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Most decisions in life are based on incomplete information and have uncertain 
consequences. To successfully cope with real-life situations, the nervous system has to 
estimate, represent and eventually resolve uncertainty at various levels. A common tradeoff 
in such decisions involves those beween the magnitude of the expected rewards and the 
uncertainty of obtaining the rewards. For instance, a decision maker may choose to forgo 
the high expected rewards of investing in the stock market and settle instead for the lower 
expected reward and much less uncertainty of a savings account. Little is known about how 
different forms of uncertainty, such as risk or ambiguity, are processed and learned about 
and how they are integrated with expected rewards and individual preferences throughout 
the decision making process.

With this Research Topic we aim to provide a deeper and more detailed understanding of 
the processes behind decision making under uncertainty.

DECISION MAKING UNDER 
UNCERTAINTY

http://www.frontiersin.org/neuroscience
February 2015<2002>|<2002>Decision making under uncertainty<2002>|


Frontiers in Neuroscience June 2015 | Decision Making Under Uncertainty | 3

Table of Contents

04 Decision Making Under Uncertainty
Kerstin Preuschoff, Peter N. C. Mohr and Ming Hsu

06 Different Varieties of Uncertainty in Human Decision-Making
Amy R. Bland and Alexandre Schaefer

17 Making Predictions in a Changing World—Inference, Uncertainty, and Learning
Jill X. O’Reilly

27 Do Not Bet on the Unknown Versus Try to Find Out More: Estimation 
Uncertainty and “Unexpected Uncertainty” Both Modulate Exploration
Élise Payzan-LeNestour and Peter Bossaerts

33 Effects of Prior Knowledge on Decisions Made Under Perceptual Vs. Categorical 
Uncertainty
Kathleen A. Hansen, Sarah F. Hillenbrand and Leslie G. Ungerleider

43 What are the Odds? The Neural Correlates of Active Choice During Gambling
Bettina Studer, Annemieke M. Apergis-Schoute, Trevor W. Robbins and Luke Clark 

59 Preference Reversals in Decision Making Under Risk are Accompanied by 
Changes in Attention to Different Attributes
Betty E. Kim, Darryl Seligman and Joseph W. Kable

69 Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-
Taking: An fMRI Investigation of the Balloon Analog Risk Task
Tom Schonberg, Craig R. Fox, Jeanette A. Mumford, Eliza Congdon, Christopher Trepel 
and Russell A. Poldrack

80 A Neuropsychological Approach to Understanding Risk-Taking for Potential 
Gains and Losses
Irwin P. Levin, Gui Xue, Joshua A. Weller, Martin Reimann, Marco Lauriola and 
Antoine Bechara

91 Contextual Factors Explain Risk-Seeking Preferences in Rhesus Monkeys
Sarah R. Heilbronner and Benjamin Y. Hayden

98 Social Anxiety Modulates Risk Sensitivity Through Activity in the Anterior Insula
Grace S. Tang, Wouter van den Bos, Eduardo B. Andrade and Samuel M. McClure

107 Dissociable Neural Processes Underlying Risky Decisions for Self Versus Other
Daehyun Jung, Sunhae Sul and Hackjin Kim

119 Neuroeconomic Measures of Social Decision-Making Across the Lifespan
Lusha Zhu, Daniel Walsh and Ming Hsu

126 Social Information and Economic Decision-Making in the Ultimatum Game
Celia Gaertig, Anna Moser, Sonia Alguacil and María Ruz

134 Toward an Affective Neuroscience Account of Financial Risk Taking
Charlene C. Wu, Matthew D. Sacchet and Brian Knutson

http://www.frontiersin.org/neuroscience
February 2015<2002>|<2002>Decision making under uncertainty<2002>|


EDITORIAL
published: 20 November 2013
doi: 10.3389/fnins.2013.00218

Decision making under uncertainty
Kerstin Preuschoff1,2*, Peter N. C. Mohr3,4,5* and Ming Hsu6,7*

1 Laboratory of Computational Neuroscience, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
2 Laboratoire de Recherché en Neuroimagerie, Le Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
3 Information Processing and Economic Decision Making, Department of Psychology, Universität Konstanz, Konstanz, Germany
4 Economic Psychology, Department of Psychology, University of Basel, Basel, Switzerland
5 Psychology of Emotions and Affective Neuroscience, Department of Educational Science and Psychology, Freie Universität Berlin, Berlin, Germany
6 Neuroeconomics Laboratory, Haas School of Business, University of California Berkeley, Berkeley, CA, USA
7 Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
*Correspondence: kerstin.preuschoff@epfl.ch; peter.mohr@unibas.ch; mhsu@haas.berkeley.edu

Edited by:

Scott A. Huettel, Duke University, USA

Keywords: decision making, decision neuroscience, neuroeconomics, uncertainty, risk, contextual influences, situational influences, individual differences

In our everyday life we often have to make decisions with uncer-
tain consequences, for instance in the context of investment
decisions. To successfully cope with these situations, the ner-
vous system has to be able to estimate, represent, and eventually
resolve uncertainty at various levels. That is, not only are there
different forms of uncertainty with different consequences for
behavior and learning but research indicates that the processing of
uncertainty highly depends on situation and context. The present
research topic includes both review and original research articles
that seek to shed light on the neural processes underlying decision
making under uncertainty with a particular focus on situational
and contextual influences.

First, Bland and Schaefer (2012) review the diverse (and
often overlapping) definitions of uncertainty. They identify three
main forms—expected uncertainty (including risk), unexpected
uncertainty and volatility—and review theoretical and empir-
ical evidence that supports this dissociation. Several original
research articles then aim to either directly compare different
forms of uncertainty or to identify further dissociations within
these forms. Payzan-LeNestour and Bossaerts (2012) systemati-
cally vary unexpected and estimation uncertainty to study what
drives exploration (as opposed to exploitation). They report
that humans both seek out new reward opportunities (“curiosity
motive”) and avoid the unknown (“cautiousness motive”), result-
ing in exploration and exploitation, respectively. O’Reilly (2013)
addresses the same forms of uncertainty in the context of learning
with a particular focus on how an organism should adapt their
rate of learning in changing environments. Hansen et al. (2012)
on the other hand show that decisions made under perceptual vs.
categorical uncertainty are differentially affected by prior knowl-
edge such that prior knowledge increases visual cortical activity
when uncertainty is driven by the sensory stimulus itself rather
than at the cognitive level.

The next set of papers explores situational and contextual
aspects of expected uncertainty. First, Studer et al. (2012) demon-
strate that neural responses in a distributed network of choice
under risk increase when subjects actively choose a risky gamble
as opposed to being passively exposed to risk when a computer
chooses that gamble. Kim et al. (2012) study what information
decision makers attend to when either choosing between two lot-
teries or betting on a single lottery. Using eye-tracking data they
observe task-dependent attentional shifts from probabilities to

amounts which may influence the (neural) computation of value.
Consequently, individuals often chose options with higher prob-
abilities but place higher bids on options with higher amounts.
Schönberg et al. (2012) used the Balloon Analog Risk Taking task
to study the neural network underlying naturalistic risk-taking.
They find that brain activity in a network previously related
to risk increases as individuals continue to inflate a balloon—
thus, increasing their risk—while activity in a value-related brain
region decreases at the same time. Levin et al. (2012) then review
the literature on how risk processing differs between the gain
and loss domain. They argue that different neural systems indi-
cate different neural and psychological processes for risk-taking
in gains and losses. Finally, Heilbronner and Hayden (2013)
round off this set of papers by providing an account of risk-
seeking behavior. While risk-seeking is usually observed in only
a minority of human study participants, it is the dominant form
of risk preference observed in monkey studies. Heilbronner and
Hayden review the literature on this phenomenon and argue
that monkeys aren’t risk-seeking per se but are driven toward
risk-seeking by experimental design and training and that under
similar conditions rats and humans would behave the same way.

Finally, a third set of papers represents an increasingly fertile
area of research by connecting risk-taking to the social contexts
and affective processes underlying behavior. Tang et al. (2011)
report that socially anxious individuals demonstrate decreased
risk aversion and that the degree of social anxiety correlates with
activity in anterior insula. Jung et al. (2013) compare the number
of risky choices participants made for themselves or for others.
They find that at low probabilities subjects are less risk taking
for own decisions as opposed to high probabilities where the
effect is reversed. This difference in preferences toward risk is
underlined by partially distinct neural networks that are recruited
when choosing for oneself or for others. Using a model-based
approach, Zhu et al. (2012) connect social risk and learning, and
demonstrate that age-related differences in social learning can
be succinctly captured by a set of models widely used in eco-
nomics. Gaertig et al. (2012) use an ultimatum game to show that
positive social information about the proposer increases accep-
tance rates by the responder. This effect was further enhanced
by the presence of uncertainty. Finally, Wu et al. (2012) provide
an affective neuroscience account of decision making under risk
thereby connecting the quantitative approach of economic and
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FIGURE 1 | Activation Likelihood Estimate (ALE) meta-analytic maps for high versus low mean, variance, and skewness. ALE of mean: bilateral NAcc.
ALE of variance: bilateral anterior insula. ALE of skewness: left NAcc. (based on Wu et al., 2012).

financial theories with the psychological approach which focuses
on emotion and cognition.

In sum, the papers presented in this research topic demon-
strate several points: First, to fully understand decision making
under uncertainty one has to first dissociate different forms
of uncertainty. Each form impacts behavior and learning in a
different way (Figure 1). Second, choices under each form of
uncertainty can itself be impacted by situational and contextual
factors. Third, social context is an important source of uncer-
tainty that is often driven or influenced by affective processes. We
can further contend that risk remains the most popular and most
powerful form of uncertainty for studying choice under uncer-
tainty. The quantitative framework provided by choice under
risk allows the careful study of the impact of situational and
contextual factors on preferences and choice. However, as most
situations in real life are infused with unexpected uncertainty and
volatility rather than expected uncertainty (risk), future research
will show how the factors identified in this issue influence other
forms of uncertainty, to which degree common mechanism exist
and how they can account for the various influences identified
so far.
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The study of uncertainty in decision-making is receiving greater attention in the fields of cog-
nitive and computational neuroscience. Several lines of evidence are beginning to elucidate
different variants of uncertainty. Particularly, risk, ambiguity, and expected and unexpected
forms of uncertainty are well articulated in the literature. In this article we review both
empirical and theoretical evidence arguing for the potential distinction between three
forms of uncertainty; expected uncertainty, unexpected uncertainty, and volatility. Particular
attention will be devoted to exploring the distinction between unexpected uncertainty and
volatility which has been less appreciated in the literature. This includes evidence mainly
from neuroimaging, neuromodulation, and electrophysiological studies.We further address
the possible differentiation of cognitive control mechanisms used to deal with these forms
of uncertainty. Finally, we explore whether the dual modes of control theory provides a
theoretical framework for understanding the distinction between unexpected uncertainty
and volatility.

Keywords: uncertainty, unexpected uncertainty, volatility, decision-making

INTRODUCTION
Uncertainty is a common feature of many every day decisions.
Uncertainty typically arises in a situation that has limited or
incalculable information about the predicted outcomes of behav-
ior (Huettel et al., 2005). Successfully detecting, processing and
resolving uncertainty is important to successful adaptive behav-
ior. Recent years have seen a growing body of research dedicated
to exploring the brain mechanisms which underlie our choices
during conditions of uncertainty. However, it is becoming clear
that “uncertainty” is not comprised of a single dimension. More
recent evidence is beginning to differentiate neural correlates
involved in estimating, representing, and resolving different forms
of uncertainty. For example, studies have demonstrated separable
neural correlates of reward expectancy and variance (Preuschoff
et al., 2006; Tobler et al., 2007), reward probability and magnitude
(Knutson et al., 2005), and ambiguity and risk (Hsu et al., 2005;
Huettel et al., 2006). A major contribution of this work has been
a better understanding of how uncertainty can be induced by dif-
ferent variables in the decision-making environment. However, an
important form of uncertainty which has received less attention is
uncertainty induced by unexpected changes in learned Stimulus-
Response-Outcome (S-R-O) contingences, often referred to as
“unexpected uncertainty” or “volatility.” However, as we will dis-
cuss below, unexpected uncertainty and volatility do not nec-
essarily refer to the same phenomenon. Therefore, we review
theoretical and empirical arguments supporting a potential dis-
tinction between three different forms of uncertainty: expected
uncertainty, unexpected uncertainty, and volatility.

DISTINCT VARIETIES OF UNCERTAINTY
Successful decision-making relies on one’s ability to form a stable
representation of the underlying S-R-O rules learned from previ-
ous experience of gains and losses (e.g., Sutton and Barto, 1998;

Ridderinkhof et al., 2004; Seymour et al., 2007). As such, agents
can learn that a specific association between a stimulus (S) and a
response (R) is linked with a positive or negative outcome (O). For
instance, we may choose to enter (R) a particular restaurant (S)
if we have previously found that it serves our preferred dish (O).
Therefore through learning these associations between a Stimu-
lus (restaurant), a Response (enter), and its positive or negative
Outcome (preferred dish) we can guide future decision-making
in order to choose the Response which will most likely lead to a
rewarding Outcome. When faced with this kind of decision, an
agent has a prediction or expectation of the probability of an out-
come. This is derived from the recent history of outcomes of that
choice (Sutton and Barto, 1998). Therefore an agent must have
the ability to learn these S-R-O relationships and the likelihood to
which they occur in order to make the most optimal choices. If we
take the example above, our behavioral choice may be caused by
previous experiences in which we learned that our preferred dish
is available 8 out of 10 visits to that restaurant.

One of the most frequent methods used to manipulate uncer-
tainty usually involves the systematic variation of the probability
of these learned S-R-O contingencies. Using the example above, if
we begin to learn that our preferred dish is available only 6 out of
10 visits, this increases uncertainty about the potential outcome
(i.e., preferred dish) if we choose to enter this particular restau-
rant. In other words, when an agent is faced with a two-options
choice, uncertainty is often said to be maximal when the prob-
ability of obtaining a reward linked to any of the two options is
p = 0.5 but absent at the two extremes (probability = 1 and prob-
ability = 0; e.g., Fiorillo et al., 2003). Many studies have therefore
used variations of a 75/25% S-R-O probability to create certain
environments and 50/50% probability to create uncertain envi-
ronments (Volz et al., 2003; Paulus et al., 2004; Huettel et al., 2005;
Krain et al., 2006; Cohen et al., 2007b; Polezzi et al., 2008). It is also

www.frontiersin.org June 2012 | Volume 6 | Article 85 | 6

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/about
http://www.frontiersin.org/Decision_Neuroscience/10.3389/fnins.2012.00085/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AmyBland&UID=29070
http://www.frontiersin.org/people/AlexandreSchaefer/12964
mailto:amy.bland@manchester.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Bland and Schaefer Different varieties of uncertainty in human decision-making

possible to explore varying degrees of uncertainty (e.g., Volz et al.,
2003; Huettel et al., 2005). Typically in these studies, participants
are shown cues which are probabilistic predictors of a given out-
come (e.g., a red triangle that predicts the occurrence of a reward
on 80% of trials). Uncertainty in these paradigms is induced by
lowering the predictability of the learned stimulus-response (S-R)
association being rewarded (O). For instance, varying degrees of
uncertainty may include 100, 90, 80, 70, 60, or 50% whereby 50%
is the most uncertain and 100% being the least uncertain. Further-
more, if the predictability goes below 50% then uncertainty will
decrease again, i.e., 40, 30, 20, 10, 0%.

A wealth of literature has begun to elucidate how the brain esti-
mates, represents, and resolves this form of uncertainty which is
induced by varying levels of probability. Neuroimaging evidence
indicates that the DLPFC (Paulus et al., 2002; Huettel et al., 2005),
posterior parietal cortex (Volz et al., 2003; Huettel et al., 2005),
anterior cingulate cortex (ACC; Elliott and Dolan, 1998; Critch-
ley et al., 2001; Stern et al., 2010), orbito-frontal cortex (OFC;
Goel and Dolan, 2000; Critchley et al., 2001; Hsu et al., 2005;
Tobler et al., 2007), and amygdala (Hsu et al., 2005) are involved
in processing uncertainty. Electrophysiological evidence points to
modulation of the P3, a positive going potential peaking around
300 ms post stimulus onset suggesting greater positivities are asso-
ciated with greater uncertainty (Duncan-Johnson and Donchin,
1977; Donchin and Coles, 1988; Polich, 1990).

Importantly however, uncertainty can also be induced by unex-
pected changes in S-R-O contingencies, above and beyond the
current S-R-O probability levels. For instance, using the example
above, we may choose to enter a particular restaurant if we have
previously found that our preferred dish is available 8 out of 10
visits to a particular restaurant. However, uncertainty could be
induced if this S-R-O contingency suddenly changes because the
usual kitchen chef was fired and replaced by another chef with
different menu preferences which would take the “preferred dish
probability” to 0.2 on that week. In this case, the choice of available
dishes in that restaurant right after the replacement of the chef will
be uncertain because it can no longer be predicted by past experi-
ence. Therefore uncertainty can be induced not only by lowering
the probability of S-R-O contingencies, but also by fundamental
changes in these contingencies that forces a modification of our
previous beliefs.

More recent approaches to uncertainty have begun to establish
that the two forms of uncertainty illustrated above refer to two
distinct processes. Particularly, uncertainty can arise from (a) the
stochasticity inherent in the decision-making environment (e.g.,
the stable probability of reward where an agent can learn that a
stimulus predicts rewards on 80% of trials is less uncertain than
a situation where this probability is set at 50%), and (b) from
unexpected and fundamental changes in the S-R-O contingencies
of the environment that invalidate prediction based on previous
experience (Yu and Dayan, 2005; Courville et al., 2006; Behrens
et al., 2007; Doya, 2008; Rushworth and Behrens, 2008; Krugel
et al., 2009; Nassar et al., 2010; Payzan-LeNestour and Bossaerts,
2011). The former is usually referred to as expected uncertainty (Yu
and Dayan, 2005) or Feedback Validity (e.g., Bland and Schaefer,
2011), and the latter is often referred to as unexpected uncertainty
(Yu and Dayan, 2005).

Recent developments suggest that volatility, has also to be con-
sidered (Behrens et al., 2007; Bland and Schaefer, 2011). Volatility
can be defined as a variation in the frequency of changes in existing
S-R-O contingencies across time. In our example above, a stable
situation (low volatility) is attained when our preferred dish is
served in our chosen restaurant 8 days out of 10 during an entire
year. However, a volatile situation can arise if the manager of the
restaurant decides to dynamically change the menu several times
during the year. In such case, the “preferred dish probability” will
frequently change (e.g., 0.9 in the first week, 0.2 in the second week,
0.7 in the third week, etc.). In this case, the dynamic changes in S-R-
O contingencies will constrain agents to continually update their
representation of the environment in order to obtain accurate pre-
diction levels. Therefore volatility and unexpected uncertainty can
be distinguished by the frequency of contingency changes. Unex-
pected uncertainty is characterized by rare unpredicted changes in
underlying S-R-O rules, whereas high volatility is characterized by
frequent occurrences of fundamental changes in S-R-O rules. In
addition, it is important to note that a high frequency of changes
may potentially cause agents to learn that changes occur rapidly.
Therefore, volatility can be expected by decision-making agents.

In summary, three distinct forms of uncertainty can be iden-
tified: (1) Expected uncertainty: S-R-O rules learned from past
events are weak predictors of the outcomes of future actions, and
this unreliability is known and stable. (2) Unexpected uncertainty:
a rare fundamental change in the environment which invalidates
existing S-R-O rules that are no longer able to accurately predict
the outcomes of our actions. (3) Volatility: frequent changes in the
environment which require a constant updating of S-R-O rules1.

THE MODEL OF YU AND DAYAN (2005)
Yu and Dayan (2005) have proposed a distinction between expected
and unexpected forms of uncertainty. Yu and Dayan employed a
task involving a set of arrows pointing to the left or right hand side
of a screen. The directions of the colored arrows are randomized
independently of each other on every trial, but one of them, the
cue, specified by its color, predicts the location of the subsequent
target (a light bulb) with a significant probability whilst the rest
of the arrows are irrelevant distracters. The color of the cue arrow
(i.e., the “relevant” color which generally predicts the location of
the light bulb) persists over many trials, defining a relatively sta-
ble context. However, the relevant cue color can suddenly change
without informing the subject. According to Yu and Dayan’s (2005)

1Although the main focus of this article was on human decision-making, these three
forms of uncertainty can also potentially be encountered in animals. For instance,
an animal may learn that pressing (response) a blue lever (stimulus) is paired with
food (outcome) for 7 out of 10 lever presses. It is reasonable to expect that through
learning, the animal might form a representation of the expected amount of error
(30%) in this S-R-O contingency (expected uncertainty). If the blue lever predicts
food delivery for only 2 out of 10 lever presses, there will be a fundamental change in
the contingencies that were previously guiding behavior (unexpected uncertainty),
and the animal must adapt to this new situation (probably through the exploration
of other levers present in the environment). However, if the association between
the lever press and the food reward is constantly changing then the environment
becomes volatile and in order to adapt, an optimal solution would be for the animal
to form a representation of the fact that these S-R-O contingencies are likely to
frequently change.
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influential theory, expected uncertainty arises from known unre-
liability of predictive relationships within a familiar environment
(e.g., learning that the relevant color predicts the location of the
light bulb on 80% of trials) whereas unexpected uncertainty is
induced by fundamental changes in the environment that pro-
duce sensory observations strongly violating expectations (e.g.,
the previously relevant color no longer predicts the location of
the target). The former has been equated with environmental sto-
chasticity in an otherwise stable S-R-O relationship (Nassar et al.,
2010). This stochasticity is analogous to uncertainty induced by
manipulating the predictive value of decision cues. So an agent can
learn that a cue predicts a reward on 80% of trials and so on 20%
of trials the outcome is not a valid predictor of the S-R-O rela-
tionship. This creates a level of expected uncertainty in a familiar
environment which can be thought of as the expected amount of
error. Indeed, an agent learns to expect that there will be a cer-
tain amount of uncertainty when making their decision through
sampling the environment. In other words, expected uncertainty
remains the same as long as the 20–80% contingencies are main-
tained, but unexpected uncertainty increases temporarily during
an uncued reversal from 80 to 20%.

Unexpected uncertainty arising from fundamental changes in
learned predictive relationships should signal for a revision of
an agent’s belief about the best course of action. Unexpected
uncertainty must therefore require a mechanism for suppressing
potentially outdated expectations and encouraging faster adapta-
tion to new S-R-O contingencies (Dayan and Yu, 2002). Indeed,
learning rate parameters tend to increase during periods of unex-
pected uncertainty (Yu and Dayan, 2005) and volatility (Behrens
et al., 2007; Nassar et al., 2010). In this way, fundamental changes
in S-R-O contingencies increase uncertainty, and speed up sub-
sequent learning, by making historical outcomes irrelevant and
new outcomes influencing beliefs strongly (Courville et al., 2006;
Nassar et al., 2010). Furthermore, surprise induced by changes in
S-R-O contingencies can enhance the speed of learning whereas
random variation under constant probabilities (as with a sequence
of coin flips) will not be surprising (Courville et al., 2006).

Taken together, these findings highlight the importance of con-
sidering different forms of uncertainty and how they interact to
produce adaptive behavior. Importantly, an agent must possess
the neural and cognitive mechanisms to detect if an S-R-O contin-
gency has changed by representing the probabilistic chance that an
error is caused by inherent stochasticity. This parameter is crucial
for determining a contingency change. For instance, during every-
day decision-making, there is often only a probabilistic chance
(rather than a certainty) of success therefore the lack of reward on
a particular occasion may not necessarily signal the need to switch
to an alternative course of action (Kennerley et al., 2006). There-
fore, when a participant responds according to the learned S-R-O
rule and receives negative feedback, they must possess the ability
to infer whether the erroneous response is due to the inherent sto-
chasticity of the task or whether the S-R-O rule has fundamentally
changed. Therefore a changing world requires a mechanism which
will allow the successful detection and adaptation to both forms of
uncertainty. We will discuss in the remainder of this article some
mechanisms potentially involved in this adaptation. Most research
to date has conceptualized uncertainty as variations in expected

uncertainty (as well as slightly different forms of uncertainty,
such as ambiguity and risk). Although unexpected uncertainty
has received less attention, there is now a growing body of research
that has tackled this phenomenon. In addition, the potential dis-
tinction between unexpected uncertainty and volatility has not
received much attention, and both concepts tend to be somewhat
confounded in the literature. We will therefore review existing
evidence on unexpected uncertainty, and we will also review the
possibility that specific cognitive strategies might be employed
for volatility which are not necessarily employed for unexpected
uncertainty.

COMPUTATIONAL MODELING OF UNEXPECTED
UNCERTAINTY AND VOLATILITY
Modeling human behavior using computational approaches has
provided some important insights into the potential mechanisms
involved in decision-making under uncertainty. Such behavior
can be modeled by Bayesian algorithms (Behrens et al., 2007;
Nassar et al., 2010; Mathys et al., 2011). Indeed, Bayesian sta-
tistical theory formalizes the notion that optimal inference and
learning depend critically on representing and processing the var-
ious sorts of uncertainty associated with a behavioral context (Yu
and Dayan, 2005). In the specific case of volatility, it has been
suggested that humans adapt to a volatile decision-making envi-
ronment following Bayesian rules (Behrens et al., 2007; Nassar
et al., 2010). Particularly, Behrens et al. (2007) showed that using
an ideal Bayesian model, human participants can optimally assess
volatility and adjust decision-making accordingly to produce the
most advantageous future outcomes. In Behrens et al.’s (2007)
study, subjects carried out a one-armed bandit task in which they
had to choose between blue and green stimuli. Subjects under-
went trials where the probability of a blue outcome was 75% (a
certain/stable environment) and trials where reward probabili-
ties switched between 80% blue and 80% green every 30 or 40
trials (an uncertain/volatile environment). This study illustrated
how human participants repeatedly combine prior and subsequent
information as data accumulates, even when faced with a rapidly
changing environment by continually tracking the statistics of the
environment to assess the salience of every new piece of infor-
mation. Behrens et al.’s fMRI data suggests the BOLD activity in
the ACC might reflect a Bayesian estimate of the environment’s
volatility during a monitoring stage, i.e., when outcomes are being
evaluated in order to regulate current beliefs about the underlying
S-R contingencies of the environment. This model also suggests
that the ACC might encode how much influence feedback should
give to subsequent decisions, with more recent outcomes being
more salient in volatile contexts (Rushworth and Behrens, 2008).

Under a Bayesian framework, unexpected observations increase
uncertainty whereby a sustained level of such uncertainty results in
a high estimate for volatility, which in turn leads to a high learning
rate. Indeed, Behrens et al. (2007) showed that the learning rate
for human participants was adjusted depending on the estimate
of volatility. In situations where the S-R-O rules are changing, new
information has more influence. This is because looking too far
back in the history of rewarded outcomes is of little use if there
has been a recent fundamental change in S-R-O contingencies.
This can make prediction more difficult and thus new outcomes

www.frontiersin.org June 2012 | Volume 6 | Article 85 | 8

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Bland and Schaefer Different varieties of uncertainty in human decision-making

have a large impact on future expectations either because they are
surprising (inducing a large prediction error) or because of uncer-
tainty about current expectations (inducing a large learning rate;
Rushworth and Behrens, 2008). Indeed, learning is enhanced when
outcomes occur that are not fully predicted, then slows down as
outcomes become increasingly predicted and ends when outcomes
are fully predicted (Hollerman and Schultz, 1998).

Other studies have emphasized the idea that learning rates
are flexibly adapted to best suit environmental statistics. In fast-
changing or volatile situations subjects learn quickly from new
outcomes thus a faster learning rate is required (Courville et al.,
2006). Indeed, Nassar et al. (2010) accurately modeled subjects’
behavior with a Bayesian model finding that the model adjusts the
influence of newly experienced outcomes according to on-going
estimates of uncertainty and the probability of a fundamental
change in the process by which outcomes are generated. Thus
outcomes that are unexpected because of a fundamental change
in the environment carry more influence than outcomes that are
unexpected because of persistent environmental stochasticity.

Together, evidence from computational models suggests that
agents can act in a Bayesian fashion in order to track S-R-O
contingencies and update these accordingly. In doing so, agents
can represent the level of expected uncertainty and use this to
detect unexpected changes in the decision-making environment.
Importantly however a distinction between unexpected uncer-
tainty and volatility has not been explicitly addressed in this
literature. Indeed, there appears to be differences in how these two
forms of uncertainty are computed. For instance, during unex-
pected uncertainty the agent must detect and adapt to the specific
change in contingency. However in volatile contexts the agent must
also represent the frequency in which S-R-O contingencies are
changing. This is what Behrens et al. (2007) refer to as tracking
volatility as a high order statistic of the environment.

NEUROMODULATORS ASSOCIATED WITH UNCERTAINTY
Acetylcholine (ACh) and Noradrenaline (NA) may be critical
neurotransmitters involved in signaling expected and unexpected
sources of uncertainty (Phillips et al., 2000; Bouret and Sara, 2005;
Yu and Dayan, 2005; Preuschoff et al., 2011; Avery et al., 2012). Par-
ticularly, ACh is said to signal expected uncertainty due to known
unreliability in the behavioral context whereas NA is said to sig-
nal unexpected uncertainty arising from fundamental changes in
the S-R-O contingencies. Evidence that ACh is crucial in expected
uncertainty comes from data that ACh varies inversely with the
level of estimated cue validity (Witte et al., 1997; Phillips et al.,
2000; Sarter and Parikh, 2005;Yu and Dayan, 2005). This cue valid-
ity represents the probability of the cue being correct, e.g. the cue is
a valid predictor of the S-R-O rule on 80% of trials. This is typically
constant over a whole experimental session and thus measures the
stochasticity of the task. This suggests that ACh reports a form
of expected uncertainty which can be learned through past expe-
rience of S-R-O relationships. Studies suggest that ACh increases
in a sustained fashion for expected unreliability of the environ-
ment when attention needs to be maintained (Dalley et al., 2001).
This implies that in order to grasp the predictive relationships
of an environment, an agent must utilize a temporally sustained
mechanism for estimating uncertainty.

It has been suggested that NA may signal unexpected uncer-
tainty (Bouret and Sara, 2005; Yu and Dayan, 2005; Preuschoff
et al., 2011; Avery et al., 2012). There is some empirical evidence
supporting this notion. For instance, the prefrontal NA system,
unlike the ACh system, is engaged by novel S-R-O contingencies,
which is compatible with a role in mechanisms of plasticity and
new learning (Dalley et al., 2001). Next, available evidence suggests
that NA originates in the locus coeruleus (LC) where LC neurons
fire phasically (opposed to tonically) and robustly to unpredicted
changes in stimulus properties or reversal of S-R-O contingencies
(Aston-Jones et al., 1997; Yu and Dayan, 2003; Bouret and Sara,
2004). More recent evidence has shown that NA signals unex-
pected uncertainty as measured by pupil dilation (Preuschoff et al.,
2011). Indeed,Preuschoff et al. (2011) have shown that unexpected
uncertainty is closely linked with pupil size and is dissociated from
expected uncertainty. Pupil size is thought to correlate remarkably
with NA in both animal and human studies (Rajkowski et al.,
1993; Gilzenrat et al., 2010). Taken together, these observations
suggest that the LC-NA system facilitates attentional and cogni-
tive shifts in behavioral adaptation in changing environments (see
Sara, 2009). NA levels, could therefore signal when expectations
about our world need to be revised (Cohen et al., 2007a).

Although phasic bursts of NA activity are likely to signal unex-
pected uncertainty, volatility characterized by a high frequency
of fundamental S-R-O changes may be signaled by tonically high
levels of NA (Yu, 2007). Indeed, McClure et al. (2006) propose
that increased long-term response conflict (induced by frequent
changes in S-R-O contingencies) biases the LC toward a tonic NA
firing mode to increase exploratory behavior. These authors sug-
gest that increased tonic firing reflects increased environmental
uncertainty. This tonic mode of LC functioning may therefore
reflect volatility in the environment triggered by frequent changes
in the underlying rules guiding behavior.

Taken together, psychopharmacological evidence suggests that
unexpected uncertainty is linked with phasic bursts of NA which
signal changes in S-R-O contingencies. However expected uncer-
tainty shows a more tonic mode of ACh in order to temporally
sustain past S-R-O contingencies and hence the expected level
of stochasticity. Further, volatility could be signaled by tonic lev-
els of NA as opposed to phasic bursts (McClure et al., 2006; Yu,
2011). Therefore an important distinction could be made between
unexpected uncertainty and volatility in terms of their temporal
characteristics of neuromodulation.

EXPLOITATION VERSUS EXPLORATION DILEMMA
Some authors suggest that the distinction between expected and
unexpected forms of uncertainty may be an important element
in behavioral adaptation i.e., in choosing whether to explore or
exploit the decision-making environment (Cohen et al., 2007a).
The exploitation versus exploration dilemma suggests a trade-off
between persisting in our current behavior (exploit) or selecting
alternative options (explore) in reinforcement learning. For exam-
ple, if we experience a poor quality meal at our preferred restaurant
then we could choose to persist in our current behavior and con-
tinue to visit the restaurant on the assumption that the restaurant
is still the best option given its good past record (exploitation).
Alternatively, we may decide to explore other restaurants in search
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of a better dining experience (exploration). Indeed, the exploita-
tion versus exploration trade-off is a fundamental challenge for the
adaptive control of behavior (Cohen et al., 2007a).

Particularly relevant is that uncertainty may precede the deci-
sion to explore an alternative option or exploit the current situa-
tion (Daw et al., 2006; Cohen et al., 2007a; Frank et al., 2009). For
example, the detection of unexpected uncertainty can be an impor-
tant signal of the need to promote exploration and has a central
role in the acquisition of adaptive behavior in environments that
change (Daw et al., 2006; Cohen et al., 2007a). For instance, in a
familiar, reliable environment with a stable level of expected uncer-
tainty, there is no need for exploration (i.e., the restaurant chef
works 8 out of every 10 days so we are likely to gain our preferred
dish on 80% of visits, thus we are just exploiting knowledge learned
from previous experiences). If we experience a bad meal which is
a consequence of a brief absence of the chef then we may continue
to visit this restaurant (exploit). In contrast, during unexpected
changes in the environment that lead to a durable invalidity of our
previous representations, one needs to take exploratory actions
(Doya, 2008). For instance, if we experience a poor meal because
the previous chef was fired and replaced by a less experienced chef,
this unexpected uncertainty about future visits to the restaurant
might promote our exploration of other restaurants. Therefore
uncertainty-driven exploration is a potentially important facet of
decision-making and adaptive behavior (Cavanagh et al., 2011).

Research has begun to show that trial-to-trial variations in
response-locked frontal theta are related to unexpected uncer-
tainty and are larger in individuals who use uncertainty to guide
exploration (Cavanagh et al., 2011). In addition, empirical studies
have begun to reveal mechanisms that animals may use to adapt
to changes in the environment, by regulating the balance between
exploitation and exploration. These studies appear to be converg-
ing on the view that neuromodulatory systems; in particular, ACh
and NA, interacting with DA-mediated reinforcement learning
mechanisms may play a critical role in unexpected uncertainty
induced exploration (Cohen et al., 2007a). Indeed, recent stud-
ies find that shifts between task engagement (exploitation) and
disengagement (exploration) affect the pupil response which is
thought to index NA neurotransmission (Preuschoff et al., 2011).
This is consistent with Yu and Dayan (2005) theory of unexpected
uncertainty and the adaptive gain theory of LC-NA (noradrena-
line) mediated explore/exploit behavior (Aston-Jones and Cohen,
2005).

Together this evidence suggests a close relationship between
uncertainty and the adaptive control of behavior. Indeed, it
appears likely that uncertainty, and particularly unexpected uncer-
tainty signals a contextual change which promotes exploratory
adaptive behavior. Conversely, by tracking past representations of
S-R-O rules and measuring the stochasticity of the environment,
one can represent a form of expected uncertainty which promotes
exploitative behavior. The interaction of expected and unexpected
forms of uncertainty is likely to drive behavior in an optimal man-
ner. Therefore it may be the case that successfully adapting to
uncertainty could depend upon the levels of expected uncertainty
and the frequency of changes in S-R-O contingencies.

To our knowledge, the distinction between volatility and unex-
pected uncertainty has not been explicitly articulated from the

perspective of exploitation/exploration behaviors. However, it is
reasonable to think that volatility should be characterized by a
state in which the need for sustained exploration is anticipated.
Indeed, if volatility leads to the formation of a representation
that an underlying S-R-O rule can frequently change, then this
should enable decision-making agents to be prepared to engage in
exploration in this type of contexts. A possible prediction is that
exploratory behaviors following an S-R-O rule change would be
more rapidly engaged in volatile contexts compared to situations
where S-R-O changes are rare because the need for exploration
is anticipated. Further research will be needed to examine this
question.

COGNITIVE CONTROL
As we have outlined, an emerging body of literature is beginning
to demonstrate how different forms of uncertainty are processed.
One aspect that has yet to be adequately addressed is the poten-
tial involvement of cognitive control processes in the resolution of
uncertainty (Mushtaq et al., 2011). Indeed, the ability to rapidly
and flexibly adjust behavior to changing environmental demands
is a defining characteristic of cognitive control (Braver et al., 2003).
Therefore successful adaptation to unexpected uncertainty may
require the involvement of the dynamic and flexible engagement
of cognitive control functions. Interestingly, different cognitive
control strategies may be utilized to deal with different forms of
uncertainty (i.e., expected uncertainty, unexpected uncertainty,
and volatility). Particularly conflict monitoring mechanisms and
working memory (WM) are two canonical instances of cognitive
control processes that appear to be likely candidates for success-
ful adaption to various forms of uncertainty (Bland and Schaefer,
2011; Mushtaq et al., 2011).

CONFLICT MONITORING AND WORKING MEMORY
The conflict hypothesis (Botvinick et al., 2001; van Veen and
Carter, 2002; Kerns et al., 2004) provides a theoretical frame-
work that can be used to understand some of the interactions
between uncertainty and cognitive control. According to the con-
flict hypothesis, adjustments in cognitive control are likely to occur
during a high degree of response conflict (Botvinick et al., 2001).
According to this hypothesis, response conflict occurs whenever
two or more incompatible response tendencies are simultaneously
active. For example, response conflict is high when a response must
be withheld in contexts in which there is a pre-potent tendency to
make an overt response (Nieuwenhuis et al., 2003). Therefore, a
change in learned S-R-O contingencies might require inhibiting
habitual behavior (e.g., learned from the previous S-R-O rule) fol-
lowing a negative outcome, and overriding it with new behavior
adapted to the new rule. This type of behavioral adaptation is
likely to rely on conflict processing, that is, the ability to efficiently
arbitrate between two conflicting behavioral responses (usually a
habitual response that needs to be overridden by a new response).
Conflict processing is thought to be a key mode of cognitive con-
trol (Botvinick et al., 2001; Yeung and Cohen, 2006), and it is
more often observed in tasks with a habitual context interrupted
by rare high-conflict trials (Botvinick et al., 1999). Indeed, changes
in learned S-R-O contingencies and hence unexpected uncertainty
are likely to produce conflict and so unexpected uncertainty may
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be important in signaling the need for increased cognitive control
in order to successfully adapt behavior (Mushtaq et al., 2011).

In addition to conflict monitoring mechanism, WM may also
play an important role in successfully adapting to varying forms
of uncertainty. WM is defined as a system providing temporary
storage, manipulation and processing of information (Badde-
ley, 1992) and is kept on-line or available for immediate access
by other cognitive processes (Awh and Jonides, 2001). WM has
a key role in active maintenance and updating of information
in order to allow task-relevant information to be utilized in
a manner that directly biases on-going processing. This makes
WM a likely candidate in decision-making whereby adaptive
choices in an uncertain environment relies on tracking S-R-O
contingencies and the ability to monitor and update for any
changes in S-R-O associations. WM is particularly important in
many tasks that require the active maintenance and updating of
information in order to facilitate goal directed behavior (Owen
et al., 2005). Therefore the concepts of WM and cognitive con-
trol may be closely linked with decision-making in situations
where S-R-O changes might occur such as unexpected uncer-
tainty or volatility. We will next review the link between cog-
nitive control and different varieties of uncertainty from three
perspectives: Neuroimaging studies (fMRI and ERP), models
suggesting the existence of distinct modes of cognitive control
(Koechlin et al., 2003; Braver et al., 2007) and neuromodulation
studies.

NEURAL CORRELATES OF COGNITIVE CONTROL IN UNCERTAIN
ENVIRONMENTS
Neuroimaging evidence has demonstrated greater ACC activa-
tion in studies examining conflict and conflict monitoring (Carter
et al., 1998; Botvinick et al., 2001). The error-related negativity
(ERN), a negative deflection in the ERP waveform at the time
of an erroneous response (e.g., Gehring et al., 1990) which also
originates in the ACC (Dehaene et al., 1994) is thought to be an
electrophysiological marker which underlies a conflict monitor-
ing mechanism (Carter et al., 1998; Botvinick et al., 1999, 2001;
Yeung and Cohen, 2006). In addition, the anterior N2, an ERP
thought to be generated in the ACC, has also been shown to
reflect the monitoring of response conflict (Nieuwenhuis et al.,
2003; Yeung et al., 2004). Importantly, the N2 has been associated
with volatility in a habitual environment (Bland and Schaefer,
2011). Bland and Schaefer (2011) presented participants with
either a blue or red triangle which was associated with two possi-
ble responses. Participants had to learn the correct S-R-O rule
(red triangle – response 1 = reward; blue triangle – response
2 = reward). In this task two contextual determinants of deci-
sion uncertainty were independently manipulated: Volatility (i.e.,
the frequency of changes in the S-R-O rules) and Feedback valid-
ity (i.e., the extent to which an S-R-O rule accurately predicts
outcomes, synonymous with expected uncertainty). Bland and
Schaefer (2011) demonstrated that frequent S-R-O rule changes
in an otherwise predictable environment (where Feedback valid-
ity is high) was associated with a frontally based N2 component.
This perhaps reflects the implementation of cognitive control
through a mechanism suited to detecting conflict in learned S-R-O
contingencies.

In relation to the conflict hypothesis, it has been suggested that
the detection of conflict by the ACC leads to the delivery of trigger
signals to systems specialized in implementing control (e.g., the
prefrontal cortex, PFC). Support for this idea comes from evi-
dence suggesting that conflict-related activity in ACC predicts a
subsequent increase in PFC activity and corresponding adjust-
ments in performance (Kerns et al., 2004). Specifically, the ACC
is thought to play an essential role in the adjustment of execu-
tive control mechanisms governed by the PFC (Botvinick et al.,
2001; Kerns et al., 2004; Brown and Braver, 2005; Egner and
Hirsch, 2005; di Pellegrino et al., 2007; Mansouri et al., 2009).
Given that unexpected uncertainty and volatility are characterized
by environmental changes requiring the suppression or adjust-
ment of existing S-R-O representations, these forms of uncertainty
could then be seen as states that trigger conflict and therefore the
cascade of processes leading to the implementation of cognitive
control processes. In other words, these forms of uncertainty can
be perceived as a summary of the contextual antecedents of the
implementation of cognitive control processes (Mushtaq et al.,
2011).

Another theoretical interpretation proposes a link between
unexpected uncertainty and specific mechanisms of cognitive con-
trol (Nieuwenhuis, 2011). An interesting review by Nieuwenhuis
(2011) addresses the relationship between the LC system and
the P3 ERP. By bringing together Yu and Dayan’s (2005) the-
ory and the prominent theory of the P3 proposed by Donchin
(1981), Nieuwenhuis (2011) explores how unexpected uncertainty
requires agents to update their representation of the environ-
ment. Indeed, a surprising and unexpected outcome must call
for revision of an agent’s mental model of the decision-making
environment. This is indexed by the P3 amplitude which is
strongly thought to be generated by the LC and NA signaling.
An increased phasic release of NA may have direct enhancing
effects on task-specific control representations in PFC contribut-
ing to the compensatory increase in control following a transient
decrease in performance and/or reward (Aston-Jones and Cohen,
2005). Global changes in the external environment thus serves as
an alarm system for contextual switches. Indeed, empirical studies
are beginning to show that the variants of the P3 and late positive
complex (LPC) are associated with changing S-R-O contingen-
cies (Bland and Schaefer, 2011). Bland and Schaefer (2011) also
demonstrated that frequent S-R-O rule changes in a challenging
environment (where Feedback validity is low) was associated with
a frontally based LPC component. This perhaps reflects a mech-
anism for integrating past outcomes in order to update a mental
model of the current S-R-O contingency and the frequency in
which it occurs. An S-R-O rule change is likely to signal for a revi-
sion in one’s mental model which is likely to be reflected in the
enhanced amplitude of the P3/LPC complex. This is in contrast to
a rule change in an otherwise fairly habitual context (high Feedback
validity) where volatility is indexed by an N2 component and likely
reflects conflict monitoring (Bland and Schaefer, 2011). Therefore,
there is some evidence to point to different forms of cognitive
control depending on the interaction of expected uncertainty and
volatility. However, unexpected uncertainty and volatility are yet to
be explicitly dissociated in neuroimaging and electrophysiological
studies.
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SEPARABLE MODES OF COGNITIVE CONTROL
Recent studies are beginning to explore differential modes of
cognitive control which may have important overlaps with the
computational and neurobiological evidence outlined above. The
dual modes of control (DMC) theory (Braver et al., 2007, 2009)
suggests that cognitive flexibility can be achieved by modulating
the manner in which a particular control mechanism is deployed in
response to changing task demands or internal goal states. Specifi-
cally, this theory proposes a distinction between proactive and reac-
tive modes of cognitive control (Braver et al., 2007). The proactive
control is the early selection of goal-relevant information which
is actively maintained in a sustained/anticipatory manner, before
the occurrence of cognitively demanding events, to optimally bias
attention, perception, and action systems in a goal-driven man-
ner. In contrast, the reactive mode is a late correction mechanism
whereby cognitive control is recruited only as needed, such as
after a high-interference event is detected. Thus, proactive control
relies on the anticipation and prevention of interference before it
occurs, whereas reactive control relies on the post hoc detection
and resolution of interference after its onset (Braver et al., 2009).

A clear prediction of this hypothesis is that proactive and reac-
tive control can be distinguished in terms of lateral PFC activity.
For instance, proactive control should be associated with sustained
and/or anticipatory activation of PFC, which reflects the active
maintenance of task goals. In contrast, reactive control should be
reflected in transient activation of lateral PFC, along with a wider
network of additional brain regions including the ACC (Braver
et al., 2007, 2009). In addition, the DMC theory has been related
to distinct ERP components. Particularly, it has been claimed that
the P3 and late positivities are linked to proactive control and N2
to reactive control (van Wouwe et al., 2011). Interestingly, the P3
has been linked to WM and sustained maintenance of informa-
tion in WM (Duncan-Johnson and Donchin, 1982) and the N2
has been linked with conflict monitoring and error detection (van
Veen and Carter, 2002).

Importantly, proactive and reactive modes of control may be
useful in successfully adapting to different forms of uncertainty.
The DMC theory suggests that the temporal dynamics of neural
activity can differ between a transient to a predominantly tonic
mode. For instance, expected uncertainty may involve a more
proactive mode of control in order to implement sustained atten-
tional resources to facilitate internal representations of S-R-O
contingencies (however, it might also be argued that automatic
processes might be sufficient in a situation with learned and stable
levels of expected uncertainty).

Separable modes of control have also been proposed by Koech-
lin and colleagues using a hierarchical framework. Koechlin et
al. suggest two forms of control; contextual and episodic control
(Koechlin et al., 2003; Koechlin and Summerfield, 2007). Con-
textual control refers to the use of a current cue (context) for
selecting task appropriate behavior whereas episodic control, refers
to the use of past cues that determine, for an extended period
of time the way that current stimuli and contextual cues are
interpreted (Egner, 2009). The modes of control are arranged
hierarchically whereby episodic control affects contextual control,
but not vice versa. According to Kouneiher et al. (2009) transient
posterior-lateral PFC regions subserve contextual control whilst

sustained mid-lateral PFC regions are associated with episodic
control. Importantly, these two modes of control may also play
a role in adapting to different forms of uncertainty. For instance,
episodic control refers to temporally extended information over
a behavioral episode. This requires a sustained mechanism to
integrate past representations and form a mental model of the
environment. This mode of control may therefore be particularly
important to integrating past S-R-O occurrences and representing
expected forms of uncertainty. Conversely, contextual control as
indicated by transient neural activity in the PFC may be useful in
detecting contextual shifts such as a change in underlying S-R-O
contingencies.

Together the theories outlined above suggest that there are sep-
arable modes of cognitive control. Here, we suggest that these may
be particularly relevant to estimating and resolving different forms
of uncertainty. As suggested above, expected forms of uncertainty
may be estimated by sustained episodic control (Kouneiher et al.,
2009) or proactive control (Braver et al., 2009) whilst unexpected
forms of uncertainty may be detected by transient contextual con-
trol (Kouneiher et al., 2009) or reactive control (Braver et al.,
2009).

Importantly however, a reactive mode of control may not nec-
essarily be the most optimal mode in volatile environments in
which a high frequency of S-R-O changes occur. Indeed, an agent
may learn that the environment is frequently changing and thus
these unexpected changes may become anticipated. Therefore a
proactive mode of control may be ideal in this type of environ-
ment for two reasons. First, it would allow a sustained activation
of a representation of the frequency of changes in the environment
and hence the potential need for constant exploratory behaviors.
Second, a proactive mode of control would allow the maintenance
and integration of temporally extended information about past S-
R-O contingencies in order to dynamically update current mental
models. A parallel could be drawn from the theory of Koechlin
et al. (2003), Koechlin and Summerfield (2007), Kouneiher et al.
(2009) from which it could be speculated that episodic control
could also be useful in order to integrate temporally extended
information needed to successfully adapt to volatile situations.

A common theme across these theories is that the separable
modes of control can be distinguished by sustained and transient
neural activity. This may be particularly important for estimating
different forms of uncertainty. Indeed, neurotransmitters thought
to underlie expected and unexpected forms of uncertainly have
been distinguished by tonic and phasic activity. For instance, ACh
increases in a sustained fashion for expected unreliability of the
environment (Dalley et al., 2001) and is involved in a prolonged
state of readiness to respond to rarely and unpredictable occurring
signals (Sarter et al., 2001). It could therefore be speculated that
unexpected uncertainty would be associated to transient forms
of neural activity related to cognitive control, whereas volatility
would be associated to more sustained patterns of neural activity
in cognitive control brain networks.

ADAPTIVE GAIN THEORY OF LC-NA FUNCTIONING
The adaptive gain theory of LC-NA functioning suggests that there
are at least two distinguishable modes of LC function which drive
behavior. In a phasic mode, bursts of LC activity are observed
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in association with the outcome of decision processes and are
closely coupled with behavioral responses that are generally highly
accurate. In a tonic mode however, LC baseline activity is ele-
vated but phasic bursts of activity are absent (Aston-Jones and
Cohen, 2005). Interestingly it has been proposed that the OFC
and ACC could drive this LC phasic activity directly which in
turn promotes exploratory or exploitative behavior (Aston-Jones
and Cohen, 2005). This may have important implications for the
mode in which cognitive control is implemented. For instance,
unexpected uncertainty arises from strong violations of predic-
tions that are expected to be correct (Yu and Dayan, 2005). Phasic
NA signals have been associated with novelty and changes in
S-R-O contingencies (Aston-Jones et al., 1997; Aston-Jones and
Cohen, 2005; Yu and Dayan, 2005; Avery et al., 2012). This would
fit well with a reactive mode of control which arises as a conse-
quence of high-conflict events (Braver et al., 2007) which could
be cause by strong violations of predictions. Furthermore this is
also linked with a view that unexpected uncertainty is induced by
a mismatch between prediction and observation and is signaled
phasically with rapid habituation (Yu and Dayan, 2005). Indeed,
strong projections from the OFC and ACC to the LC may drive
this phasic response where signals from OFC and ACC augment
the LC phasic release of NA thus improving performance on sub-
sequent trials (Aston-Jones et al., 2002; Aston-Jones and Cohen,
2005). According to the adaptive gain theory, this effect could
further contribute to the compensatory increase in control fol-
lowing a transient decrease in performance and/or reward. Indeed,
empirical evidence suggests that NA is specifically involved in per-
formance monitoring (Riba et al., 2005). Furthermore, there is
substantial evidence for the modulatory influence of NA on cog-
nitive functions that depend on the frontal cortex, particularly
selective attention and working-memory tasks (Sara, 2009).

The adaptive gain theory further suggests that signals from
ACC to LC (indicating an adverse outcome), possibly comple-
mented by signals from OFC to LC (indicating absence of an
expected reward) may augment the LC phasic mode (Aston-Jones
and Cohen, 2005). This, in turn, would improve performance
on subsequent trials by enhancing the LC phasic release of NA
thus having direct enhancing effects on task-specific control rep-
resentations in PFC (Aston-Jones and Cohen, 2005). Thus conflict
detection as reflected by the ACC response which then sends trig-
gers for compensatory adjustments in cognitive control may be
mediated by LC-NA functioning. This would be consistent with
Yu and Dayan’s (2005) theoretical framework of NA functioning
as a signal for unexpected uncertainty.

Indeed unexpected uncertainty can be seen as a state signal-
ing the potential need to suppress of previous S-R-O rules in
order to override these with more adaptive S-R-O contingencies.
This requires flexible adaption of behavior in environments that
are changeable. Thus signaling of NA in response to unexpected
uncertainty may be crucially involved in ACC-PFC implementa-
tion of cognitive control. Indeed, functional neuroimaging studies
investigating uncertainty have uncovered a neural network that has
a remarkable overlap with brain networks usually associated with
cognitive control tasks. In particular, a network involving lateral
PFC areas, parietal cortex and the ACC seems to be constantly
activated for decision-making tasks in which volatility and

expected forms of uncertainty are manipulated and also in a wide
range of classical cognitive control tasks (for a review of the neural
correlates of uncertainty and cognitive control see Mushtaq et al.,
2011). Therefore cognitive control and particularly a reactive mode
as indexed by early negativities in the EEG and ACC fluctuations
in the BOLD response as well as phasic bursts of NA may be par-
ticularly important for estimating, detecting, and resolving unex-
pected uncertainty. Alternatively, a proactive control mode char-
acterized by sustained neural activity in the PFC and the P3/LPC
complex may be important for successful integration of past out-
comes in order to measures the stochasticity of the environment
and deal with expected uncertainty. However, it is also likely that
stable levels of stochasticity could be learned through automatic
processes without the involvement of cognitive control processes.
In addition, it is possible that proactive control might be also par-
ticularly useful in volatile contexts, where the temporally sustained
maintenance and updating of past outcome information in WM
might be useful to adapt to a context of frequent S-R-O changes.

In summary, it seems that reactive control could be used follow-
ing a highly unexpected S-R-O change. However, a proactive mode
can be very efficient at dealing with volatility. Therefore unex-
pected uncertainty and volatility should be differentiated: unex-
pected uncertainty occurs from a single or infrequent unpredicted
fundamental changes in S-R-O contingency whereas volatility can
be seen as a series of frequent fundamental changes in S-R-O
frequencies, and this frequency of changes can itself become pre-
dictable. For our example above, a volatile situation is reached
when our usual restaurant tends to hire a new chef very often
during the year. If customers know this tendency, they will be
able to use proactive strategies in order to detect if a change in
the quality of the food is due to a transient change in a more
stable pattern (e.g., the usual chef is absent 1 day every week) or
if it reflects a more fundamental change, i.e., the previous chef
was fired and replaced by a new one). Therefore how the brain
estimates the relative frequency of changes on the environment is
crucial. Behrens et al. (2007) suggest that this is reflected by ACC
activity. Indeed, the ACC may be able to estimate the rate at which
reward contingencies are changing and signal to the PFC to imple-
ment a reactive or more proactive mode of control. This likely
reflects a highly sophisticated control mechanism which adjusts
for suitable changes in the environment as possibly reflected by
neuromodulation of ACh and NA mediated by the ACC-PFC.

SYNTHESIS AND CONCLUSIONS
We have reviewed existing empirical evidence and theoretical evi-
dence in order to form a case for considering three distinct forms
of uncertainty; expected uncertainty, unexpected uncertainty, and
volatility. Whilst expected uncertainty has received much attention
in the literature, the latter two forms of uncertainty are relatively
less well explored. Nevertheless a growing body of literature is
beginning to unravel how the brain deals with unexpected changes
in the environment. This is an exciting line of research which is
beginning to prove fruitful (Yu and Dayan, 2005; Behrens et al.,
2007; Doya, 2008; Krugel et al., 2009; Nassar et al., 2010; Bland and
Schaefer, 2011; Nieuwenhuis, 2011; Preuschoff et al., 2011).

However an explicit distinction between unexpected uncer-
tainty and volatility has yet to be addressed. We have suggested
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that computational modeling studies provide evidence of how
we can deal with unexpected changes in S-R-O contingences and
adjust the learning rate accordingly. However, volatility appears to
promote a further computation by representing a“volatility”para-
meter as a high order statistic of the environment (Behrens et al.,
2007). Next, the temporal activity of neuromodulators involved
in signaling uncertainty may differentiate unexpected uncertainty
and volatility. Particularly, unexpected uncertainty appears to be
signaled by phasic bursts of NA activity whereas prolonged unex-
pected uncertainty i.e., volatility may recruit a more tonic mode.
Finally these two forms of uncertainty may be differentiated in
terms of the involvement of distinct cognitive control modes.
It is possible that unexpected changes may be dealt with by a
reactive mode of control recruiting conflict detection mecha-
nisms to overcome competing responses in S-R-O contingencies.
Alternatively successful adaptation to volatility may be associ-
ated with a proactive and sustained mode of control through the
continual maintenance and updating of S-R-O contingencies in
WM.

In addition, a number of questions remain open. For instance,
it is unclear at this stage whether volatility and unexpected uncer-
tainty are associated with distinct brain networks. The evidence
reviewed above about the potential involvement of distinct cog-
nitive processes in these two forms of uncertainty suggests that
they could be dissociated in terms of their neural correlates.
Further research will be necessary to address this question. A

more fundamental question regards the nature of the distinc-
tion between volatility and unexpected uncertainty. The main
difference between them is the frequency of S-R-O changes in a
given period of time. This frequency can be manipulated in a
gradual, continuous way. However, it can be speculated that sys-
tems involved in processing uncertainty should be able to detect a
threshold beyond which the processes implemented to deal with
the environment will change (e.g., switching from a reactive toward
a proactive mode of control). Further research will be needed to
test this idea. Finally, although the theoretical avenues considered
in this article suggest that volatility and unexpected uncertainty
might lead to different modes of cognitive control, and to differ-
ent neuromodulatory patterns, most of these ideas remain yet to
be empirically tested.

In summary, this article has reviewed empirical and theoret-
ical evidence for the distinction between three forms of uncer-
tainty, and in particular, it highlighted a distinction between a
rare unexpected change (unexpected uncertainty) and a frequently
changing environment (volatility). Future research should there-
fore form a clear distinction between unexpected uncertainty and
volatility in order to further explore how we successfully estimate,
represent, and resolve these different forms of uncertainty.
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To function effectively, brains need to make predictions about their environment based
on past experience, i.e., they need to learn about their environment. The algorithms by
which learning occurs are of interest to neuroscientists, both in their own right (because
they exist in the brain) and as a tool to model participants’ incomplete knowledge of
task parameters and hence, to better understand their behavior. This review focusses
on a particular challenge for learning algorithms—how to match the rate at which they
learn to the rate of change in the environment, so that they use as much observed data
as possible whilst disregarding irrelevant, old observations. To do this algorithms must
evaluate whether the environment is changing. We discuss the concepts of likelihood,
priors and transition functions, and how these relate to change detection. We review
expected and estimation uncertainty, and how these relate to change detection and
learning rate. Finally, we consider the neural correlates of uncertainty and learning. We
argue that the neural correlates of uncertainty bear a resemblance to neural systems
that are active when agents actively explore their environments, suggesting that the
mechanisms by which the rate of learning is set may be subject to top down control (in
circumstances when agents actively seek new information) as well as bottom up control
(by observations that imply change in the environment).

Keywords: change detection, uncertainty, exploratory behavior, modeling, bayes theorem, learning

To function efficiently in their environment, agents (humans and
animals) need to make predictions. We can think of predictions
being based on an internal model of the environment, stored in
the brain, which represents information that has been observed,
and predicts what will happen in future. The process by which
such a model is constructed and updated may be called a learning
algorithm. Learning algorithms are of interest to neuroscien-
tists, partly because such algorithms actually exist in the brain
(and we would like to understand them) and partly because con-
structing learning algorithms that model participants’ incomplete
knowledge of task contingencies can help us to understand their
behavior in experimental paradigms.

Whilst all knowledge of the environment is arguably acquired
through learning, learning is particularly important in environ-
ments that change over time. In this review we are concerned
with a particular computational problem that arises in com-
plex changing environments—how should learning algorithms
adapt their learning rate to match the rate of change of the envi-
ronment. We will consider two key concepts in inferring the
rate of change: the likelihood function, by which the likelihood
that current and past observations were drawn from the same
distribution is evaluated, and the prior probability of change,
which constrains how much evidence will be required for the
learning algorithm to infer that a change has in fact occurred.
We will relate these two constructs to the concepts of expected
and estimation uncertainty, and consider the interplay between
uncertainty and learning. Finally we will consider neural corre-
lates of uncertainty and learning, and ask whether these are the

same when learning is driven bottom up by surprising observa-
tions, and top down as part of the process of actively exploring
the environment.

WHY IS CHANGE A CHALLENGE FOR LEARNING
ALGORITHMS?
A learning algorithm is an algorithm that makes use of past expe-
rience to construct a representation of the learned-about subject
(we will call the learned-about subject “the environment” in this
article). The purpose of learning is to predict future observations
of the environment and hence respond to them efficiently (Friston
and Kiebel, 2009; Friston, 2010). Therefore, to function effectively
it is essential that the representation developed by the learning
algorithm accurately reflects the current state of the environment
and/or is predictive of future environmental states.

Throughout this review, when I mention a changing environ-
ment, I mean an environment that changes to an unknown state.
Environments can change in both predictable and unpredictable
ways. A predictably changing environment would be a changing
environment whose state can nevertheless be predicted precisely
as a function of time—for example, the phases of the moon. An
unpredictably changing environment could be defined as an envi-
ronment that undergoes changes that move it to an unknown
state. For example, the location of the TV remote control in a fam-
ily living room often behaves like this. In terms of this discussion
of learning algorithms, we are only really interested in the second
type of change—in the first case (an environment which changes,
but predictably) there is nothing new to learn.
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THE KEY CHALLENGE: HOW FAR BACK SHOULD YOU LOOK?
Given that the changing environment is not totally random over
time (in which case learning would be useless), a learning algo-
rithm can make use of a history of data extending beyond the
most recently experienced observations, to inform its internal
representation of the environment. The more past data that can
be validly used to create a representation of the environment,
the more accurate the representation is likely to be. However,
“validly” is the key word because in a changing environment, the
challenge is to decide exactly which data should be used to cre-
ate an up-to-date representation, and which data are no longer
relevant (Doya, 2002; Behrens et al., 2007).

To illustrate the point: in a stationary environment (an envi-
ronment which does not change over time), all data from the past,
no matter how old, could be used to inform an internal repre-
sentation of the current state of the environment. Therefore, for
example, in a stationary environment, the mean of all observa-
tions would give the most accurate estimate possible of the mean
of the underlying distribution (the environment) from which
future observations will be drawn.

In contrast, in a changing (non-stationary) environment, it is
not true that the distribution of all past observations reflects the
underlying distribution in force at any particular time point i. On
the contrary, in a changing environment there is a need for an
additional layer of processing to work out how observations from
different times in the past predict future states of the environ-
ment. For example, if the environment has undergone an abrupt
change, the best solution may be to identify the change point and
use all data since that point, disregarding data from prior to the
change point. There is a trade-off between using as much data
as possible (to increase the accuracy of the representation) and
leaving out old data, which may be irrelevant or misleading.

A SIMPLE WAY TO DISCOUNT OLDER DATA: DECAY KERNELS
Firstly, to illustrate the problems associated with adjusting to
the rate of change of the environment, we will consider a sim-
ple but non-adaptive strategy for discounting old data: namely
to discount or down-weight older observations. For example, an
estimate of the mean of the underlying distribution at time point
i could be based on a running average of the last n observations
(i − n: i), or a kernel-based average where observations (i − n:
i) are averaged using a weighting function which down-weights
older observations (see Figure 1, left hand panels).

This simple, fixed kernel approach is easy to implement in
data analysis, and one can imagine how it could be implemented
simply in a neural network: Incoming observations each activate
a set of neural nodes which represent them (for example, in a
spatial map, nodes with spatial receptive fields in which stim-
uli appear would be activated by these stimuli); activation in the
nodes decays gradually over time so more recently activated nodes
contribute more to the total activity within the system, as in a
“leaky accumulator” model (Usher and McClelland, 2001). This
can be achieved using a single-layer neural network (Bogacz et al.,
2006).

