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Preface

Within the last decade, several industrialized countries have stressed the importance
of advanced manufacturing to their economies. Many of these plans have high-
lighted the development of additive manufacturing techniques, such as 3D printing
which, as of 2018, are still in their infancy. The objective is to develop superior
products, produced at lower overall operational costs. For these goals to be realized,
a deep understanding of the essential ingredients comprising the materials involved
in additive manufacturing is needed. The combination of rigorous material mod-
eling theories coupled with the dramatic increase of computational power can
potentially play a significant role in the analysis, control, and design of many
emerging additive manufacturing processes. Specialized materials and the precise
design of their properties are key factors in these processes. Specifically,
particle-functionalized materials play a central role in this field, in three main
regimes:

• (1) To enhance overall filament-based material properties, by embedding par-
ticles within a binder, which is then passed through a heating element and
deposited onto a surface,

• (2) To “functionalize” inks by adding particles to freely flowing solvents
forming a mixture, which is then deposited onto a surface, and

• (3) To directly deposit particles, as dry powders, onto surfaces and then to heat
them with a laser, e-beam, or other external sources, in order to fuse them into
place.

The goal of these processes is primarily to build surface structures which are
extremely difficult to construct using classical manufacturing methods. The
objective of this monograph is to introduce the readers to basic techniques which
can allow them to rapidly develop and analyze particulate-based materials needed in
such additive manufacturing processes.

This monograph is broken into two main parts: “Continuum Method”
(CM) approaches and “Discrete Element Method” (DEM) approaches. The mate-
rials associated with methods (1) and (2) are closely related types of continua
(particles embedded in a continuous binder) and are treated using continuum
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approaches. The materials in method (3), which are of a discrete particulate char-
acter, are analyzed using discrete element methods. I am certain that, despite
painstaking efforts, there remain errors of one sort or another in this monograph.
Therefore, I would be grateful if readers who find such flaws could contact me at
zohdi@berkeley.edu.

This document is under copyright. No part can be copied, electronically
stored, transmitted, reproduced, or translated into another language without
written permission from Tarek I. Zohdi.

Berkeley, USA Tarek I. Zohdi
September 2017
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Chapter 1
Introduction: Additive/3D Printing
Materials—Filaments, Functionalized Inks,
and Powders

Additive manufacturing (AM) is usually defined as the process of joining materials
to make objects from 3D model data, typically layer upon layer, as opposed to
subtractivemanufacturingmethodologies,which removematerial (AmericanSociety
for Testing and Materials, ASTM). We refer the reader to the recent overview article
by Huang et al. [1] on the wide array of activities in the manufacturing community in
this area. One subclass of AM, so-called 3D printing (3DP), has received a great deal
of attention over the last few years. Typically, such a process takes CAD drawings
and slices them into layers, printing layer by layer. 3DP was pioneered by Hull [2] of
the 3D Systems Corporation in 1984. 3DP was a 2.2 billion dollar industry in 2014,
with applications ranging frommotor vehicles, consumer products, medical devices,
military hardware, and the arts.

A key ingredient of these processes is the specialized materials and the precise
design of their properties, enabled by the use of fine-scale “functionalizing” particles.
The rapid rise in the use of particle-based materials has been made possible by
the large-scale production of consistent, high-quality particles, which are produced
in a variety of ways, such as: (a) sublimation from a raw solid to a gas, which
condenses into particles that are recaptured (harvested), (b) atomization of liquid
streams into droplets by breaking jets of metal, (c) reduction of metal oxides, and
(d) comminution/pulverizing of bulk material. As mentioned in the preface, particle-
functionalized materials play a central role in this field, in three main ways:

(1) To enhance overall filament-based material properties, by embedding particles
within a binder, which is then passed through a heating element and deposited
onto a surface,

(2) To “functionalize” inks by adding particles to freely flowing solvents forming a
mixture, which is then deposited onto a surface, and

(3) To directly deposit particles, as dry powders, onto surfaces and then to heat them
with a laser, e-beam, or other external source, in order to fuse them into place.

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_1
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2 1 Introduction: Additive/3D Printing Materials—Filaments …

Fig. 1.1 Typical printing ingredients: top left: finely ground metallic powder (iron). Top right:
extruded PLA. Bottom left: ABS pellets and bottom right: coarsely ground steel flakes

In more detail, we have (see Fig. 1.1):

• Heated filament-based materials (historically for prototyping) are comprised
of thermoplastics. To extend the materials to applications beyond prototyping,
second-phase particles are added to the heated mixture which solidify (cure) to
form theoverallmaterial properties comprisedof particles in a bindingmatrixwhen
deposited onto a substrate. The particles are used to “tune” the bindingmatrix prop-
erties to the desired overall state. Specifically, much of the commercial additive
manufacturing processes are polymer-based, with second-phase particles added to
enhance the properties of the binder, which is typically either (1) polylactic acid or
polylactide (PLA), which is a biodegradable thermoplastic aliphatic polyester or
(2) acrylonitrile butadiene styrene (ABS) which is a common thermoplastic poly-
mer. In 2015, PLA had the second highest consumption volume of any bioplastic
of the world. PLA is derived from renewable resources, such as plants (corn starch,
sugarcane, etc.). ABS is a terpolymer that is significantly stronger than PLA. It is
made by polymerizing styrene and acrylonitrile in the presence of polybutadiene.
The styrene gives the plastic a reflective surface, while the rubbery polybutadiene
endows toughness. The overall properties are created by rubber toughening, where
fine particles of elastomer are distributed throughout the rigid matrix. Typically,
metal and ceramic particles are also added to endow specific mechanical, thermal,
electrical, and magnetic effective overall properties.
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• Functionalized ink materials (primarily for printed electronics) are comprised
of particles in a solvent/lubricant which cure when deposited. Oftentimes, these
inks are used to lay down electric circuit lines or to have some other specific
electromagnetic function on a surface. One application where such functionalized
inks are important is printed electronics on flexible foundational substrates, such
as flexible solar cells and smart electronics. One important technological obstacle
is to develop inexpensive, durable electronic material units that reside on flexible
platforms or substrates which can be easily deployed onto large surface areas.
Ink-based printing methods involving particles are, in theory, ideal for large-scale
electronic applications and provide a framework for assembling electronic cir-
cuits by mounting printed electronic devices on flexible plastic substrates, such
as polyimide and “PEEK” (polyether ether ketone, a flexible thermoplastic poly-
mer) film. There are many variants of this type of technology, which is sometimes
referred to as flexible electronics or flex circuits. Flex circuits can be, for example,
screen-printed silver circuits on polyester. For an early history of the printed elec-
tronics field, see Gamota [3]. In order to develop flexible micro-/nanoelectronics
for large area deployment, traditional methods of fabrication using silicon-based
approaches have become limited for applications that involve large area coverage,
due to high cost of materials and equipment (which frequently need a vacuum
environment). For flexibility and lower cost, the ability to develop these elec-
tronics on plastics is necessary. To accomplish this task, print-based technolo-
gies are starting to become popular for these applications. In many cases, this
requires the development of nanoparticle-functionalized “inks.” These nanoparti-
cles include germanium (which has highermobility and better tailorable absorption
spectrum for ambient light than silicon) and silver (which is being studied due to
the possibility to sinter the particles without the need of directly applied intense
heating). Other semiconductor nanoparticles, including zinc- and cadmium-based
compounds and metals, such as gold and copper, can be considered. Precise pat-
terning of (nanoparticle-functionalized) prints is critical for a number of different
applications. For example, some recent applications include optical coatings and
photonics (Nakanishi et al. [4]), MEMS applications (Fuller et al. [5], Samaras-
inghe et al. [6], and Gamota et al. [3]), and biomedical devices (Ahmad et al. [7]).
In terms of processing techniques, we refer the reader to Sirringhaus et al. [8],
Wang et al. [9], Huang et al. [10], Choi et al. [11–14], and Demko et al. [36, 37]
for details.1 We further mention that electromagnetically sensitive fluids are typi-
cally constructed (“functionalized”) by embedding charged or electromagnetically
sensitive particles in a neutral fluid. Such fluids date back, at least, toWinslow [19,
20] in 1947.While the most widely used class of such fluids are electrorheological
fluids, which are comprised of extremely fine suspensions of charged particles (on
the order of 50 microns) in an electrically neutral fluid, there has been a renewed
interest in this class of materials because of so-called e-inks (electrically func-

1For reviews of optical coatings and photonics, see Nakanishi et al. [4] andMaier and Atwater [15],
for biosensors, see Alivisatos [16], for catalysts, see Haruta [17], and for MEMS applications, see
Fuller et al. [5] and Ho et al. [18].
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tionalized inks) driven by printed electronics. Inkjet printing is attractive due to
its simplicity, high throughput, and low material loss. However, patterning with
inkjet printing is limited to a resolution of around 20–50 µm with current printers
(Ridley et al. [21]) with higher resolution possible by adding complexity to the
substrate prior to printing (Wang et al. [9]). Electrohydrodynamic printing has
also been proposed to increase the resolution beyond the limits of inkjet printing,
achieving a line resolution as small as 700 nm (Park et al. [22]).

• Dry powder-based materials (primarily for sintered load-bearing structures) are
deposited onto a surface and then heated by a laser, e-beam, or other external
source, in order to fuse them into place. These types of applications and associated
technology are closely related to those in the area of spray coatings, and we refer
the reader to the extensiveworks of Sevostianov andKachanov [23–25], Nakamura
and coworkers: Dwivedi et al. [26], Liu et al. [27, 28], Nakamura and Liu [29],
Nakamura et al. [30] and Qian et al. [31] and to Martin [32, 33] for the state of
the art in deposition technologies. In powder-based processes, after deposition,
laser processing is applied to heat particles in a powder to desired temperatures
to either subsequently soften, sinter, melt or ablate them. Selective laser sintering
was pioneered by Householder [34] in 1979 and Deckard and Beaman [35] in
the mid-1980s.2 Laser-based heating is quite attractive because of the degree of
targeted precision that it affords.3 Because of the monochromatic and collimated
nature of lasers, they are a highly controllable way to process powdered materials,
in particular with pulsing, via continuous beam chopping or modulation of the
voltage. Carbon dioxide (CO2) and yttrium aluminum garnet (Y AG) lasers are
commonly used. The range of power of a typical industrial laser is relatively wide,
ranging from approximately 100–10000 W. Typically, the initial beam produced
is in the form of collimated (parallel) rays, which are then focused with a lens onto
a small focal point as fine as 0.00001m in diameter. However, a chief concern of
manufacturers are residual stresses and the microstructural defects generated in
additively manufactured products, created by imprecisely controlled heat-affected
zones, brought on bymiscalibration of the laser power needed for a specific goal. In
particular, because many substrates can become thermally damaged, for example,
from thermal stresses, ascertaining the appropriate amount of laser input is critical.

2A closely related method, electron beam melting, fully melts the material and produces dense
solids that are void-free.
3There are a variety of other techniques that may be involved in an overall additive manufacturing
processes, such as: (a) electron beammelting,which is a process bywhere powder is bonded together
layer per layerwith an electron beam in a high vacuum, (b) aerosol jetting, which consists of utilizing
streams of atomized particles at high velocities toward a substrate, and (c) inkjet printing, which
works by projecting small droplets of ink toward a substrate through a small orifice by pressure,
heat, and vibration. The deposited material is then heated by UV light or other means to rapidly dry.
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1.1 Objectives

In order for emerging additive manufacturing approaches to succeed, such as the
ones mentioned, one must draw upon rigorous theory and computation to guide
and simultaneously develop design rules for the proper selection of particle, binder,
and solvent combinations for upscaling to industrial manufacturing levels (Fig.1.2).
This motivates the content of this monograph. This monograph is broken into two
mainmethodologies: “ContinuumMethod” (CM) approaches and “Discrete Element
Method” (DEM) approaches. The materials associated with heated filament and
functionalized-inkmethods are closely related types of continua (particles embedded
in a continuous binder) and are analyzed using continuum approaches. The dry
powder materials, which are of a discrete particulate character, are analyzed using
discrete element methods for the deposition phase of the analysis, and continuum
approaches are used for the curing (cooling) stress analysis. This monograph seeks
to introduce the reader to some of the main approaches for modeling and simulation
of particle-based materials used in additive manufacturing, namely:

• Basic continuum mechanics,
• Continuum characterization of particle-functionalized materials,
• Continuum properties of mixtures and optimization,
• CM approaches for ascertaining time-transient thermo-mechanical responses,
residual stresses, and laser processing,

• DEM approaches for modeling the deposition of dry powders,
• DEM approaches for modeling laser–particle interaction, and
• DEM approaches for modeling of advanced processing and the associated multi-
physical effects.

DEPOSITION

P

SUBSTRATE

Fig. 1.2 Left: a linkage schematic of a 3D printer. Right: a multiphase droplet representation using
the Discrete Element Method
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In addition to appendices within the chapters themselves (labeled “Chapter Appen-
dices”), background material is also included in the “Monograph Appendices” on
the following related topics:

• Monograph Appendix 1: A review of essential mathematics,
• Monograph Appendix 2: Continuum electrical properties of mixtures,
• Monograph Appendix 3: Continuum properties of multiphase mixtures,
• Monograph Appendix 4: Continuum fluid properties of mixtures, and
• Monograph Appendix 5: Combining DEM and continuum approaches.
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Chapter 2
ContinuumMethods (CM): Basic Continuum
Mechanics

2.1 Notation

Throughout this work, boldface symbols denote vectors or tensors. Furthermore, we
exclusively employ a Cartesian basis. For the inner product of two vectors (first-
order tensors), u and v, we have u · v = uivi = u1v1 + u2v2 + u3v3 in three
dimensions, where a Cartesian basis and Einstein index summation notation are
used. In this introduction, for clarity of presentation, we will ignore the difference
between second-order tensors and matrices.Accordingly, if we consider the second-
order tensor A = Aik ei ⊗ ek , then a first-order contraction (inner product) of two
second-order tensors A·B is defined by thematrix product [A][B], with components
of Ai j B jk = Cik . It is clear that the range of the inner index j must be the same for [A]
and [B]. For three dimensions, we have i, j = 1, 2, 3. The inner product of a tensor
(matrix) with a vector is defined as A · v = Ai j v j . The second-order inner (scalar)
product of two tensors (matrices) is defined as A : B = Ai j Bi j = tr([A]T [B]).
Monograph Appendix 1 provides a basic mathematical review.

2.2 Kinematics of Deformations

In this chapter, we synopsize amore detailed discussion found in Zohdi andWriggers
[1]. The term deformation refers to a change in the shape of a continuum between
a reference configuration and current configuration. In the reference configuration,
a representative particle of a continuum occupies a point P in space and has the
position vector (Fig. 2.1)

X = X1e1 + X2e2 + X3e3, (2.1)

where e1, e2, e3 is a Cartesian reference triad, and X1, X2, X3 (with center O) can
be thought of as labels for a material point. Sometimes the coordinates or labels
© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_2

9
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P
P’

xX

X+dX
dX

2

dx

u+du

u

O

X 3, x 3

X 1, x 1

X 2, x

Fig. 2.1 Different descriptions of a deforming body. Ωo is the reference configuration, and Ω is
the current configuration

(X1, X2, X3) are called the referential or material coordinates. In the current config-
uration, the particle originally located at point P (at time t = 0) is located at point
P ′ and can be also expressed in terms of another position vector x, with coordi-
nates (x1, x2, x3). These are called the current coordinates. In this framework, the
displacement is u = x − X for a point originally at X and with final coordinates x.

When a continuumundergoes deformation (or flow), its pointsmove along various
paths in space. This motion may be expressed as a function of X and t as

x(X, t) = u(X, t) + X(t), (2.2)

which gives the present location of a point at time t , written in terms of the refer-
ential coordinates X1, X2, X3. The previous position vector may be interpreted as
a mapping of the initial configuration onto the current configuration. In classical
approaches, it is assumed that such a mapping is one-to-one and continuous, with
continuous partial derivatives to whatever order is required. The description of mo-
tion or deformation expressed previously is known as the Lagrangian formulation.
Alternatively, if the independent variables are the coordinates x and time t , then
x(x1, x2, x3, t) = u(x1, x2, x3, t) + X(x1, x2, x3, t), and the formulation is denoted
as Eulerian (Fig. 2.1).1

1Frequently, analysts consider the referential configuration to be fixed in time; thus, in that case it is
not a function of time, X �= X(t). We shall consider X �= X(t) for the remainder of the monograph.
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2.2.1 Deformation of Line Elements

Partial differentiation of the displacement vector u = x − X , with respect to X ,
produces the following displacement gradient:

∇Xu = F − 1, (2.3)

where

F
def= ∇X x

def= ∂x
∂X

=
⎡
⎢⎣

∂x1
∂X1

∂x1
∂X2

∂x1
∂X3

∂x2
∂X1

∂x2
∂X2

∂x2
∂X3

∂x3
∂X1

∂x3
∂X2

∂x3
∂X3

⎤
⎥⎦ . (2.4)

F is known as the material deformation gradient.
Now, consider the length of a differential element in the reference configuration

dX and dx in the current configuration, dx = ∇X x · dX = F · dX . Taking the
difference in the squared magnitudes of these elements yields

dx · dx − dX · dX = (∇X x · dX) · (∇X x · dX) − dX · dX
= dX · (FT · F − 1) · dX def= 2 dX · E · dX . (2.5)

Equation (2.5) defines the so-called Lagrangian strain tensor

E
def= 1

2 (F
T · F − 1) = 1

2 [∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu]. (2.6)

Remark 1 It should be clear that dx can be reinterpreted as the result of amapping F ·
dX → dx or a change in configuration (reference to current). An important quantity

is the Jacobian of the deformation gradient, J
def= detF, which relates differential

volumes in the reference configuration (dΩ0) to differential volumetric domains in
the current configuration (dΩ) via dΩ = J dΩ0. The Jacobian of the deformation
gradient must remain positive, otherwise we obtain physically impossible “negative”
volumes. One way is compare the differential volume of mutually orthogonal triad of
differential vectors in the reference configuration dX (1), dX (2), dX (3) (forming the
edges of a cube), given by the triple product dX (1) · (dX (2) × dX (3)) to the volume
of the mapping of the triad dx(1) = F ·dX (1), dx(2) = F ·dX (2), dx(3) = F ·dX (3),
given by dx(1) · (dx(2) × dx(3)). Another way to prove this is by formulating a
conservation of mass over an arbitrary volume within the domain

∫
ωo

ρo dωo =
∫

ω

ρ dω =
∫

ωo

ρJ dωo, (2.7)

which immediately leads to the conclusion that ρo = ρJ , since ωo is arbitrary.
For more details, we refer the reader to the texts of Malvern [2], Gurtin [3], Chan-
drasekharaiah and Debnath [4], and Zohdi and Wriggers [1].
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Remark 2 One may develop so-called Eulerian formulations, employing the current
configuration coordinates to generate Eulerian strain tensor measures (see Zohdi and
Wriggers [1]).

2.3 Equilibrium/Kinetics of Continua

The balance of linear momentum in the deformed (current) configuration is
∫

∂ω

t da
︸ ︷︷ ︸
surface forces

+
∫

ω

ρb dω

︸ ︷︷ ︸
body forces

= d

dt

∫
ω

ρu̇ dω

︸ ︷︷ ︸
inertial forces

, (2.8)

whereω ⊂ Ω is an arbitrary portion of the body (Fig. 2.1), with boundary ∂ω, ρ is the
material density, b is the body force per unit mass, and u̇ is the time derivative of the
displacement. The surface force densities, t , are commonly referred to as “tractions.”

2.3.1 Postulates on Volume and Surface Quantities

Now, consider a tetrahedron (commonly referred to as a Cauchy tetrahedron) in
equilibrium, as shown in Fig. 2.2, where a balance of forces yields

t(n)ΔA(n) + t(−1)ΔA(1) + t(−2)ΔA(2) + t(−3)ΔA(3) + ρbΔV = ρüΔV, (2.9)

where ΔA(n) is the surface area of the face of the tetrahedron with normal n
and ΔV is the tetrahedron volume. As the distance (h) between the tetrahedron

x

x

x

1

2

3

t

t

(n)

t
(−1) (−3)

t(−2)
x

x

x

3
1

2
σ σ

σ
σ

σ
σ

σ

33

2

σ

σ
11

13
31

32

23

21

2

12

Fig. 2.2 Left: Cauchy tetrahedron: a “sectioned point” and right: stress at a point



2.3 Equilibrium/Kinetics of Continua 13

base (located at (0, 0, 0)) and the surface center goes to zero (h → 0), we have

ΔA(n) → 0 ⇒ ΔV
ΔA(n) → 0. Geometrically, we have ΔA(i)

ΔA(n) = cos(xi , xn)
def=ni , and

therefore t(n) + t(−1)cos(x1, xn) + t(−2)cos(x2, xn) + t(−3)cos(x3, xn) = 0, where
(xi , xn) indicates the angle between the xi and xn directions. It is clear that forces
on the surface areas could be decomposed into three linearly independent, mutually
orthogonal, components. It is convenient to introduce the concept of stress at a point,
representing the surface forces (tractions) there, pictorially represented by a cube
surrounding a point. The fundamental issue that must be resolved is the character-
ization of these surface forces. We can represent the traction on a surface by the
component representation:

t(i)
def=

⎧⎨
⎩

σi1

σi2

σi3

⎫⎬
⎭ , (2.10)

where the second index represents the direction of the component and the first index
represents components of the normal to corresponding coordinate plane. We have
t(n) = σT · n, where

σ
def=

⎡
⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ , (2.11)

or explicitly (t(1) = −t(−1), t(2) = −t(−2), t(3) = −t(−3))

t(n) = t(1)n1 + t(2)n2 + t(3)n3 = σT · n =
⎡
⎣

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤
⎦
T ⎧⎨

⎩
n1
n2
n3

⎫⎬
⎭ , (2.12)

where σ is the so-called Cauchy stress tensor. Henceforth, we will drop the super-

script notation of t(n), where it is implicitly assumed that t
def= t(n).

Remark In the absence of micromoment stresses, a balance of angular momen-
tum implies a symmetry of stress, σ = σT , and thus, the difference in nota-
tions becomes immaterial. Explicitly, starting with an angular momentum balance,
under the assumptions that no infinitesimal “micromoments” or so-called couple-
stresses exist, then it can be shown that the stress tensor must be symmetric,2 i.e.,∫
∂ω x × t da + ∫

ω x × ρb dω = d
dt

∫
ω x × ρu̇ dω; that is, σT = σ.

2It is somewhat easier to simply consider a differential element, such as in Fig. 2.2, and to simply
sum moments about the center. Doing this, one immediately obtains σ12 = σ21,σ23 = σ32 and
σ13 = σ31. Consequently, t = σ · n = σT · n.
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2.3.2 Balance Law Formulations

Substitution of Eq.2.12 into Eq.2.8 yields (ω ⊂ Ω)

∫
∂ω

σ · n da
︸ ︷︷ ︸
surface forces

+
∫

ω

ρb dω

︸ ︷︷ ︸
body forces

= d

dt

∫
ω

ρu̇ dω

︸ ︷︷ ︸
inertial forces

. (2.13)

A relationship can be determined between the densities in the current and reference
configurations,

∫
ω ρdω = ∫

ω0
ρJdω0 = ∫

ω0
ρ0dω0. Therefore, the Jacobian can also

be interpreted as the ratio ofmaterial densities at a point. Since the volume is arbitrary,
we can assume that ρJ = ρ0 holds at every point in the body. Therefore, wemaywrite
d
dt (ρ0) = d

dt (ρJ ) = 0, when the system is mass conservative over time. This leads to

writing the last term in Eq.2.13 as d
dt

∫
ω ρu̇ dω = ∫

ω0

d(ρJ )

dt u̇ dω0 + ∫
ω0

ρüJ dω0 =∫
ω ρü dω. From Gauss’s divergence theorem, and an implicit assumption that σ is
differentiable, we have

∫
ω (∇x · σ + ρb − ρü) dω = 0. If the volume is selected as

being arbitrary, then the integrand must be equal to zero at every point, yielding

∇x · σ + ρb = ρü. (2.14)

2.4 The First Law of Thermodynamics/An Energy Balance

The interconversions of mechanical, thermal, and chemical energy in a system are
governed by the first law of thermodynamics, which states that the time rate of change
of the total energy, K+ I, is equal to the rate of input of energy Ẇ . Specifically, we
can relate the kinetic and potential energy states at two instances of time by

K(t) + I(t) + ΔW = K(t + Δt) + I(t + Δt) (2.15)

or, as Δt → 0,

d

dt
(K + I) = Ẇ = P + H + Q, (2.16)

where the mechanical power is P and the net heat supplied from sources and con-
duction is Q + H. Here, the kinetic energy of a subvolume of material contained in
Ω , denoted ω, is

Kdef=
∫

ω

1

2
ρu̇ · u̇ dω, (2.17)

the power (rate of work) of the external forces acting on ω is given by
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Pdef=
∫

ω

ρb · u̇ dω +
∫

∂ω

σ · n · u̇ da, (2.18)

the heat flow into the volume by conduction is

Qdef= −
∫

∂ω

q · n da = −
∫

ω

∇x · q dω, (2.19)

q being the heat flux, the heat generated due to sources, such as chemical reactions,
is

Hdef=
∫

ω

ρz dω, (2.20)

where z is the reaction source rate per unit mass, and the internal energy is

Idef=
∫

ω

ρw dω, (2.21)

where w being the internal energy per unit mass. Differentiating the kinetic energy
yields

dK
dt

= d

dt

∫
ω

1

2
ρu̇ · u̇ dω =

∫
ω0

d

dt

1

2
(ρJ u̇ · u̇) dω0

=
∫

ω0

(
d

dt
ρ0)

1

2
u̇ · u̇ dω0 +

∫
ω

ρ
d

dt

1

2
(u̇ · u̇) dω

=
∫

ω
ρu̇ · ü dω, (2.22)

where we have assumed that the mass in the system is constant. We also have

dI
dt

= d

dt

∫
ω

ρw dω = d

dt

∫
ω0

ρJw dω0 =
∫

ω0

d

dt
(ρ0)

︸ ︷︷ ︸
=0

w dω0 +
∫

ω
ρẇ dω =

∫
ω

ρẇ dω.

(2.23)

By using the divergence theorem, we obtain
∫

∂ω
σ · n · u̇ da =

∫
ω

∇x · (σ · u̇) dω =
∫

ω
(∇x · σ) · u̇ dω +

∫
ω

σ : ∇x u̇ dω. (2.24)

Combining the results, and enforcing a balance of linear momentum, leads to

∫
ω

(ρẇ + u̇ · (ρü − ∇x · σ − ρb) − σ : ∇x u̇ + ∇x · q − ρz) dω =
∫

ω
(ρẇ − σ : ∇x u̇ + ∇x · q − ρz) dω = 0.

(2.25)
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Since the volume ω is arbitrary, the integrand must hold locally and we have

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0. (2.26)

When dealing with multifield problems, this equation is used extensively.

2.5 Linearly Elastic Constitutive Equations

We now discuss relationships between the stress and the strain, so-called material
laws or constitutive relations for linearly elastic cases (infinitesimal deformations).

2.5.1 The Infinitesimal Strain Case

In infinitesimal deformation theory, the displacement gradient components are con-
sidered small enough that higher-order terms like (∇Xu)T · ∇Xu and (∇xu)T · ∇xu
can be neglected in the strain measure E = 1

2 (∇Xu + (∇Xu)T + (∇Xu)T · ∇Xu),

leading to E ≈ ε
def= 1

2 [∇Xu + (∇Xu)T ]. If the displacement gradients are small
compared with unity, ε coincides closely to E. If we assume ∂

∂X ≈ ∂
∂x , we may use

E or ε interchangeably. Usually ε is the symbol used for infinitesimal strains. Fur-
thermore, to avoid confusion, when usingmodels employing the geometrically linear
infinitesimal strain assumption, we use the symbol of ∇ with no X or x subscript.
Hence, the infinitesimal strains are defined by

ε=1

2
(∇u + (∇u)T ). (2.27)

2.5.2 Material Response

If we neglect thermal effects, Eq.2.26 implies ρẇ = σ : ∇x u̇ which, in the infinites-
imal strain linearly elastic case, is ρẇ = σ : ε̇. From the chain rule of differentiation,
we have

ρẇ = ρ
∂w

∂ε
: dε

dt
= σ : ε̇ ⇒ σ = ρ

∂w

∂ε
. (2.28)

The starting point to develop a constitutive theory is to assume a stored elastic energy

function exists, a function denotedW
def= ρw, which depends only on the mechanical

deformation. The simplest function that fulfills σ = ρ∂w
∂ε

is W = 1
2ε : IE : ε,

where IE is the fourth rank elasticity tensor. Such a function satisfies the intuitive
physical requirement that, for any small strain from an undeformed state, energy
must be stored in the material. Subsequently, a small strain material law can be
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derived from σ = ∂W
∂ε

and W ≈ c0 + c1 : ε + 1
2ε : IE : ε + . . . which implies

σ ≈ c1 + IE : ε + . . .. We are free to set c0 = 0 (it is arbitrary) in order to have zero
strain energy at zero strain, and furthermore, we assume that no stresses exist in the
reference state (c1 = 0). With these assumptions, we obtain the familiar relation

σ = IE : ε. (2.29)

This is a linear relation between stresses and strains. The existence of a strictly
positive stored energy function in the reference configuration implies that the linear
elasticity tensor must have positive eigenvalues at every point in the body. Typically,
different materials are classified according to the number of independent components
in IE. In theory, IE has 81 components, since it is a fourth-order tensor relating nine
components of stress to strain. However, the number of components can be reduced
to 36 since the stress and strain tensors are symmetric. This is observed from the
matrix representation3 of IE:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={σ}

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E1111 E1122 E1133 E1112 E1123 E1113

E2211 E2222 E2233 E2212 E2223 E2213

E3311 E3322 E3333 E3312 E3323 E3313

E1211 E1222 E1233 E1212 E1223 E1213

E2311 E2322 E2333 E2312 E2323 E2313

E1311 E1322 E1333 E1312 E1323 E1313

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
def= [IE]

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε11
ε22
ε33
2ε12
2ε23
2ε31

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
def={ε}

. (2.30)

The existence of a scalar energy function forces IE to be symmetric since the
strains are symmetric; in other words, W = 1

2ε : IE : ε = 1
2 (ε : IE : ε)T = 1

2ε
T :

IET : εT = 1
2ε : IET : ε which implies IET = IE. Consequently, IE has only 21

independent components. The nonnegativity of W imposes the restriction that IE
remains positive definite. At this point, based on many factors that depend on the
material microstructure, it can be shown that the components of IE may be written
in terms of anywhere between 21 and 2 independent parameters. Accordingly, for
isotropicmaterials, we have two planes of symmetry and an infinite number of planes
of directional independence (two free components), yielding

IE
def=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

κ + 4
3μ κ − 2

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ + 4

3μ κ − 2
3μ 0 0 0

κ − 2
3μ κ − 2

3μ κ + 4
3μ 0 0 0

0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (2.31)

3The symbol [·] is used to indicate the matrix notation equivalent to a tensor form, while {·} is used
to indicate the vector representation.
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In this case, we have

σ = IE : ε = 3κ
trε

3
1 + 2με′ ⇒ W = 1

2
ε : IE : ε = 9

2
κ(

trε

3
)2 + με′ : ε′, (2.32)

where trε = εi i and ε′ = ε− 1
3 (trε)1 is the deviatoric strain. The eigenvalues of an

isotropic elasticity tensor are (3κ, 2μ, 2μ,μ,μ,μ). Therefore, we must have κ > 0
and μ > 0 to retain positive definiteness of IE. All of the material components of
IE may be spatially variable, as in the case of composite particulate-functionalized
media.

2.5.3 Material Component Interpretation

There are a variety of ways to write isotropic constitutive laws, each time with a
physically meaningful pair of material values.

Splitting the Strain

It is sometimes important to split infinitesimal strains into two physically meaningful
parts

ε = trε

3
1 + (ε − trε

3
1). (2.33)

An expansion of the Jacobian of the deformation gradient yields J = det (1 +
∇Xu) ≈ 1 + tr∇Xu + O(∇Xu) = 1 + trε + . . .. Therefore, with infinitesimal
strains, (1+ trε)dω0 = dω and we can write trε = dω−dω0

dω0
. Hence, trε is associated

with the volumetric part of the deformation. Furthermore, since ε′def=ε − trε
3 1, the

so-called strain deviator describes distortion in the material.

Infinitesimal Strain Material Laws

The stress σ can be split into two parts (dilatational and a deviatoric):

σ = trσ

3
1 + (σ − trσ

3
1) def= −p1 + σ′, (2.34)

where we call the symbol p the hydrostatic pressure and σ′ the stress deviator. With
(2.32), we write

p = −3κ

(
trε

3

)
and σ′ = 2μ ε′. (2.35)
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This is one form of Hooke’s law. The resistance to change in the volume is measured
by κ. We note that ( trσ3 1)′ = 0, which indicates that this part of the stress produces
no distortion.

Another fundamental form of Hooke’s law is

σ = Ey

1 + ν

(
ε + ν

1 − 2ν
(trε)1

)
, (2.36)

and the inverse form is

ε = 1 + ν

Ey
σ − ν

Ey
(trσ)1, (2.37)

where Ey , theYoung’smodulus, is the ratio of the uniaxial stress to the corresponding
strain component and the Poisson ratio, ν, is the ratio of the transverse strains to the
uniaxial strain. To interpret thematerial values, consider an idealized uniaxial tension
test (pulled in the x1-direction inducing a uniform stress state) where σ12 = σ13 =
σ23 = 0, which implies ε12 = ε13 = ε23 = 0. Also, we have σ22 = σ33 = 0. Under
these conditions, we have σ11 = Eyε11 (axial stiffness) and ε22 = ε33 = −νε11 (the
ratio of transverse to axial strain).

Another commonly used set of stress–strain forms are the Lamé relations,

σ = λ(trε)1 + 2με or ε = − λ

2μ(3λ + 2μ)
(trσ)1 + σ

2μ
, (2.38)

whereλ is referred to a the Lame parameter. To interpret thematerial values, consider
a homogeneous pressure test (uniform stress) where σ12 = σ13 = σ23 = 0 and where
σ11 = σ22 = σ33. Under these conditions, we have

κ = λ + 2

3
μ = Ey

3(1 − 2ν)
and μ = Ey

2(1 + ν)
, (2.39)

and consequently

κ

μ
= 2(1 + ν)

3(1 − 2ν)
. (2.40)

Weobserve that κ
μ

→ ∞ implies ν → 1
2 , and

κ
μ

→ 0 implies⇒ ν → −1. Therefore,
since both κ and μ must be positive and finite, this implies −1 < ν < 1/2 and
0 < Ey < ∞. For example, some polymeric foams exhibit ν < 0, steels ν ≈ 0.3,
and some forms of rubber have ν → 1/2. We note that λ can be positive or negative.
For more details, see Malvern [2], Gurtin [3], Chandrasekharaiah and Debnath [4].

Remark See Zohdi and Wriggers [1] for a variety of different finite-deformation
constitutive laws.
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Chapter 3
CM Approaches: Characterization
of Particle-Functionalized Materials

3.1 Introduction

During the development of new particulate-functionalized materials, experiments to
determine the appropriate combinations of particulate and matrix phases are time-
consuming and expensive. Therefore, elementary “microstructure-macroproperty”
methods have been generated over the last century in order to analyze and guide new
material development. The overall properties of such materials are the aggregate re-
sponse of the collection of interacting components (Fig. 3.1). The macroscopic prop-
erties can be tailored to the specific application, for example, in structural engineering
applications, by choosing a harder particulate phase that serves as a stiffening agent
for a ductile, easy to form, base matrix material. “Microstructure-macroproperty”
(micro–macro) methods are referred to by many different terms, such as “homog-
enization,” “regularization,” “mean field theory,” “upscaling” in various scientific
communities to compute effective properties of heterogeneous materials. We will
use these terms interchangeably in this chapter. The usual approach is to compute a
constitutive “relation between averages,” relating volume-averaged field variables,
resulting in effective properties. Thereafter, the effective properties can be used in a
macroscopic analysis. The volume averaging takes place over a statistically repre-
sentative sample of material, referred to in the literature as a representative volume
element (RVE). The internal fields, which are to be volumetrically averaged, must
be computed by solving a series of boundary value problems with test loadings.
There is a vast literature on such methods, dating back to Maxwell [1, 2] and Lord
Rayleigh [3], for estimating the overall macroscopic properties of heterogeneous
materials. For an authoritative review of the general theory of random heterogeneous
media, see Torquato [4]; for more mathematical homogenization aspects, see Jikov
et. al. [5]; for solid mechanics inclined accounts of the subject, see Hashin [6], Mura
[7], Nemat-Nasser and Hori [8], and Huet [9, 10]; for analyses of cracked media,
see Sevostianov et. al. [11]; and for computational aspects, see Zohdi and Wriggers
[12–42], Ghosh [43], and Ghosh and Dimiduk [44].

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_3
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Fig. 3.1 A matrix binder
and particulate additives

DEPOSITION
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Our objective in this chapter is to provide some very basic concepts in this area,
illustrated by a linear elasticity framework, where the mechanical properties of
microheterogeneous materials are characterized by a spatially variable elasticity ten-
sor IE. In order to characterize the effective (homogenized) macroscopic response
of such materials, a relation between averages,

〈σ〉Ω = IE∗ : 〈ε〉Ω, (3.1)

is sought, where

〈·〉Ω def= 1

|Ω|
∫

Ω

· dΩ , (3.2)

and where σ and ε are the stress and strain tensor fields within a statistically repre-
sentative volume element (RVE) of volume |Ω|. The quantity IE∗ is known as the
effective property. It is the elasticity tensor used in usual structural analyses. Simi-
larly, one can describe other effective quantities such as conductivity or diffusivity,
in virtually the same manner, relating other volumetrically averaged field variables.
However, for the sake of brevity, we restrict ourselves to linear elastostatics problems.

3.2 Basic Micro–Macro Concepts

For a relation between averages to be useful, it must be computed over a sample con-
taining a statistically representative amount of material. This is a requirement that
can be formulated in a concise mathematical form. A commonly accepted macro-
/microcriterion used in effective property calculations is the so-called Hill’s condi-
tion, 〈σ : ε〉Ω = 〈σ〉Ω : 〈ε〉Ω . Hill’s condition [45] dictates the size requirements on
the RVE. The classical argument is as follows. For any perfectly bonded heteroge-
neous body, in the absence of body forces, twophysically important loading states sat-
isfy Hill’s condition: (1) linear displacements of the formu|∂Ω = E · x ⇒ 〈ε〉Ω = E
and (2) pure tractions in the form t|∂Ω = L · n ⇒ 〈σ〉Ω = L, where E and L
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are constant strain and stress tensors, respectively. Applying (1)- or (2)-type bound-
ary conditions to a large sample is a way of reproducing approximately what may
be occurring in a statistically representative microscopic sample of material in a
macroscopic body. The requirement is that the sample must be large enough to have
relatively small boundary field fluctuations relative to its size and small enough rel-
ative to the macroscopic engineering structure. These restrictions force us to choose
boundary conditions that are uniform.

3.2.1 Testing Procedures

To determine IE∗, one specifies six linearly independent loadings of the form,

(1) u|∂Ω = E (1→6) · x or
(2) t|∂Ω = L(1→6) · n,

where E (1→6) and L(1→6) are symmetric second-order strain and stress tensors, with
spatially constant (nonzero) components. This loading is applied to a sample of
microheterogeneousmaterial. Each independent loading yields six different averaged
stress components and hence provides six equations to determine the constitutive
constants in IE∗. In order for such an analysis to be valid, i.e., to make the material
data reliable, the sample of material must be small enough that it can be considered
as a material point with respect to the size of the domain under analysis, but large
enough to be a statistically representative sample of the microstructure.

If the effective response is assumed to be isotropic, then only one test loading
(instead of usually six), containing nonzero dilatational ( trσ3 and trε

3 ) and deviatoric

components (σ′def=σ− trσ
3 1 and ε′def=ε− trε

3 1), is necessary to determine the effective
bulk (κ) and shear (μ) moduli:

3κ∗def= 〈 trσ3 〉Ω
〈 trε3 〉Ω and 2μ∗def=

√
〈σ′〉Ω : 〈σ′〉Ω
〈ε′〉Ω : 〈ε′〉Ω . (3.3)

In general, in order to determine the material properties of a microheterogeneous
material, one computes 36 constitutive constants1 E∗

i jkl in the following relation
between averages,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈σ11〉Ω
〈σ22〉Ω
〈σ33〉Ω
〈σ12〉Ω
〈σ23〉Ω
〈σ13〉Ω

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E∗
1111 E∗

1122 E∗
1133 E∗

1112 E∗
1123 E∗

1113
E∗
2211 E∗

2222 E∗
2233 E∗

2212 E∗
2223 E∗

2213
E∗
3311 E∗

3322 E∗
3333 E∗

3312 E∗
3323 E∗

3313
E∗
1211 E∗

1222 E∗
1233 E∗

1212 E∗
1223 E∗

1213
E∗
2311 E∗

2322 E∗
2333 E∗

2312 E∗
2323 E∗

2313
E∗
1311 E∗

1322 E∗
1333 E∗

1312 E∗
1323 E∗

1313

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈ε11〉Ω
〈ε22〉Ω
〈ε33〉Ω
2〈ε12〉Ω
2〈ε23〉Ω
2〈ε13〉Ω

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (3.4)

1There are, of course, only 21 constants, since IE∗ is symmetric.
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Asmentioned before, each independent loading leads to six equations, and hence,
in total 36 equations are generated by the independent loadings, which are used to
determine the tensor relation between average stress and strain, IE∗. IE∗ is exactly
what appears in engineering literature as the “property” of a material. The usual
choices for the six independent load cases are

E or L =
⎡
⎣β 0 0
0 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0
0 β 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0
0 0 0
0 0 β

⎤
⎦ ,

⎡
⎣ 0 β 0

β 0 0
0 0 0

⎤
⎦ ,

⎡
⎣ 0 0 0
0 0 β
0 β 0

⎤
⎦ ,

⎡
⎣ 0 0 β
0 0 0
β 0 0

⎤
⎦ ,

(3.5)

where β is a load parameter. For completeness, we record a few related fundamental
results, which are useful in micro–macro mechanical analysis.

3.2.2 The Average Strain Theorem

If a heterogeneous body, see Fig. 3.2, has the following uniform loading on its surface:
u|∂Ω = E · x, then

〈ε〉Ω = 1

2|Ω|
∫

Ω

(∇u + (∇u)T ) dΩ

= 1

2|Ω|
(∫

Ω1

(∇u + (∇u)T ) dΩ +
∫

Ω2

(∇u + (∇u)T ) dΩ

)

= 1

2|Ω|
(∫

∂Ω1

(u ⊗ n + n ⊗ u) d A +
∫

∂Ω2

(u ⊗ n + n ⊗ u) d A

)

= 1

2|Ω|
(∫

∂Ω

((E · x) ⊗ n + n ⊗ (E · x)) d A +
∫

∂Ω1∩∂Ω2

(|]u[| ⊗ n + n ⊗ |]u[|) d A
)

= 1

2|Ω|
(∫

Ω

(∇(E · x) + ∇(E · x)T ) dΩ +
∫

∂Ω1∩∂Ω2

(|]u[| ⊗ n + n ⊗ |]u[|) d A
)

= E + 1

2|Ω|
∫

∂Ω1∩∂Ω2

(|]u[| ⊗ n + n ⊗ |]u[|) d A, (3.6)

Fig. 3.2 Nomenclature for
the averaging theorems (for a
general body)

Ω

Ω2

Ω1
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where (u⊗ n
def=ui n j ) is a tensor product of the vector u and vector n. |]u[| describes

the displacement jumps at the interfaces between Ω1 and Ω2. Therefore, only if the
material is perfectly bonded, then 〈ε〉Ω = E . Note that the presence of finite body
forces does not affect this result. Also note that the third line in Eq.3.6 is not an
outcome of the divergence theorem, but of a generalization that can be found in a
variety of books, for example, Chandrasekharaiah and Debnath [46].

3.2.3 The Average Stress Theorem

Again, we consider a body (in static equilibrium) with t|∂Ω = L · n, where L is a
constant tensor. We make use of the identity ∇ · (σ ⊗ x) = (∇ · σ) ⊗ x + σ · ∇x =
− f ⊗ x+σ, where f represents the body forces. Substituting this into the definition
of the average stress yields

〈σ〉Ω = 1

|Ω|
∫

Ω

∇ · (σ ⊗ x) dΩ + 1

|Ω|
∫

Ω

( f ⊗ x) dΩ

= 1

|Ω|
∫

∂Ω

(σ ⊗ x) · n d A + 1

|Ω|
∫

Ω

( f ⊗ x) dΩ

= 1

|Ω|
∫

∂Ω

(L ⊗ x) · n d A + 1

|Ω|
∫

Ω

( f ⊗ x) dΩ

= L + 1

|Ω|
∫

Ω

( f ⊗ x) dΩ. (3.7)

If there are no body forces, f = 0, then 〈σ〉Ω = L.Note that debonding (interface
separation) does not change this result.

3.2.4 Satisfaction of Hill’s Energy Condition

Consider a body (in static equilibrium) with a perfectly bonded microstructure and
f = 0. This condition yields

∫
∂Ω

u · t d A =
∫

∂Ω

u · σ · n d A =
∫

Ω

∇ · (u · σ) dΩ. (3.8)

With∇·σ = 0, it follows that
∫

Ω

∇ · (u · σ) dΩ =
∫

Ω

∇u : σ dΩ =
∫

Ω

ε : σ dΩ .

If u|∂Ω = E · x and f = 0, then
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∫
∂Ω

u · t d A =
∫

∂Ω

E · x · σ · n d A =
∫

Ω

∇ · (E · x · σ) dΩ (3.9)

=
∫

Ω

∇(E · x) : σ dΩ = E : 〈σ〉Ω |Ω|.

Noting that 〈ε〉Ω = E , we have 〈ε〉Ω : 〈σ〉Ω = 〈ε : σ〉Ω . If t|∂Ω = L ·n and f =
0, then

∫
∂Ω

u · t d A = ∫
∂Ω

u ·L ·n d A = ∫
Ω

∇ · (u ·L) dΩ = ∫
Ω

∇u : L dΩ = L :∫
Ω

ε dΩ . Therefore, since 〈σ〉Ω = L, as before we have 〈ε〉Ω : 〈σ〉Ω = 〈ε : σ〉Ω .
Satisfaction of Hill’s condition guarantees that the microscopic and macroscopic
energies will be the same, and it implies the use of the two mentioned test boundary
conditions on sufficiently large samples of material.

3.2.5 The Hill–Reuss–Voigt Bounds

Until recently, the direct computation of micromaterial responses was very difficult.
Classical approaches have sought to approximate or bound the effective material
responses.Many classical approaches start by splitting the stress fieldwithin a sample
into a volume average and a purely fluctuating part, ε = 〈ε〉Ω + ε̃, and we directly
obtain

0 ≤
∫

Ω

ε̃ : IE : ε̃ dΩ =
∫

Ω

(ε : IE : ε − 2〈ε〉Ω : IE : ε + 〈ε〉Ω : IE : 〈ε〉Ω) dΩ

= (〈ε〉Ω : IE∗ : 〈ε〉Ω − 2〈ε〉Ω : 〈σ〉Ω + 〈ε〉Ω : 〈IE〉Ω : 〈ε〉Ω)|Ω|
= 〈ε〉Ω : (〈IE〉Ω − IE∗) : 〈ε〉Ω |Ω|. (3.10)

Similarly, for the complementary case, with σ = 〈σ〉Ω + σ̃, and the following
assumption (microscopic energy equals the macroscopic energy)

〈σ : IE−1 : σ〉Ω︸ ︷︷ ︸
micro energy

= 〈σ〉Ω : IE∗−1 : 〈σ〉Ω︸ ︷︷ ︸
macro energy

, where 〈ε〉Ω = IE∗−1 : 〈σ〉Ω,(3.11)

we have

0 ≤
∫

Ω

σ̃ : IE−1 : σ̃ dΩ

=
∫

Ω

(σ : IE−1 : σ − 2〈σ〉Ω : IE−1 : σ + 〈σ〉Ω : IE−1 : 〈σ〉Ω) dΩ

= (〈σ〉Ω : IE∗−1 : 〈σ〉Ω − 2〈ε〉Ω : 〈σ〉Ω + 〈σ〉Ω : 〈IE−1〉Ω : 〈σ〉Ω)|Ω|
= 〈σ〉Ω : (〈IE−1〉Ω − IE∗−1) : 〈σ〉Ω |Ω|. (3.12)
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Invoking Hill’s condition, which is loading-independent in this form, we have

〈IE−1〉−1
Ω︸ ︷︷ ︸

Reuss

≤ IE∗ ≤ 〈IE〉Ω︸ ︷︷ ︸
Voigt

.
(3.13)

This inequality means that the eigenvalues of the tensors IE∗ − 〈IE−1〉−1
Ω and

〈IE〉Ω − IE∗ are nonnegative. The practical outcome of the analysis is that bounds on
effective properties are obtained. These bounds are commonly known as the Hill–
Reuss–Voigt bounds, for historical reasons. Voigt [47], in 1889, assumed that the
strain field within a sample of aggregate of polycrystalline material was uniform
(constant), under uniform strain exterior loading. If the constant strain Voigt field
is assumed within the RVE, ε = ε0, then 〈σ〉Ω = 〈IE : ε〉Ω = 〈IE〉Ω : ε0, which
implies IE∗ = 〈IE〉Ω . The dual assumption was made by Reuss [48], in 1929, who
approximated the stress fields within the aggregate of polycrystalline material as
uniform (constant), σ = σ0, leading to 〈ε〉Ω = 〈IE−1 : σ〉Ω = 〈IE−1〉Ω : σ0, and
thus to IE∗ = 〈IE−1〉−1

Ω .

Remark Different boundary conditions (compared to the standard ones specified ear-
lier) are often used in computational homogenization analysis. For example, periodic
boundary conditions are sometimes employed. Although periodic conditions are re-
ally only appropriate for perfectly periodic media for many cases, it has been shown
that, in some cases, their use can provide better effective responses than either linear
displacement or uniform traction boundary conditions (e.g., see Terada et. al. [49] or
Segurado and Llorca [50]). Periodic boundary conditions also satisfyHill’s condition
a priori. Another related type of boundary condition is the so-called uniform-mixed
type, whereby tractions are applied on some parts of the boundary and displacements
on other parts, generating, in some cases, effective properties that match those pro-
duced with uniform boundary conditions, but with smaller sample sizes (e.g., see
Hazanov and Huet [51]). Another approach is “framing,” whereby the traction or
displacement boundary conditions are applied to a large sample of material, with
the averaging computed on an interior subsample to avoid possible boundary layer
effects. This method is similar to exploiting a St. Venant type of effect, commonly
used in solid mechanics, to avoid boundary layers. The approach provides a way
of determining what the microstructure really experiences, without “bias” from the
boundary loading. However, generally, the advantages of one boundary condition
over another diminish as the sample increases in size.

3.2.6 Improved Estimates

Over the last half-century, improved estimates have been pursued, with a no-
table contribution being the Hashin–Shtrikman bounds [6, 52, 53]. The Hashin–
Shtrikman bounds are the tightest possible bounds on isotropic effective responses,
with isotropic microstructures, when the volume fractions and phase contrasts of the
constituents are the only data known. For isotropic materials with isotropic effective
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(mechanical) responses, the Hashin–Shtrikman bounds (for a two-phase material)
are as follows for the bulk modulus

κ∗,− def= κ1 + v2
1

κ2−κ1
+ 3(1−v2)

3κ1+4μ1

≤ κ∗ ≤ κ2 + 1 − v2
1

κ1−κ2
+ 3v2

3κ2+4μ2

def= κ∗,+
(3.14)

and for the shear modulus

μ∗,− def= μ1 + v2
1

μ2−μ1
+ 6(1−v2)(κ1+2μ1)

5μ1(3κ1+4μ1)

≤ μ∗ ≤ μ2 + (1 − v2)

1
μ1−μ2

+ 6v2(κ2+2μ2)

5μ2(3κ2+4μ2)

def= μ∗,+,

(3.15)
where κ2 and κ1 are the bulk moduli, μ2 and μ1 are the shear moduli of the respective
phases (κ2 ≥ κ1 and μ2 ≥ μ1), and v2 is the second-phase volume fraction. Note
that no geometric or other microstructural information is required for the bounds.

Remark 1 There exist a multitude of other approaches which seek to estimate or
bound the aggregate responses of microheterogeneous materials. A complete survey
is outside the scope of the present work. We refer the reader to the works of Hashin
[6], Mura [7], Aboudi [54], Nemat-Nasser and Hori [8], Torquato [4] and Zohdi and
Wriggers [55] for such reviews.

Remark 2 Numerical methods have become a valuable tool in determining micro–
macro relations, with the caveat being that local fields in the microstructure are
resolved, which is important in being able to quantify the intensity of the loads
experienced by the microstructure. This is important for ascertaining failure of the
material. In particular, finite element-basedmethods are extremelypopular formicro–
macro calculations. Applying such methods entails generating a sample of material
microstructure, meshing it to sufficient resolution for tolerable numerical accuracy,
and solving a series of boundary value problems with different test loadings. The
effective properties can be determined by post-processing (averaging over the RVE).
For an extensive review of this topic, see Zohdi [12–42]. We also refer the reader to
that work for more extensive mathematical details and background information.

Remark 3 If needed, one can post-process the effective bulk and shear modulus to
obtain the effective Poisson ratio ν∗ = 3κ∗−2μ∗

2(3κ∗+μ∗) and the effective Young’s modulus
E∗ = 2μ∗(1 + ν∗) = 3κ∗(1 − 2ν∗).
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Chapter 4
CM Approaches: Estimation
and Optimization of the Effective
Properties of Mixtures

4.1 Combining Bounds

The typical use of the bounds from the previous chapter is to make an estimate of
the effective properties by forming a convex combination of them in the following
manner:

κ∗ ≈ φκ∗,+ + (1 − φ)κ∗,− (4.1)

and
μ∗ ≈ φμ∗,+ + (1 − φ)μ∗,−, (4.2)

where 0 ≤ φ ≤ 1 is a parameter such that:

• If φ = 0, we have the lower bound.
• If φ = 1, we have the upper bound.
• If φ = 1/2, we have the average of the bounds.

φ is a function of the microstructure and must be calibrated.
Acritical observation is that the lower bound ismore accurate when thematerial is

composed of stiff particles that are surrounded by a soft matrix (denoted case 1), and
the upper bound ismore accurate for a stiff matrix surrounding soft particles (denoted
case 2). This can be explained by considering two cases of material combinations,
one with 50% soft material and the other with 50% stiff material. A material with
a continuous soft binder (50%) will isolate the stiff particles (50%), and the overall
system will not be stiff (this is case 1, and the lower bound is more accurate), while a
material formed by a continuous stiff binder (50%) surrounding soft particles (50%,
case 2) will, in an overall sense, be stiffer than case 1. Thus, case 2 is more closely
approximated by the upper bound and case 1 is closer to the lower bound (Fig. 4.1).

© Springer International Publishing AG 2018
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PARTICLES WELL SEPARATED PARTICLES TOUCHING

Fig. 4.1 Comparing microstructures with the same volume fractions. Cases where particles touch
need a higher value of φ

As mentioned, for stiff spherical particles, at low volume fractions, for example
under 15%, where the particles are not making contact, the lower bound is more
accurate. Thus, one would pick φ = φs ≤ 1/2 to bias the estimate to the lower
bound. However, if we take the same volume fraction of particles, but make the flat
flakes, they will certainly touch and produce stiff pathways. Their overall stiffness
will be higher than those of spheres at the same volume fraction. Thus, one would
pick φ = φ f > φs . One can calibrate φ by comparing it to different experiments.
For example, for mechanical properties, see Zohdi et al. [1]. Essentially, the more the
particles interact, for example, physically touch, the more the upper bound becomes
relevant. The general trends are (a) for cases where the upper bound is more accurate,
φ > 1

2 and (b) for cases when the lower bound is more accurate, φ < 1
2 . φ indicates

the degree of interaction of the particulate constituents.

Remark This same trend holds for electrical and thermal properties (see Monograph
Appendices 2 and 3).

4.2 Local Fields: Stresses and Strains

The determination of the average load sharing between phases at the microstructural
scale can be obtained from the overall effective mechanical properties of the micro-
heterogeneous material, for example, comprised of particles suspended in a binding
matrix.

