSSortDescriptor, and are essentially
a property comparison encapsulated in an object. An NSSortDescriptor identifies a property of an
object, whether it should be sorted in ascending or descending order, and an optional Objective-C
message that will be used to compare the two properties. If you don’t specify a comparison method, the
sort descriptor will use -compare: to compare objects. Unlike the -sortUsingSelector: message
discussed earlier, a sort descriptor compares a common property of the two objects obtained using Key-
Value coding—not the objects themselves (unless the property is @"self"). The code in Listing 16-13 is
equivalent to the sort implemented in Listing 16-12, although not as fast.

Listing 16-13. Sorting Strings Using NSSortDescriptor

NSSortDescriptor *lengthSort = [[NSSortDescriptor alloc] initWithKey:@"length"
 ascending:YES];
NSSortDescriptor *selfSort = [[NSSortDescriptor alloc] initWithKey:@"self"
 ascending:YES];
NSArray *sortDescriptors = [NSArray arrayWithObjects:lengthSort,selfSort,nil];

NSMutableArray *array = …
[array sortUsingDescriptors:sortDescriptors];

The collection’s -sortUsingDescriptors: method takes an array of NSSortDescriptor objects to

form a comparison hierarchy. The objects in the collection are compared using the first descriptor in the
array. If the first descriptor determines that the objects are equal, the second descriptor is used, and so
on.

NSSortDescriptors are very useful in user interfaces. Various views that display collections of
objects in columns and rows typically have an interface in which the user can click on a column and
have the items in the display sorted using that property. What happens behind the scene is that each
column is associated with an object property and will produce an NSSortDescriptor object for that
property. Collecting all of the active sort descriptors into an array produces a sorting definition suitable
for use with -sortUsingDescriptors:.

Filtering Collections
The NSArray and NSSet collections support a sophisticated filtering mechanism using predicates. A
predicate is a tree of expression objects that describe an abstract evaluation, like timeRemaining==0 AND
projectStatus!='finished'. Predicates can be obtained from the user through a graphical interface,
created by interpreting a predicate statement string like the example just given, or (rarely) constructed
programmatically.

The immutable collections implement methods that return a new collection with only those
objects that cause the predicate to evaluate to YES. The mutable collections have additional methods
that will remove all objects that cause the predicate to evaluate to NO.

See the Predicate Programming Guide1 for a complete description of predicate objects and
predicate expression syntax.

1 Apple, Inc., Predicate Programming Guide, http://developer.apple.com/documentation/
Cocoa/Conceptual/Predicates/, 2008.

CHAPTER 16 ■ COLLECTION PATTERNS

313

Collection Concurrency
Collections should not be modified during an enumeration or modified concurrently from another
thread. This section describes a couple of techniques for avoiding changes in a collection until after an
enumeration is complete. After that, the thread-safety issues are addressed.

Enumerate a Copy of the Collection
The first technique to avoid modifying a collection while it is being iterated is to simply copy the
collection and iterate through the copy, leaving the original free to be altered. The code in Listing 16-14
demonstrates this technique.

Listing 16-14. Enumerating a Collection Copy

NSMutableDictionary *zombies = …
for (NSString *key in [zombies allKeys]) {
 Zombie *zombie = [zombies objectForKey:key];
 if ([zombie hasExpired])
 [zombies removeObjectForKey:key];
}

The expression [zombies allKeys] returns a new, immutable array containing a copy of all the

keys in the dictionary. The fast enumeration then occurs over the keys in the array, not the keys in the
dictionary, so you are free to modify the contents of the dictionary during the enumeration.

The technique works equally well for arrays and sets.

Defer Changes to the Collection
The other technique is to defer the changes by collecting them and performing the changes after the
enumeration is complete. Listing 16-15 demonstrates this technique using an array and an NSIndexSet.

Listing 16-15. Deferring Collection Changes

NSMutableArray *zombies = …
NSMutableIndexSet *deadZombies = [NSMutableIndexSet indexSet];
NSUInteger i;
for (i=0; i<[zombies count]; i++) {
 Zombie *zombie = [zombies objectAtIndex:i];
 if ([zombie hasExpired])
 [deadZombies addIndex:i];
}
[zombies removeObjectsAtIndexes:deadZombies];

The NSMutableIndexSet collects the indexes of the objects we intend to delete from the

collection. At the end of the enumeration, all of the identified objects are deleted en masse using a single
-removeObjectsAtIndexes: message.

CHAPTER 16 ■ COLLECTION PATTERNS

314

Thread Safety
Like Java, none of the mutable collection classes are thread safe. Unlike Java, Objective-C doesn’t
provide any thread-safe mutable collections. However, the immutable collections are all inherently
thread safe.

All of the immutable collections (NSArray, NSDictionary, NSSet) are thread safe, since it’s
impossible to change their content. Collections are also thread safe if you simply avoid making any
changes to them. You could safely share an NSMutableArray with another thread as an NSArray object,
as long as you could guarantee that the underlying mutable array would never be modified in the future.
If you can’t guarantee that, then make an immutable copy of the collection and return that instead.

■Caution A thread-safe collection does not automatically protect the objects within that collection. Any object
used from more than one thread must be thread safe.

If you need to share a mutable collection between threads, protect the changes to the collection
with @synchronized accessor functions or semaphores. The AutoSafeFIFO and FastFIFO classes shown in
Chapter 15 are good examples.

Garbage Collection and Weak Collections
Tangentially related to thread safety are the potential problems with collections that maintain weak
references to objects. Garbage collection runs concurrently and can collect weakly referenced objects at
any time. Collections that maintain weak references can spontaneously lose objects or return nil values.
This can affect their count and enumerations. Specifically, be mindful of these potential problems:

• The collection -count can change at any time.

• Any previously stored value in an array may return nil. Any member of a dictionary or set may
spontaneously disappear.

• A fast enumeration may iterate over nil values anywhere during the enumeration.

• NSEnumerator objects should not be used when the collection uses weak references. The
-nextObject message could return nil for any value, which would be interpreted as the end of
the enumeration. Use fast enumeration or programmatic iteration.

If these effects are problematic, you can eliminate them by making a temporary copy of the
collection using a collection object that uses strong references. Enumerate the values of the copy, and
then forget the temporary collection.

Summary
Collections in Objective-C fulfill very similar roles to those in Java. You need to be cognizant of some of
the subtle differences, like not modifying a collection during enumeration. But with those in mind, the
familiar programming patterns and uses for arrays, dictionaries (maps), and sets remain largely the
same.

C H A P T E R 1 7

■ ■ ■

315

Delegat ion Pattern

The delegation pattern is an alternative to inheritance that allows an object’s behavior to be customized
or overridden without subclassing. The delegation pattern is enthusiastically embraced in Objective-C.
Understanding the role of delegate objects in the Cocoa framework is crucial to effective use of the
frameworks, especially the application and user interface classes. This chapter will explain the
delegation pattern, the role and use of delegate objects, how to define your own delegates, and how to
incorporate the delegation pattern in your own designs.

Understanding Delegates
The delegation pattern externalizes, or delegates, selected decisions or actions to another object, termed
the delegate object. It embodies a design principle known as inversion of responsibility. The delegate
can customize or influence the normal behavior of the object with code that is not contained within the
object’s class hierarchy. Delegates can be queried to make decisions, filter data, define conditional
behavior, or inject additional processing at key times. Delegate objects are invariably optional. The class
implements a default strategy in the absence of a delegate object or method.

The traditional way to customize a class is to subclass it and override specific methods. To
redefine how your object gets copied, you override -copyWithZone:. To redefine how it compares itself with
other objects, you override -isEqual:, and so forth. However, the inheritance pattern is not as effective
when trying to customize the behavior of a tree of existing classes. Take the example in Figure 17-1.

Figure 17-1. Window class model

CHAPTER 17 ■ DELEGATION PATTERN

316

Figure 17-1 shows a set of window classes. At the base is the abstract Window class that defines
common properties like position, dimensions, and order, along with common behavior such as
dragging, resizing, minimizing, and reordering. The TitledWindow class defines additional attributes,
like the window’s title, and behavior such as inserting the window’s title into the application’s Window
menu. There are non-titled subclasses of the Window class along with specialized subclasses of the titled
window class. In short, it’s a succinct and logical class hierarchy.

Now the application developer—that’s you—would like to enhance the user experience by
implementing windows that “snap” to optimal positions as the user drags them around. Using
inheritance, your only customization strategy is to subclass DocumentWindow and override its
-dragWindow method. But that only redefines the behavior for the DocumentWindow. To implement the
same customization for the palette, help, and info windows, additional subclasses must be defined, each
duplicating the same customization. The modified class tree is shown in Figure 17-2.

Figure 17-2. Customization using inheritance

Not only is this a lot of work and duplicate code, but the poor programmer—that’s you—now
discovers that the application doesn’t work on systems with more than one monitor. Apparently,
Window’s -dragWindow method handles some special cases when dragging between monitors that only
the original designer is privy to. Not knowing what that solution is, it’s impossible to effectively duplicate
the behavior of -dragWindow in the subclasses. The feature is a disaster and must be abandoned, or you
risk additional development and the potential for future incompatibility.

Had the original developers of the Window class foreseen this situation, they could have easily
avoided the problem by adopting the delegation pattern. The solution is to define a delegate object in
the Window base class, as shown in Figure 17-3.

CHAPTER 17 ■ DELEGATION PATTERN

317

Figure 17-3. Customization using delegation

In its -dragWindow method, the Window class repeatedly sends the delegate object a
-willDragWindow:to: message as the user drags the window. The message includes the window and the
user’s latest drag position. The delegate is expected to return the same or a modified position that the
Window class will actually use when positioning the window.

It’s a trivial but powerful interface. The delegate object is free to implement whatever drag
position scheme it desires. It can “snap” the window’s position to nearby edges, prevent the window
from being dragged to certain regions, or use the information to move other windows out of the way.
More importantly:

• All of the subclasses (InfoWindow, HelpWindow, PaletteWindow, and DocumentWindow) can
be customized using a single delegate.

• Different delegate objects can be created to define different customizations.

• Customization can be applied per window instance, rather than per class.

• The new feature will be compatible with future versions of the Window class and all of its
subclasses.

• Existing classes and interfaces that create DocumentWindow objects do not have to be
modified.

• Any Window object that does not have a delegate object will use the standard window drag
behavior.

CHAPTER 17 ■ DELEGATION PATTERN

318

Using Delegates
Using a delegate object is very simple, which is one of the features that makes them so useful.

 1. Implement the appropriate delegate methods in your class.

 2. Set the delegate property of the object you want to customize to your delegate object, typically by
sending -setDelegate:.

That’s it. Once set, the object will send your delegate object the delegate messages that class has
defined.

The methods a delegate is expected to implement are usually defined informally. Their use,
however, is so common that Objective-C class documentation will explicitly identify them as a “delegate
method” or group them together in a “Delegate Methods” section. Remember that these document the
methods the delegate property object should, or could, respond to, not the methods implemented by the
class. When looking to customize the behavior of any object, first look for delegate methods in its
documentation.

■Note Some methods listed in the delegate methods section of the documentation are actually notifications sent
to observers, not messages sent to the delegate object. The documentation should make this distinction clear, but
the biggest clue is that notification methods always receive an NSNotification object as their only parameter. See
Chapter 18 for more about notifications.

The delegation pattern is widely used in the Cocoa framework. So much so that it catches Java
and C++ developers off guard at first. For example, most customization of the single NSApplication
object is not accomplished by subclassing NSApplication, but by attaching a delegate object to
NSApplication during initialization. Here’s a sample of the tasks that NSApplication defers to its delegate
object:

• Open one or more document files.

• Open a temporary document file.

• Automatically reopen documents.

• Open an untitled document window.

• Print a document.

• Present an error message to the user.

• Determine if the application should quit when the last window is closed.

• Determine if the application is ready to quit.

In other object-oriented programming languages, customizations like these would typically be
accomplished by subclassing the Application class and overriding its methods. Because of the power of
delegates to augment the behavior of the NSApplication object, subclassing NSApplication is actually
quite rare.

CHAPTER 17 ■ DELEGATION PATTERN

319

Listing 17-1 shows a simple delegate object that performs validation for an NSControl view
object. The NSControl object sends its delegate a -control:isValidObject: message whenever it needs
to validate its input value.

Listing 17-1. Input Value Validation Delegate

@interface PositiveIntValidationDelegate : NSObject

- (BOOL)control:(NSControl*)control isValidObject:(id)object;

@end

@implementation PositiveIntValidationDelegate

- (BOOL)control:(NSControl*)control isValidObject:(id)object
{
 return ([object intValue]>0);
}

@end

…

NSTextField *inputTextField = …
[inputTextField setDelegate:[PositiveIntValidationDelegate new]];

Once the delegate object is set for the input view, the NSTexField (a subclass of NSControl) will

only accept text values that are interpreted as a positive integer value.
Usually, classes are designed so that delegates are optional. The object will adopt some default

behavior if there is no delegate, or if the delegate doesn’t implement an optional delegate method. In a
few cases, the delegate is critical to the object’s operation. For example, an NSURLConnection object
sends all of the connection’s events to its delegate. Without a delegate object to receive those messages,
the object won’t accomplish much.

Delegate Methods
Some delegate methods are expected while others are optional. The delegate must implement any
expected delegate methods. The object using the delegate will send expected delegate messages to the
delegate object unconditionally. If the delegate fails to implement them, an unrecognized selector
exception will be thrown at runtime.

Optional delegate methods are more common, and make the delegation pattern exceptionally
flexible. The object sending the delegate message will first test to see if the delegate object responds to it.
If it does, the delegate is sent the message. If not, the object falls back to using its baseline behavior.

The delegate object is free to implement just those optional delegate methods that it requires.
Optional delegate methods are particularly flexible because the delegate object only needs to implement
those methods it wants, or needs, to affect. If a class defines 4 delegate methods, the delegate object has
15 different combinations of customizations available to it. Optional delegate methods also avoid the
common Java practice of creating so-called “Simple” classes that implement default behavior for a set of

CHAPTER 17 ■ DELEGATION PATTERN

320

interface methods, expecting you to subclass the “Simple” class and override only those methods you
want to alter. This both simplifies the class hierarchy and localizes the default delegate behavior in the
object’s class rather than in the “Simple” class.

Delegate objects are often “real” objects, not classes specifically designed to be delegates. For
example, a document object may also implement the delegate methods for NSToolbar. The toolbar
delegate defines which toolbar controls are shown and appropriate, derived from information specific to
the document object. The document object can transparently influence the toolbar user interface
without any complicated inter-object dependencies.

A delegate object could also implement multiple sets of delegate methods and set itself as the
delegate for a wide variety of objects. This is common in the case of the application delegate object. An
application delegate will make itself the delegate object of the single NSApplication object, but may also
assign itself as the delegate to other objects like windows, the file manager, and so on. The single
application delegate object can then influence a wide range of behaviors using information localized in a
single object. If the application delegate class becomes unwieldy, its individual roles can be subdivided
into categories for improved modularity. See Chapter 5 for more about categories.

Delegate Protocols
The methods implemented by a delegate are typically defined as informal protocols in the Cocoa
framework. (See Chapter 5 if you need a refresher on informal and formal protocols.) Delegate object
properties are of type id, allowing them to be set to any object. The methods the delegate object is
expected to implement are defined in the documentation.

You’re free to do the same in your design, or you can adopt a more formal approach, as shown
in Listing 17-2. You can’t do this in Java, because Java has no concept of optional interface methods. If
you’re curious, the code to implement an informal protocol in Java—by testing for the presence of a
method—was demonstrated in Chapter 10.

Listing 17-2. Automatic Defense Gun with Formal Delegate

@interface Gun : NSObject
…
@end

@protocol Targeting

@required
- (BOOL)gun:(Gun*)gun shouldShootAt:(id)target;

@optional
- (NSArray*)gun:(Gun*)gun prioritizeTargets:(NSArray*)targets;
- (BOOL)gunShouldStopFiring:(Gun*)gun;

@end

@interface AutomaticPerimeterDefenseGun : Gun {
 id<Targeting> delegate;
}

CHAPTER 17 ■ DELEGATION PATTERN

321

@property (assign) id<Targeting> delegate;

- (void)engage;
- (void)disengage;

- (float)ammunitionRemaining;
- (void)reload;

@end

…

@interface AutomaticPerimeterDefenseGun () // private methods
- (void)defendPerimeter;
- (NSArray*)acquireTargets;
- (NSArray*)targetsFromSensor;
- (void)fireAtTarget:(id)target;
@end

@implementation AutomaticPerimeterDefenseGun

@synthesize delegate;

- (void)defendPerimeter
{
 // Check with the delegate to see if the gun should stop
 if ([(id)delegate respondsToSelector:@selector(gunShouldStopFiring:)]) {
 if ([delegate gunShouldStopFiring:self]) {
 [self disengage];
 return;
 }
 }

 // Gather the potential targets
 NSArray *targets = [self aquireTargets];
 // Fire at the ones the delegate identifies as enemies
 for (id target in targets) {
 if ([delegate gun:self shouldShootAt:target]) {
 [self fireAtTarget:target];
 }
 }
}

CHAPTER 17 ■ DELEGATION PATTERN

322

- (NSArray*)acquireTargets
{
 NSArray *targets = [self targetsFromSensor];

 // Pass the targets through the delegate for prioritization, filtering, ...
 if ([(id)delegate respondsToSelector:@selector(gun:prioritizeTargets:)])
 targets = [delegate gun:self prioritizeTargets:targets];

 return targets;
}

- (NSArray*)targetsFromSensor
{
 …
}

- (void)fireAtTarget:(id)target
{
 …
}

…

@end

The code implements an automatic perimeter defense gun for our mythical adventure game

that, once engaged, acquires and shoots at targets autonomously. It defers several targeting and gun
control decisions to a delegate object. The single most important is the identification of which targets it
should shoot at.

The delegate property is formally declared to be an object that adopts the Targeting protocol.
Using the Objective-C 2.0 @required and @optional directives, the delegate’s requirements are spelled
out to the compiler. The delegate must implement the -gun:shouldShootAt: message, and may
implement -gun:prioritizeTargets: or -gunShouldStopFiring:.

If you don’t generate documentation for your classes, this is an effective way of communicating
the delegate requirements to the compiler and other programmers.

■Tip The delegate is cast to (id) when sending it the -respondsToSelector: message. The reason is because
the type id<Targeting> defines an object pointer that is assumed to only respond to methods defined in the
Targeting protocol. This doesn’t include any methods defined in NSObject, so the compiler complains that the
delegate might not respond to -respondsToSelector:. An alternative would be to declare the delegate object’s
pointer as id<Targeting,NSObject>. The NSObject protocol (not class) is a convenience protocol that declares
the core set of methods defined by NSObject and its subclasses.

CHAPTER 17 ■ DELEGATION PATTERN

323

The single disadvantage to this approach emerges if you later subclass
AutomaticPerimeterDefenseGun and want to define additional delegate methods. The delegate property
is already defined as id<Targeting> and subclasses can’t change the type of an inherited property. The
subclasses have few options but to document the additional delegate methods they use and adopt them
as informal protocols.

Incorporating the Delegation Pattern
The delegation pattern simplifies a number of thorny inheritance and domain design problems. When
incorporating the delegation pattern in your application, consider these principles:

• Use the delegation pattern when the behavior of an object should be open to customization
and the nature or knowledge needed to implement that customization is outside the domain of
the class. In the AutomaticPerimeterDefenseGun example, the class encapsulates a weapon
that shoots at targets, but deciding on which targets are friendly is outside its domain.

• Delegates are particularly effective when implemented in the base class with multiple
subclasses. Each subclass can consistently employ the delegate without complicating the
number or organization of subclasses.

• An object should have a well-defined behavior in the absence of a delegate object
(delegate==nil). In the -defendPerimeter method, the delegate is unconditionally sent the
-gun:shouldShootAt: message. If the delegate is nil, the message returns nil, and the gun
shoots at nothing—a desirable trait in the absence of any targeting information. See the “absent
behavior” and “consistency with nothing” design patterns in Chapter 7.

• Similarly, an object should provide some natural baseline functionality when optional delegate
methods are absent. The -acquireTargets method in Listing 17-2 tests the delegate to see if it
responds to -gun:prioritizeTargets:. If it does, it passes the known target list to the delegate
that will prioritize, filter, or possibly supply its own targets. If the delegate doesn’t implement
the method, the gun uses the targets it obtained from its sensors. Note that this is also
consistent with the previous principle, as -responsesToSelector: will return NO if the delegate
is nil.

• An object should always provide context in the delegate message. The delegate methods in
Listing 17-2 all include the Gun object that’s sending the message to the receiver. This allows
the delegate to include the sender in its decision process, like telling the gun to stop firing if its
ammunition gets too low. Remember that a single delegate object might be set as the delegate
for two, or a hundred, different objects. Some delegates act as reusable traits, like the validation
routine in Listing 17-1, that can be shared by arbitrary groups of similar objects.

Summary
The delegation pattern is pervasive in Objective-C. It simplifies class structures and opens a broad range
of customizations to you. Objective-C programmers and the Cocoa framework embrace this pattern
enthusiastically, and you are encouraged to do the same. The delegation pattern is equally applicable to
Java development, but the formal nature of Java interfaces, and the lack of a simple “is method
implemented” test, make it more cumbersome to employ.

C H A P T E R 1 8

■ ■ ■

325

Provider /Subscr iber Pattern

The provider/subscriber pattern defines a one-to-many, unidirectional flow of information from a
provider object to any number of subscriber objects. The concept is that the provider has useful
information or events that need to be communicated to other objects, its subscribers, which will use that
information to perform additional actions or stay in synchronization with the provider. In Java parlance,
the provider fires notifications to its listeners. In Objective-C terminology, the provider posts
notifications to its observers.

The provider/subscriber pattern is used heavily in Java, but Java doesn’t provide any intrinsic
service for helping objects manage their subscribers or coordinate messages. Consequently, most Java
objects implement their own subscriber management. This isn’t terribly difficult, but it does impose an
important limitation: the provider and subscribers must have references to each other. Objective-C
strongly encourages the provider/subscriber pattern by providing systemwide services for managing a
provider’s subscribers and delivering notifications to them. By providing intermediate management,
providers and observers (subscribers) might know everything about each other, or nearly nothing at all.

The chapter begins by showing how a typical Java listener interface is duplicated using Cocoa’s
notification services. It will then describe other possible provider/subscriber relationships and how you
can use them in your design. Finally, distributed notifications—notifications that travel between
processes—are described along with thread safety and other considerations. You’ll also want to read
about the observer pattern in the next chapter, as the two patterns are very similar.

Notifications
In Objective-C, a notification sent to an observer is encapsulated in an NSNotification instance. The
provider determines the contents of the NSNotification object. The receiver determines the Objective-C
message that it will receive.

Listings 18-1 and 18-2 contrast the differences between a Java listener and an Objective-C
observer. Listing 18-1 defines a Thermometer class that monitors a temperature. Whenever the
temperature changes, it notifies its observers.

Listing 18-1. Thermometer, Temperature Provider

Java
public interface TemperatureListener
{
 public void temperatureChanged(Thermometer thermometer, float temperature);
}

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

326

public class Thermometer
{
 private float temperature;
 private HashSet<TemperatureListener> listeners =
 new HashSet<TemperatureListener>();

 public float getTemperature()
 {
 return temperature;
 }

 public void setTemperature(float newTemp)
 {
 if (temperature!=newTemp) {
 temperature = newTemp;
 fireTemperatureChange();
 }
 }

 public void addListener(TemperatureListener listener)
 {
 listeners.add(listener);
 }

 public void removeListener(TemperatureListener listener)
 {
 listeners.remove(listener);
 }

 public void fireTemperatureChange()
 {
 for (TemperatureListener listener : listeners) {
 listener.temperatureChanged(this,temperature);
 }
 }

}

Objective-C
#define TempDidChange @"TemperatureDidChange"

@interface Thermometer : NSObject {
 float temperature;
}

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

327

@property float temperature;

@end

@implementation Thermometer

- (float)temperature
{
 return temperature;
}

- (void)setTemperature:(float)newTemp
{
 if (temperature!=newTemp) {
 temperature = newTemp;
 NSNumber *tempValue = [NSNumber numberWithFloat:temperature];
 NSDictionary *info = [NSDictionary dictionaryWithObject:tempValue
 forKey:@"Temperature"];
 [[NSNotificationCenter defaultCenter] postNotificationName:TempDidChange
 object:self
 userInfo:info];
 }
}

@end

Listing 18-2 shows a temperature observer that receives temperature change notifications from

a Thermometer object. It is initialized with the Thermometer object it will observe, and logs any changes
to the temperature value.

Listing 18-2. TemperatureMonitor, Temperature Observer

Java
public class TemperatureMonitor implements TemperatureListener
{
 public TemperatureMonitor(Thermometer thermometer)
 {
 thermometer.addListener(this);
 }

 public void temperatureChanged(Thermometer thermometer, float temperature)
 {
 System.out.println("Temperature is now "+temperature);
 }
}

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

328

Objective-C
#import "Thermometer.h"

@interface TemperatureMonitor : NSObject

- (id)initWithThermometer:(Thermometer*)thermometer;
- (void)tempChanged:(NSNotification*)notification;

@end

@implementation TemperatureMonitor

- (id)initWithThermometer:(Thermometer*)thermometer
{
 self = [super init];
 if (self != nil) {
 [[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(tempChanged:)
 name:TempDidChange
 object:thermometer];
 }
 return self;
}

- (void)tempChanged:(NSNotification*)notification
{
 id tempValue = [[notification userInfo] objectForKey:@"Temperature"];
 NSLog(@"Temperature is now %@",tempValue);
}

@end

The Java and Objective-C solutions in Listings 18-1 and 18-2 are functionally equivalent.

Specifically:

• The Thermometer class defines the notifications it will send.

• The Thermometer class notifies its observers whenever the temperature changes.

• A TemperatureMonitor object receives only temperature change notifications from the one
Thermometer object it is observing.

• A notification includes the new temperature value and a reference to the Thermometer object
that posted the notification.

• Notifications are delivered as synchronous method invocations. That is, all of the notification
methods execute before setTemperature returns.

The significant differences are as follows:

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

329

• The Java Thermometer class must maintain its own set of listener objects. The observers of the
Objective-C Thermometer object are maintained by its NSNotificationCenter.

• The Java solution defines the method it will invoke via a TemperatureListener interface, and the
listener object must implement this interface. In Objective-C, notifications are always delivered
as NSNotification objects.

• The sender defines the Java method that receives the notification. In Objective-C, the observer
determines the notification message it will receive.

Objective-C objects can register to observe notifications using flexible criteria. In addition to
the simple case illustrated in the code, an observer can choose to receive multiple notifications from a
single object, or similar notifications from multiple objects. In fact, the observer doesn’t have to have a
reference to the provider or even know what class it is. In the case of distributed notifications, the
provider object might not even be in the same process.

An NSNotificationCenter object organizes and manages observers and dynamically pairs
notifications to observers. NSNotificationCenter relieves the providers of implementing their own
observer management; a provider only needs to concern itself with sending notifications. Since
NSNotificationCenters are the nexus of notifications, they will be discussed next, followed by how
notifications are posted and how observers register to receive them.

Notification Centers
An NSNotificationCenter manages a set of observers. Providers can post a notification to a notification
center, which will distribute it to all of the interested observers registered with that center.

Normally, your objects interact with the single default NSNotificationCenter created by the
Cocoa framework for the process. This per-process instance is obtained with the class message
[NSNotificationCenter defaultCenter]. This is the Grand Central Station of notifications, and the
notification center used by the bulk of the Cocoa framework. Consequently, if you intend to receive any
of those notifications, you must register your object with [NSNotificationCenter defaultCenter].

There are a few other specialized notification centers and you can create your own. Each
notification center is completely self-contained. A notification posted to a center will only be delivered
to the objects registered with that notification center. The NSWorkspace object defines its own
notification center that can be obtained with [[NSWorkspace sharedWorkspace] notificationCenter]. If
you want to receive an NSWorkspace notification, your object must register with that notification center.

■Note An NSNotificationCenter distributes all notifications synchronously. You can, however, attach an
NSNotificationQueue, as described in the “Notification Queuing” section later in this chapter, to a notification
center to deliver notifications asynchronously.

You may also want to define your own notification centers. Chapter 15 showed code for
creating a per-thread notification center. Since notifications are always delivered in the thread that
posted them, a per-thread notification center would allow you to organize your observers by thread.

Posting Synchronous Notifications
Posting a synchronous notification is simple, deftly demonstrated by the Thermometer class in
Listing 18-1. There are three pieces of information that make up a notification:

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

330

• The notification name

• The sender

• A dictionary of supplementary information

The notification name is a string object. It can be any value you choose, as long as it doesn’t
conflict with the notification names used by other objects. Generally, a descriptive title like
@"TemperatureDidChange" is sufficient to be unique. Notification name constants defined by frameworks
tend to use class naming conventions. For example, all of the Cocoa framework notification names begin
with “NS.”

The object property of a notification contains a reference to the sender. Thus, every notification
includes an implicit reference to the object that sent it. In the example in Listings 18-1 and 18-2, it wasn’t
strictly necessary to include the temperature value in the userInfo dictionary. The notification receiver
could have obtained the value with ((Thermometer*)[notification object]).temperature.

The optional userInfo dictionary is an immutable dictionary containing whatever
supplementary objects the provider wants to include. As mentioned, it wasn’t strictly necessary to
include the temperature value in the userInfo dictionary, but it’s often a good idea. Having the
temperature included in the dictionary relieves the observer of having to make too many assumptions
about the sender (such as, “is the new temperature value still valid when the notification is received?”).
The userInfo dictionary is a great place to include other useful or transient information, such as the
previous temperature value, the rate the temperature is changing, and so on. Then again, in many
notifications the only interesting bit of information is the sender.

The notification name and sender are required. The userInfo dictionary is optional, or can be
empty. There are three methods for posting notifications:

• - (void)postNotificationName:(NSString*)name object:(id)sender

• - (void)postNotificationName:(NSString*)name object:(id)sender
userInfo:(NSDictionary*)info

• - (void)postNotification:(NSNotification*)notification

The first two messages construct a new NSNotification object from the name, sender, and
optional dictionary. The last message accepts a pre-assembled NSNotification object and posts it. Note
that while the object parameter is required, there’s no rule that says it must be the object sending the
notification. You’re welcome to post notifications on behalf of other objects.

Notifications are delivered synchronously to all observers in the same thread before the
-postNotification… message returns. It’s possible to send notifications asynchronously using an
NSNotificationQueue, described in the “Notification Queuing” section later in the chapter.

Being a Discriminating Observer
The real power of notifications is in the flexible ways an observer can register to receive them. To register
to receive notifications, send the NSNotificationCenter an -addObserver:selector:name:object:
message. The four parameters define what notifications it will receive and how it will receive them:

• The observer and selector parameters define the object that will receive the notifications and
the Objective-C message that will be sent to it. The method must be compatible with
-(void)notificationMessage:(NSNotification*)notification. While the observer parameter is
typically self, you are free to register other objects.

• The name parameter is the name of the desired notification.

• The object parameter is the desired provider.

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

331

The selector parameter allows the observer to choose the message it will receive when the
notification is sent. Your observer can send multiple notifications to a single method, or route the same
notification from different sources to different methods.

One or both of the name and object parameters can be nil. When omitted, they act as wildcards,
accepting any notification that matches the other criteria. Table 18-1 lists the combinations of name and
object values that can be specified by the observer.

Table 18-1. Observer Notification Criteria

Name Object Not i f icat ions

@"name" object Receive notifications posted by object with the name @"name".

@"name" nil Receive all notifications with the name @"name" from any object.

nil object Receive all notifications posted by object.

nil nil Receive all notifications posted to this notification center.

The second form is the most common. The observer will receive all notifications with the given
name posted by any object. The observer doesn’t have to know what that object is, nor does it need a
reference to the object to register. It only needs to know the name of the notification.

Here are two practical examples, both using notifications to manage an auxiliary window.

• Your application implements a persistent “inspector” palette window that always displays
information about the front document window. The palette window object will register to
receive NSWindowDidBecomeMainNotification notifications from any object (nil). Whenever
a document window becomes active, it receives a notification and updates its display. The
window that became active is included in the notification.

• Your application implements an “inspector” palette window that’s attached to a specific window.
The palette window object will register to receive NSWindowDidBecomeMainNotification and
NSWindowDidResignMainNotification notifications from the specific document window object.
The palette will be notified whenever that specific window becomes, or ceases to be, active. The
palette window uses these events to automatically show or hide itself.

An observer can register to receive notifications as many times as it wants for multiple
notification names, different providers, or some combination of the two. If the observer registers for the
same notification in different ways, it may receive a single notification multiple times. The order is
unpredictable.

Removing an Observer
Observers can cancel a previous registration by sending a -removeObserver: or -removeObserver:
name:object: message to the notification center. The observer parameter is required, but the name and
object parameters are both optional and either may be nil. The notification center revokes the
subscription for all notifications that match the criteria, as listed in Table 18-2.

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

332

Table 18-2. Remove Observer Criteria

Name Object Regi st rat i on Ef f ect

nil nil Cancels all registrations for the observer. Same as -removeObserver:

@"name" nil Cancels all registrations for notifications with the name @"name"

nil object Cancels all registrations for notifications posted by object

@"name" object Cancels the registration for notifications with the name @"name" sent by object

In the second palette window example above, the observer has registered to receive two specific
notifications, both from a specific provider. The message [notificationCenter -removeObserver:self
name:nil object:paletteWindow] will remove both registrations, since both specify the same provider.
However, the message [notificationCenter -removeObserver:self name:NSWindowDidBecome
MainNotification object:nil] will remove only one registration.

In a garbage-collected memory environment, notification centers hold weak references to
observers. Once your observer is forgotten and collected, it is effectively removed from its notification
center. So you aren’t required to send [[NSNotificationCenter defaultCenter] removeObserver:self]
before your object can be collected. However, if there’s an obvious point at which your object should
stop receiving notifications, removing it from the notification center is appropriate and desirable.

Notification Queuing
An NSNotificationQueue object manages a queue of yet-to-be delivered notifications. An
NSNotificationQueue object, or just a notification queue, allows you to turn a synchronous notification
center into an asynchronous notification service. Notifications are posted to a notification queue that
will, at some future time, pass them on to its notification center for delivery.

Each notification queue is attached to an existing notification center. It does not change the
behavior of the notification center. A notification queue places notifications in a buffer, then uses the
current run loop to later dequeue and post them to its notification center. There is a default notification
queue for each thread, and you can create additional ones if you like. You can create multiple queues
that share a single notification center; remember that from the perspective of a notification center, a
queue is just another source of notifications.

Notification queues have several useful features:

• Notifications in a queue can be delivered with varying degrees of urgency.

• Similar notifications can be coalesced, so that observers only receive a single notification if
several were generated before they could be delivered.

• Undelivered notifications can be removed from the queue.

The process of queuing, coalescing, and removing notifications from a queue is described in the
following sections.

■Caution Notification queues require a running run loop to function. If your thread isn’t using a run loop, you
can’t use that thread’s notification queue.

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

333

Queuing a Notification
Queuing a notification isn’t that much different than posting a notification directly to a notification
center. First, you must provide the queue with an NSNotification object—there are no convenience
methods that create one for you. Second, you must specify its urgency, called its posting style, and
optionally how it should be coalesced with similar notifications already in the queue. Coalescing is
described in the next section.

To change the Thermometer class in Listing 18-1 to use a notification queue instead of a
notification center, replace the -setTemperature: method with the code in Listing 18-3.

Listing 18-3. Queued Temperature Notifications

- (void)setTemperature:(float)newTemp
{
 if (temperature!=newTemp) {
 temperature = newTemp;
 NSNumber *tempValue = [NSNumber numberWithFloat:temperature];
 NSDictionary *info = [NSDictionary dictionaryWithObject:tempValue
 forKey:@"Temperature"];
 NSNotification *n = [NSNotification notificationWithName:TempDidChange
 object:self
 userInfo:info];
 [[NSNotificationQueue defaultQueue] enqueueNotification:n
 postingStyle:NSPostASAP];
 }
}

A notification object is created and placed in the queue. It will be pulled off the queue by the

run loop at the next opportunity and posted to the default notification center. There are three possible
posting styles, listed in Table 18-3.

Table 18-3. Notification Queue Posting Styles

Style Descr ipt i on

NSPostASAP The notification will be delivered by the run loop at its next opportunity, along with
other regular run loop events. This is the typical posting style.

NSPostWhenIdle The notification will be left in the queue until the run loop is idle. That is, the run loop
has no other events waiting to be dispatched immediately.

NSPostNow Delivers the notification synchronously. This is identical to posting the notification
directly to the notification center, except that the queue may perform notification
coalescing first.

The Thermometer class now queues the notification to be delivered asynchronously at some
point in the future. In an asynchronous design, it is even more important that the provider include

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

334

relevant information—like the current temperature value—in the userInfo dictionary of the notification.
When the notification arrives, the Thermometer’s state may be different than it was when it sent the
notification.

Multiple notifications pushed with the same posting style will be delivered in the order they
were queued.

Coalescing Notifications
When you queue a notification, you can optionally specify a coalescing mask and a run loop mode. The
coalescing mask determines how the notification is matched against similar notifications already in the
queue. The matching criteria are the same used to request notifications: the notification must match the
name, the sender, or both, of any currently queued notifications. The criteria selection is formed by
logically ORing one or both NSNotificationCoalescingOnName or NSNotificationCoalescingOnSender. If
the notification matches other notifications in the queue, those notifications are removed and the new
notification replaces them. Again, we modify the Thermometer class by replacing the
-enqueueNotification:postingStyle: message with the code in Listing 18-4.

Listing 18-4. Coalesced Temperature Notifications

[[NSNotificationQueue defaultQueue] enqueueNotification:n
 postingStyle:NSPostWhenIdle
 coalesceMask:(NSNotificationCoalescingOnName|NSNotificationCoalescingOnSender)
 forModes:nil];

Now temperature change events are pushed onto the queue, only to be delivered to their

observers when the run loop is idle. If a second or third temperature change notification from the same
Thermometer object is posted before the first is delivered, the earlier ones are discarded. Eventually,
only the last posted notification is sent to the observers.

The forModes: parameter lets you specify the run loop modes that the notification will be
delivered in. Normally this is nil or NSDefaultRunLoopMode. Use this if you want notifications to be
delivered in a particular mode, like only when the run loop is processing events for a modal dialog. See
the “Run Loops” section of the Chapter 15 for more about run loop modes. You can pass the
NSNotificationNoCoalescing constant if you want to specify a run loop mode, but no coalescing.

Dequeuing Notifications
If you should later change your mind about a notification, it can be removed form the queue if it hasn’t
yet been delivered. Send the notification queue a -dequeueNotificationsMatching:coalesceMask:
message with the notification you want to remove and the constant NSNotificationNoCoalescing. If
instead you pass a combination of the coalescing masks described in the “Coalescing Notifications”
section, any other notifications that would be coalesced with that notification will also be removed.

Distributed Notifications
Distributed notifications have the ability to send notifications to objects in other processes. They are
very similar to regular notifications, with three important differences:

• The notifications are sent to all processes.

• Notifications can only include property-list values.

• Notifications are posted and received asynchronously.