However, algorithms like the kernel-based approach just
described that have a fixed rate of discounting old data rather than
adjusting their parameters dynamically to account for periods

of faster and slower change, perform poorly in environments in
which the relevance of old data does not decay as a simple func-
tion of time (Figure 1). If the environment has periods of more-
and less-rapid change, the ideal solution is to adjust the range of
data that are used to inform the model over time, in accordance
with how far into the past data are still relevant.

As an extreme example, consider an environment that has
periods of stationarity interspersed with sudden changes (as in
Figure 1). An algorithm that discounts older observations based
solely on their age, like the simple fixed kernels described above,
applies the same down-weighting to a past observation i − n
regardless of whether a change has occurred since that observa-
tion, or not. If in fact a change has occurred since i − n, then
the best solution would be to treat observations from before the
change differently from those made since the change. On the
other hand, during periods of stability, the best solution would
be to use as many old observations as possible, not to arbitrarily
disregard observations on the basis of age.

To implement a solution in which the range of data adjusts
to changes in the rate of change of the environment over time,
a learning algorithm would need some mechanisms by which to
evaluate the rate of change of the environment. How can this be
achieved?

ESTIMATING THE PROBABILITY OF CHANGE
Consider a clear case in which not all past data are equally
relevant—an environment which undergoes abrupt changes,
interspersed with periods of stationarity (periods without
change) as in Figure 1. How can a learning algorithm effectively
disregard observations from before an abrupt change, whist using
as much data as possible during stable periods? To do this, the
learning algorithm needs to be able to infer the rate of change of
the environment from the data it observes (Courville et al., 2006;
Behrens et al., 2007; Wilson et al., 2010; Wilson and Niv, 2011).

In order to determine the rate of change of the environment,
a learning algorithm needs to balance two considerations. Firstly,
how unlikely was it that current observations were drawn from
the same distribution (the same state of the environment) as
previous observations? Secondly, how likely are change points
themselves?—If I thought change points occurred on average
about every 10,000 trials, I would need more evidence to infer a
change than if I thought change points occurred on average every
10 trials (Wilson et al., 2010). We will now consider how these two
considerations can be formalized.

INFERRING CHANGE I: THE LIKELIHOOD FUNCTION
Let’s start with the first of our two considerations: How unlikely
was it that a given observation was drawn from the same distri-
bution as previous observations? Consider a very simple learning
task in which on each trial i, a target appears at some location
across space, xi. The location is drawn from a Gaussian distribu-
tion with mean μ and variance σ2, such that xi ∼ N (μ, σ2).

Now let’s say we observe a data point xi, and we want to know
from what distribution this data point was drawn. In particular,
we want to know whether this data point xi was drawn from the
same distribution as previous data points, or whether a change in
the environment has occurred, such that the current parameters
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FIGURE 1 | Algorithms with a fixed temporal discount do not fit well

to environments with a variable rate of change. The right-hand panels
illustrate an environment in which observations are drawn from a
Gaussian distribution; each row shows a different learning algorithm’s
estimate of the distribution mean μ. The mean μ, which has period of
stability interspersed with sudden change, is shown in black. Actual
observations x are shown in gray. Estimates of μ are shown in blue.
The top three rows are kernel-based learning algorithms with different
time constants. The left hand panels illustrate the three weighting
functions (kernels) which were used to determine the weighting of
observations in the panels next to them. The weighting w(j ) assigned to
observation i − j when calculating the mean μ(i ) on observation i is
defined by the exponential function w(i ) = exp(−j/n). The rate of decay is

determined by the constant n, with higher values of n meaning a longer
period of the past is used. The top row shows a kernel using only very
recent observations. This tracks the mean μ well, but jumps around a lot
with individual observations. Note the blue line tracks the gray (data) line
more closely than it tracks the actual mean μ (black line). The 2nd and
3rd rows show kernels using longer periods of the past. This gives a
much smoother estimate, but is slow to adjust to changes in μ. The
bottom row shows the output of a Bayesian learning algorithm that
includes an additional level of processing in order to detect change
points. Note how unlike the kernel-based algorithms, its estimate is
stable during periods of stability and changes rapidly in response to
change in the underlying distribution.

μi, σ
2
i are not equal to previous parameters from some putative

pre-change point, μi−n, σ2
i−n.

Statisticians would talk about this problem in terms of proba-
bility and likelihood. We can calculate the probability that a certain
observation (value of xi) would occur, given some generative dis-
tribution xi ∼ N (μ, σ2), where the value of the parameters μ, σ2

are specified (for example, the probability of observing a value of
xi > 3 given that μ = 0 and σ2 = 1 is obtained from the stan-
dard probability density function for the Normal distribution,
as p = 0.001). Conversely, we can think about the likelihood that
the underlying distribution has certain parameters (the likelihood
that μ, σ2 take certain values), given that we have observed a
certain value of xi. The likelihood of some values of μ, σ2 given
observations x can be written as p(μ, σ2|xi); conversely the prob-
ability of some observation x given certain parameters of the
environment μ, σ2 can be written p(xi|μ, σ2). The two quantities
are closely related:

p(μ, σ2|xi) = p(xi|μ, σ2) (1)

This relationship gives us a clear way to evaluate whether a change
point has occurred—given some hypothesis about the parameters

of the environment μ, σ2 that were in force prior to a putative
change point, we can calculate the probability that an observa-
tion or set of observations made after the putative change point
would have been observed given the pre-putative-change param-
eters of the environment, and hence calculate the likelihood that
the pre-change parameters are in fact still in force (or conversely,
the likelihood a change point has occurred).

It is worth noting that the likelihood function p(μ, σ2|xi), or
more generally p(parameters/observations) can only be obtained
in this way if the shape of the distribution from which observa-
tions are drawn is specified—we cannot estimate the parameters
of a distribution, if we do not know how that distribution is
parameterized. The validity pre-specifying the form of the gen-
erative distribution has been debated extensively throughout the
twentieth century (McGrayne, 2011) and we will not rehash that
debate here—we will simply note that whilst a wrong choice of
distribution could lead to incorrect inferences, in practice it is
often possible to make an informed guess about the distribution
from which data are drawn—partly by applying prior experience
with similar systems, and partly because types of observations fol-
low certain distributions, for example, binary events can often be
modeled using a binomial distribution.
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INFERRING CHANGE II: PRIOR PROBABILITY OF CHANGE AND THE
TRANSITION FUNCTION
Now let’s address the second consideration for algorithms that
adapt to the rate of change of the environment: the question
of how likely change points themselves are, and the probabil-
ity a-priori of particular transitions in the parameters of the
environment.

We have already noted that, intuitively, an observer who
believes change is improbable a-priori (for example, if the
observer thinks that a change occurs only every 10,000 obser-
vations) should demand a higher level of evidence in order to
conclude that a change has occurred, compared to an observer
who believes change is frequent in his environment (e.g., if the
observer thinks the environment changes about once every 10 tri-
als). Furthermore, different environments can change in different
ways over time—for example, in some environments the param-
eters might change smoothly, whilst other environments might
change abruptly.

A function that models how the state of the environment
evolves over time is called the transition function (Courville et al.,
2006). A transition function defines how the state of the environ-
ment on trial i depends on its state on previous trials—so in the
Gaussian example, the transition function specifies how the true
parameters of the environment on trial i that is μi, σ2

i , depend on
the true parameters of the environment on previous trials, μ1:i − 1,
σ2

1:i − 1.
Different transition functions represent different models of

how the environment changes over time. For example, we could
specify that the parameters of the environment vary smoothly
over time, such that μi = μi − 1 + δμ where δμ is small compared
to μ. Alternatively, we could allow the parameters of the envi-
ronment to jump to totally new values after a change point, for
example by specifying:

{
μi, σ

2
i

} =
{{

μi − 1, σ
2
i − 1

}
if J = 1

random if J = 0
(2)

. . . where J is a binary variable determining the probability of a
change, e.g., J follows a binomial B(0.1,1), giving a probability of
0.1 of a change on any given observation.

Both the form of the transition function (e.g., smooth change
vs. jumps) and its parameters (e.g., the probability of a jump
or the rate of smooth transition) are used to evaluate whether a
change in the environment has occurred—models with transition
functions specifying faster rates of change or higher probabil-
ities of jumps in the parameters of the environment should
infer change more readily than models that have low a-priori
expectations of change.

BAYES’ THEOREM AND CHANGE DETECTION
We have seen that for a learning algorithm to adapt to the rate of
change in the needs to evaluate the both likelihood of different
states or parameters of the environment given the data, and the
probability of change points themselves. These two elements are
captured elegantly in Bayes’ rule, which in this case can be written:

p(θi|x1:i) ∝ p(xi|θi)p(θi) (3)

. . . where θi represents the parameters of the environment
on the current trial i(μi, σ2

i ) in our Gaussian example, and
x1:i are the observations on all trials up to and including the
present one.

On the right hand side, p(xi|θi) is equal to p(θi|xi), the likeli-
hood function, due to Equation 1 above; p(θi), the prior proba-
bility of the parameters θi, can be thought of as p(θi|x1:i − 1) and is
obtained from the estimate of the parameters of the environment
on trial i − 1 via the transition function. For example if we model
a transition function as in Equation 2, so that the parameters of
the environment mostly stay the same from one trial to the next
but can jump to totally new values with some probability q, then

p(θi) = (1 − q)p(θi|x1:i − 1) + q(U(θ)) (4)

. . . where p(θi|x1:i − 1) is the probability that the parameters θi

took some values given all previous observations x1:i − 1, and U(θ)

is a uniform probability distribution over all possible new values
of θ, if there had been a change point.

Bayes’ rule expresses a general concept about how an observer’s
beliefs should be updated in light of new observations (for exam-
ple, whether observations indicate a change in the underlying
environment); it expresses the idea that the degree to which the
observer should change his beliefs depends on both the likeli-
hood that previously established parameters are still in force, and
the transition function or change-point probability. Hence Bayes’
rule captures the two considerations we have argued are impor-
tant for algorithms that respond adaptably to the rate of change
of the environment.

Because these considerations relate so closely to Bayes’ the-
orem, it could be argued that any change-detection model that
considers the likelihood that old parameters are still in force, and
the prior probability of different parameter values (for example
based on a transition function) is Bayesian in nature.

UNCERTAINTY AND LEARNING
In this review we are interested in how learning algorithms adapt
to change. A key concept in relation to learning and change
is uncertainty. There is a natural relationship between uncer-
tainty and learning in that it is generally true that the purpose
of learning is to reduce uncertainty, and conversely, the level of
uncertainty about the environment determines how much can be
learned (Pearce and Hall, 1980; Dayan and Long, 1998; Dayan
et al., 2000). We will now see that two types of uncertainty,
expected uncertainty and estimation uncertainty, which can be
loosely related to the concepts of likelihood and transition func-
tion just discussed, play different roles in learning and may have
distinct neural representations.

TYPES OF UNCERTAINTY
Uncertainty can be divided into two constructs—risk or expected
uncertainty, and ambiguity or estimation uncertainty (Knight,
1921; Dayan and Long, 1998; Courville et al., 2006; Preuschoff
and Bossaerts, 2007; Payzan-Lenestour and Bossaerts, 2011).

Risk or expected uncertainty refers to the uncertainty which
arises from the stochasticity inherent in the environment—
for example, even if an observer knew with certainty that
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observations were drawn from some Gaussian distribution x ∼
N (μ, σ2), with known parameter values (known values μ, σ2),
he would still not be able to predict with certainty the value
of the next observation xi+1—because observations are drawn
stochastically from a (known) distribution with some variance,
σ2. Thus, σ2 determines the level of expected uncertainty in this
environment.

In contrast, uncertainty that arises from the observer’s incom-
plete knowledge of the environment—in our Gaussian exam-
ple, uncertainty about the values of μ, σ2 themselves—is called
estimation uncertainty or ambiguity (Knight, 1921). Estimation
uncertainty is the type of uncertainty that may be reduced by
obtaining information, e.g., by increasing the number of obser-
vations of the environment. Estimation uncertainty generally
increases when the environment is thought to have changed to
a new state (since relatively few observations of the new state are
available).

Expected uncertainty and estimation uncertainty relate to the
two factors we previously discussed in relation to change detec-
tion: the likelihood that the same state of the environment is
in force now as previously, and the a-priori probability that the
state of the environment is not what the observer had previously
thought (determined in part by the transition function).

Expected uncertainty affects inferences about the likelihood
that the same state of the environment is in force now as previ-
ously, because given some observation xi, the strength of evidence
for a change in the environment depends not only on how far xi

falls from the expected value E(x) but also on the estimated vari-
ance of the distribution from which x is drawn. For example, in
our Gaussian learning model, for some putative μ, the probabil-
ity of an observation xi and hence the likelihood of that model
parameters μ, σ2 take a given value depends both the distance of
the observation from the putative model mean, xi − μ, and on
the level of expected uncertainty within the environment, σ2: if
expected uncertainty (σ2) is low, then a given value of (xi − μ)

represents stronger evidence against μ, σ2 still being in force,
compared to if expected uncertainty (σ2) was high. This concept
is illustrated in Figure 2.

Estimation uncertainty, in contrast, relates more closely to the
idea of assessing the a-priori probability of change in the envi-
ronment. Firstly, the strength of belief in any particular past state
of the environment affects estimation uncertainty—intuitively, if
the observer is not sure about the state of the environment, he
may be more willing to adjust his beliefs. Secondly, beliefs about
the rate or frequency of change in the environment (i.e., about the
transition function) affects estimation uncertainty because if the
observer believes the rate of change of the environment to be high,
then the extrapolation of past beliefs to predictions about the
future state of the environment is more uncertain. These concepts
are illustrated in Figures 3, 4.

In order to illustrate how the effect of expected and estimation
uncertainty on change point detection translate into an influ-
ence on learning rate, we can consider a model which observes a
series of data points from a Gaussian distribution and uses these
sequentially to infer the parameters of that distribution, whilst
taking into account the possibility that those parameters have
jumped to new values, as in Equation 2. Details of this model

FIGURE 2 | Relationship between the concepts of Expected

Uncertainty and Likelihood. Plot of values of some observed variable x
against their probability, given two Gaussian distributions with the same
mean. The red distribution has a lower variance, and hence lower expected
uncertainty, than the blue distribution. Points a and b represent possible
observed values of x. For the red and blue distributions, the distance from
the mean (a − μ) is the same, but at a, the red distribution has higher
likelihood (because point a has a higher probability under the red
distribution than the blue distribution) whilst at point b, the blue distribution
has a higher likelihood. Consider an algorithm assessing evidence that the
environment has changed. If a datapoint x = b is observed, whether the
algorithm infers that there has been a change will depend on the variance
or expected uncertainty of the putative pre-change distribution. If the
algorithm “thinks” that the red distribution is in force, an observation x = b
is relatively strong evidence for a change in the environment (as b is unlikely
under the red distribution) but if the algorithm “thinks” the blue distribution
is in force, the evidence for change is much weaker, since point b is not so
unlikely under the blue distribution as it is under the red distribution.

are given in the Appendix and its “behaviour” is illustrated in
Figure 5.

In Figure 2 we saw that when expected uncertainty is high, the
deviation of an observed value or set of values from the distribu-
tion mean needs to be higher, to offer the same weight of evidence
for a change in the underlying model parameters, compared to
when expected uncertainty is low. In the case of our Gaussian tar-
get locations example, this would mean that when σ2 is believed
to be high, a given deviation of a sample from the mean (x − μ) is
weaker evidence for change, compared to when the estimate of σ2

is low. In terms of a learning algorithm, this is illustrated in pan-
els (A) and (B) of Figure 6. Panel (A) shows a case where the true
mean of the generative distribution changes when σ2 is thought
to be high (so expected uncertainty is high). Panel (B) shows a
change of similar magnitude in the generative mean, when σ2 is
thought to be low. The model adapts much more quickly to the
change in the distribution mean in the case with lower expected
uncertainty.

In contrast, we have argued that the level of estimation uncer-
tainty or ambiguity is more closely related to the second con-
sideration, the probability of change itself. Consider the process
by which probability densities over the model parameters are
updated in our Bayesian learning model. A-priori (before a cer-
tain data point xi is observed), if the probability of change is
believed to be high, estimation uncertainty over the parameters
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FIGURE 3 | Illustration of estimation uncertainty. These plots show the
output of a numerical Bayesian estimation of the parameters of a Gaussian
distribution. If x ∼ N (μ, σ2), and some values of x are observed, the
likelihood of different values for μ, σ2 can be calculated jointly using Bayes’
rule. The colored plots (left) show the joint likelihood for different pairs of
values μ, σ2, where each point on the colored image is a possible pair of
values μ, σ2, and the color represents the likelihood of that pair of values.
The line plots (Right panel) show the distribution across x implied by
different values of μ, σ2. The dashed black line is the true distribution from
which data were drawn. The blue line is the maximum a-posteriori
distribution—a Gaussian distribution with values of μ, σ2 taken from the
peak of the joint distribution over μ, σ2 shown on the left. The red line
represents a weighted sum (W.S.) of the Gaussian distributions
represented by all possible values of μ, σ2, weighted by their joint likelihood
as shown in the figure to the left. The top represents an estimate of the
environment based on fewer data points than the bottom row. With
relatively few data points, there is a lot of uncertainty about the values of
μ, σ2, i.e., estimation uncertainty—illustrated by the broader distribution of
likelihood over different possible values of μ, σ2 (Left panel) in the top than
bottom row. Whilst the maximum a-posteriori distribution is a good fit to
the “true” distribution from which data were drawn in both cases, if we
look at the weighted sum of all distributions, there is a lot more uncertainty
for the top row case, based on fewer data points. Hence if the observer
uses a weighted sum of all possible values of μ, σ2 of the environment to
calculate a probability distribution over x, the variance of that distribution
depends on the level of estimation uncertainty.

μ and σ2 is also high—this is the effect illustrated in Figure 6.
Conversely, a-posteriori (after a data point or data points are
observed), estimation uncertainty is increased if evidence for a
change-point is observed (i.e., a data point or set of data points
which are relatively unlikely given the putative current state of
the environment), (Dayan and Long, 1998; Courville et al., 2006).
We can see this in Figure 7. As the model starts to suspect that
the parameters of the environment have changed, the spread
of probability density across parameter space (i.e., estimation
uncertainty) increases. As more data are observed from the new
distribution, the estimate of the new parameters of the envi-
ronment improves, and estimation uncertainty decreases. Hence
estimation uncertainty is related to both to the a-priori expecta-
tion of change, and the a-posteriori probability that a change may
have occurred.

The role of estimation uncertainty in determining how much
can be learned can be related to concepts in both Bayesian
theory (Behrens et al., 2007) and classic associative learning

FIGURE 4 | Two considerations for evaluating whether a change has

occurred. Plots show the probability of observing some value of x, given
that x ∼ N (μ, σ2) and the values of μ, σ2 can jump to new, unpredicted
values as defined in Equation 2. When an observation of the environment is
made, an algorithm that aims to determine whether a change has occurred
should consider both the likelihood of the previous model of the
environment given the new data, and the prior probability of change as
determined in part by the transition function. Top panel: the probability of
an observation taking a value x is shown in terms of two distributions. A
Gaussian shown in blue represents the probability density across x if the
most likely state of the environment (the most likely values of μ, σ2), given
past data, were still in force. The uniform distribution in red represents the
probability density across x arising from all the possible new states of the
environment, if a change occurred. The possible new states are
represented by a uniform function (red line in the figure) because, if we
consider the probability of each value of x under an infinite number of
possible states at once (i.e., the value of x given each of infinitely many
other possible values of μ and σ2), the outcome is a uniform distribution
over x. A change should be inferred if an observation occurs in the gray
shaded regions—where the probability of x under the uniform
(representing change) is higher than the probability under the prior
Gaussian distribution. Hence the red data point in Figure 4 should cause
the system to infer a change has occurred, whereas the blue data point
should not. Bottom panel: as above, the probability distribution over x is a
combination of a Gaussian and a Uniform distribution (representing the
most likely parameters of the environment if there has been no change,
and the possible new states of the environment if there has been a change,
respectively). In this panel, the Gaussian and Uniform components are
summed to give a single line representing the distribution over x. The
different colored lines represent different prior probabilities of change, and
hence different relative weightings of the Gaussian and uniform
components. Increasing the prior probability of change results in a wider
distribution of probability density across all possible values of x.

theory (Pearce and Hall, 1980): in the terminology of classical
conditioning, estimation uncertainty can be equated with associa-
bility (Dayan and Long, 1998; Dayan et al., 2000)—associability
being a term in formal learning theory which defines how much
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FIGURE 5 | Bayesian learner estimates the mean and variance of a

Gaussian distribution. (A) Data and maximum likelihood estimates for
200 trials. The actual mean and variance of the distribution from which the
data were drawn (generative distribution) are shown in gray. The gray line is
the mean and the shaded area is mean ± standard deviation. The model’s
estimates of these parameters are shown superposed on this, in blue. The
actual data point on which the model was trained are shown as black dots.
The scale on the y-axis is arbitrary. (B) The probability density function
across parameter space (for plotting conventions, see Figure 3) for the first
100 trials. Each parameter-space map represents one trial; trials are shown
in rows with the first trial number in each row indicated to the left of the
row. Possible values of μi are plotted on the y-axis; possible values of σi are
plotted on the x-axis. Colors indicate the joint posterior probability for each
pair, mu, sigma, after observing data point xi . Increasing values of sigma
are plotted from left to right; increasing values of μi are plotted from top to
bottom. Hence, for example on trial 10 (top right) the model thinks μi is low,
and σi is high. Some interesting sequences of trials are highlighted in
Figures 6, 7.

can be learned about a given stimulus, where the amount that
can be learned is inversely related to how much is already
known about the stimulus (Pearce and Hall, 1980). Low estima-
tion uncertainty means low associability—which means minimal
learning. Similarly, estimation uncertainty relates to the learning
rate—α in the Rescorla–Wagner model of reinforcement learn-
ing (Rescorla and Wagner, 1972; Behrens et al., 2007)—because
higher estimation uncertainty is associated with faster learning.

TOP DOWN CONTROL OF ESTIMATION UNCERTAINTY?
In a stable environment, estimation uncertainty—uncertainty
about the parameters of the environment—generally decreases
over time, as more and more observations are made to be con-
sistent with a particular state of the environment. Indeed it has
been argued that the main goal of a self-organizing system like
the brain is to reduce surprise by improving the match between its
internal representations of the environment and the environment

FIGURE 6 | Learning is faster when expected uncertainty is low. Panels
(A) and (B) show two sets of trials which include changes of similar
magnitude in the mean of the generative distribution (distribution from
which data were in fact drawn). In panel (A), the estimate of σi is high
(high expected uncertainty) but in panel (B), the estimate of σi is
lower—this is indicated by the distribution of probability density from left
to right in the colored parameter-space maps, and also the width of the
shaded area μ ± σ on the lower plot. The red boxes indicate the set of
trials shown in the parameter space maps; the red arrow shows which
parameter space map corresponds to the first trial after the change point.
Note that the distribution of probability in parameter space changes more
slowly when expected uncertainty is high (panel A), indicating that learning
is slower in this case.

FIGURE 7 | Change in the environment increases estimation

uncertainty. Here we see a set of trials during which a change point occurs
(change point indicated by red arrow). Before the change point, the model
has low estimation uncertainty (probability density is very concentrated in a
small part of parameter space, as seen from the first three parameter
space maps). When the change point is detected, estimation uncertainty
increases as the model initially has only one data point on which to base its
estimate of the new parameters of the distribution. Over the next few
trials, estimation uncertainty decreases (probability density becomes
concentrated in a smaller part of parameter space again).

itself (Friston and Kiebel, 2009; Friston, 2010), i.e., to reduce
estimation uncertainty as well as estimation error.

Whilst additional observations of the environment tend to
decrease estimation uncertainty, estimation uncertainty is driven
up by observations that suggest a change may have occurred in
the environment: surprising stimuli are associated with increases
in the learning rate (Courville et al., 2006). We might think of
this as bottom-up or data-driven control of the level of estimation
uncertainty in the model, or equivalently the learning rate, or the
prior expectation of change.

However, it is also possible to imagine situations in which it
might be advantageous to control estimation uncertainty (or the
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learning rate) top down instead of bottom up—i.e., to actively
increase the learning rate in order to “make space” for new
information about the environment. One such situation would
be when an observer is actively exploring his environment and
hence presumably wishes to adapt his internal model of the envi-
ronment to take into account the new information obtained by
exploring. Indeed, change of context (moving an animal from one
location to another) is associated with increased learning rate in
experimental animals (Lovibond et al., 1984; Hall and Channell,
1985; McLaren et al., 1994).

NEURAL REPRESENTATIONS OF ESTIMATION UNCERTAINTY
AND LEARNING RATE
A common set of neural phenomena are associated with the rate
of learning, processing of stimuli that could indicate a change
in the environment, and active exploration of the environment;
these phenomena could be conceptualized computationally in
terms of control of the level of estimation uncertainty in the
brain’s models of the environment.

Neuroanatomically, an area of particular interest in relation
to estimation uncertainty is the anterior cingulate cortex (ACC).
Activity in the ACC has been shown to correlate with learning rate
such that, in environments in which the environment changes
frequently and observers learn quickly about change (i.e., con-
ditions of high estimation uncertainty), the ACC is more active
(Behrens et al., 2007). The ACC is also activated when people
receive feedback about their actions or beliefs that causes them
to modify their behavior on future trials (and by implication, to
modify their internal model of the environment) (Debener et al.,
2005; Cohen and Ranganath, 2007; Matsumoto et al., 2007)—
this activity, which has been observed using fMRI and electro-
physiological recordings, is probably the source of the error- or
feedback-related negativity (ERN; Debener et al., 2005).

Interestingly, ACC activity may be more closely related to the
forgetting of old beliefs about the environment (and hence the
increasing of estimation uncertainty), than to new learning. In
a particularly relevant study Karlsson et al. (2012), showed that in
rats performing a two-alternative probabilistic learning task, pat-
terns of activity in the ACC underwent a major change in activity
when the probabilities associated with each of the two options
reversed. Importantly, rats’ behavior around a probability reversal
(when the values associated with each lever switched) had three
distinct phases—before the reversal, rats showed a clear prefer-
ence for the high value lever, but when the probabilities reversed
there was a period in which the rats showed no preference for
either lever (they probed each lever several times as if working out
the new values associated with each lever) before settling down
into a new pattern of behavior that favored the new high value
lever. The ACC effect was associated with the point at which rats
abandoned their old beliefs about the environment in favor of
exploration and the acquisition of new information (and hence,
should have had raised levels of estimation uncertainty)—rather
than at the time at which a new model of the environment started
to govern behavior.

Further experiments have reported ACC activity when partici-
pants make the decision to explore their environment rather than
to exploit known sources of reward (Quilodran et al., 2008), or

to forage for new reward options rather than choosing between
those options immediately available to them (Kolling et al.,
2012)—again, these are cases in which estimation uncertainty in
the brain’s internal models could be actively raised, to facilitate the
acceptance of new information in the new environment (Dayan,
2012).

Neurochemically, Dayan and colleagues have proposed that the
neuromodulator noradrenaline (also called norepinephrine) sig-
nals estimation uncertainty. Evidence from pupilometry studies
suggests that noradrenaline levels [which are correlated with pupil
dilation (Aston-Jones and Cohen, 2005)] are high when estima-
tion uncertainty is high in a gambling task (Preuschoff et al.,
2011). Increases in pupil dilation have been demonstrated both
circumstances that should drive estimation uncertainty bottom-
up [when data are observed that suggest a change point has
occurred (Nassar et al., 2012)], and top down [during exploratory
behavior (Nieuwenhuis et al., 2005)].

Pupil diameter is increased in conditions when observers think
the rate of change in the environment is high, and is phasically
increased when observers detect a change in the environment
(Nassar et al., 2012). Hence tonic noradrenaline levels could be
said to represent the prior probability of change in the envi-
ronment, whilst phasic noradrenaline may represent a-posteriori
evidence (based on sensory input) that a change is occurring or
has occurred at a given time point (Bouret and Sara, 2005; Dayan
and Yu, 2006; Sara, 2009).

Interestingly, whilst events which are surprising in relation to
a behaviorally-relevant model of the environment are associated
with an increase in noradrenaline release [29,30] and pupil diam-
eter [31], it has also been shown that irrelevant surprising events
which cause an increase in pupil diameter also cause an increase
in learning rate (Nassar et al., 2012) suggesting a rather general-
ized mechanism by which the malleability of neural circuits may
be affected by surprise, in accordance with behavioral evidence
that surprising events affect the learning rate (Courville et al.,
2006).

The mechanism by which noradrenaline represents or controls
estimation uncertainty is not known, although two appealing
theoretical models are that noradrenaline acts on neural mod-
els of the environment by adjusting the gain function of neurons
(Aston-Jones and Cohen, 2005), or by acting as a “reset” signal
that replaces old models of the environment with uninformative
distributions, to make space for new learning (Bouret and Sara,
2005; Sara, 2009).

The involvement of the ACC and noradrenaline in the con-
trol/representation of estimation uncertainty may be linked,
because the ACC has strong projections to the nucleus that
produces noradrenaline, the locus coeruleus (Sara and Herve-
Minvielle, 1995; Jodo et al., 1998).

Whilst there is currently little consensus on the representation
of learning rate and uncertainty in the brain, the data reviewed
here do begin to suggest a mechanism by which estimation
uncertainty and learning rate are controlled neurally, which is
involved both when uncertainty/learning is driven bottom-up (by
observations that suggest the environment is changing) and when
they are driven top-down (such as when agents actively quit a
familiar environment and explore a novel one).
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APPENDIX
LEARNING MODEL FOR FIGURES 4–7
Let data x be drawn from a Gaussian distribution with unknown
mean μ and variance σ2. The values of μ and σ2 occasionally
jump to new values; the probability of such a jump occurring
between and pair of observations is fixed at some value q. For
simplicity in this example we assume q is known, but it is also
possible to infer q from the data (Nassar et al., 2010; Wilson et al.,
2010).

Then the structure of the environment can be described as
follows:

xi ∼ N (μi, σ2
i ) (5)

μi, σ
2
i =

{
μi − 1, σ

2
i − 1 if J = 0

U2
(
μmin,μmax,σ

2
min,σ

2
max

)
if J = 1

(6)

where J is a binary variable determining the probability of a jump,
such that J follows a Bernouilli with probability q.

J ∼ B(q) (7)

Then the values for μi and σi can be inferred from the data using
Bayes’ rule as follows:

p(μi, σ
2
i |x1 : i) = p(xi|μi, σ2

i )p(μi, σ
2
i |x1:i−1) (8)

where the likelihood is

p(μi, σ2
i |xi) = p(xi|μi, σ

2
i ) ∼ N (μi, σ2

i ) (9)

. . . and the prior is derived from the posterior on the previous
trial, incorporating a uniform “leak” over parameter space to
represent the possibility that the values of the parameters have
changed since the previous observation:

p(μi, σ
2
i |x1:i − 1) = (1 − q)p(μi − 1, σi − 1)

+ q
(
U2(μmin,μmax,σ

2
min,σ

2
max

))
(10)

On trial 1, the prior over parameter space is uniform.
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Little is known about how humans solve the exploitation/exploration trade-off. In particular,
the evidence for uncertainty-driven exploration is mixed.The current study proposes a novel
hypothesis of exploration that helps reconcile prior findings that may seem contradictory
at first. According to this hypothesis, uncertainty-driven exploration involves a dilemma
between two motives: (i) to speed up learning about the unknown, which may beget novel
reward opportunities; (ii) to avoid the unknown because it is potentially dangerous. We
provide evidence for our hypothesis using both behavioral and simulated data, and briefly
point to recent evidence that the brain differentiates between these two motives.
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1. INTRODUCTION
Learning to choose between multiple unknown prospects, in the
hope of eventually exploiting the most rewarding ones, is a diffi-
cult yet fundamental problem. It involves a trade-off between two
competing courses of action: to exploit known options that are
believed to yield the best outcomes versus to explore unknown
alternatives that may be even more rewarding.

Little is known about how humans solve this trade-off. In par-
ticular, the determinants of exploratory decisions remain under-
specified. In the model-free reinforcement learning framework,
exploration is undirected, i.e., it boils down to introducing anneal-
ing in the choice rule, whereby the agent either periodically
chooses at random, or increases stochasticity of choice when
options have similar estimated values (Sutton and Barto, 1998).
A more efficient strategy may consist of directing exploration to
those options about which the agent is most uncertain about the
expected value (e.g., Gittins and Jones, 1974; Kakade and Dayan,
2002; Huettel et al., 2006; Cohen et al., 2007). Whether individuals
implement such uncertainty-driven exploration remains an open
question.

The existing evidence for uncertainty-driven exploration is
mixed. Recently, (Frank et al., 2009) found that participants in a
reward learning task were“ambiguity seekers,” i.e., they strategically
explored the least well known options, with large individual dif-
ferences that varied as a function of prefrontal cortex genetic func-
tion. In a follow-up imaging study (Badre et al., 2012) revealed the
rostrolateral prefrontal cortex (RLPFC) to signal estimation uncer-
tainty only in the participants identified as ambiguity seekers.
Furthermore, Cavanagh et al. (2011) showed with EEG that these
uncertainty signals are represented prior to the decision, which
further suggests they drive ambiguity seeking choice. However,
these results may appear at odds with the ample evidence, from

Allais (1953) to Payzan-LeNestour and Bossaerts (2011), that indi-
viduals direct exploration to the least uncertain options, thereby
shying away from coping with the unknown (“ambiguity aver-
sion”). A neurobiological foundation for ambiguity aversion has
recently been laid (see, e.g., Hsu et al., 2005; Huettel et al., 2006;
Levy et al., 2010).

The current study attempts to reconcile these findings. As noted
by Cavanagh et al. (2011) and Badre et al. (2012), the phenome-
non of ambiguity aversion could be parasitic on sticky choice – the
behavioral pattern consisting in repeating the same choice regard-
less of reward statistics. The idea is that would the agent preferen-
tially choose the options he repeatedly chose in the past, he may
behave this way either because he is ambiguity averse (those repeat-
edly sampled options are the least uncertain), or merely because
he tends to stick to prior choices. A related concern is that unless
modeled explicitly, sticky choice makes it hard to identify any
positive influence of estimation uncertainty on exploration. How-
ever, sticky choice appeared to be a second-order phenomenon
in Payzan-LeNestour and Bossaerts’s (2011) task. Besides, the evi-
dence for ambiguity aversion documented in Payzan-LeNestour
and Bossaerts (2011) still prevailed after accounting for sticky
choice in the behavioral models used in that study, which rules
out the possibility that such ambiguity averse behavior merely be
“sticky choice in disguise1.”

1Specifically, the data reported in Payzan-LeNestour and Bossaerts (2011) were fitted
by a model allowing for both modulation of exploration by ambiguity (ambiguity-
seeking or ambiguity-averse – see Results Section for details on the functional forms)
and stickiness in choice (i.e., choice probability is biased towards the latest chosen
option, with the biasing factor being a free parameter). The value of the weight on
the ambiguity component turned out to be negative for the majority (60 out of 62)
of the subjects, which implies ambiguity aversion.
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The current study proposes a novel hypothesis about explo-
ration that helps reconcile the findings of Payzan-LeNestour
and Bossaerts (2011) and Frank et al. (2009)/Cavanagh et al.
(2011)/Badre et al. (2012; henceforth, FCB). According to this
hypothesis, uncertainty-driven exploration involves a dilemma
between two motives: (i) to speed up learning about the unknown,
which may beget novel reward opportunities; (ii) to avoid the
unknown because it is potentially dangerous. The first motive is
connected with the notion of curiosity (van Dijk and Zeelenberg,
2007) whereas the second is connected with cautiousness. Below
we will briefly point to recent evidence that the brain differenti-
ates between these two motives. We argue that in the task used
in FCB, both motives prevailed, though behavior was only influ-
enced by the first motive, which dominated the second one. The
second motive was somewhat muted because the potential mone-
tary losses in that task were relatively small, especially compared to
those in the task used in Payzan-LeNestour and Bossaerts (2011),
where the payoffs were highly skewed. The two motives were –
arguably – equally important in that task. This claim may seem
strange at first: that ambiguity aversion prevailed would rather
suggest that the second motive dominated, i.e., that the cautionary
signal not to bet on things unknown countervailed the directive
to sharpen the learning about the unknown. But the current study
shows that our subjects were in fact both ambiguity averse and
novelty seekers.

We flesh out new explanations of subject behavior in Payzan-
LeNestour and Bossaerts’s (2011) task, a restless (Wittle, 1988)
multi-armed bandit in which reinforcement contingencies jumped
at unsignaled times. In this kind of changing environment, the
directive to speed up learning is primarily relayed through unex-
pected uncertainty (Yu and Dayan, 2005) signals: when jump
likelihood is high (i.e., unexpected uncertainty is great), the
motivation to explore to find out novel reward opportunities
ought to be maximal. We fitted to subject behavior in the task
a new model that allows trial-by-trial estimates of both esti-
mation uncertainty and unexpected uncertainty. This model
assumes that the agent, in addition to directing exploration to
the options for which estimation uncertainty is minimal, also
directs exploration to the options for which unexpected uncer-
tainty is maximal. This model markedly improved the fit of the
previously developed ambiguity averse model, which Payzan-
LeNestour and Bossaerts (2011) found to be the best fit to
behavior in the task. This finding shows that in our experi-
ment, unexpected uncertainty modulated the “curiosity motive”
(i), while estimation uncertainty modulated the “cautiousness
motive” (ii).

We also show with simulated data that the behavior consist-
ing of mixing ambiguity aversion with novelty seeking is natural
viewed from the evolutionary fitness principle. We conducted
a number of simulations of behavior in the foregoing restless
bandit task, in order to compare economic performance of a vari-
ety of models that allowed alternate kinds of uncertainty-driven
exploration (specifically, ambiguity seeking, ambiguity aversion,
novelty seeking, and a mixture of the latter two). Our simulated
data reveal ambiguity aversion to improve economic performance
in the task compared to ambiguity seeking. This result ques-
tions the standard claim that ambiguity aversion [i.e., motive

(ii) in the above dilemma] is irrational. We further found that
the behavior that mixes ambiguity aversion with novelty seek-
ing fared best in the task. This suggests that both stated motives
(i) and (ii) can be vindicated on the grounds of evolutionary
fitness.

2. MATERIALS AND METHODS
2.1. EXPERIMENTAL TASK
The current study builds on the restless bandit task originally
described in Payzan-LeNestour and Bossaerts (2011) as well as
Payzan-LeNestour (2012), where full task details are provided2. In
what follows we focus on the task features relevant for the current
study.

The task is a six-armed bandit. Three arms are blue and three
are red. Color is visible. At each trial, every arm generates one of
three possible outcomes: 1, −1, or 0 CHF3 for the blue arms; 2,
−2, or 0 CHF for the red arms. At each trial, the agent selects one
arm and immediately receives the outcome returned by the chosen
arm. He is not told the outcomes returned by the other arms.

Our bandit is restless: while absolute expected value is con-
stant for each arm, the sign of expected value occasionally flips,
thus arms switch from having positive to negative expectation
and back. The flips in the outcome probabilities occur without
notice. Specifically, changes are instantiated with two indepen-
dent Bernoulli processes, one for the blue arms and one for the
red. For each process and at each trial, either “jump” or “no jump”
occurs. When jump occurs for one of the two colors, then at the
three arms of this color, the probabilities of two outcomes flip.
Jump frequency is higher for the red arms than for the blue ones
(1/4 versus 1/16), whereby unexpected uncertainty is higher for
the red arms on average.

The subject knows that outcome probabilities will change with-
out warning during the experiment (he also knows red arms are
more unstable but is not told the jump probabilities), which leads
him to track unexpected uncertainty throughout the task, as we
show elsewhere (Payzan-LeNestour et al., in preparation). The
same study reveals subjects to track estimation uncertainty as
well. One distinctive characteristic of our design is that the lev-
els of both estimation uncertainty and unexpected uncertainty
vary substantially during the task. Unexpected uncertainty lev-
els vary from high, upon jumps, to low, during the stable phases.
Also, because learning has to be reset after each jump, estima-
tion uncertainty remains significant throughout the task. This
manipulation renders the trial-by-trial estimation of both uncer-
tainty components meaningful. Importantly, participants in our
task did estimate these components, contrary to that in prior
studies where unexpected uncertainty appeared to be artifactu-
ally maximal throughout the task (e.g., Daw et al., 2006; Jepma
and Nieuwenhuis, 2011)4.

2Payzan-LeNestour (2012) is available at http://papers.ssrn.com/sol3/papers.cfm?
abstract_id=1628657.
3Swiss Francs, the currency used in the original experiment.
4In these studies, the analysis suggests that participants presumed changes in the
reward contingencies would occur at each trial during the task, perhaps because the
task instructions were vague about the nature of the changes in the reward con-
tingencies, and in the absence of knowledge, the “worst-case scenario” (maximal
instability) is imagined.
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2.2. COMPUTATIONAL MODELS
The current study augments the Bayesian model described in
Payzan-LeNestour and Bossaerts (2011). Here we briefly point
to the essentials of that model. The model learns the outcome
probabilities of the six arms through a natural sampling scheme
(analogous to the one proposed in Hirayama et al. (2004, 2006)
and Quinn and Karny (2007) which exponentially discounts (“for-
gets”) the past outcomes returned by a given arm after discovering
the arm has jumped. A key feature of the model is that the dis-
count factor is adjusted on the spot on each trial T. It equals the
likelihood that no jump occurred at trial T, i.e., it quantifies the
“confidence in stability” at trial T. Since jumps are color-specific in
the task, the model uses two discount factors, one for the red arms,
λred(T ), and one for the blue, λblue(T ). λred(T ) (resp. λblue(T )) is
thus proportional to the strength of evidence that red arms (resp.
blue arms) did not change at trial T.

Exponential discounting of the past has the appealing property
of being related to leaky-integration processes, which have been
commonly used to model neuronal dynamics in a changing envi-
ronment (e.g., Sugrue et al., 2004). So this kind of “forgetting
Bayesian” model is both a good descriptive model of behav-
ior (as shown in Payzan-LeNestour and Bossaerts, 2011) and a
good model of neuronal dynamics (as argued in Yu and Cohen,
2009)5.

For each arm i and at each trial T, the model computes
Q(i,T ), the expected value (i.e., the sum of the three possible
outcomes weighted by their estimated probabilities of occur-
rence). The model thus assumes participants were risk neutral
and did not distort the outcome probabilities, which is at odds
with a number of theories (e.g., Prospect Theory). The motiva-
tion for this modeling choice is both parsimony and agnosti-
cism about whether/how individuals actually distort probabilities
(which reflects disagreement in the literature6).

Action selection in the task is modeled with the softmax rule.
According to this rule,option i is chosen with probability PiT which
is proportional to the exponential of the value of arm i:

PiT ∝ expβQi,T .

β (the inverse temperature) is a free parameter controlling the
degree to which the subject makes exploitative choices versus
exploratory ones.

Payzan-LeNestour and Bossaerts (2011) report that their
behavioral data were best fit with the assumption that subjects
tracked the level of estimation uncertainty of the options, in order
to strategically explore options with minimal estimation uncer-
tainty on a given trial. Such ambiguity averse behavior is accom-
plished by subtracting from the Q-value entering the softmax rule

5Alternate Bayesian schemes could do as well. For instance, eraspou proposes a
“Hierarchical Bayesian”model that is equally good at learning outcome probabilities
in the current task, compared to the forgetting Bayesian approach. The probability
estimates of the two models are strongly correlated. The forgetting Bayesian model
is more tractable and particularly suitable for our purpose in the current analysis.
6E.g., Trommershäuser et al. (2008) report that subjects in a movement task repre-
sented probabilities in a way that was close to perfect (no distortion whatsoever).
By contrast Hertwig et al. (2003) document underweighting of the probability of
occurrence of rare events, which is at odds with Prospect Theory which states
overweighting.

an exploration “malus” proportional to the level of estimation
uncertainty:

QiT ← QiT − euiT ,

where euiT is the level of estimation uncertainty about option i
at trial T, quantified in terms of the width (variance or entropy)
of the posterior probability distribution tracked by the Bayesian
learner (cf.Yoshida and Ishii,2006; Behrens et al., 2007 and Payzan-
LeNestour and Bossaerts, 2011). The width of the distribution
reflects the subject’s uncertainty regarding option value. Early in
learning, the width is larger (and uncertainty higher) than later is
learning.

The alternate “ambiguity seeking” model assumes that sub-
jects guided exploration toward the options for which estimation
uncertainty was maximal, whereby they explored the least well
known options. This behavior is instantiated by adding to the Q-
value an exploration bonus proportional to the level of estimation
uncertainty:

QiT ← QiT + euiT .

The two previous models modulate exploration as a function of
estimation uncertainty. We also developed a model featuring a
novel kind of uncertainty-driven exploration, to formalize the
idea – previously suggested by Cohen et al. (2007) – that explo-
ration ought to be modulated by unexpected uncertainty. Specif-
ically, when reinforcement contingencies change abruptly over
time, survival depends on constant adaptation to such changes.
This adaptation requires that the agent increases exploration when
he deems the environment to be novel (i.e., when unexpected
uncertainty is high), in accordance with our stated motive (i)
above. We refer to this behavior as “novelty seeking” (to be dis-
tinguished from ambiguity seeking as previously defined). In the
context of our multi-armed bandit task, the novelty seeking model
directs exploration to the arms that have most probably changed.
What follows describes how this behavior is accomplished. With-
out loss of generality, suppose the arm that is tried out at trial T is
a red one. The model adds to the value of the two red options not
currently sampled an exploration bonus proportional to the level
of unexpected uncertainty:

Q (i, T )← Q (i, T )+ (1− λred (T )) ,

where 1− λred(T ) is the level of unexpected uncertainty about
the red options at trial T, quantified in terms of the likelihood
that red options did change at trial T. To further increase novelty
seeking after a jump has been detected, the model also penal-
izes the value of the arm that is currently tried out, in propor-
tion to the level of unexpected uncertainty at the current trial:
Q(i,T )←Q(i,T )− (1− λred(T )).

According to the hypothesis stated in the Introduction, both
motives (i) and (ii) influence exploratory decisions. To reflect
this, the “hybrid model” combines ambiguity aversion and nov-
elty seeking by modifying the Q-value of the two red options not
currently sampled as follows:

Q (i, T )← Q (i, T )− euiT + (1− λred (T )) ,
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while the value of the arm that is currently tried out is modified
as follows: Q(i,T )←Q(i,T )− euiT− (1− λred(T )). This hybrid
model is the readout of the aforementioned dilemma in the con-
text of the current task: unexpected uncertainty modulates motive
(i) while estimation uncertainty modulates motive (ii).

Note that the foregoing models put equal weight on the Q-value
and uncertainty components. The motivation for this particular
modeling choice is parsimony; the relative weights can be changed
without changing the essence of the schemes. Specifically, to ensure
that our results are robust, for each of the four models above,
we tested several alternate models that have a different relative
weighting on the Q-value component vis-a-vis the uncertainty
component(s). These alternative models led to similar results.

2.3. EVALUATING MODEL FIT TO BEHAVIORAL DATA
We fitted the two new models introduced by the current study
(the novelty seeker and hybrid models) to the choice data of
Payzan-LeNestour and Bossaerts (2011), using maximum likeli-
hood estimation. Only one parameter (the inverse temperature
β) needed to be estimated. We allowed this estimated parameter
to vary across participants. We compared the log-likelihoods of
each model to the one of the ambiguity averse model (the best
fit in Payzan-LeNestour and Bossaerts, 2011) which we use as
benchmark here.

2.4. EVALUATING MODEL FITNESS IN SIMULATED DATA
We compared the average fitness of the ambiguity averse, ambi-
guity seeking, novelty seeker, and hybrid models, in a set of 500
simulations of the task, each comprised of 500 trials (the length
of our experimental sessions). Here the gage of fitness is the eco-
nomic performance, i.e., the money accumulated in the 500 trials
of the task, averaged across the 500 simulations. For each model,
we ran the set of 500 simulations for different values of β, which
allowed us to assess the fitness as a function of β.

3. RESULTS
3.1. BEHAVIORAL
The novelty seeker model fitted choices better than the bench-
mark (ambiguity averse model) in the vast majority (95%) of
the participants. A paired t-test based on the difference between
the negative log-likelihoods of the benchmark and novelty seeker
models leads to the conclusion that the novelty seeker model fitted
subject behavior better than the benchmark (p< 0.001; N = 62).
For 82% of the participants, the hybrid model fitted subject behav-
ior better than the novelty seeker model. The former significantly
outperformed the latter according to a paired t -test (p< 0.001).
Figure 1 reports the negative log-likelihood of the hybrid model,
related to that of the benchmark.

3.2. SIMULATIONS
Figure 2 shows that in our simulations, the ambiguity averse model
performed uniformly better than not only the ambiguity seeking
model but also the model that excludes any kind of modulation
of exploration by uncertainty (“base model”7). The novelty seeker

7While the superiority of the ambiguity-averse model over the ambiguity-seeker
model appears to be robust to the use of different weighting on the Q-value rel-
ative to the uncertainty component in the decision rule, the superiority of the

FIGURE 1 | Comparative fits of the ambiguity averse and hybrid
models. The comparison of the fits is based on the negative log-likelihood
(-LL) criterion. Each data point corresponds to one subject (500 samples on
average per subject). The hybrid model fits better when the data point is
below the 45˚ line.

model outperformed the ambiguity averse model, and the hybrid
model performed best overall. The standard error of the economic
performance is of the same order of magnitude across all models.

4. DISCUSSION
Both the behavioral and simulated data reported here support the
hypothesis stated in the Introduction. Specifically, the evidence
suggests that individuals seek to uncover novel reward opportuni-
ties [“curiosity motive” (i)] while they also tend to shy away from
the unknown [“cautiousness motive” (ii)], and that this behavior
is adaptive, at least in the context of the present task.

Note the ways the task used in the current study is atypical in
comparison to previous tasks that were used to study exploration
(Daw et al., 2006, FCB). In our task, the dynamic contingencies
induced unexpected uncertainty about the value of unexplored
options. Unexpected uncertainty and estimation uncertainty did
vary significantly throughout the task and participants could esti-
mate them on each trial. This allowed the identification of an unex-
pected uncertainty bonus together with an estimation uncertainty
“malus”in subject exploration. By contrast, in an environment that
is unexpected uncertainty free, i.e., when the reinforcement con-
tingencies are stationary (like in the task used in FCB), estimation
uncertainty modulates both motives (i) and (ii), and behavior is
the readout of the dominating motive [arguably (i) in FCB]. Per-
haps cautiousness was muted in FCB because participants knew
they would not lose much money by exploring. Additionally, as
suggested in Cavanagh et al. (2011), the motivation to learn should
be maximal when the agent knows he can potentially suppress
ignorance, which is in principle the case when things are stable. In
contrast, when things change all the time, motive (i) is probably
dampened since the “returns on learning” are low.

ambiguity-averse model over the base model is not. Specifically, in our simulations,
the ambiguity-averse model that puts a minimal weight on the Q-value (i.e., that
tends to focus on the uncertainty component exclusively) did not outperform the
base model.
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FIGURE 2 | Economic performances of models featuring different
kinds of uncertainty-driven exploration, as a function of the
inverse temperature. Each point reports the economic performance
averaged across 500 simulations of 500 trials each. Performance is
measured by the amount of money accumulated till the 500th trial
(“final gain”). X-axis: β parameter (inverse temperature in the softmax
rule). Y-axis: average final gain across 500 simulations. Star (*):

performance of the ambiguity seeker model. Circle (o): performance of
the ambiguity averse model. Dot (.): performance of the novelty seeker
model. Cross (×): performance of the hybrid model. The hybrid model
combines ambiguity aversion and novelty seeking as described in the
main text. Dashed line: performance of the base model in which there
is no uncertainty-driven exploration (for reference). Vertical bars
represent standard errors.

Strikingly, the dilemma we describe here has been overlooked
in prior work in decision neuroscience and machine learning, on
the grounds that exploration should be exclusively driven by the
directive to find out more (e.g., Gittins and Jones, 1974; Kakade
and Dayan, 2002). Yet, the motive to not bet on the unknown,
which is perceived as potentially dangerous, may be equally – if
not more – important for survival. Our simulated data point to
this possibility: the ambiguity averse model fared better than the
ambiguity seeker model in our task. Also, the finding that the ambi-
guity averse model (let alone the novelty seeker and hybrid models)
performed better than the primary model, which excludes any
kind of modulation of exploration by uncertainty, should caution
the generally accepted view in classical decision theory (Savage,
1954) that uncertainty-driven exploration is irrational. For stan-
dard valuation theory, any sensitivity to uncertainty is irrational in
that it violates one of the most fundamental principles of rational
decision making, namely the sure thing principle8. Our results con-
tradict this view. We find that in the context of natural sampling,
being sensitive to uncertainty appears to be beneficial. This may be

8According to the sure thing principle, if the agent would take a certain action if he
knew that an event E obtained, and also if he knew that the negation of E obtained,
then he should take that action even if he knows nothing about E.

the reason why humans display such sensitivity, even if this gen-
erates choice inconsistencies in other contexts (e.g., the Ellsberg
Paradox ; Ellsberg, 1961). Humans can afford to be “irrational”
as long as this shows up only in ecologically irrelevant contexts
(like the gambles underlying the Ellsberg Paradox?), and as long
as it is adaptive in ecologically relevant contexts (like our natural
sampling task).

That ambiguity aversion may play a positive role, in avoid-
ing danger, has been suggested (albeit implicitly) in Hsu et al.
(2005), where amygdala was found to encode ambiguity, pre-
sumably through “fear signals.” Also, the current evidence that
unexpected uncertainty induces novelty seeking in the action
selection rule, together with prior evidence that unexpected
uncertainty plays a key role in value updating (e.g., Behrens
et al., 2007 and Payzan-LeNestour and Bossaerts, 2011), sug-
gests that unexpected uncertainty plays a dual role, as a mod-
ulator of learning as well as of action selection. This implies
new challenges and opportunities for neurobiological studies.
One can envisage unexpected uncertainty to influence learn-
ing through the neuromodulator norepinephrine, while it biases
choice through changes in serotonin levels. The former would
be consistent with Hasselmo (1999), Yu and Dayan (2005),
Rutishauser et al. (2006); the latter would be related to Doya
(2008).
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Humans use prior knowledge to bias decisions made under uncertainty. In this fMRI study
we predicted that different brain dynamics play a role when prior knowledge is added to
decisions made under perceptual vs. categorical uncertainty. Subjects decided whether
shapes belonged to Category S – smoother – or Category B – bumpier – under both uncer-
tainty conditions, with or without prior knowledge cues.When present, the prior knowledge
cue, 80/20 or 50/50, indicated that 80 and 20% (or 50 and 50%) were the chances that
responding “S” and “B” (or vice versa) would be correct. During perceptual uncertainty,
shapes were degraded with noise. During categorical uncertainty, shapes were ambigu-
ous. Adding the 80/20 cue increased activation during perceptual uncertainty in bilateral
lateral occipital (LO) cortex and left middle frontal gyrus (MidFG), and decreased activity
in bilateral LO cortex during categorical uncertainty. Right MidFG and other frontoparietal
regions were active in all conditions. The results demonstrate that left MidFG shows acti-
vation changes, suggestive of an influence on visual cortex, that depend on the factor that
makes the decisions difficult. When sensory evidence is difficult to perceive, prior knowl-
edge increases visual cortical activity. When the sensory evidence is easy to perceive but
difficult to interpret, prior knowledge decreases visual cortical activity.

Keywords: prior probability, expectation, frontoparietal, dorsolateral prefrontal cortex

INTRODUCTION
Studies of perceptual decisions made under uncertainty use var-
ious methods to define and control uncertainty. One common
approach is to ask subjects to make decisions about targets
degraded with noise. We call this type of uncertainty perceptual
uncertainty because difficulty perceiving the sensory evidence in
the noise is the limiting factor on accuracy. Another approach is to
ask subjects to make decisions about targets that are members of
overlapping categories, such that some targets are ambiguous and
could belong to either category. We call this type of uncertainty
categorical uncertainty because the sensory evidence, though easy
to perceive, is difficult to interpret.

Historically, researchers testing sensory and systems neuro-
science hypotheses typically choose to use perceptual uncer-
tainty, while researchers testing neuroeconomic and cognitive
neuroscience hypotheses are more likely to use conditions anal-
ogous to categorical uncertainty. In both uncertainty conditions,
when prior knowledge indicates that one alternative is likelier
than another, subjects bias their decisions in favor of the indi-
cated alternative (Green and Swets, 1966). However, the neural
mechanism(s) underlying this behavioral effect are not well
understood.

In this study, we show that modulatory effects obtained in the
laboratory using perceptual uncertainty may not generalize to con-
ditions of categorical uncertainty, and vice versa. These results may
be valuable to researchers seeking to interpret data and design
translational studies bridging different subfields of neuropsychol-
ogy. For example, in ecological contexts, the ability to apply prior

knowledge during conditions of perceptual uncertainty may be
highly adaptive. If an organism knows that there are tigers in the
region, it makes sense for that organism to “see” a barely percep-
tible shape in the shadows as a likely tiger. In contrast, there are
other contexts – for example, financial – in which categorical, not
perceptual, uncertainty is the bottleneck making decisions diffi-
cult. When a person makes decisions about how to interpret a
number representing a price, the decision process generally does
not depend on the legibility of the digits. More commonly, the
digits are clearly perceived, but may be difficult to categorize as
too high or too low.

In previous fMRI studies (Hansen et al., 2011, 2012), we manip-
ulated prior knowledge during decisions about visual stimuli in
categorical uncertainty only. Instead of asking subjects to make
decisions about abstract items such as numbers, we asked them
to categorize shapes that differed along the single, quantitative
dimension of curvature. These studies showed that prior knowl-
edge altered fMRI activity levels in prefrontal and parietal cortex,
but did not reveal enhanced activity from prior knowledge in visual
cortex. The absence of an effect in visual cortex was surprising,
because it seemed to be at odds with published observations doc-
umenting that cues providing subjects with expectations about
visual stimuli enhanced activity in stimulus-selective visual cortex
(Eger et al., 2007; Summerfield and Koechlin, 2008; Esterman and
Yantis, 2010).

We wondered whether this lack of an effect in visual cortex
might be due to the fact that decisions in our studies were made
under categorical uncertainty only. Our reasoning here was that
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given sensory stimuli that were ambiguous but not degraded with
noise, substantial internal modulation of the sensory evidence
would amount to misperception. In contrast, during perceptual
uncertainty, when sensory stimuli are noisy, it could be adaptive
for prior knowledge to enhance the representation of the evidence
itself. Therefore, we hypothesized that prior knowledge would
increase activity in sensory processing regions in decisions made
under perceptual uncertainty but not categorical uncertainty.

To test this hypothesis, we asked subjects to categorize curved
shapes under perceptual uncertainty, with and without prior
knowledge, and compared the resulting behavioral and fMRI data
with the previously published categorical uncertainty data. Dif-
ferences in activation between the perceptual and the categorical
uncertainty conditions were identified in left middle frontal gyrus
(MidFG) and in bilateral lateral occipital (LO) cortex. In all three
regions, activation levels were greater during perceptual than cat-
egorical uncertainty. Breaking down the within-regions of interest
(ROI) data into prior knowledge and naïve subject groups revealed
that the activation differences observed in the pooled data were
driven by the prior knowledge group. In the perceptual uncer-
tainty condition, activations in left MidFG and bilateral LO were
higher for prior knowledge subjects than naïve subjects, while in
the categorical uncertainty condition, activations in left MidFG
and bilateral LO were lower for prior knowledge subjects than
naïve subjects. The sign of the activations was positive in all con-
ditions in the occipital regions. In left MidFG, the activation was
positive during perceptual uncertainty with prior knowledge and
negative in the other conditions. Right MidFG and other regions
previously implicated in executive control and decisions were pos-
itively activated in all conditions, but the activation levels did not
differ across uncertainty type. Thus, positive MidFG activation
was right-biased in three of the four experimental conditions, and
activation was seen in both right and left MidFG only during
perceptual uncertainty with prior knowledge.

These findings indicate that left MidFG shows activation
changes, suggestive of an influence on visual cortex, that depend on
the factor that makes the decisions difficult. Given prior knowledge
when the limiting factor is perceptibility, right prefrontal activity
is accompanied by positive activity in left prefrontal cortex and
enhanced positive activity in sensory processing regions. In con-
trast, when the sensory evidence is easy to perceive but difficult
to interpret, prior knowledge results in right-biased prefrontal
activity accompanied by decreased positive activity in sensory
processing regions.

MATERIALS AND METHODS
PARTICIPANTS
In this study, we report fMRI and behavioral data from 66 sub-
jects (34 male) of mean age 25 years (range 20–41). All subjects
provided informed consent before the experiment. All procedures
were approved by the National Institute of Mental Health Insti-
tutional Review Board. All subjects were right-handed and had
normal or corrected-to-normal vision. Of the subjects, 22 made
decisions under perceptual uncertainty with prior knowledge; 22
made decisions under categorical uncertainty with prior knowl-
edge; and 22 made decisions under both uncertainty conditions
with no prior knowledge. For the first subject group, we acquired

data from 26 subjects but excluded data from four because d ′ from
the scanning data was more than 2 SDs below the mean of the other
subjects’d ′ (two subjects) or a decision criterion shift was observed
in the non-predicted direction (two subjects). The last two sub-
ject groups were described in a previous publication in which we
used a different approach to analyze the datasets (Hansen et al.,
2011); the perceptual uncertainty data are presented here for the
first time.

STIMULI AND TASK
Subjects used two fingers of the right hand to press buttons to
report decisions about visual targets. In the categorical uncertainty
condition, targets were form-modulated. The form-modulated
targets were distorted circles with sinusoidal modulation rang-
ing linearly from 4 to 22% of the mean radius, with a step size
of 0.5% (Figure 1). No noise obscured the form-modulated tar-
gets. Distributions of Category S and B form-modulated targets
were Gaussian and overlapping (Healy and Kubovy,1981; Maddox,
2002). The overlapping distributions (Figure 1) made the interme-
diate form-modulated targets ambiguous, so that the targets alone
would not contain sufficient information for subjects to classify
them with perfect accuracy. In the perceptual uncertainty condi-
tion, targets were signal-to-noise-modulated (SNR-modulated).
The SNR-modulated targets were distorted circles (Wilkinson
et al., 1998) with sinusoidal modulation of either 4% (Category S
for smooth) or 22% (Category B for bumpy) of the mean radius,
obscured with noise (Figure 1). The noise pattern used in each
image was unique. We created the noise patterns by combining
an original target’s power spectrum with random phases and con-
verting this information back to image space via inverse Fourier
transform. Each target was overlaid with its own noise pattern,
using one of nine different weight ratios that ranged from 15%
target+ 85% noise to 40% target+ 60% noise. The weights were
derived from pilot studies done outside the scanner in order to
equate behavioral performance (as measured by d ′ and by the
magnitude of the criterion shift between the 80/20 and 50/50 prior
knowledge conditions) during perceptual uncertainty relative to
categorical uncertainty. In all, cases, targets were presented one at
a time with random sizes, orientations, and locations to prevent
subjects from relying on retinotopic location or spatial attention
in order to perform well.

Before entering the scanner, all subjects underwent behavioral
training that provided instant feedback after each trial. For the
subjects making decisions with prior knowledge, the explicit prior
knowledge cue “80/20” in some runs and “50/50” in other runs
preceded each SNR-modulated or form-modulated shape. The
indicated target category – that is, the category indicated by 80
in the 80/20 runs – was either S or B for each subject. The 80/20
training runs were comprised of 80% indicated and 20% con-
traindicated targets, and the 50/50 training runs were comprised
of 50% indicated and 50% contraindicated targets. Thus, during
training, the explicit prior knowledge cues reflected the implicit
prior probability distributions of the targets. The training dis-
tributions were created by manipulating the prior probability of
occurrence of the physical targets themselves, rather than chang-
ing the category boundary. The prior knowledge subjects were
informed explicitly that the target distributions were either 80%
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FIGURE 1 |Targets and trial structure. The SNR-modulated targets that
created perceptual uncertainty are shown on the left, and the
form-modulated targets that created categorical uncertainty are shown
on the right. (A) Example targets. The SNR-modulated targets were
either extremely smooth or extremely bumpy and were overlaid with
varying amounts of noise; each individual noise pattern was unique. The
form-modulated targets were of varying degrees of curvature and were

not overlaid with noise. (B) Target distributions used in all scanning runs
for all subjects. (C) Trial structure in scanning runs. The subjects’ task was
to decide whether each target belonged to Category S or B. Depending
on subject group and run, the cue was 80/20, 50/50, or OO/OO. The set
of images used to provide the 200-ms stimuli for the trials were identical
across the 80/20, 50/50, and OO/OO scanning runs; only the cue
changed.

indicated and 20% contraindicated or 50% of each, and their
understanding of this concept and the task was confirmed by their
answers to questions during pre-training instruction.