The load carried by each phase in the microstructure is characterized via stress
and strain concentration tensors, which we now discuss. These provide a measure of
the deviation away from themean fields throughout thematerial. One can decompose
averages of an arbitrary quantity over Ω into averages over each of the phases in

the following manner: 〈A〉Ω = (1/|Ω|)
(∫

Ω1
A dΩ + ∫

Ω2
A dΩ

)
= v1〈A〉Ω1 +

v2〈A〉Ω2 . If we make use of this decomposition, we have
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〈σ 〉Ω = v1〈σ 〉Ω1 + v2〈σ 〉Ω2

= v1IE1 : 〈ε〉Ω1 + v2IE2 : 〈ε〉Ω2

= IE1 : (〈ε〉Ω − v2〈ε〉Ω2) + v2IE2 : 〈ε〉Ω2

= (
IE1 + v2(IE2 − IE1) : Cε,2) : 〈ε〉Ω, (4.3)

where Cε,2def=
(

1
v2

(IE2 − IE1)
−1 : (IE∗ − IE1)

)
with Cε,2 : 〈ε〉Ω = 〈ε〉Ω2 . The strain

concentration tensor Cε,2 relates the average strain over the particle phase (2) to
the average strain over all phases. Similarly, for the variation in the stress we have
Cε,2 : IE∗−1 : 〈σ 〉Ω = IE−1

2 : 〈σ 〉Ω2 , which reduces to IE2 : Cε,2 : IE∗−1 :
〈σ 〉Ω def=Cσ,2 : 〈σ 〉Ω = 〈σ 〉Ω2 . C

σ,2 is known as the stress concentration tensor; it
relates the average stress in the particle phase to that in thewhole RVE.Note that once
either Cε,2 or IE∗ are known, the other can be determined. In the case of isotropy,
we may write

Cσ,2
κ

def= 1

v2

κ2

κ∗
κ∗ − κ1

κ2 − κ1
and Cσ,2

μ

def= 1

v2

μ2

μ∗
μ∗ − μ1

μ2 − μ1
(4.4)

whereCσ,2
κ 〈 trσ3 〉Ω = 〈 trσ3 〉Ω2 andC

σ,2
μ 〈σ ′〉Ω = 〈σ ′〉Ω2 . Clearly, the microstress fields

are minimally distorted when Cσ,2
κ = Cσ,2

μ = 1; there are no stress concentrations in
a homogeneous material. For the matrix,

〈σ 〉Ω1 = 〈σ 〉Ω − v2〈σ 〉Ω2

v1
= 〈σ 〉Ω − v2Cσ,2 : 〈σ 〉Ω

v1

= (1 − v2Cσ,2) : 〈σ 〉Ω
v1

def=Cσ,1 : 〈σ 〉Ω.

(4.5)

Therefore, in the case of isotropy,

Cσ,1
κ

def= 1

v1
(1 − v2C

σ,2
κ ) and Cσ,1

μ

def= 1

v1
(1 − v2C

σ,2
μ ). (4.6)

The fraction of the total stress carried by each phase can be determined by mul-
tiplying the concentration factors by the corresponding volume fractions

〈σ 〉Ω = v1〈σ 〉Ω1 + v2〈σ 〉Ω2

= v1Cσ,1 : 〈σ 〉Ω + v2Cσ,2 : 〈σ 〉Ω. (4.7)

Remark Similar to the stress, for the strain, we have for the matrix,

〈ε〉Ω1 = 〈ε〉Ω − v2〈ε〉Ω2

v1
= 〈ε〉Ω − v2Cε,2 : 〈ε〉Ω

v1

= (1 − v2Cε,2) : 〈ε〉Ω
v1

def=Cε,1 : 〈ε〉Ω.

(4.8)
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Therefore, in the case of isotropy,

Cε,1
κ

def= 1

v1
(1 − v2C

ε,2
κ ) and Cε,1

μ

def= 1

v1
(1 − v2C

ε,2
μ ). (4.9)

The fraction of the total strain carried by each phase can be determined by mul-
tiplying the concentration factors by the corresponding volume fractions

〈ε〉Ω = v1〈ε〉Ω1 + v2〈ε〉Ω2

= v1Cε,1 : 〈ε〉Ω + v2Cε,2 : 〈ε〉Ω. (4.10)

4.3 Optimization: Formulation of a Cost Function

The deviation in the particulate stress fields from the mean value is

| 〈trσ 〉Ω2 − 〈trσ 〉Ω
〈trσ 〉Ω | = |Cσ,2

κ − 1| (4.11)

and
√

(〈σ ′〉Ω2 − 〈σ ′〉Ω) : (〈σ ′〉Ω2 − 〈σ ′〉Ω)

〈σ ′〉Ω : 〈σ ′〉Ω = |Cσ,2
μ − 1|, (4.12)

and for the matrix material

| 〈trσ 〉Ω1 − 〈trσ 〉Ω
〈trσ 〉Ω | = |Cσ,1

κ − 1| (4.13)

and
√

(〈σ ′〉Ω1 − 〈σ ′〉Ω) : (〈σ ′〉Ω1 − 〈σ ′〉Ω)

〈σ ′〉Ω : 〈σ ′〉Ω = |Cσ,1
μ − 1|. (4.14)

In order to incorporate the deviation into a cost function, we introduce a tolerance
where, ideally,

|Cσ,2
κ − 1| ≤ T OLκ and |Cσ,2

μ − 1| ≤ T OLμ (4.15)

and

|Cσ,1
κ − 1| ≤ T OLκ and |Cσ,1

μ − 1| ≤ T OLμ. (4.16)
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If the normalized deviation exceeds the corresponding T OL , then the level of vio-
lation is incorporated as a multilateral constraint to the macroscopic objectives. As
an example, our immediate goal is to formulate the design of the macroscale effec-
tive bulk and shear moduli κ∗ and μ∗, using convex combinations of the Hashin–
Shtrikman bounds as approximations for the effective moduli κ∗ ≈ φκ∗,+ + (1 −
φ)κ∗,− and μ∗ ≈ φμ∗,+ + (1 − φ)μ∗,−, where 0 ≤ φ ≤ 1. The micro–macro
objective function is

Π = w1| κ∗

κ∗,D
− 1|2 + w2| μ∗

μ∗,D
− 1|2

+ŵ3
(|Cσ,2

κ − 1| − T OLκ

)2 + ŵ4
(|Cσ,2

μ − 1| − T OLμ

)2
+ŵ5

(|Cσ,1
κ − 1| − T OLκ

)2 + ŵ6
(|Cσ,1

μ − 1| − T OLμ

)2
,

where (I) if |Cσ,2
κ − 1| ≤ T OLκ , then ŵ3 = 0, (II) if |Cσ,2

κ − 1| > T OLκ , then
ŵ3 = w3, (III) if |Cσ,2

μ −1| ≤ T OLμ, then ŵ4 = 0, (IV) if |Cσ,2
μ −1| > T OLμ, then

ŵ4 = w4, (V) if |Cσ,1
κ − 1| ≤ T OLκ , then ŵ5 = 0, (VI) if |Cσ,1

κ − 1| > T OLκ , then
ŵ5 = w5, (VII) if |Cσ,1

μ − 1| ≤ T OLμ, then ŵ6 = 0, (VIII) if |Cσ,1
μ − 1| > T OLμ,

then ŵ6 = w6. Here, the design variables are Λ = {κ2, μ2 v2}, and their constrained
ranges are κ

(−)
2 ≤ κ2 ≤ κ

(+)
2 , μ(−)

2 ≤ μ2 ≤ μ
(+)
2 , and v

(−)
2 ≤ v2 ≤ v

(+)
2 . There are

two characteristics of such a formulation which make the application of standard
gradient-type minimization schemes, such as Newton’s method, difficult:

• (I) The incorporation of limits on the microfield behavior, as well as design search
space restrictions, renders the objective function not continuously differentiable
in design space and

• (II) The objective function is nonconvex; i.e., the system Hessian is not positive
definite (invertible) throughout design space.

One way to minimize such objective functions is by following a two-stage approach
whereby one (1) determines promising optimal regions in parameter space using
(nonderivative) algorithms (such as evolutionary “genetic” algorithms, simulated
annealing) and then (2) applies classical gradient-based schemes in locally convex
regions, if the objective functions are smooth, since they are generally extremely
efficient for the minimization of smooth convex functions. As indicated, the search
for convex “pockets” of Π can be achieved by using “genetic” algorithms (GA),
before applying classical gradient-based schemes.1

Genetic algorithms are search methods based on the principles of natural selec-
tion, employing concepts of species evolution, such as reproduction, mutation, and
crossover. Implementation typically involves a randomly generated population of
fixed-length elemental strings, “genetic” information, each ofwhich represents a spe-
cific choice of system parameters. The population of individuals undergoes “mating
sequences” and other biologically inspired events in order to find promising regions

1An exhaustive review of thesemethods can be found in the texts of Luenberger [2] andGill,Murray
and Wright [3], while a state of the art can be found in Papadrakakis et al. [4].
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of the search space. Such methods can be traced back, at least, to the work of John
Holland [5]. For reviews of such methods, see, for example, Goldberg [6], Davis [7],
Onwubiko [8], Kennedy and Eberhart [9], Lagaros et al. [10], Papadrakakis et al.
[11–14], and Goldberg and Deb [15]. In Zohdi [16–33], a genetic algorithm has been
developed to treat a wide variety of nonconvex inverse problems involving various
aspects of multiparticle mechanics, and we refer the interested reader to that work.
Specifically, the central idea is that the system parameters form a genetic string and
a survival of the fittest algorithm is applied to a population of such strings.

The overall process is: (a) a population (S) of different parameter sets are gener-
ated at random within the parameter space, each represented by a (“genetic”) string
of the system (N ) parameters, (b) the performance of each parameter set is tested,
(c) the parameter sets are ranked from top to bottom according to their performance,
(d) the best parameter sets (parents) are mated pair-wise producing two offspring
(children); i.e., each best pair exchanges information by taking random convex com-
binations of the parameter set components of the parents’ genetic strings, and (e) the
worst performing genetic strings are eliminated, then new replacement parameter
sets (genetic strings) are introduced into the remaining population of best-performing
genetic strings, and the process (a–e) is then repeated.

The term “fitness” of a genetic string is used to indicate the value of the objective
function. The most fit genetic string is the one with the smallest objective function.
The retention of the top fit genetic strings from a previous generation (parents) is
critical, since if the objective functions are highly nonconvex (the present case), there
exists a clear possibility that the inferior offspringwill replace superior parents.When
the top parents are retained, the minimization of the cost function is guaranteed to
be monotone (guaranteed improvement) with increasing generations. There is no
guarantee of successive improvement if the top parents are not retained, even though
nonretention of parents allows more new genetic strings to be evaluated in the next
generation. In the scientific literature, numerical studies imply that, for sufficiently
large populations, the benefits of parent retention outweigh this advantage and any
disadvantages of “inbreeding,” i.e., a stagnant population. For more details on this
so-called inheritance property, see Davis [7] or Kennedy and Eberhart [9]. In the
upcoming algorithm, inbreeding is mitigated since, with each new generation, new
parameter sets, selected at random within the parameter space, are added to the
population. Previous numerical studies of the author [16–33] have indicated that
not retaining the parents is suboptimal due to the possibility that inferior offspring
will replace superior parents. Additionally, parent retention is computationally less
expensive, since these parameter sets do not have to be re-evaluated (or ranked) in
the next generation. An implementation of such ideas is as follows [16–33]:

• STEP 1: Randomly generate a population of S starting genetic strings, Λi , (i =
1, ..., S) :
Λi def={Λi

1,Λ
i
2,Λ

i
3,Λ

i
4, ...Λ

i
N }def={κ i

2, μ
i
2, v

i
2, ...}.• STEP 2: Compute fitness of each string Π(Λi ), (i = 1, ..., S).
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• STEP 3: Rank genetic strings: Λi , (i = 1, ..., S).
• STEP 4: Mate nearest pairs and produce two offspring, (i = 1, ..., S)

λi def=	(I )Λi + (1 − 	(I ))Λi+1, λi+1def=	(I I )Λi + (1 − 	(I I ))Λi+1.
• NOTE: 	(I ) and 	(I I ) are random numbers, such that 0 ≤ 	(I ), 	(I I ) ≤ 1,
which are different for each component of each genetic string.

• STEP 5: Kill off bottom M < S strings and keep top K < N parents and top
K offspring (K offspring+K parents+M=S).

• STEP 6: Repeat STEPS 1–6 with top gene pool (K offspring and K parents),
plus M new, randomly generated, strings.

• Option: Rescale and restart search around best-performing parameter set every
few generations.

Remark 1 STEPS 1–6, which are associated with the genetic part of the overall
algorithm, attempt to collect multiple local minima.2 At first glance, it seems some-
what superfluous to retain even the top parents in such an algorithm. However, many
studies have shown that the retention of the top old fit genetic strings is critical for
proper convergence. As alluded to earlier, by observing Fig. 4.2 one sees that if the
objective functions are highly nonconvex, there exists a strong possibility that the
inferior offspring will replace superior parents. Therefore, retaining the top parents
is not only less computationally expensive, since these designs do not have to be
re-evaluated, it is theoretically superior. With parent retention, the minimization of
the cost function is guaranteed to be monotone with increasing generations, i.e.,
Π(Λopt,I ) ≥ Π(Λopt,I+1), where Λopt,I+1 and Λopt,I are the best genetic strings
from generations I +1 and I , respectively. There is no such guarantee if the top par-
ents are not retained. While the nonretention of parents allows more newer genetic
strings to be evaluated in the next generation, numerical studies conducted thus far
imply, for sufficiently large populations, that the benefits of parent retention out-
weigh this advantage, as well as any disadvantages of “inbreeding,” i.e., a stagnant
population. The case of inbreeding is circumvented in the current algorithm due to
the fact that, with each new generation, new material designs, selected at random
within the design space, are introduced into the population. Not retaining the par-
ents is suboptimal due to the possibility that inferior offspring will replace superior
parents.

Remark 2 After application of such a global search algorithm, one can apply a
gradient-based method if the objective function is sufficiently smooth in that region
of the parameter space. In other words, if one has located a convex portion of the
parameter space with a global genetic search, one can employ gradient-based pro-
cedures locally to minimize the objective function further, since they are generally
much more efficient for convex optimization of smooth functions. In such proce-
dures, in order to obtain a new directional step for Λ, one must solve the following
system

2It is remarked that if the function 	 is allowed to be greater than unity, one can consider the
resulting convex combination (offspring) as a “mutation.”
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Λ

Π
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MINIMUM

Π Π

Λ Λ

Fig. 4.2 Left: a characterization of the class of objective functions of interest. Right: a loss of
superior older genetic strings if the top parents are not retained

[IH]{
Λ} = −{g}, (4.17)

where [IH] is the Hessian matrix (N ×N ), {
Λ} is the parameter increment (N ×1),
and {g} is the gradient (N ×1). We shall not employ this second (post-genetic) stage
in this work. Specifically, this is determined by forcing the gradient of∇ΛΠ(Λ) = 0.
Expanding (linearizing) around a first guess Λi yields

∇ΛΠ(Λi+1) ≈ ∇ΛΠ(Λi )+∇
(
∇ΛΠ(Λi )

)
·(Λi+1−Λi )+higher order terms ≈ 0 (4.18)

or, in more streamlined matrix notation, defining the Hessian, [IH] = ∇ (∇ΛΠ(Λ))

and {g} = ∇ΛΠ(Λ),

[IH]{
Λ} + {g} = 0. (4.19)

Following a standard Newton-type multivariate search, a new design increment is
computed,


Λ = (
Λ1,
Λ2, ...
ΛN ), (4.20)

for a design vector, Λ, by solving the following system, [IH]{
Λ} = −{g}, where
[IH] is the Hessian matrix (N × N ), with components

Hi j = ∂2Π(Λ)

∂Λi∂Λ j
, (4.21)

{g} is the gradient (N × 1), with components

gi = ∂Π(Λ)

∂Λi
(4.22)
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and {
Λ} is the design increment (N × 1), with components 
Λi . After the
design increment has been solved for, one then forms an updated design vector,
Λnew = Λold + 
Λ, and the process is repeated until ||Π || ≤ T OL . Explicitly, the
incremental system is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2Π(Λ)

∂Λ1∂Λ1

∂2Π(Λ)

∂Λ1∂Λ2

∂2Π(Λ)

∂Λ1∂Λ3

∂2Π(Λ)

∂Λ1∂Λ4
.....

∂2Π(Λ)

∂Λ2∂Λ1

∂2Π(Λ)

∂Λ2∂Λ2

∂2Π(Λ)

∂Λ2∂Λ3

∂2Π(Λ)

∂Λ2∂Λ4
......

∂2Π(Λ)

∂Λ3∂Λ1

∂2Π(Λ)

∂Λ3∂Λ2

∂2Π(Λ)

∂Λ3∂Λ3

∂2Π(Λ)

∂Λ3∂Λ4
......

∂2Π(Λ)

∂Λ4∂Λ1

∂2Π(Λ)

∂Λ4∂Λ2

∂2Π(Λ)

∂Λ4∂Λ3

∂2Π(Λ)

∂Λ4∂Λ4
......

...... ...... ...... ...... ......

...... ...... ...... ...... ......
∂2Π(Λ)

∂ΛN ∂Λ1

∂2Π(Λ)

∂ΛN ∂Λ2

∂2Π(Λ)

∂ΛN ∂Λ3

∂2Π(Λ)

∂ΛN ∂Λ4
.....

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩


Λ1


Λ2


Λ3


Λ4

.....

.....


ΛN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

= −

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Π(Λ)

∂Λ1
∂Π(Λ)

∂Λ2
∂Π(Λ)

∂Λ3
∂Π(Λ)

∂Λ4

.....

.....
∂Π(Λ)

∂ΛN

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (4.23)

The derivatives must often be computed numerically:

• For the first derivative of Π at (Λ1,Λ2,Λ3):

∂Π

∂Λ1
≈ Π(Λ1 + 
Λ1,Λ2,Λ3) − Π(Λ1 − 
Λ1,Λ2,Λ3)

2
Λ1
. (4.24)

• For the second derivative at (Λ1,Λ2,Λ3):

∂

∂Λ1

(
∂Π

∂Λ1

)
≈

(
∂Π
∂Λ1

)
|
Λ1+ 
Λ1

2 ,Λ2,Λ3
−

(
∂Π
∂Λ1

)
|
Λ1− 
Λ1

2 ,Λ2,Λ3


Λ1
(4.25)

= 1


Λ1

( (
Π(Λ1 + 
Λ1),Λ2,Λ3 − Π(Λ1,Λ2,Λ3)


Λ1

)

−
(

Π(Λ1,Λ2,Λ3) − Π(Λ1 − 
Λ1,Λ2,Λ3)


Λ1

) )
.

• For the cross-derivative at (Λ1,Λ2):

∂

∂Λ2

(
∂Π

∂Λ1

)
≈ ∂

∂Λ2

(
Π(Λ1 + 
Λ1, Λ2, Λ3) − Π(Λ1 − 
Λ1, Λ2, Λ3)

2
Λ1

)

≈ 1

4
Λ1
Λ2
(Π(Λ1 + 
Λ1, Λ2 + 
Λ2, Λ3) − Π(Λ1 − 
Λ1, Λ2 + 
Λ2, Λ3))

− (Π(Λ1 + 
Λ1, Λ2 − 
Λ2, Λ3) − Π(Λ1 − 
Λ1, Λ2 − 
Λ2, Λ3)) . (4.26)

An exhaustive review of these methods can be found in the texts of Luenberger [2]
and Gill, Murray andWright [3], while a state of the art can be found in Papadrakakis
et al. [4].
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4.4 Suboptimal Properties Due to Defects—Effects of
Pores/voids

Often, during material processing, voids are present. Using the previous framework,
one can estimate the reduction of the material quality as a function of the porous
material by assuming that it is comprised of an isotropic elastic matrix, with a bulk
modulus κm and shear modulus μm , while the porous void space is modeled by
an elastic material with very low bulk and shear moduli κv = δκm , μv = δμm ,
with 0 ≤ δ << 1. The exact case of voids corresponds to δ → 0. To estimate the
properties of the material with voids, we employ the Hashin–Shtrikman bounds and
assign the following (the harder material is the matrix, and the softer is the voids):
κv = κ1, μv = μ1 and κm = κ2, μm = μ2, vv = v1 and vm = v2, and force μv → 0
and κv → 0. Specifically, this yields:

0 ≤ κ∗,voids ≤ κm(1 − vvF(vv)), (4.27)

where

F(vv) = 3κm + 4μm

3vvκm + 4μm
(4.28)

and

0 ≤ μ∗,voids ≤ μm(1 − vvC(vv)), (4.29)

where

C(vv) = 5(3κm + 4μm)

κm(9 + 6vv) + μm(8 + 12vv)
. (4.30)

One can then assign the effective properties of the void-free part of the particle-laden
mixture to the matrix material, κ∗,no−voids = κm and μ∗,no−voids = μm , leading to

0 ≤ κ∗,voids ≤ κ∗,no−voids(1 − vvF(vv)) (4.31)

and

0 ≤ μ∗,voids ≤ μ∗,no−voids(1 − vvC(vv)) (4.32)

It is important to note that

• As vv → 1, vvF(vv) → 1 and vvC(vv) → 1, thus μ∗,voids → 0 and
• As vv → 0, vvF(vv) → 0 and vvC(vv) → 0, thus μ∗,voids → μ∗,no−voids .

These expressions show the resulting effective property loss as a function of the
voids. We remark that in some applications, such as biomedical devices, controlled
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porositywith pre-specified pore shapes, sizes, and distributions are sought after using,
for example, Porogen Templating Processes. We refer the reader to Hong et al. [34]
for a detailed overview of the state of the art of porogen patterning. Other emerg-
ing, cutting-edge approaches for controlled generation of desired porosity involve
laser processing (Kongsuwan et al. [35]). This is particularly useful for precisely
functionalized layered substrates.

Remark Monograph Appendices 2 and 3 discuss electrical and other properties of
materials, as well as materials made of multiple phases (more than two).
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Chapter 5
CM Approaches: Numerical
Thermo-Mechanical Formulations

The previous analytical expressions provide goodway to estimate and optimizemate-
rial combination for effective properties, while controlling local field fluctuations.
However, in order to probe the response of a givenmaterial combinationmore deeply,
in particular the time-dependent behavior when it is thermoformed, one must resort
to numerical methods. Generally, the most practical strategy is to:

• Use estimates (e.g., based on bounds) to determine proposed optimal combinations
of materials and

• Use numerical discretizations of the continuum to determine the detailed perfor-
mance of the proposed optimal designs.

Accordingly, this chapter is concerned with the computational characterization
of the evolution of the material response and residual stresses in materials with
microstructures that arise from heated (or curing) deposited mixtures of particles.
Residual stresses arise because the hot bonded materials cannot freely contract to
their stress-free state, when cooled, due to their interaction with other components in
the system and the surrounding environment to which they are joined. The objective
of thiswork is to develop a straightforward computational framework that researchers
in the field can easily implement and use as a computationally efficient design
tool. Generally speaking, there is thermo-mechanical multifield coupling present,
along with material changes associated with material hardening, elasto-plasticity,
and mechanical damage. Specifically, a recursively staggered, temporally adaptive,
Finite Difference Time Domain (FDTD) scheme is developed to resolve the inter-
nal microstructural thermal and mechanical fields, accounting for the simultaneous
elasto-plasticity and damage. The time-step adaptation is constructed to allow the
numerical scheme to iteratively resolve the changing physical fields by reducing the
time-steps during phases of the process when the system is undergoing changes on
relatively small timescales and also to enlarge the time-steps when the processes are
relatively slow. The spatial discretization grids are uniform and dense, with the com-
plex microstructure embedded into the mesh. The regular grid allows one to generate

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_5
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a matrix-free iterative formulation which is amenable to rapid computation and min-
imal memory requirements, making it ideal for laptop computation. The presentation
is broken into three main parts: (1) formulations for each field in the model problem,
identifying the coupling terms, (2) iterative staggering schemes (including spatial
and temporal discretizations), and (3) numerical examples for the model problem.
The approach builds on work found in Zohdi [1–33] and then applies it to particle
mixture deposition systems.

Remark In this section, we focus on the cooling and heating of a particulate mixture.
The initial dynamic deposition process of multibody and inter-particle collisions is
outside the scope of the present chapter. However, we mention in passing that to
model the dynamics of particle systems, reduced-order particle-based or discrete
element-based models, which treat such systems as multibody dynamical groups,
are often used. They are advantageous in dealing with domains that break apart
or coalesce, as compared to traditional continuum-based finite difference and finite
element methods, which have limitations when dealing with dynamic discontinua.
For reviews see, for example, Duran [34], Pöschel and Schwager [35], Onate et. al.
[36, 37], Rojek et. al. [38], Carbonell et. al. [39], Labra and Onate [40], Leonardi
et. al. [41], Cante et. al. [42], Rojek [43], Onate et. al. [79], Bolintineanu et. al. [44],
Campello and Zohdi [45, 46], Avci and Wriggers [47], and Zohdi [1–33]. In many
cases, the deposition of these materials is the first stage of a multistep process which
may involve, among other processes, compaction. Compaction is also somewhat
outside the scope of the present work, and we refer the reader to Akisanya et. al.
[48], Anand and Gu [80], Brown and Abou-Chedid [49], Domas [50], Fleck [51],
Gethin et. al., [52], Gu et. al. [53], Lewis et. al. [54], Ransing et. al. [55], Tatzel [56],
and Zohdi [1–33].

5.1 Transient Thermo-Mechanical Coupled Fields

We consider a model problem consisting of a deposited set hot mixture of heteroge-
neous material which is in the cool-down phase of the process. The essential field
equations and simplifying assumptions that will be used during the analysis are
provided next.

Balance of linear momentum
We consider a balance of linear momentum governed by

∇x · σ + f = ρ
d2u
dt2

, (5.1)

in regimes where infinitesimal deformations are appropriate, where σ is the Cauchy
stress, f are body forces, ρ is the material density, and u is the displacement. Con-
sistent with the infinitesimal deformation approximation, we write ∇x ≈ ∇X and



5.1 Transient Thermo-Mechanical Coupled Fields 45

d()

dt ≈ ∂()

∂t |X , where X are the referential coordinates and x are the current coordi-
nates. We consider a damaged, elasto-plastic, and isotropic constitutive law given by

σ = DIE0 : (ε − εθ − εp), (5.2)

where under the infinitesimal deformation framework the balance of linear momen-
tum becomes (ρ ≈ ρo)

∇X · (DIE0 : (ε − εθ − εp)) + f = ρ
∂2u
∂t2

(5.3)

with infinitesimal strains given by ε = 1
2 (∇Xu + (∇Xu)T ), thermal strains given by

εθ
def= γ · (θ − θ0)1, where γ is the thermal expansion coefficient, and plastic strains

given by εp, generated by the following unilateral conditions

if ||σ′|| > σy ⇒ ζ̇ = a

( ||σ′||
σy

− 1

)
(5.4)

and
if ||σ′|| ≤ σy ⇒ ζ̇ = 0 (5.5)

where ε̇p = ζ̇ σ′
||σ′|| and σ′ = σ − trσ

3 1 is the deviatoric stress. Here, the (isotropic)
damaged elasticity tensor is IE = DIE0, where IE0 represents the “virgin” isotropic
undamaged material, 0 ≤ D ≤ 1 is the scalar continuity (isotropic damage) para-
meter (Kachanov [57]), D(t = 0) = 1 indicates the initial undamaged state, and
D → 0 indicates a completely damaged state. The damage arising from mechan-
ical and chemical sources is modeled as being governed by evolution over-stress
functions of the form (0 < D ≤ 1)

||σ′|| > σd ⇒ Ḋ = b

( ||σ′||
σd

− 1

)
(5.6)

and
||σ′|| ≤ σd ⇒ Ḋ = 0, (5.7)

We note that the rate constants a and b and the critical stresses σy and σd are possibly
spatially variable. Clearly, further evolution laws can be written for other material
property changes, such as the thermal conductivity, although only changes in the
mechanical property IE are considered during the formulations to follow.1 In the
case of material isotropy,

1For further details on these types of phenomenological (damage) formulations, the interested reader
is referred to the seminal work of Kachanov [57].
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σ = D (
λ0tr(ε − εθ − εp)1 + 2μ0(ε − εθ − εp)

)
, (5.8)

where λ0 is the undamaged Lame parameter andμ0 is the undamaged shear modulus.
Balance of energy

The interconversions of various forms of energy (mechanical, thermal, etc.) in a
system are governed by the first law of thermodynamics,

ρẇ − σ : ∇x u̇ + ∇x · q − ρz = 0, (5.9)

where w is the stored energy per unit mass (which is a function of the temperature,
θ and elastic strain, εe = ε − εθ − εp), q is heat flux, and ρz is the rate of energy
absorbed from sources. We employ the following for the stored energy (assuming
infinitesimal deformations)

ρw = W ≈ 1
2 (ε − εθ − εp) : IE : (ε − εθ − εp) + ρCθ, (5.10)

which implies (here assuming C �= C(t))

ρẇ = Ẇ = (ε̇− ε̇θ − ε̇p) : IE : (ε− εθ − εp)+ 1

2
(ε− εθ − εp) : İE : (ε− εθ − εp)+ρC θ̇,

(5.11)
and thus the first law becomes

ρC θ̇ = σ : (ε̇θ+ε̇p)−1

2
(ε−εθ−εp) : İE : (ε−εθ−εp)+∇X ·(IK ·∇Xθ)+ρz (5.12)

where Fourier’s law, q = −IK · ∇Xθ, has been used.

5.2 Iterative Staggering Scheme

We now develop a staggering solution framework to solve the coupled systems of
interest. The general methodology is as follows (at a given time increment): (1)
each field equation is solved individually, “freezing” the other (coupled) fields in the
system, allowing only the primary field to be active and (2) after the solution of each
field equation, the primary field variable is updated, and the next field equation is
treated in a similar manner. For an “implicit” type of staggering, the process can be
repeated in an iterative manner, while for an “explicit” type, one moves to the next
time-step after one “passes” through the system.Wewill employ implicit staggering.
Specifically, for the thermo-mechanical system under consideration, consider an
abstract setting, whereby one solves for the mechanical field, assuming the thermal
field is fixed (L is a time-step counter and K is a staggering-step counter),

A1(uL+1,K , θL+1,K−1) = B1(uL+1,K−1, θL+1,K−1) (5.13)
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then one solves for the thermal fields, assuming the mechanical field fixed,

A2(uL+1,K , θL+1,K ) = B2(uL+1,K , θL+1,K−1) (5.14)

where the only underlined variable is “active” at that stage of the process. Within the
staggering (iterative) scheme, implicit time-stepping methods (with time-step size
adaptivity) will be used throughout the upcoming analysis (described shortly). The
process is driven by minimizing nondimensional relative-iteration-coupling error (of
both fields) within a time-step (difference between successive iterations). A tolerance
check determines whether the iterations should continue, or if the time-steps should
be adaptively reduced to increase the rate of convergence. As alluded to earlier, the
time-steps can be increased if convergence occurs too quickly, thus allowing larger
time-steps and faster simulations for a given iterative error tolerance. The details
of this process are discussed shortly. Generally speaking, if a recursive staggering
process is not employed (an explicit coupling scheme), the staggering error can accu-
mulate rapidly. However, simply employing extremely small time-steps, smaller than
needed to control the discretization error, in order to suppress a (nonrecursive) stag-
gering process error, can be computationally inefficient. Therefore, the objective of
the next subsection is to develop a strategy to adaptively adjust, in fact maximize, the
choice of the time-step size in order to control the staggering error, while simultane-
ously staying below a critical time-step size needed to control the discretization error.
An important related issue is to simultaneously minimize the computational effort
involved. We now develop a staggering scheme by extending an approach found in
the work of Zohdi [1–33].

Remark 1 The symbol || · || will signify the L2(Ω)-norm throughout this work. The
nondimensional error metric for the mechanical field is (where we assume that the
denominator is nonzero)

�K
u

def= ||uL+1,K − uL+1,K−1||
||uL+1,K − uL || , (5.15)

and for the thermodynamic field

�K
θ

def= ||θL+1,K − θL+1,K−1||
||θL+1,K − θL || . (5.16)

Thereafter, we select the maximum nondimensionalized error for adaptivity

�∗,K def= max(�K
u ,�K

θ ). (5.17)

Remark 2 Staggering schemes are widely used in the computational mechanics lit-
erature, dating back, at least, to Zienkiewicz [58] and Zienkiewicz et. al. [59]. For
in-depth overviews, see theworks of Lewis and Schrefler (Lewis et. al. [60] andLewis
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Fig. 5.1 A typical three-dimensional finite difference stencil for a field w(x, y, z)

and Schrefler [61]) and a series of works by Schrefler and collaborators: Schrefler
[62], Turska and Schrefler [63], Biano et. al. [64], and Wang and Schrefler [65].

Spatial discretization of the fields
Numerically, the components of the gradient of functions such as u and θ are

approximated by central finite difference stencils of the basic form (Fig. 5.1):

∂ui
∂x j

|x ≈ ui (x j+Δx j )−ui (x j − Δx j )

2Δx j
(5.18)

for each of the (x1, x2, x3)-directions, in order to form the terms needed in ∇xu and
∇x · σ. This is a second-order accurate stencil. For a generic second-order scheme
spatial derivative, such as

∂σ

∂x
|x ≈ σ(x + Δx

2 ) − σ(x − Δx
2 )

Δx
, (5.19)

where generically, for example with an arbitrary material coefficient a(x) = λ(x) or
a(x) = μ(x):
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σ(x + Δx

2
) ≈ a(x + Δx

2
)
u(x + Δx) − u(x)

Δx︸ ︷︷ ︸
∂u
∂x |x+ Δx

2

(5.20)

and

σ(x − Δx

2
) ≈ a(x − Δx

2
)
u(x) − u(x − Δx)

Δx︸ ︷︷ ︸
∂u
∂x |x− Δx

2

, (5.21)

where

a(x + Δx

2
) ≈ 1

2
(a(x + Δx) + a(x)), (5.22)

and

a(x − Δx

2
) ≈ 1

2
(a(x) + a(x − Δx)). (5.23)

These approximations are made for all components and combinations in ∇x ·σ. The
mixed derivatives are derived in a similar manner, summarized in Chapter Appendix
1. Similarly, for a second-order scheme spatial derivatives in heat conduction

∂q

∂x
|x ≈ q(x + Δx

2 ) − q(x − Δx
2 )

Δx
, (5.24)

where (in conjunction with Fourier’s Law)

q(x + Δx

2
) ≈ −IK(x + Δx

2
)
θ(x + Δx) − θ(x)

Δx︸ ︷︷ ︸
∂θ
∂x |x+ Δx

2

(5.25)

and

q(x − Δx

2
) ≈ −IK(x − Δx

2
)
θ(x) − θ(x − Δx)

Δx︸ ︷︷ ︸
∂θ
∂x |x− Δx

2

, (5.26)

where

IK(x + Δx

2
) ≈ 1

2
(IK(x + Δx) + IK(x)), (5.27)
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and

IK(x − Δx

2
) ≈ 1

2
(IK(x) + IK(x − Δx)). (5.28)

These approximations are made for ∂q1
∂x1

, ∂q2
∂x2

, and ∂q3
∂x3

, in order to form the terms
needed in ∇x · q. This is done at each node in the grid. See Chapter Appendix 1 for
more details.

5.3 Temporal Discretization of Fields

Mechanical fields
For the mechanical field (infinitesimal deformation formulation), we write

dv
dt

= ∂v
∂t

= 1

ρ
(∇X · σ + f )

def= Ψ . (5.29)

We discretize for time = t+φΔt , and using a trapezoidal “φ−scheme” (0 ≤ φ ≤ 1,
see Chapter Appendix 2)

v(t + Δt) − v(t)
Δt

≈ Ψ (t + φΔt) ≈ φΨ (t + Δt) + (1 − φ)Ψ (t). (5.30)

Rearranging yields

v(t + Δt) ≈ v(t) + Δt (φΨ (t + Δt) + (1 − φ)Ψ (t)) (5.31)

where the previously introduced spatial discretization is applied to the terms in Ψ

(∇x · σ). Since this is a second-order system, the procedure is then repeated to
determine the displacement field u (see Chapter Appendix 2)

u(t + Δt) = u(t) + v(t + φΔt)Δt (5.32)

= u(t) + (φv(t + Δt) + (1 − φ)v(t))Δt,

or more explicitly

u(t + Δt) = u(t) + v(t)Δt + φ(Δt)2Ψ (t + φΔt). (5.33)

The term Ψ (t + φΔt) can be handled in two main ways:

• Ψ (t + φΔt) ≈ Ψ (φu(t + Δt) + (1 − φ)u(t)) or
• Ψ (t + φΔt) ≈ φΨ (u(t + Δt)) + (1 − φ)Ψ (u(t)).
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The differences are quite small between either of the above; thus, for brevity, we
choose the latter. Therefore,

u(t + Δt) = u(t) + v(t)Δt + φ(Δt)2 (φΨ (t + Δt) + (1 − φ)Ψ (t)) . (5.34)

When φ = 1, then this approach can be considered to be a (implicit) Backward
Euler scheme, which is very stable (very dissipative) and O((Δt)2) locally in time,
while if φ = 0, the scheme can be considered as a (explicit) Forward Euler scheme,
which is conditionally stable and O((Δt)2) locally in time and if φ = 0.5, then
the scheme can be considered as a (implicit) Midpoint scheme, which is marginally
stable and Ô((Δt)2) = O((Δt)3) locally in time. The dependent plastic and damage
variables are also integrated in a similar manner

ε(t + Δt) = ε(t) + Δt (φε̇(t + Δt) + (1 − φ)ε̇(t)) (5.35)

and

D(t + Δt) = D(t) + Δt
(
φḊ(t + Δt) + (1 − φ)Ḋ(t)

)
. (5.36)

Thermal fields
For the thermal field, we write

∂θ

∂t
= 1

ρC

(
σ : (ε̇θ + ε̇p) − 1

2
(ε − εθ − εp) : İE : (ε − εθ − εp) + ∇X · (IK · ∇X θ) + ρz

)
def= Y .

(5.37)
We discretize for around the time = t + φΔt , yielding

θ(t + Δt) ≈ θ(t) + Δt (φY(t + Δt) + (1 − φ)Y(t)) , (5.38)

where the previously introduced spatial discretization is applied to the terms in Y .

5.4 The Overall Solution Scheme

In order to construct a solution, the algorithm is as follows:

• (1) Spatiotemporal discretization: Construct derivative terms such as

∂u(x)

∂x
≈ u(x + Δx) − u(x − Δx)

2Δx
, etc., (5.39)

and insert into them the governing equations. This leads to a system of coupled
equations, for each node ((i, j, k) in Fig. 5.2), which are cast in the following
(implicit/recursive) form (which are a recasting of the abstract system (Eqs. 5.13
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Fig. 5.2 Overall coupled staggering (left) solution and the matrix-free approach (right)

and 5.14))
u(t + Δt) = F(u(t + Δt), θ(t + Δt), ...), (5.40)

and
θ(t + Δt) = Y(u(t + Δt), θ(t + Δt), ...). (5.41)

• (2) System staggering: Compute u-field with θ-fields fixed, then compute θ-field
with u-fields fixed, etc., and iterate at time interval L + 1, K = 1, 2, ... for

uL+1,K = F(uL+1,K−1, θL+1,K−1), (5.42)

and
θL+1,K = Y(uL+1,K , θL+1,K−1), (5.43)

Solving each of the above equations (5.42 and 5.43), with the respective other fields
fixed, can be achieved in a variety of ways, for example iteratively or by direct
(Gaussian-type) solutionmethods (Fig. 5.2). For example, an interior iterative loop,
within the staggering loop (within a time-step), can be used to update the solution
to solve the individual field, for example themechanical field, beforemoving to the
next field (e.g., the thermal field). Those internal iterations can be performed until
that individual field converges. This can then be repeated for the next field. This
would then complete one staggering iteration. There are of course many possible
variants of this process. In theory, one could even simply perform an explicit update
(no recursion). This is discussed further in the remarks that follow.

• (3) Compute error measures: �∗,K def= max(�K
u ,�K

θ ), i = 1, . . . , nodes in the
system.

• (4a) If tolerance is met, �∗,K ≤ Ctol and K ≤ Kd , then:

(i) Increment time forward: t = t + Δt ,

(ii) Construct new time-step: Δtnew = ΦKΔtold, where ΦK
def=

(
(
Ctol
�∗,0 )

1
pKd

( �∗,K

�∗,0 )
1
pK

)
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(iii) Select Δt = min(Δt lim,Δt) and go to (1)

• (4b) If tolerance is not met, �∗,K > Ctol and K = Kd , then construct (refine) new

time-step: Δtnew
def= ΦKΔtold

ΦK
def=

(
( Ctol

�∗,0 )
1

pKd

(�∗,K

�∗,0 )
1
pK

)
(5.44)

and go to (1). This time-scaling relation is derived in Chapter Appendix 3.

At a given time, once the process is complete, then the time is incremented forward
and the process is repeated. The overall goal is to deliver solutions where the iter-
ative error is controlled and the temporal discretization accuracy dictates the upper
limit on the time-step size (Δt lim). Clearly, there are various combinations of solu-
tion methods that one can choose. For example, for the overall field coupling, one
may choose implicit or explicit staggering and, within the staggering process, either
implicit (0 < φ ≤ 1) or explicit time-stepping (φ = 0). As mentioned previously
in the case of implicit time-stepping, one can use iterative or direct solvers for the
balance of linear momentum and the first law of thermodynamics (Fig. 5.2).

Algorithmic observation 1
It is important to emphasize that one should use the previous (converged) time-

step’s solution as the starting guess for the next time-step to obtain a “head-start”
(uK=0(t + Δt) = u(t)). When selecting a time-step, one must balance accuracy
concerns and, simultaneously, stability issues.2 Clearly, the smaller the time-step,
the more stable the solution process; however, more time-steps implies more system
evaluations. Since themultifield staggering scheme iterates anyway, implicitmethods
are preferred for the applications of interest. As the physics changes, the field that
is most sensitive (exhibits the largest amount of relative nondimensional change)
dictates the time-step size. Because the internal system solvers within the staggering
scheme are also iterative and use the previously converged solution as their starting
value to solve the system of equations, a field that is relatively insensitive at a given
stage of the simulation will converge in a very few internal iterations (perhaps even
one).

Algorithmic observation 2
Generally speaking, the solution to the individual field equations progresses in a

node-by-node fashion whereby, at a node (i, j, k), for example for the mechanical
field calculations, one has an abstract form

u(t + Δt) ≈ F(u(t), u(t + Δt), θ(t), θ(t + Δt)), (5.45)

where the term on the left-hand side is updated and the terms on the right-hand side
are previously iterated (old) values. This entails using the old values for all finite dif-

2Typically, the number of iterations needed to solve the coupled system, if an iterative scheme is
used, increases with the time-step size and the value of φ.
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ference stencils that eventually become updated only after the algorithm completely
traverses through the system, updating values, node by node (no matrices need to
be formed, Fig. 5.2). There exist many methods to accelerate such computations,
such as successive over-relaxation, based on the pioneering work of Young [66]. For
reviews, see Ames [67] or Axelsson [68]. Note that for the mechanical field calcu-
lations the thermal field is instantaneously fixed and is updated only when it is to be
solved, in the staggered manner (fixing the mechanical variables). At the algebraic
equation solution level, after the individual field has been solved, the entire solution
is passed to the next field equation, as described in the previous algorithm (Fig. 5.2).
This is a Jacobi-type scheme, whereby the updates are made only after one complete
system iteration, which is easier to address theoretically, as opposed to a Gauss–
Seidel-type method, which involves immediately using the most current field values,
when they become available. The Jacobi method is easily parallelizable, if desired.
In other words, the calculation for each node is (momentarily) uncoupled, with the
updates only coming at the end of an iteration. Gauss–Seidel, since it requires the
most current updates, couples the nodal calculations immediately.

5.5 Numerical Examples

As a model problem, we consider a group of particles with a smaller-scale interstitial
(compacted very fine particle) material that is assumed to be a continuous phase.
We generated a group of Np randomly dispersed spherical particles, of equal size,
embedded in a cubical domain of dimensions, D × D × D. The particle size was
determined by a particle/sample size ratio, which was defined via a subvolume size

V
def= D×D×D

Np
. The nondimensional ratio between the particle radii (R) and the

subvolume was denoted by L def= R

V
1
3
. The volume fraction occupied by the particles

consequently can be written as vp
def= 4πL3

3 . Thus, the total volume occupied by the
particles denoted ζ can be written as ζ = vpNpV . Large values of ζ > 0.5 allow for
overlap. We used Np = 100 particles (Fig. 5.9). This sample size was arrived at by
successively enlarging sample until there were no significant changes in the overall
system response for further enlargements. The classical random sequential addition
algorithm was used to place nonoverlapping particles randomly into the domain of
interest (RSA; Widom [69]). The particles were then enlarged from those locations
and allowed to overlap (Fig. 5.3).

Remark For higher volume fractions, during the first phase of this algorithm (particle
placement), more sophisticated algorithms, such as the equilibrium-driven Metropo-
lis algorithm, can be used ormethods based on simultaneous particle flow and growth
found in Torquato [70], Kansaal et. al. [71], and Donev et. al. [72–74].

Sample size selection
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SUBSAMPLE

BC’S APPLIEDCURING
MATERIAL

Fig. 5.3 Left: Hot deposited particles on a surface. With the framing method, a sample is probed
with interior subsamples, within the larger sample, in order to avoid boundary layer effects that
occur from imposing boundary conditions on the large-sample exterior. Right: Amesh of the curing
subsample (showing only one of the particle phases for illustration purposes)

In order to select a suitably sized sample that is statistically representative
(a RVE), we employ a “framing” method, whereby the boundary conditions are
applied (u and θ) to the boundary of a sample (Fig. 5.9), and an interior subsample
is used to probe what the material would experience without the direct influence of
the applied boundary conditions. This approach avoids introducing boundary layer
effects into the interior response. For more details, see Zohdi [1–33]. An implemen-
tation of a “framing” approach is as follows:

• STEP (1): Generate a sample with a certain number of particles in its interior,
• STEP (2): For the effective property calculation (averaging), select a subsample
(“a sub-box,” Fig. 5.9) in the interior (to avoid boundary layer effects that arise
from the imposition of boundary conditions),

• STEP (3): Repeat STEPS (1) and (2) for different random realizations for a given
sample size, and average the resulting response to determine a mean value,

• STEP (4): Repeat STEPS (1)–(3) for a larger sample,
• STEP (5): Continue the process (STEPS (1)–(4)) until the response ceases to
change to within an acceptable tolerance.

For a more in-depth discussion on size-effect issues, see the works of Zohdi [1–
33].

Numerical examples
As an example, the following parameters were used:

• Reference temperature, θr = 600 ◦K,
• Initial temperature, θ0 = 600 ◦K,
• Total time, T = 10−5 s,
• Initial time-step size, Δt = 10−10 s,
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• Damage lower bound, α = 0.1,
• Displacement loading on all sides u = (0, 0, 0) m,
• Temperature of all sides, θ(t) = −300◦ t

T + 600 ◦K,
• Dimensions of the sample, 0.001m × 0.001m × 0.001 m,
• Particles in the sample, Np = 100,
• Base density, ρ = 1000 kg/m3,
• Base Lame parameters, λo = 10 GPa, μo = 3 GPa,
• Base conductivity, IKo = Ko1, Ko = 100 W/◦K − m,
• Base thermal expansion coefficient, βo = 0.000001, 1/◦K,
• Base heat capacity, Co = 10 J/K◦ − kg,
• Base plastic rate coefficient, ao = 0.001,
• Base yield stress, σyo = 10 MPa,
• Base damage rate coefficient, bo = −10000000,
• Base damage flow stress, σdo = 10 MPa,
• Relative densities, ρ1r = ρ1

ρ
= 1, ρ2r = ρ2

ρ
= 2,

• Relative Lame parameters, λ1r = λ1
λo
, λ2r = λ2

λo
= 5,

• Relative Lame parameters, μ1r = μ1

μo
= 1, μ2r = μ2

μo
= 5,

• Relative conductivity, K1r = IK1
IKo

= 1, K2r = IK2
IKo

= 5,

• Relative thermal expansion, β1r = β1

βo
= 1, β2r = β2

βo
= 10,

• Relative heat capacity, C1r = C1
Co

= 1, C2r = C2
Co

= 2,
• Relative plastic rate coefficient, a1r = a1

ao
= 1, a2r = a2

ao
= 1,

• Relative damage rate coefficient, b1r = b1
bo

= 1, b2r = b2
bo

= 1,
• Relative plastic yield, σy1r = σy1

σyo
= 1, σy2r = σy2

σyo
= 5,

• Relative damage threshold, σd1r = σd1
σdo

= 1, σd1r = σd2
σdo

= 5,
• A time-stepping factor φ = 0.5 (midpoint rule),
• An overlapping length scale of the particles of ζ = 0.625,
• The number of desired iterations per time-step set to Kd = 5, along with a cou-
pling/staggering tolerance of Ctol = 10−2,

• Weights for the iterative error norm, w1 = 0.5 and w2 = 0.5.

Throughout the computations, the spatial discretization meshes were repeatedly
refined until the solutions did not exhibit any more sensitivity to further refinement
of the grid-spacing. We started with meshes such as a 21 × 21 × 21 mesh, arising
from having a cubical mesh with 10 nodes from the centerline plane of symmetry
and one node in the middle, and then repeatedly refined in the following sequential
manner:

1. Mesh # 1: a 21× 21× 21 mesh, which has 9,261 degrees of freedom (DOF) for
the thermal field and 27,783 DOF for the mechanical field, for a total of 37,044
DOF.

2. Mesh # 2: a 41× 41× 41 mesh, which has 68921 DOF for the thermal field and
206783 DOF for the mechanical field, for a total of 275,684 DOF.

3. Mesh # 3: a 61 × 61 × 61 mesh, which has 226,981 DOF for the thermal field
and 680,943 DOF for the mechanical field, for a total of 907,924 DOF.
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4. Mesh # 4: a 81 × 81 × 81 mesh, which has 531,441 DOF for the thermal field
and 1,594,322 DOF for the mechanical field, for a total of 2,125,764 DOF.

Approximately between a 61-level and a 81-level mesh, the results stabilized,
indicating that the results are essentially free of any appreciable numerical error. All
numerical results are shown in Figs. 5.4, 5.5, 5.6, and 5.7. At the length scales of
interest, it is questionable whether the ideas of a sharp material interface are justi-
fied. Accordingly, we simulated the system with and without Laplacian smoothing,
whereby one smooths the material data by post-processing the material data, node
by node, to produce a smoother material representation, for example, for the thermal
conductivity, ˆIK (using the stencil in Fig. 5.8 in Chapter Appendix 1)

∇2
X IK = 0 ⇒ ˆIKi, j,k = 1

6

(
IKi+1, j,k + IKi−1, j,k + IKi, j+1,k + IKi, j−1,k + IKi, j,k+1 + IKi, j,k−1

)
. (5.46)

The same was done for the mechanical properties by enforcing ∇2
Xλ0 = 0 and

∇2
Xμ0 = 0 and as well as other material data. The simulations were run with and

without data smoothing, with the results being negligibly different for sufficiently
fine meshes (Fig. 5.9). In particular, Fig. 5.9 depicts a typical microstructure showing
the contact area (only illustrating one of the phases), while Fig. 5.4 shows successive
frames of the deviatoric stress, 25% into the interior of the sample. Figures5.5, 5.6,
and 5.7 illustrate the various metrics that a materials designer would be interested in
quantifying. In Fig. 5.7, the variation of the time-step size (normalized by the starting
time-step size) is depicted. The size of the time-steps was purposely started quite
small (Δt = 10−10 s) and given an enlargement cap of 50 times in magnitude. This
allows the system to slowly evolve to capture the quite transient behavior. During the
bulk of the computation, the large steps were warranted (the time-step size evolved),
as dictated by the physics and the adaptive algorithm. For other material selections
and loading regimes, other adaptivity modes can occur. All simulations were run on
a standard laptop requiring minimal memory requirements. It is important to stress
that it is virtually impossible to determine a priori whether the initial time step is
adequate to meet a tolerance and whether adaptivity is needed. Obviously, we can
use this scheme for any (trapezoidal) value of 0 ≤ φ ≤ 1. Time-step size adaptivity
is important, since the solution can dramatically change over the course of time,
possibly requiring quite different time-step sizes to control the iterative (staggering)
error. However, to maintain the accuracy of the time-stepping scheme, one must
respect an upper bound dictated by the discretization error, i.e., Δt ≤ Δt lim . The
example shown was simply to illustrate the overall process.

Remark While our stated focus is on the evolution of stresses in deposited hot pow-
ders/particles, a by-product of the analysis is the post-processing of the overall effec-
tive properties such as, for the mechanical fields

〈σ〉Ω = F∗(〈ε〉Ω), (5.47)
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Fig. 5.4 From left to right and top to bottom: the deviatoric stress (in gigapascals). Themorphology
is shown in Fig. 5.9

where 〈·〉Ω def= 1
|Ω|

∫
Ω

·dΩ . Similarly, one can generate effective thermal responses
through

〈q〉Ω = G∗(〈∇θ〉Ω). (5.48)
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Fig. 5.5 Left: The volume averaged normed deviator ||σ′|| (in gigapascals). Right: The volume

averaged pressure p
def= trσ

3 (in gigapascals)

Fig. 5.6 Left: The volume averaged temperature 〈θ〉Ω (in Kelvin) Right: The volume averaged
norm of the plastic strain ||εp||

See Zohdi [1–33] for more details. As we have introduced earlier, there are a
variety of estimates for effective responses. The numerical procedures in this chapter
augment those classical approaches and are a more “brute-force” and robust route,
since they can provide time-transient and nonlinear behavior directly.

5.6 Summary and Extensions

The spatial discretization grids used were uniform and dense, and the deposited
microstructure was embedded in spatial discretization. The regular grid allows one
to generate a matrix-free iterative formulation which is amenable to rapid calculation
and minimal memory requirements, making it ideal for laptop computation. Variants
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Fig. 5.7 Left: The volume averaged damage ||D||. Right: The time-step size variation
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of the technique have been applied to related problems involving more coupled
multiphysics, such as electro-magneto-thermo-mechano-chemo effects, in Zohdi
[1–33] whereby one computes the electrical field E with the magnetic field H , ther-
mal field θ, displacement field u, and chemical field c fixed, then computes H-field
with E, θ, u, and c fields fixed, etc., and iterates at time interval L +1, K = 1, 2, . . .
for (written directly in iterative implicit form)

EL+1,K = F(EL+1,K−1, H L+1,K−1, θL+1,K−1, uL+1,K−1, cL+1,K−1), (5.49)

and
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SUBSAMPLE

Fig. 5.9 Left: With the framing method, a sample is probed with interior subsamples, within the
larger sample, in order to avoid boundary layer effects that occur from imposing boundary conditions
on the large-sample exterior. Right: A mesh of the subsample

H L+1,K = G(EL+1,K , H L+1,K−1, θL+1,K−1, uL+1,K−1, cL+1,K−1), (5.50)

and

θL+1,K = Y(EL+1,K , H L+1,K , θL+1,K−1, uL+1,K−1, cL+1,K−1), (5.51)

and
uL+1,K = L(EL+1,K , H L+1,K , θL+1,K , uL+1,K−1, cL+1,K−1), (5.52)

and
cL+1,K = C(EL+1,K , H L+1,K , θL+1,K , uL+1,K , cL+1,K−1), (5.53)

where the only underlined variable is active at that stage of the process. One then

computes the maximum of the error measures �∗,K def= max(�K
E ,�K

H ,�K
θ ,�K

u ,

�K
c ) in order to determine if time-step adaptivity is necessary, as introduced ear-

lier for the thermo-mechanical scheme. Generally, the methods discussed in this
work can be combined to create hybrid block-partitioned approaches, whereby the
entire domain is partitioned into subdomains and within each subdomain an iterative
method is applied. In other words, for a subdomain, the values at all nodes from
outside are initially frozen, as far as calculations involving members of the group are
concerned. After each isolated subdomain’s solution (nodal values) has converged
(computed in parallel), then all nodal values are updated; i.e., the most current values
become available to all members of the grid, and the isolated subdomain calculations
are repeated. Although parallel computation of the introduced algorithms was not
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pursued in this work, it is currently being investigated by the author. Finally, in addi-
tion to the deposition of such material onto a substrate, there are a number of related
post-processes which make up a successful overall additive manufacturing process.
One key component is laser processing, which utilizes high-intensity beams to heat
the material to desired temperatures either to subsequently bond, soften, sinter, melt,
or ablate, in a very targeted manner. Laser-based heating is quite attractive because
of the degree of precision that it allows. As alluded to earlier, because of the mono-
chromatic and collimated nature of lasers, they are an attractive, highly controllable
way to process materials.3 The range of power of a typical industrial laser is rela-
tively wide, ranging from approximately 100–10000W. For example, carbon dioxide
(CO2) and yttrium aluminum garnet (YAG) lasers are commonly used. Typically,
the initial beam produced is in the form of collimated (parallel) rays that are 1–2 mm
apart, which are then focused with a lens onto a small focal point. Chapter Appendix
4 provides an example of laser simulation for particle-laden materials.