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

335

The first feature is what makes distributed notifications so powerful. A single
-postNotification… message is all that’s required to communicate between objects in separate
processes, making distributed notifications by far the easiest inter-process communications service
available. While the objects can be in different processes, they don’t have to be; distributed notifications
will be delivered to any local observers as well.

The program in Listing 18-5 can be entertaining. It registers to receive all distributed
notifications and logs them. Build it as a command-line tool, run it, and then go about using your
system. Or use it to test sending notifications from your application. Kill the process to stop it.

Listing 18-5. Distributed Notifications Monitor

#import <Foundation/Foundation.h>
#import <AppKit/NSWorkspace.h>

@interface DistributedNotificationListener : NSObject

- (void)dumpNotification:(NSNotification*)notification;

@end

@implementation DistributedNotificationListener

- (void)dumpNotification:(NSNotification*)notification
{
 NSString* message = [notification name];
 id object = [notification object];
 NSDictionary* info = [notification userInfo];
 if (info!=nil) {
 NSLog(@"%@ from %@ with %@",message,object,info);
 }
 else {
 if (object!=nil)
 NSLog(@"%@ from %@",message,object);
 else
 NSLog(@"%@",message);
 }
}

@end

int main (int argc, const char * argv[])
{
 DistributedNotificationListener *listener;
 NSDistributedNotificationCenter *center;

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

336

 listener = [DistributedNotificationListener new];
 center = [NSDistributedNotificationCenter defaultCenter];
 [center addObserver:listener
 selector:@selector(dumpNotification:)
 name:nil
 object:nil];

 [[NSRunLoop currentRunLoop] run];
 // This never returns: kill the process to stop the program

 return 0;
}

To use distributed notifications, you need to be aware of some of its limitations and

complications, described in the next few sections.

Distributed Notifications Center
To post or observe distributed notifications, your objects must interact with the singleton
NSDistributedNotificationCenter created for each process. You obtain it with [NSDistributed
NotificationCenter defaultCenter]. The framework may define other distributed notification centers
in the future, but for now there’s only one. You cannot create your own distributed notification centers.
If you need a more sophisticated inter-process communications path, consider distributed objects,
described in Chapter 13.

Distributed notification centers exchange messages using Mach (kernel) ports. The security
model of Mac OS X organizes Mach ports into a hierarchy of bootstrap namespaces. Posted notifications
will be broadcast to all of the processes in your account’s local and parent namespaces, but not to sister
namespaces created by other users.

Property List Values
The information in a distributed notification is serialized (see the “Objective-C Serialization” section of
Chapter 12). This restricts the objects passed in the object and userInfo parameters to property-list
values—basically array, dictionary, string, number, and date objects. The object parameter in a
distributed notification center is used exactly the same way it is in a regular notification center, except
it’s just a string instead of a pointer to the provider object. Use a descriptive value like
@"com.apress.learnobjc.DemoProvider" to identify the sender or group notifications.

Asynchronous Notification Delivery
Similar to NSNotificationQueue, distributed notifications are queued, optionally coalesced, and
delivered asynchronously. Distributed notifications are (as of Mac OS X 10.3) always delivered on the
main run loop. The primary difference between notification queues and distributed notifications is that
the observer, not the provider, determines how notifications are queued and coalesced.

An NSDistributedNotificationCenter operates in one of two modes: suspended or not. When
not suspended, notifications are delivered as they are posted. When suspended, notifications are
discarded, coalesced, buffered, or delivered depending on the suspensionBehavior: mode requested by
the observer. The four possible modes are listed in Table 18-4.

CHAPTER 18 ■ PROVIDER/SUBSCRIBER PATTERN

337

Table 18-4. Suspended Notification Center Observer Modes

Mode Descr ipt i on

NSNotificationSuspensionBehaviorDrop Notifications are discarded.

NSNotificationSuspensionBehaviorCoalesce Similar notifications are coalesced and saved.
This is the default.

NSNotificationSuspensionBehaviorHold Notifications are saved, up to the buffer limit
of the notification center.

NSNotificationSuspensionBehaviorDeliverImmediately Notifications are delivered anyway, ignoring
the suspended state of the distributed
notification center.

The observer requests a suspension mode using the -addObserver:selector:name:
object:suspensionBehavior: message. The regular -addObserver:selector:name:object: message
registers the observer in the NSNotificationSuspensionBehaviorCoalesce mode.

A provider can force a notification to be delivered by posting it with the
-postNotificationName:object:userInfo:deliverImmediately: message, passing YES in the
deliverImmediately: parameter. This ignores the suspended state and behavior modes and delivers the
notification to all observers.

Suspending a Distributed Notification Center
A distributed notification center is suspended or reactivated with the -setSuspended: message. When it’s
reactivated, any buffered notifications are delivered immediately.

The distributed notification center in an AppKit (GUI framework) application is automatically
suspended whenever the application becomes inactive—that is, when it is no longer the front
application. When the application becomes active again, it is automatically unsuspended. You should
not interfere with this; use the NSNotificationSuspensionBehaviorDeliverImmediately or
deliverImmediately: options to deliver notifications to observers in suspended applications. Daemons
or command-line tools may suspend or activate their distributed notification centers as they see fit.

Summary
Notifications provide a flexible way for disparate objects to communicate with one another. Observers
can register to receive specific notifications or a broad range of notifications. Observers can register to
receive notifications from objects they know nothing about. Provider and observer management is
handled for your objects by the notification center.

Notifications can also be pushed onto queues to be delivered asynchronously, or posted to a
distributed notification center to be exchanged between processes. Simple load balancing can be
accomplished by coalescing redundant notifications.

C H A P T E R 1 9

■ ■ ■

339

Observer Pattern

The observer pattern creates a one-to-many, unidirectional relationship between a source object and a
set of observers. The observers receive a notification message whenever a property of the source object
changes. The observers can use this information to stay in synchronization with the observed object or
perform additional tasks.

Is it just me, or does that sound exactly like the provider/subscriber pattern from the last
chapter? At this level of abstraction, the provider/subscriber and observer patterns are extremely similar.
In Java, both would be implemented using listener interfaces, objects, and management as was
illustrated in Chapter 18. But the observer and provider/subscriber patterns are different, as outlined in
Table 19-1.

Table 19-1. Differences Between Provider/Subscriber and Observer Patterns

Provider /Subscr i ber Pat ter n Observer Pat ter n

The provider/subscriber pattern is
centered on notifications. Notification
objects can contain arbitrary information
and be defined for any purpose.

The observer pattern concerns itself with specific properties
of an object. An observer observes a property of another
object and is notified when that property changes. The only
information contained in the notification is the object and
the details of the change.

A provider object actively participates in
the provider/subscriber design pattern. It
explicitly defines the notifications that it
will send and when.

An observed object is typically passive. It doesn’t define
what properties can be observed nor is it required to
perform any action when they change; the framework
generates notifications on its behalf.

A provider must implement code to post
notifications.

An observed object doesn’t have to implement any code to
be observed. You may choose to implement custom
notification code if the class expects to be observed and has
non-trivial properties or relationships.

Notifications are posted to notification
centers.

Observed property notifications are sent directly from the
source object to its observers.

Objective-C provides a very specific technology for implementing the observer pattern called
Key-Value Observing (KVO). It’s an important technology to understand, because it’s an integral
component in the Model-View-Controller pattern that permeates the user interface framework. Because
of the very unique capabilities of Key-Value Observing, there are no Java examples in this chapter. They
would, essentially, be identical in nature to the Java examples in Chapter 18.

CHAPTER 19 ■ OBSERVER PATTERN

340

This chapter describes the basic principles of the observer pattern and the Key-Value Observing
technology. You should read at least that much to gain an appreciation for KVO. Later sections explain
how to use KVO and add KVO support for non-trivial properties. Key-Value Observing uses Key-Value
Coding (KVC). If that doesn’t sound familiar, you may want to peek at the “Key-Value Coding” section of
Chapter 10 for a quick refresher.

Key-Value Observing at Work
Key-Value Observing works by notifying an object, the observer, whenever a specific property of another
object, the observed object, changes. The relationship is created using a single -addObserver:… message
sent to the object that will be observed. Once established, the observer object will receive a notification
message every time that property of the observed object changes. Listing 19-1 shows a simple example of
Key-Value Observing at work. The classes are first, followed by the executed code, and finally the
program’s output.

Listing 19-1. Example of Key-Value Observing

@interface Chameleon : NSObject {
 NSColor *color;
}

@property (assign) NSColor *color;

@end

@implementation Chameleon

- (NSColor*)color
{
 return color;
}

- (void)setColor:(NSColor*)newColor
{
 color = newColor;
}

@end

@interface Watcher : NSObject

@end

@implementation Watcher

CHAPTER 19 ■ OBSERVER PATTERN

341

- (void)observeValueForKeyPath:(NSString*)keyPath
 ofObject:(id)object
 change:(NSDictionary*)change

 context:(void*)context
{
 NSLog(@"Property '%@' of object '%@' changed: %@",keyPath,object,change);
}

@end

…

Chameleon *chameleon = [Chameleon new];
Watcher *watcher = [Watcher new];

[chameleon addObserver:watcher
 forKeyPath:@"color"

 options:NSKeyValueObservingOptionNew
 context:NULL];

chameleon.color = [NSColor greenColor];

Output:
Property 'color' of object '<Chameleon: 0x139330>' changed: {
 kind = 1;
 new = NSCalibratedRGBColorSpace 0 1 0 1;
}

Here’s what happens in Listing 19-1:

1. The Chameleon class implements a property. There’s nothing special about the property, other
than it conforms to the Key-Value Coding guidelines.

2. The Watcher class implements an -observeValueForKeyPath:ofObject:change:context:
method. This makes it eligible to be a key-value observer.

3. The watcher object registers to be an observer of the chameleon object’s color property.

4. When the chameleon object’s color property changes, the watcher object receives a
notification that tells it the property (key path) that changed and the new value.

That’s Key-Value Observing in a nutshell. Any object that implements an
-observeValueForKeyPath:ofObject:change:context: method can register to observe almost any
property of another object. Whenever the property changes, the observer receives a notification.

CHAPTER 19 ■ OBSERVER PATTERN

342

KEY-VALUE OBSERVING MAGIC

If you’re scratching your head wondering how the Key-Value Observing framework knew that the Chameleon
object received a -setColor: message, it was done with a little bit of magic called isa swizzling. It’s described in
a bit more detail in Chapter 26.

KVO exploits the dynamic nature of Objective-C objects. When the watcher requests to observe the
Chameleon object, the KVO framework spontaneously creates a new Objective-C subclass of Chameleon, overrides
its -setColor: method, and changes the class of the object to the new subclass. When the Chameleon object
later receives a -setColor: message, the method of the synthetic subclass gets invoked. The subclass method
calls [super setColor:newColor] and then sends the requested property change notifications to its observers.
It’s fast, effective, and completely transparent to the observed object.

KVO only overrides the setter methods of the properties being observed, so there is no performance penalty for
other methods. If you later remove all the observers of an object, KVO will change the object back to its original class.

Continuing the comparison between the provider/subscriber and observer patterns, the
Thermometer and TemperatureMonitor examples presented in Chapter 18 could have easily been
implemented using Key-Value Observing, with these caveats:

• The Thermometer object could not choose its audience of observers based on what notification
center it posts to.

• A temperature change notification wouldn’t contain any additional information about the
change beyond the new, and possibly old, temperature values.

• An observer couldn’t register to receive notifications from an unknown object.

• Temperature change notifications could not be queued for asynchronous delivery or coalesced.

• Change notifications could only be sent to objects in the same process.

The most important feature of Key-Value Observing is that it doesn’t (typically) require any
programming support on the part of the observed object. For example, the NSProgressIndicator class
defines a KVC-compliant indeterminate property. It’s a simple, read-only, BOOL property value that is
either set or not. If you had a user interface object that needed to change its appearance based on
whether the progress indicator was indeterminate, your object could observe the indeterminate
property of the view object and update itself whenever it changed. The beautiful part is that
NSProgressIndicator was never designed to notify observers when its indeterminate property changes,
but with KVO it can still participate in the observer design pattern.

■NoteKey-Value Observing will also notice property changes made using Key-Value Coding, as in [chameleon
setValue:[NSColor greenColor] forKey:@"color"], as described in the Key-Value Coding section of Chapter
10. KVO cannot, however, observe changes made to properties through direct assignment, as in
chameleon->color=[NSColor greenColor]. If you use direct assignment and want your class to be compatible
with Key-Value Observing, you will need to implement manual KVO notifications, explained later in this chapter.

CHAPTER 19 ■ OBSERVER PATTERN

343

That’s the basics of Key-Value Observing. The rest of this chapter delves into some of the
options available to observers, and then gets into the more complex issues of manually implementing
KVO and supporting interrelated and non-trivial properties.

Registering a Key-Value Observer
When an observer object registers to observe another object’s property, five pieces of information are
required:

• The source object

• The observer

• The key-value path of the source object’s property

• A set of observer options.

• An optional context value.

The key-value path of the property to observe is more flexible than might be obvious at first.
The key path parameter accepts a Key-Value Coding path, as described in the “Key-Value Coding”
section of Chapter 10. The path can describe properties of properties, which subtly affords KVO a great
deal of flexibility and power. Consider the code in Listing 19-2, which extends the code in Listing 19-1.

Listing 19-2. Observing Complex Key-Value Coding Paths
#import "Chameleon.h"

@interface ReptileZoo : NSObject {
 Chameleon *chameleon;
}

@property (assign) Chameleon *chameleon;

@end

@implementation ReptileZoo

@synthesize chameleon;

@end

…

ReptileZoo *zoo = [ReptileZoo new];
Chameleon *chameleon1 = [Chameleon new];
Chameleon *chameleon2 = [Chameleon new];
Watcher *watcher = [Watcher new];

chameleon1.color = [NSColor blueColor];
chameleon2.color = [NSColor redColor];

CHAPTER 19 ■ OBSERVER PATTERN

344

zoo.chameleon = chameleon1;
[zoo addObserver:watcher
 forKeyPath:@"chameleon.color"
 options:NSKeyValueObservingOptionNew
 context:NULL];

chameleon1.color = [NSColor greenColor];
zoo.chameleon = chameleon2;

Output:
Property 'chameleon.color' of object '<ReptileZoo: 0x13a0c0>' changed: {
 kind = 1;
 new = NSCalibratedRGBColorSpace 0 1 0 1;
}
Property 'chameleon.color' of object '<ReptileZoo: 0x13a0c0>' changed: {
 kind = 1;
 new = NSCalibratedRGBColorSpace 1 0 0 1;
}

The watcher object in Listing 19-2 is set to watch the color property of the chameleon property

of the zoo object. It received two property change notifications. The first was because the color property
of zoo’s current chameleon property was set directly. The second notification occurred because the
chameleon property was replaced with a different object, indirectly changing the color of zoo’s chameleon
property. In both cases, the observer is notified of the complete path that was affected and its new value.

When registering to receive property change notifications, the notification includes some
information about the change in a change dictionary. There are four options, chosen by logically ORing
any of the constants in Table 19-2 together, that control what information is included in the change
dictionary and the order notifications that are sent. If your observer isn’t interested in any of these
options, pass 0 in the options: parameter.

Table 19-2. Key-Value Observer Options

KVO Opt i on Ef fect

NSKeyValueObservingOptionNew Notification change dictionary includes the new value.

NSKeyValueObservingOptionOld Notification change dictionary includes the previous value.

NSKeyValueObservingOptionInitial A notification is sent immediately with the current value (before
-addObserver:… returns).

NSKeyValueObservingOptionPrior Each change sends two notifications: a pre-change notification,
sent before the value is changed, and a regular notification
afterwards. The pre-change notification will contain an
NSKeyValueChangeNotificationIsPriorKey key in its change
dictionary.

CHAPTER 19 ■ OBSERVER PATTERN

345

The final parameter is an optional context value. It’s a C pointer that isn’t managed by the
garbage collection system, so if you use it to pass an object pointer, make sure the object isn’t collected
prematurely. Beyond that restriction, it can contain any compatible value and will be passed back to the
observer’s -observeValueForKeyPath:ofObject:change:context: method in all notifications triggered by
that registration.

Processing Key-Value Change Notifications
Once registered, your object will begin to receive key-value observer change notifications in the form of
-observeValueForKeyPath:ofObject:change:context: messages. The message includes four parameters:

• The key-value path of the property being observed

• The source object

• A change: parameter containing an immutable dictionary that describes the change

• A context: parameter containing the context: value passed to
-addObserver:forKeyPath:options:context: when the observer registered

If your object has registered to observe more than one property, use the key-value path
parameter, the source object pointer, or the context value to case out the property and deal with each
appropriately.

The change dictionary contains information about the change. Its contents depend on the type
of the property, the nature of the change, and what information you requested to be included, as
determined by the options in Table 19-2. The possible dictionary keys and a description of each value
are listed in Table 19-3.

Table 19-3. Change Notification Dictionary Keys

Key Value Descr ipt i on

NSKeyValueChange
KindKey

NSKeyValueChangeSetting,
NSKeyValueChangeInsertion,
NSKeyValueChangeRemoval, or
NSKeyValueChangeReplacement

Describes how the property changed. If the
property is a simple property, like an
integer or an object, this value will be
NSKeyValueChangeSetting. The other
three values describe changes to a
collection property.

NSKeyValueChange
NewKey

Value object Contains the new property value, or an
array of inserted or replaced values. Only
included if the
NSKeyValueObservingOptionNew option
was requested.

NSKeyValueChange
OldKey

Value object The previous property value, or an array of
removed or replaced values. Only included
if the NSKeyValueObservingOptionOld
option was requested.

CHAPTER 19 ■ OBSERVER PATTERN

346

NSKeyValueChange
NotificationIsPriorKey

YES Included if this is a pre-change notification
requested with the
NSKeyValueObservingOptionPrior
observing option.

NSKeyValueChange
IndexesKey

NSIndexSet For changes to an array collection
property, this NSIndexSet value contains
the indexes that were affected by the insert,
removal, or replacement.

When observing changes to a property that’s a primitive value or object pointer, the change
kind is always NSKeyValueChangeSetting and the dictionary may optionally include the old and new
values.

When the observed property is a to-many object property, the change information is a little
more complex. A change is described as either an insertion, a removal, or a replacement of one or more
objects in the collection. The NSKeyValueChangeIndexesKey value lists the indexes in the collection that
were affected by the change. The NSKeyValueChangeNewKey and NSKeyValueChangeOldKey values
contain a compact array of the objects inserted, removed, or replaced (as appropriate) at the
corresponding indexes in the NSKeyValueChangeIndexesKey set. For example, if two objects were
removed from a property at indexes 3 and 5, the NSKeyValueChangeIndexesKey would contain the set {
3, 5 }, the NSKeyValueChangeOldKey would contain the object removed at index 3 at index 0 and the
object removed at index 5 at index 1, and the NSKeyValueChangeNewKey value would be empty, since
no new objects were added.

■Note Observing a to-many property requires that the observed object implement the mutable array property
accessory methods described in the “Designing KVC-Compliant Classes” section of Chapter 10. The regular
NSMutableArray class does not implement these methods. If your object has an NSMutableArray *array
property, and you observe the @"array" property of that object, your observer will be notified when the array
object is set, but not when objects are added or removed from that array. Classes like NSArrayController do
implement this protocol and are designed to be observable.

Unregistering an Observer
When your observer wants to stop receiving property change notifications, send the observed object a
-removeObserver:forKeyPath: message with the same key-value path used when the observer was
added.

Objects maintain weak references to their observers, so it isn’t necessary to remove the
observer before the observer can be collected. However, if there’s a logical point in which an observer no
longer needs to receive property change notifications, it should remove itself. On the other hand, just
being an observer of an object will not keep the observer from being collected; the observer will need to
have at least one strong reference.

CHAPTER 19 ■ OBSERVER PATTERN

347

Making Your Classes KVO Compliant
When an object property is Key-Value Observing compliant, it means the property can be reliably
observed using Key-Value Observing. To be KVO compliant, the property of an object must

• Be Key-Value Coding compliant

• Send Key-Value Observing notifications when it is set

If you implement standard getter and setter methods for your property and change the property
by sending setter messages, your property will be 100 percent KVO compliant.

There are, however, some circumstances where your property won’t be KVO compliant. These
situations require that you add KVO support code directly to your class—assuming that you want to
make the property observable. Don’t worry; the code isn’t complex. What code you add, where, and
under what circumstances is described in the next few sections. Here are the primary reasons why a
property would not be KVO compliant:

• The property is set using direct assignment (i.e., object->property=1) outside its setter method.

• The property is a combination of other properties. A read-only fullName property that’s
generated by concatenating the firstName and lastName properties is the canonical example.

• The property changes as a consequence of some other state change. For example, an
isFinished property that’s defined as return ([lock condition]!=RUNNING).

Direct assignment circumvents KVO’s ability to intercept the setter methods of the object and
inject the prerequisite notifications. To fix this, send KVO notifications manually or rewrite the code to
use the property’s setter method when changing its value.

Dependent properties can be made KVO compliant by communicating the dependencies to the
Key-Value Observing framework. KVO provides special methods so you can describe the dependent keys
in your class. Once implemented, KVO will know that changing either of the firstName or lastName
properties also changes the fullName property, and it will send all of the expected notifications.

Properties that spontaneously change as a result of some other state change will usually require
a solution that is some combination of manual KVO notifications or dependent properties.

In addition to simply being a well-behaved KVO participant, there are other reasons why you
might want to add KVO support code directly to your class. One reason is performance. Key-Value
Observing notifications are a bit “dumb.” Whenever the setter method is called, KVO notifies its
observers—even if the new value is the same as the old one. If this causes performance or recursion
problems, you can implement your own KVO notifications that are only sent when you deem
appropriate.

And there will also, undoubtedly, arise a situation not described above that can only be resolved
by implementing your own KVO support. These special cases involve not only adding manual KVO
notification code to your class, but you may also need to tell the KVO framework not to perform its
normal services, or else one will end up stepping on the other. Finally, it should be noted that these
solutions frequently overlap; there’s often more than one way to solve a particular KVO problem. Read
through the next few sections before deciding on the solution that’s best for your situation.

Sending Manual KVO Notifications
Whenever an observable property is changed, you need to ensure that the correct KVO notification
messages are sent. In a KVC-compliant setter method, this happens automatically. You may need to
manually send KVO notifications when

CHAPTER 19 ■ OBSERVER PATTERN

348

• The property is read-only and has no setter method.

• The property is set using a direct assignment, outside the property’s setter method.

• The property is a synthesized value, calculated from other property values.

The most direct approach is to trigger the required notifications manually by sending
-[NSObject willChangeValueForKey:] and -[NSObject didChangeValueForKey:] messages before and
after the code that might modify the property. These messages inform the KVO framework that
something is about to happen which may cause the property to change. The KVO framework takes care
of sending the appropriate notifications to any observers. Listing 19-3 demonstrates this in a simple
Budget class.

Listing 19-3. Triggering KVO Notifications Manually

@interface Budget : NSObject {
 double budget;
 double plannedExpense;
}

@property double budget;
@property (readonly) double plannedExpense;

- (void)addExpenditure:(double)amount;

@end

@implementation Budget

@synthesize budget, plannedExpense;

- (void)addExpenditure:(double)amount
{
 [self willChangeValueForKey:@"plannedExpense"];
 plannedExpense += amount;

 [self didChangeValueForKey:@"plannedExpense"];
}

@end

The Budget class has a plannedExpense property that’s stored in a variable. It’s a readonly

property with no setter method. The -addExpenditure: method changes the property when it adds an
amount to it. The -willChangeValueForKey: and -didChangeValueForKey: messages that bracket the
change inform the Key-Value Observing framework of the change, and allow it to send the property
notifications to the observers.

CHAPTER 19 ■ OBSERVER PATTERN

349

■Caution Each -willChangeValueForKey: message for a given key must be balanced with a corresponding
-didChangeValueForKey: message for that same key.

If the -addExpenditure: method modified multiple properties, it would send one pair of
-willChangeValueForKey:/-didChangeValueForKey: messages for each property. These can be nested: the
code could send three -willChange… messages, change three properties, and then send three
-didChange… messages.

If the property being modified is a to-many array property, use the
-willChange:valuesAtIndexes:forKey: and -didChange:valuesAtIndexes:forKey: messages instead.

Creating Property Dependencies
Another common problem is a property that implicitly changes when another property changes. This is
called a dependent property. Adding a remainingBudget property to the Budget class creates a dependent
property that would be affected by a change to either the budget or plannedExpense properties. The Key-
Value Observing framework defines an informal protocol that lets your class describe its dependent
properties. The modified Budget class is shown in Listing 19-4.

Listing 19-4. Defining Dependent Properties

@interface Budget : NSObject {
 double budget;
 double plannedExpense;
}

@property double budget;
@property (readonly) double plannedExpense;
@property (readonly) double remainingBudget;

- (void)addExpenditure:(double)amount;

@end

@implementation Budget

@synthesize budget, plannedExpense;

- (void)addExpenditure:(double)amount
{
 [self willChangeValueForKey:@"plannedExpense"];
 plannedExpense += amount;
 [self didChangeValueForKey:@"plannedExpense"];
}

CHAPTER 19 ■ OBSERVER PATTERN

350

+ (NSSet*)keyPathsForValuesAffectingRemainingBudget
{
 return [NSSet setWithObjects:@"budget", @"plannedExpense", nil];

}

- (double)remainingBudget
{
 // amount remaining or 0.0
 return MAX(0,budget-plannedExpense);
}

@end

For each observed property, the Key-Value Observing framework looks for a class method

named +keyPathsForValuesAffectingProperty; replace the “Property” part of the method name with the
name of the dependent property. The method returns a set of property names that the property is
dependent on. Whenever one of those other properties changes, KVO sends a change notification for the
dependent property as well. Implement one class method for each dependent property.

■Note It would be possible to accomplish the same solution using manual KVO notifications, as demonstrated in
the previous section. You would modify -addExpenditure: to send an additional -willChangeValueForKey: and
-didChangeValueForKey: messages for the @"remainingBudget" path, and then do the same in a handwritten
-setBudget: method. The advantage of the dependent property protocol is that it doesn’t require modifying the
other property setters or adding more manual KVO notifications. This is particularly convenient in subclasses that
define properties that are dependent on properties of its superclass. It also keeps the KVO code from cluttering up
the implementation.

There are actually three ways of communicating dependent properties to the Key-Value
Observing framework:

• Implement a per-property +keyPathsForValuesAffectingProperty class method as
demonstrated in Listing 19-4.

• Override the single +keyPathsForValuesAffectingValueForKey: class method and return the
dependent set for the requested key. The base class implementation of this method uses the
key-path to look for and invoke the method name implemented in option 1.

• At some point before any object of your class is observed—typically in your class’s
+initialization method—send a +setKeys:triggerChangeNotificationsForDependentKey:
message for each dependent key implemented in your class.

Implement exactly one of these solutions for each dependent property. When implementing
either of the first two solutions, don’t forget to include any dependent keys defined by the superclass in
the returned set.

The first two solutions are only applicable to simple (to-one) properties that are running on
Mac OS X 10.5 or later. If you need to establish a to-many dependent property, or are targeting Mac OS X
10.4 or earlier, use the last solution. If you have a to-many dependent property and are targeting

CHAPTER 19 ■ OBSERVER PATTERN

351

Mac OS X 10.5 or later (where the +setKey:… method is deprecated), refer to the “Registering Dependent
Keys” section of the Key-Value Observing Programming Guide1 for a number of possible solutions.

Overriding Key-Value Observing
To implement manual KVO notifications in a KVC-compliant setter method, you must disable the
normal change notifications that the Key-Value Observing framework will perform. Otherwise KVO and
your code will both be sending notifications, resulting in either duplicate or out-of-order notifications.

One very prudent reason to do this is to optimize the setter method so it only notifies observers
when the value actually changes. This can have performance advantages and solve recursive or circular
update problems. In Listing 19-5, the budget property setter of the class is reimplemented so it only
sends KVO notifications when the budget value actually changes.

Listing 19-5. Optimizing KVO Notifications

@implementation Budget

+ (BOOL)automaticallyNotifiesObserversForKey:(NSString*)key
{

 if ([key isEqualToString:@"budget"])
 return NO;

 return [super automaticallyNotifiesObserversForKey:key];
}

- (double)budget
{
 return budget;
}

- (void)setBudget:(double)value
{
 if (budget!=value) {
 [self willChangeValueForKey:@"budget"];
 budget = value;

 [self didChangeValueForKey:@"budget"];
 }
}

…

To prevent the KVO framework from overriding the -setBudget: method and sending its own

notifications, the +automaticallyNotifiesObserversForKey: class method is overridden. This method

1 Apple, Inc., Key-Value Observing Programming Guide, http://developer.apple.com/documentation/
Cocoa/Conceptual/KeyValueObserving/, 2009.

CHAPTER 19 ■ OBSERVER PATTERN

352

should return NO for observable properties that generate their own notifications. The base class
implementation returns YES for all keys.

The -setBudget: method is then rewritten to send KVO notifications only when the new budget
value is different than the previous value. This kind of optimization can ripple out. For example, now
that the remainingBudget property is dependent on the budget property, not sending a superfluous
budget notification actually avoids two superfluous notifications.

Optimizing Key-Value Observing
In addition to eliminating redundant notifications, as described in the previous section, there’s another
way that your object can help the Key-Value Observing framework. For objects that are heavily observed,
you can optimize KVO performance by providing a place to store observation information about your
object. While KVO can mutate the class of your object using isa swizzling, it can’t change its structure or
store any new values in it. Instead, KVO keeps an object’s observation information in a global collection
that must be consulted every time a property is changed.

You can reduce this overhead by providing KVO a void *observationInfo property, as shown in
Listing 19-6. The Key-Value Observing framework will use this property to store your object’s
observation information directly in the object.

Listing 19-6. Providing Local Key-Value Observing Information Storage

@interface KVOFriendly : NSObject {
 @private
 void* observationInfo;
}

@property (assign) void *observationInfo;

@end

@implementation KVOFriendly

@synthesize observationInfo;

@end

Summary
Although similar in concept to the provider/subscriber pattern, the observer pattern provides a
significantly different solution set. Its primary advantage is that observation and notifications are largely
transparent to the observed object, and it typically doesn’t need to be designed in advance to provide
the desired notifications. While basic properties are Key-Value Observing compliant automatically, some
properties may require some additional code to fully support KVO.

C H A P T E R 2 0

■ ■ ■

353

Model-View-Control ler Pattern

The Model-View-Controller design pattern is one of the most important design patterns in computer
science. Whereas most patterns address specific problems, Model-View-Controller (MVC) describes the
architecture of a system of objects. It can be applied to isolated subsystems or entire applications. The
Model-View-Controller design pattern is also less clearly defined than many other patterns, leaving a lot
of latitude for alternate implementations. It’s more a philosophy than a recipe.

A clear understanding of MVC is critical to using Cocoa, because the entire Cocoa framework is
designed around the Model-View-Controller design pattern (where applicable). Where Java adopts MVC
for many tasks, Cocoa passionately embraces it. MVC is the soul of Cocoa. Designing with MVC will
smooth your development, since so many of the framework objects are designed to integrate effortlessly
with an MVC design.

Befitting a broad design pattern, this is an expansive chapter that touches on a wide range of
classes and technologies. (It wouldn’t be very useful if it merely described the MVC design pattern—
something you’re probably already familiar with, anyway). To be practical, each section not only
describes design concepts but goes on to explore the classes, protocols, frameworks, and development
tools that you’ll use to implement those concepts. For example, this chapter begins with the basic MVC
design principles, and then goes on to describe bindings (a technology used to implement MVC
communications) and Interface Builder (a development tool used to connect MVC objects). The section
on view objects explains the role of view objects, and then goes on to explain how to use pre-built view
objects, how to create your own view objects, how those view objects draw themselves, and the basics of
the Cocoa graphics environment. The sections on data model objects describe not only the conceptual
role of data model objects, but some of the classes and development tools that can be used to create
complex data models. In short, this is a really long chapter, so settle in and take your time. You should be
comfortable with each concept before moving on to the next.

To help you put each piece into perspective, I’ve created a simple Cocoa application that plays
Tic Tac Toe. It’s a relatively small project that touches on most of the topics in this chapter, and will be
used to illustrate many of them. I recommend that you download the project from the Source
Code/Downloads section of http://www.apress.com so you can see how each concept fits into the
whole. There is also a section on Interface Builder, a key Cocoa development tool, and how it supports
the MVC design pattern. At the end of this chapter is a brief section that describes some noteworthy
aspects of the project that aren’t covered elsewhere.

Model-View-Controller sits atop a broad base of supporting technologies, at the apex of the
design pyramid. To master MVC, you need a firm grasp of the technologies that support it. You should
be familiar with, or review, the following before attempting to tackle MVC in Cocoa:

• Objective-C Messages (Chapter 6)

• Informal Protocols (Chapter 5)

• Delegates (Chapter 17)

• Key-Value Coding (Chapter 10)

• Key-Value Observing (Chapter 19)

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

354

Understanding Model-View-Controller
The Model-View-Controller design pattern is simply stated:

• Data model objects encapsulate information.

• View objects display information to the user.

• Controller objects implement actions.

• View objects observe data model objects and update their display whenever it changes.

• View objects gather user input and pass it to a controller object that performs the action.

The key to successfully implementing an MVC design is to pay close attention to the role of
objects and the communications between those objects. The first three rules define the role of your
objects.

• Data model objects store, encapsulate, and abstract your data. They should not contain
methods or logic specific to making your application function. For example, a data model class
should implement a method that serializes its data, but it should not implement the “Save
As…” command. Even if the two functions are nearly identical, the code that deals with the
abstract data transformation should be implemented in the data model object and the code
that implements the user command should be implemented in the controller object.

• View objects display the information in the data model to the user. View class design runs from
the extremely generic to the very specific; generic view classes are provided by the framework to
display almost any kind of string, number, or image, while you are more likely to implement
very specific view objects designed for your application. View objects also interact with the user
and initiate actions by interpreting user-initiated events, such as mouse movement and
keystrokes. It converts those events into actions that are passed to the controller object for
execution. The event and resulting action are often very simple; clicking the mouse over a
button object will send an action message to a controller. Complex gestures, like drag-and-
drop, are more involved.

• Controller objects implement your application’s actions. Actions are usually initiated by view
objects in response to user events.

The other aspect of the Model-View-Controller design is the communication between the data
model, controller, and view objects. The fundamental communication paths are illustrated in Figure 20-1.

Figure 20-1. Fundamental MVC communications

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

355

When the user does something, like typing a keyboard shortcut, a view object interprets it and
sends an action message to the controller object. The controller object performs the action, which often
involves sending messages to the data model object. When the data model changes, it notifies its
observers by sending messages to the view object, which updates the display.

MVC Variations
There’s a lot of latitude to the basic MVC model. Roles can blend or use alternate communication paths.
The next few sections describe the significant variants.

Combined Controller and Data Model
The controller and data model may be the same object, as shown in Figure 20-2. This is often the case
when the data model is trivial. Technically, a single integer is a data model, but it would be a waste of
your programming talent to create a data model class just to encapsulate one number. Instead, the value
is stored in the controller and attached to a view object for display.

Figure 20-2. Combined controller and data model

This limits the modularity of your design, as described later in the chapter. But unless the data
model and controller are inappropriately entangled, it should be easy to refactor your application into
separate controller and data model classes in the future, without disrupting your design. The key is to
keep the concept of the data model independent of your controller, even while they occupy the same
object.

Mediating Controller
A popular variation of the Model-View-Controller design pattern is the mediated MVC pattern, as shown
in Figure 20-3. This pattern appears repeatedly in the Cocoa framework; it’s the pattern adopted by the
NSController classes, described towards the end of this chapter.

Figure 20-3. Mediated Model-View-Controller design pattern

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

356

In a mediated MVC design, the controller also acts as the data model for the view. It is a data
model proxy. The mediating controller passes data model messages to the actual data model, and
forwards any change notifications from the data model on to its observers.

This design is particularly well suited to database applications. The data model object
encapsulates the raw data. It takes responsibility for fetching the data from a persistent store, caching it,
and performing any alterations to it. The controller object performs it normal role, but also presents the
data, as it will appear in the application, to the view objects. This might involve filtering, sorting, and
transforming the data. How the data is sorted, the user’s current selection in the table, and so on, are
specific to the application, not the data. From the view object’s perspective, the controller is the data
model. The view displays the sorted, filtered, and transformed data presented to it by the controller, and
has no direct knowledge of the underlying data model.

Direct View and Data Model Binding
Often, there’s no “action” per se associated with a change to a displayed value. If the view object is
displaying a simple value (a number, string, or Boolean), it can communicate changes directly to the
data model object, as shown in Figure 20-4.

Figure 20-4. Direct data model and view binding

The relationship between the data model property and the view is described as a binding. The
view object displays the value and updates its display whenever the value changes (via observing). If the
user edits the displayed value, the view object communicates that to the data model by setting the new
value directly. Bindings are described in more detail later in this chapter.

Other Variations
Some other common variations to the basic MVC design pattern are as follows:

• View objects bound to controller properties: It is often the case that view objects will be bound
to property values of the controller object. For example, a controller might define data objects
to hold a temporary transaction or the results of search. This isn’t an appropriate property for
the data model; it is appropriate for the controller, but from the view’s perspective it’s a data
model.

• Combined view and data model object: A check box button maintains its current value
(checked or unchecked) and is, in effect, its own data model. The controller may choose not to
store the state of the check box, electing instead to query the state of the view object to learn its
value. This isn’t a recommended pattern, but it is quite commonly used.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

357

The Advantages of MVC
So what’s all the fuss about MVC? At first blush, it seems like MVC creates a lot of additional work for the
programmer, taking what could be a single object and breaking it up into multiple objects with complex
communications.. To create a custom button using MVC, for example, one would create a new cell
subclass (see the Scaling section), override its drawing method, create a controller class, implement an
action method, create instances of both classes, and attach them to an NSButton view object. If you
think it would be simpler just to subclass NSButton and override its drawing and “mouse clicked”
methods, you need to read this section.

In a very small set of circumstances, you’d be right—it would be simpler to just subclass
NSButton. But most applications aren’t that simple, or don’t remain that simple. MVC is, in many
respects, like object-oriented programming itself. It’s a discipline that occasionally creates more work,
but more often allows for the design of large, elegant, flexible, and sophisticated applications that are
both comprehensible and well behaved.

The following sections highlight some of the significant advantages of employing the Model-
View-Controller design pattern.

Modularity
The Model-View-Controller design pattern is an extension of the computer science principles of
separation of concern and encapsulation. It encourages you to identify the roles that your application
plays and compartmentalize those roles into distinct objects.

These principles improve your MVC design for all the same reasons they improve object-
oriented programming in general. They localize interrelated functionality into containers with
identifiable boundaries. Changes to a class tend to be localized. When the change affects other classes,
it’s easier to analyze how they will be affected since the interface to the changed class is well defined.
They can later be subclassed, replaced, or reused with little or no impact on the rest of your design.

Flexibility
One of the greatest strengths of the Model-View-Controller design pattern is its flexibility. By separating
the data model and controller concerns from the display view, the two can be mixed and matched at
will.