For the naïve subjects, a sham cue “OO/OO” preceded each
SNR-modulated or form-modulated shape. The subjects were told
that they could think of the letter O’s as open eyes reminding them
to keep looking at the screen. Except for the cue, the training runs
for the naïve subjects were identical in all respects, including the
target images, to the 50/50 training runs for the prior knowledge
subjects. Thus, the training runs for the naïve subjects were com-
prised of 50% S and 50% B targets, although the subjects were
not informed explicitly of this fact. In fact, except for the cue, all
aspects of the training runs for the naïve subjects, including the
target image sets, were identical to the training runs used for the
prior knowledge subjects at 50/50. The subjects’ understanding
of the task was confirmed by their answers to questions during
pre-training instruction.

During scanning, no subject received feedback. In one-third
of the scanning trials, a blank screen took the place of the tar-
get and subjects were instructed to make no response; including

these blank trials permitted us to obtain estimates of activity dur-
ing decision vs. blank trials. The only difference in the runs for
the prior knowledge subjects vs. the naïve subjects was that the
cues – as in the training runs – were 80/20 or 50/50 for the prior
knowledge subjects and OO/OO for the naïve subjects. Impor-
tantly, for all subjects, all scanning runs were comprised of 50% S
and 50% B targets, and the target images themselves were identical
in every respect for all subjects. This control ensured that differ-
ences between prior knowledge conditions could be attributed
only to the cue and not to stimulation differences.

The order of trial types (Category S target, Category B tar-
get, or blank) for the scanning runs was determined by assigning
each run a different ternary m-sequence. m-Sequences are effi-
cient in terms of signal per time, especially for relatively short scan
durations, and are exactly counterbalanced over time, minimizing
any uncontrolled adaptation or expectation effects (Sutter, 2001;
Buračas and Boynton, 2002). m-Sequences were generated using
code written by Buračas and Boynton (2002). Each run-length m-
sequence was length 34

− 1= 80 trials, consisting of 27 Category
S stimulus trials, 27 Category B stimulus trials, and 26 blank trials.
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Each trial lasted 2.5 s. A blank grayscale screen was shown for 10 s at
the beginning of each run to allow the magnetic field to reach equi-
librium and for 12.5 s at the end of each run to allow for the delay
in the hemodynamic response. The data presented here represent
six runs at 80/20 and six runs at 50/50 from each prior knowledge
subject, under either perceptual or categorical uncertainty, and six
runs under perceptual and six runs under categorical uncertainty
from each naïve subject.

IMAGING DATA ACQUISITION AND PREPROCESSING
All MRI data were collected on a GE 3-T scanner with a GE
whole-head eight-channel coil. For fMRI we used an EPI (echo-
planar imaging) sequence with TR (repetition time)= 2.5 s per
shot (=2.5 s per acquired brain volume), TE (echo time)= 30 ms,
field of view 22 cm× 22 cm, resolution 64× 64 voxels per slice (in-
plane voxel size 3.4 mm× 3.4 mm), and slice thickness 3.0 mm.
Each fMRI brain volume consisted of 38 axial slices. For anatom-
ical images we used an MP-RAGE (magnetization prepared
rapid acquisition gradient echo) sequence with field of view
24 cm× 24 cm, 128 locations per slab, and slice thickness 1.2 mm.
Unless otherwise noted, preprocessing and subsequent analysis of
the MRI data was performed with the AFNI software package (Cox,
1996; Cox and Hyde, 1997). The first four brain volumes of every
fMRI run were removed; brain volumes were shifted to account
for slice acquisition time and motion-corrected. Each subject’s T1-
weighted anatomical dataset was warped via 12-parameter affine
transform to the TT-N27 brain template.

ROI IDENTIFICATION
To identify ROIs as a test of our main hypothesis – that prior
knowledge would increase activity in sensory processing regions
in decisions made under perceptual uncertainty but not categori-
cal uncertainty – we used a general linear model (GLM) in which
the regressor of interest was a sequence of 0’s and 1’s convolved
with a model hemodynamic function. The 0’s and 1’s represented
blank and decision trials respectively. The outputs of each GLM
were voxelwise beta weights representing decision trial activity for
a single subject in one condition, where the six possible condi-
tions were perceptual uncertainty with prior knowledge at 80/20,
perceptual uncertainty with prior knowledge at 50/50, percep-
tual uncertainty without prior knowledge, categorical uncertainty
with prior knowledge at 80/20, categorical uncertainty with prior
knowledge at 50/50, and categorical uncertainty without prior
knowledge. Using a two-tailed t -test on data from the 80/20
and naïve conditions, pooled across all subjects, we calculated
the group voxelwise significance of the absolute value of the
difference between the beta weights from the perceptual uncer-
tainty vs. categorical uncertainty conditions. ROIs were located
by limiting surviving clusters in the group results to regions with
p-values < 0.05, corrected for multiple comparisons across voxels.
Cluster coordinates were determined by affine registration to the
TT-N27 brain template.

In a subsequent test we located regions with positive decision-
related fMRI activity in the conjunction of four conditions: 80/20
perceptual uncertainty, naïve perceptual uncertainty, 80/20 cat-
egorical uncertainty, and naïve categorical uncertainty. Using a
two-tailed t -test pooled across all subjects, we calculated the

group voxelwise significance of the mean activation level for each
condition. ROIs were located by limiting surviving clusters to
regions with p-values < 0.05, corrected for multiple comparisons
across voxels and experimental conditions. The conjunction here
was the strict conjunction of conditions. As in Nichols et al. (2005),
we used a test for a logical AND by requiring that all the compar-
isons in the conjunction were individually significant: to obtain the
corrected p < 0.05 across conditions, we required positive activa-
tions of p < 0.0125 in every one of the four conditions. Cluster
coordinates were determined by affine registration to the TT-N27
brain template.

We also located regions where activity, as defined by linear
covariation with the degree of uncertainty, differed across uncer-
tainty conditions. The object here was to test for the possibility that
although no regions exhibited greater average activity during cate-
gorical than perceptual uncertainty, some regions’activity covaried
with categorical but not perceptual uncertainty and vice versa. We
performed ROI searches using this approach on the naïve and
80/20 data independently. In each prior condition, we performed
a whole-brain search and a search constrained to perirhinal cor-
tex and anterior temporal lobe, which are known to be responsive
for learned visual categories. With the exception of the regressors
used in the GLM analyses of individual subject data, these analy-
ses were essentially equivalent to that defining the ROIs for our
main hypothesis (above). In the covariation analysis, the regressor
of interest was a sequence of numbers ranging between 0 and 1,
convolved with a model hemodynamic function. Before convolu-
tion, target trials were represented by a number between 0 and
1 equivalent to the distance from the target distribution’s nearest
extreme to its midpoint. Thus, midpoint targets received a value of
1 (representing complete uncertainty), endpoint targets received
a value of 0 (representing no uncertainty), and intermediate tar-
gets received values scaling proportionately. Blank trials received
values of 0.

RESULTS
BEHAVIOR
The behavioral data acquired during fMRI data acquisition
(Figure 2) indicated that training with the prior knowledge cues
induced a decision bias during the fMRI experiment. In this paper,
the term prior knowledge subjects refers to subjects trained in con-
ditions that both implicitly and explicitly indicated that one of
two target categories was likelier to be presented than the other. We
refer to prior knowledge subjects trained that Category S (or B) was
the likely category as Group S (or B) prior knowledge subjects. The
term naïve subjects refers to subjects trained in conditions that did
not implicitly or explicitly indicate either category as more likely
than the other. For details about the training, see Section “Mate-
rials and Methods” and Figure 1. During the fMRI experiment,
Group S prior knowledge subjects working under both percep-
tual and categorical uncertainty responded “S” (or “B”) for a given
shape more often than did the naïve subjects making decisions
about the same shapes (Figure 2). That is – unsurprisingly – prior
knowledge about the stimuli biased subjects’ decisions in favor of
the expected stimulus type. Under both uncertainty conditions,
given the 50/50 prior knowledge cue, the prior knowledge subjects
retained a persistent, though diminished, bias of the same sign
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FIGURE 2 | Decision behavior during fMRI scanning. The plots show
that priors training biased decision reports, relative to naïve subjects, in
both perceptual uncertainty (top) and categorical uncertainty (bottom).
Black: naïve subjects. Red: prior knowledge subjects whose pre-scan
training indicated that the likelier category to appear was Category B
(bumpier); behavior given the 80/20 cue. Relative to the other subjects,
the decision reports of these subjects are biased in favor of a “B”
response. Dark blue: behavior of the same subjects given the 50/50 cue.
Orange: prior knowledge subjects whose pre-scan training indicated that

the likelier category to appear was Category S (smoother); behavior
given the 80/20 cue. Relative to the other subjects, the decision reports
of these subjects are biased in favor of an “S” response. Light blue:
behavior of the same subjects given the 50/50 cue. Error bars represent
±1 SE across subjects. In the categorical uncertainty plots (bottom), the
error bars tend to be very small at intermediate and larger at extreme
stimulus levels. This pattern reflects the fact that the form-modulated
target distribution included many intermediate, i.e., ambiguous, targets,
and relatively few extreme, i.e., unambiguous, targets.

as their bias in the 80/20 condition; for an in-depth examination
of this phenomenon in the categorical uncertainty condition, see
Hansen et al. (2011).

To obtain a first indication of the mechanisms underlying the
decision bias induced by prior knowledge, we examined response
times (RTs) in all subjects (Figure 3). In the prior knowledge
subjects, RTs were shorter at 80/20 than 50/50 in both uncertainty
conditions, demonstrating that prior knowledge about the stim-
uli conferred a speed advantage regardless of uncertainty type. In
the prior knowledge subjects, RTs were also shorter for subjects
performing under perceptual than categorical uncertainty. This
observation suggests that the mechanism by which prior knowl-
edge is integrated into decisions differs when the decisions are
made under perceptual vs. categorical uncertainty. Importantly,
RTs in the naïve subjects did not differ during perceptual vs. cate-
gorical uncertainty, implying that our effort to match difficulty

across uncertainty types by adjusting the noise weights in the
perceptual uncertainty condition was successful.

IMAGING DATA
The current study was designed to reveal differences in how
the brain integrates prior knowledge into decisions during per-
ceptual vs. categorical uncertainty. To investigate this topic, we
first identified ROIs in which activation levels were different in
decision trials made under perceptual vs. categorical uncertainty,
pooled across all subjects (Materials and Methods). The ROI
locations – left MidFG, left LO and posterior fusiform (LOpF)
cortex, and right LO are shown in Figure 4, and their coor-
dinates and volumes are listed in Table 1. These results show
that left MidFG, left LO/pF, and right LO responded differen-
tially to the perceptual uncertainty and the categorical uncertainty
conditions.
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The analysis that located the ROIs pooled the data across all sub-
jects. To indicate whether the differences were driven by the prior
knowledge subjects, the naïve subjects, or both groups, we plotted
activations for each condition separately in a within-ROI bar chart
(Figure 5). The chart shows that the differences were driven by the
prior knowledge data. In all three ROIs, the perceptual uncer-
tainty condition evoked the same activity level as the categorical
uncertainty condition in the naïve subjects. At 80/20, the prior

FIGURE 3 | Response times. The 80/20 cue gave a speed advantage to the
prior knowledge subjects relative to the 50/50 cue in the same subjects.
Across the prior knowledge subjects, response times were longer for the
subjects performing under categorical than perceptual uncertainty. This
difference was not seen in the naïve subjects. Stars indicate p < 0.0001,
calculated via a two-tailed t -test across conditions.

knowledge subjects showed greater activation than the naïve sub-
jects in visual association (LO/pF) and prefrontal (MidFG) cor-
tices during perceptual uncertainty. In contrast, during categorical
uncertainty, at 80/20 the prior knowledge subjects showed less acti-
vation than the naïve subjects in bilateral LO (in the MidFG ROI,
a trend in the same direction did not reach significance). Thus, the
results supported our main hypothesis: prior knowledge increased
activity in sensory processing regions in decisions made under per-
ceptual uncertainty but not categorical uncertainty. The results
also indicated a prefrontal mechanism for this effect, namely, pos-
itive activity levels in left MidFG, which occurred only during
decisions made in the combination of perceptual uncertainty and
prior knowledge.

The procedure for locating ROIs was based on a contrast: the
absolute value of the difference between activity levels during

Table 1 | Brain regions selective for uncertainty condition.

Location x y z Volume (mm3)

Middle frontal

gyrus (MidFG)

−44.6 25.4 18.6 3042

Lateral occipital

cortex and

posterior fusiform

cortex (LO+pF)

−29.4 −74.7 −1.8 9822

Lateral occipital

cortex (LO)

34.4 −77.2 6.6 4406

This table provides the coordinates and volumes of voxel clusters responding with

activation differences (p < 0.05, corrected) between decision trials under percep-

tual vs. categorical uncertainty, pooled across subjects. Negative (positive) values

of x indicate the left (right) hemisphere.

FIGURE 4 | Brain regions selective for uncertainty condition. We pooled
the 80/20 and naive fMRI datasets across all subjects and searched for
regions with a significant (p < 0.05, corrected) difference, of either sign,

between the perceptual and categorical uncertainty conditions. Surviving
clusters are shown here, overlaid on an average of the anatomical images
from all subjects.
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FIGURE 5 | Within-ROI results. The bar charts show mean brain activity
across all decision trials, relative to blanks, in each condition. Stars indicate
differences of p < 0.05 as calculated with a two-tailed t -test. In the naïve
subjects, decisions under perceptual uncertainty evoked the same level of
within-ROI activity as decisions under categorical uncertainty. Adding the
prior knowledge cue to decisions under perceptual uncertainty visual
targets increased activation in visual association and prefrontal cortices
relative to no prior knowledge cue. Adding the prior knowledge cue to
decisions under categorical uncertainty decreased activation in visual
association cortex relative to no prior knowledge cue. In left MidFG, only
decisions made under perceptual uncertainty with the 80/20 prior
knowledge cue resulted in positive brain activations; the mean activation
with the 50/50 cue was not significantly above zero.

perceptual vs. categorical uncertainty. We also wished to docu-
ment the regions in which decisions in each of four conditions –
perceptual uncertainty with 80/20 prior knowledge, perceptual
uncertainty without prior knowledge, categorical uncertainty with
80/20 prior knowledge, and categorical uncertainty without prior
knowledge – elicited positive levels of activation. Table 2 lists the
coordinates and volumes of brain regions active in the strict con-
junction (defined by logical AND) of the four conditions (p < 0.05,
corrected for multiple comparisons between voxels and experi-
mental conditions): right MidFG; left putamen (Put); two clusters
in the left anterior insula (AntIns1 and AntIns2); a left hemi-
sphere thalamic cluster (Thal) whose coordinates included those
of the medial dorsal, ventral posterior medial, ventral posterior lat-
eral, and ventral lateral nuclei; a left hemisphere cluster including
postcentral gyrus, inferior parietal lobule (IPL), and intrapari-
etal sulcus (PcG/IPL/IPS); right IPL; and large bilateral clusters
covering much of ventrotemporal cortex plus some cerebellum
(VT/cereb).

One particularly interesting observation emerging from this
table is of a right hemisphere MidFG (a.k.a. dorsolateral pre-
frontal, DLPFC) cluster, active in all four conditions. The right
MidFG cluster also overlaps with a region in which activity modu-
lations across prior knowledge conditions were previously shown
to correlate with the main effect of prior knowledge on decision
behavior, i.e., a shift in the decision criterion (Hansen et al., 2012).
The right MidFG cluster observed in the current study is also

Table 2 | Brain regions active in all conditions.

Location x y z Volume

(mm3)

Middle frontal gyrus (MidFG) 44.5 33.2 22.5 533

Anterior insula, focus 1 −28.6 14.9 10.7 533

Putamen (Put) −21.7 1.2 5.9 2769

Medial frontal gyrus (MedFG) −2.8 0.2 49.2 4651

Anterior insula, focus 2 −38.2 −5.4 14.9 604

Thalamus (Thal): medial dorsal,

ventral posterior medial, ventral

posterior lateral, and ventral

lateral nuclei

−12.6 −17.3 8.1 2521

Postcentral gyrus, inferior

parietal lobule, and intraparietal

sulcus (PcG/IPL/IPS)

−40.5 −29.8 48.7 15372

Inferior parietal lobule (IPL) 45.6 −36.4 38.5 391

Ventrotemporal cortex and

cerebellum (VT/cereb)

27.7 −58.0 −16.1 20874

Ventrotemporal cortex and

cerebellum (VT/cereb)

−33.7 −66.5 −14.1 9443

This table provides the coordinates and volumes of voxel clusters responding

with positive activations during decision trials in all four conditions (p < 0.05, cor-

rected), where the conditions were perceptual uncertainty with prior knowledge,

perceptual uncertainty without prior knowledge, categorical uncertainty with

prior knowledge, and categorical uncertainty without prior knowledge. Negative

(positive) values of x indicate the left (right) hemisphere.

located at coordinates that are essentially the mirror image of
the left hemisphere MidFG coordinates. Recall that the left hemi-
sphere MidFG ROI was activated by decisions during both prior
knowledge and perceptual uncertainty, but deactivated in all other
conditions. Thus, across all conditions the overall pattern of activ-
ity in DLPFC was generally right-biased, becoming bilateral only
when prior knowledge was combined with perceptual uncertainty.

We also located regions where activity, as defined by linear
covariation with the degree of uncertainty, differed across uncer-
tainty conditions. The object here was to test for the possibility that
although no regions exhibited greater average activity during cate-
gorical than perceptual uncertainty, some regions’activity covaried
with categorical but not perceptual uncertainty and vice versa. We
performed ROI searches using this approach on the naïve and
80/20 data independently. In each prior condition, we performed
a whole-brain search and a search constrained to perirhinal cortex
and anterior temporal lobe, which are known to be responsive for
learned visual categories.

Whole-brain searches in naïve subjects revealed ROIs in left
and right LO (Table 3). These overlapped with the LO ROIs iden-
tified in the main test. Activity levels in both ROIs covaried with
the degree of uncertainty more during perceptual than categorical
uncertainty. In prior knowledge subjects at 80/20, smaller over-
lapping ROIs showed the same difference sign (perceptual over
categorical). An additional ROI was identified in lingual gyrus in
the 80/20 data only, and in this ROI activity levels covaried more
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Table 3 | Brain regions selective for uncertainty condition when

activity was defined as covariation with degree of uncertainty.

Location x y z Volume

(mm3)

Uncertainty

preference

NAl̈VE

Lateral occipital cortex (LO)
−26.6 −73.4 −4.6 9042 Perceptual

30.1 −69.3 2.8 11170 Perceptual

80/20

Lateral occipital cortex (LO)
−27.1 −78.7 5.3 4680 Perceptual

34.4 −76.3 9.2 2837 Perceptual

Lingual gyrus −1.8 −74.5 1.7 3652 Categorical

This table provides the coordinates and volumes of voxel clusters responding with

covariation differences (p < 0.05, corrected) between perceptual vs. categorical

uncertainty. Negative (positive) values of x indicate the left (right) hemisphere.

Table 4 | Brain regions selective for uncertainty condition when

activity was defined as covariation with degree of uncertainty and the

search space was constrained to anterior temporal lobe and perirhinal

cortex.

Location x y z Volume

(mm3)

Uncertainty

preference

NAl̈VE

Parahippocampal

gyrus/BA 36

22.9 −29.3 −15.5 106 Categorical

80/20

(No ROIs located at 80/20)

This table provides the coordinates and volumes of voxel clusters responding with

covariation differences (p < 0.05, corrected) between perceptual vs. categorical

uncertainty. Negative (positive) values of x indicate the left (right) hemisphere.

during categorical than perceptual uncertainty. However, some
care should be exercised in interpreting this result, since the loca-
tion of the ROI appears to be consistent with a part of early visual
cortex (V1 or V2) representing far-peripheral visual space that
would not have been stimulated by our targets. While we find it dif-
ficult to provide a simple explanation, we note that similar regions
often appear in lists of activated regions in cognitive neuroscience
papers (though the correspondence to far-peripheral V1/V2 is
rarely mentioned). Possibly, some spatial attentional effect may
be involved.

A similar search, constrained to perirhinal cortex and anterior
temporal lobe, identified one ROI (Table 4) in which activity lev-
els covaried more during categorical than perceptual uncertainty
in naïve subjects. No ROIs in this anatomical search space were
identified with greater covariation for perceptual than categori-
cal uncertainty in naïve subjects, and no ROIs in this anatomical
search space were identified at all in the 80/20 data.

One potential concern with the above observations is that the
contrast used to define the key ROIs was based on a subject pool
of which two-thirds were prior knowledge subjects. The potential
pitfall here is a scenario in which the naïve subjects might have
had ROIs in other locations, in which existing differences between

the two uncertainty conditions failed to reach significance in the
pooled subject dataset. To check against this possibility, we per-
formed a separate analysis in an attempt to locate ROIs for the
perceptual vs. categorical uncertainty conditions in the 22 naïve
subjects only. No clusters were found that survived our statistical
threshold.

DISCUSSION
In this study, we asked subjects undergoing fMRI scanning to
make decisions about visual targets under conditions of perceptual
and categorical uncertainty, with and without prior knowledge
of the response that was likely to be correct. Subjects trained
to use a prior knowledge cue showed larger positive activations
in bilateral LO and left pF cortex during decisions made under
perceptual uncertainty than did naïve subjects. Under categori-
cal uncertainty, the prior knowledge subjects experienced smaller
decision-related positive activations than did naïve subjects. In
the left MidFG, the condition associated with the highest acti-
vation levels in the occipital ROIs – namely, prior knowledge
during perceptual uncertainty – was the only one eliciting positive
decision-related activity. During perceptual uncertainty when no
prior knowledge was available and during categorical uncertainty,
regardless of prior knowledge, decisions negatively activated left
MidFG.

These observations enhance our understanding of the integra-
tion of prior knowledge into decision-making in several respects.
First, the results demonstrate that top-down prior knowledge
effects in the brain during perceptual decisions depend on the
reason the decisions are difficult. Namely, the sign of the priors-
related modulation in visual cortex was positive when the sensory
evidence was difficult to perceive and negative when the evidence
was easy to perceive but difficult to interpret. The sign difference
observed across these two conditions implies that the effects of
prior knowledge on perceptual decisions are not uniform across
decision types, but rather depend on the attributes of the stimuli
about which the decisions are made.

Besides simply establishing a dependence on stimulus attrib-
utes, the observations point to underlying neural mechanisms in
each uncertainty condition. During perceptual uncertainty, deci-
sions in the context of prior knowledge positively activated left
MidFG (Figure 4; Table 1). The prefrontal decision-related activa-
tion in the prior knowledge and perceptual uncertainty condition
was actually bilateral, since this condition as well as the others
positively activated right MidFG (Table 2). Our observations may
be related to the observation by Rahnev et al. (2011) of larger
activity in the lateral prefrontal cortex, not far away from the
current site of activity, when participants had prior knowledge
about a perceptual decision. The bilateral MidFG activation was
also associated with increased positive activation in bilateral LO
and left pF cortex, visual regions selective for shapes and objects
(Malach et al., 1995; Grill-Spector et al., 1998; Kourtzi and Kan-
wisher, 2000). This increase in activation confirmed the prediction
that motivated the current study: when stimuli were noisy, such
that enhancing the representation of the sensory evidence could be
adaptive,prior knowledge increased activation in the relevant parts
of visual cortex. The anatomical locations of the occipital ROIs are
consistent with previously documented loci for shape selectivity
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(Malach et al., 1995; Grill-Spector et al., 1998; Kourtzi and Kan-
wisher, 2000), so these were precisely the regions in which signal
modulation had the most potential to affect performance in our
shape decision task. Thus, the perceptual uncertainty observations
are analogous to a previous demonstration that prior knowledge
favoring faces (or houses) enhanced fMRI activity in FFA (or PPA;
Esterman and Yantis, 2010). In parallel, during categorical uncer-
tainty, subjects with prior knowledge experienced significantly
lower activation levels in the visual ROIs than did naïve subjects.
The prediction motivating this study was that prior knowledge
would increase visual cortical activity during perceptual but not
categorical uncertainty; we did not explicitly predict that prior
knowledge would actually decrease visual cortical activity during
categorical uncertainty. However, the decrease is intuitive; it sug-
gests that the prior knowledge subjects were giving less weight to
the sensory evidence of curvature than were the naïve subjects.
Such a strategy would be reasonable, as the RT data imply that
adding prior knowledge to the categorical task imposed an addi-
tional cognitive load relative to the naïve condition. Giving less
weight to visual appearance, relative to the naïve condition, may
have partly compensated for an increased cognitive load.

Our observations may be relevant to those from previous stud-
ies that identified dissociations between abstract rule- or category-
selective activity in prefrontal cortex and stimulus-selective activ-
ity in more posterior brain regions. For example, Jiang et al. (2007)
asked subjects undergoing fMRI to make decisions about morphed
cars and showed that changing perceptual vs. categorical qualities
of the stimuli modulated activity in LO and right prefrontal cor-
tex respectively. Similarly, Montojo and Courtney (2008) used a
mental arithmetic task with fMRI and showed that rule updating
preferentially activates prefrontal cortex while number updating
preferentially activates parietal cortex.

During perceptual uncertainty without prior knowledge, and
during categorical uncertainty regardless of prior knowledge, deci-
sions negatively activated left MidFG (Figure 4; Table 1). The term
negative activation, also known as deactivation, means that the
fMRI signal level was lower during trials when a target was present
and a decision was made than during blank trials when no target
was present and no decision was made. Negative activations are
seen in brain regions whose function is not relevant to the exper-
imental condition being tested. For example, when task-relevant
stimuli are visual, stimulus presentation often results in negative
activation of auditory cortex (Haxby et al., 1994; Amedi et al.,
2005). Concurrent negative and positive activations can also occur
in left hemisphere and right hemisphere counterparts of the same
cortical area. For example, stimulation of the right median nerve,
which elicits positive activation in left primary somatosensory cor-
tex, also elicits negative activation in right primary somatosensory
cortex (Hlushchuk and Hari, 2006; Kastrup et al., 2008). One inter-
pretation of such observations is that negative activations reflect
suppression of functional activity that is not required for the task
at hand. According to this line of reasoning, our results imply
that left MidFG plays a role in integrating prior knowledge dur-
ing perceptual uncertainty, but is not required during decisions
in general. This conclusion is consistent with our previous results
that implicated only right MidFG involvement in prior knowledge
during categorical uncertainty (Hansen et al., 2011, 2012).

Our results also show that the modulation of sensory activity
cannot be attributed to a general arousal effect, but rather is tar-
geted to the part of visual cortex where a modulation could have
the most impact on task performance. This can be seen by exam-
ining the location of the occipital ROIs: bilateral LO and left pF,
regions already known to be selective for shapes and objects like
our shape targets (Malach et al., 1995; Grill-Spector et al., 1998;
Kourtzi and Kanwisher, 2000). For comparison, we did not see any
effects in earlier visual areas, such as V1,V2, or V3, which are selec-
tive for the spatial location but not for the shape of visual stimuli.
Since our stimuli were jittered in size, orientation, and spatial posi-
tion, modulatory effects in the earlier visual areas would not be
predicted to affect performance. Changes in arousal or attention
have been shown to modulate signals in these earlier visual areas
(Tootell et al., 1998; Watanabe et al., 1998; Somers et al., 1999;
Huk and Heeger, 2000). Since no such modulation was observed
in the earlier areas, we conclude that the modulation that we did
observe in LO and pF was not due to overall arousal or attentional
state.

During both uncertainty conditions, the decision response
curves (Figure 2) and the within-ROI fMRI activity levels
(Figure 5) seen in prior knowledge subjects at 50/50 tended to
fall between activity levels seen in the same subjects at 80/20 and
activity levels in the naïve subjects. A previous publication (Hansen
et al., 2011) focuses on this interesting persistent bias pattern in
the categorical uncertainty behavioral and fMRI data, showing
for the first time that practice making decisions under categorical
uncertainty in the context of non-equal prior probabilities biases
decisions made later when prior probabilities are equal. In simple
terms, once you learn a bias it is hard to let it go. The observation
of the same tendencies in the perceptual uncertainty data indicates
that bias persistency is not unique to categorical uncertainty, but
may generalize across decision-making paradigms.

Our manipulation of categorical uncertainty involved ambigu-
ous shapes. It might be asked whether we performed a true test
of categorical uncertainty, which would require keeping the shape
information constant, but varying the validity of the association
between the shape and the correct response. In fact, this descrip-
tion fits our manipulation well. The simplest way to see this is to
consider a single categorical shape with curvature in the intermedi-
ate (ambiguous) range – for example, the shape with average (13%)
curvature. A subject’s experience with this shape is equivalent to
the true test of categorical uncertainty. At 50/50 this particular
shape is associated with complete uncertainty, while at 80/20 there
is less uncertainty for this shape. A similar relationship between
the prior condition and the uncertainty level holds for every shape
in the intermediate range. Shapes on the extreme ends of the dis-
tribution are not ambiguous and therefore are associated with no
uncertainty, but this attribute is common to both the categorical
and the perceptual uncertainty conditions.

The increased visual cortical activity seen with prior knowledge
during perceptual (but not categorical) uncertainty is reminiscent
of the increased visual cortical activity seen with top-down, goal-
directed, endogenous attention. Conceivably, similar to the effects
of directing attention to noisy stimuli (Lu and Dosher, 1998), an
adaptive modulation could enhance stimulus attributes indicated
by the prior knowledge and/or decrease contraindicated stimulus
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attributes. Future experiments could explore this issue by system-
atically investigating the effects of attention on classifying targets
during perceptual vs. categorical uncertainty.
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Gambling is a widespread recreational activity and requires pitting the values of poten-
tial wins and losses against their probability of occurrence. Neuropsychological research
showed that betting behavior on laboratory gambling tasks is highly sensitive to focal
lesions to the ventromedial prefrontal cortex (vmPFC) and insula. In the current study,
we assessed the neural basis of betting choices in healthy participants, using functional
magnetic resonance imaging of the Roulette Betting Task. In half of the trials, participants
actively chose their bets; in the other half, the computer dictated the bet size. Our results
highlight the impact of volitional choice upon gambling-related brain activity: Neural activ-
ity in a distributed network – including key structures of the reward circuitry (midbrain,
striatum) – was higher during active compared to computer-dictated bet selection. In line
with neuropsychological data, the anterior insula and vmPFC were more activated during
self-directed bet selection, and responses in these areas were differentially modulated by
the odds of winning in the two choice conditions. In addition, responses in the vmPFC
and ventral striatum were modulated by the bet size. Convergent with electrophysiological
research in macaques, our results further implicate the inferior parietal cortex (IPC) in the
processing of the likelihood of potential outcomes: Neural responses in the IPC bilaterally
reflected the probability of winning during bet selection. Moreover, the IPC was particu-
larly sensitive to the odds of winning in the active-choice condition, when the processing of
this information was required to guide bet selection. Our results indicate an important role
of the IPC in human decision-making under risk and help to integrate neuropsychological
data of risk-taking following vmPFC and insula damage with models of choice derived from
human neuroimaging and monkey electrophysiology.

Keywords: betting, choice, fMRI, inferior parietal cortex, ventromedial prefrontal cortex, reward

INTRODUCTION
Gambling is a common recreational activity in which a bet, typi-
cally a sum of money, is placed on an uncertain prospect. Gambling
can be seen as a form of decision-making under risk and requires
pitting the subjective values of potential wins and losses against
their probability of occurrence. Abnormal betting on laboratory
gambling tasks has been observed in a number of psychiatric dis-
orders that are characterized by impairments in everyday decision-
making, such as addictions (Lawrence et al., 2009), bipolar disor-
der (Murphy et al., 2001; Roiser et al., 2009), and schizophrenia
(Hutton et al., 2002). Neuropsychological research using the Cam-
bridge Gamble Task (CGT) has further shown that laboratory
betting behavior is highly sensitive to focal brain injury. Patients
with lesions to the ventromedial prefrontal cortex (vmPFC) show
increased overall betting (Mavaddat et al., 2000; Manes et al., 2002;
Clark et al., 2003, 2008), while a group of patients with insula
damage were impaired in adjusting their bets to the chances of
winning (Clark et al., 2008). These results indicate that the anterior
insula and the vmPFC are critically involved in betting decisions.
In healthy participants, previous neuroimaging studies revealed
that the vmPFC and anterior insula, among other structures, are

activated during valuation of risky response options (e.g., Chib
et al., 2009) and during anticipation of uncertain outcomes (for
reviews, see Ernst and Paulus, 2005; Krain et al., 2006; Knutson
and Greer, 2008; Liu et al., 2011). While the results of these studies
on valuation are compatible with the aforementioned neuropsy-
chological work, the neural responses to bet selection as the most
direct analog of gambling-related choice in healthy humans have
rarely been studied. In the current study, we administered the
Roulette Betting Task (Studer and Clark, 2011), in which partici-
pants are asked to place bets on risky gambles with varying chances
of winning, to healthy volunteers and assessed the neural responses
during bet selection by use of functional magnetic resonance
imaging (fMRI).

Our first aim was to investigate differences in neural responses
during active and passive selection of bets. Research on real-life
gambling has highlighted a key influence of active choice upon
risk-taking behavior. Even in games of pure chance, gamblers pre-
fer situations that allow direct choice or manual control, and place
higher bets under such conditions, a phenomenon termed the
“illusion of control”(Langer, 1975; Ladouceur and Mayrand, 1987;
Davis et al., 2000). We have recently shown that the requirement for
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active choice boosts selection-related psychophysiological arousal
during laboratory gambling (Studer and Clark, 2011). Further-
more, prior fMRI studies revealed that neural responses to the
presentation of wins and losses in the striatum are enhanced
under conditions of instrumental choice (Coricelli et al., 2005;
Rao et al., 2008; Camille et al., 2011). In contrast, the influence
of the requirement for active choice upon neural activity at the
time of selection remains largely unstudied. In the current study,
we compared neural responses during active (i.e., volitional, self-
directed) versus computer-dictated selection of the bet amount.
We hypothesized that neural activity during the selection phase in
the brain reward circuitry, specifically in the striatum, would be
higher in the active-choice condition.

Our second goal was to assess how the chances of winning are
represented in the brain during the selection of bets. We reasoned
that areas guiding risk-sensitive choice would be more responsive
to the chances of winning during active compared to passive bet
selection. Previous fMRI research assessing neural activity during
outcome anticipation consistently found that neural responses in
the anterior insula and vmPFC are modulated by the likelihood
of potential outcomes (Critchley et al., 2001; Knutson et al., 2005;
Preuschoff et al., 2006, 2008; Yacubian et al., 2006; Tobler et al.,
2007; Rolls and Grabenhorst, 2008). The neural representation of
the chances of winning during the selection phase, i.e., during the
decision process per se, is less clear. A small number of previous
fMRI studies indicate that, in addition to the anterior insula and
vmPFC, the inferior parietal cortex (IPC) reflects the probability
of potential outcomes during the choice window (Huettel et al.,
2005;Van Leijenhorst et al., 2006; Smith et al., 2009). In close paral-
lel, electrophysiological research in non-human primates reported
that firing rates of neurons in the posterior parietal cortex co-vary
with the reward likelihood during response selection (Shadlen
et al., 1996; Platt and Glimcher, 1999; Shadlen and Newsome,
2001; McCoy and Platt, 2005; Kable and Glimcher, 2009). Thus,
we hypothesized that neural activity in the IPC, anterior insula,
and vmPFC would reflect the likelihood of winning during bet
selection, particularly in the active-choice condition.

Our design also allowed the investigation of brain responses
modulated by bet size. Previous fMRI studies found that the stria-
tum and medial OFC are sensitive to the magnitude (and expected
value) of potential rewards during outcome anticipation (Knut-
son et al., 2001, 2005; Yacubian et al., 2006; Tobler et al., 2007;
Tom et al., 2007). Based on these results, we hypothesized that the
striatum and the vmPFC would be sensitive to the bet size during
the selection phase.

MATERIALS AND METHODS
PARTICIPANTS
Right-handed male healthy volunteers (n = 41) took part in this
study (mean age = 24 years, SD = 4) and attended a single MRI
session following a screening appointment. Volunteers were pre-
screened to exclude MRI contraindications, regular use of drugs,
regular gambling, and prior history of neurological or psychiatric
illness. The study was approved by the national research ethics
committee and was conducted in accordance with the Declara-
tion of Helsinki. All participants gave written informed consent,
and were reimbursed £40 for participation plus a variable bonus

depending on their final score in the task, which participants were
told would range between £0 and £10 (in reality, all participants
received bonuses between £5 and £8). In the MRI session, partic-
ipants received the task instructions and 10 practice trials before
entering the scanner. Light head restraints were used to limit
participant’s head movement during MRI data acquisition. Two
participants were excluded from analysis; one due to technical
problems with the MRI scanner, the other due to problems with
the normalization of MRI data.

TASK
Participants were administered the Roulette Betting Task (Studer
and Clark, 2011), a computerized task that assesses risk-sensitive
decision-making. The task was programmed in Visual Basic 2008
(Microsoft Corp., Redmond, WA, USA). Participants viewed the
computer monitor through a mirror fitted on top of the head coil
and used a MRI-compatible button box to make their choices.
Participants completed three runs of the task; each run consisted
of 25 trials and lasted about 10 min. Each trial consisted of three
phases: selection, anticipation, and feedback (see Figure 1). At
the beginning of each trial, a fixation cross was displayed for a
variable inter-trial interval, drawn from an exponential distrib-
ution ranging from 4 to 10 s. Subsequently, a wheel with 10 red
and blue segments was presented, along with three bets. Partici-
pants were instructed that if the wheel stopped on a blue segment,
they would win, and if the wheel stopped on a red segment, they
would lose. The ratio of blue (winning) and red (losing) segments
varied across trials, reflecting the chances of winning (60, 70, or
80%). The presentation of the wheel initiated the selection phase:
participants were asked to choose one of the three presented bet
boxes by pressing a corresponding key on the button box. Two trial
types were contrasted: “active-choice” trials, in which the partici-
pants were required to select the size of bet (10, 50, or 90 points),
and “no-choice” trials, in which all three bets boxes contained
identical amounts. Once a response had been made, the corre-
sponding bet box stayed highlighted until the end of the selection
period (fixed duration = 3.5 s). The wheel then spun (anticipation
period), with a variable duration drawn from an exponential dis-
tribution ranging from 4 to 8 s. The wheel stopped on one of the
10 segments, initiating the feedback period. If the wheel stopped
on a blue segment, the chosen amount of points was won, and
the outcome message “YOU WON [XX] POINTS” was presented.
If the wheel stopped on red, the selected amount of points was
lost, and the message “YOU LOST [XX] POINTS” appeared. The
accumulated point score was presented to participants at the end
of each run.

DATA ACQUISITION AND PREPROCESSING
Gradient echo T2∗-weighted echo-planar images (EPIs) were
acquired on a Siemens Tim Trio 3 Tesla magnet using a 32 slice
axial oblique sequence, with a repetition time of 2 s (TE 30 ms,
flip angle 78˚, voxel size 3.0 mm × 3.0 mm × 3.0 mm, matrix size
64 × 64, field of view 192 mm × 192 mm, bandwidth 2442 Hz). In
order to reduce signal dropout in the orbitofrontal cortex, the
plane of acquisition was individually tailored for each partici-
pant by aligning it with the base of brain (approximately 0˚ to
−10˚ to the anterior commissure – posterior commissure line).
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FIGURE 1 | Roulette BettingTask. Each trial consisted of three phases: (1)
Selection, in which the participant chose one of three bet boxes, (2)
Anticipation, in which the wheel was spun, (3) Feedback, in which the
decision outcome was presented. “Active-choice trials” and “no-choice trials”

were identical, except that in active-choice trials participants were presented
with three different bet options, while in no-choice trials all three bet boxes
contained identical amounts. The green box was added to this graph for
illustration purposes only.

At the start of each of the three sessions, six dummy volumes
were discarded to allow for equilibrium effects. Each run lasted a
maximum of 360 repetitions (12 min), but was terminated early
on block completion. In addition, a high-resolution T1-weighted
structural image was collected for each participant.

Processing and analysis of fMRI data was performed using
SPM5 (Statistical Parametric Mapping, Wellcome Department of
Cognitive Neurology, London, UK). Data preprocessing consisted
of within-subject spatial realignment, spatial normalization, and
spatial smoothing using an isometric Gaussian kernel with a full
width at half-maximum of 10 mm. Volumes were normalized to
the International Consortium for Brain Mapping (ICBM) tem-
plates that approximate to Talairach and Tournoux (1988) space,
using a matrix obtained from normalizing each subject’s seg-
mented structural scan onto the ICBM gray and white matter
templates.

DATA ANALYSIS
For analysis of behavioral responses, the following two measure-
ments were assessed for each trial: (a) response time, (b) selected
bet amount (in active-choice trials only). Statistical analysis of
behavioral data was conducted in SPSS (Version 15.0; SPSS Inc.,
Chicago, IL, USA). All statistical tests are reported two-tailed, and
alpha was set at 0.05.

We assessed event-related BOLD responses modeled to the
selection and outcome phases of each trial, using a canonical
hemodynamic response function implemented within a general
linear model (GLM). Four event types were distinguished: active-
choice trials and no-choice trials were modeled at selection onset
using epoch functions with individual response times as the dura-
tions, and wins and losses were modeled at outcome with a dura-
tion length of 2 s. The probability of winning and the bet size
were added as parametric modulators onto the active-choice and
no-choice selection regressors. Thus, a total of four parametric
modulators were added to the GLM. The use of these decision
variables as parametric modulators allows for the identification of
brain areas in which the magnitude of BOLD responses correlates
with the probability of winning and the bet size on a trial-by-trial
basis. The design matrix hence comprised 8 columns [3 (selection:
active choice) + 3 (selection: no choice) + 2 (feedback)], plus the
6 movement parameters from spatial realignment as covariates of
no interest.

Twelve subjects uniformly selected the highest bet option in
all active-choice trials. The lack of any variation in the bet
size in active-choice trials made the calculation of the paramet-
ric modulator impossible for these subjects; hence they were
excluded from further analysis. The remaining 27 participants
included in the final analysis selected a bet other than their
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most frequently chosen one in 7–58% of active-choice trials
(Mean = 34%, SD = 13%).

Next, we calculated the following first-level single-subject
contrasts for the selection phase:

(1) Active-choice versus no-choice trials.
(2) Parametric modulation by probability of winning during

active-choice and no-choice trials.
(3) Parametric modulation by probability during active-choice

minus parametric modulation by probability during no-choice
trials.

(4) Parametric modulation by bet size during active-choice and
during no-choice trials.

(5) Parametric modulation by bet size during active-choice minus
parametric modulation by bet size during no-choice trials.

In the specified GLM, any shared variance between the two
parametric modulators (probability of winning and bet size) is
assigned to the probability modulator (entered first) through auto-
orthogonalization implemented in SPM. We chose this ordering
of modulators in this primary GLM as it gives maximal explana-
tory power to the probability modulator (see Hare et al., 2008;
Symmonds et al., 2010). As the chances of winning and the size of
chosen bets were correlated in the active-choice trials in most sub-
jects, we conducted a follow-up analysis in order to test whether
the regions associated with the likelihood of winning were uniquely
sensitive to the probability independent of bet size. Thus, a sec-
ond GLM was calculated, in which the order of modulators was
reversed (bet size entered first). The activations identified in the
contrasts (2) and (3) in the primary GLM were then compared
with the results obtained in the same contrasts in this second GLM.

The individual contrast images were taken to a second-level
group analysis. One sample t -tests were calculated on the single-
subject contrast images. We first computed region-of-interest
(ROI) analyses based on a priori hypotheses about the involve-
ment of four brain regions in risky selection as discussed in the
Introduction: (a) vmPFC (gyrus rectus, orbital parts of mid frontal
gyrus, and orbital parts of superior frontal gyrus), (b) bilateral
insula (c) bilateral striatum (caudate, putamen), (d) bilateral IPC
(inferior parietal lobe, supramarginal gyrus, angular gyrus). Pick-
Atlas (Maldjian et al., 2003, 2004) was used to create a single
combined mask of the four ROIs defined anatomically using the
Anatomical Automatic Labeling (AAL) Atlas (Tzourio-Mazoyer
et al., 2002). Statistics within this ROI mask were thresholded at
P < 0.05 with false discovery rate (FDR) correction applied and
an extent threshold of 10 voxels. AAL was used for voxel local-
ization. Rfxplot software (Gläscher, 2009) was used to extract
and display percent signal change or parameter estimates for
peak voxels. To test for other foci outside the ROI mask that
may be sensitive to the choice parameters, we also conducted
exploratory whole-brain analyses at a less stringent level with sta-
tistical inferences performed at a level of P < 0.001 uncorrected
and a minimal cluster size of 10 voxels (see also Van Leijenhorst
et al., 2006; Elliott et al., 2008; Sharot et al., 2009; Plassmann et al.,
2010).

Two supplemental analyses were conducted to provide quality
checking of our task against established effects and to facilitate
comparison with previous work. First, although the goal of this

study was to investigate neural correlates of decision-making (i.e.,
during selection), we compared outcome-related BOLD responses
to wins and losses in a whole-brain analysis in order to validate our
data in relation to the prior literature. The results of this analysis
can be found in the Table A4 in Appendix. Second, a number of
prior neuroimaging studies have assessed the neural representa-
tion of the expected value of choice options (e.g., Tobler et al.,
2009; Symmonds et al., 2010). In order to allow the comparison
of our data with this prior literature, we calculated an additional
GLM: BOLD responses were modeled to the selection and outcome
events as in the primary GLM, but with expected value [(proba-
bility of winning minus probability of losing) multiplied by bet
amount] entered as a single parametric modulator to the selec-
tion regressors. We then identified areas that were sensitive to the
expected value during active and passive bet selection, using the
ROI and whole-brain approaches. The results of these analyses can
be found in Tables A5 and A6 in Appendix.

Analysis of the behavioral data revealed considerable individual
differences in betting behavior. Most importantly, participants var-
ied considerably in the degree to which they adjusted their bets to
the chances of winning in active-choice trials (“risk adjustment”).
This tendency can numerically be expressed for each participant
by calculating the change in average bet size in 60 and 70%-trials
compared to in 80%-trials (Studer and Clark, 2011).We assessed
whether this heterogeneity in choice behavior was related to indi-
vidual differences in neural sensitivity during bet selection, and
particularly neural responsiveness to the chances of winning, by
entering risk adjustment as a co-variable in the following three
group-level t -tests: (1) active-choice versus no-choice trials, (2)
parametric modulation by the chances of winning in both choice
conditions, (3) ratio × choice interaction. Whole-brain analysis
(P < 0.001 uncorrected, k = 10) was then conducted to iden-
tify areas where activity correlated with risk adjustment across
participants.

RESULTS
BEHAVIOR
Analysis of behavioral data replicated our previous results on the
same task administered outside the MRI scanner (see Studer and
Clark, 2011 for details). Specifically, we first examined whether
participants varied their bets in the active-choice condition. A one-
way ANOVA showed a significant main effect of the likelihood of
winning [F(2, 78) = 47.31, P < 0.001, η2

p = 0.55], with bets ris-
ing with increasing likelihood (average chosen bet: trials with 60%
probability of winning: 52 ± 3 points, 70%-trials: 72 ± 3 points,
80%-trials: 88 ± 1 points).

Response times were sensitive to the chances of winning
and the requirement for active choice: a 3 (probability of win-
ning) × 2 (choice) repeated-measures ANOVA on the decision
latencies revealed a significant probability × choice interaction
[F(2, 78) = 18.96, P < 0.001, η2

p = 0.33], as well as signifi-
cant main effects of probability [F(2, 78) = 50.82, P < 0.001,
η2

p = 0.57] and choice [F(1, 39) = 5.21, P < 0.05, η2
p = 0.12].

As expected, participants were faster to select their bet on no-
choice trials compared to active-choice trials and deliberated
less when the probability of winning increased, particularly
in active-choice trials (active choice: 60%-trials: 1691 ± 67 ms,
70%-trials: 1517 ± 64 ms, 80%-trials: 1224 ± 43 ms, no choice:
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60%-trials: 1433 ± 73 ms, 70%-trials: 1304 ± 69 ms, 80%-trials:
1264 ± 57 ms).

NEURAL CORRELATES OF ACTIVE CHOICE
First, we compared neural activations during the selection phase in
active-choice trials to brain responses during the selection phase
in no-choice trials. The requirement for active choice was associ-
ated with higher responses in the caudate bilaterally (right: peak at
12, 4, 8; t = 6.39; left: peak at −8, 10, 2; t = 5.64), anterior insula
bilaterally (right: peak at 32, 20, 4; t = 5.25; left: peak at −34, 26,
2; t = 4.32), IPC bilaterally (right: peak at 34, −48, 40; t = 4.57;
left: peak at −24, −54, 52; t = 4.15), and in the right OFC (peak at
36 50 −2; t = 3.31), compared to computer-dictated selection (see
Figure 2). There were no foci within the ROI mask that displayed
higher activity during passive selection.

An exploratory whole-brain analysis additionally showed an
increased signal during active compared to passive selection in
a number of areas outside the ROIs, including in the anterior
cingulate cortex (BA32), midbrain, and superior parietal cortex
(see Table A1 in Appendix). Within the IPC, both increased and
decreased activations during active choice of bets compared to pas-
sive selection were observed in adjacent subregions. Note, however,
that the ROI analysis only confirmed increased activation in the
IPC during active choice of bets.

NEURAL CORRELATES OF PROBABILITY OF WINNING
Our second aim was to identify brain areas that are sensitive to
the likelihood of winning during the selection phase. We reasoned
that regions that subserve decision-making would predominantly
be sensitive to the probability of winning in active-choice trials,
when this information was used to guide choice.

The ROI analysis revealed such a probability × choice interac-
tion in the mOFC (peak at −6, 26, −12; t = 5.86), angular gyrus
bilaterally (right: peak at 60, −54, 26; t = 5.20; left: peak at −56,
−66, 26; t = 5.76), supramarginal gyrus bilaterally (right: peak at
66,−22, 22; t = 4.08, left: peak at −50,−24, 16; t = 3.26), the ante-
rior insula bilaterally (right: peak at 32, 20, −20; t = 4.23; left: peak
at –28, 16, −8; t = 4.94), and in the right caudate (peak at 10, 10,
−2; t = 4.21; see Figure 3). Whole-brain analysis (see Table A2 in
Appendix) revealed additional responses (outside the ROI mask)
in the medial superior frontal gyrus and the midcingulate cortex.

In a follow-up analysis, we tested whether these activations
remained significant after the variance shared with the bet size
modulator was removed from the estimation of the probability
modulator. A second GLM with the order of parametric modula-
tors reversed confirmed a significant probability × choice interac-
tion in the mOFC (peak at −4, 26, −12; t = 4.33), angular gyrus
bilaterally (right: peak at 62, −38, 34; t = 3.68; left: peak at −50,
−60, 24; t = 4.09), right supramarginal gyrus (peak at 68, −44,

FIGURE 2 | Active versus passive selection of bets. ROI analysis revealed
stronger activations during active choice of bets compared to
computer-dictated bet selection in the anterior insula bilaterally (peaks at −34,
26, 2; 32, 20, 4), the caudate bilaterally (peaks at −8, 10, 2; 12, 4, 8), and the

inferior parietal lobe (IPL) bilaterally (peaks at −24, −54, 52; 34, −48, 40).
Results are displayed at P < 0.05, FDR-corrected. Bar graphs show percent
signal change at peak voxels [(A,B): anterior insula, (C,D): caudate, (E,F): IPL]
during bet selection for the two choice conditions. Error bars represent SEM.
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FIGURE 3 | Neural correlates of chances of winning during bet

selection. ROI analysis revealed that neural responses in the
supramarginal gyrus bilaterally (peaks at −50, −24, 16; 66, −22, 22),
angular gyrus bilaterally (peaks at −56, −66, 26; 60, −54, 26), anterior
insula bilaterally (peaks at −28, 16, −8; 32, 20, −20), and ventromedial
prefrontal cortex (peak at −6, 26, −12) are differentially modulated by the

chances of winning during active versus passive bet selection. Results are
displayed at P < 0.05, FDR-corrected. Bar graphs show parameter
estimates for the probability of winning modulator in the two choice
conditions at peak voxels [(A,G): supramarginal gyrus, (B,F): angular gyrus,
(C,E): anterior insula, (D): ventromedial prefrontal cortex]. Error bars
represent SEM.

24; t = 3.16), and the anterior insula bilaterally (right: peak at 30,
18, −20 t = 3.52; left: peak at −38, −2, −14; t = 4.82) in the ROI
analysis. The results of the corresponding whole-brain analysis are
described in Table A2 in the Appendix.

We also tested for brain areas that were modulated by the prob-
ability of winning independently of the choice condition. In the
ROI analysis, no regions were significantly modulated by the prob-
ability of winning across both choice conditions. Whole-brain
analysis found that neural responses in the left dlPFC, right pos-
terior insula, and visual cortex, as well as in the left angular gyrus
and left supramarginal gyrus, were correlated positively with the
probability of winning in both active-choice and no-choice trials
(see Table A2 in Appendix). A follow-up analysis (whole-brain)
showed that BOLD responses in the left angular gyrus and visual
cortex remained significantly modulated by the probability of win-
ning in the second GLM, after removing variance shared with the
bet size modulator (see Table A2 in Appendix). There were no
areas identified in which activity was negatively correlated with the
probability of winning (i.e., greater activity with lower likelihoods
of winning) in either analysis.

INDIVIDUAL DIFFERENCES IN GAMBLING-RELATED BRAIN ACTIVITY
Exploratory analyses tested whether heterogeneity in behavioral
performance was related to individual differences in neural activity
during betting choices. Specifically, we examined whether behav-
ioral sensitivity to the chances of winning (risk adjustment) was
related to neural sensitivity to the chances of winning across par-
ticipants. Whole-brain analysis showed that risk adjustment was
positively correlated with neural sensitivity to the chances of win-
ning in active-choice and no-choice trials in the left supramarginal
gyrus (peak at −54, −28, 30, t = 4.05), the left cuneus (peak at –
22, −60, 26, t = 4.08), and the right precuneus (peak at 8 −56, 36,
t = 4.41). Thus, participants who adjusted their bets more to the
chances of winning showed stronger responses to higher likelihood

of winning in these brain areas. The reverse contrast did not reveal
any significant activations, i.e., areas where neural responsivity
to the chances of winning were negatively correlated with risk
adjustment. No significant relationships between risk adjustment
and neural responsivity in the chances of winning × choice con-
trast were found. We additionally tested whether risk adjustment
was correlated with neural responsivity in the overall active-choice
versus no-choice contrast. No significant activations were found
in this analysis.

NEURAL CORRELATES OF MAGNITUDE OF BETS
Our design also allowed us to identify areas that were sensi-
tive to the magnitude of the bet placed. Specifically, due to the
order of the parametric modulators in our design matrix, we
could test for areas where the BOLD signal was modulated by
the bet size, and was not already explained by the probability
modulator. As in the probability analysis, we first identified brain
areas that were more responsive to the magnitude of bets dur-
ing selection in active-choice compared to no-choice trials. In
the ROI analysis, no regions were identified that showed such a
bet size × choice interaction. An exploratory whole-brain analysis,
however, found this pattern in the supramarginal gyrus bilat-
erally and the right visual cortex (see Table A3 in Appendix;
Figure 4).

We also tested for neural activations that were modulated by the
size of bets independently of the choice condition. ROI analysis
did not reveal any areas that were significantly modulated by the
bet size. However, in the whole-brain analysis, we observed that
vmPFC (BA10) and two clusters in left and right caudate were pos-
itively correlated with bet size across both choice conditions (see
Figure 4 and Table A3 in Appendix). The peak of the vmPFC clus-
ter was just on the border of our ROI, with about half of the cluster
located superior to the ROI. The caudate clusters were located in
close proximity to, but fully outside, the striatal ROI. No areas in
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FIGURE 4 | Neural correlates of bet size during selection. Neural
responses in the right ventromedial prefrontal cortex (peak at 12, 60, −6)
and caudate (peak at 6, 2, −2) were correlated with the size of bets
during both active and passive bet selection. Furthermore, a bet
size × choice condition interaction was observed in the right

supramarginal gyrus (peak at 70, −28, 34). Results are displayed at
P < 0.001, uncorrected. Bar graphs show parameter estimates for the
bet size modulator in the two choice conditions at peak voxels (A):
ventromedial prefrontal cortex, (B): caudate, (C): supramarginal gyrus].
Error bars represent SEM.

which responses were negatively correlated with the size of bets
were found.

DISCUSSION
The present study investigated the neural basis of betting choices
in healthy subjects using fMRI. We analyzed BOLD responses
during the selection phase of the Roulette Betting Task and manip-
ulated choice requirements and the odds of winning. Our first
aim was to compare brain responses during volitional (i.e., active,
instrumental) versus computer-dictated (passive) bet selection.
Active choice of bets was accompanied by increased activity in the
striatum, midbrain, medial orbitofrontal cortex, anterior insula,
anterior cingulate cortex, visual, and (pre-)motor areas, compared
to computer-dictated selection of bets. Our second aim was to
assess how the likelihood of winning is neurally represented dur-
ing active and passive bet selection. ROI analysis showed that
the anterior insula bilaterally, IPC bilaterally, right caudate, and
vmPFC were particularly sensitive to the chances of winning in
active-choice trial, that is to say when this information was used
to guide selection. Whole-brain analysis found that the left IPC
and right insula correlated with the probability of winning across
both active and passive conditions. Individual differences in risk
adjustment were positively correlated with neural sensitivity to the
chances of winning in the left IPC, across participants.

NEURAL SUBSTRATES OF ACTIVE CHOICE
Our results highlight the impact of volitional choice upon
brain activity during laboratory gambling. Key structures of the
brain reward system – specifically the striatum, midbrain, and
vmPFC – were more strongly activated during active choice of
bets compared to computer-dictated bet selection. We previously

showed that psychophysiological arousal is enhanced during active
compared to passive bet selection on the same task (Studer and
Clark, 2011). In naturalistic gambling, players are more likely to
bet and to accept higher risks under conditions of active choice
(e.g., selecting lottery numbers) compared to no-choice condi-
tions (“lucky dip”), even in games of pure chance where these
manipulations do not affect the likelihood of winning (Henslin,
1967; Langer, 1975; Ladouceur and Mayrand, 1987; Davis et al.,
2000). In the brain, instrumental action has previously been found
to modulate feedback-related neural activity in the midbrain and
striatum (e.g., O’Doherty et al., 2004; Tricomi et al., 2004; Zink
et al., 2004; Walton et al., 2007) and active choice of risky gambles
has been observed to enhance striatal responses to the presentation
of outcomes (Coricelli et al., 2005; Rao et al., 2008; Camille et al.,
2011). Our results extend this work by showing that neural activity
in the midbrain and striatum is also boosted by active choice at the
point of selection, that is to say, during the actual decision period.

The anterior cingulate cortex (ACC) was also more activated
during active compared with computer-dictated bet selection. A
considerable body of research in non-human primates has revealed
that the ACC plays a critical role in active, volitional action
selection and instrumental responding (see Walton et al., 2007;
Rushworth, 2008; Rushworth and Behrens, 2008 for reviews). Fur-
thermore, previous neuroimaging studies in humans reported that
the ACC is activated during volitional action selection in learning
environments (e.g., Walton et al., 2004; Behrens et al., 2007). For
instance, Walton et al. (2004) assessed neural responses during
performance of a higher-order switching task, in which partic-
ipants received a switch cue and were either instructed which
new response rule to follow, or could choose freely. The authors
found stronger activations in the ACC during active, self-generated
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rule selection compared to instructed selection. Our results extend
these previous findings by showing that the human ACC is also
implicated in the volitional choice of (explicitly presented) risky
gambles.

NEURAL REPRESENTATION OF THE PROBABILITY OF WINNING DURING
BET SELECTION
The second aim was to identify brain areas that are sensitive to the
chances of winning during bet selection, and to test for qualitative
and quantitative differences in odds sensitivity under active and
passive choice conditions. Neural responses in the IPC (angular
and supramarginal gyrus) reflected the chances of winning during
the selection phase, and more so in the active-choice condition.
Neuroimaging studies on decision-making under risk frequently
report activations in the IPC (see Krain et al., 2006; Platt and Huet-
tel, 2008 for reviews), but many studies have failed to consider the
functional significance of these activations, often making reverse
inferences concerning hypothetical attentional demands. Thus, the
role of the IPC in human decision-making has remained poorly
specified. A few authors have speculated that the IPC might process
the probabilities of outcomes during decision-making under risk
(see Ernst et al., 2004; Labudda et al., 2008), in line with the well-
established role of this region in numerical cognition (for recent
reviews, see Ansari, 2008; Sandrini and Rusconi, 2009; Arsalidou
and Taylor, 2011). Our results provide correlative evidence for this
hypothesis, by showing that neural activity during bet selection in
the IPC was modulated by the probability of winning: responses
were greater on trials with more favorable odds. Our findings
also converge with electrophysiological evidence in non-human
primates, which shows that neurons in the posterior parietal cor-
tex represent the probability of rewards during free and forced
choice of options with uncertain outcomes (Platt and Glimcher,
1999; McCoy and Platt, 2005; Kable and Glimcher, 2009; Louie
and Glimcher, 2010), and reflect choice certainty during percep-
tual decision-making (Shadlen et al., 1996; Shadlen and Newsome,
2001; Kiani and Shadlen, 2009). Moreover, we found that the IPC
was particularly sensitive to the chances of winning in the active-
choice condition, i.e., in situations where this information is used
to guide risky choice. In close parallel to our results, Mohr et al.
(2010) recently argued that the IPC is involved in risk processing
during the decision window, but not during outcome anticipation,
based on a meta-analysis of prior fMRI studies on decision-making
under explicit risk. Finally, we observed that neural sensitivity to
the chances of winning within the left supramarginal gyrus was
stronger for individuals that adjusted their bets more to the likeli-
hood of winning, i.e., showed a stronger behavioral sensitivity to
the chances of winning. Together, these results indicate that the
IPC subserves decision-making under explicit risk, and imply that
current models of human choice based primarily on fronto-striatal
circuitry (e.g., Brand et al., 2006; Frank and Claus, 2006) may be
inadequate.

It is noteworthy that the IPC has recently also been imple-
mented in other types of decision-making that do not include
uncertain outcomes. Specifically, recent electrophysiological and
neuroimaging studies reported that neural responses in the
IPC reflect the amount of evidence accumulated for a deci-
sion and decision confidence in cost–benefit and perceptual

decision-making (e.g., Kiani and Shadlen, 2009; Basten et al., 2010;
Kayser et al., 2010). Our results are broadly consistent with these
data, as one might speculate that decision confidence increased
with the chances of winning on our task.

The IPC has also been implicated in the planning and execu-
tion of eye movements (for reviews, see, e.g., Andersen et al., 1992;
Pierrot-Deseilligny et al., 1995, 2004; Grosbras et al., 2005). Could
it be that the identified parietal activations reflect eye movements
in order to gather information about the chances of winning rather
than the processing of this information per se? While we have
not explicitly controlled for potential eye movements in the data
analysis, we think this is unlikely. If the inferior parietal activation
reflected eye movements, one would expect stronger responses in
trials with lower chances of winning, in which the wheels contained
a more balanced number of winning and losing segments. How-
ever, we observed the opposite pattern: activations in the IPC were
positively correlated with the chances of winning. In other words,
responses in the IPC were strongest in the 80%-trials, which con-
tained only two losing segments. There is ample evidence that in
the range of 1–4 visual objects, numerosity is assessed in an auto-
matic and fast visual process known as “subitizing” (see Feigenson
et al., 2004 for a review). Thus, we posit that the chances of winning
in the 80%-trials can easily be assessed at the first glance.

