Fundamentals of
Engineering Programming
with C and Fortran

Fundamentals of Engineering Programming with C and Fortran is a be-
ginner’s guide to problem solving with computers that shows how to
prototype a program quickly for a particular engineering application.
The book’s side-by-side coverage of C and Fortran, the predominant
computer languages in engineering, is unique. It emphasizes the im-
portance of developing programming skills in C while carefully pre-
senting the importance of maintaining a good reading knowledge of
Fortran.

Beginning with a brief description of computer architecture, the
book then covers the fundamentals of computer programming for
problem solving. Separate chapters are devoted to data types and
operators, control flow, type conversion, arrays, and file operations.
The final chapter contains case studies designed to illustrate partic-
ular elements of modeling and visualization. Also included are five
appendixes covering C and Fortran language summaries and other
useful topics.

The author has provided many homework problems and program
listings. This concise and accessible book is useful either as a text for
introductory-level undergraduate courses on engineering program-
ming or as a self-study guide for practicing engineers.

Harley Myler is a professor of electrical and computer engineering
at the University of Central Florida in Orlando. A senior member of
the IEEE and a member of SPIE, he earned his Ph.D. and M.Sc. at
New Mexico State University. He is the author of two other books:
Computer Imaging Recipes in C (1993) and The Pocket Handbook of Image
Processing Algorithms in C (1993), both published by Prentice-Hall.

Fundamentals of
Engineering
Programming with
€ and Fortran

Harley R. Myler

&% CAMBRIDGE
&5/ UNIVERSITY PRESS

PUBLISHED BY THEPRESSSYNDICATE OF THEUNIVERSITY OFCAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge CB2 1RP, United Kingdom

CAMBRIDGEUNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk
40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org

10 Stamford Road, Oakleigh, Melbourne 3166, Australia

© Cambridge University Press 1998

This book is in copyright. Subject to statutory exception

and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without

the written permission of Cambridge University Press.

First published 1998
Typeset in Stone Serif 9.5/14 pt. and Antique Olive in BKIgX [TB]

Library of Congress Cataloging in Publication data
Myler, Harley R., 1953~

Fundamentals of engineering programming with C and Fortran / Harley

R. Myler.
p. cm.

Includes bibliographical references and index.

ISBN 0 521 62063 5 hardback

ISBN 0 521 62950 0 paperback

1. C (Computer program language) 2. FORTRAN (Computer program
language) 3. Engineering - Data processing. 1. Title.

QA76.73.C15M93 1998
005.13 - dc21 97-43343
CIP

A catalog record for this book is available
from the British Library

ISBN 0 521 62063 5 hardback
ISBN 0 521 62950 O paperback

Transferred to digital printing 2004

To my son, Logan

Contents

Preface page xi
Introduction 1
1.1 History of Computers 2
1.2 The von Neumann Machine Architecture 4
1.3 Binary Numbers 7
1.4 Virtual Machine Hierarchy 10
1.5 Register-Memory-ALU Transfer System 13
REVIEW WORDS 16
EXERCISES 17
Computer Programming 20
2.1 Problem Solving and Program Development 20
2.2 The Edit-Compile-Run Cycle 29
2.3 Flowcharts 32
2.4 Pseudocode 37
2.5 Program Structure 38
REVIEW WORDS 41
EXERCISES 41
Types, Operators, and Expressions 43
3.1 Data Types 44
3.2 Arithmetic Operators 50
3.3 Logical and Relational Operators 55
3.4 Assignment Operators 57
3.5 Unary Operators 59

vii

viii

Contents

3.6 Program Structure, Statements, and Whitespace
3.7 Formatted Output

3.8 Formatted Input

3.9 Precedence Rules

3.10 Summary

REVIEW WORDS
EXERCISES

Control Flow

4.1 If

4.2 Loops

4.3 Conditional Decision Structures
4.4 Unconditional Control

4.5 Summary

REVIEW WORDS
EXERCISES

Type Conversion, Functions, and Scope
5.1 Casting and Type Conversion

5.2 Functions

5.3 Library Functions

5.4 Data Scope

5.5 Recursion

REVIEW WORDS
EXERCISES

Pointers, Arrays, and Structures
6.1 Pointers

6.2 Arrays

6.3 Structures

REVIEW WORDS
EXERCISES

File Operations
7.1 Low-Level File Operations

7.2 High-Level File Operations (Streams)

60
62
67
71
73

73
74

77
78
85
96
100
101

101
101

106
106
110
120
122
131

132
133

136
136
140
144

147
147

149
149
153

contents

REVIEW WORDS
EXERCISES

Case Studies

8.1 Tides

8.2 Console Plot

Appendix A: € Language Summary

Appendix B: Fortran Program Language Summary
Appendix C: ASCIl Tables

Appendix D: C Preprocessor Directives

Appendix E: Precedence Tables
Glossary
Annotated Bibliography

Index

157
158

160

160

167

174

181

188

190

195
197
203
205

Preface

This text is intended as an entry-level treatment of engineering prob-
lem-solving and programming using C and Fortran, the predominant
computer languages of engineering. Although C is presented as the
language of choice for program development, a reading knowledge of
Fortran (77) is emphasized. The text assumes that any Fortran code
encountered by the reader is operational and debugged; hence, an
emphasis is placed on a reading knowledge of this language. Funda-
mental approaches to engineering problem-solving using the com-
puter are developed, and appendixes that serve as ready reference for
both languages are included. A basic premise of this book is that the
engineer, regardless of discipline, is more interested in fast program
prototyping and accurate data outputs than in program elegance or
structure. The novice engineering programmer is concerned princi-
pally with modeling physical systems or phenomena and processing
accurate data pertaining to those systems or phenomena. These are
basic tenets of engineering programming that are subscribed to in
this book.

In the introductory chapter, an understanding of basic computer
architecture using the von Neumann model is developed as a register—
ALU-memory (Arithmetic Logic Unit) transfer system. This concept
is then integrated into an explanation of Tannenbaum's virtual ma-
chine hierarchy to illustrate the multiple levels of translation and
interpretation that exist in modern computers. The relationship of
programming languages to this hierarchy is then explained through
diagrams and illustrations to enable the reader to develop a strong
mental picture of computer function through language. This aspect
of programming is often ignored by other texts; however, the critical
dependence of data accuracy on the architecture of the implement-
ing platform, particularly with respect to variable typing, demands

Xi

Xii

Preface

that these concepts be understood by the engineering programmer.
Discussions of computer architecture in this text are at a browsing
level so that engineers from disciplines other than computing can
feel comfortable with the explanations. In spite of this, electrical
and computer engineering students should find the discussions an
interesting introduction to subjects that they will explore in greater
detail later in their training.

In Chapter 2 the edit-compile-run cycle is presented as the pri-
mary method of program development. Please note that no empha-
sis is made on any particular compiler or development system - these
choices are left to the reader or instructor to make. Additionally, the
text does not emphasize a particular computer platform owing to
the wide range of machines encountered in engineering practice.
Techniques for algorithm development using flowcharts and pseu-
docode are discussed, and these vehicles of algorithm representation
are used throughout the text. This book is not intended to be a soft-
ware engineering text, and thus only rudimentary concepts from this
area are discussed.

Chapter 3 introduces types, operators, and expressions along with
console input-output (I-O) methods. Examples of programs that sim-
ply process arithmetic and algebraic expressions are shown to intro-
duce the reader to actual program coding and gross data processing.
Chapter 4 discusses the use of fundamental language constructs for
control flow in program decision making and loop construction. All
of these topics are presented with engineering problem examples.
Chapter 5 explores data type conversion as a prelude to the writing
and use of functions. These concepts lead into the scope of variable
activity within the program. These topics are typically introduced
sooner in other presentations; however, most program errors are re-
lated to bad typing or type mismatch followed by errors of function
definition and scope. Because a C program begins with the defini-
tion of the main function, expansion of this aspect of the language
follows cleanly when functions are introduced late in the text. Chap-
ter 6 discusses structures and pointers and their use in creating and
working with array variables. The C language union and typedef are
not discussed. Chapter 7 is a short introduction to file operations to
include both low and high level I-O. Chapter 8 completes the book
with case studies of two complex programs.

The book is self-contained and useful as a self-study tutorial or
as a text for a one-semester introductory engineering programming

Preface

course for students with no prior computer programming experi-
ence in either C or Fortran. Each section covered includes student
exercises and programming examples. A set of instructor materials is
available that includes overhead transparency masters and quiz and
examination problems. The text was developed and tested over nine
semesters at the University of Central Florida in our EGN3210 En-
gineering Analysis and Computation course. This course is required
as a prerequisite for our numerical methods course for undergrad-
uate students of all engineering disciplines who have had no prior
computer programming instruction.

Although responsibility for this work is uniquely mine, I would
like to thank all of the students personally who suffered through nu-
merous editions of the text starting with overhead projector notes
and culminating with rough drafts of the manuscript. May you al-
ways get the correct answers from your programs.

Orlando, Florida Harley R. Myler
May 1997

Xiii

Introduction

ome dictionaries define an engineer as a builder of engines,

and it is relatively easy to classify engineering fields using

this definition. Purists will insist that modern engineers

rarely dirty their hands actually building anything; however,
we can, without loss of the thread being developed here, include the
design of engines within the definition. For example, many electrical
engineers build (design) electrical engines such as motors and gener-
ators, and automotive engineers often build internal combustion en-
gines. We can abstract the concept of engine to include machines in
general as well as complex machines such as robots and vehicles. To
further the abstraction, we can include systems that transfer or con-
vert matter or energy from one state to another under the umbrella
of machine design. Examples of such systems are water treatment fa-
cilities, the domain of civil engineers, or automated manufacturing
facilities that attract the attention of industrial engineers. A com-
puter is nothing more than an information processing engine. Now
the material to be processed has been taken to the highest level of
abstraction, the symbolic level.

The complexity of the world we live in, with the astonishingly
high rate of information exchange and shrinking global barriers, de-
mands that engineers utilize and command information processing
systems. Computers are at the core of all nonbiological information
processing systems, and they process the information that they are
given with strict attention to detail. The level of detail is extreme,
and the process by which we specify the details of the task that we
wish the computer to perform is called programming. It is essential
that the modern engineer, independent of engineering discipline,
learn how to operate and program the computer.

Introduction

If gasoline that has lost combustibility from long-term storage, or
that has been corrupted by moisture, is used in an internal combus-
tion engine, it would be no surprise to observe inadequate engine
performance — if the engine will run at all. Why then should a com-
puter be expected to process bad data? Further, if an engine is poorly
designed for the fuel that it must use, should one still expect optimal
performance? Why then expect good performance from a computer
that is running a poorly written program? The engineer can apply the
same principles of engineering design that are used to build machines
to the construction of computer programs. Doing this, the engineer
can develop programs that are effective and efficient in processing
data for any engineering application.

This chapter begins by outlining a brief history of computing and
discusses, as simply and illustratively as possible, the fundamentals of
computer design and architecture. This material, although trivial to
the experienced computer engineer, is often overlooked or ignored
in the training of noncomputer specialists. To evaluate the output
of a computer adequately, regardless of engineering purpose, it is
important to understand these fundamentals.

History of Computers

The first computer that most humans encounter is the digits of their
hands. When human civilization began to process numerical con-
cepts using fingers to count on is unknown, but it was probably
shortly after we discovered bartering. Not surprisingly, commerce
has done as much to advance computing as science and engineer-
ing have. A case in point is that the acronym IBM stands for Interna-
tional Business Machines. Long before the formation of the IBM com-
pany, however, an English professor of mathematics named Charles
Babbage (1792-1871) formulated the concept of a numerical com-
puting engine. His first machine, the difference engine, was built in
the early 1800s. This machine was designed to run a single program
that computed tables of numbers for use in ship navigation — a subject
of great interest to shipping merchants of the time. The name differ-
ence engine came from the method of finite differences that it used
to compute the tables. The second machine that Babbage designed,
the analytical engine, was a substantial improvement over the dif-
ference engine in that it could be programmed using punched cards,

1.1 History of Computers

thus allowing any mathematical operation to be performed. Babbage
never finished the analytical engine; however, the British Museum
commissioned the construction of a machine from his original plans
that is now on permanent display in their collection. In spite of his
failure to build an analytical engine, Babbage hired Ada Lovelace,
daughter of the English poet George Gordon, to write software for
the machine. Thus, Babbage not only established the first computer
programmet, but he also demonstrated the modern-day practice of
software development for an architecture occurring in parallel with
hardware development. It should be noted that the ADA® program-
ming language developed by the U.S. Department of Defense was
named in Ada Lovelace’s honor.

Babbage's computing engines were mechanical devices, and it was
nearly a hundred years later that Konrad Zuse (1910-1995), a Ger-
man engineer, built a calculating machine called the Z1 using elec-
tromagnetic relays. Zuse was planning to add programmability to
his machines when the Allied bombing of Berlin during World War
II brought his work to a halt. Ironically, war accelerated the need
for fast computing machines in two ways. First, the British needed
a computer to run the decoding procedures developed by Alan Tur-
ing (1912-1954), a mathematician, to break the codes generated by
the German Enigma message encryption machines. Secondly, the
Americans needed a computer to calculate trajectory data rapidly for
the artillery. In reponse to these needs, the British developed Col-
lossus, the world's first electronic computer, which was successful in
breaking the Enigma codes using a program developed from Turing’s
work, which was kept a closely guarded secret for many years after
the war. Many historians credit the cracking of the Enigma codes
as a primary contribution to the winning of the war by the Allied
forces. An American machine, the Electronic Numerical Integrator
and Computer (ENIAC) was completed in 1946 but was introduced
too late to be of any use in the war effort. Nevertheless, the ENIAC ma-
chine formed the basis of the first commercial computers built by the
Univac Corportaion. The ENIAC machine has been preserved as an
historical item by the Army Research Laboratory (ARL). The ARL has
established a World Wide Web page (http : //www.arlmil) that you
may browse for further information to learn the history of ENIAC.
After World War 11, research into the design and construction of elec-
tronic computing machines accelerated and has not slowed, even to
this day.

Introduction

1834 1936 1943 1946
L

I >

Babbage: Difference and Analytical Engines

Zuse: Z1/22/Z3

Turing: Collossus

Eckert and Machley: ENIAC

Figure 1.1 Early computer development timeline.

It should be noted that a major breakthrough in engineering came
about from the invention of the slide rule, which is simply a mechan-
ical analog computer. When hand-held calculators appeared in the
late 1960s, their arrival marked the end of the usefulness of slide
rules. Hand-held calculators will someday be replaced by palmtop
computers and ultimately by communications devices that will link
us with machines that understand our speech. All of these devices
have evolved from the historical roots discussed in this section (see
Figure 1.1) and, until a computer is built that can learn, will continue
to require programining.

The von Neumann Machine Architecture

John von Neumann (1903-1957), a Hungarian-born mathematician
who emigrated to the United States in 1930, first conceived the idea
of the stored program computer, now known as the von Neumann
machine. A program is formally defined as a sequence of instruc-
tions describing how to perform a task. For example, you could be
programmed to make hamburgers a certain way by the following set
of instructions:

BURGER CONSTRUCTION PROGRAM

1. Get bun and open it on counter.

Place all-meat patty on bottom piece of bun.
Place tomato slice on patty.

Place lettuce leaf on tomato.

Squirt special sauce on lettuce.

e Wb

1.2 The von Neumann Machine Architecture

6. Replace top of bun; burger is complete.
7. Wrap burger in paper and place on warming tray.

Of course, the assumption is that the instructions make sense to
you and that you can follow them. It is further assumed that the
data in this program (the bun, patty, tomato slice, etc.) are available
to you at execution time and that they are in the proper form. The
program could be made more complex by specifying a cooked all-meat
patty, but you assumed that, didn’t you? Please don’t be insulted. If
this were a computer program, these would be important details to
consider!

An algorithm is a formal term for a detailed set of instructions on
how to perform a computation. At first glance it seems that there is
no difference between an algorithm and a program. Algorithms are
developed as a mathematical exercise, or general method, to achieve
a computational result. A program consists of a set of instructions
(to a machine) developed from the algorithm. A program is an algo-
rithm, but an algorithm is only a program when it is specific to an
implementation. The burger construction program is a set of instruc-
tions to a human cook. Likewise, a C or Fortran program, which we
discuss in much detail later, consists of instructions to a computer.

Early machines had fixed algorithms performed by programs that
were designed into the machine architecture, such as the computa-
tion of logarithm tables by the Babbage difference engine. The data
were internal to the algorithm in that they started as a fixed value
and were either incremented or calculated. Programmable machines
allowed the algorithm processed by the machine to be changed,
thus broadening the utility of the computer. In early electronic ma-
chines such as ENIAC and Colossus, programming was accomplished
through a tedious method of changing control and data pathways
manually by the use of wire jumpers and switches. Data entered the
machine from punched cards or were inherent to the program. These
machines were difficult to program and nearly impossible to debug,
which means to find problems in the program. An interesting fact is
that the term computer bug comes from an early machine in use by the
U.S. Navy that stopped working one day. The problem was found to
be a moth that had crawled into a relay and was caught between the
contacts, preventing the proper operation of the part and retroac-
tively, the program. From that moment, when a computer would
not run properly, it was said that the program “had a bug in it.” The

Introduction

Central Processing Unit
(CPU)

I Control Unit I—Dl Output

Arithmetic Logic Unit
(ALU)

Registers

t

Memory

Figure 1.2 Von Neumann machine architecture.

coining of this term is attributed to Admiral Grace Hopper, an early
pioneer in computer development.

The structure of a von Neumann machine allows both program
statements and data to reside simultaneously in the memory in con-
trast to the early machines in which programming instructions were
contained in a unit of the computer separate from the data. All
modern computers are based, in part, on the concept of the stored
program computer, or von Neumann machine. The von Neumann
machine has five basic parts, as illustrated in Figure 1.2, that we col-
lectively refer to as the architecture of the computer. It is important
for the programmer to understand this simple yet powerful structure
because it has a direct relationship to how we program the machine.

The control unit orchestrates the passage of data between the other
units of the machine. It is the control unit that interprets the instruc-
tions of the program. When we direct a machine to do something,
we are telling the control unit what we want done. Calculations and
data manipulations occur in the arithmetic logic unit (ALU). Results of
calculations performed in the ALU can be used by the control unit
to redirect or change data pathways. In other words, if the result of a
calculation is zero, we may want the computer to do one thing, and
if the result is nonzero we may want the computer to do something
else. It is this decision capability that makes the computer a powerful
tool and distinguishes it from a calculator.

1.3 Binary Numbers

The memory is a storage unit for machine instructions and data.
Think of the memory as a scratch pad. Written onto the pad are
the program instructions followed by the control unit. Part of the
pad is available for jotting down intermediate results or notes about
how the calculations are proceeding. The input unit allows data to
enter the machine from external sources, whereas the output unit
allows the machine to display the results of its computations.

The control unit is constructed in such a way that it accepts binary
data representing coded machine instructions when the machine is
activated. These instructions are made available in the memory. The
instructions are then fetched from memory and executed by the con-
trol unit until a halt instruction is encountered. The instructions can
cause the control unit to input data, read data from memory, output
data, write data to memory, or process data in the ALU. The way that
the machine processes data, the range and format of data that the
machine can handle, and the type of instructions that the machine
can interpret are dependent solely on the machine architecture.

Binary Numbers

Computer data are stored and processed in binary, or base 2, form.
We are familiar with the base 10 system primarily because we each
typically have ten fingers! It should be no surprise that our num-
bering system is based on this count, or radix. To work, a number
system requires a set of unique symbols, and the radix determines
how many symbols are needed. In the base 10 system, we use the
symbols O through 9, a total of ten symbols. As we count, when we
reach the upper limit of the radix, we cross over to the next power
of the radix to represent increasingly larger numbers. You have been
doing this kind of counting for years and have memorized how to
count to very large numbers in the base 10 system. For example, the
number 403 is a shorthand for

4 x10%2+0x 10" + 3 x 10°

An electronic computer does not have ten digits to represent num-
bers with. Instead, it has available only the state of an electrical signal,
which is either on or off, present or absent. Hence, a computer is re-
stricted to a radix two, or binary, numbering system. Some people
panic at the thought of having to learn the binary system. They say,

Introduction

How can just 0 and 1 allow me to count to large numbers? The key
is that counting systems are exponential; they increase in powers
of the radix as the position of the significant digit (a fancy way of
saying the digit we are working with) changes. The digit 4 in 403
has greater significance than the digit 3 because it is a factor of 100,
whereas the 3 is a factor of 1. Now try to put the same reasoning to
work to understand binary numbers.

The number 403 in binary is 110010011,. The binary system is
not as compact or efficient as the decimal system because the radix
is only one-fifth as large. Nevertheless, we can represent very large
numbers with the binary ranges found in modern computers. Note
that we will use a subscript to indicate a radix of other than 10; oth-
erwise, we might interpret the binary number above as 110,010,011!
Expanding the binary version of 403 as we did above yields

I1x284+1x274+0x2°40x25+1x24+0x2340x22+1x 21 +1x2°

To simplify this expression, we have 256 + 128 + 16 + 2 + 1 = 403.
The system may appear alien to you because we are so accustomed
to the decimal system. If you had spent your early years learning
binary instead of decimal, you would quickly and easily interpret
binary numbers on inspection - as von Neumann is reported to have
been able to do! As it is, binary numbers are easy to use because the
powers of two simply double as the exponents increase, 1 - 2 —
4 — 8, etc. We call the place, or power, in the decimal system a
digit. In computing, we call each place in a binary number a binary
digit, or bit, for short. The conversion of decimal numbers to binary
is complicated because it involves repeated divisions of 2, but the
conversion of binary to decimal is, as seen in the example above,
very straightforward.

The size of binary numbers in computers varies according to the
architecture and the computer languages used. As a result, several
terms are used to describe binary numbers. A group of bits is called a
word. Words can have varying lengths; however, 8-bit words have a
special name, the byte. Occasionally one hears the term nibble (or
nybble) for a 4-bit word, or half-byte. A byte of data can represent
decimal numbers from O to 255, as shown in Table 1.1. The number
of bits in a word tells you how many numbers it can represent: just
take two to the power equal to the number of bits. Hence, a byte can
represent 28 = 256 numbers. The maximum number represented,

1.3 Binary Numbers

Table 1.1 Data Byte
Representation in Decimal

and Binary.

Decimal Binary
0 — 000000002
1 — 00000001,
2 - 00000010,
126 — 01111110,
127 — 01111111,
128 — 100000002
254 - 111111109
255 — 11111111,

however, will be one less to account for the zero at the beginning of
the sequence: 0,1, 2, ..., 254, 255.

Computers generally express input and output data as decimal
numbers as well as letters that correspond to written language. The
internal representation, however, is binary. More extensive interpre-
tation of binary data to express words and decimal numbers will be
discussed in later chapters of this book. In all cases, the computer
has specific and clearly defined mechanisms of interpretation that
are very important to the engineer if data analysis pitfalls are to be
avoided. It is for this reason that you must become familiar with the
binary representation of numbers.

When we speak of very large numbers of bytes (such as are found
in memory systems, disk drives, and communications channels), we
use a set of abbreviations listed in Table 1.2. If we have 1,024 bytes,
then we say we have 1 K bytes (pronounced one-kay bytes). An easy
way to remember the exact value of the notation is to multiply the
number of K bytes by 1,024. For example, 64 K is just 64 x 1,024 =
65,536. When we reach 1,048,576 bytes, we say one megabyte, and
so on. Higher numbers follow the International System (SI) prefixes
(giga, tera, etc.). Because this convention is also used when describing
amounts of bits or words instead of bytes, be careful of the context.

10

Introduction

Table 1.2 Abbreviated
Notation for Large Powers of 2.

Power Number Notation
10 1,024 1K
11 2,048 2K
12 4,096 4K
13 8,192 8K
14 16,384 16 K
15 32,768 32K
16 65,536 64 K
17 131,072 128 K
18 262,144 256 K
19 524,288 512K
20 1,048,576 1M

Problem-Oriented Language
(C & Fortran)

l Assembly Language]

|

I Microprogram

{

| Digital Logic \

D

Figure 1.3 Virtual
machine hierarchy.

Virtual Machine Hierarchy

Modern computers exhibit a structure that is useful in the study
of how programming relates to real-world problems and to the ar-
chitecture of the computer. This structure is called the virtual ma-
chine hierarchy and is illustrated in Figure 1.3. What we mean by
a virtual machine is that at each level a machine is defined with
all of the features of a von Neumann architecture (see Figure 1.2).
Whether or not this machine exists as hardware or software is unim-
portant — we are only interested in the behavior of the machine at
this point. At the bottom of the hierarchy is the digital logic level.

1.4 Virtual Machine Hierarchy

At this level, the electronic circuits that perform the logic necessary
to generate computations are found. Recall that the computer works
with binary information. An entire algebra is defined around binary
quantities and is called Boolean algebra after the English mathe-
matician Robert Boole (1815-1864). Using electronics that sense on
and off conditions, this algebra is implemented as the fundamen-
tal control and computational structure of the modern digital com-
puter.

Machine code is the term used to describe the binary coded in-
structions that are executed directly by the digital logic. The program
that implements these instructions is known as a microprogram.
Users do not have access to the microprogram, for the machine de-
signers determine how many codes the processor will respond to
as well as what the codes will do during execution of the program
developed from them. These codes are called the processor instruc-
tion set, and they are very enigmatic to anyone but the machine
designers. As a consequence, an assembly language is provided to
simplify the programming of a processor at this level. Assembly lan-
guages are unique to a processor class, and manufacturers try to make
the assembly codes of sequential processor models compatible with
earlier processors in the series. Nevertheless, the assembly programs
of one processor will not run on a processor outside the processor
class. Two examples of this are the Motorola 68000 series processors
(68000, 68010, 68020, 68030, and 68040) and the Intel 80 x 86 series
(80286, 80386, 80486, 80586 — Pentium). Programs written in 68000
code will run on the 68040, and programs written in 80286 code will
run on a Pentium (80586), but 68xxx code of any kind will not run
on any of the 80 x 86 series processors. To put this difference into
perspective, the Apple Macintosh uses Motorola processors, whereas
the personal computer, or PC, uses Intel processors.