MVC’s most powerful feature is probably the ability to effortlessly replace view objects, or use
multiple view objects, without changing the data model or controller. You probably use many
applications that exploit this feature every day. Here are two examples.

Apple’s iTunes application uses several different view objects to display the contents of your
music and video library. There’s a table list view, a browser, a thumbnail view, and a Cover Flow view. All
four present the same information from the same data model, just in different ways. By separating the
data model from the views, new views can be developed without making any changes to the data model
or the other views. Even much of the controller logic, such as current song selection, drag and drop, the
play song action, and getting info can all be implemented once and used interchangeably with any of the
four views.

The Xcode application is a good example of a document-based MVC application with multiple
views. A data model object represents the contents of a document (source file). Source code editing
panes that appear in the Xcode environment are the view objects. You can open the same source
document in multiple windows or panes and they will all display the same content. More amazingly,
editing one pane updates all of the other panes instantly. This works because the data model and all of
the views conform to the same MVC communication rules. When one of the view objects is edited, it
sends those editing requests to its controller, which updates the data modal, which broadcasts the
changes to all observers. Without writing any special code, multiple views of a single data model are kept
in perfect synchronization.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

358

Programming with well-designed MVC objects is like working with a giant Lego set. Any object
(data model, controller, or view) is interchangeable with any functionally equivalent object. Substituting
objects, or attaching multiple objects, does not disturb the rest of the design. The mantra of MVC is to
create complex applications by interconnecting simple objects.

Reuse
Reuse is closely related to flexibility. By abstracting the functionality of your classes, you can reuse your
objects in other applications or for other purposes. The most commonly reused objects are data model
and view objects. The core Cocoa view objects (buttons, text fields, image viewers) are reused daily for
thousands of different purposes, just by connecting them to different data model and controller objects.

Scaling
The Model-View-Controller design pattern reoccurs at different scales. If you take a close look at a Cocoa
view object like NSButton, you’ll actually discover a miniature MVC design at work. What you normally
treat as a single view object (a button) is actually two or three objects:

• The NSButton object is an NSControl that implements the controller role in the MVC design.
NSButton determines how the button behaves.

• The role of the view is handled by an NSButtonCell object, a subclass of NSCell. This object is
responsible for drawing the button image and processing mouse and keyboard events.

• The NSButton object can maintain its own state (acting as the data model), or be bound to a
separate data model object.

To customize the look of a button, you don’t subclass NSButton. Instead, you create your own
NSCell subclass that implements the look you want and attach that to a plain-vanilla NSButton instance.
Just as iTunes can use alternate views to change the look of your music library without changing any of
its functionality, you can change the look of a button without interfering with its behavior. Flexibility and
reuse mean that your custom NSCell will be compatible with future versions of NSButton and could
potentially be used with other NSControl subclasses as well.

By now, I hope you appreciate the advantages of using the Model-View-Controller design
pattern. Now it’s time for me to get off my soap box and get down to the details of how MVC is used in
application design.

Bindings
So far I’ve discussed MVC communications in a generic way, but the Cocoa framework defines a very
specific form of MVC communications called a binding. A binding defines a relationship between two
properties in different objects. A binding forms a connection that binds one property of an observer
object to a property of another object. A binding keeps the two properties synchronized. Cocoa provides
a framework and an informal bindings communication protocol that does this for you. These can be any
two objects, but the observer is invariably a view object and the observed property will be in a data
model or controller object.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

359

■Note As of this writing, the iPhone OS does not support the Cocoa bindings technology. If you’re targeting the
iPhone OS, you’ll have to use Objective-C messages, actions, outlets, Key-Value Observing, notifications, or other
techniques to implement your MVC communications. Actions are outlets are described in the “Interface Builder”
section.

In practice, a view object displays the value of the property. Editing the value in the view sends
messages, via the binding, to the data model to alter its value. Any change to the data model’s value
notifies the view. Bindings have the following attributes:

• Properties are identified using Key-Value paths. Both objects must implement Key-Value
Coding–compliant properties.

• The observer object listens for changes to the property value using Key-Value Observing. The
bound property must be KVO compliant.

• NSController objects are designed to work with bindings. Specifically, NSController objects can
bind compound values such as sets and arrays. NSController also defines the concept of a
selection, so you can bind a property to the selected value(s) of a compound property.

• A binding can specify when an edited value is committed and when changes to the bound
property are updated.

• A binding can provide a default value to use when the bound property is nil.

• A binding can be filtered through a value transformer that converts a bound value to a form
suitable for use by the observer, and vice versa. For example, a transformer might automatically
convert between currencies or change centigrade to Fahrenheit.

Bindings can be created programmatically, but that’s rare. Even more unusual is creating your
own classes that actively participate in a binding; most of the classes that you’d ever want to bind to (the
NSView objects provided by the Cocoa framework) and objects with complex bindable properties
(subclasses of NSController) have already been implemented for you. Most of the time you establish a
binding in Interface Builder from a library view object property to either a KVO-compliant property of
any object or to a subclass of NSController—none of which involves any serious programming. You
might want to create your own subclass of NSController or NSObjectController, but the base class is
already a Cocoa bindings–compatible class, so you still won’t get too involved in the mechanics of
bindings. If you find you need explore these options, refer to the Cocoa Bindings Programming Topics
guide.1

The vast majority of the time, you bind views to properties of your own objects and the only
prerequisite is that they be Key-Value Observing compliant—which most properties are, or else they can
easily be made KVO compliant with a small amount of work. See Chapter 19 if you need to make sure.

So far I’ve focused on viewing the value of a property, but bindings are useful for many other
kinds of properties. A view object, like a check box control, has many properties: the button’s title, the
font of the title, the state of the check box, whether it’s enabled, whether it’s visible, and so on. Any of
these properties can be bound to a property of another object. Take the TicTacToe project as an
example. The interface has a Reset button that clears the board and starts a new game. The enabled

1 Apple Inc., Cocoa Bindings Programming Topics, http://developer.apple.com/documentation/
Cocoa/Conceptual/CocoaBindings/, 2009.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

360

property of this button is bound to the isStarted property of the game object. Before the game begins,
while isStarted is NO, the button is disabled. As soon as the game starts, the button becomes enabled.
There’s no code in the game object to enable or disable the button, and the button doesn’t know
anything about the Tic Tac Toe game. The enabled property of the view is simply bound to an observable
BOOL property of another object; no additional programming is required.

If you need to create a binding programmatically—say, for a view object you created
programmatically—send a -bind:toObject:withKeyPath:options: message to a Bindings-compliant
observer.

If you are creating custom view objects to display custom data, it’s more expedient to create an
informal binding between the view and data model objects. This is just a fancy way of saying,“roll your
own MVC communications.” Your custom view should implement the fundamental MVC
communications using Objective-C messages, notifications, and observing. The view should use direct
knowledge about the controller and data model, rather than trying to create an abstract, reusable view
class that communicates through bindings. In the TicTacToe project, the ChalkboardView object is a
good example. It displays a Tic Tac Toe game and sends “move” actions to its controller when the user
clicks on the board. The object knows it is connected to a TTTDocument controller and it explicitly
observes changes to its game property. The object conforms to the MVC design pattern, but isn’t
abstracted beyond its purpose.

Interface Builder
Before I get too far into the details of view objects, events, and controllers, I’ll take a moment to shed
some light on some of the “magic” of Cocoa application development. If you’re not used to developing
with Cocoa—and I assume that you aren’t or you wouldn’t be reading this book—you are likely to open
the TicTacToe project and start scratching your head. The Objective-C source code clearly implements
the functionality of the objects, but you can sift through the code line by line and never find any of the
following:

• Code to create a document window, or any of the view objects in that window

• Code that connects the document object to any of its view objects

• Code that binds a view object to a controller or data model property

• Code to connect view objects (like buttons and menu items) with the controller object that
implements those actions

All of these tasks are accomplished through Interface Builder, an essential development tool
that makes Cocoa application development effortless and simultaneously mystifying.

In a nutshell, Interface Builder edits NIB files. NIB files, which you remember from Chapter 4,
contain an archived (serialized) representation of the objects you want to instantiate at runtime. The
archived objects include properties and inter-object references. The NIB file is part of the application
bundle. When a NIB file is “loaded” at runtime, the objects are unarchived; this instantiates the graph of
objects, sets their properties, and connects any inter-object references.

If you read Chapter 12 about archiving, what NIB files accomplish isn’t a great mystery. If you
come from another development environment, keep in mind that Interface Builder is not a code
generator. It does nothing but edit a virtual representation of the objects that will be instantiated at
runtime via standard archive decoding. There’s no “magic” involved, nor is any code generated. The end
result is identical to unarchiving a graph of objects that were previously created programmatically.

If you understand that basic concept, Interface Builder’s role in development and how the
objects in a NIB document get created and initialized ceases to be a mystery. It’s one thing to say “a view
object sends an action message to its controller when the user clicks on it,” and another to actually
implement it. In Cocoa development, that connection between those objects and the message that gets

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

361

sent is (more often than not) defined in Interface Builder. Getting comfortable with Interface Builder is
an important step in becoming a productive Cocoa developer.

NIB Documents
As mentioned earlier, Interface Builder (IB) is primarily a NIB document editor. In its modern form,
Interface Builder edits an Interface Builder Document, which is the IB equivalent of a source file. The
source file is compiled into its final binary form when the application is built. In the old days, Interface
Builder would edit the actual binary archive file and there was no separate compilation phase; the NIB
file was simply copied into the application bundle.

NIB documents have names, and your application can have as many NIB documents as it
needs. A Cocoa application designates one as the main NIB document, normally MainMenu.nib. The
main NIB document is loaded during program initialization and should contain all of the standard view
elements of the application. This invariably includes the menu objects, but might also include shared
windows or other objects.

The standard Cocoa document controller assigns a NIB document to every document type your
application supports. When you open a document in the application, an instance of NSDocument is
created and then its NIB file is loaded; this creates the NSWindow for the document and populates it
with whatever additional view objects (buttons, fields, tables, tabs, toolbars, drawers, auxiliary windows,
dialog windows, and custom objects) that it needs.

In addition, you can create additional NIB documents and load them programmatically for any
purpose you can conceive. For example, you might have a very complex document window that uses
many different subviews. You could define that window and container views in the document’s NIB
document, then define the view objects for each subview in auxiliary NIB documents which you would
load programmatically as needed. The only thing you need to establish when loading a NIB document is
the owner object, which is described a little later in the Owner Object section.

The NIB Document Window
When you open a NIB document in Interface Builder you see either graphical or symbolic
representations of the objects in the NIB. You edit the properties of these objects using the various
Inspector palettes. You can create new objects by dragging icons from the Library palette into the
document. You can also reorganize and delete them.

View objects (windows, controls, fields, menus) can also appear with a visual representation,
much as they will when they’re instantiated by your application. A typical NIB document window is
shown in Figure 20-5, with the graphical representation of the Window and view objects behind it. In
most cases, the symbolic and visual representation of an object is synonymous.

Object Properties
Now that you understand that a NIB document simply contains the archived version of a graph of
objects, it’s easy to understand Interface Builder properties. In Interface Builder you edit the properties
of these objects using the various Inspector palettes. There are inspectors for the basic properties, as
shown in Figure 20-5: size, position, resizing behavior, animation effects, connections, bindings, and so
on.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

362

Figure 20-5. Interface Builder properties

You can edit an object’s properties by selecting either its symbolic representation in the main
NIB document window or its visual representation. In Figure 20-5, the Reset button properties can be
edited by selecting either the Push Button (Reset) object or the Reset button in the window behind it.
Overt properties such as an object’s title, size, and position can be directly manipulated by clicking,
dragging, and resizing the visual representation of a view object.

The properties you set are stored in the object’s archive stream and are implicitly restored when
the NIB document is unarchived.

Placeholder Objects
There are a few special objects that appear in your NIB document. These are placeholders for objects
that will already exist when the NIB is loaded, and are there solely to allow you to make connections with
those objects. Some proxy objects you may have in your NIB:

• File’s Owner

• First Responder

• Application

• Font Manager

• User Defaults Controller.

For example, you can create a connection between an object in your NIB and the single global
NSApplication object, even though the NSApplication object is not part of the NIB.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

363

Connections
In Interface Builder terminology, a relationship between two objects in a NIB document is called a
connection. There are three types of connections: outlets, actions, and bindings.

Outlets
An outlet is nothing more than an object reference. Outlets allow you to set object references in Interface
Builder using graphical design tools. Any object pointer property can be an outlet. If you include the
keyword IBOutlet in your instance variable declaration, as shown in Listing 20-1, Interface Builder will
automatically recognize it as an outlet and let you set the variable in the NIB. You can also manually
declare outlets by editing a class’s definition in Interface Builder’s Identity Inspector palette, but the
IBOutlet method is preferred and has the advantage of documenting your outlets in your source file.

Listing 20-1. Interface Builder Outlet Declaration

@interface TTTDocument : NSDocument {
 TicTacToeGame *game;
 NSString *gameOutcome;

 IBOutlet ChalkboardView *chalkboardView;
}

In the TicTacToe project, the TTTDocument object needs a reference to the ChalkboardView

object that displays the Tic Tac Toe game. To make the connection in Interface Builder requires two steps:
First, declare the outlet variable as an IBOutlet in TTTDocument’s @interface, as shown in Listing 20-1.
Then open the TTTDocument NIB document, select the TTTDocument object, and in the Connections
Inspector drag the outlet’s connection dot to the ChalkboardView object, as shown in Figure 20-6.

Figure 20-6. Connecting an outlet in Interface Builder

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

364

When the NIB is loaded, the chalkboardView property of TTTDocument will be set with the
pointer to the newly created instance of ChalkboardView. This is functionally identical to writing the
following code:

 document.chalkboardView = [ChalkboardView new];

Making connections is such a common task in Interface Builder that there are several shortcuts:

• Right/Control-Click on an object to bring up a pop-up outlet inspector panel. Set or break any
connection just as you would with the Inspector palettes.

• Right/Control-Drag from the object with the outlet to the object you want it connected to. A
pop-up outlet completion panel will appear. Click the outlet you want to set.

• When dragging between objects, you can start or finish using either the symbolic object in the
NIB document window or its visual representation in any other window.

Actions
The second kind of connection is an action. An action is an Objective-C message sent to an object when
some event occurs. An action is defined by a pair of properties that form an informal protocol: an action
property of type SEL that determines the Objective-C message to send, and a target property of type id
that determines the recipient. Action messages are sent to the recipient, typically a controller object,
when “something” happens. What defines “something” is left to the discretion of the view object, but it’s
typically a mouse click (buttons, check boxes, menu items), editing event (pressing return or tabbing out
of an input text field), or a keyboard shortcut (menu items).

The receiver of the action must implement a method to receive the message. The form of the
message must look like this:

- (IBAction)playForPlayer:(id)sender;

An action always receives, as its sole parameter, a pointer to the object that sent the message.

The IBAction keyword is synonymous with void, but is used by Interface Builder to automatically
recognize action methods. Once Interface Builder knows about an action, you can set it almost exactly as
you would an outlet connection. Select the object that sends the action, then drag its Sent Actions
connection to the object that will receive the action, as shown in Figure 20-7. Once you drag the action
connection to the recipient, Interface Builder will pop up an action completion panel where you
complete the connection by choosing which message to send.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

365

Figure 20-7. Connecting an action in Interface Builder

Making an action connection in Interface Builder sets both the action (message identifier) and
the target recipient (object pointer). The First Responder target is a special placeholder object that sets
an action message and a nil target. The actual target will be determined dynamically, as described later
in the Responder Chain section.

Bindings
Use the Bindings palette to set the binding for your objects. In the earlier section on bindings, I
described binding the enabled property of the Reset button to the started property of the game object.
Figure 20-8 shows how that binding is set in Interface Builder.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

366

Figure 20-8. Setting a binding in Interface Builder

To set a binding, select the object to bind and open the Bindings palette. In Figure 20-8, the
visual representation of the Reset button is selected. Expand the property to bind, and then choose the
object and key path (property name) to bind it to. In this example, the enabled property of the button is
bound to the started property of the game property of the NIB’s owner. Since this is the document’s NIB
file, the NIB’s owner is the TTTDocument object—owner objects are explained in the next section.

There are lots of settings in a binding, many of which will vary depending on the type of
property and the type of value being bound. The settings of most interest are as follows:

The object to bind to: This is the object containing the property you want to bind to.

Model Key Path: The key-value path of the property to bind to. This can be any KVC path relative
to the bound object. To bind to the object itself, use the path self.

Controller Key: If you bind to an NSController object, the model key path is in two parts. The
controller key describes the property of the controller, and the model key path then specifies the
property of the object described by the controller key. For example, binding with a controller key
of selection and a model key path of name would bind the property to the name of the currently
selected object in the controller’s collection—equivalent to a path of selection.name. Here are
some common NSController properties:

• content binds to whole content encapsulated by the controller. This might be a single object or
an entire collection.

• arrangedContent binds to the content, sorted and filtered by the controller. Bind to this property
when displaying contents in a table or other sorted list.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

367

• selection is the object currently selected by the controller.

• selectedObjects is the collection of objects currently selected by the controller. Use this
binding with controllers that allow more than one object to be selected at a time.

• isEditable, canAdd, and canRemove are a few of the many informational properties provided by
controllers. For example, you would bind the enabled property of an Add Record button to the
canAdd property of the controller. The button will be enabled only when the controller allows
new objects to be added.

Value Transformer: Choose the transformer object you want to use to convert property values
between the two objects.

Null Placeholder: Choose the object you want the binding to use when the bound property is nil.

Owner Object
Loading a NIB document differs from unarchiving a graph of objects in one minor respect. When you
unarchive a graph of objects you get all new objects, typically connected to a single root object returned
to the sender. When you load a NIB document, you pass in a single existing object that becomes the
NIB’s owner. The owner object is essentially the root of the NIB document’s object graph, but it exists
before the NIB is loaded.

The NIB’s owner object is represented in the NIB document as the File’s Owner placeholder
object. All of the objects in your NIB should connect directly, or indirectly, to the File’s Owner in order to
be accessible.

When the main NIB file is loaded during program initialization, the owner is the single
NSApplication object. When the document controller loads a NIB to create a document window, the
owner is the NSDocument object that will own that interface. When you programmatically load a NIB
file, you can specify whatever owner object you want, just make sure it agrees with the class of the File’s
Owner defined in the NIB document.

In the TicTacToe example, shown in Listing 20-1 and Figure 20-6, the NIB contains an instance
of ChalkboardView connected to the chalkboardView property of the owner. Since this is a document
NIB, TTTDocument is the NIB’s owner. When loaded, its chalkboardView property is set to the newly
created ChalkboardView object.

Custom Objects
The NIB document in the TicTacToe project instantiates two classes that I created: TTTDocument and
ChalkboardView. This is accomplished by creating or selecting a generic object that Interface Builder
already understands, and then altering its class in the Identity Inspector, as shown in Figure 20-9.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

368

Figure 20-9. Changing the class of a NIB object

In the case of TTTDocument, I started in Xcode by subclassing NSDocument to create
TTTDocument. In Interface Builder, I chose the existing File’s Owner instance in the TTTDocument NIB
document and changed its class to TTTDocument. Interface Builder now treats the File’s Owner object
as an instance of TTTDocument. Interface Builder understands inheritance; TTTDocument inherits all
of the attributes, outlets, and behavior of NSDocument.

To create the ChalkboardView object, I first created a ChalkboardView class (a subclass of
NSView) in Xcode. In Interface Builder, I dragged a Custom View object from the Library into the
window, and then changed its class from NSView to ChalkboardView. The object inherits all of the base
class NSView attributes. That is, Interface Builder understands that it’s a view object that has a position,
size, visibility, subviews, and so on.

You create arbitrary class instances by dragging a generic Object from the Library into the NIB
and then changing its class to whatever you want. Object inherits only the basic properties of
NSObject—which is to say almost nothing. Once added, the object can be connected to any appropriate
outlet.

Interface Builder will not automatically provide editing of your class’s custom properties, but it
will recognize outlets and actions that you’ve defined. If you design a custom class that you’d like to have
appear in Interface Builder’s Library palette, with properties that are editable using the Attributes
palette, you can create an Interface Builder plug-in. That’s a somewhat involved process, but if you’re
interested, refer to the Interface Builder Plug-in Programming Guide.2

2 Apple Inc., Interface Builder Plug-in Programming Guide, http://developer.apple.com/documentation/
DeveloperTools/Conceptual/IBPlugInGuide/, 2007.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

369

Object Instantiation
Although I describe NIB objects as being created through standard unarchiving, the NIB loader makes a
few concessions for some objects. Here is how objects in a NIB are created:

• Custom view objects (subclasses of NSView) are initialized with -initWithFrame:. This is to be
consistent with programmatic creation of custom view objects.

• Non-view custom objects (subclasses of NSObject) are initialized with an -init message.

• All other objects provided by Interface Builder (i.e., those that appear in the Library palette) are
unarchived with the normal -initWithCoder: message. This also applies to any custom objects
that you’ve provide via an Interface Builder Plug-in.

Initializing custom objects via the standard initializer messages, -init and -initWithFrame:,
means that custom objects do not have to conform to NSCoding to be archived in a NIB document. It
also means you can instantiate virtually any object available to your application and connect it to other
objects in your NIB. The advantage of decoding objects using -initWithCoder: is that the NIB can
include preset property values. But since Interface Builder doesn’t allow you to edit the properties of
custom objects, it’s a moot point.

NIB Object Initialization
You will often want to perform some additional initialization. After all of the objects in a NIB document
have been created, each receives a single -awakeFromNib message—if implemented. The -awakeFromNib
message is sent after all the NIB objects have been created and all connections and bindings have been
set.

Take a moment to absorb what’s been covered so far. You’ve learned the tenets of the Model-
View-Controller design pattern, along with some popular variations. You’ve learned the essential
communication responsibilities of the data model, view, and controller objects. You’ve learned about
bindings, which are a very specific implementation of MVC communications. Using Interface Builder,
you’ve learned to instantiate objects in your application and establish the connections they will use to
communicate with each other. The only thing remaining is the actual classes that implement those roles.

The next few sections will examine each MVC role and introduce you to the basic set of
Objective-C and Cocoa technologies used to implement your own. The views section describes the
visual hierarchy of windows and their contents, how view objects work, the graphics coordinate system,
and the primitive drawing tools available to you. Later sections will describe data model objects and the
data modeling tools for creating them, followed by some of the pre-built controller objects that are
useful with bindings. In between is a detailed description of how user events get to view objects, and
how view objects pass the resulting actions to their controllers.

Views
The organization of view objects in Cocoa is remarkably similar to that in Java Swing and other GUI class
libraries. This isn’t surprising, since the logical organization of visual elements and controls in a
window-based user interface is fairly consistent across all modern platforms.

Table 20-1 lists the principal Swing classes and their Cocoa counterparts.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

370

Table 20-1. Fundamental Java and Objective-C View Classes

javax. swing Cocoa

JWindow NSWindow

JComponent NSView

 NSControl

AbstractButton

JButton NSButton (style=NSMomentaryPushInButton)

JComboBox NSComboBox

JPopupMenu NSPopUpButton

JCheckBox NSButton (style=NSSwitchButton)

JRadioButton NSButton (style=NSRadioButton)

JSpinner.DateEditor NSDatePicker

JSlider NSSlider

JLabel NSTextField

JTextArea NSTextField

JTextField NSTextField

JEditorPane NSTextView

JPasswordField NSSecureTextField

JProgressBar NSProgressIndicator

JList NSTableButton

JTable NSTableView

JTree NSOutlineView, NSBrowser

JScrollPane NSScrollView

JSplitPane NSSplitView

JTabbedPane NSTabView

JToolbar NSToolbar

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

371

When working with the Cocoa classes, be aware of these key differences:

NSWindow is not a subclass of NSView and is not, itself, a view object. Instead, NSWindow
has a contentView property that’s the root of the window’s view hierarchy. To add subviews
to a window, add them to window.contentView. This is initially a generic NSView object that
just acts as a container for the subviews, but you can replace it with any NSView subclass.

The dimensions of an NSView are described by two rectangle properties: its frame and its
bounds. The frame property describes the position and size of the view in its superview, and
is expressed in the superview’s coordinate system. Thus, an NSView’s frame is conceptually
equivalent to the bounds of a JComponent. An NSView’s bounds property is the logical
dimensions of its content expressed in view-relative coordinates, typically with an origin of
(0,0). If you do not set a custom bounds, it will reflect whatever the frame is in local
coordinates. If you set the bounds to something different, it defines a local coordinate system
independent of the frame (bounds).

Unlike Swing, all Cocoa view classes that send action events (i.e., all view objects that “do
something”—push buttons, text fields, sliders, etc.) are subclasses of NSControl. NSControl is
conceptually like AbstractButton, but is the base class for all Cocoa control objects, not just
buttons. NSControl defines four common concepts for all of its subclasses:

• Controls have a cell property that’s an NSCell object. The cell performs all of the drawing and
user interaction for the control; the NSControl object does not perform any drawing itself. In
effect, the NSCell is the control’s view object and NSControl is the controller object. There is a
default NSCell subclass for every instance of the NSControl subclass: NSButton uses an
NSButtonCell, NSSlider uses an NSSliderCell, and so on. To customize the look and feel of any
NSControl, replace its NSCell with your own custom subclass.

• Controls send action messages. NSControl defines action and target properties that can be set
programmatically or in Interface Builder. Typically, a control sends its action message
whenever it is activated or changed.

• Controls have an objectValue property that defines its content. This is not applicable to every
NSControl subclass, but for controls that represent or display a value, this is the object that
represents its content. For text fields, it’s a plain or formatted string, or anything that can be
converted into a string. For image views it would an image object. The convenience properties
stringValue, integerValue, doubleValue, and floatValue get or set the objectValue property.

• NSControl defines an enabled property, which all subclasses are expected to honor. NSControl
also defines a common set of editing, validation, and formatting behavior that is applicable to
some subclasses.

To remove an NSView from its superview, send the NSView object a -removeFromSuperview
message, or -removeFromSuperviewWithoutNeedingDisplay if you want to suppress an automatic
redraw. This differs from Java, where you must tell the superview to remove the particular
component.

NSView does not use layout managers. Instead, each NSView object has a set of resizing flags that
control how its subviews are repositioned. These flags are easily configured in Interface Builder. You
can disable this by setting the autoresizesSubviews property to NO. You can customize autoresizing
in one of three ways: override the superview’s -resizeSubviewsWithOldSize: to redefine how its
subviews are resized, override the subview’s -resizeWithOldSuperviewSize: to redefine how it
resizes itself, or set the postsBoundsChangedNotifications property to YES and observe the
NSViewBoundsDidChangeNotification notification. Also see the section “Animation” later in this
chapter. There are also a few view classes that accomplish nearly the same effect as using a layout
manager; NSMatrix provides essentially the same functionality as java.awt.GridLayout.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

372

NSView defines a tag property—useful for identifying individual subviews—but the property is
immutable and always returns 0 in the base class. NSControl and some other subclasses override
tag so that it’s a mutable property. If you want to create a custom subclass of NSView and assign
it a tag, you must override the tag property, make it mutable, and provide a place to store the
value.

NSTextField is a multi-purpose class that is used to display most text in a window. It can be
configured to display immutable text (a label), display and edit a single line of text (text field), or
display and edit multiline text (text area). It implements a rich set of properties that determine
how the text is displayed, aligned, scrolled, and wrapped.

■Tip When creating your own NSView subclass, use the Objective-C NSView subclass source file template in
Xcode. It creates a subclass with stub implementations of the commonly overridden NSView methods.

Now that you understand the basic organization of the view classes, you’ll want to start
populating views with subviews, and possibly even create your own custom view classes. To do that, you
need to understand the Cocoa drawing environment and how a custom NSView objects works, which
are described in the next few sections.

View Geometry
Drawing geometry is a little different in Cocoa than it is in Swing. Cocoa’s natural coordinate system is
inverted from the one used in Java, but can optionally be flipped so that it’s the same. Pen position and
drawing bounds are also different.

In Cocoa, all graphic values are floating-point numbers. This includes coordinates, sizes,
widths, and color values. Values like red or transparency are typically expressed as a range between 0.0
and 1.0, inclusive. This keeps all of the drawing primitives independent of resolution, display devices,
and media.

Coordinate Points
Coordinates in Cocoa are abstract points in a continuous coordinate system. Think of the coordinate
grid as infinitely thin lines on a plane. Most of the time, coordinates are mapped 1:1 to pixels that fill the
space between the lines (refer to Figures 20-11 and 20-12, later in this section).

Thinking in coordinates helps avoid “enditus”—that anxiety induced by the difference between
the drawing coordinates and the pixels that will actually be drawn. Cocoa drawing always occurs
between the logical coordinates. A line from coordinate 0.0 to 10.0 will draw a line exactly 10 coordinate
spaces long. Filling a 10 10 rectangle fills exactly 100 coordinate units’ worth of pixels. There are few
exceptions to this. One notable exception is Bezier lines that can have non-square line end caps, which
can cause it to draw beyond the end point of the line.

All drawing is anti-aliased, so it’s easy for drawing to partially affect pixels.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

373

Coordinate System
Cocoa’s natural coordinate system is Cartesian, which places the X,Y origin in the lower left-hand corner
of view, as shown in Figure 20-10.

Figure 20-10. Java and native Cocoa coordinate systems

This is Cocoa’s natural coordinate system, but it’s not the only one available. NSView defines a
readonly flipped property that’s queried by the graphics system. If an NSView subclass returns YES
when sent -isFlipped, Cocoa will “flip” the view’s Y-axis, creating a coordinate system identical to
Java’s. The base NSView class, view classes that draw images, and views that are containers (tab view,
split view, scroll view) all use natural, Cartesian, coordinates. View objects with content that “flows”
from the top down (table, outline, list, browser, and text views) use flipped coordinate systems. When
creating your own NSView subclass you’re free to override isFlipped and choose the coordinate system
that works most naturally with your content. The flipped property is assumed to be an immutable
property of the view; changing it spontaneously could have unpredictable results.

■Caution A flipped coordinate system changes the meaning of the frame rectangles for its subviews. When
working with frame rectangles, your code may have to consider if the coordinate system of the superview is
flipped.

In addition to flipping the coordinate system, an NSView’s frame or content can be arbitrarily
rotated and repositioned. Rotating the frame by setting the frameRotation property rotates the view in its
superview, but does not change the local coordinate system of the view’s content. Setting the
boundsRotation property changes the orientation of its content, but doesn’t change its location in the
superview. Setting the boundsOrigin property to something other than (0,0) shifts the coordinate system
used by the view when drawing.

NSView provides a raft of methods to convert between coordinate systems. The principal ones
are -[NSView convertPoint:toView:] and -[NSView convertPoint:fromView:]. These take a coordinate in
either the view’s local coordinate system or the coordinate system of another view and convert it to the
other. The other view can be any view within the window’s view hierarchy. If the view object parameter
is nil, it converts to or from the window’s base coordinate system. There are also methods to convert
coordinates between coordinate systems with arbitrary origins and an orthogonal set of methods that
convert rectangle and size structures.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

374

■Tip If you need to convert coordinates between windows, first convert the point to the window’s base
coordinate system, and then use the -[NSWindow convertBaseToScreen:] method to convert that to global
screen coordinates. Global screen coordinates can be converted to local window coordinates with -[NSWindow
convertScreenToBase:], which can then be converted to the local coordinates of any subview.

Like Java, Cocoa maintains a distinction between logical coordinates and physical screen pixels.
Most of the time this distinction can be ignored, as a unit in the coordinate space normally corresponds
to a single pixel on the screen. However, ever-changing screen resolutions, assistive technologies, and
hand-held devices are driving developers to take resolution-independent drawing seriously. Once you’re
comfortable with the basic drawing tools and techniques, I encourage you to read the Resolution
Independence Guidelines.3

Pen Orientation
Lines in both Swing and Cocoa are drawn using an imaginary pen that changes pixels by “dragging” the
pen shape from one set of coordinates to another. In Java, the pen extends down and to the right of
coordinates. In Cocoa, the pen is infinitely thin and is centered over the line defined by the logical
coordinates. The line shown in Figure 20-11 is drawn from coordinates (0,0) to (0,5) with a 3-pixel pen (a
3 3 pixel pen in Java).

Figure 20-11. Swing and Cocoa pen orientation

The illustration shows that the Cocoa pen has drawn an anti-aliased line that straddles four
pixel columns. That’s because the 3.0-pixel-wide pen is centered over the Y-axis, so the left edge of the
pen’s “brush” is at X coordinate -1.5 and the right edge is at 1.5. To draw a 3-pixel-wide line that
emulates the one drawn in Java, the Cocoa line would need to be drawn from coordinate (1.5,0.0) to
(1.5,8.0).

3 Apple Inc., Resolution Independence Guidelines, http://developer.apple.com/documentation/
UserExperience/Conceptual/HiDPIOverview/, 2007.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

375

Drawing Bounds
Cocoa rectangles, and any drawing method that draws inside a given bounds, always draws inside the
coordinate bounds of the rectangle. Figure 20-12 shows filling a 3 5 rectangle.

Figure 20-12. Filling rectangles in Swing and Cocoa

In Java, the rectangle drawn by Graphics2D.fillRect(Shape) with a 1 1-pixel pen extends 1 pixel
beyond the rectangle. In Cocoa, only pixels in the interior of the rectangle are filled. The code to fill the
rectangle was NSRectFill(NSMakeRect(0.0,0.0,3.0,5.0)).

Drawing Lines and Shapes
Java provides a number of primitives for immediately drawing lines, rectangles, ovals, and other shapes.
Cocoa provides only a collection of C functions that mostly fill rectangles and the versatile NSBezierPath
class. NSBezierPath is the catch-all object for drawing any kind of line, geometric shape, or both.

An NSBezierPath can consist of one or more line segments. Line segments can be straight or
curved, solid or dashed. Line segments can be connected or unconnected. They can form closed shapes,
like a star or an oval, or open shapes, like an arc. Once defined, the Bezier path object can be filled (draw
the interior of the shape) or stroked (draw the lines that define the shape). The path has a number of
properties that control how the joints and ends of lines are drawn. It also has a “winding rule” that
determines what constitutes the interior of a shape when the line segments intersect each other. The line
in Figure 20-11 was drawn with the code in Listing 20-2.

Listing 20-2. Drawing a 5.0-Pixel Line

NSBezierPath *path = [NSBezierPath new];
[path moveToPoint:NSMakePoint(0.0,0.0)];
[path lineToPoint:NSMakePoint(0.0,5.0)];
[path setLineWidth:3.0];
[path stroke];

There are convenience constructors that create a Bezier path that form an oval or rounded

rectangle.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

376

Custom Views
Custom view objects are created by subclassing NSView, in almost exactly the way you would subclass
JComponent in Swing. Your NSView class must provide, at a minimum, the following:

• An -(id)initWithFrame:(NSRect)frame initialization method. This is the designated
initialization method for all NSView subclasses.

• Optionally override -(void)drawRect:(NSRect)rect to provide custom drawing of your view’s
interior. This method is equivalent to javax.swing.JComponent.paint(Graphics).

The code in Listing 20-3 demonstrates a custom NSView subclass that draws the image stored
in the file Chalkboard.png. (This was the original version of the ChalkboardView class in the TicTacToe
project, before it was reworked to add animation.)

Listing 20-3. Custom NSView Drawing Method

- (void)drawRect:(NSRect)rect
{
 NSImage *chalkboardImage = [NSImage imageNamed:@"Chalkboard"];
 NSRect imageRect;
 imageRect.origin = NSMakePoint(0.0,0.0);
 imageRect.size = [chalkboardImage size];

 [chalkboardImage drawInRect:[self bounds]
 fromRect:imageRect
 operation:NSCompositeSourceOver
 fraction:1.0];
}

Invalidating and Drawing Views
Drawing in Cocoa is almost identical to that in Swing and similar GUI frameworks. When the contents of
a view need to be redrawn, the region it occupies is invalidated. To invalidate an NSView, set
needsDisplay to YES or send a -setNeedsDisplayInRect: message. The AppKit framework adds the
region, or subregion, of the view to the conglomerate area of the user interface that needs to be redrawn.
Eventually, the application framework sends each invalid view object a -drawRect: message. The
message includes the specific subregion of the view that requires drawing. Unless your view is very
complex, this can be ignored; all drawing is automatically clipped to the invalid region.

■Note The -drawRect: method is only responsible for drawing its content. A view is actually drawn when it
receives a -display message. This is the high-level message that recursively sends -drawRect: messages to
itself and all of its subviews. You typically don’t override -display, and you’d normally never send -display to a
view object. To redraw a view, set its needsDisplay property and let the framework add it to the queue of view
objects that need to be updated, and then wait to receive a -drawRect: message.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

377

Graphics Context
In Java, the graphics object used by the component to draw itself is passed to the
JComponent.paint(Graphics) method as a parameter. In Cocoa, all drawing occurs in the implied
context of the global NSGraphicsContext object. The framework will prepare the context for your view
before the -drawRect: method is sent. Your view draws in the local coordinate system defined by its
bounds property. You should not make any assumptions about the drawing context after your -drawRect:
method has returned.

The NSGraphics Context defines a number of properties that apply to all drawing commands:

• clipping region

• drawing color

• stroke (pen) color

• fill color

• font

• shadow

• affine transform

Quite unlike the organization of java.awt.Graphics, the methods that set these properties are
scattered among the classes that define them. Table 20-2 lists where to find the approximate equivalents
of java.awt.Graphics2D properties in the Cocoa framework.

Table 20-2. Graphics Context Property Settings

java.awt .Graph ics2D Cocoa Funct i on or Method

setClip(int,int,int,int) NSRectClip(…), NSRectClipList(…)

clipRect(int,int,int,int) -[NSBezierPath addClip]

setColor(Color) -[NSColor set], -[NSColor setStroke], -[NSColor setFill]

setBackground(Color) None: NSEraseRect(…) always paints with white. Fill a rectangle with
NSRectFill(…).

setFont(Font) -[NSFont set]

 -[NSShadow set]

setTransform(AffineTransform) -[NSAffineTransform set]

setComposite(Composite) -[NSGraphicsContext setCompositingOperation:]

Setting these properties and using them is identical to Java: set the desired properties, and then
invoke a drawing command. The drawing command will use the applicable properties of the current
graphics context, as demonstrated in Listing 20-4.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

378

Listing 20-4. Setting and Using Graphics Context Properties

NSBezierPath *path = …
[[NSColor blueColor] setFill]; // set fill color to blue
[[NSColor greenColor] setStroke]; // set stroke color to green
[path fill]; // fills a blue shape
[path stroke]; // draws a green line

The graphics context also includes a loose set of esoteric attributes and rendering hints, much

like Graphics2D, that influence scaling, anti-aliasing, color space adjustments, and so on.
Some of the properties of Graphics2D are not properties of the graphics context in Cocoa.

Instead, they are properties of the definition object. For example, the width and shape of lines drawn by
an NSBezierPath are properties of the Bezier path object, not the graphics context.

NSGraphicsContext has a compositingOperation property that is used for drawing commands
that do not specify an explicit compositing mode as a parameter.

The Graphics Context State Stack
You may need several graphics contexts, configured differently, to accomplish your drawing tasks. It
isn’t always easy to undo the changes made to any one graphics context, and all subsequent drawing
operations will be affected by any changes, so it’s easy for the current context to become “polluted.” This
is where the graphics context state stack is handy.