Neural responses during bet selection in the anterior insula
were also characterized by an interaction between the probabil-
ity of winning and the choice condition. Similar to the present
results, Clark et al. (2008) found abnormal betting behavior in
patients with damage to the insular cortex on the CGT: individu-
als with insula lesions failed to adjust their bets to the chances
of winning. Our finding that neural responses in the anterior
insula reflect the chances of winning × choice condition inter-
action is also consistent with a study by Rao et al. (2008), who
observed differential activations in the anterior insula during vol-
untary versus involuntary risk-taking on the Balloon Analog Risk
Task. The direction of the relationship between neural responses
in the anterior insula and the probability of winning differed
between active-choice and no-choice trials. During passive bet
selection, neural responses in the anterior insula were negatively
correlated with the chances of winning, while there was a pos-
itive correlation between the probability of winning and insula
activity during active choice of bets (see Figure 3). Prior neu-
roimaging studies by Preuschoff et al. (2006, 2008) showed that
the anterior insula is sensitive to reward variance during the antic-
ipation of outcomes. In our task, participants tended to select
higher bets, and thus took higher risks, when there was a greater
probability of winning. Thus, it could be speculated that the ante-
rior insula is sensitive to (subjective) risk during bet selection
(see also Bossaerts, 2010). We further observed different activa-
tion patterns in the left and right anterior insula. The left ante-
rior insula was primarily modulated by the chances of winning
during passive bet selection, while the right anterior insula activa-
tion reflected the chances of winning during both volitional and
computer-dictated bet selection. In line with these findings, the
meta-analysis by Mohr et al. (2010) suggested the right anterior
insula to be involved in risk processing during the choice window,
whereas the left anterior insula processes outcome uncertainty
during anticipation.
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Finally, a probability of winning × choice condition interac-
tion was also found in the vmPFC and the right caudate. These
two regions were additionally sensitive to the size of bets, inde-
pendent of the choice condition, although it should be noted that
the cluster peaks fell outside of our a priori ROI. Prior neuroimag-
ing work has implicated the vmPFC in the subjective valuation of
choice options (e.g., Chib et al., 2009; Peters and Büchel, 2009,
2010; Hare et al., 2010; Sescousse et al., 2010). Neuropsycho-
logical studies showed that injury to the vmPFC is associated
with enhanced risk-taking in everyday life (Eslinger and Dama-
sio, 1985; Shallice and Burgess, 1991; Satish et al., 1999) and poor
performance on laboratory gambling tasks (e.g., Bechara et al.,
1999; Bechara et al., 2000; Fellows and Farah, 2005, 2007; Weller
et al., 2007). Specifically, we previously found that patients with
vmPFC-lesions selected higher bets than healthy participants and
brain damaged controls on the CGT (Clark et al., 2003, 2008).
Another study found impaired probability judgment on the CGT
in patients with vmPFC-damage (Rogers et al., 1999). Similarly,
neural responses in the ventral striatum have previously been
found to reflect the expected value (i.e., the combination of reward
magnitude and occurrence probability) of anticipated uncertain
outcomes (e.g., Knutson et al., 2005; Preuschoff et al., 2006; Yacu-
bian et al., 2006; Tobler et al., 2007). Here we found that the vmPFC
and ventral striatum reflected both the probability and the magni-
tude of potential wins during risky selection, suggesting that these
areas might hold a coordinated representation of these two deci-
sion parameters. Indeed, an additional analysis of our data (see
Table A5 in Appendix) showed that vmPFC and ventral striatum
were sensitive to the expected value of active and passive gambling
choices.

CONCLUSION
Our results highlight the impact of active choice upon the neural
correlates of gambling: a distributed network of brain regions was
more activated during volitional compared to computer-dictated
bet selection, including key areas of the brain reward system,
namely the midbrain, striatum, and vmPFC. In line with previous
neuropsychological data, we found that the vmPFC and anterior
insula are involved in betting choices. Our data also provide cor-
relative evidence for a role of the IPC in human decision-making
under risk linked to the processing of outcome probabilities.
Neural responses during the selection phase in the IPC reflected the
probability of winning, especially so in the active-choice condition.
In other words, the IPC was particularly implicated in situations
where the processing of probability information was required to
guide bet selection. Our data converge with recent findings of elec-
trophysiological research in non-human primates and suggest that
current models of human decision-making under risk focused on
fronto-striatal circuitry should be extended to include interactions
with the IPC.
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APPENDIX

Table A1 | Neural correlates of active compared to passive selection of bets identified in the exploratory whole-brain analysis (P < 0.001, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

INCREASED ACTIVATIONS DURING ACTIVE CHOICE OF BETS

Anterior cingulate cortex 13070 Left −6 34 22 7.57

Right 10 28 14 6.43

Other included structures: midbrain, right anterior insula, bilateral striatum, inferior

frontal gryus, cerebellum, thalamus, midcingulum, and others

Anterior insula 204 Left −32 30 2 4.50

Other included structures: inferior frontal gyrus

Inferior parietal lobule 544 Right 34 −48 40 4.57

Other included structures: angular gyrus, supramarginal gyrus, superior parietal lobule

Superior parietal lobule 663 Left −20 −56 46 5.13

Other included structures: left middle occipital gyrus, inferior parietal lobule

Superior frontal gyrus 302 Right 22 −6 52 4.66

Other included structures: precentral gryus, middle frontal gryus

Middle frontal gyrus 150 Right 40 53 8 4.63

Middle occipital gyrus 2260 Left −20 −96 2 6.33

Other included structures: left inferior occipital gyrus

2809 Right 26 −80 0 7.53

Other included structures: right inferior and superior occipital gyri

Vermis 164 0 −56 −34 4.90

Hippocampus 104 Left −42 −44 −6 4.65

Precentral gyrus 131 Left −42 −4 26 4.51

42 Left −34 −4 52 3.72

INCREASED ACTIVATIONS DURING PASSIVE SELECTION OF BETS

Supramarginal gyrus 412 Left −62 −44 40 5.16

Other included structures: left inferior parietal lobe

110 Right 66 −44 34 4.37

Lingual gyrus 192 Left −8 −76 −8 5.03

Middle temporal gyrus 798 Right 54 −70 34 5.02

Other included structures: right angular gyrus

84 Left −44 −64 20 4.15

28 Left −60 −54 −4 3.72

Cuneus 124 Right 6 −84 30 3.99

Angular gyrus 10 Left −56 −66 30 3.52

Rolandic operculum 16 Left −56 2 12 3.52
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Table A2 | Neural correlates of probability of winning during bet selection (whole-brain analysis, P < 0.001, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

ACTIVATIONS DISPLAYING A PROBABILITY OF WINNING × CHOICE INTERACTION

Ventromedial prefrontal cortex* 1473 Bilateral −4 28 −8 6.72

Inferior frontal gyrus (orbital part) 815 Left −52 2 −28 5.69

Other included structures: left anterior insula, temporal pole, inferior frontal gyrus (triangular part)*

50 Left −38 30 −8 4.25

Angular gyrus* 315 Right 62 −56 32 5.28

Other included structures: right middle* and superior temporal gyrus*

Middle temporal gyrus* 717 Left −56 −66 26 5.76

Other included structures: left angular gyrus*

23 Left −66 −36 −2 4.04

25 Left −64 −24 −12 3.96

35 Right 60 −4 22 4.19

Lingual gyrus* 466 Left −28 −56 0 5.12

Other included structures: left cerebellum*

529 Right 20 −74 2 4.98

Other included structures: right calcarine gyrus

105 Right 12 −30 −6 4.35

Anterior insula* 85 Right 38 20 −22 4.58

Supramarginal gyrus 40 Right 66 −22 22 4.08

Caudate 15 Left −10 4 18 3.72

20 Left −8 14 2 3.71

88 Right 10 6 −2 4.28

Midcingulate cortex* 300 Left −8 −12 42 4.47

Other included structures: right midcingulate cortex, left SMA*

Medial superior frontal gryus* 70 Left −6 52 36 3.82

20 Left −10 38 52 3.73

10 Right 10 56 36 3.83

79 Right 16 36 48 4.20

Vermis 27 0 −60 −38 4.48

Thalamus 35 Left −2 −10 2 4.29

Superior temporal gyrus 27 Left −40 −8 −10 3.94

Supplementary motor area* 12 Left −10 −10 72 3.74

Cerebellum* 19 Right 32 −70 −34 4.02

55 Right 24 −48 −26 3.75

Hippocampus* 16 Left −20 −20 −8 3.68

ACTIVATIONS REFLECTINGTHE PROBABILITY OF WINNING IN BOTH CHOICE CONDITIONS

Calcarine gyrus* 4950 Bilateral 0 −58 12 4.48

Other included structures: bilateral lingual gyrus, bilateral cuneus

Angular gyrus* 543 Left −38 −74 36 3.92

Other included structures: left middle occipital gyrus*

Supramarginal gyrus 16 Left −44 −28 30 3.93

70 Right 38 −28 28 4.35

Middle frontal gyrus 60 Left −24 24 54 3.76

Paracentral lobule 28 Right 4 −20 72 4.23

Continued

www.frontiersin.org April 2012 | Volume 6 | Article 46 | 55

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Studer et al. Neural correlates of gambling choices

Table A2 | Continued

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

Middle temporal gyrus* 67 Left −60 −50 −8 4.01

Cerebellum 42 Right 22 −50 −30 4.00

22 Right 20 −80 −26 3.60

Fusiform gyrus 27 Left −24 −32 −18 3.39

Midcingulate cortex 28 Left −4 −42 42 3.70

*Activations that were also found in the same contrasts calculated in GLM2, in which the order of parametric modulators was reversed [(1) bet size, (2) probability of

winning]. Thus, these areas represented the probability of winning independently of the bet size.

Table A3 | Neural correlates of bet size during selection (whole-brain analysis, P < 0.001, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

ACTIVATIONS DISPLAYING A BET SIZE × CHOICE INTERACTION

Supramarginal gyrus 13 Left −66 −30 34 3.72

185 Right 70 −28 34 4.70

Lingual gyrus 139 Right 12 −74 0 4.54

ACTIVATIONS REFLECTINGTHE BET SIZE IN BOTH CHOICE CONDITIONS

Ventromedial prefrontal cortex 30 Right 12 60 −6 4.36

Caudate 27 Right 6 2 −2 4.16

30 Left −22 −2 18 3.98

Lingual gyrus 230 Right 12 −78 −2 4.37

Precuneus 48 Right 20 −56 36 4.36

Middle occipital gyrus 25 Left −26 −58 28 4.01

11 Left −52 −76 18 3.68

Thalamus 11 Left −4 −4 2 3.93
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Table A4 | Neural correlates during feedback (whole-brain analysis, FWE-corrected, P < 0.05, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

WIN > LOSS

Caudate 1995 Left −12 8 −6 8.73

Right 10 4 −8 7.82

Other included structures: bilateral putamen, bilateral pallidum

200 Left −22 4 22 7.58

Medial orbitofrontal cortex 399 Bilateral −6 44 −8 8.09

Other included structures: left anterior cingulate cortex

Postcentral gyrus 283 Right 24 −34 44 8.22

Anterior insula 150 Left −26 −24 24 8.21

Superior frontal gryus 105 Left −22 38 46 8.19

Middle occipital gyrus 142 Left −32 −64 16 7.12

Precuneus 415 Left −6 −58 18 7.11

Other included structures: right precuneus

Midcingulum 51 Left −18 −26 36 6.76

Lingual gyrus 67 Right 22 −76 0 6.39

Precentral gyrus 29 Left −22 −16 52 6.06

Superior occipital gyrus 25 Right 20 −88 22 5.79

LOSS >WIN

No significant activations found

Table A5 | Neural correlates of expected value during selection (GLM3, ROI analysis, P < 0.001, FDR-corrected, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

ACTIVATIONS DISPLAYING AN EXPECTED VALUE × CHOICE INTERACTION

No significant activations found

ACTIVATIONS REFLECTING EXPECTED VALUE IN BOTH CHOICE CONDITIONS

Medial orbitofrontal gyrus 670 Bilateral 2 56 −12 4.67

Angular gyrus 673 Left −54 −64 26 4.29

Other included structures: left supramarginal gyrus

Caudate 23 Right 8 6 −2 3.46

Putamen 11 Left −22 −2 14 3.43
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Table A6 | Neural correlates of expected value during selection (GLM3, whole-brain analysis, P < 0.001, k = 10).

Brain region (label at cluster peak) Cluster size (in voxels) Hemisphere MNI peak coordinates T -values

X Y Z

ACTIVATIONS DISPLAYING AN EXPECTED VALUE × CHOICE INTERACTION

Precentral gyrus 15 Left −40 −26 64 3.95

Lingual gyrus 71 Right 12 −78 −4 3.82

ACTIVATIONS REFLECTING EXPECTED VALUE IN BOTH CHOICE CONDITIONS

Cerebellum 2978 Right 22 −64 −26 6.12

18 Right 18 −38 −30 3.78

285 Left −20 −72 −30 4.34

Medial superior frontal gyrus 914 Bilateral −4 46 40 5.52

Medial orbitofrontal cortex 321 Bilateral 2 56 −12 4.67

Precuneus 93 Right 22 −52 30 4.86

Angular gyrus 251 Left −54 −64 26 4.29

Other included structures: left supramarginal gyrus

Middle temporal gyrus 27 Left −58 −32 −12 4.36

Pallidum 77 Left −8 −2 0 4.10

Other included structures: right caudate

Anterior cingulum 130 Left −10 38 4 4.32

67 Right 8 34 −2 3.77

Caudate 68 Left −26 −10 22 4.29

Inferior frontal gryus 21 Right 28 6 26 4.29

Calcarine gyrus 64 Left −4 −94 12 3.77
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Recent work has shown that visual fixations reflect and influence trial-to-trial variability in
people’s preferences between goods. Here we extend this principle to attribute weights
during decision making under risk. We measured eye movements while people chose
between two risky gambles or bid on a single gamble. Consistent with previous work, we
found that people exhibited systematic preference reversals between choices and bids.
For two gambles matched in expected value, people systematically chose the higher prob-
ability option but provided a higher bid for the option that offered the greater amount to
win. This effect was accompanied by a shift in fixations of the two attributes, with people
fixating on probabilities more during choices and on amounts more during bids. Our results
suggest that the construction of value during decision making under risk depends on task
context partly because the task differentially directs attention at probabilities vs. amounts.
Since recent work demonstrates that neural correlates of value vary with visual fixations,
our results also suggest testable hypotheses regarding how task context modulates the
neural computation of value to generate preference reversals.

Keywords: anchoring, context effects, contingent weighting, eye-tracking, neuroeconomics, risk aversion, visual
attention

INTRODUCTION
A challenge for theories of decision making under risk is to account
for known systematic inconsistencies in people’s decisions. An
example is the “preference reversal phenomenon,” which involves
systematic inconsistencies between preferences and prices (Licht-
enstein and Slovic, 1971, 1973; Grether and Plott, 1979). Preference
reversals were initially demonstrated by Lichtenstein and Slovic
(1971). When given a choice between two gambles of similar
expected value (EV), one with a high probability of winning a
smaller amount of money (termed the P-bet) and another with
a low probability of winning a larger amount (termed the $-bet),
most people choose the higher probability P-bet. However, when
providing selling prices for the same exact gambles, most peo-
ple assign a higher price to the larger amount $-bet. These two
decisions appear to be mutually inconsistent. The P-bet cannot
be simultaneously better than and worse than the $-bet, and one
would expect people to demand a higher price for their preferred
gamble. Preference reversals violate the principle of procedure
invariance, whereby preferences should not change depending on
how they are measured (Tversky et al., 1990; Stalmeier et al., 1997).

Despite its apparent irrationality, the preference reversal phe-
nomenon is remarkably robust. For specifically designed alterna-
tives, the frequency of reversals can be greater than 50% (Licht-
enstein and Slovic, 1973; Grether and Plott, 1979; Tversky et al.,
1990). The basic inconsistency has been replicated numerous times
by psychologists and experimental economists, including under
different designs using non-gamble stimuli and various incen-
tive mechanisms (Mowen and Gentry, 1980; Tversky et al., 1990;
Mellers et al., 1992a,b). Further, preference reversals persist in the
face of large incentives (Lichtenstein and Slovic, 1973; Grether and

Plott, 1979), including when the experimenter exploits the incon-
sistency to take money from the subject (Berg et al., 1985; Chu and
Chu, 1990).

Various explanations have been proposed for preference rever-
sals, which attribute the reversal to changes at different stages of
the decision process. Different theories attribute preference rever-
sals to changes in how attributes are weighted (Tversky et al.,
1988),changes in how weighted attributes are combined to form an
evaluation (e.g., additive vs. multiplicative combination; Mellers
et al., 1992b), or changes in how a formed evaluation is expressed,
or translated into a response, in different tasks (Goldstein and
Einhorn, 1987). Though conceptually distinct, changes at these
different stages are also not mutually exclusive.

A prominent explanation for preference reversals is Tversky
et al. (1988) contingent weighting hypothesis. They argue that
attribute weights are closer to lexicographic (i.e., closer to all-or-
none) in choice compared to other tasks, which leads to the most
important attribute being weighted even more heavily in choice,
a phenomena called the prominence effect (Slovic, 1975; Tversky
et al., 1988). Since most people are risk-averse (Holt and Laury,
2002), weighting probability more than amount, this would lead
to the probability dimension being weighted even more in choice
than other decision tasks (Note there is some debate, though, about
whether the prominence effect occurs for gambles; see Tversky
et al., 1988, p. 382). By contrast, Tversky et al. (1988) argue that
the payoff dimension is weighted more during bids because of the
compatibility effect, whereby attributes that are compatible with
the output are given more weight (in this case, payoff is com-
patible with bids, since both are in dollars; Slovic, 1975; Tversky
et al., 1988). Formally, Tversky et al. (1988) model the change in
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responses across the two tasks as a change in the weight αi (where
i= choice, bid) of the following utility function for a gamble to
win amount a with probability p:

U
(
p, a

)
= log p + αi log a

Note that this is simply the logarithmic transform of an expected
utility (EU) model in which the degree of risk aversion varies
between choices and bids.

Here, using visual fixations as an index of information process-
ing and visual attention, we sought to determine what information
people attend to during a preference reversal paradigm. Specifi-
cally, we aimed to test whether visual fixations reflect changes
in the weighting of different attributes, with people looking at
probability information more during choices and amount infor-
mation more during bids. Since preference reversals could be due
to changes at different stages of the decision process, this finding
would also provide additional support for contingent weighting
being at least part of the explanation.

This experiment also builds on recent research linking visual
fixations and preferences. Rangel and colleagues have shown that
visual fixations both reflect and influence preferences between
goods (Armel et al., 2008; Krajbich et al., 2009, 2010). Visual fix-
ations also modulate the neural correlates of preferences, with
activity in ventromedial prefrontal cortex and ventral striatum
reflecting the value of the fixated item compared to the value of
item not fixated (Lim et al., 2011). Here we test whether the link
between fixations and preferences generalizes to decision making
under risk, and whether fixations are further linked to attribute
weights. Given the link between fixations and neural correlates of
preferences, this evidence should also inform theorizing regarding
the specific neural signals that might be modulated by task context
to give rise to preference reversals.

Our investigation follows previous process tracing studies by
Johnson et al. (1988) and Schkade and Johnson (1988). Using
Mouselab, they found that individuals spent proportionally more
time looking at probability information during choices than dur-
ing bidding. However, Mouselab may not always provide the
most natural decision environment (Lohse and Johnson, 1996). In
Mouselab, subjects acquire information by positioning a mouse
cursor over different windows, and the pattern of mouse move-
ments is recorded. This can increase the amount of effort needed
to acquire information, which can then alter the information
processing behavior of subjects (Lohse and Johnson, 1996). Eye-
tracking does not have this problem. Since eye-tracking does not
impose additional requirements on subjects to obtain or maintain
information, it might in some cases provide a more sensitive or
more accurate measure of information processing. For this rea-
son, as well as to build on recent work linking visual fixations and
preferences, we thought it was important to further investigate
preference reversals using eye-tracking techniques.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-six paid volunteers from the University of Pennsylvania
community participated in this study. Data from two partici-
pants were discarded because their responses suggested confusion

regarding the bidding task. One participant’s bids were not posi-
tively correlated with EV, and the other participant bid higher than
the amount to win in several gambles. The mean age of our final
sample (N = 24) was 23.6 years (age range: 19–29 years), and 52%
were female. All participants gave written informed consent in
accordance with the procedures of the Institutional Review Board
at the University of Pennsylvania.

TASKS AND STIMULI
On each trial, subjects either made a choice between two gambles
(choice trials) or provided their evaluation of a single gamble (bid
trials, see Figure 1). On choice trials, subjects chose between two
different gambles with varying probabilities (12–95%) of winning
different amounts of money ($10–$98). On bid trials, subjects
entered their subjective evaluation of a gamble in dollar amounts.
At the end of each session, one trial was randomly selected, and
participants were paid according to their decision on that trial. If
subjects won money, they received that money in addition to the
show-up fee of $10.

We used E-Prime to present all behavioral stimuli (Psychol-
ogy Software Tools, Pittsburgh, PA, USA). Subjects entered their
responses using a keyboard. Subjects were presented with a total
of 100 bid trials and 100 choice trials in eight alternating blocks of
25 trials each. In case placement of the probabilities and amounts
biased decision making, half the subjects saw the amounts as the
top number and the other half saw the probabilities as the top
number. All subjects saw the same set of gambles in the same
order. During a choice trial, subjects were presented with a screen
with the word “Choose” for one second. They then saw a screen
with two gambles side-by-side and had unlimited time to choose
between the two gambles. Subjects pressed “1” to choose the gam-
ble on the left side of the screen and pressed “0” to choose the
gamble on the right. During a bid trial, subjects were presented
with a screen with the word “Bid” for 1 s. They then saw a screen
with a single gamble and had unlimited time to enter their dol-
lar bid. Subjects used the number keys to enter their bid and
submitted their response by pressing the “return” key. Once bids
were entered, subjects were unable to change their responses. Par-
ticipants were instructed to bid the “smallest amount of money
(they) would be willing to exchange for the opportunity to play
the gamble.”

Subjects went through a training period in the beginning to
ensure understanding of the task. Subjects had two practice trials
for each of the trial types. On bid practice trials, subjects were
taken through a series of questions after they entered their bid.
These questions were used during training to ensure that subjects
understood the bidding task and could provide well-calibrated
bids. First, subjects were asked if they would forego playing out
the gamble to take a counteroffer that was $1 higher than their
bid. If they answered “no,” they were told they bid too low and
were asked to bid again. If subjects answered “yes,” they were then
asked if they would play out the gamble and forego taking a coun-
teroffer $1 less than their bid. If they answered “no,” they were told
they bid too high and were asked to bid again. Subjects repeated
this process until they answered yes to both questions. These ques-
tions were only asked on practice trials, and were not included on
experimental trials.
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FIGURE 1 | Choice and bid tasks. The sequences of events within a trial for
both choice and bid trials are shown. For choice trials, subjects saw “Choose”
for 1 s. Subjects then saw two gambles, a $-bet gamble and a P-bet gamble.
Subjects had unlimited time to choose one of the gambles. After submitting
their response, subjects would see a check mark on the side of the chosen

gamble. For bid trials, subjects saw “Bid” for 1 s. Subjects then saw one
gamble, either a $-bet or a P-bet gamble, on the left side of the screen. To the
right of the gamble was a “$” where subjects bids would appear. Subjects
had unlimited time to submit their bids. After submitting their response,
subjects would see the amount they bid.

In choice trials, one gamble had a high probability of winning
a small amount of money (termed the P-bet, e.g., 84% chance
of $20), and the other had a low probability of winning a larger
amount (termed the $-bet, e.g., 24% chance of $70). Fifty pairs
of P-bets (ranging from 70 to 95% chance of winning $10–$34)
and $-bets (ranging from 12 to 37% chance of winning $35–$98)
were selected so that the P-bet and $-bet were approximately equal
in EV, with differences ranging from $0.00 to $0.09 and a median
difference of $0.02. Probability ranges were chosen based on pre-
vious studies (e.g., Lichtenstein and Slovic, 1971) and ensured
the ranges for P-bets and $-bets did not overlap. Amounts were
chosen to provide a reasonable range of EV, given that subjects
would be paid according to the outcome on a single trial. No
probability or dollar amount was used more than twice in the
stimulus set. This stimulus set was pre-tested in pilot behavioral
subjects (n= 12) who demonstrated a robust preference reversal
effect, and has now been used in several studies in our labora-
tory. To encourage participants to attend to each choice and avoid
following a simple heuristic (such as always choosing the higher
probability gamble), 10 of the 50 pairs were mismatched so that
either the P-bet or $-bet had a much higher EV. The EV across
all gamble pairs varied from $8.10 to $29.23, with a median of
$18.13. Each pair was presented twice during choice trials, with
the left-right placement of the gambles switching between pre-
sentations. The same gambles used in the choice task were shown
once individually in the bidding task. Thus for each subject we

have 100 choice and 100 bid trials where the stimulus on the
left of the screen is identical, and what differs is the presence
of another gamble or the bid prompt on the right side of the
screen.

Both tasks were administered in an incentive-compatible man-
ner. At the end of the experiment, participants rolled dice to
randomly determine one bid or choice trial to be played out
for real money. If a choice trial was selected, participants were
given the opportunity to play the gamble that they chose, using
a 100-sided die to determine the outcome. For example, if the
chosen gamble was a 75% chance of winning $21, a roll of 75
or below on the die would pay $21 and a roll of 76 or above
would pay $0. If a bid trial was selected, participants were paid
using the Becker–DeGroot–Marschak (BDM) method, a widely
used incentive-compatible procedure (Becker et al., 1964). The
subject’s bid on the selected gamble was compared to a randomly
generated counteroffer (between $0 and the amount to win), cre-
ated by dividing the roll of a 100-sided die by 100 and multiplying
the resulting fraction by the amount to win. If the subject’s bid was
higher than the counteroffer, the subject played the gamble. If the
subject’s bid was lower than the counteroffer, the subject received
the counteroffer amount. This method incentivizes participants to
bid their true valuation of the gamble, the amount at which they
would be indifferent between receiving their bid and playing the
gamble. The amount of money subjects won varied from $0 to
$37.41 with a median of $21.
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EYE-TRACKING
We used an Eyelink II head-mounted eye-tracker (SR Research
Ltd., Mississauga, ON, Canada) to monitor participant’s eye move-
ments during the task. A camera imaged the participant’s right eye
at 250 Hz. Subjects sat approximately 18′′ from the screen and
were calibrated using a 9-point calibration. To manage eye drift
and head movement, the subject fixated on a black dot at the center
of the screen after each trial and a drift correction measured how
much each subject’s measured gaze differed from the center of the
screen. The experimenter monitored drift corrections throughout
the whole experimental session and re-calibrated when the sub-
ject’s gaze drifted from the center. Eye movements were recorded
during each trial between the time of the first stimuli and the time
of the subject’s response.

BEHAVIORAL ANALYSIS
We used Matlab (Mathworks, Natick, MA, USA) and SPSS (SPSS
Inc., Chicago, IL, USA) to analyze our behavioral and eye-tracking
data. For each pair of gambles, we categorized responses in the
choice task according to whether the subjects chose the P-bet both
times (“chose P”), chose each bet once (“chose=”), or chose the
$-bet both times (“chose $”). Participants were consistent about
79% of the time, choosing the same gamble across both choices.
In the bid task, we categorized responses according to whether the
subject bid higher on the P-bet (“bid P”), bid equal amounts for
both bets (“bid=”), or bid higher on the $-bet (“bid $”). Within
the 40 gamble pairs matched in EV, we calculated two measures of
the preference reversal effect. One measure included all instances
of increasing preference for the $-bet (“weak P-to-$ reversals”),
that is, when subjects chose the P-bet both times then bid equal
amounts, when they chose each bet once then bid higher on the
$-bet, or when they chose the P-bet both times then bid higher
on the $-bet. The other measure included only this last category,
instances where the subject chose the P-bet twice and then bid
higher on the $-bet (“strict P-to-$ reversals”). We also calculated
two similar measures for reversals in the unpredicted direction,
from the $-bet in choice to the P-bet in bids.

In addition, we estimated a model in both tasks that assumed
subjects’ decisions were a function of the EU of the gambles:

EU
(
p, a

)
= p × aαi

Here αi (where i= choice, bid) is a measure of risk aversion. An
αi equal to one leads to risk-neutral decisions, an αi less than one
to risk-averse decisions, and an αi greater than one to risk-seeking
decisions. As mentioned in the introduction, one simple model of
contingent weighting is merely the logarithmic transform of this
equation (Tversky et al., 1988). From that perspective, an αi equal
to one means equal weighting, an αi less than one means proba-
bility is weighted more strongly, and an αi greater than one means
amount to win is weighted more strongly.

For choices, we fit a logistic regression that assumed choice
probabilities (cp) were a function of the difference in expected
utility between the two gambles:

cp (EU1, EU2) =
1

1+ eβ(EU1−EU2)

We fit this equation for each subject to his/her observed choices
using an iterative optimization in MATLAB (fminsearch and fmi-
nunc) to find the maximum likelihood estimate of αchoice and
β. The αchoice’s of two subjects exceeded the boundaries that
our model could reliably estimate (0.17 < αchoice < 5.05), so we
excluded both α’s from these subjects from further analysis. For
bids, we fit a model that assumed the subject’s bid was equal to the
expected utility of the gamble, using non-linear least squares in
MATLAB. We obtained almost identical results to those reported
below if we fit αchoice and αbid using the logarithmic transform
of expected utility (i.e., the contingent weighting equation in the
introduction).

Response time was calculated as starting from the onset of
the stimuli and ending when the participant submitted their
responses.

Placement of the amounts and probabilities did not have any
significant effects on choice and bidding behavior (i.e., strict or
weak P-to-$ reversals, αchoice or αbid). All ps > 0.10.

EYE TRACKING ANALYSIS
We used Data Viewer (SR Research Ltd., Mississauga, ON, Canada)
for all pre-processing of the eye-tracking data and Matlab (Math-
works, Natick, MA, USA) for all eye-tracking analysis. The Eyelink
II software automatically parses eye movement data into fixations,
blinks,and saccades based on standard saccade thresholds (velocity
threshold= 30˚/s, acceleration threshold= 8000˚/s2). Only fixa-
tions initiated after the onset of the gambles were included in our
analyses. Additionally, the Eyelink on-line parser denoted a blink
when the pupil was very small, or when the eye-camera image of
the pupil was missing or severely distorted by eyelid occlusion.

We defined regions of interest (ROI) corresponding to each
amount and probability within each trial. The size of the screen
was 800 by 1200 pixels, and each ROI was approximately 280 by
320 pixels. There were four ROIs in choice trials, and two ROIs
during bid trials. For a controlled comparison between choice and
bid trials, we focused our analyses on only the two ROIs for the
left gamble in choice trials, since these were visually identical to
and contained the same amount of physical space as the two ROIs
in bid trials. For fixations and looking durations (but not first fix-
ations), we observed the same pattern of results if we collapsed
across all four ROIs in choice trials.

We included three dependent variables in our eye-tracking
analyses: number of fixations, looking duration, and the first fixa-
tion of each trial. For each of our dependent variables, we ran an
ANOVA with gamble type (P-bets vs. $-bets), attribute (probabil-
ity vs. amount), and trial type (choice vs. bids) as within-subject
factors and attribute placement (probability on top vs. amount on
top) as a between-subject factor. We refer to this ANOVA below as
our between-task analysis. To test subsequent comparisons within
a trial type, we ran separate ANOVAs for choice trials and bid trials
with gamble type (P-bets versus $-bets) and attribute (probabil-
ity vs. amount) as within-subject factors and attribute placement
(probability on top vs. amount on top) as a between-subject factor.
We refer to these ANOVAs below as within-task analyses. These
analyses were all done using raw fixation numbers and looking
times, but we observed the same pattern of results if we examined
ratios of these variables (e.g., the ratio of fixations on probability
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versus amount, etc.). Fixations and looking durations for gamble
types and attribute were highly correlated. All rs > 0.92, ps < 001.

For fixations and looking durations (but not first fixations),
placement of the amounts and probabilities did not inter-
act with the eye-tracking effects reported below. There was,
however, an interaction between attribute and attribute place-
ment for all three dependent measures. Subjects had more
total fixations [mean= 5.69± 0.46 fixations vs. mean 4.77± 0.48
fixations; F(1, 22)= 33.37, p < 0.001], longer looking dura-
tions [mean= 1,718± 208 ms vs. mean= 1,337± 192 ms; F(1,
22)= 22.15, p < 0.001], and more first fixations [mean= 77± 3%
vs. mean= 23± 3%; F(1, 22)= 87.54, p < 0.001] for the attribute
that was presented on top.

Finally, to test for any effects of individual differences,we looked
at the correlation between each of our eye-tracking dependent
variables (proportion of total fixations and looking duration by
trial type and gamble type; proportion of total fixations, looking
duration, and first fixations by trial type and attribute) and each
of our behavioral variables (number of strict and weak P-to-$
reversals, αchoice and αbid). This analysis excluded the two sub-
jects whose choice alphas exceeded the boundaries that we could
reliably estimate (these two subjects were also outliers in terms
of the number of reversals, with neither making any weak P-to-$

reversals while the minimum among the remaining subjects was
22 weak reversals).

RESULTS
BEHAVIORAL RESULTS
Overall, subjects spent more time on bid trials than on choice
trials. There was a significant increase in response times from
choice trials to bid trials, F(1, 23)= 74.95, p < 0.001. The aver-
age response time was 4,257± 549 ms during choice trials and
6,894± 485 ms during bid trials. [Note that, presumably sec-
ondary to this reaction time effect, there were also more total
fixations, F(1, 22)= 43.57, p < 0.001, and longer looking dura-
tions, F(1, 22)= 40.45, p < 0.001, during bid trials than during
choice trials.] Within bid trials, subjects took longer to bid on
$-bets than on P-bets, F(1, 23)= 31.43, p < 0.001. The average
response time for bids on P-bets was 6,381± 97 ms and the average
response time for $-bets 7,394± 101 ms.

Subjects also demonstrated a robust preference reversal effect.
During choice trials, subjects chose the P-bet significantly more
often than the $-bet, F(1, 23)= 34.02, p < 0.001. On average,
subjects chose the P-bet both times for 66± 13% of the pairs,
chose equally for 21± 4% of the pairs and chose the $-bet both
times for 13± 3% of the pairs (see Figure 2A). In contrast,
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FIGURE 2 | (A) Percentage of gamble pairs where subjects chose the P-bet
option twice (P), the $-bet twice ($), or both equally (=). On average, subjects
chose the P-bet significantly more than the $-bet. (B) Percentage of gamble
pairs where subjects bid higher for the P-bet option (P), $-bet option ($), or bid
the same amount for both gambles (=). On average, subjects bid higher on

$-bets than on the P-bets. (C) Average alpha values for choice trials and bid
trials. Alphas were significantly higher for bidding than for choice. (D) The
average expected utility function for bids and choices given the inferred
alphas. Subjects were risk-averse during choices and slightly risk-seeking
during bids.
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subjects bid significantly higher on the $-bet than on the P-bet,
F(1, 23)= 18.22, p < 0.001. Subjects bid higher on the $-bet for
61± 13% of the pairs,bid the same on both gambles for 10± 2% of
the pairs, and bid higher on the P-bet for 28± 6% of the pairs (See
Figure 2B). Subjects preferred the P-bet significantly more often
when choosing than when bidding, F(1, 23)= 40.54, p < 0.001,
and preferred the $-bet significantly less often when choosing than
when bidding, F(1, 23)= 49.21, p < 0.001.

Across all gamble pairs, subjects exhibited increased prefer-
ence for the $-bet in bids more often than the reverse effect, F(1,
23)= 104.37, p < 0.001. Subjects made weak P-to-$ reversals for
67± 5% of gamble pairs and weak $-to-P reversals for 10± 3%
of gamble pairs. Subjects also exhibited significantly more strict
P-to-$ reversals, choosing the P-bet both times and bidding higher
on the $-bet, than strict $-to-P reversals, choosing the $-bet both
times and bidding higher on the P-bet, F(1, 23)= 53.30, p < 0.001.
Subjects made strict P-to-$ reversals for 37± 4% of gamble pairs
and strict $-to-P reversals for less than 1± 1% of gamble pairs.
For pairs where the subject chose the P-bet both times, they bid an
average of $10.37± 2.35 higher on $-bet.

Preference reversals were also evident by changes in risk aver-
sion, or attribute weighting, in the two tasks. Subjects were
risk-averse, weighting probability more, during choice trials
(αchoice= 0.77, SE=±0.05). In contrast, subjects were close to
risk-neutral, weighting probability and amount almost equally
during bid trials (αbid= 1.03, SE=± 0.01; see Figures 2C,D).

αchoice’s were significantly smaller than αbid’s, t (21)=−4.37,
p < 0.001.

EYE-TRACKING RESULTS
For eye-tracking analyses, our main dependent variables were
number of fixations and looking durations. Both of these vari-
ables showed strong effects of task context. In each task, subjects
looked more at the preferred gamble type (P-bet in choices, $-bet
in bids) and the more heavily weighted attribute (probability in
choices, amount to win in bids).

Subjects looked at the preferred gamble type more, fix-
ating on P-bets more often during choice trials and $-bets
more often during bid trials (Figure 3). This was evidenced
by a significant interaction between trial type and gam-
ble type for both the number of fixations, F(1, 22)= 44.25,
p < 0.001, and for the duration of fixations, F(1, 22)= 23.53,
p < 0.001, in our between-task analysis. Looking within each
task, subjects made significantly more fixations on P-bets
(mean= 8.73± 0.55) than on $-bets (mean= 7.55± 0.61) during
choice trials, F(1, 22)= 27.48, p < 0.001. Subjects also spent sig-
nificantly more time looking at P-bets (mean= 2,229± 191 ms)
than at $-bets (mean= 2,050± 231 ms) during choice trials,
F(1, 22)= 7.77, p= 0.01. In contrast, during bid trials, subjects
made more fixations on $-bets (mean= 13.60± 0.98) than on
P-bets (mean= 12.05± 0.93; F(1, 22)= 22.75, p < 0.001) and
spent more time looking at $-bets (mean= 4,213± 445 ms)
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FIGURE 3 | (A) Average number of fixations of $-bets and P-bets during choices and bids. (B) Average duration looking at $-bets and P-bets during choices and
bids.
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than at P-bets (mean= 3,727± 405 ms; F(1, 22)= 16.68,
p < 0.001).

Fixations of the two attributes, probability and amount, also
differed between choice and bid trials. Subjects were more likely
to look at probabilities during choice and more likely to look
at amounts during bidding (Figure 4). This was evidenced by
a significant attribute by trial type interaction for both number
of fixations, F(1, 22)= 14.13, p < 0.01, and looking durations,
F(1, 22)= 4.29, p < 0.05, in our between-task analysis. Look-
ing within each task, subjects made significantly more fixations
on probability (mean= 4.3± 0.32 fixations) than on amount
(mean= 3.9± 0.30 fixations) during choice trials, F(1, 22)= 5.57,
p < 0.05. Similarly, subjects spent marginally more time look-
ing at probability (mean= 1,126± 122 ms) than at amount
(mean= 1,012± 100 ms) during choice trials, F(1, 22)= 4.19,
p= 0.05 [this effect was more reliable when considering both
gambles, instead of just the left gamble: duration on probabil-
ity= 2,121± 233 ms, duration on amount= 1,865± 191 ms, F(1,
22)= 5.99, p < 0.05]. In contrast, during bid trials, subjects made
significantly more fixations on amount (mean= 6.74± 0.53 fix-
ations) than on probability [mean= 6.06± 0.47 fixations; F(1,
22)= 8.12, p < 0.01], and spent marginally more time look-
ing at amount (mean= 2,137± 220 ms) than at probability
[mean= 1,832± 237 ms; F(1, 22)= 2.97 p < 0.10].

There was further interaction between these effects of gam-
ble type and attribute. Specifically, the interaction between trial

type and attribute was greater for $-bets than for P-bets. This
was evidenced by a significant three-way interaction between trial
type, gamble type, and attribute for both fixations, F(1, 22)= 5.43,
p < 0.05, and for looking duration, F(1, 22)= 11.32, p < 0.01, in
our between-task analysis.

We also examined which attribute was fixated on first in choice
and bid trials. First fixations were more likely to be on probability
than on amount across both kinds of trials (mean first fixation on
probability= 59± 13%; F(1, 22)= 9.70, p < 0.01 in our between-
task analysis). Looking within each task, probability was more
likely to be fixated on first in both choice trials, F(1, 22)= 11.06,
p < 0.01, and in bid trials, F(1, 22)= 4.62, p < 0.05. This was qual-
ified by a significant interaction between attribute and trial type
[F(1, 22)= 5.88, p < 0.05], with probability more likely to be fix-
ated on first in choice trials (62± 5% in choice trials vs. 55± 8%
in bid trials). This interaction, however, was not reliable when we
included both choice options (all four ROIs) in the analysis, rather
than restricting our analysis to only the left choice option [F(1,
22)= 1.27, p > 0.10]. The two-way interaction between attribute
and trial type was further qualified by a three-way interaction
between attribute, trial type, and attribute order, F(1, 22)= 52.32,
p < 0.001, in our between-task analysis. This interaction arose
because during bid trials, subjects primarily fixated on the top
attribute first (mean= 88± 3% of first fixations), regardless of
whether it was probability or amount. Subjects fixated on the top
attribute first to a lesser degree during choice trials (67± 5% of
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first fixations). Thus it appears attribute placement had a stronger
effect on first fixations than attribute identity.

Finally, we tested for any effects of individual differences by
examining the correlations between the eye-tracking measures and
behavioral measures. Only two of these correlations were statisti-
cally significant. Individuals who fixated on the P-bet more during
choice (evaluated using either fixations or looking duration) were
more risk-averse, rs=−0.66 and −0.61, ps < 0.01, respectively.
Note these correlations remained significant even when using a
Bonferroni correction for the number of correlations examined.

DISCUSSION
Here we replicated the preference reversal phenomenon in deci-
sion making under risk, in which people facing two gambles of
equal EV choose the one with the higher probability of winning,
but assign a higher price to the one with the larger potential payoff.
We have additionally shown that preference reversals are accompa-
nied by changes in visual fixations. Participants had more fixations
on the preferred gamble in each task (P-bets in choices, $-bets in
bids). They also had more fixations on the more heavily weighted
attribute in each task (probability in choices, amounts in bids).
These results show that visual fixations reflect preferences in deci-
sion making under risk, as they do in decisions about goods (Kra-
jbich et al., 2009, 2010), and that fixations further reflect attribute
weights in a multi-attribute choice paradigm. These results sup-
port a contingent weighting explanation of preference reversals,
and also suggest testable hypotheses about the neural mechanisms
of preference reversals.

Behaviorally, we replicated the classic preference reversal find-
ing. Our participants predominantly chose the high-probability
bet from a pair of gambles matched in EV, and predominantly
assigned higher prices to the (alternative) bet that offered the
larger amount to win. For 37% of gamble pairs, our participants
made strict P-to-$ reversals, choosing the P-bet twice and bidding
higher on the $-bet. Consistent with this, participants were overall
risk-averse during choices, and very slightly risk-seeking during
bids.

One novel aspect of our paradigm compared to previous work
is the highly repeated nature of the trials. Participants made 100
choices and 100 bids over the course of the experiment. Our results
demonstrate that preference reversals are not eliminated when
subjects are tested with many repeated trials. Our design does not
allow us to test whether they are diminished by repeated trials,
though the effects we observed in this experiment are of similar
size to those reported in the literature. Most neuroscientific meth-
ods require many repeated trials and within-subject comparisons.
While many context effects are eliminated under these conditions,
our results show that preference reversals are not, and therefore
may be a good paradigm for neuroscientific studies of context
effects.

Despite only having to assess the value of one gamble, partic-
ipants took longer to make bids than to make choices. Although
it is possible that the difference in response times might be due
to differences in response entry, it is unlikely that pressing one
or two more buttons accounts for an increase of more than 2 s.
Spending more time deciding on a bid than choosing between two
options is consistent with previous findings (Johnson et al., 1988;

Schkade and Johnson, 1988). It suggests that the decision process
for assigning prices is potentially more complex than that required
for binary choices. This is consistent with models that assume that
binary choice is the more basic process (Johnson and Busemeyer,
2005), but not with models that assume pricing is more basic (Luce
et al., 1993). Pricing and matching tasks have rarely been studied
in decision neuroscience (though see Plassmann et al., 2007) so
an interesting question for future research is the degree to which
choice and bidding rely on shared vs. distinct neural processes.

Recent work has found that fixations reflect trial-to-trial vari-
ability in preferences (Krajbich et al., 2009, 2010). Our findings
extend this principle to decision making under risk. During
choices, participants made more fixations on the preferred gam-
ble type in that task, P-bets, and spent a greater amount of time
looking at P-bets. During bids, participants made more fixations
on the preferred gamble type in that task, $-bets, and spent a
greater amount of time looking at $-bets. We acknowledge that
the bidding results are confounded by a longer reaction time for
$-bets than for P-bets, making this finding more difficult to inter-
pret. There is not such a confound in the choice results, however,
which clearly replicate the link between fixations and preferences
observed in other choice domains.

Our key finding, though, was that preference reversals were
associated with changes in visual fixations to the two gamble attrib-
utes in the two tasks. During bidding, participants made more
fixations on amounts and spent a greater amount of time looking
at amounts. During choices, participants made a greater number
of fixations on probabilities and spent a greater amount of time
looking at probabilities.

The directionality of these results is broadly consistent with the
contingent weighting hypothesis. According to this hypothesis,
preference reversals result from an increased weight on proba-
bility in value computations during choice, and a corresponding
increased weight on amount during bids. We found that people
fixate probabilities more during choice and amounts more during
bids.

These differences in fixations might only be an index of the
differential weighting of attributes, or alternatively might also be
a cause of this differential weighting. This latter possibility raises
several ideas for future research that would involve exogenously
controlling fixations. If fixations influence attribute weighting,
then preference reversals might be reduced, or even eliminated,
when participants are forced to look equally at probabilities
and amounts. In addition, forcing more fixations to the weaker
attribute of an option might make people less likely to choose that
option, a potential exception to previous work showing that fix-
ating on an option makes people more likely to choose it (Armel
et al., 2008).

However, a simple model in which preference reversals are due
solely to changes in attribute weights, and fixations provide an
unbiased index of these weights, has trouble completely account-
ing for our data. As shown in Figure 2D, participants’ decisions
reflect nearly equal weighting of probability and amount dur-
ing bids (i.e., participants are close to risk-neutral), and a greater
weighting of probability during choices (i.e., participants are risk-
averse). In contrast, as shown in Figure 4, participants fixate
probabilities more during choices and amounts more during bids.
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One possible resolution is that people are intrinsically risk-
averse, weighting probabilities more, and only changes from that
intrinsic baseline are reflected in changes from equal fixation
of the two attributes. Another possibility is that fixations are
monotonically, but not linearly, related to attribute weights. While
participants are close to risk-neutral during bids, they are still sig-
nificantly risk-seeking, and they also fixate amounts more than
probabilities. A final possibility, of course, is that fixations and
looking times reflect more than attribute weights alone. For exam-
ple, first fixations showed a strong effect of the spatial position
of attributes, and other influences could have shifted fixations
similarly in both choices and bids.

Our findings are similar to those reported previously by John-
son et al. (1988) and Lohse and Johnson (1996). Using Mouselab,
those authors found that subjects attended to amounts more, and
probabilities less, during bids than during choices (for example,
56 vs. 51% of the time in Experiment 1 of Schkade and Johnson,
1988). This same overall pattern was arguably more dramatic in
our fixation data. This points to a potential difference in sensi-
tivity between the two techniques, which might arise from how
people process information differently in the two environments.
In the Mouselab environment, only one piece of information is
available at any one time. Johnson et al. noted that in their exper-
iments some subjects used a strategy of first looking at all of the
information sequentially, and then holding it in mind while they
made their decision. Under free viewing, subjects do not adopt this
strategy at all. Of the total fixations in Figure 3, 3.59± 0.28 fixa-
tions during choice trials are made when returning to an item after
fixating on it once and then looking elsewhere, while 5.40± 0.42
represent return fixations during bidding.

Our data on individual differences provide additional support
for the notion that fixations reflect preferences during choices.
Individuals who fixated more on the P-bet during choice trials
were more risk-averse. However, we did not find any other signifi-
cant correlations between individual differences in eye movements
and behavioral measures. A possible reason for these null findings
is that we have a small sample size for evaluating individual dif-
ferences. Additionally, most participants show a robust preference
reversal effect, so there is limited variability in the number of
preference reversals. Future research could further explore how
individual differences in fixations related to individual differ-
ences in preference reversals, perhaps using a larger sample or
a paradigm in which there is greater variance in the behavioral
effect.

Future research could also investigate how different presenta-
tion formats affect eye fixations and, in turn, preference reversals.

For example, Johnson et al. (1988) have shown that different pre-
sentation formats can move around preference reversals and that
these changes are associated with changes in information pro-
cessing. Specifically, when probabilities are more complex (e.g.,
399/456) the number of preference reversals increases. In addition,
subjects spent a greater proportion of time viewing probabil-
ity information when probabilities were displayed as complicated
fractions, and subjects who spent more time on probability also
demonstrated more reversals. We do not know of any similar
studies looking at the relationship between visual fixations and
decisions under risk when presentation format varies, though this
would be an interesting follow-up to our study.

Another interesting question for future research concerns the
neural mechanism of preference reversals. Several studies have
now demonstrated that BOLD activity in ventromedial prefrontal
cortex and ventral striatum is correlated with the subjective value
of the options under consideration during decision making (Kable
and Glimcher, 2009). A recent study showed that value-related
activity in these regions is further modulated by visual fixations,
tracking the value of the fixated item compared to the item not
fixated (Lim et al., 2011). Paired with our findings, this suggests
the intriguing hypothesis that BOLD activity in ventromedial pre-
frontal cortex and ventral striatum differentially reflects probabil-
ities and amounts during choices and bids. That is, in a preference
reversal paradigm, BOLD activity in these regions might be more
strongly affected by probabilities during choice and more strongly
affected by amounts during bids. Such a finding would also sug-
gest that neural correlates of probability and magnitude (Knutson
et al., 2005) could depend on the task context.

In conclusion, we found that preference reversals in decision
making under risk were accompanied by differential attention to
probabilities vs. amounts. The directionality of this effect was con-
sistent with a contingent weighting explanation (Tversky et al.,
1988), with people looking at probabilities more during choice
and amounts more during bids. Given recent work demonstrating
neural correlates of value (Kable and Glimcher, 2009), which are
modulated by visual attention (Lim et al., 2011), this work sug-
gests testable hypotheses regarding how task-dependent strategies
might alter the weighting of attributes in the neural computation
of value to cause preference reversals.
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Functional imaging studies examining the neural correlates of risk have mainly relied on
paradigms involving exposure to simple chance gambles and an economic definition of
risk as variance in the probability distribution over possible outcomes. However, there
is little evidence that choices made during gambling tasks predict naturalistic risk-taking
behaviors such as drug use, extreme sports, or even equity investing.To better understand
the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they
completed the Balloon Analog Risk Task, an experimental measure that includes an active
decision/choice component and that has been found to correlate with a number of natural-
istic risk-taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking
occurs under uncertainty and might be experienced either as the accumulation of greater
potential rewards, or as exposure to increasing possible losses (and decreasing expected
value). We found that areas previously linked to risk and risk-taking (bilateral anterior insula,
anterior cingulate cortex, and right dorsolateral prefrontal cortex) were activated as partic-
ipants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal
cortex (vmPFC) activity decreased as participants further expanded balloons. In light of
previous findings implicating the vmPFC in value calculation, this result suggests that esca-
lating risk-taking in the task might be perceived as exposure to increasing possible losses
(and decreasing expected value) rather than the increasing potential total reward relative
to the starting point of the trial. A better understanding of how neural activity changes with
risk-taking behavior in the task offers insight into the potential neural mechanisms driving
naturalistic risk-taking.

Keywords: risk, risk-taking, BART, ventromedial prefrontal cortex, decision-making, fMRI

INTRODUCTION
To date, functional imaging studies examining neural correlates of
risk-taking have generally assumed an economic conception of risk
defined as the variance of the probability distribution over possi-
ble outcomes (Markowitz, 1952). Thus, many functional imaging
studies have relied on paradigms that were adapted for use with
fMRI and involve exposure to simple chance gambles. These stud-
ies have asserted that regions such as the dopaminergic midbrain,
the striatum, and anterior insula code risk (Paulus et al., 2003;
Kuhnen and Knutson, 2005; Preuschoff et al., 2006) and that the
insula codes risk prediction errors (Preuschoff et al., 2008).

While imaging studies using chance gambles have been inter-
esting and informative, they provide an incomplete account of
naturalistic risk-taking behavior. First, there is only modest evi-
dence that choices among chance gambles in the laboratory can

predict naturalistic risk-taking behaviors, such as drug abuse,
physically risky sports, or even aggressive financial investment
(Figner and Weber, 2011; Fox and Tannenbaum, 2011; Schon-
berg et al., 2011). Although a few studies have documented some
successes (Barsky et al., 1997; Pennings and Smidts, 2000; Brown
et al., 2006; Jaeger et al., 2010) others have failed to do so (e.g.,
Brockhaus, 1980) or have found that a simple self-report ques-
tion about general risk propensity predicts naturalistic risk-taking
more consistently (Dohmen et al., 2011). Naturally, such self-
reports do not lend themselves to imaging studies, but can serve as
covariates to fMRI-compatible tasks. Second, some fMRI-adapted
laboratory tasks (e.g., Preuschoff et al., 2006; Tobler et al., 2007)
have not included an active decision component, whereas others
that do (e.g., Christopoulos et al., 2009; Tobler et al., 2009) may
fail to evoke the dynamic, anticipatory emotions accompanying
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naturalistic risky decisions (Loewenstein et al., 2001), such as
escalating tension and exhilaration.

In contrast to chance gamble paradigms, The Balloon Analog
Risk Task (BART, Lejuez et al., 2002) captures the escalating ten-
sion, which is often inherent to naturalistic risk-taking, and has
also been found to predict several naturalistic risk-taking behav-
iors. In the BART, participants sequentially pump puffs of air into
a balloon depicted on a computer screen (Figure 1). On each
trial a participant earns a fixed amount of money for each suc-
cessful pump (i.e., that expands, but does not break the balloon)
but loses the accumulated amount if the balloon explodes before
the participant stops pumping the balloon and cashes out. Sub-
jects are unaware of the explosion probability of the balloon and
thus the decision to pump or cash-out is made under uncertainty.
The average number of pumps across all trials has been shown to

correlate with self-reports of risk-taking behaviors such as steal-
ing, unprotected sex, smoking, and substance abuse in adults and
adolescents (Lejuez et al., 2003a,b, 2004, 2007; Bornovalova et al.,
2005).

The goal of the current study was to identify the neural sys-
tems associated with risk-taking in the BART. In the task, as in
natural environments, taking a risk (making an additional pump)
can result in increased potential gains but also increases the like-
lihood of potential losses. This raises the question of whether
participants cognitively represent the task in terms of the potential
total reward relative to the starting point of a given trial (so that
the potential gain rises with continued pumping) or in terms of
possible losses and gains relative to a reference point that shifts
after each successful pump (so that loss exposure increases and
expected value decreases with continued pumping). Interestingly,

FIGURE 1 | Example trials from the fMRI-adapted BART task. (A) An
example of an explosion trial: participants press one of two buttons to inflate
puffs of air into a balloon presented on a computer screen. Every successful
pump adds $0.25 to their temporary bank for that trial. If the balloon explodes

before the participant cashes out then nothing is won on that trial. However,
an explosion does not affect the cumulative total winnings earned on prior
trials. (B) An example of a cash-out trial where the participant decided to stop
pumping the balloon and earn the amount accumulated up to that point.
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when Wallsten et al. (2005) compared the predictive power of com-
putational learning models to account for participants’ behavior
in the BART, they found that two models best fit the data. The
results marginally favored the model suggesting that people focus
on accumulating rewards relative to the starting point of a trial over
a model in which participants evaluated gains and losses relative
to an updating reference point. However, several studies found
that lay perceptions of risk tend to increase with greater expo-
sure to possible harm or loss (e.g., March and Shapira, 1987), and
behaviors such as drug use, stealing, and base jumping are often
labeled “risky” because they can result in loss or harm to oneself or
others (e.g., Furby and Beyth-Marom, 1992). In the current study
we used fMRI data to investigate the cognitive representation of
risk-taking in the BART, which can potentially inform how people
frame risk-taking in naturalistic settings. A prior fMRI study of
the BART (Rao et al., 2008) did not address this issue directly and
focused on comparisons between active and passive risk-taking.
That study also modeled risk in the task differently and did not
have subjects play for real money.

Previous studies using static choice tasks involving chance gam-
bles have found that activity in the ventromedial prefrontal cortex
(vmPFC) correlates with decision values for a wide range of differ-
ent rewards (Rangel and Hare, 2010) and is consistent with value
integration (Rushworth et al., 2011). Based on these findings, we
suggest that if participants represent the value of each pump as an
accumulated reward relative to the starting point of the trial, we
would expect an increasing activation in vmPFC with increasing
pumps. If, on the other hand, participants update their reference
point after each pump, we would expect decreasing vmPFC activ-
ity as the number of pumps increases. A better understanding
of how neural activity changes with risk-taking behavior in these
systems during the BART may shed new light on potential neural
mechanisms driving naturalistic risk-taking, including instances
of impaired decision-making such as addiction.

MATERIALS AND METHODS
PARTICIPANTS
Sixteen healthy, right-handed volunteers (six males; mean age
23.6 ± 2.9 years) were recruited via advertisements on the UCLA
campus. All subjects were free of neurological or psychiatric his-
tory and gave informed consent according to a University of
California, Los Angeles Institutional Review Board protocol. Sub-
jects were informed that they would be compensated on the basis
of task performance.

TASK
In the BART (Figure 1), subjects inflate simulated balloons, and
accrue monetary rewards for each successive “pump” during a par-
ticular trial. A trial is defined as a balloon that can be pumped a
certain number of times and the trial can conclude in two dif-
ferent ways. First, the participant may “cash-out” at any point
during the trial and secure the cumulative winnings up to that
point for that balloon in their cumulative total “bank.” Second,
a balloon may explode; in this case, participants would lose the
money accumulated on that trial alone (but not the total accu-
mulated during previous cash-out trials). In our fMRI-adapted

version of the BART, each trial began with a balloon display-
ing a value of $0.25 and the value of the balloon increased by
$0.25 for each successive pump. An explosion did not affect the
cumulative total earnings from previous cash-out trials, which
was displayed at the bottom of the screen at the end of each
trial. During each trial, participants were presented with one of
three types of “reward” balloons, each having a different explo-
sion probability and signified by a different color: red, green,
or blue. The maximum number of pumps allowed during each
trial was determined by drawing a random number from a uni-
form distribution with maximum values of 8, 12, and 16, respec-
tively. Thus, the explosion probability of each additional pump
within a trial increased exponentially during the trial, at differ-
ent rates for different color balloons. Participants were informed
that balloon colors may signify differing explosion distributions,
but were not provided any specific information about the explo-
sion parameters. As a control task, participants intermittently
inflated a gray “control” balloon (maximum 12 pumps) that did
not explode and had no associated monetary value. The par-
ticipants were instructed to inflate the control balloon until it
disappeared from the screen (pumps ranged from 1 to 12, aver-
age 6.4 inflations) and the next trial began. Unlike with reward
balloons, participants had no control over how many times they
could inflate the control balloon before the trial ended. The order
in which trials were presented was randomized among these four
balloons.

PROCEDURE
Participants were given instructions and a short demonstration of
the task before entering the scanner. They were instructed to use
two buttons on a button box: the right pointer finger to inflate the
balloon, and the right middle finger to cash-out. Inter-stimulus
(pump) intervals varied between 1 and 3 s and inter-trial (bal-
loon) intervals varied between 1 and 12 s with a mean of 4 s;
these intervals were chosen in order to maximize de-convolution
of the hemodynamic response of each individual event. The task
was self-paced, and therefore the number of trials varied for each
participant. Three scanning runs each lasted 10 min unless the
participant ran out of balloons (each participant was allowed a
maximum of 12 of each of the different balloons, including the
control balloon), which also terminated the run. Stimulus presen-
tation and recording of responses was conducted using MATLAB 6
and Psychtoolbox1, on a PowerBook G4 running Mac OS9. Visual
stimuli were presented using MRI-compatible goggles (Resonance
Technologies, Van Nuys, CA, USA).

BEHAVIORAL ANALYSIS
For each participant, for each of the three sessions, and for each of
the three balloon types we calculated the total and average num-
ber of pumps. In addition, we calculated the total and average
number of pumps only for trials when the participant cashed out
before the balloon exploded (we refer to the latter measure as
“adjusted pumps,” which has been found to have higher predic-
tive validity for self reported risk-taking; Lejuez et al., 2002). We

1www.psychtoolbox.org
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also calculated the total and average number of cash-out trials,
the average sum won on each trial, and the average reaction time
(RT) for all pumps, cash-outs, and of the first and last pump from
each trial. We performed a repeated measures ANOVA to compare
these variables across the three sessions and three balloons. Sta-
tistical analyses of behavioral data were conducted using PASW
Statistics Version 18.0.

MRI DATA ACQUISITION
Imaging was conducted using a 3T Siemens AG (Erlangen, Ger-
many) Allegra MRI scanner at the Ahmanson-Lovelace Brain
Mapping Center at UCLA. Participants first received a short local-
izer scan, followed by a T2-weighted matched-bandwidth high-
resolution structural scan, which matched the prescription of the
functional runs. In each functional run, up to 300 functional
T2∗-weighted blood-oxygen level-dependent (BOLD) echoplanar
(EPI) images were acquired [34 contiguous 4 mm oblique axial
slices; repetition time (TR) of 2 s, echo time (TE) of 30ms; matrix,
64 × 64; flip angle 90˚]. A full structural magnetization-prepared
rapid-acquisition gradient echo (MPRAGE) scan was conducted
for each participant following the functional runs (TR, 2.3; TE
2.1; FOV 256; matrix, 192 × 192; sagittal plane; slice thickness,
1 mm; 160 slices). The data are available from the OpenfMRI
repository2.

IMAGE PREPROCESSING AND REGISTRATION
Data analysis and preprocessing were conducted using FSL 4.1.6
software tools3. The first two volumes were discarded to allow for
T1 equilibrium effects. The remaining images were then realigned
using MCFLIRT to compensate for small head movements. Trans-
lational movement parameters did not exceed 2 mm in any direc-
tion. The data were highpass-filtered in the temporal domain
using a Gaussian-weighted least-squares straight line fitting, with
sigma = 50.0 s. Brain extraction was done using BET. Affine spatial
normalization was done using FLIRT and motion correction. Data
were spatially smoothed using a 5-mm full-width-half-maximum
Gaussian kernel. A three-step registration procedure was used
by first registering BOLD EPI images to the matched-bandwidth
high-resolution structural scan, then to the MPRAGE image, and
finally into standard Montreal Neurological Institute (MNI) space.
Statistical analyses of functional data were performed in native
space, with the statistical maps normalized to standard space prior
to higher-level analyses.

fMRI ANALYSIS
Analysis of functional data was done using a multi-stage gen-
eral linear model approach with FEAT, in which event modeling
was performed separately for each run using a canonical double-
gamma hemodynamic response function. The three runs for each
participant were then averaged together in a higher-level fixed-
effects model. The group-level analysis was performed using the
FMRIB Local Analysis of Mixed Effects 1 module in FSL (Beck-
mann et al., 2003). Outliers were automatically de-weighted in the
multi-subject statistics using mixture modeling as implemented in

2http://openfmri.org/dataset/ds000001
3www.fmrib.ox.ac.uk/fsl

FSL (Woolrich, 2008). Group analysis Z statistic images were pre-
pared to show clusters determined by a height threshold of Z > 2.3
and an extent threshold of p < 0.05, corrected using the theory of
Gaussian random fields (Poline et al., 1997), and all data shown in
the figures adhere to these thresholds. For visualization purposes,
statistical maps of all analyses were projected onto a study-specific
average brain of the participants.

fMRI MODEL
In the general linear model we defined several regressors for each
of the three types of events occurring in the task: pumps, cash-outs,
and explosions. For the pumps we included three regressors:

(1) PumpsAverage: average activity across all pumps with fixed
duration and without parametric modulation.

(2) PumpsParametric: parametrically modulated activity by the
demeaned number of pumps (linearly increasing) within each
trial and with fixed duration.

(3) PumpsRT: average activity across all pumps with duration of
pumps set to the actual RT of each pump.

For the first two regressors, we used the average RT for all
pumps across all participants. The third regressor (PumpsRT)
was orthogonalized with respect to the average activity regressor
(PumpsAverage). The RT regressor was included to account for brain
activity related to RT effects (see Grinband et al., 2008, 2010) across
pumps. These three regressors were also included for the con-
trol balloons (ControlAverage; ControlParamertic; and ControlRT), to
account for the motor and visual activity occurring when pumping
balloons with no potential monetary reward or explosions. For the
cash-out events we included three similar regressors (CashAverage;
CashParametric; and CashRT). However, because there could be only
one cash-out (or explosion) event for each trial (as opposed to
multiple pumps within each trial), the demeaning of the pump
number on which the cash-out (explosion) occurred was done
across trials, rather than within trials. For the explosion events
we included two regressors: ExplodeAverage and ExplodeParametric

as there was no measured RT associated with explosions. Tem-
poral derivatives were included as covariates of no interest to
improve statistical sensitivity. Null events, consisting of the jittered
inter-trial intervals when the screen was blank, were not explicitly
modeled and therefore constituted an implicit baseline.