The assembly language program is assembled by an assembler,
which is just a program for converting from assembly code to ma-
chine code. The code produced by the assembler is called an object
code and must be linked to other codes to be useful. The linking
process is accomplished by a linker or loader program. After linking,
the program becomes an application, or user-oriented program, that
performs a useful task. The application is what we are interested in
programming or using.

At the highest level of the hierarchy, the problem-oriented lan-
guage level may be used instead of, or in conjunction with, the

1

12

Introduction

assembler to produce an application. This is generally the preferred
approach because the machine can be instructed in an easy-to-under-
stand language. The C and Fortran computer languages are examples
of problem-oriented languages. Fortran was designed to make the
programming of mathematical formulas easy. The word Fortran is a
conjunctive acronym for Formula Translation. The C language was
developed to write operating systems. An operating system (OS) is
a special application that manages the resources of a computer sys-
tem. Because of the size and complexity of most operating systems,
it is best to write them in assembly language for reasons of efficiency
and size. However, a problem arises when one wishes to port, or
transfer, an OS from one class of computer to another. If the OS
is written in assembly language, then it must be rewritten for each
computet it is to run on. This is always an expensive, laborious, and
time-consuming task. The C computer language was originally de-
veloped to write operating systems and to allow the easy transfer of
those operating systems from machine to machine. For this reason
C is very similar to assembly language, particularly in the ability to
manipulate memory. Because of the efficiency, speed, and simplicity
of the C language, it has become a dominant player in engineering
programming.

Problem-oriented languages are implemented by a compiler,
which is a computer program that generates an application from
a program written in the problem-oriented language. The compiler
often includes the linking and loading functions that make applica-
tion programming all the more simple. Most modern compilers are
written in C, and major parts of C compilers are also written in C.
At some point, of course, the recursion must end. Because the basic
compiler functions are written in assembly language, the compiler
becomes unique to a processor or processor class. Typically, the first
compiler to become available after a new processor is designed is the
C compiler. This facilitates the porting of software from one proces-
sor to another, and of all computer languages, C is one of the most
portable.

As one moves up in the virtual machine hierarchy, there is an
increase in abstraction from what is actually happening down at the
digital logic level. Recall that the digital logic level is electronic, and
the speed and efficiency of computation is restricted only by the
technology used to build the hardware. For example, a fast 8-bit

1.5 Register-Memory-ALU Transfer System

machine can multiply as quickly as a slow 16-bit machine. At the
top of the hierarchy one rarely cares about the details of what is hap-
pening down below. Nevertheless, if errors are made at lower levels,
they will propagate to the higher levels and, in some cases, be very
difficult to detect. This fact was brought home when floating point
mathematical errors were discovered in the early releases of the In-
tel Pentium processor. The errors were noticed by scientists using
the processor to perform complex simulations and went unnoticed
by the general public until the errors were discussed by the popular
media.

Register-Memory-ALU Transfer System

Memory in a computer is described in terms of binary words, and
a word can be any number of bits. Recall that the size of a word is
strictly determined by the computer architecture. Also recall that a
byte is a term given to an 8-bit word. The smallest unit of memory
in a processor is called a register, which consists of a single word of
very fast memory in the control unit. The number of registers and
the number of bits that the registers can hold are dependent on the
processor. For example, a 16-bit processor has 16-bit registers that can
process 2 bytes of data at one time. Figure 1.4 shows how a register
may be depicted graphically; the register is 8-bits (1-byte) wide and
contains the number 195.

Registers are typically designated by letters, such as A, B, C, and so
forth. They are used at the microprogram and assembly language lev-
els and occasionally at the problem-oriented language level.
Modern processors will have between sixteen and thirty-two regis-
ters available. Assembly language programs consist of instructions
called mnemonics, and these programs specify actions to be taken
by the processor at the register level. Most modern compilers, partic-
ularly C compilers, allow assembly language to be inserted into the

Lifrfojofofofifr]

Figure 1.4 8-bit
(one-byte) register with
binary value

1100011, = 195.

13

14

Introduction

Address Cell
0000000000 | 10101010
0000000001 | 00011000
0000000010 | 01001100
0000000011 | 00001111
0000000100 (11011110
0000000101 | 00110101
0000000110 | 00111101
0000000111 | 11110111

1111111111 100100101

Figure 1.5 1K
memory of 8-bit
(one-byte) cells.

high-level program when optimum speed or efficiency is desired. A
typical assembly language program might look as follows:

LOAD A, MEM1 ;Read data from memory to registers A and B
LOAD B, MEM2
ADD A,B ;Add contents of Ato B

LOAD CA ;put result in C

The main memory of a computer is called a random-access mem-
ory (RAM). The size of this memory is anywhere from 1 K to 128 M
bytes, depending on the size and sophistication of the computer sys-
tem. The main memory is used for program and data storage, al-
though secondary memory such as disk and tape play an important
role in program and data storage. The main memory is arranged as a
set of cells that contain the actual information being stored. These
cells are accessed by a binary word that identifies the cell address,
or location, in memory. Figure 1.5 shows the arrangement of a 1 K
(1,024 bytes) memory.

The memory of Figure 1.5 illustrates the difference between the
two binary numbers used in memory systems. In this case, a 10-bit
number is used to determine the address. The range of addresses is
then 0000000000, (0) to 11111111115 (1023), or 1,024 cells. Each

1.5 Register-Memory-ALU Transfer System

cell contains 8 bits of data or a binary number that can represent 0
through 255. Note how the addresses count up from zero, although
the cells appear to contain random values. The addresses in memory
are sequential like the address numbers on houses on a street. Each
house will contain a different family or individual in the same way
that each cell contains a different byte of binary data.

The control unit of the computer interprets the data in the cell
as either an instruction to be followed or an item of data to be pro-
cessed. How and when this takes place is beyond the scope of this
book; however, it is important for the engineer to understand that
binary data are moved from the main memory to and from the regis-
ters and also to and from input/output (I/O) devices. When variables
are declared in the user program, they are represented by memory lo-
cations. The interpretation of the variables and the data they contain
is dependent on the programming language used.

Numerical calculation and symbolic decision functions take place
in the ALU under the direction of the control unit. For example, the
control unit, using binary codes (instructions) fetched from mem-
ory, can command the ALU to add the values contained in two reg-
isters and place the result in a third register. The results may then be
written to the main memory for access at a later time or outputted
to a device. This structure is illustrated in the two-register system
shown in Figure 1.6. The ALU is capable of addition and subtrac-
tion, and combinations of these operations lead to multiplication
and division. The computer program specifies when and where data
are transferred (the binary numbers) and what operations the ALU
performs on the data. For example, the data in Register A can be trans-
ferred to an output device (such as a computer screen or printer), or
new data can be brought in from an input device (such as a keyboard

v

Register A

[
Output Device <J \

ALU

Figure 1.6 Register-memory-ALU transfer
system.

Register B

Input Device

Memory Cell

15

Introduction

or mouse). Because data can also be stored and retrieved from mem-
ory, the machine is capable of remembering sequences of complex
calculations.

All digital computers possess this fundamental architecture, and
you can readily see that it is a von Neumann machine. Comput-
ers differ only in the number of registers they possess, the amount
of data (size of the binary word) that the registers can hold, the
amount of memory that they can access, and the speed at which
the transfer operations take place. In the programming techniques
discussed in this book, we will replace the register with a variable and
the ALU with an arithmetic or logical operator. Other than this, the
basic concepts of the register-memory-ALU transfer will remain the
same.

REVIEW WORDS

16

address

algorithm
analytical engine
application
architecture
arithmetic logic unit (ALU)
assembler

assembly language
byte

cells

compiler

control unit
difference engine
Fortran

high-level language
linker

loader

machine code
memory
mnemonics

nibble

object code
operating system (OS)

Exercises

problem-oriented language
program

radix

register

von Neumann machine
word

EXERCISES

1.

Convert the following binary numbers to decimal form:
0101010, 1111110011002, 100000000000,

How many memory cells does a 4-Kbyte memory contain?

How many memory cells does a 1-gigabyte memory contain?
(Hint: giga is the prefix for billion, and a gigabyte must be a power
of 2.)

Consider the addition of two decimal numbers:
28 one’s place > 8 +2=0carry 1

+12 ten’splace > 2+1=3+carry =4
40

Now use the same logic to compute the addition of two binary
numbers as follows:

11100,
+01100,

Consider the architecture of the three-register machine shown
in Figure 1.6. Assume that a language exists with the following
instructions and their meanings:

CP A,B -- copy the contents of register A to B
CP B,A -- copy the contents of register B to A
CP A,C -- copy the contents of register A to C
CP C,A -- copy the contents of register C to A
ADD -- add contents of A to B; leave result
in A

SUB -- subtract B from A; leave result in A
INP -- input a value to register A

ouT -- output a value from register A

17

Introduction

A program in this language to add two numbers might be as
follows:

INP
CP A,B
INP
ADD
ouT

Write a program in this language to perform the following com-
putation and output the value of X:

X=5+3-2

Assume that the numbers are inputted sequentially each time the
INP instruction is used. Do you see a relationship between the
way a simple calculator works and this programming language?

6. Consider a set of wooden disks that might be used to construct a
tower such as in Figure E1.1. Write a tower construction program
in the spirit of the burger construction program in Section 1.2.

7. 1f the tower of disks is constrained to move between three posts
according to a set of rules, we now have the “Towers of Hanoi”
puzzle. Figure E1.2 illustrates the arrangement of the disks and

Figure E1.1

Figure E1.2

Exercises

posts. The problem is to move the disks from post number one
to post number three under the following conditions: 1. Only
one disk may be moved at a time. 2. A larger disk may not be
placed on a smaller disk. Write a tower construction program
in the spirit of the burger construction program in Section 1.2.
Hint: A step in the program can ask a question such as, Are all
the disks moved? If the answer is no, the program can transfer
to a previous step.

19

20

Computer
Programming

omputer programming is the process by which we instruct

a computer to perform a useful calculation or process. The

computer can easily be described as an idiot savant, a term

used by psychiatry to describe mental conditions in which
individuals are capable of performing incredible feats of memory or
calculation on request but are unable to understand the simplest
activities of daily life. It is important to know that the computer will
do only what it is instructed to do, no more and no less. Computers,
sophisticated as they are, do not possess sentience or self-awareness.
They cannot guess or anticipate what you want them to do; they
simply do as instructed. There is a very old saying “garbage in, garbage
out” that means if you put bad data into a program you can hardly
expect to get good data out. Likewise, if your program is formed badly,
the computer will not correct it for you.

Modern computers are rarely plagued by problems that cause
them not to execute their instructions or to execute their instruc-
tions in a fashion other than that specified - in other words, they
either work or they don’t. If they seem to be acting strangely your
program most likely is at fault. The most difficult task in the pro-
gramming of a computer is the understanding of what the computer
is supposed to do. To help make this task easier, we will examine tech-
niques for describing problems and developing computer solutions.
These techniques are useful regardless of which computer language
you choose to program with.

Problem Solving and Program Development

There are many ways to approach problems. When one tries to solve
problems with a computer, often the process of using the computer

21 Problem Solving and Program Development

to solve the problem is a larger problem than that being solved!
This will become clearer as you begin writing programs. Because pro-
gramming is a very methodical process, one of the most efficient
ways to approach problem solving with a computer is to use a well-
known set of six fundamental problem-solving steps that are listed
below.

State the problem clearly.

®Q

Describe resources, data needed (input), expected
results (output), and the variables required for the
problem.

Work a sample data set by hand.
Develop an algorithm to solve the problem.
Code the algorithm.

@90

Test the code using the edit-compile-run cycle on a
variety of data sets with known resulits.

Possibly the most difficult task in any kind of problem solving
is the first step, that of stating the problem clearly. Not suprisingly,
this step is linked to another aspect of problem solving: determining
what the real problem is. An example of what we mean by this is
illustrated by the following story:

A student and his professor are backpacking in Alaska when a grizzly
bear starts to chase them from a distance. They both start running,
but it’s clear that eventually the bear will catch up with them. The
student takes off his backpack, gets his running shoes out, and starts
putting them on. His professor says, “You can’t outrun the bear, even in
running shoes!” The student replies, “I don’t need to outrun the bear; 1
only have to outrun you!”

from Strategies for Creative Problem Solving
by Fogler and LeBlanc, Prentice Hall, 1995.

The moral of the story is that you should know what your prob-
lem really is. In engineering, the computer is good for solving many
problems, but the two most common are visualization of processes

21

22

Computer Programming

and the computation of design parameters. Of course, the computer
is also good for general data management, word processing func-
tions, and complex games. Throughout this book we will be looking
at how to program and develop problem-solving strategies that uti-
lize the power of the computer as a problem-solving aid. Because this
is a book on programming, we will concentrate more on how to write
a program for a given problem as opposed to trying to figure out how
to solve problems in general. Nevertheless, taking the time to think
over problem strategies is useful in any kind of problem-solving sit-
uation.

The problem-solving steps listed above can be applied to the so-
lution of computing the simple statistics of a set of sample data.
Specifically, we want the mean, standard deviation, and variance
to be computed. The sequence of steps for this problem is as fol-
lows:

State the Problem Clearly

1. Compute the mean, standard deviation, and variance
for a set of sample data

This problem involves statistics, which you may or may not be fa-
miliar with. Statistics is a branch of mathematics that studies the
analysis and interpretation of data. The use of statistics is an es-
sential aspect of engineering and is important to all engineering
fields. The mean of a set of data is just the average value. Engineers
use the mean in many applications to predict the behavior of sys-
tems over time or the expected parameter of a component within
a large group or sample set of components. For example, the num-
ber of stress fractures in a bridge or the resistance values of resis-
tors are statistical quantities. Standard deviation and variance are
measures of dispersion of the data from the mean, or how far the
individual data sample values lie from the average value. Standard
deviation is the square root of the variance and is related to the
shape of a normal curve. The variance is the sum of the squared
differences of each datum from the mean and can therefore tell
us how broad, or dispersed, the data samples are from the average
value.

2.1 Problem Solving and Program Development

Describe Resources, Data Needed (Input), Expected
Results (Output), and the Variables Required
for the Problem

2. The formulas for mean, standard deviation, and
variance can be found in any introductory statistics
text and in many engineering reference and text books.
The formulas are as follows:

Mean formula:
5
p=—=> d
N =
Standard deviation:

/o2

Variance:
»_ 1 i 2
o°=—=> (di—n
N=

For our example, we can produce statistics on the percentages of
humans over 65 years old (in 1950) living in the Sunbelt. This sort
of data can be found in almanacs and is given below:

AL-6.5 AK-7.8 FL-8.6 LA-6.6 NM-4.9
AZ-59 CA-85 GA-64 MS-7.0 TX-6.7

These data are the input to our algorithm. Each Sunbelt state (Al-
abama, Arkansas, Florida, Louisiana, New Mexico, Arizona, Califor-
nia, Georgia, Mississippi, and Texas) has a value associated with it that
represents the percentage of people over 65 living in the state in 1950.
The computer will only need this value rather than the information
that the value represents a percentage of people or that it is associated
with a state. These aspects of the data have no explicit relationship to
the statistics. We can call the input variable d, the sample data, just as
itis in the mean formula. Note that this variable has a subscript i that
indicates a range of samples up to N. These will be specified as inter-
mediate variables to be used by the algorithm. The outputs of the pro-
gram will be the mean (the average of data), variance (the deviation

23

Computer Programming

from average), and standard deviation (the measure of dispersion,
the root of the variance). The output variables, from the formulas,
are u, o, and o2. Because neither C nor Fortran can use Greek letters,
we will have to use different names for these variables.

® Wwork a Sample Data Set by Hand

3. Using a calculator, we apply the formulas using the
data to get the following results:

(sum percentages)

6.54+59+78+85+86+644+66+7.0+49+6.7=068.9

(divide by number of states to get mean)

68.9/10 = 6.89

(use formula to compute variance)

(1/10)((6.5 — 6.89)% + (5.9 — 6.89)? + (7.8 — 6.89)% + (8.5 — 6.89)>
+ (8.6 — 6.89)% + (6.4 — 6.89)> + (6.6 — 6.89)% + (7.0 — 6.89)>

+ (4.9 — 6.89)% + (6.7 — 6.89)%) = 1.07

(compute standard deviation from square root of variance)

v/1.07 =1.03

v/ We perform this step in order to have results to check the

computer with after we program it. You may have heard the
expression: “It was lost in the translation.” As with natural
languages (what we use to communicate with each other),
this is also true for computer programs. We will examine
errors in more detail later, but it is important to remember
that the computer will do whatever you tell it to do. In
other words, even though your instructions may be in a
form understandable to the machine, what you told it to do
may not result in a correct and accurate answer! Therefore,
always check the computer results against your own results.

24

This step is often misunderstood. It may seem incongruous with the
problem-solving process to work the problem in order to solve it.
The real problem is not solving for simple statistics but rather the

2.1 Problem Solving and Program Development

development of a computer program to solve for the statistics. Once
the program is written, any set of data can be inputted, and the
statistics will be produced. For our example, we used ten samples.
This number is easily processed using the simplest of hand calcula-
tors; however, once the program has been written we could develop
statistics on data sets with thousands of elements such as the num-
ber of resistors produced by a factory in a few minutes. This would
hardly be the kind of calculating that we would want to have to do
by hand. What is important is that we check our algorithm against
known data so that we can also check the computer output to verify
that it is correct.

Develop an Algorithm to Solve the Problem

4, This is best done with either a flowchart (Sec. 2.3) or
pseudocode (Sec. 2.4)

Figure 2.1 is a flowchart for the statistics problem, and Figure 2.2
shows a pseudocode representation. Examine these now, but don’t
worry if they are not clear at this point. What is important is that the
computer does not comprehend human speech or writing (i.e., nat-
ural language). A flowchart or pseudocode representation allows us
to organize the set of steps, the algorithm, that we will later translate
into the computer program. This translation process is called cod-
ing, and the program is called the code. The term is a carryover from
when computers were programmed in binary before higher level lan-
guages were invented. Programs were indecipherable to anyone but
the programmer.

Note that in the flowchart and the pseudocode representations
of the algorithm we have defined variables using words in upper-
case. Variables are named objects that hold data, or values, just like
the variables that we use in algebraic equations. Each computer lan-
guage has rules that restrict how variables are defined and used. Vari-
ables can contain data other than numerical information, such as
text strings and special symbols, and there are also different classes
of numerical data.

The variables defined in both the flowchart and the pseudocode
are the same. The variable names are called labels, and you should
choose labels that are consistent with the meaning of the data that
they hold. You should also choose labels that conform to the restric-
tions dictated by the language that you are programming in. We will

25

Computer Programming

Define MEAN, NSAMPLES, SAMPLE. VARIANCE.
STANDARD_DEVIATION. |

Y

MEAN =00
I=1

Loop to Get Sample Datﬂ»---m.-.....

26

MEAN = MEAN + SAMPLE

I=1+1

@ no
yes

MEAN = MEAN/NSAMPLES
VARIANCE = 0.0 --~-~~-+Mean Computed at This Stage

Figure 2.1a Flowchart for statistics problem.

discuss this in greater detail later, for the restrictions on labels in C
and Fortran are different. You can get a feel for these differences from
the program illustrations given in the discussion that follows on cod-
ing the algorithm. To summarize, a variable is a placeholder for some
sort of data, and a label is the name given to the variable.

Code the Algorithm
5. The codings for both the Fortran and C language are
shown in Figure 2.3

Note both the similarities and the differences between the two pro-
grams. Both of these programs input the same type of data and will

21 Problem Solving and Program Development

Loop Again to Get Sample Input
Data for Variance SAMPLE

VARIANCE = VARIANCE +
((SAMPLE - MEAN)*(SAMPLE-MEAN))
I=1+1

no

yes

VARIANCE = VARIANCE /NSAMPLES
w-eeeed Variance ’
STANDARD_ DEVIATION = SQRT(VARIANCE) @

Output
MEAN, STANDARD_DEVIATION,
VARIANCE

Figure 2.1b Flowchart for statistics problem.

Define MEAN, NSAMPLES, SAMPLE, VARIANCE,
STANDARD_DEVIATION, I
MEAN = 0.0
loop for I=1 to NSAMPLES

input SAMPLE

MEAN = MEAN + SAMPLE
end loop
VARIANCE = 0.0
MEAN = MEAN / NSAMPLES
loop for I=1 to NSAMPLES

input SAMPLE

VARIANCE = VARIANCE +

((SAMPLE - MEAN)*(SAMPLE - MEAN))

end loop
VARIANCE = VARIANCE/NSAMPLES
STANDARD_DEVIATION = SQRT(VARIANCE)
output MEAN, VARIANCE, STANDARD_DEVIATION

Figure 2.2 Pseudocode for statistics problem.

27

Computer Programming

Fortran C
PROGRAM STATS main(){
INTEGER COUNT, I int count,i;
REAL DPT,MEAN, VAR, STDDEV float mean,var,dp,stddev;
MEAN = 0.0 mean = 0.0;
VAR = 0.0 var = 0.0;
COUNT = 10 count = 10;
DO 1 I=1,COUNT for(i=1; i<= count;++i){
READ* ,DPT scanf ("3f",&dpt);
1 MEAN = MEAN + DPT mean = mean + dpt;
}

MEAN = MEAN/COUNT

DO 2 I=1,COUNT

mean = mean/count;

READ* ,DPT for(i=1; i<= count;++i){
2 VAR=VAR+ (MEAN-DPT) **2 scanf ("$f", &dpt);
var = var +
VAR = VAR/COUNT ((meandpt) * (mean-dpt));
STDDEV = SQRT (VAR) }
PRINT*,MEAN, VAR, STDDEV var = var/count;
stddev = sgrt(var);
STOP
END printf ("$f %f 2f\n",

28

mean,var, stddev);

}

Figure 2.3 Fortran and C codings for the statistics program.

output identical results. Because Fortran and C compilers are avail-
able on almost all modern computers, you could generate programs
on virtually any machine you wanted in either language! For now,
just note the similarities and differences between the two and try to
see how the flowchart and pseudocode map to both programs.

Test the Code Using the Edit-Compile-Run Cycleon a
Variety of Data Sets with Known Results

Although flowcharting and pseudocoding can be performed off-line
(without the computer), testing the code involves use of the ma-
chine itself. When you are ready to use the computer to write your
own programs, you will need access to an editor, a compiler, and a
linker-loader program. All of these functions may be combined in

2.2 The Edit-Compile-Run Cycle

a development environment. Development environments are en-
sembles of computer software sold as a package. You should have
access to such a package, or to the individual programs, before con-
tinuing with Chapter 3.

v/ When beginning to program, it is difficult to “think like
a computer,” but this is an important aspect of program-
ming. Many programmers jump right in and compose their
programs at the keyboard. This practice may seem expedi-
ent, but it can lead to excess errors (bugs). The optimal ap-
proach is to work out a solution first, work the algorithm in
pseudocode or with a flowchart, and then go to the com-
puter. This method helps you develop a feel for how the
computer actually processes data. As you get better through
practice, you will find that writing programs comes natu-
rally to you.

The Edit-Compile-Run Cycle

The edit-compile-tun cycle entails the actual development of the
computer program from the algorithm. You should now understand
that a computer program is a set of instructions that directs a com-
puter to do something. How to get the computer to understand what
to do is a complex process of translation from the problem that you
want to solve into a language that the computer understands. The
languages that we will explore in this book are C and Fortran. These
languages will be discussed in greater depth later, but for now we need
to explore the mechanics of getting the program into the computer
and processed into a form that it understands.

From the previous section we developed a strategy for problem
solving and saw what a typical Fortran and C program looks like.
Examine the programs again and note that neither of them contains
symbols that we would not find on a standard typewriter or computer
keyboard. This is important because we have to type the program into
the computer before it is able to process the program. The typing of
the program is done using an editor, which is a special program
that makes the computer work like a typewriter. The editor allows

29

30

Computer Programming

you to type words onto the computer screen instead of on paper.
Editors vary in complexity and sophistication. If the editor program is
capable of special formatting, italic type, boldface, and the inclusion
of graphics and images, then it is called a word processor. The output
of the editor must be what is called an American Standard Code for
Information Interchange (ASCII) or text-only file. In Chapter 3 we
will define ASCII in greater detail. For now, think of ASCII in terms
of the symbols on a keyboard. A file on a computer is nothing more
than a set of data stored in binary form on the mass storage unit of
the computer. On modern computers, disk drives are used for mass
storage, and the files stored on them are managed by the operating
system. Recall that the operating system is a special application that
manages the resources of the computer. Files on a computer, like
files in an office, require special handling if data are to be managed
efficiently. Each file is given a name and a specific location within
the file system. Collections of files can be placed together in a folder,
as if in an office, and the folder is given a name. Folders can be
grouped into other folders or volumes. Volumes are like file drawers
in a file cabinet. Different operating systems have different ways of
representing the hierarchy of files, folders, and volumes. Some do the
organization graphically to the point that files and folders have small
graphic pictures on the screen (called icons) that look like paper files
and folders.