The current state of the graphics context can be pushed, preserving all of its properties on a
per-thread stack. You can then make whatever changes you want to the graphics context. When the
previous state is restored, any changes made since it was saved are discarded. This is particularly useful
when setting complex properties, like clipping, shadow, and affine transforms, that only apply to a few
drawing commands. Listing 20-5 demonstrates the basic pattern for pushing and restoring a graphics
context.

Listing 20-5. Saving and Restoring a Graphics Context

NSGraphicsContext *currentContext = [NSGraphicsContext currentContext];
NSRect circleRect = NSMakeRect(0.0,0.0,20.0,20.0);
NSBezierPath *path = [NSBezierPath bezierPathWithOvalInRect:circleRect];

// Fill the circle interior (with a drop shadow)
[currentContext saveGraphicsState]; // push context state
NSShadow *shadow = [NSShadow new]; // create a shadow
[shadow setShadowColor:[NSColor blackColor]];
[shadow setShadowOffset:NSMakeSize(3.0,-3.0)];
[shadow setShadowBlurRadius:1.5];
[shadow set]; // set shadow for all drawing
[[NSColor whiteColor] setFill]; // set fill color to white
[path fill]; // draw white circle + shadow
[currentContext restoreGraphicsState]; // restore previous context

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

379

// Draw the circle permimeter (without a shadow)
[[NSColor blueColor] setStroke];
[path stroke];

You must balance each -saveGraphicsState message with a -restoreGraphicsState message.

Drawing Tools
Like graphics context properties, the methods to draw objects are scattered among the objects
themselves. The exceptions are a few C functions that fill rectangles or draw multipart images. The most
commonly used C functions are listed in Table 20-3.

Table 20-3. Common Cocoa Drawing Functions

AppK it Draw Funct ion Descr ipt i on

NSEraseRect(NSRect) Fills a rectangle with white.

NSRectFill(NSRect) Fills a rectangle with the current color.

NSRectFillUsingOperation(NSRect,NSCompositingOperation) Fills a rectangle using a specific
compositing mode.

NSRectFillList(NSRect*,NSInteger) Fills a list of rectangles with the current
color.

NSFrameRect(NSRect) Draws a 1.0 width line inside the bounds
of the rectangle in the current color.

NSFrameRectWithWidth(NSRect,CGFloat) Draws a line inside the rectangle with
the given width in the current color.

There are about thirty of these functions. They are mostly utilities that make it easy to draw
objects like resizable buttons built from multiple images, embossed edges, drop shadows, dotted
outlines (used to indicate selections), and so on. Refer to the Application Kit Functions Reference4 for a
complete list.

The rest of the drawing methods are implemented in the objects that define them, sometimes
through a category. For example, the AppKit framework defines a category that attaches a
-drawAtPoint:WithAttributes: method to the NSString class. Table 20-4 lists common Java drawing
methods and where you’ll find close approximations in the Cocoa framework.

4 Apple Inc., Application Kit Functions Reference, http://developer.apple.com/documentation/Cocoa/
Reference/ApplicationKit/Miscellaneous/AppKit_Functions/Reference/, 2008.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

380

Table 20-4. Common Drawing Methods

java.awt .Graph ics2D Cocoa Funct i on or Method

drawImage(Image,int,int,int,int,int,int,int,
int,ImageObserver)

-[NSImage
drawAtPoint:fromRect:operation:fraction:]

clearRect(int,int,int,int) NSEraseRect(…), NSRectFill(…)

drawArc(int,int,int,int,int,int) -[NSBezierPath stroke]

drawString(AttributedCharacterIterator,int,int) -[NSString drawAtPoint:withAttributes:]

drawLine(int,int,int,int) -[NSBezierPath stroke]

drawOval(int,int,int,int) -[NSBezierPath stroke]

drawPolygon(Polygon) -[NSBezierPath stroke]

drawPolyline(int[],int[],int) -[NSBezierPath stroke]

drawRect(int,int,int,int) NSFrameRect(…)

drawRoundRect(int,int,int,int,int,int) -[NSBezierPath stroke]

fillArc(int,int,int,int,int,int) -[NSBezierPath fill]

fillOval(int,int,int,int) -[NSBezierPath fill]

fillPolygon(Polygon) -[NSBezierPath fill]

fillRect(int,int,int,int) NSRectFill(…)

fillRoundRect(int,int,int,int,int,int) -[NSBezierPath fill]

Animation
Core Animation, a recent addition to Mac OS X, has created an entirely new family of view objects,
specifically designed to animate the user interface. The new framework makes it remarkably easy to add
very sophisticated animations to your application.

The Core Animation classes are actually modeled a little closer to Swing than the traditional
Cocoa view classes. For example, Core Animation views use layout managers. There are a number of
important concepts to grasp when adding animation to your view objects:

• The central player in Core Animation is the CALayer class. This is logically equivalent to
NSView, but the two are not interchangeable. A layer has a size, position, content, and acts as a
container for any number of sublayers.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

381

• CALayer objects are functional view objects, capable of drawing basic data types, like images
and text, on their own. To create a custom layer, you can either subclass CALayer (much like
NSView) or defer drawing to a delegate object. Much like Java’s paint(Graphics) method, the
-[CALayer drawInContext:] is passed the graphics context reference that should be used for
drawing. The clipping bounds of the context contains the region that needs to be redrawn.

• To add animated objects to your NSView, set the root CALayer object in the NSView’s layer
property, then send it -setWantsLayer: passing YES. The NSView then becomes the host to a
hierarchy of CALayer objects, much the way NSWindow hosts a root contentView object.

• Animations occur by transitioning from one state to another; most animations are created by
simply setting a property and letting Core Animation do the rest. For example, setting the size
of a layer object spontaneously creates an animation that smoothly transitions the view from its
old size to its new one.

• The layer objects you add to a view are collectively called the layer-tree. Core Animation creates
a parallel set of objects, initially copies of the ones you added, collectively called the
presentation-tree. Presentation objects hold the properties that are being animated. In the
example of changing the size of a layer, the size of the layer-tree object changes immediately.
The size of its presentation object changes over time as the animation progresses. You can
examine a layer’s presentation object—say, to obtain the current position of a moving object—
by sending it a -presentationLayer message.

• Setting a new layer object property creates implicit animation. You can take control of this by
creating explicit animations. This gives you control of animation attributes, like speed and
acceleration. One common use of explicit animations is to suppress the animation altogether,
allowing you to change layer properties without animating them.

• Unlike NSView, CALayer employs a layout manager object, conforming to the informal
CALayoutManager protocol, to reposition and resize layers. Core Animation provides the
CAConstraintLayoutManager, which is very similar to javax.swing.SpringLayout.

• Core Animation uses Quartz and Core Graphics data types, rather than the Cocoa data types
discussed so far. Most data types are easy to translate; for example, there are NSRectToCGRect()
and NSRectFromCGRect() functions that convert between NSRect and CGRect structures. Other
data types, like NSImage and CGImage, are not so easy to translate. This, unfortunately, adds a
certain degree of tedium to using animation in a Cocoa application.

The TicTacToe project demonstrates using both implicit and explicit animations. For example,
simply removing an object from its view creates an implicit animation that causes the view to fade out
smoothly—rather than simply blinking out of existence.

 [xoLayer removeFromSuperlayer]; // (fade out)

Making property changes between the statements [CATransaction begin] and [CATransaction

commit] forms an explicit animation. You can set properties of the animation, like speed, or suppress
animation altogether before the -commit message groups and queues the animation effects to begin.

If you want to learn more about animation, refer to the Core Animation Programming Guide.5

5 Apple Inc., Core Animation Programming Guide, http://developer.apple.com/documentation/
Cocoa/Conceptual/CoreAnimation_guide/, 2008.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

382

iPhone View Classes
If you’re targeting the iPhone OS, you’ll be using a completely different set of view classes: UIView
instead of NSView, UIWindow instead of NSWindows, etc. However, they are conceptually very similar
to their Cocoa counterparts:

• UIView is functionally the same as NSView. The main properties, such as frame, bounds, and
subviews, are the same.

• Customizing a UIView is almost identical to customizing an NSView except that the drawing
context is a Quartz 2D drawing destination. All drawing is done using Core Graphics C
functions, like those described in the “Drawing Tools” section. The concepts and capabilities
(coordinate systems, clipping, Bezier paths, colors, graphic context stacks, etc.) are nearly
identical to those described for NSGraphicsContext—there’s just no object-oriented interface.

• UIViews are designed to be animated and come with a permanently installed CALayer object.

• The iPhone OS conforms to the MVC design pattern more rigorously than the Cocoa
framework. Almost every iPhone interface requires a UIViewController object. The framework
also provides a number of specialized subclasses, like UINavigationController and
UITabBarController. These are the classes that control your view objects and are the natural
place to add your application’s functionality. You can use or subclass these classes as you
please.

• Unlike NSCell, UICell is a subclass of UIView. So cell objects in the iPhone OS are fully
functional views that can be animated and can contain subviews. You can also design them in
Interface Builder.

• Many common user interface elements that you’re familiar with in Swing, like menu bars,
multiple windows, file chooser dialogs, and so on, simply do not exist in the iPhone OS.
Conversely, the iPhone OS provides many unique interface objects. While your knowledge of
Objective-C will give you tools to create iPhone applications, you’ll want to review Apple’s
guides that describe how iPhone user-interface design differs from that of traditional desktop
applications.

Advanced View Topics
Graphics programming in Cocoa is an expansive subject, worthy of an entire book itself. In addition to
the basic NSView classes discussed so far, here are some advanced topics you should be aware of:

• You can perform off-screen drawing into an NSImage. Create an NSImage with the desired
properties, and then send it a -lockFocus message. This sets up the current graphics context
with the NSImage as its output device. Subsequent drawing commands will be rendered
directly in the NSImage. Send -unlockFocus when you’re done drawing.

• An NSOpenGLView implements an entire 3D drawing environment in a single view object.

• WebKit embeds a fully functional web page as a view. It uses the shared WebKit framework, the
same one used by Safari, iTunes, and other applications. Many slick applications have been
delivered that simply present XHTML content in a WebKit view.

• Movies and other multimedia can be embedded using a QTMovieView.

• If you are writing an application that presents collections of images, the Image Kit framework
provides ready-made classes for displaying groups of images (think iPhoto), complete with
animation.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

383

• PDF Kit is a powerful framework for embedding, displaying, and creating PDF images and
documents. If you’ve ever dragged an icon outside a sidebar or dock and seen the little “poof”
animation, that animation is actually a multi-frame PDF document.

• The Quartz Composer is a framework that performs advanced, real-time, image filtering,
compositing, and transformations. It supports a plug-in architecture that allows for unlimited
effects.

Read more about these, and many other advanced drawing topics, in the Cocoa Drawing
Guide,6 WebKit Objective-C Programming Guide,7 and Quartz Composer Programming Guide.8

You now understand half of what a view object does. View objects are the intermediary between
your application and the user. They display the content of your application, but they also translate the
user’s actions. View objects have to be aware of what the user is doing (pressing keys, moving the
mouse), interpret it, and turn it into action messages to be sent to controller objects. The next few
sections describe how view objects participate in event handling.

Document Model
As you’ll discover in the next few sections, the organization of objects defines how your application
responds to events, and influences the design of your classes. It’s important to understand the
organization of objects in a document-based application. A document-based application is one that
opens the content of data files in windows, often allowing you to manipulate its content, and save the
results in a new or existing document file. The TicTacToe project is a document-based application. You
can save a game as a tictactoe document, open old games, and revert to a previously saved game.

The key objects in document-based applications are show in Figure 20-13.

Figure 20-13. Document-based application objects

6 Apple Inc., Cocoa Drawing Guide, http://developer.apple.com/documentation/Cocoa/Conceptual/
CocoaDrawingGuide/, 2009.
7 Apple Inc., WebKit Objective-C Programming Guide, http://developer.apple.com/documentation/Cocoa/
Conceptual/DisplayWebContent/, 2008.
8 Apple Inc., Quartz Composer Programming Guide, http://developer.apple.com/documentation/GraphicsImaging/
Conceptual/QuartzComposer/, 2008.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

384

A document-based application has a single NSDocumentController object. This is the object
responsible for creating new document objects (when you choose New or Open from the menu),
associating document types with the document classes that implement them, and keeping track of the
documents that are currently open. An application normally only defines a single document type, but
NSDocumentController can arbitrarily map multiple file types to multiple document classes. When you
choose to open an existing document, the NSDocumentController uses the file’s type to determine what
subclass of NSDocument to instantiate.

■Tip When creating a document-based application project in Xcode, start with the Cocoa Document-based
Application template. It will save you a lot of work later.

The data model of a document is an NSDocument object. NSDocument, or your NSDocument
subclass, is the object responsible for actually encoding and decoding the data in the document file.
Each document object can be viewed in one or more windows, each of which is controlled by an
NSWindowController/NSWindow pair. Normally, a document only appears in a single window, but that
can be overridden to allow the user to open multiple views to the same data.

Non-document windows are not associated with a document object, and often don’t have a
window controller, either. Document and non-document windows can be freely mixed.

Events and Responders
While views and drawing in Objective-C are similar to what’s in Java, event handling is completely
different. Basically, you need to forget everything you know about Java events and listeners.

User events—mouse events, keyboard events, scroll-wheel events, tablet events, and track pad
events—drive the user interface. How events are processed, and how the applications responds to them,
is roughly divided into two phases: The event phase and the response phase. Each phase employs a
chain of objects, defined dynamically by the current state of the application interface.

An event begins in the hardware drivers of the operating system and enters the application via
the main run loop, where it is passed to the application object. From there, it follows a path down into
the hierarchy of document, window, view, and subview objects until it finds one to interpret it. This
sequence of objects is called the event chain.

Once an object interprets the event, it becomes an action. Actions travel up the hierarchy of
subview, view, window, document, and application objects searching for one that will respond to that
action. This sequence of objects is called the responder chain.

This section describes the organization of objects in an application and how that interacts with
event and action handling. It describes how events are distributed and how your view objects can
receive basic events, but that’s probably superfluous; most applications don’t work with events directly.
The core Cocoa view classes already interpret events and turn them into actions that interact with the
responder chain. So enjoy the events section, but pay particular attention to the responder chain section
that follows. That’s the key to understanding how Cocoa applications work.

The Dynamic Application
One of the important concepts in a Cocoa application is the idea that how an event or action is handled
is determined by the chain of objects implied by the current state of the user interface. To understand
this, you need to learn some Cocoa terminology. Start with the user interface depicted in Figure 20-14.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

385

Figure 20-14. Main and key windows, first responder

Cocoa applications form a hierarchy of objects that begin with a single NSApplication (non-
document applications) or NSWindowController (document-based applications) object at the top.
Underneath the application object may be NSDocument objects. Below those are the NSWindow
objects, which contain a nested tree of NSView objects. Figure 20-14 shows the visible portion of that
hierarchy.

Event and action processing is directed by the windows and views that are active. Cocoa refers
to these using specific terms, listed in Table 20-5.

Table 20-5. Active Window and View Terminology

Term Descr ipt i on

Active Application The currently active, frontmost application.

Main Window The single, frontmost, active application window. Most menu commands apply
to the main window. The main window has a visually distinct title and border,
which differentiates it from the inactive windows behind it.

Key Window The window containing the first responder.

First Responder The view object that is active or has the current “focus.” This is typically the
object that responds to keystrokes. A window object can also be the first
responder.

Initial First
Responder

The view in a non-key window that will become the first responder (by default)
when the window becomes the key window. The initial first responder is
meaningful in a main window that is not the key window.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

386

The situation in Figure 20-14 is not that common, but it is useful in making the distinction
between the main window and the key window. The user has an open spreadsheet document in the
main window, then opened a floating palette and selected a text field. In this situation, the text field in
the palette becomes the first responder, which makes the palette window the key window. But the
palette window doesn’t cause the document window to become inactive, so it’s still the main window.

A more typical arrangement occurs while the user is editing the content of a cell in the
spreadsheet (identified as the initial first responder in Figure 20-14). The spreadsheet cell becomes the
first responder. That makes the document window both the main window and the key window.

As the user switches windows and views, the chain, or “path,” of objects from the first
responder to the top-level application object changes. This implicitly alters how both events and actions
are processed by the application. Objects don’t actively participate in these changes—that is, they don’t
receive “you are now in the responder chain” events. An object simply is, or is not, in the responder
chain.

Events
Events are delivered to the application by the operating system in response to mouse movement, mouse
clicks, keyboard activity, scroll-wheel movement, and so on. The path that an event takes varies
depending on the event type—keyboard events do not follow the same path as mouse events, for
example. You may be interested in creating objects that receive and respond to events, but you’re
unlikely to get involved in the actual dissemination of events. If you have event processing or filtering
needs that aren’t described in this section, refer to the Cocoa Event-Handling Guide.9

Event Objects
Events enter an application via one of the event ports attached to the main run loop. The first thing the
main run loop does with an event is to encapsulate it in an NSEvent object. An NSEvent object has the
properties listed in Table 20-6.

Table 20-6. NSEvent Properties

Proper ty Descr ipt i on

type The type of events. Typical events are NSLeftMouseDown,
NSLeftMouseDragged, NSLeftMouseUp, NSKeyDown, NSKeyUp, and
NSScrollWheel

timestamp The time the event occurred.

window The NSWindow associated with the event.

locationInWindow The mouse position, in window coordinates, when the event occurred.

clickCount The number of mouse clicks that have occurred in rapid succession.
Used to distinguish single clicks from double and triple clicks.

9 Apple Inc., Cocoa Event-Handling Guide, http://developer.apple.com/documentation/Cocoa/
Conceptual/EventOverview/, 2009.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

387

modifierFlags Keyboard modifiers (Shift, Option, Command, Control, Caps Lock)
that were being held down when the event occurred.

characters The string of characters associated with the key event.

charactersIgnoringModifiers The string associated with the key event, devoid of any key modifiers
(Control, Option, …).

isARepeat YES if the key event was caused by holding down a key until it auto-
repeats.

keyCode The virtual keyboard code of the key.

Not all properties are applicable to all events, and there are many other obscure properties (like

pressure) that apply only to drawing tablet or force-feedback input devices. You will almost never need
to create NSEvent objects yourself, but every event handling method will receive the event as an
NSEvent object.

Key Events
Key events are distributed down the object hierarchy, usually in search of the first responder. The type of
event, and several layers of filtering, heavily influence key event dispatching. Key events are passed first
to the application object, then to the key window, to the first responders, and in some cases on to the
menu bar.

In simplified terms, a key event goes through the following steps:

1. The operating system translates the hardware key codes into the user’s current language. The
key event is filtered through the system-wide key bindings, and then passed to system
components that have registered to intercept global key events. This is how “hot keys” are
processed.

2. The key event is pushed onto the event queue of the active application.

3. The main run loop of the application pulls the next key event, wraps it in an NSEvent object,
and sends it to the NSApplication object in a -sendEvent: message.

4. If the key might be a key equivalent (typically a command+key combination), the application
sends a -performKeyEquivalent: message to the key window, which interprets it or passes it to
its first responder. If neither responds to the event, it’s sent to the application’s menu bar.

5. The message -sendEvent: is sent to the key window.

6. If the key is an interface control key (Tab, Right Arrow, Page Down, Home), as defined by the
currently active view, the window and/or control translates that into an action and sends the
appropriate key action message (-setNextKeyView:, -forward:, -pageDown:,
-moveToBeginningOfDocument:, respectively) to the window or its first responder.

7. If the event is not a key equivalent or interface control, the first responder receives a -keyDown:,
-keyUp:, or -flagsChanged: message.

8. If there isn’t a first responder and the window doesn’t process the key event, it’s passed to the
menu bar.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

388

Most views need only override -keyDown:, and possibly -keyUp: or -flagsChanged:, to
automatically receive regular key events. If you are writing a view that edits text—and I would discourage
you from trying—your view object must conform to the NSTextInput protocol.

To be honest, key event processing is significantly more complex than this, but unless you’re
writing an application that needs to filter keystrokes or create key bindings, you can generally ignore the
more esoteric aspects of key-event processing. A complete description can be found in the Cocoa Event-
Handling Guide.

Mouse Events
Mouse and touch events are distributed using the geometry of the user interface. A mouse event is
always associated with a location and a window, which is used to determine the recipient of the event.

Mouse Down Event
Mouse event processing usually beings with a mouse down event:

1. When the mouse is clicked, the system’s WindowServer determines which application should
receive the event.

2. The main run loop of the application sends the mouse event to the NSApplication object via a
-sendEvent: message.

3. NSApplication uses the location of the event to determine which window the event occurred in,
and forwards the event to that window via another -sendEvent: message.

4. The window’s -sendEvent: method uses the location to find the subview corresponding to the
click and sends that view a -mouseDown: message.

The first mouse down event in a view will attempt to make it the first responder. This makes the
view the recipient of key events; its window becomes the key window and inherently redefines the
responder chain, described later in this chapter. To be eligible, a view must return YES when sent an
-acceptsFirstResponder message. By default, NSView returns NO. If the view accedes, it will be
designated the first responder and receives a -becomeFirstResponder message. When the window is
deactivated, or another view becomes the first responder, the view receives a matching
-resignFirstResponder message.

A view can also control “click through.” Normally, a mouse click in an inactive window activates
the window, but does nothing else with the event. Clicking a control in an inactive window normally
requires two clicks: the first to activate the window and the second to send a -mouseDown: event to the
view. The view can change this behavior by overriding -acceptsFirstMouse:. When a window is activated
via a mouse click, it queries the view underneath the click coordinate by sending it an
-acceptsFirstMouse: message. If the view returns YES, the window will immediately send the view a
-mouseDown: message—both activating the window and clicking the view with a single event. By default,
NSView returns NO for -acceptsFirstMouse:.

Mouse Drag and Mouse Up Events
Once a view receives a -mouseDown: message, it may then receive -mouseDragged: and -mouseUp:
messages. These messages are collectively referred to as the mouse tracking messages. The same view
object will receive subsequent -mouseDragged: and -mouseUp: messages, even if the mouse is dragged
outside the frame of the view. -mouseDragged: is only sent when the mouse is moved while its button is
held down. The view may receive many -mouseDragged: messages, or none at all. A view will never
receive a -mouseDragged: or -mouseUp: message before a -mouseDown: message.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

389

If you want your view to do something interesting during a mouse drag gesture, you’ll probably
want to override all three methods. If you’re only interested in implementing click behavior, override
-mouseUp: and test the location of the event to see that the mouse is still positioned over your object.
The -mouseUp: handler in the TicTacToe project is shown in Listing 20-6.

Listing 20-6. -mouseUp: Event Handler

- (void)mouseUp:(NSEvent*)theEvent
{
 NSPoint loc = [self convertPoint:[theEvent locationInWindow] fromView:nil];

 SquareIndex index;
 for (index=0; index<9; index++) {
 if (NSPointInRect(loc,[ChalkboardView rectOfSquare:index])) {
 [[self document] playerClickedSquare:index];
 break;
 }
 }
}

The method in Listing 20-6 receives the mouse event information via an NSEvent object. Events

are always in the window’s coordinate system, so the first thing it does is convert the location into the
view’s local coordinate system. It then searches to see if the user released the mouse inside any of the
nine squares on the playing board. If they did, the view sends a -playerClickedSquare: message to its
controller object, which will make the move and update the game board.

Another approach to handling mouse drag events is to stay in your -mouseDown: method and
start a nested run loop until the drag is complete. This is, essentially, a “modal” mouse drag loop, that
blocks the rest of your application from executing until the drag is finished. The Cocoa Event-Handling
Guide includes an example of a mouse tracking loop.

Mouse Tracking
Mouse movement during a drag gesture is provided automatically. Mouse movement while the mouse
buttons are up is normally ignored. Mouse movement is common, computationally expensive, and
normally of no interest to the application.

There are, however, instances where you want to be notified of normal mouse movement in
your interface. There are two techniques for tracking the mouse while the mouse buttons are up.

The first method is to request mouse-moved events from the window:

1. Set the acceptsMouseMovedEvents property of the window containing the view to YES.

2. Implement -mouseMoved: methods in your subviews.

Once acceptsMouseMovedEvents is set, the window will begin sending -mouseMoved: messages to
its views, much the way it distributes other mouse events.

The second method is to define a mouse tracking rectangle. A mouse tracking rectangle defines
a discrete area of your view where mouse tracking is desired. It notifies your object when the mouse
moves into the region, moves around in the region, and again when it leaves the region. This is much
more efficient than fielding every mouse movement, but it is a little more complicated to set up:

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

390

1. Implement the methods -mouseEntered:, -mouseExited:, -mouseMoved: and -cursorUpdate: in
an object. This could be your view object, or something else.

2. Create an NSTrackingArea object using the rectangle of the area to track (in view coordinates)
and the owner object created in step 1. You may also specify additional tracking options or
provide a dictionary of context information.

3. Attach the NSTrackingArea object to an NSView object by sending it an -addTrackingArea:
message.

Once attached, the owner object will receive mouse entered, moved, exited, and cursor update
events.

The Responder Chain
The responder chain is the sequence of objects that starts with the first responder and goes up through
the object hierarchy. The responder chain is the principal mechanism for determining how your
application responds to commands and other actions.

The complete responder chain is shown in Figure 20-15.

Figure 20-15. The responder chain

The responder chain processes action messages, which are Objective-C messages of the form
-(IBAction)action:(id)sender, by examining each object in the chain to determine if it responds to
(implements) the given message. If it does, the object receives the message. If not, the process examines

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

391

the next object in the chain until an object that responds to the message is found, or there are no more
objects.

The two first responders in Figure 20-15 require a little explanation: the first responder is the
single object that’s the “focus” of the interface. When a window loses key window status, it remembers
the object that was formally its first responder. This becomes the window’s initial first responder. The
initial first responder becomes first responder automatically when the window becomes key—assuming
some other view doesn’t become first responder in the process. When the key and main windows are
different, the responder chain starts with the first responder, goes through the key window, and then to
the initial first responder of the main window.

Much of the responder chain in Figure 20-15 is optional, and it’s unusual to find a situation
where the entire chain is traversed. If the key window has no first responder object, the responder chain
begins with the key window itself. If the key and main windows are the same, the responder’s superview
hierarchy is only traversed once. Windows without controllers do not include a window controller in the
chain. Non-document windows don’t have controllers or document objects and jump directly to the
application. Window and application objects might not have delegates. Non-document-based
applications do not have a document controller object, so the responder chain in those applications
ends with the application or its delegate.

If you’re developing an iPhone application, the responder chain principles are the same. The
responder chains themselves will tend to be fairly simple. An iPhone application only displays a single
UIWindow at a time, so the key and main windows are always one and the same. Actions passed to a
UIView are first passed to its UIViewController, if it has one, before going to its enclosing UIView.

Action Messages
Actions, menu status queries, services, and error interpretations are all filtered through the responder
chain. The simplest explanation of how the responder chain integrates with your application is to use an
example. Take the application depicted in Figure 20-14, and consider the four menu commands Copy,
Close, Save, and New. Each of these commands sends an action message (-copy:, -performClose:,
-saveDocument:, and -newDocument:, respectively) to the first responder.

• The -copy: action message is sent to the first responder. The first responder in Figure 20-14 is
an editable text field that implements clipboard functionality. It responds to the -copy:
message by transferring the current selection to the application’s pasteboard (clipboard).

• The first responder does not implement the -performClose: method, nor do any of its
superviews. The key window does, and it responds to -performClose: method by closing itself.

• The first responder does not implement the -saveDocument: message. Neither do any of its
superviews, the key window, its delegate, the views in the main window, the main window, its
delegate, or the window controller. The NSDocument object is the object responsible for
document management and is the object that implements the Save, and Save As… commands.
It responds to the -saveDocument: message by encoding the contents of the active document
and writing it to a file.

• The -newDocument: message passes through every object in the responder chain until it reaches
the single document controller object, created for document-based applications. The
document controller creates a new document and opens an untitled window.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

392

The application’s response to commands changes, depending on the state of the responder
chain:

• If another view object was the first responder, the application might not respond to the Copy
command.

• Other windows in the application ignore the Close action, because they aren’t in the responder
chain.

• If the main window is not a document window, there would be no NSDocument object in its
responder chain, so that window wouldn’t respond to a Save action.

• The application always responds to the New command, because the top-level object in the
chain consistently responds to it.

Sending Action Messages
An action message sent to a specific object is called a targeted action. An action sent to the responder
chain is an untargeted action. An action consists of an Objective-C message identifier (SEL) and an
object identifier (id). If the target identifier points to an object, it’s a targeted action. If the target
identifier is nil, it’s an untargeted action.

Actions are sent by sending the NSApplication object a -sendAction:to:from: message. The
target (to:) parameter is either an object (targeted) or nil (untargeted). The application determines if
the target responds to the action, or attempts to find a target that responds to the action in the
responder chain. If successful, the target object is sent the action message and -sendAction:to:from:
returns YES. You can send actions programmatically, but NSControl views, menu items, and keyboard
equivalents usually send them for you.

In Interface Builder, an action is defined as a message/object pair. If the action is connected
directly to another object in the NIB document, it defines a targeted action. Connecting an action to the
First Responder placeholder NIB object creates an untargeted action that will be delivered to the current
first responder at runtime.

Menu Actions
The menu items in a Cocoa application are another prominent use of the responder chain. When you
drop down an application menu, only those items that are applicable to the current interface state are
enabled. Menu items that are inappropriate are disabled.

The Cocoa framework determines this dynamically by examining the objects in the responder
chain. Each menu item is associated with an action. When the user drops down a menu, the responder
chain is searched to find objects that will respond to each item in the menu. If there’s an object in the
chain that responds to an action, that menu item is enabled. If not, it’s disabled.

■Note You can search the responder chain for objects yourself using -[NSApplication targetForAction:
to:from:].

The beauty of this system is that views and controller do not spend any time or effort
determining what menu items should be enabled. It’s determined empirically, based on the collection of
objects in the responder chain.

To implement a menu command in an application that performs some function and is
automatically enabled and disabled, do the following:

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

393

1. In the object responsible for implementing the command, create an action method:
-(IBAction)action:(id)sender.

2. Create a menu item in Interface Builder and set its action to the message identifier in step 1,
connected to the first responder.

That’s it. That’s all you have to do. The actions sent by the menu item will be automatically
connected to the appropriate object in the responder chain, or disabled otherwise.

In the TicTacToe project, the TTTDocument object implements two actions: -reset: and
-playForPlayer:. The menu items Reset and Play One Move send these actions. There’s also a Reset
button that sends the same action. Open and close TicTacToe document windows and see how this
affects that state of the menu items.

Disabling Action Menu Items
While the automatic appearance of menu items based on the objects in the responder chain is cool,
there are situations where an object in the responder chain implements an action, but the action is still
not always appropriate. The Cocoa framework makes this easy to accomplish, again using the responder
chain.

I omitted a step about menu items in the previous section. Once the responder to a menu item
is located, the menu framework checks to see if it implements a -validateMenuItem: method. If it does, it
gives the object a chance to disable the item by sending it that message, passing the menu item to
consider. If the object returns YES, the menu item is enabled. Otherwise, it’s disabled just as if the object
did not respond to the action.

In the TicTacToe project, both the Reset and Play One Move menu items send actions to the
responder chain. Without doing anything else, both would be enabled as long as the document object is
in the responder chain. But the game’s reset command only makes sense once the game has started, and
the play command is only applicable when it is the user’s move. Listing 20-7 implements a
-validateMenuItem: method that accounts for these conditions.

Listing 20-7. Menu Item Validation Method

- (BOOL)validateMenuItem:(NSMenuItem*)menuItem
{
 if ([menuItem action]==@selector(reset:)) {
 return game.isStarted;
 } else if ([menuItem action]==@selector(playForPlayer:)) {
 return (game.nextPlayer==USER_PLAYER);
 }
 return [super validateMenuItem:menuItem];
}

The code in Listing 20-7 examines the menuItem to determine which command is being

validated. It then determines whether the menu item should be enabled or not, based on the state of the
game. This implementation identifies the menu item by the action that it sends. Another popular
technique is to assign unique tag values to the menu items in Interface Builder, which make them easy
to identify (i.e., if ([menuitem tag]==1001) …). You can use any identification method you choose. Your
object will only receive -validateMenuItem: messages for the actions it responds to.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

394

Designing with the Responder Chain
The responder chain is also used for some other miscellaneous purposes. It’s used to translate error
objects (see Chapter 14) and to determine what services are available (services is a plug-in architecture
that lets other applications interact with yours).

The responder chain will deeply influence how, and specifically where, you implement the
functionality of your applications. When designing Cocoa applications, keep these guidelines in mind:

Implement a menu item action in the object that’s in the responder chain when the menu
command is applicable, and not in the chain when it isn’t.

In general, actions should be implemented in the root object that encompasses the domain of the
action:

• A command that reads or writes the document should be implemented in the document object,
not the window.

• Actions that change the state of the data model should be implemented in the controller or data
model object, not the view.

• Views should implement editing actions directly, but the final change should be sent as a
discrete action to a controller or data model.

Implement your target action in the logically correct object in the hierarchy, even if it duplicates a
function elsewhere and does nothing but send a single message to another object. It’s easier than
trying to fight the organization of the responder chain.

That finally brings us to the end of view objects. Your application’s entire look and feel is
implemented by view objects, so they have a lot to do. The next couple of sections will explore data
model objects and, finally, controller objects.

Data Models
A data model is essentially any object that holds the data of your application. The form the data takes,
how it gets used, and how it’s presented to the user is as varied as there are applications. There are four
general types of data model objects in a Cocoa application: legacy table and tree data sources, collection
controllers, Core Data objects, and custom classes.

Legacy Table and Tree Models
Like Swing, Cocoa provides views that display a collection of objects as tables and trees. These can
interface with a legacy data model provider, very similar to that in Swing, or be bound to an
NSObjectController object. The equivalent view and data source classes are listed in Table 20-7.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

395

Table 20-7. Collection View Classes

Swing Cocoa

javax.swing.JTable NSTableView

javax.swing.table.TableModel NSTableDataSource

javax.swing.table.TableCellRenderer NSCell

javax.swing.table.JTableHeader NSTableHeaderView

javax.swing.table.TableColumn NSTableColumn

javax.swing.JTree NSOutlineView, NSBrowserView

javax.swing.tree.TreeModel NSOutlineViewDataSource

javax.swing.tree.TreeCellRenderer NSCell

If you’re used to working with Swing tables and trees, you’ll be very comfortable with the Cocoa
classes. The architecture of each is remarkably similar:

• NSTableView implements a tabular view of a collection of data.

• The data for a table is supplied by a dataSource object that conforms to the NSTableDataSource
informal protocol.

• Cell renderers are subclasses of NSCell.

• An NSTableView has a collection of NSTableColumn objects that define the title and cell
renderer for each column in the table.

• NSOutlineView displays a tree of data in a hierarchical view where parent nodes can be
expanded and collapsed, and subnodes are indented.

• The data for an outline is supplied by a dataSource object that conforms to the
NSOutlineViewDataSource informal protocol.

• Unlike Java, NSOutlineView is a subclass of NSTableView, where it inherits its column and cell
behavior. The equivalent of a tree view in Swing is a single column NSOutlineView. One column
is designated as the tree; the rest of the view can display other tabular data associated with each
node. The List view in the Finder is an example of an outline view.

• NSBrowserView is an alternate tree viewer that displays each level of tree in separate columns.
The data is obtained from the view’s delegate object. The Column view in the Finder is an
example of a browser.

Your data source object must conform to an informal protocol, either NSTableDataSource or
NSOutlineViewDataSource. The protocol defines a number of required methods that supply cell and
node data to the view. There are also a number of optional methods, many of which define whether the

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

396

cells in the view are editable or not. If you omit these methods, the collection is immutable and the view
is display only.

■Caution A common mistake is to overlook the fact that NSCell conforms to NSCopying. NSCell objects get
copied—a lot. If you subclass NSCell, you must make sure it still conforms to the NSCoping protocol. You may
have to override -copyWithZone:.

iPhone developers will find a similar, but vastly simplified, set of view classes for displaying
tables and lists. The principal class is UITableView. It communicates with objects that conform to
UITableViewDelegate and UITableViewDataSource in much the same way that NSTableView uses an
NSTableDataSource object. UITableView splits it queries between its delegate, which provides display
and behavior properties, and its data source, which provides individual cell values. In practice, the two
sources are often the same object—usually the view’s controller. These are the only data sources for
iPhone table views, since the iPhone OS does not support the Cocoa bindings technology that allows
collection controllers, described in the next section, to work.

While the traditional data source objects are considered “legacy” interfaces, they still afford a
few advantages. They are particularly well suited to data that’s generated dynamically. They can provide
better performance than the modern data model interfaces. And they’re similar in organization to other
frameworks, like Swing, which might make porting easier.

Collection Controllers
The “modern” way of populating an NSTableView, NSOutlineView, NSBrowser, or any other collection
view is by binding the content property of the view to an NSArrayController or NSTreeController. The
advantage is that you don’t have to create your own data model or data source class, just bind your
existing compatible data model—typically an NSArray—to the controller and the controller to the view;
the framework takes care of the rest. How to create the bindings is not entirely intuitive. Unlike the
traditional data source method, which is connected to the table view object, table bindings are set for
each column:

• Bind the individual columns of a table to an array controller, specifying the model key path of
the object’s property to display in that cell. To display the object itself, set the model key path to
“self.”

• Bind the individual columns of an outline to a tree controller, specifying the model key path of
the object’s property to display in that cell. To display the object itself, set the model key path to
“self.”

The controller’s key—that is, the whole collection of objects being bound to—will typically be
the same for all of the columns, ensuring that the cells in a row all reflect the same object. However, your
data can be organized into multiple arrays or trees—just make sure that the collections agree.

While the mechanics of supplying the data is done for you, you are still free to customize the
look and feel of the view by supplying your own cell renderers, specifying column properties, and
customizing the header view, just as you would with the traditional data models.

NSCollectionView is a modern view that largely replaces NSMatrix and works with bindings.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

397

Core Data
Core Data is a data modeling and persistence framework that delivers soup-to-nuts data modeling and
storage. It handles many of the “tasks associated with object life-cycle and object graph management,
including persistence.”10 If you want to use Core Data objects as a (or the) data model of your
applications, you will generally follow these steps:

1. Create your Xcode project using one of the Core Data or Core Data Document–based project
templates. These templates include generic support for encoding your Core Data objects as an
XML document, or documents. This isn’t difficult to set up, but starting with the templates
saves you the effort.

2. The default persistence store (i.e., the place where Core Data encodes and saves your data model)
will be an XML document. You can override this to store your objects in an SQLite database or
some other format; just note that creating a custom storage format can be rather involved.

3. Design your data model in Xcode using the Data Modeling tool. You define entities (objects) that
have attributes (properties) and relationships (connections). When you build your application,
the model is compiled into a Managed Object Model (mom) file that’s loaded at runtime. This
model is used to create your data model objects.

4. If you are creating a document-based Core Data application, make sure you use or subclass
NSPersistentDocument. It handles much of the document-level management of your
document data model for you.

5. Use NSManagedObject instances created by Core Data pretty much as you would use your own
custom data model objects. You can get and set their properties, add them to collections, bind
views to them, observe them, and so on. The Core Data framework takes care of the fetching,
caching, and encoding of your objects automatically.