5.7 Chapter Appendix 1: Summary of Spatial Finite
Difference Stencils

The following standard approximations are used:

1. For the first derivative of a primal variable u at (x1, x2, x3):

∂u

∂x1
≈ u(x1 + Δx1, x2, x3) − u(x1 − Δx1, x2, x3)

2Δx1
(5.54)

2. For the derivative of a flux at (x1, x2, x3), with an arbitrary material coefficient
a:

∂

∂x1

(
a

∂u

∂x1

)
≈

(
a ∂u

∂x1

)
|
x1+ Δx1

2 ,x2,x3
−

(
a ∂u

∂x1

)
|
x1− Δx1

2 ,x2,x3

Δx1
(5.55)

= 1

Δx1

[
a(x1 + Δx1

2
, x2, x3)

(
u(x1 + Δx1, x2, x3) − u(x1, x2, x3)

Δx1

)]

− 1

Δx1

[
a(x1 − Δx1

2
, x2, x3)

(
u(x1, x2, x3) − u(x1 − Δx1, x2, x3)

Δx1

)]
,

where we have used

a(x1 + Δx1
2

, x2, x3) ≈ 1

2
(a(x1 + Δx1, x2, x3) + a(x1, x2, x3)) (5.56)

and

3In particular with pulsing, via continuous beam chopping or modulation of the voltage.
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a(x1 − Δx1
2

, x2, x3) ≈ 1

2
(a(x1, x2, x3) + a(x1 − Δx1, x2, x3)) (5.57)

3. For the cross-derivative of a flux at (x1, x2):

∂

∂x2

(
a

∂u

∂x1

)
≈ ∂

∂x2

(
a(x1, x2, x3)

(
u(x1 + Δx1, x2, x3) − u(x1 − Δx1, x2, x3)

2Δx1

))

≈ 1

4Δx1Δx2
(a(x1, x2 + Δx2, x3)

[
u(x1 + Δx1, x2 + Δx2, x3) − u(x1 − Δx1, x2 + Δx2, x3)

]

− a(x1, x2 − Δx2, x3)
[
u(x1 + Δx1, x2 − Δx2, x3) − u(x1 − Δx1, x2 − Δx2, x3)

]
), (5.58)

Remark To illustrate second-order accuracy, consider a Taylor series expansion for
an arbitrary function u

u(x+Δx) = u(x)+ ∂u

∂x
|xΔx+ 1

2

∂2u

∂x2
|x (Δx)2+ 1

6

∂3u

∂x3
|x (Δx)3+O((Δx)4) (5.59)

and

u(x−Δx) = u(x)− ∂u

∂x
|xΔx+ 1

2

∂2u

∂x2
|x (Δx)2− 1

6

∂3u

∂x3
|x (Δx)3+O((Δx)4) (5.60)

Subtracting the two expressions yields

∂u

∂x
|x = u(x + Δx) − u(x − Δx)

2Δx
+ O((Δx)2). (5.61)

5.8 Chapter Appendix 2: Second-Order Temporal
Discretization

Discretization of temporally second-order equations can be illustrated by considering
(with general variables U and V )

Ü = V̇ = Ψ (U). (5.62)

Expanding the field V in a Taylor series about t + φΔt , we obtain

V (t+Δt) = V (t+φΔt)+ dV
dt

|t+φΔt (1−φ)Δt+ 1

2

d2V

dt2
|t+φΔt (1−φ)2(Δt)2+O((Δt)3)

(5.63)
and

V (t) = V (t + φΔt) − dV
dt

|t+φΔtφΔt + 1

2

d2V
dt2

|t+φΔtφ
2(Δt)2 + O((Δt)3) (5.64)

Subtracting the two expressions yields
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dV
dt

|t+φΔt = V (t + Δt) − V (t)

Δt
+ Ô(Δt), (5.65)

where Ô(Δt) = O((Δt)2), when φ = 1
2 . Thus, inserting this into the governing

equation yields

V (t + Δt) = V (t) + ΔtΨ (t + φΔt) + Ô((Δt)2). (5.66)

Note that adding a weighted sum of Eqs. 5.63 and 5.64 yields

V (t + φΔt) = φV (t + Δt) + (1 − φ)V (t) + O((Δt)2), (5.67)

which will be useful shortly. Now expanding the field U in a Taylor series about
t + φΔt , we obtain

U(t+Δt) = U(t+φΔt)+ dU
dt

|t+φΔt (1−φ)Δt+ 1

2

d2U

dt2
|t+φΔt (1−φ)2(Δt)2+O((Δt)3)

(5.68)
and

U(t) = U(t + φΔt) − dU
dt

|t+φΔtφΔt + 1

2

d2U
dt2

|t+φΔtφ
2(Δt)2 +O((Δt)3). (5.69)

Subtracting the two expressions yields

U(t + Δt) − U(t)

Δt
= V (t + φΔt) + Ô(Δt). (5.70)

Inserting Eq.5.67 yields

U(t + Δt) = U(t) + (φV (t + Δt) + (1 − φ)V (t))Δt + Ô((Δt)2). (5.71)

Thus, using Eq.5.66 yields

U(t + Δt) = U(t) + V (t)Δt + φ(Δt)2Ψ (U(t + φΔt)) + Ô((Δt)2). (5.72)

The term Ψ (U(t + φΔt)) can be handled in two main ways:

• Ψ (t + φΔt) ≈ Ψ (φU(t + Δt) + (1 − φ)U(t)) or
• Ψ (t + φΔt) ≈ φΨ (U(t + Δt)) + (1 − φ)Ψ (U(t)).

The differences are quite minute between either of the above; thus, for brevity,
we choose the latter. In summary, we have the following:

U(t + Δt) = U(t) + V (t)Δt + φ(Δt)2 (φΨ (U(t + Δt)) + (1 − φ)Ψ (U(t))) + Ô((Δt)2).
(5.73)

We note that
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• When φ = 1, then this is the (implicit) Backward Euler scheme, which is very
stable (very dissipative) and O((Δt)2) locally in time,

• When φ = 0, then this is the (explicit) Forward Euler scheme, which is condition-
ally stable and O((Δt)2) locally in time,

• When φ = 0.5, then this is the (implicit) “Midpoint” scheme, which is stable and
Ô((Δt)2) = O((Δt)3) locally in time.

In summary, we have for the velocity4

V (t + Δt) = V (t) + Δt (φΨ (U(t + Δt)) + (1 − φ)Ψ (U(t))) (5.74)

and for the position

U(t + Δt) = U(t) + V (t + φΔt)Δt (5.75)

= U(t) + (φV (t + Δt) + (1 − φ)V (t))Δt,

or more explicitly,

U(t + Δt) = U(t) + V (t)Δt + φ(Δt)2 (φΨ (U(t + Δt)) + (1 − φ)Ψ (U(t))) .

(5.76)

In iterative (recursion) form,

U L+1,K = (φΔt)2Ψ (U L+1,K−1)︸ ︷︷ ︸
G(U L+1,K−1)

+U L + V LΔt + (Δt)2φ(1 − φ)Ψ (U L)︸ ︷︷ ︸
R

(5.77)

Remark Applying this scheme to the balance of linear momentum continuum for-
mulation, under infinitesimal deformations, ∇X · σ + f = ρ∂2u

∂t2 , we use Ψ (u(t)) =
∇X ·σ+ f

ρ
and must apply the (iterative) process introduced earlier to all nodes in the

system.

5.9 Chapter Appendix 3: Temporally Adaptive Iterative
Methods

Implicit time-stepping methods, with time-step size adaptivity, built on approaches
found in Zohdi [1–33] were used throughout the analysis in the body of this work.
In order to introduce basic concepts, we consider a first-order differential equation
for a field W :

4In order to streamline the notation, we drop the cumbersome O(Δt)-type terms.
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Ẇ = Λ(W), (5.78)

which after being discretized using a trapezoidal “φ-method” (0 ≤ φ ≤ 1)

W L+1 = W L + Δt
(
φΛ(W L+1) + (1 − φ)Λ(W L)

)
. (5.79)

Generally, for systems of equations of this form, a straightforward iterative scheme
can be written as

W L+1,K = G(W L+1,K−1) + R, (5.80)

where R is a remainder term that does not depend on the solution, i.e., R �=
R(W L+1), and K = 1, 2, 3, . . . is the index of iteration within time-step L + 1.
The convergence of such a scheme is dependent on the behavior of G. Namely, a suf-
ficient condition for convergence is that G is a contraction mapping for all W L+1,K ,
K = 1, 2, 3, .... In order to investigate this further, we define the iteration error as

�L+1,K def= ||W L+1,K − W L+1||. (5.81)

A necessary restriction for convergence is iterative self-consistency, i.e., the “exact”
(discretized) solution must be represented by the scheme

G(W L+1) + R = W L+1. (5.82)

Enforcing this restriction, a sufficient condition for convergence is the existence of
a contraction mapping

�L+1,K = ||W L+1,K − W L+1|| = ||G(W L+1,K−1) − G(W L+1)|| (5.83)

≤ ηL+1,K ||W L+1,K−1 − W L+1||, (5.84)

where if 0 ≤ ηL+1,K < 1 for each iteration K , then �L+1,K → 0 for any arbitrary
starting valueW L+1,K=0, as K → ∞. This type of contraction condition is sufficient,
but not necessary, for convergence. Inserting these approximations into Ẇ = Λ(W)

leads to

W L+1,K ≈ Δt
(
φΛ(W L+1,K−1)

)
︸ ︷︷ ︸

G(W L+1,K−1)

+Δt (1 − φ)Λ(W L) + W L︸ ︷︷ ︸
R

, (5.85)

whose contraction constant is scaled by η ∝ φΔt . Therefore, if convergence is
slow within a time-step, the time step size, which is adjustable, can be reduced by an
appropriate amount to increase the rate of convergence. Decreasing the time-step size
improves the convergence; however, we want to simultaneously maximize the time-
step sizes to decrease overall computing time, while still meeting an error tolerance
on the numerical solution’s accuracy. In order to achieve this goal, we follow an
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approach found inZohdi [1–33] originally developed for continuum thermo-chemical
multifield problems in which one firstly approximates

ηL+1,K ≈ S(Δt)p (5.86)

(S is a constant) and secondly one assumes the error within an iteration to behave
according to

(S(Δt)p)K�L+1,0 = �L+1,K , (5.87)

K = 1, 2, . . ., where�L+1,0 is the initial norm of the iterative error and S is intrinsic
to the system.5 Our goal is to meet an error tolerance in exactly a preset number of
iterations. To this end, one writes

(S(Δttol)
p)Kd�L+1,0 = Ctol, (5.88)

where Ctol is a (coupling) tolerance and Kd is the number of desired iterations.6 If
the error tolerance is not met in the desired number of iterations, the contraction
constant ηL+1,K is too large. Accordingly, one can solve for a new smaller step size,
under the assumption that S is constant,

Δttol = Δt

(
( Ctol

�L+1,0 )
1

pKd

(�L+1,K

�L+1,0 )
1
pK

)
. (5.89)

The assumption that S is constant is not critical, since the time-steps are to be recur-
sively refined and unrefined throughout the simulation. Clearly, the expression in
Eq.5.89 can also be used for time-step enlargement, if convergence is met in less
than Kd iterations.7

5.10 Chapter Appendix 4: Laser Processing

One concern of manufacturers is the microstructural defects generated in additively
manufactured products, created by imprecisely controlled heat-affected zones, and
brought on by miscalibration of the laser power needed for a specific goal. For
example, due to the rise of one particular branch of additive manufacturing, printed
flexible electronics, involving sensitive substrates, it has become important to pre-

5For the class of problems under consideration, due to the linear dependency on Δt , p ≈ 1.
6Typically, Kd is chosen to be between five to ten iterations.
7At the implementation level, since the exact solution is unknown, the following relative error term

is used, �L+1,K def= ||W L+1,K − W L+1,K−1||.
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cisely understand howmuch laser input is needed.Withminimal additional modeling
and simulation effort, one can add laser input to the previously introduced model.

5.10.1 Formulations for Particulate-Laden Continua

The specificmanufacturing scenario thatweare interested inmodeling is a particulate-
functionalized composite material which experiences laser-pulsing in a targeted
region. This covers a wide range of applications in additive manufacturing. Of par-
ticular interest is the resolution of thermal and residual stresses. Accordingly, this
section is concerned with the computational characterization of the evolution of
thermal and stress fields, in materials with particulate-functionalized microstructure
using direct methods.

Laser input
Selective laser processing/sintering was pioneered by Householder [75] in 1979

and Deckard [76] in the mid-1980s. Generally, an overall technological goal is to
develop computational tools to accelerate the manufacturing of printed electronics.
Lasers can play a central role in precisely processing these systems. To describe the
laser–target interaction, the following must be accounted for: (a) absorption of laser
energy input, (b) beam interference (attenuation) from the heterogeneous media,
and (c) heat transfer by conduction. There are varying degrees of sophistication for
modeling the heat input from a laser, for example (Zohdi [1–33]). We utilize the
Beer–Lambert law, whereby one performs an overall power balance (Fig. 6.5):

(I + ΔI ) − I + LΔζ = 0 ⇒ d I

dζ
= L ≈ −αI, (5.90)

where L ≈ αI is the absorbed irradiance (per unit area) from the laser and ζ = ζ∗
is the penetration location depth, which is solved to yield

I (ζ∗) = Ioe
− ∫ ζ∗

0 αdζ . (5.91)

This is then incorporated into the first law of thermodynamics.

Remark We could perform a discretization of the irradiant beam into rays and per-
form a full-blown ray-tracking scheme (seeZohdi [1–33]), or performa discretization
of the beam into its electromagnetic field components via Maxwell’s equations (see
Zohdi [1–33]). While such approaches provide extremely detailed field information
at the smallest scales, they are extraordinarily computationally expensive and, for
the applications in this work, unwarranted. The Beer–Lambert framework provides
an approach that is useful for practical computation. In such an approach, one can
easily introduce nonuniform beam profiles, for example

I (r) = I (r = 0)e−c||r−ro||, (5.92)

http://dx.doi.org/10.1007/978-3-319-70079-3_6
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where ||r − ro|| is the distance from the center of the incident beam line. In the
case of c = 0, we recapture a flat beam, I (r) = I (r = 0). The previous thermo-
mechanical formulation in this chapter is then used. Following Zohdi [1–33], we
consider a model problem of a particulate composite. The essential field equations
and simplifying assumptions that will be used during the analysis are provided next.
We employ the same coupled balance of linear momentum–first law framework as
before, but add a laser source term: (where here we assume C = C(t))

ρC θ̇ = σ : (ε̇θ + ε̇p) − 1

2
(ε − εθ − εp) : İE : (ε − εθ − εp)

+ ∇X · (IK · ∇Xθ) + ρz − ρĊθ + L ASER − SOU RCES (5.93)

where Fourier’s law, q = −IK · ∇Xθ, has been used.

Remark As before, following Zohdi [1–33], we now develop a staggering solution
framework to solve the coupled systems of interest, where, at a given time increment:
(1) each field equation is solved individually, “freezing” the other (coupled) fields in
the system, allowing only the primary field to be active and (2) after the solution of
each field equation, the primary field variable is updated, and the next field equation
is treated in a similar manner. For an “implicit” type of staggering, the process can
be repeated in an iterative manner, while for an “explicit” type, one moves to the next
time-step after one “passes” through the system. As before, we will employ implicit
staggering.

5.10.2 A Specific Numerical Example—Controlled Heating

Asmentioned at the outset of this chapter, the specificmanufacturing scenario thatwe
are interested in modeling is a mixture which experiences laser-pulsing in targeted
regions to induce a desired temperature field locally. This covers a wide range of
applications in additive manufacturing. For illustration purposes, in this example,
we control the lateral and side boundary conditions, set to be constant (thus laterally
drawing heat out of the overall system). The top boundary is flux-type according to
the following (Fig. 5.10):

• (a) if in the laser zone

(IK · ∇θ) · n = I (5.94)

and
• (b) otherwise

(IK · ∇θ) · n = 0. (5.95)

In addition to the previously defined parameters, we have the following:
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Fig. 5.10 Left: representations of laser input and absorption. Right: upcoming results showing
mesh, absorption of energy, and temperature

• Laser beam radius: RL = 0.1L = 0.00001 m and
• Laser strength (Io = 109 W/m2), where

I (r, t) = Ioe
−co||r−ro||

(
(c1 + c2

t

T
)(1 + sin(2πωt/T ))

)
, (5.96)

and ω = 10 s−1, co = 0, c1 = 0, c2 = 100, and T = 10−4s.
• Absorption for the Beer–Lambert law:

I (r, ζ, t) = I (r, t)e− ∫ ζ∗
0 α dζ , (5.97)

where α = α1e
−α2

(θ(x)−θo)

θo , for the matrix material: α1 = 1 and α2 = 0 and for this
particulate material: α1 = 100 and α2 = 0.

As in the previousmodel problem, we consider a group of particles with a smaller-
scale interstitial material that is assumed to be a continuous phase.

5.10.3 Numerical Examples

As in the previous examples, the same system parameters were used. Throughout
the computations, the spatial discretization meshes were repeatedly refined until
the solutions did not exhibit any more sensitivity to further refinement of the grid-
spacing. In Figs. 5.11, 5.12, 5.13, and 5.14, frames of the sample and cross-sectional
temperature profiles are shown for targeted laser heating. As before, we started with
meshes such as a 21 × 21 × 21 mesh, arising from having a cubical mesh with
10 nodes from the centerline plane of symmetry and one node in the middle, and
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Fig. 5.11 From left to right and top to bottom: the temperature (in Kelvin), with pulsed laser
input. The morphology is shown in Fig. 5.9
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Fig. 5.12 From left to right and top to bottom: orthogonal slices through the microstructure for the
temperature (in Kelvin), with pulsed laser input
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Fig. 5.13 From left to right and top to bottom: the norm of the deviatoric stress (in GPa), with
pulsed laser input
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Fig. 5.14 From left to right and top to bottom: orthogonal slices through the microstructure for the
norm of the deviatoric stress (in GPa), with pulsed laser input
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then repeatedly refined. Approximately between a 61-level and a 81-level mesh, the
results stabilized, indicating that the results are essentially free of any appreciable
numerical error. The example shown was simply to illustrate the overall process. The
simulation of targeted heating is a subject of current research by the author, extending
this model to include phase transformations involving melting and vaporization and
the debris ejecta, which involvesmultiple stages of nonmonotone evaporative heating
and cooling, and mass transfer.

5.10.4 Extensions: Advanced Models for Conduction
Utilizing Thermal Relaxation

Within the last decade, technological advances have enabled the reliable control of
ultrafast pulsed lasers to activate small timescale heat wave effects. These effects are
often referred to as thermally relaxed “second-sound” effects, because of their math-
ematical similarity to wave propagation in acoustics, although normal sound waves
are fluctuations in the density of molecules in a substance while thermally relaxed
second-sound waves are fluctuations in the density of phonons. Such phenomena are
predicted by models which introduce thermal relaxation terms into heat-conduction
relations. The thermally relaxed second-sound is a quantum mechanical phenom-
enon in which heat transfer occurs by wave-like motion, rather than by the more
usual mechanism of diffusion. This leads to a very high confinement of thermal
energy in very targeted zones. Thermally relaxed phenomena can be observed in any
system, in which most phonon–phonon collisions conserve momentum, and can play
a role when the timescale of heat input is quite small. More advanced models, based
on thermal relaxation, which are a key feature of fast-pulsing laser technologies, are
discussed in Zohdi [30, 33] and are outlined briefly here.

Thermally relaxed continuum model
The thermally relaxed second-sound-type model can be motivated by a Jeffreys-

type relation between the conductive flux and temperature gradient (Joseph and
Preziosi [77] and Ignaczak and Ostoja-Starzewski [78]):

τ
∂qk

∂t
+ qk = −IK · ∇θ, (5.98)

where τ is the relaxation time, θ is the temperature, t is time, qk is the conductive
heat flux, and IK is the thermal conductivity. To clearly illustrate the character of this
model, relative to standard head conduction, we ignore stress-power effects, yielding

ρC
∂θ

∂t
= −∇ · qk + S, (5.99)
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where ρ is the mass density, C is the heat capacity, and S represents other sources,
such as laser energy input. By taking the partial derivative with respect to time of
the above yields, assuming no material changes,

ρC
∂2θ

∂t2
= −∂∇ · qk

∂t
+ ∂S

∂t
= −∇ · ∂qk

∂t
+ ∂S

∂t
. (5.100)

Inserting Eq.5.98 into 5.99 and 5.100 yields

∂2θ

∂t2
+ 1

τ

∂θ

∂t
= 1

ρCτ
∇ · (IK · ∇θ) + 1

ρCτ
S + 1

ρC

∂S
∂t

. (5.101)

This produces attenuating heat waves. In the case of a homogeneous medium, the

wave speed is
√

IK
ρCτ

.

Extreme cases
We have the following extreme parameter cases:

• In the special case of τ → 0, one obtains the classical heat-conduction equation

ρC
∂θ

∂t
= ∇ · IK · ∇θ + S. (5.102)

• In the special case of τ → ∞, one obtains

ρC
∂2θ

∂t2
= ∂S

∂t
⇒ ρC

∂θ

∂t
= S, (5.103)

which eliminates heat losses due to conduction, thus confining heat input.
• In the special case when τ → ∞, IK → ∞, and IK

τ
remaining finite, then a purely

hyperbolic equation arises

∂2θ

∂t2
= 1

ρCτ
∇ · IK · ∇θ. (5.104)

An excellent review of a wide range of heat transfer models can be found in the
seminal review paper of Joseph and Preziosi [77] or the text of Ignaczak and Ostoja-
Starzewski [78]. In the general case, we couple Eq.5.98 to the more general first
law:

ρẇ = σ : ∇ u̇ − ∇ · qk + ρz. (5.105)

Algorithm for thermal relaxation
The thermally relaxed heat flux, since it is governed by its own PDE, requires

simultaneous solution with the other governing equations. We approach this from a
staggering point of view, at a time-step, at every node in the system:

• Solve for q fixing θ,



5.10 Chapter Appendix 4: Laser Processing 77

• Solve for θ (using the just updated q) and
• Repeat until convergence.

At each iteration, q can be solved analytically (for fixed θ).We proceed by solving
the following ODE (spatially fixed), for each component q = (q1, q2, q3), over the
interval to ≤ t ≤ to + φΔt

τ
∂qi
∂t

+ qi = −(IK · ∇θ)i , (5.106)

with initial condition qi = qi (t = to). Since we are “freezing” θ, this yields an ODE
in time with solution (defining t̃ = t − to)

qi (t̃) = (
qi (t̃ = 0) + (IK · ∇θ(t̃ + to))i

)
e− t̃

τ︸ ︷︷ ︸
slows conduction

− (IK · ∇θ(t̃ + to))i︸ ︷︷ ︸
regular conduction

, (5.107)

which yields at time t

q(t) = (q(to) + (IK · ∇θ(t))) e− t−to
τ︸ ︷︷ ︸

slows conduction

− (IK · ∇θ(t))︸ ︷︷ ︸
regular conduction

. (5.108)

For the spatial discretization (needed in the first law of thermodynamics), this yields:

∇ · q = ∇ · (q(to) + (IK · ∇θ(to + φΔt))) e− t−to
τ (5.109)

+ (q(to) + (IK · ∇θ(to + φΔt))) · ∇e− t−to
τ − ∇ · (IK · ∇θ(to + φΔt)),

where

∇e− t−to
τ = (t − to)τ

−2e− t−to
τ ∇τ . (5.110)

Remark 1 This yields at time t = to + φΔt

q(to + φΔt) = (q(to) + (IK · ∇θ(to + φΔt))) e− φΔt
τ︸ ︷︷ ︸

slows conduction

− (IK · ∇θ(to + φΔt))︸ ︷︷ ︸
regular conduction

,

(5.111)
which is needed in the trapezoidal time-stepping scheme.

Remark 2 We note that for a for a Discrete Element Method formulation,

miCi θ̇i = −q i · ni Ai = q∗
i Ai , (5.112)
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this becomes8

q∗(t)i = −
(
q(to) +

(
IK i

θ j − θi

||r j − r i ||
)

|t
)
e− t−to

τ +
(
IK i

θ j − θi

||r j − r i ||
)

|t . (5.114)
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Chapter 6
PART II—Discrete Element Method (DEM)
Approaches: Dynamic Powder Deposition

Dry powders require different modeling and simulation tools to characterize their
behavior. One family of methods that is ideally suited to this task are discrete element
methods. This chapter introduces the reader to this type of modeling. The key for
next-generation manufacturers to succeed in developing additive manufacturing into
a robust reliable approach is to draw upon rigorous theory and high-fidelity computa-
tion to guide and simultaneously develop design rules for scaling up to industrial-level
manufacturing. Because of the extremely tight profit margins and short turnaround
times in manufacturing of new materials, there is an industrial need for numerical
simulation of these types of processes. However, continuum-based simulation meth-
ods, such as the finite element methods, are ill-suited to simulate systems comprised
of discrete units (particles). A relatively new modeling and simulation paradigm for
such advancedmanufacturing systems are discrete element/particle-basedmechanics
and methods. Particle-based mechanics and numerical methods have become wide-
spread in the natural sciences, industrial applications, engineering, biology, applied
mathematics, and many other areas. The term “particle mechanics/methods” has
now come to imply several different areas of research in the twenty-first century,
for example: (1) particles as a physical unit in granular media, particulate flows,
plasmas, swarms, etc., (2) particles representing material phases in continua at the
meso-, micro- and nanoscale, and (3) particles as a discretization unit in continua
and discontinua in numerical methods. The application areas of particle-based meth-
ods are quite wide ranging, for example: (1) particulate and granular flow problems,
motivated by high-tech industrial processes such as those stemming from spray,
deposition, and printing processes, (2) fluid–structure interaction problems account-
ing for free surface flow effects on civil and marine structures (water jets, wave
loads, ship hydrodynamics and sea keeping situations, debris flows, etc.), (3) cou-
pled multiphysical phenomena involving solid, fluid, thermal, electromagnetic, and
optical systems, (4) material design/functionalization using particles to modify base
materials, (5) manufacturing processes involving forming, cutting, compaction, and
material processing, (6) biomedical engineering, involving cell mechanics, molec-
ular dynamics, and scale-bridging, (7) multifracture and fragmentation of materials

© Springer International Publishing AG 2018
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Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
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and structures under impact and blast loads, and (8) excavation and drilling problems
in the oil/gas industry and tunneling processes. Particle or discrete element-based
computation has emerged in multiple fields and is ideal for simulation of additive
manufacturing processes, since the physical systems are inherently discontinuous.
They are advantageous in dealing with domains that break apart or come together, as
compared to traditional continuum-based finite difference and finite element meth-
ods which have severe limitations when dealing with discontinua. For reviews see,
for example, Duran [44], Pöschel and Schwager [45], Onate et al. [46, 47], Rojek et
al. [48], Carbonell et al. [49], Labra and Onate [50], Mukherjee and Zohdi [51–54],
and Zohdi [1–43].1

FollowingZohdi [1–43], the objective of this chapter is to introduce amultiparticle-
based Discrete Element Method (DEM) computational framework which captures
the following main physical events:

• Particle dynamics, which primarily entails: (a) the movement of the particles
induced by contact with the surface, (b) particle-to-particle contact forces, and
(c) near-field interaction and external electromagnetic fields,

• Laser input, which primarily entails: (a) absorption of laser energy input and (b)
beam interference (attenuation) from particles, and

• Particle thermodynamics, which primarily entails: (a) heat transfer between parti-
cles in contact by conduction and (b) subsequent thermal softening of the particles.

We remark that the inclusion of electromagnetic effects stems from the fact that
in many emerging processes, the deposited particles are endowed with charges and
guided to the surface with an electromagnetic field, in order to obtain superior depo-
sition control, relative to a charge-free system. The charges are achieved through
a variety of possible methods, such as: (1) post-atomization charging—whereby
the particles come into contact with an electrostatic field (produced by electrostatic
induction or by electrodes) downstream of the outlet nozzle, (2) direct charging—
whereby an electrode is immersed in the coating supply, and (3) tribological
charging—whereby the friction in the nozzle induces an electrostatic charge on the
particles as they rub the surface. There are a variety of industrial deposition tech-
niques, and we refer the reader to the surveys of the state of the art found in Martin
[65, 66], as well as the extensive works of Choi et al. [67–69] and Demko et al. [70].

The overall multiphysical system is strongly coupled, since the dynamics controls
which particles are in mechanical contact and, consequently, the induced thermal
fields, spurred on by selective laser input, which softens and binds the material. The
approach taken in the present work is to construct a submodel for each primary
physical process. These submodels are coupled to one another. In order to resolve
the coupling, a recursive multiphysical staggering scheme is constructed. As before,

1There has been considerable research activity in processing of powders, in particular by com-
paction, for example, see Akisanya et al. [55], Anand and Gu [56], Brown and Abou-Chedid [57],
Domas [58], Fleck [59], Gethin et al. [60], Gu et al. [61], Lewis et al. [62], Ransing et al. [63], Tatzel
[64], and Zohdi [1–43]. The study of “granular” or “particulate” media is wide ranging. Classical
examples include the study of natural materials, such as sand and gravel, associated with coastal
erosion, landslides, and avalanches.
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the general methodology is as follows (at a given time increment): (1) Each field
equation is solved individually, “freezing” the other (coupled) fields in the system,
allowing only the primary field to be active and (2) after the solution of each field
equation, the primary field variable is updated, and the next field equation is treated
in a similar manner. As the physics evolves, the field that is most sensitive (exhibiting
the largest amount of relative nondimensional change) dictates the time-step size.
This approach can be classified as an implicit, staggered, time-stepping scheme, in
conjunction with an iterative solution method that automatically adapts the time-step
sizes to control the rates of convergence within a time-step. If the process does not
converge (below an error tolerance) within a preset number of iterations, the time-
step is adapted (reduced) by utilizing an estimate of the spectral radius of the coupled
system. The modular approach allows for easy replacement of submodels if needed.
For more details, the reader is referred to Zohdi [1–43]. Toward the end of the work,
extensions are also addressed for two advanced processing scenarios involving phase
transformations and subsequent multiphase dynamics whereby: (1) material on the
system surface is melted and penetrates the subsurface and (2)material on the surface
is melted, vaporized, and vacuumed away (Fig. 6.1).

Remark The study of “granular” or “particulate” media is wide ranging. Classical
examples include the study of natural materials, such as sand and gravel, associated
with coastal erosion, landslides, and avalanches. For reviews see, for example, Duran
[44], Pöschel and Schwager [45], the works of Torquato and collaborators: Torquato
[71], Kansaal et al. [72], and Donev et al. [73–77], the works of Onate and collabora-
tors: Onate et al. [46, 47], Rojek et al. [48], Carbonell et al. [49] and Labra and Onate
[50], Jaeger andNagel [78, 79], Nagel [80], Liu et al. [81], Liu andNagel [82], Jaeger
and Nagel [83], Jaeger et al. [84–86], Jaeger and Nagel [87], the extensive works
of Hutter and collaborators: Tai et al. [88–90], Gray et al. [91], Wieland et al. [92],
Berezin et al. [93], Gray and Hutter [94], Gray [95], Hutter [96], Hutter et al. [97],
Hutter and Rajagopal [98], Koch et al. [99], Greve and Hutter [100], and Hutter et
al. [101]; the works of Behringer and collaborators: Behringer [102], Behringer and
Baxter [103], Behringer and Miller [104], and Behringer et al. [105] and the works

PROCESSING
PARTICLE

CONDITION DEPOSITION
INITIAL LASER

Fig. 6.1 An example of powder-based processes: (1) particle deposition and (2) selective laser
processing Zohdi [1–43]
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of Jenkins and collaborators: Jenkins and Strack [106], Jenkins and La Ragione [90],
Jenkins and Koenders [107], and Jenkins et al. [108].

6.1 Direct Particle Representation/Calculations

We consider a group of nonintersecting particles (i = 1, 2, ..., Np). The objects in
the system are assumed to be small enough to be considered (idealized) as particles,
spherical in shape, and that the effects of their rotation with respect to their mass
center are unimportant to their overall motion, althoughwewillmake further remarks
on these effects shortly. The equation of motion for the i th particle in system is

mi r̈ i = Ψ tot
i (r1, r2, ..., rNp ) = Ψ con

i + Ψ wall
i + Ψ bond

i + Ψ
damp
i + Ψ e+m

i , (6.1)

where ri is the position vector of the i th particle and Ψ tot
i represents all forces acting

on particle i , which is decomposed into the sum of forces due to:

• Inter-particle forces (Ψ con
i ) generated by contact with other particles,

• Wall forces (Ψ wall
i ) generated by contact with constraining surfaces,

• Adhesive bonding forces (Ψ bond
i ) with other particles and walls,

• Damping forces arising from the surrounding interstitial environment (Ψ damp
i )

occurring from potentially viscous, surrounding, interstitial fluids, surfactants,
and

• External electromagnetic forces (Ψ e+m
i ) which can play a key role in small charged

or magnetized particles.

In the next sections, we examine each of the types of forces in the system in detail.

6.1.1 Comments on Rolling

The introduction of rolling and spin is questionable for a small object, idealized by
a particle, in particular because of rolling resistance. In addition to the balance of
linear momentum, mi v̇i = Ψ tot

i , where the vi is the velocity of the center of mass,

the equations of angular momentum read Ḣ i,cm = d(I i ·ωi )

dt = M tot
i,cm . For spheres, we

have H i,cm = I i,sωi = 2
5mi R2

i ωi and for the time discretization

ωi (t + Δt) = ωi (t) + Δt

I i,s

(
φM tot

i,cm(t + Δt) + (1 − φ)M tot
i,cm(t)

)
, (6.2)

where M tot
i,cm are the total moments generated by interaction forces, such as contact

forces, rolling resistance. For the applications at hand, the effects of rolling are gen-
erally negligible, in particular because the particles are small. However, nonetheless,
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we formulate the system with rotations where r i is the position of the center of mass,
vi is the velocity of the center of mass, and ωi is the angular velocity. An impor-
tant quantity of interest is the velocity on the surface of the “particles,” which is a
potential contact point with other particles, denoted vc

i

vc
i = vi + ωi × r i→c, (6.3)

where r i→c is the relative position vector from the center to the possible point of
contact. This is discussed further later.

6.1.2 Particle-to-particle Contact Forces

Following Zohdi [1–43], we employ a simple particle overlapmodel to determine the
normal contact force contributions from the surrounding particles (Nci ) in contact,
Ψ

con,n
i = ∑Nci

j=1 ψcon,n
i j , based on separation distance between particles in contact

(Fig. 6.2). Generally,

Ψ
con,n
i j = F(||r i − r j ||, Ri , R j , material parameters). (6.4)

There is no shortage of contact models, of varying complexity, to generate a contact
interaction force. Throughout this work, we will utilize a particularly simple relation
whereby contact force is proportional to the relative normalized proximity of particles
i and j in contact, detected by the distance between centers being less that the sum
of the radii

Fig. 6.2 Normal contact and
friction forces induced by
neighboring particles in
contact (after Zohdi [1–43])
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If ||r i − r j || ≤ Ri + R j ⇒ activate contact, (6.5)

where we define the overlap as

δi j
def= (Ri + R j ) − ||r i − r j ||. (6.6)

Accordingly, we consider the following

Ψ
con,c
i j ∝ −K pi j |Ei j |ppni j Ac

i j , (6.7)

where 0 < K pi j < ∞ is a particle-to-particle contact compliance constant, pp

is a material parameter, Ei j is normalized/nondimensional (strain-like) deformation
metric

Ei j = (Ri + R j ) − ||r i − r j ||
(Ri + R j )

= δi j

(Ri + R j )
(6.8)

and
ni j = − r i − r j

||r i − r j || = r j − r i

||r i − r j || , (6.9)

where the Ri and R j are the radii of particles i and j , respectively. The term Ac
i j is a

contact area parameter, which is discussed in Chapter Appendix 1. Chapter Appendix
1 also provides a brief review of alternative models, such as the classical Hertzian
contact model.

6.1.3 Particle-Wall Contact

Contact of a particle-to-wall contact is handled in the identical manner to particle-to-
particle, except that thewall displacement is considered given (externally controlled),
and independent of the action with the particles. The contact between the wall and
the particles is handled exactly in the samemanner as the particle-to-particle contact,
with the amount of overlap of the particle with the wall position, dictates the force
(see Fig. 11.2) (Fig. 6.3).

6.1.4 Contact Dissipation

Phenomenological particle contact dissipation can be incorporated by tracking the
relative velocity of the particles in contact. A simple model to account for this is

Ψ
con,d
i j = ccd(vnj − vni )Ac

i j (6.10)

http://dx.doi.org/10.1007/978-3-319-70079-3_11
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Fig. 6.3 An example of
overlap contact between a
wall and a particle. The
amount of overlap of the
particle with the wall
position dictating the force
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WALL

6.1.5 Regularized Contact Friction Models

Frictional stick is modeled via the following regularized friction algorithm: (at the
point of contact)

• Check static friction threshold (K f is a tangential contact friction compliance
constant):

K f ||vc
j,τ − vc

i,τ ||Ac
i jΔt against μs ||Ψ con,n||, (6.11)

where ||vc
j,τ −vc

i,τ ||Δt (of dimensions of length) is the relative tangential velocity at
a point of contact, Δt is the time-step used later in the numerical discretization, μs

is the static friction coefficient. This step replaces (“regularizes”) a more rigorous,
and difficult, step of first assuming no slip, generating the no-slip contact forces,
by solving an entire multibody/multisurface contact problem, Ψ ns , and checking
Ψ ns against the threshold μs ||Ψ con,n|| on each surface.

• If the threshold not met (K f ||vc
j,τ − vc

i,τ ||Ac
i jΔt < μs ||Ψ con,n||), then

Ψ con, f = K f ||vc
j,τ − vc

i,τ ||Ac
i jΔtτ c

i j (6.12)

where

τ c
i j = − vc

i,τ − vc
j,τ

||vc
j,τ − vc

i,τ ||
= vc

j,τ − vc
i,τ

||vc
j,τ − vc

i,τ ||
, (6.13)

where the subscripts indicate the tangential components of velocity. The tangential
velocity at the contact point is obtained by subtracting away the normal component
of the velocity

vc
t = vc − (vc · n)n. (6.14)
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• If the threshold is met or exceeded (K f ||vc
j,τ − vc

i,τ ||Ac
i jΔt ≥ μs ||Ψ con,n||), then

one adopts a slip model of the form

Ψ
con, f
i j = μd ||Ψ con,n

i j ||τ c
i j , (6.15)

where μd is the dynamic friction coefficient.

6.1.6 Particle-to-particle Bonding Relation

For the particles to bond, we adopt a criterion based on exceeding a critical interpen-
etration distance. Explicitly:

• Recall, if ||r i −r j || ≤ (Ri +R j ), then the particles are in contact and Ei j = δi j

(Ri +R j )
.

• If the particles are in contact and Ei j ≥ E∗, then an (adhesive/attractive) normal
bond is activated between the particles of the form

Ψ
bond,n
i j = K nb

i j |Ei j |pbni j Ac
i j , (6.16)

where 0 ≤ K nb
i j is a bonding constant and pb is a material parameter.

• If the particles have an activated normal bond, then the particles automatically
have a rotational bond equivalent in form to stick friction

Ψ
bond,r
i j = K rb

i j ||vc
j,τ − vc

i,τ ||Ac
i jΔtτ c

i j , (6.17)

as well as a torsional bond of the form

Mbond,t
i j = K rt

i j

(
(ωi − ω j )a

2 · n)
Ac

i jΔtn, (6.18)

where a is the contact area radius (see Chapter Appendix 1). The same model is
also used for torsional frictional moments.

Note: We assume that torsional friction is due to relative spinning along axis con-
necting the particle centers. The effect is generally small, unless the particles are
bonded to one another.

6.1.7 Electromagnetic Forces

The electromagnetic forces are decomposed into three contributions, (1) Lorentz
forces (for charged particles), (2) magnetic forces (for magnetic particles), and (3)
inter-particle near-field forces. We will utilize the decomposition of the
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electromagnetic forces generated into a (inter-particle) near-field interaction and
the external electromagnetic field

Ψ e+m
i = Ψ

lor,e+m
i +Ψ

mag
i +

N∑

j 	=i

ψ
n f
i j

︸ ︷︷ ︸
Ψ

n f
i

= qi (Eext + vi × Bext )
︸ ︷︷ ︸

Ψ
lor,e+m
i

+Ψ
mag
i +Ψ

n f
i , (6.19)

where
∑N

j 	=i ψ
n f
i j represents the interaction between particle i and all other particles

j = 1, 2, ..., N ( j 	= i) and Ψ
lor,e+m
i represents external Lorentz-induced forces

from the surrounding environment, for example, comprised of Eext and Bext , which
are externally controlled fields that are independent of the response of the system. The
terms Eext and Bext can be considered as static (or extremely slowly varying), and
thus mutually uncoupled and independently controllable. The self-induced magnetic
fields developed between particles are insignificant for the velocity ranges of interest
here (well below the speed of light). For the Lorentz force, we recall the following
important observations in conjunction with electromagnetic phenomena (Jackson
[109]):

• If a point charge q experiences a forceΨ lor,e, the electric field, Eext , at the location
of the charge is defined by Ψ lor,e = qEext .

• If the charge is moving, another force may arise, Ψ lor,m , which is proportional to
its velocity v. This other (induced) field is denoted as the “magnetic induction” or
just the “magnetic field”, Bext , such that Ψ lor,m = qv × Bext .

• If the forces occur concurrently (the charge is moving through the region pos-
sessing both electric and magnetic fields), then the electromagnetic force is
Ψ lor,e+m = qEext + qv × Bext .

6.1.8 Inter-particle Near-Field Interaction

Following Zohdi [1–43], a simple form that captures the essential near-field effects
is

Ψ
n f
i =

Np∑

j 	=i

⎛

⎜
⎝α1i j ||r i − r j ||−β1

︸ ︷︷ ︸
attraction

−α2i j ||r i − r j ||−β2

︸ ︷︷ ︸
repulsion

⎞

⎟
⎠ ni j , (6.20)

where the α’s (attraction and repulsion parameters) and β’s (decay exponents) are
empirical material parameters. The various representations (decompositions) of the
coefficients that appear in Eq.6.20 are with ci = ±1 (a positive/negative identifier)

• Mass-based (m=mass): αi j = ᾱi j mi m j ci c j ,
• Surface area-based (a=surface area): αi j = ᾱi j ai a j ci c j ,
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• Volume-based (V=volume): αi j = ᾱi j Vi Vj ci c j , and
• Charge-based: αi j = ᾱi j qi q j ci c j ,

where the ᾱi j are empirical material parameters. There are vast numbers of empirical
representations, for example, found in thefield of “molecular dynamics” (MD),which
typically refers tomathematical models of systems of atoms ormolecules where each
atom (or molecule) is represented by a material point and is treated as a point mass.
The overall motion of such mass-point systems is dictated by Newtonian mechanics.
For an extensive survey of MD-type interaction forces, which includes comparisons
of the theoretical and computational properties of a variety of interaction laws, we
refer the reader to Frenklach and Carmer [110]. In the usual MD approach (see
Haile [111], for example), the motion of individual atoms is described by Newton’s
second law with the forces computed from differentiating a prescribed potential
energy function, with applications to solids, liquids, and gases, as well as biological
systems (Hase [112], Schlick [113], and Rapaport [114]). The interaction functions
usually take the form of the familiar Mie, Lennard-Jones, and Morse potentials
(Moelwyn-Hughes [115]); however, three-body terms can be introduced directly into
the interaction functions (Stillinger [116]), or alternatively, “local” modifications can
be made to two-body representations (Tersoff [117]).

6.1.9 Magnetic Forces

An additional force can be exerted on magnetic particles, independent of the elec-
trodynamically induced Lorentz forces. A relatively simple model for the character-
ization of this force is given by

Ψ mag = ∇(γBext · Bext ), (6.21)

where γ is amaterial parameter that is related to themagnetization of the particle, and
which is dependent on the magnetic dipole properties, the magnetic susceptibility,
the magnetic permeability, and the internal magnetic moment density of the material
(see Feynman et al. [118], Cullity and Graham [119], Boyer [120] or Jackson [109]).
For the specific applications in this monograph, Ψ mag is considered small.

6.1.10 Interstitial Damping

Finally, we note that damping from interstitial fluid (or even smaller-scale particles,
solvents) between particles, such as binding enhancers, surfactants, and lubricants,
is possible. A simple model to account for this is (a very low Reynolds number
“Stokesian” model)

Ψ
damp
i = ce6πRi (v

e − vi ), (6.22)
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where ve is the local average velocity of the external interstitial medium, which one
may assume ve ≈ 0, for most applications of interest here, and ce is the viscosity.
The mechanics of the interstitial fluid is unimportant in problems of interest here.
However, for other applications, such as high-speed flow, the motion of the fluid
can be important, necessitating more sophisticated drag laws and/or fully coupled
(two-way) particle–fluid interaction models. This is outside the scope of the present
work. Generally, this requires the use of solid–fluid staggering-type schemes (e.g.,
see Zohdi [1–43] and Avci and Wriggers [121]).

6.2 Time-Stepping

Integrating Eq.6.1 leads to (using a trapezoidal rule with variable integration metric,
0 ≤ φ ≤ 1)

vi (t + Δt) = vi (t) + 1

mi

∫ t+Δt

t
Ψ tot

i dt

≈ vi (t) + Δt

mi

(
φΨ tot

i (t + Δt) + (1 − φ)Ψ tot
i (t)

)
, (6.23)

whereΨ tot
i = Ψ con

i +Ψ wall
i +Ψ bond

i +Ψ
damp
i +Ψ e+m

i . The position can be computed
via application of the trapezoidal rule again:

r i (t + Δt) ≈ r i (t) + Δt (φvi (t + Δt) + (1 − φ)vi (t)), (6.24)

which can be consolidated into

r i (t + Δt) = r i (t) + vi (t)Δt + φ(Δt)2

mi

(
φΨ tot

i (t + Δt) + (1 − φ)Ψ tot
i (t)

)
. (6.25)

This leads to a coupled system of equations, which are solved using an adaptive
iterative scheme, building on approaches found in various forms in Zohdi [1–43].
We note that the material contact compliance constants in the various force terms
are functions of temperature, K = K (θ), and the temperature is, in turn, a function
of the laser input. We will discuss the thermal effects shortly, but first indicate how
the preceding dynamical particle system can be solved.

6.2.1 Iterative (Implicit) Solution Method

As before in CM approaches, following the basic framework in Zohdi [1–43], we
write Eq.6.25 in a slightly more streamlined form for particle i
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r L+1
i = r L

i + vL
i Δt + φ(Δt)2

mi

(
φ(Ψ

tot,L+1
i ) + (1 − φ)(Ψ tot,L)

)
, (6.26)

which leads to a coupled set equations for i = 1, 2, ..., Np particles, where the
superscript L is a time interval counter. The set of equations represented by Eq.6.26
can be solved recursively by recasting the relation as

r L+1,K
i = rL

i + vL
i Δt + (φΔt)2

mi
Ψ

tot,L+1,K−1
i + φ(Δt)2

mi
(1 − φ)Ψ

tot,L
i , (6.27)

which is of the form
r L+1,K

i = G(rL+1,K−1
i ) + Ri , (6.28)

where K = 1, 2, 3, ... is the index of iteration within time-step L + 1 and

• Ψ
tot,L+1,K−1
i

def= Ψ
tot,L+1,K−1
i (r L+1,K−1

1 , r L+1,K−1
2 ...r L+1,K−1

N ),

• Ψ
tot,L
i

def= Ψ
tot,L
i (r L

1 , r L
2 ...r L

N ),

• G(rL+1,K−1
i ) = (φΔt)2

mi
Ψ

tot,L+1,K−1
i , and

• Ri = r L
i + vL

i Δt + φ(Δt)2

mi
(1 − φ)Ψ

tot,L
i .

The term Ri is a remainder term that does not depend on the solution. The conver-
gence of such a scheme is dependent on the behavior ofG. Namely, a sufficient condi-
tion for convergence is that G is a contraction mapping for all rL+1,K

i , K = 1, 2, 3, ...
In order to investigate this further, we define the iteration error as


L+1,K
i

def= r L+1,K
i − r L+1

i . (6.29)

A necessary restriction for convergence is iterative self-consistency, i.e., the “exact”
(discretized) solution must be represented by the scheme, rL+1

i = G(r L+1
i ) + Ri .

Enforcing this restriction, a sufficient condition for convergence is the existence of
a contraction mapping

|| rL+1,K
i − rL+1

i︸ ︷︷ ︸

L+1,K

i

|| = ||G(rL+1,K−1
i ) − G(rL+1

i )|| ≤ ηL+1,K ||rL+1,K−1
i − rL+1

i ||, (6.30)

where, if 0 ≤ ηL+1,K < 1 for each iteration K , then 
L+1,K
i → 0 for any arbitrary

starting value r L+1,K=0
i , as K → ∞, which is a contraction condition that is suffi-

cient, but not necessary, for convergence. The convergence of Eq.6.27 is scaled by

η ∝ (φΔt)2

mi
. Therefore, we see that the contraction constant of G is:

• Directly dependent on the magnitude of the interaction forces (||Ψ ||),
• Inversely proportional to the masses mi , and
• Directly proportional to (Δt)2.
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Thus, decreasing the time-step size improves the convergence. In order to maximize
the time-step sizes (to decrease overall computing time) and still meet an error
tolerance on the numerical solution’s accuracy, we build on an approach originally
developed for continuum thermochemicalmultifield problems (Zohdi [1–43]), where
one assumes: (1) ηL+1,K ≈ S(Δt)p, (S is a constant) and (2) the error within an
iteration behaves according to (S(Δt)p)K 
L+1,0 = 
L+1,K , K = 1, 2, ..., where

L+1,0 = rL+1,K=1 − r L is the initial norm of the iterative (relative) error and
S is intrinsic to the system. For example, for second-order problems, due to the
quadratic dependency on Δt , p ≈ 2. The objective is to meet an error tolerance in
exactly a preset (the analyst sets this) number of iterations. To this end, one writes
(S(Δttol)p)Kd 
L+1,0 = T O L , where T O L is a tolerance and Kd is the number of
desired iterations. If the error tolerance is not met in the desired number of iterations,
the contraction constant ηL+1,K is too large. Accordingly, one can solve for a new
smaller step size, under the assumption that S is constant,

Δttol = Δt

(
( T O L


L+1,0 )
1

pKd

(
L+1,K


L+1,0 )
1

pK

)
def= ΔtΛK . (6.31)

The assumption that S is constant is not critical, since the time-steps are to be recur-
sively refined and unrefined throughout the simulation. Clearly, the expression in
Eq.6.31 can also be used for time-step enlargement if convergence is met in less
than Kd iterations (typically chosen to be between five to ten iterations).

6.2.2 Algorithm

The solution steps are, within a time-step:

• (1): Start a global fixed iteration (set i = 1 (particle counter) and K = 0 (iteration
counter))

• (2): If i > Np then go to (4)
• (3): If i ≤ Np then:

(a) Compute the position r L+1,K
i

(b) Go to (2) for the next particle (i = i + 1)

• (4): Measure error (normalized) quantities

(a) 
K
def=

∑Np

i=1 ||rL+1,K
i − r L+1,K−1

i ||
∑Np

i=1 ||rL+1,K
i − r L

i ||
(b) ZK

def= 
K

T O Lr

(c) ΛK
def=

⎛

⎝
( T O L


0
)

1
pKd

(
K

0

)
1

pK

⎞

⎠
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• (5): If the tolerance is met: ZK ≤ 1 and K < Kd then

(a) Increment time: t = t + Δt
(b) Construct the next time-step: Δtnew = ΛK Δtold ,
(c) Select the minimum size: Δt = MIN(Δt lim,Δtnew) and go to (1)

• (6): If the tolerance is not met: ZK > 1 and K < Kd then

(a) Update the iteration counter: K = K + 1
(b) Reset the particle counter: i = 1
(c) Go to (2)

• (7): If the tolerance is not met (ZK > 1) and K = Kd then

(a) Construct a new time-step: Δtnew = ΛK Δtold

(b) Restart at time t and go to (1)

Time-step size adaptivity is critical, since the system’s dynamics and configuration
can dramatically change over the course of time, possibly requiring quite different
time-step sizes to control the iterative error. However, to maintain the accuracy of the
time-stepping scheme, onemust respect an upper bound dictated by the discretization
error, i.e., Δt ≤ Δt lim . Note that in Step (5), ΛK may enlarge the time-step if the
error is lower than the preset tolerance. The algorithm will be modified shortly to
account for coupled thermal effects. As mentioned, the parameters such as K pi j can
be thermally dependent since the particles can thermally soften. For example, the
compliance constant for the particles in the contact law can be written as:

K pi = MAX(K pio

(
e
−ai

θi
θ∗i

−1
)

, K lim
pi ), (6.32)

where K pio is the reference value and for particle j

K pj = MAX(K pjo

(
e
−a j

θ j
θ∗j

−1
)

, K lim
pj ), (6.33)

and take the average at the interface, and the value in the contact law becomes:

K pi j = 1

2

(
K pi + K pj

)
. (6.34)

There is a multitude of possible representations, and it is relatively easy to select one
or the other, and to embed in the staggering framework developed.

Remark We next include thermal fields using the Discrete Element Method, fol-
lowing Zohdi [1–43] which developed a computational model and corresponding
solution algorithm for the rapid simulation of the laser processing and targeted local-
ized heating of materials composed of multiple discrete particle systems (Fig. 6.4).
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Fig. 6.4 Heat flux exchange
for a particle induced by
neighboring particles in
contact
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6.3 Thermal Fields

6.3.1 Heat Transfer Model

We assume that (infrared) radiative, convective, and strain-rate effects are negligible
for the particle’s thermodynamics. Only heating by laser input and conduction are
considered important. Thus, for each particle i = 1, 2, ..., Np ,

mi Ci θ̇i = Qi + Hi , (6.35)

where Qi represents the conductive contribution from surrounding particles in con-
tact (including walls) andHi represents the external heating term. It is assumed that
the temperature fields are uniform within the (small) particles. This assumption is
justified, i.e., a lumped thermal model, ignoring temperature gradients and assuming
a uniform temperature within a particle, when the Biot number is small. The Biot
number for spheres scales with the ratio of the particle volume (V ) to the particle

surface area (As), V
As

= 4
3 πR3

4πR2 = R
3 , which indicates that a uniform temperature dis-

tribution is appropriate, since the particles, by definition, are small. Assuming that
the fields are uniform in each particle allows for the following (for particle i)

Qi = −
∫

∂ω

Q · n d A ≈
Npc∑

j=1

IK i j
θ j − θi

||r i − r j || Ac
i j , (6.36)
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where the summation extends over all particles j = 1, 2, 3, ..., Npc that are in contact
with particle i (Fig. 6.4).2 This yields

mi Ci
dθi

dt
=

Npc∑

j=1

IK i j
θ j − θi

||r i − r j || Ac
i j

︸ ︷︷ ︸
Qi

+Hi , (6.37)

where the specific form of laser-induced heating is

Hi ≈ ai Ii Vi , (6.38)

where aIi is the absorbed laser input for particle i and 0 ≤ ai ≤ 1 is an absorption
constant. More remarks on laser input will be given next.

6.3.2 Lasers—Various Levels of Description

There are varying degrees of sophistication for modeling the heat input from a laser,
for example:

• Method 1-A very rough overall energy balance whereby the total energy input
W tot (given by integrating the power output from the laser) and performing an
energy balance

MCΔθ = W tot ⇒ Δθ = W tot

MC
(6.39)

where the total mass is M = ∑N
i=1 mi and C is the heat capacity. This provides

no information about conductive losses, the distribution of the heat, etc. It simply
gives a rough estimate of the overall effects of laser power input.

• Method 2-Utilization of the Beer–Lambert law, whereby one performs an overall
power balance (Fig. 6.5):

(I + ΔI ) − I + LΔζ = 0 ⇒ d I

dζ
=≈ −aI, (6.40)

where aI is the absorbed irradiance (per unit area) from the laser and ζ is the
penetration depth, which is solved to yield

I (ζ) = Ioe−aζ . (6.41)

2IKi j can be approximated by an average interfacial value of the i − j pair, IKi j ≈ IKi +IK j
2 . If the

materials are the same, this collapses to simply IK. As for the mechanical contact, Ac
i j is the contact

area associated with the particle pair (i j).
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Fig. 6.5 Representations of laser penetration based on modification (right) of the classical Beer–
Lambert relation (left)

One can modify this relation to account for a particle at depth ζ, which is blocked
by the particle interference from above it by determining the intersections with
particles above the particle, computing ζ∗ = ∑N

i=1 Δζi , and modifying the Beer–
Lambert relation to read

I (z) = Ioe−aζ∗
. (6.42)

• Method 3-Discretization of the irradiant beam into rays and performing a full-
blown ray-tracking scheme (see Zohdi [1–43]).

• Method 4-Discretization of the beam into its electromagnetic field components
via Maxwell’s equations (see Zohdi [1–43]).