The files created by the text editor contain data that represent
the coding of alphanumeric characters (ASCII), and these files are
processed by the compiler. Character codes that can be displayed as
letters or numbers are called printable. When you save a program
file that the editor creates, it will prompt you for a file name. The
name must conform to the operating system rules for file names.
You should choose names that correspond to the type of data the
file contains. We call a file that contains a computer program written
in a high-level language a source code file, or just source. In most
systems, files with a suffix of .c contain a C program source code,
and those files with a suffix of .f contain a Fortran source.

As you type your program into the computer, each character is
stored as a byte of data, and the computer can interpret that byte
in many different ways. In the editing and compiling stage of pro-
gram development, we want the data interpreted as printable char-
acters that represent our program. The compiler will then create an
executable program that can be interpreted by the computer. This

2.2 The Edit-Compile-Run Cycle

program will exist as a file called an executable, or executable mod-
ule, and it consists of binary codes unique to the computer that the
program is run on. The executable can then be run by the com-
puter to output the data required to solve our problem. In some
operating systems, a file name with the suffix .exe indicates an exe-
cutable.

If the compiler does not understand the program that you type in
with the editor, the compiler will tell you that you have a compile-
time error and will terminate compilation. In this case it will not
produce an executable, and you must edit the file to fix the error.
Each programming language has a complex set of rules that must
be followed when writing a program, and these rules are called the
syntax of the language. When you learn a computer language, you
are learning the syntax of that language. If you have ever learned
a human language other than your native tongue, you know that
you study vocabulary and grammar to speak and write the language.
The vocabulary of a computer language is very small in comparison
with human languages. Although it is complex, the syntax which
represents the grammar of a computer language, can easily be mas-
tered in a relatively short time (compared with the time it takes to
learn a human language). Each time a program is written, the pro-
cess is synonymous with the writing of a short story or novel in
which the plot is the algorithm and the characters are the variables.
Typically, compile-time errors are syntax errors and are easily cor-
rected once the proper syntax of the computer language is under-
stood.

Substantially more insidious are the runtime errors, or errors that
occur when the computer tries to execute, or run, the compiled pro-
gram. It is possible to have a program that does not violate syntax
rules and is subsequently compiled into an executable but yet at-
tempts to perform operations that are illegal. An example of such
an illegal operation is division by zero. To use the short story anal-
ogy once more, it is possible to write a very poor and difficult-to-
understand story without violating any of the grammar rules of a
language. We will examine sources of both compile-time and run-
time errors in later chapters.

The process of edit-compile-run can sometimes seem like an in-
finite cycle, as illustrated by the graphic in Figure 2.4. Nevertheless,
the cycle is one that all must encounter while developing computer
programs. The process is expedited somewhat by use of an inte-

31

32

Computer Programming

Figure 2.4 Edit-compile-run cycle.

grated development environment. The development environment
combines the editor and compiler functions into one program and
includes the capability to instruct the operating system to run pro-
grams that have been compiled correctly. A development environ-
ment allows for rapid programming and reduces the time required
to loop through the edit-compile-run cycle. Most development en-
vironments include debugger programs. A debugger runs a program
in much the same way as an operating system does; however, the
control of program execution is directly supervised by the user. De-
buggers allow you to step through a program and examine or modify
variables, and thus problems or errors can be detected dynamically.

Flowcharts

Flowcharting is a simple graphical method of representing program
sequences and algorithms using a standard set of symbols to repre-
sent program flow. The International Organization for Standardiza-
tion (ISO) compiled a set of symbols that would be standardized for
computer flowcharting as the Recommendation R1028 Flowchart Sym-
bols for Information Processing in 1970. This symbology conformed to
the American National Standards Institute (ANSI) flowchart symbols.
A subset of these symbols and their meanings are reproduced below.

2.3 Flowcharts

ISO/ANSI FLOWCHART SYMBOLS

Process: A defined operation, or set of
operations, causing a change in value,
form, or location of information.

Descriptive clarification or comment.
comment(s) Dashed line extends to symbols as
appropriate.

Input/output: A general I/O function.

Connector: Exit to or entry from an-
other part of the chart.
Arrowheads and Flowlines: Flowlines

< > \ link symbols and illustrate data flow.
v / Add arrowheads to paths when linkage

is not left-to-right or top-to-bottom.

Decision: Allows for program flow
control. When a path enters the de-
cision symbol, a question is asked
about the state of a variable, and pro-

gram flow proceeds on the basis of the

A

response.

Predefined Process: Used for subrou-
tine or function call. Process is defined
on another flowchart.

Document: Output data to printer.

Computer Programming

ISO/ANSI FLOWCHART SYMBOLS (cont.)

N\O L

34

Off-Line Storage: Results of I/O are
stored to disk, tape, etc.

Display: Output data to monitor.

Keyboard: Input data from key-
board.

Flowcharting is useful because it shows the behavior of the algo-
rithm in a visual way. Engineers tend to prefer flowcharting as an
algorithm representation because it mirrors the flow diagrams often
used to describe physical systems such as those found in controls,
fluid dynamics, communications, and manufacturing. To get an idea
of how to construct a flowchart, consider an algorithm to decide
whether to round a number, stored in the variable X, up or down.
For simplicity, we will assume that any variable has only one sig-
nificant digit after the decimal place and that, if a division of the
variable is made, the least significant digits will be truncated or cut
off. In other words, if X is 13.0, then X divided by 8 will be 1.6, not
1.625.

To do the rounding, if the fractional part is greater than or equal
to 5, we will want to round X up to the next whole number. If the
fractional part is less than 5, we will want to round down. If X is
3.2, then we want 3.0. If X is 5.8, we want 6. How can we do this
arithmetically? Well, if we divide X by 10 and then multiply by ten,
we will get the whole part of X. Say Xis 3.2. Divide by 10. The variable
X is now 0.3 (recall the truncation that takes place). Now multiply X
by 10; X is now 3.0. The flowchart for this is as follows:

X=32
F=X/10
X =X*10

Note that the flowchart is just a process box. Also note that we do
three things to the X variable. We set the value of X equal to 3.2.
This is called assignment because we are assigning a value to the
variable. The assignment X = 3.2 is called a statement. We then

2.3 Flowcharts

set the value of X equal to the current value (3.2) divided by 10.
This computation yields the value 0.32, but we said that a variable
would only hold one significant digit; thus the 2 is lost, and the
value of X at this point is 0.3. We then multiply the current value
of X by 10 and make that result the new value of X. This would
be fine, but we have lost the original value of X. We need to de-
termine what the fractional part of X was in order to determine
whether to round up or down. For this, we will introduce a variable
F to hold the fractional part of X. Consider the following process
box:

X=33 /,—-——F=0.3
F=3 _] F=X/10 F=0.2
(\F=Fx10
F=X_F

When the four assignments are complete, the value of X will be 3.2,
and the value of F will be 0.2. Convince yourself that this is what
is processed (remember what happens to all digits beyond the first
after the decimal place).

To do the rounding, we have to ask the question, Is the value of
F greater than or equal to 0.5? If it is, then we need to round X up by
one; if not, we need to subtract F. To ask a question in a flowchart,
a decision diamond is used. For this problem, it might look like the
following:

FALSE TRUE

What the box does is ask the question, Is F greater than or equal to
0.5? If the answer is yes, we say that the statement F >= 0.5 is true.
If the answer is no, we say that the statement is false. If true, then
we need to round X up. This can be accomplished by subtracting F
from X and then adding one. If the statement is false, then we just
need to subtract F from X.

The full flowchart for the problem is given in Figure 2.5. Do you
notice any redundancy in the algorithm? The flowchart makes it
easy to see where program efficiencies can be gained. For example,

35

Ccomputer Programming

X=32
F =X/10
F=X*10
F=X-F

Round Down f---+e=--- A N e Round Up
Rowd Dows] ” =

Yes

Figure 2.5 Flowchart for rounding algorithm.

we could combine the last two assignments in the first process block
to be F = X — F*10. We cannot combine all three assignments of F.
Do you see why? The first assignment presupposes that a truncation
will take place that will eliminate all but the first significant digit
after the decimal. A further efficiency can be gained by subtracting
F from X prior to the decision diamond, for that operation will take
place regardless of the decision outcome. If the subtraction is moved,
then the false side of the decision will do nothing.

v/ Flowcharts graphically depict the flow of information.

Therefore, try to develop a visual representation of infor-
mation flow through your algorithm.

36

2.4 Pseudocode

Pseudocode

Pseudocode, or false code, is a simple, structured representation of
a program sequence or algorithm that is not intended to be run on
a machine. The key to good pseudocode is the use of clear, easily
understood phrasing. Pseudocode is, loosely, a flowchart without the
graphics.

There are no strict rules to pseudocode, but the simpler the state-
ments the better. A list of basic pseudocode terms is as follows:

DEFINE used to specify variables

LOOP starts a looping or iterating activity

END LOOP marks end of the loop

IF, THEN, ELSE defines a conditional
INPUT input of data
OUTPUT output of data

Whether to use pseudocode or flowcharting is an individual pref-
erence. The advantage of flowcharting is that you can easily visualize
the flow of the program, whereas the downside is the tediousness of
construction. Pseudocode has the distinct advantages of being easier
to write down and faster to convert into the computer program. The
disadvantage is that pseudocode is more difficult to analyze when
problems arise in the algorithm. For some algorithms the pseudocode
is very complex. You should practice and use both methods while you
are learning programming skills.

The pseudocode for the rounding example might be the follow-

ing:
Start
X=32
F=X/10
F=X-X*10
X=X-F
if F is greater than or equal to 0.5 then X =X + 1
Stop

Note that the efficiencies discussed earlier have been added. Also,
the if statement could have been written more compactly as if F >=
0.5thenX = X+ 1.

37

38

Computer Programming

Program Structure

An analogy presented earlier said that a computer program is like
a story or essay. Like good writing, a computer program must have
structure. There must be a beginning, or prologue, a body, and an
ending. Like any good piece of writing, these pieces should fit to-
gether well. Examine the structure of a C program to output the words
Hello World!, as shown in Figure 2.6. The bold highlighted items are
elements of the program that must be present; thus, you can see that
the simplest C program will be just main(){ }. This program will be
compiled and run, but it will not do anything because no program
statements have been made. The statement is an instruction to the
computer to do something, and it is perfectly fine for the computer to
do nothing, although it is not very logical. Conversely, if any part of
main(){ } is missing from a program, it will not be compiled, because
this expression represents the fundamental structure of the C pro-
gram.

The first line of the program in Figure 2.6, #include <stdio.h>, is
what is known as a compiler directive and is optional in many pro-
grams. A program called the C Preprocessor evaluates the compiler
directives before actual compilation. Compiler directives begin with
a pound-sign character (#) in the first column. The include directive
instructs the compiler to add the contents of a file to the source being
compiled (in this case, the file “stdlib.h”). This file contains informa-
tion about the standard library that must be included to perform I/O
operations. Consult Appendix D for more in-depth discussion of the
C preprocessor and a sampling of the various compiler directives that
it recognizes.

The second line of the program is a comment, which is a note that
the programmer puts in the program to describe what the program is
doing. The C comments begin with /* and end with */. Any characters

#include <stdio.h> «——— |Include File
/* 'Hello world!" Program */ e——

main
:

printf("Hello World\n"); Program

exit(0); :

Statements

}
Figure 2.6 C program structure.

2.5 Program Structure

between these symbols are ignored by the compiler. This feature al-
lows the programmer to add annotations to help in the understand-
ing of the program.

v/ How do I know when I have commented my program ad-
equately? Many beginning programmers ask this question,
and the answer is not straightforward. However, two rules
of thumb can be followed that will aid you in commenting
your programs:

[1] Comment so that another person with your level of
programming expertise can understand what the program
is doing.

[2] Comment so that when you read the program you
will be able to understand what you did after a considerable
period has passed!

The body of the program contains statements (printf and exit)
that instruct the computer to send the characters Hello World! to the
console and then exit. The statements, or computer instructions, are
constrained by the syntax of the language being used. We explore the
various kinds of statements in the chapters following this one; how-
ever, it is important to note that a C statement is always followed by a
semicolon (;). The semicolon tells the compiler where the statement
ends; omitting the semicolon will generate compile-time errors.

The structure of a Fortran Hello World! program is shown in Fig-
ure 2.7. From the bold highlighted words we can see that the simplest
Fortran program is just PROGRAM END. In all computer languages,
a program without statements is called a program shell. You can
start with a shell and just add statements until you have a program.
In the case of a C program, you must always be careful to have the
two braces { }, or the compiler will generate errors.

Fortran has an additional restriction that does not apply to C:
the requirement that lines of Fortran code conform to a specific col-
umn placement constraint. This constraint is shown in Figure 2.8,
which illustrates the column fields of a Fortran statement. A ‘C’ in
column 1 of a Fortran statement indicates a comment, and any sub-
sequent characters are ignored. If the statement is not a comment,
columns 1 through 5 are reserved for the statement number. Not all
statements require a number. Any character in column 6 indicates
a continuation of the previous line (i.e., statements requiring more

39

40

Computer Programming

PROGRAM HELLO W <«——— Program

Name
C PROGRAM TO OUTPUT 'Hello World'e
WRITE(5,1000) Program
1000 FORMAT('Hello World!') «——— Stateaments
END
End

Statement

Figure 2.7 Fortran program structure.

col. 1 2 3 4 5 6 7 ¢ o o 72-80

[I |

Optional Comment Field

Columns 7-71 for FORTRAN Statement

Column 6 for Continuation of Statement

-—— Columns 1-5 for Statement Number, 0..99999

~C’ in Column #1 for Comment Line

Figure 2.8 Fortran column restrictions.

space than that allowed in columns 7 to 71). Columns 72 to 80 are
reserved for an optional comment field. The Fortran column restric-
tions are a carryover from the days when Fortran program statements
were punched onto paper cards. Modern Fortran compilers (Fortran-
90, for example) no longer have the column restrictions and use the
“free field” format, like C.

You should now try to edit-compile-run what is called the C
“Hello World!” program. Type the program into your editor exactly
as it is printed in Figure 2.6, being particularly careful to type a
backslash-n (\n) in the printf statement. Save the source file as hello.c.
Your compiler should produce an executable with a different filename,
and if you typed the program exactly as specified, it is unlikely that
you will encounter a compile-time error. Compilers typically will

Exercises

generate an executable file named hello.exe or just hello. To run
your program, type the program filename or click on the program
icon (this will vary depending on the operating system you are us-
ing). If you are using a development environment, you should be
able to run the program from within it.

You may want to experiment with the compiler to see what errors
look like. Leave off the right-brace (}) and try to compile. Try mis-
spelling or capitalizing main. Try leaving off the */ at the end of the
comment. In Chapter 3 we will see how data are specified, variables
are created, and arithmetic and logical statements are formed.

REVIEW WORDS

ASCII

C preprocessor
comment
compile-time error
compiler directive
debugger
development environment
edit-compile-run
editor

executable

file

label

mass storage unit
off-line

program shell
runtime error
source code
statement

syntax error
text-only

variable

EXERCISES

1. List the first four problem-solving steps to solve the following:
A fluid pump curve can be approximated by the following

a1

Computer Programming

equation:
ha=—-122x1073Q% + 164(—0.16Q> + 50)

Over the range 0-175 ft3/min, where Q is in ft*/min and h, is in
ft, a fluid system curve is given by

hf=3.52Q*
How can the operating point be determined?
2. Draw a flowchart for Exercise 1.
3. Write a pseudocode program for Exercise 1.
4. Ohm'’s law is given by the following equation:
E =1IR

where E is the voltage in volts, I is the current in amperes, and
R is the resistance in ohms. Draw a flowchart for an “Ohm’s law
calculator” that allows the user to input any two parameters and
to output the third.

5. Write a pseudocode program for Exercise 4.

6. What compile-time error is generated when the following pro-
gram is compiled?

#include<stdio.h>

main()

{
printf ("Hello World!");
exit (0);

}

What is missing from the program?
7. What type of error occurs when the following is compiled?

#include<stdio.h>
main ()
{
pri("Hello World!");
}

The error is neither compile-time or runtime.

42

Types, Operators,
and Expressions

ommon pitfalls in engineering programming are the failure
to observe type restrictions and the lack of understanding of
operators and expressions with regard to type. This chapter
explores types, operators, and expressions in both Fortran
and C and seeks to compare the two languages and explain how
they each function in this domain. The contrast will foster a deep
understanding of this most critical aspect of programming.
Computer languages are defined in terms of their syntax and their
reserved word list. A reserved word is one that the compiler recog-
nizes as a unique descriptor of the language, and thus the word may
not be used out of the context of a program statement. Fortran uses
many reserved words. Because our interest is in reading Fortran and
not programming it, we will simply identify the words as they appear
in programs. In contrast, C has a very short list of reserved words,
and they should be committed to memory. The C reserved words are
(loosely grouped in order of appearance in the text) as follows:

C Reserved Words

int if return struct
float else void
double for extern union
char do auto typedef
long while static
short break register
unsigned continue

switch
sizeof case

default

goto

43

44

Types, Operators, and Expressions

In C and Fortran, variable names may consist of any combina-
tion of letters and numbers, but they must begin with an alphabetic
character. In C, the underscore (_) is considered to be an alphabetic
character. The length of the name is compiler-dependent, but names
that exceed 32 characters should not be used, for these will compli-
cate the reading and understanding of the program. When discussing
Fortran, we will follow the early conventions of only allowing up-
percase letters. In C, variable names are case sensitive, meaning that
a variable named SLEW_RATE is distinct from the variable named
Slew_Rate. A set of variable names is presented here to clarify this
concept. The names in the left column are valid in C, the names in
the right column are similar to those in the left but are not valid
names and would produce a compile-time error if used. Note that
what makes a neme valid or not can be just a subtle difference, but
invariably it is the use of a number as the first character in the name
or the use of a forbidden character (* and " in the listing).

Valid C Variable Names | Not Valid

X1 1X

x95a 95x

slew_rate slew*rate
PID_control_gain PID”control”gain

In mathematics, we use variables and operators to form expres-
sions. In programming, like mathematics, an operator defines an
operation on a variable or between two variables. An expression is
a combination of variables and operators that forms a result based
on the definitions of the operators and the types of the variables. For
example, the expression 5 + 6 results in the value 11. The expression
is the addition of the integers 5 and 6. We call the computer process-
ing of an expression evaluation. How the expression is evaluated
depends on specific rules of syntax and order of operations. We be-
gin our study of expression evaluation by first defining the different
types of variables possible in C and Fortran programs.

Data Types

Type is a form of classification or grouping of variables. We assign
types to data classes, such as integers or real numbers, and there are

3.1 Data Types

specific rules that govern how the types are utilized in the program.
These rules apply when forming program expressions and statements
and define the results that one obtains when types are mixed. Con-
sider the following three numbers:

5 63 0

Mathematically, we can say that all three of these numbers are
decimals and exist within the span of real numbers. The number 5,
however, is also a member of the integers, as is the zero, whereas 5.3
is a member of the set of real numbers and is not an integer. In mathe-
matics, the context of how the numbers are used indicates to us how
we should interpret them. The computer is no different; however,
the span of interpretation is limited and specific. Furthermore, the
interpretation depends on the type of the variables being used and
the nature of the expressions that the variables and numbers appear
in.

Consider the following mathematical expression:

X=35

We state here that X is equal to 5, and thus when X appears we
may also consider it to be 5. In computer terminology, we say that X
has been assigned the value 5. The equal sign is called the assignment
operator, and this should be distinguished from use of the equal
sign as an equivalence operator as encountered in algebra (meaning
that something is equivalent to something else). To understand this,
consider the following expression:

X=X+5

There are two interpretations: that 5 = 0, an illegal conclusion
based on the rules of arithmetic, or that X is equal to the previous
value of X added to 5 to become a new value of X. The computer fol-
lows the second interpretation because it assigns the value of X + 5
to X, effectively creating a new value for X without solving the alge-
braic expression for a value for X. Section 3.4 discusses assignment
operators in more detail. At that time we will introduce the idea of
the right- and left-hand sides of an assignment expression. For now,
it is enough to understand that the evaluation of the expression on
the right of the assignment operator replaces the value of the variable
to the left of the operator.

45

46

Types, Operators, and Expressions

Something of a dilemma arises when one encounters the follow-
ing sequence:

X=3
X=X+53

Of course, we immediately say, “There is no dilemma, X has
been assigned the value 3 + 5.3, or 8.3!” This conclusion would be
based on our previous discussion in which we saw that the equal
sign meant assignment and not algebraic equivalence. The conclu-
sion is only partially correct. The problem arises with the computer
interpretation of the two expressions (recall that an expression is a
combination of variables and operators). In the C and Fortran com-
puter languages, one must ask what the type of X is. If X is of real
(i.e., floating point) type, then there is no problem, and X is now
assigned the value of 8.3. However, if X is of integer type, then the
newly assigned value will be 8, and information may be lost. The
computer cannot resolve the rational portion of the 5.3 if it is to
keep X as an integer.

When we want to use a variable in a program, we must assign a
label to identify it, and, when programming in C, we must explicitly
declare what type the computer should assign to the variable. There
are four fundamental data types in the C language and six in Fortran.
The C data types are given in the table below:

Type Description Example

int integer; counting numbers ...—2,-1,0,1,2...
float real; floating point numbers 3.1416; —~0.0003
double double-sized reals larger values

char single-byte characters ADb & *

Fortran uses similar typing where INTEGER =* int, REAL = float,
DOUBLE PRECISION = double and CHARACTER = char. Fortran adds
the additional types COMPLEX and LOGICAL. The Fortran LOGICAL
is used to hold a Boolean TRUE or FALSE value. The C equivalent
to a Fortran LOGICAL variable is any variable because C interprets
a Boolean false as a zero value and any other value as true (more
on this in Section 3.3). The Fortran COMPLEX data type has no C

*The symbol = means “is equivalent to.”

3.1 Data Types

main (){
int 1, 3, k;
float x_pos, v.pos;

char ¢;

}

Program 3.1 Declarations.

equivalent; however, in Chapter 6 we will see how complex numbers
can be represented as data structures in C.

The declarations of variables must appear at the beginning of the
program. Consider C Program 3.1, which has a declaration for integer
variables i, j, and k; floating point variables x_pos and y_pos; and a
character variable c. If we try to use variables in the program that are
not declared, the compiler will not recognize them and a compile-
time error will result.

There are three type modifiers in C for integers (long, short, and
unsigned). A long int is used to declare an integer variable with twice
the numerical capacity of an int (see the earlier discussion of float
and double). The short int declares an integer variable with half the
capacity of an int. An unsigned int is a positive only variable and
is often used to represent binary numbers. The numerical capacity
of the variables is dependent on the compiler and the host machine
architecture.

Typically, one encounters the following variable sizes on com-
puter workstations:

Type Size in bytes Numbers represented
short int 2 bytes 216 — 65,536

int 4 bytes 232 — 4,294,967,296
long int 8 bytes 264 — 1.8 x 1019

Note that a signed integer, the default, must use up half of its
number of values represented for the negative numbers and half for
the positive (zero is considered a positive number in this scheme). A
two-byte short int will represent numbers in the range —32,768 —
32,767. An unsigned short int will represent 0 — 65,535. The internal
representation used for signed integers is called two’s complement,

47

48

Types, Operators, and Expressions

and any further discussion of it is beyond the scope of this text.
Nevertheless, to determine the numerical range of an integer variable
you must know the size in bits of the variable and whether or not the
variable is signed or unsigned. If you know the number of bytes in
the variable, then this number can be multiplied by 8 to determine
the number of bits. The total number of values that the variable can
represent is determined by raising 2 to the power of the number of
bits. Thus, if a variable is 2 bytes, it is 16 bits in size. That variable can
represent 216 values, or 65,536 values. If the variable is unsigned, it
can have values in the range of 0 — 65,535 like the short int described
above. If the variable is signed, the range is —32,768 — 32,767 (the
lower, negative value is one-half the total number of representations,
and the upper, positive value is one less to account for the zero). In
Section 3.5 we will introduce the C sizeof() operator and show how
the number of bytes of a variable can be dynamically determined by
the computer from within a C program.

Floating point numbers are represented very differently than in-
tegers, but the discussion of how this is done is beyond the scope
of this text. Nevertheless, it is possible to determine the range of
values, for both float and double variables from the “float.h” and
“limits.h” include files that are supplied with the C compiler. This
topic is explored further in Chapter 5.

A variable declared as char stores a single byte of data. A char
variable stores an integer from —128 to 127, whereas an unsigned
char stores from O to 255. Character variables can be treated like
small integers in arithmetic or logical expressions, or they can store
a single ASCII character, which is a coding scheme for representing
alphanumeric, printing, and control characters with a byte of data.
For example, the character A has the following equivalences:

A= 6519 =411 = 1015 = 01000001,

The computer sees an A as the binary number 01000001,. We
can use either decimal, hexadecimal (base 16), octal (base 8), or a
character constant when working with character variables. Note that
a lowercase a is different from the uppercase:

a=9719= 6116 = 1415 = 01100001,

Fortran uses the reserved word CHARACTER along with a size
value to specify a character variable. For example, the following

3.1 Data Types

declaration would form a Fortran character variable of ten charac-
ters called NAME:

CHARACTER*10 NAME

The 10 following the asterisk specifies the number of characters in
the variable. A C character variable contains a single character value,
whereas a Fortran character variable can represent any number of
characters up to a preset limit of the compiler (typically 32,767).
For C to represent more than one character in a single variable it is
necessary to form a subscripted character variable. The subscripted
character variable is called a string, and we will explore it further in
Chapter 6. The Fortran equivalent of a nonsubscripted C character
variable is shown below for the variable name single:

Fortran declaration C declaration
CHARACTER*1 SINCLE char single;

We can represent constants in a variety of ways in C, and these
are illustrated in Table 3.1. Variables may be initialized to constant
values at declaration time, and Program 3.2 shows the initializations
of variables that were introduced in Program 3.1. Note that the vari-
able k has been left unspecified at program start. We must assume
that it will be given a value later in the program. If it is not given a
value at some point in the program, the compiler will issue a warn-
ing that the variable was never initialized. This occurs often during
program development when variables may be declared but not used
until later programming is accomplished. When this warning appears
after program completion, it may indicate that an extra variable is

Table 3.1 C Constants.