One initially confusing aspect, particularly for Java developers, is the dynamic nature of the
NSManagedObject class. Each entity in your data model instantiates an NSManagedObject at runtime;
every object managed by Core Data must be an instance of NSManagedObject, or a subclass. While it’s
possible to subclass NSManagedObject in special cases, most of the time you don’t. The attributes that
you assign the entity in the data modeling tool become Objective-C properties at runtime—and it’s done
without subclassing. NSManagedObject uses Objective-C’s ability to respond to messages and
properties that it doesn’t implement and “synthesize” those properties at runtime. So, if you define an
entity with an integer property named tag, you can treat that object at runtime as though it was a
subclass of NSManagedObject with an int tag property: if (entity.tag>0) entity.tag -= 1. See
Chapters 6 and 10 for more details.

The Core Data tools and frameworks make it really easy to start using Core Data in your
application. But Core Data is actually a deep and complex architecture that’s highly customizable and
extensible. For a complete explanation, consult the Core Data Programming Guide.11

Custom Data Model Objects
Often the best data model solution is to simply define a class and populate it with data. The
TicTacToeGame class in the TicTacToe project is a custom data model.

When designing an application, first look at the ready-made classes like NSArray,
NSArrayController, and Core Data to see if they can effectively model your data. If they can, then by all
means use the solution that’s already solved. If not, then create your own classes or subclass existing
ones, like NSManagedObject and NSObjectController.

10 Apple Inc., Core Data Programming Guide, http://developer.apple.com/documentation/
Cocoa/Conceptual/CoreData/, 2009.
11 Ibid.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

398

Controllers
The Cocoa framework provides a few basic controller objects, like NSApplication and NSDocument. It
also provides mediating controller objects that are subclasses of NSController.

Custom Controllers
Most controller objects are going to be custom classes or subclasses of NSApplication and NSDocument.
Controllers implement the actions of your application; providing custom actions will eventually involve
implementing your own methods.

One consideration is to decide whether to implement your application’s actions in a subclass of
a controller or in a delegate.

• If you need to override the methods of a controller, create a subclass.

• If it makes sense to extend the controller class with new instance variables, create a subclass.

• If you are only implementing custom action methods, implement them in the delegate.

• If you need sets of actions that can be “plugged-in” to different controllers to create customized
behavior, implement them in a delegate.

• If your solution has a mixture of needs, you can implement both: subclass the controller and
attach a delegate.

There are a couple of steps to creating subclasses of NSApplication and NSDocument, because
these objects are created by the framework—by the NSApplicationMain() function and the
NSDocumentController, respectively. If you subclass them, you have to tell the framework which class to
instantiate.

Creating a Custom NSApplication
To create a subclass of NSApplication, do the following:

1. Define a subclass of NSApplication.

2. Set the Principal Class (NSPrincipalClass) value in the application’s Info.plist file to the name
of the class created in step 1.

The NSApplicationMain() function reads the Info.plist property file at startup and uses that
value to create the single application object. You can obtain a reference to the application object using
+[NSApplication sharedApplication] or through the global NSApp variable.

If you create a subclass of NSApplication, you can directly access its outlets and actions in
Interface Builder by changing the class of the Application placeholder object in your NIB documents to
your custom class.

To create an NSApplication delegate:

1. Define your class. Populate it with your application delegate methods and actions.

2. In Interface Builder, open the MainMenu NIB document and create an instance of your custom
object. Do this by dragging in a generic Object from the library and changing its class to the one
created in step 1.

3. Connect the delegate outlet of the Application placeholder object to your delegate object.
When the MainMenu NIB document is loaded during application startup, the NIB connection

will cause an instance of your delegate object to be created and set as the application object’s delegate.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

399

Your delegate object can elect to receive many notifications, which are especially handy for
doing additional initialization and housekeeping at startup and before shutdown. The most commonly
implemented delegate methods are -applicationWillFinishLaunching:, -applicationDidFinish
Launching:, and -applicationWillTerminate:.

Creating a Custom NSDocument
To use a subclass of NSDocument, follow these steps:

1. Define a subclass of NSDocument.

2. In the application’s Info.plist file, locate the entry in the Document Types
(CFBundleDocumentTypes) collection that corresponds to the document type associated with
your custom class. Most applications only edit one document type. Change the Cocoa
NSDocument Class (NSDocumentClass) value to the name of the class created in step 1.

The NSDocumentController will use the class name it finds in the DocumentType record to
instantiate the correct subclass of NSDocument whenever it creates a new NSDocument object. It’s also
possible to do this programmatically by subclassing NSDocumentController and overriding its
-documentClassForType: method, but that’s exceptional.

To create a document delegate, follow these steps:

1. Define your class. Populate it with your document delegate methods and actions.

2. In Interface Builder, open the NIB document associated with your document (the name is
defined by your document’s windowNibName property). Create an instance of your custom object.
Do this by dragging in a generic Object from the library and changing its class to the one
created in step 1.

3. Connect the delegate outlet of the File’s Owner placeholder object to your delegate object. The
NSDocument object is the owner of the NIB when it is loaded. If you also created a custom
subclass of NSDocument, you may want to change the class of the File’s Owner placeholder to
your custom document subclass.

When NSDocumentController creates a new document window, it begins by creating an
instance of NSDocument or your custom subclass of NSDocument. It then queries the object to obtain
the name of the NIB document it should load to create the user interface. Loading the NIB also creates
your delegate instance and connects it to the document object.

Alternatively, you could override the initialization of your custom NSDocument class and
programmatically create and attach your delegate object. But that would only be advantageous if you
needed your delegate object before the NIB was loaded.

NSController Controllers
The Cocoa framework provides several concrete subclasses of NSController: NSObjectController,
NSArrayController, NSTreeController, and NSDictionaryController. Each implements everything you
need to bind an existing collection of objects to a view, manage selection, edit individual values, insert
new objects, remove objects, and sort the objects in the collection.

There’s just one rule you need to remember when working with NSController objects: most
NSControllers do not observe their collections. The core collection classes, like NSArray, are not Key-
Value Observing compliant. If you make a change to a managed collection, do it through the controller.
The controller provides methods to insert, remove, and change objects in the collection. Those methods
also perform all necessary notifications and housekeeping.

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

400

It’s really unlikely that you ever need to create your own subclass of NSController. If you do, the
process is explained in the Cocoa Bindings Programming Topics guide.

About TicTacToe
This chapter has used the TicTacToe application, shown in Figure 20-16, to illustrate many aspects of
designing and implementing a Model-View-Controller design. There are, however, still a few odds and
ends that might be confusing to someone new to Cocoa application development, which could bear
some elucidation.

Figure 20-16. TicTacToe application

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

401

Info.plist
An application’s Info.plist document is critical to its function and to customization. The Info.plist
file is a property file that contains a number of key values:

• The class of the program’s application object: Always a subclass of NSApplication, this is the
object that gets created during program startup.

• The name of the main NIB file: This is the NIB file that’s loaded during program initialization. It
usually contains all of the core user interface elements, like the menu bar, and often contains
instances of global objects, like the application delegate.

• The application’s identifier: This uniquely identifies the application to the world. TicTacToe’s
application identifier is com.apress.learnobjc.TicTacToe.

• The name of the file that contains the application’s icon.

• A list of Document Type records: Each record maps a file type (extension) to the NSDocument
class that implements it. It also supplies a user-readable description of the document and its
icon to Launch Services.

An Info.plist can also contain default preferences, a version number, and a user-readable
copyright message, among other things. Basically, Info.plist contains all of the application’s public
metadata.

Undo
The TicTacToe application uses the Undo manager. Adding basic undo to your application is extremely
easy:

1. When a change is made in your document, obtain the document’s undo manager and “push”
the following triplet: a target object, an Objective-C message identifier, and an object
containing the previous value. If you were implementing a drawing program, resizing a shape
might push a -setShapeSize: message along with the previous size of the shape.

2. It’s also polite to name the action that was pushed. Using the drawing program again, setting
“Resize Shape” as the name of the action will display “Undo Resize Shape” in the Edit menu to
the user. This makes it easier for the user to understand what will be undone.

3. When the user selects the Undo command, the undo manager gets the last action pushed onto
the stack and sends the object the message with the value. In this example, the drawing object
would be sent a -setShapeSize: message with its old size.

4. The undo action handler should also push the (now) previous size as a “redo” action. The
messages are exactly the same for pushing an action onto the undo stack—when undoing an
action, the undo manager switches into a temporary mode that pushes actions onto a “redo”
stack. This allows your single -setShapeSize: method to act as a “do,” “undo,” and “redo”
method.

TicTacToe’s data model is trivially simple, so it just pushes the entire state of the document
(game and message) on the undo stack after each move. A more complex data model would push
specific changes, but the principle is the same.

To simplify both the undo and open/save commands, the TTTDocument implements a
contents property that returns the entire document state as a single, immutable object.

There is a hidden advantage to implementing undo: the undo manager also maintains the
document’s isDocumentEdited property for you. This tells the document controller when your document

CHAPTER 20 ■ MODEL-VIEW-CONTROLLER PATTERN

402

contains unsaved changes. If you don’t use the undo manager, you must manage the isDocumentEdited
property yourself.

Resources
Resources are data files that are copied into your application’s bundle. The framework defines many
resource files, such as NIB documents, managed object model files, and the executable. You are free to
add whatever additional files you want. Typically these are image, sound, and help files, but there are no
limitations. A program can include frameworks, even another application, as part of its resources.

You can get a resource using the NSBundle class. Classes like NSImage often have convenience
methods, like +[NSImage imageNamed:], that will locate a resource file and load it into an object.

Localized Resources
Almost any resource in an application bundle can be organized by language. These are referred to as
localizations. A localized version of a file is stored inside a variant subfolder. NSBundle will first look in
the variant folder for the user’s preferred languages. If it can’t find a suitable file (or variant) it will use
the file that’s not in any variant. This allows you to create alternate language-specific versions for any
resource. This includes NIB documents, images, sounds, lists of strings that are shown to the user, and
so on.

In Xcode, localized versions of resources are shown as sub-documents to the main document.
To create a localized version, open the Info window for the file and choose Add Localization. Every
localization is a completely separate file that you must maintain.

Summary
This chapter covered a lot of ground. The Model-View-Controller design pattern permeates the Cocoa
frameworks. It influences many different aspects of an application, and brings together the user
interface, business logic, and data organization. It involves a dizzying number of classes and employs
almost every communications technique discussed so far.

Understanding, and embracing, MVC is a critical step in understanding Cocoa applications.
You also learned about key development tools, like Interface Builder, that leverage many Objective-C
technologies to create complex user interfaces with almost no code.

C H A P T E R 2 1

■ ■ ■

403

Lazy Ini t ia l izat ion Pattern

The lazy initialization pattern embodies the just-in-time philosophy of data delivery. It delays the
construction of values or data structures until that data is actually needed. Lazy initialization is a popular
design pattern in both Java and Objective-C. Objective-C adds another level by implementing its own
lazy initialization of class structures, which you can integrate into your own classes.

Implementing the Pattern
Here’s how to implement the lazy initialization pattern:

1. Create a private instance or private static variable that will eventually contain the data, but is
initialized with a placeholder value (typically nil).

2. Wrap the variable in a property that provides a public getter method.

3. In the getter method, test the variable for its placeholder value. If it has not been initialized,
construct it and save the results. Return the newly, or previously, constructed data to the
sender.

Lazy initialization is usually applied when

• The memory or resources required to create or calculate the data is excessive and can be
deferred.

• There is a significant possibility that the data will never be needed.

• The prerequisites of the data do not exist, or are not available, when an object is instantiated.

Deferring the calculation of a value, or assembling a large or complex data structure, preserves
memory and CPU resources until the data is actually needed. In some cases, the data may never be
needed, resulting in a substantial performance improvement. Perceived performance can be improved
by deferring operations to a later time, allowing the application to immediately update a display or
respond to a user event, while more complex and time-consuming work is done later. The canonical
example is a photo browsing application that immediately presents placeholder or thumbnail images to
the user while the actual images are loaded in the background. The user perceives the application as
performing faster, because it’s more responsive, even if the actual amount of time it takes to load and
display the final images is slower.

 An object constructor that creates an object, quickly and with minimal memory demands, is
called a lightweight constructor. The constructor can be lightweight even if the object is heavyweight.
Using the example above, an image view object could be initialized almost instantly with nothing more
than the dimensions of the image and a URL where the image data can be obtained. The constructor,
and the properties needed to update a window or lay out a multipage document, is lightweight and
available immediately—even if the actual image takes megabytes of memory and several seconds to
obtain.

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

404

Lazy Initialization of Global Variables
Lazy initialization is often applied to global variables. An advantage that Java has over Objective-C is its
ability to declare object initializers for static variables. The Java runtime evaluates the initialization
statements when the class is loaded.

public final static String[] ColorNames = new String[] { "White", "Black" };

A truly global variable in Objective-C is a static C variable. Static C variables can only be

initialized with constants or static addresses, and this initialization occurs before the Objective-C
runtime starts. To achieve the same effect requires some form of automatic initialization that occurs
after the Objective-C runtime has started.

The ChessPiece class, shown in Listings 21-1 and 21-2, accomplishes this by defining two class
properties: +[ChessPiece colorNames] and +[ChessPiece pieceNames]. These return an immutable
collection of strings that can be used to convert a color or piece enum (int) into a string. They use lazy
initialization to create, and save, the immutable arrays the first time they are requested.

Listing 21-1. ChessPiece.h

#import <Cocoa/Cocoa.h>

typedef enum {
 White=0,
 Black
} Color;

typedef enum {
 Pawn=0,
 Rook,
 Bishop,
 Knight,
 Queen,
 King
} Piece;

@interface ChessPiece : NSObject {
 Color color;
 Piece piece;
}

+ (NSArray*)colorNames;
+ (NSArray*)pieceNames;
+ (NSDictionary*)images;

+ (NSString*)nameOfPiece:(Piece)piece color:(Color)color;

- (id)initWithPiece:(Piece)thePiece color:(Color)theColor;

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

405

@property (readonly) Color color;
@property (readonly) Piece piece;
@property (readonly) NSString *name;
@property (readonly) NSImage *image;

@end

Listing 21-2. ChessPiece.m

#import "ChessPiece.h"

static NSArray *ColorNames;
static NSArray *PieceNames;
static NSDictionary *PieceImages;

@implementation ChessPiece

+ (NSArray*)colorNames
{
 if (ColorNames==nil) {
 ColorNames = [NSArray arrayWithObjects:
 @"White",
 @"Black",
 nil];
 }
 return ColorNames;
}

+ (NSArray*)pieceNames
{
 if (PieceNames==nil) {
 PieceNames = [NSArray arrayWithObjects:
 @"Pawn",
 @"Rook",
 @"Bishop",
 @"Knight",
 @"Queen",
 @"King",
 nil];
 }
 return PieceNames;
}

+ (NSDictionary*)images

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

406

{
 if (PieceImages==nil) {
 // Load the entire set of playing piece images
 NSMutableDictionary *images = [NSMutableDictionary new];
 Color color;
 Piece piece;
 for (color=White; color<=Black; color++) {
 for (piece=Pawn; piece<=King; piece++) {
 NSString *name = [ChessPiece nameOfPiece:piece color:color];
 [images setObject:[NSImage imageNamed:name] forKey:name];
 }
 }
 PieceImages = [NSDictionary dictionaryWithDictionary:images];
 }
 return PieceImages;
}

+ (NSString*)nameOfPiece:(Piece)piece color:(Color)color
{
 return [NSString stringWithFormat:@"%@ %@",
 [[ChessPiece colorNames] objectAtIndex:color],
 [[ChessPiece pieceNames] objectAtIndex:piece]];
}

- (id)initWithPiece:(Piece)thePiece color:(Color)theColor
{
 self = [super init];
 if (self != nil) {
 piece = thePiece;
 color = theColor;
 }
 return self;
}

@synthesize color, piece;

- (NSString*)name
{
 return [ChessPiece nameOfPiece:piece color:color];
}

- (NSImage*)image
{
 return [[ChessPiece images] objectForKey:[self name]];
}

@end

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

407

It also defines a +[ChessPiece images] class property that contains the images of all the chess
pieces. This is lazily initialized the first time a ChessPiece object attempts to acquire its graphic
representation. It’s a time-consuming and resource-intensive initialization, and it requires that the
application be fully initialized and running since it depends on locating image resource files in its
application bundle.

The Class +initialize Method
Objective-C classes are themselves initialized lazily. The structure that defines a class is not constructed
until the first message is sent to the class. This keeps the runtime nimble, allowing it to start up with the
minimum amount of initialization required. But Objective-C goes one step further; after initializing the
Class object, and before any other messages are sent, the runtime sends a single +initialize message to
the newly created Class object. You can override this method to perform additional class-level
initialization.

By exploiting the +initialize message, the ChessPiece class can be significantly simplified, as
shown in Listings 21-3 and 21-4.

Listing 21-3. ChessPiece.h Using +initialize

#import <Cocoa/Cocoa.h>

typedef enum {
 White=0,
 Black
} Color;

typedef enum {
 Pawn=0,
 Rook,
 Bishop,
 Knight,
 Queen,
 King
} Piece;

@interface ChessPiece : NSObject {
 Color color;
 Piece piece;
}

+ (NSString*)nameOfPiece:(Piece)piece color:(Color)color;

- (id)initWithPiece:(Piece)thePiece color:(Color)theColor;

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

408

@property (readonly) Color color;
@property (readonly) Piece piece;
@property (readonly) NSString *name;
@property (readonly) NSImage *image;

@end

Listing 21-4. ChessPiece.m Using +initialize

#import "ChessPiece.h"

static NSArray *ColorNames;
static NSArray *PieceNames;
static NSDictionary *PieceImages;

@implementation ChessPiece

+ (void)initialize
{
 if (PieceImages==nil) {
 ColorNames = [NSArray arrayWithObjects:
 @"White",
 @"Black",
 nil];
 PieceNames = [NSArray arrayWithObjects:
 @"Pawn",
 @"Rook",
 @"Bishop",
 @"Knight",
 @"Queen",
 @"King",
 nil];
 // Load the entire set of playing piece images
 NSMutableDictionary *images = [NSMutableDictionary dictionary];
 Color color;
 Piece piece;
 for (color=White; color<=Black; color++) {
 for (piece=Pawn; piece<=King; piece++) {
 NSString *name = [ChessPiece nameOfPiece:piece color:color];
 [images setObject:[NSImage imageNamed:name] forKey:name];
 }
 }
 PieceImages = [NSDictionary dictionaryWithDictionary:images];
 }
}

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

409

+ (NSString*)nameOfPiece:(Piece)piece color:(Color)color
{
 return [NSString stringWithFormat:@"%@ %@",
 [ColorNames objectAtIndex:color],
 [PieceNames objectAtIndex:piece]];
}

- (id)initWithPiece:(Piece)thePiece color:(Color)theColor
{
 self = [super init];
 if (self != nil) {
 piece = thePiece;
 color = theColor;
 }
 return self;
}

@synthesize color, piece;

- (NSString*)name
{
 return [ChessPiece nameOfPiece:piece color:color];
}

- (NSImage*)image
{
 return [PieceImages objectForKey:[self name]];
}

@end

In this updated version, all of the global initialization is performed once in the +initialize

method. All tests to check if the static variables have been initialized can be removed. All code can safely
assume that +initialize has executed before any other method (class or instance) is executed. As an
added bonus, the name and image cache collections are now completely private, accessible only to the
code in ChessPiece.m.

Externally, the implementations shown in Listings 21-2 and 21-4 behave the same: a -name
message returns the name of the chess piece, and an -image message returns its image. Internally the
only significant difference is the timing. In Listing 21-2, the array of images will be loaded the first time
an -image message requests it. In Listing 21-4, the array of images will be created the first time the
ChessPiece class is used, regardless of whether any code ever requests an image.

CHAPTER 21 ■ LAZY INITIALIZATION PATTERN

410

When using the +initialize method to perform class-level lazy initialization, keep these points in
mind:

• The first message sent to a class, or the first attempt to create an instance of a class, creates the
Class object for that class and sends it an +initialize message.

• The +initialize method is only sent once per class. That can be deceiving, however, because
Objective-C subclasses inherit the class methods of their superclass. So a class may receive
additional +initialize messages for its subclasses. This is why the +initialize method in Listing
21-4 tests to see if PieceImages has already been initialized. This test could be omitted if it was
known that ChessPiece had no subclasses.

• The Class object is completely initialized before the +initialize message is sent, so it’s safe to call
other class methods or create instances of itself from within the +initialize method.

Summary
Lazy initialization is a useful design pattern for both global and instance variables. It optimizes
performance by constructing only the information that’s actually needed, and defers optional and
ancillary calculations to a more appropriate time. Objective-C’s lack of static initialization statements
can be largely overcome by employing the +initialize class method to programmatically construct any
global variables the class needs to function.

C H A P T E R 2 2

■ ■ ■

411

Factory Pattern

The factory pattern consigns the task of creating objects to another class, called the factory. Factories
take many forms. Factories can implement convenience constructors that simplify the construction of
common objects by encapsulating repetitive or tedious preparations. They can be used to implement
singletons and reusable pools of objects. But the most significant use is deciding the class of the new
object on behalf of the client—the pattern we’ll explore in this chapter. (A singleton factory pattern is
described in Chapter 23).

The factory pattern is employed when the client—the code creating the object—cannot easily
determine the class of the new object because it cannot know, or should not know, what class to create.
There is often a choice between several closely related subclasses, where the correct choice depends on
decisions or implementation details that are hidden from the client. In Java, this is usually implemented
using static methods or abstract factory objects. Objective-C has a powerful pattern called a class cluster
that implement the factory pattern right in the object’s initializer.

URL Factory
A good example of the factory pattern would be a URL object factory. URL objects can be created from
URI strings (i.e., "http://www.apress.com/"). The URL class library might define several URL classes: a
base URL class, along with specialized subclasses like FileURL, HTTPURL, SecureURL, and so on.
Requiring the client of the URL class to decide which subclass to instantiate by examining the string
would be a really poor design. Instead, the base URL class would declare a URL object factory,
something like this:

public static URL makeURL(String uri);

The static URL.makeURL(String) method would parse the string, determine its protocol, and

then create and return an object of the appropriate class. The string "file://users/home/file.data"
might return an instance of FileURL, while the string "https://secure.apress.com/" might return an
instance of SecureURL. The actual subclass, and the logic used to determine what class is created, is of
little concern to the client.

Matrix Class
The characteristic evolution of a class will be used to explore this genre of the factory pattern. The
example used is a Matrix class that encapsulates the concept of a mathematical matrix and performs
simple matrix operations. Listing 22-1 shows the initial version of the class in Java and Listing 22-2
shows an equivalent implementation in Objective-C.

The listing omits much of the minutiae of the actual implementation, so that you can
concentrate on the factory pattern. The complete implementation is available for download at
http://www.apress.com/ in the Source Code/Downloads section.

CHAPTER 22 ■ FACTORY PATTERN

412

Listing 22-1. Initial Matrix Class in Java

public class Matrix
{
 protected int rows;
 protected int columns;
 double[] values;

 public Matrix(double[] values, int rows, int columns)
 {
 this(values,true,rows,columns);
 }

 protected Matrix(double[] values, boolean copyValues, int rows, int columns)
 {
 this.rows = rows;
 this.columns = columns;
 if (copyValues) {
 this.values = new double[values.length];
 System.arraycopy(values,0,this.values,0,rows*columns);
 } else {
 this.values = values;
 }
 }

 public int getRows()
 {
 return rows;
 }

 public int getColumns()
 {
 return columns;
 }

 public double getValue(int row, int column)
 {
 return values[row*columns+column];
 }

CHAPTER 22 ■ FACTORY PATTERN

413

 public boolean isIdentity()
 {
 if (rows!=columns)
 return false;
 …
 return true;
 }

 public Matrix add(Matrix matrix)
 {
 double[] sumArray = new double[rows*columns];
 …
 return new Matrix(sumArray,false,rows,columns);
 }

 public Matrix multiply(Matrix right)
 {
 double[] productArray = new double[rows*right.columns];
 …
 return new Matrix(productArray,false,rows,right.columns);
 }

 public Matrix multiply(double scalar)
 {
 double[] productArray = new double[rows*columns];
 …
 return new Matrix(productArray,false,rows,columns);
 }

 public Matrix transpose()
 {
 double[] transArray = new double[rows*columns];
 …
 return new Matrix(transArray,false,columns,rows);
 }
}

The basic design of the Java Matrix class, shown in Listing 22-1, is straightforward. It

encapsulates a two-dimensional matrix of floating-point numbers. A new Matrix object is created from a
one-dimensional array of numbers and is immutable. The dimensions of the matrix are obtained
through the row and column properties. Matrix operations are performed by the add(Matrix),
multiply(Matrix), multiply(double), and transpose() methods. An identity property returns true if the
object represents an identity matrix.

CHAPTER 22 ■ FACTORY PATTERN

414

Listing 22-2. Initial Matrix Class in Objective-C

@interface Matrix : NSObject {
 @protected
 NSUInteger rows;
 NSUInteger columns;
 __strong double *values;
}

- (id)initIdentityWithDimensions:(NSUInteger)dimensions;
- (id)initWithValues:(const double*)valueArray
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount;

@property (readonly) NSUInteger rows;
@property (readonly) NSUInteger columns;
@property (readonly,getter=isIdentity) BOOL identity;

- (double)valueAtRow:(NSUInteger)row column:(NSUInteger)column;

- (Matrix*)addMatrix:(Matrix*)matrix;
- (Matrix*)multiplyMatrix:(Matrix*)matrix;
- (Matrix*)multiplyScalar:(double)scalar;
- (Matrix*)transpose;

@end

@interface Matrix () // private methods

- (id)initWithAllocatedArray:(__strong double*)array
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount;

@end

#define VALUE(ARRAY,COLUMNS,ROW,COLUMN) ARRAY[((ROW)*(COLUMNS))+(COLUMN)]
#define IVALUE(ROW,COLUMN) VALUE(values,columns,ROW,COLUMN)
#define SIZEOFARRAY(ROWS,COLUMNS) (sizeof(double)*(ROWS)*(COLUMNS))

CHAPTER 22 ■ FACTORY PATTERN

415

@implementation Matrix

- (id)initIdentityWithDimensions:(NSUInteger)dimensions
{
 self = [super init];
 if (self != nil) {
 values = MatrixAllocateEmptyArray(dimensions,dimensions);
 NSUInteger i;
 for (i=0; i<dimensions; i++)
 IVALUE(i,i) = 1.0;
 }
 return self;
}

- (id)initWithValues:(const double*)valueArray
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount
{
 __strong double *dupArray = MatrixCopyArray(valueArray,rowCount,colCount);
 return [self initWithAllocatedArray:dupArray rows:rowCount columns:colCount];
}

- (id)initWithAllocatedArray:(__strong double*)array
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount
{
 self = [super init];
 if (self!=nil) {
 rows = rowCount;
 columns = colCount;
 values = array;
 }
 return self;
}

@synthesize rows, columns;

- (BOOL)isIdentity
{
 if (rows!=columns)
 return NO;
 …
 return YES;
}

CHAPTER 22 ■ FACTORY PATTERN

416

- (double)valueAtRow:(NSUInteger)row column:(NSUInteger)column
{
 return IVALUE(row,column);
}

- (Matrix*)addMatrix:(Matrix*)matrix
{
 __strong double *sumArray = MatrixAllocateArray(rows,columns);
 …
 return [[Matrix alloc] initWithAllocatedArray:sumArray
 rows:rows
 columns:columns];
}

- (Matrix*)multiplyMatrix:(Matrix*)matrix
{
 __strong double *productArray = MatrixAllocateArray(leftMatrix.rows,columns);
 …
 return [[Matrix alloc] initWithAllocatedArray:productArray
 rows:leftMatrix.rows
 columns:columns];
}

- (Matrix*)multiplyScalar:(double)scalar
{
 __strong double *productArray = MatrixAllocateArray(rows,columns);
 …
 return [[Matrix alloc] initWithAllocatedArray:productArray
 rows:rows
 columns:columns];
}

- (Matrix*)transpose
{
 __strong double *transArray = MatrixAllocateArray(columns,rows);
 …
 return [[Matrix alloc] initWithAllocatedArray:transArray
 rows:columns
 columns:rows];
}

@end

CHAPTER 22 ■ FACTORY PATTERN

417

double *MatrixCopyArray(const __strong double *srcArray,
 NSUInteger rows,
 NSUInteger columns)
{
 __strong double *duplicateArray = MatrixAllocateArray(rows,columns);
 NSCopyMemoryPages(srcArray,duplicateArray,SIZEOFARRAY(rows,columns));
 return duplicateArray;
}

double *MatrixAllocateEmptyArray(NSUInteger rows, NSUInteger columns)
{
 __strong double *emptyArray = MatrixAllocateArray(rows,columns);
 bzero(emptyArray,SIZEOFARRAY(rows,columns));
 return emptyArray;
}

double *MatrixAllocateArray(NSUInteger rows, NSUInteger columns)
{
 __strong double *array = NSAllocateCollectable(SIZEOFARRAY(rows,columns),0);
 return array;
}

The Objective-C implementation, shown in Listing 22-2, is very similar in functionality to the

Java version, although there are some notable implementation differences. It defines some utility C
functions (MatrixCopyArray, MatrixAllocateEmptyArray, and MatrixAllocateArray) to make it easier to
create and manipulate arrays of primitive floating-point values. It also declares some convenience
macros (VALUE, IVALUE, and SIZEOFARRAY) for efficiently accessing the value array. But beyond that, it has
essentially the same constructors, properties, and operations as its Java cousin.

Finally, Listing 22-3 shows some code that illustrates how Matrix classes are created and used to
perform matrix operations in both Java and Objective-C.

Listing 22-3. Matrix Class Demonstration Code

Java
double[] a_values = {
 1.0, 0.0, 2.0,
 -1.0, 3.0, 1.0
 };
double[] b_values = {
 3.0, 1.0,
 2.0, 1.0,
 1.0, 0.0
 };

CHAPTER 22 ■ FACTORY PATTERN

418

double[] i_values = {
 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0
 };
Matrix A = new Matrix(a_values,2,3);
Matrix B = new Matrix(b_values,3,2);
Matrix I = new Matrix(i_values,3,3);
System.out.println("A="+A);
System.out.println("B="+B);
System.out.println("I="+I);
System.out.println("B+B="+B.add(B));
System.out.println("A*3="+A.multiply(3.0));
System.out.println("A*B="+A.multiply(B));
System.out.println("A*I="+A.multiply(I));
System.out.println("Atr="+A.transpose());

Objective-C
double a_values[] = {
 1.0, 0.0, 2.0,
 -1.0, 3.0, 1.0
 };
double b_values[] = {
 3.0, 1.0,
 2.0, 1.0,
 1.0, 0.0
 };
double i_values[] = {
 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0,
 };
Matrix *A = [[Matrix alloc] initWithValues:a_values rows:2 columns:3];
Matrix *B = [[Matrix alloc] initWithValues:b_values rows:3 columns:2];
Matrix *I = [[Matrix alloc] initWithValues:i_values rows:3 columns:3];
NSLog(@"A=%@",A);
NSLog(@"B=%@",B);
NSLog(@"I=%@",I);
NSLog(@"B+B=%@",[B addMatrix:B]);
NSLog(@"A*3=%@",[A multiplyScalar:3.0]);
NSLog(@"A*B=%@",[A multiplyMatrix:B]);
NSLog(@"A*I=%@",[A multiplyMatrix:I]);
NSLog(@"Atr=%@",[A transpose]);

CHAPTER 22 ■ FACTORY PATTERN

419

The Matrix objects in both Java and Objective-C are simple, clean, and compact. There’s only
one problem: as the dimensions of a matrix grow, the computations required to add and multiply two
matrices increases exponentially. In this particular application, it’s discovered that a significant number
of matrices are the identity matrix. Multiplication can be optimized if it’s known that at least one of the
two matrices is an identity matrix.

One solution is to first test the two matrices of an operation to determine if either is the identity
matrix. This could significantly reduce the computations to multiply two matrices when one of them is
an identity matrix. However, it adds additional overhead to all multiplications and only manages to
replace exponential growth with linear growth.

You decide that the most efficient solution is to create a subclass of Matrix that represents
identity matrices. The subclass will override the math methods with optimized versions. The next two
sections will contrast a solution in Java, using class factory methods, with an equivalent solution in
Objective-C, using class clusters.

Java Matrix Factory
Listings 22-4 and 22-5 show the updated portions of the Matrix classes in Java, with the significant
changes highlighted. The new version uses a factory method to create Matrix objects.

Listing 22-4. Modified Java Matrix Class

public class Matrix {
 protected int rows;
 protected int columns;
 double[] values;

 public static Matrix makeMatrix(double[] values, int rows, int columns)
 {
 return Matrix.makeMatrix(values,false,rows,columns);
 }

 protected static Matrix makeMatrix(double[] values,
 boolean copyValues,
 int rows,
 int columns)

 {
 if (isIdentityMatrix(values,rows,columns)) {
 return new IdentityMatrix(values,copyValues,rows);
 }
 return new Matrix(values,copyValues,rows,columns);

 }

 protected static boolean isIdentityMatrix(double[] values,
 int rows,
 int columns)

CHAPTER 22 ■ FACTORY PATTERN

420

 {
 if (rows!=columns)
 return false;
 …
 return true;
 }

 protected Matrix(double[] values, int rows, int columns)
 {
 this(values,true,rows,columns);
 }

 protected Matrix(double[] values, boolean copyValues, int rows, int columns)
 {
 this.rows = rows;
 this.columns = columns;
 if (copyValues) {
 this.values = new double[values.length];
 System.arraycopy(values,0,this.values,0,rows*columns);
 } else {
 this.values = values;
 }
 }

 …

 public boolean isIdentity()
 {

 return false;
 }

 public Matrix add(Matrix matrix)
 {
 double[] sumArray = new double[rows*columns];
 …
 return Matrix.makeMatrix(sumArray,false,rows,columns);
 }

 public Matrix multiply(Matrix right)
 {
 return right.leftMultiply(this);
 }

CHAPTER 22 ■ FACTORY PATTERN

421

protected Matrix leftMultiply(Matrix leftMatrix)
 {
 double[] productArray = new double[leftMatrix.rows*columns];
 …

 return Matrix.makeMatrix(productArray,false,leftMatrix.rows,columns);
 }

 public Matrix multiply(double scalar)
 {
 double[] productArray = new double[rows*columns];
 …
 return Matrix.makeMatrix(productArray,false,rows,columns);
 }

 public Matrix transpose()
 {
 double[] transArray = new double[rows*columns];
 …
 return Matrix.makeMatrix(transArray,false,columns,rows);
 }
}

Here’s what changed in the Matrix:

• The public Matrix(…) constructor was made protected and replaced with a public static
makeMatrix(…) factory method. Any client that needs to create a Matrix object must be rewritten
to call Matrix.makeMatrix(…) instead of new Matrix(…).

• The makeMatrix(…) factory determines if the values in the matrix describe an identity matrix,
using a static version of the old isIdentity() test. If the values do, the factory creates and
returns an instance of IdentityMatrix; otherwise, it creates a Matrix object.

• The multiply(Matrix) method was reengineered to call the protected leftMultiply(Matrix)
method of the right operand object. This allows a subclass of Matrix to intercept the
multiplication operation regardless of whether it’s the left or right matrix in the equation.

Now an IdentityMatrix subclass, shown in Listing 22-5, is created.

Listing 22-5. Java IdentityMatrix Class

class IdentityMatrix extends Matrix
{

 protected IdentityMatrix(double[] values, boolean copyValues, int dimensions)
 {
 super(values,copyValues,dimensions,dimensions);
 }

CHAPTER 22 ■ FACTORY PATTERN

422

 public boolean isIdentity()
 {
 return true;
 }

 public Matrix multiply(Matrix right)
 {
 return right;
 }

 protected Matrix leftMultiply(Matrix leftMatrix)
 {
 return leftMatrix;
 }

 public Matrix transpose()
 {
 return this;
 }
}

The IdentityMatrix subclass only represents identity matrices. It overrides the math methods of

Matrix with optimized versions. It can intercept multiplications whether it’s the left or right operand by
overriding both multiply(Matrix) and leftMultiply(Matrix).

Now, whenever a Matrix object is created for an identity matrix, the makeMatrix(…) method
creates an instance of IdentityMatrix instead. This is completely transparent to the client; the client
treats all objects as if they were Matrix objects. Operations between Matrix and IdentityMatrix objects
are optimized by the overridden IdentityMatrix methods.

Finally, the code that uses the Matrix class is modified to use the new Matrix factory method,
shown in Listing 22-6.

Listing 22-6. Modified Java Matrix Class Usage

double[] a_values = {
 1.0, 0.0, 2.0,
 -1.0, 3.0, 1.0
 };
double[] b_values = {
 3.0, 1.0,
 2.0, 1.0,
 1.0, 0.0
 };
double[] i_values = {
 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0
 };

CHAPTER 22 ■ FACTORY PATTERN

423

Matrix A = Matrix.makeMatrix(a_values,2,3);
Matrix B = Matrix.makeMatrix(b_values,3,2);
Matrix I = Matrix.makeMatrix(i_values,3,3);
System.out.println("A="+A);
System.out.println("B="+B);
System.out.println("I="+I);

Objective-C Matrix Class Cluster
Now consider the same solution in Objective-C. The updated versions of the Objective-C Matrix classes
are shown in Listings 22-7 through 22-9. The significant changes are highlighted.

Listing 22-7. Matrix.h and Matrix+Private.h

@interface Matrix : NSObject {
 @protected
 NSUInteger rows;
 NSUInteger columns;
 __strong double *values;
}

- (id)initWithValues:(const double*)valueArray
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount;

@property (readonly) NSUInteger rows;
@property (readonly) NSUInteger columns;
@property (readonly,getter=isIdentity) BOOL identity;

- (double)valueAtRow:(NSUInteger)row column:(NSUInteger)column;

- (Matrix*)addMatrix:(Matrix*)matrix;
- (Matrix*)multiplyMatrix:(Matrix*)matrix;
- (Matrix*)multiplyScalar:(double)scalar;
- (Matrix*)transpose;

@end

#define VALUE(ARRAY,COLUMNS,ROW,COLUMN) ARRAY[((ROW)*(COLUMNS))+(COLUMN)]
#define IVALUE(ROW,COLUMN) VALUE(values,columns,ROW,COLUMN)
#define SIZEOFARRAY(ROWS,COLUMNS) (sizeof(double)*(ROWS)*(COLUMNS))

CHAPTER 22 ■ FACTORY PATTERN

424

@interface Matrix () // private methods

- (id)initWithAllocatedArray:(__strong double*)array
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount;

- (Matrix*)leftMultiplyMatrix:(Matrix*)leftMatrix;

@end

There is no change in the @interface for the Matrix class. In the private @interface extension, a

-leftMultiplyMatrix: method is declared, just as it was in Java.