RESULTS
BEHAVIORAL RESULTS
The average number of pumps differed significantly between the
different colored balloons (Table 1) suggesting that participants
learned to differentiate between the balloons’ explosion thresh-
olds, despite the fact that they were not explicitly informed that
these balloons differed in their underlying explosion probabili-
ties. The average number of pumps on cash-out trials was lower
than the average tolerance of the balloons [3.53, 3.99, and 4.82
for the average balloon tolerances of 4 (8 max), 6 (12 max), and
8 (16 max) pump balloons, respectively], suggesting that partic-
ipants were, on average, risk-averse. In particular, a risk-neutral
participant would maximize expected payout if she pumped to
the level of the average tolerance for every balloon. We ran a
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Table 1 | Statistical analyses of behavioral variables from the task (SD in parentheses).

Red, max 8 Green, max 12 Blue, max 16 Runs Balloons

Average number of all pumps 3.13 (0.71) 3.64 (1.20) 4.37 (1.38) F 2,30 = 2.336, p = 0.11 F 2,30 = 12.855, p < 0.001

Average number of adjusted pumps 3.53 (1.32) 3.99 (1.55) 4.82 (1.66) F 2,26 = 0.986*, p = 0.38 F 2,26 = 15.574*, p < 0.001

Number of trials 24.44 (3.56) 23.06 (3.79) 24.88 (3.70) F 2,30 = 1.386, p = 0.25 F 2,30 = 4.18, p < 0.05

Number of cash-out trials 10.88 (4.73) 14.31 (4.50) 16.69 (5.16) F 2,30 = 2.272, p = 0.12 F 2,30 = 21.57, p < 0.001

Average trial total win 1.13 (0.33) 1.25 (0.39) 1.45 (0.42) F 2,30 = 0.717, p = 0.49 F 2,30 = 12.87, p < 0.001

Average pump RT 0.76 (0.42) 0.81 (0.42) 0.74 (0.29) F 2,30 = 1.925, p = 0.16 F 2,30 = 2.485, p = 0.1

Average RT of adjusted pumps* 0.78 (0.47) 0.81 (0.37) 0.78 (0.35) F 2,26 = 3.947, p < 0.05 F 2,26 = 0.388, p = 0.68

Cash-out RT* 0.95 (0.81) 0.88 (0.35) 0.90 (0.40) F 2,26 = 13.468, p < 0.001 F 2,26 = 0.369, p = 0.69

In the ANOVA for the calculation of main effects of RUN, BALLOON we used the number of balloons per run. In the Table, for simplicity purposes we present the

averages separately for the three balloons collapsed across runs. Standard deviation (SD) is presented in parentheses. *For these variables data from two participants

were not included in the analysis, as these participants had no cash-out trials for one or more of the balloons in one or more of the runs.

repeated measures ANOVA with factors BALLOON and RUN to
test the interaction between these factors but the interaction was
never significant. For almost all of the behavioral variables there
was a significant main effect of BALLOON, but no effect of RUN
(Table 1; Figure 2). That said, participants apparently adjusted
their behavior as the task progressed, as seen in the significant
RUN effect for the average cash-out RT (i.e., the RT decreased
across runs) and a smaller but significant effect of the RT of pumps,
but only on cash-out trials. No effect of BALLOON was noted for
any of the RT variables.

NEUROIMAGING RESULTS
Different task-related events (pumps, cash-outs, explosions) acti-
vated distinct regions of the reward-based decision-making net-
work. We now review the results for each event separately (see
Table 2 for a complete listing of coordinates).

Pumps
Active risk-taking in the BART is captured by the sequential
pumping of the rewarded balloons. Therefore, we focused on the
parametric modulation of the rewarded balloons pumps, subtract-
ing the parametric modulation of the control balloon pumps (thus
removing visual and motor effects unrelated to risk and reward).
Our behavioral results show that participants modulated their
choice behavior coincident with the balloons’ different explosion
probabilities. We separately modeled participants’pump responses
across the three rewarded balloons. However, we found no signif-
icant differences between the activity elicited during pumping of
the different balloons, possibly due to power limitations arising
from the limited number of trials for each balloon type. There-
fore, we collapsed the rewarded balloons into a single regressor.
We demeaned the number of pumps within each trial to capture
the escalating explosion (“tension”) probability and potential gain
and/or loss associated with each of the three unique balloon types.

Parametric effects. For the positive contrast of parametric mod-
ulation by pump number (PumpsParametric > ControlParametric)
we found significant activations in the bilateral anterior insula,
dorsal anterior cingulate cortex (ACC), and right dorsolat-
eral prefrontal cortex (DLPFC; Figure 3A, red). Each of
these regions has been associated with risk (traditionally

FIGURE 2 | Average number of pumps for the three balloon types

across the three fMRI runs. There was no significant effect of RUN but
there was a significant effect of BALLOON, indicating participants
differentiated between the three types (seeTable 1).

defined as variance in the probability distribution over pos-
sible outcomes) in previous studies (Preuschoff et al., 2006,
2008). More importantly, when we tested the negative of
this contrast (i.e., ControlParametric > PumpsParametric) we found
highly focused vmPFC activation (Figure 3A, Blue) as well
as bilateral medial temporal lobe (MTL) activation. The same
effect was observed in vmPFC (as well as posterior cin-
gulate) in the Baseline > PumpsParametric contrast, suggesting
that this effect is not driven by the response to the control
balloons.

Average activity. We observed widespread and signifi-
cant positive effects for average activity during pumps
(Figure 3B), subtracting average activity during control pumps
(PumpsAverage > ControlAverage), in bilateral insula, dorsal ACC,
caudate, lateral orbito-frontal cortex (OFC), frontal poles, and
the visual and parietal cortices. Moreover, there was wide-
spread activation with the negative of this contrast (i.e.,
ControlAverage > PumpsAverage) in the default mode network
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Table 2 | Peaks of significant clusters of activation.

Region X Y Z Max Z Cluster

size

PUMPS

Parametric

PumpsParametric > controlParametric

R ant insula 32 20 2 4.06 1531

L ant insula −30 14 −8 3.9 635

Dorsal anterior cingulate 6 8 46 3.55 991

Intra-calcarine/lingual 2 −78 0 4.11 499

R frontal pole/MFG 36 44 26 3.31 439

ControlParametric > pumpsParametric

vmPFC 4 20 −16 4.25 1867

L lateral OFC/temporal pole −36 18 −34 3.66 633

R Temporal pole 34 14 −36 3.33 358

Average

PumpsAverage > controlAverage

R frontal cortex 42 52 8 5.23 33072

Dorsal ACC, B frontal poles

B Insula, B caudate nucleus

B supra-marginal gyrus

B occipital cortex

L MFG −52 22 38 3.97 477

ControlAverage > pumpsAverage

L fusiform −20 −72 −8 5.47 44807

Posterior cingulate gyrus

B post-central gyrus

B hippocampus

L SFG −24 20 44 4.71 943

RT

PumpsRT > controlRT

R occipital pole 28 −94 2 5.05 2401

L occipital pole −26 −94 −2 4.91 1577

CASH-OUTS

Parametric: cashParametric

Positive

ACC 6 28 28 3.65 349

Lingual gyrus 2 −86 −2 4.02 17636

Precuneues

Post-central gyrus −54 −14 22 3.64 317

Average: cashAverage

Positive

R occipital fusiform gyrus −38 −62 −20 6.73 107468

B occipital cortex

Cingulate cortex,

pre-central gyrus,

B post-central gyrus,

pre-central gyrus,

B Insula, caudate, putamen

R lateral OFC

RT: cashRT

Positive

L occipital cortex −30 −88 −2 5.43 16504

R occipital cortex 38 −84 −8 5.2 5230

(Continued)

Region X Y Z Max Z Cluster

size

L hippocampus −22 −28 −6 3.61 1357

L pre-central gyrus −46 −2 34 3.5 543

ACC, bilateral anterior insula

B MFG, bilateral occipital

cortex

B lateral occipital cortex

B caudate nucleus

EXPLOSIONS

Parametric: explosionsParametric

Positive

Anterior cingulate gyrus 0 24 28 4.01 1993

Lingual gyrus 4 −80 −12 5.12 17434

Cingulate gyrus 0 −14 34 3.74 1266

R insula 36 10 0 3.28 799

L cerebellum −12 −64 −42 3.92 540

R Superior parietal lobule 24 −56 50 3.04 285

Average: explosionsaverage

Positive

L occipital fusiform gyrus −26 −86 −12 6.61 32785

R Pre-central gyrus 48 6 24 4.77 8465

L Pre-central gyrus −48 0 38 4.41 1721

L insula −30 16 −8 4.48 1642

Negative

vmPFC −6 38 −12 3.61 504

X, Y, and Z MNI coordinates in millimeters indicate the location of peak voxel

activation. R, Right; L, Left.; B, Bilateral.

(Smith et al., 2009), which includes frontal, parietal, and temporal
cortices.

Reaction time. PumpsRT > ControlRT revealed bilateral occipital
pole activations. There were no activations for the negative of this
contrast (i.e., ControlRT > PumpsRT).

Cash-outs
Parametric effects. For the parametrically modulated cash-out
regressor there were clusters of activation in ACC as well as in areas
that have not been emphasized in the reward/risk related litera-
ture (including planum temporale, precuneus, and visual areas).
No regions showed a negative correlation with the parametrically
modulated cash-out regressor.

Average activity. Cash-out events led to significant activations
across many dopamine-innervated regions including cingulate
cortex, bilateral insula, and striatal regions (Figure 4A). This event
has been interpreted as a“win”in a previous BART study (Rao et al.,
2008). However, it might also be interpreted as the alleviation of
the tension that would have been caused by continued exposure
to risk (i.e., “relief”). Cash-outs have a completely predicted out-
come, as participants already know exactly how much money will
be transferred to their bank when they decide to cash-out. No
regions showed a negative correlation with average activity during
cash-outs.
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FIGURE 3 | fMRI activations during pumping. (A) Parametric modulation of
increasing number of pumps of the rewarded balloons (subtracted by the
parametric modulation of the control balloon). Red scale presents
PumpsParametric > ControlParametric and blue scale presents

ControlParametric > PumpsParametric. (B) Average activity during pumps (subtracted
by the average activity of pumping the control balloon). Red scale presents
PumpsAvergae > ControlAverage and blue scale presents
ControlAverage > PumpsAverage.

FIGURE 4 | fMRI activations during cash-outs. (A) Average activity during cash-out events. (B) Reaction time modulated activity during cash-out events.

Reaction time. Cash-out activity modulated by cash-out RT
(Figure 4B) was seen in visual areas, parahippocampal areas and
also in regions previously related to risk including bilateral anterior
insula, middle frontal gyrus (MFG), and dorsal ACC. No regions
showed a negative correlation with average activity modulated by
actual cash-out RT.

Explosions
Parametric effects. For parametrically modulated activity during
explosions, we observed activations in the anterior and posterior
cingulate cortex, and right inferior frontal gyrus (Figure 5A).
No regions showed a negative correlation with parametrically
modulated explosion activity.
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FIGURE 5 | fMRI activations during explosions. (A) Parametrically modulated activity (by number of pumps) during explosion events. (B) Average activity
during explosion events. Red scale presents positive activations and blue scale presents the negative of the contrast.

Average activity. During explosions, activity was seen in bilat-
eral insula, ACC, parietal, and superior frontal gyrus (Figure 5B).
However, unlike a previous BART fMRI study (Rao et al., 2008),
we observed no positive or negative activity in the ventral stria-
tum (i.e., no indication of a negative prediction error signal). The
activation for the negative of this contrast was focused within
vmPFC.

DISCUSSION
To investigate the neural basis of naturalistic risk-taking, we
scanned participants using fMRI while they completed the BART,
an experimental measure that includes an active decision/choice
component and that has been found to correlate with natural-
istic risk-taking behaviors (Lejuez et al., 2002, 2003a,b). In this
task, as in many naturalistic settings, escalating risk-taking might
be perceived as the accumulation of greater potential rewards or
as exposure to increasing possible losses and therefore decreasing
marginal expected value. We found that vmPFC activity decreased
as the number of pumps increased. In light of previous findings
implicating vmPFC in value calculation (e.g. Rushworth et al.,
2011), we believe that this result may suggest that escalating risk-
taking in the task may be perceived as exposure to increasing
possible losses (and decreasing marginal expected value) rather
than as an increasing potential aggregate reward relative to the
starting point of the trial (see below for alternative interpretations
of this result). In addition we found that activations in bilateral
anterior insula, ACC, and right DLPFC correlated positively with
increasing number of pumps. Activations in all of these regions
have been previously found to correlate with risk and/or risk-
taking, though they have also been associated more generally with
task difficulty and error monitoring.

In the original BART, and in the version used in the cur-
rent study, each successful pump increases the potential trial

reward by a fixed amount. At the same time, each successful
pump increases the amount that a participant could potentially
lose on the next pump, as well as the likelihood that the next
pump will result in an explosion. Wallsten et al. (2005) compared
several computational learning models to account for partici-
pants’ behavior in the BART. In particular, they examined two
potential cognitive representations of the decision to continue
pumping (or not). They suggested that, on each pump, partici-
pants might consider: (a) the total value of the potential gain they
will receive if the balloon does not explode, relative to the trial
starting point, or (b) the sequentially updated marginal value that
each additional pump will add (if the balloon does not explode)
or subtract (if it does explode), relative to the current accumu-
lated gain. Their results did not lead to a definitive conclusion
but the authors found evidence supporting the first representa-
tion. However, our results support the second representation and
favor the suggestion that participants dynamically update the value
of each additional pump until the subjective value of the next
pump is negative. In this value calculation, the potential amount
of gain over pumps is considered constant across pumps (but
decreases in probability) while the possible amount of loss is per-
ceived to increase with every pump (and increases in probability).
Although this is only one possible interpretation of the results
(see other possibilities below) it accords with the common lay
and clinical view of risk as increasing with greater exposure to
loss or harm (March and Shapira, 1987; Furby and Beyth-Marom,
1992).

Previous findings suggest that the vmPFC encodes different
types of decision values (Plassmann et al., 2008; Chib et al.,
2009; Glascher et al., 2010; Hare et al., 2010) and acts as a
value integrator (Rushworth et al., 2011). Thus, our finding of
decreasing vmPFC activation, coinciding with participants deci-
sion to further inflate the balloon, suggests that they may be
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updating their reference point when assessing the possible con-
sequences of each additional pump. Moreover, the current study
is the first to provide evidence consistent with such a value rep-
resentation in a sequential risk-taking task. We note that activ-
ity in the vmPFC has been shown to parametrically increase
(decrease) with potential gains (losses) when participants were
deciding whether or not to accept mixed gambles that offer a
50-50 chance of gaining (or else losing) various amounts of
money (Tom et al., 2007). This result is consistent with the notion
that participants focus their attention on potential losses from
each additional pump rather than on the sequential margin-
ally added value. Unfortunately, we cannot distinguish between
these two interpretations because the expected value of an addi-
tional pump and the potential loss are perfectly correlated in
the BART.

A previous imaging study of the BART (Rao et al., 2008) did not
report any evidence of a value signal encoded in the vmPFC. This
might be either due to the lack of reporting any negatives of the
main contrasts and corresponding activations and/or due to the
fact that the study used different value and explosion functions
and that the participants did not play for real money. A recent
investigation into the link between alcohol dependence and risk-
taking behavior in the BART (Bogg et al., 2011) also did not report
vmPFC activations for any contrast, but this may be due to the
use of a very different version of the BART that separated the out-
come of each pump from the next decision. It should be noted that
both of these studies parameterized risk as the objective explosion
probability of each balloon. We chose to use the demeaned num-
ber of pumps for each balloon (rather than the objective explosion
probability known only to an ideal observer) since our behavioral
results suggested that subjects did not have an accurate estima-
tion of the actual explosion probabilities for each balloon (see
Figure 2; Table 1). The choice to demean each pump within a
trial compared to that trial’s average encapsulates the different
explosion probabilities of the different balloons (since the aver-
age pumps per balloon were significantly different) while testing
for the increasing tension with each increasing pump. Unfortu-
nately, the number of trials per balloon type and the sample size
of this study did not allow us to perform a proper fit of a learn-
ing model to estimate the subjective explosion probability of each
subject on a trial by trial basis. The current sample size also did
not allow examination of individual differences (on the required
sample size for individual differences related to risk-taking in the
task see Yarkoni, 2009).

The regions that exhibited activations with increased risk-
taking in the present version of the BART (bilateral insula, ACC,
and right DLPFC) were the same as those identified with a dif-
ferent version of the BART (Rao et al., 2008). First, the insula has
been previously shown to encode economic risk (as defined by
variance in the probability distribution over possible outcomes;
Preuschoff et al., 2006, 2008) and likewise in the BART, each
additional pump leads to increased variance in the probability
distribution over possible outcomes. Activity in the insula has
also been previously shown during active risk-taking tasks and
specifically to be more active when choosing to avoid risk (Paulus
et al., 2003; Kuhnen and Knutson, 2005). Second, increasing ACC
activation has been previously observed with increasing decision

conflict, error likelihood (Alexander and Brown, 2011), and action
selection (see recent review by Rushworth et al., 2011). The ACC
(and anterior insula) are the most commonly activated regions in
neuroimaging studies (Nelson et al., 2010; Yarkoni et al., 2011).
This may be due to the fact that task difficulty generally cor-
relates with prolonged RTs, which might have led to increased
fMRI activations. Recently, Grinband et al. (2010) demonstrated
this by showing that RT effects correlated with activity in dor-
sal ACC beyond the conflict in a Stroop task. It is important to
note that we observed ACC and insula activations that persisted
when controlling for RT. This could be an indication that the dif-
ficulty of the decision increased during each subsequent pump
of the balloon. To our knowledge, our study is the first in the
risk-taking domain to account for RT effects. Third, an additional
manipulation used by the authors in a previous BART study (Rao
et al., 2008) tested active versus passive risk-taking in the task and
found that right DLPFC was active when participants were taking
active compared to passive risk. Fecteau et al. (2007) were able
to reduce risk-taking in the BART by enhancing DLPFC activ-
ity using transcranial direct current stimulation (tDCS). In a task
very similar to the BART (the Devil’s task), Gianotti et al. (2009)
found a negative correlation between tonic activity in the DLPFC
and risk-taking. Studies using other risk-taking tasks have shown
that temporarily disrupting DLPFC activity, using repetitive tran-
scranial magnetic stimulation (rTMS), led to increased risk-taking
(Knoch et al., 2006). DLPFC activity has been also demonstrated
while exerting self-control in a task where participants needed
to choose healthy over unhealthy food items (Hare et al., 2009).
All of these studies support the conclusion that DLPFC activ-
ity is required in order to exert cognitive control and reign in
continued risk-taking. We interpret our result showing increas-
ing DLPFC activation with increased pumping as reflecting the
increased engagement of self-control, which drives subjects to stop
pumping as the balloons increase in size and are more likely to
explode.

There is an intriguing similarity between our results and those
of Campbell-Meiklejohn et al. (2008). Using a loss-chase para-
digm, in which participants decide to either accept a small loss or
else continue gambling and thereby increase or expunge that loss,
the authors found that loss-chasing correlated with an increase in
vmPFC activity. Concurrently, when participants stopped chasing
losses the authors saw an increase in activity in ACC, anterior
insula, and frontal regions. Thus, loss-chasing might be seen
as an anti-BART paradigm in the sense that when participants
are chasing losses they appear to be focused on the increasing
potential loss.

There are two main caveats to the present study. First, because
we followed the design of the original BART as closely as pos-
sible, participants in our task were required to learn the explo-
sion probabilities of the different balloon types from experience
while making pumping decisions. Our behavioral results show
that participants did not change their choice behavior signifi-
cantly over the three task sessions, suggesting that they rapidly
learned the properties of the task. As noted above, a computa-
tional learning model has been proposed for a similar version
of the BART (Wallsten et al., 2005) that parameterizes subjec-
tive probabilities of explosion for each pump. The sample size in
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the current study did not allow the use of this model and thus
future studies with much larger sample sizes will be needed to
test whether such a model applies to the fMRI-adapted design
that we employed here. Second, our interpretation of how partic-
ipants appear to have framed the task relies on a reverse inference
(see review by Poldrack, 2006): we surmise from involvement of
the vmPFC that the participants assessed the marginal decreas-
ing expected value of each successive pump and/or focused on
increasing loss exposure rather on total potential gains relative to
the starting point of the trial. We feel this inference may be justified
because analysis of the NeuroSynth database4 (Yarkoni et al., 2011)
shows that the closest non-empty coordinate to our peak activa-
tion in vmPFC ([4, 24, −16], which is included in the activation
cluster) has a very high posterior probability of terms associ-
ated with choice [P(“choice” present in paper | activation) = 0.88]
and losses (posterior probability of “losses”= 0.84). This region
is also often associated with the default mode network (Smith
et al., 2009), and an alternative interpretation of the results
might be that with increasing pumps participants are more and
more engaged in the task and thus, vmPFC activity could simply
reflect activity in the default mode network. However, the associ-
ation of the same voxel with the term “resting state” is weaker

4www.neurosynth.org

(posterior probability = 0.76). These meta-analytic results sug-
gest that our reverse inference may be reasonable, though these
inferences must remain tentative until tested using an alterna-
tive design of the task that will allow a more direct test of this
interpretation.

In summary, we show using the unique design of the BART that
while activity parametrically increased in anterior insula, dorsal
ACC, and DLPFC with the additional risk associated with each
pump, activity in vmPFC parametrically decreased with each suc-
cessive pump of the balloon. Although this is only one possible
interpretation, it suggests that even under the dynamic conditions
of the task, participants encoded the decreasing subjective value
of each pump and/or focused on the increasing potential losses
until they decided to stop pumping. Identifying these two oppos-
ing brain systems during BART performance, the one increasing
and the other decreasing, suggests that increased naturalistic risk-
taking, as previously shown to be measured using the task, might
be attributed to an abnormality in one (or both) of these brain
systems.
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Affective neuroscience has helped guide research and theory development in judgment and
decision-making by revealing the role of emotional processes in choice behavior, especially
when risk is involved. Evidence is emerging that qualitatively and quantitatively different
processes may be involved in risky decision-making for gains and losses. We start by
reviewing behavioral work by Kahneman andTversky (1979) and others, which shows that
risk-taking differs for potential gains and potential losses. We then turn to the literature
in decision neuroscience to support the gain versus loss distinction. Relying in part on
data from a new task that separates risky decision-making for gains and losses, we test a
neural model that assigns unique mechanisms for risky decision-making involving potential
losses. Included are studies using patients with lesions to brain areas specified as impor-
tant in the model and studies with healthy individuals whose brains are scanned to reveal
activation in these and other areas during risky decision-making. In some cases, there is
evidence that gains and losses are processed in different regions of the brain, while in other
cases the same region appears to process risk in a different manner for gains and losses.
At a more general level, we provide strong support for the notion that decisions involv-
ing risk-taking for gains and decisions involving risk-taking for losses represent different
psychological processes. At a deeper level, we present mounting evidence that different
neural structures play different roles in guiding risky choices in these different domains.
Some structures are differentially activated by risky gains and risky losses while others
respond uniquely in one domain or the other.Taken together, these studies support a clear
functional dissociation between risk-taking for gains and risk-taking for losses, and further
dissociation at the neural level.

Keywords: decision neuroscience, risky decision-making, gain/loss domain differences

INTRODUCTION
The combination of methods from the behavioral decision-
making literature such as risky decision-making tasks derived
from the classic work of Kahneman and Tversky (1979), and
methods of neuroscience such as functional magnetic resonance
imaging (fMRI) and lesion studies has led to breakthroughs in
both fields. Examples include how impairment in specific brain
functions translate into disadvantageous decision-making inside
and outside of the laboratory (Bechara et al., 1994, 1996, 1997,
1999) and how common decision-making biases and heuris-
tics can be understood at the neural level (Sanfey et al., 2003;
Hsu et al., 2005; Kuhnen and Knutson, 2005; De Martino et al.,
2006; Huettel et al., 2006; Tom et al., 2007). New areas of study
have emerged with titles such as neuroeconomics and decision
neuroscience.

A major contribution of this work has been a better under-
standing of how emotion, in combination with cognition, guides
our decisions, particularly in the realm of risky decision-making

where conflicts often arise in balancing the lure of reward and
the fear of loss. Evidence is accumulating that emotional reac-
tivity differs in response to risky gains and risky losses. Logical
questions are whether risk-taking for gains and risk-taking for
losses can best be understood as separate psychological processes,
and ultimately, whether they rely on different brain structures.
In this paper, we integrate findings from our own work and
that of others to come to conclusions that have some gener-
ality but also allow for differences between studies based on
methodology.

In order to frame this investigation, we start with a model put
forth to support the findings from two studies we conducted
with patients with lesions to areas of the brain known to be
critical to risky decision-making, namely the ventromedial pre-
frontal cortex (VMPFC), the amygdala, and the insula (Bechara
et al., 1999; Clark et al., 2008). As summarized in Figure 1 (from
Weller et al., 2007), we propose that risky decision-making is
influenced by the opposing forces of lure of gain and fear of
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FIGURE 1 | Illustration of the expanded neural model of

decision-making under uncertainty. Processing of primary inducers,
mediated by the amygdala, triggers the ventromedial prefrontal cortex
(VMPFC) system, which, in turn, conducts a more deliberative analysis of
uncertainty. However, decisions involving potential losses may trigger
redundant neural responding from structures such as the insula (anterior,
posterior, or both) and the adjacent primary and secondary somatosensory
cortices (SI and SII), which are independent of the amygdala; these backup
processes are represented here by dotted lines.

risk1. We operationalize the “lure” of rewards as either the poten-
tial for a relatively large gain in the gain domain (in comparison
to the small sure gain from a riskless choice) or the potential for
avoiding a loss altogether in the loss domain, and the “fear” of risk
as arising from risking a relatively large loss in the loss domain
(in comparison to the small sure loss from a riskless choice) or
not winning anything in the gain domain. These two forces act in
opposite directions in exciting or inhibiting risk-taking. We sug-
gest that the VMPFC subregions, the amygdala, and the insula each
contribute in different ways to the processing and utilization of
these two critical pieces of emotional information. The mere pres-
ence of uncertainty induces a primary “fear” response elicited by
the amygdala, which has been associated specifically with fear pro-
cessing and avoidance behavior (LeDoux, 2000; Trepel et al., 2005;
Phelps,2006). This fear response activates theVMPFC whose func-
tion it is to mediate decision-making and allows for more careful
deliberative processes by linking together working memory and
emotional systems (Damasio, 1994).

While the amygdala has been studied extensively and shown to
be a key substrate for triggering emotional responses, especially
in connection with fear (LeDoux, 2000), the fact remains that the
triggering of emotional responses involves multiple neural regions,
and not just the amygdala. Thus, structures such as the insula,
which are independent of the amygdala, are also likely to impact
decision-making under uncertainty (Kuhnen and Knutson, 2005;
Clark et al., 2008; Weller et al., 2009). In particular, we propose
that the insula and the amygdala provide complementary systems
for dealing with potential losses, which we attribute to the evolu-
tionary significance of dealing with potential losses. Our ancestors

1Some definitions of risk include loss as a component. However, in order to incor-
porate risk-taking for gains and losses, we use a more general definition of risky
choice as involving choice options of differing outcome variability. In the typical
task described here, the choice is between a “sure thing” or “riskless” option with
fixed outcome and a “risky” option with variable possible outcomes.

learned to avoid situations that risked the loss of things essential
for survival and it is reasonable to assume that our brains have
been primed for avoiding losses.

This account parallels the proposed dual systems approach
of System 1 (experiential) and System 2 (deliberative) for
decision-making (Kahneman, 2003). The neural underpinnings
of these mechanisms have also been addressed in the “somatic
marker” framework. According to the “somatic marker hypothe-
sis” (Bechara and Damasio, 2005; Reimann and Bechara, 2010),
after the amygdala triggers an automatic emotional response (or
primary induction), the VMPFC subsequently prompts a more
careful deliberative analysis that triggers secondary emotional
responses (secondary induction) that help guide advantageous
decision-making. Findings in support of the somatic marker
hypothesis were key to new behavioral theories in which emo-
tions play a pivotal role in decision-making (Mellers et al., 1999;
Loewenstein et al., 2001; Slovic et al., 2002).

In the following sections of this paper, we review the evidence
for our model based on studies involving the VMPFC, amygdala,
and insula, but we also include studies involving other areas that
have implications for addressing the basic question of whether
there is evidence at the neural level of a distinction between risky
decision-making in the gain and loss domains. We will provide
evidence that separate psychological processes are involved in risk-
taking for gains and losses in terms of both behavioral and neuro-
logical reactions that discriminate between risk-taking to achieve
a gain and risk-taking to avoid a loss. We then address the more
complex issue of whether distinct neural structures support these
different reactions. In the case of fMRI studies, we will see that
results depend on when during the decision-making process the
recordings are made. We start, however, with some more straight-
forward and well-known behavioral phenomena that motivate the
search for neurological dissociations between risk-taking for gains
and losses.

It is typical to consider risk-taking as a unified behavioral con-
cept when we talk about a person in terms such as “She is a
risk-taker” or “He likes to play it safe.” However, it has been shown
that risk-taking within the same individual varies across content
domains such as monetary, health, and social risks (Weber et al.,
2002). Within each of these domains, we may talk about an action
as being “risky” because of the uncertainty of its outcome without
differentiating between the potential for achieving benefits ver-
sus the potential for avoiding aversive consequences. Kahneman
and Tversky (1979) demonstrated a fundamental principle that
sparked decades of later research: individuals were more likely
to take a risk to avoid a loss than to achieve a gain of the same
magnitude2. Later work by the same authors revealed a fourfold
pattern of risk-aversion for gains and risk-seeking for losses of

2Following Kahneman and Tversky (see Kahneman, 2003), most framing studies
have employed between-subjects designs. However, it is important to note that reli-
able risky choice framing effects have been reported in within-subject designs where
procedural precautions have been taken to avoid recognition of repeated problems
by using multiple problems and presenting gain and loss versions of the same prob-
lem in separate sessions spaced widely apart (Levin et al., 2002). Emphasis in this
paper will be on tasks involving actual gains and losses where separate gain and
loss trials can be administered to the same decision makers without concern for
consistency demands.
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high probability but risk-seeking for gains and risk-aversion for
losses of low probability (Tversky and Kahneman, 1992). This was
explained in terms of underweighting the likelihood of high prob-
ability but overweighting the likelihood of low probability events.
The tasks described in this paper will primarily be of the for-
mer type. This paper describes a relatively new component of this
research: neuroscientific studies that provide additional sources of
data that separate risk-taking to achieve a gain and risk-taking to
avoid a loss.

In presenting the most recent research in our laboratory, we
focus on the “cups task” (Levin et al., 2007), which we devel-
oped specifically to separate risky decision-making for actual gains
and losses, both in terms of overall riskiness and sensitivity to
expected value (EV) differences between choice options. The cups
task includes a gain domain and a loss domain. Gain trials involve
some probability of an addition to the decision-maker’s account
while loss trials involve a possible reduction. Decision makers
choose between one array of cups in which the outcome is constant
(the riskless choice) and one array of cups in which the outcomes
vary (the risky choice). Outcomes are displayed immediately after
choices are made. By varying the number of cups and the amount
to be won or lost, we create gain and loss trials with contingencies
that either do or do not favor a risky choice (see Figure 2). For
example, a one-out-of-three chance of winning five coins is better
in the long run than a sure gain of one coin but a one-out-of-three
chance of losing five coins is worse in the long run than a sure loss
of one coin. A key component of data analysis for the cups task is
the extent to which an individual makes choices based on the con-
sideration of relative EV between choice options, for both gain-
and loss-related decisions. EV sensitivity represents an index of
advantageous decision-making because consistently choosing the
option with a more favorable EV will yield more positive outcomes
in the long run. As will be described later, a somewhat simpler

version of the task was adapted for use in scanner research. Across
many data sets, we demonstrated that Kahneman and Tversky’s
(1979) original finding of more risk-taking to avoid a loss than
to achieve a gain of the same magnitude is reproduced in the
cups task. Beyond the initial demonstration of greater risk-taking
for losses than for gains, our recent research with the cups task
showed age-related differences in risk-taking as a function of deci-
sion domain (risk-taking to achieve a gain versus to avoid a loss).
Risk-taking in the domain of gains decreased monotonically from
early childhood to older adulthood whereas overall risk-taking to
avoid losses was remarkably constant across age groups (Weller
et al., 2011). Within both domains, EV sensitivity increased from
early childhood through adulthood with a slight decline for older
adults.

EVIDENCE FROM DECISION NEUROSCIENCE
We turn to neuroscience for an exploration of brain functions
that may help explain these gain/loss behavioral differences. Our
approach in this paper is to provide a body of evidence that is
consistent with the proposition that risky decision-making is sep-
arable in the gain and loss domains rather than providing a single
“critical” test.

Historically, the most fundamental functional division of the
brain was thought to be the one that distinguished between
approach and avoidance behaviors. However,many years of animal
research failed to identify anatomically separate neural substrates–
neural systems underlying pain and pleasure seem to overlap
considerably (e.g., Craig, 2009). Later human behavioral stud-
ies found equivocal support for a separation of neural systems
whereby the left hemisphere is predominantly concerned with
approach behaviors and the lure of reward, whereas the right hemi-
sphere is critical for avoidance behaviors and the fear of uncer-
tainty (Davidson et al., 1990). More recently, neuropsychological

FIGURE 2 | Samples of trial types on the cups task. Note: in each case the “riskless” side is depicted on the left and the “risky side” is depicted on the right.
In the experiments these were counterbalanced over trials.
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research on the approach–avoidance conflict evolved into studies
of risky decision-making where the shift was to a more microscopic
analysis of neural systems.

Neuroimaging data have been used to gain new insights con-
cerning risky decision-making. In particular, fMRI studies use
changes in blood flow that accompany neural activity in different
parts of the brain to associate these areas to particular behav-
iors. For instance, in a recent meta-analysis of fMRI studies of
risky decision-making using young, healthy adults, Mohr et al.
(2010) found evidence common to all studies that risk process-
ing is associated with activation of specific emotional systems in
the brain such as the anterior insula, especially when potential
losses are involved. The dorsolateral prefrontal cortex and pari-
etal cortex are also activated when making decisions involving
risk. Using fMRI in conjunction with a paradigm in which indi-
viduals decided whether to accept or reject gambles offering a
50/50 chance of gaining or losing varying amounts of money, Tom
et al. (2007) found that activity in the ventral striatum and the
VMPFC increased as potential gains increased but decreased as
potential losses increased. Also, in the anterior insula, activity was
found more strongly associated with the anticipation of losses than
with anticipation of gains (Knutson et al., 2007). Earlier research
showed increased arousal following losses than following gains
(Bechara et al., 1999). Such results motivated us to classify study
results based on whether activation was measured before, during,
or after a decision was made.

In order to get a more complete picture, we conducted a focused
literature search. Using the keywords “fMRI,” “gains,” “losses,”
“risk,” and “uncertainty,” Table 1 summarizes the results of a num-
ber of fMRI studies in terms of which areas of the brain were
studied and at what point in time, and whether the study pro-
vided support for distinct mechanisms involved in risky decision-
making for gains and losses. While the results are“mixed,”a pattern
emerges when the studies are separated based on whether brain
activation was measured before, during, or after a risky choice was
made. Most noteworthy, while different regions were the focus of
different studies, in 14 studies in which activation was assessed
prior to a choice (i.e., anticipation), support for separate mech-
anisms was found in eight studies, four studies did not support
separate structures, and two studies did not make claims about
separate structures because they focused on a specific region only.
For example, studies by Kuhnen and Knutson (2005) and Knut-
son et al. (2008b) each found that the nucleus accumbens was
activated in anticipation of a risky gain, whereas the insula was
activated in anticipation of a risky loss. We think these results are
particularly compelling because they suggest that different parts of
the brain drive risky decision-making in anticipation of uncertain
gains versus uncertain losses. Whereas activation during or after
a risky choice can influence subsequent risky choices, activation
prior to a choice is unique in its potential to influence the current
choice.

Beside the dissociation at the pre-decision stage, recent evi-
dence suggests that experienced gains and losses might also activate
different regions, which then affect subsequent decisions mak-
ing. In a recent study using the cups task, we found that at the
feedback stage,experienced reward was associated with strong acti-
vation in the VMPFC and the ventral striatum, and the stronger

reward-related responses in the VMPFC were positively associated
with risk-taking (Xue et al., 2009). In a follow up study, we explic-
itly examined how neural and behavioral responses to gains and
losses were associated with subsequent decisions. We developed a
modified version of the cups task in which a single array of cups
was presented on a given trial where one coin would be lost for all
but one randomly selected cup, but multiple coins would be won
if the other cup was drawn (Xue et al., 2011). The decision-maker
indicated whether to take or not take the gamble. In one analysis,
we focused on how an experienced gain versus an experienced loss
could modulate subsequent risky decision-making, both behav-
iorally and neurally. We found that subjects took more risk after
losing a gamble than after winning a gamble. At the neural level,
we again found that at the feedback stage, win was associated
with stronger activation than loss in the anterior cingulate cor-
tex, the posterior cingulate cortex, the ventral striatum, and the
insula. More importantly, decisions after loss were associated with
stronger activation in the frontoparietal network, which was posi-
tively correlated with individuals’ increased tendency to take more
risk. These results thus suggest that experienced gains and losses
not only involve different brain regions, but also trigger differential
neural responses and behaviors in subsequent decisions.

Despite this suggested anatomical separation, the fact remains
that the same structure, for example, the insula, has sometimes
been implicated in the processing of both painful and pleasurable
stimuli (e.g., Craig, 2009). Indeed, when compared to a base-
line of activation following trials on which the decision-maker
decided not to take the gamble, both experienced gains and losses
elicited strong insular activation, which then modulated subse-
quent decision-making (Xue et al., 2010). This calls for caution
when making absolute determination about the anatomical sepa-
ration of these pleasure (gain)–loss (pain) systems. In particular,
a proper baseline should be included in this analysis since the
same regions might show opposite modulation by gains and losses
(Tom et al., 2007). Thus, the stronger activation for gains or losses
in some regions might not necessarily reflect distinct neural struc-
tures for gains and losses. Another reason for these difficulties in
establishing absolute anatomical separations is that cellular physi-
ological evidence of neurons responding to positive versus negative
valence stimuli, at least within the amygdala, indicates separation,
while anatomical evidence is highly inter-mixed (e.g., Paton et al.,
2006). This explains why the neural systems for risky gains versus
losses can be functionally separate, but finding clear-cut separa-
tion viewed at the global anatomical level is more difficult, given
the proximity and overlap of these two systems.

Next, we turn to lesion studies which are smaller in number
in terms of addressing this issue but which should align with the
“anticipatory” fMRI studies because, of course, pre-existing brain
damage would likewise serve to influence revealed choices. While
neuroimaging studies argue whether a particular brain region is
involved in a particular function, lesion studies test whether that
brain region is necessary for that function, and thus form more
direct tests of the model in Figure 1 and our earlier reference
to anatomically separate neural substrates. The logic here is that
if a particular function is impaired in individuals with a local-
ized lesion, then the affected neural region must play a crucial
role in executing that function. Lesion studies seem to reveal little
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Table 1 | Functional magnetic resonance imaging studies of risk-taking for gains and losses.

Authors and

year

Focal topic Time of

measurement

Conditions Active regions

identified

Sample

size

Result

TIME OF MEASUREMENT BEFORE DECISION-MAKING

Knutson

et al. (2001)

Anticipation of

monetary

reward

Before

decision-making

(anticipation of

choice phase)

Gains (reward

anticipation versus

neutral)

Nucleus accumbens 8 Study supports separate

structures because addi-

tional other regions were

activated for gains com-

pared to losses

Caudate

Putamen

Anterior thalamus

Amygdala

Anterior cingulate cortex

Medial prefrontal cortex

Supplementary motor area

Posterior cingulate cortex

Cerebellar vermis

Losses (punishment

anticipation versus

neutral)

Caudate

Anterior thalamus

Matthews

et al. (2004)

Risky decision-

making

Before

decision-making

(prior to selection

phase)

Gains (risky

response minus safe

responses)

Medial frontal gyrus 12 Study supports separate

structures because differ-

ent regions were activated

for gains versus losses

Nucleus accumbens

Caudate tail

Middle occipital gyrus

Losses (safe minus

risky responses)

Superior temporal gyrus
Middle temporal gyrus

Inferior frontal gyrus

Kuhnen and

Knutson

(2005)

Risky decision-

making in a

financial

context

Before

decision-making

(anticipation of

choice phase)

Gains (risky choices

and risk-seeking

mistakes)

Nucleus accumbens 19 Study supports separate

structures because differ-

ent regions were activated

for gains versus lossesLosses (riskless

choices and risk-

aversion mistakes)

Insula

Gains versus losses Medial prefrontal cortex

Orbitofrontal cortex

Nucleus accumbens

Anterior cingulate cortex

Precuneus

Posterior cingulate

Yacubian

et al. (2006)

Decision-

making under

uncertainty

Before

decision-making

(anticipation of

choice phase)

Gains (computation

of expected value for

gains)

Ventral striatum 66 Study supports separate

structures because differ-

ent regions were activated

for gains versus lossesLosses (computation

of expected value for

losses)

Amygdala

Knutson

et al. (2007)

Decision-

making in

purchasing

context

Before

decision-making

(anticipation of

choice phase)

Gains (purchasing a

preferred product)

Anterior cingulate cortex 26 Study supports separate

structures because differ-

ent regions were activated

for gains versus losses

Dorsolateral prefrontal cortex

Medial frontal gyrus

Superior frontal gyrus

Anterior insula

Nucleus accumbens

Caudate

Globus pallidus

Posterior cingulate

Losses (spending

money)

Frontopolar cortex
Medial prefrontal cortex

Anterior cingulate cortex

Parahippocampal gyrus

(Continued)
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Table 1 | Continued

Authors and

year

Focal topic Time of

measurement

Conditions Active regions

identified

Sample

size

Result

Seymour

et al. (2007)

Risky decision-

making in a

financial

context

Before

decision-making

(prediction error

phase)

Gains (rewards) Anterior striatum 20 Study supports separate

structures because differ-

ent regions were activated

for gains versus lossesLosses Posterior striatum

Knutson

et al.

(2008a)

Decision-

making in a

buying and

selling context

Before

decision-making

(anticipation of

choice phase)

Gains (buying versus

selling at low prices)

Medial prefrontal cortex 24 Study supports separate

structures because differ-

ent regions were activated

for gains versus losses

Buying and selling of

preferred products

Nucleus accumbens

Losses (selling

product)

Insula

Knutson

et al.

(2008b)

Risky decision-

making in a

financial

context

Before

decision-making

(anticipation of

choice phase)

Gains (high-risk shift

versus low-risk shift)

Anterior insula 15 Study supports separate

structures because differ-

ent regions were activated

for gains versus losses

Caudate

Nucleus accumbens

Gains versus losses Medial prefrontal cortex

Caudate

Putamen

Inferior frontal gyrus

Precentral gyrus

Posterior cingulate

Lingual gyrus

Breiter

et al. (2001)

Expectancy

and

experience of

monetary

gains and

losses

Before

decision-making

(expectancy

phase)

Gains (good spinner) Frontal lobe 12 Study does not sup-

port separate structures

because same key regions

were activated for both

gains and losses

Amygdala

Nucleus accumbens

Sublenticular extended

amygdala

Hypothalamus

Losses (bad spinner) Frontal lobe

Amygdala

Nucleus accumbens

Sublenticular extended

amygdala

Fukui et al.

(2005)

Risk

anticipation

during Iowa

Gambling Task

Before

decision-making

(anticipation of

choice phase)

Gains (risky

response minus safe

responses)

Medial frontal gyrus 14 Study does not make

claims about separate

structures because the

medial frontal cortex was

the region of focus

Paulus and

Frank

(2006)

Comparison of

high versus

low probability

prospects

Before

decision-making

(from onset of the

presentation of

the options until

the subject had

made a response)

Losses (high

probability

prospects) versus

gains (low probability

prospects)

Precuneus 16 Study does not sup-

port separate structures

because same regions

were activated for both

gains and losses

Cingulate gyrus

Insula

Middle frontal gyrus

Middle occipital gyrus

Precuneus

Superior parietal lobule

Insula

Thalamus

Postcentral gyrus

Inferior parietal lobule

Middle frontal gyrus

Superior temporal gyrus

Precentral gyrus

Caudate

(Continued)
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Table 1 | Continued

Authors and

year

Focal topic Time of

measurement

Conditions Active regions

identified

Sample

size

Result

Tom et al.

(2007)

Risky decision-

making and

loss aversion

Before

decision-making

(anticipation of

potential gains or

losses phase)

Gains (potential gain

effects)

Nucleus accumbens 16 Study does not sup-

port separate structures

because same regions

were activated for both

gains and losses

Caudate

Thalamus

Ventromedial prefrontal cortex

Orbitofrontal cortex

Frontal pole

Middle frontal gyrus

Middle/superior frontal gyrus

Posterior cingulate

Midbrain

Losses (potential

loss effects)

Nucleus accumbens
Caudate

Thalamus

Ventromedial prefrontal cortex

Orbitofrontal cortex

Frontal pole

Middle frontal gyrus

Middle/superior frontal gyrus

Posterior cingulate

Midbrain

Preuschoff

et al. (2008)

Risk prediction

error and risk

in decision-

making

Before

decision-making

(prediction phase)

Risk prediction error Insula 19 Study does not make

claims about separate

structures because the

insula was the region of

focus

Tobler et al.

(2009)

Risk and

expected value

in decision-

making

Before

decision-making

(prediction phase)

Gains (increased

risk-seeking)

Lateral prefrontal cortex 15 Study does not sup-

port separate structures

because same regions

were activated for both

gains and losses

Losses (increase

risk-aversion)

Lateral prefrontal cortex

TIME OF MEASUREMENT DURING DECISION-MAKING

O’Doherty

et al. (2001)

Reversal

learning task

of monetary

reward and

punishment

During

decision-making

(acquisi-

tion/reversal

phase)

Gains Orbitofrontal cortex 9 Study does not clearly sup-

port separate structures

because same key region

(here: orbitofrontal cortex)

was activated for both

gains and losses

Medial prefrontal cortex

Posterior inferior prefrontal

sulcus

Losses Orbitofrontal cortex

Posterior inferior prefrontal

sulcus

Dorsal anterior cingulate

cortex

Gottfried

et al. (2002)

Appetitive and

aversive

olfactory

learning

During learning

phase

Gains (appetitive

olfactory learning)

Medial orbitofrontal cortex 15 Study does not sup-

port separate structures

because same key regions

were activated for both

gains and losses

Anterior orbitofrontal cortex

Ventral striatum

Nucleus accumbens

Pallidum/dorsomedial

amygdala

Uncus/ventromedial amygdala

Dorsomedial amygdala

Ventromedial prefrontal cortex

Cerebellar hemisphere

Anterior hippocampus

(Continued)
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Table 1 | Continued

Authors and

year

Focal topic Time of

measurement

Conditions Active regions

identified

Sample

size

Result

Losses (aversive

olfactory learning)

Lateral orbitofrontal cortex
Medial orbitofrontal cortex

Nucleus accumbens

Temporal pole/piriform cortex

Paulus et al.

(2003)

Risky decision-

making

During

decision-making

Gains (risky

response versus

safe response)

Insula 17 Study does not clearly sup-

port separate structures

because same key region

(here: insula) was activated

for both gains and losses

but to a greater extent for

risky versus safe responses

Cuneus

Precuneus

Middle frontal gyrus

Losses (risky

response versus

punishment

response)

Inferior frontal gyrus

Insula

Superior parietal lobule

Huettel

et al. (2005)

Uncertain

decision-

making

During

decision-making

Gains/losses

(increasing

uncertainty)

Insula 12 Study does not clearly sup-

port separate structures

because same regions

were activated for both

gains and losses

Inferior frontal gyrus

Middle frontal gyrus

Thalamus

Inferior parietal lobule

Intraparietal sulcus

Plassmann

et al. (2010)

Processing of

appetitive

versus

aversive goal

values

During

decision-making

(decision-making

phase)

Gains (appetitive

goal values)

Medial orbitofrontal cortex 19 Study does not sup-

port separate structures

because same key regions

were activated for both

gains and losses

Dorsolateral prefrontal cortex

Losses (aversive

goal values)

Medial orbitofrontal cortex
Dorsolateral prefrontal cortex

TIME OF MEASUREMENT AFTER DECISION-MAKING (OUTCOME PROCESSING)

Hsu et al.

(2005)

Ambiguous

decision-

making

After

decision-making

(response to risk)

Gains (gamble

versus certainty)

Occipital cortex 16 Study supports separate

structures because addi-

tional other regions were

activated for gains com-

pared to losses

Medial frontal gyrus

Brodmann area 6

Precentral gyrus

Insula

Caudate head

Brodmann area 18

Insula

Middle temporal gyrus

Losses (certainty

versus gamble)

Precentral gyrus
Occipital cortex

Fujiwara

et al. (2009)

Monetary

reward and

punishment

After

decision-making

(presentation of

chosen outcome)

Gain-specific regions Anterior cingulate cortex 17 Study does not sup-

port separate structures

because same key regions

were activated for both

gains and losses

Posterior cingulate cortex

Superior frontal gyrus

Inferior operculum

Insula

Midbrain

Inferior temporal gyrus

Inferior parietal lobule

Cerebellum

Loss-specific regions Anterior cingulate cortex

Inferior operculum

Insula

Common gain and

loss regions

Anterior cingulate cortex
Posterior cingulate cortex

Postcentral gyrus

(Continued)
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Table 1 | Continued

Authors and

year

Focal topic Time of

measurement

Conditions Active regions

identified

Sample

size

Result

Inferior operculum

Insula

Midbrain

Middle temporal gyrus

This table is sorted by time of measurement (before, during, or after decision-making) and by result (supportive of separate structures or not). In each category, the

table is sorted first in chronological order, then in alphabetical order.

dissociation between the domains of gains and losses within the
prefrontal cortex region, but such dissociations are more likely
to be revealed when one considers two other neural systems, the
insula and amygdala, which feed information into the prefrontal
cortex. Indeed, within the prefrontal cortex, patients with dam-
age to the VMPFC show deficits for both risky gains and risky
losses (Weller et al., 2007). Compared to healthy controls, VMPFC
patients showed increased levels of risk-taking and decreased sen-
sitivity to EV differences in both gain and loss domains. In contrast,
amygdala patients showed impaired decision-making and exag-
gerated levels of risk-taking to achieve gains. However, in the loss
domain amygdala damage was not associated with significantly
increased risk-taking or decreased EV sensitivity. Given the abun-
dance of literature suggesting that the amygdala is involved with
avoidance of punishment, this finding suggests that other struc-
tures may act in concert with the amygdala to produce a signal that
engages the VMPFC. When patients with insula damage were com-
pared to controls, a different pattern emerged (Weller et al., 2009).
Consistent with research suggesting that the insula is important
for risk processing (Preuschoff et al., 2008), insula lesion patients
like VMPFC and amygdala patients showed decreased sensitiv-
ity to EV differences between choice options for both risky gains
and risky losses. However, these individuals showed lower levels
of risk-taking compared to healthy controls, especially on gain
trials. Thus the insula, with connections to the amygdala, ventral
striatum, and the VMPFC, may serve the purpose of providing a
“gate” to determine the effectiveness of excitatory and inhibitory
motivational circuits, signaling approach or danger. Subsequently,
insula damage may result in a blunted response toward risk, and
would lead to insensitivity to changes in environmental contin-
gencies signaling the approach or avoidance of a risk, regardless of
domain.

Because the amygdala and insula have long been implicated
in the processing of negative emotions, evoked from stimuli that
are particularly aversive and perhaps even a threat to survival (e.g.,
LeDoux, 2000; Paulus and Stein, 2006; Phelps, 2006), we argue that
these emotional reactions may be processed by multiple neural
structures and are thus more difficult to disrupt as a result of a
focal lesion to the amygdala or the insula alone3. Specifically, a
person with a damaged amygdala but an intact insula can still

3It should be noted that redundancy has also been found in learning and mem-
ory systems, which allow learning to occur in multiple parallel memory systems; see
Pinker and Ullman (2002) for an example of how multiple memory systems support
the generation of verb past-tense.

make reasoned decisions in the domain of losses even when they
cannot in the domain of gains. While a separation in processing
gains and losses is achieved at the level of the amygdala versus
insular cortex, the two neural systems may come closely together
(and become more difficult to dissociate) by the time information
reaches the prefrontal cortex, which responds similarly to risky
gains and risky losses. Nevertheless, when considering the evi-
dence from both insula and amygdala lesions, support for separate
processes for risky decision-making in the gain and loss domains
seems to emerge. Consistent with our model, the insula, in addi-
tion to its general role in processing risk, serves to especially aid
in recruitment of the VMPFC to guide risky decisions in the more
emotion-laden loss domain.

SUMMARY AND CONCLUSION
Taken individually, each of the neuroimaging and lesion studies
reviewed here has its limitations. Lesion studies are limited to the
small sample of available participants who meet the criteria of
damage to a targeted area. Furthermore, some of those included
may have collateral damage to other adjacent areas. fMRI stud-
ies also typically have small sample size due to financial and time
constraints. Furthermore, the complexity and length of tasks that
can be conducted in a scanner are limited. Also, because differ-
ent studies focus on different areas (see Table 1), comparisons,
and integration of findings can be difficult. Finally, for present
purposes, the tasks used in the different studies differed in their
ability to separate the gain and loss domains.

Nevertheless, we believe that we can provide a meaningful sum-
mary of the findings reviewed here. Behavioral studies suggest
differences in decision-making for risky gains and risky losses. A
study comparing different age groups suggests different develop-
mental trajectories for risk-taking in the gain and loss domains.
Neuroimaging studies are sometimes inconclusive in mapping
brain systems to differential reactions to risky gains and losses.
For example, while there is evidence that a system such as the
VMPFC or the striatum is involved in both risky gains and losses,
different parts of the system may be differentially sensitive to gains
and losses (Xue et al., 2009). In such cases, the more general
hypothesis of separate processes underlying risk-taking for gains
and losses is still supported. With regard to the stricter hypothesis
of separate structures, a breakdown of fMRI studies in Table 1
shows the strongest evidence for this hypothesis when recordings
capture pre-decisional or anticipatory processes. We believe that
the lesion studies provide the most direct evidence implicating
separate structures.
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Although a more detailed meta-analysis is clearly warranted,
Table 1 shows that a wide variety of structures are involved in
risky decision-making beyond those depicted in Figure 1. Never-
theless, we feel that the relatively simple depiction of the model
represents a good start in capturing the different neurological
underpinnings of risk-taking for gains and losses. The comple-
mentary roles of the VMPFC, amygdala, and insula depicted in
the model are consistent with both the general hypothesis that

separate processes underlie risk-taking for gains and losses, and the
stricter hypothesis of separate neural structures coming together
in different ways to guide risky decision-making in the gain and
loss domains. In conclusion, we find that evidence of differ-
ent neural responses underlying risk-taking for gains and losses
favors the hypothesis that decision makers react differently to risky
gains and losses, both in terms of overt risk-taking and neural
activation.
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In contrast to humans and most other animals, rhesus macaques strongly prefer risky
rewards to safe ones with similar expected value. Why macaques prefer risk while other
animals typically avoid it remains puzzling and challenges the idea that monkeys provide
a model for human economic behavior. Here we argue that monkeys’ risk-seeking prefer-
ences are neither mysterious nor unique. Risk-seeking in macaques is possibly induced by
specific elements of the tasks that have been used to measure their risk preferences.The
most important of these elements are (1) very small stakes, (2) serially repeated gambles
with short delays between trials, and (3) task parameters that are learned through expe-
rience, not described verbally. Together, we hypothesize that these features will readily
induce risk-seeking in monkeys, humans, and rats. Thus, elements of task design that are
often ignored when comparing studies of risk attitudes can easily overwhelm basal risk
preferences. More broadly, these results highlight the fundamental importance of under-
standing the psychological basis of economic decisions in interpreting preference data and
corresponding neural measures.

Keywords: risk, gambling, neuroeconomics, uncertainty, macaque

INTRODUCTION
In 1996, Kacelnik and Bateson published a comprehensive review
of the literature on animal risk preferences (Kacelnik and Bateson,
1996). They reported that, across 59 different studies, the major-
ity of animals exhibited risk-averse preferences during gambles
for food rewards. This pattern is generally concordant with the
observation that humans are risk-averse for gains across a broad
variety of contexts (Bernoulli, 1954/1738; Kahneman and Tversky,
1979). Here, risk is operationalized as the uncertainty in the possi-
ble outcomes of a decision, and can be mathematically specified as
coefficient of variation (Weber et al., 2004). This usage is distinct
from the everyday usage of the term, which is often synonymous
with threat and necessarily involves the possibility of loss. The cor-
respondence between human and animal data suggests that risk
attitudes are evolutionarily ancient and are robustly stable across
conditions (Chen et al., 2006). These results also tacitly endorse
the validity of animal models for studies of risk preferences, and
provide a foundation for neuroeconomic studies of risky choice
(Platt and Glimcher, 1999; Fiorillo et al., 2003; McCoy and Platt,
2005).

In 2005, McCoy and Platt published the first study of the single-
neuron correlates of risky choice (McCoy and Platt, 2005). In
contrast to the large body of animal studies reviewed by Kacel-
nik and Bateson, they found reliable risk-seeking behavior in
two rhesus monkeys (Macaca mulatta). Given a choice between
a medium-sized squirt of cherry juice and a risky option that
offered a 50% chance a large amount of juice and a 50% chance of
a small amount, the monkeys reliably preferred the risky option,
even though the expected values of the two options were matched.
As the size of the large and small reward diverged, and risk level

of the risky option thus increased, monkeys became even more
risk-seeking. These monkeys even continued to prefer the risky
option in a control experiment where the probability of winning
was only 1/3 and the mathematical expected value of the gamble
was lower than that of the safe option (McCoy and Platt, 2005).
These risk-seeking preferences were not due to lack of training:
the monkeys consistently chose to gamble even after months of
experience with the task.

Since this early study, it has become clear that strong risk-
seeking preferences are not unusual in macaques. The original
monkeys continued to exhibit risk-seeking behavior for years, and
six others from the same lab were consistently risk-seeking, totaling
eight animals and hundreds of thousands of trials, with no cases
of risk-aversion observed (Hayden and Platt, 2007; Hayden et al.,
2008a,b, 2010; Long et al., 2009; Watson et al., 2009; Heilbronner
et al., 2011). At least two other neurophysiology labs have also
found reliable risk-seeking behavior in rhesus macaques (O’Neill
and Schultz, 2010; So and Stuphorn, 2010). To our knowledge, no
published study has reported stable risk-aversion in rhesus mon-
keys. With a variety of laboratories reporting the same result, one
might conclude that risk-seekingness is some generalizable pref-
erence of rhesus macaques – perhaps distinguishing them from
humans and other animals.

Here we argue the opposite: rhesus monkeys are not unique
among animals, nor are they even inherently risk-seeking. Instead,
we argue that, for practical reasons, the task design elements used
by scientists who have studied risk attitudes in monkeys are those
most likely to encourage risk-seeking. The most important of these
elements are (1) decisions have very small stakes, a squirt or two of
juice, (2) decisions are repeated hundreds or thousands of times
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with short delays (a few seconds) between trials, and (3) the reward
structure of the task is learned through experience, rather than
explained through language. These elements were preserved across
studies in several laboratories in large part because they are opti-
mal for neurophysiological recording, and they show up in rhesus
macaque studies because monkeys are generally trained to gamble
for the purpose of neuronal recording studies. Although the many
studies listed above varied considerably from the original McCoy
and Platt experiment, for example, by use of priming stimuli (Wat-
son et al., 2009) and changes in cue presentation (Hayden et al.,
2010), they still had the core features in common.

CONVEX UTILITY CURVES ARE INSUFFICIENT TO EXPLAIN
RISK-SEEKING IN MACAQUES
Before we address the factors that promote risk-seeking, it is help-
ful to discuss the most common explanation for risk-aversion or
seeking: that risk-sensitive decision-makers have non-linear utility,
and animals seek to maximize expected utility. Since the eighteenth
century, it has been argued that decision-makers weight veridical
reward values by a personal utility function, and these utilities, dis-
counted by probability, are combined to form an expected utility
(Bernoulli, 1954/1738). Thus, a concave utility curve, in which the
marginal utility of each additional reward unit diminishes, is often
assumed to explain human risk-aversion (Figure 1). These argu-
ments are restricted to the domain of gains; for losses,hypothesized
convex utility curves may explain risk-seekingness (Kahneman
and Tversky, 1979). Indeed, in his commentary on the original
macaque study (McCoy and Platt, 2005); Lee (2005) pointed out
that the rhesus macaques’ behavior was consistent with a convex
utility curve in the gains domain. However, while utility curves can
describe risk preferences, it remains unclear whether they provide
an accurate process model that explains risk preferences.

We performed an experiment to investigate this question. We
gave macaques a choice between two options, (1) a standard risky
option with a 50/50 chance of a large and small juice reward and
(2) an alternating option that provided either the large or small
reward; its value alternated between these two reward sizes each
time it was chosen (Hayden et al., 2008a). If non-linear utility
functions drive risk-seeking preferences, then monkeys should be
indifferent to risky and alternating options because the utilities
must be the same. Instead we found that monkeys strongly and
stably preferred risky options to alternating ones (Figure 2), indi-
cating that the uncertainty itself biases the monkeys toward the
risky option. In contrast, the alternating option was only weakly
preferred to the safe option, suggesting that non-linearities in the
utility function account for a small amount of risk attitudes.

Another utility-based account often used to explain risk-
seeking, the energy budget rule, comes from foraging theory
(Caraco et al., 1980; Caraco, 1981; Stephens and Krebs, 1986).
The energy budget rule postulates that foraging animals should be
risk-seeking if a large outcome means survival but the (ironically
named) safe option means death. That is, if the minimum num-
ber of calories necessary to survive lies somewhere between the
value of the safe option and the value of winning from the risky
option, an animal should choose the risky option. It is theoreti-
cally possible that this preference, imbued by natural selection, is
so strong that it affects monkeys in the laboratory, even though

they are never even close to mortal danger. Although this is an
appealing explanation for risk-seeking, is it highly unlikely to apply
to gambling macaques. First, if the minimum number of calories
necessary to survive lies somewhere between the value of losing
from the risky option and the value of the safe option, the animal
should always be risk-averse, not risk-seeking. Macaques are not
limited to a single decision, but instead face hundreds or thousands
of gambling choices every day. As the number of trials performed
in a day increases, even when it is only into the double digits (and
even more so beyond that), the optimal risk-sensitive foraging
strategy rapidly comes to approximate risk neutrality. Consistent
with this, satiety level (whether within a session or between ses-
sions) does not affect risk preferences (Hayden, McCoy, and Platt,
unpublished data). Thus, the criteria for the energy budget rule
are quite strict, and, not surprisingly, there is inconsistent empir-
ical evidence of risk-seeking behavior based on energy budget
(Kacelnik and Bateson, 1997).

PSYCHOLOGICAL FACTORS THAT AFFECT RISK ATTITUDES
Given the failure of traditional utility-based explanations, we next
consider the possibility that specific contexts used in studying risk
attitudes in monkeys influenced their preferences. Because these
tasks were all originally developed for use in single unit physiology,
studies of macaque gambling behavior are subject to unique con-
straints among the corpus of human and animal risk studies. They
involve small stakes (to increase the number of trials performed in
a session), a large number of trials (averaging neuronal responses
over trials reduces the noise that comes from variability in neu-
ronal firing patterns) presented very quickly (because neuronal
isolation is unstable, physiologists collect data as quickly as pos-
sible), and task structures learned through experience (because
monkeys have no language). We consider each of these factors
here.

SMALL STAKES
In humans, risk-aversion is weaker when the reward stakes are
small (Holt and Laury, 2002; Fehr-Duda et al., 2010). Nobel-prize
winning economist Markowitz, for example, intuited that typically
risk-averse humans would prefer a lottery offering a 10% chance
of $1 over a guaranteed 10 cents (Markowitz, 1952). Empirical
tests of this bias, known as the “peanuts effect,” have demon-
strated markedly reduced risk-aversion for small stakes (Hershey
and Shoemaker, 1980; Green et al., 1999; Weber and Chapman,
2005). Some studies even suggest that small stakes may be sufficient
to promote risk-seeking, although this is not fully demonstrated
(Weber and Chapman, 2005). Consistent with this idea, some
have argued that casinos effectively increase risk-seeking behavior
among gamblers by dividing gambles into small (peanut-sized)
amounts (Simmons and Novemsky, 2008). The reasons for the
peanuts effect remains unclear, although it may reflect changing
attitudes to disappointment for small amounts. Another possi-
bility is that when reward sizes are small, gains loom larger than
losses (Harinck et al., 2007). Indeed, there is some evidence that
monkeys’ behavioral adjustments are more strongly motivated by
the possibility of gains (or large rewards) than fear of losses (or
small rewards) in their small-stakes gambling paradigms (Hay-
den and Platt, 2007; Hayden et al., 2008a), despite the well-known
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FIGURE 1 | Schematic of standard utility curve argument for
risk-aversion (left) and risk-seeking (right). Decision-makers are assumed
to have a non-linear shaped utility curve. When evaluating a gamble,
decision-makers will utilize the computed expected utility rather than the

expected value. With concave (or convex) utility curves, the expected utility is
lower (higher) than the expected value. While utility functions are undoubtedly
non-linear, it remains unclear whether the utility curve argument is sufficient
to explain the range of risk preferences in macaques.