Integers 10 -10 65536 0
Floats 10.2 3.1416 —-10.3295 0.0
Scientific notation? 10.2e10 —10.2e—4 3.18776€23
Character? ‘A ‘a’ ‘$’
Hexadecimal® 0x41 0x61 0xABCD

Octald 0101 0141 01234567

2e or E used to indicate exponent.

bSingle quote ’ used to identify single-character constant.
€0x precedes a hexadecimal constant.

40 precedes an octal constant.

49

50

Types, Operators, and Expressions

main () {
int 1=0, j=-10, k;
float x.pos= 0.0002, y.pos = 3.24e-2;

char c="T';

}

Program 3.2 Initialization of variables.

present that was never used. This may or may not have consequences
for the algorithm, and the unused variable should be removed if it
has no role in the solution of the problem.

The value of the character variable ¢ was initialized to the charac-
ter constant T. The internal representation of this variable will store
the number 84, which is the ASCII code for the letter T (consult the
ASCII tables in Appendix C). Character variables may be treated as
small, one-byte, integer variables. In this fashion, arithmetic opera-
tions can be performed on sequences of letters, as we will see in later
discussions.

Because the use of constants in Fortran will be obvious from the
context of the programs encountered, specific initializations are not
shown.

Arithmetic Operators

There are three primary classes of operators in the C and Fortran lan-
guages: arithmetic, logical, and relational. Arithmetic operators work
with numerical quantities and produce numerical results. The arith-
metic operators for each language are shown in Table 3.2. From the
table you should note that C does not have an exponentiation oper-
ator and that Fortran does not have a modulus operator. Fortran was
developed to code mathematical expressions; hence, the power (ex-
ponentiation) operator is included. The C language was developed
to write computer operating systems in which the modulus is used
heavily in sorting and searching tasks. This does not mean that For-
tran has no modulus or C no exponentiation. Both languages include
functions for these tasks. In Fortran, A modulo B is computed by the
MOD(A,B) function, and in C the pow(x,y) function computes the
power of x to the y. The use of functions is explored in greater detail
in Chapter 5.

3.2 Arithmetic Operators

Table 3.2 Arithmetic Operators.

C Fortran
Addition + Addition +
Subtraction — Subtraction —
Mutltiplication % Multiplication *
Division / Division
Modulus % Exponentiation Kk
\ 4 4 d A=)

Figure 3.1 Overflow.

Because we are working with computers of finite memory, arith-
metic operations are subject to overflow and underflow. Basically
the terms are the same: overflow refers to positive results, and under-
flow to negative. Consider Figure 3.1. Two beakers, each over half full,
are added together in a third: the result is overflow. Now assume we
have three 1-byte unsigned integer variables a, b, and ¢ (we could do
this in a C program by declaring the variables as type char). We know
that these variables can only hold the values O to 255. If we make
a = 128 and b = 128, what happens when we compute ¢ = a + b?
The computer responds with ¢ = 0! This may be easier to see from
the following diagram:

bit | bit bit bit bit bit bit bit bit
8 7 6 5 4 3 2 1 0

a=128 1 0 0 0 0 0 0 0
b =128 1 0 0 0 0 0 0 0
c=256 | 1 0 0 0 0 0 0 0 0

The first column shows the values of the variables in decimal and
the equivalent values in binary, which is how the computer stores
the numbers. Note that ¢ is indeed equal to 256 (28), but our variable

51

Types, Operators, and Expressions

“runs out of bits” and overflows because only 8 bits, bit 0 through
bit 7, are available to the variable. The two bits in the bit 7 position
add, but a binary add of 1+ 1 is not 2: it is zero with a carry of 1.
Hence, the carry is lost in the computation, and the result left in the
variable c is zero.

What happens if a = 128 and b = 130? This result is as follows:

bit | bit bit bit bit bit bit bit bit
8 7 6 S 4 3 2 1 0
a=128 1 0 0 0 0 0 0 0
b =130 1 0 0 0 0 0 1 0
c=256 | 1 0 0 0 0 0 0 1 0

Once again the carry is lost, and now the variable ¢ has taken a
value of 2, which is hardly the arithmetically correct value of 258.
This exercise should underscore the importance of our problem-solv-
ing Step 3 (to work a sample data set by hand). You must be aware
of the magnitudes of your computed results. Integer overflow is
somewhat predictable, but the response of the computer to floating
point overflow will vary, depending on the machine. Some machines
give unpredictable results, whereas others provide an error message
at runtime.

Underflow results when a subtraction exceeds variable limits.
When subtracting, the computer negates the subtracted number and
then adds. In other words, C = A — B becomes C = A + (—B). Recall
that signed numbers in the computer reduce the range of possible
values represented. As with overflow, strange results can occur when
subtracting if underflow occurs.

v/ When in doubt regarding variable sizes, use double for float-
ing point and long int for integers. This guarantees that the
results will compute to the maximum possible binary vari-
able size.

52

Although multiplication and division may also suffer from over-
flow and underflow, a more prevalent problem with division is divide-
by-zero. A divide-by-zero, when it occurs, will result in a runtime

3.2 Arithmetic Operators

Table 3.3 Comparison of
Modulus to Division Operator.

i i 1% i/j

1 4 1 25
2 4 2 5
3 4 3 75
4 4 0 1

5 4 1 1.25

error. Some compilers wiil warn when a divide-by-zero is suspected,
but in most cases the problem will appear when a value computes
to zero. Program 3.3 will generate a divide-by-zero error when the
expression m = 1/(i — 2 — j) is evaluated. From this example, you
may wonder why the compiler does not catch the divide-by-zero,
for it is obvious to anyone looking at the program who understands
simple arithmetic. It is important to realize that the compiler does
not evaluate the statements; the computer does this at runtime. The
compiler is only concerned with translating the program from the
high-level language into a coding that the computer can under-
stand.

Integer division resuits in a truncation, or chopping off, of any
fractional part of a division. The value of x = 5/2is x = 2. This is a
common error that is discussed further below. The modulus operator
is only defined for integer variables and computes the remainder of
an integer division, where i%j = remainder(i/j). Table 3.3 shows
the difference between a modulus operation on two numbers and a
division. The modulus operator can be used to produce correct results
from integer division without conversion to floating point.

Precedence rules determine the sequence of how operations are
evaluated by the compiler. These rules are discussed in Section 3.9
and are listed for C and Fortran in Appendix E. You can, however,
force evaluation by the use of parentheses, in both languages. Any
expressions in parentheses are evaluated first, and when parenthe-
sized expressions are nested, the deepest-nested pair is evaluated first;
then the second deepest, and so on. Without knowing the precedence
rules, one might find the following expression ambiguous:

nm-=5%3+«2+1%10

53

Types, Operators, and Expressions

main () {

int i, j, m;

m=1/(i-2-3);

}

Program 3.3 Divide-by-zero error.

The compiler will evaluate this to num = 40 because multiplica-
tion precedes addition and associates left to right. The desired value
may have been num = 450, which is computed from the following:

num = (5% 3)%(2+ 1) 10

v/ When in doubt regarding precedence, force the evaluation
(and add clarity to your expression) with parentheses.

Of more immediate importance is the promotion of type that can
occur in arithmetic operations of mixed type. When an operation is
specified between two types, the lower type (determined from the
hierarchy below) is promoted to the higher type before the operation
is computed.

float — double
long — double
int — long

char, short — int

signed — unsigned

You must be very careful when combining integer and floating
point variables. If an integer is made equal to a float, the fractional
part will be truncated. The most common error is generated by state-
ments such as the following, where x is a float variable:

x=95/2;

54

3.3 Logical and Relational Operators

The computer will assign x the value of 2.0. This happens because
5 is an integer and so is 2. When they divide, they divide as integers,
and the remainder is lost. The integer result, 2, is then promoted
to float because x is a float variable and becomes 2.0! Any of the
following will assign x an arithmetically correct value of 2.5:

x=50/2; x=5/20 x=50/20;

In the first case, the presence of the float constant 5.0 promotes
the integer 2 to float before the division (the reverse occurs in the
second case). The third case is the preferred representation in which
both constants are specified as float. In Chapter 5 we will examine
type conversion in greater detail and see how conversions can be
controlled more explicitly.

Logical and Relational Operators

Logical and relational expressions formed with their respective oper-
ators evaluate to what is called a Boolean result, or true or false. In
C, zero is a Boolean false, and any nonzero value is considered to be
a Boolean true. In Fortran, a Boolean false is defined as the Boolean
constant .FALSE., and a Boolean true is defined as the Boolean con-
stant .TRUE. Logical operations are defined by Boolean logic, as illus-
trated in Table 3.4. Exhaustive discussion of Boolean logic is beyond
the scope of this text; however, the basic operations of NOT, AND,
and OR are easy to commit to memory. The Boolean NOT simply
changes true to false or false to true. For an AND operation to be
true, all values must be true; otherwise, the value is false. With OR,
all values must be false for the operation to be false; otherwise, the
value is true.

Table 3.4 Boolean Logic.

A B notA AandB AorB

false false true false false
false true true false true
true false false false true
true true false true true

55

56

Types, Operators, and Expressions

Table 3.5 C and Fortran Logical and Relational Operators.

C Fortran

Negation ! Negation NOT.
And && And AND.
Or It Or .OR.
Equivalence == Equivalence .EQ.
Not Equal I= Not equal .NEQ.
Greater than > Greater than .GT.
Less than < Less than .LT.
Greater or >= Greater or .GE.

equal equal

Less of equal <= Less or equal .LE.
True nonzero True .TRUE.
False 0 False .FALSE.

Table 3.6 C Logical and Relational Expression
Evaluation (a=10 b=5 ¢c=0 d=25).

la evaluates to — 0 .NOT.a

lc evaluates to — 1 NOT.c
a&&b evaluates to — 1 a.AND.b
a>b evaluates to — 1 a.GTb

b>a evaluates to — 0 b.GT.a
a==d evaluates to — 0 a.EQ.d

a=d evaluates to — 5 a=d
d>>=b&&c<a evaluates to — 1 d.GE.b.AND.c.IT.a
a>blc>b evaluates to — 1 a.GT.b.OR.c.GTb

The logical and relational operators for each language are listed
in Table 3.5, and the expressions formed from these operators are
used in the control of flow in the program discussed in Chapter 6. To
summarize this section and prepare for what is to come, we present
a set of examples of logical and relational expressions and their sub-
sequent evaluation by the computer in Table 3.6. In this table we
show relationships between four integer variables with fixed values.
These variables with their values area =10, b=5,¢c =0, and d = 5.
The first column of the table has various expressions of one or more

3.4 Assignment Operators

of the variables in C. The third column indicates how the computer
would evaluate the expression. The last column shows the equivalent
expressions in Fortran. Note that the result of Fortran evaluation of
Boolean expressions is a Boolean constant (.TRUE./.FALSE.), not zero
or one. In Fortran, the Boolean result of an expression can only be
used in a program control statement or as an assignment to a Boolean
variable.

Note the evaluation of the expression a = d in the seventh row.
This illustrates a common error when forming conditional expres-
sions in C (see if statements, Chapter 4). Because the evaluation is
nonzero, the computer will interpret it as true. If you had intended
a test to see if a was equal to d, this expression would evaluate incor-
rectly. The expression is an assignment and not a relational test. If
the programmer had wanted to determine if a was equivalent to d,
then the expression a == d should have been used.

v/ Observe caution when using the equivalence (==) operator.
It is easy to miss typing both equal signs, and the compiler
will not signal an error.

Assignment Operators

In the first section of this chapter we discussed the assignment op-
erator, the equal (=) sign, as indicating the replacement of a variable
with a new value. If we wish to pose the question, Are two expressions
equal?, we use the equivalence (=) operator in C or the equals (.EQ.)
operator in Fortran, as discussed in the previous section. It is neces-
sary at this point to introduce the C concept of left-hand side (lhs)
and right-hand side (rhs), which refer to the sides of an assignment
expression, as shown in Figure 3.2. The lhs of an assignment must
be an addressable quantity, such as a declared variable. For example,
a common mistake that the first-time programmer often makes is a
statement such as the following:

X+Y=272+338;

This is perfectly acceptable in algebra, but it represents an am-
biguity to the computer. This statement is telling the computer to

57

58

Types, Operators, and Expressions

Table 3.7 C Examples of C op=

Assignments.
x=x+395 - x4=5
x=x*x(y+3) — xx=(y+3)
- X/=q
- x%=16

X =x/q

x=x%16
Left-hand Side —\

X =y + 2.3

\ Right-hand Side

Figure 3.2 Sides of an assignment expression.

replace the value of X + Y with Z + 3.8, an action that makes no
sense. A common compile-time error is “LVALUE required,” which
indicates that something is wrong with the lhs of the expression in
question. Likewise, constants may not appear on the lhs. The fol-
lowing will generate an error because the computer is being asked to
redefine the value of a constant, which is a fixed quantity:

5=X+Y;

The C language has an additional form for the assignment oper-
ator called the op= (op equal), where op can be any of the arithmetic
operators (+ — x/%). The op= works for assignment expressions of
the form

X=X op <expression>
which become
X op= <expression>.

Table 3.7 shows examples of each of the forms of the op=. Fortran
has no equivalent to this operator. The use of the op= operator is
optional, but in many cases it can make the program more readable
and compact.

3.5 Unary Operators

Unary Operators

Unary operators work with a single variable or constant. The most
well-known is arithmetic negation, the minus sign (—). In some cases
the unary plus sign (+) may be used for program clarity, but positive
is the assumed sign of constants. Both of these operators are used in
Fortran and C; however, C provides three additional unary operators
that Fortran does not. The C increment (++) and decrement (——)
operators are used either to add one or subtract one from a variable.
These operators provide the following equivalences:

X=X+14 X+=1, ¢ ++X;
Y=Y-1,¢Y—-=1« —-Y;

Use of the increment-decrement operators allows for a very com-
pact representation when incrementing-decrementing a variable. The
operators may also be used postfix, or after the variable, as follows:

X++ X——

The postfix form means that the variable value is evaluated and
used in the expression that it appears in; then the variable is incre-
mented (++) or decremented (——) before execution proceeds. The
usefulness of this option will be shown later during the discussions
on program control flow in Chapter 4.

The unary sizeof() operator is actually a function of the C lan-
guage and is, in fact, the only function in the language (other func-
tions are available in C, but they are all user-defined). The sizeof{()
function returns the number of bytes that a data type, variable, or
constant uses in the program. For example, Program 3.4 will tell you
how many bytes each of the fundamental data types are allocated for
your compiler. The output of Program 3.4 will vary, depending on
the compiler, which is restricted by the architecture of the computer
that it is run on. Try the program with your compiler and see what
sort of data sizes that you have to work with. The sizeof() function is
very useful when working with arrays and structures and when using
dynamic memory allocation. This function is critical when writing
code that is sensitive to data type size. If extended precision for calcu-
lations is necessary, your program can use sizeof() to test the hardware
to verify that adequate variable storage size is present.

59

60

Types, Operators, and Expressions

main () {

oe
o

printf("int: bytes\n", sizeof (int));

oe
O

printf ("short int: bytes\n",

sizeof (short int));

o
O

printf("long int: bytes\n",sizeof (long int));

oe
o

bytes\n",sizeof (float));
"double: d bytes\n", sizeof (double)) ;

"long double:

(

printf("float:
printf (
(

o0 o
o

printf bytes\n",

sizeof (long double));

oe
[oR

printf("char is:

}

bytes\n", sizeof (char));

Program 3.4 Use of sizeof() function.

PROGRAM, SUBROUTINE or FUNCTION statement
variable declarations

EXTERNAL statements

DIMENSION statements

COMMON statements

EQUIVALENCE statements

DATA statements

Executable statements

END statement

Figure 3.3 Fortran program structure.

Program Structure, Statements, and Whitespace

In Chapter 2, we examined the C and Fortran program shells; now
we will examine the basic program structure of the two languages
in greater detail. Fortran program structure is shown in Figure 3.3,
where the words in uppercase are reserved by the compiler. Typically,
a simple Fortran program, as we have seen in Chapter 2, consists of
a PROGRAM name statement, some variable declarations, program
statements, and an END statement. Each line of a Fortran program is
a program statement and must correspond to the column restrictions
discussed in Section 2.5 unless the compiler has a special option to
allow free-field input. In early Fortran compilers, blank lines were
not permitted.

The C program structure is shown in Figure 3.4. The items in
<<>> are optional. A minimal C program is just the main() function
followed by a pair of closed braces{ }. The C programs are free-field,
which means that program elements can be anywhere in the file as

3.6 Program Structure, Statements, and Whitespace

<< include files >>
<< defines >>
<< global declarations >>

main(){

<< external declarations >>
<< local declarations >>
<< C program statements >>

<< functions >>

Figure 3.4 C program
structure.

long as they are separated by whitespace (defined in greater detail in
this section). A C program statement is identified by a terminating
semicolon(;), and any expression may become a statement by the
addition of a semicolon.

If the semicolon is omitted, errors can result. Examples of C state-
ments are as follows:

+4+1;
x —= 10.0;
printf ("Hello World!\n");

’

The last statement in the list above, a semicolon by itself, is the
null statement. The computer execution of a null statement is to do
nothing, which can be useful in some control structures that we will
examine in the next chapter.

We can cluster C statements into what is called a compound
statement by enclosing the statements with braces ({ }). The main
function is just a single compound statement. The compound state-
ment does not need to be terminated by a semicolon, although all
statements within the compound statement must be terminated.

Whitespace is any of the following characters or sequences of
these characters:

blank or space
tab

newline
carriage return
vertical tab
formfeed

61

62

Types, Operators, and Expressions

Whitespace is ignored by the C compiler and does not print or
display; however, whitespace characters add structure and readability
to a program because the effects of these characters will be seen in
displayed or printed output.

Formatted Output

At this juncture of our study, it will be useful to define output func-
tions so that the results of our programs can be displayed. The pri-
mary C function for output is printf(), and for Fortran it is WRITE.
The printf function is part of the so-called “standard I/O library,” and
all C compilers include this function, although printfis not a reserved
word. In Fortran, WRITE is a reserved word and is part of the compiler.

Formatted output means that the values to be outputted must
conform to a format specified by the user. For example, if you have
a floating point result that you want to output at a fixed precision,
you can specify the desired precision to the output function (printfor
WRITE). Internally, the value computed may be good to ten places,
but you may only want to see five places after the decimal. Formatted
output allows you to control how the data are presented.

In Fortran, the WRITE statement makes use of a FORMAT state-
ment that specifies what the format of the data to be output is to be.
The syntax of the WRITE/FORMAT pair is shown in Figure 3.5. We
will go no further with the Fortran format specifications, although
they are very similar to those of printf, which we discuss in detail
below. You should note that the list of variables (X, Y, and Z in the
figure) have a one-to-one correspondence with the format specifiers
F4.3, F4.3, and F10.3. The F indicates that the variable value is to be
output in floating point format. These specifiers cause the values to
be outputted with field widths of 4 and 10, respectively, and a pre-
cision of 3 digits. The field width is the number of character spaces
each output will have, and the precision is the quantity of digits that
will appear after the decimal point. The 1.X and 2X indicate the num-
ber of spaces between values output. For historical reasons, the first
format specifier must be a 1X, for this position was originally used
for a printer control code.

The output device unit number determines which device will re-
ceive the data. If this is an asterisk (as in the figure), the data will be
sent to the console or display. If the format statement number is also

3.7 Formatted Output

FORMAT Statement
Number

Output Device

Unit Number /7 Variable List

WRITE (*,1) X,Y,2
1 FORMAT (1X,F4.3,2X,F4.3,2X,F10.3)

Format _/

Specification

Figure 3.5 WRITE and FORMAT statements.

an asterisk, the data will be unformatted and outputted to the device
using the default format specification for the data type. In our exam-
ples in this book we will use unformatted Fortran WRITE statements.
When translating Fortran, it will be clear what values are being out-
putted (or inputted), and you should code the C output accordingly
and not rely on a literal interpretation of the Fortran I/O statements.

The basic format for a printf statement to output an ASCII string
is as follows:

printf('Hello World!\n");

All the characters within the quotes will be sent to the console
(printed to the screen). The backslash-n (\n) is called an escape char-
acter and causes printf to output a newline. The newline is a combi-
nation carriage return and linefeed, such as on a typewriter. This just
causes the screen cursor to move to the next line down. If you omit
the newline, the data output by the next printf will start just after the
exclamation point. For example,

printf("Hello World!");

printf ("How are you?\n");
will output
Hello World! How are you?

Several clever outputs can be achieved using just printf and var-
ious escape characters. For example, the tab (\t) character can be
used to align tabular data. If your program needs to alert the user to

63

64

Types, Operators, and Expressions

Table 3.8 Common Escape Characters.

Name Character Effect

Newline \n Carriage return/linefeed

Backspace \b backspace

Tab \t Moves cursor m* spaces

Alert \ a Sounds console beep

Vertical tab \ v Moves up one line (linefeed)
Carriage return \r Returns cursor to beginning of line

*The variable n is operating-system-dependent.

a condition, when you output the alert (\a) character the console
bell or beeper will sound. Table 3.8 lists the more common escape
characters that can be used with printf.

If you need to output either a double quote (") or a back slash(\),
then you must precede these characters with a backslash(\). This is
called escaping the character. For example,

printf ("\"Hello World!\"\n");
outputs a quoted “Hello World!”, whereas
printf("It's either\\or.\n");

outputs It's either\or.

The quoted characters inside the parentheses of the printf are
called the format string. If we want to output the values of variables,
we must include special formatting characters within this string.
Consider the printf statement below and assume that the variables
i=1,j =2, and k = 3 have been declared integers:

printf('i = %4 7 = %4 k = %d\n",1i,7,k};
This printf will output:
i=1 j=2 k=23

The variables whose values are to be output are placed following
the control string and separated by commas. The %d terms in the
control string are formatting characters that indicate that integer val-
ues are to be printed. Note the one-to-one correspondence between
the three formatting characters (%d) and the variables. The percent
symbol (%) is used by printf to determine how a variable is to be
outputted. The symbol must be followed by a conversion character

3.7 Formatted Output

Table 3.9 Printf Conversion

Characters.

d, i integer

C character

f float or double

e double with exponential

% no conversion, output % sign

that indicates how the variable value is to be interpreted. Table 3.9
lists a subset of conversion characters recognized by printf that will
be useful to you in your programming:

The output produced by printf can be very confusing; therefore,
a set of examples of different outputs of the same variables will be
shown followed by a brief explanation. Assume the following variable
declarations:

int 1 = 5;

c = 'A';

float x = 3.1416;
double z = 6.02e21;

Examples (printf with formats and output in boldface):

printf("i = %i\n',1i);

i=25

This is the simplest integer output printf.

printf('"c = %¢ c = %d\n",c,c);
¢ =Ac¢c = 65

The character variable c is outputted twice: first with character for-
matting (%c), thus outputting an A. The second format is integer
(%d). Why is the output a 657 Hint: Check the ASCII table in Ap-
pendix C (decimal) for the value of A.

printf('x = %f x = %d\n",x,x);
x = 3.141600x = O

65

Types, Operators, and EXpressions

The floating point variable x is outputted twice (first with float
formatting (%f); thus the expected 3.141600).The second format out-
puts x as an integer (%d), yielding an unpredictable value.

printf ("'z=%f\nz=%e\n", z, z) ;
6020000000000000000000.000000
6.02000e+21

4

4

The double variable z is outputted twice: first with float formatting
(%f), thus outputting the full precision of the mantissa. The second
format is in scientific notation (%e). Note that the default precision
is six digits (see Section 3.8).

printf ("The rate was 5%%!\n");

The rate was 5%!

A string containing a percent sign (%) is output.

The variable conversion specification begins with the percent
symbol and ends with a conversion character, as listed above. Fur-
ther output formatting codes can be included between these. We will
discuss formatting options for floating point output, which take the
following form:

gw.pf or %Iw.pe

The w is a number indicating the field width or total digits to
allow in the outputting of a value. The p is a number that determines
the precision or number of digits to allow in the mantissa of the
output. Usage is best shown by examples, and those that follow are
based on the following expressions:

float pi = 3.141592654;
float f_pi;
double d.pi;

fpi = 22.0/7.0;
dpi = 22.0/7.0;

The first column of Table 3.10 lists various printf statements, and
the second column shows the corresponding outputs. The float

3.8 Formatted Input

Table 3.10 Printf Example Outputs.

printf ("$f\n",pi); 3.141593
printf("$f\n",cpi); 3.142857
printf ("$f\n",dpi); 3.142857
printf ("%e\n",pi); 3.14159e+00
printf("%e\n",cpi); 3.14286e+00
printf ("%$e\n",dpi); 3.14286e+00
printf("%3f\n",pi); 3.141593
printf("%3.2f\n",pi); 3.14

printf ("%3.10f\n",pi); 3.1415927410
printf("%3.10f\n",cpi); 3.1428570747
printf ("%3.10f\n",dpi); 3.1428571429
printf("%.3e\n",dpi); 3.14e4+00

variable pi has been initialized to a calculator value, whereas f_pi
and d_pi are calculated by the computer. Note that in some cases the
outputs are identical despite different formatting. In the example

printf ("%$3.10f\n",pi);

the precision of 10 is greater than the available precision, which is
9. Note that the output is padded with a zero. Engineering conclu-
sions based on this output could lead to errors. The width specifier
may also be used with integer formatting codes to fix the number of
places allowed for the value to be output in. This can be useful when
outputting tabular data.