Listing 22-8. Matrix.m

@implementation Matrix

- (id)initWithValues:(const double*)valueArray
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount
{
 __strong double *dupArray = MatrixCopyArray(valueArray,rowCount,colCount);
 return [self initWithAllocatedArray:dupArray rows:rowCount columns:colCount];
}

- (id)initWithAllocatedArray:(__strong double*)array
 rows:(NSUInteger)rowCount
 columns:(NSUInteger)colCount
{
 self = [super init];
 if (self!=nil) {
 if ([self isMemberOfClass:[Matrix class]]) {

 if (MatrixIsIdentity(array,rowCount,colCount)) {
 return [[IdentityMatrix alloc] initWithAllocatedArray:array
 rows:rowCount
 columns:colCount];
 }

 }
 rows = rowCount;
 columns = colCount;
 values = array;
 }
 return self;
}

CHAPTER 22 ■ FACTORY PATTERN

425

…

- (BOOL)isIdentity
{
 return NO;
}

…

- (Matrix*)multiplyMatrix:(Matrix*)matrix
{

 return [matrix leftMultiplyMatrix:self];
}

- (Matrix*)leftMultiplyMatrix:(Matrix*)leftMatrix
{
 __strong double *productArray = MatrixAllocateArray(leftMatrix.rows,columns);
 …
 return [[Matrix alloc] initWithAllocatedArray:productArray
 rows:leftMatrix.rows
 columns:columns];
}

…

@end

…

BOOL MatrixIsIdentity(const __strong double *array,
 NSUInteger rows,
 NSUInteger columns)
{
 if (rows!=columns)
 return NO;
 …
 return YES;
}

The most striking difference between the two solutions is that there is no factory method in the

Objective-C implementation. Instead, the modified -[Matrix initWithAllocatedArray:rows:columns:]
method spontaneously replaces the instance of the Matrix object being created with an instance of
IdentityMatrix whenever appropriate. It does this by discarding the originally created object, creating a
new object of the desired class, and returning the substitute object to the sender.

CHAPTER 22 ■ FACTORY PATTERN

426

Objective-C refers to this as a class cluster, so named because the base Matrix class is the access
point to a cluster of subclasses. Creating a Matrix class object may return an instance of Matrix or one of
its subclasses.

The rest of the changes to the Matrix class mimic those in the Java implementation. A local
MatrixIsIdentity() C function is used to determine which value arrays form identity matrices, and the
multiplication logic is relocated to -leftMultiplyMatrix:. Before the updated Matrix class will function,
an IdentityMatrix subclass must be defined, as shown in Listing 22-9.

Listing 22-9. IdentityMatrix.m

@implementation IdentityMatrix

- (BOOL)isIdentity
{

 return YES;
}

- (Matrix*)multiplyMatrix:(Matrix*)matrix
{

 return matrix;
}

- (Matrix*)leftMultiplyMatrix:(Matrix*)leftMatrix
{
 return leftMatrix;
}

- (Matrix*)transpose
{
 return self;
}

@end

The real power of class clusters will become evident when you review the code, shown in Listing

22-10, that uses the modified Matrix objects in Objective-C.

Listing 22-10. Modified Objective-C Matrix Class Usage

double a_values[] = {
 1.0, 0.0, 2.0,
 -1.0, 3.0, 1.0
};

CHAPTER 22 ■ FACTORY PATTERN

427

double b_values[] = {
 3.0, 1.0,
 2.0, 1.0,
 1.0, 0.0
};
double i_values[] = {
 1.0, 0.0, 0.0,
 0.0, 1.0, 0.0,
 0.0, 0.0, 1.0,
};
Matrix *A = [[Matrix alloc] initWithValues:a_values rows:2 columns:3];
Matrix *B = [[Matrix alloc] initWithValues:b_values rows:3 columns:2];
Matrix *I = [[Matrix alloc] initWithValues:i_values rows:3 columns:3];
NSLog(@"A=%@",A);
NSLog(@"B=%@",B);
NSLog(@"I=%@",I);
…

What you should immediately notice in Listing 22-10 is that it is identical to the Objective-C

code in Listing 22-3. The real power of class clusters is the ability to implement a factory method in the
constructor of a class—without changing its external interface.

Class clusters have some important ramifications:

• Class clusters can be implemented without changing the code that creates objects.

• Class clusters are the reason it’s so important to adhere to the init contract.

• It is often difficult to subclass a class cluster.

The first feature is what makes class clusters so powerful: any initializer can be turned into a
class cluster. The change is largely transparent to existing code that creates objects. This is extremely
helpful in an evolving design. A simple base class can be defined and then later replaced with a class
cluster without requiring global changes to your existing code.

One side effect of class clusters it that they may make it difficult, or impossible, to create your
own subclass of the class cluster’s base class. The base class initializer is usually where the class decides
what class of object to create. Since a subclass must call its superclass initializer during initialization,
your subclass intializer runs the risk that it will be replaced with a different object at the whim of the
base class. Class clusters that are designed to be subclassed will usually have a designated initializer for
use by non-cluster subclasses, or be written so they will act reasonably when invoked by a subclass. If
you have a class cluster that you’d like to subclass, refer to the Subclassing Notes section of the class’s
documentation.

CHAPTER 22 ■ FACTORY PATTERN

428

■Caution A common programming pitfall is to invoke a subclass initializer from the base class cluster initializer
that recursively invokes the base class initializer. If the base class initializer blindly creates a new subclass object,
it will result in an infinite recursion loop. The Matrix class avoids this by having the -initWithAllocatedArray:
rows:columns: method examine the class of the object being initialized (i.e., if ([self isMemberOfClass:
[Matrix class]]) …). Only if it’s the base class does it consider replacing the object with a subclass. When a
subclass invokes the base class initializer, the base class initializer behaves normally. Another approach is to
strategically organize your subclass initialization methods so that they don’t recursively invoke the base class
initializer that implements the class cluster.

Class clusters also solve the mystery of why the init contract should be followed so carefully.
See the “Writing an init Method” section of Chapter 3. Class clusters reinforce the maxim that your code
should never assume that the object returned from an initializer is the same one that was originally
created.

Summary
Objective-C class clusters add a new dimension to the factory pattern. They make it possible to
implement object factories that are completely transparent to the client. This means that subclassing
must be approached with a bit more caution; class clusters may make it difficult, or even impossible, for
you to define subclasses of some classes.

C H A P T E R 2 3

■ ■ ■

429

Singleton Pattern

Singletons are classes with a single instance. They are usually objects that provide an object-oriented
interface to a single, often global, facility or resource. A class that manages a cache of database objects
would want to create a single per-process instance of itself so that it could coordinate all of the object
caching for the entire application. A class that provides file management methods could create a
singleton object that all other classes would use to interact with the file system. The latter could also be
implemented by defining a class that consists of nothing but class methods, but that pattern is unusual
in Objective-C.

Singleton objects are typically created by an idempotent class method or C function that’s
responsible for creating and maintaining the single instance of the class. This is essentially a specialized
factory method, described in Chapter 22. Like factory methods, singletons can be implemented using
class methods or a degenerate variation of a class cluster.

Implementing Singletons
The following are examples of singleton objects in the Cocoa framework:

• NSApplication

• NSFileManager

• NSDistributedNotificationCenter

• NSWorkspace

Singletons are sometimes created during startup, but are usually provided through an
idempotent method that returns the reference to the singleton, creating it for the first time if necessary.
In the Cocoa framework, the following class methods return the singletons for the classes listed above:

• [NSApplication sharedApplication]

• [NSFileManager defaultManager]

• [NSDistributedNotificationCenter defaultCenter]

• [NSWorkspace sharedWorkspace]

A typical implementation of the singleton pattern is shown in Listing 23-1.

CHAPTER 23 ■ SINGLETON PATTERN

430

Listing 23-1. Singleton Pattern

Java
public class CommandCenter {
 private static CommandCenter sharedCommandCenter;

 public static CommandCenter getCommandCenter()
 {
 if (sharedCommandCenter==null) {
 sharedCommandCenter = new CommandCenter();
 }
 return sharedCommandCenter;
 }
}

Objective-C
@interface CommandCenter : NSObject

+ (CommandCenter*)sharedCommandCenter;

@end

static CommandCenter *SharedCommandCenter;

@implementation CommandCenter

+ (CommandCenter*)sharedCommandCenter
{
 if (SharedCommandCenter==nil) {
 SharedCommandCenter = [CommandCenter new];
 }
 return SharedCommandCenter;
}

@end

The exact same pattern can be implemented in Java or Objective-C. However, Objective-C

presents two alternatives to the typical singleton design pattern. The first is to use the class’s +initialize
method, and the second is a variation on class clusters. Both are explored in the next sections.

Lazy Singletons
Most singletons are lazy; they are spontaneously constructed the first time they are requested. An
alternative to implementing this yourself is to exploit the lazy initialization of the class itself, as
demonstrated in Chapter 21. Basically, the singleton object is created the first time the class receives a
message by overriding its +initialize class method. A rewriting of the CommandCenter class is shown
in Listing 23-2.

CHAPTER 23 ■ SINGLETON PATTERN

431

Listing 23-2. Lazy Singleton Pattern

@interface CommandCenter : NSObject

+ (CommandCenter*)sharedCommandCenter;

@end

static CommandCenter *SharedCommandCenter;

@implementation CommandCenter

+ (void)initialize
{
 SharedCommandCenter = [CommandCenter new];
}

+ (CommandCenter*)sharedCommandCenter
{
 return SharedCommandCenter;
}

@end

The class’s +initialize method is always the first message a class receives. It’s a convenient

location to create a singleton. It also simplifies the code in the class; any class method can reference the
SharedCommandCenter variable directly (i.e., instead of using [CommandCenter sharedCommandCenter] each
time), with the assurance that it has already been initialized.

Be mindful of the fact that +initialize is not called during application startup or when the
class is loaded, like Java initialization statements are. The +initialize message is sent the first time the
class receives a message. If the class is never used, the +initialize message will never be sent.

Singleton Factory
The factory pattern can be repurposed to turn a class cluster into a singleton factory. In Chapter 22, you
saw how a class’s initializer can substitute a different class for the one being requested. This same
technique can be used to return an existing object as well. To implement the singleton pattern, cripple
the initializer so that it returns the same object every time. The code in Listing 23-3 implements a
singleton using the class’s initializer.

Listing 23-3. Singleton Factory Pattern

@interface CommandCenter : NSObject

@end

static CommandCenter* SharedCommandCenter;

CHAPTER 23 ■ SINGLETON PATTERN

432

@implementation CommandCenter

- (id)init
{
 self = [super init];
 if (self!=nil) {
 if (SharedCommandCenter!=nil)
 return SharedCommandCenter;
 …
 SharedCommandCenter = self;
 }
 return self;
}

@end

The initializer method for the CommandCenter class implements the singleton pattern. The

first instance of CommandCenter created (using [[CommandCenter alloc] init]) is saved in the global
variable. Any subsequent attempt to create another instance of CommandCenter returns the original
instance.

This implementation of the singleton pattern has all of the advantages, and disadvantages, of a
class cluster. The principal advantage is that the client code does not have to use a special message to
obtain the singleton, or even be aware that the class is a singleton. It simply creates the object and uses
it. Another advantage is that the class author doesn’t have to take any extraordinary measures to
discourage clients from attempting to create additional instances of the class.

■Note For obvious reasons, your singleton class would probably not conform to the NSCopying protocol. If it
needs to—say, to be used as a key in an NSDictionary—override the -copyWithZone: method and have it return
self.

A variation of this pattern returns objects from a pool of immutable objects. A Letter class that
encapsulates the properties of a letter in the alphabet might implement a singleton factory for each
letter. Every invocation of [[Letter alloc] initWithLetter:'a'] would return a singleton ‘a’ object,
while every [[Letter alloc] initWithLetter:'b'] would return a singleton ‘b’ object, and so forth. This
is one alternative to implementing the flyweight design pattern.

Summary
The singleton pattern is extremely common in both Java and Objective-C. Objective-C presents some
intriguing alternatives that can simplify its implementation. It’s also possible to transform a class cluster
into a singleton factory, hiding its singleton nature.

P A R T 4
 ■ ■ ■

Advanced Objective-C

C H A P T E R 2 4

■ ■ ■

435

Memory Management

Garbage collection is a recent feature in Objective-C and, while this is a huge step in the right direction,
it’s not universally available. The alternative is traditional Objective-C managed memory, wherein your
code takes responsibility for destroying objects.

The principal reasons you’d choose to use managed memory instead of garbage collection are
as follows:

• The operating system or compiler doesn’t support garbage collection (specifically, this is the
case with the iPhone OS and older versions of Mac OS X).

• You’re working on a project that’s already using managed memory.

• The code must function in a managed memory environment (for example, a plug-in).

In the first case, your only choice is to embrace managed memory. This chapter will show you
the basics of traditional memory management. Objective-C provides an object management model
that’s very sensible and easy to learn. If you’re thinking this will be like C or C++ memory management,
you can relax.

In the second case, it may be more trouble than its worth to convert an existing project from
managed memory to garbage collection. Managed memory in Objective-C is not radically different from
garbage collection, so adoption might be the most expedient solution.

■Note When compiling code that will run in a managed memory environment, the compiler’s support for garbage
collection should be turned off. In Xcode, this is accomplished by setting the Objective-C Garbage Collection build
setting to Unsupported. This turns off all garbage collection support, producing code that is compatible with
operating systems that lack garbage collection.

Specialized components, like plug-ins, frameworks, and services, which are loaded into another
application’s runtime environment, must coexist with the memory management scheme employed by
its host. It may even be necessary to write your code so that it can function in both a garbage-collected
and managed memory environment. There are some notes about doing that towards the end of the
chapter.

This chapter explains the basics of memory allocation and deallocation. It then describes
Objective-C’s reference counting scheme and autorelease pools. As each concept is examined, simple
programming rules are introduced. Taken together, they define the programming practices that you
should adopt to use managed memory. Later sections touch on some of the situations where reference
counting can get tricky and what to do about them.

CHAPTER 24 ■ MEMORY MANAGEMENT

436

C Memory Allocation
At the core of all memory management are the POSIX memory allocation functions. They are used by all
higher APIs and you’re welcome to use them yourself. They are extremely simple, fast, and efficient. The
basic use pattern is shown in Listing 24-1.

Listing 24-1. C Memory Allocation

void *memory = malloc(100);
…
free(memory);

The malloc() function in Listing 24-1 allocates 100 consecutive bytes of memory and returns

the address of the first byte. You are free to use those 100 bytes in any way you see fit. When you’re done
with that block of memory, the free() function releases and recycles it, after which you should not
access that range of memory again.

There are also variations to malloc(). The two most common are calloc(), which allocates
memory and fills it with zeros, and realloc(), which changes the size of a previously allocated block of
memory. Regardless of what POSIX function you used to allocate the memory, free() will release it.

Although it is simple, POSIX memory allocation is also brutally awkward: it is up to your
application to release the memory once you’re done with it, it can only be released once, and the pointer
must not be used again afterwards. This presents the following difficulties:

• If you fail to release the memory, but “forget” the pointer to it, that block of memory becomes
permanently unusable. This is called a memory leak.

• Sharing the pointer with other code creates an ambiguity over what code should take
responsibility for releasing the memory, and when.

• Using a pointer to a block of memory that has been released can be disastrous.

These three issues have been the driving force for finding better ways of managing blocks of
memory, and by extension objects, for the past half century of computer science.

Objective-C Reference Counting
While garbage collection is a far more elegant solution—neatly solving all three problems at once—it’s a
complex system, requiring significant resources, and has only recently matured. Pre-garbage collection
Objective-C employed a simple alternative: reference counting.

Reference counting introduces the concept of owners: code or objects that hold a pointer to
another object are said to own that object. When an object or block of code wants to hold a reference to
an object, it first retains it. When it’s done with the object, it releases it.

The goal of reference counting is to apply the same logic to object management that garbage
collection does: an object is kept alive as long as it has owners (references). The primary difference
between reference counting and garbage collection is that in reference counting, it’s up to the
programmer to inform the object when a reference to it has been established or forgotten.

CHAPTER 24 ■ MEMORY MANAGEMENT

437

Here’s how reference counting works:

1. When an object is initially allocated, it has a reference count of 1.

2. Any code that wants to use the object first increases its reference count by 1. This is called a
retain.

3. When the code that holds the pointer in steps 1 or 2 no longer uses it, it decreases the
object’s reference count by 1 and it forgets the pointer. This is called a release.

4. When an object’s reference count decreases to 0, the object is immediately destroyed and
its memory freed.

An example of reference counting is shown in Listing 24-2.

Listing 24-2. Fundamental Reference Counting Pattern

id myObject = [[MyClass alloc] init];
…
[myObject doSomething];
…
[myObject release];

In Listing 24-2, the reference points to an object that was just created. Newly created objects

have an implicit reference count of 1 (or they wouldn’t exist). The program uses the object, and then
sends it a -release message to indicate that it will never use that object again. The -release message
decrements the object’s retain count and immediately destroys the object. This assumes that no other
object or code -retained the object in the interim. If so, the object would continue to exist because it still
had at least one owner.

In practice, managing release counts manually isn’t as onerous as it might seem. The next few
sections will explain the role of autorelease pools and describe the common programming patterns for
using reference counting with objects. Autorelease pools are brilliant, and the patterns are easy to apply.
If consistently applied—and that’s a big “if”—reference counting provides an experience that’s
equivalent to using garbage collection about 80 percent of the time. In fact the biggest problem you’re
likely to encounter, coming from a garbage collection environment, is forgetting to apply the required
patterns the remaining 20 percent of the time.

Autorelease Pools
Autorelease pools add the very garbage collection–like concept of deferring the destruction of an
unreferenced object until some unspecified time in the future. Autorelease pools seem to mystify many
new Objective-C programmers, but they are stunningly simple:

• An autorelease pool is a collection of objects that will eventually receive a -release message.

That’s it. To use an autorelease pool, send an object an -autorelease message instead of a
-release message. The receiver is not immediately released; it is simply added to the autorelease pool.
Later—usually long after your code has finished—the pool is drained and each object in the pool
receives its -release message.

The cardinal rule to remember is this: release an object by sending it either a -release or an
-autorelease message, but never both. The two messages are logically equivalent and differ only in
timing. The former releases the object immediately. The latter adds it to the autorelease pool, to be
released at some future time.

CHAPTER 24 ■ MEMORY MANAGEMENT

438

To illustrate what autorelease pools do for you, the next few sections describe some
fundamental problems with reference counting and how autorelease pools avoid them.

Autorelease Pool Lifetime
Normally, you don’t create autorelease pools yourself. (A later section in this chapter explains why, and
how, you would.) For the most part, always assume that there’s an active autorelease pool and the
-autorelease message will add the receiver to the current pool. Despite their vague assurances of
“eventually” releasing objects, autorelease pools have a very definite lifespan. Most autorelease pools are
created by the working run loop at the beginning of each event dispatch. The pool is drained after the
code that handled the event has returned. This mechanism defines an important rule about the lifespan
of autorelease pools:

• The current autorelease pool will never be drained before your method or function returns.

The importance of this rule probably isn’t immediately obvious, but it will be as you work
through the next few sections.

Returned References
The reference counting rules laid out in the previous section appear simple and sound, but they actually
contain one huge flaw: how do you release an object (decrease its reference count) after the code no
longer has a pointer to it? You could avoid this situation in many cases with careful coding, but there’s
one inescapable case where you can’t—returning an object reference to the sender. Using the reference
counting rules learned so far, you’d probably be tempted to write something like the code shown in
Listing 24-3.

Listing 24-3. Retain and Return Problem

@implementation Zombie

- (void)recitePoetry
{
 NSString *myName = [[self zombieName] retain];
 [self speakFormat:@"Hello, my name is %@. This is my poem.",myName];
 …
 [myName release];
}

- (NSString*)zombieName
{
 NSMutableString *z = [[NSMutableString alloc] init];
 [z appendString:@"Zombie "];
 [z appendString:[self humanName]]; // e.g. "Zombie Bob"
 return z;
 // [z release] ? ? ? ? ?
}

…

@end

CHAPTER 24 ■ MEMORY MANAGEMENT

439

In the -recitePoetry method, the NSString object returned by -zombieName is retained, used in

the body of the method, and then released. In the -zombieName method, the string object is implicitly
retained when it is created, used in the body of the method, and returned to the sender. But wait! It also
needs to be released, since -zombieNames will never use it again. Yet there’s no way to do that after the
method has returned to its sender.

Autorelease pools solve this by deferring the needed release to some later time. The -zombieName
method is rewritten in Listing 24-4 to use the autorelease pool.

Listing 24-4. Autoreleasing a Returned Object

- (NSString*)zombieName
{
 NSMutableString *z = [[NSMutableString alloc] init];
 [z appendString:@"Zombie "];
 [z appendString:[self humanName]];

 return [z autorelease];
}

The string object is added to the autorelease pool before being returned to the sender. This

correctly balances the implied retain that occurred when the object was created, and ensures that it will
eventually be destroyed.

■Note The -retain and -autorelease messages returns the receiver to the sender, allowing it to be chained
into expressions like return [obj autorelease] and property = [obj retain]. This avoids having to write
[obj autorelease] and return obj as separate statements.

When an object reference is returned to the sender, it has already received the correct number
of -release or -autorelease messages. In Objective-C parlance, this is called an autoreleased object.
This creates another rule for Objective-C objects:

• Every object returned from a method is either owned or autoreleased.

What it means to you is that you do not have to worry about the ownership of objects you
receive from other objects. Either they are still owned, they have been autoreleased, or maybe both. The
point is, your code is only responsible for its ownership of the object. Never worry about an object’s
ownership by other objects (except in a few rare cases that are covered later in the chapter).

The exception to the above rule are the messages that create new objects: +alloc, +new, -copy,
and -mutableCopy. Theses are just about the only methods that return a retained object. That is, the
object has an unbalanced retain and the receiver is implicitly its new owner. You may encounter other
methods that return retained objects. By convention, these methods have names that begin with new, as
in -[NSObjectController newObject].

Autoreleased Objects
The code in Listing 24-4 works because of the lifespan rule of autorelease pools; the autorelease pool
that’s being used when -recitePoetry begins won’t be drained until it returns. That means that any
objects added to the autorelease pool will exist until the method is finished.

CHAPTER 24 ■ MEMORY MANAGEMENT

440

Knowing that, the code in Listings 24-2 and 24-4 can be further simplified, as shown in
Listing 24-5.

Listing 24-5. Simplified Release Management

- (void)recitePoetry
{
 NSString *myName = [self zombieName];
 [self speakFormat:@"Hello, my name is %@. This is my poem.",myName];
 …
}

- (NSString*)zombieName
{

 NSMutableString *z = [[[NSMutableString alloc] init] autorelease];
 [z appendString:@"Zombie "];
 [z appendString:[self humanName]];
 return z;
}

Listing 24-5 is starting to look a lot like code written for a garbage collection environment. The

only difference is the single -autorelease message when the NSMutableString is initially created.
The reason is the string object has been autoreleased, and all references to the object are

contained within the scope of the executing methods. Remember that an autorelease pool will never be
drained before a method returns, and objects returned by other methods are always retained or
autoreleased objects. This creates a new, and important, rule for managing object retain counts:

• An autoreleased object only needs to be retained if it will be referenced beyond the lifetime of
the current autorelease pool.

This aspect of autorelease pools is what makes them so useful, and why I wrote that managed
memory and garbage collection are indistinguishable 80 percent of the time. Most object references are
fleeting—defined and forgotten within a single method. These references, as long as they are to
autoreleased objects, don’t require any memory management.

Because of this convenience, most objects are created and autoreleased immediately, exactly as
shown in Listing 24-5, rather than the pattern shown in Listing 24-4. Once autoreleased, the object
requires almost no management unless some other code needs to retain it—and that would be the
responsibility of that other code. The exception is the obvious case where an object is created by code
that intends to retain it. It would be silly to write [[[[MyClass alloc] init] autorelease] retain] when
[[MyClass alloc] init] would accomplish the same thing.

So what about references that persist beyond the lifespan of the current autorelease pool? The
programming patterns in the next few sections address those very cases.

Managed Memory Patterns
The following sections show the basic programming patterns used when working in a managed memory
environment. Some of these patterns have already been shown, but are included again for completeness
and future reference.

CHAPTER 24 ■ MEMORY MANAGEMENT

441

New Object Patterns
When a new object is created it begins with a retain count of 1, implicitly making its creator the first
owner. The principal messages that return new objects are: +alloc, +new, and -copy. This implied
ownership must be balanced by a -release message when the object is no longer used, as shown in
Listing 24-6, or an -autorelease message, as shown in Listing 24-7.

Listing 24-6. Retained New Object Pattern

id object = [[NSObject alloc] init];
…
[object release];

Listing 24-7. Autoreleased New Object Pattern

id object = [[[NSObject alloc] init] autorelease];
…

Autoreleased Object Pattern
Objects returned by most messages are returned as autoreleased objects. That is, the object has already
received a correctly balanced series of -retain, -release, or -autorelease messages and does not
demand any additional management. Specifically, class convenience constructors, like
+[NSMutableArray arrayWithCapacity:], return autoreleased objects. Even though the convenience
constructors exist to create new objects, the objects are not “new” from the perspective of memory
management. Common examples are shown in Listing 24-8.

Listing 24-8. Autoreleased Objects

NSNumber *number = [NSNumber numberWithInt:10];
NSString *path = [NSString stringWithFormat:@"Folder %@",number];
NSFileManager *fileManager = [NSFileManager defaultManager];
NSDictionary *attrs = [fileManager attributesOfItemAtPath:path error:NULL];
NSArray *attrKeys = [attrs keysSortedByValueUsingSelector:@selector(compare:)];

Every object returned by a class or instance method in Listing 24-8 is autoreleased and requires

no additional management. If you store the reference in a persistent location, like an instance variable,
then you should retain the object like this:

myArray = [[NSMutableArray arrayWithCapacity:100] retain];

See the “Setter Patterns” section below for more about retaining references in properties.

Returning Autoreleased Objects
So that your code is consistent with the rest of Objective-C, your methods should always return
autoreleased objects, as shown in Listing 24-9.

CHAPTER 24 ■ MEMORY MANAGEMENT

442

Listing 24-9. Returning an Autoreleased Object

- (id)someObject
{
 id object = [[[NSObject alloc] init] autorelease];
 …
 return object; // autoreleased
}

Setter Patterns
When setting a property of your object, you should retain the referenced object until you replace the
reference with something else. The reference being replaced should be released or autoreleased. There
are four popular patterns for writing setter methods, as shown in Listing 24-10.

Listing 24-10. Setter Patterns

@interface MyClass : NSObject {
 id one;
 id two;
 id three;
 id four;
}

@property (retain,nonatomic) id one;
@property (retain,nonatomic) id two;
@property (retain,nonatomic) id three;
@property (copy,nonatomic) id four;

@end

@implementation MyClass

- (id)one
{
 return one;
}

- (void)setOne:(id)object
{
 [one autorelease];
 one = [object retain];
}

- (id)two

CHAPTER 24 ■ MEMORY MANAGEMENT

443

{
 return two;
}

- (void)setTwo:(id)object
{

 id oldTwo = two;
 two = [object retain];
 [oldTwo release];
}

- (id)three
{
 return three;
}

- (void)setThree:(id)object
{
 if (three!=object) {
 [three release];
 three = [object retain];
 }
}

- (id)four
{
 return four;
}

- (void)setFour:(id)object
{

 [four autorelease];
 four = [object copy];
}

@end

All of the setter patterns in Listing 24-10 accomplish three important tasks:

• The object being stored is sent a -retain message.

• The object being forgotten is sent a -release or -autorelease message.

• The -retain message is sent before the -release message.

The last point is the tricky one. If the object being set is the same as the object already stored in

the property, sending it a -release message before the -retain message could prematurely destroy the

CHAPTER 24 ■ MEMORY MANAGEMENT

444

object. The third pattern, shown in -setThree:, avoids this problem by explicitly testing for that
condition.

The final property stores a copy of the original. It can adopt any of the first three patterns; just
replace [object retain] with [object copy]. It should be noted that all of these patterns are compatible
with nil values.

■Note The behavior of your property setter method must be consistent with your @property directive. The first
three patterns are consistent with the retain property attribute, and the last one is consistent with the copy
attribute. If you let the Objective-C compiler @synthesize the setter methods for you, it will generate code
equivalent to what’s shown.

The setter pattern code examples are presented as guides for writing well-behaved property
accessors, but the principles apply to any object reference that you store in a persistent variable. If you
were setting an instance or static variable directly, your code must follow the same pattern—retaining
the new reference and releasing the old one.

init Patterns
This is really a corollary to the rule that an object should retain the objects it has references to, but it’s
still worth highlighting. Most object -init methods create new objects, and those objects must be
retained as shown in Listing 24-11.

Listing 24-11. -init Pattern

@interface ZombiePoetryGroup : NSObject {
 NSMutableSet *zombies;
}

@end

@implementation ZombiePoetryGroup

- (id) init
{
 self = [super init];
 if (self != nil) {

 zombies = [[NSMutableSet set] retain];
 }
 return self;
}

@end

CHAPTER 24 ■ MEMORY MANAGEMENT

445

Remember that new objects created with +new, +alloc and -init, or -copy are already retained.
A statement equivalent to the one highlighted in Listing 24-11 would be

zombies = [NSMutableSet new];

dealloc Patterns
When an object with a reference count of 1 receives a -release message, it is immediately destroyed.
This is accomplished by sending the object a single -dealloc message. An object’s -dealloc method
performs much the same role as a -finalize method, but is also responsible for releasing any retained
objects, allocated memory, and any other resource that it owns, and for ultimately freeing the memory it
occupies. If your object retains any object references, it must have a -dealloc method. Listings 24-12 and
24-13 present two common patterns for writing -dealloc methods.

Listing 24-12. -dealloc Using -release

- (void)dealloc
{
 [one release];
 [two release];
 [three release];
 [four release];

 [super dealloc];
}

Listing 24-13. -dealloc Using Property Setters

- (void)dealloc
{
 [self setOne:nil];
 [self setTwo:nil];
 [self setThree:nil];
 [self setFour:nil];

 [super dealloc];
}

A -dealloc method must do the following:

• Close any open files, release any resources, free any non-object memory, and any other actions
that would be appropriate in a -finalize method.

• Release all retained objects with a -release or -autorelease message.

• Send [super dealloc] as its last statement.

The pattern in Listing 24-12 is the fastest and most efficient, avoids side-effects of property

setters, and is the most commonly used pattern.

CHAPTER 24 ■ MEMORY MANAGEMENT

446

The pattern in Listing 24-13 is less efficient, but has a couple of advantages. It clears the
references using the property setters. If the setters need to notify observers or perform other
housekeeping, this pattern permits them to do so. In addition to releasing the held property, it sets the
property value to nil. This could be important if any code later in the -dealloc method attempts to use
the property for any purpose—which would be very bad if the property was still pointing to a deallocated
instance. The first pattern, as coded, tries to avoid this problem by not sending any other messages to
itself during deallocation. But as object relationships become more complex, it’s harder to ensure that
will always work. For example, a retained object might have a pointer back to the object that owns it
(self), and during its deallocation might attempt to use one of the properties of its owner.

■Caution -dealloc is sent to an object by -release. You should never send a -dealloc message to
another object.

Sending -dealloc to the superclass is an absolute requirement. So much so that modern
Objective-C compilers now emit a warning if you fail to do so. The base class -dealloc method is the one
that actually deallocates (frees) the memory occupied by the instance. Failing to send -dealloc will
cause memory leaks. After the superclass’s -dealloc message returns, the object no longer exists and
self is invalid. You cannot access any of the object’s instance variables nor send it a message.

Implicitly Retained Objects
Objects retained by other objects your object retains are referred to as implicitly retained objects. An
object should only retain objects it maintains a direct reference to; objects retained by other objects are
managed by those objects. An example of implicitly retained Zombie objects is shown in Listing 24-14.

Listing 24-14. Implicitly Retained Objects

@class Zombie;

@interface ZombiePoetryGroup : NSObject {
 NSMutableDictionary *members;
}

- (BOOL)hasMemberNamed:(NSString*)zombieName;
- (void)addMember:(Zombie*)newZombie;
- (void)removeMember:(Zombie*)zombieZombie;

@end

@implementation ZombiePoetryGroup

CHAPTER 24 ■ MEMORY MANAGEMENT

447

- (id) init
{
 self = [super init];
 if (self != nil) {
 members = [NSMutableDictionary new];
 }
 return self;
}

- (void) dealloc
{
 [members release];
 [super dealloc];
}

- (BOOL)hasMemberNamed:(NSString*)zombieName
{
 return ([members objectForKey:zombieName]!=nil);
}

- (void)addMember:(Zombie*)newZombie
{
 [members setObject:newZombie forKey:[newZombie zombieName]];
}

- (void)removeMember:(Zombie*)zombie
{
 [members removeObjectForKey:[zombie zombieName]];
}

@end

The ZombiePoetryGroup object creates and retains an NSMutableDictionary object. All Cocoa

collection classes retain the objects added to the collection and release them again when they are
removed. The ZombiePoetryGroup object retains its direct reference to the NSMutableDictionary object,
and lets the dictionary object retain and release its objects.

Managed Memory Problems
There are some unique coding difficulties when using managed memory. The next few sections describe
the most common, and what you can do about them.

Overretained or Underreleased Objects
Overretained (or underreleased) objects are ones that have received more -retain messages than is
appropriate, or fail to receive a balanced number of -release messages. The object is never deallocated,

CHAPTER 24 ■ MEMORY MANAGEMENT

448

resulting in a memory leak. This can often be a subtle problem to detect, as the incidence of even a few
thousand leaked objects won’t be obvious.

The best solution to this problem is judicious use of developer tools. The Xcode developer tools
include several memory leak detection tools, but the preeminent tool for Objective-C developers is
ObjectAlloc, shown in Figure 24-1.

Figure 24-1. ObjectAlloc

ObjectAlloc tracks the lifetime of all of the Objective-C objects in your application. It records
when each was allocated, retained, released, and deallocated. It presents the total instances of each class
graphically, allowing you to quickly identify a group of objects that are being allocated but never
deallocated. You should occasionally run your application under the gaze of ObjectAlloc to look for
object leaks.

Once you find a leak, use ObjectAlloc again to examine the history of +alloc, -retain, -release,
and -dealloc messages sent to those objects. An instance’s history should expose where the imbalance is
occurring.

Overreleased or Underretained Objects
Overreleased or underretained objects are ones that receive one too many -release messages. The
object is destroyed while still being retained by other objects. The orphaned object pointer then points
to invalid memory. The effects of using an invalid object pointer can range from the inconsistent to the
catastrophic.

The best debugging tool for finding overreleased objects is NSZombies, not to be confused with
any of the zombie examples in this book. There are several debugging facilities built into the Objective-C
runtime that can be enabled through environment variables. The two most commonly used to find
overreleased objects are listed in Table 24-1.

CHAPTER 24 ■ MEMORY MANAGEMENT

449

Table 24-1. NSZombie Environment Variables

Envir onment Var iable Descr ipt i on

NSZombieEnabled If set to YES, destroyed objects are replaced with zombie
objects that throw an exception if they receive any message.

NSAutoreleaseFreedObjectCheckEnabled If set to YES, the autorelease pool will print a warning if it
attempts to release an already destroyed object.

To use these facilities, set up the desired environment variables and pass that environment to
the application when it’s launched. Some of these features can also be enabled programmatically in your
application.

A zombie object is created when the object is deallocated. Instead of being freed, the class of the
object is changed to a special zombie class. It’s still an object, and any message sent to the object will
throw an exception, helping you identify the object that was overreleased. Once identified, you can use
ObjectAlloc tool to examine the history of the object and locate the code that prematurely released it.

Figure 24-2 shows how environment variables can be set for an executable in Xcode.

Figure 24-2. Setting NSZombie Debug Environment Variables

CHAPTER 24 ■ MEMORY MANAGEMENT

450

A complete description of tools used to detect memory leaks and overrelease bugs is described
in Apple’s “Technical Note 2124: Mac OS X Debugging Magic.”1

Prematurely Released Objects
A problem closely related to overreleased objects is objects that are simply released prematurely—while
there are still working references to it. The most common cause is releasing the object as a side-effect of
setting a property or removing it from a collection. Listings 24-15 and 24-17 show two very common
scenarios where objects are prematurely destroyed.

Listing 24-15. Object Destroyed By Collection

@implementation FIFO

…

- (id)pop
{
 id object = [stack objectAtIndex:0];
 [stack removeObjectAtIndex:0];
 return object; // |object| does not exist!
}

@end

In Listing 24-15, the objects in the FIFO are implicitly retained by the collection. To pop an

object off the stack, the object is removed from the collection and returned to the sender. The problem is
that the collection might be the object’s only owner. Removing it releases it, destroying the object. The
-pop method then returns a pointer to a destroyed object. The solution is to re-autorelease the object, as
shown in Listing 24-16.

Listing 24-16. Re-autoreleasing an Object

- (id)pop
{
 id object = [[[stack objectAtIndex:0] retain] autorelease];
 [stack removeObjectAtIndex:0];

 return object;
}

The solution is to send -retain and -autorelease messages to the object before removing it

from the collection. The additional -retain prevents the object from being immediately destroyed, and
the -autorelease creates an autoreleased object suitable for return to the sender.

1 Apple Inc., “Technical Note TN2124: Mac OS X Debugging Magic,” http://developer.apple.com/technotes/
tn2004/tn2124.html, 2006.

CHAPTER 24 ■ MEMORY MANAGEMENT

451

■Note The pattern [[object retain] autorelease] is overused by many programmers new to Objective-C. It
has its place, but usually indicates an attempt to apply memory management voodoo, rather than being a solution
to a real problem.

In Listing 24-17, an autoreleased object is returned from a property getter. The property is
changed, releasing the previous object, while the object is still being referenced.

Listing 24-17. Object Destroyed By Setter

id two = [self two];
[self setTwo:nil];
// |two| does not exist!

There are three solutions to this problem:

• Use the setter pattern demonstrated in -setOne: found in Listing 24-10. That setter autoreleases
the previous object instead of releasing it immediately.

• Explicitly retain the property object in the assignment (i.e., id two = [[[self two] retain]
autorelease]), which will protect it from being released by the -setTwo: message.

• Write the property getter to re-autorelease the object every time it is returned (i.e., return [[two
retain] autorelease]).

Of these solutions, the first is the preferred. It requires no involvement from the sender,
preserves the autoreleased contract for returned property values, and is efficient. The second alternative
should be used if you don’t have control over the class’s implementation. The last solution is inefficient,
and is used incessantly by inexperienced programmers.

Circular References
One major problem with reference counting, for which there is no universal solution, is the problem of
circular references. If two objects both retain references to the other, the objects will never be released.

How you solve this will depend on your circumstances. One common solution is to store
unretained or so-called weak references. This should not be confused with the term weak reference as it
applies to garbage collection, so I’ll use the term unretained reference. Unretained references are
typically used for delegate, observer, and parent object references. Listing 24-18 shows the interface for a
node in an object tree that holds an unretained reference to its parent node.

Listing 24-18. Unretained Object Property

@interface TreeNode : NSObject {
 TreeNode *parent;
 NSMutableArray *children;
}

CHAPTER 24 ■ MEMORY MANAGEMENT

452

@property (assign) TreeNode *parent;

…

@end

By using the assign property attribute, the parent property is not retained when set. The hazard

is that the node could be removed from the tree, and later attempt to send a message to its parent object,
which might not exist anymore. This approach is workable if you carefully engineer the object so that
there’s no possibility that it will attempt to use any unretained references in a situation where those
objects might have been released.