FIGURE 2 | Preferences for risky options over alternating ones are inconsistent with the standard utility curve argument. Left: plot of preferences for
risky (unpredictable) and alternating (predictable) options offering the same pairs of outcomes. Right: plot of preferences for alternating (predictable) and safe
(fixed) options. Adapted from Hayden et al. (2008a).

phenomenon of loss aversion for normal-sized amounts (Tversky
and Kahneman, 1981).

Regardless of the psychological cause, it is clear that risk-
aversion weakens greatly when stakes are very low. Primate gam-
bling studies invariably use very small stakes – typically 0.1–0.3 ml
of fluid per trial. The average daily intake for laboratory mon-
keys is generally around 2000 times greater than this amount.
For the purpose of comparison, let us consider the human mon-
etary equivalent. If an average American earns approximately
$40,000 per year, or about $120 per day, the equivalent trial would
offer 1/2000 of that amount, or 6 cents, lower than Markowitz’

“peanuts” amount. Although money and juice may not be directly
comparable, it is safe to conclude that each individual trial offers
such a small amount of juice that it probably puts monkeys into
the domain of peanuts effects, and likely biases the monkeys away
from risk-aversion and potentially toward risk-seeking.

Reward sizes in other animal studies run the gamut from small
to large, and are of course difficult to equate to juice and money.
For example, Abreu and Kacelnik (1999) gave starlings access to
an average of 0.085 g of food crumbs on each trial, 0.4% of their
average daily intake. This is four to eight times greater than the
equivalent average monkey reward. In contrast, Kagel et al. (1986)
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FIGURE 3 | Risk-seekingness of two macaques as a function of delay
between trials. Our observations indicate that inter-trial interval has a large
effect on risk preferences. As delay between trials increases (horizontal
axis), propensity to choose risky option (vertical axis) declines. When delay
between trials reaches 90 s, monkeys are risk-neutral. These observations
highlight the strong effect that rapid serial presentation of gambles has on
promoting risk-seeking preferences. Adapted from (Hayden and Platt, 2007).

gave rats approximately 0.2 ml of water per trial, which represents
4% of daily intake, an order of magnitude greater. Future studies
using similar energy budget condition and trial structures should
vary reward amounts and values directly, allowing for direct assess-
ment of how much variability in risk preferences can be attributed
to reward size. Nevertheless, Craft et al. (2011) demonstrated that
rats are more risk-seeking when reward quality is low, matching
the pattern from the human literature.

REPEATED GAMBLES
In a classic paper, Samuelson (1963) described a cafeteria meeting
in which he offered his lunchtime companion a 50/50 gamble with
two possible outcomes: winning $100 or losing $50. The possibly
fictional colleague said he would reject the offer but would take
it if it were repeated 100 times. Samuelson proceeded to mathe-
matically prove the irrationality of this pair of preferences. Despite
the attendant irrationality, the lure of serialization, which allows
one to amortize one’s losses, is psychologically strong. Even upon
being explained of its irrationality, many people persist in this set
of preferences (Lopes, 1981). More generally, many researchers
have found that serialization makes many types of gambles more
attractive (Weaver, 1963; Lopes, 1981; Keren and Wagenaar, 1987;
Wedell and Bockenholt, 1990; Hayden and Platt, 2009b). Prefer-
ences in repeated gambles often move toward risk neutrality (from
risk-aversion for unique gambles), or even toward risk-seeking. In
other cases, repeated gambles may elicit preferences that more
closely match expected values (Keren and Wagenaar, 1987).

Interestingly, the frequency at which gambles are presented may
impact preferences in a similar way, perhaps because frequency is
good proxy for number of iterations. We tested this by measur-
ing risk preferences in macaques in different blocks in which the
delay between trials was controlled systematically (Hayden and
Platt, 2007). When the inter-trial interval is lengthened from a
few seconds to dozens of seconds, monkeys become significantly
less risk-seeking (Figure 3). In our study, when the delay reached
90 s, the longest value tested, monkeys were risk-neutral. We spec-
ulate that delay affects the relative attention paid to the possibility
of winning and losing, and that this change in attention affects
preferences. Specifically, we developed a model in which monkeys
estimated the expected time of the next large reward (and thus,
in essence, differentially attended to winning) and then chose the
option that would maximize the discounted value of the sequence
leading to the large reward. (A control experiment confirmed that
monkeys did not simply forget task details between trials). These
results argue strongly for the importance of serial presentation of
gambles on risk preferences, and more generally confirm the pow-
erful importance of seemingly irrelevant details, like inter-trial
interval, on gambling behaviors.

Another element of serial gambles that influences preferences is
a strong bias toward adjusting behavior in response to recent out-
comes (Barron and Erev, 2003; Hayden et al., 2008b). Gambling
humans are susceptible to recency biases, including the hot-hand
fallacy and the gambler’s fallacy. The hot-hand fallacy is the irra-
tional belief that wins typically follow wins (Gilovich et al., 1985).
Monkeys appear to be susceptible to the hot-hand fallacy, a pat-
tern known in primate gambling studies as the win-stay lose-shift
bias (Barraclough et al., 2004; Lau and Glimcher, 2005; Hayden
et al., 2008b). That is, following a winning outcome, monkeys are
more likely to choose the risky option again than if they have just
experienced a loss (Figure 4). (The gambler’s fallacy, which has
not been observed in monkeys, would have them predict that
wins are “due” and thus more likely after a loss.) In addition,
monkeys change their strategy based on surprisingness, mean-
ing positive or negative deviation in outcome from expectation.
Even though trials are independent, an unexpected outcome biases
monkeys toward choosing the inferior option on the subsequent
trial (Hayden et al., 2011). These changes in preference based on
recent outcomes are large and robust; they can only be eliminated
with extensive training (Lee et al., 2005). While this effect does
not, by itself, explain risk-seeking, it demonstrates the importance
of recent context, and not just present offer values, in govern-
ing preferences (see above and Haruvy et al., 2001; Hayden et al.,
2008a).

As with reward amounts, ITIs and numbers of trials differ across
animal studies. Even so, on average, the number of trials seems to
be lower than in the monkey gambling studies, and the ITIs seem
to be considerably longer. In the same starling study mentioned
above (Abreu and Kacelnik, 1999), subjects did 36 trials per session,
two sessions per day. The ITI was variable, but averaged 57.5 s. In
the rat study (Kagel et al., 1986), the ITI was 146 s and subjects
completed 17–41 trials per day. These numbers contrast drasti-
cally with monkeys’ hundreds to thousands of trials per day with
ITIs of a few seconds. Clearly these are very different experimental
environments, and may account for cross-species discrepancies.
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FIGURE 4 | Preferences in gambling task depend on recent outcomes. Left: likelihood of switching from risky to safe strategy depends on outcome of
previous trial. Right: preference depends on the outcomes of the five most recent gambles. Adapted from (Hayden et al., 2008b).

FEEDBACK-BASED LEARNING PROMOTES RISK-SEEKING
In most studies measuring risk attitudes in humans, the subject
learns about probabilities and rewards through written (or spo-
ken) description rather than through experience. It is assumed
that results from these studies have predictive validity to con-
texts in which gamble parameters are learned through experience.
However, studies using repeated gambles in which contingencies
must be learned from experience elicit strikingly different pref-
erence patterns in humans. Ido Erev and colleagues have shown
that when humans rely on feedback instead of descriptions to
learn about outcomes, they can become risk-neutral or even risk-
seeking in the gains domain (and risk-averse for losses; Barron
and Erev, 2003). The reasons for this discrepancy are currently
unresolved (and reviewed in detail in Hertwig and Erev, 2009).
One possibility is that subjects use overly small sample sizes in
estimating probabilities; another is that they overweight low prob-
abilities, as in prospect theory. Additional possible explanations
include the recency bias observed in estimates based on memory,
and biased mental sampling. Regardless of the ultimate cause, the
fact that decisions from experience produce systematic biases is
well-established (Hertwig et al., 2004; Hertwig and Erev, 2009).

Another factor that applies to experienced gambles, but not
described ones, is information-seeking. In volatile environments,
decision-makers will mix two simple strategies: exploitation
(selecting the option thought to provide a greater expected value)
and exploration (selecting the more uncertain – and thus more
informative – option; Daw et al., 2006; Pearson et al., 2009). Indeed,
in a dynamic foraging environment, monkeys and humans both
have strong propensities to explore, routinely sacrificing rewards
for the possibility to try new, more uncertain options (Daw et al.,
2006; Pearson et al., 2009). In completely stable environments
like those used in laboratory gambling studies in rhesus mon-
keys, exploratory sampling is theoretically unnecessary (and in
fact costly); nevertheless, some baseline level of exploration may
be innate, or perhaps the decision-maker assumes some inher-
ent variability despite evidence to the contrary. Confirming the
strong drive toward curiosity, monkeys will pay a premium to

have uncertainty resolved earlier in the trial (Bromberg-Martin
and Hikosaka, 2009). This drive for information may bias mon-
keys toward a risk-seeking strategy because choosing the risky
option provides greater information about the range of possible
outcomes in the environment than the safe one.

CONCLUSIONS: VALIDITY AND APPLICABILITY TO OTHER
CONTEXTS
We have identified three major features that may promote risk-
seeking in rhesus monkeys: small stakes, repeated gambles, and
learning from feedback. Preferences for risk are strongly depen-
dent on these task parameters, and all published studies of risk
attitudes in rhesus macaques have in common the three elements
mentioned above. Future studies should directly manipulate these
elements in isolation, thus testing the hypothesis that they are
responsible for promoting macaque risk-seeking. This is not an
exhaustive list of the psychological influences on risk-seeking;
other factors that influence risk attitudes in monkeys include
social milieu (Watson et al., 2009), background context (So and
Stuphorn, 2010), and mood (Long et al., 2009).

The common features of task design in these studies suggest
that risk-seeking preferences observed in macaques may not be
an innate trait of their species. Indeed, recent studies optimized
for physiology in rats have found risk-seeking preferences as well
(Roitman and Roitman, 2010). In a similar vein, we have shown
that when humans gamble in a paradigm designed to mimic, as
closely as possible, that experienced by monkeys, risk-aversion dis-
appears, and humans approach risk-seeking – and also show the
same types of trial-to-trial hot-hand-like effects as monkeys do
(Hayden and Platt, 2009a). In this study, we asked our human
study participants to sit alone in an anechoic chamber with a
juice tube placed in their mouth delivering squirts of juice in
response to individual decisions in a task in which all rules were
learned through experience. (Indeed, it was the same task used
with monkeys, with the exception that humans used a keyboard
rather than eye movements to signal their decisions). We speculate
that if the study participants had been exposed to the same task
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for weeks and weeks, as the monkeys are, they may have become
risk-seeking. These results are consistent with the observation that
when humans and animals are placed in similar conditions, they
exhibit similar gambling preferences (Weber et al., 2004). Thus,
although there may be a main effect of species on risk attitudes
(Heilbronner et al., 2008), it is likely to be overwhelmed by con-
textual factors when experimental conditions are not carefully
standardized.

How do we reconcile these results with the pronounced risk-
aversion observed in other animal species? Certainly, most animals
are risk-averse (Kacelnik and Bateson, 1996), although there are
now many known exceptions (for a review, see Heilbronner et al.,
2009). As we have noted here, paradigms developed for neuro-
physiological recordings differ substantially even from most other
animal choice studies. For example, ITIs are typically tens or hun-
dreds of seconds rather than a few seconds, and animals may
complete dozens of trials per day compared to hundreds or thou-
sands. Handling times and reward values for seeds, pellets, and
sucrose solution (Kacelnik and Bateson, 1996) may also differ
drastically from those associated with drinking juice from a tube.
Because most animal studies do find risk-aversion toward gains
across a wide variety of methods, we should think of the conditions
used in macaque gambling studies as somewhat extreme.

Broadly speaking, it is clear that attitudes toward risk are
influenced by a large number of psychological factors, and that
careful manipulation of these factors can push attitudes toward
risk-aversion, risk-seeking, or neutrality. So far, the attributes of
task design used to study risk preferences in rhesus monkeys
bias them toward risk-seeking. These results highlight the impor-
tance of carefully considering the influence of task parameters
when comparing across species, and if possible of using the same
design elements. Of course, rhesus monkeys lack the ability to use
language, and their conceptual representation of large numbers

and explicit probabilities remains unclear. Given monkeys’ lack
of language, it is quite possible that there may be no fair primate
analog of standard written risk tasks in humans, just as there is no
primate analog of jokes, irony, word-naming, or any other product
of language. Thus, it may be impossible to use animals to model
certain aspects of risky decisions in humans. However, it is also
clear that humans and monkeys have similar behavior in response
to gambles in which parameters are learned, suggesting that mon-
keys may be a good model for specific types of decision-making
under uncertainty. Clearly, an important future goal will be dis-
sociating the differences between preference patterns for different
types of uncertainty (Volz and Gigerenzer, 2012).

Understanding the patterns of preferences for risk among rhe-
sus macaques is critical to neuroeconomists – scientists who use
measures of brain activity to infer the computational mechanisms
of incentive-based (i.e., economic) decisions. Rhesus macaques
are hoped to be a viable model for human economic preferences.
Although a cursory examination of human vs. macaque prefer-
ences would suggest that they are quite different (in fact, opposite),
here we have argued that similar psychological factors influence
both species. Thus, macaque models of decision-making may
accurately reflect the many cognitive biases influencing human
risk preferences. These results therefore highlight the fundamen-
tal importance of identifying and accounting for the psychological
processes behind decisions.
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Decision neuroscience offers the potential for decomposing differences in behavior across
individuals into components of valuation intimately tied to brain function. One application
of this approach lies in novel conceptualizations of behavioral attributes that are aberrant in
psychiatric disorders. We investigated the relationship between social anxiety and behav-
ior in a novel socially determined risk task. Behaviorally, higher scores on a social phobia
inventory (SPIN) among healthy participants were associated with an increase in risky
responses. Furthermore, activity in a region of the dorsal anterior insula (dAI) scaled in
proportion to SPIN score in risky versus non-risky choices. This region of the insula was
functionally connected to areas in the intraparietal sulcus and anterior cingulate cortex that
were related to decision-making across all participants. Overall, social anxiety was associ-
ated with decreased risk aversion in our task, consistent with previous results investigating
risk taking in many everyday behaviors. Moreover, this difference was linked to the anterior
insula, a region commonly implicated in risk attitudes and socio-emotional processes.

Keywords: social anxiety, risk, SPIN, anterior insula, intraparietal sulcus, anterior cingulate cortex

INTRODUCTION
Among anxiety disorders, social anxiety has the highest lifetime
prevalence in the U.S. population (Kessler et al., 1994). It is defined
by fear and avoidance of a range of social situations, and negative
physiological reactions during these encounters (Connor et al.,
2000). Socially anxious individuals are typically stereotyped as
withdrawn in social contexts, leading to overall less trusting, and
more risk-averse behaviors (Erwin et al., 2003; Kashdan and McK-
night, 2010). There is some evidence indicating that there is an
overall difference in risk preferences with social anxiety; specifi-
cally, high social anxiety predicts greater risk aversion in the Bal-
loon Analog Risk Task (BART; Maner et al., 2007). However, recent
findings and theoretical arguments have argued that social anxi-
ety may promote risk seeking in some circumstances. It has been
shown that when expecting a positive outcome, social phobics have
higher risk preferences than less socially anxious controls (Kash-
dan et al., 2006). Subsets of social phobics have also been found
to engage in risky behaviors such as alcohol and drug use as emo-
tion regulation strategies to protect against anxiety responses in
social scenarios (Kashdan and McKnight, 2010). Similar compen-
satory behaviors may arise more generally, with increased aggres-
sion (or anger) expressed to protect against the consequences of
anticipated withdrawal in social interactions (e.g., bargaining).
Indeed, increased expression of anger has been found in indi-
viduals with high social anxiety (Erwin et al., 2003). Anger, in
turn, has been associated in other work with increased risk-seeking
choices (Lerner and Keltner, 2001). Overall, prior work indicates
that risk taking may either increase or decrease as a function of
social anxiety, particularly in anticipation of social interactions.

Given the complexity of the phenomenon, we aimed to study
how social anxiety correlates with risk attitudes in a simplified

social context. To do so, we employed an adapted version of a two-
player two-stage response game (Figure 1, cf. Charness and Rabin,
2002; Charness and Rabin, 2005; Kosfeld et al., 2005; Krueger et al.,
2007). The task was structured such that the target player decided
between a risky or safe option in which the likelihood of greater
reward depends on the anticipated beneficence of other players.
We aimed to have the probability of different outcomes depend
only on social factors while otherwise minimizing the impact of
other player’s attitudes toward monetary gains. We expected that
this feature of the task would maximize behavioral differences
that depend on social anxiety, allowing for a direct assessment of
the relationship between social anxiety and social risk taking in a
simplified task. To enhance the emotional effects, we furthermore
added subliminal social primes in the form of backward-masked
fearful and happy faces. As a secondary aim, we examined the effect
of fear versus happy social primes.

As indicated above, two hypotheses about how risk aversion
may differ with social anxiety are suggested by the literature. We
hoped to differentiate between these using measures of behavior
and brain activity. With regard to brain activity, decision neu-
roscience has linked numerous brain areas to specific aspects of
valuation in studies of risk and ambiguity. If social anxiety is asso-
ciated with overall differences in risk aversion, then neuroimaging
may reveal differences in neural structures associated with assess-
ment and integration of the incentives in a risky choice. Numerous
brain areas have been associated with these processes, most promi-
nently areas in the prefrontal and posterior parietal cortex involved
in cognitive and executive functions (Hsu et al., 2005; Huettel et al.,
2005, 2006; Brand et al., 2007; Rangel et al., 2008). Conversely,
if differences in risk aversion depend on emotional responses
triggered by social context (cf. Kashdan et al., 2006; Kashdan
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FIGURE 1 |Task. (A) Trials began with a backward-masked
emotion face prime (fearful or happy face). This was followed by a
decision period in which participants were assigned the role of
Player A in a two-person two-stage response game. No time
limit was imposed, and options were displayed until the
participant made a choice. (B) Participants selected between safe and

risky choice options. For the safe option, both Player A and Player B received
the same amount of money, V 0 (e.g., $4). If the risky option was selected,
Player A’s outcome depended on the choice made by Player B. Player B
choices resulted in either smaller, V min (e.g., $1) or a larger, V max (e.g., $10),
payments to Player A. In all possible outcomes, Player B always received the
same amount of money, V 0.

and McKnight, 2010), then a different pattern of brain responses
may emerge. Regions in the anterior insula have been associated
with the emotional responses triggered by the anxiety associated
with potential losses (Kuhnen and Knutson, 2005; Mohr et al.,
2010). Intriguingly, social anxiety has been linked to hyperactiv-
ity in the anterior insula in other work (Etkin and Wager, 2007).
Building from this, we therefore aimed to use neuroimaging to
differentiate between the conflicting hypotheses about how risk
attitudes are associated with social anxiety and to explore the pat-
terns of neural activation that may give rise to these behavioral
differences.

MATERIALS AND METHODS
PARTICIPANTS
Twenty healthy males (ages 19–46 years, M = 25.0, SD = 6.8, one
declined to specify) were recruited from the community surround-
ing Stanford University to participate in the study. To prevent
knowledge of the purpose of the study, no mention of social anxi-
ety was made during recruitment. We restricted recruitment only
to males to reduce variability in emotional responses to emotional
face primes used in the study (cf. Whalen et al., 1998). Two partic-
ipants who exclusively chose only safe or only risky options were
excluded from analysis, leaving a total of 18 participants included
in the final data set (ages 19–46 years, M = 25.2, SD = 7.0). The
study was approved by Stanford University’s Institutional Review
Board, and all participants gave informed consent. Participants
received $30 for participation in the 90-min experiment. Addi-
tionally, they were paid the outcome of one trial chosen at random
from all choices made during the experiment.

Upon arrival,participants signed a consent form and completed
a magnetic resonance screening form. They were presented with
task instructions and two practice trials of the decision-making
task on a laptop computer prior to entering the scanner.

SOCIAL RISK TASK
The scanner session consisted of four task blocks of 16 trials each.
The overall structure of the task is depicted in Figure 1A. Each

trial contained a backward-masked face prime followed by a risky
choice. The inter-trial interval was random, ranging from 5 to 9 s,
during which a white fixation cross was shown. The fixation cross
turned green 1 s before the onset of the face prime to signal that a
trial was about to begin. A random inter stimulus interval of 3–6 s
separated the face prime and the decision period.

Participants were instructed that they would be performing
two tasks. The first task was a foil used to ensure that participants
paid attention to the presentation of face stimuli that were oth-
erwise instructed to be irrelevant. For this first task, participants
were simply told to attend to the faces displayed in order to per-
form a recognition task at the end of the experiment. Face primes
were fearful or happy expressions of eight individuals (eight fear-
ful and eight happy primes per block; Ekman and Friesen, 1976).
Backward-masked emotional faces were presented with a display
time of 33 ms, mimicking the subliminal presentation of the same
stimuli by others (Whalen et al., 1998). Each face presentation
was immediately masked by a neutral face (of the same individual
as the emotional face image) image for 200 ms. All images were
in grayscale. We used this procedure to better elicit socially rele-
vant emotions without consciously prompting participants to alter
their decision-making strategy.

The second task was a two-player (Player A and B) decision
task schematized in Figure 1B. Participants were instructed that
they were to complete multiple one-shot iterations of a task with
other anonymous players, whose responses were collected before-
hand. They were further instructed that the other players in this
task were unrelated to the faces shown for the memory task. Each
round of the task proceeded as follows: for each choice, the amount
the other player (Player B) received was fixed. To determine how
much the participant (Player A) would receive, a choice was made
between two options. One option guaranteed that both players
each received the same amount of money (“safe” option; pay-
ment of V 0 to both players). The other option allowed Player
B to determine whether the participant received more (amount
V max > V 0) or less (V min < V 0) money than the second player
(“risky” option). For example, consider the choice depicted in
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Figure 1. For the safe option, the participant was guaranteed a
payoff of $4. For the risky option, the participant may earn $1 or
$10 depending on the action of Player B. Participants were told
that since the other players changed on every trial, and only one
random trial would be selected for payment, they should treat each
trial as independent, and as if it were the only trial presented to
them. The side of the screen on which the safe and risky options
appeared was randomized across trials.

Player B choices were collected before the experiment by polling
an independent random sample from the Stanford community.
Participants (Players A) were informed that Player B responses
were collected beforehand from real respondents, but were not
instructed about how to assess the likelihood of Player B selecting
either the higher or lower payment. They were also not pro-
vided feedback about the other players’ choices during the session.
We did this to allow socially relevant emotions from the face
presentation to better carry over to risky decision-making.

The range of values for the safe option (V 0) was $3 to $8, the
smaller value for the risky option (V min) was $1 to $7, and the
larger values (V max) ranged from $5 to $14. The task included a
total of 64 trials. In every trial the safe value was always intermedi-
ate between the large and small risky values (V min < V 0<V max). A
ratio term was computed for every trial with the following formula:

Ratio = Potential Gain

Potential Loss
= Vmax − V0

V0 − Vmin
(1)

The ratio term is a measure of the relative potential gain over the
potential loss of allowing the opponent to choose the outcome of
the trial, and was the best predictor of choice outcomes in our
experiment. Eight sets of eight trials were created, such that each
set contained the same distributions of ratios ranging 1–3. The
same sets of values were used for all participants. Two of these sets
were randomly assigned to each block, one set for the fearful trials,
and the other for the happy trials.

fMRI ACQUISITION AND ANALYSIS
Functional images were acquired with a 3-T General Electric
Discovery scanner (Waukesha, WI, USA). T2∗-sensitive gradi-
ent echo spiral in/out pulse sequences (Glover and Lai, 1998;
Glover and Law, 2001) were used for functional imaging (33
oblique axial slices parallel to the AC–PC line, slice thick-
ness = 4 mm, no gap, TR = 2000 ms, TE = 30, TE2 = 30.5, flip
angle = 77, FOV = 20 cm, 64 × 64, ascending sequential). Spiral
in/out methods have been shown to reduce signal loss in regions
compromised by susceptibility-induced field gradients generated
near air-tissue interfaces such as ventral PFC and striatum (Glover
and Law, 2001; Preston et al., 2004). High-resolution T2-weighted
fast spin-echo structural images (BRAVO) were acquired for
anatomical reference (TR = 8.2 ms, TE = 3.2 ms, flip angle = 12
slice thickness = 1.0 mm, FOV = 24 cm, 256 × 256).

The imaging data were preprocessed and analyzed with SPM8
(Wellcome Department of Imaging Neuroscience, University of
London). Preprocessing of the data used SPM8 for slice-timing
correction, realignment to the first image for motion correction,
coregistration, normalization to an Montreal Neurological Insti-
tute (MNI) template image, and spatial smoothing with an 8-mm
full-width half-maximum Gaussian kernel.

Our main analyses were performed using whole-brain general
linear model (GLM) analyses. Events of interest are described
for individual analyses in Section “Results.” In all analyses we
included a set of regressors to account for potentially confounding
effects. Specifically, to account for variability in response times, we
modeled the decision period using a boxcar with duration from
the onset of the decision to the time of choice submission. We
also included regressors for head movement during the experi-
ment (estimated from realignment). Regressors of interest were
convolved with a canonical hemodynamic response function.

AlphaSim (Ward, 2000) was used to calculate the appropri-
ate cluster size for a corrected significance threshold of p < 0.05
(1000 Monte Carlo simulations). A minimum cluster size of 45
was required with a voxel-wise threshold of p < 0.005 given the
smoothness of our preprocessed data.

POST-SCAN QUESTIONNAIRES
After completing the scanner session, participants completed the
17-item Social Phobia Inventory (SPIN; Connor et al., 2000) and
the 20-item trait version of the Spielberger State-Trait Anxiety
Inventory (STAI-trait; Spielberger, 1983). These questionnaires
were administered at the end of the session to reduce subject
knowledge of our hypotheses. We included the STAI-trait as a con-
trol measure for overall anxiety (non-social). STAI-trait scores did
not correlate with any of the behavioral or neural indices discussed
below. For succinctness, we therefore omit further discussion of
this variable.

RESULTS
BEHAVIORAL RESULTS
On average, participants chose the risky option 57.8% of the time,
but there were large individual differences in the proportion of
risky choices made (SD = 17.6%, range = 25–84.4%). Mean reac-
tion time was 5.0 s (mean reaction times across subjects: SD = 1.6 s,
range = 2.7–7.4 s). There was no significant difference in reaction
time for risky versus safe choices (p > 0.9). Furthermore, there
was no significant relationship between average reaction time
per subject and proportion of risky choices made (r = −0.0136,
p > 0.9).

There was no significant effect of the emotion of the face prime
on choice (fearful versus happy; p > 0.8 on β coefficient in logistic
regression, see below). Because the specific emotion of the face
prime had no significant effect on our observed results, for all the
analyses that follow we averaged over fear and happy face primes,
as has been done by others (Casey et al., 2011), to produce an
aggregate measure of the effect of social emotions.

On the SPIN, participants scored an average of 19.0 out of
a maximum of 68 (SD = 10.6, range = 1–46). Scores of 20 and
above are considered clinically relevant. Our population therefore
spanned a range of no significant social anxiety, to (in one case)
severe. In subsequent analyses we analyzed SPIN scores as a contin-
uous variable. However, for illustration purposes we split partici-
pants into low and high SPIN (e.g., Figure 2) around the median
SPIN value of 18. Serendipitously, this median split approximately
corresponds to clinically relevant and irrelevant SPIN scores.

To investigate the effects of social anxiety and ratio (see Eq. 1)
on risky decisions, a linear mixed model was used with choice as
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the dependent variable, ratio, emotion prime, and SPIN as fixed
effects and subject as a random effects variable. Variables were
mean centered. As expected, the effect of ratio was highly sig-
nificant: the higher the ratio, the more likely the risky choice was
selected (p < 0.001). A main effect of social anxiety was also found:
the probability that a risky option was chosen correlated positively
with SPIN scores (p < 0.04). There was a significant ratio × SPIN
interaction as well (p < 0.002). Higher SPIN scores were associated
with higher differential sensitivity to ratio (Figure 2).

NEUROIMAGING RESULTS
Correlations between behavior and neural activation
We performed two analyses to relate brain activity to choices. We
began by constructing a GLM with five regressors of interest, one
regressor each for fearful and happy emotion primes, and one
for the decision period, with ratio and choice (1 for risky, −1
for safe) included as parametric modulators of decision-related
activity. Using a fearful–happy contrast, no significant effects of
emotion of face prime were found at our significance criterion
anywhere in the brain. The ratio and choice regressors were sepa-
rately used to identify candidate brain areas that govern evaluation
of risk in our task. No main effects of choice were found at our
significant threshold. However, brain areas that correlated with
ratio include a number of areas that have been associated with risk
assessment and decision-making in other work (Rushworth et al.,
2004; Huettel et al., 2005, 2006; Rangel et al., 2008; Hare et al.,
2009). We found significant effects in the supplementary motor

FIGURE 2 | Probability of choosing the safe option plotted against

ratio. A median split was performed, with data from low social phobia
(SPIN) individuals plotted in blue and high SPIN in red. Linear fits were
determined across all trials with ratio modeled as a continuous variable. For
illustration, choices were grouped into seven ratio bins (1, 1.25/1.3333, 1.5,
1.6667/1.75, 2, 2.3333/2.5, 3) and plotted against mean probability of
choosing the safe option for high and low SPIN participants.

area (SMA),anterior cingulate cortex (ACC),bilateral intraparietal
sulcus (IPS), bilateral inferior frontal gyrus (IFG), and bilaterally
in the ventral anterior insula (vAI; Figure 3; Table 1).

Because potential gain/loss ratio was found to be a strong pre-
dictor of choice in our behavioral analyses, we conducted an ROI
analysis to further explore how the areas associated with ratio
related to choice. ROIs were created using 6 mm radius spherical
masks around the peak voxels from the following areas (coordi-
nates are reported in MNI space): SMA (−2 38 52), ACC (2, 36,
34), bilateral IPS (46, −56, 50 and −44, −56, 50), bilateral vAI (40,
16, −6 and −44, 16, −6), bilateral IFG (31, 59, 14 and −38, 56, 8).

For each of these ROIs, the correlation between mean activity
as a function of choice and the percentage of safe choices made was
calculated across participants. Specifically, we hypothesized that if
these brain areas are associated with decision-making, then differ-
ences in activity as a function of choice should predict individual
propensities for selecting risky/safe alternatives. Results from this
analysis are shown in Table 2. Using a threshold α of 0.0063, based
on Bonferroni correction for multiple comparisons (p = 0.05/8
ROIs, SMA, ACC, and bilateral IFG, IPS, and vAI), significant
negative correlations were found between activity in the left and
right IPS and the proportion of safe choices made. Marginally sig-
nificant results were found in each of the other ROIs except for
the left vAI, ACC, and IFG. Based on these findings, we conclude
that a number of areas are associated with evaluation of risky
options in our task. However, the IPS (bilaterally) appears to play
a particularly important role in governing individual differences
in behavior (cf. Mohr et al., 2010).

FIGURE 3 |To identify brain areas that govern choice, we identified

regions that correlated significantly with the ratio of potential gains

and losses. Several key brain areas associated with risky decision-making
were identified, including (A) SMA and ACC, (B) IFG, (C) vAI, and (D) IPS
(p < 0.05, corrected). SeeTable 1.
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Neural responses associated with effects of social anxiety on
decision-making
To examine the effects of social anxiety,analyses were repeated with
individual SPIN scores as a covariate. This allowed us to determine
the correlation between social anxiety and BOLD signal change. A
negative correlation was observed between SPIN score and BOLD
activity for the choice (risky–safe) regressor in the left dorsal ante-
rior insula (dAI; Figure 4A; Table 3). This region of the insula was
distinct from that found in the analysis above, occupying a more
dorsal/medial position (peak voxel at −28, 22, 2).

Interestingly, choice-dependent differences in dAI activity were
of opposite sign for those participants with above and below clin-
ically relevant SPIN scores. To illustrate this, Figure 4B shows
mean dAI activity for each subject in a 6-mm sphere surround-
ing the peak dAI voxel identified in Figure 4A. Those participants
with low social anxiety showed greater dAI activity in risky versus
safe choices, consistent with previous reports (e.g., Kuhnen and
Knutson, 2005; Mohr et al., 2010). The opposite finding held in
participants with high SPIN scores. Specifically, choices for safe
options were associated with greater dAI activity than choices
made for risky options. A priori, we would have expected emotion
regulation in high SPIN individuals to give reduced dAI activ-
ity, not that it would change the sign of the effect. Nonetheless,
our critical hypothesis was confirmed: those participants with
high SPIN scores show less activity in brain areas associated with
emotions that lead to choice of safe outcomes.

Interaction between dAI region associated with social anxiety and
brain areas responsible for evaluation of risk
We have identified the dAI as mediating the effects of social anxiety
on behavior in our task. We have also identified a number of other
areas as governing the effect of risk on choice. In this final analysis
we determine how the dAI interacts with the regions associated
with decision-making using functional connectivity analyses.

A psychophysiological interaction (PPI) analysis was conducted
to find areas that show a stronger functional connectivity with the
dAI during the decision periods of the task for risky versus safe

Table 2 | Correlation between p (choose safe option) and activation

with safe–risky choice contrast.

L/R Correlation coefficient p

Inferior frontal gyrus L −0.434 0.0721

R −0.397 0.103

Ventral anterior insula L −0.305 0.218

R −0.492 0.0379

Intraparietal sulcus L −0.619 0.00618*

R −0.679 0.00196*

Supplementary motor area – −0.552 0.0176

Anterior cingulate cortex – −0.405 0.0954

Bold: p < 0.05; *p < 0.05 after Bonferroni correction.

Table 1 | Correlation between activity during the choice period and the ratio of potential gains to losses.

Region Peak voxel

L/R T 17 x y z

POSITIVE

Intraparietal sulcus L 9.27 −44 −56 50

R 5.41 48 −58 52

Supplementary motor area – 7.13 −2 38 52

Anterior cingulate cortex – 5.91 2 36 34

Cerebellum (vermis) R 6.04 14 −68 −20

Ventral anterior insula L 5.51 −52 20 −8

L 5.30 −44 16 −6

R 4.77 40 16 −6

Inferior frontal gyrus L 5.08 −38 56 8

R 5.00 34 62 14

Lateral globus pallidus R 5.42 26 −12 2

Putamen L 5.12 −24 −14 8

Cingulate gyrus R 4.18 16 −2 28

Inferior temporal gyrus R 4.18 54 −58 −14

Middle frontal gyrus L 4.08 −32 14 58

R 3.68 44 32 26

Precentral gyrus L 3.80 −50 −16 32

NEGATIVE

Fusiform gyrus L 4.95 −42 −42 −22

R 6.18 32 −54 −10

Amygdala L 4.11 −32 −2 −20

MNI coordinates; p < 0.05 corrected (p < 0.005, k > 45).
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choices. Using the peak voxel within the dAI as a seed region, raw
time courses were extracted, z-normalized, corrected for linear
drift, and used as regressors in a separate GLM analysis. In order
to examine the task contrast of interest (risky versus safe choices),
the time course values for six TRs after each onset of the decision

FIGURE 4 | Regions associated with social anxiety were identified as

those that show a difference based on choice (risky–safe) as a function

of SPIN score. (A) This analysis identified a single region of interest in left
dAI (p < 0.05, corrected). (B) Within this region of dAI, SPIN scores were
negatively correlated with BOLD contrasts for risky–safe choices. Low SPIN
individuals had higher activation in the dAI for risky versus safe choices,
while the opposite was true in high social phobic individuals. SeeTable 3.

period were multiplied by 1 for risky choices and −1 for safe. Six
TRs (12 s) was the maximum time period possible for this design
(to prevent interference from subsequent trials), and the full 12 s
was included in our model so that an adequate signal could be
obtained for PPI analysis (cf. Cohen et al., 2005; Park et al., 2010;
van den Bos et al., 2011). Six motion regressors were included as
regressors of no interest. Significant correlations were found in the
ACC and the IPS for this model (Figure 5A; Table 4). These areas
overlap with the regions that were found to be significantly corre-
lated with ratio (the conjunction of results from the two analyses
are shown in Figure 5B). This analysis was also carried out with
the vAI as seed region. No significant connectivity was found with
any other regions of the brain. Based on these findings, it seems
that social anxiety influences risk preferences through interactions
between the dAI and valuation processes in the ACC and IPS.

DISCUSSION
Contrary to the common portrayal of social phobics as risk-averse
and distrusting, the current study showed that the preference for
risk on a social task correlated positively with social anxiety scores.
As mentioned in the introduction, people with social anxiety have
been found to employ risky behaviors as an emotion regulation
strategy, especially when one expects positive outcomes to arise
from these risks (Kashdan et al., 2006; Kashdan and McKnight,
2010). It is possible that in the modified version of the response
game, in which the second players’ choices do not affect their own
payoffs, participants might have expected that the other player
would grant the larger sum. This expectation of a positive out-
come may underlie the increased propensity of those with higher
social anxiety scores to utilize risk as a compensatory strategy.

This rationale may also explain the discrepancies between the
findings in this paper and those obtained using the BART as a
measure of risk sensitivity. Maner et al. (2007) showed that social
phobics were more risk-averse than controls using BART. One
hypothesized cause for risky behavior in socially anxious indi-
viduals is that it compensates for anticipated anxiety in social
situations. BART is strictly a single player game and, therefore, the
need for compensatory emotion regulation does not arise. How-
ever, our task involves a second player and mimics a two-person
interaction. These attributes may trigger socially anxious individu-
als to anticipate anxiety and compensate by increasing risk seeking.
More generally, this social feature may highlight domains in which
social anxiety is associated with greater or lesser risky behavior in
daily life.

This is the first study using the task we employed. It is therefore
relevant to note that the brain areas we identified as important for
governing choices correspond well with areas associated with risky

Table 3 | Correlation between activation based on choice (risky–safe) and SPIN score.

Region Peak voxel

L/R T 15 x y z

Dorsal anterior insula L 4.53 −28 22 2

MNI coordinates; p < 0.05 corrected (p < 0.005, k > 45).
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FIGURE 5 | Psychophysical interaction analyses were

performed to determine how the dAI interacts with brain

areas related to decision-making. (A) Using the peak voxel of dAI
as the seed, the IPS and ACC were identified as regions with higher
functional connectivity to the dAI during risky versus safe choices.

(B) These regions of the IPS and ACC overlapped with those
identified as related to decision-making across all subjects. Yellow areas are
those that were significant for the PPI analysis and which were also found to
correlate with ratio (conjunction at p < 0.05, corrected, for both tests).
SeeTable 4.

Table 4 | Regions with high functional connectivity with the left dAI as seed region.

Region Peak voxel

L/R T 17 x y z

Middle frontal gyrus L 5.43 −30 12 52

L 3.54 −38 44 16

R 3.21 26 10 58

Intraparietal sulcus R 4.63 50 −66 32

L 4.01 −50 −62 42

Superior frontal gyrus L 4.62 −20 50 −2

Parietal lobe white matter L 4.49 −20 −42 32

Anterior cingulate cortex – 4.24 4 48 22

Inferior frontal gyrus L 3.54 −46 16 22

Cerebellum (vermis) R 3.46 24 −60 −28

MNI coordinates; p < 0.05 corrected (p < 0.005, k > 45).

decision-making in other work. The IPS correlates with individual
differences in risk attitudes in simple gambles (Huettel et al., 2006).
Similarly, the ACC and SMA are involved in a number of decision-
making tasks, including those that involve socially determined
uncertainty (e.g., Sanfey et al., 2003; Baumgartner et al., 2008; van
den Bos et al., 2009). Similarly, ventral regions of the AI correlate
with perceptions of risk and drive choice outcomes accordingly
(Sanfey et al., 2003; Kuhnen and Knutson, 2005; Bossaerts, 2010).

The anterior insula is increasingly being appreciated for its
importance in numerous cognitive functions (Kurth et al., 2010;
Deen et al., 2011). Ventral parts of the anterior insula have com-
monly been associated with perception of risk, as noted above
(Bossaerts, 2010). The region of dAI that we find to be related
to social anxiety lies at the intersection of regions associated with
socio-emotional processes and cognitive processing in a recent
large meta-analysis (Kurth et al., 2010). Our experiment was moti-
vated by the hypothesis that assessment of socially determined risk
would differentially trigger compensatory risk-seeking behavior as
a function of social phobia. Relating this region of the dAI to social
anxiety in our task therefore makes conceptual sense. Moreover,
a recent study related hyperactivity of the same region of dAI to
clinical presentation of social anxiety (Etkin and Wager, 2007).

Our analyses showed that the dAI is functionally connected to
the IPS and ACC in a manner consistent with a role in biasing
choice. At least in social contexts, even as simply approximated
by our task, we conclude that the anterior insula is a region
tied to clinically relevant behavior (risk seeking). This provides a
new conceptual framework, rooted in cognitive neuroscience, for
understanding aspects of the behavioral differences that manifest
clinically as social anxiety.

Due to the small sample size of this study, we recruited only
male participants to reduce sample variance. Furthermore, male
participants were recruited because social phobia symptoms and
risk taking behavior have been found to vary over the menstrual
cycle (Chavanne and Gallup, 1998; Voelker, 1998; Bröder and
Hohmann, 2003). Future studies including women are necessary
in order to generalize the findings to both genders.

Advances in understanding the computational and brain bases
of behavior have enabled a recent spurt of neurobiological
accounts of various psychiatric disorders. For example, Maia and
Frank (2011) link aspects of Parkinson’s disease, Tourette’s syn-
drome, ADHD, addiction and schizophrenia to specific functional
deficits in cortico-basal ganglia circuitry. Some mood disorders
have also been addressed. Differences in anterior insula activity
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associated with borderline personality disorder predict behavioral
outcomes in a two-person trust game (King-Casas et al., 2008).
Likewise, depression has been associated with specific computa-
tional deficits tied to serotonin function (Dayan and Huys, 2008).
In non-clinical populations, behavioral preferences and associated
brain activity also appear to depend on individual differences in
personality traits; for example, in decisions involving risk, insula
activity was found to correlate with harm avoidance and neu-
roticism, while activity in the temporal parietal junction, anterior
insula, and ACC correlated with social value orientation (Paulus

et al., 2003; van den Bos et al., 2009). Our results contribute to this
growing literature in the domain of social anxiety.
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Previous neuroimaging studies on decision making have mainly focused on decisions on
behalf of oneself. Considering that people often make decisions on behalf of others, it is
intriguing that there is little neurobiological evidence on how decisions for others differ
from those for oneself. The present study directly compared risky decisions for self with
those for another person using functional magnetic resonance imaging (fMRI). Participants
were asked to perform a gambling task on behalf of themselves (decision-for-self condi-
tion) or another person (decision-for-other condition) while in the scanner. Their task was
to choose between a low-risk option (i.e., win or lose 10 points) and a high-risk option (i.e.,
win or lose 90 points) with variable levels of winning probability. Compared with choices
regarding others, those regarding oneself were more risk-averse at lower winning prob-
abilities and more risk-seeking at higher winning probabilities, perhaps due to stronger
affective process during risky decisions for oneself compared with those for other. The
brain-activation pattern changed according to the target, such that reward-related regions
were more active in the decision-for-self condition than in the decision-for-other condition,
whereas brain regions related to the theory of mind (ToM) showed greater activation in the
decision-for-other condition than in the decision-for-self condition. Parametric modulation
analysis using individual decision models revealed that activation of the amygdala and the
dorsomedial prefrontal cortex (DMPFC) were associated with value computations for one-
self and for another, respectively, during risky financial decisions.The results of the present
study suggest that decisions for oneself and for other may recruit fundamentally distinct
neural processes, which can be mainly characterized as dominant affective/impulsive and
cognitive/regulatory processes, respectively.

Keywords: fMRI, self–other decision, amygdala, dorsomedial prefrontal cortex, risky decision, prosocial behavior,
social neuroscience

INTRODUCTION
In daily life, we make decisions on behalf of others as often as
we make decisions on behalf of ourselves: we sometimes order
a lunch for a friend, choose presents for family, make decisions
for a company, or buy products or stocks for customers. These
other-regarding decisions, albeit not immediately targeted toward
ourselves, can be critical to the establishment and maintenance
of our social lives. Like decisions for oneself, decisions for oth-
ers ranging from mundane to profound also involve some level
of risk. Thus, it is important to understand the mental processing
that drives risky decisions for others as well as those for oneself.
Despite the significance of this issue, few neuroimaging studies
have directly compared decisions for oneself with those for others,
and only a small body of literature on the subject exists in the
field of social psychology. Thus, the goal of the present study is to
understand whether and how decisions (i.e., a risky decision in a
gambling task) for oneself and for others differ from each other at
the neural level through the use of functional magnetic resonance
imaging (fMRI).

An emerging body of literature on self–other decision mak-
ing has documented risky decisions in various domains, such

as surrogate decisions in medicine (Hare et al., 1992; Fagerlin
et al., 2001; Lipkus et al., 2001), public policy (Roszkowski and
Snelbecker, 1990; Reynolds et al., 2009), career choice (Kray and
Gonzalez, 1999), romantic relationships (Beisswanger et al., 2003;
Wray and Stone, 2005), and financial decisions in gambling tasks
(Hsee and Weber, 1997; Loewenstein et al., 2001; Stone et al., 2002;
Fernandez-Duque and Wifall, 2007). Although some progress
has been made, the findings of these studies have been rather
inconsistent. For instance, some studies have reported that peo-
ple behaved/thought in a more risk-seeking manner when they
decided for another person than for themselves (Hsee and Weber,
1997; Beisswanger et al., 2003), whereas others found that people
became more risk-averse in similar situations (Fernandez-Duque
and Wifall, 2007).

In order to reconcile the conflicting findings listed above,
recent studies have considered the potential mediating factors
of these observations (Fernandez-Duque and Wifall, 2007; Stone
and Allgaier, 2008). For example, Fernandez-Duque and Wifall
(2007) examined actor-observer asymmetry in risky decisions and
proposed that the self–other discrepancy could be mediated by
differential access to experiential and rational decision making
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systems. They suggested that when people decide for themselves,
the experiential system – which involves intuitive and emotion-
ally based processes – might weigh more heavily on the decision
making process than the rational system – which engages effortful,
logical, and analytical processes (Denesraj and Epstein, 1994). This
could be the case because actors who make decisions for themselves
are more likely to be influenced by their own affective reactions
to the consequent rewards and punishments. Similarly, Hsee and
Weber (1997) showed that the level of description of the other
person accessible to participants mattered in the self–other deci-
sion making discrepancy. In their study, participants predicted that
others would be more risk-seeking than they would be in terms of
financial decisions when the other person for whom the decision
was made was described in anonymous and abstract terms. How-
ever, the self–other difference diminished when the other person
for whom the decision was made was described vividly and in con-
crete terms. The authors suggested that a vivid description of the
other person made the decisions for self and for other commen-
surate by eliciting strong affective reactions in subjects. To explain
the findings, they proposed a “risk-as-feelings hypothesis,” which
maintains that people rely on affective evaluations when making
decisions for themselves in risky situations (Hsee and Weber, 1997;
Loewenstein et al., 2001).

The idea that risky decisions for oneself are mainly affected by
emotional reactions has been supported by a large body of neuro-
science literature. Most relevant is the finding that the amygdala,
a key structure for emotional processing during decision making
(Morrison and Salzman, 2010), plays a critical role in risky decision
making (Bechara et al., 1999; Hsu et al., 2005; De Martino et al.,
2006, 2010; Brand et al., 2007; Ghods-Sharifi et al., 2009; Smith
et al., 2009). For instance, De Martino et al. (2006, 2010) studied
the neural correlates of the framing effect, whereby people become
more risk-averse in a gain frame (i.e., when gains are made salient)
than in a loss frame (i.e., when losses are made salient). This effect
is a representative example of emotionally driven decision mak-
ing in risky situations and was strongly associated with activity
in the amygdala (De Martino et al., 2006); further, the effect was
significantly diminished in patients with amygdalar damage (De
Martino et al., 2010).

The amygdala forms extensive anatomical and functional con-
nections with the dorsomedial prefrontal cortex [DMPFC, which
includes Brodmann areas (BAs) 9, 32, 33, and part of the medial
prefrontal cortex (MPFC); Etkin et al., 2011] that show devel-
opmental progress (Hung et al., 2011). The amygdala’s affective
reactions seem to be regulated via these connections (Banks et al.,
2007; Kim et al., 2011). Although relatively little is known about
the role of these amygdala–DMPFC connections in risky deci-
sions (Cohen et al., 2005), the DMPFC itself is also known as a key
structure for decision making in risky situations. For example,
Wu et al. (2011) found that activation of the MPFC, includ-
ing both dorsal and ventral regions, quantitatively reflected the
subjective value of monetary outcomes combined with probabil-
ity information about lottery tasks. Another study showed that
the DMPFC was specifically responsive to risk-related informa-
tion (Xue et al., 2009). Similarly, many previous studies using the
Iowa Gambling Task (IGT) have shown that risky decision mak-
ing is associated with increased activation of the DMPFC (Bolla

et al., 2003; Fukui et al., 2005; Tanabe et al., 2007). Further, the
DMPFC plays an important role in emotional regulation during
affective decision making (Banks et al., 2007), effort-based deci-
sion making (Rudebeck et al., 2006; Floresco and Ghods-Sharifi,
2007; Croxson et al., 2009), and perspective taking during other-
regarding processes (St. Jacques et al., 2010). In sum, while the
amygdala is responsible for affective reactions in risky decisions,
the DMPFC seems to control cognitive processes, such as weigh-
ing the probabilities and reward values of different options and
regulating emotion.

As reviewed above, evidence from the social psychology litera-
ture implies the existence of distinctive neural circuitry subserving
decisions on behalf of others as opposed to those made for oneself,
and unveiling this difference would greatly advance the current
theoretical account of prosocial decisions. In line with this idea,
a recent study showed that activity in the ventromedial prefrontal
cortex (VMPFC) was modulated by activity in the inferior parietal
lobule (IPL) – a brain region close to the temporoparietal junction
(TPJ) that is involved in mentalization (Saxe and Powell, 2006) –
when people made product purchase decisions for others, whereas
no such modulation effect of TPJ was found when people made
the same decisions for themselves (Janowski et al., 2012).

The present study aimed to examine the difference between
decisions made for oneself and those made for another in a risky
situation by using a gambling task paradigm with systematically
variable winning probability. On the bases of previous findings,
we predicted that affective processes would have stronger weight
in decisions made for oneself than for other. Thus, we hypoth-
esized that considering a risky choice on behalf of another may
employ the brain regions involved in cognitive/rational processes
(e.g., the prefrontal cortex) more than those associated with
affective/experiential processes (e.g., the amygdala), whereas the
opposite may be true when the risky decision is made for oneself.

MATERIALS AND METHODS
PARTICIPANTS
Twenty-three undergraduate students in South Korea [12 women;
mean age (SD)= 23.32 (2.59)] participated voluntarily and were
compensated an average of KRW 30000 (∼USD 25) for about
1 h of participation. Any potential health risks were carefully
screened via a self-report questionnaire, and informed consent
was obtained from all participants. All participants were right-
handed and reported having no chronic mental illness. Three
participants were excluded from analysis because they fell asleep
inside the scanner. The experimental procedures were approved
by the Institutional Review Board of Korea University.

TASK AND PROCEDURES
Participants performed a gambling task inside the MRI scanner.
We adopted the “modified risk task” developed by Knoch et al.
(2006), in which participants were asked to choose between two
options: one with lower risk (i.e., win or lose 10 points) and
another with higher risk (i.e., win or lose 90 points). The win-
ning probability of each option was 17–83% (the probabilities
used were 17, 33, 50, 67, and 83%). In each trial, participants were
presented with six boxes distinguished by pink and blue colors,
and they were asked to choose either pink or blue. The colors of
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the boxes indicated the numbers of points that the participants
could win or lose: 10 for pink and 90 for blue (Figure 1A). Partic-
ipants were told that a yellow coin had an equal chance to appear
in any of the boxes and they would gain points if the coin was
contained in one of the boxes with the chosen color and that they
would lose the same number of points if the coin appeared in an
opposite-colored box. For example, if they chose pink and there
was a coin in one of the pink boxes, they won 10 points, but if
there was no coin in the chosen color, they lost 10 points. Like-
wise, if they chose blue, they won or lost 90 points if there was
or was not a coin among the blue boxes, respectively. Thus, pink
were the low-risk and blue were the high-risk options. The ratio of
pink and blue boxes determined the winning probability of each
option; for example, five pink boxes and one blue box meant that
the winning probabilities were 83% for pink and 17% for blue.
In each trial, participants had to make a decision on behalf of
either themselves (decision-for-self condition) or another person
(decision-for-other condition), according to a cue presented prior
to the task. The structure of a single trial is shown in Figure 1B.
First, the cue indicating the decision condition (decision-for-self
or decision-for-other) was presented for 1–3 s, followed by the risk
task. After the six boxes were presented, the participants chose
between pink and blue by pressing the left or right button of
an MR-compatible mouse. They were asked to respond carefully
but as quickly as possible. Each participant performed 120 total
trials (60 in each of the decision-for-self and decision-for-other
conditions), which were divided into three sessions. Each session
consisted of 40 trials, with the same number of trials for each
condition. The order in which the different types of trials were
presented was determined pseudorandomly. Earned points were
accumulated separately for each condition. Participants were told
that the points accumulated in all trials would be converted into
real money. We informed participants that they would be endowed
with a base payment of 30,000 KRW; we also informed them that
25000–35000 KRW was an approximate range of final compen-
sation. Participants were kept blind to the exact ratio between
points and money, because we did not want them to focus on
calculating the exact amounts of money earned by themselves

or others. Subjects were also told that their task performance in
the decision-for-other condition would determine extra earnings
of another person who was randomly selected among the par-
ticipants of the same experiment. Participants understood that
the transfer would be completely anonymous so that neither the
participants themselves nor their counterparts would know each
other’s identities. They also knew that their decisions for others
would not affect their own profits, because the point totals for
self and other were calculated separately, and the tasks were per-
formed individually. In both conditions, participants started with
100 points; 4 s after the participants made a decision, the result
of the decision (i.e., win or lose) was presented on the feedback
screen (Figure 1B).

All instructions were given outside the scanner, and each par-
ticipant performed 10 practice trials before entering the scanner
to learn the task rules. After the completion of the task, the points
earned during the decision-for-self condition were converted into
money and added to the subject’s base payment (KRW 30000),
and the points earned during the decision-for-other condition
were actually transferred to another participant for whom the
participant made the decisions. Participants’ final earnings var-
ied 25000–35000 KRW, depending on their own performance and
that of the other randomly matched participant.

NEUROIMAGING PROCEDURES
fMRI data acquisition
We acquired data using an ISOL Forte 3T system with a
standard birdcage coil in the Brain Science Research Center
at the Korea Advanced Institute of Science and Technology.
T2∗-weighted functional images were obtained using gradient–
echo echo-planar pulse sequences (TR= 2000 ms; TE= 30 ms;
FA= 80˚; FOV= 240 mm; 64× 64 matrix; 24 slices; voxel
size= 3.75 mm× 3.75 mm× 4.0 mm). The stimuli were pre-
sented through an MR-compatible LCD monitor mounted on a
head coil (refresh rate: 60 Hz; display resolution: 640× 480 pixels;
viewing angle: 30˚). Each functional run lasted 480–600 s, includ-
ing the first five TRs, which were discarded later due to unstable
magnetization.

FIGURE 1 | Schematic diagram of the experimental design. (A)
Five experimental conditions with variable probabilities and fixed
outcomes. Percentages in parentheses indicate winning
probabilities of the high-risk option (blue). (B) A schematic diagram

of the experimental design. Each trial began with a cue indicating
whether the decision is for self or for other, followed by a
gambling task. Participants were then asked to choose one of two
colors (pink or blue) by clicking the left or right mouse button.

www.frontiersin.org March 2013 | Volume 7 | Article 15 | 109

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Jung et al. Risky decisions for self versus other

fMRI data analyses
Neuroimaging data were preprocessed and analyzed using Statis-
tical Parametric Mapping 8 (SPM8; the Wellcome Trust Centre
for Neuroimaging, University College London, UK). After tim-
ing correction for interleaved slice acquisition, correction for
head motion was performed through realignment of all func-
tional images to those of the first scan, and then a mean brain
image was created for each participant. The realigned images were
normalized to the Montreal Neurological Institute (MNI) echo-
planar imaging (EPI) template, resampled at a voxel resolution
of 2 mm× 2 mm× 2 mm, and spatially smoothed with an 8 mm
Gaussian filter. Anatomical localization was performed in SPM8
by reference to a T1 template image, and then the preprocessed
functional images were analyzed using the general linear model
(GLM; Friston et al., 1995). Regressors for the events of choice and
outcome delivery were convolved with a canonical hemodynamic
response function. Motion vectors obtained from the realignment
process were included as regressors in the GLM in order to reduce
noise. The resulting statistical parametric maps were first thresh-
olded stringently (significance level: FWE < 0.05, corrected for
multiple comparisons; cluster size threshold >5 voxels), but no
activation cluster survived this threshold.

To verify a priori hypotheses regarding several regions of inter-
est (ROI), we used the small-volume correction (SVC) method
for multiple comparisons (p < 0.05) in SPM8. We expected that
the ventral striatum (VS; left: x =−10, y = 6, z =−14; right:
x = 8, y = 6, z =−10), the ventral tegmental area (VTA; x =−4,
y =−14, z =−20), the anterior cingulate cortex (ACC; x = 4,
y = 24, z = 40), and the insula (x =−34, y = 20, z =−4) would be
involved in reward anticipation and feedback during risky choice
in the self–other contrast (Ernst et al., 2004) and that the TPJ
(left: x =−48, y =−57, z = 25; right: x = 53, y =−54, z = 17),
the posterior cingulate cortex (PCC; x = 2, y =−60, z = 27), and
the MPFC (x = 1, y = 63, z = 2) – which are known to be related
to theory of mind (ToM) functions (Saxe and Powell, 2006) –
would be involved in the same function in the other–self contrast.
In addition, we expected the amygdala (x = 22, y =−4, z =−18;
Smith et al., 2009) and the DMPFC (x =−8, y = 36, z = 30; Wu
et al., 2011) to encode the value of the risky option. The search vol-
umes for SVC were restricted to spheres with radii of 15 mm and
center coordinates obtained from corresponding studies. Addi-
tionally, we defined the ROIs in both hemispheres by mirroring
the coordinates obtained in previous studies. To reduce the risk of
false negatives and completely overview the clusters at which acti-
vation occurred, we also applied a less-stringent significance level
(p < 0.001, uncorrected; cluster size threshold ≥5 voxels); a table
with a list of activation clusters is included in the Supplementary
Material.

Brodmann areas and brain regions were identified in Talairach
space (Talairach and Tornoux, 1988) after converting the MNI
coordinates to Talairach ones using non-linear transformation
(Lancaster et al., 2007).

Contrasting decision-for-self versus decision-for-other
In order to explore which brain regions were more highly acti-
vated by the decision-for-self task than by the decision-for-
other task or vice versa, we estimated whole-brain contrast maps

from the periods when participants watched the six boxes and
received reward information during both tasks. The single-subject
whole-brain GLMs included the following regressors: (1) deci-
sion events at the time of task onset, when participants viewed
the stimuli for 10 types of trials (i.e., five levels of probability in
both the decision-for-self and decision-for-other conditions) and
made decisions, (2) button-pressing events, (3) feedback events
(at feedback onset, when participants watched two types of out-
comes: those for self and other), and (4) motion parameters. The
self–other and other–self contrasts were defined for all probability
conditions.

Parametric modulation analysis based on individual decision
models
We conducted parametric modulation analysis to determine which
brain regions had activation levels that correlated with the decision
value that each participant placed on the risky choice. Each partic-
ipant made risky choices for self and other with varying probabili-
ties of a favorable outcome; we calculated the decision value using
optimal sigmoid functions fitted to the participant’s probability
(0–1) of choosing the high-risk option over the low-risk option
as a function of the probability of winning. The parameters of
the estimated models were calculated by using the least-squares
method for each participant (see the equation below).

f (xi) =
1

ea(b−xi ) + 1

In the equation above, the variable x is the winning probabil-
ity of the high-risk option, and f(xi) is the probability of a risky
choice on trial i. The parameter a indicates the slope of the sig-
moid function that reflects how drastically the probability of risky
choice changes according to the level of winning probability, and
b denotes an offset criterion for the winning probability of the
high-risk option when the participant is expected to choose the
risky option with 50% probability. We calculated the parameters
separately for the decision-for-self and decision-for-other condi-
tions. We generated separate single-subject GLMs for parametric
modulation analysis, which included the following regressors: (1)
decision events when a new configuration of colored boxes is dis-
played on the computer screen, along with individually estimated
decision values [i.e., f(xi)] as parameters for the decision-for-self
and decision-for-other conditions; (2) button-pressing events; (3)
feedback events at the time of feedback onset when participants
watched two types of outcomes (i.e., those for self and other); and
(4) motion parameters.

Psychophysiological interaction analysis
We conducted psychophysiological interaction (PPI) analysis
(Friston et al., 1997) to examine the functional connectivity
between the brain regions identified from the contrast analy-
ses. Specifically, we searched for brain regions whose activity
showed differential patterns of correlations with that of a source
region as a function of experimental condition (i.e., the decision-
for-self and decision-for-other conditions). We used the right
TPJ (rTPJ) as the source region, because it is the representative
area that reflects both perspective taking (Castelli et al., 2000;
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Saxe and Wexler, 2005; Decety and Lamm, 2007) and other-
regarding behavior (Morishima et al., 2012), and because we
focused on examining how the brain regions activated during
decision-for-other communicated with other areas. We extracted
time-series data from the peak voxel of a cluster found in
rTPJ for each participant and then generated PPI regressors,
that is, the time-course of activity in the seed region modu-
lated by two levels of the psychological variable (i.e., decision-
for-other versus decision-for-self). We then estimated single-
subject whole-brain GLMs with the following regressors: (1)
time-course of activity in the seed region (rTPJ activity), (2) psy-
chological contrast (other–self contrast weight), (3) interaction
term (rTPJ activity× other–self contrast weight), and (4) motion
parameters.

RESULTS
BEHAVIORAL RESULTS
We first calculated the ratio of risky choices to the total number of
trials in each condition for each participant. Then, we conducted a
2 (conditions: decision-for-self and decision-for-other)× 5 (win-
ning probabilities of the high-risk option: 17, 33, 50, 67, and 83%)
repeated-measures ANOVA on the probability of choosing the
high-risk option (i.e., blue) over the low-risk option (i.e., pink).
Because Mauchly’s test indicated that the assumption of sphericity
had been violated (χ2

= 34.070, p < 0.05), we used a multivariate
test, which revealed a significant two-way interaction effect, F(4,
16)= 3.150, p < 0.05. As shown in Figure 2, the difference between
the frequencies of high-risk decisions for self and for other varied
according to the probability of winning. Participants were more
likely to make risk-seeking decisions in the decision-for-self con-
dition than in the decision-for-other condition when the winning
probability of the high-risk option was higher, while the reverse
was true when it was lower.

To investigate this interaction further, we conducted post hoc
pairwise t -tests on the differences in the risky choice ratio
between the decision-for-self and decision-for-other conditions
at each level of wining probability of the higher risk option. We
found a significant difference between the conditions at 83%,
t (22)= 2.319, p < 0.05, and a marginally significant difference at

FIGURE 2 | Behavioral data showing the probability of risky choice as a
function of the probability of a more favorable outcome.

17%, t (22)=−2.01, p= 0.059 (Figure 2), although none of the
tests survived Bonferroni correction.

NEUROIMAGING RESULTS
Decision-for-self versus decision-for-other during the decision
event
To compare the brain regions associated with decisions for oneself
with those associated with decisions for another, the self–other
and other–self contrasts at the time of decision (i.e., task onset
time) were estimated. The self–other contrast revealed greater
activation in the decision-for-self condition than in the decision-
for-other condition in various regions, including the bilateral
VS (Figures 3A,C; left: x =−12, y =−2, z =−14; right: x = 18,
y = 12, z =−16), the VTA (x = 6, y =−24, z =−18), the ACC
(x = 8, y = 36, z = 34), and the right insula (x = 34, y = 24,
z =−12; all findings thresholded at p < 0.05, SVC FWE-corrected
unless otherwise stated). The other–self contrast showed that
the bilateral TPJ (left: x =−50, y =−62, z = 16; right: x = 58,
y =−66, z = 24) and the PCC (x =−6, y =−58, z = 30) were
more active in the decision-for-other condition than in the
decision-for-self condition (Figures 3B,D).