Formatted Input

Input in C is accomplished with the scanf() function, a cousin to
printf that is also part of the standard I/O library. Input in Fortran is
handled by the READ function, and like WRITE, READ is a reserved
word for the compiler. The structure of READ and scanf mirrors their
input counterparts.

Formatted input, like output, means that the values to be read
must conform to a format specified by the user. In Fortran, the READ
statement makes use of a FORMAT statement that specifies what the
format of the data to be input is to be. The syntax of a READ/FORMAT
pair is shown in Figure 3.6. We will go no further with the Fortran

67

Types, Operators, and Expressions

FORMAT Statement
Number

Input Device

Unit Number /— Variable List

READ(*,1) X,Y,2
1 FORMAT (F4.3,2X,F4.3,2X,F10.3)

Format _/

Specification

Figure 3.6 Fortan READ/FORMAT pair.

format specifications, although they are very similar to those of scanf
as well as the WRITE statement. Unformatted READ is far more com-
mon. An asterisk replaces the FORMAT statement number, and the
FORMAT statement is not used. The unformatted READ depends on
the computer to format the data according to type.

With C, the basic format for a scanf statement to input data to
variables (i_num: integer, x_num:float) is as follows:

scanf ("%d%f", &inum, &x.num);

There are subtle differences between the scanf specification and
that of printf. Because scanf fetches a value to assign to a variable,
the address of the variable and not the value must be given to scanf.
This is done by prefixing the variable name with the address op-
erator, an ampersand (&). The use of this operator is discussed in
greater detail in Chapters 5 and 6. For now, just be sure to precede
your variables with it when using scanf.

v/ One of the most common programming errors in C is the
failure to put the ampersand (&) in front of a scanf variable.

Table 3.11 lists a subset of conversion characters recognized by
scanf: Note that a conversion for type char (character) is not listed.
Although scanf can convert char, it is not recommended. It is better
to use getch(), which is discussed at the end of this section after the

68

3.8 Formatted Input

Table 3.11 Scanf
Conversion Characters.

d, i integer

1d long integer
f float

If double

/* d_scanf.c

program to demonstrate scanf () =*x/

main(){
int i_num;
float x.real;

double x_1rg;

/% prompt and input data */
printf ("Enter an integer:");
scanf ("%d", &i.num) ;
printf ("Enter a float: ") ;
scanf ("%f",&x.real);
printf ("Enter a double: "y,
gscanf ("%$1f", &x_1rg) ;

/% output data x/

printf ("You entered--\n");
printf ("\tinteger:%d\n", i_num) ;
printf ("\tfloat: %f\n',x.real);
printf ("\tdouble: %.9f\n"',x.1rg);

}

Program 3.5 d_scanf.c.

scanf examples.

Examine Program 3.5, d_scanf.c, which demonstrates how to use
scanf. Three variables are declared, an int (i_num), a float (x_real),
and a double (x.1rg). Scanf is then used to input values for the vari-
ables, and then they are immediately output with printf. A set of runs
follows the program listing to show what the input and output look
like. The user input is shown in boldface.

69

Types, Operators, and Expressions

RUN #1 d_scanf.c

Enter an integer:1

Enter a float: 1

Enter a double: 1

You entered--
integer:1
float: 1.000000
double: 1.000000000

In Run No. 1, three ones were entered and three ones were output.
Note that the default precision of six digits was outputted for the
float, and the forced nine digits were outputted for the double.

RUN #2 d._scanf.c

Enter an integer:65536
Enter a float: 3.141592654
Enter a double: 3.141592654
You entered--
integer:0
float: 3.141593
double: 3.141592654

For Run No. 2, the entry of 65,336 exceeds the capacity of the
(with this compiler) 2-byte integer. Thus, a zero was outputted. In the
case of the float and double entries, the value of PI was determined
from a calculator. The internal representation for the float variable is
indeterminate from the output. Printf rounded to six digits after the
decimal. The value for double is as entered.

RUN #3 d_scanf.c

Enter an integer:123

Enter a float: 1.987el0

Enter a double: 1.987el0

You entered--
integer:123
float: 19869999104.000000
double: 19870000000.000000000

70

3.9 Precedence Rules

For Run No. 3, a number in scientific notation has been entered
that exceeds the capacity of the float variable. Note that the com-
puter has added data to the number. The internal representation is
indeterminate from this output. The double variable has outputted
correctly.

v/ scanf can yield strange and unpredictable results if variable
type is not matched correctly to a conversion specifier.

The getch() function in the standard library can be used to input
a single character from the keyboard. The usage of getch is as follows:

¢ = getch();

When this statement is executed, the computer waits until a key
is pressed. The ASCII value of the key pressed is then assigned to the
character variable c. You can use getch without a variable to effect a
program pause, as in the following statements:

printf ("<<< Press any key to continue. >>>");
getch () ;

The computer will output the prompt and then wait until a key is
pressed. This can be any key, spacebar, return, and so on. This feature
is useful to prevent the output from scrolling off the screen when the
program outputs a large amount of data.

Precedence Rules

Now that we know how to form expressions, we can discuss the prece-
dence rules of operators in greater detail. These rules are complex
and can cause errors in the evaluation of expressions. When opera-
tors share the same level of precedence, evaluation proceeds accord-
ing to the associativity of the operators. Operator precedence is less
complex for Fortran than it is for C because of the large number of
operators in C and the way that C evaluates expressions. We will not
review Fortran precedence except to note that the exponentiation
operator (**) has the highest precedence of the arithmetic operators.

71

72

Types, Operators, and Expressions

Table 3.12 Precedence and Associativity

Rules.

Operators Associativity
() left to right
++ -— + - sizeof* left to right
*/ % left to right
+ - left to right
< <= > >= left to right
== != left to right
&& left to right
i left to right
= += —-= *= [= %= right to left

*Unary operators.

Table 3.12 lists the precedence and associativity for the C operators
we have discussed, and Appendix E contains the complete table for
all C operators and for Fortran.

Recall the following example from Section 3.2:

num=5%x3%x2+1x%10;

The compiler will evaluate this to num = 40 because multiplica-
tion precedes addition. The desired value may have been num = 450,
which is computed from

num = (5§ % 3) * (2 + 1) % 10;

Now consider the following:

num =5%3%2 evaluatesto 1
num = (5 % 3) % 2 evaluates to 1
num = 5 % (3 % 2) evaluates to 5

The first expression is ambiguous, and we must consult the prece-
dence chart to evaluate it. From the chart, multiplication (x) and
modulus (%) are equal in precedence; however, they associate left to
right, and the multiplication is therefore evaluated first. Hence, the
first and second expressions are equivalent. The assignment opera-
tors, however, associate from right to left. Consider how the computer

Review Words

evaluates the following statement:
i=j=3x%2;

Willi be set to the value of j or to 6? Because assignment associates
right to left, j will be assigned the value of 6; then i will be assigned
the new value of j. Assignment can get complicated with statements
such as

i =2;
ix=3+2;

Once again, because assignments associate right to left, the com-
puter evaluates 3 + 2; then it multiplies by the current value of i (2)
and assigns i the final value of 10.

Summary

The types and operators of both the C and Fortran language have
now been discussed. The formation of expressions and statements
has also been covered, and we have seen how to use formatted in-
put and output functions to produce programs capable of processing
data and generating results. With the knowledge of data typing and
the problem-solving method given in the previous chapter, you are
now ready to begin writing programs that can produce viable data.
The most important outcome of this chapter to the engineer is the
understanding of data representation in the computer in the form
of typing restrictions and definitions. These representations must be
understood to guarantee the validity of the data produced by your
programs, and you must always know what the computer is doing to
the data. In Chapter 4 we will explore how to control the sequence
of statement evaluation and data processing, which will open up the
vast computational power of the computer to us.

REVIEW WORDS

ASCII
Boolean result
case sensitive

73

Types, Operators, and Expressions

char
compound statement
divide-by-zero
double

escape character
evaluation
expression
float

getch

int

left-hand side
long

modulus
newline

null statement
operator
overflow
postfix
precedence
precision
printf
promotion
reserved word
right-hand side
scanf

short

sizeof
truncation
type
underflow
unsigned
whitespace

EXERCISES

74

1. Assume the following declarations:

inta=20, b=10, c=25;

EXxercises

Evaluate the C expressions:

a. ab+c
b. a%b%c
c. ¢c—-—b>b
d ¢c——-b

2. The transfer function for a first-order system is given by

1
F&) =3

and a corresponding C expression is
F=1/(s+1)

Give similar C expressions for the following transfer functions:

1
. F = =¥
a. F©) s2 4+ 65+ 34
s+4
b. F = —
) s(s2 + 25 4+ 10)
§2
c. F(s) =

(s + 1)(s2 + 2s + 20)

3. Write a C program to compute the area, circumference, and di-
ameter of a circle, given the radius. The user should input the
radius as a floating point value.

4. Write a C program to calculate the mass of atoms and molecules,

given their atomic weight. The formula for mass is

_ Atomic Weight in grams
" Avogadro’s Number

Avogadro’s number = 6.02472x 102 molecules (g-mole) L.
Compute the mass of a hydrogen atom (atomic weight 1.008 g)
and that of an oxygen molecule (atomic weight 32). Output your
results with two digits of precision.

5. Convert the Fortran program below, which calculates the posi-
tion and velocity of a falling object, to C.

PROGRAM PVCALC

C PROGRAM COMPUTES POSITION (Y) AND VELOCITY (V)
C OF A FALLING OBJECT AFTER 1, 2 AND 3 SECONDS.

75

76

Types, Operators, and Expressions

REAL TIME, GRAV
REAL Y, V,V0

GRAV = -32.0

V0 = 0

TIME = 1

Y = VO*TIME + 0.5*GRAV*TIME*2
V = VO + GRAV*TIME

WRITE(*,*) 'Time Position Velocity'
WRITE (*,*) TIME, Y,V

TIME = 2

V0 = V

Y = VO*TIME + 0.5*GRAV*TIME*2
V = VO + GRAV*TIME

WRITE(*,*) TIME, Y,V

TIME = 3

V0 = V

Y = VO*TIME + 0.5*GRAV*TIME**2
V = VO + GRAV*TIME

WRITE (*,*) TIME, Y,V

STOP

END

A temperature gauge in an automobile typically reads from 100
to 260°F, and the temperature sensor at the engine outputs a
corresponding 5 to 10 volts. Write a C statement to compute
temperature (T) given sensor voltage (V).

Evaluate the following C expressionsfor X =0,Y =2,and Z = 3:

(X >Y) && (Y<Z)
(Y==2)|| (X<Y)
(X<Y) && (Y<Z)

(1X)
(1 (X>Y))&& (Y>=X)

Use the edit—-compile-run cycle of your computer to execute Pro-
gram 3.4 to determine the sizes of the variable types on your
machine.

Write an expression that will be true if a floating point number
has a whole part and false if it only has a fractional part.

Control Flow

he ability of the computer to evaluate an expression and
take action based on that evaluation is the foundation of
automated decision making and a fundamental aspect of
machine intelligence - the study of how to make comput-
ers display intelligent behavior. Control flow in a program is tightly
coupled to the interpretation of data in a problem. What is relatively
simple for an engineer to do on a calculator may be quite complex
to explain to the machine via the program. Alternatively, many tasks
with complex repetitive sequences, such as matrix multiplication,
are best done by computer, for it is very easy to lose one’s place while
entering data into a calculator! Flowcharts are one of the best ways
to diagram control flow in an algorithm, and a flowchart makes sub-
sequent program coding easier. To begin this part of our study, we
examine the two fundamental control structures of computer lan-
guages: if-then statements and loops. For example, the statement

IF the temperature exceeds 200 degrees,

THEN activate the cooling valve

is easily flowcharted as

YES
cooling
valve to ON

NO

77

78

Control Flow

Our goal in this chapter is to learn how to complete the next step
effectively, that of coding the control statements and using them
in our programs. To do this, we will study the following C reserved
words:

if break

else continue

for switch

do case

while default
goto

If

The basic if-then control structure is common to every computer
programming language. Figure 4.1 shows the flowchart for the C if
statement. The question mark inside the diamond is used to represent
a C expression that is evaluated for a Boolean result. Recall that in C
an expression that evaluates to zero is false, whereas an expression
that evaluates to nonzero is true.

The syntax for the if statement is given by

if (<expression>) <statements>

If the expression in parentheses evaluates true (i.e., nonzero), then
the statement immediately following is executed; otherwise, it is ig-
nored. The statement to be executed can be a compound statement,
and thus it is possible to have any number of statements executed
based on the evaluation of the expression. To summarize, the if state-
ment asks the question, Is the evaluation of the expression in paren-
theses true (nonzero)? If so, the statement immediately following is
executed; if not, the statement is skipped.

True

Statement(s)

False -

Figure 4.1 C if statement flowchart.

41 If

Let’s apply our problem-solving steps and consider the calculation
of the solutions to a quadratic equation. We need to solve ax? + bx +
¢ = 0. That is our problem@. To do this, we need the values of
coefficients a, b, and c; those are our inputs. We can then apply the
well-known algebraic formula for the roots of a quadratic

v —b+ Vb? — 4ac
- 2a

and get values for x, our output(®. There are two potential prob-
lems in the use of this equation. The first occurs if the user should
enter a zero for a, which would happen for a monic equation rather
than a quadratic. If the user is neglectful and enters a zero for a, the
computer will signal a divide-by-zero error and execution will cease.
Consequently, we will want to check that the user inputs a valid
quadratic (i.e., a # 0). This is easy to do with an if statement by
testing the expression a == 0. The expression is true if the value of
a is 0, and thus at that point we can inform the user and exit the
program.

Secondly, if the expression b? — 4ac evaluates to negative, then
the roots will be imaginary. The C math library contains a function,
sgrt (x), that returns the square root of the argument x. The func-
tion will generate an error if the argument is less than zero. We will
want to check for that condition and notify the user accordingly. We
can do this by testing the expression b? — 4ac < 0, which is called the
determinant of the quadratic. If true, we can either exit the program
and inform the user that complex roots cannot be evaluated, or we
can accommodate the complex results in our output.

For step three, work a sample set by hand, we can use the coeffi-
cients b= 35,a =1, and ¢ = 1, and our roots will be x; = —4.791288
and x; = —0.208712® . A pseudocode algorithm @ for this program
is shown in Program 4.1. Note that we elected to constrain the user to
real roots. We can now code the C program to compute the roots of
a quadratic using if statements to avoid potential runtime errors@®.
The listing for this program is shown in Program 4.2.

After compilation, we run the program with our test case(® and
get the following results (note that user input is shown in boldface
type):

Enter coefficient a:l

Enter coefficient b:5
Enter coefficient c:1

79

80

Control Flow

Program quad.root
Declare input variables float a, b, c
Declare output variables float x1, x2
Declare test variable float D
Input coefficients a, b, ¢
If a =0

output "coefficients not quadratic"

exit program

end if
D = (b*b) - (4*a*c)
If d < 0

output "solution has complex roots

exit program

end 1if
x1 = (-b - sqgrt(D))/(2*a)
x2 = (-b + sqrt(D))/(2*a)

Output results x1, x2
exit program

Program 4.1 Pseudocode for quad_root program.

X1 = -4.791288
X2 = -0.208712

Because we want to make sure the if statements are working, we
run the program and enter an illegal coefficient of a = 0:

Enter coefficient a:0

Illegal guadratic!

Anentryof a= 5, b= 1, and ¢ = 1 will produce a quadratic with
complex roots; the program output shows that the if that tests for
this case is working:

Enter coefficient a:5
Enter coefficient b:l
Enter coefficient c¢:1

complex roots!

Our program works, and we now have a quadratic root solver.
Even though the program catches two potential problems, it is some-
what limited and fails to access much of the decision-processing
power of the computer. Let’s see how the use of an if-else state-
ment can improve it. The C if-else allows for a selection between

41 If

/* Program quad.root.c */
#include <math.h>

main{){
float a, b, c¢;
float x1, x2;
float D;

printf ("Enter coefficient a:");
scanf ("%f", &a) ;
/* test for quadratic */
if (a==0){
printf("Illegal guadratic!\n");
exit(0);
}
printf ("Enter coefficient b:");
scanf ("%f", &b) ;
printf ("Enter coefficient c:");
scanf ("%f",&c);
/* Compute argument for square root and

test for complex roots */

D = b*b - (4*a*c);
if(D <« O
printf ("complex roots! \n");
exit(0);
}
/* Compute roots of quadratic */
%1 = (-b - sgrt(D))/2*a);

x2 = (-b + sgrt(D))/(2*a);
/* Output the results */
gf\n", x1);
printf("x2 = %f\n", x2);
exit(0);

printf ("x1

}

Program 4.2 C quadratic solver, quad_root.

81

Control Flow

Figure 4.2 C if-else statement flowchart.

two alternatives, depending on the evaluation of the test expression.
The syntax for the C if-else statement is given by

if (<expressions>) <statement(true)>

else <statement(false)>

If the expression in parentheses evaluates true (i.e., nonzero),
then the statement immediately following is executed; otherwise,
the statement following the else is executed. There is a subtle differ-
ence here between the if and the if-else, and the difference is best
illustrated by an example as follows:

if(a==2) printf(”a was equivalent to 2\n”);

printf('"a is equal to %d\n",a)

The boldface printf statement above will execute if and only if
the value of a is equal to 2. With the if-else below, the output "a
was equivalent to 2" will occur for a equals 2, and "a was not
equivalent to 2" will output if a is not equal to 2.

if (a==2) printf(”a was equivalent to 2\n”);
else printf (”a was not equivalent to 2\n");

printf('a is equal to %d\n", a)

In both cases the printf(”a is equal to %d\n”,a) state-
ment will execute. The if-else is an “either-or” construct, as shown
by the flowchart in Figure 4.2. Now let’s see how the if-else can let
us choose between alternatives to compute complex roots in our
quadratic equation program.

v/ A common error when working with if statements is to for-

get that the statement following if() is only executed when
the expression evaluates true. If you need either-or, use if-
else.

82

41 If

The quadratic solver (Programs 4.1 and 4.2) exited if the root ar-
gument was negative. This is because the root of a negative number is
imaginary. We can change the sign of the argument and then change
the output to reflect the complex root. Because a complex number is
actually a vector in two-space, we need two more variables to hold
the complex portion of the root. These can be declared as the float
variables x1i and x2i, the imaginary parts of x1 and x2. These changes
are shown in Program 4.3. Note the control string of the two printf
statements for the complex roots. The plus sign (+) preceding the
float format character tells the computer to output the sign of the
value, and this gives a straight column look to the output.

A run of the original Program 4.2 with the Program 4.3 changes
is presented below. The determinant D will compute to zero, and the
roots of the quadratic will be complex.

Enter coefficient a:5
Enter coefficient b:l
Enter coefficient c:1
xy = -0.100000-0.4358901
X9 = +0.100000+0.4358901

If statements can also nest. This means that the statement fol-
lowing the if can be an if. Consider the following example:

if(a »>= 0)
if{c < 3)

printf("a was »= 0 AND ¢ was < 3");

The printf will only execute if both of the conditional expres-
sions evaluate true. The second if statement is only tested if the first
if statement evaluates true, and thus it would have been better to
write the following:

if(a >= 0 && ¢ < 3)

printf("a was »= 0 AND ¢ was < 3");

Fortran has two different if statements, the first being similar to
the basic C if. The syntax of the Fortran logical block IF is shown by
the following example translated from the quadratic test in Program
4.2:

IF (A.EQ.0) THEN

WRITE(*,*) 'Illegal quadratic!’
STOP
ENDIF

83

84

Control Flow

/* Compute argument for square root

process complex if negative */

D = b*b - (4*a*c);
if(D < 0){
float x1i, =x2i;
D = -D;

/* compute real part of roots */

x1l = -b/(2%a);

x2 = b/(2*a);

/* compute imaginary part of roots */
x1li = -sgrt(D)/(2*a);

x21 = sqgrt(D)/(2*a);

/* Output complex results */

printf("xl = %$+£f%+fi\n", x1, x1li);
printf ("x2 = %+£%+fi\n",x2,x21);
}
else {
/* Compute roots of quadratic */
xl = (-b - sqrt(D))/{(2*a);
x2 = (-b + sgrt(D))/(2*a);
/* Output real results */
printf('x1 = %f\n",x1);
printf ("x2 = %f\n",x2);
}
exit (0);

Program 4.3 Changes to quadratic solver (quad.root) to handle
complex roots.

Older Fortran compilers do not have the block IF form, and thus
only one statement can be executed per IF. The other Fortran IF
statement is called a computed or arithmetic IE It has the following
syntax:

IF (expression) <S1>, <S2>, <S3>

The expression must be arithmetic (i.e.,, compute to a number). If
the value of the expression is less than zero, execution transfers
to statement number <S1>; if equal to zero, execution transfers to

4.2 Loops

Figure 4.3 Fortran computed
(arithmetic) IF.

statement number <S2>; and if greater than zero, to statement <S3>.
The flowchart for the Fortran-computed IF statement is shown in
Figure 4.3. The Fortran computed IF is well suited to test the quadratic
determinant for our quadratic solver. When the determinant is less
than zero, the roots are complex conjugate; when zero, they are real
and equal; and when greater than zero, they are real and unequal.
Program statements to process each of these cases could be numbered
accordingly.

Loops

Loop structures allow the computer program to iterate or cycle over
many values. This means that operations can be repeated, depending
on a set range of values or on the truth or falsity of an expression. The
C language permits three types of basic loops (we say basic because
there are innumerable ways to combine loops):

1. for loop: used when a statement must be executed over a
specific or predetermined range of values.

2. do-while loop: used when a statement must be executed
and then a conditional expression evaluated to determine
whether the loop should continue.

3. while loop: used when a conditional expression must be
evaluated before loop statement execution.

All loops (independent of language) must have a loop control
variable. This variable is initialized to a start value and is used by

85

86

Control Flow

the loop to determine how many times to continue executing the
loop statement(s). The loop statement must modify the loop con-
trol variable such that the loop halts at some point and program
execution continues. If the loop control variable is missing, or if the
loop statements fail to modify the loop control variable, the loop will
continue until the program is halted by the operating system. This
is what is called an infinite loop or a loop that does not halt. There
are instances when an infinite loop is desirable, but for the most part
infinite loops occur as programmer errors. It is important that you
learn to identify the loop control variable.

To explore the use of loop statements, we will consider the prob-
lem of outputting a table of values. A Fahrenheit to Celsius (centi-
grade) temperature conversion table is a good choice to demonstrate
the use of the C for loop. The problem is, Given a range of Fahren-
heit temperatures and a delta temperature increment, what are the
Celsius temperature values?(® We need the formula for Fahrenheit
to Celsius conversion, which can be quickly looked up in any physics
text or engineering handbook. The formula is as follows:

°C = (5/9)(°F - 32).

We will need variables for the Celsius (C) and Fahrenheit (F) tem-
peratures, which will also be our outputs@. Because we are given
a range of values and an increment, these can be constants in the
program, or we can allow the user to specify them. To simplify devel-
opment, we will make the range from 32° to 212°F at 10°F increments
and request no user input. For a temperature of 32°F, we expect 0°C,
and for 212°F we should get 100°C (®. A flowchart for the problem
is given in Figure 4.4(®.

One might think that an if statement is called for in the coding
of the algorithm because of the conditional block that evaluates the
expression F <=212. This is a common conceptual error. The if state-
ment has no way to go back, or iterate, over prior statements in the
program. We need to introduce a new mechanism that allows this to
happen. One statement that can do this is the C for statement, with
syntax

for(initialize; test; increment)<statements

The C for statement has four parts: an initialization expression that
is evaluated first to set up the loop control variable, a test expres-
sion that is evaluated to determine if execution of the loop should

4.2 Loops

e
F=F+10
Output
B
True ‘
C =(5.0/9.0)*(F - 32.0)
False

Figure 4.4 Flowchart for Fahrenheit-Celsius table
generator with for loop.

continue, an increment expression to increment the loop control vari-
able, and a statement (or compound statement) to be executed.
For our problem, we can use the Fahrenheit temperature variable
F as the loop control variable. The C for expression for our program
is
for(F = 32; F <=212; F+ =10)

maze]?] 4 [noanet]

The sequence of evaluations is as follows:

1. The variable F is assigned the value 32 as a result of the
initialization expression of the for loop.

2. The test expression F <= 212 is evaluated; if true, the
statement following for() is executed.

3. The expression F += 10 is evaluated, which increments the
variable F by 10.

4. The cycle repeats steps 2 and 3 until the test evaluates false.

87

88

Control Flow

/* Fahrenheit-to-Celsius Table Generator */
main{(){
float F,C;
for(F=32.0; F<= 212.0; F += 10.0){
C = (5.0/9.0)*(F-32.0);
printf ("%3.0£\t%3.0f\n",F,C);

}

Program 4.4 C Fahrenheit to Celsius table generator.

32 0
42 6
52 11
62 17
72 22
82 28
92 33
102 39
112 44
122 50
132 56
142 61
152 67
162 72
172 78
182 83
192 89
202 94
212 100

Figure 4.5 Fahren-
heit to Celsius Table
Generator output.

Now we can use the for statement to code the algorithm. The pro-
gram listing is shown in Program 4.4(®. Output from the program,
two columns of temperatures, Fahrenheit and Celsius, is shown in
Figure 4.5@. The output corresponds to our expectations for the
temperature conversion.

Figure 4.6 is a flowchart for the C for statement. This figure in-
troduces two added elements of all C loops, the continue statement
and the break statement, which are C reserved words. When a con-
tinue statement is encountered during the execution of a loop, state-
ments following the continue are ignored, and loop execution picks

4.2 Loops

Initialize
Increment

Continue

Statement(s) ‘

False
Break

Figure 4.6 C for loop statement flowchart.