The best solution to this type of problem is to add code that explicitly clears the parent
reference before the node is removed from the tree. In the case where the reference is retained, this
breaks the circular reference and allows the nodes to be destroyed. In the case where the reference is not
retained, it ensures that the node won’t attempt to use a stale reference.

Creating Autorelease Pools
Normally, you don’t create autorelease pools yourself, but there are a few times where you must, and
times where you might want to.

All Objective-C objects assume that they are operating within the scope of an active autorelease
pool. If no autorelease pool exists, sending an object an -autorelease message will print a warning
message to the console that your application is leaking objects.

The run loop and the AppKit framework create and drain autorelease pools for you. The two
cases where you must create your own autorelease pools are at the beginning of a command-line tool or
when creating a new thread. Autorelease pools belong to the thread, so any new thread should begin by
immediately creating an autorelease pool, as shown in Listing 24-19.

Listing 24-19. Creating a Thread’s Autorelease Pool

@implementation Threader

- (void)myThread:(id)ignored
{
 NSAutoreleasePool *pool = [NSAutoreleasePool new];

 …

 [pool drain];
}

@end

The -myThread: method in Listing 24-19 is started in its own thread. Its first task is to create a

top-level autorelease pool that will be used by all objects until the thread ends, where the pool must be
drained.

CHAPTER 24 ■ MEMORY MANAGEMENT

453

■Note The -[NSAutoreleasePool drain] message is fairly new. Older code sends a -release message
instead. In a managed memory environment the two are identical. When mixing managed memory with garbage
collection (see the next section), -drain sends a hint to the garbage collector to start collecting. Both are correct.

If the thread in Listing 24-19 performed some action in a loop, it should create nested
autorelease pools to periodically release transient objects. This also applies to any method that produces
a large number of transient objects before returning. Listing 24-20 shows a loop that periodically creates
and releases autorelease pools as it works.

Listing 24-20. Creating Nested Autorelease Pools

NSAutoreleasePool *wadingPool = nil;
int poolCount = 0;
NSUInteger i;
for (i=0; i<1000000; i++) {
 if (wadingPool==nil)
 wadingPool = [NSAutoreleasePool new];

 …

 if (++poolCount>2000) {
 poolCount = 0;
 [wadingPool drain];
 wadingPool = nil;
 }
}

The loop in Listing 24-20 periodically creates a nested autorelease pool that is drained to release

transient objects created in the body of the loop. This, of course, breaks the rule that autoreleased
objects won’t be released until the current method returns, but that’s because you’re draining the pool
yourself—so you should know that.

New autorelease pools are inherently nested inside the previously active autorelease pool.
Draining a pool implicitly drains any autorelease pools that were created inside it. It’s not necessary for
the code in Listing 24-20 to ensure that wadingPool is drained before exiting the loop. The autorelease
pool that contains wadingPool will drain it when it gets drained. For example, an exception handler does
not need to drain any nested autorelease pools. The only thing that’s important is that the top-level
autorelease pool is drained before the thread terminates.

Mixing Managed Memory and Garbage Collection
You may find yourself in a situation where you need to write Objective-C code that must function in
both a managed memory and a garbage collection environment. It’s possible to do this because the
managed memory methods and garbage collection techniques have very little overlap. In a garbage
collection environment, the messages that manage reference counting (-retain, -release, -autorelease)
are ignored. In a managed memory environment, the compiler’s support for garbage collection

CHAPTER 24 ■ MEMORY MANAGEMENT

454

(__strong and __weak pointer types) is ignored. The end result is code that will operate correctly in either
environment.

When compiling code that will run in a mixed memory environment, the compiler’s support for
garbage collection should be made inclusive. In Xcode, set the Objective-C Garbage Collection build
setting to Supported. This causes the compiler to include support for garbage collection, but also
includes the code needed to support managed memory. When the Objective-C Garbage Collection build
setting is set to Required (garbage collection only), the compiler actively strips out code that’s only useful
to managed memory. This makes the code more efficient, but sacrifices backward compatibility.

Writing the code that will function in both environments is fairly straightforward. In general,
code that correctly implements managed memory will also work in a garbage collection environment.
For example, all of the code samples in this chapter would function correctly with garbage collection
turned on. Table 24-2 lists the effects of each environment on your code.

Table 24-2. Effects of Managed Memory vs. Garbage Collection

Code Managed Memory Garbage Col l ect i on

-retain Retains an object Ignored

-release Releases an object Ignored

-autorelease Adds object to autorelease pool Ignored

-retainCount Returns the current retain count Meaningless

-dealloc Sent to an object to destroy it Runtime blocks this message from being sent

-finalize Never sent Sent when an object is about to be collected

__strong Ignored Indicates a strong reference

__weak Ignored Indicates a weak reference

-drain Drains the autorelease pool Triggers garbage collection

@property (assign) Unretained property Strong reference

@property (retain) Retained property Strong reference

NSAutoreleasePool’s -drain method is about the only method that’s functional in both
environments. With garbage collection turned on, it hints to the garbage collector that it might want to
start a garbage collection cycle.

CHAPTER 24 ■ MEMORY MANAGEMENT

455

Summary
Managed memory requires some additional effort, but it isn’t onerous. Just remember these basic rules:

• When storing an object reference in a persistent variable, retain it.

• Release or autorelease any retained reference before discarding it.

• Write a -dealloc method to release all retained objects.

• Always return retained or autoreleased objects.

• Autoreleased objects won’t be released until after the current method has returned.

C H A P T E R 2 5

 ■ ■ ■

457

Mixing C and Objective-C

One of the great strengths of Objective-C is that it allows seamless integration with C functions and
variables. This gives you direct access to the vast wealth of existing C APIs. This chapter discusses the
basic ways to mix C and Objective-C code in the same application, and covers Core Foundation, a C
library that includes data structures that are interchangeable with Objective-C objects. Mixing languages
creates some interesting memory management issues, which are explained toward the end of the
chapter.

Using C in Objective-C
“Using C in Objective-C” is somewhat misleading, because Objective-C is a strict superset of the C
language. You really can’t use C in Objective-C, since Objective-C is C. The term is usually applied when
you write code that uses C structures and calls C functions directly, instead of using Objective-C objects
and messages.

Calling C Functions from Objective-C
There have been a number of code examples presented in the book that implement C functions and use
them in Objective-C classes. These are standard C functions that can be called from C or Objective-C
code. A C function with a static type limits its scope to the code in the module being compiled. Non-
static functions are global and can be called from any module. (Remember that in this context, “static”
means private, not static in the Java sense.) An example of a static C function is shown in Listing 25-
1.

Listing 25-1. C Function and Objective-C Method

static NSInteger compareZombieBrains(id l, id r, void *ignored)
{
 float lSize = [l brainSize];
 float rSize = [r brainSize];
 if (lSize<rSize)
 return NSOrderedAscending;
 else if (lSize>rSize)
 return NSOrderedDescending;
 return NSOrderedSame;
}

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

458

- (NSArray*)zombiesSortedByIntelligence
{
 return [zombieArray sortedArrayUsingFunction:compareZombieBrains
context:NULL];
}

C functions can be defined anywhere outside of an Objective-C directive, or anywhere an
Objective-C method can be defined. This means that you can mix C functions and Objective-C methods
in an @implementation directive, but some programmers will group their C functions outside the
@implementation. It’s a matter of style.

Your Objective-C application can call C APIs provided by the operating system, it can link to
standard C libraries, and you can include C source modules in your project. This makes it easy to
interface with the wide universe of POSIX functions, C frameworks, shared libraries, and open-source
code.

Using Objective-C Objects in C
C functions in an Objective-C module (.m) are compiled as Objective-C code, not just C. The C function
in Listing 25-1 sends Objective-C messages to objects just as if it were an Objective-C method. The only
difference is that there is no object context (self). In this respect, a C function is the equivalent of a
static class method in Java.

When you add a C source file (.c) to your Xcode project, it will be compiled as plain C. The
source file cannot include any Objective-C syntax. If you need to use Objective-C objects in a C module,
you have two choices:

• Isolate the functions that use Objective-C objects and move them to an Objective-C (.m) source
file. The file can consist entirely of C functions, but it will be compiled as Objective-C and can
use Objective-C syntax to reference objects and send messages.

• Send Objective-C messages directly using one of the Objective-C runtime functions, such as
objc_msgSend(id,SEL,…).

The latter solution is awkward, but technically you can do anything in C that you can do in
Objective-C. The entire Objective-C runtime is, after all, written in C. See the Objective-C 2.0 Runtime
Reference1 for specific details.

Core Foundation
Core Foundation is a large library of C functions that are engineered around the concept of objects,
which it terms opaque types or just types. These opaque types have an internal structure that is
compatible with Objective-C objects, and a respectable number of Core Foundation types are
interchangeable with Objective-C classes. This reciprocity is called the toll-free bridge. The goal of Core
Foundation is to seamlessly provide a large number of operating system and framework services to both
C and Objective-C programmers. C programmers use CFTypeRef values, which are pointers to opaque
data structures, and pass them to Core Foundation functions. Objective-C programmers store object
pointers and send them messages. The code executed is the same in both cases.

Most Core Foundation types do not have a toll-free bridge to Objective-C. If you need their
functionality, you’ll need to use the Core Foundation data types and functions directly. Core Foundation
employs many of the same concepts as Objective-C, it just implements them with its own types,

1 Apple Inc., Objective-C 2.0 Runtime Reference, http://developer.apple.com/documentation/
Cocoa/Reference/ObjCRuntimeRef/, 2008.

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

459

functions, and terminology. A comparison of common Core Foundation types and functions along with
their Objective-C equivalents are listed in Table 25-1.

Table 25-1. Core Foundation Terminology

Objective-C Core Foundation

Class CFTypeID

id or NSObject* CFTypeRef

NSString* CFStringRef

[t class] CFGetTypeID(t)

[t1 isEqual:t2] CFEqual(t1,t2)

[t description] CFCopyDescription(t)

[t retain] CFRetain(t)

[t release] CFRelease(t)

A Core Foundation type is an identifier that is conceptually equivalent to an Objective-C class. A
Core Foundation reference, or ref for short, is an instance of a type, functionally identical to an identifier
(id) or object pointer.

Types are organized in an inheritance hierarchy just like classes. CFStringRef is a subtype of
CFTypeRef, just as NSString is a subclass of NSObject. A CFStringRef can be passed to any function that
accepts a CFStringRef or a CFTypeRef parameter, just as an NSString object will respond to any message
defined for NSString or NSObject.

The Toll-Free Bridge
Core Foundation and the Objective-C class frameworks are engineered so that select Core Foundation
types are interchangeable with equivalent Objective-C classes. The types and classes that form the toll-
free bridge are listed in Table 25-2.

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

460

Table 25-2. Core Foundation Toll-Free Bridge

Cocoa Class Core Foundation Type

NSArray CFArrayRef

NSAttributedString CFAttributedStringRef

NSCalendar CFCalendarRef

NSCharacterSet CFCharacterSetRef

NSData CFDataRef

NSDate CFDateRef

NSDictionary CFDictionaryRef

NSError CFErrorRef

NSInputStream CFReadStreamRef

NSLocale CFLocaleRef

NSMutableArray CFMutableArrayRef

NSMutableAttributedString CFMutableAttributedStringRef

NSMutableCharacterSet CFMutableCharacterSetRef

NSMutableData CFMutableDataRef

NSMutableDictionary CFMutableDictionaryRef

NSMutableSet CFMutableSetRef

NSMutableString CFMutableStringRef

NSNumber CFNumberRef

NSOutputStream CFWriteStreamRef

NSSet CFSetRef

NSString CFStringRef

NSTimer CFRunLoopTimerRef

NSTimeZone CFTimeZoneRef

NSURL CFURLRef

Put simply, an object pointer to one of the classes in Table 25-2 is functionally identical to its
matching Core Foundation type reference. The single value can be transparently treated as either type.
The code in Listing 25-2 demonstrates this with an Objective-C class that incorporates a Core
Foundation UUID type.

Listing 25-2. Using Core Foundation Types in an Objective-C Class

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

461

#include <CoreFoundation/CoreFoundation.h>

@interface Unique : NSObject <NSCoding> {
 @private
 __strong CFUUIDRef uuid;
}

@property (readonly) NSString *uuid;

@end

@implementation Unique

- (id)init
{
 self = [super init];
 if (self != nil) {
 CFUUIDRef newUUID = CFUUIDCreate(kCFAllocatorDefault);
 uuid = CFMakeCollectable(newUUID);
 }
 return self;
}

- (id)initWithCoder:(NSCoder*)decoder
{
 self = [super init];
 if (self != nil) {
 NSString *uuidString = [decoder decodeObjectForKey:@"UUID"];
 CFUUIDRef savedUUID = CFUUIDCreateFromString(kCFAllocatorDefault,

(CFStringRef)uuidString);
 uuid = CFMakeCollectable(savedUUID);
 }
 return self;
}

- (void)encodeWithCoder:(NSCoder*)encoder
{
 [encoder encodeObject:self.uuid forKey:@"UUID"];
}

- (NSString*)uuid
{

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

462

 CFStringRef cfString = CFUUIDCreateString(kCFAllocatorDefault,uuid);
 NSString *objcString = (NSString*)CFMakeCollectable(cfString);
 return objcString;
}

@end

The standard Objective-C class frameworks do not include a class that encapsulates Universally
Unique Identifiers (UUIDs). The Core Foundation framework, however, has the very handy CFUUIDRef
type along with a set of functions for creating and encoding UUIDs. The Unique class in Listing 25-2
stores a CFUUIDRef value, equivalent to an object pointer, to a Core Foundation type as it would any
other C pointer. The -init method creates a universally unique ID type and stores a reference to it.

The Core Foundation function CFUUIDCreateString(…) creates a textual representation of
the UUID from a CFUUIDRef and returns it as a new CFStringRef. Looking at Table 25-2, CFStringRef
and NSString are a toll-free bridge. So the reference to the Core Foundation string type can be treated as
if it were an NSString object pointer and returned to the caller.

Similarly, the -initWithCoder: method begins by decoding an NSString object from the
serialized data stream. It passes the NSString object pointer to CFUUIDCreateFromString(…) just as if
it were a CFStringRef. The CFUUIDCreateFromString(…) function uses the CFStringRef to reconstruct
the UUID opaque type.

The toll-free bridge means that you can seamlessly work with many common Core Foundation
types exactly as if they were Objective-C objects, and vice versa. The only significant difference between
Core Foundation types and their doppelganger Objective-C classes is their memory management. This is
discussed in the next section.

 Tip There are other Objective-C bridges that you might find interesting. For example, there are bridges
from Objective-C to both the Ruby and Python programming languages. Apple once developed a bridge between
Objective-C and Java, which has since been deprecated.

The Objective-C classes listed in Table 25-2 are the only ones that have toll-free bridges to Core
Foundation types. For example, NSRunLoop is not interchangeable with CFRunLoopRef. To use Core
Foundation functions on an NSRunLoop, send the object a -getCFRunLoop message, which will return
its underlying CFRunLoopRef.

C Memory Management
C memory management, or lack thereof, was described in Chapter 24. Core Foundation memory
management either works with, or is layered over, the memory management used by Objective-C. When
using Core Foundation types you must either adopt the Core Foundation memory management
patterns, or transition the references to the memory management scheme being employed by
Objective-C.

 Core Foundation types use simple reference counting. If you skipped Chapter 24, you might
want to review it so you understand the basic principles. Here are the key concepts about Core
Foundation memory management you need to know:

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

463

• Core Foundation uses reference counting.
• Every Core Foundation type is allocated using an allocator. The allocator equivalent to +alloc

is either kCFAllocatorDefault or NULL.

• The Core Foundation functions CFRetain(o) and CFRelease(o) are equivalent to [o
retain] and [o release] (in a managed memory environment).

• Core Foundation does not use autorelease pools. Refs returned by functions are either new (just
created and implicitly owned by the caller) or owned (retained at least once by some other
owner).

Using Core Foundation Memory Management Patterns
Unless you need to keep or return a reference to a Core Foundation type, the simplest approach is to
adhere to the Core Foundation memory management patterns. Core Foundation does not use
autorelease pools, so all refs returned are either new or owned. To use Core Foundation memory
management, your code should do the following:

Use a new ref exactly as you would a new object in a managed memory environment.

• Use the ref for as long as you need.
• Call CFRelease(ref) when finished with it.

Treat owned references much as you would autoreleased objects in a managed memory
environment.

• Owned refs can (typically) be used freely before returning from the current method or function.
• Alternatively, call CFRetain(ref) to retain the type, use it as long as you need, and then call
CFRelease(ref) to release it.

A complete description of Core Foundation memory management conventions and rules can
be found in the Memory Management Programming Guide for Core Foundation.2

Using Core Foundation with Garbage Collection
Even when using garbage collection in Objective-C, Core Foundation continues to use reference
counting. The garbage collector is aware of Core Foundation reference counts and incorporates them
into its collection logic. Specifically, a Core Foundation type is destroyed (collected) only when there are
no __strong references to it and it has a Core Foundation reference count of 0. This allows Core
Foundation and Objective-C garbage collection to coexist peacefully, but does require some attention
when treating CFTypeRefs like Objective-C objects. Unlike Objective-C, you can’t simply ignore
reference counts when using garbage collection.

When storing a Core Foundation type in an Objective-C object pointer (or any __strong
or __weak pointer type), transition it to garbage collection by passing it through the
CFMakeCollectable(CFTypeRef) function, as was shown in Listing 25-2. This function performs a
CFRelease()–decrementing its reference count to 0, but without destroying the type–and returns a
__strong reference to it. The type/object now becomes the responsibility of the garbage collector.

2 Apple Inc., Memory Management Programming Guide for Core Foundation, http://developer.apple.com/
documentation/CoreFoundation/Conceptual/CFMemoryMgmt/, 2007.

CHAPTER 25 ■ MIXING C AND OBJECTIVE-C

464

 Caution Garbage collection can only be used with Core Foundation types allocated using the standard or default
allocator function (kCFAllocatorDefault or NULL). Fortunately, this will be true for virtually all Core
Foundation types you work with. Core Foundation types allocated using a different allocator, specifically
kCFAllocatorMalloc, will be allocated in another memory zone and will not be scanned by the garbage
collector. Any such types must be managed using Core Foundation memory management.

Although CFRetain() and CFRelease() are functionally identical to -[NSObject retain]
and -[NSObject release], you can’t use the Objective-C messages to retain and release Core
Foundation types in a garbage collection environment. Remember that the Objective-C messages
-retain and -release are disabled when the garbage collector is started. So while CFRetain() and
CFRelease() continue to function, -retain and -release do nothing.

Using Core Foundation with Managed Memory
In a managed memory environment, Core Foundation and Objective-C share the same reference
counting mechanism. In this environment, CFRetain() and CFRelease() are synonymous with
-[NSObject retain] and -[NSObject release].

The simplest way of dealing with a retained Core Foundation type is to immediately add it to
the autorelease pool. If the -uuid method in Listing 25-2 were written for a managed memory
environment, it would look something like the code in Listing 25-3.

Listing 25-3. Returning an Autoreleased Core Foundation Reference

- (NSString*)uuid
{
 CFStringRef cfString = CFUUIDCreateString(kCFAllocatorDefault,uuid);
 return [(NSString*)cfString autorelease];
}

The object returned by -uuid in Listing 25-3 is autoreleased and behaves like any other
autoreleased string object. Most managed memory patterns described in Chapter 24 apply equally to
Core Foundation types.

Summary
Invoking C functions from Objective-C is effortless, giving your code direct access to a universe of
C-based solutions. Working with Core Foundation types is made easier by the toll-free bridge, allowing
you to interact with many Core Foundation types as though they were Objective-C objects. The most
common programming issue to deal with is matching, or rectifying, the memory management styles of
the two languages.

C H A P T E R 26

■ ■ ■

465

Runt ime

The runtime environment of an Objective-C application has some traits that you should be aware of.
These include the information about the Mac OS X process that comprises your running application, its
environment variables, the connections with its parent process, and so on. Some are inherited from the
operating system, while others are features of Objective-C and the Cocoa framework. Many have already
been described in other chapters. We will briefly review them here along with other important aspects of
the runtime environment.

Process
In Mac OS X, every Objective-C program executes as a process. Technically, Java bytecode executes in an
abstract virtual machine; but most virtual machines run in a process and embody almost identical
attributes. Every process includes

• A memory address space

• One or more executing threads

• A set of environment variables in a map of key/value pairs

• An array of command-line arguments

In Java, the virtual machine has access to the process’s local address space, but you (the
programmer) don’t. In Objective-C, you have direct access to the logical address space assigned to the
process. The hardware physically prohibits direct access to memory addresses outside your process’s
local address space. Any access attempt will result in a memory address violation, which usually results
in the termination of your process. Access to any resources outside of your process is accomplished by
sending messages to the kernel. You’ll almost never do this directly, but you should know that all APIs
that interact with the hardware or operating system ultimately end up sending messages to the kernel.

In Mac OS X, the process is synonymous with the main thread. The process exists as long as
the main thread exists, and terminates when the main thread terminates—or the process is intentionally
terminated using a function like exit(). You can create or destroy other threads, as described in
Chapter 15.

Not all Objective-C code will run in its own process. Objective-C can also be used to develop
frameworks and plug-ins. These are bundles of code and resources that can be loaded by another
application and execute within that application’s environment. For example, you can provide custom
indexing of your documents by providing the operating system with a Spotlight Plug-In bundle. The
bundle contains code that’s executed when the Spotlight search engine wants to index the contents of
your document type. The code in your Spotlight Plug-In runs inside the metadata importer process, not
your application.

In addition to its environment variables, command-line arguments, and process attributes,
there is also an odd collection of per-process properties, such as the current working directory. All of
these are discussed in the following sections.

CHAPTER 26 ■ RUNTIME

466

Environment
Every process inherits the environment defined by its parent process (the process that created your
process). An environment is a set of key/value string pairs that allow settings and other information to
be passed from one process to another. In Java, you can obtain the environment variables using
java.lang.System.getenv() or java.lang.System.getenv(String). In Objective-C, send the -environment
message to the singleton NSProcessInfo object, obtained using [NSProcessInfo processInfo].

Command-Line Arguments
Java processes launched from the command line include an array of command-line arguments, which
are passed to its main(String[]) method. Objective-C programs are hosted in a C application, which is
started when main(int,char**) is invoked. You can intercept and interpret the command-line
arguments in main(…), or refer to them later by sending -arguments to the singleton NSProcessInfo
object.

Process Attributes
Java provides an interface to get properties. These are like environment variables, but can be supplied by
classes, the virtual machine, and property list files among other sources. Most dynamic Java properties,
like the current working directory, are obtained through function calls or object messages in Objective-
C. Properties used to store default values and user preferences are called user defaults in Objective-C,
and there’s a specific interface for working with them described later in the chapter.

Table 25-1 lists a few of the more interesting process properties supplied by Java, and where to
find them in Objective-C.

Table 25-1. Process Attributes

Java Proper ty Object ive-C

os.name -[NSProcessInfo operatingSystemName]

os.arch N/A

os.version -[NSProcessInfo operatingSystemVersionString]

user.name NSUserName()

user.home NSHomeDirectory()

user.dir -[NSFileManager currentDirectoryPath]

The "os.arch" property is not applicable in Objective-C, because it’s a compiled language. The
code that executes on a particular processor must be compiled for that architecture. The binary file that
stores an executable program often contains multiple versions of the application, one for each
supported architecture. Xcode automatically recompiles your application for each architecture, and
then combines them into a single executable. Architecture-specific traits, like pointer size and byte
order, can be determined at compile time. You can use the preprocessor #if directive to compile code
that’s specific to a particular processor or architecture.

CHAPTER 26 ■ RUNTIME

467

NSProcessInfo has other useful information about the process, operating system, and
hardware. It will report, among other things, the amount of physical RAM and the number of CPU cores.
Finer-level detail can be obtained from POSIX functions like sysctl(…).

Version
Creating applications that are compatible with multiple versions of a framework or operating system can
be a tricky endeavor. The Cocoa frameworks provide a number of version control and compatibility
features that make this easier, or at least manageable.

Controlling Development and Deployment Versions
The Xcode build settings for your application project contain two important settings:

• Base SDK (SDKROOT) defines the version of headers and frameworks used to compile the
program.

• Deployment Target (MACOSX_DEPLOYMENT_TARGET) defines the earliest version of the
operating system your application is allowed to run on.

The base SDK selects the set of source header files and libraries that your application will be
compiled and linked with. Each version of the operating system defines a new set of classes, constants,
and data types. By specifying a particular base SDK, you limit your code to the APIs that were available
when that SDK was produced. Your application can’t use new classes, methods, or functions because (at
least as far as the compiler is concerned) those functions don’t exist and your code will fail to compile.

The deployment target applies only to GUI applications. It determines the earliest (oldest)
version of the operating system your application is allowed to launch in. The value of this build setting is
stored in the application’s bundle and tested by the OS when launched.

Testing for Classes, Methods, and Functions
Taken together, the above two build settings define a range of operating system versions that your
application can function in. This is called cross-development. Within that range, later operating systems
will have certain functions, classes, and methods implemented that earlier ones do not. To use any of
those, your code will have to test for their existence at runtime:

• Test for the existence of a class by calling NSClassFromString() and checking the results for Nil.

• Test for the existence of a method using -respondsToSelector:.

• Test for the existence of a function by comparing its pointer to NULL.

The first two techniques use Objective-C introspection. The last test applies to C functions and
works through a feature called weak linking. A weak link is a reference to a symbol that is assumed to be
defined by the operating system. If that symbol does not actually exist when the application is loaded,
the reference is set to NULL. In contrast to strong linking, a weakly linked reference won’t prevent your
application from loading. You can test for the existence of the symbol at runtime, like this:

if (NSDisableScreenUpdates!=NULL) { NSDisableScreenUpdates(); }

CHAPTER 26 ■ RUNTIME

468

Remember that the name of C function by itself (without any parentheses) evaluates to the
address of the function’s entry point. A complete description of cross-development settings and
techniques can be found in the Cross-Development Programming Guide.1

Packages and Bundles
A package is a collection of related files. From the user’s perspective, a package acts like a single
filesystem object: an application, a document, or a plug-in component. In reality, a package is a
directory that can contain any number of files or subdirectories. Packages are used in much the way JAR
files are—to organize a group of related files and keep them together—except that in Mac OS X the
content of the package is not compressed or archived.

■Tip You can explore the contents of a package directly from the Finder. Select a package and Control/right-click
on the item. In the contextual pop-up menu, choose Show Package Contents.

A bundle is a package with a predefined structure. Cocoa applications, browser plug-ins,
Automator Actions, frameworks, and Core Image filters are just a few of the bundle types that are
defined by the operating system. Any of these bundle types can include an arbitrary number of support
files: NIB files, string properties, images, sounds, movies, HTML documents, scripts, executable utilities,
even other bundles. What additional files you include in your bundle is entirely up to you.

You access and interact with bundles using the NSBundle class. Basic bundle functions and
their organization were discussed in Chapter 20. To learn more about bundles, refer to the NSBundle
class documentation and the Bundle Programming Guide.2

Not all program types are contained within bundles. A command-line tool, for example,
produces a single executable file. Additional resource files can’t be bundled in a command-line tool.

Frameworks
One type of bundle is a framework. A framework contains a deployment of programming resources that
can be shared by multiple applications. A framework can include shared libraries, Objective-C classes,
images, sounds, NIB files, and other resources. In this respect, frameworks are roughly equivalent to JAR
files used to deploy a library of Java class files, property files, and other resources. They can include any
or all of the following:

• Shared libraries of compiled functions and classes

• Header files that define the interface to the framework API

• Documentation

• Arbitrary resources: NIB files, images, localized strings, scripts, help files, etc.

1 Apple Inc., Cross-Development Programming Guide, http://developer.apple.com/documentation/DeveloperTools/
Conceptual/cross_development/, 2006.
2 Apple Inc., Bundle Programming Guide, http://developer.apple.com/documentation/CoreFoundation/
Conceptual/CFBundles/, 2005.

CHAPTER 26 ■ RUNTIME

469

All of these components are optional, allowing for flexible deployment solutions. A framework
with shared libraries but no header files is suitable for distribution to a wide audience. A framework with
code, headers, and documentation is a self-contained deployment vehicle, useable by both
programmers and end users alike. The frameworks included in the Xcode SDK are special frameworks
that contain header files and documentation, but no actual code—so-called stub libraries. These allow
you to develop applications that use the system’s frameworks, without actually including a copy of the
entire OS.

Frameworks have some very useful features:

• A single copy of a framework’s code is loaded into memory and is shared by all applications that
use the framework.

• A framework can contain multiple versions of itself.

• Frameworks make it easy to deploy complex collections of code, resources, and documentation
as a single entity.

• Frameworks can be loaded automatically or programmatically.

Most projects link to frameworks directly during development. You add the frameworks your
application needs to an Xcode project, as shown in Figure 26-1. The header and documentation files in
the framework define its interface for the programmer, and its library files are used to link the
application.

Figure 26-1. Frameworks in an Xcode Project

CHAPTER 26 ■ RUNTIME

470

At runtime, frameworks are automatically loaded from a number of predefined locations (most
notably /System/Library/Frameworks and /Library/Frameworks), very similarly to how Java finds classes
using its classpath variable. Alternatively, you can embed a framework in an application’s bundle, or
locate and load a framework programmatically. To load a framework directly, create an NSBundle object
for the framework’s package directory and send it a -load message. This is approximately equivalent to
creating a java.lang.ClassLoader. Unlike Java, framework code is not garbage collected. Send the bundle
an -unload message if you need to release it.

■Note Although frameworks usually contain shared libraries, loading a framework is more like using
java.lang.ClassLoader than the java.lang.Runtime.loadLibrary(String) method. The latter is equivalent to
the POSIX function dlopen(…).

Most of the time you use frameworks developed by others, but you can also develop and deploy
your own frameworks. Frameworks make it easy to develop reusable solutions that become the building
blocks for new applications, which are deployed with those applications. If you are considering
developing your own framework, refer to the Framework Programming Guide.3

User Defaults
User defaults consist of several layered sets of property values, much like Java properties. User defaults
are stored as property list dictionaries, so they can only contain property value objects (NSString,
NSNumber, NSDate, NSData, NSArray, or NSDictionary). You employ user defaults much as you would
Java property values. User defaults also incorporate your application’s editable preferences. Preferences
are saved automatically and are available the next time your application executes.

User default values are stored by name (key) in one or more domains. Following are the major
domains (in descending search order):

1. Command-line argument domain

2. Application domain

3. Global domain

4. Registration domain

You obtain a value from the user defaults by requesting it from the singleton NSUserDefaults
object, obtained with [NSUserDefaults standardUserDefaults]. The generic method is -objectForKey:,
but there are alternate messages that return the same value cast or converted to a more convenient type:
-stringForKey:, -boolForKey:. -integerForKey:, -floatForKey:, -dataForKey:, -stringArrayForKey:, -
arrayForKey:, and -dictionaryForKey:. User defaults will convert between common representations.
For example, requesting a string with the value “YES” as a Boolean will return the numeric constant YES
(true). The code in Listing 26-1 tests a user defaults setting to determine how a view should be drawn.

3 Apple Inc., Framework Programming Guide, http://developer.apple.com/documentation/MacOSX/
Conceptual/BPFrameworks/, 2006.

CHAPTER 26 ■ RUNTIME

471

Listing 26-1. Reading User Defaults

if ([[NSUserDefaults standardUserDefaults] boolForKey:@"ShowTerrainInMap"]) {
 [terrainMap draw];
}

NSUserDefaults searches each domain, in order, for the key and returns the value from the first

domain that contains it. Values set in a high level domain supersede the values set in lower domains.
The command-line argument domain is the highest domain and is populated with argument

values included on the command line when the process was launched. Normally there are no
command-line arguments, but you can include them during development by editing the launch
parameters of the application’s executable. The form for a command-line argument value is -key value.
Launching an application with the arguments -ZombieNightVision NO will create the key/value pair
ZombieNightVision="NO" in the arguments domain.

The application domain is used to store the user preferences for your application. This is a
persistent domain. That is, values set here are automatically saved in a property list file on disk, and
automatically reloaded the next time your application launches. The property list file is named using your
application’s identifier, in the directory ~/Library/Preferences. The TicTacToe application in Chapter 20
stores its user defaults in the file ~/Library/Preferences/com.apress.learnobjc.TicTacToe.plist.

■Tip You can create a user interface for a simple application preference by binding a view, like a check box or
text field, to an arbitrary property of the singleton NSUserDefaultsController right in Interface Builder. This object is
a bindable controller whose properties reflect the values of the user defaults. Changing a property of the controller
sets that value in the application domain, which will be preserved. NSUserDefaultsController can also be used
programmatically, if you prefer that to the syntax shown in Listing 26-1.

The global domain is another persistent domain, but one you don’t normally change yourself.
This domain contains the user defaults applicable to all applications launched by the user. These
include the user’s location, time zone, currency, time and number formatting, preferred font, and so on.
They are usually defined by the operating system and set using System Preferences.

Finally, there’s the registration domain. This domain is not persistent, and it is empty unless
you populate it yourself during program initialization. It’s intended as a domain of default user defaults.
That is, it provides a value when none of the other domains contains a value for a key. The code in
Listing 26-2 initializes the registration domain with some values. If none of the other domains contain a
value for one of these keys, the value in the registration domain will be returned.

CHAPTER 26 ■ RUNTIME

472

Listing 26-2. Creating a Registration Domain During Application Startup

[[NSUserDefaults standardUserDefaults] registerDefaults:
 [NSDictionary dictionaryWithObjectsAndKeys:
 [NSNumber numberWithInt:999], @"MaximumZombies",
 [NSNumber numberWithBool:NO], @"ZombiesCanWiggleEars",
 [NSNumber numberWithBool:YES], @"ShowTerrianInMap",
 @"Bob", @"GenericZombieName",
 nil]
];

A popular alternative to hard-coding the registration defaults is to save them as a property list

in your application’s bundle. During application startup, load a dictionary with the values in the
property list and pass that to -registerDefaults:. This also allows the property list to be easily localized
for different languages.

You can learn more about user defaults from the NSUserDefaults class documentation and the
User Defaults Programming Topics for Cocoa.4

isa Swizzling
Some of Objective-C’s “magic” is accomplished with a trick called isa swizzling. It gets its name from the
fact that it stirs, or swizzles, the isa variable that defines the behavior of an object.

Normally, an object’s isa variable is set during +alloc and never changes. Changing an object’s
isa variable effectively changes the class of the object, which defines its structure and all of the messages
it responds to. Clearly you can see that arbitrarily changing it could have drastic consequences.

A couple of technologies, particularly Key-Value Observing, take advantage of the mutability of
an object’s class to surgically replace the behavior of specific methods. Here’s what Key-Value Observing
does when you request to observe a particular property:

1. Gets the class of the object.

2. Creates a new subclass of the object’s class.

3. Overrides the -class method with one that returns the Class of the original object.

4. Overrides the desired setter methods in the original class.

5. Sets the isa variable of the object to the new subclass created in step 2.

An Objective-C class is created programmatically using objc_allocateClassPair() (although
KVO probably uses a private function called objc_duplicateClass()). Once the empty class is defined,
you can add or override methods in the class using class_addMethod(), make it conform to a protocol
with class_addProtocol(), or define instance variables with class_addIvar(). In fact, you can do
anything programmatically that you can define in the Objective-C language.

When finished, the object behaves exactly like it did before, except that messages overridden in
step 4 invoke the methods defined by KVO instead of the original class. Because KVO also overrides the -
class method, the object still appears to be its original class. You’d have to peak at the raw isa instance
variable to see a difference in the object.

4 Apple Inc., User Defaults Programming Topics for Cocoa,
http://developer.apple.com/documentation/Cocoa/Conceptual/UserDefaults/, 2007.

CHAPTER 26 ■ RUNTIME

473

Isa swizzling is a powerful technique, but it’s rather technical and not for the faint of heart. This
section is designed to be informative, rather than encourage you to try it yourself. But if you do
encounter a strong need for a solution that involves this kind of object mutation, it’s not beyond your
reach.

64-Bit Programming
If you’ve been around a while, you’ve seen the size of microprocessor registers grow from 4 to 32 bits
over the decades. It’s inevitable that we now find ourselves in a transition from 32- to 64-bit processors.
Hopefully, the transition to 128-bit processors is some time off.

For both Java and Objective-C programmers, the change heralds new memory capacities and
the promise of improved performance. Most object-oriented programmers will find little to do during
the transition—beyond updating their project settings to produce a 64-bit version of their application. If
you program exclusively using Objective-C classes, methods, and properties, you’ll find very little
difference between the two environments. The biggest change for Objective-C programmers is the size
change of some integer variable types, as listed in Table 26-2.

Table 26-2. 32- and 64-Bit Variable Sizes

Type 32-Bi t Si ze 64-Bi t Si ze

char 1 byte 1 byte

short 2 bytes 2 bytes

int 4 bytes 4 bytes

long 4 bytes 8 bytes

NSInteger 4 bytes 8 bytes

pointer 4 bytes 8 bytes

long long 8 bytes 8 bytes

Most integer sizes stay the same, with the exception of long int. A long int is 32-bits long in a
32-bit architecture, and 64-bits long when compiled for a 64-bit architecture. The more easily
remembered NSInteger (and NSUInteger) typedefs are equivalent to long int. You will notice that most
Objective-C collection classes use NSUInteger values to count and address elements, allowing
collections in a 64-bit architecture to contain more than 4,294,967,296 elements—something that’s
impossible to accomplish in the address space of a 32-bit processor.

CHAPTER 26 ■ RUNTIME

474

■Tip A common mistake is to use the wrong format string specifier to format int values. The statement
[NSString stringWithFormat:@"%d",(NSInteger)x] will not work when compiled for 64 bits; the integer
format specifer ("%d") expects a 32-bit integer. Always match the format specifier ("%ld") with the type (long
int) it expects.

The change in pointer variable size usually isn’t an issue for Objective-C programmers. All
pointers (object pointers, C type pointers, structure pointers, CFTypeRefs, etc.) are always stored in
pointer variables. The change in size is transparent, as are cast conversions between different pointer
types.

In addition to the size change, 64-bit long int, long long int, and pointer variables all change
from a 4-byte alignment to an 8-byte alignment. The alignment of a variable determines which
addresses the variable prefers to be positioned at. An 8-byte alignment means that a variable’s address
should be evenly divisible by 8. This mostly impacts the organization of structures, like the one shown in
Listing 26-3.

Listing 26-3. Variable Alignment in Structures

@interface Marker : NSObject {
 int tag;
 long long int position;
}

@end

In a 32-bit architecture, the relative address offsets of the tag and position variables in Listing

26-3 would be 0 and 4, respectively. When compiled for a 64-bit architecture, the relative offsets would
be 0 and 8. The size of the variables didn’t change, but the preferred address alignment for the position
integer changed from 4 to 8. The compiler inserts 4 unused bytes between the two variables to align the
second variable to an 8-byte address boundary. This means that the size of this object in memory is 4
bytes larger when compiled for 64-bits, even though the variables’ sizes didn’t change.