Method 1 is rather simplistic and can be usedmore as a rough semianalytical guide to
laser input selection. Methods 3 and 4 provide extremely detailed field information
at the smallest scales. They are extraordinarily computationally expensive, and for
the applications in this work, unwarranted. This leaves Method 2, which we will
employ for the remainder of the work. In such an approach, one can easily introduce
nonuniform beam profiles, for example

I (d) = I (d = 0)e−bd , (6.43)

where d is the distance from the center of the incident beam line. In the case of b = 0,
we recapture a flat beam, I (d) = I (d = 0).
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6.3.3 Numerical Integration

Integrating the energy equation for each particle (i = 1, 2, ..., Np) yields

θi (t + Δt) = θi (t) + 1

mi Ci

(∫ t+Δt

t
Qi dt +

∫ t+Δt

t
Hi dt

)

(6.44)

≈ θi (t) + Δt

mi Ci
(φ(Qi (t + Δt) + Hi (t + Δt)) + (1 − φ)(Qi (t) + Hi (t))) .

We note that Eq.6.44 represents a coupled system of the general form (similar to the
equation that arises for the particle dynamics)

θi (t + Δt) = Gi (θi (t + Δt)) + Ri , (6.45)

where for the “remainder” term, Ri 	= Ri (θi (t + Δt)), and where Gi ’s behavior
is controlled by the magnitude of Δt . Clearly, the temperature is coupled to the
mechanical behavior of the system. Shortly, we develop a multiphysical staggering
scheme to solve the overall system.

6.4 Total System Coupling: Multiphysical Staggering
Scheme

We now extend the iterative solution process introduced earlier for the particle
dynamics to a multifield setting by (at a given time increment): (1) solving each field
equation individually, “freezing” the other (coupled) fields in the system, allowing
only the primary field to be active and (2) updating the primary field variable after
the solution of each field equation. The next field equation is treated in a similar
manner where, as the physics changes, the field that is most sensitive (exhibits the
largest amount of relative nondimensional change) dictates the time-step size. This
is an implicit, staggered, adaptive time-stepping scheme. Such approaches have a
long history in the computational mechanics community, for example, Zienkiewicz
[122], Zienkiewicz et al. [123], Lewis et al. [124], Lewis and Schrefler [125], Park
and Felippa [126], Farhat et al. [127], Farhat and Lesoinne [128], Farhat et al. [129],
Piperno [130], Piperno et al. [131], Piperno and Farhat [132] and Michopoulos et al.
[133], Steuben et al. [134–136] Lesoinne and Farhat [137], and Le Tallec andMuoro
[138].
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6.4.1 A General Iterative Framework

The staggering scheme introduced earlier utilizes approaches found in Zohdi [1–43]
and proceeds by considering an abstract setting, whereby one solves for the particle
positions, assuming the thermal fields fixed,

A1(r L+1,K , θL+1,K−1) = F1(rL+1,K−1, θL+1,K−1), (6.46)

then one solves for the thermal fields, assuming the particle positions fixed,

A2(rL+1,K , θL+1,K ) = F2(r L+1,K , θL+1,K−1), (6.47)

where only the underlined variable is “active,” L indicates the time-step, and K
indicates the iteration counter. Within the staggering scheme, implicit time-stepping
methods, with time-step size adaptivity, will be used throughout the upcoming analy-
sis. We define the normalized errors within each time-step, for the two fields,


r K
def= ||rL+1,K − r L+1,K−1||

||rL+1,K − r L || and 
θK
def= ||θL+1,K − θL+1,K−1||

||θL+1,K − θL || . (6.48)

We define maximum “violation ratio,” i.e., as the larger of the ratios of each field

variable’s error to its corresponding tolerance, by ZK
def= MAX(zr K , zθK ), where

zr K
def= 
r K

T O Lr
and zθK

def= 
θK

T O Lθ
, (6.49)

with the minimum scaling factor defined as ΛK
def= MIN(Λr K ,ΛθK ), where

Λr K
def=

(
( T O Lr


r0
)

1
pKd

(

r K

r0

)
1

pK

)

, ΛθK
def=

(
(

T O Lθ

θ0

)
1

pKd

(

θK

θ0

)
1

pK

)

. (6.50)

6.4.2 Overall Solution Algorithm

The algorithm is as follows:
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(1) GLOBAL FIXED − POINT ITERATION : (SET i = 1 AND K = 0) :
(2) IF i > Np THEN GO TO (4)
(3) IF i ≤ Np THEN : (FOR PARTICLE i)

(a) COMPUTE POSITION :rL+1,K
i

(b) COMPUTE TEMPERATURE :θL+1,K
i

(c) GO TO (2) AND NEXT PARTICLE (i = i + 1)
(4)ERROR MEASURES(normalized) :

(a)
r K
def=

∑Np
i=1 ||rL+1,K

i − rL+1,K−1
i ||

∑Np
i=1 ||rL+1,K

i − rL
i ||


θK
def=

∑Np
i=1 ||θL+1,K

i − θL+1,K−1
i ||

∑Np
i=1 ||θL+1,K

i − θL
i ||

(b)Z K
def= MAX(zr K , zθK ) where zr K

def= 
r K

T O Lr
, zθK

def= 
θK

T O Lθ

(c)ΛK
def= MIN(Λr K ,ΛθK ) where

Λr K
def=

⎛

⎝
( T O Lr


r0
)

1
pKd

(
r K

r0

)
1

pK

⎞

⎠,

ΛθK
def=

⎛

⎝
(

T O Lθ

θ0

)
1

pKd

(

θK

θ0

)
1

pK

⎞

⎠

(5) IF TOL. NOT MET (Z K > 1) AND K < Kd REPEAT ITERATION (K = K + 1)
(6) IF TOL. MET (Z K ≤ 1) AND K < Kd THEN :

(a) INCREMENT TIME : t = t + Δt
(b)CONSTRUCT NEW TIME STEP : Δt = ΛK Δt,
(c)SELECT MINIMUM : Δt = MIN(Δt lim ,Δt)
(d)UPDATE LASER FIELD Ii (FOR ALL PARTICLES ITERATIVELY)

(e)AND GO TO (1)
(7) IF TOL. NOT MET (Z K > 1) AND K = Kd THEN :

(a)CONSTRUCT NEW TIME STEP :Δt = ΛK Δt
(b)UPDATE LASER FIELD Ii (FOR ALL PARTICLES ITERATIVELY)

(c)RESTART AT TIME = t AND GO TO (1)

(6.51)
The overall goal is to deliver solutions where staggering (incomplete coupling) error
is controlled and the temporal discretization accuracy dictates the upper limits on the
time-step size (Δt lim) (Fig. 6.6).

6.4.3 Interaction Lists

There are a variety of options for simulation speed up involving particle calculations.
For example, one can construct a so-called interaction list of neighboring particles
within a radius of influence with which a specific particle interacts for a few time-
steps. As the overall system configuration changes, one can periodically update the
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(ASSUME PARTICLE POSITIONS ARE FIXED)

THERMAL FIELD: SOLVE FOR THE PARTICLE TEMPERATURES
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MECHANICAL FIELD: SOLVE PARTICLE DYNAMICS AND CONTACT
(ASSUME THERMAL STATES ARE FIXED)

NO ITERATION LIMIT MET? 

NO

YES
ITERATION

AND RESTART

Fig. 6.6 A flowchart for the modular, staggered computation

lists (see Pöschel and Schwager [45]). For example, this dramatically reduces the
computation time used in contact search, which is an N 2 operation. In this chapter,
we adopt the following process:

• An initial full-blown contact search is initiated at the beginning of the simulation
to generate an interaction list of nearest neighbors for each particle.

• The interaction lists are used for all inter-particle calculations for a select subin-
terval of the total simulation time, 0 ≤ ΔT ≤ T .

• After a select subinterval of the total simulation time (ΔT ), the interaction lists
are updated for each particle.

Interaction lists were used throughout the upcoming simulations, with the results
being tested against direct computation (no interaction truncation) in order to deter-
mine appropriate parameter settings for the truncation radius and the frequency of list
updating. The upcoming simulation results were insensitive to the truncations and
are on the order of 50–100 times faster than direct computation. Finally, we remark
that one can also employ domain decomposition techniques whereby the domain
is partitioned into subdomains, the particles within each subdomain are sent to a
processor and stepped forward in time, but with the positions of the particles outside
of the subdomain fixed (relative to the particles in that subdomain). This is done for
all of the subdomains separately; then, the position of all of the particles are updated
and this information is shared between processors, with the procedure being repeated
as needed. It is important to note that a significant acceleration in the computation
can be achieved via sorting and binning methods, which proceed by partitioning the
whole domain into bins. The particles are sorted by the bins in which they reside. The
particle interaction proceeds, bin by bin, where the particles within a bin potentially
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only interact with particles in other nearest neighbor bins. Essentially, for a given
particle in a bin, contact searches are conducted with particles in the neighboring
bins only. The approach is relatively straightforward to implement and can speed
up the computation significantly (see Zohdi [1–43]). There are a variety of related
techniques to further accelerate computations. For example, one can assume that
particles stay in the bins for a few time-steps, and that one does not need to re-sort
immediately. This can be also used in conjunction with interaction lists, although
this was not done in this work.

6.5 Numerical Examples

We consider a model problem of a droplet of equally sized particles (Fig. 6.7) to
illustrate how to assemble the system. The absolute dimensions are unimportant for
the model problem and have been normalized so that the initial droplet diameter
was on the order of unity.3 In order to generate an initial particle configuration,
we randomly dispersed Np = 2000 nonoverlapping particles within a spherical
domain, and then the domain is dropped onto a large surface. The configuration of
the sample, before itwas dropped,was generated using a classicalRandomSequential
Addition (RSA) algorithm (Widom [139]), which places nonoverlapping particles
randomly into the domain of interest. As alluded to before, one could start with a
denser starting configuration by using equilibrium-driven Metropolis algorithm or
alternative methods based on simultaneous particle flow and growth (see Kansaal et
al. [72], Donev et al. [73–75], and Torquato [71]), although this was not necessary
for this example. As an example, the relevant simulation parameters chosen were (in
SI units if not explicitly stated):

• The particle radii, Ri = 0.05m,
• The normal contact parameter was K po = 107 N/m2, with thermal softening

K p = MAX(K po

(
e−a θ

θ∗ −1
)

, K lim
p ), where θ∗ = 500◦K, K lim

p = 106 N/m2, and

the exponent in the contact law was set to pp = 2,
• The stiffness of the wall in contact law, Kwo = 109 N/m2, with thermal softening

Kw = MAX(Kwo

(
e−a θ

θ∗ −1
)

, K lim
w ), where θ∗ = 500◦K, K lim

w = 108N/m2, and

the exponent in the contact law was set to pw = 2,
• The contact damping parameter, ccd = 105,
• The friction contact parameter, K f = 107,
• The coefficient of static friction, μs = 0.4,
• The coefficient of dynamic friction, μd = 0.3,
• The normal bond parameter, K nb = 106 N/m2, and the exponent in the binding
law was set to pb = 2,

• The rotational bond parameter, K rb = 103,

3All system parameters can be scaled to describe any specific system of interest. They were selected
simply for illustration purposes.
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Fig. 6.7 Scenario 1: left to right and top to bottom, a sequence of frames for deposition of particles
without laser input

• The near-field parameters, ᾱ1 = 0.5, β1 = 1, ᾱ2 = 0.01, β2 = 2, where the ᾱ is
per unit mass,

• The effective charge of the particles was q̄ = 1 (per unit mass), the electric field
was Eext = (−10, 0, 0) coulombs, the magnetic field was Bext = (0, 0, 0) Tesla,
and the magnetization parameter was γ = 0,

• The interstitial damping coefficient, ce = 1 (assumed Stokesian-like),
• The density of the particles, ρ = 2000 kg/m3,
• The heating absorption coefficient, a = 0.5,
• The conductivity, IK = 100W/m-K,
• The initial material temperature, θi (t = 0) = 300◦K,
• The wall temperature, θw(t = 0) = 500◦K,
• The heat capacity, C = 100 J/kg-K,
• The target number of fixed-point iterations, Kd = 10,
• The trapezoidal time-stepping parameter, φ = 0.5,
• The simulation duration, 2 s,
• The initial time-step size, 0.00025s,
• The time-step upper bound, 0.00025s, and
• The tolerance for the fixed-point iteration, 5 × 10−4.
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Fig. 6.8 Scenario 2: left to right and top to bottom, a sequence of frames for deposition of particles
with laser input

To illustrate the results of the computational framework, two examples were con-
sidered:

• Scenario 1: The droplet is dropped onto a slightly heated lower surface (by gravity
with an initial uniform downward velocity) and allowed to freely spread/deform
according to its interaction with the surface; as shown in Fig. 6.7, the temperature
values are depicted by the colors. The overall temperature is shown in Fig. 6.9.
The temperatures rise very slightly, since the contact duration time is a fraction of
a second, which does not allow enough time for significant conduction to occur
(as well as because of the small individual contact areas between the particles and
the surface).

• Scenario 2: The droplet is dropped onto a slightly heated lower surface (as in
scenario 1, by gravity with an initial uniform downward velocity) and allowed to
freely spread/deform according to its interaction with the surface. However, after
waiting a period for the droplet to settle, a laser source is initiated (at one-quarter
of the simulation time), moving back and forth in a linear manner; as shown in
Fig. 6.8, the temperature values are depicted by the colors. The overall temperature
is shown in Fig. 6.9. The temperatures rise significantly, due to the input of the
laser.
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Fig. 6.9 Temperatures for scenario 1 (no laser input) and scenario 2 (with selective laser input)

Fig. 6.10 A multiphase
droplet representation which
can be used for depositions
that are comprised of
multiple particle types, as
well as particles with a fluid
(solvent) binder

It is important to note that this framework can also handle depositions that are com-
prised of multiple particle types, as well as particles with a fluid (solvent) binder
(Fig. 6.10). This simply requires a state variable, per particle, which indicates what
type of particle it is, and the types of interaction rules with various other types of
particles. Otherwise, the framework is identical. We remark that there are several
applications where the deposition is particle-functionalized ink (a collection of par-
ticles with a solvent binder). This is common in industrial “additive” processes such
as inkjet and electrohydrodynamic printing, which do not allow precise control over
the structure of the printed lines, and often results in lines with scalloped edges or
nonuniform width, thus offering limited control over the height of the printed fea-
tures (Ridley et al. [140], Huang et al. [141], Sirringhaus et al. [142], Ahmad et al.
[143], Samarasinghe et al. [144], and Wang et al. [145]).
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6.6 Summary for DEM Approaches

This section illustrated a modular framework for the deposition of particulate mate-
rials and selective laser heating, using a direct particle representation in conjunction
with a staggering scheme to couple submodels of each type of physics together. The
physics of this system is strongly coupled since the dynamics controlswhich particles
are in contact, which also dictates the contacts, which in turn controls the conduc-
tive heating and the induced thermal fields, which softens and binds the material.
The strongly coupled system was solved iteratively within each time-step using a
staggering scheme which employs temporal adaptivity to control the error. The sub-
modular approach allows for easy replacement of models if so desired. Numerical
examples were provided. There are a number of enhancements that can be made,
for example, a description of the complete melting and vaporization of the mater-
ial. However, this requires modifications of the existing framework. Specifically, the
state of phase-transformed particles (e.g., from a solid to a liquid) would need to
be tracked according to whether they are currently solid, melted, or vaporized, and
whether they are in the process of transitioning from one state to the other, since the
latent heats of melting and vaporization affect the heat transfer (see Chapter Appen-
dix 1). Applications where melting is important include densification of deposited
particulate materials (Fig. 6.11), whereby the top layer of the material is melted,
allowing the liquid material to seep into the voids between the particles underneath.
Applications where vaporization is important include cutting groves, trenches in the
deposited material. There are many possibilities for modeling the melted or vapor-
ized state of a particle into a liquid. For example, one approach is to break the original
particle into smaller particles governed by different interaction rules (Fig. 6.10).The
approach would be the same for the vaporization into a gas. This is computationally
expensive, but would offer simulations that are quite realistic. A simpler approach is
to assign a solid particle, which has becomemelted, a different set of properties, such

Fig. 6.11 Melting of a
deposited material top layer
and subsequent densification
of the lower layer by
allowing the liquid to seep
into the voids in between the
particles below

LASER

PENETRATION
SURFACE MELT
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as a reduced stiffness, and a loss of bonds with surrounding particles. An alternative
approach is to treat the phase-transformed material as a continuum and to then sim-
ulate a hybrid discrete particle surrounding continuum model. These techniques are
currently under investigation by the author. In Chapter Appendix 1, these types of
hybrid methods are discussed at length, as well as phase transformations in Chapter
Appendix 2.

Generally, the deposition of particles to build or enhance components is a subclass
of additive manufacturing, which in turn is a subfield of advanced manufacturing.
Broadly speaking, advancedmanufacturing of materials is frequently cited as a blend
of techniques from various fields. The “greenness” of an overall process is often
considered as a criterion for the approach to be judged as competitive (Dornfeld
and Wright [146], Allwood [147], Reich-Weiser et al. [148] and Rosen, Dincer and
Kanoglu [149]). The true greenness of a combination of techniques which, individu-
ally, may be safe and sustainable, is unclear. Take, for example, laser ablation of rare
earthmaterials, functionalized inks ladenwith small-scale particles, which, if done in
mass, can produce a highly toxic environment in a nonvacuum processing area. Thus,
ablation is of particular interest, due to the potential for dangerous ejecta for large-
scale processes. For example, thermal or photothermal ablation usually refers to laser
light conversion to lattice vibration before breaking of bonds to liberate atomic-scale
material, while photochemical/electronic ablation is a direct electronically induced
vibration. Hydrodynamical ablation refers to micrometer droplets following from
the molten phase, whereas exfoliation is an erosive mechanism by which material
is removed as flakes. Note that all of the mechanisms can occur simultaneously. We
refer the reader to the state of the art in Grigoropoulos [150], which categorizes
various mechanisms for ablation. While discrete element-based methods are useful
to describe the dynamics of the deposition of particles and the flow of laser-input
energy, they are deficient in the ability to described inherently continuum-based fields
such as stresses, relative to CM approaches.

Remark There are applications where Discrete Element Method (DEM) modeling
alone is not adequate (because too many very small particles would be needed to
describe the interstitial solvent) nor are pure continuum formulations (CF)-based
descriptions alone sufficient (because the mesh sizes have to be extremely fine to
describe the particles). In these cases, hybrid methods, combining aspects of dis-
crete and continuum methods are advantageous, in particular for describing flowing
particle-laden fluids. This is discussed in the Monograph Appendices 4 and 5.

6.7 Chapter Appendix 1: Contact Area Parameter
and Alternative Models

Following Zohdi [1–43], and referring to Fig. 6.12, one can solve for an approxima-
tion of the common contact radius ai j (and the contact area, Ac

i j = πa2
i j ) by solving

the following three equations,
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Fig. 6.12 An approximation
of the contact area parameter
for two particles in contact
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a2
i j + L2

i = R2
i , (6.52)

and
a2

i j + L2
j = R2

j , (6.53)

and
Li + L j = ||r i − r j ||, (6.54)

where Ri is the radius of particle i , R j is the radius of particle j , Li is the distance
from the center of particle i and the common contact interpenetration line, and L j is
the distance from the center of particle j and the common contact interpenetration
line, where the extent of interpenetration is

δi j = Ri + R j − ||r i − r j ||. (6.55)

The above equations yield an expression ai j , which yields an expression for the
contact area parameter

Ac
i j = πa2

i j = π(R2
i − L2

i ), (6.56)

where

Li = 1

2

(

||r i − r j || − R2
j − R2

i

||r i − r j ||

)

. (6.57)

One could easily construct more elaborate relations connecting the relative prox-
imity of the particles and other metrics to the contact force,
Ψ

con,n
i j ∝ F(r i , r j , ni j , Ri , R j , ...), building on, for example, Hertzian contact
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models. This poses no difficulty in the direct numerical method developed. For the
remainder of the analysis, we shall use the deformationmetric in Eq.6.8. For detailed
treatments, see Wellman et al. [50, 151–154] and Avci and Wriggers [121]. We note
that with the appropriate definition of parameters, one can recover Hertz, Bradley,
Johnson-Kendel-Roberts, Derjaguin-Muller-Toporov contact models. For example,
Hertzian contact is widely used, with the assumptions being

• Frictionless, continuous, surfaces,
• Each of contacting bodies are elastic half-spaces, whereby the contact area dimen-
sions are smaller radii of the bodies, and

• The bodies remain elastic (infinitesimal strains),

resulting in the following contact force:

Ψ
con,n
i j = 4

3
(R∗)1/2E∗δ3/2i j , (6.58)

which has the general form of Ψ con,n = K ∗
i jδ

p
i j , where

• R∗ =
(

1
Ri

+ 1
R j

)−1
and

• E∗ =
(
1−ν2

i
Ei

+ 1−ν2
j

E j

)−1
,

where E is the Young’s modulus and ν is the Poisson ratio. The contact area with
such a model has already been incorporated in the relation above and is equal to
Ac

i j = πa2 where a = √
R∗δi j . For more details, we refer the reader to Johnson

[155]. Furthermore, we remark that the normal contact between a particle and a wall,
with a Hertzian model, is given by

Ψ
wall,n
i = 4

3
(R∗)1/2E∗δ3/2iw = K ∗

iwδ
p
iw, (6.59)

where R j = Rw = ∞ (see Eq.6.58)

• R∗ = Ri and

• E∗ =
(
1−ν2

i
Ei

+ 1−ν2
j

E j

)−1
.

It is obvious that for a deeper understanding of the deformation within a particle, it
must be treated as a deformable continuum, which would require a highly resolved
spatial discretization, for example, using the Finite Element Method for the contact-
ing bodies. This requires a large computational effort. For the state of the art in Finite
ElementMethods and Contact Mechanics, see the books ofWriggers [156, 157]. For
work specifically focusing on the continuum mechanics of particles, see Zohdi and
Wriggers [1–43].
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6.8 Chapter Appendix 2: Phase Transformations

To include phase transformations, we consider seven cases, which are implemented
in a predictor-corrector manner by first solving the governing equations to obtain
predicted temperature, and then checking the following:

• Solid → solid-no melting with Ci = CS: If θ(t) < θm and θ(t + Δt) < θm , then
retain C(θ) = CS ,

• Solid → liquid-melting with Ci = CS: If θ(t) < θm and θ(t + Δt) ≥ θm , then
re-solve the governing equations with C(θ) = CS + δP S→L

δθ
,

• Liquid → liquid-melted with Ci = CL: If θ(t) ≥ θm and θ(t + Δt) ≥ θm , then
retain C(θ) = CL ,

• Liquid → solid-solidification with Ci = CL: If θ(t) ≥ θm and θ(t + Δt) < θm

then re-solve the governing equations with C(θ) = CL + δP L→S

δθ
,

• Liquid → vapor-vaporization with Ci = CL: If θ(t) < θv and θ(t + Δt) ≥ θv ,
then re-solve governing equations with C(θ) = CL + δP L→V

δθ
,

• Vapor → vapor-remains a vapor with Ci = CV : If θ(t) ≥ θv and θ(t +Δt) ≥ θv ,
then retain C(θ) = CV ,

• Vapor → liquid-condensation with Ci = Cv: If θ(t) ≥ θv and θ(t + Δt) < θv

then re-solve the governing equations with C(θ) = CV + δPV →L

δθ
,

where CS is the heat capacity of the solid, CL is the heat capacity of the liquid, and
CV is the heat capacity of the vapor and

• 0 < δP S→L is the latent heat of melting.
• 0 < δP L→S is the latent heat of solidification.
• 0 < δP L→V is the latent heat of vaporization.
• 0 < δPV →L is the latent heat of condensation.
• 0 < δθ is small and can be thought of as a “bandwidth” for a phase transformation.
For more details on melting processes, see Davis [158].

We note that latent heats have a tendency to resist the phase transformations, achieved
by adding the positive terms to the instantaneous heat capacity, thus enforcing reduced
temperature (during the phase transformation).4 This approach is relatively straight-
forward to include within the staggering framework.We note that because of changes
in the heat capacity (due to phase transformations) that the thermal storage term is
no longer simply mi

d
dt (Ci (θi − θo)) = mi Ci θ̇i but is

mi
d

dt
(Ci (θi − θo)) = mi Ċi (θi − θo) + mi Ci θ̇i . (6.60)

As a consequence,

mi Ċi (θi − θo) + mi Ci θ̇i = Qi + Hi . (6.61)

4In the idealized limit, the temperature would be constant.
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Rearranging yields
mi Ci θ̇i = Qi + Hi − mi Ċi (θi − θo). (6.62)

Evaluating each term at t + φΔt yields

mi (φCi (t + Δt) + (1 − φ)Ci (t))

(
θ(t + Δt) − θi (t)

Δt

)
= φ(Qi (t + Δt)

+ Hi (t + Δt)) + φ(Qi (t) + Hi (t))

− mi

(
Ci (t + Δt) − Ci (t)

Δt

)
(φθi (t + Δt) + (1 − φ)θi (t) − θo) (6.63)

This can be written as an recursive iteration:

θK+1(t + Δt) = θi (t) + Δt

(
φ(QK

i (t + Δt) + HK̇
i (t + Δt)) + φ(Qi (t) + Hi (t))

)

mi (φC K
i (t + Δt) + (1 − φ)Ci (t))

− Δt
mi

(
C K

i (t+Δt)−Ci (t)
Δt

)
(φθK

i (t + Δt) + (1 − φ)θi (t) − θo)

mi (φC K
i (t + Δt) + (1 − φ)Ci (t))

(6.64)

The subsequent convergence of the thermal calculation is rather quick, since the time-
steps are extremely small. Formore details on convergence on iterative time-stepping
schemes, see Zohdi [1–43].

Remark A number of extensions can be made to the DEM models introduced in the
chapter, depending on the specific manufacturing process to be characterized. In the
following chapters, we illustrate some of these extensions.
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Chapter 7
DEM Extensions: Electrically Driven
Deposition of Polydisperse Particulate
Powder Mixtures

A key part of emerging advanced additive manufacturing methods is the deposition
of specialized particulatemixtures ofmaterials onto substrates. For example, inmany
cases these materials are polydisperse powder mixtures whereby one set of particles
is chosen with the objective to electrically, thermally, or mechanically functionalize
the overall mixture material and another set of finer-scale particles serves as an in-
terstitial filler/binder. Often, achieving controllable, precise deposition is difficult or
impossible using mechanical means alone. It is for this reason that electromagneti-
cally driven methods are being pursued in industry, whereby the particles are ionized
and an electromagnetic field is used to guide them into place. The goal of this chapter
is to further explore this issue, which has been discussed in previous chapters.

7.1 Introduction

As mentioned, achieving precisely controlled deposition of such dry particulate-
based materials is difficult or impossible by solely mechanical means. It is for this
reason that electrically driven methods are being pursued in industry, whereby the
particles are ionized and an electric field is used to guide them into place (Fig. 7.1).
The goal of this work is to develop a model and simulation method to investigate
the behavior of such depositions as a function of the applied electric field. There is
a direct correlation between the ionization strength between particles in the powder
and the more fluid-like behavior. Effectively, with no ionization, the system behaves
as a loose powder, which is difficult to control. As the ionization is ramped up, the
balance betweenmutual attraction and repulsion leads to surface-tension-like effects.
Thus, the expectation is that at high external fields and high ionization, the deposition
will yield coherent aggregate “droplets” of the powder-mixture material (Fig. 7.2).

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_7
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Fig. 7.1 A schematic of a 3D printer (deposition) mechanism

Fig. 7.2 A multiphase
droplet in contact with a
substrate modeled using the
Discrete Element Method

7.2 Algorithm

As in previous sections, within a time-step, the solution STEPS are based on a global
fixed-point iteration:

• (1): Set i = 1 (particle counter) and K = 0 (iteration counter):
• (2): If i > Np, then go to (4)
• (3): If i ≤ Np, then (a) compute position r L+1,K

i and (b) go to (2) for next
particle (i = i + 1)

• (4): Compute iterative error metrics:

ZK
def= �K

T OLr
and ΛK

def=
⎛
⎝ ( T OL

�0
)

1
pKd

(�K
�0

)
1
pK

⎞
⎠, (7.1)

where �K
def=

∑Np
i=1 ||rL+1,K

i −rL+1,K−1
i ||∑Np

i=1 ||rL+1,K
i −rLi || .

• (5): If ZK ≤ 1 (met tolerance) and K < Kd (below preset number of itera-
tions), then (a) increment time: t = t + Δt , (b) construct the next time-step:
Δtnew = ΛKΔtold , (c) select the minimum size: Δt = MIN(Δt lim,Δtnew), and
(d) update the particle positions and go to (1)
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• (6): If ZK > 1 (tolerance notmet) and K < Kd (still iterating), then (a) update
the iteration counter: K = K + 1, (b) reset the particle counter: i = 1, and
(c) go to (2)

• (7): If ZK > 1 (tolerance not met) and K = Kd (at the iteration counter limit),
then (a) construct a new time-step: Δtnew = ΛKΔtold and (b) restart at time
t and go to (1)

We observe that in STEP (5), ΛK may enlarge the time-step if the error is lower
than the preset tolerance. Thus, because the scheme can also enlarge the time-steps
if the iterative system converges quickly within an existing time-step, to ensure the
accuracy of the time-stepping scheme, we add an upper bound to control temporal
discretization error, i.e., Δt ≤ Δt lim .

7.3 Numerical Examples of Involving Polydisperse
Depositions

In order to characterize the physical process, we select a model problem, where
we consider a group of Np spherical particles, of two sizes, randomly dispersed,
and initially generated within in a cylindrical domain of normalized radius R = 1
(diameter D = 2R = 2) and length L = 8 (Fig. 7.3). The ratio of smaller particle
diameter, ds , to total domain diameter, D, was ds/D = 0.05 for smaller particles and
dl/D = 0.2 for the larger particles. A Random Sequential Addition (RSA) algorithm
(Widom [1])was employed to initially to place particles in the domain. Thereafter, the

Fig. 7.3 Schematic of the
initial configuration for the
model problem

s

2D

L

d

dl
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dynamics of the particles drove them to a more compacted state.1 Although we have
formulated the system with both electric and magnetic (electromagnetic) fields, for
the examples of interest, consistent with most mainstream industrial processes, we
will only include the electric field in the simulations. There are of course applications
where an applied magnetic field would be of interest; however, this is beyond the
scope of the current paper. The following simulation parameters were chosen2:

• Magnetic field, Bext = (0, 0, 0) Tesla,
• Electric field, Eext = (−100, 0, 0) N/C,
• Charge per unit particle surface area, q = 100 C/kg,
• Density of air, ρg = 1.225 kg/m3,
• Particles were distributed randomly in a parallelepiped domain: (8 × 2 × 2) m,
• Total number of particles, N = 2000: 1900 small particles and 100 large particles,
• Radius of small particles, Rs = 0.05 m,
• Radius of large particles, Rl = 0.2 m,
• Density ofmaterials,ρ1 = 2000 kg/m3 (binder particles),ρ2 = 5000 kg/m3 (func-
tionalizing particles).

• Contact damping parameter, ccd = 105,
• Friction contact parameter K f = 107,
• Coefficient of static friction, μs = 0.4,
• Coefficient of dynamic friction, μd = 0.3,
• Normal bond parameter, Knb = 106 N/m2 and the exponent in the binding law
was set to pb = 2,

• Rotational/tangential bond parameter, Krb = 103,
• Near-field parameters, ᾱ1 = 0.5, β1 = 1, ᾱ2 = 0.01, β2 = 2, where the ᾱ is per
unit mass,

• Total simulation event duration, 1.0 s,
• Desired number of fixed-point iterations, Kd = 10,
• Trapezoidal-like time-stepping parameter, φ = 0.5,
• Initial time-step size, Δt = 0.0000025 s,
• Time-step upper bound, Δt l−m = 0.00025 s, and
• Tolerance for the fixed-point iteration, 10−6.

Presently in this example, we did not consider thermal effects. However, the
algorithm can be modified to account for coupled thermal effects by solving heat
transfer equations, in addition to the linear and angular momentum balances. In
thermally active cases, the parameters such as Kpi j may be temperature-dependent
andmay soften. For example, the normal stiffness constant for the i th and j th particles
in the contact law can be written as follows (hereΘ is the temperature, which is fixed
in the present analysis, and Θ∗ is a thermal constant):

1For more details on packing of particles, see Torquato [2], Kansaal et al. [3], and Donev et al.
[4–8].
2This parameter set is not intended to simulate any specific scenario. The units are SI with properties
being the same for the small and large particles, unless explicitly stated otherwise
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Kpi = MAX(Kpio
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and for particle j
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and the average taken at the interface, providing the parameter needed in the con-
tact law, Kpi j = 1

2

(
Kpi + Kpj

)
. In the current example, Kpo = 107 N/m2, where

Kp = MAX(Kpo

(
e−(a Θ

Θ∗ −1)
)

, Klim
p ), where Θ∗ = 500 ◦K, Klim

p = 106 N/m2, and

exponent in the contact law was set to pp = 2 (the temperature was fixed to be
Θ = 300 ◦K, and the thermal sensitivity parameter was set to a = 1). There are
many possible representations for temperature-dependency. The overall model has
a modular structure which allows one to replace models easily. Although a fully
coupled thermal model was not considered here, we refer the reader to Zohdi [9–15]
for more details in the general area of thermal multiphysics (as well as the previous
chapter).

Proceeding, for all particles, we applied an initial velocity of v(t = 0) =
(−1, 0, 0), projecting them directly toward the substrate, in conjunction with gravity
(g = −(9.81, 0, 0)m/s2). The electric field starts below a y–z parallel flat plane at
(2, 0, 0). The center of the starting configuration is at (3.5, 0, 0), and the substrate
is at (−2, 0, 0). In the upcoming simulations, the smaller blue particles are “binder”
particles and the larger red particles are “functionalizing” particles. We considered
four different cases:

• Example #1: no external electric field and no particle-to-particle ionization
interaction effects—In this case, the particle system simply falls due to initial
starting velocity. The impact with the substrate is relativelymild, but not controlled
(Fig. 7.4).

• Example #2: external electric field and no particle-to-particle ionization inter-
action effects—In this case, the particle system falls due to initial starting velocity
and the attraction of the electric field. The impact with the substrate is intense and
not controlled. The strong electric field causes more intense impact than before
(Fig. 7.5). To qualitatively consider the added effects of the electric field in the
impact velocity, consider an isolated charged mass with position vector denoted
by r , governed by (ṙ = v, r̈ = v̇)

mv̇ = qEext , (7.4)

with r(t = 0) = roe1, v(t = 0) = voe1, and Eext = Eext
1 e1, consequently, for a

single particle

v1(t) = vo + q

m
Eext
1 t ⇒ r1(t) = ro + vot + q

2m
Eext
1 t2. (7.5)
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Fig. 7.4 Example #1: no
external electric field and no
particle-to-particle ionization
interaction effects

Left: t = 0 s
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and Right: t = 1/7

Left: t = 2/7 and Right: t = 3/7

Left: t = 4/7 and Right: t = 5/7
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Left: t = 0 s

s

s

s

and Right: t = 1/7

Left: t = 1/7 and Right: t = 3/7

Left: t = 4/ t = 5/7 and Right: 7

Left: t = 6/7 and Right: t = 1 s.

s.

s.

s.

Fig. 7.5 Example #2: external electric field and no particle-to-particle ionization interaction effects
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This directly shows how the intensity of the impact is correlated with the mass,
charge, and electric field.

• Example #3: no external electric field and particle-to-particle ionization inter-
action effects—In this case, the particle system falls due to initial starting velocity.
The mutual ionization forces the stream to collapse upon itself and form three dis-
tinct “droplets.” The two upper droplets reconnect. The two connected drops then
continue to fall and connect with the lower droplet, and the entire system then
progresses to make contact with the substrate. The impact on the substrate is mild
(Fig. 7.6).

• Example #4: external electric field and particle-to-particle ionization interac-
tion effects—In this case, the particle system falls due to initial starting velocity
and the electric field. The mutual ionization forces the stream to collapse upon
itself and form three distinct “droplets.” The two upper droplets reconnect, while
the lower one attaches to the substrate. The two connected drops then continue to
fall and connect with the droplet on the substrate. The impact on the substrate is
more intense, but controlled by the electric field, which pins thematerial to the sub-
strate (Figs. 7.7 and 7.8). For comparison purposes, we also ran the simulationwith
only binder particles as well (Fig. 7.9). The breakup is less immediate, primarily
because of less Plateau–Rayleigh perturbations (described further momentarily).

Thus, it is observed that there is a direct correlation with the ionization strength
between particles in the powder and the more fluid-like behavior, which the electric
field can control. With no ionization, the system behaves as a loose powder, which
is nearly impossible to control as a deposition. As the ionization is increased, the
balance between mutual attraction and repulsion leads to surface-tension-like effects
yielding coherent aggregate “droplets” of the powder-mixture material.

Remark 1 In the analysis of standard (nonparticulate) fluids, the breakup of a long
column of fluid with perturbations (longitudinal waviness) was first investigated
experimentally by Plateau in 1873, who found that a vertically falling stream of water
will break up into drops if its wavelength is greater than approximately 3.13–3.18
times its diameter. Subsequently, Rayleigh analytically proved that a wavy falling
column of nonviscous liquid (with circular cross section) should break up into drops
if its wavelength exceeded its circumference. This type of instability is driven by
surface tension, which forces fluids to minimize their surface area. See Papageorgiou
[16] and Eggers [17] for more details. In the case of a charged particulate medium,
the degree of near-field strength plays the role of surface tension. An uncharged
particulate medium will not exhibit this phenomenon.

Remark 2 As we have mentioned previously, because the scheme can also enlarge
the time-steps if the iterative system converges quickly within an existing time-
step, to ensure the accuracy of the time-stepping scheme, we add an upper bound
to control temporal discretization error, i.e., Δt ≤ Δt lim . We started all simulations
with extremely small time-step sizes and allowed the error estimation and time-step
adaptation to auto-correct the proper size. Figure7.10 shows a typical scenario, taken
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Fig. 7.6 Example #3: no
external electric field and
particle-to-particle ionization
interaction effects. We note
the presence of a pseudo
Plateau–Rayleigh instability
that leads to a breakup of the
stream into droplets

Left: t = 0 s

s
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Fig. 7.7 Example #4:
external electric field and
particle-to-particle ionization
interaction
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Left: t = 0 s and Right: t = 1/7 s.

Left: t = 2/7 s and Right: t = 3/7 s.

Left: t = 4/7 s and Right: t = 5/7 s.

Left: t = 6/7 s and Right: t = 1 s.

Fig. 7.8 Azoomfor example #4: external electric field andparticle-to-particle ionization interaction
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Fig. 7.9 Baseline
“reference” monodisperse
example: external electric
field and particle-to-particle
ionization interaction

Left: t = 0 s

s

s

s

and Right: t = 1/7 s.

Left: t = 2/7 and Right: t = 3/7 s.

Left: t = 4/7 and Right: t = 5/7 s.

Left: t = 6/7 and Right: t = 1 s.
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Fig. 7.10 Time-step
adaptation for Example #4:
external electric field and
particle-to-particle ionization
interaction

from Example # 4, where the sizes were initially small and adapted until they met
the limit set by the algorithm (user specified).

Remark 3 The use of so-called interaction lists is advantageous to speed up cal-
culations and to extend such simulations to very large particle systems. These lists
are constructed, for each particle, by taking neighboring particles within a radius of
influence. The list is then updated periodically during the simulations. This signifi-
cantly reduces the computation time used in contact search and other intra-particle
calculations, which are N 2 operations. In the simulations that were presented: (a)
For each particle, a nearest neighbor list was constructed at the beginning of the sim-
ulation (b) For a subinterval of time, the interaction for each particle was restricted
to these neighbors, and (c) the lists were updated after that interval expired and the
process repeated. See Zohdi [9–15, 18, 19] for details.
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Chapter 8
DEM Extensions: Electrically Aided
Compaction and Sintering

8.1 Introduction

One commonly used approach in processing powdered materials is sintering. Gen-
erally, sintering refers to processing a powdered material, comprised of fine-scale
particles, by compacting it in a press (Fig. 8.1) and utilizing heat to bind the material.
Sintering has distinct advantages over other methods, for example, (1) high purity
of processed materials, (2) relatively few STEPS in fabrication (thus retaining the
purity), and (3) the production of near net shape of the desired product. Most impor-
tantly, it is a method that can be utilized to produce products with complex shapes
that cannot be easily made with other methods. Innovative methods for processing
compacted microscale powders are rapidly being developed in industry in order to
meet the specifications demanded by new products.

The delivery of heat can be achieved in a variety of ways, for example, by heat-
ing the walls of the press, with the heat transfer taking place primarily by thermal
conduction. In an effort to enhance the heat transfer process, in particular within
the interior of the material to be processed, electrically aided heat generation, draw-
ing upon the material’s inherent resistance, via Joule-heating, is one method and is
considered in this work.1

8.1.1 Objectives

The objective of this chapter is to develop a direct particle-based model which cap-
tures three main physical events:

• Particle dynamics, which primarily entails: (a) the movement of the particles
induced by contact with the compressing walls and (b) particle-to-particle contact
forces,

• Particle electrical current flow, which primarily entails: (a) current flow through
the particles and (b) current exchange between the particles and walls,

1Monograph Appendix 2 gives a detailed analysis of Joule-heating phenomena.

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
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RELEASEDEPOSIT/POUR PARTICLES COMPRESSION

Fig. 8.1 A model problem: The sequence of events: a particles dropped onto a surface, b an
electrified head compresses and electrifies the particles, c the particles heat up and fuse together,
and d the electrified head is removed

• Particle thermodynamics, which primarily entails: (a) heat generation via Joule-
heating, (b) heat transfer between particles in contact by conduction, and (c) ther-
mal softening of the particles.

This is a strongly coupled multiphysical system, since the dynamics controls which
particles are in mechanical contact, thus dictating the electrical contacts, which in
turn controls the Joule-heating and the induced thermal fields, thus softening and
binding the material. As in the previous chapters, the approach taken in the present
work is to construct a submodel for each primary physical process. These submodels
are coupled to one another. In order to resolve the coupling, a recursive multiphysical
staggering scheme is constructed. As before, the general methodology is as follows
(at a given time increment): (1) Each field equation is solved individually, “freezing”
the other (coupled) fields in the system, allowing only the primary field to be active
and (2) after the solution of each field equation, the primary field variable is updated,
and the next field equation is treated in a similar manner. As the physics changes, the
field that is most sensitive (exhibiting the largest amount of relative nondimensional
change) dictates the time-step size. This approach can be classified as an implicit,
staggered, time-stepping scheme, in conjunction with an iterative solution method
that automatically adapts the time-step sizes to control the rates of convergencewithin
a time-step. If the process does not converge (below an error tolerance)within a preset
number of iterations, the time-step is adapted (reduced) by utilizing an estimate of
the spectral radius of the coupled system. The modular approach allows for easy
replacement of submodels, if needed.
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Remark 1 The approach outlined here can be thought of as amiddle ground between
semianalytical approaches which provide qualitative information (Zohdi [1]) and
computationally expensive “brute-force” continuum approaches (Zohdi [2]) which
attempt to resolve the evolution of fine-scale thermal gradients, transient electromag-
netic fields, stress fields, and chemical/damage fields by solving a coupled system
of PDEs associated with (1) Maxwell’s equations, (2) the first law of thermodynam-
ics, (3) the balance of linear momentum, and (4) reaction–diffusion laws. For the
mentioned “brute-force” continuum approach to accurately resolve the coupled time-
transient spatial electromagnetic, thermal,mechanical, and chemical fields, Zohdi [2]
developed a staggered, temporally adaptive, FDTD (Finite Difference TimeDomain)
method. This is a computationally intensive approach, owing to the fact that one
needs literally millions of numerical unknowns, due to the fine mesh sizes needed.
We remark that there are other continuum-based methods, such as (a) the Multireso-
lution Time Domain Method, which is based on wavelet-based discretization, (b) the
Finite Element Method, which is based on discretization of variational formulations
and which is ideal for irregular geometries (see Demkowicz [3] and Demkowicz et
al. [4] for the state of the art in adaptive finite element methods for Maxwell’s equa-
tions), (c) the Pseudospectral Time Domain Method, which is based on Fourier and
Chebyshev transforms, followed by a lattice or grid discretization of the transformed
domain, (d) the Discrete Dipole Approximation, which is based on an array of dipoles
solved iteratively with the Conjugate Gradient method and a Fast Fourier Transform
to multiply matrices, (e) the Method of Moments, which is based on integral formu-
lations employing Boundary Element Method discretization, often accompanied by
the Fast Multipole Method to accelerate summations needed during the calculations,
and (f) the Partial Element Equivalent Circuit Method, which is based on integral
equations that are interpreted as circuits in discretization cells. However, they are
also primarily based on continuum models and are computationally intensive.

Remark 2 There has been considerable research activity innonelectrical compaction
of powders, for example, seeAkisanya et al. [5], Anand andGu [6], Brown andAbou-
Chedid [7], Domas [8], Fleck [9], Gethin et al. [10], Gu et al. [11], Lewis et al. [12],
Ransing et al. [13], Tatzel [14], and Zohdi [1, 2, 15–40].

8.2 Direct Particle Representation

As before, we consider a group of nonintersecting particles (i = 1, 2, . . . , Np). The
equation of motion for the ith particle in system is

mi r̈ i = Ψ tot
i (r1, r2, . . . , rNp ) = Ψ con

i + Ψ
f r ic
i + Ψ wall

i + Ψ bond
i + Ψ env

i , (8.1)

where r i is the position vector of the i th particle and Ψ tot
i represents all forces acting

on particle i , which is decomposed into the sumof forces due to normal contact forces
(Ψ con

i ), sliding frictional forces (Ψ f r ic
i ), wall forces (Ψ wall

i , having both contact and
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friction), adhesive bonding forces (Ψ bond
i ) with other particles, and forces arising

from the surrounding interstitial environment (Ψ env
i ).2 We utilize the same dynamics

model as in previous chapters.

Remark: The primary additional feature in this type ofmodel is the current that flows
through the system and the subsequent Joule-heating. The previous effects have been
described in the previous chapter.

8.3 Thermal Fields

8.3.1 Governing Equations

We assume that radiative, convective, and strain-rate effects are negligible for the
particle’s thermodynamics.Only Joule-heating and conduction are considered impor-
tant. Thus, for each particle i = 1, 2, . . . , Np,

miCi θ̇i = Qi + Hi , (8.2)

where Qi represents the conductive contribution from surrounding particles in con-
tact (including walls) and Hi represents the Joule-heating term. It is assumed that
the temperature fields are uniform within the (small) particles. This assumption is
justified, i.e., a lumped thermal model, ignoring temperature gradients and assuming
a uniform temperature within a particle, when the Biot number is small. The Biot
number for spheres scales with the ratio of the particle volume (V ) to the particle
surface area (As) in the following manner (R being the particle radius)

V

As
=

4
3πR

3

4πR2
= R

3
, (8.3)

which indicates that a uniform temperature distribution is appropriate, since the
particles, by definition, are small.Assuming that the fields are uniform in each particle
allows for the following (for particle i)

Q = −
∫

∂ω

Q · n d A ≈
Npc∑
j=1

IKi j
θ j − θi

||r i − r j || A
c
i j , (8.4)

where the summation extends over all particles j = 1, 2, 3, . . . , Npc that are in
contact with particle i (Fig. 8.2).3 This yields

2Such forces can occur from viscous, surrounding, interstitial fluid.
3 IKi j can be approximated by an average interfacial value of the i − j pair, IKi j ≈ IKi+IK j

2 . If the
materials are the same, this collapses to simply IK . As for the mechanical contact, Ac

i j is the contact
area associated with the particle pair (i j).
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Fig. 8.2 Heat flux exchange between particles

miCi
dθi

dt
=

Npc∑
j=1

IKi j
θ j − θi

||r i − r j || A
c
i j

︸ ︷︷ ︸
Qi

+Hi , (8.5)

where the specific form of Joule-heating is

Hi ≈ ai
J 2
i

σi
Vi , (8.6)

where Ji is the current magnitude in particle i , σi is the conductivity, and 0 ≤ ai ≤ 1
is an absorption constant. More remarks on Joule-heating will be given shortly.

8.3.2 Numerical Integration

Integrating the energy equation yields for each particle (i = 1, 2, . . . , Np)

θi (t + Δt) = θi (t) + 1

miCi

(∫ t+Δt

t
Qi dt +

∫ t+Δt

t
Hi dt

)
(8.7)

≈ θi (t) + Δt

miCi
(φ(Qi (t + Δt) + Hi (t + Δt)) + (1 − φ)(Qi (t) + Hi (t))) .

We note that Eq.8.7 represents a coupled system of the general form (similar to the
equation that arises for the particle dynamics)
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θi (t + Δt) = Gi (θi (t + Δt)) + Ri , (8.8)

where for the “remainder” term, Ri �= Ri (θi (t + Δt)), and Gi ’s behavior is con-
trolled by the magnitude ofΔt . Clearly, the temperature is coupled to the mechanical
behavior of the system. As before, shortly, we introduce a multiphysical staggering
scheme to solve the overall system.

8.4 Modeling of Current Flow

8.4.1 Particle Model Simplification

In order to describe the electrical flow in the system, we consider a conservation of
charge in integral form (posed over an arbitrary, general, domain ω)

∫
∂ω

J · n d A +
∫

ω

∂P
∂t

dV = 0, (8.9)

where J is the current field andP is the charge. We assume that the electrical current
has evolved to steady state on timescales that are much shorter than the dynamics of
the particles. Therefore, ∂P

∂t = 0 is assumed throughout the remainder of this work;
thus,

∫
∂ω

J · n d A = 0. (8.10)

For the particle model, we re-express Eq.8.10 in terms of electrical contact and
current flow (through the particle interfaces), characterized by fluxes in and out of
particles, as

Npc∑
j=1

(J i + J j ) · ni j Ac
i j = 0, (8.11)

where Ac
i j is the contact area associated with the particle pair (i j), ni j = r j−r i

||r i−r j || , and
Npc is the number of particles in contact with particle i . Assuming that the current
flows in and out in a radial manner, see Fig. 8.3.

(J i + J j ) = (Ji − Jj )ni j ; (8.12)

thus,
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Fig. 8.3 Left: current exchange between particles. Right: The particles in contact with the walls
are assumed to become fully electrified and to attain the magnitude of current in the wall as well
as the temperature of the wall. From particles that contact the walls, the current flows radially to
contact pairs

Npc∑
j=1

(Ji − Jj )A
c
i j = 0 ⇒ Ji =

∑Npc

j=1 Jj A
c
i j∑Npc

j=1 A
c
i j

. (8.13)

8.4.2 Iterative Flux Summation/Solution Process

The preceding relations lead to an implicit set of equations which are strongly cou-
pled, as well as being coupled to the system dynamics. In order to deal with sys-
tem, we employ a staggering scheme where, broadly speaking, the solution method
sweeps through the system, particle by particle, updating the variables as it pro-
gresses. Specifically (where K = 1, 2 . . . is an iteration counter), the current is
solved iteratively:

J K+1
i =

∑Npc

j=1 J
K
j AcK

i j∑Npc

j=1 A
cK
i j

. (8.14)

This process is repeated for all particles. The dynamical and thermo-mechanical
equations are then re-solved for the motion and temperature of the particles freezing
the electrical current variables, and the entire procedure (all previous STEPS) is
repeated.

Remark 1 Once the current in each particle is solved for, one can compute the Joule-

heating via Hi ≈ a J 2i
σi
Vi .
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Fig. 8.4 A one-dimensional
example of current flow

− + +
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J J JJ
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Remark 2 Theparticles in contactwith the compactingwalls/boundaries are assumed
to become fully electrified and to attain the magnitude of current in the plate (Figs.
8.4, 8.5, 8.6, and 8.7). From that particle, the current flows radially to other particles
in contact at their respective contact points (Fig. 8.8).

Remark 3 For an overviewof the continuummodeling of current flow, Joule-heating,
and so forth, see Zohdi [2].

Remark 4 As an example, consider the one-dimensional array of particles shown
in Fig. 8.4. The two outer particles attain the values at the wall (due to the adopted
approach for applying boundary conditions). According to the model, any current in
a particle flows radially outward from the contact point into the neighboring particle.
Thus, for particle i , we have two contact points

2∑
j=1

(J i + J j ) · ni j Ac
i j = (J+ · n+ + J i · n+)Ac,+ + (J− · n− + J i · n−)Ac,−

= (−J+ + Ji )A
c,+ + (−J− + Ji )A

c,−

= 0. (8.15)

If the contact areas are the same, this collapses to the average, Ji = 1
2 (J

+ + J−).
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8.4.3 Overall Solution Algorithm

The algorithm is as follows:

(1) GLOBAL FIXED − POINT ITERATION : (SET i = 1 AND K = 0) :
(2) IF i > Np THEN GO TO (4)
(3) IF i ≤ Np THEN : (FOR PARTICLE i)

(a) COMPUTE POSITION :rL+1,K
i

(b) COMPUTE TEMPERATURE :θL+1,K
i

(c) GO TO (2) AND NEXT PARTICLE (i = i + 1)
(4)ERROR MEASURES(NORMALIZED) :

(a)�r K
de f=

∑Np
i=1 ||rL+1,K

i − rL+1,K−1
i ||∑Np

i=1 ||rL+1,K
i − rLi ||

�θK
de f=

∑Np
i=1 ||θL+1,K

i − θL+1,K−1
i ||∑Np

i=1 ||θL+1,K
i − θLi ||

(b)ZK
def= max(zrK , zθK ) WHERE zrK

de f= �r K

T OLr
, zθK

de f= �θK

T OLθ

(c)�K
def= min(�r K , �θK ) WHERE

�r K
de f=

⎛
⎝ ( T OLr

�r0
)

1
pKd

(�r K
�r0

)
1
pK

⎞
⎠,

�θK
def=

⎛
⎝ (

T OLθ
�θ0

)
1

pKd

(
�θK
�θ0

)
1
pK

⎞
⎠

(5)IF TOL. NOT MET (ZK > 1) AND K < Kd REPEAT ITERATION (K = K + 1)
(6) IF TOL. MET (ZK ≤ 1) AND K < Kd THEN :

(a) INCREMENT TIME : t = t + Δt
(b)CONSTRUCT NEW TIME − STEP :Δt = �KΔt,
(c) SELECT MINIMUM :Δt = MI N (Δt lim , Δt)
(d)UPDATE CURRENT FIELD J i(FOR ALL PARTICLES ITERATIVELY)

(e)AND GO TO (1)
(7) IF TOL. NOT MET (ZK > 1) AND K = Kd THEN :

(a)CONSTRUCT NEW TIME − STEP :Δt = �KΔt
(b)UPDATE CURRENT FIELD J i(FOR ALL PARTICLES ITERATIVELY)

(c)RESTART AT TIME = t AND GO TO (1)

(8.16)

The overall goal is to deliver solutions, where staggering (incomplete coupling) error
is controlled and the temporal discretization accuracy dictates the upper limits on the
time-step size (Δt lim).
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IF NEEDED

UPDATE MECHANICAL FIELD

(ASSUME THERMAL AND ELECTRICAL FIELDS ARE FIXED)

MECHANICAL FIELD: SOLVE PARTICLE DYNAMICS AND CONTACT

THERMAL FIELD: SOLVE FOR THE PARTICLE TEMPERATURES
(ASSUME MECHANICAL AND ELECTRICAL FIELDS ARE FIXED)

UPDATE THERMAL FIELD

ELECTRICAL FIELD: SOLVE FOR THE PARTICLE CURRENTS
(ASSUME MECHANICAL AND THERMAL FIELDS ARE FIXED)

UPDATE ELECTRICAL FIELD

CHECK FOR CONVERGENCE

YES: GO TO NEXT TIME-STEP

NO: REPEAT THE PROCESS

REFINE TIME-STEP

Fig. 8.5 A flowchart for the modular, staggered, computation

8.5 Numerical Examples

We consider a model problem of a group of equally sized particles placed between
six walls (Fig. 8.1) to illustrate how to assemble the system. The absolute dimensions
are unimportant for the model problem and have been normalized. Specifically, we
considered a group of Np = 1000 randomly positioned particles in initially cubical
box domainwith dimensions (x = −1, x = 1)×(y = −1, y = 1)×(z = −1, z = 1)
meters (the particles are then poured onto the lower wall). The particle radii were
R = 0.075 m. In the x-direction (vertical), the top and bottom walls are electrified.
The four other walls are neutral. The top is pushed downward at a constant rate
(starting at x = −1), until it gets to x = x∗ at approximately 100% volume fraction,
and then it is pulled away.4 As an example, the relevant simulation parameters chosen
were:

• The normal contact parameter was Kpo = 107 N/m2, with thermal softening Kp = MAX

(Kpo

(
e−a θ

θ∗ −1
)

, Klim
p ), where θ∗ = 500 ◦K, Klim

p = 106 N/m2, and the exponent in the

contact law was set to pp = 2,
• The stiffness of the wall in contact law, Kwo = 109 N/m2, with thermal softening Kw =

MAX(Kwo

(
e−a θ

θ∗ −1
)

, Klim
w ), where θ∗ = 500 ◦K, Klim

w = 108 N/m2, and the exponent in

the contact law was set to pw = 2,

4The transverse dimensions of the box were set to be approximately unity, initially. All system
parameters can be scaled to describe any specific system of interest.