/* Fahrenheit-to-Celsius Table Generator
with do-while loop */
main(){
float F=32.0, C:
do {
C = (5.049.0)*(F-82.0)3
printf ("%$3.0£\t%3.0f\n",F,C);
F += 10.0;
} while (F<= 212.0);
+

Program 4.5 C Fahrenheit to Celsius table
generator with do-while loop.

up at the next increment. A break statement causes the loop to termi-
nate immediately. The continue and break statements are used with if
statements that test whether to skip loop execution statements or to
terminate the loop for some reason.

When algorithm requirements indicate that statements should
be executed until a condition evaluates true, the C do-while loop
structure is used. A do-while statement has the following syntax:

do <statement> while(<expression>);

The Fahrenheit to Celsius (centigrade) temperature conversion table
could have been written with a do-while construct if the flowchart
had been drawn, as in Figure 4.7. The modified program to use a
do-while loop is shown in Program 4.5.

The flowchart for the C do-while (Fig. 4.8) is very similar to the
for loop; however, be sure to note that the increment of the loop
control variable must take place in the loop itself. This statement is

89

0

Control Flow

B30
|

C =(5.0/9.0)%(F - 32.0) [

Output
C.E
I

F=F+10

True

False

Figure 4.7 Flowchart for
Fahrenheit-Celsius table
generator with do-while loop.

Statement(s) -

True

False

Figure 4.8 C do-while loop
statement flowchart.

4.2 Loops

pE=
F=F+ 10
Output
G R
True 4
C =(5.0/9.0)*(F - 32.0)
False

Figure 4.9 Flowchart for Fahrenheit-Celsius table
generator with while loop.

useful when a set of loop statements must always be executed, al-
though subsequent looping may not be needed, depending on what
happens in the loop.

When the requirement arises to test and then execute, the C while
loop is used. A while statement has the following syntax:

while(<expression>) <statements;

The statement will repeatedly be executed as long as the expres-
sion evaluates true. Once again, the Fahrenheit to Celsius tempera-
ture conversion table could have been written with a while statement
if the flowchart had been drawn as in Figure 4.9. The flowchart for
the while statement is shown in Figure 4.10. Note that the while is
identical in structure to the for; the initialization and increment state-
ments, however, are not explicit. The modified program to use a while
loop is shown in Program 4.6. Program output remains the same, as
listed in Figure 4.5.

Although the same output can be achieved with all three loop
forms, there generally is a “best choice” of loop structure. The criteria

X

Control Flow

Statement(s)

Figure 4.10 C while loop
statement flowchart.

/* Fahrenheit-to-Celsius Table Generator
with while loop */
main ()
{
float F=32.0,C;
while (F<= 212.0){
C = (5.0/9.0)*(F-32.0);
printf ("%$3.0£\t%3.0f\n",F,C);
F += 10.0;

}

Program 4.6 C Fahrenheit to Celsius table
generator with while loop.

for which loop to use are predicated on what you are trying to do.
The flowchart or pseudocode will indicate which loop to use. We will
now look at an example where a do-while is the loop of choice.

v/ When to use which loop?

If the loop is of fixed range, then use a for loop.

If statements must always be executed prior to testing the
loop control variable, then use the do-while loop.

If a test must be made to see if the loop should be entered

at all, then use the while loop.

92

The statistics program from Chapter 2 is an excellent example to
work from. The flowchart for this program indicates that a do-while
is the appropriate loop for the coding, even though a for loop was
used in the original example. A new coding using a do-while is given in

4.2 Loops

main(){
int count= 10;

float mean= 0.0, var= 0.0, dp, stddev;

i=1;

do{

scanf ("%f", &dpt) ;

mean = mean + dpt;
++1;

}while (i<=count);
mean = mean/count;

i=1;

do{

scanf ("%f", &dpt);

var = var +
((mean-dpt) * (mean-dpt)) ;
++1;

}while (i<=count);

var = var/count;

stddev = sqgrt(var);

printf("$f %f %f\n",
mean, var, stddev) ;

}
Program 4.7 Statistics C code with do-while.

Program 4.7. The loop structure now matches the flowchart; however,
we have to ask ourselves if this was really the best way to flowchart
the problem. Because the problem statement specified exactly ten
datapoints, a for structure would have been more appropriate even
though the flowchart did not reflect this.

The question might be raised, What if we want to allow a variable
number of values to be entered? One way to do this would be to ask
the user to input the count at the start of the program. Another way
would be through the use of a flag variable. A flag variable changes
state when an event occurs and can be used to signal the program to
do something. A flag variable can be used as a loop control variable,
and an if statement can be used to detect when the flag variable
state changes and thus causes an exit from the loop (using a break

93

94

Control Flow

main(){
int nsamples = 0;

float sample=0.0, mean = 0.0;

printf ("Enter data for mean\n");
printf (" (negative entry terminates)\n");
while(1)}{
printf ("Input sample #%d:", nsample+l);
scanf ("%f", &sample) ;
if (sample < 0)break;
mean += sample;
++nsanmples;
}
mean /= nsamples;
printf ("Mean of %d data values was %f\n",

nsamples, mean);

}

Program 4.8 Infinite loop, flag variable, and break statement.

statement). For the statistics problem, we know that we will never
have a negative value for the percentage of humans; therefore, we
could have the user continue to enter values and signal the end of
the data by entering a negative number. The data entry variable,
sample, can be used as a flag variable whose state (sign) changes
from positive to negative.

Program 4.8 illustrates the use of a flag variable, an infinite loop,
and the break statement. In this program, the test expression for the
while loop is a constant 1, meaning that it will always evaluate true
and consequently the while will cycle indefinitely. After a sample
value is inputted, we test to see if it is less than zero; if it is, then a
break is used to “break out of the loop.” A negative value for sample
is the user’s signal to indicate that data entry is complete. If the user
enters a nonnegative value, that value is added to the mean variable,
and the sample count variable nsample is incremented. Note that the
user is informed how to terminate data entry and is prompted for
each value. An example of the output of this program is shown in
Figure 4.11.

In Fortran, the DO loop is similar to the C for loop. The syntax
for a DO loop is as follows:

DO <statement#> <LCV> = <start>, <stop>, <inc>

4.2 Loops

Enter data for mean

(negative entry terminates)

Input sample #1:23

Input sample #2:12

Input sample #3:34

Input sample #4:29

Input sample #5:-1

Mean of 4 data values was 24.500000

Figure 4.11 Output example for Program 4.7.

PROGRAM F_TO.C
C Fahrenheit-to-Celsius Table Generator

C with DO loop

C
REAL F,C
DO 1 F=32.0,212.0,10.0
C = (5.0/9.0)*(F-32.0)
1 WRITE(*,*)F,C
STOP
END

Program 4.9 Fortran Fahrenheit to Celsius table generator.

where <statement#> is the terminating statement of the loop, <LcV>
is the loop control variable, <start> is the initial value of the loop
control variable, <stop> is the final value, and <inc> is the incre-
ment. Program 4.9 is a listing of the Fortran version of the Fahren-
heit to Celsius table generator program (see Program 4.4 for the C
version). The output of this program is identical to that listed in
Figure 4.5. A flowchart for the Fortran DO loop is shown in Figure
4.12. Note that the Fortran DO is identical in structure to that of
the C for loop (Figure 4.6). The primary difference is that the start,
stop, and end expressions are restrictive. Fortran expects numerical
values for the start, stop, and increment (unlike the C for, they are
not expressions to be evaluated). The increment value is optional,
and, when omitted, the compiler assumes a value of 1.

Fortran, like C, has a CONTINUE statement, although it is sub-
stantially different in usage. The Fortran CONTINUE is simply used
as a loop terminator and has no other function. Program 4.9 could
have used a CONTINUE statement to close the loop following the

95

Control Flow

Index = Initial

Index = Index +
Increment

!

Statement(s)

Figure 4.12 Fortran Do loop statement flowchart.

WRITE statement. In this case, the loop would have been as fol-
lows:
D& 1 F=32;0::212:.0,210.0
C = (5.0/9.0)*(F-32.0)
WRITE(*,*)F,C
1 CONTINUE

a.3 conditional Decision Structures

Conditional decision structures permit complex sequential evalua-
tion of an expression against multiple target values. In C, the switch
statement yields the equivalent of multiple if-else statements in a
compact and very readable form. The flowchart for the C switch is
shown in Figure 4.13. There is no equivalent structure in Fortran.
The switch statement has the following syntax:

switch(<expr>){
case <constant expression 1l>: <statement>
case <constant expression 2>: <statement>

case <constant expression N>: <statement>

}

The N case statements are optional. If the case statements are
omitted, the switch reduces to an if where the first statement fol-
lowing the switch is executed if the <expression> evaluates true. This
usage renders the switch somewhat pointless, because the real power
of the switch comes from judicious use of the case statements.

96

4.3 Conditional Decision Structures

Statement(s)

Statement(s)

Zexpr\ 1TU€
==caseN Statement(s)
?
False | <& 4
True Break
Default: Statement(s) i

g e
<,,/

Figure 4.13 C switch statement flowchart.

False

From the flowchart (Figure 4.13), the result of the expression eval-
uation in parentheses following the reserved word switch is tested
for equivalence in each case. If the expression is equivalent to the
constant expression for the case, then the subsequent statement(s)
are executed. Each case is evaluated in turn. If a break statement is
encountered, then the switch structure is exited immediately with no
further evaluations. A special case, the default case, is optional. The
statements following the default case are always executed (unless the
switch was exited by a break).

A good example of a swifch implementation is that of an interface
program for a radio-controlled car. Assume that a set of functions
exists that when executed will perform the following actions:

forward() --car moves forward.
stop () --car stops moving.
left () --wheels turn left.
right() --wheels turn right.
backward() --car moves backward.

97

98

Control Flow

while (1){
printf ("Enter command:");
¢ = getch();
if(c =='f")forward();
else if(c =='s')stop();
else if(c == '1')left();
else if(c =='v')right();
else if(c =='b')backward();
else if(c =='e"){
stop () ;
exit();
}
else

printf ("Please enter f,s,1,r,b\
or 'e' to exit!\n");
}

Program 4.10 Control using if-else.

We want to write a program that will accept a user command in
the form of a single character and call the necessary car control func-
tion. The user will input £, s, I, r, and b to control the car, or an e to exit
the program. We will first examine the use of the if-else construct to
execute this control, and this is shown in Program 4.10. The control
is set up as an infinite loop, the while(1), that continuously outputs
the prompt “Enter command:” and waits for a single character input
to the variable ¢ from getch(). The value entered is repeatedly tested
through a set of nested if-else statements. If the value is an f, the rou-
tine to start forward motion is called. If the value is an s, the routine
to stop the car is called, and so on. If no matching control character
gets entered, the final printf will inform the user of the expected en-
tries. Notice that if the user chooses to exit, the car is stopped before
program termination.

Program 4.11 rewrites the control statements using a switch. Al-
though at first glance this program may not appear any simpler than
the if-else set, on examination it will prove to be the preferred solution
to the problem. We have now eliminated the variable c. The switch
can evaluate the gefch() directly. The character returned is compared
for equivalence to each of the case statements. If none of the cases
match, the default case will execute, and the user will be informed

4.3 Conditional Decision Structures

while (1) {
printf ("Enter command:");
switch(getchar ()){
case 'f': forward(); break;
case 's': stop(); break;
case 'l': left break;

()
()

case 'r': right(); break;
()

case 'b': back(); break:;
case 'e':

stop();

exit();
default:

printf("Please enter f,s,1l,r,b or\

'e' to exit!\n");

}

Program 4.11 Control using switch.

of the expected entries. Note that for each of the cases (except the
exit and default) a break statement is added to stop any further eval-
uation within the switch after a successful match is made. Without
the breaks, the switch would continue to test until the default, whose
statement it would execute.

You may also employ multiple cases in your use of the switch. For
example, if we had wanted to allow the user to enter either an ¢ or a
q (for quit) to exit, we could have written

case 'e':
case 'q':
stop () ;

exit();

This is the same as writing the following if statement from Pro-
gram 4.10:

if(c =='e' 1l ¢ =="g"){
stop ()
exit ();

}

The switch evaluates multiple cases as or.

99

Control Flow

Unconditional Control

The C goto and Fortran GOTO allow for unconditional program
transfer. The syntax of the C goto and Fortran GOTO statements are

goto <statement label> GOTO <statement#>

In C, the <statement label> is an identifier formed with the same
rules as those for variable names. When the goto is executed, pro-
gram execution transfers to the statement following the label. The
label name must be followed by a colon (:) to distinguish it from a
program statement. In Fortran, program execution is transferred to
the statement number following the GOTO. An example of use of
the C goto is shown in Figure 4.14.

It is not recommended that you use the C goto, for it conflicts with
the structured nature of the language and makes programs difficult
to follow. Nevertheless, in older Fortran programs it is used heavily,
and you should therefore expect to encounter it.

v/ Should the C goto ever be used?

Yes, one example is very deep if-then or loop nesting and a
condition arises in which the nest must be exited. Occasion-
ally if-then nests will be patterned after some phenomenon
or behavior, and proper form will not be possible; hence,
the need for a goto escape. With loops the approved method
of exit is the break, but this will only exit the loop where
the break is encountered.

100

main()
{
<program statements>
goto my_label;
<program statements>
my_label:
<program statements>
exit(0);
}

Figure 4.14 C goto usage.

Exercises

4.5 summary

This chapter covered control structures in both C and Fortran. You
should now be able to write fairly complex programs that produce
useful data

REVIEW WORDS

break
case

continue
default
do-while

else

flag variable

for

goto

if

infinite loop

loop control variable
switch

while

EXERCISES

1.

For the following C program statements, assume the following
declarations:

unsigned char C;

int I;

float X;

In each instance, what is the output?

a.
C = 256;
1f (C)printf (“true");
else printf("false");
b.

I = 256;
if(I%2)printf("Even?");
elge printf ("0dd?");

101

Control Flow

X = 0.0;
if (IX)printf ("Yep!");
printf ("Gotcha!");

d.
I =1;
C = 2;
X = 3;

if(I<C && X>C)printf("true");
printf("or false?"});

cC = -2;
if (C)printf ("negative");
else printf("or positive?");
2. ChangeProgram 4.2 in such a way that if the user enters a zero for
variable a, the program outputs the root of the monic equation
instead of generating an error message.

3. Write a temperature conversion table generator program that al-
lows the user to specify, start, stop, and increment temperature.
The program should convert Fahrenheit to Celsius and Kelvin. A
label indicating °F, °C, and K temperature should be outputted
at the top of the table.

4. For the following C program statements, assume the declara-
tions:
unsigned char C;
int I;

float X;

In each instance, what is the output?

a.
C =5;
while(C!=0)printf(*%d",C--);
b.
I = 10;
do if(I%2)printf('ODD");
while(I--);
C.

for(C=-2; C<0;++0)
printf("%d",C);

102

Exercises

S.

for(C="A"; C<='Z"; ++C)
printf("%C",C);

for(X=0; X==0;)
printf("%f",X++);
Write a simple calculator program in C with the following fea-
tures:

e User inputs any of the following commands:

H -- program outputs a help message explaining
commands .
X -- program prompts for a float value for

variable X.
Y -- program prompts for a float value for

variable Y.

+ -- program computes X = X + Y, outputs X
- -- program computes X = X - Y, outputs X
* —- program computes X = X * Y, outputs X
/ -- program computes X = X / Y, outputs X
0O -- program outputs current values of X & Y

Q -- program exits

e Error message is generated for divide-by-zero
request.

Use the problem-solving steps and generate either a flowchart or

pseudocode for your program.

From statics, a linear force system is as diagrammed in Figure A
below. The equivalent resultant force Fy is equal to the sum of
individual forces and is given by

Fg = ZFi.
i

The location of the centroid of this force, xR, is determined from
the sum of the component force centroids, as follows:

_ 2 Fixi

- OXiES

Write a C program to compute any number of resultant forces
and centroids for systems of this type. Consider only positive
forces and distances. The user will flag completion of data entry
with a negative value. Test for zero force before calculating the

XR

103

104

Control Flow

] X3 =
Fp F3
Fy

€ -

Fy
-

Y
7 7
.\'R

Figure A. Linear Force System.

centroid to avoid divide-by-zero errors. Use the problem-solving
steps and generate either a flowchart or pseudocode for your pro-
gram.

The voltage across the capacitor in a first-order RC circuit is given
by the following expression:

ve = IsR + (Vo — IsR)e /RC t > 0.

Write a C program that outputs a table of values of t and vc. The
user enters the range of time desired in seconds and the incre-
ment in fractions of a second, the source current (Is) in amperes,
the resistance (R) in ohms, the initial voltage on the capacitor (Vo)
in volts, and the capacitor value (C) in farads. Use the problem-
solving steps and generate either a flowchart or pseudocode for
your program.

The x- and y-coordinates of a ballistic projectile at any time (f)
are given by

x = (vg cos o)t
1
y = (vo sinfp)t — zgtz

for some initial velocity vo and elevation angle 6y. The accel-
eration due to gravity is g (32 fts~! or 975.36ms™1). Write a
C program that allows the user to enter an initial velocity and

Exercises

angle, a time increment, and a stop time in seconds and that
then outputs the x- and y-position of the projectile as a function
of time.

9. Modify the program of Exercise 8 to output the highest point that
the projectile reached in flight and at what time it occurred. Hint:
Use a variable to store the previous y value and an if statement
to determine at what point it begins to decrease.

105

106

Type conversion,
Functions, and Scope

nterpretation of data is an important element in the process

of describing how the computer acts upon data. If this inter-

pretation is faulty, control structures will not operate properly

or data will be misrepresented on output. The definitions of
Fortran and C types were explained in Chapter 3; however, the un-
derlying assumption was that types of variables would not be mixed.
In other words, calculations involving real variables would only use
real variables, and those involving integers would only use integers.
Also, the size of variables, or how large a value a variable can hold,
was not considered in any detail other than the observation that a
double variable is twice the size of a float, and so forth. This chap-
ter will explore the nature of type mixing and the importance of
knowing the usage rules for type conversion.

As you know, a program is a set of instructions to perform a task.
Large tasks can require programs of huge scope and size; thus, it is
useful to be able to partition programs into logical segments. Subrou-
tines or functions represent a useful way to achieve the partitioning
of programs to add readability, manageability, and overall structure
to a program. This is not all that functions allow us to achieve, for
they also save the programmer from useless repetition of program
code that is used often and in various places in a program. Finally,
they allow for an elegant and efficient way to include mathematical
functions in computer programs.

Casting and Type Conversion

The cast operator () is used to specify explicitly the conversion of
a variable or expression from one type to another. The syntax for a

5.1 Casting and Type Conversion

cast is
(type) <expressions>

Recall the example from Chapter 3 in which type was mixed. The
question was asked, What is the result of the following operation?

x=5/2;

The solution was that x would be assigned the value of 2 because of
integer division. We now add a fourth solution as follows that solves
the problem of getting a floating point result:

x = (float)5/2;

The preceding statement casts 5 to a float 5.0, and this value is
divided by the integer 2. The result is a float 2.5. The cast operator
causes a temporary type change that is in effect only during the eval-
uation of the statement in which it appears. Note that an alternate
interpretation of the statement above might be that the cast takes
effect after integer division. In other words, why doesn’t the integer
result of 5 divided by 2 get computed and then be cast to a float 2.0?
The answer is that the cast operator has higher precedence than any
of the arithmetic operators. It does not, however, have higher prece-
dence than the parentheses used to force evaluation. Be careful of a
statement such as

x = (float)(5/2);

because x will evaluate to 2.0. The integer division in parentheses
will have precedence over the cast.

When to cast depends on the type of the variables and constants
used in the expressions being formulated. Rarely does the program-
mer specify type solely on anticipated operations. Rather, it is more
likely that the variable data types will be determined by the nature
of the data represented. This is particularly true of engineering prob-
lems. You should resist the urge to “just make everything double.”
This will lead to poor program design, and it will inevitably be diffi-
cult to follow what you are trying to do. Casting is very useful when
mixing functions of different types and sending data to functions
that are not of the functions type, and we will see how this affects
our use and development of functions in Section 5.2.

107

108

Type Conversion, Functions, and Scope

Fortran has no facility for casting one type into another. The
promotion rules for variables and the precedence rules for opera-
tors (described in Chapter 3) apply. When translating Fortran to C,
promotion and precedence rules apply in the same way they did for
C. Potential problems can arise when converting expressions con-
taining the Fortran exponentiation operator (xx). For example, the
Fortran statements

REAL X,Y
INTEGER I,J

Y =3
I =25
J = 2

X = Y**(L/J)
WRITE(*, *)X

will produce an output value for X of 9.0, which is 32. The same will
be true of the following C translation:

float X,Y
int I,J;

Y = 3;
I =5;
J = 2;

X = pow(Y,I/J);
printf("%f\n",X);

The pow() function receives a double 2.0 as the result of the in-
teger division of I = 5 and /] = 2 being promoted to double after
the values get to the function. The original Fortran statements are
misleading, and it may be difficult to ascertain exactly the intent of
the programmer. If the intent was to have Y raised to the 2.0 power
as an outcome of the integer division, then fine. If not, either the
I or] would have to be promoted to floating point. In Fortran this
could have been done as follows:

X=Y*xx1.0=x1/]
In C, we can use the cast operator:

X = pow(Y, (float)/]);

5.1 Casting and Type Conversion

v/ Type conversion problems can be difficult to spot. After
making sure your algorithm is coded properly, look for a
type conversion problem if output data do not match the
expected output for your hand-worked example data set.

As a final example, consider Program 5.1 (output in boldface). A
single float variable x has been declared and initially assigned a value
of 5+ 1/3. All of the constants on the right-hand side are integers.
When the value for x is outputted with the first printf, we see a value
of 5.000000. This output is consistent because the result of the integer
division 1/3 is zero. The second assignment yields the expected al-
gebraic result because the floating point division of 1.0/3.0 is indeed
0.333333. The third assignment includes a cast of float; however, the
integer division inside the parentheses is still 0, and thus the cast does
not give the desired result. The fourth assignment yields the desired
output because the 1 is cast to float. When divided by an integer 3,
the result is a floating point 0.333333.

main () {

float x;

X = 5 4 143;
printf ("$f\n",x);

x =544 1.0/3.0;
printf ("$f\n",x);

x =5 4 (float) (1/3);
printf ("$f\n",x);

x = 5 + (float)l/3;
print i “SE\n" ,xj ;

}

5.000000
5.883333
5.000000
5: 383333

Program 5.1 Casting example.

109

Type Conversion, Functions, and Scope

Our final topic is that of Fortran implicit types. In Fortran, any
variable that has not been explicitly declared and begins with the let-
ters I, J, K, L, or M is implicitly (automatically) typed as INTEGER. All
other variables not declared are implicitly typed as REAL. Implicit dec-
larations are superseded by explicit declarations. For example, REAL
JBESSEL declares the variable JBESSEL as real even though it would
be an implicit integer if left undeclared. The IMPLICIT statement in
Fortran may be used to declare a set of variable names implicit. For
example, the Fortran statement below causes all undeclared variables
that start with the letters Wthrough Z to be integers:

IMPLICIT INTEGER (W-Z)

v/ Implicit variables, although convenient in the short term,
represent very poor program practice because errors that
result from mistakes in variable type declaration are very
difficult to detect. It is recommended that all variables be
declared when writing Fortran programs.

110

Functions

The C programs that we have written until now have been coded as
the main function. We have used this function exclusively to define
our C programs, but in actuality a C program comprises one or more
functions. A function in C is defined as a distinct program unit used
to perform a specific task. All C programs must have a main func-
tion because it is defined as the entry point of the program or where
things get started. Programs in C have access to library functions
or functions that have been defined elsewhere and have been pre-
compiled and stored in object form to be included with a program
during the linking stage (see Chapter 1). The library functions that
we have used include printf, scanf, pow, and sqrt. Section 5.3 of this
chapter discusses more of the library functions commonly available
to C programmers. Also discussed in that section are the Fortran in-
trinsic functions. For now, our interest is to generate user-defined
functions, which are written by the programmer to include with the
development of a program.
The syntax of a function definition in C is as follows:

<type> <labels(<parameter list>){ <statements> }

5.2 Functions

The type of the function is optional and will default to integer
(int), although it is not good programming practice to omit the func-
tion type. The label is the function name that will be used when the
function is called. A parameter list, enclosed in parentheses, lists
the variable declarations that the function receives values of. If the
function receives no variable values (like getch()), then the special
void type should be used (void simply indicates that the object has
no specific type). The parameter (or argument) list is followed by a set
of function statements that are to be executed when the function is
called. These statements must be enclosed in braces.

The best way to learn how to write functions is to create a few. We
will start by building a function that is called for effect (i.e., a function
that does not require any data and doesn’t return any data). One such
function would be a beep() function, which sounds the tone or bell
on the terminal or system output device when called. To sound the
terminal tone, we need to output an ASCII bel control code. This can
be done with the escape code \a or by sending a decimal 7 to the
terminal. This can easily be accomplished by using a prinif to output
the control code.

The beep function is listed as Function 5.1. The function is de-
clared void because it returns no data. It also has a void argument list
because it receives no data. The beep function can be useful to signal
the user that a process has been completed. Each time the function is
called, the terminal bell or tone is sounded once. To illustrate how to
send data into a function, we can modify the beep function so that
it beeps several times, depending on the value of an integer variable,
beeps, that is determined by the user.