Here’s a short checklist of best practices that will keep your code running smoothly in both 32-
and 64-bit architectures:

• Never store or pass a pointer value in an integer variable, or vice versa.

• Store returned NSInteger values in NSInteger variables. Specifically, NSUInteger count =
[collection count].

• When using NSInteger values, use the corresponding “integer” object message: -[NSCoder
encodeInteger:forKey:] instead of -[NSCoder encodeInt:forKey:], -[NSString integerValue]
instead of -[NSString intValue], and so on.

• Match format string specifiers with the correct variable type.

• Don’t depend on, or make assumptions about, the size or organization of structures.

• In general, design using objects and properties rather than manipulating structures and
pointers.

CHAPTER 26 ■ RUNTIME

475

Those are the big ones, but there are hordes of smaller details. If you’re considering compiling
64-bit Objective-C code, you should begin by reviewing the 64-Bit Transition Guide for Cocoa.5 Also read
some of the many reasons you might not want to convert your application to 64-bits in the 64-Bit
Transition Guide.6

Summary
Unlike Java, which tries to abstract many of the details of the runtime environment, Objective-C
applications run as native code and interact directly with the operating system APIs. You can use
introspection to run applications on older versions of the operating system that might be missing newer
APIs and features. Cocoa bundles and frameworks simplify the deployment of complex applications and
libraries, while user defaults make it easy to manage configurable preferences and properties. With some
attention to a few details, you can produce applications that run smoothly on the latest generation of 64-
bit processors.

Epilogue
Congratulate yourself. You’ve learned a lot about Objective-C! And not just the basics—this book has
explored some really advanced techniques. You’ve learned how similarly Objective-C and Java approach
primitive types, control structures, class inheritance, protocols (interfaces), garbage collection, archiving
(serialization), exceptions, threads, and collections. You’ve learned the subtle differences—syntactic,
technical, and philosophical—in how Objective-C invokes methods. Most importantly, you’ve explored
some genuinely new concepts like categories, Key-Value Observing, and class clusters. You have
(hopefully!) embraced some new design patterns, like delegates, singletons, and using nil object
pointers, to your advantage. You’ve also learned how Objective-C embraces design patterns like Model-
View-Controller and lazy initialization, while taking unique approaches to the subscriber/provider and
factory patterns.

There is, of course, much more to know about Objective-C, the class frameworks, and C than
can ever be put into a single book. But I genuinely hope you found this book to be instructive and that it
has accelerated your knowledge and skills toward your ultimate goal. Java and Objective-C are both
great languages. Given their many similarities, there’s no reason why you can’t be proficient in both—
expanding both your horizons and your opportunities.

5 Apple Inc., 64-Bit Transition Guide for Cocoa, http://developer.apple.com/documentation/Cocoa/
Conceptual/Cocoa64BitGuide/, 2009.
6 Apple Inc., 64-Bit Transition Guide, http://developer.apple.com/documentation/Darwin/Conceptual/
64bitPorting/, 2009.

Index
■ ■ ■

477

■Numbers
64-bit programming, 473

■Symbols
- minus sign, 28, 45
< > angle brackets, 22, 76
-> indirect member operator, 17, 34
& ampersand, 16
* unary pointer operator, 16, 18
. member operator, 17, 40
@ at sign, 27, 126
[…] square brackets, 27, 30
+ plus sign, 28, 45
+ string concatenation operator, 123
" " quotation marks, 22

■A
absent behavior, 112, 253
absolute paths, 165
accessing properties, 40
accessor methods, 35—40, 111
action messages, 354, 364

responder chain and, 391
sending, 392

actions, 384
handling, 384—394
Interface Builder and, 364
responder chain and, 390—394

addressable objects, 308
aliases, 173, 183
ambiguous methods, 89
ampersand (&), 16
angle brackets (< >)

#include/#import statements and, 22
protocols and, 76

animation, 380

AppKit framework, 9
Apple

iPhone. See iPhone
iPod, 8
iTunes, 357
Xcode software development kit, 55,

448
application domain, user defaults and,

470, 471
applications

business logic, adding to, 68—71
controllers, adding to, 64
debugging, 72
delegates, incorporating into, 323
designing, 59—68
document-based, 383
multiple operating system versions

and, 467
runtime environment and, 465—475
sandbox, 73

arbitrary values, 121
archive coders, 187
archiving, 185—203

conditional encoding and, 196
limiting support for, 193
root object for, 195, 196
troubleshooting, 193—203
types of, 186

array controllers, 67
arrays, 18, 119, 292—296

filtering collections and, 312
iterating through, 308
methods for, 292

aspect-oriented programming, 8, 78
assertions, 248—252

custom assertion macros and, 250—252
turning off, en masse, 249

assign attribute, 39

■ INDEX

478

asynchronous messages, distributed
objects and, 228

asynchronous notifications, 332, 333, 336
at sign (@)

prefixing directives, 27
string literals and, 126

atos tool, 243
attributes, for properties, 38
automatic variables, initializing, 24
autorelease pools, 437—440

Core Foundation and, 463, 464
creating your own, 452
lifetime of, 438, 439

autoreleased object pattern, for memory
management, 441

autoreleased objects, 439, 441

■B
background threads, 68
backward compatibility, 198—201
base class initializers, 428
bindings, 65—67, 356, 358

creating programmatically, 359, 360
Interface Builder and, 365
Key-Value Coding and, 150, 153

bindings framework, 67
Bonjour (Zeroconf), 231
Boolean types, 12
bootstrap namespaces, 213
bounds

drawing, 375
views and, 371

break statement, 24
BSD file functions, 179
BSD framework, 163, 181, 184
BSD pipes/sockets

distributed objects and, 227
low-level communications and, 213

build configurations, 59
build settings, 58
Builder pattern, 81
bundles, 360, 402, 468
business logic, adding to applications,

68—71
bycopy modifier, 228

byref modifier, 228

■C
C

vs. Java, 11—26
memory management and, 462
using with Objective-C, 457—464

C callback functions, sorting collections
via, 311

C compiler, 5
C memory allocation, 436
caches, 237
CALayer class, 380
call stack, 243
callbacks, messages and, 91
calling methods. See sending messages to

objects
Carbon framework, 163, 181
@catch directive, 240, 242
categories, 79—85

NSObject class and, 84
organizing classes via, 81

chaining exceptions, 243
change dictionaries, 344, 345
circular references, reference counting

and, 451
class clusters, 50, 201, 411, 426

ramifications of, 427
singletons and, 431

@class directive, 43
class methods, 45—47
class name scope, 41
Class type, 155
class version compatibility, 197—203
classes

archivable, creating, 190
augmenting with methods, 82
class membership testing and, 149
class replacement and, 201
class version compatibility and, 197—

203
defining, 27
document model and, 383
factories for, 411—428
introspection for, 155

■ INDEX

479

keyed archiving support for, 189—192
lazy initialization and, 407—410
making KVO compliant, 347—352
naming convention for, 41
nil, designing via, 108—113
for primitive value wrapping, 117
organizing via categories, 81
sequential archiving support for, 192
testing for, 147, 467
toll-free bridge and, 459—462

coalescing notifications, 334
Cocoa Application template, 56
Cocoa framework, 7

file systems and, 163
MVC design pattern and, 353

code
64-bit programming and, 473
aspect-oriented programming and, 8,

78
best practices checklist for, 474
garbage collection and, 136, 145
memory management problems and,

447—452
nil, simplifying code and, 104, 108—113

coercion, methods and, 90
collectable memory blocks, garbage

collection and, 142
collection classes, 287

organization of, 295
for weak references, 139

collection controllers, 396
collections, 287—314

changes to, deferring, 313
comparing, 305
concurrency and, 313
filtering, 312
garbage collection and, 314
immutable, 288—291
iterating through, 306—310
ordered, 292—296
prematurely released objects and, 450
sorting, 310—312
thread safety and, 314
weak, 314

command-line argument domain, user
defaults and, 470, 471

command-line arguments, processes and,
466

commands, responder chain and, 390—394
communication technologies, 211—237

high-level communications and,
217—231

low-level communications and, 212—
217

networking and, 231—237
processes and, 212—231
single-process and, 211
types of communication and, 211

compilers, 5, 435
compiling messages, 88—90
Composite pattern, 303
connections, NIB documents and, 363—367
consistency with nothing design pattern,

113
constants, 14
constructor methods, 47—53
constructors, lightweight, 403
continue statement, 24
controller/data model variation of the

MVC design pattern, 355
controllers, 67, 354, 398

adding to applications, 64
collection, 396
custom, 398

controls, 90, 371
convenience constructors, 52, 411
cookies, 237
coordinates, 37, 42
copy attribute, 38, 39
copying objects, 207
Core Animation, 380
Core Data objects, 397
Core Foundation error codes, 253
Core Foundation, 458—464
Core Services framework, 163, 181—184
Cox, Brad, 4
cross-development, 467
current directory, 167
custom objects, NIB documents and, 367

■ INDEX

480

■D
data, exchanging. See communication

technologies
data files, terminology and, 165
data forks, 181
data models, 65—68, 354, 394—397

custom, 397
types of, 394

dates, formatting for, 133
dealloc patterns, for memory

management, 445
Debug build configuration, 59
debugging

applications, 72
garbage collection and, 145

decimal numbers, formatting for, 132
decision-making, 108
deep copies, of objects, 207, 234
deferred messages, 92, 211
deferred method invocation, 265
#define statement, 22
delegate protocols, 320—323
delegates, 315—323

absent behavior and, 112
how they work, 315
incorporating into applications, 323
messages and, 91
methods for, 180, 318, 319

dependent properties, 349
dequeuing notifications, 334
descriptors, sorting collections via, 312
design patterns, 113

garbage collection and, 145
MVC, 59, 65, 353—402

designated initializers, 52
destructors, 53
developers, productivity and, 8
dictionaries, 297—299

iterating through, 308
methods for, 297
notifications and, 330

direct view/data model binding variation
of the MVC design pattern, 356

directories
contents of, working with, 173

creating/deleting, 169
special, 169
symbolic links and, 172
working directory and, 167

directory constants, 170
directory domains, 170
disabling

action menu items, 393
garbage collection, 141

discovery phase, of Network Services, 231
distributed notification centers, 336, 337
distributed notifications, 217, 334—337

coalescing, 336
queuing, 336

distributed object messages, 265
distributed objects (DO), 212, 218—231

archiving and, 186
common connection methods for, 225
how they work, 218
making connections and, 224—227

document model, 383
document object model (DOM), 206
documents, archiving, 188
DOM (document object model), 206
dot syntax, 40
downloading URLs, 236
downloads

distributed objects demonstration, 218
Matrix sample class, 411
Scrapbook Words sample application,

finished project files for, 55
TicTacToe sample application, 353
Xcode development tools, 55

drawing
lines, 375
objects, 379
resources for further reading, 383

duplicate objects, archiving and, 195
@dynamic directive, 37, 40
dynamic programming languages, 5—8

■E
#else statement, 23
encapsulation, 357
@encode directive, 121

■ INDEX

481

encoding methods, 190
@end directive, 28
#endif statement, 23
enumerating weak collections, garbage

collection pitfalls and, 144
enumeration, 306—310

collection concurrency and, 313
support for, 309

environment, processes and, 466
equality contracts, 303
error domains, 254
error handling, 252—255
errors, 252—255

displaying to users, 254
localizing error messages and, 255
recovery attempter objects for, 255
responder chain and, 394

event chain, 384
event-driven threads, 93
event handling, 384—394
event sources, 265
events, 384—394

event ports and, 386
path of, 386

exception handling, 239—256
combining with error handling, 256
Java vs. Objective-C, 241—247
legacy exception handling and, 247

exception handling flags, 245
ExceptionHandling framework, 244
exceptions, 239

alternatives to, 252—255
assertions and, 248—252
chaining, 243
handling. See exception handling
nil and, 113
NotSerializableException, 193
performance and, 244
re-throwing, 242
uncaught, 244—247
unchecked, 241
unrecognized selector, 77, 100, 319

explicit paths, 167
extensions, 82, 84
extern statement, 20

■F
factories, 411—428

Java and, 411—413, 419—423
Objective-C and, 414—417, 423—428

fast enumeration, 144, 306
file attribute keys, 175
file forks, 181
file name extensions, 165
file names, 165
file systems, 163—184

identifying items in, 164—171
NSDistributedLock class and, 277

file URLs, 168
files, 163—184

data files and, 165
file names and, 165
Java vs. Objective-C, 163
operations on, 177
prompting users for, 171
properties of, 175
terminology and, 165

filtering collections, 312
finalize methods, 53, 135, 138
@finally directive, 240
firing notifications, 325
flexibility, MVC design pattern and, 357
floating-point numbers, views and, 372
floating-point types, 11
formal properties, 160
formal protocols, 77
format specifiers, 129
formatting

dates, 133
decimal numbers, 132
strings, 128—134
times, 133

forward compatibility, 198
frames

rotating, 373
views and, 371

frameworks, 468
“FS”, prefixing Carbon framework file

system functions, 181
FSRef data structure, 183
functions, 20

■ INDEX

482

for class introspection, 156
for instance variable introspection, 161,

162
for method introspection, 158
for property introspection, 160
for protocol introspection, 157
testing for, 467

■G
garbage collection (GC), 58, 135—146

collections and, 314
Core Foundation and, 463
disabling/enabling, 141
encouraging, 141
vs. memory management, 435, 440, 454
NSData class and, 121
pitfalls of, 143—145
preventing for objects, 141
resources for further reading and, 145
support for/choosing to use, 136
theory behind, 135

getter= attribute, 39
global domain, user defaults and, 470, 471
global variables, lazy initialization and,

404—407
goto statement, 24
graphical applications, NSWorkspace class

and, 178
graphics, 369—383
graphics context, 377
graphics context state stack, 378
GUI applications, NSWorkspace class and,

178

■H
hard links, 173
hash contracts, 303
header (.h) files, 28
helper classes, 43
hexadecimal strings, 119
high-level communications, 217—231
high-level file operations, 177

■I
IBOutlet keyword, 67
id type

object pointers and, 29
parameter types/return types and, 33

identity matrices, 422
#if statement, 23
#ifdef statement, 23
#ifend statement, 23
#ifndef statement, 23
Image Kit framework, 382
immediate messages, 91
immutable collections, 288—291

methods for, 288
thread safety and, 314

@implementation directive, 27
categories and, 79
extensions and, 84
methods and, 42, 458
@synthesize directive and, 37

implicitly retained objects, 446
#import statement, 21
in modifier, 230
#include statement, 21
indirect member operator (->), 17, 34
Info.plist file, 401
informal protocols, 8, 77, 148

combining with formal, 78
delegate protocols and, 320

informational properties, for threads, 263
inheritance

class methods and, 28, 46
delegates as alternative to, 315, 323

init contract, 428
init methods, 49—53
init patterns, for memory management,

444
+initialize method, 407—410
inout modifier, 230
input sources, 265
instance methods, 28, 45
instance variable scope, 42
instance variables, 34—45

introspection for, 161
NSProxy class and, 223

■ INDEX

483

instanceof operator, class membership
testing and, 149

int keyword, 13
integer types, 11, 473
Interface Builder (IB), 61, 64, 360—369

actions and, 392
connections and, 363—367

@interface directive, 27
categories and, 79
@class directive and, 43
extensions and, 84
instance variables and, 34, 42
methods and, 42
@property directive and, 35

interfaces, 75
interior pointers, garbage collection

pitfalls and, 143
inter-thread connections, distributed

objects and, 225
introspection, 85, 147—162

for classes, 155, 467
for instance variables, 161
Key-Value Coding and, 150—155
for methods, 158, 467
for properties, 160
for protocols, 157

inversion of responsibility, 315
iPhone (Apple), 8

bindings and, 359
responder chain and, 391
tables/trees and, 396
views and, 382

iPod (Apple), 8
iptr variable, 16
isa swizzling, 35, 342, 472
isa variable, 35
isolating methods, 81
items, identifying in file systems, 164—171
Iterator pattern, 306—310
iTunes (Apple), MVC design pattern and,

357

■J
Java

vs. C, 11—26

features of not found in Objective-C, 54
vs. Objective-C, 27—54

■K
key events, 387
key path, Key-Value Coding and, 152
Key-Value Coding (KVC), 66, 147, 150—155,

343
designing KVC-compliant properties

and, 153
instance variable introspection

functions and, 161
Key-Value Observing and, 342
resources for further reading, 155

Key-Value Observing (KVO), 67, 212
how it works, 340
isa swizzling and, 342, 472
Key-Value Coding and, 150, 153
making classes compliant and, 347—352
manual notifications and, 347, 350
optimizing, 352
overriding, 351
processing key-value change

notifications and, 345
keyed archiving, 186

forward/backward compatibility and,
198

support for, adding to classes, 189—192
keys, Key-Value Coding and, 152
keywords, 11

int, 13
long, 13
short, 13
static, 19

KVC. See Key-Value Coding
KVO. See Key-Value Observing

■L
labels, 24
lazy initialization, 403—410, 430
lazy singletons, 430
Launch Services framework file system

functions, “LS” prefixing 181
legacy data models, 394

■ INDEX

484

legacy exception handling, 247
length modifiers, 130
lightweight constructors, 403
lines

drawing, 375
listeners

absent behavior and, 112
notifications and, 325—329

localization, 255, 402
loggers, absent behavior and, 112
logical coordinates, 374
long keyword, 13
Love, Tim, 4
low-level communications, 212—217
“LS”, prefixing Launch Services framework

file system functions, 181

■M
Mach ports, 212, 213

distributed notifications and, 336
distributed objects and, 226

main run loop, 92, 265
distributed notifications and, 336
events and, 386

main thread, 92, 260, 465
maps, 297—299
Matrix (sample) class, 411—428

identity matrices and, 422
Java implementation of, 411—413
matrix operations and, 417
Objective-C implementation of, 414—

417
mediated variation of the MVC design

pattern, 355
member operator (.), 17, 40
member variables, 17, 34
memory management, 136, 142, 144, 435—

455
basic rules for, 455
C and, 462
Core Foundation and, 464
deallocation and, 445
vs. garbage collection, 435, 440, 454
overcoming coding problems with,

447—452

programming patterns for, 440—447,
463

menu actions, 392, 394
menu items

actions and, 392, 394
disabling, 393

message identifiers, 392
messages

action, 391, 354, 364
compiling, 88—90
deferred, 92, 211
immediate, 91
networking and, 231—237
sending to objects. See sending

messages to objects
single-process communication and,

211
sorting collections via, 311
terminology and, 30

metadata. See introspection
method invocation, 30
method scope, 42
methods

accessor, 35—40, 111
ambiguous, 89
augmenting classes with, 82
calling. See sending messages to objects
class, 45—47
constructor, 47—53
delegate, 180
directory content, 173
encoding, 190
finalize, 53
instance, 28, 45
introspection for, 158
isolating, 81
for level file operations, 177
naming conventions for, 31—33
”no method found” compiler warning

and, 89
object-oriented method invocation

and, 94
process communication and, 212—231
property, 175
setValue, 35
symbolic link, 172

■ INDEX

485

terminology and, 30
testing for, 147, 467
undeclared, 88
unimplemented, 100—102
value, 35
variable arguments, implementing in,

100
void, 33

minus sign (-) prefixing instance methods,
28, 45

Model-View-Controller. See MVC design
pattern

modularity, MVC design pattern and, 357
Moore, Charles, 108
mouse events, 388
mouse tracking, 389
mutual exclusion semaphores (mutexes),

270—280
MVC communications, 354
MVC design pattern, 59, 353—402

advantages of, 357
bindings and, 65
how it works, 354—358
MVC communications and, 354
variations of, 355—356

■N
naming conventions

for classes, 41
for instance variables, 34
for methods, 31—33, 34
for notifications, 330
for parameters, 31
for protocols, 77

network communications, 231—237
network connections, distributed objects

and, 227
Network Services, 231
new object patterns, for memory

management, 441
NEXTSTEP operating system, 4
NIB documents, 61, 64, 67

connections and, 363—367
creating objects in, 369
custom objects and, 367

Interface Builder for, 360, 361—369
main NIB and, 361, 401
owner objects and, 367

nil
class construction and, 50
class design/code simplification and,

108—113
dictionaries and, 298
message return values and, 107
NSEnumerator class and, 307
NSMutableArray class and, 294
sending messages to objects and, 104—

107
wrapping, 123

Nil constant, 157
“no method found” compiler warning, 89
nonatomic attribute, 38, 39
nothing, consistency with nothing design

pattern and, 113
notification centers, 263

distributed notification centers and,
336, 337

notification queues and, 332
observers and, 329

notifications, 179, 211, 325—337
asynchronous, 332, 333, 336
coalescing, 334
dequeuing, 334
distributed, 217, 334—337
Key-Value Observing and, 339—352
messages and, 90
naming conventions for, 330
observer criteria for receiving, 330
queuing, 332—334, 336
synchronous, posting, 329
thread, 268

NotSerializableException, 193
NS_...RETURN preprocessor macros,

legacy exception handling and, 248
NS_BLOCK_ASSERTIONS preprocessor

macro, 249
NS_DURING preprocessor macro, legacy

exception handling and, 248
NS_ENDHANDLER preprocessor macro,

legacy exception handling and, 248

■ INDEX

486

NS_HANDLER preprocessor macro, legacy
exception handling and, 248

NSApplication class, 385
actions and, 392
delegates and, 318, 320
exceptions and, 244
run loops and, 265
as singleton, 429
subclasses of, creating, 398

NSArray class, 203, 205, 288, 292, 294
filtering collections and, 312
thread safety and, 314

NSArrayController class, 60, 67, 346, 396,
399

NSAssert macros, 250
NSBezierPath class, 375
NSBrowserView class, 395
NSBundle class, 468

frameworks and, 470
localizations and, 402

NSButton class, 357, 358
NSCell class, 358, 396
NSCoder class, 185, 192
NSCoding protocol, 185, 189
NSCollectionView class, 396
NSComparisionResult class, 311
NSConditionLock class, 270, 273—277
NSConnection class, 223, 224—228, 265
NSConnectionReplyMode class, 267
NSControl class, 371

actions and, 392
delegates and, 319

NSController class, 67, 399
NSCopying protocol, 208, 396, 432
NSCopyObject class, 209
NSCountedSet class, 299, 301
NSData class, 119, 203, 206

file operations and, 178
garbage collection and, 121

NSDate class, 199, 203, 206
sorting collections and, 311
threads and, 260

NSDateFormatter class, 131, 133
NSDefaultRunLoopMode class, 267
NSDictionary class, 205, 288, 297, 298

property lists and, 203

thread safety and, 314
NSDirectoryEnumerator class, 174, 307
NSDistantObject class, 223, 225, 228
NSDistributedLock class, 277
NSDistributedNotificationCenter class,

336, 429
NSDocument class, 188, 385

document-based applications and, 384
subclasses of, creating, 398, 399
TicTacToe sample application and, 368

NSDocumentController class, 384, 398
NSEnumerator class, 307—309
NSError class, 253—255, 256
NSEvent class, 386
NSEventTrackingRunLoopMode class, 267
NSException class, 241

call stack and, 243
chaining exceptions and, 243

NSExceptionHandler class, 245
NSFastEnumeration class, 309
NSFileHandle class, 178, 184, 213

NSPipe class and, 213
vs. NSStream class, 216
pipes/sockets and, 214

NSFileManager class, 164
delegates and, 180
file operations and, 178
as singleton, 429
symbolic links and, 172
working directory path and, 167

NSFormatter class, 119, 131—134
NSGarbageCollection class, 141
NSGraphicsContext class, 377
NSHashTable class, 140, 291, 302

vs. NSHashTable (C type), 303
set collections and, 299

NSImage class, 382
NSIndexSet class, 288, 294, 299, 301
NSInputStream class, 215
NSInteger class, 473
NSInternalInconsistency Exception, 248
NSInvocation class, 91, 94
NSKeyedArchiver class, 188, 190
NSKeyedUnarchiver class, 188
NSLock class, 270, 271
NSMachBootstrapServer class, 225, 227

■ INDEX

487

NSMachPort class, 213
NSMachPortNameServer class, 226
NSManagedObject class, 397
NSMapTable class, 291, 297, 298

NSHashTable class and, 302
strong/weak references and, 140

NSMethodSignature class, 94, 159
NSModalPanelRunLoopMode class, 267
NSMutableArray class, 288, 292, 294
NSMutableData class, 119
NSMutableDictionary class, 288, 297, 298
NSMutableIndexSet class, 288, 313
NSMutableSet class, 288, 299, 300
NSMutableString class, 125
NSMutableURLRequest class, 237
NSNetService class, 231
NSNetServiceBrowser class, 231
NSNotification class, 211, 325—337
NSNotificationCenter class, 263, 329
NSNotificationCoalescingOnName class,

334
NSNotificationCoalescingOnSender class,

334
NSNotificationNoCoalescing constant, 334
NSNotificationQueue class, 329, 332—334
NSNull class, 123
NSNumber class, 118, 122

property lists and, 203, 206
sorting collections and, 311
streams and, 215

NSNumberFormatter class, 131, 132
NSObject class, 29, 223, 229, 230

categories and, 84
class membership testing and, 149
deferred messages and, 93
immediate messages and, 92
Key-Value Coding and, 152
object construction and, 49

NSObject protocol, 231, 322
NSObjectController class, 394, 399
NSOpenGLView class, 382
NSOpenPanel class, 171
NSOperation class, 68

exceptions and, 241
tasks and, 280

NSOperationQueue class, 68, 280

NSOrderedAscending class, 311
NSOrderedDescending class, 311
NSOrderedSame class, 311
NSOutlineView class, 395
NSOutlineViewDataSource class, 395
NSOutputStream class, 215
NSPipe class, 213
NSPoint structures, 121
NSPointerArray class, 140, 291, 292, 295
NSPort class, 213, 224
NSPortNameServer class, 225
NSProcessInfo class, 467
NSProgressIndicator class, 342
NSPropertyListSerialization class, 205
NSProxy class, 223, 230
NSRecursiveLock class, 271
NSRunLoop class, 265, 268
NSSavePanel class, 171
NSScanner class, 119
NSSet class, 288, 299, 300

filtering collections and, 312
thread safety and, 314

NSSocketPort class, 213, 231
NSSocketPortNameServer class, 225, 227,

231
NSSortDescriptor class, 312
NSStream class, 215, 216
NSString class, 119, 123—128, 203, 206

C strings and, 126—128
convenience constructor and, 53
exceptions and, 241
file operations and, 178
path/file name methods and, 165
sorting collections and, 311
thread names and, 264

NSTableDataSource class, 395
NSTableView class, 395
NSTask class, 214
NSTextField class, 319, 372
NSThread class, 257

notifications and, 268
properties for, 263—264
starting threads and, 258
suspending threads and, 260

NSTimeInterval class, 199, 260
NSTimer class, 282

■ INDEX

488

NSToolbar class, delegates and, 320
NSTrackingArea class, 390
NSTreeController class, 399
NSURL class, 232
NSURLConnection class, 232, 233

asynchronous requests and, 233
delegates and, 319

NSURLDownload class, 236
NSURLRequest class, 232, 233, 237
NSURLRequestCachePolicy class, 237
NSURLResponse class, 232, 233
NSUserDefaults class, 470
NSUserDefaultsController class, 471
NSValue class, 121, 152
NSView class, 371

animation and, 381
coordinate system and, 373
custom views and, 376—383
invalidating views and, 376
mouse events and, 388
TicTacToe sample application and, 368

NSWindow class, 371
NSWindowController class, 385
NSWorkspace class, 329

file operations and, 178
as singleton, 429

NSXMLDocument class, 207
NSXMLParser class, 207
NSZombies tool, 448
NULL, 103. See also nil
number format patterns, 132

■O
objc_class structure, 155
Object class, 29, 223
object graph, encoding and, 196
object pointers (object identifiers), 29, 30,

392
garbage collection and, 135
nil. See nil

object reference values, 117
object references, 17
ObjectAlloc, 448
Objective-C

developer productivity and, 8

history of, 4
vs. Java, 27—54
Java features not found in, 54
resources for further reading, 155, 162
runtime system and, 156
using with C, 457—464

Objective-C++, 11
object-oriented method invocation, 94
objects

absent behavior and, 112
class membership testing and, 149
copying, 207
Core Foundation and, 458
creating/initializing, 47—53
drawing, 379
introspection for, 147—162
memory management and, 435—455
passing by copy or by reference, 228
sending messages to. See sending

messages to objects
tracking lifetime of, 448

observers, 212, 325—337, 339—352. See also
Key-Value Observing

criteria for to receive notifications, 330
NSNotificationCenter class and, 329
provider/subscriber pattern vs.

observer pattern and, 339
registering, 343—345
removing, 331
unregistering, 346

oneway keyword, 228
opaque pointers, garbage collection

pitfalls and, 144
opaque types (objects), 458
OpenStep API, 4
operations, 280
@optional directive, 79, 322
ordered collections, 292—296, 310—312
out modifier, 230
outlets, Interface Builder and, 363
overreleased (underretained) objects, 448
overretained (underreleased) objects, 447
overriding properties, 40
owner objects, NIB documents and, 367
owners, reference counting and, 436, 439,

441

■ INDEX

489

■P
packages, 468
parameter types, 33
parameters, naming conventions for, 31
passing objects by copy or by reference,

228
path names, 165
paths, 165—167
PDF Kit, 383
pen orientation, 374
performance, 5

exceptions and, 244
spin locks and, 279

philosophy, Objective-C and, 9
pipes, 212, 213
pixels, 372, 374
placeholders objects, NIB documents and,

362
plus sign (+) prefixing class methods, 28,

45
pointer function options, 295, 298
pointer math, 18
pointer operator (*), 16, 18
pointers, 15

distributed objects and, 229
garbage collection and, 142—145
pointer variables and, 474

ports, 212, 213
POSIX error codes, 253
POSIX file system, 163, 165
POSIX memory allocation, 436
posting notifications, 325
posting styles, of notifications, 333
predicates, 312
prematurely released objects, 450
preprocessor, 21—24
preprocessor macros

assertion macros and, 249
legacy exception handling and, 248

primitive types, 11—14
primitive values, 117
priority, for threads, 264
Private category, 81
@private directive, instance variable and,

42

process attributes, 466
process hang condition flags, 246
processes

high-level communications and,
217—231

low-level communications and, 212—
217

runtime environment and, 465—468
programming

64-bit, 473
aspect-oriented, 8, 78
dynamic programming languages and,

5—8
project templates, 56
properties, 35—41, 466

accessing, 40
attributes for, 38
change notifications and, 339—346
dependent, 349
editing, 63
introspection for, 160
Key-Value Observing and, 340—343, 346
KVC-compliant, designing, 153
overriding, 40
transient, 194
version, 200

@property directive, 35, 37—40, 160
memory management setter methods

and, 444
methods and, 43

property lists, for serialization, 203—206
distributed notifications and, 336
formats for, 205

@protected directive, instance variable
and, 42

@protocol directive, 75, 149
protocols, 75—79

combining formal and informal, 78
informal, 8, 77, 148
introspection for, 157
protocol adoption testing and, 149
subprotocols and, 77

providers, 325—337
NSNotificationCenter class and, 329
provider/subscriber pattern vs.

observer pattern and, 339

■ INDEX

490

@public directive, instance variable and,
42

publication phase, of Network Services,
231

■Q
QTMovieView class, 382
Quartz Composer, 383
queuing notifications, 332—334, 336
quotation marks (""), 22

■R
random file access, 178
RandomSequence class, 46, 48
readonly attribute, 39
readwrite attribute, 39
re-autoreleasing objects, 450
receivers, 30
recipe management (sample) application

controller for, 79
designing classes for, 108—111

recovery attempter objects, for errors, 255
reference counting, 436

autorelease pools and, 437—440
circular references and, 451
Core Foundation and, 462

references, Core Foundation and, 459
reflection. See introspection
registration domain, user defaults and,

470, 471
relative paths, 165, 167
Release build configuration, 59
releases, 437
Remote Method Invocation (RMI), 218—

231
RepeatableSequence class, 50
repeating/non-repeating timers, 281
@required directive, 79, 322
resolution phase, of Network Services, 231
resource forks, 181
resources, 402
resources for further reading

64-bit programming, 475
animation, 381
bundles, 468

Core Foundation memory
management, 463

cross-development, 468
drawing, 379, 383
error handling, 254
events, 386
exceptions, 243
frameworks, 470
garbage collection, 145
Key-Value Coding, 155
Network Services, 232
NSController class, creating subclasses

of, 400
Objective-C, 162
Objective-C runtime reference, 155, 458
predicates, 312
registers, 107
remote messaging, 230
resolution, guidelines for, 374
threads, 281
user defaults, 472

responder chain, 7, 384, 390—394
responders, 384—394
retain attribute, 39
retained objects, 439

deallocation and, 445
implicitly retained objects and, 446

re-throwing exceptions, 242
return types, 33
reuse, MVC design pattern and, 358
RMI (Remote Method Invocation), 218—

231
root object, 195, 196
run loops, 92

customizing, 268
distributed objects and, 228
how they work, 265
notification queues and, 332, 334
starting, 265
stopping, 267
threads and, 265—268
timers and, 281

runtime, 465—475

■ INDEX

491

■S
sample applications

Matrix sample class and, 411—428
recipe management, controller for, 79
Scrapbook Words, 55—72
TicTacToe. See TicTacToe (sample)

application
sandbox applications, creating, 73
SAX (Simple API for XML), 207
scalar conversions, 118
scaling, MVC design pattern and, 358
scope, 41—43
Scrapbook Words (sample) application,

55—72
business logic for, 68—71
configuring, 58
creating, 56—58
designing, 59—68
finished project files for, 55

scripting, Key-Value Coding and, 150, 153
@selector directive, 34
selectors, 30, 34
self variable, 44, 46, 50
semaphores, 258, 270—280

thread coordination and, 260
thread termination and, 265

senders, 30, 330
sending messages to objects, 30, 34, 87—

102
calling methods directly and, 96
nil and, 104—107
sending programmatically and, 90—94
steps to, 87
unimplemented methods and, 100—102

separation of concern, 357
sequential archiving, 186

backward compatibility and, 200
support for, adding to classes, 192

serial data streams, 215
serialization, 185—210

archiving and, 185—203
Java vs. Objective-C, 185, 210
Objective-C serialization and, 203—207

sets, 299—303
filtering collections and, 312

methods for, 299
setter patterns, for memory management,

442
setter= attribute, 39
setValue methods, 35
shallow copies, of objects, 207
shapes, drawing, 375
short keyword, 13
sign bit, 13
Simple API for XML (SAX), 207
single-process communication, 211
singletons, 411, 429—432
sizeof() operator, 19
sockets, 212, 213
sorting collections, 310—312
source (.m) files, 28
spin locks, 278
square brackets ([…]), methods and, 27, 30
stack size, of threads, 264
state management, for threads, 275
static keyword, 19
static variables, 19
stopping run loops, 267
streams, 215
string concatenation operator (+), 123
@string directive, 123
strings, 123—134

C strings and, 125—128
converting to scalars, 119
formatting, 128—134

strong linking, 467
__strong modifier, 141
strong references, 139, 140
struct statement, 16
structures, 16
stub libraries, 469
subclass initializers, 428
subprotocols, 77
subscribers, 325—337, 339
subviews, 361, 371
super variable, 44
superclasses, declaring, 29
suspending threads, 260—263
symbolic links, 172
synchronization, 269—280
@synchronized directive, 270

■ INDEX

492

synchronous notifications, posting, 329
syntax, 11, 27
@synthesize directive, 35, 37—40

■T
targeted actions, 392
tasks, 280
templates, for projects, 56
terminating threads, 264
terminology, 9

files and, 165
messages and, 30
methods and, 30

testing
class membership, 149
for classes, 467
for functions, 467
for methods, 147, 467

this variable, 44
thread notifications, 268
thread-specific notification centers, 263
thread synchronization, 269—280
threads, 68, 257—283

Java vs. Objective-C, 258
life cycle of, 258
main thread and, 260, 465
naming, 264
properties for, 263—264
putting to sleep, 260—263
run loops and, 92
starting, 258
state management for, 275
terminating, 264
thread safety, collections and, 314
timers and, 281

@throw directive, 240
legacy exception handling and, 248
re-throwing exceptions and, 242

TicTacToe (sample) application, 353, 359,
400—402

animations and, 381
chain and, 393
ChalkboardView class and, 367
custom data models and, 397
document-based applications and, 383

Info.plist file of, 401
TTTDocument class and, 367

time, formatting for, 133
timer events, 265
timers, 281
token substitution, 23
toll-free bridge, 458, 459—462
tools. See utilities
transient properties, 194
tree data sources, 394
troubleshooting, for archiving, 193—203
@try directive, 240
typecasts, 90
typedefs, 15
types (objects), 458

■U
UICell class, iPhone and, 382
UIs. See user interfaces
UITableView class, 396
UITableViewDataSource class, 396
UITableViewDelegate class, 396
UIView class, iPhone and, 382, 391
UIViewController class, 391
UIWindow class, iPhone and, 382
unary operator (*), 16, 18
uncaught exceptions, 244—247
unchecked exceptions, 241
undeclared methods, 88
underreleased (overretained) objects, 447
underretained (overreleased) objects, 448
undo, 401
Uniform Resource Locators. See entries at

URLs
unimplemented methods, 100—102
uninitialized stack references, garbage

collection pitfalls and, 145
Universal Resource Identifiers (URIs), 168
Universal Resource Locators. See entries at

URLs
Universally Unique Identifiers (UUIDs),

462
unrecognized selector exception, 77, 100,

319

■ INDEX

493

unretained references, reference counting
and, 451

untargeted actions, 392
URIs (Universal Resource Identifiers), 168
URL loading, 232—237
URL object factory, 411
URLs (Uniform Resource Locators), 232

downloading, 236
file URLs and, 168
writing to, 235

user defaults, 466, 470
user interface events, 265
user interfaces (UIs)

designing, 61—64
iPhone and, 382
sorting collections and, 312

userInfo dictionary, 330
users

errors displayed to, 254
prompting for files, 171

utilities
atos, 243
Interface Builder. See Interface Builder
NSZombies, 448
ObjectAlloc, 448
Xcode development tools, 55, 448

UUIDs (Universally Unique Identifiers),
462

■V
value methods, 35
variable arguments, 97—100
variables, 117

automatic, 24
instance, 34—45
lazy initialization and, 404—407
member, 17, 34
static, 19

version properties, 200
versions, of frameworks/operating

systems, 467

view objects, 59, 63—69
views, 354, 369—383

advanced, 382
animation for, 380
classes for, 369—372
context for, 377
custom, 376—383
drawing/redrawing, 376
geometry of, 372—375
invalidating, 376
terminology and, 385

void methods, 33

■W
weak collections, 314
weak linking, 467
__weak modifier, 139
weak references, 135, 138, 451
WebKit framework, 382
windows, terminology and, 385
working directory, 167
wrapping

arbitrary values, 121
arrays, 119
nil, 123
primitive values, 117

write barriers, 142

■X
Xcode, 55, 357

Interface Builder and, 61
Scrapbook Words sample application

created via, 55—72
Xcode development tools, 55, 448
.xib documents, 61
XML, serialization and, 206

■Z
Zeroconf, 231

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