Neural responses to monetary outcomes for self versus other
The self–other contrast at the time of the monetary outcome
events revealed preferential activation of the right insula (x = 32,
y = 18, z =−16) in the decision-for-self condition. The other–
self contrast revealed the opposite pattern in the bilateral TPJ (left:

FIGURE 3 | Main contrast maps between self and other conditions.
Areas showing greater activity during decision events (A) in the
decision-for-self condition than in the decision-for-other condition and (B) in
the decision-for-other condition than in the decision-for-self condition. The
statistical threshold for the images was set at p < 0.005 (uncorrected). The
bar graphs in the lower panel show the beta coefficients (averaged across
all probabilities) of (C) the left VS (x =−12, y =−2, z =−14; Z =4.19,
p < 0.05, SVC FWE-corrected) for the self–other contrast and (D) the left
TPJ (x =−50, y =−62, z =16; Z =4.34, p < 0.05, SVC FWE-corrected) for
the other–self contrast.
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x =−48, y =−62, z = 24; right: x = 48, y =−58, z = 22) and the
PCC (x = 2, y =−64, z = 38), which are similar to the areas of
activation observed at the time of decision events (Figure S1 in
Supplementary Material).

Parametric modulation analysis using individual decision models
The present study mainly aimed to examine the distinctive neural
structures involved in the computation of values of choices and the
prediction of risky choices on behalf of both oneself and others.
With this in mind, we conducted parametric modulation analysis
using the participants’ individual decision models. Model parame-
ters were generated by fitting sigmoid functions to the probabilities
of choosing the high-risk option over the low-risk option. Eigh-
teen participants were subjected to the analysis, excluding two
participants whose behavioral data fit poorly to sigmoid functions
because of their atypical decisions (e.g., risky choices regardless of
probability). The individual decision models were estimated for
the decision-for-self and decision-for-other conditions separately.

The analyses revealed that the chance of making a risky choice
for self was positively correlated with activation of the right ante-
rior amygdala (x = 16, y = 6, z =−16), whereas the chance of
making a risky choice for other was positively correlated with acti-
vation of the left DMPFC (x =−14, y = 34, z = 32). Activation
was not negatively correlated with the chance of making a risky
decision-for-self or for other in any brain region.

To investigate which brain regions drive the differences between
the models for self and other, we calculated the contrast between
the value computation models for self and other via parametric
modulation analysis. The self–other contrast showed that activa-
tion in the right amygdala (x = 24, y = 0, z =−22) was closer to
that predicted by the value computation model for self than that
for other, while activation in the left DMPFC (x =−14, y = 32,
z = 32) showed a stronger association with the decision model for
other than for self (Figure 4).

Parametric modulation analysis using expected value and outcome
We conducted additional parametric modulation analysis to
examine prediction error (PE)-related neural activity at the time
of the feedback events. The PE parameters were calculated by
subtracting the expected values (EVs) from the monetary out-
comes (−10, 10, −90, or 90 points) separately for self and other
conditions. The EV of the low-risk option (i.e., choosing the
pink box) was calculated by adding the respective EVs for gain
(i.e., winning probability of the low-risk option× points gained
for winning) and loss (i.e., winning probability of high-risk
option× points lost for losing); the EV of the high-risk option
was calculated in an analogous manner. This analysis revealed
that in the decision-for-self condition, activity in the ACC (x = 8,
y = 32, z = 26) was correlated negatively with PE, whereas acti-
vation was not significantly correlated with PE in any brain area
in the decision-for-other condition (Figure S2 in Supplementary
Material).

Psychophysiological interaction analysis
We assessed the functional connectivity between brain regions
during the decision-for-self and decision-for-other conditions
using PPI analysis. We identified the brain regions in which

correlations between their activity levels and those of rTPJ
were modulated by psychological condition (decision-for-self
versus decision-for-other). The results revealed that rTPJ
showed stronger positive connectivity with the left DMPFC
(x =−4, y = 34, z = 34) in the decision-for-other condition
than the decision-for-self condition (p < 0.001, uncorrected;
Figures 5A,B). The coordinates of the DMPFC reported here
are immediately adjacent to those reported from the decision

FIGURE 4 | Main contrast maps between self and other decision
models. Significant correlations with the value parameters of risky choice
estimated by fitting sigmoid functions to actual decisions were found in (A)
the right amygdala (x=24, y=0, z=− 22; Z =3.85, p < 0.05, SVC
FWE-corrected) for the self versus other contrast and (B) the left DMPFC
(x=− 14, y=32, z=32; Z =3.94, p < 0.05, SVC FWE-corrected) for the
other versus self contrast. The statistical threshold for the images was set
at p < 0.005 (uncorrected). The bar graphs in the lower panel show the beta
coefficients of the (C) amygdala for the self versus other contrast and (D)
the DMPFC for the other versus self contrast.

FIGURE 5 | Psychophysiological Interaction (PPI) analysis. (A) Stronger
functional connectivity with rTPJ was found in the left DMPFC during
decisions for another than for oneself (x =−4, y =34, z =34; Z =3.22,
p < 0.001, uncorrected). The statistical threshold for the images was set at
p < 0.005 (uncorrected). (B) The scatter plot representing a single-subject’s
data. It shows a stronger positive correlation between rTPJ and DMPFC
during the decision-for-other condition than the decision-for-self condition.
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model for the other–self contrast (Figure S3 in Supplementary
Material).

Considering the widespread problem of non-independence
error in neuroimaging research (Kriegeskorte et al., 2009), we
were concerned about whether the present PPI findings in the
DMPFC were independent of seed-point selection. We did not
observe elevated DMPFC activity in the other–self contrast, even
at a low statistical-significance threshold (p < 0.05, uncorrected),
and careful examinations of individual subjects’ PPI GLM mod-
els revealed no evidence of a significant correlation between the
TPJ–time-course regressor and the psychological variable regres-
sor. Therefore, it seems more plausible that the variability in TPJ
activity not accounted for by the regressor for the other–self con-
trast contributed significantly to the PPI-related activity in the
DMPFC observed in the present study. This argument is further
supported by the relationship between the TPJ and DMPFC activ-
ities, as exemplified by a scatter plot of a representative individual
in Figure 5B. In addition, we performed cross-validation analy-
sis using a leave-one-subject-out method (Esterman et al., 2010),
in which single-subjects are iteratively left out of the first-stage
group analysis that localizes the TPJ. This analysis confirmed the
original results, although the size of the cluster in the DMPFC
became slightly smaller (x =−4, y = 34, z = 34; p < 0.001, uncor-
rected; Figure S4 in Supplementary Material). In sum, although
potential bias due to non-independent use of the data cannot be
completely excluded, we believe the possibility that it occurred is
minimal.

ADDITIONAL BEHAVIORAL EXPERIMENT
In order to explain the behavioral results, which were less dis-
tinguishable than the neural data in terms of self–other dif-
ferences, we conducted an additional behavioral experiment in
which we examined whether individual differences in prosocial-
ity explain the reduction in self–other behavioral discrepancies.
When we interviewed the participants about how they felt during
the task, some said that their decisions made for another person
felt the same as those made for themselves, whereas others said
that they could clearly distinguish between the two conditions
in terms of feelings. Thus, we hypothesized that individual dif-
ferences in prosociality (i.e., the ability or disposition to regard

another person’s benefit as being as important as one’s own)
would affect the degree of self–other discrepancy in risky decision
making.

Nineteen participants performed the same risk tasks as we used
in the main experiment. The selection of high-risk options dur-
ing the task increased linearly as a function of the probability
of winning; this replicated the findings of the main experiment.
The statistical-analysis procedures were the same as those used
for the behavioral data in the main experiment. The interaction
between conditions and winning probabilities was significant,
F(4, 15)= 3.099, p < 0.05. To investigate the modulatory role
of individual variability, we measured each individual’s prosocial
tendency with the Triple Dominance Measure (TDM) task (see
Supplementary Material for details), which was adopted from a
previous study (Haruno and Frith, 2010). After removing two
participants who made inconsistent choices, which prevented
clear categorization, we categorized the participants into three
groups: prosocials (n= 6), individualists (n= 10), and competi-
tors (n= 1). We then combined individualists and competitors
into the proself group, following two previous related studies
(Van Lange and Liebrand, 1989; Sattler and Kerr, 1991). Figure 6
shows a greater self–other distinction in the probability of risky
choice for the proselfs (Figure 6A) compared with that for the
prosocials (Figure 6B), although no significant three-way inter-
action was observed among group (proselfs versus prosocials),
condition, and winning probability using a multivariate mixed
ANOVA, F(4, 12)= 1.252, p= 0.341. However, the three-way
interaction was significant when a mixed ANOVA was applied
after Greenhouse–Geisser correction, F(2.216, 33.245)= 3.724,
p < 0.05.

Additionally, we performed a correlation analysis between self–
other indices (generated by squaring the difference in probability
of making a risky choice between the self and other condi-
tions) and individuals’ TDM scores (obtained by counting the
number of prosocial choices across eight sets of decision tri-
als). We found a negative relationship between prosocial tendency
and self–other indices (Pearson correlation coefficient r=−0.523,
p < 0.05), indicating that more prosocial participants showed
smaller differences in risky choice between the self and other
conditions.

FIGURE 6 | Data from the additional behavioral study showed distinct behavioral response patterns between (A) proself participants and (B) prosocial
participants.

www.frontiersin.org March 2013 | Volume 7 | Article 15 | 113

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Jung et al. Risky decisions for self versus other

DISCUSSION
The present study investigated the differences between the neural
correlates of risky decision making on behalf of oneself and that
on behalf of others via fMRI. The behavioral results showed
that participants were more sensitive to risk-related informa-
tion (i.e., probability of winning) in the decision-for-self con-
dition than the decision-for-other condition. When participants
decided for themselves, they became more risk-averse and risk-
seeking when the winning probability of the high-risk option
was lower and higher, respectively. This tendency became weaker
when people decided for others; this might suggest diminished
affective responses to the risky situation in this condition. We
sought to test this possibility by contrasting the neural corre-
lates of risky decision making for oneself with those for oth-
ers. The brain-activation pattern changed according to the tar-
get of the decision, such that reward-related regions were more
active in the decision-for-self condition than in the decision-
for-other condition, whereas regions related to the ToM showed
the opposite association. Parametric modulation analysis describ-
ing each individual’s decision model revealed that the amygdala
and DMPFC were involved in computing decision values tar-
geting self and other, respectively. These findings indicate that
fundamentally distinct neural processes subserve value compu-
tations when making risky choices for oneself versus for other
people.

SELF–OTHER DIFFERENCES IN RISKY DECISION MAKING
Participants were more likely to vary their choices according to
winning probability in the decision-for-self condition than in the
decision-for-other condition. More specifically, participants made
risk-seeking and risk-averse choices when the winning probability
of the risky option was high and low, respectively. This may indi-
cate greater involvement of emotional processes in biasing risky
choices for self versus other. The fact that this pattern was not
observed in the decision-for-other condition may indicate weak
emotional intrusion or effective cognitive regulation while making
choices for other. Moreover, as is the case for other types of other-
regarding behavior, risky decisions for others may also require
the ability to understand others’ minds. Indeed, we found in the
additional behavioral experiment that the self–other difference in
risk-seeking choices was affected by subjects’ levels of prosociality.
That is, prosocial participants made decisions for themselves and
for others in the same manner, whereas proself participants made
the two types of decisions in distinguishable ways. This result hints
that the ToM function may contribute to risky decision making
for others, given that prosocial orientation is tightly related to per-
spective taking and mentalization (Underwood and Moore, 1982).
In addition, the amount of effort expended deciding for another
person could be another determinant of individual differences
in decision making regarding self versus other. In our additional
experiment, proself participants were less sensitive to probability
information that is critical for successful decisions, when making
choices for others than for themselves. This suggests that people
who are indifferent to others’ benefit put less effort into decisions
for others than those for themselves. In other words, making a
decision for another person would be a painstaking task to some-
one who acts in the best interests of others (i.e., a prosocialist),

because he/she would feel the need to reduce the fundamental
self–other difference.

Overall, decision making on behalf of others seems to be a
demanding process that entails expending more effort and cog-
nitive resources than making decisions for oneself: it requires
different psychological and physiological mechanisms and is more
difficult. When people make decisions on behalf of others, cogni-
tive processes are weighted more heavily than affective processes
are (Fernandez-Duque and Wifall, 2007), and subjects tend to
make such decisions in norm-based ways, such that they consider
what they think is “right” rather than what they “feel like doing”
(Stone and Allgaier, 2008). Subjects making decisions on behalf of
others also seem to value their reputations (i.e., the impressions
they convey to the people for whom they make the decisions; Jonas
et al., 2005). At the same time, other-regarding behavior might
require self-regulatory processes to deal with the conflict between
selfish and prosocial motivations: subjects feel a need to regu-
late their emotional reactions and inhibit their selfish impulses to
minimize cost, but if they do nothing, they neglect the other per-
son’s interests (DeWall et al., 2008). Thus, it would be reasonable
to think that the self–other discrepancy in risky decision mak-
ing observed in the present study reflects the different types of
psychological processes (i.e., affective versus cognitive processes)
associated with making decisions on behalf of oneself versus oth-
ers, respectively. Further, the self–other difference in the amount of
cognitive resources required during the risky decision task might
have resulted in behavioral differences.

BRAIN REGIONS ASSOCIATED WITH DECISIONS FOR SELF AND FOR
OTHER
One of the main findings of the present study is that people
seem to use different modes of decision making when they decide
for themselves and for others; this is particularly emphasized by
the neuroimaging results. In the decision-for-self condition, the
VS, caudate, VTA, insula, and ACC were more active than in the
decision-for-other condition. Given the large number of previous
studies that reported strong associations between these regions and
both reward processing (Breiter et al., 2001; Knutson et al., 2001;
Baxter and Murray, 2002; Ernst et al., 2004; Yacubian et al., 2006;
Carter et al., 2009; Ghods-Sharifi et al., 2009; Smith et al., 2009)
and risk processing (Kuhnen and Knutson, 2005; Preuschoff et al.,
2006), people might be more sensitive to reward and perceived
risk when they make decisions for their own profit than for that
of others. On the other hand, the TPJ, PCC, and MPFC showed
greater activation in the decision-for-other condition than in the
decision-for-self condition. Given that these regions are regarded
as parts of the ToM network, which is central to understanding
others’ intentions through mentalization and perspective taking
(Fletcher et al., 1995; Gallagher et al., 2000; Walter et al., 2004;
Saxe and Wexler, 2005; Amodio and Frith, 2006; Frith and Frith,
2006; Saxe and Powell, 2006), it seems that people might activate
their ToM systems in order to take another’s perspective and thus
perform the risky choice task for another’s benefit. Supporting
this idea, a recent study (Janowski et al., 2012) found that VMPFC
activity during decision making for others – but not for oneself –
was modulated by TPJ, one of the important brain regions involved
in mentalization. These differences between decision making for
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oneself and for others may lead to self–other distinctions in the
value computation and decision processes, which are discussed
below.

NEURAL CORRELATES OF VALUE COMPUTATION IN RISKY DECISIONS
FOR THE SELF VERSUS FOR OTHERS
The most noteworthy finding of the present study is revealed by
the contrast between the decision models for self-targeted versus
for other-targeted decisions. The parametric modulation analysis
of each individual’s decision models elucidated the distinct neural
correlates of value computation for self and for other in risky
decision making, revealing negative coupling between activations
of the amygdala and the DMPFC whose magnitudes depended
on the target of the decision. Activations in the amygdala and
DMPFC were associated with value computation in the modified
risk task, replicating the results of previous studies (Ghods-Sharifi
et al., 2009; Smith et al., 2009; Morrison and Salzman, 2010).
Importantly, the direct contrast between self-regarding and other-
regarding decision making in terms of the computed value of the
risky option revealed that the amygdala was more strongly associ-
ated with the value computation for self than that for other; this
result is in line with the “risk-as-feelings hypothesis,” which pro-
poses that affective responses play a relatively greater role in risky
decision making for oneself than for others (Loewenstein et al.,
2001). On the other hand, the DMPFC was more engaged in the
value computations regarding decisions for other than those for
self; this result supported our prediction that cognitive processes
might outweigh affective processes in risky decision making for
others.

As we reasoned above, decision making for another without
regard to one’s own benefit could require effort and additional
cognitive resources. In this respect, recent evidence on the role of
the ACC – which is immediately adjacent to the DMPFC – in effort-
based decision making might provide an interesting explanation
for our findings. For example, severing the connection between
the amygdala and the ACC impaired rats’ decision making abil-
ities, such that they no longer chose a high-reward option that
required more effort than the corresponding low-reward option
(Floresco and Ghods-Sharifi, 2007). Studies in both animals and
humans have shown that the ACC is sensitive to the amount of
effort exerted during decision making and shows increased activa-
tion during increased effort to earn larger rewards in both animals
and humans (Rudebeck et al., 2006; Croxson et al., 2009). Thus,
it seems plausible that the stronger association between DMPFC
activation and the value computation in the decision-for-other
condition than in the decision-for-self condition may reflect the
fact that people tend to expend greater amounts of effort during
risky decision making for others than for themselves. In addition,
the regulatory function of the DMPFC over amygdalar activity
may play a role in creating the self–other distinction between the
neural correlates of value computation. The DMPFC forms strong
connections with the amygdala (Roy et al., 2009; Salzman and Fusi,
2010; Etkin et al., 2011; Hung et al., 2011; Robinson et al., 2011)
and regulates its emotional reactions (Banks et al., 2007). Indeed,
decision making for others requires self-regulatory processes in
order to deal with the conflict between selfishness and prosocial-
ity (DeWall et al., 2008). The role of the DMPFC as part of the

ToM network (Fletcher et al., 1995; Gallagher et al., 2000; Wal-
ter et al., 2004; Amodio and Frith, 2006; Frith and Frith, 2006)
provides another possible explanation for the self–other distinc-
tion in the neural correlates of value computation, especially in
relation to perspective taking, mentalizing, and inferring others’
intentions (St. Jacques et al., 2010). Consistent with this idea, a
recent study showed that DMPFC activity during the judgment
of others’ opinions (Waytz et al., 2012) or during the observa-
tion of others’ distress (Masten et al., 2011) predicted subsequent
prosocial behavior. Thus, consideration of risky options for others
may require inference of their mental states, which then in turn
recruits the ToM network, including the DMPFC.

Consistent with the previous ToM literature, activity in the
rTPJ – a major area for mentalization (Castelli et al., 2000; Saxe
and Wexler, 2005; Decety and Lamm, 2007) – was greater dur-
ing the decision-for-other than the decision-for-self condition in
the present study. This region also showed heightened functional
connectivity with DMPFC in the other–self contrast; the activ-
ity of DMPFC increased as a function of the computed values of
risky option during choices for other more than during choices
for self. The findings make it tempting to speculate that rTPJ may
send a signal to DMPFC and contribute to its control of amyg-
dalar activity when considering choices for others, enabling us to
choose options with diminished emotional biases in risky decision
making.

In summary, the results of the parametric modulation analy-
sis support our prediction that risky decision making on behalf
of another person may involve additional cognitive processes,
including effort-based decision making, self-regulation, and ToM
functions. Alternatively, the cognitive/rational system might out-
weigh the affective/experiential system in risky decision making
on behalf of others, given the evidence that links the DMPFC to
cognitive processes and the amygdala to affective processes.

This study also unfolds important questions that need to be
addressed in future projects. First, we could not determine the
relationship between individual differences in brain activity and
behavioral responses. We computed a self–other difference index
score for each participant and examined the relationship between
neural activity and behavioral results. In contrast with our predic-
tions, however, we failed to find statistically significant correlations
between them. Although the exact reason for this failure is cur-
rently unknown, it may be that few participants showed sufficiently
large self–other difference indices. This may have caused lim-
itations in individual variability that obscured the relationship
between participants’ decisions and neural responses. Given the
role of the prosocial trait in this task, as revealed in the second
behavioral study, it would be interesting for a future fMRI study
to select participants with a wide range of prosociality. Similarly,
it would be interesting to investigate the neural underpinnings of
prosocial orientation during self–other decision making, consid-
ering our finding from the additional behavioral experiment that
increased prosocial orientation reduced self–other differences. We
envision future studies to address this important issue.

Second, in this experimental design, we kept the magnitude
of gain/loss for each option constant to minimize noise due to
variable reward magnitude; we varied only the reward’s attainabil-
ity (via manipulation of winning probability), which modulated
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the attractiveness of the risky option. Therefore, the difference
between the EVs of the high-risk and low-risk options changed
with the winning probability, whereas the risk of each option
(defined as outcome variance; Markowitz, 1952) remained con-
stant across different levels of winning probability (see Table S2
in Supplementary Material). This feature of our experimental
design may leave room for alternative interpretation of the behav-
ioral results. More specifically, the greater sensitivity to winning
probability in the decision-for-self condition may simply reflect
choices based on the EV of the risky option. Likewise, we can-
not completely rule out the possibility that people may have
chosen the high-risk option for others less than for themselves
out of spite, that is, with the intention of lowering the bene-
fits of others. In this sense, particular caution may be necessary
in interpreting the observed correlations between neural activ-
ity and the model parameters, and future study should allow for
more-systematic manipulation of the EV and risk values for each
option.

Third, we did not measure the various psychological factors
that could have affected the self–other difference. For instance,
it is possible that the subjective social distance between a par-
ticipant and another person for whom the participant made
the decision could have affected his/her decisions, although we
explicitly told the participants that they were making decisions
for an anonymous person. It would be interesting to test the
effect of social distance by comparing decisions made for indi-
viduals with whom the subject is close with decisions made
for strangers. In addition, we could not confirm which of the
psychological processes discussed above is the most prominent
driver of the self–other difference. Future studies using different
types of tasks or including additional behavioral and physiolog-
ical measurements, such as eye movements, skin conductance
response, or glucose consumption levels, could further elucidate

the mechanisms underlying the self–other discrepancy in risky
decision making.

The present study included direct comparisons between risky
decisions for self and other in a single experiment and provided
the first evidence of differences in neural processes between risky
financial decisions on behalf of oneself and those on behalf of
other. Reward systems were activated when people decided for
themselves, whereas the ToM network became more active when
subjects made decisions for another person. Most importantly,
activity in the neural loci of value computation differed between
risky decisions for oneself and for others: the amygdala and
DMPFC were associated with decisions on behalf of oneself and
others, respectively. Our findings suggest that affective processes
have greater weight than cognitive processes in risky decision mak-
ing for self. On the other hand, decision making for others seems
to be a more difficult and effortful process that engages cogni-
tive systems and emotional regulation, in which ToM functions
might also participate. We expect future research to follow up on
the present findings with the aim of providing a more-complete
understanding of the neural mechanisms underlying prosocial and
other-regarding behaviors.

ACKNOWLEDGMENTS
This study was supported by the Cognitive Neuroscience Pro-
gram of the Korean Ministry of Science and Technology
(M10644020003-06N4402-00310) and the National Research
Foundation of Korea Grant funded by the Korean Government
(NRF-2011-327-H00038).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Decision_Neuroscience/10.
3389/fnins.2013.00015/abstract

REFERENCES
Amodio, D. M., and Frith, C. D. (2006).

Meeting of minds: the medial frontal
cortex and social cognition. Nat. Rev.
Neurosci. 7, 268–277.

Banks, S. J., Eddy, K. T., Angstadt, M.,
Nathan, P. J., and Phan, K. L. (2007).
Amygdala–frontal connectivity dur-
ing emotion regulation. Soc. Cogn.
Affect. Neurosci. 2, 303–312.

Baxter, M. G., and Murray, E. A. (2002).
The amygdala and reward. Nat. Rev.
Neurosci. 3, 563–573.

Bechara, A., Damasio, H., Damasio, A.
R., and Lee, G. P. (1999). Different
contributions of the human amyg-
dala and ventromedial prefrontal
cortex to decision-making. J. Neu-
rosci. 19, 5473–5481.

Beisswanger, A. H., Stone, E. R., Hupp,
J. M., and Allgaier, L. (2003). Risk
taking in relationships: differences
in deciding for oneself versus for a
friend. Basic Appl. Soc. Psychol. 25,
121–135.

Bolla, K. I., Eldreth, D. A., London,
E. D., Kiehl, K. A., Mouratidis,

M., Contoreggi, C., et al. (2003).
Orbitofrontal cortex dysfunction in
abstinent cocaine abusers perform-
ing a decision-making task. Neu-
roimage 19, 1085–1094.

Brand, M., Grabenhorst, F., Starcke,
K., Vandekerckhove, M. M. P., and
Markowitsch, H. J. (2007). Role of
the amygdala in decisions under
ambiguity and decisions under risk:
evidence from patients with Urbach-
Wiethe disease. Neuropsychologia 45,
1305–1317.

Breiter, H. C., Aharon, I., Kahne-
man, D., Dale, A., and Shizgal,
P. (2001). Functional imaging of
neural responses to expectancy
and experience of monetary
gains and losses. Neuron 30,
619–639.

Carter, R. M., Macinnes, J. J., Huet-
tel, S. A., and Adcock, R. A.
(2009). Activation in the VTA
and nucleus accumbens increases
in anticipation of both gains and
losses. Front. Behav. Neurosci. 3:21.
doi:10.3389/neuro.08.021.2009

Castelli, F., Happé, F., Frith, U.,
and Frith, C. (2000). Movement
and mind: a functional imaging
study of perception and inter-
pretation of complex intentional
movement patterns. Neuroimage 12,
314–325.

Cohen, M. X., Heller, A. S., and
Ranganath, C. (2005). Func-
tional connectivity with anterior
cingulate and orbitofrontal cor-
tices during decision-making.
Brain Res. Cogn. Brain Res. 23,
61–70.

Croxson, P. L., Walton, M. E., O’Reilly,
J. X., Behrens, T. E., and Rush-
worth, M. F. (2009). Effort-based
cost-benefit valuation and the
human brain. J. Neurosci. 29,
4531–4541.

Decety, J., and Lamm, C. (2007). The
role of the right temporoparietal
junction in social interaction:
how low-level computational
processes contribute to meta-
cognition. Neuroscientist 13,
580–593.

De Martino, B., Camerer, C. F.,
and Adolphs, R. (2010). Amygdala
damage eliminates monetary loss
aversion. Proc. Natl. Acad. Sci. U.S.A.
107, 3788–3792.

De Martino, B., Kumaran, D., Seymour,
B., and Dolan, R. J. (2006). Frames,
biases, and rational decision-making
in the human brain. Science 313,
684–687.

Denesraj, V., and Epstein, S. (1994).
Conflict between intuitive and ratio-
nal processing – when people behave
against their better judgment. J. Pers.
Soc. Psychol. 66, 819–829.

DeWall, C. N., Baumeister, R. F., Gail-
liot, M. T., and Maner, J. K. (2008).
Depletion makes the heart grow less
helpful: helping as a function of self-
regulatory energy and genetic relat-
edness. Pers. Soc. Psychol. Bull. 34,
1653–1662.

Ernst, M., Nelson, E. E., Mcclure, E. B.,
Monk, C. S., Munson, S., Eshel, N.,
et al. (2004). Choice selection and
reward anticipation: an fMRI study.
Neuropsychologia 42, 1585–1597.

Frontiers in Neuroscience | Decision Neuroscience March 2013 | Volume 7 | Article 15 | 116

http://www.frontiersin.org/Decision_Neuroscience/10.3389/fnins.2013.00015/abstract
http://www.frontiersin.org/Decision_Neuroscience/10.3389/fnins.2013.00015/abstract
http://dx.doi.org/10.3389/neuro.08.021.2009
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Jung et al. Risky decisions for self versus other

Esterman, M., Tamber-Rosenau, B.
J., Chiu, Y.-C., and Yantis, S.
(2010). Avoiding non-independence
in fMRI data analysis: leave one sub-
ject out. Neuroimage 50, 572–576.

Etkin, A., Egner, T., and Kalisch, R.
(2011). Emotional processing in
anterior cingulate and medial pre-
frontal cortex. Trends Cogn. Sci.
(Regul. Ed.) 15, 85–93.

Fagerlin, A., Ditto, P. H., Danks, J. H.,
and Houts, R. M. (2001). Projec-
tion in surrogate decisions about
life-sustaining medical treatments.
Health Psychol. 20, 166–175.

Fernandez-Duque, D., and Wifall, T.
(2007). Actor/observer asymmetry
in risky decision making. Judgm.
Decis. Mak. 2, 1–8.

Fletcher, P. C., Happé, F., Frith, U.,
Bakera, S. C., Dolana, R. J., Frack-
owiaka, R. S. J., et al. (1995). Other
minds in the brain – a functional
imaging study of theory of mind in
story comprehension. Cognition 57,
109–128.

Floresco, S. B., and Ghods-Sharifi, S.
(2007). Amygdala-prefrontal corti-
cal circuitry regulates effort-based
decision making. Cereb. Cortex 17,
251–260.

Friston, K. J., Buechel, C., Fink, G.
R., Morris, J., Rolls, E. T., and
Dolan, R. J. (1997). Psychophysio-
logical and modulatory interactions
in neuroimaging. Neuroimage 6,
218–229.

Friston, K. J., Holmes, A. P., Worsley,
K. J., Poline, J. P., Frith, C. D., and
Frackowiak, R. S. J. (1995). Statis-
tical parametric maps in functional
imaging: a general linear approach.
Hum. Brain Mapp. 2, 189–210.

Frith, C. D., and Frith, U. (2006). The
neural basis of mentalizing. Neuron
50, 531–534.

Fukui, H., Murai, T., Fukuyama, H.,
Hayashi, T., and Hanakawa, T.
(2005). Functional activity related
to risk anticipation during perfor-
mance of the Iowa Gambling Task.
Neuroimage 24, 253–259.

Gallagher, H. L., Happé, F., Brunswick,
N., Fletcher,P. C.,Frith, U., and Frith,
C. D. (2000). Reading the mind
in cartoons and stories: an fMRI
study of “theory of mind” in verbal
and nonverbal tasks. Neuropsycholo-
gia 38, 11–21.

Ghods-Sharifi, S., St. Onge, J. R., and
Floresco, S. B. (2009). Fundamen-
tal contribution by the basolat-
eral amygdala to different forms of
decision making. J. Neurosci. 29,
5251–5259.

Hare, J., Pratt, C., and Nelson, C.
(1992). Agreement between patients
and their self-selected surrogates

on difficult medical decisions. Arch.
Intern. Med. 152, 1049–1054.

Haruno, M., and Frith, C. D. (2010).
Activity in the amygdala elicited
by unfair divisions predicts social
value orientation. Nat. Neurosci. 13,
160–161.

Hsee, C. K., and Weber, E. U. (1997). A
fundamental prediction error: self-
others discrepancies in risk pref-
erence. J. Exp. Psychol. Gen. 126,
45.

Hsu, M., Bhatt, M., Adolphs, R., Tranel,
D., and Camerer, C. F. (2005). Neural
systems responding to degrees of
uncertainty in human decision-
making. Science 310, 1680–1683.

Hung, Y., Smith, M. L., and Tay-
lor, M. J. (2011). Development of
ACC-amygdala activations in pro-
cessing unattended fear. Neuroimage
60, 545–552.

Janowski, V., Camerer, C., and Rangel,
A. (2012). Empathic choice involves
vmPFC value signals that are mod-
ulated by social processing imple-
mented in IPL. Soc. Cogn. Affect.
Neurosci. 8, 201–208.

Jonas, E., Schulz-Hardt, S., and Frey,
D. (2005). Giving advice or mak-
ing decisions in someone else’s
place: the influence of impression,
defense, and accuracy motivation
on the search for new informa-
tion. Pers. Soc. Psychol. Bull. 31,
977–990.

Kim, M. J., Gee, D. G., Loucks, R.
A., Davis, F. C., and Whalen, P. J.
(2011). Anxiety dissociates dorsal
and ventral medial prefrontal cor-
tex functional connectivity with the
amygdala at rest. Cereb. Cortex 21,
1667–1673.

Knoch, D., Gianotti, L. R. R., Pascual-
Leone, A., Treyer, V., Regard, M.,
Hohmann, M., et al. (2006). Dis-
ruption of right prefrontal cortex by
low-frequency repetitive transcra-
nial magnetic stimulation induces
risk-taking behavior. J. Neurosci. 26,
6469–6472.

Knutson, B., Fong, G. W., Adams, C. M.,
Varner, J. L., and Hommer, D. (2001).
Dissociation of reward anticipa-
tion and outcome with event-related
fMRI. Neuroreport 12, 3683–3687.

Kray, L., and Gonzalez, R. (1999). Dif-
ferential weighting in choice versus
advice: I’ll do this, you do that. J.
Behav. Decis. Mak. 12, 207–218.

Kriegeskorte, N., Simmons, W. K., Bell-
gowan, P. S. F., and Baker, C. I.
(2009). Circular analysis in systems
neuroscience: the dangers of double
dipping. Nat. Neurosci. 12, 535–540.

Kuhnen, C. M., and Knutson, B. (2005).
The neural basis of financial risk
taking. Neuron 47, 763–770.

Lancaster, J. L., Tordesillas-Gutierrez,
D., Martinez, M., Salinas, F., Evans,
A., Zilles, K., et al. (2007). Bias
between MNI and Talairach coordi-
nates analyzed using the ICBM-152
brain template. Hum. Brain Mapp.
28, 1194–1205.

Lipkus, I. M., Samsa, G., and Rimer, B.
K. (2001). General performance on
a numeracy scale among highly edu-
cated samples. Med. Decis. Making
21, 37–44.

Loewenstein, G. F., Weber, E. U., Hsee,
C. K., and Welch, N. (2001). Risk as
feelings. Psychol. Bull. 127, 267.

Markowitz, H. (1952). Portfolio selec-
tion. J. Finance 7, 77–91.

Masten, C. L., Morelli, S. A., and Eisen-
berger, N. I. (2011). An fMRI inves-
tigation of empathy for “social pain”
and subsequent prosocial behavior.
Neuroimage 55, 381–388.

Morishima, Y., Schunk, D., Bruhin, A.,
Ruff, C. C., and Fehr, E. (2012).
Linking brain structure and acti-
vation in temporoparietal junc-
tion to explain the neurobiology
of human altruism. Neuron 75,
73–79.

Morrison, S. E., and Salzman, C. D.
(2010). Re-valuing the amygdala.
Curr. Opin. Neurobiol. 20, 221–230.

Preuschoff, K., Bossaerts, P., and Quartz,
S. R. (2006). Neural differentia-
tion of expected reward and risk
in human subcortical structures.
Neuron 51, 381–390.

Reynolds, J., Joseph, J., and Sher-
wood, R. (2009). Risky shift ver-
sus cautious shift: determining dif-
ferences in risk taking between
private and public management
decision-making. J. Bus. Econ. Res. 7,
63–78.

Robinson, O. J., Charney, D. R., Over-
street, C., Vytal, K., and Grillon, C.
(2011). The adaptive threat bias in
anxiety: amygdala-dorsomedial pre-
frontal cortex coupling and aver-
sive amplification. Neuroimage 60,
523–529.

Roszkowski, M. J., and Snelbecker, G.
E. (1990). Effects of “framing” on
measures of risk tolerance: financial
planners are not immune. J. Behav.
Econ. 19, 237–246.

Roy, A. K., Shehzad, Z., Margulies, D.
S., Kelly, A. M. C., Uddin, L. Q.,
Gotimer, K., et al. (2009). Functional
connectivity of the human amygdala
using resting state fMRI. Neuroimage
45, 614–626.

Rudebeck, P. H., Walton, M. E., Smyth,
A. N., Bannerman, D. M., and
Rushworth, M. F. (2006). Sepa-
rate neural pathways process differ-
ent decision costs. Nat. Neurosci. 9,
1161–1168.

Salzman, C. D., and Fusi, S. (2010).
Emotion, cognition, and men-
tal state representation in
amygdala and prefrontal cor-
tex. Annu. Rev. Neurosci. 33,
173–202.

Sattler, D. N., and Kerr, N. L. (1991).
Might versus morality explored:
motivational and cognitive bases for
social motives. J. Pers. Soc. Psychol.
60, 756–765.

Saxe, R., and Powell, L. J. (2006). It’s
the thought that counts: specific
brain regions for one component
of theory of mind. Psychol. Sci. 17,
692–699.

Saxe, R., and Wexler, A. (2005). Mak-
ing sense of another mind: the
role of the right temporo-parietal
junction. Neuropsychologia 43,
1391–1399.

Smith, B. W., Mitchell, D. G. V.,
Hardin, M. G., Jazbec, S., Frid-
berg, D., Blair, R. J. R., et al.
(2009). Neural substrates of reward
magnitude, probability, and risk
during a wheel of fortune decision-
making task. Neuroimage 44,
600–609.

St. Jacques, P. L., Conway, M. A.,
Lowder, M. W., and Cabeza, R.
(2010). Watching my mind unfold
versus yours: an fMRI study using
a novel camera technology to
examine neural differences in self-
projection of self versus other per-
spectives. J. Cogn. Neurosci. 23,
1275–1284.

Stone, E. R., and Allgaier, L. (2008).
A social values analysis of self–
other differences in decision mak-
ing involving risk. Basic Appl. Soc.
Psychol. 30, 114–129.

Stone, E. R., Yates, A. J., and Caruthers,
A. S. (2002). Risk taking in deci-
sion making for others versus the
self. J. Appl. Soc. Psychol. 32,
1797–1824.

Talairach, J., and Tornoux, P. (1988).
Co-Planar Stereotaxic Atlas of the
Human Brain: 3-Dimensional Pro-
portional System: An Approach to
Cerebral Imaging. Stuttgart: Georg
Thieme.

Tanabe, J., Thompson, L., Claus,
E., Dalwani, M., Hutchison, K.,
and Banich, M. T. (2007). Pre-
frontal cortex activity is reduced
in gambling and nongambling
substance users during decision-
making. Hum. Brain Mapp. 28,
1276–1286.

Underwood, B., and Moore, B. (1982).
Perspective-taking and altruism.
Psychol. Bull. 91, 143–173.

Van Lange, P. A. M., and Liebrand, W.
B. G. (1989). On perceiving moral-
ity and potency: social values and

www.frontiersin.org March 2013 | Volume 7 | Article 15 | 117

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Jung et al. Risky decisions for self versus other

the effects of person perception in
a give-some dilemma. Eur. J. Pers. 3,
209–225.

Walter, H., Adenzato, M., Ciaramidaro,
A., Enrici, I., Pia, L., and Bara, B.
G. (2004). Understanding intentions
in social interaction: the role of
the anterior paracingulate cortex. J.
Cogn. Neurosci. 16, 1854–1863.

Waytz, A., Zaki, J., and Mitchell,
J. P. (2012). Response of dorso-
medial prefrontal cortex predicts
altruistic behavior. J. Neurosci. 32,
7646–7650.

Wray, L. D., and Stone, E. R. (2005).
The role of self-esteem and anxiety
in decision making for self versus

others in relationships. J. Behav.
Decis. Mak. 18, 125–144.

Wu, S. W., Delgado, M. R., and Mal-
oney, L. T. (2011). The neural cor-
relates of subjective utility of mone-
tary outcome and probability weight
in economic and in motor deci-
sion under risk. J. Neurosci. 31,
8822–8831.

Xue, G., Lu, Z., Levin, I. P., Weller, J.
A., Li, X., and Bechara, A. (2009).
Functional dissociations of risk and
reward processing in the medial
prefrontal cortex. Cereb. Cortex 19,
1019–1027.

Yacubian, J., Gläscher, J., Schroeder, K.,
Sommer, T., Braus, D. F., and Büchel,

C. (2006). Dissociable systems
for gain- and loss-related value
predictions and errors of prediction
in the human brain. J. Neurosci. 26,
9530–9537.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 30 March 2012; accepted:
28 January 2013; published online: 20
March 2013.

Citation: Jung D, Sul S and Kim
H (2013) Dissociable neural processes
underlying risky decisions for self ver-
sus other. Front. Neurosci. 7:15. doi:
10.3389/fnins.2013.00015
This article was submitted to Frontiers
in Decision Neuroscience, a specialty of
Frontiers in Neuroscience.
Copyright © 2013 Jung , Sul and Kim.
This is an open-access article distributed
under the terms of the Creative Com-
mons Attribution License, which per-
mits use, distribution and reproduction
in other forums, provided the original
authors and source are credited and sub-
ject to any copyright notices concerning
any third-party graphics etc.

Frontiers in Neuroscience | Decision Neuroscience March 2013 | Volume 7 | Article 15 | 118

http://dx.doi.org/10.3389/fnins.2013.00015
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


ORIGINAL RESEARCH ARTICLE
published: 21 September 2012
doi: 10.3389/fnins.2012.00128

Neuroeconomic measures of social decision-making
across the lifespan
Lusha Zhu1, Daniel Walsh2,3 and Ming Hsu2,3*
1 Virginia Tech Carilion Research Institute, Virginia Polytechnic Institute and State University, Roanoke, VA, USA
2 Neuroeconomics Laboratory, Haas School of Business, University of California Berkeley, Berkeley, CA, USA
3 Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA

Edited by:
Kerstin Preuschoff, École
Polytechnique Fédérale de Lausanne,
Switzerland

Reviewed by:
Geoffrey Schoenbaum, University of
Maryland School of Medicine, USA
Bernd Weber,
Rheinische-Friedrich-Wilhelms
Universität, Germany

*Correspondence:
Ming Hsu, Haas School of Business,
University of California, 2220
Piedmont Avenue, Berkeley, CA, USA.
e-mail: mhsu@haas.berkeley.edu

Social and decision-making deficits are often the first symptoms of a striking number of
neurodegenerative disorders associated with aging.These includes not only disorders that
directly impact dopamine and basal ganglia, such as Parkinson’s disorder, but also degen-
eration in which multiple neural pathways are affected over the course of normal aging.
The impact of such deficits can be dramatic, as in cases of financial fraud, which dispro-
portionately affect the elderly. Unlike memory and motor impairments, however, which are
readily recognized as symptoms of more serious underlying neurological conditions, social
and decision-making deficits often do not elicit comparable concern in the elderly. Further-
more, few behavioral measures exist to quantify these deficits, due in part to our limited
knowledge of the core cognitive components or their neurobiological substrates. Here
we probe age-related differences in decision-making using a game theory paradigm previ-
ously shown to dissociate contributions of basal ganglia and prefrontal regions to behavior.
Combined with computational modeling, we provide evidence that age-related changes in
elderly participants are driven primarily by an over-reliance in trial-and-error reinforcement
learning that does not take into account the strategic context, which may underlie cognitive
deficits that contribute to social vulnerability in elderly individuals.

Keywords: aging, game theory, reinforcement learning, strategic learning, neuroeconomics, decision neuroscience

INTRODUCTION
A widow responds to a telemarketing investment firm’s offer
of financial security. The firm convinces her to convert all her
assets to risky, liquid investments managed by the firm. Over the
course of a year, the firm provides near constant attention to the
widow, who, by the end of the year, had lost $800,000 (Starnes,
1996). Such crimes are unfortunately common. Although there
is widespread recognition of elderly fraud among both finan-
cial and legal scholars, and efforts to introduce legislation to
combat this problem (e.g., Smith, 2000), we know very little
about the specific sources of such vulnerability at the neurobi-
ological level. Unlike memory and motor impairments, which
are readily recognized as symptoms of more serious underly-
ing neurological conditions, decision-making deficits often do
not elicit comparable concern in the elderly (Denburg et al.,
2007). There are also few neuropsychological tools or biomark-
ers available to measure decision-making deficits, particularly
those that contain a social component such as susceptibility to
fraud.

Here we sought to probe age-related effects of an important
class of social behavior captured by economic games, and build
upon recent advances in understanding of the neural substrates
of value-based decision-making. Intuitively, efficient value-based
decision-making requires organisms to make decisions to obtain
rewards and avoid punishments that are present in the envi-
ronment (Fehr and Camerer, 2007; Rangel et al., 2008; Maia
and Frank, 2011). In the social domain, however, organisms also

need to anticipate and respond to actions of others competing or
cooperating for the same rewards.

Neurobiologically, there is much evidence that the capacity to
make appropriate value-based decisions depends critically upon
integrity of the nigrostriatal dopamininergic (DA) system and
frontostriatal circuits, which is well known to degenerate over
the course of aging (Bäckman and Farde, 2005). Furthermore,
there is growing consensus that the computational underpinnings
of these systems can be parsimoniously characterized by rein-
forcement learning (RL) theories of behavior (Sutton and Barto,
1981; Schultz et al., 1997). This synthesis of theory and data has
led to speculations that abnormalities observed in healthy older
adults is at least partially caused by age-related decreases in neu-
ronal number in these circuits, as well as a decreased number of
synapses in those neurons (Li et al., 2001; Li and Sikström, 2002;
Samanez-Larkin et al., 2007).

Despite this rapid progress, however, there has been limited
application of this formal framework to understand age-related
changes in value-based decision-making in the social domain.
Here, in addition to needing to learn about available rewards
and punishments in the environment, agents also need to antici-
pate and respond to cooperative or competitive actions of others
(Camerer, 2003; Lee, 2008). This requires the ability to behave
strategically, which has been the subject of intense study in the-
oretical biology and game theory (Fudenberg and Levine, 1998;
Hofbauer and Sigmund, 1998). Game theory provides a math-
ematically precise description of the social environment, thus
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allowing for quantitative modeling of behavior that can build
upon previous findings on reward learning (Fehr and Camerer,
2007; Lee, 2008).

An important insight of this literature is that standard RL
models provide an incomplete account of strategic learning. Indi-
viduals blindly exhibiting RL behavior in social and strategic
settings are essentially ignoring the fact that their behavior can
be exploited by others (Camerer, 2003; Hampton et al., 2008). In
contrast, another well-studied class of learning models, commonly
referred to as belief-based learning, requires players to form and
update first-order beliefs regarding the likelihood of future actions
of opponents through experience, and provides a tractable model
of social learning in relatively simple environments. Neurobio-
logically, there is converging evidence that social decision-making
depends upon a broader network of regions that project to the
striatum, in particular the medial prefrontal cortex (mPFC), which
is widely thought to be intimately involved in “theory of mind”
critical for social cognition and strategic reasoning (Amodio and
Frith, 2006; Jackson et al., 2006; Saxe, 2006).

Results from our previous research has shown that this para-
digm engaged key components of the frontostriatal circuits, and
to dissociate their respective contributions to behavior (Zhu et al.,
2012). Specifically, using model-based fMRI, activity in the ventral
striatum was found to underlie standard model-free RL through
trial and error. In contrast, activity in the mPFC underlies more
cognitively sophisticated belief learning that involves forming and
responding to first-order beliefs about the actions of other individ-
uals. Based on these results, we hypothesize that the ability to make
advantageous social decisions would decline over age as a result
of decline in higher-order cognitive functions that we believe to
be crucial for complex social decision-making. Furthermore, we
hypothesized that the differences in behavior can be captured by
key parameters in the computational model across age cohorts.

MATERIALS AND METHODS
SUBJECTS
We compare results from 30 young subjects (16 female, mean
age 23.3± 4.6 years) from University of Illinois at Urbana-
Champaign, and 29 elderly subjects (14 female, mean age
64.1± 5.4 years) recruited from: (1) local flyers and bulletins in
the Berkeley community, (2) online forums such as Craigslist, and
(3) Berkeley Retirement Center (Table 1). All elderly subjects were
tested on the mini-mental status exam and self-reported to be
healthy and with no significant neurological issues.

EXPERIMENTAL PARADIGM
We used the “Patent Race” game, first studied experimentally by
Rapoport and Amaldoss (2000), and most recently used in our
previous neuroimaging study. This game is simple in motivation
but rich in the strategic nuances and the patterns of behavior that it
can generate (Zhu et al., 2012). In the game, two opposing players
are randomly matched from a large pool of players at the begin-
ning of each round and compete for a prize by choosing how much
to invest (in integer amounts) from their respective endowments.
The player who invests more wins the prize, while the other loses.
In the event of a tie, neither player wins the prize. Players keep the
part of their endowment that is not invested.

Table 1 | Demographic information of participants.

Age group Young Elderly

Mean age 23.3 64.1

(S.D) (4.6) (5.4)

N 30 29

(# Female) (16) (17)

Mean year education 14.4 15.0

(S.D) (1.1) (0.9)

Estimated WAIS-R IQ 109

(S.D) (9.2)

WCST% correct 68.3

(S.D.) (14.4)

WCST% perseverative errors 11.7

(S.D) (6.9)

In the particular payoff structure that we use, the prize size is
10, and players are of two types: Strong and Weak. The Strong
player has five units of endowment, and can invest between 0 and
5 units in integer amounts, whereas the Weak player has four units
to invest, and can invest between 0 and 4 units (Figure 1). Fur-
thermore, to reduce cognitive burden associated with playing this
relatively complex game, we used a new interface first introduced
in Zhu et al. (2012). This interface replaced the standard matrix
form representation of the game that contains 60 elements with
one that directly reflects the logic of the game.

PROCEDURE
Upon arrival at the laboratory, subjects were given instructions
and quiz to ensure the understanding of the experiment. Partici-
pants played two stages of 80 rounds each of strong and weak roles
(counterbalanced). Opponents’ choices were drawn from a pool of
16 young adults who participated in an earlier session at Univer-
sity of Illinois at Urbana-Champaign. We ran subjects separately
to allow us to pair players against a common distribution of oppo-
nents. Previous sessions comparing “live” sessions and “non-live”
sessions show that young adults do not differ significantly across
treatments (Zhu et al., 2012). All subjects were fully informed of
the purposes of the research and were free to withdraw without
penalty. Elderly participants further completed psychometric tests
for IQ (Shipley Institute of Living Scale) and executive functioning
(Wisconsin Card Sorting Task, WCST).

COMPUTATIONAL MODELING
To quantitatively compute the mapping from the stimulus inputs
to the behavioral observations, we used the “experience-weighted
average”(EWA) model first introduced by Camerer and Ho (1999).
This model embeds both RL and belief learning, two of the most
widely used approaches to studying learning in competitive games.

These two learning rules differ with regards to the information
that subjects use to update action values. Intuitively, at the end of
each round, the subject receives two pieces of information – the
received rewards in the form of payoffs, and how much the oppo-
nent invested. For example, consider two rounds where the subject
chose 5, but where the opponent chose 0 in one round and 4 in the
other. In both cases, the subject’s received payoff is 10. However,
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FIGURE 1 | Patent Race Game. (A) Two players are randomly
matched from a large pool of players at the beginning of each round
and (B) compete for a prize by choosing an investment (in integer
amounts) from their respective endowments. (C) The player who
invests more wins the prize and the other loses. In the event of a tie,

both lose the prize. Players keep the part of their endowment that is
not invested. In the particular payoff structure of this game, the prize
size is 10, and players are of two types: Strong and Weak. The Strong
player has five units to invest, whereas the Weak player has four units
to invest.

in the former the subject could have earned more by investing less,
with the optimal investment being 1. In the latter case, however,
the subject cannot improve by investing any other amount.

Under RL, players are assumed to ignore the actions of the
opponent, and as a result treat both cases as equivalent. On the
other hand, belief learning assumes that players, either directly or
indirectly depending on the particular interpretation, include this
information in updating of action values (Cheung and Friedman,
1997; Camerer, 2003). The hybrid EWA model provides a para-
metric account of the weighting between the two learning rules, as
well as capturing how the past experiences depreciate over time,
both of which we will study in our data.

Formally, on each round, player i assigns a value V k
i (t ), to each

strategy Sk
i in the strategy set Si =

{
S1

i , S2
i , . . . , Sk

i

}
, (i.e., invest-

ment amount). They also come into the game with certain prior
beliefs N (0), which reflect either the result of logical deduction or
previous life experiences. Denote Si(t ) as the investment amount
by player i at period t, and s−i(t ) as the investment amount of the
opponent at period t, the evolution of V k

i (t ) and N (t ) is governed
by three parameters and updates according to the following:

V k
i (t ) =


φiN (t−1)V k

i (t−1) + δiπi

(
Sk

i , S−i(t )
)

N (t ) , if Sk
i 6= Si(t )

φi N (t−1)V k
i (t−1) + πi

(
Sk

i , S−i(t )
)

N (t ) , if Sk
i = Si(t )

N (t ) = ρiN (t − 1) + 1

As discussed in Camerer and Ho (1999), the three parameters
capture qualitatively distinct aspects of the learning process. First,
two of the parameters describe distinct notions of “experience”:
pre-game experience (or prior beliefs) and in-game experience.
Updating of the former (pre-game prior beliefs) is controlled by
the parameter ρi , such that a large value of ρi leads prior beliefs to
wear off quickly. On the other hand, updating of in-game adap-
tation – that is, responsiveness to actual experience during the
game – is captured via the parameter ϕi , where smaller values
imply greater weight placed on recent game experience. Finally,
the weight between reinforcement and belief learning is captured

by the parameter δi , which reduces to pure RL when δi=0, and to
pure belief learning model when δi=1.

To convert latent values V k
i (t ) to choice probabilities, we

assume that the probability of player i playing Sk
i follows a softmax

distribution Pk
i (t − 1) = exp

(
λ • vk

i (t )
)
/
∑L

l = 1 exp
(
λ • vk

i (t )
)
,

where λ is a measurement of subjects’ sensitivity to differences in
latent values (Camerer and Ho, 1999; Hsu et al., 2005). Using
initial values N (0) and V k

i (t ) calculated from first period data
(Roth and Erev, 1995; Ho et al., 2008), we performed maximum
likelihood estimation at the individual level for both young and
elderly cohorts using a grid search over a large range of values for
all free parameters. That is, we maximized for each subject the

log-likelihood function
∑

t log
(

P si(t )
i (t )

)
Standard errors were

estimated through a jackknife procedure (Camerer and Ho, 1999;
Zhu et al., 2012).

RESULTS
Our primary hypothesis is that elderly adults will exhibit slower
adaptation in strategic learning as compared to young adults. That
is, elderly adults will be less responsive to the actions of opponents
in terms of choice behavior. Furthermore, using our computa-
tional paradigm, we aim to distinguish between contributions
of three non-mutually exclusive computational accounts of any
observed age-related changes. First, we test whether older adults
employ less belief-based learning, and rely more upon simpler RL.
This would suggest that behavioral differences are caused by not
taking a complete account of possible information in the decision
context. Second, we test the hypothesis that older adults may be
less sensitive to recent in-game experiences. This will be reflected
in the estimated values for parameter ϕ, and can intuitively capture
the notion that older adults are more“sluggish”in their adjustment
process (Kovalchik et al., 2005). Third, we test whether older adults
exhibit stronger pre-game prior beliefs, captured by the parameter
ρ, which would suggest that they are more “stubborn” in the sense
that their pre-game prior belief decays slower. These hypotheses
and a discussion of the different parameters are summarized in
Table 3.
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Table 2 | Comparison of Nash equilibrium prediction with the

empirical frequencies from young and elderly cohorts.

Role Investment Equilibrium

prediction (%)

Empirical distribution

Young (%) Elderly (%)

Strong 0 0 1 1

1 20 18 12

2 0 10 16

3 20 11 29

4 0 16 22

5 40 45 21

Weak 0 40 49 39

1 0 3 13

2 20 6 7

3 0 13 11

4 20 27 30

MODEL-FREE MEASURES
We begin with simple model-free comparisons of choice behavior
across age groups. Table 2 presents the empirical frequencies of
choices for each age group separated by player role. In order to
provide a benchmark for such comparison, we also include Nash
equilibrium choice probability predictions. The unique Nash equi-
librium prediction is that strong players should invest five 60% of
the time, one and three 20% of the time respectively, and weak
players invest zero 60% of the time, two or four 20% of the time.
As shown in Table 2, young subjects on average were reasonably
close to the Nash equilibrium prediction with the exception of
overinvesting 4 and underinvesting 3 as strong players, whereas
the distribution of choices made by elderly strong subjects were
further from Nash equilibrium prediction, with more evenly dis-
tributed choice over investing 2, 3, 4, and 5. Yet as weak players,
both elderly and young subjects overinvested 0 and underinvested
4. However, elderly subjects also overinvested 1, which is the itera-
tively dominated strategy for the weak role. A test of the proportion
of deviation showed that play from elderly cohort’s deviation from
Nash equilibrium significant more than did the young cohort
(p < 0.01).

To examine the “stickiness” of choices between successive
rounds, we computed the instances where participants switched
investment levels versus those where they did not. This gives us an
index of the proportion of rounds in which participants switched
strategies, versus those rounds in which they stayed (Figure 2).
We found that young subjects on average repeated investment in
44% of the choices over the course of the experiment, which is
remarkably similar to the Nash equilibrium prediction. In con-
trast, we found that elderly subjects repeated previous investments
at a much higher rate (60%), and significantly greater than more
often than young adults (p < 0.05).

MODEL-BASED MEASURES
To provide a mechanistic account of the differences as measured
using the model-free measures, we next fitted choice behavior
of our participants using the EWA model. First, we compared

FIGURE 2 | Comparison of probabilities of “staying” across different
age groups. Dashed line indicates Nash equilibrium predicted probability of
repeating the same investment.

the mean goodness of fit of the model across both cohorts. A
significant difference may suggest that comparisons of estimated
parameters are biased due to different explanatory powers of the
model. We found, however, that the mean log-likelihood values
did not differ significantly between the young and old cohorts
(Table 3, p > 0.2). This suggests that our computational model is
able to capture trial-by-trial variations in behavior at a similar rate
for both cohorts.

Next, we compared the mean values of the individual-level
parameter estimates (Table 3). We found that the mean estimates
for parameter δ was significantly lower for the elderly as compared
to the young (0.48 for young, 0.28 for elderly, p < 0.05), indicating
that the elderly on average employ less belief-based strategy, and
more reinforcement. This is in line with the findings through fMRI
that there may exist significant tissue loss in gray matter volume in
mPFC, which is indicated to be involved in belief-based learning
in our previous study (Zhu et al., 2012).

In contrast, we found that mean estimates for both types of dis-
count rates did not differ significantly between young and elderly
cohorts. Both young and elderly cohorts were estimated to have a
similar value of φ (0.95 for the young; 0.89 for the elderly, p > 0.1),
suggesting that both groups responded smoothly to past in-game
experience. Similarly, both groups also discounted prior-game
beliefs, captured by parameter ρ, at approximately similar levels
(p > 0.1, Table 3). Neither finding can be explained by differences
in the learning environment as both cohorts faced the same pool
of opponents.

Motivated by findings in the aging literature that aging increases
variability of behavioral responses (Samanez-Larkin et al., 2010),
we next investigated individual differences in the learning para-
meters using our model. We therefore compared the empirical
cumulative distributions of the model fit and parameter estimates
across the cohorts. We found that the distribution of the model
fits of the two cohorts, as measured by the log-likelihood value, is
distributed similarly, such that there is no indication of increased
variance or clustering of the elderly cohort (Figure 3A). Similarly,
we found that the two discounting parameters are also similarly
distributed across age cohorts. That is, there was no indication of
increased variance in either of the discounting parameter estimates
(Figures 3C,D).
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Table 3 | EWA parameters and their interpretations, as well as parameter estimates from young and old cohorts.

Model

estimates

Parameter

interpretation

Young adults1 Old adults1 T -test p-value2 K–S test p-value2

LL Log-likelihood value 90.4 (5.67) 79.3 (8.26) 0.27 0.56

δ Degree of belief-based learning exhibited. Larger

values mean more belief-based learning.

0.48 (0.041) 0.28 (0.075) 0.022 (0.065) 0.0016 (0.0047)

ρ Depreciation of the strength of before-game prior

beliefs. Larger values mean more depreciation.

0.86 (0.043) 0.83 (0.068) 0.74 (1.0) 0.59 (1.0)

ϕ Weight placed on most recent experience. Smaller

values mean more weight on freshest experience.

0.88 (0.031) 0.85 (0.050) 0.53 (1.0) 0.57 (1.0)

1Parentheses indicate SEM.
2Both t-test and Kolmogorov–Smirnov test p-values are given, with those corrected for multiple comparisons (three tests) given in parentheses.

FIGURE 3 | Empirical cumulative distributions of estimated
parameters across cohorts. (A) Log likelihood values measuring degree
of model fit, (B) parameter δ capturing the degree of belief learning,

(C) parameter ρ measuring depreciation of the strength of before-game
prior beliefs, and (D) parameter φ measuring weight placed on most
recent experience.

In contrast, the mediation parameter δ showed that behavior
in approximately half of the elderly cohort was driven entirely by
RL (Figure 3B). In light of the non-normal distribution of the δ

parameter estimates, we also included significance tests using the
Kolmogorov–Smirnov (K–S) test, a non-parametric, distribution-
free test that is robust to violations of normality (Table 3). We
found that all results using the K–S test are consistent with those
using the t -test, and show highly significant differences in the
δ parameters between age cohorts (p < 0.001). Interestingly, the
remaining elderly cohort appear to be distributed similarly to the
young adults, as can be seen by the upper half of the distrib-
ution (Figure 3B). There was, however, no indication that this
group of pure reinforcement learners differed on other dimen-
sions. Surprisingly, we found no differences in either demographic
or other model estimates for these two groups. The only measure
that approached significance was the value of ρ. The low δ group
had a slightly higher mean ρ (0.95) compared to the high δ group
(0.70), which is significant at the p < 0.1 level. This lack of dif-
ferentiation, however, may well be due to a lack of power in our
sample given the relatively modest sample size and restricted range
of age for the elderly cohort.

DISCUSSION
We spend much of our lives devoted to the accumulation of finan-
cial and social prosperity, and often with much success. To take just
one measure, the median net worth of a 65-year-old American in
2007 is more than double that of a 40 year old (Bucks et al., 2009).
For many, however, such wealth comes at a vulnerable time when

the cognitive and neurological apparatus that made this possible is
beginning to break down (Plassman et al., 2008). This vulnerability
can be attributed in part to a decline in the ability to make deci-
sions that take into account the appropriate cost-benefit tradeoffs.
Often these decisions take on a social dimension, where the elderly
appear particularly vulnerable. For example, it is well known that
the elderly are disproportionate targets of fraud across the world,
and constitute a conservatively estimated 30% of all fraud victims
in the United States (Templeton and Kirkman, 2007; Bucks et al.,
2009).

An understanding of the neurocognitive substrates of these
vulnerabilities therefore depends upon the availability of neu-
ropsychological tools that can be used to probe and characterize
such decision-making deficits, particularly those that contain a
social component such as susceptibility to fraud. This work makes
two contributions toward this goal. First, we show our novel
social learning paradigm was able to probe behavioral differ-
ences between cohorts, as well as individual differences within
cohorts. We found that, in contrast to young adults, learning
in about half of the elderly adults is driven primarily by RL.
Future studies can explore the degree to which such changes
are present in other social and non-social settings that require
higher-order cognition, such as cooperative interactions (King-
Casas et al., 2005; Chang et al., 2011), or those involving explicit
task structure (Ribas-Fernandes et al., 2011; Simon and Daw,
2011). Second, using a well-established computational model of
strategic learning, we were able to dissociate between two possible
sources of the observed differences. Previous accounts have largely
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focused on qualitative descriptions of “sluggishness”of adjustment
of behavior. However, such a behavior can be a result of either
(1) an inability to integrate new information into one’s reward
expectations by discounting previous experiences, captured by
the two different discounting parameters, or (2) an attenuation
of the ability to extract or integrate information beyond the
received rewards and punishments. We show that the behavior
is primarily driven by the latter, and in particular an attenua-
tion of the ability to observe or integrate actions of others or
counterfactual outcomes. In contrast, elderly individuals did not
show significant differences in two types of discounting of past
experiences.

More broadly, our results potentially shed light on contradic-
tory findings in previous psychological and economic studies of
age-related effects in relation to social behavior. In particular, a
number of studies have suggested a decline in the ability of theory
of mind with normal aging (McKinnon and Moscovitch, 2007;
Slessor et al., 2007). Yet others found that older adults actually
performed better than younger adults, even in the face of possible
decline in many forms of cognitive processing (Happé et al., 1998;
Grossmann et al., 2010). Using a behavioral economic approach
similar to ours, Kovalchik et al. (2005) compared the ability of
strategic reasoning between the young and healthy elderly sub-
jects using the so-called “p-beauty contest.” This task has been
widely used in previous behavioral studies using traditional under-
graduate subjects as well as non-standard populations such as
business executives and portfolio managers (Nagel, 1995; Duffy
and Nagel, 1997). Surprisingly, they similarly found no significant
difference between the healthy elderly (mean age 82) and young
undergraduate participants.

Combined with our results, however, these results suggests
that the diminished reliance on mentalization and/or counter-
factual information to dynamically update behavior may reflect
core changes in the cognitive processing of social information
that occurs over the aging process. This is as opposed to strategic
reasoning, which refers to the static inferential process of guess-
ing what others will do without any prior contractual agreement,
which may well be preserved during aging. This hypothesis is
consistent with previous findings of behavioral deficits in elderly

patients in the“Iowa Gambling Task”(IGT; Bechara et al., 2000), as
well with what is known about degeneration of the dopaminergic
circuits and mPFC that supports value-based decision-making. In
particular, longitudinal studies have found frontal lobes suffered
the most drastic loss of volume as assessed through MRI (Resnick
et al., 2003).