The modified beep function is listed in Function 5.2 (changes in
boldface). Note that now we have included the variable declaration
int beeps within the parameter list of the function. The value of
the integer variable beeps is supplied by the user and is used for loop
control of the while statement. The parameter list may have as many
variables as are needed by the function; however, only variables that
carry data into the function should be listed. If a variable is needed

/* beep -- sounds terminal tone or bell */
void beep (void)A{

printf("\a");
¥

Function 5.1 Beep function.

1M1

12

Type Conversion, Functions, and Scope

/* beep -- sounds terminal tone or bell */
void beep(int beeps){

while (beeps--)printf("\a");
}

Function 5.2 Modified beep function.

/* beep -- sounds terminal tone or bell */
voild beep(int beeps)
{

int 1i;

for (i=beeps; i>0;--i)printf("\a");

}

Function 5.3 Beep function with for loop.

within the function for some function-specific task, that variable can
be declared within the function itself.

The beep function can be rewritten using a for loop and an aux-
iliary variable i as the loop-control variable. This change is shown
in Function 5.3. This function has an advantage in that beeps must
be positive or the function will return without action. If the beep
function shown in Function 5.2 is sent a negative number, the func-
tion will beep until the negative values have cycled through to zero,
which could be a substantial number of times.

As an example of function writing and the inclusion of functions
in program statements, we will revisit the temperature table program
of Chapter 4. The scale conversion formulas are

°C = (5/9)(°F — 32) and °F = (9/5)°C + 32.

We want two functions, F_to_C and C_to_F, that will, given a tem-
perature, return the corresponding conversion. These functions are
listed in Function 5.4 and introduce a new C reserved word, return.
Return is used to terminate execution of a function and return exe-
cution to the calling function. If the return statement has an argu-
ment, the evaluation of the argument must match the type of the
function and will be returned as the value of the function. In our
temperature conversion examples, the functions return the result of
applying the temperature conversion formulas. Function 5.4 shows

5.2 Functions

/* Fahrenheit-to-Celsius Table Generator */
main(){
float F;
for(F = 32.0; F <= 212.0; F += 10.0)
printf("%3.0f\t%3.0f\n",F,FtoC(F));
}

Program 5.2 C Fahrenheit to Celsius table generator.

/* FtoC -- returns the conversion of
temp in degress Fahrenheit
to degrees Celsius */

float FtoC (float temp)d{

return((5.0/9.0)*(temp - 32.0));

}

/* CtoF -- returns the conversion of
temp in degrees Celsius
to degrees Fahrenheit */

float CtoF (float temp){

return(((9.0/5.0)*temp) - 32.0);
}

Function 5.4 Functions F_to_C and C_to_F.

Program 4.3 rewritten to include calls to F_to_C, which takes place
within the printf. Now the value for variable C from before (previously
computed in the loop with the formula) is returned by the function
F_to_C. The output of this program remains unchanged. Note that
the F_to_C function receives the value of float variable F, which takes
values from 32.0 to 212.0 in increments of 10.0 degrees in the loop
and returns the converted float value in Celsius degrees. The returned
value is used by printfto output the table. Likewise, it is just as simple
to do the opposite (i.e., output a Celsius to Fahrenheit table). This
is accomplished by Program 5.3 using the C_to_F function. Note the
change in range (0 — 100).

A function may only return a single value, but many values may
be sent to a function in the parameter list. As an example of this, we
design a function to compute centripetal force. Figure 5.1 illustrates the
vectors involved. A mass m (kg), is constrained to move in a circle of
radius r (m) at a linear speed v(m/s). The force F in newtons applied

113

Type Conversion, Functions, and Scope

/* Celsius-to-Fahrenheit Table Generator */
main(){
float C;
for(C = 0.0; C<= 100.0; C += 10.0)
printf ("%$3.0£\t%3.0f\n",C,CtoF(C));
}

Program 5.3 C Celsius to Fahrenheit table generator.

Figure 5.1 Centripetal
force system.

/* centripetalF -- returns centripetal force
in newtons */

float centripetalF(float m, float v, float r)

{

return(m*v*v/r) ;

5.2 Functions

To see this, let us now consider a problem that would require the
centripetal F function. Centripetal force comes into play when a car
uses a cloverleaf interchange to change direction while traveling on
a highway. Given that the mean of a standard vehicle’s weight is
2,000 lbs, the radius of curvature of a cloverleaf loop is 100 ft, and
the speed limit is 55 mph, What are the forces acting on a car in
the cloverleaf loop while speeds are changing from the speed limit
to the ramp speed of 35 mph? Output these forces in increments of
1 mph.

We apply the problem-solving steps. The function centripetal F
will be called over the velocity range of 55 to 35 mph in increments
of 1 mph to allow us to output a table of force values (D). Because the
function centripetal_F requires data in mks units, we must first convert
the given data into mks units. To do this, the following formulas are
needed Q):

Mass in Kg = (Mass in Pounds)*0.45359
Velocity in m/s = (Velocity in mph)*.44704
Radius in meters = (Radius in feet)*0.30480

Force in pounds = (Force in newtons)*0.22481

At 50 mph, the car will be traveling at 22 m/s. The loop radius
will be 30 m, and the mass of the car will be 907 Kg. The centripetal
force will be 14,870 N or 3,343 Ibs(). Quite a load on the tires and
pavement! Now we can pseudocode the problem®):

Program cloverforce

Declare variables
float carmass=2000
carspeed=55
loopradius=100

Define constants
poundstokg = 0.45359237

feettom = 0.3048

mphtomps = 0.44704

newttolbs = 0.22480894
Declare output variable float force
carmass = carmass * poundstokg
loopradius = loopradius * feettom

While carspeed >= 35

115

116

Type Conversion, Functions, and Scope

force =
centripetalF (carmass,
carspeed*mphto mps, loopradius)
output carspeed, force* newttolbs
decrement carspeed
end While

exit program

The C code for this problem is shown in Program 5.4(%). Note
that the mks conversion constants were defined as program con-
stants. Because the mass of the car and the loop radius do not change
in the program, the data in these variables are converted to mks
units first by multiplication with the conversion constants. The pro-
gram then uses a while loop to cycle through the values of vehicle
velocity given by the variable car_speed, which is also used as the loop

/* cloverforce.c -- program outputs centripetal
forces
acting on a 2000# vehicle in a 100 ft. radius

circular ramp at speeds of 55 to 35 mph */
#include <stdio.h>

/* conversion constants used by program */
#define poundstokg 0.4536

#define feettom 0.3048

#define mphtomps 0.4470

#define newttolbs 0.2248

/* function to compute centripetal force */
float centripetalF(float mass, float velocity,
float radius){
return (mass*velocity*velocity/radius) ;
}
main(){
float carmass=2000.0, carspeed=55.0,

loopradius=100.0, force;

/* convert fixed data to mks units */
carmass *= poundstokg;

loopradius *= feettom;

Program 5.4 Clover_force.c.

5.2 Functions

Speed Force
55 4044.13
54 3898.41
53 3755.36
52 3614.98
51 3477.28
50 3342.25
49 3209.90
48 3080.22
47 2953.22
46 2828.88
45 2707.23
44 2588.24
43 2471.93
42 2358.29
41 2247.33
40 2139.04
39 2033.43
38 1930.49
37 1830.22
36 1732.62
35 1637.70

Figure 5.2 Output of Clover_force.c
program.

control variable. This variable is decremented after the current value
is outputted by the printf. The force variable is assigned the return
value of the function centripetal_F, which accepts the mass, ve-
locity, and radius values. The value of the velocity variable car_speed
is converted to before being passed to the function. The force variable
value is converted to pounds prior to being passed to printf.

The output of the program is shown in Figure 5.2(6). The neatness
of the columns was achieved by forcing the output values to fixed
widths in the printf statement. Note that the test value of 50 mph
has been highlighted in boldface and shows agreement with our test
data.

It is also possible for functions to call other functions, or for a
function to call itself. This capability is important because it under-
scores that any statement possible in a program (until now, the main
function) is also possible in a function. The C program is then just a
collection of functions, beginning with the main function. The func-
tion simplifies and structures the program. A well-structured program
is easier to follow in terms of the algorithm and also makes it easy to
reuse functions from one program in another.

117

118

Type Conversion, Functions, and Scope

As we have seen, a function returns a single value depending on
the type specified when the function is defined. If the function is not
to return a value, then the void type is used. The question might now
be, How do we get a function to return more than a single value?
Recall that C passes the values of variables to functions. A function
receives a copy of the value and cannot change the variable itself. For
a function to be able to change the value of a variable, the address
of the variable must be passed to the function. We have seen how
an address is passed from our use of the address operator (&) in the
scanf function. The function must be written to receive the address
and work with it accordingly. This technique is beyond the scope of
this chapter and requires knowledge of pointers, which we cover in
Chapter 6; therefore, we will delay discussion of how to get multiple
return values from functions until later.

Fortran makes use of both functions, which return values like their
C counterparts, and subroutines, which are small programs that can
be called like functions but have no return value. A C function that
has been declared void is the equivalent of a Fortran subroutine. The
most important difference between C and Fortran with respect to
functions and subroutines is that Fortran passes data by reference
(address), not by value. As discussed above, when you pass data to
a C function, the data values are assigned to the variables that are
local to the function: the ones defined in the functions parameter list.
With Fortran, the address of the variables is passed to the function,
and thus any assignments made to the variables in the function will
be reflected in the variables declared in the calling routine.* This will
be discussed in greater detail in Section 5.4, Data Scope. For now,
we will just examine the basic syntax of the Fortran FUNCTION and
SUBROUTINE.

The syntax of a function definition in Fortran is as follows:

<type> FUNCTION <label> (<parameter lists)
<statements>
RETURN

The type of the function is optional and will default to the For-
tran implicit type for the name. Although it is not good program-
ming practice to omit the function type, untyped functions are often

*We use the word routine as a general term to refer to programs, functions,
and subroutines.

5.2 Functions

REAL FUNCTION FTOC (TEMP)
FTOC = (5.0/9.0)*(TEMP - 32.0)
RETURN

Function 5.6 Fortran version of F_to_C function.

SUBROUTINE FTOC (INTEMP, OUTEMP)
OUTEMP = (5.0/9.0)* (INTEMP - 32.0)
RETURN

Function 5.7 Fortran SUBROUTINE version of F_to_C function.

encountered when translating Fortran code. The RETURN statement
terminates the function. The Fortran version of the Fahrenheit to
Celsius conversion function is shown in Function 5.6. Note that
the function name is used in the function itself to set the return
value.

The only difference between a function and a subroutine is that
the subroutine does not return a value. The Fortran FUNCTION is
used in the same way as the C function as part of an expression.
The subroutine, however, must be invoked with the Fortran reserved
word CALL. This is the origin of the expression “call a subroutine.”
The syntax of a subroutine definition in Fortran is as follows:

SUBROUTINE <label>(<parameter lists>)
<statements>

RETURN

The subroutine returns results as changed data values of the vari-
ables sent to it in the parameter list. Function 5.7 shows the C F_to_.C
function converted to a Fortran SUBROUTINE. The variable names
INTEMP and OUTEMP are passed to the subroutine. The subroutine
assigns the converted value of INTEMP to variable OUTEMP and re-
turns. The calling routine variable that corresponds to OUTEMP has
been assigned the new value. It is not necessary that the calling rou-
tine variable have the same name as that used in the subroutine, even
though the value may be changed. The variables used in the subrou-
tine definition parameter list are called dummy variables because they
are only used as placeholders for the actual variables that reside in
the calling routine.

119

Type Conversion, Functions, and Scope

v/ When should functions be written? The basic rules of thumb
are to write functions when (a) the program uses the same
set of statements repetitively in different sections of the
program, making a single loop impractical, and (b) when
a program calculation mirrors that of a physical process or
mathematical formula.

120

Library Functions

Library functions are those functions available to the programmer
from software libraries that are linked with the program after compi-
lation. Software libraries are collections of precompiled object mod-
ules. You can generate your own libraries of functions that you define;
the process for doing this, however, is beyond the scope of this book.
Because C requires a function prototype (see Section 5.4, Scope), or
definition, for all external function references, C libraries are accom-
panied by include files that define the prototypes for you. We have
already used some of the functions defined in the stdio.h header file,
which contains prototypes for the standard i/o library. Of primary
interest to engineers are the math library functions. The math.h
header file must be included when using functions from this library.
A list of selected functions found in the math library is given in
Table 5.1.

The standard library contains several important functions. The
header file for the standard library is stdlib.h. Four functions are of
interest to us from this library. The first is int rand(void). This function
returns a uniform random number between 0 and RAND_MAX, a
system-defined integer constant. You can find the value defined for
RAND_MAX by looking at the stdlib.h file. Typically, the value is
32,767. The random numbers generated are sequences derived from
a polynomial formula. Eventually, the numbers repeat and are thus
not truly random. For this reason, they are called pseudorandom
numbers. The function void srand(unsigned int seed) allows you some
control over the sequence, for the pass variable seed indexes the start
position of the generator that rand() uses. The default value for the
seed is 1, and each time you start a program that calls rand() the
random numbers generated will be the same. If you set the seed value

5.3 Library Functions

Table 5.1 Math Library Functions.

pow (double x, double y) raise x to the y power

sqrt (x) square root of x

logl0 (double x) logarithm base 10 of x

log (double x) natural logarithm of x

exp (double Xx) e raised to the x power

fabs (double x) absolute value of x (float)
sin(double x) sine of x, x in radians

cos (double Xx) cosine of x, x in radians

tan (double Xx) tangent of x, x in radians
asin(double x) arcsine of x, x in radians

acos (double x) arccosine of x, x in radians

atan (double x) arctangent of x, x in radians
sinh (double x) hyperbolic sine of x, x in radians
cosh (double x) hyperbolic cosine of x (radians)
tanh (double x) hyperbolic tangent of x (radians)
ceil (double x) rounds x up 3.1416 — 4.0
floor (double x) round x down 3.1416 — 3.0

to a different number each time, the sequence will change and be
more random. There are various ways to do this. One is to ask the
user to set the seed value; another is to use the rand() function itself
to pick a seed.

The third function of interest out of the C math library is the
int abs(int i) function, which returns the absolute value of an integer
argument. We point this out because of the fabs() function in the
math library (see Table 5.2), which returns the absolute value of a
floating point argument. It is a common mistake to forget that abs()
is not in the math library.

The last function of interest at this point is void exit(int status).
We have used this function to exit our programs. The function argu-
ment status can be used to send a program status code to the oper-
ating system. Some operating systems ignore the status values. The
convention is to use a zero for a normal termination and a nonzero
value when the program terminates because of a program-detected
eI1or.

Fortran incorporates what are called intrinsic functions, or func-
tions that are “built in” to the language. There are over 100 intrin-
sic functions in Fortran, which are far too numerous to list here.

121

122

Type Conversion, Functions, and Scope

Table 5.2 Fortran Intrinsic
Functions and C Equivalents.

Fortran Intrinsic C
END exit ()
no intrinsic rand ()
no intrinsic srand ()
IABS () abs ()
X**y pow(X,Y)
SQRT () sqgrt ()
LOG10 () logl0()
LOG () log ()
EXP () exp ()
ABS () fabs ()
SIN() sin()
COS () cos ()
TAN () tan()
ASIN () asin()
ACOS () acos ()
ATAN () atan()
SINH() sinh()
COSH () cosh ()
TANH () tanh ()
no intrinsic ceil()
no intrinsic floor ()
MOD(I,J) I%J

Table 5.2 shows the Fortran equivalencies of the C functions we have
discussed. Always remember the fundamental difference between C
and Fortran functions: C functions pass by value; Fortran functions
pass by reference. In Chapter 6 we will see how variables can be mod-
ified in a C function through the use of pointers.

Data Scope
When variables and functions are declared, we have come to assume

that they are available immediately to the main function, and they
have been. In fact, if variables are not declared, the C compiler will

5.4 Data Scope

produce an error. The range of use of a variable or function is what
is called the scope of the variable or function. So far, we have only
used variables that are local to the main function. Variable declara-
tions have been placed at the beginning of the main function, and
these variables have been available for use in our program. The C
compiler has a “one-track mind” in the sense that it serially compiles
a program file and it is not happy if it encounters symbols or objects
that it does not understand. The compiler understands the structure
of functions, reserved words, and expression-statement syntax, as
well as anything that has been properly declared. The compiler keeps
track of where things are declared, and this is what gives rise to scope,
which refers to where in a program a variable or function declaration
has meaning.

Because a C program is defined by the main function, the extent of
a variable’s scope can be defined in terms of main. This is illustrated in
Figure 5.3, which graphically segments a C source file. Any variable
declaration or function definitions that appear prior to main (the
gray region at the top of the figure) will be global to all sections of the
program that appear in the file. Those declarations that appear within
the main function, the middle gray region, are local to main. Note
that in C you may not define a function within a function, and thus
only variable declarations and executable statements may appear in
the center region. Any program elements declared or defined in the
last region will be external to the main function. The reserved word
extern is used when a variable is external in scope and must be made
available either to main or another function.

Anything
declared here
Main() N—— becomes global
{ to all sections
T G of the program.
Anything

} declared here is
local to main.

Anything
declared here is

C Source File exlgrnal to
main.

Figure 5.3 Scope of declarations to
main function.

123

124

Type Conversion, Functions, and Scope

<+—— Region A
Afunc(void)
{
<statements>
}
QL— Region B
main()
{
<gstatements>
}
«—— Region C
Bfunc(void)
{
<statements>
}

C Source File

Figure 5.4 Scope of declarations
to main function and program
elements.

Consider the three program regions A, B, and C illustrated in
Figure 5.4. The source file consists of three function definitions: Afunc,
main, and Bfunc. Variables declared within each of the function def-
initions will be local to those functions and available only to those
functions. Any variables declared in Region A of Figure 5.4 will be
global and available to any of the three functions. This can be advan-
tageous and dangerous at the same time, for any of the functions in
a program can change the value of a global variable.

Variables declared in Region B are global to main and Bfunc (which
appear below them in the source) but are not available automatically
to Afunc. Variables declared in Region C are global to Bfunc but are
not available automatically to main or Afunc.

Consider Program 5.5. In this program, a variable X has been de-
clared three times: once globally, once in the function my_func, and
once in main. In each case, the variable has been initialized to a dif-
ferent value. When this program is run, it will output the following:

The value of X is 3.000000
The value of X is 2.000000

5.4 Data Scope

ﬁ global variable
float X = 1.0;

,

void my.func(void){ /—
float X = 2.0;

local to my_func

printf ("The value of X is %f\n",X);

}

main ()€ ﬁ local to main
float X = 3.0;
printf ("The value of X 0is %f\n",X);
my_func () ;

}

Program 5.5 Scope of same name variables.

global variable

float X = 1.0; ¥

,

void my_func(void){

printf ("The value of X is %$f\n",X);

}

main () {
printf ("The value of X is %f\n",X);
my_func () ;

}

Program 5.6 Scope of a global variable.

The first line of output corresponds to the printf in main and the
value of X in main. The second line is the output of the printf in
my_func, and it yields the value of the variable X local to my_func.
The global variable X is superseded by the local definitions. This
example should underscore the potential hazards of (1) using global
variables and (2) using the same variable names across functions.

Program 5.6 is the same as Program 5.5 in which X has not been
declared in either my_func or main. The global variable X is now
accessible to main and my_func, and the output of the program be-
comes

The value of X is 1.000000
The value of X is 1.000000

125

Type Conversion, Functions, and Scope

Global variables are best used when a data element must be shared
and changed by all of the components of a program. Often a flag
variable (see Chapter 4) is best declared as a global. Recall that the
flag variable indicates the state of something. One function can set
the flag to indicate that data or a process has been completed, whereas
others can read and reset the flag.

v

When should global variables be used? The basic rule of
thumb is to use them only when absolutely necessary. Such
as with flag variables that are common to a large number
of functions.

126

When a program variable is not within the scope of a particular
function, the variable is external in scope to that function. For a func-
tion to use or have access to an external variable, the variable must be
declared extern. Program 5.7 shows this with the variable Y declared
after the main function. The extern reserved word gives accessibility
to the external variable Y to both main and my_ func. The output of
this program will be

The value of Y is 1.000000
The value of Y is 1.000000

Function definitions are subject to scope rules just like variables.
In Figure 5.4, the function Afunc is global to main and Bfunc, whereas

void my_func (void){
extern float Y;

pintf ("The value of Y is %$f\n",Y):;

}

main (){
extern float Y;
printf ("The value of Y is %f\n",Y);
ny_func () ;

}

float Y = 1.0;¢———— external variable

Program 5.7 Use of extern.

5.4 Data Scope

. function prototype
main () {

extern float circumference(float r);

printf("A circle of radius 5' has a\n")
printf ("circumference of %f'.A\n",

circumference(5.0}));
} external function definition

o

float circumference(float r){
return(3.1216*r*r);

}

Program 5.8 Use of extern function prototype.

Bfunc is external to both main and Afunc. If either main or Afunc need
to call Bfunc, a function prototype, which is a special term used to
describe a function declaration, must be supplied. Program 5.8 shows
a function circumference that is external to main. For main to access
a function circumference, we must supply the function prototype,
which is part of the declarations of the main function. Note that
the prototype looks exactly like the beginning of the function def-
inition. The prototype tells the calling function (in this case main)
what the function returns as well as what the function expects in the
way of arguments.

There is one further caveat about the function prototype. The ar-
gument list does not need to have variable names that are the same
as those of the actual function because they serve only as placehold-
ers. These variables are also called dummy variables because they
only indicate a variable type and not an actual variable. Hence, the
prototype could have been written as

extern float circumference(float x);

The variable x is not available to main because it has not been
declared. This is also true for the variable r in the function prototype
of Program 5.8. The variabler is available to the circumference function
because it is declared in the function definition. There is a subtle
difference between the function prototype, which indicates the type
of an external or global function and its argument types, and the
argument list types in the function definition.

Variables that are declared within functions other than main
are what we call automatic variables. An automatic variable only

127

128

Type Conversion, Functions, and Scope

main(){
void how.many (void) ;

int k;

for (k=0;k<5; ++k)how_many () ;

} automatic variable

void howjiyﬁ{é;;E;{
int I=1;
printf("I've been called %4 times. \n",I++);
return;

}

Program 5.9 Automatic variable.

has value during the execution of the function where it is declared.
The keyword auto is used to specify that a variable be placed in the
automatic storage class, but this is redundant because all local vari-
ables default to automatic. The opposite of auto is static, and a variable
declared static retains any value assigned to it for the duration of the
program execution, regardless of where it is declared in a program.
Variables declared in main are static by default, as are variables de-
clared as globals. The main function in Program 5.9 calls a function,
how_many, five times. Each time how_many is called, it outputs the
value of a locally declared variable I. The value of this variable is
then incremented before the functions return to main.
Output for this program is as follows:

I've been called times.

I've been called times.

times.

1
1

I've been called 1 times.
I've been called 1
1

I1've been called times.

This may not be what was expected. What is happening is that
the variable I is reset each time we call the function because it is an
automatic variable. To keep I from being reset, we need to declare it
static, which is done in Program 5.10.

Output for the modified program is as follows:

I've been called 1 times.
I've been called 2 times.
I've been called 3 times.

I've been called 4 times.

5.4 Data Scope

main () {

void howmany (void); int k;

for (k=0; k<5; ++k)howmany () ;
}

void how.many (void) ¥

static int I=1;

static variable

printf ("I;ve been called %d times.\n",I++);
return;

}

Program 5.10 Static variable.

I've been called 5 times.

This is what we wanted to see: the retention of the variable I
value from call to call. The main function variables are automatic, and
the reason they remain available throughout program execution is
because we start from main to call all other functions and return to
main before program termination.

v/ All variables are automatic variables unless they are de-
clared globally (extern) or are specified as static. Use static
to modify variable declarations in functions when you want
the variable value to remain available throughout the ex-
ecution of the program; otherwise, the function will reini-
tialize the variable value each time it is called.

One way to keep track of functions and variables in a program
is through the use of a program flow diagram, or structure chart,
which is just a flowchart that shows only the function calls and pass
variables of a program. An example of a program flow diagram for a
program that computes the height of tides at some time or when
the tide will be at some height is shown in Figure 5.5. The pass vari-
ables have been left out to improve clarity. This program includes
the following functions in addition to the main:

more -- asks user to continue or terminate.
getParams -- gets almanac data from the user.
TimeFloat -- converts hours and minutes to minutes.

129

130

Type Conversion, Functions, and Scope

Figure 5.5 Program flow diagram for tides

program.

TideHeight -- computes height at some time.
TideTime -- computes time at some height.
TimeOut -- computes when tide will be out.

The diagram shows a single-ended arrow going into the main
function, indicating where the program starts. The single-ended ar-
row leaving the exit function shows how the program terminates.
Typically, library functions are not shown (in this program printf and
scanf are used for I/O, but they have not been included on the dia-
gram). The exit function is illustrated for clarity, but we could have
omitted it and had the exit arrow leave main directly. From the di-
agram, main calls more, TimeOut, TideHeight, and exit. Each of these
functions returns to main except exit, which terminates the program.
TimeOut and TideHeight both call getParams, which calls TimeFloat. It
should be clear from the diagram how the program flows with respect
to functions called; however, no indication is given in the diagram
regarding functionality of the functions.

Program flow diagrams are valuable when one constructs large
software systems with many function calls, but the standard flow-
chart is adequate when writing small programs. We will return to
the tides program in Chapter 6, for it illustrates the passing of data
between functions.