8.5 Numerical Examples 145

• The bond stiffness, Kb = 106 N/m2, and the exponent in the binding law was set to pb = 2,
• The damping coefficient, cenv = cenv

o 6πR, cenv
o = 10 (assumed Stokesian-like),

• The density of the particles, ρ = 2000 kg/m3,
• The Joule-heating absorption coefficient, a = 0.5,
• The electrical conductivity, σ = 0.1,
• Coefficient of dynamic friction, μd = 0.1,
• Conductivity (same for all particles in this example), IK = 100Watts/m − Kelvin,
• Initial material temperature, θi (t = 0) = 300◦ K,
• Wall temperatures, θw(t = 0) = 1000◦ K,
• Heat capacity, C = 100 J/kg − Kelvin,
• Target number of fixed-point iterations, Kd = 10,
• The trapezoidal time-stepping parameter, φ = 0.5,
• On the bottom and top wall (in the x-direction), J ext = 105 amps,
• Simulation duration, 1 s,
• Initial time-step size, 0.005 s,
• Time-step upper bound, 0.005 s and
• Tolerance for the fixed-point iteration, 5 × 10−4.

8.5.1 STEP 1: Pouring the Particles

In order to generate an initial particle configuration, we dropped a sample of nonover-
lapping random particles onto the lower surface and allowed it to spread under the
force of gravity, where it was constrained by the lateral walls. The volume fraction
of monodisperse random particles should be in range of 50–60% at this stage, and
the simulation reflects that this is achieved before compaction, under the force of
gravity (Fig. 8.6).

Remark 1 The volume fractionwas calculated based on the volume containedwithin
the lowest compression point in Fig. 8.1.

Remark 2 The configuration of the sample, before it was dropped, was generated
using a classical RandomSequential Addition (RSA) algorithm (Widom [41]), which
places nonoverlapping particles randomly into the domain of interest. As men-
tioned previously, one could start with a denser starting configuration by using the
equilibrium-driven Metropolis algorithm or alternative methods based on simulta-
neous particle flow and growth (see Kansaal et al. [42], Donev et al. [43–45], and
Torquato [46]), although this was not necessary for this example.

8.5.2 STEP 2: Compacting the Particles

In Fig. 8.6, the temperature values are depicted by the colors. Initially, the particles
are not touching the electrified walls in the vertical (x-direction), nor the lateral,
unelectrified walls. As the electrified wall moves in the (minus) x-direction, the
particles come into contact, become electrified (experience a current), and move
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Fig. 8.6 A series of frames for compaction using themodel (side walls not shown). Left to right and
top to bottom: (1) Pouring of the particles, (2) Contact with the lower electrified wall, (3) Contact
with the upper and lower electrified walls, and (4) Release of the upper electrified wall (loss of
upper surface contact)
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Fig. 8.7 Densification and temperature: The process can be described as having three phases: (1)
Phase 1: pouring to roughly 50–60% volume fraction. The temperature rises due to contact with the
lower electrified wall. (2) Phase 2: The compacting wall compresses the material to virtually 100%
volume fraction. The temperature rises due to contact with the upper and lower electrified walls. (3)
Phase 3: The compacting wall is released, and the material springs back somewhat, resulting in a
lower volume fraction than the fully compressed state, but higher than the purely poured state. The
temperature starts to drop due to conduction with the surrounding walls. The basic trends are: (1)
The longer time the fully compressed state, the better the Joule-heating induced bonding and less
springback. (2) The higher densification (higher volume fraction) in the fully compressed state, the
better the Joule-heating induced bonding and less springback. The volume fraction was calculated
based on the volume contained within the lowest compression point in Fig. 8.6

in the (minus) x-direction, as well as experience lateral movement (in the y − z)
direction. The process can be described as having three phases:

• (1) Phase 1: pouring to roughly 50–60% volume fraction. The temperature rises
due to contact with the lower electrified wall.

• (2) Phase 2: The compacting wall compresses the material to virtually 100% vol-
ume fraction. The temperature rises due to contact with the upper and lower elec-
trified walls (Fig. 8.7).

• (3) Phase 3: The compacting wall is released, and the material springs back some-
what, resulting in a lower volume fraction than the fully compressed state, but
higher than the purely poured state. For example, in the specific example chosen,
the compaction process decreased the porosity by approximately 15% (Fig. 8.7).

The basic trends are:

• (1) The longer time the fully compressed state, the better the Joule-heating induced
bonding and less springback and

• (2) The higher densification (higher volume fraction) in the fully compressed state,
the better the Joule-heating induced bonding and less springback.
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8.6 Extensions and Conclusions

This chapter developed a modular framework for the electrically enhanced sintering
of powdered materials using a direct particle representation in conjunction with a
staggering scheme to couple submodels of each type of physics together. The physics
of this system are strongly coupled since the dynamics controls which particles are
in contact, which also dictates the electrical contacts, which in turn controls the
Joule-heating and the induced thermal fields, which softens and binds the material.
The strongly multiphysics-coupled submodels were solved iteratively within each
time-step using a staggering scheme which employs temporal adaptivity to control
the error. The submodular approach allows for easy replacement of models, if so
desired. Numerical examples were provided. There are a number of enhancements
that can be made. For example, the properties of most electrically active materials
are quite sensitive to the temperature; for the conductivity, one can use the follow-
ing decomposition, employing thermoelectric saturation conditions (using sigmoid
functions):

σ(θ, E) = σ(θR, ER)
(
1 + K1(1 + e−γ1(θ−θR))−1 + K2(1 + e−γ2||E−ER ||)−1

)
,

(8.17)
where the γs andKs are material parameters, θR is a reference temperature, E is the
electric field, and ER is the reference electrical state. Generally speaking, for many
materials, until a saturation threshold is met, σ(θ) decreases with θ. See the treatise
of Jackson [47] for reviews of the rich variety of possible dielectrical responses
of materials, including atomistic-level discussions to motivate nonlinear dielectric
behavior.

In closing, it is important to note that a significant acceleration in the computation
can be achieved via sorting and binning methods, which proceed by partitioning the
whole domain into bins (Fig. 8.8). The particles are sorted by the bins in which they
reside. The particle interaction proceeds, bin by bin, where the particles within a bin
potentially only interact with particles in other nearest neighbor bins. Essentially,
for a given particle in a bin, contact searches are conducted with particles in the

Fig. 8.8 An example of binning of the particles in the sample domain
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neighboring bins only (Fig. 8.8). The approach is relatively straightforward to imple-
ment and can speed up the computation dramatically (see Zohdi [1, 2, 15–40]). There
are a variety of related techniques to further accelerate computations. For example,
one can assume that particles stay in the bins for a few time-steps and that one does
not need to re-sort immediately. One can construct so-called interaction or Verlet
lists of neighboring particles which a particle interacts with. One then updates the
interaction list every few time-steps (see Pöschel and Schwager [48]). One can also
employ domain decomposition techniques, whereby the domain is partitioned into
subdomains and the particles within each subdomain are sent to a processor then
stepped forward in time, but with the positions of the particles outside of the sub-
domain fixed (relative to the particles in that subdomain). This is done for all of the
subdomains separately, then the positions of all of the particles are updated, and this
information is shared between processors, with the process being repeated as needed.

8.7 Chapter Appendix 1: Joule-Heating

8.7.1 Characterizing Electrical Losses

The flow of current through materials usually leads to the phenomena of Joule-
heating. Tounderstand the phenomena,we consider a general electromagnetic system
characterized by Faraday’s law

∇ × E = −∂B
∂t

(8.18)

and Ampere’s law

∇ × H = ∂D
∂t

+ J (8.19)

where we recall that E is the electric field, D is the electric field flux, J is the electric
current, H is themagnetic field, and B is themagnetic field flux. Joule-heating can be
motivated by forming the inner product of the magnetic field with Faraday’s law and
the inner product of the electric field with Ampere’s law and forming the difference
to yield

E · (∇ × H) − H · (∇ × E)︸ ︷︷ ︸
−∇·(E×H)=−∇·S

= E · J + E · ∂D
∂t

+ H · ∂B
∂t︸ ︷︷ ︸

= ∂W
∂t

, (8.20)

where W = 1
2 (E · D + H · B) = 1

2 (E · ε · E + H · μ · H) is the electromagnetic
energy and S = E × H is the Poynting vector. Thus,
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∂W
∂t

+ ∇ · S = −J · E (8.21)

Equation 8.21 is usually referred to as Poynting’s theorem and can be interpreted,
for simple material laws, where the previous representation for W holds, as stating
that the rate of change of electromagnetic energy within a volume, plus the energy
flowing out through a boundary, is equal to the negative of the total work done by
the fields on the sources and electrical conduction.

8.7.2 Joule-Heating

The interconversions of various forms of energy (electromagnetic, thermal, etc.) in
a system are governed by the first law of thermodynamics, for example, case in the
current configuration

ρẇ − T : ∇v + ∇ · q − Z = 0, (8.22)

where ρ is the mass density in current configuration, w is the stored energy per unit
mass, T is Cauchy stress, v is the material velocity, and q is heat flux. We consider
the absorbed energy that is available for heating to be proportional to the energy
associated with electrical conduction, namely, from Eq.8.21, J · E, and account for
it via Z

def= ρz = a J · E, where a is an absorption constant, 0 ≤ a ≤ 1. The systems
considered in the body of the chapter are special cases of this general continuum
formulation, which was treated in Zohdi [2].

8.8 Chapter Appendix 2: Time-Scaling Arguments for
∂P
∂ t ≈ 0

Consider the following
∫

∂�

J · n d A +
∫

�

∂P
∂t

dV = 0 ⇒ ∇ · J = 0, (8.23)

where ∂P
∂t = 0 is assumed the current propagates through the particles at a much

faster timescale than the deformation of the system. The velocity of the deformation
of the system is far slower than the relative movement of charge (propagation of
electricity) through the system (which is considered instantaneous). Changes in P
are determined by the Gauss’ law:

∫
∂�

D · n d A =
∫

�

P dV, (8.24)
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where D is the electric field flux. As an illustrative example, in order to appreciate
the fast timescales that justify ∂P

∂t ≈ 0, consider an arbitrary piece of continuum
(undergoing no deformation) governed by

∇ · J = σ∇ · E = σ

ε
∇ · D = σ

ε
P = −∂P

∂t
, (8.25)

where the following simple constitutive laws were used for illustration purposes:
J = σE, D = εE, and ∇ · D = P . Solving for P yields

P(x, t) = P(x, t = 0)e− σ
ε t ; (8.26)

thus,

∂P
∂t

= −σ

ε
e− σ

ε t . (8.27)

The term e− σ
ε t is extremely small since the ratio σ

ε
is huge for the materials of

interest and −σ
ε
e− σ

ε t ≈ 0 for virtually any timescales of interest, thus justifying∫
∂�

J · n d A = 0. In summary, any changes in P can be considered instantaneous,
relative to mechanically induced deformations.
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Chapter 9
DEM Extensions: Flexible Substrate Models

9.1 Introduction

In certain applications, because the substrate is fragile, knowledge of the induced
stresses is important in order to properly control the process (Fig. 9.1). Such concerns
have become increasingly important due to the rise of printed flexible electronics
involving sensitive, potentially fragile dielectric and optical materials. As mentioned
previously, applications include, optical coatings and photonics [1], MEMS applica-
tions [2, 3], and even biomedical devices [4]. There are a wide variety of additive-like
processes, and we refer the reader to Gamota et al. [5], Sirringhaus et al. [6], Wang
et al. [7], Huang et al. [8], Choi et al. [9–12], Demko et al. [13, 14], Fathi et al. [15],
Martin [16, 17], and Zohdi [18–50] for details. These types are similar to those in
the area spray coatings. We refer the reader to the extensive works of Sevostianov
and Kachanov [51–53], Nakamura and coworkers: Dwivedi et al. [54], Liu et al. [55,
56], Nakamura and Liu [57], Nakamura et al. [58] and Qian et al. [59] and to Martin
[16, 17] for the state of the art in deposition technologies. Oftentimes, the objective
is to produce multilayer coatings on curved surfaces (see, e.g., [60]). The interested
reader is referred to the recent overview article by Huang et al. [61] on the wide
array of activities in additive manufacturing. This chapter develops a computational
mechanics framework to investigate the behavior of such processes. Specifically,
substrate stresses due to multiple, simultaneous, surface particle contact events are
efficiently computed by superposing individual particle contact solutions, based on
classical Boussinesq-like solutions, coupled to a multibody dynamics formulation
for the interacting particles. Specifically, in the chapter:

• A multibody collision model (based on the previous chapters) is used to represent
the interaction of the particles with each other, as well as with the substrate.

• Classical point-load solutions on a half-space are used to represent the contribution
of each particle to the stresses on the substrate.

© Springer International Publishing AG 2018
T. I. Zohdi,Modeling and Simulation of Functionalized Materials for Additive
Manufacturing and 3D Printing: Continuous and Discrete Media, Lecture Notes in
Applied and Computational Mechanics 60, https://doi.org/10.1007/978-3-319-70079-3_9
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Fig. 9.1 Left: deposition of a stream of particles onto a substrate

• The response of the particles and substrate is coupled together with a recursive
numerical scheme.

• Three-dimensional examples are provided to illustrate the technique.

Remark Themodeling approach allows for rapid computation of deposition-induced
stresses which allows one to conduct parameter studies, leaving more intensive finite
element analyses, if warranted, for final process analysis stages. We note that the
range of validity of this type of simulation is for relatively slow deposition where
elastodynamic effects can be ignored in the substrate. Furthermore,we consider “dry”
particle depositions where the interstitial fluid is of negligible importance. Particles
in suspension are outside the scope of this chapter. We refer the reader to Kachanov
and Abedian [62], Abedian and Kachanov [63], and Sevostianov and Kachanov [64]
for details on the analysis of that class of particle-laden fluidmaterials. Such analyses
can be useful for determining the rheology of so-called (particle) functionalized inks
[18–50].

9.2 A Multibody Dynamics Model for the Particles

9.2.1 Overall Contributing Forces

As before, we consider a group of nonintersecting particles (i = 1, 2, ..., Np). The
objects in the system are assumed to be small enough to be considered (idealized)
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as particles, spherical in shape, and that the effects of their rotation with respect to
their mass center are unimportant to their overall motion, although we will make
further remarks on these effects shortly. The equation of motion for the i th particle
in system is

mi r̈ i = Ψ tot
i (r1, r2, ..., rNp ) = Ψ con

i + Ψ subs
i + Ψ bond

i + Ψ
damp
i , (9.1)

where r i is the position vector of the i th particle and Ψ tot
i represents all forces acting

on particle i , which is decomposed into the sum of forces due to:

• Inter-particle forces (Ψ con
i ) generated by contact with other particles,

• Substrate forces (Ψ subs
i ) generated by contact with constraining surfaces,

• Adhesive bonding forces (Ψ bond
i ) with other particles and the substrate,

• Damping forces arising from the surrounding interstitial environment (Ψ damp
i )

occurring from potentially viscous, surrounding, interstitial fluids and surfactants.

We refer the reader to the previous chapters.

9.3 Induced Substrate Stresses

Our basic approach is to represent the contribution of the contact induced by each
particle as a point load on an infinite half-space. We break the point load into two
components: (1) the normal load and the (2) tangential load. Afterward, we sum all
of the contributions to obtain the total induced stress field in the substrate.

9.3.1 Individual Particle Contributions—Normal Load

The corresponding radially symmetric (θ-independent) solution (Fig. 9.1) for a nor-
mal load at (x, y, z) = (0, 0, 0) in the z-direction is (in cylindrical coordinates,
Boussinesq [76])1:

1See [77] for a complete, rigorous derivation.
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σrθ = 0 (symmetry),

σzθ = 0 (symmetry),

(9.2)

where r
def=√

x2 + y2 and γ
def=√

x2 + y2 + z2.

Remark Often, it is convenient tomove back and forth fromCartesian and cylindrical
bases, which can be achieved by simply rotating the system with

σcart (θ) = RT (θ) · σcyl · R(θ), (9.3)

where R(θ) is defined as

R(θ)
def=

⎡
⎣

cosθ sinθ 0
−sinθ cosθ 0

0 0 1

⎤
⎦ , (9.4)

and RT (θ) = R−1(θ), because it is an orthonormal matrix.2

9.3.2 Individual Particle Contributions—Tangential Load

The effects of nonnormal (tangential) loadings can be included by utilizing the solu-
tions for a tangential point load in the x−direction (see [77] for reviews):

2We note that the quantity σ′ : σ′ is invariant under the rotational coordinate transformation, in
other words, σ′,car : σ′,car = (RT (θ) · σ′,cyl · R(θ))T : (RT (θ) · σ′,cyl · R(θ)) = σ′,cyl : σ′,cyl ,
and thus, this metric remains perfectly acceptable to use in the presence of nonnormal loading.
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and performing a coordinate transformation (to a tilde frame) x̃ = y, ỹ = x , z̃ = z
to account for any Fy loading in the y−direction. The results from the loading in the
x−, y− and z− directions can be superposed to produce the total loading.

9.3.3 Superposition of Contributions for the Total Substrate
Stresses

The total stress at a point in the substrate is computed by summing all point-load
(particle) contributions (I = 1, 2, ..., N , appropriately translated according to their
position on the surface):

σtot−N (x) =
N∑
I=1

σ I (x), (9.6)

where the contact forces will be determined from the solution of the multibody
particle problem. We assume that there is only normal loading. The presence of
tangential loading is discussed in the conclusions. From Eq. 9.2, one can determine
the vonMises stress (σtot−N )′ = ∑N

I=1 σ′
I , whereσ′

I = σ I − trσ I
3 1, which is usually

important for failure assessment.
The computational algorithm is as follows:

• Initialization: Generate a starting configuration for the particles.
• STEP 1: Compute the forces from the particles in contact with the surface-this
produces N loading sites.

• STEP 2: Compute the stress field contribution from each particle, I = 1, 2, ...N
on the surface.

• STEP 3: Sum the contributions of each particle I = 1, 2, ...N , to compute the
total.

• STEP 4: Repeat STEPS 1-3 for each time-step.
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Fig. 9.2 Algorithm for computation of the loading of a surface

• STEP 5: Compute the response statistics in the target zone of interest as desired.

Figure 9.2 provides a corresponding flowchart for the process. The utility of the
approach is that one can ascertain detailed spatial distribution of the stresses in the
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substrate. One can also post-process aggregate stresses. For example, one statistical
metric is the volume average deviatoric stress metric in the volume with N surface
load particles at any given moment in time:

〈(σtot−N )′ : (σtot−N )′〉Ω def=
√

1

|Ω|
∫

Ω

(σtot−N )′ : (σtot−N )′ dV . (9.7)

9.4 Numerical Examples

We consider a model problem of an initially cylindrical stream of equally sized
particles (Fig. 9.3) to illustrate the process. The absolute dimensions are unimportant
for the model problem and have been normalized so that the initial droplet diameter
was on the order of unity. The relevant simulation parameters chosen were (in SI
units if not explicitly stated):

• The particle radii, Ri = 0.05 m,
• The normal contact parameter was Kpo = 107 N/m2, at a fixed temperature,

Kp = MAX(Kpo

(
e−a �

�∗ −1
)

, Klim
p ), where �∗ = 500 ◦K, Klim

p = 106 N/m2,

and the exponent in the contact law was set to pp = 2,
• The stiffness of the wall in contact law, Kw = 109 N/m2,
• The contact damping parameter, ccd = 105,
• The friction contact parameter, K f = 107,
• The coefficient of static friction, μs = 0.4,
• The coefficient of dynamic friction, μd = 0.3,
• The normal bond parameter, Knb = 106 N/m2, and the exponent in the binding
law was set to pb = 2,

• The rotational bond parameter, Krb = 103,

Fig. 9.3 Deposition scenario

v
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• The interstitial damping coefficient, ce = 1 (assumed Stokesian-like),
• The target number of fixed-point iterations, Kd = 10,
• The trapezoidal time-stepping parameter, φ = 0.5,
• The simulation duration, 2 s,
• The initial time-step size, 0.00025 s,
• The time-step upper bound, 0.00025 s, and
• The tolerance for the fixed-point iteration, 5 × 10−4.

All system parameters can be scaled to describe any specific system of interest.
They were selected simply for illustration purposes. In order to generate an initial
particle configuration, we randomly dispersed Np = 2000 nonoverlapping particles
within a cylindrical domain, then projected them onto the surface. The configura-
tion of the sample, before it was dropped, was generated using a classical Random
Sequential Addition (RSA) algorithm [78], which places nonoverlapping particles
randomly into the domain of interest. As stated previously, one could start with a
denser starting configuration by using the equilibrium-driven Metropolis algorithm
or alternativemethods based on simultaneous particle flow and growth (see [79–83]),
although this was not necessary for this example. As an example, deposition of a
stream of particles (Fig. 9.3) is dropped onto a lower surface (by gravity with an ini-
tial uniform downward velocity) and allowed to freely spread/deform according to
its interaction with the surface (Figs. 9.4, 9.5, 9.6). The substrate colors indicate the
norm of the total summed deviatoric stresses. Both the top (left) and bottom (right)
are shown. The localized nature of the surface stresses is smeared out with increasing
depth. All computations were run in a matter of a few minutes on a laptop.

Remark A rigorous, detailed analysis of the deformation and stress within an
impacted substrate is an extremely complex process, requiring a finite element analy-
sis of the deformation of contacting bodies. We refer the reader to Wriggers [84]
for a thorough analysis of this topic, including thermo-mechanical heat generation.
We also remark that the present analysis can be used to investigate shot-peening
processes. We refer the reader to Afazov et al. [85], Bagherifard et al. [86], Elbella
et al. [87], and Chen et al. [88] for the finite element analysis of the response of the
substrate of a shot-peened solid and recently to Zohdi [45] for rapid computation of
multiple contacting bodies on substrates for additive particle printing processes.
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Fig. 9.4 Example: deposition onto a surface. The substrate colors indicate the norm of the total
summed deviatoric stresses. Both the top (left) and bottom (right) are shown. The localized nature
of the surface stresses is smeared out with increasing depth



164 9 DEM Extensions: Flexible Substrate Models

Fig. 9.5 Example: deposition onto a surface. The substrate colors indicate the norm of the total
summed deviatoric stresses. Both the top (left) and bottom (right) are shown. The localized nature
of the surface stresses is smeared out with increasing depth
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Fig. 9.6 Example: deposition onto a surface. The substrate colors indicate the norm of the total
summed deviatoric stresses. Both the top (left) and bottom (right) are shown. The localized nature
of the surface stresses is smeared out with increasing depth

9.5 Summary, Conclusions, and Extensions

In summary, this chapter developed a computational mechanics framework to inves-
tigate the deposition of streams of particles onto compliant substrates. Substrate
stresses due to multiple surface particle contact events were efficiently computed by
superposing individual particle contact solutions coupled to a multibody dynamics
formulation for the interacting particles. In particular:

• A multibody collision model was developed to determine the interaction of the
particles with each other, as well as with the substrate.

• Classical Boussinesq-like point-load solutions on a half-space were used to rep-
resent the contribution of each particle to the total stresses on the substrate.

Three-dimensional examples were provided to illustrate the technique. The utility
of the approach is that one can very rapidly compute the results of the action of a given
set of process parameters and thus run several “forward” problems for optimization
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studies. We remark that there are several manufacturing applications where particles
are deposited onto substrates. However, there are variants which also utilize imprint
lithography as a means of decreasing the feature size of patterned particles while
allowing more precise control over the structure of the print [89–92]. In this fabri-
cation method, the particle-laden inks are patterned by pressing with an elastomer
mold and the particles are dried into their final configuration. While the resolution
of imprint lithography is improved over inkjet printing, there exists a residual layer
on the substrate that must be etched away after patterning. Control over the height
of features can be corrupted by capillary action between the mold and the drying
ink, in particular along the length of longer features. Thus, as a possible alternative
to imprint lithography, particle self-assembly methods based on capillary filling of
photoresist templates have been proposed [13, 14] and appear to be promising.
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Chapter 10
DEM Extensions: Higher-Fidelity Laser
Modeling

This chapter develops a computational model and corresponding solution algorithm
for rapid simulation of the laser processing and targeted localized heating ofmaterials
composed of discrete particles that are packed together, which goes beyond a sim-
ple Beer–Lambert representation. Such materials possess a complex microstructure
which contains gaps and interfaces. This type of process is extremely difficult to sim-
ulate using continuum-based methods, such as the Finite Difference Time Domain
Method or the Finite Element Method. The model (components of which are shown
in Fig. 10.1) that is developed captures the main physical effects. The features of
the computational model are (1) a discretization of a concentrated laser beam into
rays, (2) a discrete element representation of the particulate material microstructure,
and (3) a discrete element transient heat transfer model that accounts for optical
(laser) energy propagation (reflection and absorption), its conversion into heat, the
subsequent conduction of heat and phase transformations, involving melting and
vaporization. A discrete ray-tracking algorithm is developed, along with an embed-
ded, staggered, iterative solution scheme, in order to calculate the optical-to-thermal
conversion, particle-to-particle conduction, and phase transformations, implicitly.
Numerical examples are provided to illustrate the model and algorithm.
Remarks: The characterization of the flow of concentrated high-frequency energy,
the irradiance, through compacted particulate systems is a key objective of this work.
It is assumed that the particles and surface features are at least an order of magni-
tude larger than the wavelength of the incident electromagnetic radiation; therefore,
“geometrical” ray-tracing theory is applicable and is well-suited for the systems of
interest. Our goal is to develop a computational tool by assembling relatively simple,
physically meaningful, models directly at the particle scale, for many interacting
particles, in order to allow for much more refined estimates of the resulting overall
system temperature and, ultimately, its change of phase from a solid to a liquid to a
gas. This will help guide the proper selection of the laser intensity, duration, etc.
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Fig. 10.1 Left: a laser pulse applied to a powderedmaterial. Right: control volume for heat transfer,
with an incident ray that encounters an idealized smooth particle scatterer

10.1 Propagation of Electromagnetic Energy

The interest here is on behavior of initially coherent beams (Fig. 10.1), composed
of multiple collinear (collimated) rays (initially forming a planar wave front), where
each ray is a vector in the direction of the flow of electromagnetic energy (the rays
are parallel to the initial wave’s propagation vector). Ray-tracing is a method that
is employed to produce rapid approximate solutions to wave equations for high-
frequency/small-wavelength applications where the primary interest is in the overall
propagation of energy.1 Essentially, ray-tracing methods proceed by initially repre-
senting wave fronts by an array of discrete rays. Thereafter, the problem becomes
one of primarily geometric character, where one tracks the changing trajectories
and magnitudes of individual rays which are dictated by the reflectivity and the Fres-
nel conditions (if a ray encounters a material interface). Ray-tracing methods are
well-suited for computation of scattering in complex systems that are difficult to
mesh/discretize, relative to procedures such as the Finite Difference Time Domain
Method or the Finite Element Method, and therefore, they are frequently employed
by analysts in such situations. For review of the state of the art in industrially ori-
ented optics, see Gross [1]. The next section characterizes ray propagation through
particulate media, building on approaches found in Zohdi [8–10].

10.1.1 Electromagnetic Wave Propagation

The propagation of electromagnetic waves in free space can be described by a sim-
plified form of Maxwell’s equations

∇ × E = −μo
∂H
∂t , and ∇ × H = εo

∂E
∂t , (10.1)

1Resolving diffraction (which ray theory is incapable of describing) is unimportant for the appli-
cations of interest.
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where ∇ · H = 0, ∇ · E = 0, E is the electric field intensity, H is the magnetic
flux intensity, εo is the free space permittivity, and μo is the free space permeability.
Using standard vector identities, one can show that

∇ × (∇ × E) = −μoεo
∂2E
∂t2

, and ∇ × (∇ × H) = −μoεo
∂2H
∂t2

, (10.2)

and that

∇2E = 1
c2

∂2E
∂t2

, and ∇2H = 1
c2

∂2H
∂t2

, (10.3)

where the speed of electromagneticwaves is c = 1√
εoμo

. All electromagnetic radiation

travels, in a vacuum, at the speed c ≈ 2.99792458 × 108 ± 1.1m/s. In any another
medium, for electromagnetic waves, the propagation speed is v = 1√

εμ
, where ε andμ

are the electric permittivity andmagnetic permeability of that medium, respectively.2

10.1.2 Plane Harmonic Wave Fronts

Now consider the special case of plane harmonic waves, for example, of the form

E = Eocos(k · x − ωt) and H = Hocos(k · x − ωt), (10.4)

where x is an initial position vector to the wave front and k is the direction of
propagation. For plane waves, k · x = constant . We refer to the phase as φ =
k · x − ωt , and ω = 2π

τ
as the angular frequency, where τ is the period. For plane

waves, the wave front is a plane on which φ is constant, which is orthogonal to the
direction of propagation, characterized by k. In the case of harmonic waves, we have

k × E = μoωH and k × H = −εoωE, (10.5)

and k · E = 0 and k · H = 0. The three vectors k, E, and H constitute a mutually
orthogonal triad.3 The direction of wave propagation is given by E×H

||E×H|| . Electro-
magnetic waves traveling through space carry electromagnetic energy which flows in
the direction of wave propagation. The energy per unit area per unit time flowing per-
pendicularly into a surface in free space is given by the Poynting vector S = E× H .

2The free space electric permittivity is εo = 1
c2μo

= 8.8542 × 10−12 C N−1 m−1, and the free

space magnetic permeability is μo = 4π × 10−7 Wb A−1m−1 = 1.2566 × 10−6 Wb A−1m−1.
3By combining the relations in Eq.10.5, one obtains ||k|| = ω

c .
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10.1.3 Special Case: Natural (Random) Electromagnetic
Energy Propagation

Since at high frequencies E, H , and S oscillate rapidly, it is impractical to measure
instantaneous values of S directly. Consider the harmonic representations in Eq.10.4
which leads to S = Eo × Hocos2(k · x − ωt), and consequently the average value
over a longer time interval (T ) than the timescale of rapid random oscillation,

〈S〉T = Eo × Ho〈cos2(k · x − ωt)〉T = 1
2 Eo × Ho, (10.6)

leading to the definition of the irradiance

I
def=〈||S||〉T = 1

2 ||Eo × Ho|| = 1
2

√
εo
μo

||Eo||2. (10.7)

Thus, the rate of flow of energy is proportional to the square of the amplitude of the
electric field. Furthermore, in isotropic media, which we consider for the remainder
of the work, the direction of energy is in the direction of S and in the same direction
as k.

10.1.4 Beam Decomposition into Rays

The appendix provides more details on the theory of ray representations of electro-
magnetic waves. Since I is the energy per unit area per unit time, if we multiply by
the “cross-sectional” area of the ray (Ar ), we obtain the energy associated with an
entire beam by multiplying the irradiance by the cross-sectional area of a coherent
beam, I Ab, where Ab is the cross-sectional area of the beam (comprising all of the
rays). The energy for a ray in the beam is then given by I Ar = I Ab/Nr , where Nr

is the number of rays in the beam (Fig. 10.2).
The angle between the point of contact of a ray (Fig. 10.3) and the outward normal

to the surface at that point is the angle of incidence (θi ). The classical reflection law
(“Snell’s law”) states that the angle at which the ray is reflected is the same as the
angle of incidence and that the incoming (incident, θi ) and outgoing (reflected, θr )
rays lay in the same plane, and that θi = θr . Furthermore, the refraction/absorption
law states that if the ray passes from one medium into a second one (with a different
index of refraction) and if the index of refraction of the second medium is less than
that of the first, then the angle the ray makes with the normal to the interface is
always less than the angle of incidence, where θa is the angle of the absorbed ray

(Fig. 10.3), n
def= c

v
=

√
εμ

εoμo
= sinθi

sinθa
, c is the propagation speed in a vacuum, and

v is the propagation speed in the incident medium. By using the classical Fresnel
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RAY REPRESENTATION

Fig. 10.2 Decomposition of an incoming beam into idealized “rays”

Fig. 10.3 Reflection and
absorption of an incoming
ray
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equations, one can also describe the changes in ray magnitude. For example, if we
consider a ray incident upon a boundary separating two different materials, which
produces a reflected ray and an absorbed (refracted) ray (Fig. 10.1), the amount
of incident electromagnetic energy (Ii ) that is reflected (Ir ) is given by the total

reflectance IR
def= Ir

Ii
, where 0 ≤ IR ≤ 1, IR given by Eq.10.25, for unpolarized

electromagnetic radiation, where n̂ is the ratio of the refractive indices of the ambient
(incident) medium (ni ) and absorbing particle medium (na), n̂ = na/ni , where
μ̂ is the ratio of the magnetic permeabilities of the surrounding incident medium
(μi ) and absorbing particle medium (μa), μ̂ = μa/μi . Although we will present a
relatively general formulation, laterwewill consider applicationswhere themagnetic
permeability is, within experimental measurements, virtually the same for both the
surroundings and particle. In other words, later in the work, we shall take μ̂ = 1
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(μo = μi = μa), and thus, n̂ = na
ni

=
√

εaμa

εiμi
⇒ εaμa = (n̂)2εiμi ⇒ εa = (n̂)2εi ,

where εi = εo.
Remark: Specifically, the regimes of interest are where the particle scatterers and
surface features are larger than visible light rays: 3.8×10−7 m ≤ λ ≤ 7.2×10−7m.
Thus, the particles in this analysis are assumed to possess diameters larger than
approximately 10−5 m (10µ). For particulate systems smaller than this, one can
simply use the ensuing results as qualitative guides. However, the range of applica-
bility of lasers is not limited to visible frequencies. Other high-frequency applica-
tions where the developed model can be employed include UV rays, X-rays, gamma
rays, and correspondingly smaller particle scatterer sizes, such as (a) regimes where
the scatterers and surface features are larger than ultraviolet rays (10−9 m ≤ λ ≤
10−8 m), (b) regimes where the scatterers and surface features are larger than X-rays
(10−11 m ≤ λ ≤ 10−9 m), and (c) regimes where the scatterers and surface features
are larger than gamma rays (10−12 m ≤ λ ≤ 10−11 m).

Reflection and absorption of energy—Fresnel relations
We consider a plane harmonic wave incident upon a plane boundary separating

two different materials, which produces a reflected wave and an absorbed (refracted)
wave (Fig. 10.1). Two cases for the electric field vector are considered: (1) electric
field vectors that are parallel (||) to the plane of incidence and (2) electric field vectors
that are perpendicular (⊥) to the plane of incidence. In either case, the tangential com-
ponents of the electric and magnetic fields are required to be continuous across the
interface. Consider case (1). We have the following general vectorial representations

E|| = E||cos(k · x − ωt) e1 and H || = H||cos(k · x − ωt) e2, (10.8)

where e1 and e2 are orthogonal to the propagation direction k. By employing the law
of refraction (ni sinθi = nasinθa), we obtain the following conditions relating the
incident, reflected, and absorbed components of the electric field quantities

E||i cosθi − E||r cosθr = E||acosθa and H⊥i + H⊥r = H⊥a . (10.9)

Since, for plane harmonic waves, the magnetic and electric field amplitudes are
related by H = E

vμ
, we have

E||i + E||r = μi

μa

vi

va
E||a = μi

μa

na
ni

E||a
def= n̂

μ̂
E||a, (10.10)

where μ̂
def= μa

μi
, n̂

def= na
ni
, and vi , vr , and va are the values of the velocity in the incident,

reflected, and absorbed directions.4 By again employing the law of refraction, we

4Throughout the analysis, we assume that n̂ ≥ 1.
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obtain the Fresnel reflection and transmission coefficients, generalized for the case
of unequal magnetic permeabilities

r|| = E||r
E||i =

n̂
μ̂ cosθi−cosθa
n̂
μ̂ cosθi+cosθa

and a|| = E||a
E||i = 2cosθi

cosθa+ n̂
μ̂ cosθi

. (10.11)

Following the same procedure for case (2), where the components of E are perpen-
dicular to the plane of incidence, we have

r⊥ = E⊥r
E⊥i

= cosθi− n̂
μ̂ cosθa

cosθi+ n̂
μ̂ cosθa

and a⊥ = E⊥a
E⊥i

= 2cosθi
cosθi+ n̂

μ̂ cosθa
. (10.12)

Our primary interest is in the reflections. We define the reflectances as

IR||
def=r2|| and IR⊥

def=r2⊥. (10.13)

Particularly convenient forms for the reflections are

r|| =
n̂2

μ̂ cosθi−(n̂2−sin2θi )
1
2

n̂2
μ̂ cosθi+(n̂2−sin2θi )

1
2

and r⊥ = cosθi− 1
μ̂ (n̂2−sin2θi )

1
2

cosθi+ 1
μ̂ (n̂2−sin2θi )

1
2
. (10.14)

Thus, the total energy reflected can be characterized by

IR
def=

(
Er

Ei

)2

= E2
⊥r + E2

||r
E2
i

= I||r + I⊥r

Ii
. (10.15)

If the resultant plane of oscillation of the (polarized) wave makes an angle of γi with
the plane of incidence, then

E||i = Eicosγi and E⊥i = Eisinγi , (10.16)

and it follows from the previous definition of I that

I||i = Ii cos2γi and I⊥i = Ii sin2γi . (10.17)

Substituting these expressions back into the expressions for the reflectances yields
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IR = I||r
Ii

cos2γi + I⊥r

Ii
sin2γi = IR||cos2γi + IR⊥sin2γi . (10.18)

For natural or unpolarized electromagnetic radiation, the angle γi varies rapidly in a
random manner, as does the field amplitude. Thus, since

〈cos2γi (t)〉T = 1
2 and 〈sin2γi (t)〉T = 1

2 , (10.19)

and therefore for natural electromagnetic radiation

I||i = Ii
2 and I⊥i = Ii

2 . (10.20)

and therefore

r2|| =
(

E2||r
E2||i

)2
= I||r

I||i and r2⊥ =
(

E2⊥r

E2⊥i

)2 = I⊥r
I⊥i

. (10.21)

Thus, the total reflectance becomes

IR = 1

2
(IR|| + IR⊥) = 1

2
(r2|| + r2⊥), (10.22)

where 0 ≤ IR ≤ 1. For the cases where sinθa = sinθi
n̂ > 1, onemay rewrite reflection

relations as

r|| =
n̂2

μ̂ cosθi− j (sin2θi−n̂2)
1
2

n̂2
μ̂ cosθi+ j (sin2θi−n̂2)

1
2

and r⊥ = cosθi− 1
μ̂ j (sin2θi−n̂2)

1
2

cosθi+ 1
μ̂ j (sin2θi−n̂2)

1
2
, (10.23)

where j = √−1, and in this complex case5

IR||
def=r||r̄|| = 1, and IR⊥

def=r⊥r̄⊥ = 1, (10.24)

where r̄|| and r̄⊥ are complex conjugates. Thus, for angles above the critical angle
θ∗
i , all of the energy is reflected. Notice that as n̂ → 1 we have complete absorption,
while as n̂ → ∞ we have complete reflection. The amount of absorbed irradiance
by the particles is Ia = (1 − IR)Ii .

5The limiting case
sinθ∗

i
n̂ = 1 is the critical angle (θ∗

i ) case.
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Fig. 10.4 Reflectance (IR)
as a function of incident
angle
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Reflectivity
To observe the dependency of IR on n̂ and θi , we can explicitly write

IR = 1
2

((
n̂2

μ̂ cosθi−(n̂2−sin2θi )
1
2

n̂2
μ̂ cosθi+(n̂2−sin2θi )

1
2

)2

+
(

cosθi− 1
μ̂ (n̂2−sin2θi )

1
2

cosθi+ 1
μ̂ (n̂2−sin2θi )

1
2

)2
)

, (10.25)

which is plotted in Fig. 10.4. Except for the case of n̂ > 4, there is discernible non-
monotone behavior. The nonmonotone behavior is slight for n̂ = 4, but nonetheless
present. Clearly, as n̂ → ∞, IR → 1, no matter what the angle of incidence’s value
is. We note that as n̂ → 1, provided that μ̂ = 1, IR → 0, i.e., all incident energy
is absorbed (it is transparent). With increasing n̂, the angle for minimum reflectance
grows larger. For more details, we refer the reader to the relatively recent treatise of
Gross [1] and the cited literature in the references.

Remark 1 From this point forth, we assume that the ambient and interstitial medium
(surrounding the particles) behaves as a vacuum. Accordingly, there are no energetic
losses as the rays move through the surrounding medium. Furthermore, we assume
that absorbed rays that enter a particle are not re-emitted, but are converted into a
heat source.

Remark 2 We note that the use of lasers for the related problem of dermal ablation is
well-established and involves the use of special types of dyes to increase absorption
of the tissue, referred to as sclerostomics. The dyes are applied by electrophoresis,
i.e., electrical current is used to direct dye into tissue. There are five main types of
interaction: (1) photochemical, (2) thermal, (3) photoablation, (4) plasma-induced
ablation, and (5) photodisruption. Photochemical interaction stems from empirical
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observations that light can induce chemical effects and reactions within macromole-
cules or tissue within macromolecules or tissue. Biostimulation is also attributed to
photochemical interaction. Photodynamics therapy is performed as follows: First,
a photosynthesizer is injected into the tissue. It remains inactive until irradiated.
This can be used for targeted interaction. Thermal interaction can be classified as
(a) coagulation, (b) vaporization, (c) carbonization, and (d) melting. The probability
of cells staying alive depends on the duration and temporal evolution of the temper-
ature obtained. Photoablation etching was first applied to polymethyl methacrylate
(PMMA), polyimide, Teflon, and other synthetic polymers. For more details, see
Niemz [2], Steen [3], and Grigoropoulos [4].

10.2 Thermal Conversion of Beam (Optical) Losses

It is assumed that the particle scatterers are small enough to consider the temperature
as being uniformwithin eachparticle. Furthermore,we assume that the space between
the particle scatterers, i.e., the “ether,” plays no role in the heat transfer process.
Conduction is assumed to occur between particles in contact. An energy balance
governing thermal storage in a particle (i), the absorption of optical energy from
rays which come in contact (Nrc), and all conductive exchange with other particles
in contact (Npc) reads as

miCi θ̇i =
Npc∑
j=1

Qi j

︸ ︷︷ ︸
conduction

+
Nrc∑
k=1

Hrays
ik

︸ ︷︷ ︸
ray sources

def=F tot
i . (10.26)

We remark that the validity of using a lumped thermal model for each particle, i.e.,
ignoring temperature gradients and assuming a uniform temperature within a particle
scatterer, is dictated by the magnitude of the Biot number. A small Biot number
(significantly less than unity) indicates that such an approximation is reasonable.
The Biot number for spheres scales with the ratio of particle scatterer volume (V )
to particle scatterer surface area (As), V

As
= R

3 (R is the particle radius), which
indicates that a uniform temperature distribution is appropriate, since the particle
scatterers, by definition, are small. For the conductive contribution, we have6

Npc∑
j=1

Qi j ≈
Npc∑
j=1

IKi j A
c
i j

θ j − θi

||r j − r i ||
def=Qtot

i . (10.27)

The energy absorbed by a particle i from a ray in contact (k = 1, . . . , Npc) is defined
as

6 IKi j is approximated by the average interfacial value of the i − j pair, IKi j ≈ IKi+IK j
2 .
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ΔHrays,tot
i

def=
∫ t+Δt

t

Nrc∑
k=1

Hrays
ik dt ≈

Nrc∑
k=1

(I incik −I re fik )ArΔt =
Nrc∑
k=1

(1−IRik)I
inc
ik ArΔt,

(10.28)
where I inc is the incoming ray’s irradiance, I re f is the reflected ray’s irradiance, Ar

is a ray-area parameter that is computed by taking the total initial cross-sectional area
of the entire beam (collimated rays) and dividing it by the total number of rays. As

stated previously, explicitly, the ray-area parameter was calculated as Ar
def= Ab/Nr ,

where Nr is the number of rays in the beam and Ab is the initial cross-sectional area
of the beam.

Remark 1 Convective and infrared radiative effects are considered of secondary
importance in the current analysis, but have been accounted for in Zohdi [7] for
related applications.

Remark 2 From this point forth, we will denote I inc instead of Ii and I re f instead
of Ir to avoid any possible confusion with subscripts to come later.

10.2.1 Algorithmic Details

After temporal integration with a finite difference time-step of Δt , we have, using a
trapezoidal rule with variable (0 ≤ φ ≤ 1) integration metric:

θi (t + Δt) = θi (t) + 1

miCi

∫ t+Δt

t
F tot

i dt (10.29)

= θi (t) + 1

miCi

⎛
⎜⎜⎜⎜⎜⎝

∫ t+Δt

t

Npc∑
k=1

Qik

︸ ︷︷ ︸
Qtot

i

dt +
∫ t+Δt

t

Nrc∑
j=1

Hrays
i j dt

︸ ︷︷ ︸
ΔHrays,tot

i

⎞
⎟⎟⎟⎟⎟⎠

≈ θi (t) + 1

miCi

⎛
⎜⎝

(
φQtot

i (t + Δt) + (1 − φ)Qtot
i (t)

)
Δt︸ ︷︷ ︸

smooth

+ΔHrays,tot
i︸ ︷︷ ︸

unsmooth

⎞
⎟⎠ ,

where the term “smooth” indicates temporally smoothly varying and “unsmooth”
denotes a much shorter discrete event (incident rays encountering and reflecting off
of a particle). Thus, explicitly,
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θK+1
i (t + Δt) = θi (t) + Δtφ

miCi

Npc∑

j=1

IKi j Ac
i j (θ

K
j (t + Δt) − θKi (t + Δt))

||r j − r i ||

+ Δt (1 − φ)

miCi

Npc∑

j=1

IKi j Ac
i j (θ j (t) − θi (t))

||r j − r i || + ΔHrays,tot
i

miCi
. (10.30)

This iterative procedure is embedded into the overall ray-tracing scheme. The overall
algorithm is as follows, starting at t = 0 and ending at t = T :

1. COMPUTE NEW RAY MAGNITUDES AND ORIENTATIONS AFTER
REFLECTION: I re fj , j = 1, 2, . . . , Rays.

2. COMPUTE ABSORPTION CONTRIBUTIONS TO THE PARTICLE
SCATTERERS: ΔHrays,tot

i , i = 1, 2, . . . , Particles.
3. COMPUTE CONDUCTION OF THE PARTICLE SCATTERERS: Qtot

i ,
i = 1, 2, . . . , Particles.

4. COMPUTE PARTICLE TEMPERATURES RECURSIVELY K=1,2,…,
UNTILCONVERGENCE,USINGEQUATION 10.30FOR θi , i = 1, 2, . . . ,
Particles, REPEATING STEPS 1–4.

5. INCREMENT ALL RAY POSITIONS: x j (t + Δt) = x j (t) + Δtv j (t), j =
1, 2, . . . , Rays.

6. INCREMENT TIME (t = t + Δt), GO TO STEP 1 AND REPEAT STEPS
1–5.

Remark: In order to capture all of the ray reflections that occur, the time-step sizeΔt
is dictated by the size of the particle scatterers.A somewhat ad hoc approach is to scale
the time-step size by the speed of the ray propagation according toΔt = ξ R

||v|| , where
R is the median radius of the particle scatterers (if the particle sizes are not uniform)
and 0.05 ≤ ξ ≤ 0.1. Typically, the results are insensitive to ξ that are smaller than
this range. The subsequent convergence of the thermal calculation is rather quick,
since the time-steps are extremely small. Formore details on convergence on iterative
time-stepping schemes, see Zohdi [5–27].

10.3 Phase Transformations: Sol i d ⇒ Liquid ⇒ Vapor

As before, to include phase transformations, we consider five cases, which are imple-
mented in a predictor-corrector manner by first solving the governing equations to
obtain predicted temperature, and then checking the following:

• Solid → solid-no melting with Ci = CS: If θ(t) < θm and θ(t + Δt) < θm then
retain C(θ) = CS ,

• Solid → liquid-melting with Ci = CS: If θ(t) < θm and θ(t + Δt) ≥ θm then
re-solve the governing equations with C(θ) = CS + δP S→L

δθ
,

• Liquid → liquid-melted with Ci = CL : If θ(t) ≥ θm and θ(t + Δt) ≥ θm then
retain C(θ) = CL ,



10.3 Phase Transformations: Solid ⇒ Liquid ⇒ Vapor 183

• Liquid → solid-solidification with Ci = CL : If θ(t) ≥ θm and θ(t + Δt) < θm
then re-solve the governing equations with C(θ) = CL + δP L→S

δθ
,

• Liquid → vapor-vaporization with Ci = CL : If θ(t) < θv and θ(t + Δt) ≥ θv

then re-solve the governing equations with C(θ) = CL + δP L→V

δθ
,

where CS is the heat capacity of the solid and CL is the heat capacity of the liquid
and

• 0 < δP S→L is the latent heat of melting,
• 0 < δP L→S is the latent heat of solidification,
• 0 < δP L→V is the latent heat of vaporization,
• 0 < δθ is small and can be thought of as a “bandwidth” for a phase transformation.
For more details on melting processes, see Davis [28].

Remark 1 Latent heats have a tendency to resist the phase transformations, achieved
by adding the positive terms in the denominator, thus enforcing reduced temperature
(during the phase transformation).7 This approach is relatively straightforward to
include within the staggering framework.

Remark 2 We note that, because of changes in the heat capacity (due to phase trans-
formations), the thermal storage term is no longer simply miCi θ̇i but is

mi
d

dt
(Ciθi − θo) = miĊi (θi − θo) + miCi θ̇i . (10.31)

Remark 3 As a consequence, the number of particles in the system and their heat
capacities will also change in the algorithm, and Eq.10.30 becomes

θK+1
i (t + Δt) = θi (t) + Δtφ

miCK
i (t + φΔt)

NK
pc∑

j=1

IKi j Ac
i j (θ

K
j (t + Δt) − θKi (t + Δt))

||r j − r i ||

+ Δt (1 − φ)

miCK
i (t + φΔt)

Npc∑

j=1

IKi j Ac
i j (θ j (t) − θi (t))

||r j − r i || + ΔHrays,tot,K
i

miCK
i (t + φΔt)

− Δt
mi Ċi (t + φΔt)(θi (t + φΔt) − θo)

miCK
i (t + φΔt)

. (10.32)

Remark 4 Vaporized particles are removed from the simulation for subsequent time-
steps.

10.3.1 Optional Time Scaling and Simulation Acceleration

Some scaling arguments can be made to accelerate computations. Consider a system
that is subjected to a source F(t)

7In the idealized limit, the temperature would be constant.
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mC θ̇ = F(t). (10.33)

Integrating overall time interval T and breaking it up into M subintervals yield
(τ = T

M )

θ(T ) = θ(t = 0) + 1

mC

∫ T

o
F dt

︸ ︷︷ ︸
heat input

(10.34)

= θ(t = 0) + 1

mC

(∫ τ

0
F dt +

∫ 2τ

τ

F dt + · · · +
∫ Mτ

(M−1)τ
F dt

)

︸ ︷︷ ︸
heat input

.

If F(t) is periodic over each subinterval ((i − 1)τ , iτ ), i = 1, 2, . . . , M , then

θ(T ) = θ(t = 0) + 1

mC

(∫ τ

0
F dt +

∫ 2τ

τ

F dt + · · · +
∫ Mτ

(M−1)τ
F dt

)

︸ ︷︷ ︸
heat input

= θ(t = 0) + M

mC

∫ τ

0
F dt

= θ(t = 0) + 1(
mC

M

)

︸ ︷︷ ︸
pseudo thermal mass

∫ τ

0
F dt, (10.35)

where the last line is an approximation of the heat input “dumped” into the sys-
tem. One can interpret mC

M as a pseudo (reduced) thermal mass. Specifically, for the
applications of interest here, if absorbed irradiance loading ΔHrays,tot was perfectly
periodic (repeated over shorter time intervals), with no phase changes (which would
change C and the ΔHrays,tot absorbed), and if the conductive flux terms were con-
stant (it is not in the general case), then running the simulation over (0, τ ), using mC

M
as a pseudo (reduced) thermal mass, would be equivalent to a simulation over the
interval (0, T ) using mC . Thus, as an optional approximation, either by magnifying
I or reducing mC , one can deliver the approximate “heat dump,” provided one fully
resolves the movement of a pulse through the entire system to accurately capture the
share of the energy reflected and absorbed by the particles.
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Remark: In the simple case

mC θ̇ = F = I Ab ⇒ θ(T ) = θ(0) + I AbT

mC
= θ(0) + M

I Abτ

mC
= θ(0) + I Abτ(

mC
M

) ,

(10.36)
the periodic approximation is exact.

10.4 Numerical Examples

As a model problem, we considered a group of Np overlapping randomly packed
spherical particles, of equal size, in a cubical domain of dimensions, D × D × D.
The particle size was determined by a particle/sample size ratio, which was defined

via a subvolume size V
def= D×D×D

Np
, where Np was the number of particles in the entire

cubical domain. The nondimensional ratio between the radius (R) and the subvolume

was denoted by Ldef= R
V

1
3
. If the particles were perfectly arranged in a cubical array, a

value of L = 0.25 would mean that they just touch, and values of L > 0.25 would
indicate overlapping. Later, in the simulations was used L = 0.325 as an example.
We steadily increased the number of rays in the beam from Nr = 100, 200, etc
until the results were insensitive to further refinements. This approach indicated
that approximately Nr = 1000 parallel, but randomly placed, rays in the circular
cross-sectional plane of the beam (Fig. 10.5), corresponding to unpolarized incoming

RANDOM IN THE INITIAL
CROSS−SECTIONAL BEAM PLANE

LASER PULSES

VARIATION IN BEAM 
INTENSITY

MELTING AND POSSIBLE
ABLATION

Fig. 10.5 A laser pulse applied to a plug of material with Nr = 1000 parallel, randomly placed rays
in the circular cross-sectional plane of the beam, corresponding to unpolarized incoming optical
energy
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optical energy, yielded stable results.8 Therefore, we consider the responses to be, for
all practical purposes, independent of the ray-grid density. This particle/ray system
provided convergent results, i.e., increasing the number of rays and/or the number
of particles surrounding the beam resulted in negligibly different overall system
responses. Of course, there can be cases where much higher resolution may be
absolutely necessary.9 In such a direct numerical approach, one can easily introduce
nonuniform beam profiles such as shown in Fig. 10.1

I (d) = I (d = 0)e−ad , (10.37)

where d is the distance from the center of the initial beam line. In the case of a = 0,
we recapture a flat beam, I (d) = I (d = 0). We specifically used a = 2. We set total
initial irradiance via

∑Nr
i=1 I

inc
i (t = 0)Ar = 6000 W.10 Other simulation parameters

of importance were:

• The dimensions of the sample were 10−3 m × 10−3 m × 10−3 m.
• The initial velocity vector for all initially collinear rays comprising the beam was
v = (c, 0, 0), where c = 3 × 108m/s is the speed of light in a vacuum.

• Twenty pulses were applied, allowing each pulse to completely enter and exit the
system.

• We used a refractive index ratio of n̂ = 1.4 for the set of particle scatterers and
surrounding environment and enforced a condition that if the material melted, we
reduced the refractive index ratio to approximately n̂ = 1.

• We used a melting temperature of θm = 600◦ K and a vaporization temperature
of θv = 700◦ K.

• The time-scaling factor, M = 106

• The material density, ρ = 1000 kg/m3.
• The solid heat capacity, CS = 1000 J/kg − K.
• The liquid heat capacity, CL = 2000 J/kg − K.
• The latent heat of melting, δP S→L

δθ
= 1000 J/kg − K.

• The latent heat of solidification, δP L→S

δθ
= 1000 J/kg − K.

• The latent heat of vaporization, δP L→V

δθ
= 1000 J/kg − K.

We considered a series of numerical experiments starting at IK = 0 (no con-
ductivity), where a maximum number of particles were vaporized, until a IK was
met where virtually no particles were vaporized during the process. While it is not
the objective of this work to carry out a series of parameter studies, we show some

8We repeatedly refined the “ray density” up to 10000 rays and found no significant difference
compared to the 1000-ray result.
9In order to adequately compare between different tests inTable10.1, the same random1000-particle
ensemble was used each time.
10To achieve this distribution, we first placed rays randomly in the plane, and then scaled the
individual I inc by e−ad and normalized the average so that the total was 6000W.
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Table 10.1 Response sensitivity to 1000 rays for 1000 randomly dispersed particle scatterers for
increasing IK after a sufficiently long time t = T , allowing all of the rays to have exited the scattering
system (L = 0.325). Twenty pulses were applied. In order to adequately compare between different
tests, the same random 1000-particle ensemble was used each time

IK Vaporized (vv)

0 0.162

1 0.159

10 0.149

20 0.135

40 0.095

60 0.071

80 0.040

100 0.037

120 0.022

140 0.020

200 0.017

300 0.008

400 0.006

trends in Fig. 10.7 and Table10.1. Specifically, Fig. 10.7 illustrates the volume frac-
tion of particles that are vaporized for increasing IK . The final results are given in
Table10.1. As theoretically predicted, with low IK values, the heat is retained, and
virtually all of the particles underneath the beam were vaporized. As IK increases,
the heat conducts away from the target zone, and less particles meet the criteria for
melting and vaporization. In Fig. 10.6, starting from left to right and top to bottom,
the progressive movement of rays comprising a beam whose initial diameter is 30
percent of the length of the sample, as it is being absorbed by the material, is shown.
We have the following general observations, which are consistent with the analytical
results:

• No conductivity retains heat for vaporization—it concentrates the heat in the target
zone andmore particles are vaporized in a cascading effect because of the reduction
of the refractive index, which absorbs more optical energy.