In contrast, we speculate that static reasoning capacities in the
elderly may be partially preserved by reallocation of processing
resources from other brain regions. Such compensatory processes
at the neural level have been found across a variety of cognitive
functions, including episodic retrieval and visual perceptual atten-
tion, and which occur even in the face of global declines in neural
integrity (Davis et al., 2008). For example, there is abundant evi-
dence that older adults compensate for declines in bottom-up
sensory processing by over-recruitment of top-down processes
mediated by PFC (Davis et al., 2008; Dennis and Cabeza, 2008).

In the case of social cognitive functioning, there is substan-
tial evidence that, during development, the so-called “mentalizing
system” – consisting of the anterior mPFC, the posterior superior
temporal sulcus at the temporoparietal junction (pSTS/TPJ), and
the anterior temporal lobe (ATL) – undergo substantial changes
in their functional response to social information such as mental
states (Paus, 2005; Blakemore, 2008; Burnett et al., 2009). Ado-
lescents have been shown, for example, to exhibit greater activity
within the mPFC than do adults in social cognition tasks (Bur-
nett et al., 2009). In contrast, we know much less about how
neural responses change over adulthood in the social cognition
and behavior (Castelli et al., 2010; Beadle et al., 2012; Moran
et al., 2012), and whether they might have compensatory func-
tions that have been documented for other cognitive functions. A
more complete account of these age-related changes, however, is
only possible with a proper characterization of the computational
and structural integrity of the underlying neural systems and their
interactions.
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The present study tested how social information about the proposer biases responders’
choices of accepting or rejecting real monetary offers in a classic ultimatum game (UG)
and whether this impact is heightened by the uncertainty of the context. Participants in
our study conducted a one-shot UG in which their responses had direct consequences
on how much money they earned. We used trait-valenced words to provide information
about the proposers’ personal characteristics.The results show higher acceptance rates for
offers preceded by positive words than for those preceded by negative words. In addition,
the impact of this information was higher in the uncertain than in the certain context. This
suggests that when deciding whether or not to take money from someone, people take
into account what they know about the person they are interacting with. Such non-rational
bias is stronger in an uncertain context.

Keywords: ultimatum game, decision-making, social information, uncertainty

INTRODUCTION
Within the emerging field of judgment and decision-making, it
is broadly accepted that humans are not purely rational decision-
makers (see Camerer, 2003). A recent line of research within this
field tries to capture the nature of decision-making in social con-
texts. This is particularly interesting as many of our everyday
choices involve or affect other people.

Regarding the aspects that influence such decisions, different
studies stress the importance of emotions as a biasing factor. It has
been shown that displayed positive and negative facial expressions
(e.g., Scharlemann et al., 2001; Ruz and Tudela, 2011) as well as
induced emotions unrelated to the task (Harlé and Sanfey, 2007)
influence decision-making in inter-personal interactions. Further
aspects that have been found to influence decision-making include
the physical attractiveness and the gender of people with whom we
interact (e.g., Solnick and Schweitzer, 1999; Solnick, 2001; Eckel
and Grossman, 2008).

As another clear biasing factor, social information has been
shown to have an effect on economic choices in social contexts
with high degrees of uncertainty, such as those in the Trust Game
(Delgado et al., 2005). In an iterated Trust Game, trading part-
ners described as morally praiseworthy were trusted more often
than those with neutral or untrustworthy moral character, even
when the descriptions had no predictive value regarding the actual
behavior of the partners. As the reciprocity of the unknown part-
ner in this game has direct consequences on the monetary outcome
of the truster, it seems useful to rely on any relevant information
available to guide trust choices. This matches previous data in
non-social contexts showing that uncertainty increases the value
of information. For example, people might be more disposed to
being influenced when they lack complete knowledge of the situa-
tion (e.g., Behrens et al., 2007; Rushworth and Behrens, 2008) and

might try to make use of any additional piece of information they
can gather. As a practical example, when making decisions on the
stock market, investors facing unstable prices are more receptive
to new tips than during stable periods (Schachter et al., 1985).

There are other social situations in which the degree of uncer-
tainty is smaller than in the Trust Game, such as when making
choices of accepting or rejecting offers in the Ultimatum Game
(UG; Güth et al., 1982). In this game two people interact to
divide a sum of money between them. One of them, the pro-
poser, receives a certain amount of money. He has to split it into
two parts, one for him and one for his counterpart, the respon-
der. The responder then can either accept or reject the proposal.
If he accepts it, both receive their part; if he rejects it, neither the
proposer nor the responder gets any payoff. For the responder
the degree of uncertainty of this situation is low, seeing that he
reacts to a given decision of the proposer in form of a monetary
offer.

From the economic point of view, the self-interested, income-
maximizing homo economicus should accept every kind of offer, no
matter how little it is (Nash, 1950). However, such predicted behav-
ior is not confirmed in experimental settings where small offers (of
20% or below of the initial amount) are rejected about half of the
times (Camerer, 2003). Irrational rejection of unfair offers in the
UG may be explained by several factors, such as inequity aversion
(Fehr and Schmidt,1999) and emotions accompanying the percep-
tion of unfairness. Responders often feel wounded pride and anger
when facing unfair offers and tend to punish their selfish game
partner favoring emotional satisfaction over money gains (Pillutla
and Murnighan, 1996). Physiological (van’t Wout et al., 2006) and
neuroimaging studies (Sanfey et al., 2003) support the important
role of emotions in the UG, showing, for example, that emotion-
ally relevant brain regions, such as the right anterior insula, are
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activated when participants are faced with unfair offers (Sanfey
et al., 2003).

As the responder in the UG finds himself in a situation where
the decision of the proposer has already taken place, there is no
obvious reason why his choices should change depending on the
information he has about the person he interacts with. How-
ever, even in such a certain context social information about the
proposer seems to influence decision-making.

Using a modified version of the UG, Ruz et al. (2011) showed
that personal descriptions of game partners biased decisions to the
same set of offers. Offers preceded by negative words were rejected
with higher probability than those preceded by positive words.
In addition, rejection responses were faster after negative words,
whereas acceptances were faster following positive words, which
suggests that the social information primed action tendencies.
Thus, even though the words did in no manner predict how fair the
following offer was going to be, social information regarding the
partner affected the decisions of participants in this game. Further-
more, these authors introduced a manipulation of the uncertainty
of the social situation and found that the social bias had a much
larger effect when the context of the game was uncertain. Some
characteristics of this study, however, limit the scope of the results.
First, Ruz et al. (2011) used a modification of the UG instead of
the original task setting. In their version, the difference between
the two parts of a split was either one (fair offers) or four (unfair
offers) and the responder’s part of the split could be either higher
or lower than their partner’s amount. Thus, offers could be either
convenient or inconvenient for the participant. Furthermore, to
enable measurement of response times, they required participants
to take their decision within a time limit of 1500 ms. When par-
ticipants did not respond on time, they saw a message stating that
the higher amount of the split would be added to their partner’s
earnings. This leaves open the question of whether similar results
would be obtained in a version closer to the classic UG. Addition-
ally, they did not pay real money to participants, and thus it could
be claimed that the social information biased responses because
participants did not have anything at stake.

Two recent studies solve part of these problems. Campanhã
et al. (2011) used the classic UG and demonstrated that friendship
with the proposer modulated the choices made by the responder in
the game. More specifically, responders rejected unfair offers less
frequently when the proposer was believed to be a friend rather
than an unknown person. However, as several rounds were played
with the same partner, it is not sure that the responders’ choices
reflected responses to a single offer instead of bargaining behavior.
It must also be noted that no real money was offered to par-
ticipants. Furthermore, interactions with a friend can always be
affected by the long-term relation we hold with this person, which
may have affected the results found by Campanhã et al. (2011).

Another study (Marchetti et al., 2011) showed that the type
of information about the proposer provided to the responder has
an influence on decision-making in the UG. Most interestingly,
they found an interaction between the psychological description
of the partner and the fairness of the offer: a negative (selfish)
description of the proposer led to a decreased acceptance rate
of fair offers, while a positive (generous) description led to an
increased acceptance rate of unfair offers. As this study employed

one-shot interactions with unknown partners, concerns regarding
long-term interactions or even friendship do not arise. However,
as in the game by Ruz et al. (2011) and in the study of Campanhã
et al. (2011), participants in this study did not receive money in
accordance with their decisions.

Thus, it still has to be tested whether social information regard-
ing the partner in a classic UG biases people’s decisions to offers
of real money, which was the goal of the present study. We
conducted a classic computerized, one-shot UG and used trait-
valenced words to describe the moral characteristics of otherwise
unknown partners. As previous results indicate that the level of
uncertainty modulates the scope of the biasing information in a
modified UG (Ruz et al., 2011), we included a manipulation of
uncertainty to explore whether the level of uncertainty also affects
responses in the classic UG.

Participants of our experiment played the role of the respon-
ders and received either fair or unfair offers from several different
proposers represented by the computer. Following the findings of
the classic UG it was hypothesized that more fair than unfair offers
would be accepted. As a description of the partners’ characteris-
tics in each trial, each offer was preceded by a word with positive
or negative valence highly linked to morality and trustworthiness
(see Table 1). It was hypothesized that acceptance rates would
be biased by this social information, with higher acceptance rates
for offers preceded by positive than for those preceded by nega-
tive words. Additionally, participants had either full or incomplete
information about the outcome of their choices, which modulated
the uncertainty of the game. In the certain condition, participants
were informed of which part of the split corresponded to them,
while this information was not given in the uncertain condition.
It was hypothesized that the influence of the valence of the word
would be higher in the uncertain context. Experiment 1 confirmed
these hypotheses. Experiment 2 showed that personal information
only influenced choices when it was attributed to the partners in
the game.

EXPERIMENT 1
Experiment 1 manipulated the level of uncertainty (uncertain vs.
certain), the type of offer proposed by the partner in the trial (fair

Table 1 | List of words selected as stimuli in the study and acceptance

rates of offers depending on the word that preceded the offer.

Positive words Accepted

offers (%)

Negative words Accepted

offers (%)

Friend 79 (19) Hostile 60 (25)

Humble 76 (19) Selfish 53 (26)

Honorable 75 (18) Guilty 53 (25)

Generous 74 (17) Disloyal 52 (27)

Loyal 73 (19) False 48 (28)

Warm 73 (19) Cruel 47 (29)

Honest 72 (23) Traitor 47 (27)

Kind 71 (20) Criminal 41 (29)

Mean 74 (16) Mean 50 (23)

Standard deviations are given in parentheses.
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vs. unfair) and the valence of the word preceding the offer (positive
vs. negative).

MATERIALS AND METHODS
Participants
Thirty-six native Spanish-speaking, right-handed students from
the University of Granada participated in the study (23 female,
18–27 years, average 21.5). All participants signed a consent form
approved by the Department of Experimental Psychology of the
University of Granada. In exchange for their participation in the
study, participants were paid. The payment amount depended on
their earnings during the game task and ranged from about 3–6
Euros.

Stimuli
Sixteen trait-valenced words were selected from the Spanish trans-
lation of the Affective Norms English Word database (ANEW;
Redondo et al., 2007) as stimuli in the study. The words selected
provided moral and trustworthiness information and had either a
positive (in average 7.5, SE = 0.5) or a negative valence (in average
1.9, SE = 0.3). Positive and negative words were equated regard-
ing number of letters and frequency of use (average number of
letters: 6; average frequency: 21.72; all ps > 0.390). The English
translation of the words used is listed in Table 1.

Procedure
First, an introduction explaining the rules of the UG was given to
the participants. They were told that they were going to play the
UG in the role of the responder and were going to receive offers
that other participants had made in previous experiments of the
lab. To enhance the plausibility of this cover story, participants
completed a short questionnaire in which they themselves gener-
ated offers for 16 anonymous partners. For each partner they were
asked to decide how to divide 10 Euros into two parts, one for
them and the other one for their partner.

Before conducting the game, participants were informed that
they were playing with actual money, which was to strengthen
their motivation to make real decisions. They were informed that
one point earned in the game was to be exchanged for 1.5 cents of
Euro. To avoid possible influences of previous reciprocation, they
were told that on each trial they were going to play with a different
partner, who was never the same across the game.

The initial amount of the proposer was always 10 Euros, and the
split proposed to the responder was presented in the middle of the
screen. To every participant, the same set of splits including two
kinds of fair offers (5/5, 4/6) and three different kinds of unfair
offers (1/9, 2/8, 3/7) was presented. These types of offers match
the range of offers that humans normally propose in the role of
the proposers in the UG.

In total, participants received 128 offers and they had to accept
or reject each of them by pressing the number 1 or 2 (counter-
balanced across participants) of the computer keyboard. If they
accepted the offer, their part of the split was added to their earn-
ings and their partner for the trial received the other part. If they
rejected the offer, no transaction was carried out.

Additionally, each offer was preceded by a word. Participants
were told that the words represented personal descriptions of their

partner and that these characteristics had been obtained through
questionnaires completed by the same participants that made the
offer proposals in previous experiments. The same words were
presented in a different random order to each participant. Half of
the words had a positive valence and the other half had a nega-
tive one (see Table 1). In reality, the valence of the words was not
related in any way to the type of offer, as each word was followed
equally often by fair and unfair offers.

To test whether the uncertainty of the context influenced
decision-making in the classic version of the UG, the whole task
consisted of two blocks (order counterbalanced across partici-
pants) differing in the information provided to participants. In
the certain block, as in the original game, participants knew which
part of the split would be added to their earnings if they accepted
the offer. Therefore, for each split the two numbers were presented
in different colors (green and red) and participants were told which
of the colors corresponded to them (counterbalanced across par-
ticipants). Accordingly to the range of offers normally proposed by
humans in the game, the participants’ part of the split always con-
sisted in the smaller or equal (5/5 offer) number. In the uncertain
block, in contrast, participants did not know which part of the split
would be added to their earnings, as both numbers were presented
in black. Therefore they lacked that part of the information.

The experiment was conducted using a PC running E-Prime
software (Schneider et al., 2002). Each trial (see Figure 1) started
with a fixation cross presented for 1500 ms (+ ; 0.4˚) in the center
of the screen. Following this, the word (average 2.5˚) was dis-
played for 200 ms, and then, the fixation point was presented for
another 700 ms. Subsequently, the offer (1.5˚), consisting of two
numbers separated by a slash symbol, appeared in the center of
the screen until the participant made the response. Following the
decision of the participant, the next trial began. The whole exper-
iment consisted of 128 trials and had an approximate duration of
10 min.

RESULTS
The acceptance rate measured in percentage of accepted offers
was analyzed by a 2 (uncertainty: uncertain vs. certain)× 2 (offer:

FIGURE 1 | Sequence of events in a trial.
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fair vs. unfair)× 2 (valence of the word: positive vs. negative)
multifactorial ANOVA.

On average participants accepted 62.1% of all offers across the
experiment (Figure 2). There was a main effect of the fairness
of the offer (F 1,35= 86.25, p < 0.001), as fair offers were accepted
more often (M = 85%, SE = 17%) than unfair ones (M = 39%,
SE = 25%). Decisions were also influenced by the valence of the
word (F 1,35= 33.64, p < 0.001). Offers were accepted more often
when they were preceded by positive words (M = 74%, SE = 16%)
than by negative words (M = 50%, SE = 23%). Table 1 shows the
acceptance rates of offers separately for each trait-valenced word.

In addition, a significant interaction between uncertainty and
the fairness of the offer was found (F 1,35= 12.38, p < 0.01). In the
certain condition, the effect of the offer was higher (51%) than in
the uncertain condition (39%). Furthermore, unfair offers were
accepted more often in the uncertain (44%) than in the certain
context (35%; F 1,35= 9.65, p < 0.01), whereas there was no signif-
icance difference between the acceptance rate of fair offers in both
contexts (83 vs. 86%, F 1,35= 3.13, p= 0.086). Finally, as predicted
there was a significant interaction between uncertainty and valence
of the word (F 1,35= 8.01, p < 0.01). The effect of the valence of
the word was higher in the uncertain (28%) than in the certain
condition (20%).

In the analysis described above all offers are included (5/5, 4/6,
3/7, 2/8, and 1/9) for both certain and uncertain contexts. The
experiment included the fair offer 5/5 to mimic the range of offers

normally proposed in the classic UG. Nevertheless, it is clear that
when facing this offer participants knew that they would get five
points, both in the certain and uncertain blocks. Therefore, we
conducted a second analysis excluding the 5/5 offers to ensure that
our main results were not affected by this. This analysis replicated
all previous results.

DISCUSSION
The results of Experiment 1 confirm our initial hypotheses. First
of all and in agreement with typical findings in the UG (Camerer,
2003), the fairness of the offer influenced participants’ choices in
a major way as fair offers were accepted more often than unfair
offers.

With regard to the main question of interest of this study, our
results show that trait-valenced words influence decision-making
in the classic UG in which the decisions of participants influenced
how much money they earned. Offers preceded by positive trait-
words were accepted more often than those preceded by negative
trait-words. Crucially, we show that this bias exists in a classic
UG in which long-term effects were not present, as participants
were interacting only once with a partner not personally known
to them. Furthermore, participants in our study knew that their
aggregate decisions of each trial determined the amount of money
that they were going to earn. Therefore, they were motivated to
take their decisions seriously. However, their choices of accepting
or rejecting an offer were influenced by the information they had

FIGURE 2 | Acceptance rates of fair and unfair offers preceded by positive
and negative words in the uncertain and certain condition (Experiment 1).

Error bars represent standard errors of the mean. Lines represent significant
effects of the positive vs. negative valence of the trait-words (***p < 0.001).
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about their respective partners on each trial. Thus, they did not
act purely rational, but took into account what they knew about
the other person to accept or not the money. The social infor-
mation biased choices, although objectively trait-valenced words
and offers were not associated, insofar as positive and negative
words were paired with the same set of offers. Due to such lack
of association between words and offers, a learning effect can be
excluded.

Two aspects might have influenced participants’ reactions in
our study using the classic UG. First, it is possible that the subjec-
tive perception of fairness for all kinds of offers was biased by the
social information provided. Offers made by a negatively described
person might have been perceived as less fair than those made by
a positively described person. Research on the UG suggests that
responders in the UG reject unfair offers due to the perceived
unfairness and the negative emotions arising from this perception
(Pillutla and Murnighan, 1996; Sanfey et al., 2003). When provid-
ing a negative description, responders’ attention may have focused
on the negative aspects of the offer (e.g., the proposer assigns
more to himself than to me) rather than on the possible gains, as
they were already expecting an unfair offer. Additional to and in
congruence with biased subjective perception, negative emotional
reactions may have been stronger in this condition, which would
have led to lower acceptance rates. In the future, it could be use-
ful to include emotional measures such as skin conductance, to
directly evaluate the role that emotional reactions may play in the
current paradigm.

Another accompanying explanation places the bias in a later
stage of decision-making. From this perspective, offers would be
perceived in the same manner, and the biasing effect would take
place afterward, during the decision stage to punish the partner
or not. Participants punished partners tied to a negative descrip-
tion more than those associated to positive characteristics. This
explanation is consistent with real life experience, as people nor-
mally behave more nobly toward friendly persons, even when the
chances of meeting the same person again are unlikely. We will
take a closer look at the question of how to decide between these
two approaches in the general discussion.

In addition to the offer fairness and the valence of the words, we
manipulated the certainty of the context (uncertain vs. certain) as
a third independent variable. In the uncertain context responders
lacked the information about which part of the offer was assigned
to them. Therefore, they could not judge whether the offer was
advantageous for them or not, which is of particular relevance in
the face of unequal splits.

We found that offer fairness interacted with uncertainty, as
unfair offers were accepted more frequently in the uncertain than
in the certain context, while the acceptance rate of fair offers did
not differ in both conditions. The higher acceptance rate of unfair
offers in the uncertain condition was not predicted. However, the
limited possibility of objectively judging offers as convenient or
inconvenient and thus, a possible lower arousal of negative emo-
tions in the face of unfair offers, might explain this effect (see
also Pillutla and Murnighan, 1996). It is also possible, that in the
uncertain context responders simply feared the rejection of a con-
venient split and therefore accepted more offers consisting of an
unequal split.

Finally and as predicted, uncertainty modulated the weight
of the social information. The influence of the words was not
restricted to uncertain situations, but it was higher in this context.
As responders were not able to judge the convenience of the offer
in the uncertain context, they might have weighted the informa-
tion they received more highly and used it to generate expectations
about the offer.

The results clearly show that the valence of the information
about the proposer influences decisions made by participants in
the classic UG. However, an alternative and less appealing expla-
nation of our results could be that the presentation of positive
and negative words primed participants with a valence-consistent
mood in an automatic manner. To rule out that this is the case in
our findings, we conducted Experiment 2.

A possible control experiment to study the automatic effect
that valenced words may have on acceptance rates would be to
use non-trait-words as primes, matched in valence and arousal
ratings to the words used in Experiment 1. However, such a con-
trol would entail a change both in the words and the instructions
(as words can no longer be attributed to the personal characteris-
tics of the partners), which would make the interpretation of the
results difficult. An alternative option, which is the one we chose
for our control study, is to use exactly the same items but to change
the instructions regarding the social meaning of the words in the
game.

EXPERIMENT 2
We conducted a second experiment to rule out the possibility that
the impact of the words in Experiment 1 could be explained by
an “automatic” priming effect driven by the mere presentation of
words with high positive and negative connotations.

In Experiment 2 we told participants that the computer pre-
sented the words at random before each offer, and thus that they
had nothing to do with the person who initially proposed the offer.
Except for this minor change in the whole set of instructions, the
experimental design was exactly the same as in Experiment 1. It
was hypothesized that if the mere presence of the words, regardless
of their association to the partners in the game, generates prim-
ing, results from Experiment 2 should be quite similar to those of
Experiment 1. In contrast, if the key manipulation is the associa-
tion of the words with the personality characteristics of the people
we interact with, decision-making should not be influenced by
words in the current experiment.

MATERIALS AND METHODS
Participants
Thirty-six native Spanish-speaking students from the University
of Granada participated in the study (27 female, 18–38 years, aver-
age 23.3). All participants signed a consent form approved by
the Department of Experimental Psychology of the University of
Granada. In exchange for their participation in the study, partici-
pants were paid. The payment amount depended on their earnings
during the game task and ranged from about 3–6 Euros.

Stimuli and procedure
Stimuli and Methods were the same as in Experiment 1 with the
exception that participants received a different instruction regard-
ing the meaning of the words preceding each offer. They were told
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that the words were randomly presented by the computer program
and that they were in no manner linked neither to the offers, nor
to their partners in the game. As in Experiment 1, we manipu-
lated the variables uncertainty (uncertain vs. certain), offer (fair
vs. unfair), and valence of the word (positive vs. negative).

RESULTS
On average participants accepted 65.8% of all offers across
the experiment (Figure 3). There was a significant main effect
of offer fairness (F 1,35= 67.84, p < 0.001), as fair offers were
accepted more often (M = 89%, SE = 18%) than unfair ones
(M = 42%, SE = 28%). The uncertainty of the context also
influenced participants’ choices. Offers in the uncertain con-
text were accepted more often (M = 69%, SE = 16%) than in
the certain context (M = 63%, SE = 18%), F 1,35= 8.82, p < 0.05.
Furthermore, there was a significant interaction between these
two variables (F 1,35= 11.13, p < 0.01). The effect of the offer
in the certain condition was higher (55%) than in the uncer-
tain condition (40%). Again, whereas the acceptance rate of
fair offers did not differ significantly in both contexts (89 vs.
90%, F 1,35= 0.14, p= 0.713), unfair offers were accepted more
often in the uncertain (49%) than in the certain context (35%;
F 1,35= 16.38, p < 0.001). There was neither a significant main
effect of the valence of the word, nor any other interaction (all
ps > 0.28).

DISCUSSION
As it was the case in Experiment 1, in Experiment 2 participants’
choices were influenced by the fairness of the offer. In contrast to

Experiment 1, however, participants’ choices were not affected by
the words and there was no interaction between block uncertainty
and word-valence. Hence, the mere presentation of valenced words
does not prime action tendencies that lead participants to modify
their acceptance decisions. This result strongly suggests that the
key element for such biasing to occur is the link of the words to
social characteristics of the partners in the game.

It might be argued that given that the instructions clearly told
participants that the words were not related with the subsequent
offers they did not pay attention to this information, which would
explain the lack of effect of the words on acceptance decisions.
Withdrawing attentional resources is indeed a normal conse-
quence of deeming something as irrelevant to the task at hand
(e.g., Driver, 2001), and thus it is likely that this took place in
our experiment. Future studies should test the level of processing
accrued by irrelevant words in this procedure by means of both
explicit and more implicit memory tests (e.g., Ruz and Fuentes,
2009) as well as with brain imaging techniques (e.g., Ruz et al.,
2005).

GENERAL DISCUSSION
The aim of the present study was to determine the influence of
social information about people with whom we interact in a clas-
sic UG and to test whether such impact was modulated by the
uncertainty of the context. We showed that positive and negative
trait-words influenced acceptance rates to the same set of offers
in a one-shot UG with unknown partners in which participants
earned money, and that this effect was higher in the uncertain
context. As Experiment 2 showed, the key aspect for the influence

FIGURE 3 | Acceptance rates of fair and unfair offers preceded by positive and negative words in the uncertain and certain condition (Experiment 2).
Error bars represent standard errors of the mean.
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of social information was the link between trait-valenced words
and the characteristics of the proposer.

Our results extend the findings of the study of Ruz et al.
(2011), which used a modified version of the UG instead of the
original game. Responders in our current experiment received a
single offer from different anonymous partners and thus no long-
term strategies can explain their behavior, as it might be the case
when playing several rounds of the UG with the same partner
or when interacting with a friend (Campanhã et al., 2011). As
participants accumulated money with each accepted offer, their
final payment depended directly on their choices in the game.
Showing that, nevertheless, social information and offer fairness
influenced acceptance rates of such monetary offers, the present
study nicely complements recent reports using the UG without
money payment (Campanhã et al., 2011; Marchetti et al., 2011;
Ruz et al., 2011). Furthermore and in addition to previous stud-
ies, the manipulation of uncertainty allowed us to test how this
variable modulates the impact of the social information.

It could be argued, however, that the payment associated to each
offer was too small, as one point earned in the game was exchanged
for 1.5 cents. Given the small amount participants were able to earn
with each accepted offer, they still might not have been motivated
to take the decisions seriously, and this could have led them to take
social information into consideration. Perhaps, if the outcome had
been higher they might have weighted their own and the others’
outcome in each trial more. However, previous studies using the
UG showed that this explanation is unlikely, as it is commonly
found that raising the stakes to a large amount has only a weak
impact on rejection rates (Camerer, 2003). Although it is always
possible to claim that bigger amounts of money could obliterate
a positive result, our results show that by using payments within
common ranges used in the UG we can prove that people take
into account their impressions of others to accept or reject their
monetary offers.

Other limits regarding the experimental setting nevertheless
persist. To assure an adequate control, the experiment was con-
ducted in the laboratory and monetary offers were presented
through the computer. In addition, every participant interacted
only once with each partner to avoid effects of reciprocity. One of
the drawbacks of this artificiality is the caution it imposes regard-
ing the generality of the effects to less artificial, daily life situations.
Note, however, that our design replicates basic phenomena found
in many previous studies, such as the rejection of unfair offers even
when they are beneficial to the participants in economic terms.

On the other side, the experimental setting of the current study
provides clear benefits for the design of a research study to explore
the neural mechanisms underlying the biasing effect of social
information. Previous studies employing the ERP methodology
(Boksem and De Cremer, 2010; Campanhã et al., 2011) suggest
that fair and unfair offers are perceived differently, and that this
effect takes place at a relatively early stage of processing. Campanhã
et al.’s (2011) ERP results further indicate that the medial frontal
negativity responds to social distance, as its polarity is reversed

when the offer is made by a close friend rather than an unknown
proposer. In the future, it would be interesting to further explore
the biological basis of inter-personal decisions and to analyze how
the inclusion of social information modulates these mechanisms.
To date, it remains unclear whether the effects are driven by a
rather automatic kind of processing, which leads to a different
perception of the offer after the presentation of valenced informa-
tion, or by a controlled process at a later stage of decision-making.
Further studies using electrophysiological methods could provide
a closer look on the cognitive processes occurring when perceiving
the offer, dependent on the valence of the social information, and,
thus, could help exploring at which level of information processing
social information affects decision-making.

Additional research is also needed to explore the relation
between the influence of social information on responders’ choices
and a possible expectancy or framing effect. Sanfey (2009) showed
that expectations of fairness have a strong influence on responders’
decisions in the UG. The importance of framing effects is also
discussed in Marchetti et al. (2011) to explain that positive and
negative descriptions of the proposer bias the acceptance of offers
in the UG. This study used psychological attributes very closely
linked to fairness expectations (generous vs. selfish). Our results
complement their findings, showing that different positive and
negative descriptions of the partner in the UG influence decision-
making. This influence exists although objectively the design of the
task does not associate the trait-valenced words with the offers, as
positive and negative items are presented equally often with fair
and unfair offers. Future studies should test expectation genera-
tion more directly to help fully understand the relation between
social information and a framing effect.

Other future lines of research could include the combination of
an emotional introduction and the presentation of social informa-
tion. While induced negative emotions are correlated with higher
rejection rates of unfair offers (Harlé and Sanfey, 2007), in the
present study the same effect was shown regarding negative social
information. It would be interesting to link both approaches, test-
ing whether the introduction of positive or negative moods biases
the impact of social information.

Overall, our results show once again that human behavior is
motivated by more than pure income maximization. The opinion
we hold regarding the moral characteristics of people with whom
we interact modulates our tendencies to accept or reject the money
that they offer us. The uncertainty of the context furthermore has
an effect on how we make use of this information. The present
study provides further insights into the complex decision-making
processes during inter-personal interactions and gives way to new
questions for future research using economic games.
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To explain human financial risk taking, economic, and finance theories typically refer to the
mathematical properties of financial options, whereas psychological theories have empha-
sized the influence of emotion and cognition on choice. From a neuroscience perspec-
tive, choice emanates from a dynamic multicomponential process. Recent technological
advances in neuroimaging have made it possible for researchers to separately visualize
perceptual input, intermediate processing, and motor output. An affective neuroscience
account of financial risk taking thus might illuminate affective mediators that bridge the
gap between statistical input and choice output. To test this hypothesis, we conducted a
quantitative meta-analysis (via activation likelihood estimate or ALE) of functional magnetic
resonance imaging experiments that focused on neural responses to financial options with
varying statistical moments (i.e., mean, variance, skewness). Results suggested that differ-
ent statistical moments elicit both common and distinct patterns of neural activity. Across
studies, high versus low mean had the highest probability of increasing ventral striatal activ-
ity, but high versus low variance had the highest probability of increasing anterior insula
activity. Further, high versus low skewness had the highest probability of increasing ven-
tral striatal activity. Since ventral striatal activity has been associated with positive aroused
affect (e.g., excitement), whereas anterior insular activity has been associated with neg-
ative aroused affect (e.g., anxiety) or general arousal, these findings are consistent with
the notion that statistical input influences choice output by eliciting anticipatory affect.The
findings also imply that neural activity can be used to predict financial risk taking – both
when it conforms to and violates traditional models of choice.

Keywords: neuroeconomics, neurofinance, FMRI, accumbens, striatum, insula, activation likelihood estimation,
meta-analysis

INTRODUCTION
Imagine a world where people act as computers, consistently taking
in, analyzing, and responding to all of their sensory impressions.
These “rational” actors should not show volatile and inconsistent
changes in preferences, and so their future choices should be pre-
dictable based on their past behavior. Such a world may be hard to
imagine, because it is not the world we live in. Instead, people often
show sudden, pronounced, and inconsistent changes in choice. For
instance, although most people will never win the lottery or lose
a limb, the same individuals will often pay a high premium both
for a tiny chance to hit the jackpot as well as to compensate for
the unlikely possibility of dismemberment. To explain financial
risk taking, decision theorists have either appealed to the objective
statistical properties of financial options or to the subjective emo-
tional experience of individuals. Do these distinct accounts conflict
with or complement each other, and can they be reconciled?

ECONOMIC AND FINANCE MODELS OF RISK TAKING
Traditional economic models assume that people seek to maximize
value. Blaise Pascal and Pierre de Fermat historically concluded
that the expected value of uncertain gambles could be calculated
by multiplying the magnitude of the gamble outcomes by their

probability. Thus, they mathematically defined “expected value” as
the mean (or the first statistical moment) of repeated outcomes.
In economics, expected value (and its close cousin expected utility)
provide a foundational guide to choice by providing a common
metric that individuals can use to compare different and diverse
financial options (von Neumann and Morgenstern, 1944). One
implication of preferences for expected value is that people should
not only prefer gambles with the best outcomes, but also those with
more chances to obtain a good outcome. Beyond expected value,
financial theorists have additionally and separately considered the
role of risk, which can be mathematically defined as variance (or
the second statistical moment) of repeated outcomes (Markowitz,
1952). Resulting mean-variance financial models further assume
that while people are attracted to expected value, they are instead
repelled by risk. One implication of preferences against risk is that
people should prefer gambles with relatively steady outcomes over
those with more variable outcomes.

Behavioral research, however, suggests that neither expected
value nor mean-variance models fully account for individuals’
financial risk taking (Edwards, 1954). As a result, some theorists
have suggested that anomalies in choice (e.g., the lack of diversity
in investors’ portfolios) might result from preferences for large yet
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improbable outcomes, which has been mathematically defined as
skewness (or the third statistical moment; Mitton and Vorkink,
2007). One implication of preferences for skewness (according to
some theories) is that people might prefer “long shot” gambles
(e.g., those with high magnitude but low probability outcomes)
over others. Despite some behavioral evidence that skewness can
influence preferences (Kraus and Litzenberger, 1976; Coombs and
Lehner, 1981), either by enhancing (Menezes et al., 1980) or inter-
acting with risk (Alderfer and Bierman, 1970; Chiu, 2005), only a
few models of financial risk taking consider skewness. For instance,
cumulative prospect theory (Tversky and Kahneman, 1992) and
rank-dependent utility models (Quiggin, 1982) have attempted to
account for skewness by overweighting large but unlikely positive
and negative outcomes. In doing so, however, these models sacri-
fice their ability to explain tolerance for variance (Levy and Levy,
2004). Although most economic theories do not account for the
influence of skewed outcomes, skewed outcomes may nonethe-
less influence choice, at both the individual and the market levels
(Patton, 2004). Thus, while traditional economic and finance the-
ories consider the influence of mean and variance on risky choice,
most remain agnostic about the influence of higher order statistical
moments such as skewness. By implication, a theory that accounts
for individuals’ preferences for skewness in addition to mean and
variance might generate more accurate predictions about risky
financial choice.

EMOTION AND RISKY CHOICE
If people base risky financial choices solely on statistics (e.g., mean,
variance, skewness), then all individuals should show similar
choices, generating predictable market movements. Psychological
theorists, however, have argued that financial choices likely result
from multicomponential processes that generate heterogeneous
choices. If multicomponential processes drive financial risk tak-
ing, then those processes may unfold over time and be influenced
by factors other than statistical moments.

Early economic theorists suspected that emotions influence
choice. Smith (1759) argued that behavior was determined by
a struggle between the “passions” and an “impartial spectator.”
The passions included emotions such as fear and anger, as well
as motivational feeling states arising from self- or other-regarding
interests. Smith argued that although behavior may be influenced
by passions, individuals can overcome their impulses by observ-
ing their actions from the perspective of an “impartial” outsider.
Due to a subsequent emphasis on rational decision-making (partly
encouraged by von Neumann and Morgenstern’s work on expected
value), interest in the influence of the passions diminished.

More recently, although traditional economic theorists have
endorsed the rationally grounded “Efficient Markets Hypothesis”
(Samuelson, 1965; Fama, 1970), unpredicted and rapid rises and
crashes of the market valuation of technology and housing sec-
tors have raised new questions about investor rationality. Critics
of the Efficient Markets Hypothesis have contended that investors
consistently exhibit irrational tendencies including overconfidence
(Barber and Odean, 2001; Gervais and Odean, 2001), loss aver-
sion (Kahneman and Tversky, 1979; Shefrin and Statman, 1985;
Odean, 1998), herding (Huberman and Regev, 2001), psycholog-
ical accounting (Tversky and Kahneman, 1981), miscalculation

of probabilities (Lichtenstein et al., 1981), and regret (Bell, 1982;
Clarke et al., 1994). These “irrational” biases have been attributed
to psychological factors with emotional overtones – including fear,
greed,and other affective reactions to price fluctuations and shocks
to wealth. In an attempt to explain individual and market anom-
alies, an expanding field of research has begun to examine links
between emotion and “irrational” decision-making (Loewenstein,
2000).

Beyond the notion that emotion acts peripherally to under-
mine choice, some theorists have proposed that affect can play
an even more central role by providing a “common currency”
that allows individuals to compare and choose between different
options (Peters et al., 2006). Despite the difficulty of measuring
affect, scientists have had some success by examining associations
between different affective reactions and choice (Mellers, 2000).
Although most of this research has focused on “consequential”
affect, which arises in response to choice outcomes, some have
additionally argued for the importance of “anticipatory” affect,
which occurs prior to choice (Loewenstein et al., 2001).

To assess affect, behavioral researchers have primarily relied
upon self-reported experience. For instance, investigators can
compare a single individual’s affective reactions to different stim-
uli (e.g., gambles) in two dimensions (e.g., valence on a continuum
from bad to good, and arousal on a continuum from not aroused to
aroused). Valence and arousal ratings can then be mean-deviated
across stimuli within an individual and mathematically rotated
through affect space (by 45˚) to derive indices of positive and
negative arousal (Knutson et al., 2005). Using these and related
methods, investigators have shown that anticipation of uncertain
monetary gains elicits positive arousal, whereas anticipation of
uncertain monetary losses elicits negative arousal – even before
outcomes are revealed, and when measured either online dur-
ing anticipation or retrospectively (Samanez-Larkin et al., 2007;
Nielsen et al., 2008).

Since anticipation of uncertain gains or losses elicits self-
reported affect, this might subsequently influence risky choice.
Unfortunately, anticipatory affect is difficult to assess because most
affective self-reports are retrospective (and thus prone to mem-
ory and other biases) and online probes of affect may change the
very nature of the choice being made (e.g., introducing reflection,
distraction, delays, and other biases into the decision process). Ide-
ally, investigators could also collect online physiological probes of
anticipatory affect in order to validate and augment self-report
measures. Fortunately, advances in neuroimaging at the end of the
twentieth century may provide these probes.

NEURAL TARGETS
In initial attempts to link physiological measures of affect to finan-
cial risk taking, researchers collected peripheral physiological mea-
sures (including skin conductance, blood volume pulse, heart rate,
muscular tone, respiration, and body temperature) from financial
traders at work. The investigators observed increased physiological
reactions during periods of market volatility, and reported greater
increased physiological reactions to market volatility in less experi-
enced traders (Lo and Repin, 2002). Subsequent findings suggested
that the strength of physiological reactions correlated with poor
trading performance (Lo et al., 2005). Contrary to the notion that
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emotions play no role in financial risk taking, these findings sug-
gested that market events correlated with both self-reported and
physiological reactions, even in experienced professional traders.
The correlational nature of these findings, however, could not
establish whether financial events caused the arousal, or whether
arousal might reciprocally influence financial choice.

Advances in the temporal and spatial resolution of neuroimag-
ing techniques (such as functional magnetic resonance imaging or
FMRI) have enabled researchers to visualize changes in brain activ-
ity as individuals anticipate and make financial choices. Critically,
these advances allow investigators to examine changes in neural
activity in anticipation of choice. Thus, investigators can tempo-
rally capture neural responses to statistical properties of financial
options before outcomes are revealed. Enhanced temporal resolu-
tion also raises the possibility of using anticipatory neural activity
to predict choice. Advances in spatial resolution also matter, since
FMRI allows investigators to probe activity in deep subcorti-
cal as well as cortical circuits. Based on evolutionary reasoning,
while more recently evolved cortical circuits may play critical roles
in the representation of language and numeric symbols, more
ancient subcortical circuits that share greater homology across
mammalian species may play a more prominent role in emotional
and motivational functions that can promote immediate survival
(MacLean, 1990). Specifically, decades of brain stimulation in ani-
mals suggest that animals will work to the exclusion of all other
rewards to stimulate subcortical regions that lie along the ascend-
ing mesolimbic dopamine pathway, extending from the ventral
tegmental area of the midbrain through the lateral hypothalamus
to ventral striatal regions (including the nucleus accumbens or
NAcc) and medial and orbital prefrontal cortices (MPFC; Olds and
Fobes, 1981). In contrast, animals will work equally hard to avoid
stimulating other subcortical pathways that extend from the peri-
aqueductal gray of the midbrain up through the stria terminalis
and the medial hypothalamus to the lateral amygdala, and possi-
bly the anterior insula (Panksepp, 1998). Based on its subcortical

spatial resolution, FMRI could allow investigators to test for the
involvement of affect not only in choices linked to immediate
survival, but also more abstract choices related to financial risk
taking.

To link activity in these deep brain circuits to affective expe-
rience and ultimately choice, we have outlined an anticipatory
affect model (Knutson and Greer, 2008). The model posits that
uncertainty elicits increased aroused affect, while potential gains
versus losses elicit positive versus negative affect. Since most future
events are subjectively uncertain, potential gains should elicit pos-
itive arousal (e.g., feelings like excitement) as well as correlated
neural activity in the NAcc, but potential losses should elicit nega-
tive arousal (e.g., feelings like anxiety) as well as correlated neural
activity in the anterior insula. The anticipatory affect model has
additional implications for motivated behavior, since the evolved
function of positive arousal is to promote approach, whereas the
function of negative arousal is to promote avoidance (Figure 1).

Most risky financial propositions (e.g., gambles, stocks) require
concurrent assessment of uncertain gains and uncertain losses.
According to the anticipatory affect model, if positive arousal
increases, uncertain gains should appear more prominent, which
should lead people to approach the risk (all else being equal).
On the other hand, if negative arousal increases, uncertain losses
should appear more prominent, which should lead people to avoid
the risk. Consistent with this account, in an initial FMRI study that
used neural activity to predict financial risk taking, anticipatory
NAcc activity predicted increased financial risk taking, whereas
anticipatory anterior insula activity predicted decreased financial
risk taking (Kuhnen and Knutson, 2005).

Although initially inspired by a combination of animal brain
stimulation (Panksepp, 1998) and human neuroimaging find-
ings, the anticipatory affect model shares features with earlier
“somatic marker”and“risk as feelings”models, both of which posit
that anticipation of uncertain outcomes can generate emotional
arousal (Bechara et al., 1996; Loewenstein et al., 2001). Critically,

– +

Incentive Cue

?

Avoid ApproachNA PA

Motivated BehaviorAnticipatory Affect

FIGURE 1 | An anticipatory affect model (adapted from Knutson and
Greer, 2008). An incentive cue for uncertain future outcome first elicits brain
activation in at least two brain regions (NAcc and anterior insula) associated

with anticipatory affect (positive arousal and negative arousal, respectively).
The balance of activation in related circuits then promotes either approach
toward or avoidance of risk.
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however, the anticipatory affect model does not require mediation
through bodily sensations (i.e., requiring only brain activity, unlike
somatic marker accounts), and specifically distinguishes anticipa-
tory positive arousal from negative arousal (which have opposite
effects on subsequent approach versus avoidance behavior, unlike
the risk as feelings model). Finally, the anticipatory affect model
links positive and negative arousal to activity in distinguishable
neural circuits, implying that neuroimaging data could be used
to directionally predict risky choice (e.g., Kuhnen and Knutson,
2005).

Different statistical moments of financial options might influ-
ence either the same or different neural circuits. The anticipatory
affect model implies that distinct statistical moments should exert
different but overlapping influences on affect and associated neural
activity. First, financial options with high means involve large
potential gains, and so should elicit positive arousal and corre-
lated NAcc activity. Second, financial options with high variance
involve both large potential losses and gains, which should elicit
negative arousal and correlated anterior insula activity as well
as positive arousal and correlated NAcc activity. Third, financial
options with high (overall) skewness involve even larger poten-
tial losses and gains, which should elicit even more negative
arousal and correlated anterior insula activity, as well as positive
arousal, and correlated NAcc activity. However, positive skew-
ness and negative skewness might have divergent impacts, since
options with high positive skewness involve large potential gains,
which should elicit positive arousal and correlated NAcc activity,
while options with high negative skewness involve large potential
losses, which should elicit negative arousal and correlated anterior
insula activity. By implication, since anticipatory affective circuits
are especially sensitive to the best or worst potential outcomes,
they may de-emphasize probability and other considerations that
require simulation or integration of many potential outcomes over
time (and which may rely more on prefrontal circuits such as the
MPFC).

Consistent with the anticipatory affect model, previous self-
reported affect findings suggest that anticipating the outcomes
of higher mean gambles elicits greater positive arousal (Knutson

et al., 2005). Anticipating the outcomes of higher variance gambles
(with equal mean) elicits both greater negative arousal and posi-
tive arousal. Additionally, anticipating the outcomes of positively
skewed gambles (with equal mean and variance) elicits greater
positive arousal, whereas anticipating the outcomes of negatively
skewed gambles (with equal mean and variance) elicits greater neg-
ative arousal (Figure 2; Wu et al., 2011). But beyond self-reported
affect, do patterns of neural activity also align with the anticipatory
affect model? Since a number of recent studies have investigated
the impact of financial statistical moments on FMRI activity, we
now survey their collected findings.

PRESENT AIMS
Although earlier reviews have considered how financial risk influ-
ences neural activity (Knutson and Bossaerts, 2007; Mohr et al.,
2010a), none have integrated both economic and psychologi-
cal accounts by explicitly linking different statistical moments of
financial options to neural responses. The purpose of this meta-
analysis was to examine whether different statistical moments
of financial options (i.e., mean, variance, and skewness) recruit
distinct or overlapping neural circuits implicated in anticipatory
affect, and to explore implications of these findings for subse-
quent choice. To address these aims, we conducted a quantitative
meta-analysis of FMRI studies of statistical moments on finan-
cial risk using the activation likelihood estimation (ALE) method
(Eickhoff et al., 2011, 2012; Turkeltaub et al., 2012). Based on
the anticipatory affect model, we predicted that distinct statistical
moments would elicit overlapping patterns of activation, such that
moments involving large gains (high mean, high variance, positive
skewness) should increase activity in the ventral striatum (includ-
ing the NAcc), and moments involving large losses (high variance,
negative skewness) should increase activity in the anterior insula.

MATERIALS AND METHODS
STUDY SELECTION
We reviewed FMRI studies of financial risk taking. Studies
were identified for meta-analysis via a search of the PubMed
database using key phrases “mean” OR “reward” OR “expected

FIGURE 2 | Negative and positive arousal ratings by gamble
variance and skewness (adapted from Wu et al., 2011). Expected
value was held constant across all four gambles, while variance was
equated across High Variance, Negative Skew, and Positive Skew
gambles, and skewness was manipulated in opposite directions for

Positive- versus Negative Skew gambles. Gambles elicited differential
positive arousal such that Positive Skew > High Variance and Negative
Skew > Low Variance (all p’s < 0.05). Gambles elicited differential
negative arousal such that Negative Skew > High Variance and Positive
Skew > Low Variance (all p’s < 0.05).
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value” OR “variance” OR “risk” OR “uncertainty” OR “skewness”
AND “finance” OR “monetary” AND “human” AND “FMRI.”
This search (performed on July 10, 2012) identified 248 stud-
ies. We specifically searched for FMRI studies that used mon-
etary incentives to manipulate one or more of the first three
statistical moments of interest (i.e., mean, variance, skewness).
We further identified recent review papers about risky choice
that explicitly addressed neural correlates of financial risk taking
(Knutson and Bossaerts, 2007; Mohr et al., 2010a). All stud-
ies found through the database search or cited by the review
papers underwent a selection process. Inclusion criteria were:
(1) assessment of healthy young adults (i.e., between 18 and
60 years); (2) acquisition of whole brain FMRI data; (3) availabil-
ity of peak activation coordinates from group activation tables;
(4) information about the probability of uncertain outcomes
was provided to participants (as opposed to ambiguity); (5) at
least one of the three statistical moments of interest (i.e., mean,
variance, or skewness) were objectively manipulated, indepen-
dent of subjective interpretations (i.e., risk tolerance/aversion
measures).

These inclusion criteria were chosen to ensure that results
would generalize to the population of healthy young adult humans.
Several studies suggest that aging may alter brain structure
and function (Cabeza et al., 2005). Furthermore, older adults
often show qualitatively different activation patterns than young
adults (Park et al., 2004). Therefore, this meta-analysis focused
on studies that investigated risk processing in younger healthy
adults (Criterion 1). Because some studies focus on specific
brain regions, they may not report whole brain results. Par-
tial findings, however, impede the detection of unexpected acti-
vations in unscanned or unreported brain regions, so studies
were excluded if they acquired or reported only partial brain
data (Criterion 2). As the ALE approach requires activation
foci, only studies that reported peak activation coordinates of
group statistical maps were included (Criterion 3). Because risk
is often conceptually distinguished from ambiguity – a form of
uncertainty in which probabilities are unknown – only stud-
ies in which probabilities were known or estimated by sub-
jects were included (Criterion 4). Since the focus of this meta-
analysis was to examine neural responses to statistical moments
of uncertain financial options, only studies that systematically
varied mean, variance, and/or skewness (as opposed to lin-
ear probability) of monetary incentives were included (Crite-
rion 5). Studies evaluated for variance and skewness were only
included if lower order moments (e.g., mean, mean and variance)
were held constant. If studies manipulated multiple moments
simultaneously, the lowest appropriate manipulated moment was
included in the meta-analysis (e.g., studies that manipulated
variance without controlling for mean were included only for
mean).

Activation maps were constructed for three distinct contrasts.
For the mean map, we included contrasts of neural activity dur-
ing processing of monetary incentives with high versus low mean.
For the variance map, we included contrasts of neural activity
during processing of monetary incentives with high versus low
variance (but which controlled for mean). For the skewness map,
we included contrasts of neural activity during processing of

monetary incentives with high (either positive or negative) versus
low skewness (but which controlled for variance and mean).

Activation foci coordinates for contrasts in the 28 studies
that met inclusion criteria were submitted to ALE meta-analyses
(Table 1). Of these, 21 contrasts were included in the mean map,
10 in the variance map, and 4 in the skewness map. Three studies
that separately modeled mean and variance were included in both
maps, and 2 studies that separately modeled variance and skewness
were included in both maps. Yacubian et al. (2006) replicated their
results in a second sample, thus their replication findings were
separately included in the mean map. Symmonds et al. (2011)
separately modeled positive skewness and negative skewness in
different whole brain analyses, so these results were separately
included in the skewness map.

Table 1 | Studies included in the ALE meta-analysis, with associated

contrasts.

Study Mean Variance Skewness

Abler et al. (2009) X

Breiter et al. (2001) X

Burke and Tobler (2011)1 X

Christopoulos et al. (2009) X

Cohen et al. (2005) X

Delgado et al. (2008) X

Dreher et al. (2006) X

Elliott et al. (2003) X

Engelmann and Tamir (2009) X

Hsu et al. (2005) X

Knutson et al. (2000) X

Knutson et al. (2001) X

Knutson et al. (2003) X

Knutson et al. (2005) X

Matthews et al. (2004) X

Mohr et al. (2010b) X X

Preuschoff et al. (2006) X X

Preuschoff et al. (2008) X

Rademacher et al. (2010) X

Simon et al. (2010) X

Smith et al. (2009) X

Spreckelmeyer et al. (2009) X

Symmonds et al. (2011)2 X X

Stoppel et al. (2011) X

Tobler et al. (2007) X

Wu et al. (2011) X X

Xue et al. (2009) X X

Yacubian et al. (2006)3 X

Total number of studies 21 10 4

Total number of foci 210 82 23

Total number of subjects 407 164 92

1Whole brain coordinates acquired via personal communication.
2Modeled positive skewness and negative skewness trials separately.
3Included a separate replication sample.
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ACTIVATION LIKELIHOOD ESTIMATE RATIONALE
In contrast to behavioral meta-analyses that aim to estimate
the effect size of a finding, FMRI meta-analyses aim to identify
brain regions, or circuits implicated in certain mental processes
(Turkeltaub et al., 2002). Due to this difference in research goals,
meta-analytic techniques have been adapted to fit the format of
FMRI findings. Specifically, whereas the key results of behav-
ioral studies are test statistics (p, t, or z scores) and effect sizes,
test statistics in FMRI studies usually only have meaning when
paired together with the information about the location of the
effect, often revealed by the location of voxels with the highest
test statistics. One frequently used meta-analytic technique that
utilizes this spatial information is ALE analysis (Eickhoff et al.,
2011, 2012; Turkeltaub et al., 2012). ALE analysis is a quantita-
tive meta-analytic technique that compares activation likelihoods
calculated from a group of observed activation foci with a null
distribution of randomly generated activation foci. The ALE meta-
analytic method provides advantages over traditional label-based
meta-analytic methods because it relies upon activation foci coor-
dinates, which show greater reliability across FMRI studies than
do anatomical labels.

Meta-analyses were conducted using the ALE algorithm
implemented with Ginger ALE software available from
www.brainmap.org (Laird et al., 2005). Foci originally reported
in Montreal Neurological Institute coordinates were converted to
Talairach coordinates using the icbm2tal transformation prior to
analysis (Lancaster et al., 2007). In the ALE analyses, each contrast’s
activation foci are modeled as the peaks of Gaussian functions, the
spatial extent of which is dependent on the number of subjects
included in the corresponding analysis. The resulting distribu-
tions of values (called “activation likelihood estimates”) represent
the probability of activation occurring in a given voxel (i.e., the
ALE values). For the whole brain ALE values, significance was
assessed against 5000 sets of randomly distributed foci with a non-
parametric statistical permutation test. Statistically thresholded
maps were then computed using a false discovery rate procedure
that corrected for multiple comparisons across the whole brain
[FDR (q)= 0.01, minimum cluster size= 100 mm3].

RESULTS
The contrast of neural responses to high versus low mean (stud-
ies= 21, foci= 210, subjects= 407) had the highest probability of
activating foci in the bilateral NAcc of the ventral striatum. Highly
significant foci were also observed in the anterior cingulate cortex,
followed by the bilateral anterior insula. Other significant foci were
observed in the left red nucleus, thalamus, and putamen (Table 2;
Figure 3).

The contrast of neural responses to high versus low variance
(studies= 10, foci= 82, subjects= 164) had the highest probabil-
ity of activating foci in the left subgenual cingulate cortex and left
anterior insula. Significant foci were also observed in the left supe-
rior temporal sulcus, left medial prefrontal cortex, right ventral
striatum, and right anterior insula.

The contrast of neural responses to high versus low general
skewness (studies= 4, foci= 23, subjects= 92) had the highest
probability of activating foci in the left NAcc of the ventral
striatum.

Table 2 | ALE of neural foci implicated in processing high versus low

mean, variance, and skewness.

Region ALE (X10-3) x y z

MEAN (HIGH VERSUS LOW)

Right ventral striatum 55.6 10 8 2

Left ventral striatum 51.4 −10 6 2

Left anterior cingulate 24.0 0 22 32

Right anterior insula 20.0 34 16 2

Left red nucleus 20.5 −2 −18 −12

Left anterior insula 16.7 −30 18 0

Left thalamus 16.2 0 −14 14

Left cingulate 15.0 0 2 46

Left putamen 14.2 −26 −2 4

VARIANCE (HIGH VERSUS LOW)

Left subgenual cingulate 14.5 0 22 −6

Left anterior insula 14.1 −32 16 0

Left superior temporal cortex 13.8 −54 −10 4

Left ventral striatum 13.3 −12 8 −2

Right medial prefrontal cortex 12.2 2 44 30

Right anterior insula 13.1 32 14 −2

SKEWNESS (HIGH VERSUS LOW)

Left ventral striatum 11.5 −14 8 −2

(In Talairach space, x= right-left; y= anterior-posterior, and z= superior-inferior

coordinates; predicted peak foci in bold).

DISCUSSION
This meta-analysis aimed to determine whether distinct statistical
moments of risky financial options (i.e., mean, variance, skewness)
elicit different patterns of neural activity. Rather than recruiting
either the same or completely distinct circuits, statistical moments
activated overlapping circuits implicated in anticipatory affect.
Specifically, statistical moments that promised large gains (i.e.,
high mean, high variance, high skewness) maximally activated the
ventral striatum (particularly in the NAcc), whereas moments that
threatened large losses (i.e., high variance) maximally activated the
anterior insula. The deep subcortical localization of these circuits
is noteworthy (as opposed to neocortical structures implicated
in symbolic representation and working memory), as it implies
that affective rather than cognitive processes play a critical role in
financial risk assessment.

Most of the findings were consistent with the anticipatory affect
model. Specifically, high versus low mean maximally activated
ventral striatum (including the NAcc), high versus low variance
maximally activated the anterior insula (and secondarily the ven-
tral striatum), and high versus low skew maximally activated the
ventral striatum. However, high versus low mean also activated the
anterior insula to a lesser extent. This may be due to the fact that
while most studies of higher order moments (e.g., variance and
skewness) controlled for lower order moments (e.g., mean), stud-
ies of lower order moments typically did not control for higher
order moments. Because increasing lower order moments (e.g.,
mean) often also increases higher order moments (e.g., variance),
studies of lower order moments may inadvertently elicit activity
related to higher order moments. Reduced control of higher order
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FIGURE 3 | Activation Likelihood Estimate (ALE) meta-analytic maps for high versus low mean, variance, and skewness. ALE of mean: bilateral NAcc.
ALE of variance: bilateral anterior insula. ALE of skewness: left NAcc.

moments in studies of lower order moments might also account
for the larger overall number of activation foci observed in the
high versus low mean contrast.

Findings for skewness partially conformed to the anticipatory
affect model. While general skewness activated ventral striatum
(including the NAcc), as predicted, common activation of the
anterior insula was not as apparent. The omission is unexpected
given that all three surveyed studies of skewness have reported that
skewed gambles tend to activate the anterior insula (Burke and
Tobler, 2011; Symmonds et al., 2011; Wu et al., 2011). The small
number of relevant studies and variability of activation foci in the
anterior insula may have precluded a common finding. The antici-
patory affect model also specifically predicts that positively skewed
gambles will more powerfully activate the ventral striatum, as was
found in one study (Wu et al., 2011). However, this prediction
could not be evaluated in the context of the meta-analysis because
all studies did not provide contrasts for positive versus negative
skewness, though this represents an important direction for future
research. Finally, some studies modeled statistical moments during
the uncertain anticipatory period before gambles were evaluated,
whereas others modeled the entire gambling episode from antic-
ipation to outcome. Since the anticipatory affect model is most
relevant to the uncertain anticipatory period, it might best predict
neural activity that occurs then.

INTEGRATING ANTICIPATORY AFFECT AND FINANCIAL RISK TAKING
The meta-analytic findings support neither monolithic nor modu-
lar views of neural responses to the statistical moments of financial
options. Specifically, ascending from mean (lower order) to skew-
ness (higher order moments) neither repeatedly activates all the
same regions, nor does it recruit wholly distinct regions at each
step. Thus, ordering the findings by objective statistical properties
of the options does not yield a coherent framework for predicting
associated neural activity (Table 3).

Alignment by affective impact, however, reconfigures the sta-
tistical moments in a coherent way that generates more consistent
predictions about associated neural activity (Table 4). Specifically,
financial options that involve uncertain large gains are likely to
elicit positive arousal (e.g., high mean, positive skewness) and
recruit NAcc activity, but financial options that involve uncer-
tain large losses are likely to elicit negative arousal (e.g., high

variance, negative skewness) and recruit anterior insula activity.
Reordering these statistical moments by affective impact thus scaf-
folds a more parsimonious and coherent framework for predicting
choice. Thus, statistical moments representing objective finan-
cial risk may be translated into subjective feelings of risk indexed
by neural circuits associated with affect, which together promote
choice. Of course, statistical moments may also influence choice
through other neural routes as well. For instance, statistical infor-
mation might recruit circuits involved in symbolic representation
and working memory for numerical computation (e.g., dorsolat-
eral and parietal cortices), or might activate circuits implicated in
following habits or rules (e.g., the dorsal striatum and premotor
cortex). The current analysis, however, suggests that an affective
neuroscience account may provide an initial viable framework
both for describing and predicting financial risk taking.

IMPLICATIONS FOR FINANCIAL CHOICE
While traditional economic (e.g., expected value) and finance
(e.g., mean-variance) models can account for a range of choices,
other choices elude these models’ explanatory reach. For instance,
individual choices may be influenced by higher order statistical
moments (e.g., skewness, kurtosis) as well as by incidental factors
that are not relevant to the choice at hand (e.g., news, weather,
nutrition, sleep, etc.). By both encompassing and transcending the
explanatory reach of traditional models, an affective neuroscience
approach may eventually offer a more comprehensive account of
financial risk taking.

Although this meta-analysis focused on the influence of finan-
cial options on neural activity, the anticipatory affect account
also has implications for choice. Indeed, neuroimaging evidence
suggests that while ventral striatal activity (and NAcc activity
in particular) predicts risk seeking stock choices, anterior insula
activity instead predicts risk avoidant bond choices in investment
tasks (Kuhnen and Knutson, 2005). Extended to higher order sta-
tistical moments, individual differences in NAcc activation as well
as positive arousal predict subsequent preferences for positively
skewed gambles (Wu et al., 2011). These findings suggest that
even given the same statistical gambles, individual differences in
affective and neural responses may provide finer-grained predic-
tions that describe not only group behavior, but also individual
choice. These findings also imply the novel prediction that even
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Table 3 | Predicted maximum activity organized by statistical moments (lower to higher order).

Brain Affect Choice

NAcc Anterior insula Positive arousal Negative arousal

Statistics Mean X X ↑

Variance X X ↓

+Skew X X ↑

−Skew X X ↓

Table 4 | Predicted maximum activity organized by affective impact.

Brain Affect Choice

NAcc Anterior insula Positive arousal Negative arousal

Statistics Mean X X ↑

+Skew X X ↑

Variance X X ↓

−Skew X X ↓

after holding mean and variance constant, ventral striatal (NAcc)
activity should predict approach toward positively skewed gam-
bles, while anterior insula activity should predict avoidance of
negatively skewed gambles – a prediction worthy of further inves-
tigation. Thus, different types of financial risk (e.g., variance versus
skewness,positive versus negative skewness, etc.) may differentially
recruit circuits involved in financial risk taking.

An affective neuroscience account also yields novel predictions
about the influence of incidental stimuli on financial risk taking.
Specifically, stimuli that increase positive arousal should encourage
financial risk taking, whereas stimuli that increase negative arousal
might discourage financial risk taking, even when those stimuli are
irrelevant to the task at hand. Indeed, in a neuroimaging study of
heterosexual males, exposure to positive images (i.e., erotic – ver-
sus neutral office supplies or aversive snakes and spiders) tended
to increase choices of higher risk (i.e., higher variance) gambles,
and this effect was partially mediated by NAcc activation (Knut-
son et al., 2008). In a follow-up behavioral study that included
males and females, prior presentation of positive images increased
financial risk taking, but prior presentation of negative images
decreased financial risk taking (Kuhnen and Knutson, 2011).

While these influences may hold in tightly controlled and care-
fully incentivized laboratory demonstrations, do they generalize
to “real world” choices? Researchers have speculated that investors
continue to show biases in choice despite financial advice or knowl-
edge to the contrary. Some of these, such as the lack of diversity
in investment portfolios, may result from preferences for skew-
ness (Mitton and Vorkink, 2007). Additionally, because individuals
are willing to pay more for positively skewed investments but
receive more for accepting negatively skewed investments (Ang

et al., 2006), skewness preferences may not only describe individ-
ual investment choices, but may even scale to market valuation at
the aggregate level (Arditti and Levy, 1975).

In summary, to explain human financial risk taking, econo-
mists have traditionally referred to objective statistical properties
of financial options, while psychologists have emphasized sub-
jective emotional and cognitive processes in the decision maker.
An affective neuroscience account bridges these perspectives by
proposing that the brain translates statistical input into affec-
tive experience, which then can influence choice. Importantly, this
affective neuroscience account generates novel yet testable predic-
tions of how various statistical moments might influence choice,
and further specifies which neural components should translate
statistical input into choice output. The existing findings summa-
rizing neural responses to the first three statistical moments of
financial options (i.e., mean, variance, and skewness) lends sup-
port to an affective neuroscience approach. Future work using
brain activity to predict choice may generate predictions that tran-
scend traditional economic and psychological theories. Ultimately,
a better understanding of the neural mechanisms that influence
financial risk taking may not only improve individuals’ financial
choices, but also societal welfare by better informing public policy.
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