• As the conductivity increases, heat is conducted away from the target zone, and
less particles are vaporized.

The utility of the numerical simulation tool is, of course, that one can probe deeper
into the spatial evolution of the temperature, phase changes, and vaporization.
Remark:The simulations take on the order of twominutes on a laptop.For extremely
large-scale systems, it is important to note that for the ray-tracing method, there are
two naturalways to proceed to exploit parallelism: (1) By assigning each processor its
share of the rays, and checkingwhich particle scatterers interact with those rays or (2)
By assigning each processor its share of particle scatterers, and checking which rays
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Fig. 10.6 Frames for the progressive absorption of a laser beam and subsequent heating for con-
ductivity IK = 100

interact with those particle scatterers. High-performance computational methods for
the determination of ray/particle intersection can be developed by slightly modifying
fast ray-particle contact detection algorithms found in, for example, Donev et al. [29–
33] or Pöschel and Schwager [34], for general particle shapes.
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Fig. 10.7 Volume fraction of vaporized material for IK = 0, IK = 10, IK = 20, IK = 50,
IK = 100, and IK = 200
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10.5 Summary and Extensions

This work developed a computational model and a corresponding solution algorithm
for the rapid simulation of the laser processing of materials. The objective was to
simulate targeted zonal heating of discrete particles that are packed together, in par-
ticular focusing on phase transformations and vaporization of particles in the target
zone. Because of the complex microstructure, containing gaps and interfaces, this
type of system is extremely difficult to simulate using continuum-based methods,
such as the Finite Difference Time Domain Method or the Finite Element Method.
The model that was developed captured the primary effects, namely reflection and
absorption of optical energy, its conversion into heat via (1) a discretization of a
concentrated laser beam into rays, (2) a discrete element representation of the partic-
ulate material microstructure, and (3) a discrete element transient heat transfer model
that accounts for optical (laser) energy propagation (reflection and absorption), its
conversion into heat, the subsequent conduction of heat and phase transformations
involvingmelting andvaporization.Adiscrete ray-tracking algorithmwas developed,
along with an embedded, staggered, iterative solution scheme, in order to calculate
the optical-to-thermal conversion, particle-to-particle conduction, and phase trans-
formations, implicitly. The current work is focusing on laser treatment of different
types of microstructures that arise in other processing methods of particulate mate-
rials, such as self-assembly, which leads to very regular patterns that are induced by
inserting the particles in solution, depositing them onto surfaces, and evaporating
the interstitial liquid, thus allowing hydrodynamic forces to induce the mentioned
patterns (Choi et al. [35–37], Demko et al. [59, 60]). Another example where struc-
tured media can occur is spray processing of small-scale particles, which can induce
chainlike microstructures, due to surface tension and alignment with electrical field
lines during deposition (Zohdi [17]). The application of laser processing to these
materials is under investigation by the author.11

An overall technological goal is to develop computational tools to accelerate the
manufacturing of printed electronics. Lasers can play a central role in precisely
processing these systems. As mentioned earlier, print-based methods are ideal for
large-scale applications and provide a framework for assembling electronic circuits
by mounting printed electronic devices on flexible plastic substrates, such as poly-
imide and “PEEK” (polyether ether ketone, a flexible thermoplastic polymer) film.
There are many types of this technology, often referred to as flexible electronics
or flex circuits. Flex circuits can be, for example, screen-printed silver circuits on
polyester.12 In order to develop flexible microelectronics for large area deployment,
traditional methods of fabrication using silicon-based approaches have become lim-
ited, due to high cost of materials and equipment (which frequently needs a vacuum
environment). For flexibility and lower cost, the ability to develop these electron-
ics on plastics is necessary. Accordingly, print-based technologies are starting to

11For review of the wide range of particle deposition processes, in particular sprays, see Martin [38,
39].
12For an early history of the printed electronics field, see Gamota et al. [40].



10.5 Summary and Extensions 191

become popular for these applications. In many cases, this requires the develop-
ment of high volume fraction particle-functionalized “inks.” These particles include
germanium (which has higher mobility and a more tailorable absorption spectrum
for ambient light than silicon) and silver (which is being studied due to the pos-
sibility to sinter the particles even without the need high-intensity heating). Other
semiconductor particle-based materials, including zinc- and cadmium-based com-
pounds and metals, such as gold and copper, can be considered. Precise patterning of
(particle-functionalized) prints is critical for a number of different applications. For
recent applications that include low-temperature electrode deposition, see Huang et
al. [41], for optical coatings and photonics, see Nakanishi et al. [42] and Maier and
Atwater [43], for biosensors, see Alivisatos [44], for catalysts, see Haruta [45], and
for MEMS applications, see Full et al. [46] and Ho et al. [47]. Several methods are
available for patterning of particles, such as inkjet printing (see Ridley et al. [48]
and Sirringhaus et al. [49]), which is attractive due to its simplicity, high throughput,
and low material loss. However, patterning with inkjet printing is limited to a resolu-
tion of around 20–50 microns with current printers (Ridley et al. [48]), with higher
resolution possible by adding complexity to the substrate prior to printing (Wang
et al. [50]). Electrohydrodynamic printing has also been proposed to increase the
resolution beyond the limits of inkjet printing, achieving a line resolution as small as
700nm (Park et al. [51]).13 Unfortunately, inkjet and electrohydrodynamic printing
do not allow precise control over the structure of the printed lines. This often results
in lines with scalloped edges or nonuniformwidth and offer only limited control over
the height of the printed features (Huang et al. [41], Sirringhaus et al. [49], Ahmad
et al. [52], and Samarasinghe et al. [53]). Also, recently, imprint lithography has
been proposed as a means of decreasing the feature size of patterned particles while
allowing more precise control over the structure of the printed lines (Ko et al. [54,
55], and Park et al. [56]). In this fabrication method, the particle-laden inks are pat-
terned by pressing with an elastomer mold and the particles are dried into their final
configuration. While the resolution of imprint lithography is improved over inkjet
printing, there exists a residual layer on the substrate that must be etched away after
patterning. Control over the height of features can be corrupted by capillary action
between themold and the drying ink, in particular along the length of longer features.
Thus, as a possible alternative to imprint lithography, particle self-assembly meth-
ods, based on capillary filling of photoresist templates, have been proposed (Demko
et al. [59]) and appear to be promising.Clearly, laser post-processing can play a role
in all of the previously mentioned approaches, in order to add a degree of precision
that is otherwise missing.

13In such applications, lasers can be used to heat-treat and dry particle-based inks.
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10.6 Chapter Appendix: Geometrical Ray Theory

Following a somewhat classical analysis found in, for example, Elmore and Heald
[57], Cerveny et al. [58], and others, we consider the propagation of a general dis-
turbance, ψ, governed by a generic wave equation:

∇2ψ = 1

c2(x)

∂2ψ

∂t2
. (10.38)

Here, c(x) is a spatially varying wave speed corresponding to a general inhomo-
geneous medium, where c(x) = co in a homogeneous reference medium and the
refractive index is defined as n = co/c(x). Consider a trial solution of the form

ψ(x, t) = A(x)e j (koS(x)−ωt), (10.39)

where A(x) is the amplitude of the disturbance and ko = ω/co = 2π/λ is the wave
number in the reference medium. The function S(x) (dimensions of length) is known
as the “Eikonal,” which in Greek means “image.” One can interpret a set of waves
as simply a family of surfaces for which the values of koS(x) differ in increments of
2π. Substituting the trial solution into the wave equation, one obtains

k2o A(n2 − ∇S · ∇S) + jko(2∇A · ∇S + A∇2S) + ∇2A = 0. (10.40)

There are a variety of arguments to motivate so-called ray theory. Probably, the
simplest is simply to require that, as ko → ∞, each of the ko−terms, the zeroth-
order ko-term, the first-order ko-term, and the second-order ko-term, must vanish.
Applying this requirement to the second-order ko-term yields

n2 = ∇S · ∇S = ||∇S||2. (10.41)

For a uniform medium, n = const , provided ∇2A = 0 and an initial plane wave
surface S = const , then Eq.10.40 implies

S(x) = n(αx + βy + φz), (10.42)

where α, β, and φ are direction cosines. More generally, when n �= 0, then Eq.10.41
implies

∇S(x) = n(x)ŝ(x), (10.43)

where ŝ(x) is a unit (direction) vector. From elementary calculus, recall that ∇S is
perpendicular to S = const . This allows for the natural definition of continuous
curves, called rays, that are everywhere parallel to the local direction ŝ(x). Rear-
ranging first-order ko-term of Eq.10.40
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1

A
∇A · ∇S = −1

2
∇2S = −1

2
∇ · (n ŝ). (10.44)

Recalling the directional derivative, d(·)
ds

def= ŝ · ∇(·), we have

(
∇S

||∇S|| ) · ∇A = (
∇S

n
) · ∇A = d A

ds
, (10.45)

where s is the arc-length coordinate along the ray. With this definition, once S(x) is
known, the component of ∇A in the ŝ(x) can be found from Eqs. 10.44 and 10.45:

1

A

dA

ds
= − 1

2n
∇ · (n ŝ). (10.46)

Thus, we are able to determine how the amplitude of the trial solution changes along
a ray, but not perpendicular to the trajectory.

Geometrical “ray-tracing” deals directly with the ray trajectories, rather than find-
ing them as a by-product of the solution of the wave equation for the Eikonal function
S and the resulting wave front. To eliminate S, we need to look at the rate of change
of the quantity n ŝ along the ray. Making repeated use of Eq. 10.43, we have

d(n ŝ)
ds

= ŝ · ∇(∇S) = ∇S

n
· ∇(∇S) = 1

2n
∇(∇S · ∇S) = 1

2n
∇n2 = ∇n, (10.47)

where d(·)
ds

def= ŝ · ∇(·). The previous equation allows us to find the trajectories of a ray
(ŝ), given only the refractive index n(x) and the initial direction ŝi of the desired ray.
Remark: Amore general derivation of the Eikonal equation can be found in a variety
of textbooks, for example, Cerveny et al. [58], and starts by assuming a trial solution
of the form

ψ(x, t) = A(x)Φ(t − Λ(x)) (10.48)

where Λ is an Eikonal function, and the waveform function α is assumed to be of
high frequency.14 This function is then substituted into the wave equation to yield

∇2AΦ + 2∇A · ∇Φ + A∇2Φ = 1

c2
A

∂2Φ

∂t2
. (10.49)

After using the chain rule of differentiation, this can be written as

14This is a more general case than the one considered in Eq.10.39, where Φ(t − Λ(x)) =
e j (koS(x)−ωt).
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∂2Φ

∂Λ2
A

(
∇Λ · ∇Λ − 1

c2

)
+ ∂Φ

∂Λ

(
2∇A · ∇Λ + A∇2Λ

) + Φ∇2A = 0. (10.50)

Analogous to the special case considered before, to motivate so-called ray theory,
one requires that the coefficients of ∂2Φ

∂Λ2 , ∂Φ
∂Λ

, and Φ are satisfied separately, in other
words, the following holds

∇Λ · ∇Λ − 1

c2
= 0 (10.51)

and

2∇A · ∇Λ + A∇2Λ = 0 (10.52)

and

∇2A = 0. (10.53)
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Chapter 11
DEM Extensions: Acoustical Pre-Processing

11.1 Introduction

In numerous industries, particle-laden fluids are a key part of the fabrication of
products such as (1) castedmachine parts, (2) additivelymanufactured and 3Dprinted
electronics and medical devices, and even (3) slurry processed food to name a few.
Common to many of these areas are new types of solidified heterogeneous materials,
comprised of particulates in a binding matrix. The fluid precursor to the final solid
product is a particle-laden fluid, which is delivered through piping, nozzles, and
channels (Choi et al. [1–3], Demko et al. [4, 5] and Martin [6, 7]).1 Typically, such
materials start in particulate form and are then mixed with a binder and delivered as
a flowing particle-laden fluid which is to be cast into their final shape.2

Often, in the mixing of these materials, agglomerations of particles occur, which
need to be broken up and dispersed in order to ensure production of high-quality
products (Figs. 11.1 and 11.2). A unique feature of small-scale particulate systems
is that they exhibit a strong sensitivity to inter-particle near-field forces, stemming
from stray electrostatic charges, process ionization, and mechanical adhesion, lead-
ing to agglomeration and cluster formation, which can strongly affect manufactured
product quality. These agglomerations can also remain coherent as suspended clus-
ters in the fluid material during processing. Inadequate elimination of these clusters
can lead to manufacturing inconsistencies/variability which can strongly affect the
overall solidified product quality, in particular if themanufactured devices have small

1Also, printed electronics, using processes such as high-resolution electrohydrodynamic jet printing,
are also emerging as viablemethods. For overviews, seeWei andDong [8],who also develop special-
ized processes employing phase-change inks. Such processes are capable of producingmicron-level
footprints for high-resolution additive manufacturing.
2Over 50% of man-made materials start in granulated form (Duran [9] and Torquato [10]).
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Fig. 11.1 A particle-laden
fluid in a channel with an
agglomeration

dimensions. Furthermore, in other cases, the agglomerations can accumulate on the
surfaces of manufacturing devices. For particle-laden fluids delivered through chan-
nels, surface particulate agglomeration can lead to system malfunction, primarily
due to clogging.

One approach to remove or break up the agglomerations is to acoustically pressure
pulse them (Fig. 11.2). Acoustical pulsing consists of an acoustical driver, which is
a sound source that is powered by compressed air and an acoustical resonator which
amplifies and guides the energy. Essentially, an acoustical pulser will produce a
series of rapid pressure-peak pulses in a very targeted manner. Acoustical cleaning
has been utilized in macroscale bulk processes, but its application on the microscale
for precision manufacturing, as well as modeling and simulation, has been lacking.
The key parameters are (a) the strength of the pulse and (b) the repetition of the pulse.

A primary simulation issue is that the interaction of pressure pulses with the ag-
glomeration leads to a set of coupled differential equations for the dynamics of the
particles and the propagation and breakup of the pressure pulse. The objective of this
chapter is to develop a computational model and corresponding solution algorithm to
enable rapid simulation of a pressure pulse’s effect on an agglomeration, composed of
aggregated discrete particles. Because of the complex agglomeration microstructure,
containing gaps and interfaces, this type of system is extremely difficult to mesh and
simulate the pressure pulse dynamics using continuum-based methods, such as the
Finite Difference Time Domain Method or the Finite Element Method. Accordingly,
a computationally amenable discrete element/discrete ray model is developed which
captures the primary physical events, such as the reflection and absorption of acousti-
cal energy, and the forces induced onto the particulate microstructure, resulting in
dynamics of large numbers of particles involving particle-to-particle contact. In the
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Fig. 11.2 Pulsing to break
up and disperse an
agglomeration

PRESSURE PULSE

POST−IMPACT DISPERSION

model, the agglomeration is represented by a Discrete Element Method representa-
tion and the pressure pulse/shock wave is described by a collection of propagating
rays with prescribed acoustical power content, direction, and velocity. The approach
also develops a staggered, iterative solution scheme, which is needed to calculate the
power transfer from the acoustical pulse to the particles and the subsequent changes
(breakup) of the pulse due to the particles. Three-dimensional examples are provided
to illustrate the approach.

Remark 1 There is a variety of discrete element-like methods, for example, see
Onate et al. [11, 12], Rojek et al. [13], Carbonell et al. [14], Labra and Onate [15],
Leonardi et al. [16], Cante et al. [17], Rojek [18], Onate et al. [19], Bolintineanu et al.
[20], Avci and Wriggers [21], and Zohdi [22–48]. In particular, we note the Discrete
Element Method has been used for particle agglomerations in acoustic fields, for
instance in Markov [49]. The ray representation of waves can be found in a variety
of works, for example, in Virovlyanskii [50], Borejko et al. [51] and Zohdi [26–43,
47] among others.

Remark 2 This work has direct applicability to the subject of “Design For Clean-
ability” which concerns itself with the advantageous manufacturing of devices, in
particular those with interior keyways and channels, by assessing the ability to per-
form maintenance during the design phase. In many industrial systems, buildup of
unwanted particulate material is inaccessible for removal and ultimately leads to sys-
tem malfunction. For more details, we refer the reader to Aurich and Dornfeld [52],
Garg et al. [53], Avila et al. [54, 55]. Furthermore, residual particulate matter can
also be present after a manufacturing process involving particles (see, for example,
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Luo and Dornfeld [56–59], Arbelaez et al. [60, 61], Campello and Zohdi [62, 63],
Gomes-Ferreira et al. [64], Ghobeity et al. [65, 66]).3

Remark 3 We remark that in biological systems, oftentimes it is a goal to destroy
certain types of agglomerations, such as kidney stones in shock wave lithotripsy
(Zohdi [29]). The approach developed in this chapter has direct applicability in this
domain as well.

11.2 Dynamic Response of an Agglomeration

In order to represent the group of interacting particles, we follow a relatively flexible
formulation found in the previous chapters and in Zohdi [22–48]. We consider a
group of nonintersecting particles (i = 1, 2, . . . ,Np). The equation of motion for the
ith particle in system is

mi r̈i = Ψ tot
i (r1, r2, . . . , rNp

) = Ψ
ray
ti + Ψ con

i + Ψ bond
i + Ψ

damp
i + Ψ e+m

i , (11.1)

where ri is the position vector of the ith particle and where Ψ tot
i represents all forces

acting on particle i, which is decomposed into the sum of forces due to:

• Shock (transmitted ray) forces (Ψ ray
ti ),

• Inter-particle forces (Ψ con
i ) generated by contact with other particles,

• Adhesive bonding forces (Ψ bond
i ) with other particles,

• Damping forces arising from the surrounding interstitial environment (Ψ damp
i )

occurring from potentially viscous, surrounding, interstitial fluids, surfactants,
and

• External electromagnetic forces (Ψ e+m
i ) which can play a key role in small charged

or magnetized particles.

In the next section, we examine particle-shock wave contact and draw upon the
previous chapters for all other forces.

11.3 Particle-Shock Wave Contact

We consider cases where thewavelengths of incident high-frequency acoustical pres-
sure waves (p-waves) are at least one order of magnitude smaller than the diameter
(d) of the particle scatterers (10−6 m ≤ d ≤ 10−4 m). This length scale ordering
indicates that diffraction is minimal and makes (geometric) ray-tracing techniques

3Even techniques associated with shot peening can leave residual particulate matter. We also refer
the reader to Afazov et al. [67], Bagherifard et al. [68], Elbella et al. [69], and Chen et al. [70]).
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Fig. 11.3 Zoom on a
ray-particle contact
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accurate.4 In such cases, geometric ray-tracing can be used to determine the amount
of propagating incident energy that is reflected and the amount that is absorbed by
multiple particles. As alluded to in the previous chapters, for the benefit of readers
unfamiliar with ray-tracing, we remark that it is essentially an approximate solution
to the wave equation, based on the Eikonal equation, which is the limiting case of
wave phenomena as the wave length tends toward zero.

11.3.1 Ray-Tracing: Incidence, Reflection, and Transmission

The reflection of a ray at an interface is given by enforcing continuity of the (acousti-
cal) pressure and disturbance velocity at that location; this yields the ratio between
the incident and reflected pressures. We use a local coordinate system (Fig. 11.3)
and enforce (1) that the number of waves per unit length in the x1 − direction must
be the same for the incident, reflected, and refracted (transmitted) waves and (2) a
pressure balance at the interface. After some algebra, this yields the reflectance for
the (acoustical) power (energy per unit time)

R = Ir
Ii

=
(
Âcosθi − cosθt

Âcosθi + cosθt

)2

, (11.2)

where Ii is the incident (power) ray, Ir is the reflected (power) ray, It is the trans-

mitted (power) ray, Â
def= At

Ai

def= ρt ct
ρici

, ρt is the density of the medium which the ray
encounters (transmitted), ct is corresponding sound speed in that medium, At is the
corresponding acoustical impedance, ρi is the density of the medium in which the
ray was traveling (incident), ci is corresponding sound speed in that medium Ai is

4Even if thiswavelength to particle size ratio is not present, ray representation of p-waves is still often
used and can be considered as a way to approximately track the propagation of energy, however,
without the ability to capture diffraction properly.
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the corresponding acoustical impedance. The relationship (the law of refraction) be-

tween the incident and transmitted angles is ctsinθt = cisinθi. Defining c̃
def= ci

ct
, and

studying asymptotic cases where sinθt → 1, we have sinθi → c̃, which identifies a
so-called critical angle, where no energy is transmitted. A simple way of observing
complete reflection is to set θt = π/2 in

R = Ir
Ii

=
(
Âcosθi − cosθt

Âcosθi + cosθt

)2

=
(
Âcosθi − 0

Âcosθi + 0

)2

= 1. (11.3)

Remark 1 A more rigorous way of analyzing the critical angle phenomena is to

rewrite the reflection relation as R def= r ∗ r̄ = 1, where r̄ is the complex conjugate,
where

r = c̃Âcosθi − j(sin2θi − c̃2)
1
2

c̃Âcosθi + j(sin2θi − c̃2)
1
2

, (11.4)

where j = √−1. For angles above the critical angle θi ≥ θ∗
i , all of the energy is

reflected. We note that when At = Ai and ci = ct , then there is no reflection. Also,
when At >> Ai, then r → 1, and when At << Ai, then r → −1.

Remark 2 The power input (transmitted) from incidence and reflection is

It = Ii − Ir = Ii(1 − R). (11.5)

The overall force magnitude imparted by the ray can be determined by

power transmitted = ||Ψ ray
t ||||vt|| = ||Ψ ray

t ||||Ψ ray
t ||

ρtctar
= Ii(1 − R), (11.6)

thus
||Ψ ray

t || = √
Ii(1 − R)ρtctar, (11.7)

where the velocity in the transmitted medium is ||vt|| = Pt
ρt ct

, where Pt is the pressure

content of the ray, and ||Ψ ray
t || ∝ Pt

ar
, where ar is a (pseudo) contact area parameter.

The contact area parameter can be approximated from the total area of the original
plane wave divided by the total number of rays. This is discussed further in the next
section. The force’s magnitude is projected in the direction of the transmitted ray,
i.e., at the angle θt in the plane of incidence. This force is assumed to be completely
absorbedby theparticle and is not re-transmitted.The reflected ray is simplyprojected
in the direction at the reflected angle, θr .

Remark 3 The initial plane wave of rays is generated by (Fig. 11.4):

• Generating a set of vectors in a “master template” domain,
• Rotating the master template to the desired direction of the pulse,
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Fig. 11.4 Construction of the initial plane wave of rays

• Translating the rotated master template to the desired starting location, and
• The vectors are then scaled according to the initial starting power content.

11.3.2 Acoustical-Pulse Computational Algorithm

We now consider an initially coherent plane wave composed of multiple (initially)
parallel rays (Fig. 11.3). Each ray is a vector in the direction of the flow of energy,
which, in isotropic media, corresponds to the normal to the wave front. For isotropic
media, the rays are parallel to the wave propagation vector. It is of particular interest
to describe the breakup of initially highly directional coherent beams which do not
spread out into multidirectional rays unless they encounter scatterers. It is convenient
to define vectors for a ray by projecting the power onto the unit vector associated
with the velocity

I
def= I

vray

||vray|| , (11.8)

where vray is the velocity of the ray, I = ||I|| is the magnitude of the power, and

initially, Io
def= ||I(t = 0)||. To obtain the ray contributions from a beam, we simply

partition the initial beam cross section into equal rays, Iar = Iab/Nr , where Nr is
the number of rays in the beam and where ab is cross-sectional area of the beam.
Later in the chapter, we will elaborate more on the selection of the number of rays,
which is determined by successive refinement of the number of rays in a pulse, until
no appreciable differences occur. Clearly, Ioab can be considered the total power
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associated with the beam. The parameter ar provides us with a way of appropriately
distributing or “lumping” the amount of energy in the overall wave (beam) into rays.
The computational algorithm is as follows, starting at t = 0 and ending at t = T , for
an instantaneously fixed set of particles:

(1)Compute ray reflections (Fresnel relation).
(2)Compute energy absorbed by each particle :ΔI = (Ii − Ir) = (1 − R)Ii.
(3)Compute induced forces for each particle : Ψ

ray
t .

(4) Increment all ray positions :
rrayq (t + Δt) = rrayq (t) + Δtvray

q (t), q = 1, ..., rays.
(5)Go to (1) and repeat with (t = t + Δt).

(11.9)

The time-step size Δt is dictated by the size of the particles. A somewhat ad hoc
approach is to scale the time-step size to be no larger thanΔt ∝ ξR

||vray|| , where R is the
nominal radius of the particles, ||vray|| is themagnitude of the velocity of the rays, and
ξ is a scaling factor, typically 0.05 ≤ ξ ≤ 0.1. The required time-step limitation is
then also compared against other time-step needed to integrate the particle dynamics
properly, which we discuss next. This ensures that meaningful interactions are not
skipped. We now elaborate on the dynamics of the particles in STEP (3) above.

11.3.3 Iterative (Implicit) Solution Method Algorithm

Following the basic framework in Zohdi [22–46] for particle i

rL+1
i = rLi + vL

i Δt + φ(Δt)2

mi

(
φ(Ψ

tot,L+1
i ) + (1 − φ)(Ψ tot,L)

)
, (11.10)

which leads to a coupled set equations for i = 1, 2, . . . ,Np particles, where the
superscript L is a time interval counter. The solution STEPS are, within a time-step:

(0) Determine the ray force contribution for each particle according to the previously
explained algorithm (BOX 11.9).

(1) Start a global fixed iteration (set i = 1 (particle counter) and K = 0 (iteration
counter)).

(2) If i > Np, then go to (4).
(3) If i ≤ Np, then:

(a) Compute the position rL+1,K
i ,

(b) Go to (2) for the next particle (i = i + 1).

(4) Measure error (normalized) quantities

(a) �K
def=

∑Np

i=1 ||rL+1,K
i − rL+1,K−1

i ||∑Np

i=1 ||rL+1,K
i − rLi ||
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(b) ZK
def= �K

TOLr

(c) ΛK
def=

⎛
⎝ ( TOL

�0
)

1
pKd

(�K
�0

)
1

pK

⎞
⎠.

(5) If the tolerance is met: ZK ≤ 1 and K < Kd , then

(a) Increment time: t = t + Δt,
(b) Construct the next time-step: Δtnew = ΛKΔtold ,
(c) Select the minimum size: Δt = MIN(Δtlim,Δtnew), and
(d) Update the ray positions and go to (0).

(6) If the tolerance is not met: ZK > 1 and K < Kd , then

(a) Update the iteration counter: K = K + 1,
(b) Reset the particle counter: i = 1, and
(c) Go to (2).

(7) If the tolerance is not met (ZK > 1) and K = Kd , then

(a) Construct a new time-step: Δtnew = ΛKΔtold ,
(b) Restart at time t and go to (1).

Time-step size adaptivity is critical, since the system’s dynamics and configuration
can dramatically change over the course of time, possibly requiring quite different
time-step sizes to control the iterative error. However, to maintain the accuracy of the
time-stepping scheme, onemust respect an upper bound dictated by the discretization
error, i.e., Δt ≤ Δtlim. Note that in STEP (5), ΛK may enlarge the time-step if the
error is lower than the preset tolerance.

11.4 Numerical Example

As an example, we consider a group of Np randomly dispersed spherical particles,
of equal size, generated within in a spherical (aggregate) domain of diameter D. For
illustration purposes only (Fig. 11.5), the radius of the pulse cross section and the
agglomeration radiuswere both set to unity (onemeter). The ratio of particle diameter,
d, to total domain diameter, D, was d/D = 0.05. The total initial energy (again for
illustration purposes) of each pulse was set to I(t = 0) = Io = 7.06 × 1013 J,
which roughly corresponded to a pressure pulse of 150MPa traveling at a velocity
of 1500m/s over the area of the pulse. The initial energy for each ray was calculated
as I/Nr , where Nr = 10000 was the number of rays in the beam. We remark that
in the example calculation, we used Np = 2000 particles and Nr = 10000 rays,
initially parallel and placed in a circular domain (pulse cross section), but randomly
distributed (Fig. 11.6). This systemprovided stable results, i.e., increasing the number
of rays and/or the number of particles beyond these levels resulted in negligibly
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PULSE  TRAIN

Fig. 11.5 Pulsing a free-standing agglomeration

different overall system responses. We note successive refinement of the ray density
from 1000, 2000, 3000, . . . , 10000 total rays was found to produce no noticeable
differences beyond 10000 rays. Thus, we can consider, for all practical purposes that
the results are independent of ray-grid density. One can consider the representation
of a beam by multiple rays as simply taking a large “sampling” of the diffraction by
the beam (wave front) over the portion of the scatterer where the beam is incident,
as opposed to a discretization technique. It is relatively simple to scale the geometry
down to agglomerations of practical interest, and to use corresponding pulse energy

contents. The ratio of refractive indices was set to c̃
def= ci

ct
= 1500/4500, where

ci = 1500m/s (water) and ct = 4500m/s (ceramic). The densities were set to
ρi = 1000 kg/m3 (water) and ρt = 6000 kg/m3 (ceramic). This leads to a ratio of
acoustical impedances of Â = 18 and, consequently, a reflectivity, at a zero angle of
incidence, from Eq.11.2, of

R(θ = 0) =
(
18 − 1

18 + 1

)2

= 0.944. (11.11)

Thus, at a zero angle of incidence, the amount of energy transmitted is approx-
imately 1 − 0.944 = 0.056. In order to generate the random particle positions, the
classical Random Sequential Addition (RSA) algorithm was used to place nonover-
lapping particles into the domain of interest (Widom [71]), initially a sphere, which
was then allowed to dynamically converge to an equilibrium state.5 The following
relevant other simulation parameters chosen were (in SI units if not explicitly stated):

• The normal contact parameter was Kpo = 107 N/m2, at a fixed temperature,

Kp = MAX(Kpo

(
e−(a Θ

Θ∗ −1)
)

,Klim
p ), where Θ∗ = 500 ◦K, Klim

p = 106 N/m2,

the exponent in the contact law was set to pp = 2, the temperature was fixed to be
Θ = 300 ◦K, and the thermal sensitivity parameter was set to a = 1,

• The contact damping parameter, ccd = 105,
• The friction contact parameter, Kf = 107,
• The coefficient of static friction, μs = 0.4,
• The coefficient of dynamic friction, μd = 0.3,

5See Torquato [10] and Torquato and coworkers (see, e.g., Kansaal et al. [72] and Donev et al.
[73–77]) for a detailed review of particle packing algorithms.
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Fig. 11.6 From left to right and top to bottom, the progressive movement of rays comprising a
beam. The vector lengths indicate the energy associated with the ray

• The normal bond parameter, Knb = 106 N/m2, and the exponent in the binding
law was set to pb = 2,

• The rotational/tangential bond parameter, Krb = 103,
• The interstitial damping coefficient, ce = 1 (assumed Stokesian-like),
• The target number of fixed-point iterations, Kd = 10,
• The trapezoidal time-stepping parameter, φ = 0.5,
• The simulation duration, 2 s,
• The initial time-step size, 0.00001 s,
• The time-step upper bound, 0.00025 s, and
• The tolerance for the fixed-point iteration, 5 × 10−4.

Figures11.6 and 11.7 illustrate the results after a single pulse. After approxi-
mately 4 pulses, for the parameters chosen in this chapter, this agglomeration was
completely broken up and dispersed. The number of reflections was 59238 for this
sample problem. Several other statistical realizations were generated with on the or-
der of 58,000–62,000 reflections incurred. Figure11.8 shows the accumulated num-
ber of reflections after four pulses.
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Fig. 11.7 From left to right and top to bottom, the progressive movement of rays comprising a
beam. The vector lengths indicate the energy associated with the ray

11.5 Closing Statements

In summary, this work developed a discrete ray/discrete particle model to charac-
terize the acoustical energy associated with pulses with agglomerations of discrete
particles. The approach provides a simpler alternative to a direct computationally
intensive discretization of a continuum description if it is even possible. Because
of the complex microstructure, containing gaps and interfaces, this type of sys-
tem is extremely difficult to simulate using continuum-based methods, such as the
FiniteDifferenceTimeDomainMethod or the Finite ElementMethod. The simplified
model captures the primary effects, namely, reflection and absorption of acoustical
energy via: (1) a discrete element representation of the particle system, (2) a dis-
cretization of a concentrated pulse into rays, (3) a discrete ray-tracking algorithm is
developed to track the propagation of rays, and (4) a Discrete Element Method to
track the break up and dynamics of the agglomeration. The simulations take on the
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Fig. 11.8 Number of ray
reflections as a function of
time for 4 successive pulses

order of two minutes on a laptop. This technique was used to determine the amount
of propagating incident energy that was reflected and the amount that was absorbed
by each particle. Three-dimensional examples were given to illustrate the method. In
closing, there are limitations in the use of ray theory. In particular, for small particles
with size on the order of the wavelength, ray theory is inappropriate.

The chapter focused only on the propagation of acoustical energy in the system.
The energy that was absorbedwas assumed “available” tomove thematerial. Clearly,
not all of the absorbed energy would be “converted” into motion; however, this
serves as a simple conservative estimate of the effects. The purpose of the present
work was only to isolate one aspect of the complex series of events associated with
shock-type loading of agglomerated microstructures mainly the determination of the
energy absorbed and the system dynamics that would result. The approach developed
provides a fast computational tool to analyze particulate agglomerations. It can be
used on virtually any type of agglomeration domain. Since the results are derived
from a direct numerical simulation, one can also post-process detailed statistical
information for the breakupmetrics. It is relatively straightforward to track quantities
of interest related to the rays that comprise the acoustical disturbance, for example,
the (normalized) acoustical energy retained in the beam, defined similarly:

Ix def=
∑Nr

q=1 I
ray
q · ex∑Nr

q=1 ||Irayq (t = 0)|| and Iy def=
∑Nr

q=1 I
ray
q · ey∑Nr

q=1 ||Irayq (t = 0)|| and

Iz def=
∑Nr

q=1 I
ray
q · ez∑Nr

q=1 ||Irayq (t = 0)|| . (11.12)
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Fig. 11.9 Top to bottom and left to right: a normalized pulse strength in the x-direction:

Ix def=
∑Nr

q=1 I
ray
q ·ex∑Nr

q=1 ||Irayq (t=0)|| . b Normalized pulse strength in the y-direction: Iy def=
∑Nr

q=1 I
ray
q ·ey∑Nr

q=1 ||Irayq (t=0)|| .

c Normalized pulse strength in the z-direction: Iz def=
∑Nr

q=1 I
ray
q ·ez∑Nr

q=1 ||Irayq (t=0)|| . d Normalized pulse magni-

tude:

√∑Nr
q=1((I

ray
q ·ex)2+(Irayq ·ey)2+(Irayq ·ez)2)∑Nr

q=1 ||Irayq (t=0)||

where Irayq are the individual ray contributions (Fig. 11.9). This can be extended, for
example, for any quantity of interest, Q (e.g., the positions of the particles and their
velocities), with a distribution of values (Qi, i = 1, 2, . . . ,Np = particles) about an
arbitrary reference point, denoted Q�, as follows:

MQi−Q�

r
def=

∑Np

i=1 ai(Qi − Q�)r∑Np

i=1 ai

def= (Qi − Q�)r . (11.13)

The various moments characterize the distribution, for example:

1. MQi−A
1 measures the first deviation from the average, which equals zero.

2. MQi−0
1

def=
∑Np

i=1 ai(Qi−0)∑Np
i=1 ai

def= (Qi − 0) = A.
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3. MQi−A
2 is the standard deviation.

4. MQi−A
3 is the skewness,whichmeasures the bias, or asymmetry of the distribution

of data.
5. MQi−A

4 is the kurtosis (fourth moment), which measures the “tightness” of the
distribution.

For the purposes of particle dynamics, ai = mi. This is straightforward to implement
and can provide much more detailed information on post-impact system character-
istics.

11.6 Chapter Appendix: Basics of Acoustics

In our approach, we model the individual particles as being rigid, and the material
surrounding theparticles as being isotropic andhaving a relatively lowshearmodulus,
in the zero limit becoming an acousticalmedium.Generally, for an isotropicmaterial,
one has the classical relationship between the components of infinitesimal strain (ε)
to the Cauchy stress (σ)

σ = IE : ε = 3κ
trε

3
1 + 2με′, (11.14)

where IE is the elasticity tensor andwhere ε′ is the strain deviator. The corresponding
strain energy density is

W = 1

2
ε : IE : ε = 1

2

(
9κ(

trε

3
)2 + 2με′ : ε′

)
. (11.15)

We focus on the dilatational deformation in the lowshearmodulusmatrix surrounding
the particles. This naturally leads to an idealized “acoustical”material approximation,
μ ≈ 0. Hence, Eq.11.14 collapses to σ = −p1, where the pressure is p = −3κ trε

3 1

and with a corresponding strain energy of W = 1

2

p2

κ
. By inserting the simplified

expression of the stress σ = −p1 into the equation of equilibrium, we obtain

∇ · σ = −∇p = ρü, (11.16)

whereu is the displacement. By taking the divergence of both sides, and recognizing
that ∇ · u = − p

κ
, we obtain

∇2p = ρ

κ
p̈ = 1

c2
p̈. (11.17)

If we assume a harmonic solution, we obtain

p = Pej(k·r−ωt) ⇒ ṗ = Pjωej(k·r−ωt) ⇒ p̈ = −Pω2ej(k·r−ωt), (11.18)
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and

∇p = Pj(kxex + kyey + kzez)ej(k·r−ωt) ⇒ ∇ · ∇p = ∇2p

= −P (k2x + k2y + k2z )︸ ︷︷ ︸
||k||2

ej(k·r−ωt). (11.19)

We insert these relations into Eq.11.17 and obtain an expression for themagnitude
of the wave number vector

− P||k||2ej(k·r−ωt) = −ρ

κ
Pω2ej(k·r−ωt) ⇒ ||k|| = ω

c
. (11.20)

Equation11.16 (balance of linear momentum) implies

ρü = −∇p = −Pj(kxex + kyey + kzez)ej(k·r−ωt). (11.21)

Now we integrate once, which is equivalent to dividing by −jω, and obtain the
velocity

u̇ = Pj

ρω
(kxex + kyey + kzez)ej(k·r−ωt), (11.22)

and do so again for the displacement

u = Pj

ρω2
(kxex + kyey + kzez)ej(k·r−ωt). (11.23)

Thus, we have

||u̇|| = P

cρ
. (11.24)

The reflection of a plane harmonic pressure wave at an interface is given by
enforcing continuity of the (acoustical) pressure and disturbance velocity at that
location; this yields the ratio between the incident and reflected pressures. We use
a local coordinate system (Fig. 11.3) and require that the number of waves per unit
length in the x− direction must be the same for the incident, reflected, and refracted
(transmitted) waves,

ki · ex = kr · ex = kt · ex. (11.25)

From the pressure balance at the interface, we have

Pie
j(ki·r−ωt) + Pre

j(kr ·r−ωt) = Pte
j(kt ·r−ωt), (11.26)

where Pi is the incident pressure ray, Pr is the reflected pressure ray, and Pt is the
transmitted pressure ray. This forces a time-invariant relation to hold at all parts on
the boundary, because the arguments of the exponential must be the same. This leads
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to (ki = kr)
kisinθi = krsinθr ⇒ θi = θr, (11.27)

and

kisinθi = ktsinθt ⇒ ki
kt

= sinθt
sinθi

= ω/ct
ω/ci

= ci
ct

= vi

vt
= nt

ni
. (11.28)

Equations11.25 and 11.26 imply

Pie
j(ki·r) + Pre

j(kr ·r) = Pte
j(kt ·r). (11.29)

The continuity of the displacement, and hence the velocity

vi + vr = vt, (11.30)

leads to, after use of Eq.11.24,

− Pi

ρici
cosθi + Pr

ρrcr
cosθr = − Pt

ρtct
cosθt . (11.31)

We solve for the ratio of the reflected and incident pressures to obtain

r = Pr

Pi
= Âcosθi − cosθt

Âcosθi + cosθt
, (11.32)

where Â
def= At

Ai
= ρt ct

ρici
, where ρt is themediumwhich the ray encounters (transmitted),

ct is corresponding sound speed in that medium, At is the corresponding acoustical
impedance, ρi is the medium in which the ray was traveling (incident), ci is corre-
sponding sound speed in that medium Ai is the corresponding acoustical impedance.
The relationship (the law of refraction) between the incident and transmitted angles
is ctsinθt = cisinθi. Thus, we may write the Fresnel relation

r = c̃Âcosθi − (c̃2 − sin2θi)
1
2

c̃Âcosθi + (c̃2 − sin2θi)
1
2

, (11.33)

where c̃
def= ci

ct
. The reflectance for the (acoustical) energyR = r2 is

R =
(
Pr

Pi

)2

=
(
Âcosθi − cosθt

Âcosθi + cosθt

)2

=
(
Ir
Ii

)2

. (11.34)

For the cases where sinθt = sinθi
c̃ > 1, one may rewrite the reflection relation as
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r = c̃Âcosθi − j(sin2θi − c̃2)
1
2

c̃Âcosθi + j(sin2θi − c̃2)
1
2

. (11.35)

where j = √−1. The reflectance isR def= rr̄ = 1, where r̄ is the complex conjugate.
Thus, for angles above the critical angle θi ≥ θ∗

i , all of the energy is reflected. We
note that when At = Ai and ci = ct , then there is no reflection. Also, when At >> Ai

or when At << Ai, then r → 1.

Remark If one considers for a moment an incoming pressure wave (ray), which is
incident on an interface between two general elastic media (μ 
= 0), reflected shear
waves must be generated in order to satisfy continuity of the traction, [|σ · n|] = 0.
This is due to the fact that

[|
(
3κtr

ε

3
1 + 2με′

)
· n|] = 0. (11.36)

For an idealized acoustical medium, μ = 0, no shear waves need to be generated to
satisfy Eq.11.36.
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Chapter 12
Summary and Closing Remarks

The adoption of detailed material models and computational methods in additive
manufacturing and 3Dprinting has the potential to bring a level of systematic analysis
that can make it a reliable large-scale manufacturing process. However, there are
a number of challenges, from the point of view of the end user of a simulation
tool to be addressed in the development of computational approaches for additive
manufacturing including (see [1–6]):

• validated quality and integrity of the products designed using computational meth-
ods for critical applications which address (a) thermal effects and distortion and
(b) mechanical and other physical properties, defects, inclusions/lack of proper
bonding,

• validated precision surface features including form and dimensions (as the slice
thickness and deposition angles are critical parameters): (a) production rates and
(b) energy and material consumption issues and the environmental impact of the
technology.

From the point of view of computational challenges, the types of numerical meth-
ods needed to simulate such processes are still evolving rapidly. One objective of
future research is the development of Discrete Element Models and codes for high-
fidelity additive manufacturing processes, guided by careful experimentation. The
salient computational concerns are the development of modeling and simulation
methodswhich can be seamlessly integrated into design, coupling all the various sub-
processes together. Any realistic simulation of an advanced additive manufacturing
process will involve coupling many of the subprocesses mentioned in the monograph
[7–49]. If systematic approaches can be developedmeeting industry standards, this is
a game-changer. This needs to draw upon the expertise of researchers in a number of
disciplines in engineering: (1) computational science, (2) precision manufacturing,
(3) materials science, (4) fluid mechanics and rheology, (5) multidegree of freedom
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precision machines, robotics, and control theory, (6) heat transfer, (7) tribology, and
(8) computer-aided design (CAD), geometric part representation, computer-aided
manufacturing (CAM), and tool path generation. As of 2015, there are a variety of
companies in this area, in particular in the plastic-based domain:

• Stratasys: http://www.stratasys.com/
• 3D Systems: http://www.3dsystems.com/
• Type A Machines: https://www.typeamachines.com
• Materialise: http://www.materialise.com/
• ExOne: http://www.exone.com/
• Arcam: http://www.arcam.com/
• SLM Solutions: http://www.stage.slm-solutions.com/index.php?index_de
• Alphaform: http://www.alphaform.de/
• Voxeljet: http://www.voxeljet.de/en/

For a more complete listing, which is certainly not comprehensive, see:

• http://3dprintingindustry.com/
• http://3dprintingindustry.com/2015/03/19/fiscal-2014-revenue-results-3d-
printings-top-10-guns/

• https://en.wikipedia.org/wiki/Category:3D-printer-companies

We remark that the development of new robotic systems is critical to the advancement
of this field. Recently, most industrialized countries have stressed the importance of
robotics for the development of next-generation additive manufacturing machines
and processes. However, because of the entirely new manufacturing processes that
have developed over the last forty years, there is a lag between what robots, who
have not changed much fundamentally in this domain, were intended to do and what
industry now needs them to do. For example, because of the new types of materials
being handled, with completely new processes, the challenges range from

• Handling and deposition of powderedmaterialswhich have the appropriate proper-
ties for printing, in order to yield high-performance nanostructured heterogeneous
interfaces,

• Simultaneous laser-system-control parameters and environmental-chamber con-
ditions that precisely create heterogeneous materials,

• The in situ assembly of materials with sensors,
• Detailed monitoring of the thermo-mechanical behavior of the complete system
during processing,

• Statistical analysis of the performance of printed heterogeneous systems, and
• Assessing environmental and resource issues associated with these materials.

Thus, the demands are at a level of robotic precision at unprecedented accuracy for
large volume of products.

In closing, many of the challenges facing additive manufacturing processes, such
as heated filament-based methods, stem from the fact that one wishes to extend
the present approaches, which use simple geometries and polymers (PLA and ABS
binders, ink-based processes) to more sophisticated complex geometries comprised
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ofmetals, ceramics, and compositematerials. Currently, rapid printing does not allow
precise control over the structure of the printed lines. This often results in lines with
scalloped edges or nonuniform width and offers only limited control over the height
of the printed features. See [50–58] for details. Recently, nanoimprint lithography has
been proposed as a means of decreasing the feature size of patterned nanoparticles
while allowing more precise control over the structure of the printed lines [59–62].
In this fabrication method, the nanoparticle inks are patterned by pressing with an
elastomer mold and the particles are dried into their final configuration. While the
resolution of nanoimprint lithography is improved over inkjet printing, there exists
a residual layer on the substrate that must be etched away after patterning. Control
over the height of features can be corrupted by capillary action between the mold and
the drying ink, in particular along the length of longer features. Thus, as a possible
alternative to nanoimprint lithography, nanoparticle self-assembly methods, based
on capillary filling of photoresist templates, have been proposed by Demko et al. [55,
56] and appear to be promising. This leads to an obvious fact, namely additive manu-
facturing alone is inadequate and needs to be combined with classical manufacturing
processes. Explicitly stated, despite the attractive features of additive manufactur-
ing, it alone rarely produces the surface quality needed for structural integrity. Often
classical subtractive, intermediate, high-precision surfacemilling is needed to create
components with acceptable toughness and fatigue life. It is imperative that additive
and subtractive processes be combined, guided by simulation software for deposi-
tion and removal of material with sensitivity to part quality, dimension, tolerances,
and surface finish. This must draw on a combination of existing and new numer-
ical methods for additive manufacturing, multiaxis machines, and computational
modeling of process performance. Organizations such as the American Society for
Precision Engineering (ASPE) are exploring a number of issues that will need to
be addressed if additive manufacturing is to realize its full potential for real compo-
nents used in critical systems. These include issues related to: (a) dimensional control
needed for AM to be used in precision applications, (b) design for manufacturing
including design rules for additive manufacturing and the impact of dimensional
errors on structures designed using optimization methodologies, (c) standards in-
cluding certifying additive manufacturing equipment capabilities and artifacts for
assessing machine performance, (d) using AM-fabricated components in precision
assemblies and component-to-component relationships, stack-up tolerances, friction,
robotic grip-ability, and (e) metrology and quality of external surfaces and internal
features including material validation. Some of these issues can be addressed by
hybridizing AMwith appropriate other processes ranging from precision machining
to electrical discharge machining (EDM) to industrial-scale polishing methods such
as chemical–mechanical planarization (CMP). Industry has been quick to react to
the advances in technology. For example, one of the largest machine manufacturers
in the world, DMG Mori, has just introduced a five-axis CNC machine tool with
an array of conventional milling and drilling tools (subtractive processes), in addi-
tion to a Sauer laser powder fusion head (additive processes) that can be mounted
in the machine tool spindle, in place of cutting tools, in order to offer a build and
machine option. Industries stand to make great gains by understanding and adopting
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such tools and processes in manufacturing. From an educational point of view, a
central goal is to provide researchers with the skills to innovate and improve margins
through the combined use of cutting edge, advanced manufacturing, modeling and
simulation techniques. Furthermore, the development of a modern advanced manu-
facturing curriculum,with a strongmaterials andmechanics foundation that canmeet
the needs of students across multiple departments, is crucial. If successful, students
will gain a critical understanding of the issues currently at the forefront of advanced
manufacturing technologies and, in particular, the ability to model and simulate such
processes with high fidelity, thus enabling additive manufacturing to live up to its
potential as a viable advanced manufacturing technology.
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Appendices
Monograph Appendix A: Elementary
Notation and Mathematical Operations

A.1 Vectors, Products, and Norms

In this work, boldface symbols imply vectors or tensors.A fixed Cartesian coordinate
system will be used throughout this monograph. The unit vectors for such a system
are given by the (fixed) mutually orthogonal triad (e1, e2, e3). For the inner product
of two vectors u and v, we have in three dimensions

u · v =
3∑

i=1

vi ui = u1v1 + u2v2 + u3v3 = ||u|||v||cosθ, (A.1)

where

||u|| =
√
u21 + u22 + u23 (A.2)

represents the Euclidean norm in IR3 and θ is the angle between them.We recall that a
norm has three main characteristics for any two bounded vectors u and v (||u|| < ∞
and ||v|| < ∞):

• ||u|| ≥ 0, ||u|| = 0 if and only if u = 0,
• ||u + v|| ≤ ||u|| + ||v||, and
• ||γu|| = |γ|||u||, where γ is a scalar.

Two vectors are said to be orthogonal if u · v = 0. The cross (vector) product of two
vectors is

u × v = −v × u =
∣∣∣∣∣∣

e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣
= ||u||||v||sinθ n, (A.3)

where n is the unit normal to the plane formed by the vectors u and v.
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The temporal differentiation of a vector-valued function is given by

d

dt
u(t) = du1(t)

dt
e1 + du2(t)

dt
e2 + du3(t)

dt
e3 = u̇1e1 + u̇2e2 + u̇3e3. (A.4)

The spatial gradient of a scalar-valued function (a dilation to a vector) is given by

∇xφ =
(

∂φ

∂x1
e1 + ∂φ

∂x2
e2 + ∂φ

∂x3
e3

)
. (A.5)

The gradient of a vector-valued function is a direct extension of the preceding def-
inition. For example, ∇xu has components of ∂ui

∂x j
. The divergence of a vector (a

contraction to a scalar) is defined by

∇x · u =
(
e1

∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3

)
· (u1e1 + u2e2 + u3e3)

=
(

∂u1
∂x1

+ ∂u2
∂x2

+ ∂u3
∂x3

)
. (A.6)

The curl of a vector is defined as

∇x × u =
∣∣∣∣∣∣

e1 e2 e3
∂

∂x1
∂

∂x2
∂

∂x3
u1 u2 u3

∣∣∣∣∣∣
. (A.7)

The triple product of three vectors is

w · (u × v) =
⎛

⎝

∣∣∣∣∣∣

w1 w2 w3

u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣

⎞

⎠ = (w × u) · v. (A.8)

This represents the volume of a parallelepiped formed by the three vectors.

A.2 Basic Linear Algebra

If we consider the second-order tensor A with its matrix representation,

[A] def=
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦ . (A.9)

The matrix [A] is said to be symmetric if [A] = [A]T and skew-symmetric if
[A] = −[A]T . A first-order contraction (inner product) of two matrices is defined
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by

A · B = [A][B] which has components of
N∑

j=1

Ai j B jk = Cik, (A.10)

where it is clear that the range of the inner index j must be the same for [A] and [B].
The second-order inner product of two matrices is

A : B = Ai j Bi j = tr([A]T [B]). (A.11)

Some properties of the determinant are (where, for example, [A] is a 3×3matrix):

• det[A] = A11(A22A33 − A32A23) − A12(A21A33 − A31A23) + A13(A21A32 −
A31A22),

• det[I] = 1, det α[A] = α3det [A], where α is a scalar,
• det[A][B] = det[A]det[B], det[A]T = det[A], and det[A]−1 = 1

det[A] .

An important use of the determinant is in forming the inverse by

[A]−1 = ad j[A]
det[A] , ad j[A] def=

⎡

⎣
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎦
T

, (A.12)

where the so-called cofactors are

C11 = A22A33 − A32A23 C12 = −(A21A33 − A31A23)

C13 = A21A32 − A31A22 C21 = −(A12A33 − A32A13)

C22 = A11A33 − A31A13 C23 = −(A11A32 − A31A12)

C31 = A12A23 − A22A13 C32 = −(A11A23 − A21A13)

C33 = A11A22 − A21A12

(A.13)

The rule of transposes for two n × n matrices is

([A][B])T = [B]T [A]T . (A.14)

The rule of inverses for two invertible n × n matrices is

([A][B])−1 = [B]−1[A]−1 and [A]−1[A] = [A][A]−1 = [I], (A.15)

where [I] is the identity matrix. Clearly, [A]−1 exists only when det[A] �= 0.
Themathematical definitions of an eigenvalue, a scalar denotedΛ and eigenvector,

a vector denoted E , of a matrix [A] are

[A]{E} = Λ{E} (A.16)
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Wenote that for any given tensor Aof order 2 (a 3×3matrix), ifwe set the determinant
det[A − ΛI] = 0, it can be shown that the so-called characteristic polynomial is

det (A − ΛI) = −Λ3 + IAΛ
2 − IIAΛ + IIIA = 0, (A.17)

where

IA = tr(A) = Λ1 + Λ2 + Λ3

IIA = 1
2 ((tr(A))2 − tr(A2)) = Λ1Λ2 + Λ2Λ3 + Λ1Λ3

IIIA = det (A) = 1
6 ((tr A)3 + 2tr A3 − 3(tr A2)(tr A)) = Λ1Λ2Λ3.

(A.18)

Since IA, IIA, and IIIA can be written in terms of tr A, which is invariant under
frame rotation, they too are invariant under frame rotation. The main properties to
remember about eigenvalues and eigenvectors are:

1. If [A] (n×n) has n linearly independent eigenvectors, then it is diagonalizable by
a matrix formed by columns of the eigenvectors, for example, for a 3× 3 matrix

⎡

⎣
Λ1 0 0
0 Λ2 0
0 0 Λ3

⎤

⎦ =
⎡

⎢⎣
E(1)
1 E(2)

1 E(3)
1

E(1)
2 E(2)

2 E(3)
2

E(1)
3 E(2)

3 E(3)
3

⎤

⎥⎦

−1 ⎡

⎣
A11 A12 A13
A21 A22 A23
A31 A32 A33

⎤

⎦

⎡

⎢⎣
E(1)
1 E(2)

1 E(3)
1

E(1)
2 E(2)

2 E(3)
2

E(1)
3 E(2)

3 E(3)
3

⎤

⎥⎦ (A.19)

2. If [A] (n × n) has n distinct eigenvalues, then the eigenvectors are linearly inde-
pendent.

3. If [A] (n × n) is symmetric, then its eigenvalues are real. If the eigenvalues are
distinct, then the eigenvectors are orthogonal.

A quadratic form is such that

{x}T [A]{x} def= [
x1 x2 x3

]
⎡

⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦ . (A.20)

A matrix [A] is said to be positive definite if the quadratic form is positive for
all nonzero vectors x. Clearly, from Eq.A.19, a positive definite matrix must have
positive eigenvalues.

To perform a coordinate transform for a 3 × 3 matrix [A] from one Cartesian
coordinate system to another (denoted with a ˆ(·)), we apply a transformation matrix
[Q]:

[ Â] = [Q][A][Q]−1. (A.21)

If Q is an orthogonal matrix, then Q−1 = QT (denoted “unitary”).
The standard axes rotators are (Fig.A.1), about the x1-axis
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Fig. A.1 Top: reflection
with respect to the x2–x3
plane. Bottom: rotation with
respect to the x3-axis
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Rot (x1)
def=
⎡

⎣
1 0 0
0 cosθ1 sinθ1
0 −sinθ1 cosθ1

⎤

⎦ , (A.22)

about the x2-axis

Rot (x2)
def=
⎡

⎣
cosθ2 0 −sinθ2
0 1 0

sinθ2 0 cosθ2

⎤

⎦ , (A.23)

about the x3-axis

Rot (x3)
def=
⎡

⎣
cosθ3 sinθ3 0

−sinθ3 cosθ3 0
0 0 1

⎤

⎦ . (A.24)

The standard axes reflectors are with respect to the x2–x3 plane

Ref (x1)
def=
⎡

⎣
−1 0 0
0 1 0
0 0 1

⎤

⎦ , (A.25)

with respect to the x1–x3 plane

Ref (x2)
def=
⎡

⎣
1 0 0
0 −1 0
0 0 1

⎤

⎦ , (A.26)
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with respect to the x1–x2 plane

Ref (x3)
def=
⎡

⎣
1 0 0
0 1 0
0 0 −1

⎤

⎦ . (A.27)

A.3 Integral Transformations

The divergence of a vector-valued function (a contraction to a scalar-valued function)
is defined by

∇x · u =
N∑

i=1

ui,i , (A.28)

whereas for a second-order tensor (a contraction to a vector):

∇x · A has components of
N∑

j=1

Ai j, j . (A.29)

The gradient of a vector (a dilation to a second-order tensor) is:

∇xu has components of ui, j , (A.30)

whereas for a second-order tensor (a dilation to a third-order tensor):

∇x A has components of Ai j,k . (A.31)

The gradient of a scalar (a dilation to a vector) is:

∇xφ has components of φ,i . (A.32)

The scalar product of two second-order tensors, for example, the gradients of first-
order vectors, is defined as

∇xv : ∇xu = ∂vi

∂x j

∂ui
∂x j︸ ︷︷ ︸

in Cartesian bases

def= vi, j ui, j i, j = 1, 2, 3, (A.33)

where ∂ui/∂x j , ∂vi/∂x j are partial derivatives of ui and vi , and ui , vi are the Carte-
sian components of u and v and
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∇xu · n has components of ui, j n j︸ ︷︷ ︸
in Cartesian bases

, i, j = 1, 2, 3. (A.34)

For a scalar, we have

∫

Ω

∇xφ dΩ =
∫

∂Ω

φn d A
∫

Ω

φ,i dΩ =
∫

∂Ω

φni d A (A.35)

and for a vector
∫

Ω

∇xu dΩ =
∫

∂Ω

u ⊗ n d A
∫

Ω

ui, j dΩ =
∫

∂Ω

uin j d A. (A.36)

The divergence theorem for vectors is

∫

Ω

∇x · u dΩ =
∫

∂Ω

u · n d A
∫

Ω

ui,i dΩ =
∫

∂Ω

uini d A (A.37)

and analogously for a tensor B

∫

Ω

∇x · B dΩ =
∫

∂Ω

B · n d A
∫

Ω

Bi j, j dΩ =
∫

∂Ω

Bi jn j d A, (A.38)

where n is the outward normal to the bounding surface. These standard operations
arise throughout the analysis. A generalization of these last results is

∫

Ω

∇x ∗ B dΩ =
∫

∂Ω

n ∗ B d A, (A.39)

where, when ∗ = ·, we have the divergence theorem and when ∗ = × we have the
“cross product” theorem.1 For proofs, see Chandrasekharaiah and Debnath [1] or
Malvern [2].

References
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1Also, we have the point-wise product rule:

d

dt
(a ∗ b) = da

dt
∗ b + a ∗ da

dt
. (A.40)
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Effective Electrical Properties of Mixtures

A critical aspect of additive manufacturing, in particular printed electronics, is the
estimation of the effective properties of particle-functionalized dielectric materials.
One of the primary properties of interest is the overall “effective” electrical conduc-
tivity, defined via Ohm’s law:

〈J〉Ω = σ∗〈E〉Ω, (B.1)

where σ∗ is the effective conductivity for the mixture, 〈E〉Ω is the volume-averaged
electric field, 〈J〉Ω is the volume-averaged current, the averaging operator is defined

as 〈·〉Ω def= 1
|Ω|
∫
Ω

(·) dΩ over a statistically representative volume element with
domain Ω . Other properties, although not needed immediately in the analysis, are:

• Overall electrical permittivity:

〈D〉Ω = ε∗〈E〉Ω, (B.2)

where ε∗ is the effective electrical permittivity for themixture, 〈E〉Ω is the volume-
averaged electric field, 〈D〉Ω is the volume-averaged electric field flux,

• Overall magnetic permeability:

〈B〉Ω = μ∗〈H〉Ω, (B.3)

where μ∗ is the effective magnetic permeability for the mixture, 〈H〉Ω is the
volume-averagedmagnetic field, 〈B〉Ω is the volume-averagedmagnetic field flux,

Our objective is to estimate σ∗ and then illustrate how to use it in conjunction with
a model deposited electrical material problem. We refer the reader to Zohdi [1–15]
for an in-depth discussion of the electromagnetic properties of materials.
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B.1 Computing the Effective Electrical Conductivity

In order to make estimates of the overall properties of a mixture, we consider the
widely used Hashin and Shtrikman bounds (see previous chapter) for isotropic mate-
rials with isotropic effective responses. These estimates provide one with upper and
lower bounds on the overall response of the material. For two isotropic materials
with an overall isotropic response, we utilize the following estimates,

σ1 + v2
1

σ2−σ1
+ 1−v2

3σ1︸ ︷︷ ︸
σ∗,−

≤ σ∗ ≤ σ2 + 1 − v2
1

σ1−σ2
+ v2

3σ2︸ ︷︷ ︸
σ∗,+

, (B.4)

where the conductivity of phase 2 (with volume fraction v2) is larger than phase 1
(σ2 ≥ σ1). Usually, v2 corresponds to the particle material, although there can be
applications where the matrix is more conductive than the particles. In that case,
v2 would correspond to the matrix material. Provided that the volume fractions and
constituent conductivities are the only known information about the microstructure,
the expressions are the tightest bounds for the overall isotropic effective responses for
two-phase media, where the constituents are both isotropic. A critical observation
is that the lower bound is more accurate when the material is composed of high-
conductivity particles that are surrounded by a low-conductivitymatrix (denoted case
1) and the upper bound is more accurate for a high-conductivity matrix surrounding
low-conductivity particles (denoted case 2).

Remark As mentioned before, this can be explained by considering two cases of
material combinations, one with 50% low-conductivity material and the other with
50%high-conductivitymaterial.Amaterialwith a continuous low-conductivity (fine-
scale powder) binder (50%) will isolate the high-conductivity particles (50%), and
the overall systemwill not conduct electricitywell (this is case 1, and the lower bound
is more accurate), while a material formed by a continuous high-conductivity (fine-
scale powder) binder (50%) surrounding low-conductivity particles (50%, case 2)
will, in an overall sense, conduct electricity better than case 1. Thus, case 2 is more
closely approximated by the upper bound and case 1 is closer to the lower bound.
Since the true effective property lies between the upper and lower bounds, one can
construct the following approximation

σ∗ ≈ φσ∗,+ + (1 − φ)σ∗,−, (B.5)

where 0 ≤ φ ≤ 1. φ is a function of the microstructure and must be calibrated.
As mentioned, for high-conductivity spherical particles, at low volume fractions, for
example, under 15%, where the particles are not making contact, the lower bound
is more accurate. Thus, one would pick φ = φs ≤ 0.5 to bias the estimate to the
lower bound. However, if we take the same volume fraction of particles, but make the
flat flakes, they will certainly touch and produce high-conductivity pathways. Their
overall conductivity will be higher than those of sphere at the same volume fraction.
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Thus, one would pick φ = φ f > φs . One can calibrate φ by comparing it to different
experiments.

B.2 Concentration Tensors and Load-Sharing

The effective conductivity, σ∗, defined via2

〈J〉Ω = σ∗ · 〈E〉Ω, (B.6)

can be re-written in the following manner

〈J〉Ω = v1〈J〉Ω1 + v2〈J〉Ω2

= v1σ1 · 〈E〉Ω1 + v2σ2 · 〈E〉Ω2

= σ1 · (〈E〉Ω − v2〈E〉Ω2) + v2σ2 · 〈E〉Ω2

= (σ1 + v2(σ2 − σ1) · CE,2
)

︸ ︷︷ ︸
σ∗

·〈E〉Ω, (B.7)

where (
1

v2
(σ2 − σ1)

−1 · (σ∗ − σ1)

)

︸ ︷︷ ︸
def=CE,2

·〈E〉Ω = 〈E〉Ω2 . (B.8)

CE,2 is known as the electric field concentration tensor. Thus, the product of CE,2

with 〈E〉Ω yields 〈E〉Ω2 . It is important to realize that once either CE,2 or σ∗ are
known, the other can be computed.

In order to determine the concentration tensor for phase 1, we have from Eq.B.69

〈E〉Ω1 = 〈E〉Ω − v2〈E〉Ω2

v1
= (1 − v2CE,2) · 〈E〉Ω

v1

def= CE,1 · 〈E〉Ω, (B.9)

where

CE,1 = 1

v1
(1 − v2CE,2) = 1 − v2CE,2

1 − v2
. (B.10)

Note that Eq.B.10 implies

v1CE,1︸ ︷︷ ︸
phase−1 contribution

+ v2CE,2︸ ︷︷ ︸
phase−2 contribution

= 1. (B.11)

2Implicitly, we assume that (a) the contact between the phases is perfect and (b) the ergodicity
hypothesis is satisfied (see Kröner [16] or Torquato [17]).
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Similarly, for the current, we have

〈J〉Ω = σ∗ · 〈E〉Ω ⇒ σ∗−1 · 〈J〉Ω = C−1
E,2 · 〈E〉Ω2 = C−1

E,2 · σ−1
2 · 〈J〉Ω2 . (B.12)

Thus,
σ2 · CE,2 · σ∗−1

︸ ︷︷ ︸
C J,2

·〈J〉Ω = 〈J〉Ω2 , (B.13)

and
C J,1 · 〈J〉Ω = 〈J〉Ω1 (B.14)

where

C J,1 = 1 − v2C J,2

1 − v2
= σ1 · CE,1 · σ∗−1. (B.15)

We remark that from Eq.B.81 implies

v1C J,1︸ ︷︷ ︸
phase−1 contribution

+ v2C J,2︸ ︷︷ ︸
phase−2 contribution

= 1. (B.16)

Summarizing, we have the following results:

• CE,1 · 〈E〉Ω = 〈E〉Ω1 where CE,1 = 1
v1

(1 − v2CE,2) = 1−v2CE,2

1−v2
,

• CE,2 · 〈E〉Ω = 〈E〉Ω2 where CE,2 = 1
v2

(σ2 − σ1)
−1 · (σ∗ − σ1),

• C J,1 · 〈J〉Ω = 〈J〉Ω1 where C J,1 = 1−v2C J,2

1−v2
= σ1 · CE,1 · σ∗−1,

• C J,2 · 〈J〉Ω = 〈J〉Ω2 where C J,2 = σ2 · CE,2 · σ∗−1.

B.3 “Load-Sharing” Interpretation

One may write
vσ
1CE,1︸ ︷︷ ︸

phase−1 contribution

+ vσ
2CE,2︸ ︷︷ ︸

phase−2 contribution

= 1

vσ
1C J,1︸ ︷︷ ︸

phase−1 contribution

+ vσ
2C J,2︸ ︷︷ ︸

phase−2 contribution

= 1.
(B.17)

Frequently, the first term in the above expressions is referred to as “phase-1’s” share,
while the second term is “phase-2’s” share. Thus, the concentration tensor tells you
how much of the overall load is carried by the particles and how much by the matrix.
This is useful when we want to compute the Joule-heating in the system.
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B.4 Joule-Heating

One of the key quantities of interest here is the amount of heat generated from
running a current through a material, denoted H (a rate), which feeds into first law
of thermodynamics,

ρẇ − T : ∇ u̇ + ∇ · q = aH. (B.18)

In Eq.B.18, ρ is the mass density, w is the stored energy per unit mass, T is Cauchy
stress, u is the displacement field, q is heat flux, and H = (J · E) is the rate of
electrical energy absorbed due to Joule-heating, where J is the current, E is the
electric field, and 0 ≤ a ≤ 1 is an absorption constant. Our objective of this chapter
is to determine the phase-wise load-shares of the Joule-field, denoted H = J · E,
carried by the components in the heterogeneous mixture.

It is important to realize that heterogeneous mixtures (microstructures) distort the
electrical and current fields within the material. For electrical flow to be properly
controlled, in particular for heterogeneous mixtures, one needs accurate characteri-
zations of the electrical loads carried by each of the phases in the system. In this phase
of the research, as a model problem, we will consider a statistically representative
volume element (RVE of volume |Ω|) of a two-phase dielectric medium.We assume
that the material has been properly prepared so that there are no gaps between the
phases (an idealization). The microscale properties are characterized by a spatially
variable electrical conductivity σ(x). For such a sample, one can decompose the
electrical field carried by each phase in the material as follows:

〈E〉Ω = 1

|Ω|
(∫

Ω1

E dΩ +
∫

Ω2

E dΩ

)
= v1〈E〉Ω1 + v2〈E〉Ω2 (B.19)

and the current can be decomposed as

〈J〉Ω = 1

|Ω|
(∫

Ω1

J dΩ +
∫

Ω2

J dΩ

)
= v1〈J〉Ω1 + v2〈J〉Ω2 , (B.20)

and the Joule-heating field as

〈H〉Ω = 1

|Ω|
(∫

Ω1

H dΩ +
∫

Ω2

H dΩ

)
= v1〈H〉Ω1 + v2〈H〉Ω2 , (B.21)

where 〈·〉Ω def= 1
|Ω|
∫
Ω

· dΩ is a volume-averaging operator and v1 and v2 are the

volume fractions of phases 1 and 2, respectively (v1 + v2 = 1). We denote v1
〈H〉Ω1
〈H〉Ω

and v2
〈H〉Ω2
〈H〉Ω as the “load-shares,” since

v1
〈H〉Ω1

〈H〉Ω + v2
〈H〉Ω2

〈H〉Ω = 1. (B.22)
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The objective is to determine the load-shares as functions of known (a priori) quan-
tities

v1
〈H〉Ω1

〈H〉Ω = F1(v1,σ1,σ2, 〈J〉Ω, 〈E〉Ω) (B.23)

and

v2
〈H〉Ω2

〈H〉Ω = F2(v2,σ1,σ2, 〈J〉Ω, 〈E〉Ω), (B.24)

where σ1 and σ2 are the conductivities of phase 1 and phase 2, respectively. The
overall volume averages, 〈E〉Ω and 〈J〉Ω , are considered known, since they can
be determined by the boundary values from well-known results (discussed in the
next section): (a) the Average Electric Field Theorem and (b) the Average Current
Theorem.

We will proceed as follows:

• Expressions are developed for the current field (J) and electric field (E) distribu-
tion for each component in the mixture,

• Expressions are developed for the Joule-heating field current distribution for each
component in the materials (J · E),

• Bounding principles are used to provide estimates of the overall response of the
material,

• Asymptotic cases of extreme mixtures of insulators and superconductors are con-
sidered,

• Simple estimates for the time to heating are provided, and
• Extensions, involving numerical methods, are discussed.

Remark 1 The mathematical form for Joule-heating can be motivated by taking
Faraday’s law

∇ × E = −∂B
∂t

(B.25)

and Ampere’s law

∇ × H = ∂D
∂t

+ J, (B.26)

where D is the electric field flux, H is the magnetic field, B is the magnetic field
flux, and forming the difference between the inner product of the electric field with
Ampere’s law and the inner product of the magnetic field with Faraday’s law:

E · (∇ × H) − H · (∇ × E)︸ ︷︷ ︸
−∇·(E×H)=−∇·S

= E · J + E · ∂D
∂t

+ H · ∂B
∂t︸ ︷︷ ︸

= ∂W
∂t

, (B.27)

where W = 1
2 (E · D + H · B) is the electromagnetic energy and S = E × H is the

Poynting vector. This relation can be re-written as
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∂W

∂t
+ ∇ · S = −J · E. (B.28)

Equation B.28 is usually referred to as Poynting’s theorem. This can be interpreted,
for simple material laws, where the previous representation for W holds, as stating
that the rate of change of electromagnetic energy within a volume, plus the energy
flowing out through a boundary, is equal to the negative of the total work done by
the fields on the sources and conduction. This work is then converted into thermo-
mechanical energy (“Joule-heating,” H in Eq.B.18). Joule-heating stems from ions
being pulled through a medium by electromagnetic fields, which generate heat when
they collide with their surroundings.

Remark Generally, for detailed point-wise information, for example, localized
effects in the matrix ligaments between particles (“hot spots”), one needs to solve
boundary value problems posed over a statistically representative volume element
(RVE) sample of heterogeneous media. This will be discussed toward the end of this
chapter. However, the essential issue is that time-transient effects lead to coupling
of electrical and magnetic fields, and the only viable approach is to employ direct
numerical techniques to solve for Maxwell’s equations. Generally, these equations
are strongly coupled. Additionally, if the local material properties are thermally sen-
sitive, and Joule-heating is significant, then the first law of thermodynamics must
also be solved, simultaneously. Numerical techniques for the solution of coupled
boundary value problems posed over heterogeneous electromagnetic media, under-
going thermo-mechano-chemical effects, can be found in Zohdi [2–15]. Later in the
monograph, we will illustrate how such calculations proceed.

B.5 The Controllable Quantities: 〈J〉Ω and 〈E〉Ω

For our model problem, two physically important test boundary (∂Ω) loading states
are notable on a sample of heterogeneous material: (1) applied electric fields of the
form: E|∂Ω = E and (2) applied current field of the form: J |∂Ω = J , where E and
J are constant electric field and current field vectors, respectively. Clearly, for these
loading states to be satisfied within a macroscopic body under nonuniform external
loading, the samplemust be large enough to possess small boundary field fluctuations
relative to its size. Therefore, applying (1)- or (2)-type boundary conditions to a
large sample is a way of reproducing approximately what may be occurring in a
statistically representative microscopic sample of material within a macroscopic
body. The following two results render 〈J〉Ω and 〈E〉Ω as controllable quantities,
via the boundary loading:

• The Average Electric Field Theorem: Consider a sample with boundary loading
E|∂Ω = E . We make use of the identity
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∇ × (E ⊗ x) = (∇ × E) ⊗ x + E · ∇x︸ ︷︷ ︸
E

, (B.29)

and substitute this in the definition of the average electric field

〈E〉Ω = 1

|Ω|
∫

Ω
(∇ × (E ⊗ x) − (∇ × E)︸ ︷︷ ︸

=0

⊗ x) dΩ = 1

|Ω|
∫

∂Ω
n × (E ⊗ x) d A (B.30)

= 1

|Ω|
∫

∂Ω
n × (E ⊗ x) d A = 1

|Ω|
(∫

∂Ω
(∇ × E) ⊗ x dΩ +

∫

∂Ω
E · ∇x dΩ

)
.

Thus, if ∇ × E = 0, then 〈E〉Ω = E , when E|∂Ω = E .
• The Average Current Field Theorem: Consider a sample with boundary loading

J |∂Ω = J . We make use of the identity

∇ · (J ⊗ x) = (∇ · J)x + J · ∇x︸ ︷︷ ︸
J

, (B.31)

and substitute this in the definition of the average current

〈J〉Ω = 1

|Ω|
∫

Ω
(∇ · (J ⊗ x) − (∇ · J)︸ ︷︷ ︸

=0

x) dΩ = 1

|Ω|
∫

∂Ω
(J ⊗ x) · n d A (B.32)

= 1

|Ω|
∫

∂Ω
n · (J ⊗ x) d A = 1

|Ω|
(∫

∂Ω
(∇ · J ) ⊗ x dΩ +

∫

∂Ω
J · ∇x dΩ

)
.

Thus, if ∇ · J = 0, then 〈J〉Ω = J , when J |∂Ω = J .

Remark 1 The importance of the Average Electric Field Theorem and the Average
Current Field Theorem is that we can consider 〈E〉Ω and 〈J〉Ω to be controllable
quantities, viaE orJ on the boundary.Applying these boundary conditions should be
made with the understanding that these idealizations reproduce what a representative
volume element (which is much smaller than the structural component of intended
use) would experience within the system of intended use. Uniform loading is an
idealization and would be present within a vanishingly small microstructure relative
to a finite-sized engineering (macro)structure. These types of loadings are somewhat
standard in computational analyses of samples of heterogeneousmaterials (seeGhosh
[18], Ghosh and Dimiduk [19], Zohdi [2–15]).

Remark 2 In the analysis that follows, we will utilize the following energy–power
relation

〈H〉Ω = 〈J · E〉Ω = 〈J〉Ω · 〈E〉Ω, (B.33)

which is referred to as an ergodicity condition in statistical mechanics (Kröner [16],
Torquato [17]) and as a Hill-type condition in the solid mechanics literature (Hill
[20]). This is essentially a statement that the microenergy (power) must equal the
macro-energy (power). Equation B.33 is developed by first splitting the current and
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electric fields into mean (average) and purely fluctuating (zero mean) parts. For the
current field, one has J = 〈J〉Ω + J̃ , where 〈 J̃〉Ω = 0, and for the electric field
E = 〈E〉Ω + Ẽ, where 〈Ẽ〉Ω = 0. The product yields

〈(〈J〉Ω + J̃) · (〈E〉Ω + Ẽ)〉Ω = 〈J〉Ω · 〈E〉Ω + 〈 J̃ · Ẽ〉Ω, (B.34)

since 〈 J̃〉Ω = 0 and 〈Ẽ〉Ω = 0. The ergodicity assumption is that 〈 J̃ · Ẽ〉Ω → 0, as
the volume, |Ω| → ∞ (relative to the inherent length scales in the microstructure).
The implication is that as the sample becomes infinitely large, J̃ · Ẽ is purely fluctu-
ating, and hence, 〈 J̃ · Ẽ〉Ω = 0. In other words, the product of two purely fluctuating
random fields is also purely fluctuating. These results are consistent with the use of
the uniform boundary loadings introduced earlier, since they can be shown to satisfy
Eq.B.33.

Remark As a consequence of previous results on concentration tensors, the Joule-
fields can be written in a variety of useful forms:

0 ≤ 〈H〉Ωi

def= 〈J〉Ωi · 〈E〉Ωi = σ−1
i · 〈J〉Ωi · 〈J〉Ωi︸ ︷︷ ︸

in terms of phase averages of J

= σi · 〈E〉Ωi · 〈E〉Ωi︸ ︷︷ ︸
in terms of phase averages of E

(B.35)

= (C J,i · 〈J〉Ω) · (CEi · 〈E〉Ω)︸ ︷︷ ︸
in terms of overall averages of J and E

= σ−1
i · (C J,i · 〈J〉Ω) · (C Ji · 〈J〉Ω)︸ ︷︷ ︸

in terms of overall averages of J

= σi · (CE,i · 〈E〉Ω) · (CEi · 〈E〉Ω)︸ ︷︷ ︸
in terms of overall averages of E

.

B.6 Joule-Heating Load-Shares

Using Eq.B.35, the Joule-fields can be bounded as follows (using the Cauchy–
Schwartz inequality)

〈H〉Ωi = (C J,i · 〈J〉Ω) · (CEi · 〈E〉Ω) ≤ ||CE,i ||||C J,i ||〈H〉Ω ⇒ ||CE,i ||||C J,i || ≥ 〈H〉Ωi

〈H〉Ω . (B.36)

If the overall property is isotropic, and each of the constituents is isotropic (e.g., a
microstructure comprised of a continuous isotropic binder embedded with randomly
distributed isotropic particles), then we have the following, CE,i = CE,i1 where for
a two-phase material
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CE,1 = 1

1 − v2

σ2 − σ∗

σ2 − σ1
and CE,2 = 1

v2

σ∗ − σ1

σ2 − σ1
, (B.37)

and C J,i = CJ,i1, leading to

CJ,1 = σ1

σ∗(1 − v2)

(
σ2 − σ∗

σ2 − σ1

)
and CJ,2 = σ2

σ∗v2

(
σ∗ − σ1

σ2 − σ1

)
. (B.38)

Thus, in the case of isotropy, Eq.B.36 asserts

CE,1CJ,1 ≥ 〈H〉Ω1

〈H〉Ω and CE,2CJ,2 ≥ 〈H〉Ω2

〈H〉Ω . (B.39)

The product of the concentration functions takes the following form:

CE,1CJ,1 = σ1

σ∗

(
1

(1 − v2)

(
σ2 − σ∗

σ2 − σ1

))2

(B.40)

and

CE,2CJ,2 = σ2

σ∗

(
1

v2

(
σ∗ − σ1

σ2 − σ1

))2

. (B.41)

Because the concentration functions depend on σ∗, which in turn depend on σ1, σ2,
v2, and the microstructure, we need to employ estimates for σ∗.

Remark Recall, as introduced earlier, one class of estimates are the Hashin–Shtrik-
man bounds (Hashin [21]) for two isotropic materials with an overall isotropic
response

σ1 + v2
1

σ2−σ1
+ 1−v2

3σ1︸ ︷︷ ︸
σ∗,−

≤ σ∗ ≤ σ2 + 1 − v2
1

σ1−σ2
+ v2

3σ2︸ ︷︷ ︸
σ∗,+

, (B.42)

where the conductivity of phase 2 (with volume fraction v2) is larger than phase
1 (σ2 ≥ σ1). Provided that the volume fractions and constituent conductivities are
the only known information about the microstructure, the expressions in Eq.C.37
are the tightest bounds for the overall isotropic effective responses for two-phase
media, where the constituents are both isotropic. A critical observation is that the
lower bound is more accurate when the material is composed of high-conductivity
particles that are surrounded by a low-conductivity matrix (denoted case 1) and
the upper bound is more accurate for a high-conductivity matrix surrounding low-
conductivity particles (denoted case 2). Since the true effective property lies between
the upper and lower bounds, one can construct the following approximation

σ∗ ≈ φσ∗,+ + (1 − φ)σ∗,−, (B.43)
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where 0 ≤ φ ≤ 1. φ is an unknown function of the microstructure. However, the
general trends are (a) for cases where the upper bound is more accurate, φ > 1

2
and (b) for cases when the lower bound is more accurate, φ < 1

2 . Explicitly, for the
product of concentration functions, embedding the effective property estimates, we
have

CE,1CJ,1 ≈ σ1

(φσ∗,+ + (1 − φ)σ∗,−)

(
1

(1 − v2)

(
σ2 − (φσ∗,+ + (1 − φ)σ∗,−)

σ2 − σ1

))2

(B.44)
and

CE,2CJ,2 ≈ σ2

(φσ∗,+ + (1 − φ)σ∗,−)

(
1

v2

(
(φσ∗,+ + (1 − φ)σ∗,−) − σ1

σ2 − σ1

))2

.

(B.45)

Remark 1 There are a vast literature of methods, dating back to Maxwell [22, 23]
and Lord Rayleigh [24], to estimate the overall macroscopic properties of hetero-
geneous materials. For an authoritative review of (a) the general theory of random
heterogeneous media, see Torquato [17], (b) for more mathematical homogeniza-
tion aspects, see Jikov et al. [25], (c) for solid mechanics inclined accounts of the
subject, see Hashin [21], Mura [26], Nemat-Nasser and Hori [27], (d) for analyses
of cracked media, see Sevostianov and Kachanov [28], and (e) for computational
aspects, see Ghosh [18], Ghosh and Dimiduk [19], and Zohdi and Wriggers [2–15].
Tighter estimates, including generalized N-phase bounds, can be found in Torquato
[17].3

Remark 2 The governing equation used in developing effective conductivity bounds
is ∇ · J = 0, which stems from taking the divergence of Ampere’s law: ∇ ·(∇ × H − ∂D

∂t − J
) = 0; one obtains, since ∇ · (∇ × H) = 0,

∇ ·
(

∂D
∂t

+ J
)

= ∂

∂t
∇ · D︸ ︷︷ ︸

P
+∇ · J = ∂P

∂t
+ ∇ · J = 0, (B.46)

where P is the charge per unit volume. Thus, if P = 0, ∇ · J = 0. If one employs
the constitutive relation J = σ · E, then this allows for Hashin–Shtrikman-type
estimates to be used for the effective conductivity, as does ∇ · D = 0 (which is valid
only when P = 0) for estimates of the effective permittivity, 〈D〉Ω = ε∗ · 〈E〉Ω ,
when D = ε · E. For example, one case when these two physical situations are
compatible is when E = σ−1 · J = ε−1 · D ⇒ J = (σ · ε−1) · D.

3Such N-phase bounds go well beyond the simple Wiener bounds (Wiener [29]),(∑N
i=1 viσ

−1
i

)−1 ≤ σ∗ ≤∑N
i=1 viσi .



244 Monograph Appendix B—CM Approaches: Effective Electrical …

B.7 Examples of Joule-Heating Load-Sharing

B.7.1 A General Dielectric Mixture

Figures B.1 and B.2 illustrate a surface (using φ = 1
2 ) in parameter space ( σ1

σ2
, v2)

for the normalized Joule-heating load-share, vi
〈H〉Ωi
〈H〉Ω , of each component, i = 1, 2.

The plots illustrate the proportion of the Joule-heating that will be delivered to each
phase in the system. Directly from Eqs. B.44 and B.45, the load-share quantities of
interest are

v1
〈H〉Ω1

〈H〉Ω ≈ σ1

v1(φσ∗,+ + (1 − φ)σ∗,−)

(
σ2 − (φσ∗,+ + (1 − φ)σ∗,−)

σ2 − σ1

)2

, (B.47)

and

v2
〈H〉Ω2

〈H〉Ω ≈ σ2

v2(φσ∗,+ + (1 − φ)σ∗,−)

(
(φσ∗,+ + (1 − φ)σ∗,−) − σ1

σ2 − σ1

)2

. (B.48)

The trends are:

Fig. B.1 A load-share
surface in parameter space
( σ2
σ1

, v2) for the normalized

Joule-heating, v1
〈H 〉Ω1〈H 〉Ω , for

phase 1 (using φ = 1/2)
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Fig. B.2 A load-share
surface in parameter space
( σ2
σ1

, v2) for the normalized

Joule-heating, v2
〈H 〉Ω2〈H 〉Ω , for

phase 2 (using φ = 1/2).
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• For phase 1: Decreasing the volume fraction of phase 2 (v2), for fixed σ2/σ1, leads
to a larger load-share for phase 1, while decreasing the mismatch σ2/σ1, for a fixed
v2, leads to an increased load-share for phase 1, for a fixed volume fraction v2.

• For phase 2: Increasing the volume fraction of phase 2 (v2), for fixed σ2/σ1, leads
to a larger load-share for phase 2, while increasing the mismatch σ2/σ1, for a fixed
v2, leads to an extremely slight change in the load-share of phase 2 (it is virtually
flat).

B.7.2 An Extreme Mixture: High-Conductivity
(“Superconducting”) Particles in a Low-Conductivity
Matrix

For the case of high-conductivity particles (phase 2) in a lower-conductivity matrix
(phase 1), we have

1 <<
σ2

σ1

def= α. (B.49)

Inserting this expression into the Hashin–Shtrikman bounds and taking the limit as
α → ∞ yield (σ2 tending to infinity),

σ1

(
1 + 2v2
1 − v2

)
def= σ1ζ ≤ σ∗ ≤ ∞, (B.50)

where the lower (Hashin-Shtrikman) bound is more accurate (φ → 0). Correspond-
ingly, for the concentration tensors for phase 1 (assuming isotropy)4

4These expressions are asymptotically consistent with the identities

v1CE,1 + v2CE,2 = 1 and v1CJ,1 + v2CJ,2 = 1. (B.51)
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CE,1 = 1

1 − v2
and CJ,1 = 1

ζ(1 − v2)
= 1

1 + 2v2
(B.52)

and for phase 2 (particle)

CE,2 = 0 and CJ,2 = 1

v2

(
1 − 1

ζ

)
= 3

1 + 2v2
. (B.53)

Forming the products yields

CE,1CJ,1 =
(

1

1 − v2

)(
1

1 + 2v2

)
(B.54)

and
CE,2CJ,2 = 0. (B.55)

The expressions are appropriate for small v2 (superconducting particles in a binding
matrix). Thus, we have for the load-share

1

1 + 2v2
≥ v1

〈H〉Ω1

〈H〉Ω , (B.56)

while for phase 2 (particle superconductor, no Joule-field)

v2
〈H〉Ω2

〈H〉Ω = 0. (B.57)

Remark As v2 → 0 (no particle (phase 2) material), the expressions collapse to
restrictions on the pure matrix (here, phase 1) material.

B.7.3 An Extreme Mixture: Low-Conductivity (“Insulator”)
Particles in a High-Conductivity Matrix

For the case of low-conductivity particles (phase 1) in a higher-conductivity matrix
(phase 2), we have

1 >>
σ1

σ2

def= γ. (B.58)

Inserting this expression into the Hashin–Shtrikman bounds and taking the limit as
γ → 0 (σ1 tending to zero) yield,

0 ≤ σ∗ ≤ σ2

(
2v2

3 − v2

)
def= σ2Λ, (B.59)
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where the upper (Hashin-Shtrikman) bound is more accurate (φ → 1). Correspond-
ingly, for the concentration tensors (as γ → 0), for phase 1 (particle)

CE,1 = 1 − Λ

1 − v2
= 3

3 − v2
and CJ,1 = 0 (B.60)

and for phase 2 (matrix)

CE,2 = Λ

v2
= 2

3 − v2
and CJ,2 = 1

v2
. (B.61)

The expressions are appropriate for large v2 (insulating particles in a bindingmatrix).

CE,1CJ,1 = 0 (B.62)

and

CE,2CJ,2 =
(

2

3 − v2

)(
1

v2

)
. (B.63)

Thus, we have for the load-shares, for phase 1 (particle insulator, no Joule-field)

v1
〈H〉Ω1

〈H〉Ω = 0, (B.64)

and for phase 2 (matrix)
2

3 − v2
≥ v2

〈H〉Ω2

〈H〉Ω . (B.65)

Remark As v2 → 1 (no particle (here, phase 1) material), the expressions collapse
to restrictions on the pure matrix (here, phase 2) material.

B.8 Optimization Example: Dielectric Properties Using
Genetic Algorithms

In order to utilize the previous results, we now provide examples of how to opti-
mize the material properties. In particular, we will optimize the overall electri-
cal conductivity of a mixture of material, subject to Joule-heating constraints on
each phase. The effective conductivity is given by σ∗ using convex combinations
of the Hashin–Shtrikman bounds as approximations for the effective conductivity
σ∗ ≈ φσ∗,+ + (1 − φ)σ∗,−, where 0 ≤ θ ≤ 1. The micro–macro objective function
is

Π = w1| σ∗
σ∗,D

− 1|2 + ŵ2

(
(CJ1CE1 − 1) − Htol

)2 + ŵ3

(
(CJ2CE2 − 1) − Htol

2

)2
, (B.66)
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where the constraints are unilaterally activated in the following manner:

• CJ1CE1 − 1 ≤ Htol
1 then ŵ2 = 0,

• CJ1CE1 − 1 > Htol
1 then ŵ2 = w2,

• CJ2CE2 − 1 ≤ Htol
2 then ŵ3 = 0,

• CJ2CE2 − 1 > Htol
2 then ŵ3 = w3,

Here, the design variables are Λ = {σ1,σ2, v2}, and their constrained ranges are

• σ(−)
1 ≤ σ1 ≤ σ(+)

1 ,
• σ(−)

2 ≤ σ2 ≤ σ(+)
2 , and

• v
(−)
2 ≤ v2 ≤ v

(+)
2 .

As for the previous optimization formulation for mechanical properties, two char-
acteristics of such a formulation make the application of standard gradient-type
minimization schemes, such as Newton’s method, difficult:

• (I) The incorporation of limits on the microfield behavior, as well as design search
space restrictions, renders the objective function not continuously differentiable
in design space and

• (II) The objective function is nonconvex, i.e., the system Hessian is not positive
definite (invertible) throughout the design space.

Thus, as before, we apply a genetic algorithm:

• STEP 1: Randomly generate a population of S starting genetic strings, Λi , (i =
1, . . . , S) :
Λi def= {Λi

1,Λ
i
2,Λ

i
3,Λ

i
4, . . . , Λ

i
N } = {σi

2,σ
i
1, v

i
2, . . .}• STEP 2: Compute fitness of each string Π(Λi ), (i=1, …, S)

• STEP 3: Rank genetic strings: Λi , (i=1, …, S)
• STEP 4: Mate nearest pairs and produce two offspring, (i=1, …, S)

λi def= Φ(I )Λi + (1 − Φ(I ))Λi+1, λi+1 def= Φ(I I )Λi + (1 − Φ(I I ))Λi+1

• NOTE: Φ(I ) and Φ(I I ) are random numbers, such that 0 ≤ Φ(I ), Φ(I I ) ≤ 1,
which are different for each component of each genetic string

• STEP 5: Kill off bottom M < S strings and keep top K < N parents and top
K offspring (K offspring + K parents + M = S)

• STEP 6: Repeat STEPS 1-6 with top gene pool (K offspring and K parents),
plus M new, randomly generated, strings

• Option: Rescale and restart search around best performing parameter set every
few generations

Remark After applicationof such aglobal search algorithm, one can apply a gradient-
based method, if the objective function is sufficiently smooth in that region of the
design parameter space.
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B.9 Additional Dielectric Properties: Electrical
Permittivity and Magnetic Permeability

Other overall dielectric properties may be needed for other applications and can be
generated with similar formulas as in the beginning of this analysis. For the overall
electric permittivity

〈ε−1(x)〉−1
Ω ≤ ε1 + vε

2
1

ε2−ε1
+ 1−vε

2
3ε1︸ ︷︷ ︸

ε∗,−

≤ ε∗ ≤ ε2 + 1 − vε
2

1
ε1−ε2

+ vε
2

3ε2︸ ︷︷ ︸
ε∗,+

≤ 〈ε(x)〉Ω (B.67)

and the overall magnetic permeability

〈μ−1(x)〉−1
Ω ≤ μ1 + v

μ
2

1
μ2−μ1

+ 1−v
μ
2

3μ1︸ ︷︷ ︸
μ∗,−

≤ μ∗ ≤ μ2 + 1 − v
μ
2

1
μ1−μ2

+ v
μ
2

3μ2︸ ︷︷ ︸
μ∗,+

≤ 〈μ(x)〉Ω (B.68)

where ε2 ≥ ε1, μ2 ≥ μ1, vε
2 is the volume fraction of (“higher”) phase 2 for the

permittivity mismatch, and v
μ
2 is the volume fraction of (“higher”) phase 2 for the

permeability mismatch.5

Remark The speed of electromagnetic wave propagation is c = 1√
εoμo

≈
2.997924562 × 108 ± 1.1m/s in vacuum. The free space electric permittivity is
εo = 1

c2μo
= 8.8542 × 10−12 CN−1m−1, and the free space magnetic permeability

is μo = 4π × 10−7 WbA−1m−1 = 1.2566 × 10−6 WbA−1m−1. Usually, for elec-
tromagnetic materials, we write ε = εoεr , where εo = 8.854 × 10−12 F/m is the
free space permittivity and εr is the relative permittivity or “dielectric” constant and
μo = 4π × 10−7Ns2/C2 and μ = μrμo, where μr is the relative magnetic perme-
ability.

B.10 The Concentration Tensor

In order to estimate how much of the load is carried by each material in the mixture,
we use the concept of “load-sharing,” introduced earlier. For example, for the rela-
tion between the electrical field and the electrical field flux, consider the following
identities, relating to 〈D〉Ω = ε∗ · 〈E〉Ω ,

〈E〉Ω = 1

|Ω|
(∫

Ω1

E dΩ +
∫

Ω2

E dΩ

)
= vε

1〈E〉Ω1 + vε
2〈E〉Ω2 (B.69)

5For either case, the volume fraction of the other phase is v1, where v1 + v2 = 1.
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and

〈D〉Ω = 1

|Ω|
(∫

Ω1

D dΩ +
∫

Ω2

D dΩ

)
= vε

1〈D〉Ω1 + vε
2〈D〉Ω2 . (B.70)

By direct manipulation, we obtain

〈D〉Ω = vε
1〈D〉Ω1 + vε

2〈D〉Ω2

= vε
1ε1 · 〈E〉Ω1 + vε

2ε2 · 〈E〉Ω2

= ε1 · (〈E〉Ω − vε
2〈E〉Ω2) + vε

2ε2 · 〈E〉Ω2

= (ε1 + vε
2(ε2 − ε1) · CE,2

)
︸ ︷︷ ︸

ε∗

·〈E〉Ω (B.71)

where (
1

vε
2

(ε2 − ε1)
−1 · (ε∗ − ε1)

)

︸ ︷︷ ︸
def=CE,2

·〈E〉Ω = 〈E〉Ω2 . (B.72)

In the special case of isotropy

CE,2
def= 1

vε
2

ε∗ − ε1

ε2 − ε1
(B.73)

Thereafter, we may write, for the variation in the electric field flux

CE,2 · ε∗−1 · 〈D〉Ω = ε−1
2 · 〈D〉Ω2 (B.74)

which reduces to

ε2 · CE,2 · ε∗−1 · 〈D〉Ω def= CD,2 · 〈D〉Ω = 〈D〉Ω2 (B.75)

CD,2 is known as the electric field flux concentration tensor. Therefore, once either
CD,2 or ε∗ are known, the other can be determined. In the case of isotropy, we may
write

CD,2
def= 1

vε
2

ε2

ε∗
ε∗ − ε1

ε2 − ε1
. (B.76)

For the matrix

〈E〉Ω1 = 〈E〉Ω − vε
2〈E〉Ω2

vε
1

= (1 − vε
2CE,2) · 〈E〉Ω

vε
1

= CE,1 · 〈E〉Ω. (B.77)

where

CE,1
def= 1

vε
1

(1 − vε
2CE,2) = 1 − vε

2CE,2

1 − vε
2

, (B.78)
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where in the case of isotropy

CE,1 = 1 − vε
2CE,2

1 − vε
2

. (B.79)

Similarly, for the electric field flux:

CD,1 · 〈D〉Ω = 〈D〉Ω1 , (B.80)

where

CD,1 = 1 − vε
2CD,2

1 − vε
2

(B.81)

where in the case of isotropy

CD,1 = 1 − vε
2CD,2

1 − vε
2

. (B.82)

The exact procedure holds for the magnetic fields, with H replacing E, B replacing
D,μ replacing ε, vμ

1 replacing vε
1, and v

μ
2 replacing vε

2. Similarly, the exact procedure
holds for the electrical current fields, with J replacing D,σ replacing ε, vσ

1 replacing
vε
1, and vσ

2 replacing vε
2.

In summary, we have the following concentration tensors:

• CE,2 · 〈E〉Ω = 〈E〉Ω2 where CE,2 = 1
vε
2
(ε2 − ε1)

−1 · (ε∗ − ε1)

• CE,1 · 〈E〉Ω = 〈E〉Ω1 where CE,1 = 1
vε
1
(1 − vε

2CE,2) = 1−vε
2CE,2

1−vε
2• CD,2 · 〈D〉Ω = 〈D〉Ω2 where CD,2 = ε2 · CE,2 · ε∗−1

• CD,1 · 〈D〉Ω = 〈D〉Ω1 where CD,1 = 1−vε
2CD,2

1−vε
2

• CH,2 · 〈H〉Ω = 〈H〉Ω2 where CH,2 = 1
v

μ
2
(μ2 − μ1)

−1 · (μ∗ − μ1)

• CH,1 · 〈H〉Ω = 〈H〉Ω1 where CH,1 = 1
v

μ
1
(1 − v

μ
2CH,2) = 1−v

μ
2 CH,2

1−v
μ
2• C B,2 · 〈B〉Ω = 〈B〉Ω2 where CB,2 = μ2 · CH,2 · μ∗−1

• C B,1 · 〈B〉Ω = 〈B〉Ω1 where C B,1 = 1−v
μ
2 CB,2

1−v
μ
2

• CE,2 · 〈E〉Ω = 〈E〉Ω2 where CE,2 = 1
vσ
2
(σ2 − σ1)

−1 · (σ∗ − σ1)

• CE,1 · 〈E〉Ω = 〈E〉Ω1 where CE,1 = 1
vσ
1
(1 − vσ

2CE,2) = 1−vσ
2 CE,2

1−vσ
2• C J,2 · 〈J〉Ω = 〈J〉Ω2 where C J,2 = σ2 · CE,2 · σ∗−1

• C J,1 · 〈J〉Ω = 〈J〉Ω1 where C J,1 = 1−vσ
2 C J,2

1−vσ
2

Remark The concentration tensors indicate the amplification of the field within the
particle relative to the average of the field. Clearly, the microelectric flux fields
are minimally distorted when the C’s equal 1. There has been no approximation
yet. The “burden” in the computations has shifted to the determination of the Cs.
Classical methods approximate them. For example, the simplest approximation is
CE,2 = 1, which is the Voigt approximation (a constant E-field throughout the
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microstructure), while the Reuss approximation is CD,2 = 1 (a constant D-field
throughout the microstructure). The same relations can be derived for the electrical
conduction and the magnetic field flow.

B.11 “Load-Sharing” Interpretation

Directly from Eqs. B.69 and B.70, one may write

vε
1CE,1︸ ︷︷ ︸

phase−1 contribution

+ vε
2CE,2︸ ︷︷ ︸

phase−2 contribution

= 1

vε
1CD,1︸ ︷︷ ︸

phase−1 contribution

+ vε
2CD,2︸ ︷︷ ︸

phase−2 contribution

= 1

v
μ
1CH,1︸ ︷︷ ︸

phase−1 contribution

+ v
μ
2CH,2︸ ︷︷ ︸

phase−2 contribution

= 1

v
μ
1CB,1︸ ︷︷ ︸

phase−1 contribution

+ v
μ
2C B,2︸ ︷︷ ︸

phase−2 contribution

= 1

vσ
1CE,1︸ ︷︷ ︸

phase−1 contribution

+ vσ
2CE,2︸ ︷︷ ︸

phase−2 contribution

= 1

vσ
1C J,1︸ ︷︷ ︸

phase−1 contribution

+ vσ
2C J,2︸ ︷︷ ︸

phase−2 contribution

= 1

(B.83)

Frequently, the first term in the above expressions is referred to as “phase-1’s” share,
while the second term is “phase-2’s” share.

B.12 Thermal Conductivity

The process in the chapter can easily be used to compute the thermal conductivity,
since the transport equation (conservation law) has the same form as steady-state
electrical conduction. In order tomake estimates of the overall properties of amixture,
we consider the widely used Hashin and Shtrikman bounds (see previous chapter) for
isotropic materials with isotropic effective responses. These estimates provide one
with upper and lower bounds on the overall response of thematerial. For two isotropic
materials with an overall isotropic response, we utilize the following estimates.

IK1 + v2
1

IK2−IK1
+ 1−v2

3IK1︸ ︷︷ ︸
IK ∗,−

≤ IK ∗ ≤ IK2 + 1 − v2
1

IK1−IK2
+ v2

3IK2︸ ︷︷ ︸
IK ∗,+

, (B.84)
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where the conductivity of phase 2 (with volume fraction v2) is larger than phase 1
(IK2 ≥ IK1). Usually, v2 corresponds to the particle material, although there can
be applications where the matrix is more conductive than the particles. In that case,
v2 would correspond to the matrix material. As before, provided that the volume
fractions and constituent conductivities are the only known information about the
microstructure, the expressions are the tightest bounds for the overall isotropic effec-
tive responses for two-phase media, where the constituents are both isotropic. A
critical observation is that the lower bound is more accurate when the material is
composed of high-conductivity particles that are surrounded by a low-conductivity
matrix (denoted case 1) and the upper bound is more accurate for a high-conductivity
matrix surrounding low-conductivity particles (denoted case 2). All of the concen-
tration tensor calculations proceed as before.

To obtain the concentration of the thermal fields in each phase, the exact procedure
holds with ∇θ replacing E, q replacing D, IK replacing ε, vK

1 replacing vε
1, and vK

2
replacing vε

2. In summary, we have the following concentration tensors:

• Cθ,2 · 〈∇θ〉Ω = 〈∇θ〉Ω2 where Cθ,2 = 1
vK
2
(IK 2 − IK 1)

−1 · (IK ∗ − IK 1)

• Cθ,1 · 〈∇θ〉Ω = 〈∇θ〉Ω1 where Cθ,1 = 1
vK
1
(1 − vK

2 Cθ,2) = 1−vK
2 Cθ,2

1−vθ
2

• Cq,2 · 〈q〉Ω = 〈q〉Ω2 where Cq,2 = IK 2 · Cθ,2 · IK ∗−1

• Cq,1 · 〈q〉Ω = 〈q〉Ω1 where Cq,1 = 1−vK
2 Cq,2

1−vK
2

As mentioned before, the concentration tensors indicate the amplification of the
field within the particle relative to the average of the field. Clearly, the microelectric
field flux fields are minimally distorted when the C’s equal 1. There has been no
approximation yet. The “burden” in the computations has shifted to the determi-
nation of the Cs. Classical methods approximate them. For example, the simplest
approximation is Cθ,2 = 1, which is the Voigt approximation (a constant ∇θ-field
throughout the microstructure, while the Reuss approximation is Cq,2 = 1 (a con-
stant q-field throughout the microstructure). Directly from Eqs. B.69 and B.70, one
may write

vK
1 Cθ,1︸ ︷︷ ︸

phase−1 contribution

+ vK
2 Cθ,2︸ ︷︷ ︸

phase−2 contribution

= 1

vK
1 Cq,1︸ ︷︷ ︸

phase−1 contribution

+ vK
2 Cq,2︸ ︷︷ ︸

phase−2 contribution

= 1
(B.85)

Frequently, the first term in the above expressions is referred to as “phase-1’s” share,
while the second term is “phase-2’s” share.
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Monograph Appendix C—CM Approaches:
Extensions to Multiphase Materials

In order to make estimates of the overall properties of a mixture of more than two
materials mixed together (Fig.C.1), we consider extensions to theHashin–Shtrikman
bounds (Hashin and Shtrikman [1]). We consider each major property.

C.1 Electrical Conductivity

Consider a material with N different phases, σ1, σ2,…,σN , where σN has the high-
est conductivity and σ1 has the lowest. The corresponding volume fractions are
v1, v2, . . . , vN . There are two possible approximation formulas: (1) the Hill–Reuss–
Voigt–Weiner bounds and (2) the multiphase Hashin–Shtrikman bounds.

Fig. C.1 A multiphase
material
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C.1.1 The Hill–Reuss–Voigt–Weiner (HRVW) Bounds

The HRVW bounds are

(
N∑

i=1

vi

σi

)−1

≤ σ∗ ≤
N∑

i=1

viσi . (C.1)

C.1.2 The Hashin–Shtrikman (HS) Bounds

The HS bounds are

σ∗,− = σ1 + A1

1 − α1A1
≤ σ∗ ≤ σN + AN

1 − αN AN
≤ σ∗,+, (C.2)

where

α1 = 1

3σ1
, (C.3)

and

αN = 1

3σN
(C.4)

and

A1 =
N∑

i=2

vi

(σi − σ1)−1 + α1
(C.5)

and

AN =
N−1∑

i=1

vi

(σi − σN )−1 + αN
(C.6)

For two isotropic materials with an overall isotropic response, this collapses to

σ1 + v2
1

σ2−σ1
+ 1−v2

3σ1︸ ︷︷ ︸
σ∗,−

≤ σ∗ ≤ σ2 + 1 − v2
1

σ1−σ2
+ v2

3σ2︸ ︷︷ ︸
σ∗,+

, (C.7)

where the conductivity of phase 2 (with volume fraction v2) is larger than phase 1
(σ2 ≥ σ1). Usually, v2 corresponds to the particle material, although there can be
applications where the matrix is more conductive that the particles. In that case, v2
would correspond to the matrix material.
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C.2 Electrical Permittivity

Consider a material with N different phases, ε1, ε2, . . . , εN , where εN has the high-
est permittivity and ε1 has the lowest. The corresponding volume fractions are
v1, v2, . . . , vN . There are two possible approximation formulas: (1) the Hill–Reuss–
Voigt–Weiner bounds and (2) the multiphase Hashin–Shtrikman bounds.

C.2.1 The Hill–Reuss–Voigt–Weiner Bounds

The HRVW bounds are

(
N∑

i=1

vi

εi

)−1

≤ ε∗ ≤
N∑

i=1

viεi . (C.8)

C.2.2 The Hashin–Shtrikman Bounds

The HS bounds are

ε∗,− = ε1 + A1

1 − α1A1
≤ ε∗ ≤ εN + AN

1 − αN AN
≤ ε∗,+, (C.9)

where

α1 = 1

3ε1
, (C.10)

and

αN = 1

3εN
(C.11)

and

A1 =
N∑

i=2

vi

(εi − ε1)−1 + α1
(C.12)

and

AN =
N−1∑

i=1

vi

(εi − εN )−1 + αN
(C.13)

For two isotropic materials with an overall isotropic response, this collapses to
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ε1 + v2
1

ε2−ε1
+ 1−v2

3ε1︸ ︷︷ ︸
ε∗,−

≤ ε∗ ≤ ε2 + 1 − v2
1

ε1−ε2
+ v2

3ε2︸ ︷︷ ︸
ε∗,+

. (C.14)

C.3 Magnetic Permeability

Consider a material with N different phases, μ1,μ2, . . . ,μN , where μN has the
highest permeability and μ1 has the lowest. The corresponding volume fractions are
v1, v2, . . . , vN . There are two possible approximation formulas: (1) the Hill–Reuss–
Voigt–Weiner bounds and (2) the multiphase Hashin–Shtrikman bounds.

C.3.1 The Hill–Reuss–Voigt–Weiner Bounds

The HRVW bounds are

(
N∑

i=1

vi

μi

)−1

≤ μ∗ ≤
N∑

i=1

viμi . (C.15)

C.3.2 The Hashin–Shtrikman Bounds

The HS bounds are

μ∗,− = μ1 + A1

1 − α1A1
≤ μ∗ ≤ μN + AN

1 − αN AN
≤ μ∗,+, (C.16)

where

α1 = 1

3μ1
, (C.17)

and

αN = 1

3μN
(C.18)

and

A1 =
N∑

i=2

vi

(μi − μ1)−1 + α1
(C.19)

and
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AN =
N−1∑

i=1

vi

(μi − μN )−1 + αN
(C.20)

For two isotropic materials with an overall isotropic response, this collapses to

μ1 + v2
1

μ2−μ1
+ 1−v2

3μ1︸ ︷︷ ︸
μ∗,−

≤ μ∗ ≤ μ2 + 1 − v2
1

μ1−μ2
+ v2

3μ2︸ ︷︷ ︸
μ∗,+

. (C.21)

C.4 Thermal Conductivity

Consider a material with N different phases, IK1, IK2, . . . , IKN , where IKN has the
highest thermal conductivity and IK1 has the lowest. The corresponding volume
fractions are v1, v2, . . . , vN . There are two possible approximation formulas: (1) the
Hill–Reuss–Voigt–Weiner bounds and (2) themultiphaseHashin–Shtrikman bounds.

C.4.1 The Hill–Reuss–Voigt–Weiner Bounds

The HRVW bounds are

(
N∑

i=1

vi

IKi

)−1

≤ IK ∗ ≤
N∑

i=1

vi IKi . (C.22)

C.4.2 The Hashin–Shtrikman Bounds

The HS bounds are

IK ∗,− = IK1 + A1

1 − α1A1
≤ IK ∗ ≤ IKN + AN

1 − αN AN
≤ IK ∗,+, (C.23)

where

α1 = 1

3IK1
, (C.24)

and

αN = 1

3IKN
(C.25)
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and

A1 =
N∑

i=2

vi

(IKi − IK1)−1 + α1
(C.26)

and

AN =
N−1∑

i=1

vi

(IKi − IKN )−1 + αN
(C.27)

For two isotropic materials with an overall isotropic response, this collapses to

IK1 + v2
1

IK2−IK1
+ 1−v2

3IK1︸ ︷︷ ︸
IK ∗,−

≤ IK ∗ ≤ IK2 + 1 − v2
1

IK1−IK2
+ v2

3IK2︸ ︷︷ ︸
IK ∗,+

. (C.28)

C.5 Elastic Moduli

C.5.1 Bulk Modulus

Consider a material with N different phases, κ1,κ2, . . . ,κN , where κN has the high-
est bulk modulus and κ1 has the lowest. The corresponding volume fractions are
v1, v2, . . . , vN . There are two possible approximation formulas: (1) the Hill–Reuss–
Voigt–Weiner bounds and (2) the multiphase Hashin–Shtrikman bounds.

C.5.1.1 The Hill–Reuss–Voigt–Weiner Bounds

The HRVW bounds are

(
N∑

i=1

vi

κi

)−1

≤ κ∗ ≤
N∑

i=1

viκi . (C.29)

C.5.1.2 The Hashin–Shtrikman Bounds

The HS bounds are

κ∗,− = κ1 + A1

1 − α1A1
≤ κ∗ ≤ κN + AN

1 − αN AN
≤ κ∗,+, (C.30)

where
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α1 = 3

3κ1 + 4μ1
, (C.31)

and

αN = 3

3κN + 4μN
, (C.32)

and

A1 =
N∑

i=2

vi

(κi − κ1)−1 + α1
(C.33)

and

AN =
N−1∑

i=1

vi

(κi − κN )−1 + αN
(C.34)

For a two-phase microstructure, this collapses to

κ1 + v2
1

κ2−κ1
+ 3(1−v2)

3κ1+4μ1︸ ︷︷ ︸
bulk modulus H−S lower bound

def=ˇ∗,−

≤ κ∗ ≤ κ2 + 1 − v2
1

κ1−κ2
+ 3v2

3κ2+4μ2︸ ︷︷ ︸
bulk modulus H−S upper bound

def=ˇ∗,+

, (C.35)

where κ1,μ1 and κ2,μ2 are the bulk and shear moduli for the phases, while v2 is the
phase 2 volume fraction.

C.5.2 Shear Modulus

Consider a material with N different phases, μ1,μ2, . . . ,μN , where μN has the
highest shear modulus and μ1 has the lowest. The corresponding volume fractions
are v1, v2, . . . , vN . There are two possible approximation formulas: (1) the Hill–
Reuss–Voigt–Weiner bounds and (2) the multiphase Hashin–Shtrikman bounds.

C.5.2.1 The Hill–Reuss–Voigt–Weiner Bounds

The HRVW bounds are

(
N∑

i=1

vi

μi

)−1

≤ μ∗ ≤
N∑

i=1

viμi . (C.36)
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C.5.2.2 The Hashin–Shtrikman Bounds

The HS bounds are

μ∗,− = μ1 + B1

1 − γ1B1
≤ μ∗ ≤ μN + BN

1 − γN BN
≤ μ∗,+, (C.37)

where

γ1 = 3(κ1 + μ1)

5μ1(3κ1 + 4μ1)
, (C.38)

and

γN = 3(κN + μN )

5μN (3κN + 4μN )
, (C.39)

and

B1 =
N∑

i=2

vi

(μi − μ1)−1 + γ1
(C.40)

and

BN =
N−1∑

i=1

vi

(μi − μN )−1 + γN
(C.41)

For a two-phase microstructure, this collapses to

μ1 + v2
1

μ2−μ1
+ 6(1−v2)(κ1+2μ1)

5μ1(3κ1+4μ1)︸ ︷︷ ︸
shear modulus H−S lower bound

def=¯∗,−

≤ μ∗ ≤ μ2 + (1 − v2)

1
μ1−μ2

+ 6v2(κ2+2μ2)

5μ2(3κ2+4μ2)︸ ︷︷ ︸
shear modulus H−S upper bound

def=¯∗,+

. (C.42)

C.6 Concentration Tensors for Multiphase materials

As for a two-phase material, the load carried by each phase in the microstructure
is characterized via stress and strain concentration tensors, which we now discuss.
These provide a measure of the deviation away from the mean fields throughout the
material. One can decompose averages of an arbitrary quantity over Ω into averages
over each of the phases in the following manner, recall:

〈A〉Ω = (1/|Ω|)
(∫

Ω1

A dΩ +
∫

Ω2

A dΩ + · · · +
∫

ΩN

A dΩ

)
(C.43)

= v1〈A〉Ω1 + v2〈A〉Ω2 + · · · =
N∑

i=1

vi 〈A〉Ωi .
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If we make use of this decomposition, we have

〈σ〉Ω =
N∑

i=1

vi 〈σ〉Ωi =
N∑

i=1

vi IEi : 〈ε〉Ωi

= IE1 : (〈ε〉Ω −
N∑

j=2

v j 〈ε〉Ω j ) +
N∑

j=2

v j IE j : 〈ε〉Ω j

=
⎛

⎝IE1 +
N∑

j=2

v j (IE j − IE1) : Cε, j

⎞

⎠ : 〈ε〉Ω (C.44)

where Cε, j def=
(

1
v j

(IE j − IE1)
−1 : (IE∗ − IE j )

)
with Cε, j : 〈ε〉Ω = 〈ε〉Ω j . The

strain concentration tensor Cε, j relates the average strain over the phase (j) to the
average strain over all phases. Similarly, for the variation in the stress, we have

Cε, j : IE∗−1 : 〈σ〉Ω = IE−1
j : 〈σ〉Ω j , which reduces to IE j : Cε, j : IE∗−1 : 〈σ〉Ω def=

Cσ, j : 〈σ〉Ω = 〈σ〉Ω j . C
σ, j is known as the stress concentration tensor; it relates the

average stress in the particle phase to that in the whole RVE. Note that once either
the Cσ, j s or IE∗ are known, the other can be determined. In the case of isotropy, we
may write ( j �= 1)

Cσ, j
κ

def= 1

v j

κ j

κ∗
κ∗ − κ1

κ j − κ1
and Cσ, j

μ
def= 1

v j

μ j

μ∗
μ∗ − μ1

μ j − μ1
(C.45)

where Cσ, j
κ 〈 trσ3 〉Ω = 〈 trσ3 〉Ω j and Cσ, j

μ 〈σ′〉Ω = 〈σ′〉Ω j . Clearly, the microstress

fields are minimally distorted when Cσ, j
κ = Cσ,2

j,μ = 1; there are no stress concentra-
tions in a homogeneous material. For the matrix,

〈σ〉Ω1 = 〈σ〉Ω −∑N
j=2 v j 〈σ〉Ω j

v1
= 〈σ〉Ω −∑N

j=2 v jCσ, j : 〈σ〉Ω
v1

(C.46)

= (1 −∑N
j=2 v jCσ, j ) : 〈σ〉Ω

v1

def= Cσ,1 : 〈σ〉Ω.

Therefore, in the case of isotropy,

Cσ,1
κ

def= 1

v1
(1 −

N∑

j=2

v jC
σ, j
κ ) and Cσ,1

μ
def= 1

v1
(1 −

N∑

j=2

v jC
σ, j
μ ). (C.47)

The fraction of the total stress carried by each phase can be determined bymultiplying
the concentration factors by the corresponding volume fractions
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〈σ〉Ω = v1〈σ〉Ω1 +
N∑

j=2

v j 〈σ〉Ω j

= v1Cσ,1 : 〈σ〉Ω +
N∑

j=2

v jCσ, j : 〈σ〉Ω. (C.48)

Remark Virtually, the identical process can be used to generate the concentration
tensors for the electrical conductivity, electrical permittivity, magnetic permeability,
and thermal conductivity.
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Monograph Appendix D—Pumping of Fluidized
Particle-Laden Materials

D.1 Introduction

In addition to additive manufacturing and 3D printing, in a variety of industries,
ranging from next-generation engines, turbo machinery, food processing, etc, new
types of heterogeneous materials, comprised of particulates in a solvent or binding
surrounding matrix, are being developed and utilized. The macroscopic material
characteristics are dictated by the aggregate response of an assemblage of particles
suspended in a binding matrix material. In the fabrication of such materials, the
basic philosophy is to select material combinations to produce desired aggregate
responses. For example, in structural engineering applications, the classical choice
is a harder particulate phase that serves as a stiffening agent for a ductile, easy to
form, base matrix material. Oftentimes, such materials start in particulate form and
are thenmixedwith a binder and delivered as a flowing slurry to be cast into their final
shape.6 Thus, because of the increasing demands for faster and faster manufacturing
of new complex particle-laden materials, the determination of pumping pressures
needed to move such fluids through channels is critical (Fig.D.1).

For particle-laden fluids delivered through channels, the increase in viscosity
can lead to system malfunction, due to an inability to supply necessary pressures
to pump the more viscous material properly. The derived expression provides the
pressure gradient needed to maintain a given flow rate, explicitly as a function of
the volume fraction of particles present in the fluid. The expression is general and
easy to apply for the analysis of pumping particle-laden fluids. Furthermore, it is
crucial to control voids in the resulting casted products, which are correlated to air
entrainment, spurious internal reactions, de-wetting, etc. These effects are correlated
to high Reynolds numbers. Accordingly, an expression for the resulting Reynolds
number as a function of the particle volume fraction and flow rate is also developed.
Numerical examples are provided to illustrate the practical use of the derived relations

6Over 50% (by mass) of man-made materials start in granulated form.
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to characterize the necessary pumping pressures for process-driven particle-laden
fluid flows. Because resulting voids may be impossible to avoid, we can use the
expressions derived in the beginning of this monograph that provide the overall
effective properties of a heterogeneous two-phase slurry consisting of particles and
a binding interstitial material based on embedded, double application of the Hashin–
Shtrikman bounds, whereby, on the first level, the effective properties due to voids
are computed, and on the second level, the smaller-scale heterogeneous material is
taken into account. This research is also quite relevant to the development of high-
resolution electrohydrodynamic jet printing processes. For overviews, see Wei and
Dong [1], who also develop specialized processes employing phase-change inks.
Such processes are capable of producing micron-level footprints for high-resolution
additive manufacturing.

D.2 Channel Flow

As indicated in the introduction, the presence of secondary particles in fluids, partic-
ularly within channels, is wide-ranging and their presence can dramatically increase
the effective overall viscosity, thus requiring increased applied pressure to maintain
nominal flow rates (Fig.D.1). The primary objective of the first part of this analysis
is to derive a relatively easy to use expression for the pressure gradient required
to maintain a given flow rate in a channel, as a function of the volume fraction of
secondary particles present in the fluid.

Accordingly, consider an idealized channel with a circular cross section of area
A = πR2, with a velocity profile given by a classical channel flow of the form:

Fig. D.1 Increase in the
ratio of effective viscosity to
baseline fluid viscosity
(μ∗/μ f ) as a function of
secondary particle volume
fraction (vp)
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v = vmax

(
1 −

( r
R

)q)
, (D.1)

where vmax is the centerline velocity and r is the radial coordinate from the centerline
of the channel. For fully developed laminar flow, q = 2, while for increasing q, one
characterizes, phenomenologically, progressively turbulent flow (q ≥ 2). The shear
stress is given by

τ = μ∗ ∂v

∂r
= −μ∗vmaxq

R

( r
R

)q−1
, (D.2)

where μ∗ is the effective viscosity of the particle-laden fluid. We assume that the
overall flow rate is assumed constant; thus,

Q =
∫

A
v d A = Qo. (D.3)

One can show that

vmax = Qo(q + 2)

Aq
= Qo(q + 2)

πR2q
. (D.4)

The stress at the wall becomes

τw = −τ (r = R) = μ∗vmaxq

R
= μ∗Qo(q + 2)

πR3
. (D.5)

We have the following observations:

• Increasing μ∗, Qo, or q increases the stress at the wall (τw),
• Increasing q leads to an increasingly more blunted flow profile, and
• Decreasing R increases the stress at the wall (τw).

Remark In the remaining analysis, we will assume steady flow, that the particles are
not elongated and that they are well distributed within the base fluid.7 Furthermore,
we will adopt a generalization of the classical Poiseuille solution for fully developed
flow in a pipe (assuming the velocity depends on some undetermined power q instead
of the standard parabolic dependence for laminar single-phase flow).

D.3 Pressure Gradients

The previous expressions allow us to correlate the pressure applied to a volume of
particle-laden to allow it to move at a constant flow rate. By performing a force
balance, we have in the positive x-direction (assuming steady flow, no acceleration)

7In long channels, elongated particles can tend to align themselves in a particular direction that
could also affect their viscosity. The assumptions made eliminate this possibility for the problems
under consideration.
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(−(P + ΔP) + P)πR2 − τw2πRΔx = 0, (D.6)

where x is the coordinate along the length of the channel and Δx is the differential
length, leading to

− ΔP = μ∗ Qo(q + 2)

π2R5
2πRΔx = 2μ∗Qo(q + 2)Δx

πR4
, (D.7)

where we used the expression for vmax and the effective viscosity is a function of
the volume fraction of particles, μ∗ = μ∗(vp). An explicit relation for μ∗(vp) will
be given shortly. Solving for the pressure gradient yields

− ΔP

Δx
= 2μ∗(q + 2)

πR4︸ ︷︷ ︸
C

Qo
def= CQo. (D.8)

If we fix the flow rate Qo, the multiplier C identifies the pressure gradient needed to
achieve the flow rate Qo. For a fixed value of q, the expression directly indicates that
an increase in viscosity will require an increase in the pressure gradient. For small
channels, this can be a problem, as indicated by the R4 term in the denominator.
However, in general, q is a function of the Reynolds number. This case will be
considered next.

D.4 Velocity Profile Characteristics

As the Reynolds number increases, the velocity profile will change from a quadratic
(q = 2) to a more blunted profile (q >> 2), which represents, phenomenologically,
turbulent (inertia-dominated) behavior (Fig.D.2). The effect of a changing profile is
described by representing q by a linear function of the centerline Reynolds number
(Rec)

q = q(Rec) = c1Rec + c2, (D.9)

where Rec = ρ∗vmax2R
μ∗ and c1 and c2 are constants. Models of this type, linking

the profile exponent (q) to the centerline Reynolds number (Rec), are quite well-
established, for example, see Hinze [2]. Usually, 0 ≤ c1 << 1 and c2 ≈ 2, and in

Fig. D.2 Progressive
blunting of the velocity
profile with increasing
Reynolds number

INCREASINGLY
TURBULENT

(INCREASING q)
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the limit, we have, for c1 = 0 and c2 = 2, laminar flow (q = 2). For the general
case, combining Eq.D.4 with Eq.D.9 and the definition of the centerline Reynolds
number, we obtain a quadratic relationship for q,

q2 − (γ∗ + c2)q − 2γ∗ = 0, (D.10)

where γ∗ = 2c1Qoρ
∗

πRμ∗ , where ρ∗ is the effective density and μ∗ is the effective viscosity.
This quadratic relationship can be solved in closed form for q to yield

q(Rec) = 1

2

(
(γ∗ + c2) ±

√
(γ∗ + c2)2 + 8γ∗

)
. (D.11)

The larger root is the physically correct choice (since the smaller root can become
negative)8. We further observe that q(Rec) is a function of R−1 and decreasing R
increases q, for fixed Qo.

D.5 Models for Effective Properties of Particle-Laden
Fluids

D.5.1 Effective Density

It is important to be able to characterize the effective properties of a particle-laden
fluid as a functionof the volume fractionof particles and the baseline (interstitial) fluid
properties. The density of the particle-laden fluid is actually an “effective density,”
since it actually is a mixture of materials (particles and interstitial fluid). Effective
properties are defined through volume averages. For example, the effective density
of the mixture is

ρ∗ def= 〈ρ(x)〉V def= 1

V

∫

V
ρ(x) dV = 1

V

(∫

V f

ρ f dV +
∫

Vp

ρp dV

)
= v f ρ f + vpρp

(D.12)
where v f and vp are the volume fractions of the fluid and particles, respectively. The
volume fractions have to sum to unity:

v f + vp = 1 ⇒ v f = 1 − vp (D.13)

8In the special case of laminar flow (c1 = 0 and c2 = 2), there are two roots to Eq.D.16, q = 2
and q = 0.
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D.5.2 Ancillary Effective Viscosities

Similar approaches can be used to calculate various types of properties, such as the
effective viscosity (a transport property). However, to calculate them is a bit more
complicated, since they require one to estimate the types of interaction between
the constituents. There are a number of models which provide expressions for the
effective viscosity of the fluid containing particles. For the purposes of this flow
analysis, the particles are considered to be rigid, relative to the surrounding fluid. For
example, in 1906, Einstein [3] developed an approximation which is quite simple,
but only valid at extremely low volume fractions of particles (under one percent). It
reads as

μ∗ = μ f (1 + 2.5vp), (D.14)

where μ f is the viscosity of the surrounding (incompressible) fluid and the particles
are assumed rigid. At even quite moderate volume fractions, this approximation is
inaccurate. A better approximation, which is in fact a rigorous lower bound on the
effective viscosity, can be derived from the well-known Hashin and Shtrikman [4–6]
bounds. Toderive effectivefluid viscosities, one can take the limit of the particle phase
becoming rigid, i.e., the bulk and shear moduli tending toward infinity, κp → ∞
and μp → ∞, signifying that the particles are much stiffer than the interstitial
fluid, while simultaneously specifying that the interstitial fluid is incompressible,
i.e., κ f /μ f → ∞ with μ f being finite. This yields

μ∗ = μ f (1 + 2.5
vp

1 − vp
). (D.15)

One can then assignμ f the value ofμ f to obtain Eq.D.15. See, for example, Abedian
andKachanov [7] andSevostianov andKachanov [8] formore details. The expression
in Eq.D.15 is the tightest known lower bound on the effective viscosity of a two-
phase material comprised of rigid particles in a surrounding incompressible fluid.
This expression remains quite accurate up to about vp = 0.25, which is sufficient
for most applications and allows us to directly correlate the pressure gradient to the
volume fraction of the particles.

D.6 Correlation of Pressure Gradient to Particle Volume
Fraction

Using the effective properties, we have an expression for the velocity profile exponent

q(Rec(μ
∗, ρ∗), γ∗) = 1

2

(
(γ∗ + c2) ±

√
(γ∗ + c2)2 + 8γ∗

)
. (D.16)
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Fig. D.3 Trends: Left: Pressure gradient needed (−ΔP
Δx ) as a function of the desired volumetric

flow rate (Qo) for various volume fractions of vp . Right: Resulting Reynolds number as a function
of the volumetric flow rate (Qo)

Consequently, the pressure gradient’s dependency on the volume fraction of particles
can be written as

− ΔP

Δx
=

2(μ f (1 + 2.5 vp

1−vp
))(q(Rec(μ

∗, ρ∗), γ∗) + 2)

πR4
Qo

def= C∗Qo, (D.17)

where C∗ = C∗(Qo). For a fixed flow rate, Qo, increasing the volume fraction of
particles (vp) requires a corresponding increase in the pressure differential. Explicitly,
the Reynolds number is

Re = vmax Dρ∗

μ∗ = 2Qo(q + 2)

πRq

((1 − vp)ρ f + vpρp)

μ f (1 + 2.5 vp

1−vp
)

. (D.18)

D.7 Trends

To illustrate the trends, we varied Qo from 10−3 m3/s to 10−2 m3/s and utilized the
expression in Eq.D.17. We plotted the pressure gradient and Reynolds number as a
function of the volumetric flow rate (Qo) in Fig.D.3 for various values of vp, with
the following parameters used:9

• Viscosity: μ f = 0.01 Pa-s,
• Fluid density: ρ f = 2000 kg/m3,
• Particle density: ρp = 5000 kg/m3,
• Channel radius: R = 0.01m, and

9For reference, the viscosity of water is μ f = 0.001Pa–s and for honey is μ f = 1Pa–s.
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• Profile constants: c1 = 0.01 and c2 = 2.

Generally, the trends are that a steady increase in the pressure gradient (approximately
40% more) is needed to maintain a fixed Qo, for increasing volume fraction of
particles. Due to the increase in the particle volume fraction, the viscosity increases,
thus decreasing the Reynolds number. High Reynolds numbers, and consequential
turbulence, can lead to aspiration (air entrainment), spurious internal reactions, de-
wetting, etc., which can lead to voids. The point of this example was not to illustrate
an all-encompassing parameter set, but simply to show the explicit dependency of
the pressure gradient and Reynolds number on the presence of secondary particles.
Other parameter sets can be easily simulated.

D.8 Summary

The presence of particle-laden fluids is widespread. Because the presence of particles
increases the overall viscosity of the fluid, the pressure gradients needed to pump
such fluids through channels at a nominal flow rate can increase dramatically. The
present analysis andmodel can provide a useful guide to designing systems that pump
particle-ladenflows,with the purpose to be able to castmaterials. This chapter derived
the pressure gradient needed to maintain a given flow rate, as a function volume
fraction of particles present in the fluid. The expression explicitly correlates the
dependency of the pressure gradient to the particle volume fraction and is hopefully
easy to use by researchers in the field. Furthermore, the developed expressions also
provide estimates on the Reynolds numbers that arise for given flow rates. The
tracking of the Reynolds number is important, since turbulence can lead to improper
processing due to the resulting voids.

A fluidized particle-laden material is often referred to as a “slurry.” In general
terms, a slurry is comprised of an interstitial fluid (solvent/lubricant/heated binder)
with viscosity μ f and rigid particles (effectively rigid compared to the surround-
ing fluidized solvent/lubricant/heated binder material). Generally, there are several
options for improving a fluidized particle-laden delivery process:

• The use of particle coatings (surfactants) to make them slippery and to reduce the
overall viscosity of the particle-laden slurry.

• The decreasing of the viscosity, either by higher heating or adding solvents/lubri-
cants. A slurry viscosity decreases exponentially with temperature

μ f = μoe
U
Rθ , (D.19)

where μo is the base viscosity, U is the activation energy, R is the universal gas
constant, and θ is the absolute temperature. Thus, any change in temperature can
dramatically change the viscosity.
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• The use of specially designed funnels that allow air to escape, which is designed
to keep the flow rate constant to reduce aspiration. An option is the adaptive choke
mechanism and controlled pouring.

• The addition of degassing chemicals to the process: There are of course many
issues (potential increased cured shrinkage, possible reduction of strength).

• The use of degassing propellers and direct feed lines into the system (this is often
done in other industries that use slurries).

• Evacuating the print area of all air a priori to eliminate air in the deposition.
• Carefully controlled cooling of the base of the substrate: Thick sections will cure
at different rates than thin sections, due to different temperature gradients, thus
leading to inhomogeneous, possibly dendritic, curing. This could be achieved by
heating the substrate during curing and also modifying the conductivity.

While these options are not explicitly discussed in this chapter, they should be con-
sidered by a practitioner. Furthermore, we mention that oftentimes the detrimental
growth of channelwalls (thus clogging feed lines) starts with the adhesion of particles
to the surfaces. This is a complex process, which is likely to involve lowfluid-induced
shear stress (allowing particles stick to the walls, Zohdi [9–13]).

In summary, the present analysis and model can provide a useful guide to design-
ing and interpreting experiments. However, while the model can provide qualitative
information, extensions are almost certainly going to require complex spatiotempo-
ral discretization resolvingmultiparticle particle–fluid interaction. Such particle/fluid
systems are strongly coupled, due to the drag forces induced by the fluid onto the
particles and vice versa. For example, in Zohdi [9–13], a flexible and robust solu-
tion strategy was developed to resolve coupled systems comprised of large groups
of flowing particles embedded within a continuous flowing fluid. The focus of that
work was to develop adaptive time-stepping schemes which properly resolve the
coupling, via a staggered recursive time-stepping process. The approach can be used
in conjunction with computational fluid mechanics codes based on finite difference,
finite element, finite volume, or discrete element discretization, such as those devel-
oped in Onate et al. [14, 15], Rojek et al. [16], Carbonell et al. [17], Labra and Onate
[18], Leonardi et al. [19], Cante et al. [20], Rojek [21], Onate et al. [22], Bolin-
tineanu et al. [23], Avci and Wriggers [24], and Zohdi [9–13]. Clearly, one could
approach the problem with a large-scale CFD analysis. However, for direct numer-
ical simulation of particle-laden continua, spatiotemporal discretization grids must
be extremely fine, with several thousand numerical unknowns needed per particle
length scale for numerically accurate results. Thus, for several hundred thousand
particles in a system, a proper discretization would require several billion numerical
unknowns. Although such simulations are possible in high-performance computing
centers, their usefulness for rapid daily design analysis is debatable. Direct numerical
approaches are discussed in Monograph Appendix E.
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Monograph Appendix E—Hybrid DEM-CM
Approaches for Particle-Functionalized Fluids

There are applications where Discrete Element Method (DEM) modeling alone is
not adequate (because too many very small particles would be needed to describe
the interstitial solvent) nor are pure continuum formulations (CF) based descriptions
alone sufficient (because the mesh sizes have to be extremely fine to describe the
particles). In these cases, hybrid methods, combining aspects of DEM and CF, are
advantageous. As an example, we discuss one of the most common additive man-
ufacturing materials, particle-functionalized inks, which are constructed by adding
particles to a solvent. Oftentimes, the intended purpose is to add electromagnetically
sensitive particles to a solvent to create an electromagnetically sensitive ink.

E.1 Applications

Electromagnetically sensitive fluids are typically constructed (“functionalized”) by
embedding charged or magnetic particles in a neutral fluid. Such fluids date back, at
least, to Winslow [1, 2] in 1947. The most widely used class of such fluids are elec-
trorheological fluids, which are comprised of extremely fine suspensions of charged
particles (on the order of 50microns) in an electrically neutral fluid.10 They have been
historically used in specialized niche applications involving hydraulic valves, actua-
tors, flexible screens, brakes, liquid seals and recently in electromagnetically sensitive
inks (so-called e-inks), for large-scale printing applications and coatings. The first
step in achieving this overall goal is the analysis of the movement of seeded charged
particles. In such a system, there are two primary effects that play a role in the charged
particle dynamics: (1) drag forces due to the fluid flow and (2) electromagnetic forces
due to an external source. The goal of this chapter is to formulate such models.11

Specifically, the goal is to characterize the motion of electromagnetically sensitive

10Later in the chapter, we also discuss ferrofluids.
11More details on this specific application in mind are given in the conclusions.
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small-scale particles embedded in a flowing neutral fluid. Initially, the dynamics of
a single particle is studied. Thereafter, a three-dimensional representative volume
element of a flowing particle-laden fluid, under the action of external electromag-
netic fields, is investigated. A fully implicit finite difference discretization of the
Navier–Stokes equations is used for the fluid, and a direct particle dynamics dis-
cretization is performed for the particles. Because of the large computational diffi-
culty and expense of a conforming spatial discretization needed for large numbers
of embedded particles, simplifying assumptions are made for the coupling, based on
semianalytical computation of drag coefficients, which allows for the use of coarser
meshes. Even after these simplifications, the particle–fluid system is strongly cou-
pled. The approach taken in the present work is to construct a submodel for each
primary physical process. In order to resolve the coupling, a recursive staggering
scheme is constructed, which builds on works found in Zohdi [3–43]. The procedure
is as follows (at a given time increment): (1) Each submodel equation (fluid system
or particle system) is solved individually, “freezing” the other (coupled) fields in
the system, allowing only the primary field to be active, (2) after the solution of
each submodel, the associated field variable is updated, and the next submodel is
solved, and (3) the process is then repeated, until convergence. The time-steps are
adjusted to control the rates of convergence, which is dictated by changes in the over-
all physics. Specifically, the approach is a staggered implicit time-stepping scheme,
with an internal recursion that automatically adapts the time-step sizes to control
the rates of convergence within a time-step. If the process does not converge (below
an error tolerance) within a preset number of iterations, the time-step is adapted
(reduced) by utilizing an estimate of the spectral radius of the coupled system. The
modular approach is designed for easy replacement of submodels for the fluid, parti-
cles, and their interaction. The approach allows researchers to rapidly compute such
systems with laptop/desktop resources. Numerical examples are provided to illus-
trate the model and numerical solution scheme, and limitations and extensions of the
approach are discussed.

Remark 1 From this point forth, we add a subscript p for particle velocities, to
delineate between particles and fluids. We will consider a drag force which is given
by:

Ψ drag = CD
1

2
Aρ f ||v f − v p||2τ , (E.1)

where
τ

def= v f − v p

||v f − v p|| , (E.2)

and A = πR2, where R is the particle radius.

Remark 2 Qualitatively, one can expect a drag-induced drift in the particle trajectory.
For example, consider an isolated particle,moving in one dimension, in a surrounding
fluid in the Stokesian regime, governed by
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mv̇p = c(v f − vp)︸ ︷︷ ︸
drag

, (E.3)

which yields
vp(t) = (vp(0) − v f )e

−ct/m + v f . (E.4)

In the special case where m = ρp
4
3πR

3 and the Stokesian drag is c = co6πR we
have:

v̇p = 9co
2ρpR2

︸ ︷︷ ︸
drag

def=α

(v f − vp), (E.5)

and the velocity can be determined to be

vp(t) = (vp(0) − v f )e
−αt + v f . (E.6)

Thus, qualitatively, we expect such a fluid-induced drift to occur.

Remark 3 A special class or functionalized fluids are ferrofluids, which are colloidal
liquids of ferromagnetic nanoscale (10 nanometers or less) particles, often from a
iron-based compound, such as magnetite or hematite, usually in an organic solvent.
The volume fraction of the particles is typically under 5 percent by volume. The
particles are usually coated with a surfactant (typically oleic acid, citric acid, soy
lecithin, tetramethylammonium hydroxide) to avoid agglomeration. The surfactant
is strong enough to counteract near-field interaction effects between particles. The
particles usually do not retain magnetization and can be considered as paramagnetic.
Furthermore, they lose their magnetic properties at sufficiently high (Curie) temper-
atures.12 We refer the reader to Albrecht et al. [43], Andelman and Rosensweig [44],
and Berger et al. [45] for reviews. If the particles exhibit magnetization, an additional
force is exerted, independent of the electrodynamically induced Lorentz forces. A
simple model to characterize this force is given by

Ψ mag = −∇(γBext · Bext ), (E.7)

where γ is a material parameter that is related to the magnetic dipole properties, the
magnetization of the particle, and which is dependent on the magnetic susceptibility,
the magnetic permeability, and the internal magnetic moment density of the material
(see Feynman et al. [46], Cullity and Graham [47], Boyer [48], or Jackson [49]. We
note that while we will not simulate purely magnetic (or magnetizable) particles in
numerical examples presented later, we include the relevant terms in the formulation.
An implementation of this model can be found in Zohdi [3–42].

12Another class of electromagnetically sensitive particle-laden fluid are magnetorheological fluids
which are seeded with micron-sized particles, and consequently, the particles can sediment over
time.
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E.2 A Quick Review of General Governing Fluid Equations

Recall, for a hydrostatic fluid, the stress can be written as

σ = −Po1, (E.8)

where Po = trσ
3 is the hydrostatic pressure. In other words, there are no shear stresses

in a fluid at rest. In the dynamic case, the pressure, denoted the “thermodynamic
pressure,” is related to the temperature and the fluid density by an equation of state

Z(P, ρ f , θ) = 0. (E.9)

For a fluid in motion
σ = −P1 + τ vs (E.10)

where τ vs is a so-called viscous stress tensor, needed in a balance of linear momen-
tum:13

∇x · σ + f = ρ f
dv f

dt
, (E.11)

where v f is the fluid velocity at point x and f are the body forces. Thus, for a
compressible fluid in motion:

trσ

3
= −P + trτ vs

3
. (E.12)

In general, for a fluid, we have

τ vs = G(D) and D
def= 1

2
(∇xv f + (∇xv f )

T ), (E.13)

where v f = u̇ is the velocity and D is the symmetric part of the velocity gradient.
For a Newtonian fluid, where a linear relation exists between the viscous stresses
(τ vs) and D

τ vs = G(D) = C : D (E.14)

where C is a symmetric positive definite (fourth-order) viscosity tensor. For an
isotropic (standard) Newtonian fluid, we have

σ = −P1 + λtrD1 + 2μD = −P1 + 3κ
trD
3

1 + 2μD′, (E.15)

where κ is called the bulk viscosity, λ is a viscosity constant, μ the shear viscosity,
and D′ = D − trD

3 1. Explicitly, with an (x1, x2, x3) Cartesian triad

13An inviscid or “perfect” fluid is one where τ vs is taken to be zero, even when motion is present.
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⎧
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, (E.16)

where c1 = κ + 4
3μ and c2 = κ − 2

3μ, where Di j = 1
2

(
∂vi
∂x j

+ ∂v j

∂xi

)
. The so-called

Stokes’ condition attempts to force the thermodynamic pressure to collapse to the
classical definition of mechanical pressure, i.e.,

trσ

3
= −P + 3κ

trD
3

= −P, (E.17)

leading to the conclusion that κ = 0 or λ = − 2
3μ. Thus, a Newtonian fluid obeying

the Stokes’ condition has the following constitutive law:

σ = −P1 − 2

3
μtrD1 + 2μD = −P1 + 2μD′. (E.18)

Note that

J̇ = d

dt
detF = (detF)tr(Ḟ · F−1) = J trL = J∇x · v f , (E.19)

where L = ∇xv f is the velocity gradient. Note that∇x ·v f = trL = trD. Therefore,
if the fluid is incompressible, J̇ = 0, then ∇x · v f = 0 = trL = trD. Therefore,

σ = −P1 + 2μD. (E.20)

A conservation of mass dictates

d

dt
(ρ f o) = d

dt
(ρ f J ) = J

dρ f

dt
+ ρ f

d J

dt
= 0, (E.21)

which leads to
dρ f

dt
+ ρ f

J

d J

dt
= 0. (E.22)

Using Eqs.E.19 and E.21 becomes

dρ f

dt
+ ρ f ∇x · v f = 0. (E.23)

Now write the total temporal (“material”) derivative in convective form:
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dρ f

dt
= ∂ρ f

∂t
+ (∇xρ f ) · dx

dt
= ∂ρ f

∂t
+ ∇xρ f · v f . (E.24)

Thus, Eq.E.19 becomes

∂ρ f

∂t
+ ∇xρ f · v f + ρ f ∇x · v f = ∂ρ f

∂t
+ ∇x · (ρ f v f ) = 0. (E.25)

Thus, writing the total time derivatives appearing previously as

dv f

dt
= ∂v f

∂t
|x + (∇xv f )|t · dx

dt
, (E.26)

the coupled governing equations are (ignoring thermal effects)

∂ρ f

∂t
= −∇xρ f · v f − ρ f ∇x · v f ,

ρ f (
∂v f

∂t
+ (∇xv f ) · v f ) = ∇x · σ + f ,

σ = −P1 + λtrD1 + 2μD = −P1 + 3κ trD
3 1 + 2μD′,

(E.27)

where, for example, P is given by an equation of state. Collectively, we refer to these
equations as the “Navier–Stokes” equations. There are a total of three variables:
ρ f , v f , and P . It is customary to specify v f and P on the boundary and to determine
ρ f on the boundary through the equation of state. It is important to emphasize that
physically compatible boundary data must be applied, and this is not a trivial matter
for compressible flow.

Remark There are a variety of possible equations of state that connect the density to
the pressure, such as a Boussinesq-like relation, which is adequate to describe dense
gases and fluids, derived from14

ρ f ≈ ρ f o(Po) + ∂ρ f

∂P
ΔP, (E.28)

where ρ f o and Po are reference values and ΔP = P − Po. We define the bulk

(compressibility) modulus by ζ
def= ρ f

∂P
∂ρ f

, yielding

ρ f ≈ ρ f o

(
1 + 1

ζ
ΔP

)
⇒ P ≈ Po + ζ

(
ρ f

ρ f o
− 1

)
. (E.29)

For a constant density case, ρ f = ρ f o, and utilizing the Boussinesq-like relation,
P = Po.

14We have ignored thermal effects in this representation.
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E.3 Numerical Simulation of Coupled Fluid–Multiparticle
Systems

There are three components to the numerical discretization of the coupled fluid–
particle system:

• Temporal discretization of the particle dynamics model,
• Spatiotemporal discretization of the fluid continuum model, and
• Iterative staggering scheme to resolve the coupling between the particles and fluid
continuum.

E.4 The Overall Approach

The present subsection develops a flexible and robust solution strategy to resolve two-
way coupled systems comprised of large groups of flowing particles embeddedwithin
a fluid. Such particle/fluid systems are strongly coupled due to the forces induced
by the fluid onto the particles and vice versa. Specifically, a staggered approach is
developed whereby at each time-step:

• A pure particle-only system is solved where the fluid’s influence is accounted for
by drag forces on the particles.

• A pure fluid-only system is then solved where the particles’ influence is accounted
for by reverse drag forces on the fluid continuum.

• The interactions between the particles and fluid are then updated. Within a time-
step, this process is repeated until the system converges. If the system does not
converge within a preset number of iterations, the time-steps are reduced by a
prescribed amount, dictated by an estimate of the spectral radius of the coupled
system.

Because the coupling of the various particles and fluid fields can dramatically change
over the course of a flow process, a primary focus is the development of a recursive
“staggering” solution scheme, whereby the time-steps are adaptively adjusted to
control the error associated with the incomplete resolution of the coupled interaction
between the various solid particulates and continuum fluid fields.

E.5 Simplifying Assumptions

We make the following simplifying assumptions:

• Weassume that each particle is small enough that their rotationwith respect to their
mass centers is deemed insignificant. The particles are considered to be spheres.

• We assume that any pre-applied particle coatings/surfactants are thin enough to
be considered as part of the particle.
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• We assume that the external electromagnetic fields are given and that action of
the particle-laden fluid does not affect the fields, i.e., they are considered control
variables.

• We assume that the fluid is incompressible.

Other simplifying assumptionswill bemade later in the presentationwherever appro-
priate.

E.6 Modeling and Simulation of the Particle Dynamics
Problem

As in the previous chapter on particle dynamics, we consider a group of noninter-
secting particles (i = 1, 2, . . . , Np). The equation of motion for the i th particle in
the system is

mi v̇ pi = mi r̈ pi = Ψ tot
i (r p1, r p2, . . . , r pNp ) = Ψ con

i + Ψ
drag
i + Ψ e+m

i , (E.30)

where r pi is the position vector of the i th particle and Ψ tot
i represents all forces

acting on particle i , which is decomposed into the sum of forces due to the normal
and frictional contact forces (Ψ con

i ), the drag forces arising from the surrounding fluid
environment (Ψ drag

i ), and electromagnetic forces (Ψ e+m
i ). In summary, we have the

following forces acting on each particle (i = 1, 2, . . . , Np)15

Ψ tot
i

def= Ψ con
i + Ψ

drag
i + Ψ e+m

i . (E.31)

Integrating Eq. E.30 leads to (using a trapezoidal rule with variable integration
metric, 0 ≤ φ ≤ 1)

v pi (t + Δt) = v pi (t) + 1

mi

∫ t+Δt

t
Ψ tot

i dt

≈ v pi (t) + Δt

mi

(
φΨ tot

i (t + Δt) + (1 − φ)Ψ tot
i (t)

)
. (E.32)

The position can be computed via application of the trapezoidal rule again:

r pi (t + Δt) ≈ r pi (t) + Δt (φv pi (t + Δt) + (1 − φ)v pi (t)), (E.33)

which can be consolidated into

r pi (t + Δt) = r pi (t) + v pi (t)Δt + φ(Δt)2

mi

(
φΨ tot

i (t + Δt) + (1 − φ)Ψ tot
i (t)

)
. (E.34)

15For completeness, we have included an additional force which can be exerted on magnetic parti-
cles.
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As introduced previously, this leads to a coupled system of equations, which are
solved using an adaptive iterative scheme, building on approaches found in vari-
ous forms in Zohdi [3–42]. This is dealt with after introducing the governing fluid
mechanics equations.

E.7 Characterization of Particle/Fluid Interaction

We first consider drag force interactions between the fluid and particles. The drag
force acting on an object in a fluid flow (occupying domain Ω and outward surface
normal n) which is defined as

Ψ drag =
∫

∂Ω

σ · n d A, (E.35)

where σ is the Cauchy stress. For a Newtonian fluid, obeying the Stokes’ condition
has the following constitutive law (see appendix):

σ = −P1 − 2

3
μtrD1 + 2μD = −P1 + 2μD′. (E.36)

where P is the thermodynamic pressure, μ is the absolute viscosity, D = 1
2 (∇xv f +

(∇xv f )
T ) is the symmetric part of the velocity gradient, trD is the trace of D, and

D′ = D − trD
3 1 is the deviatoric part of D. The stress is determined by solving the

balance of linear momentum (Navier–Stokes)

ρ f

(
∂v f

∂t
+ (∇xv f ) · v f

)
= ∇x · σ + f f , (E.37)

where, at a point, ρ f is the fluid density, v f is the fluid velocity, and f f represents
body forces per unit volume.

The fluid domain will require spatial discretization with some type of mesh, for
example, using a finite difference, finite volume, or finite element method. Usually,
it is extremely difficult to resolve the flow in the immediate neighborhood of the
particles, in particular if there are several particles. However, if the primary interest
is in the dynamics of the particles, as it is in this work, an appropriate approach,
which permits coarser discretization of the fluid continuum, is to employ effective
drag coefficients, for example, as introduced earlier16

16In the general compressible case, one would use

〈ρ f i 〉Ωpi

def= 1

Ωpi

∫

Ωpi

ρ(x) dΩ, (E.38)

instead of ρ f .
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Fig. E.1 Decomposition of the coupled fluid system

CD
def= ||Ψ drag

i ||
1
2ρ f ||〈v f 〉Ωi − v pi ||2Ai

, (E.39)

where 〈(·)〉Ωi

def= 1
|Ωi |
∫
Ωi

(·) dΩi is the volumetric average of the argument over the
domain occupied by the i th particle, 〈v f 〉Ωi is the volumetric average of the fluid
velocity, and Ai is the cross-sectional area of the i th (solid) particle. The use of this
simple concept is relatively straightforward to account for the presence of the solid
particles in the fluid by augmenting the flow calculations with drag forces (Fig.E.1).
Algorithmically speaking, one must compute the fluid flow with reaction forces due
to the presence of the particles. To this end, one can use the volumetric forces ( f f )
within the fluid domain for this purpose by writing

f f = −Ψ
drag
pi

|Ω∗
pi |

= −CD
1
2ρ f ||〈v f 〉Ω∗

pi
− v pi ||2Ai

|Ω∗
pi |

τ̂

(
τ̂ = 〈v f 〉Ω∗

pi
− v pi

||〈v f 〉Ω∗
pi

− v pi ||

)
,

(E.40)
where |Ω∗

pi | is the equivalent volumeof the number of nodes (each nodewith assigned
volume Δx1Δx2Δx3) that fall within the particle domain and f f (per unit volume)
is the drag force on the fluid, which is nonzero if a node falls within the particle
domain and is zero otherwise.17 This drag-based approach is designed to account
for particles in the fluid using a coarse mesh. In summary, the drag force is computed
by calculating the difference between the average fluid velocity in the i th particle
domain 〈v f i 〉Ωpi and the particle velocity (no particle rotation is assumed), v pi , to

yield the drag force Ψ
drag
i

def= 1
2CDρ f ||〈v f i 〉Ωpi − v pi ||2Ai τ̂ (Fig. E.2).

Remark 1 From this point forward, we will consider incompressible cases (ρ f is
constant) and that P is given (known).

Remark 2 There are a variety of empirical relations for the drag coefficient. One
possible way to represent the drag coefficient is with a piecewise definition, as a
function of the Reynolds number (Chow [60]):

• For 0 < Re ≤ 1, CD = 24
Re ,

• For 1 < Re ≤ 400, CD = 24
Re0.646 ,

17If the particles are significantly smaller than the mesh spacing, then the drag forces associated
with the particles are computed from the nearest node/particle center pair.
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Fig. E.2 Left: grid points where the average values of drag are computed. Right: various finite
difference stencils in “computational molecule” form (centered at (x1, x2, x3)), where (1) A(x) ∂v

∂x1
,

(2) ∂
∂x1

(
A ∂v

∂x1

)
, and (3) ∂

∂x2

(
A ∂v

∂x1

)

• For 400 < Re ≤ 3 × 105, CD = 0.5,
• For 3 × 105 < Re ≤ 2 × 106, CD = 0.000366Re0.4275,
• For 2 × 106 < Re < ∞, CD = 0.18,

where the local Reynolds number for a particle is Re
def= 2Riρ f ||〈v f 〉Ωi −v pi ||

μ f
and Ri is

the radius of the i th particle.

E.8 Discretization of the Fluid

E.8.1 Temporal Discretization

For the fluid, we write

dv f

dt
= ∂v f

∂t
+ ∇xv f · v f = 1

ρ f
(∇x · σ + f ) , (E.41)

leading to
∂v f

∂t
= 1

ρ f
(∇x · σ + f ) − ∇xv f · v f

def= L. (E.42)

We discretize for time = t+φΔt , and using a trapezoidal “φ− scheme” (0 ≤ φ ≤ 1)

∂v f

∂t
≈ v f (t + Δt) − v f (t)

Δt
≈ L(t + φΔt) ≈ φL(t + Δt) + (1− φ)L(t). (E.43)
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Rearranging yields

v f (t + Δt) ≈ v f (t) + Δt (φL(t + Δt) + (1 − φ)L(t)) (E.44)

where the previously introduced spatial discretization is applied to the derivative
terms (such as ∇x · σ) in L. The discretized system is formulated next as an implicit
time-stepping scheme within each time-step L .

E.8.2 Spatial Discretization: Spatial Finite Difference
Stencils

The following standard approximations are used:

1. For the first derivative of a primal variable v at (x1, x2, x3):

∂v f

∂x1
≈ v f (x1 + Δx1, x2, x3) − v f (x1 − Δx1, x2, x3)

2Δx1
(E.45)

2. For the derivative of a flux at (x1, x2, x3):

∂

∂x1

(
A

∂v f

∂x1

)
≈
(
A

∂v f
∂x1

)
|
x1+ Δx1

2 ,x2,x3
−
(
A

∂v f
∂x1

)
|
x1− Δx1

2 ,x2,x3

Δx1
(E.46)

= 1

Δx1

[
A(x1 + Δx1

2
, x2, x3)

(
v f (x1 + Δx1, x2, x3) − v f (x1, x2, x3)

Δx1

)]

− 1

Δx1

[
A(x1 − Δx1

2
, x2, x3)

(
v f (x1, x2, x3) − v f (x1 − Δx1, x2, x3)

Δx1

)]
,

where we have used

A(x1 + Δx1
2

, x2, x3) ≈ 1

2
(A(x1 + Δx1, x2, x3) + A(x1, x2, x3)) (E.47)

and

A(x1 − Δx1
2

, x2, x3) ≈ 1

2
(A(x1, x2, x3) + A(x1 − Δx1, x2, x3)) (E.48)

3. For the cross-derivative of a flux at (x1, x2):
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∂

∂x2

(
A

∂v f

∂x1

)
≈ ∂

∂x2

(
A(x1, x2, x3)

(
v f (x1 + Δx1, x2, x3) − v f (x1 − Δx1, x2, x3)

2Δx1

))

≈ 1

4Δx1Δx2

(
A(x1, x2 + Δx2, x3)

[
v f (x1 + Δx1, x2 + Δx2, x3)

−v f (x1 − Δx1, x2 + Δx2, x3)
]− A(x1, x2 − Δx2, x3)[

v f (x1 + Δx1, x2 − Δx2, x3) −v f (x1 − Δx1, x2 − Δx2, x3)
] )

.

(E.49)

E.9 Overall Iterative (Implicit) Solution Method

As in the body of the monograph, following the basic framework in Zohdi [3–42],
let us consider the finite difference nodes (i):

v
L+1,K
f i = vL

f i + Δt
(
φLL+1,K−1

i + (1 − φ)LL
i

)
, (E.50)

where i is the node counter, which is of the form

v
L+1,K
f i = G(v

L+1,K−1
f i ) + Ri , (E.51)

where K = 1, 2, 3, . . . is the index of iteration within time-step L + 1 and

• G(v
L+1,K−1
f i ) = φΔtLL+1,K−1

i and
• Ri = vL

f i + Δt (1 − φ)LL
i .

The term Ri is a remainder term that does not dependon the solution. The convergence
of such a scheme is dependent on the behavior of G. Namely, a sufficient condition
for convergence is that G is a contraction mapping for all v

L+1,K
f i , K = 1, 2, 3, . . .

In order to investigate this further, we define the iteration error as

�L+1,K
i

def= v
L+1,K
f i − vL+1

f i . (E.52)

A necessary restriction for convergence is iterative self-consistency, i.e., the “exact”
(discretized) solution must be represented by the scheme, vL+1

i = G(vL+1
i ) + Ri .

Enforcing this restriction, a sufficient condition for convergence is the existence of
a contraction mapping

|| vL+1,K
f i − vL+1

f i︸ ︷︷ ︸
�L+1,K

i

|| = ||G(v
L+1,K−1
f i ) − G(vL+1

f i )||

≤ ηL+1,K ||vL+1,K−1
i − vL+1

f i ||, (E.53)
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where if 0 ≤ ηL+1,K < 1 for each iteration K , then �L+1,K
i → 0 for any arbitrary

starting value r L+1,K=0
i , as K → ∞, which is a contraction condition that is suffi-

cient, but not necessary, for convergence. The convergence of Eq.E.50 is scaled by

η ∝ (φΔt)2

mi
. Therefore, we see that the contraction constant of G is:

• directly dependent on the magnitude of the interaction forces (||L||),
• directly proportional to (Δt)2.

Thus, decreasing the time-step size improves the convergence. In order to maximize
the time-step sizes (to decrease overall computing time) and still meet an error
tolerance on the numerical solution’s accuracy, we build on an approach originally
developed for continuum thermochemicalmultifield problems (Zohdi [3–42]), where
one assumes: (1) ηL+1,K ≈ S(Δt)p, (S is a constant) and (2) the error within an
iteration behaves according to (S(Δt)p)K�L+1,0 = �L+1,K , K = 1, 2, . . ., where
�L+1,0 = v

L+1,K=1
f i − vL

f i is the initial norm of the iterative (relative) error and
S is intrinsic to the system. For example, for second-order problems, due to the
quadratic dependency on Δt , p ≈ 2. The objective is to meet an error tolerance in
exactly a preset (the analyst sets this) number of iterations. To this end, one writes
(S(Δttol)p)Kd�L+1,0 = T OL , where T OL is a tolerance and Kd is the number of
desired iterations. If the error tolerance is not met in the desired number of iterations,
the contraction constant ηL+1,K is too large. Accordingly, one can solve for a new
smaller STEP size, under the assumption that S is constant,

Δttol = Δt

(
( T OL

�L+1,0 )
1

pKd

(�L+1,K

�L+1,0 )
1
pK

)

︸ ︷︷ ︸
def=ΛK

.
(E.54)

The assumption that S is constant is not critical, since the time-steps are to be recur-
sively refined and unrefined throughout the simulation. Clearly, the expression in
Eq.E.54 can also be used for time-step enlargement, if convergence is met in less
than Kd iterations (typically chosen to be between five to ten iterations). Specifically,
the solution STEPS are within a time-step:

• (1): Start a global fixed iteration (set i = 1, . . . , Nn (node counter) and K = 0
(iteration counter))

• (2): If i > Nn , then go to (4)
• (3): If i ≤ Nn , then:

(a) Compute the velocity v
L+1,K
f i

(b) Go to (2) for the next node (i = i + 1)

• (4): Repeat STEPS 1-3 for the particles, i = 1, . . . , Np, and compute the drag
forces.

• (5): Measure error (normalized) quantities (where w f is a weight on the fluid
contribution and wp is a weight on the particle contribution)
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(a) �K
def= w f

∑Nn
i=1 ||vL+1,K

f i − v
L+1,K−1
f i ||

∑Nn
i=1 ||vL+1,K

f i || + wp

∑Np

i=1 ||vL+1,K
pi − v

L+1,K−1
pi ||

∑Np

i=1 ||vL+1,K
pi ||

(b) ZK
def= �K

T OLr

(c) ΛK
def=
⎛

⎝ ( T OL
�0

)
1

pKd

(�K
�0

)
1
pK

⎞

⎠.

Note: As an option, one could select to only use the error metric from the finite
difference grid, since the particle velocities have already been projected onto
the grid.

• (6): If the tolerance is met: ZK ≤ 1 and K < Kd , then

(a) Increment time: t = t + Δt ,
(b) Construct the next time-step: Δtnew = ΛKΔtold , and
(c) Select the minimum size: Δt = MI N ((Δt)lim,Δtnew), and go to (1)

• (7): If the tolerance is not met: ZK > 1 and K < Kd , then

(a) Update the iteration counter: K = K + 1,
(b) Reset the node counter: i = 1, and
(c) Go to (2)

• (8): If the tolerance is not met (ZK > 1) and K = Kd , then

(a) Construct a new time-step: Δtnew = ΛKΔtold and
(b) Restart at time t , and go to (1)

Time-step size adaptivity is critical, since the system’s dynamics and configuration
can dramatically change over the course of time, possibly requiring quite different
time-step sizes to control the iterative error. However, to maintain the accuracy of the
time-stepping scheme, onemust respect an upper bound dictated by the discretization
error, i.e., Δt ≤ Δt lim . Note that in STEP (5), ΛK may enlarge the time-step if
the error is lower than the preset tolerance. At a given time, once the process is
complete, then the time is incremented forward and the process is repeated. The
overall goal is to deliver solutions, where the iterative error is controlled and the
temporal discretization accuracy dictates the upper limit on the time-step size (Δt lim).
Clearly, there are various combinations of solution methods that one can choose
from. For example, for the overall field coupling, one may choose implicit or explicit
staggering and within the staggering process, either implicit (0 < φ ≤ 1) or explicit
time-stepping (φ = 0), and, in the case of implicit time-stepping, iterative or direct
solvers for the Navier–Stokes equations. Furthermore, one could employ internal
iterations for each field equation, then update more sophisticated metrics for certain
components of the error, etc. For example, we utilized an error measure that used
the velocities at the nodes of the finite difference grid, which were partially induced
by the particles. We could have isolated the error in velocities of the particles, used
a combined metric, etc. For details, see Zohdi [3–42].
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Remark 1 To accelerate the multiparticle calculations, one can utilize nearest neigh-
bor interaction lists, which indicate with which neighboring particles a specific par-
ticle interacts with, for a given number of time-steps. All other particle-to-particle
interaction is truncated. The interaction lists are updated periodically during the com-
putations (see Pöschel and Schwager [51]). Such lists were used in the upcoming
calculations and follow this procedure: (1) An initial full-blown contact search is
performed at the beginning of the simulation and a list of nearest neighbors for each
particle is generated, (2) the nearest neighbor lists are used for all inter-particle cal-
culations for a preset subinterval of the total simulation time, 0 ≤ ΔT ≤ T , and (3)
after a subinterval of the total simulation time, 0 ≤ ΔT ≤ T , elapses, the nearest
neighbor list for each particle is updated. This type of link list strategy was used
throughout the simulations. The results were repeatedly tested against simulations
utilizing direct calculations (no list list truncation) to determine the proper settings
for the link lists to ensure insensitivity to the truncations.

Remark 2 As the physics changes, the field that is most sensitive (exhibits the largest
amount of relative nondimensional change during the iterations) dictates the time-
step size. Because the internal system solvers within the staggering scheme are also
iterative and use the previously converged solution as their starting value to solve
the system of equations, a field that is relatively insensitive at a given stage of the
simulation will converge in very few internal iterations (perhaps even one).

Remark 3 A series of detailed numerical examples can be found in Zohdi [34].
Because of the extreme computational difficulty and expense of a conforming spatial
discretization needed for large numbers of embedded particles, simplifying assump-
tions were made allowing a reduced-order model for the coupling, based on semiana-
lytical computation of drag coefficients for the coupling of the particles and the fluid
with coarse meshes. The strongly coupled system was solved iteratively within each
time-step using a recursive staggering scheme, which employed temporal adaptivity
to control the error. The developed approach is straightforward to implement and
can be easily incorporated within any standard computational fluid mechanics code
based on finite difference, finite element, finite volume, or discrete/particle element
discretization (see Labra andOnate [52], Onate et al. [53, 54], Rojek et al. [55]). How-
ever, while the computational model can provide qualitative a priori information for
further computationally intensive large-scale simulations, extensions are invariably
going to require complex spatial discretization, which entails resolving particle–fluid
interaction in detail. This is quite important if one is interested in particle clustering
and agglomeration (see Zohdi [3–42]). Accordingly, it is important to revisit one of
the primary simplifying assumptions, in the context of extensions and improvements.
One of the primary assumptions was to assume that each particle is small enough
that their rotation with respect to their mass centers was deemed insignificant. More
detailed analyses of fluid-particle interaction can be achieved in a direct, brute-force,
numerical schemes, treating the particles as part of the fluid continuum (as another
fluid or solid phase), and thusmeshing them in a detailedmanner. In such an approach
(e.g., see Avci and Wriggers [56]):
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• A fluid-only problem is solved, with (instantaneous) boundary conditions of
v f (x) = v pi (x) at each point on the fluid-particle boundaries, where the velocity
of the points on the boundary is given by

v pi (x) = vcm
pi + ωi × Rcm→sur f.(x), (E.55)

where vcm
pi is the center of mass, for each of the individual particles, and Rcm→sur f.

is a vector from the mass center to the surface.
• For each particle, one would solve:

mi v̇ pi = Ψ
drag
i + other f orces (E.56)

and
Ii ω̇i = Mdrag

i + other moments, (E.57)

where the forces and moments would have a contribution from the fluid drag (with
particle occupying domain Ωi and outward surface normal n) is defined as

Ψ
drag
i =

∫

∂Ωi

σ · n d A, (E.58)

and

Mdrag
i =

∫

∂Ωi

Rcm→sur f. × σ · n d A. (E.59)

• At a time-step, the process is iteratively driven by solving the fluid-only prob-
lem first, then the particles-only problem, and repeated until convergence in an
appropriate norm.
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