5.5 Recursion

Recursion

Recursion occurs when a function calls itself, and these functions
typically arise in algorithms that generate sequences. The most com-
monly encountered recursive function in engineering is that of the
factorial, and we will use it to illustrate how recursive functions
work. A factorial is just the product of all the integers from one to
a given integer. The mathematical symbol for the factorial is the ex-
clamation point (!). As an example, the factorial of 8 is

8!'=1x2x3x4x5x6x7x8=40,320

The factorial of a negative or floating point number is undefined,
and the factorial of zero is, surprisingly, 1. Actually, this is not too
surprising when one considers that the genesis and primary usage
of the factorial are in the enumeration of things, and a zero can be
considered a single item. Let’s look at a function to compute the
factorial using a loop:

/* compute factorial using loop */
int factoriall(int n){

int temp=1;

/* special case, zero */

if(n == 0)return(l);

/* countdown on f while multiplying

the accumulated value, temp */
while(n)temp *= n--;
return (temp) ;

}

Now contrast the loop version with the following recursive func-
tion:

/* compute factorial using recursion */
int factorial (int n){
/* special case, zero */
if(n == 0)return(l);
/* return the value n times the factorial of n-1
-- the recursion of n! */

return(n*factorial (n-1));

131

Type Conversion, Functions, and Scope

To understand the recursive version, consider 4! = 4*3*2*1. When
we call factorial (5), it calls factorial (4), which calls facto-
rial (3), which calls factorial (2), which calls factorial (1),
which calls factorial (0). This sequence occurs because on each
call the function calls itself with n — 1. When the call to facto-
rial (0) occurs, the function returns the value 1. The return se-
quence up the chain is then as follows:

factorial(0) returns 1 = 0!
factorial (1) returns l*factorial(0) = 1*1 = 1 = 1!
factorial (2) returns 2*factorial(l) = 2*1 = 2 = 2!
factorial(3) returns 3*factorial(2) = 3*2 = 6 = 3!
factorial(4) returns 4*factorial(3) = 4*6 = 24 = 4!

A recursive function requires a termination condition, which is
the recursive equivalent to the loop control variable. In the factorial
function, the initial test for n == 0 is the termination condition.
This expression causes the function to return without calling itself,
and one needs to be sure that eventually the termination condition
will occur. The recursion takes place in the second statement of the
function, and the decrementing of n(n — 1) guarantees that the ter-
mination will occur after n calls to the function. If the termination
condition is missing, the function won't stop recursing, and an over-
flow exception will occur.

Recursion is a fundamental concept of mathematics and finds ex-
tensive use in computer science. Engineers tend to avoid recursion
because of the initial abstraction of the concept. A recursive function
will always be programmatically simpler than a loop-based equiva-
lent and in some applications will be the strategy of choice.

REVIEW WORDS

132

auto

automatic

cast

dummy variables
entry point

extern

external

function

function definition
function prototype

Exercises

implicit type

intrinsic function
library function

local

main function

math library
parameter list
program flow diagram
pseudorandom
recursion

register

return

scope

software libraries
standard library
standard 1/0O library
static

subroutine
termination condition
user-defined function

EXERCISES

1. Write a C function, tconvert, with the following definition:
float tconvert(int towhat, float temp)

If the variable to_what has a value of 1, the function should return
the Fahrenheit conversion of the Celsius temp; if 2, the function
should return the Celsius conversion of the Fahrenheit temp; and
if 3, the function should return the Kelvin conversion of the
Celsius temp.

2. The transcendental sine and cosine functions are easily repre-
sented and computed using the following series expressions:

3 S 7

. _ X X X
SlnX—X—§+T§—!—7+OQC
_1 X Xt X6
COS X = _E+g—-%+...

Write a C program that implements the expansions given above
as functions. Name them Sin and Cos to distinguish them from
the sin and cos functions in the math library. Also, write a

133

134

Type Conversion, Functions, and Scope

factorial function that will be called by the Sin and Cos func-
tions as needed.

Provide two arguments to Sin and Cos in which the value to
be computed and the number of terms to be evaluated are in the
expansion. You may use the pow function for the powers. If the
number of terms is zero, then Sin(x) should return x, and Cos(x)
should return 1.

Your main program should accept a value for x and the number
of iterations. It should then output the value of sin(x) and cos(x)
and then a table of three columns showing the iteration, Sin(x)
and Cos(x). Contrast the values of your functions versus those
in the math library.

The need to integrate functions often occurs in engineering prob-
lems. To integrate means to find the area under a curve, as shown
in Figure ES.1. We can simplify the process by sampling the func-
tion at discrete intervals. Each sample has a trapezoidal shape
from the line connecting the points along the function where the
sample occurs, as shown in Figure ES.2. The area of a trapezoid

f(x)

b
a b x b

Area = [f(x)dx
a

Figure E5.1 Area under a curve.

J(x)
Sf(x)
P x
\/ | Trapezoid
Samples

Figure E5.2 Trapezoid representing sample of area
under curve.

Exercises

is given by the following expression:

area trapezoid = %base(height_left + height_right).

We can use this expression to compute all the sample trapezoid
areas and then add them together to get the function area.

Write a C program to integrate over a range, at a user input
increment value, a selected function using this trapezoid tech-
nique. The program should demonstrate integration of sin(x),
cos(x), and x2. Use a switch control structure in your program to
select between the different functions.

4. The recursive Fibonacci number sequence is given by the follow-
ing expression:

Fy=FNn_1+ Fy_p for N> 2with Fy = F; = 1.

Wirite a recusive C function:
int fibonacci(int N)

that returns the Nth number of the sequence. Use the function
in a program to output the first 15 numbers in the Fibonacci
sequence.

5. Look for the float.h include file on the system that hosts the C
compiler that you use. What is the value for FLT_MANT_DIG, the
number of significant digits that a float variable can have? Write
a C program that outputs successively smaller positive float val-
ues and determine when the limit is reached and what happens
when it does.

6. For Exercise 5 of Chapter 4, add a set of functions to the calcu-
lator, such as sin(x), cos(x), tan(x), and sqrt(x).

7. Write the trajectory program of Exercise 8 in Chapter 4 with
functions that compute the x- and y-positions of the projectile.

135

136

Pointers, Arrays,
and Structures

he C programming language has strong ties to assembly lan-
guage, and this is evident in the direct access to memory
features that the language includes in the form of pointers.
Pointers allow a C program to have complete control over
data type, data values, and data access. The engineer has a keen in-
terest in pointers because they allow functions to access variables
indirectly, and pointers form the basis of subscripted, or array, vari-
able representations.

Pointers

A pointer is nothing more than a direct memory reference, or an
address. A C pointer is a variable whose value is an address. This can
be very confusing, for we have come to see variable names as being
address references in themselves; however, there are times when we
want to access a memory cell indirectly via the address of the cell.
To do this we need a variable whose value points to a memory cell;
hence, the term pointer. To declare a pointer variable, we use the unary
pointer operator(x) in front of the variable name in the declaration.
Pointers are sensitive to type because type determines how large a
variable is in terms of number of bytes. To declare a pointer variable
to an integer, we would use the following declaration:

int *pk;

The variable pk is called a pointer to an integer. We now want to
assign to the variable pk the address of some integer variable because
the value of a pointer is interpreted as an address. To do this we can
use the unary address operator(&). Recall that all along we have used

6.1 Pointers

#include <stdio.h>

main ()

{
int k, *pk; pointer
ok = &k; to k

k=10; integerk value at
'\ ¥ pointer
printf ("%d %$1d %d\n",k,pk, *pk);
}

Program 6.1 Pointer.

this operator in scanf calls to signify the address of variables passed
into scanf. Let’s say that we have an integer variable k; then we can
use the following assignment to assign the address of k to the pointer
variable pk:

pk = &k;

Now the value of pk is the address in memory of k. Consider
Program 6.1 in which we have declared both k and pk, as discussed
above. We've also assigned k and pk values: k the value of 10 and
pk the value of k’s address. What gets outputted when the printf is
executed?

The printf outputs values for k, pk, and *pk. The output of this
program is as follows:

10 2025066460 10

The first value should be understandable immediately because the
program assigned k a value of 10 in the second statement. The second
number may be a bit confusing because it is the address of the variable
k, which is the value of the pointer variable pk. This number will
change depending on the system and how the memory is allocated,
and it is rare to actually output the address itself; we did so here for
illustration. Note that we used %ld in the printf control string, the
specifier for a long int. All pointers (addresses) are long integers, even
though they may point to variable values of any type. The final value
outputted is the value at the address that pk is pointing to, which
is just the value of k. It should be clear that there are now two ways
of representing a variable: the variable itself and the variable with a
pointer.

137

138

Pointers, Arrays, and Structures

Although there are several things that can be done with pointers,
our interest is primarily in the passing of variable addresses to func-
tions. Recall that in Chapter 5 we were restricted to functions that
worked with variable values only because C passes only values of vari-
ables in the function argument list. To get data back from a function,
we had to use the value of the function itself — a single value. If we
use a variable address in the argument list of a function, the function
has the ability to manipulate the variable value. This occurs with the
scanf function when we pass the address of the variable(s) that we
want input values returned for.

To illustrate the writing of a function that returns multiple val-
ues, consider the conversion of rectangular to polar coordinates. A
coordinate pair (x,y) is converted to the equivalent polar coordinates
(r, 9) by the following formulas:

r=sqit(x* + % 0 =tan"'(y/x)

Figure 6.1 shows a point at rectangular coordinates of (1,1), which
should convert to polar coordinates of (1,45°). We want to write a
function with arguments x, y, r, and theta. The variables x and y will
be inputs, and the function will return values for r and theta based
on the preceding formulas. A function to do this, rec_to_polar, is
shown in Function 6.1. Note that the arguments in the function
definition include the pointer operator (%) on r and theta. This in-
dicates that an address must be passed to the function (in this case,
addresses for two float variables). In the body of the function, the
statement

*r = sqrt(x*x + y*y);

Y A

1.0

} >
X
1.0

Figure 6.1 Rectangular and
polar coordinates of a point.

6.1 Pointers

void rec_topolar(float x, float vy,
float *r, float *theta)

{
*r=sart (X*x +v*y);
*theta = atan(y/x);
return;

¥

Function 6.1 Function to convert rectangular
to polar coordinates.

#include <stdio.h>

#include <math.h>

main ()
{
extern void
rec_topolar(float x, float vy,
float *r, float *theta);
float r, theta;
rec.topolar(l1.0,1.0, &r, &theta);
printf("(1,1)->(%f,%f)\n",r, theta);
is

Program 6.2 Use of rec_to_polar function.

sets the value of r to the square root. If the pointer operator is omitted,
the pointer itself will be set to the square root, and the value of the r
variable in the main program will not be correct. Program 6.2 shows
how we might use this function. In the program, two float variables,
r and theta, have been declared. When we call the rec_to_polar
function, the addresses of these variables are passed as the last two
arguments. Because our example called for the conversion of rectan-
gular coordinates (1,1) there was no need to declare variables for x
and y. When we run the program, the following is outputted:

(1,1)->(1.414214,0.785398)

which is what we expected. Note that the angle is in radians. Also
note that we included the header file for the math library (math.h)
because our function uses sqrt and atan.

139

140

Pointers, Arrays, and Structures

The following summarizes the use of pointers to write and use
functions that modify variable values:

1. Decide what variables the function will modify. If the
number of variables to be modified is one, then don’t use
pointers. Have the function return the value as itself.

2. Write the function using the pointer operator (x) to
indicate which variables will return values to the
calling function.

3. Use the pointer operator (x) on the variables to be
modified in the function to cause their values to be
assigned in the function.

4. Use the pointer operator () to indicate the modifiable
variables in the function prototype.

5. Use the address operator (&) when calling the function
to indicate which variables will return values.

Because Fortran subroutines and functions pass the reference, or
address, of variables (see Section 5.2), there is no use of pointers.
Newer Fortran compilers (Fortran 90) include the ability to use point-
ers and memory references, but the implementation details are com-
plex and beyond the scope of our discussion.

Arrays

Arrays in C are defined in several different ways. A C array is a pointer
to a data space. The simplest representation of an array in C is done by
declaring a variable and giving it dimension with bracket notation,
as illustrated below:

float x[5]1[5}, yI[31, z{31(3]1[31]:
char s[101];
int If{21(21;

Here, x is a 5 x 5 matrix of type float, y a float vector of length
3, and z is a 3-D matrix of type float. The variable s is a character
array of 10 characters, and i is a 2 x 2 integer matrix. Array indices
in C start at zero and go until the array size minus one. Consider the
following integer array from before:

int I(2102]1;

6.2 Arrays

The values of this array are indexed at
I[01[0] I[0]J[1]) T[13[0] I[11(1]

in row-column order. Data in the array are accessed in a way similar
to that used for other C data, except that now indices must be used
to identify the individual variable elements of the array.

It is also possible to initialize the data in an array when it is de-
clared. For example, the following code initializes a float array x to
be a 1 x 6 vector with the values 1.0 through 6.0:

floatx[] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0};

Because arrays are data spaces, we cannot form arithmetic, logi-
cal, and relational expressions with them as collective groups. Array
elements, however, are references to individual variables; therefore,
we can use them in any expressions for which we would normally be
able to use a common variable. We can also index arrays using integer
variables. The following statements will multiply each element of our
vector x (defined above) by 2.0, assuming that I has been declared
int:

for(i=0;i<6;++1i)x[i] *= 2.0;

We can output the result using the following:

for(i=0;i<6;++1) printf("x[%d]=%f\n",1,x[1i]);

The output will be

x[0] = 2.000000
x[1] = 4.000000
x[2] = 6.000000
x[3] = 8.000000
x[4] = 10.000000
x[5] = 12.000000

Note the change in the index variable i. Caution must be ob-
served when indexing array variables. You will note that i varies in
the statements above from O to 5, the number of elements in x.

v/ A common error that occurs when using arrays is to confuse
the number of elements declared with the index range. If
you declare an array of dimension D, the index will vary
fromOtoD — 1.

141

142

Pointers, Arrays, and Structures

s —> H s must be initialized to six elements.
€ s[0]=H
1 sfil=¢
1 s[2] =1
o sBl=1
/0 s[4]=0
s[5]1=0

Figure 6.2 Character string memory allocation.

A character array is called a string in C and demands special con-
siderations in usage. Consider the following character array declara-
tion:

char s[10}];

The declaration allocates space for 10 character elements; how-
ever, the 10th element is reserved for the null character, 0. A string
constant is defined by quotation marks, for example,

char s[] = "Hello";

initializes the character array s to be 6 elements. The size of the char-
acter array was left blank, and the C compiler uses the string in quotes
to determine how large a space to allocate. Additionally, the C com-
piler automatically includes the null character, or zero, for you. This
placement of the null is illustrated in Figure 6.2. The variable s by
itself is a pointer to the character string in memory. To access the in-
dividual characters of the string, we use the bracket notation (i.e.,
s[0] is the first element, s[1], the second, etc.). The null character
indicates the end of the string, which means that C strings can be
of any length to the limit of memory. This is in contrast to Fortran
strings, which have a limit on length.
If we execute the following C assignment,

s[1] = 'a';
s will become
s = "Hallo"
We could have used
s5[1] = Ox61;

to do the same thing. Why?

6.2 Arrays

v/ Remember that character array elements are individual
single-byte characters. You can use them as one-byte in-
tegers, assign character constants (e.g., ‘A’) to them, or use
ASCII codes.

Strings are arrays of characters; consequently, like numerical ar-
rays, we cannot form arithmetic, logical, or relational expressions
with them. We can, however, form expressions with the individual
elements of strings. We can also use variables to index strings. For
example, the following set of statements will output the contents of
the string s:

i=0;
while(s[i])printf("%c",s[i++]);

printf("\n");

An easier way to output a string is to use the string format char-
acter in the printf control string, as follows:

printf("%s\n",s);

Just as in the example above with the while loop, the printf “looks
for” the null character at the end of the string to tell it when to stop
outputting characters. Several functions to manipulate strings are
available in libraries that are typically supplied with C compilers.
You can write your own functions to manipulate strings by oper-
ating on the individual elements and testing for the null character
that terminates the string. Remember that the null character is a bi-
nary or integer zero, not the ASCII character zero, which has a value
of 48. The string size is determined by the number of elements as-
signed in the declaration statement. If you manipulate the string
in any way by moving the null character, you must remember not
to index beyond the end of the string, or unpredictable results will
occur.

Implicit Fortran arrays are defined by a DIMENSION statement,
and explicit arrays are designated in the declaration of the variable.
In the example below, X is a 5 x 5 matrix of implicit REAL, Y a REAL
vector of length 3, Z is a 3-D REAL matrix, S is a character string of

143

144

Pointers, Arrays, and Structures

length 10, and Iis a 2 x 2 integer matrix.

DIMENSION X(5,5), Y(3), Z(3,3,3)
CHARACTER S(10)
INTEGER I(2,2)

In the example above, the values of the I array are indexed at

I(1,1) I(1,2)
I(2,1) 1(2,2)

in row-column order. The index range of an array may be changed
using the following construct in the declaration:

INTEGER I(0:1,0:2)

Now the indexes will range from zero to 1, as with the C arrays. Other
than determining the array type and the indexing range (be careful
because the default is a start index of 1, not zero), the Fortran array is
accessed and used in the same way as the C array. The Fortran string
is used somewhat differently because the string has no termination
character but is employed in the same way as an array. Newer Fortran
compilers have string manipulation characteristics similar to C, but
older Fortran code will have very few string manipulation operations,
if any.

Structures

A C structure is a mechanism for representing groupings of differ-
ently typed variables. The most commonly used structures in C for
engineering purposes are those for coordinate systems and for com-
plex numbers. Using the example of complex numbers, one might
wonder how a single representation could be made to accommodate
both the real and imaginary parts. We can define a C structure that
allows us to declare a single complex variable having two parts, or
members, by using the C reserved word struct. The structure defi-
nition for a complex number could be as follows:

struct complex {
float real, imag;

¥

This definition defines a structure type called complex for which
each structure variable declared complex has two members, a float

6.3 Structures

member named real, and a float member named imag. Now we can
declare structure variables based on the following definition:

struct complex a, b;

The preceding declaration forms two structure variables, a and b,
of structure type complex, which was defined above. Let’s say that
we have two imaginary numbers, 2 = 1.0+ 1.0j and b = 2.95 — 1.0j.
To set our structure variables equal to these numbers, we might use
the following assignments:

a.real = 1.0;
a.imag = 1.

b.real = 2.95;
b.imag = -1.0;

The dot notation (structure.element) used with the variable names
on the left-hand side above allows us to access the individual mem-
bers of a structure. It is important to understand that the structure
definition does not allocate a variable but rather simply defines the
elements of a structure. We can combine the structure definition and
the structure variable declarations as follows:

struct complex {
float real, imag;
}a, b;

This will create the two structure variables a and b as before. The
equivalent of the above declaration would be

float a.real, a.imag, b_real, b_imag;

From this, you should see that a structure is just a representa-
tion for grouping variables that yields a compact and ordered way to
form descriptions of collections of similar elements across different
instances of variables. We cannot perform operations on entire struc-
tures but only on their individual members using the dot notation
described above. In other words, if a, b, and ¢ are structure variables,
we cannot form the expression

c=a*h;

The preceding expression is ambiguous, particularly if the struc-
ture contains many different types of variables in its definition.

145

146

Pointers, Arrays, and Structures

/* multiply two complex numbers */
void c_mult(struct complex a,
struct complex b,

struct complex *c,)

c->real = (a.real*b.real)-(a.imag*b.imag) ;
c->imag = (a.real*b.imag)+(a.imag*b.real);

}

Function 6.2 Multiply two complex numbers.

We can define pointers to structures. To do this, we employ the
pointer operator (x) in the structure variable declaration. Using the
complex structure, we can define a pointer to a complex structure as
follows:

struct complex *c_ptr;

Now the c_ptr variable is a pointer to a structure of type com-
plex. Pointers to structures are very useful when writing functions
that operate on structures. We indicated that multiplication of struc-
tures (and other operations) are not permitted, but we can write a
function to perform structure operations. As an example, we will
write a function that multiplies two complex numbers. The multipli-
cation of two complex numbers is defined as follows:

(a + bj)(c + dj) = (ac-bd) + (ad + bc)j

A function to multiply complex variables is shown in Function
6.2. Note that a new notation is introduced, the structure pointer
reference operator (—>). From the function, the statement

c->real = (a.real*b.real)-(a.imag*b.imag);

tells us that ¢ is a structure pointer and c->real is the structure mem-
ber “real.” The c.mult function expects to be passed as an address to
a complex structure (this is the struct complex *c variablein the
argument list). Now we will put the cmult function in the context
of a complete program.

Program 6.3 shows the usage of cmult in a program. Three com-
plex structures are declared: a4, b, and c. The real and imaginary parts
of a and b are initialized before the call to c_mult. Also note that the
address of ¢ is sent to c_mult, thus causing the results of the multi-
plication to be returned to the calling program.

Exercises

#include <stdio.h>
struct complex {

float real, imag;

};
main()
{
struct complex a,b,c;
extern void c_mult(struct complex a,
struct complex b,
struct complex *c);
a.real=1.0;
a.imag=1.0;
b.real=1.0;
b.imag=1.0;
c.mult(a,b, &c);
printf ("%$£%+f\n",c.real,c.imag);
exit(0);
}

Program 6.3 Program that calls c_mult to multiply
two complex numbers.

REVIEW WORDS

array
indices

null character

pointer

string

string constant

struct

structure

structure definition
structure pointer reference
structure variable

EXERCISES

1. Write a C function to multiply two four- x -four matrices of type
float. How can this program be modified to allow various size
matrices to be multiplied?

147

148

Pointers, Arrays, and Structures

Write C functions to perform complex addition, subtraction,
multiplication, and division using the complex structure dis-
cussed in this chapter. Add these functions to the calculator pro-
gram that you wrote in Chapter 4. You will have to allow the user
to specify a complex variable and input the real and imaginary
parts seperately.

Define two C structures, one to represent rectangular coordinates
and one to represent polar coordinates. Rewrite the rec_to_polar
function to use variables declared using the new structures.

Write a function, polar_to_rec, that uses the structures defined
in Problem 2. Test your function with various angles and magni-
tudes.

Write a program to calculate simple statistics (use the program
developed in Chapter 2 as a guide). Use an array to hold the data
set input by the user and use loops to calculate the mean and
variance of the data. Also compute the standard deviation.

Use the program written in Exercise 5 to determine statistics on
a set of outputs of the rand() library function. Allow the user to
specify how many times the function is called (i.e., how many
samples are used in the statistics calculations). What can you
conclude from this about the rand() function?

File Operations

ccess to files allows a program to exploit the largest mem-
ory subsystem available to contemporary machines, that
of the hard disk, CDROM, or tape drives. The file, regard-
; less of which type of media that it resides on, can be
thought of as a massive array of data. You can read from this data
source, write to it, and create new instances and eliminate them from
within your programs. Two primary modes of access to files are avail-
able: the low-level operations that work with bytes of data, and high-
level operations that utilize data streams to store and retrieve the
values of variables. We explore both methods in this chapter.

Low-Level File Operations

A file can be considered a document that has been stored and that
will be accessed as a stream of bytes, such as depicted in Figure 7.1.
Files are operating system (OS) resources, and requests must be made
to the operating system for access to them. The operating system
assigns a filename to a file, and the specifics of what characters are
permitted in the name as well as the length are system-dependent.
Typically, filenames have a prefix and suffix, and by now you have
probably encountered this in your programming. The prefix describes
the contents of the file, such as “myprog,” to describe a program that
you are writing. The suffix indicates the type of file, such as “.c” for
C source or “.for” for Fortran source, and so on.

To access the data in a file already in the file system, we must first
open the file. In C, the open function is used to do this. This function
has the format

fd = open('myfile.dat",mode)

149

File Operations

The quick

brown fox... Stream of Bytes

—3 | TIhfecl Tqlulilcleee

file

Figure 7.1 File representation.
where

e fdis an integer file descriptor returned by the OS,

o myfile.dat is either the filename in quotes or a string variable
that contains the filename, and

e mode is an integer that determines what access will be made
to the file, as follows:

mode = 0 — read access
mode = 1 — write access
mode = 2 — read/write access.

If the file does not exist or the user does not have access privilege
to the file, the file descriptor returned by the OS will be negative. Itis a
good idea to test the file descriptor to see if the value is nonnegative
before trying to read or write to the file.

The read function has the format

nread = read(fd, buffer, nbytes);

where

e fdis the file descriptor that was returned by the open
function,

e bufferisan array where the data read will be transferred to,

e nbytes is the number of bytes to be read, and

e nreadis the number of bytes that were read.

The write function is similar to the read and has the format
nwritten = write(fd, buffer, nbytes);

where

e fdis the file descriptor,
150

7.1 Low-Level File Operations

e Dbufferis an array of data read to be written,
e nbytes is the number of bytes to be written, and
e nwritten is the number of bytes that were written.

The file must have been opened for read or read-write, access for read
to work and likewise opened to write, or read-write for write to work.
If the return variables n_read or or n_written return a negative value,
an error has occurred. When the value of n_read is zero, this indicates
that there is no more data to be read.

The open function assumes that the file exists. If you want to
create a new file, you must use the creat function. This function has
a format similar to open as follows:

fd = creat('myfile.dat",prot)

where

e fdis an integer file descriptor returned by the OS,

o myfile.dat is the file name, in quotes, or a string variable, and

e prot is an integer that specifies a protection mode, which is
generally expressed as an octal constant.

The modes listed below are for the user:

prot = 0600 — read/write access
prot = 0400 — read only access
prot = 0200 — write only access.

Program 7.1 illustrates the use of all four of these functions. Note
that the function prototypes are found in the stdio.h header file and
the functions themselves are found in the standard library. The pro-
gram gets the filename of an existing file from the user and makes a
copy of it to a filename specified by the user. The variables infile
and outfile are the integer file descriptors to be returned by open
and creat. The character array £ilename is used to receive the file-
name strings inputted by the user to scanf. Checks are made of the
file descriptors to make sure that they are nonzero. The variable buf
is a 256-character array that is used to receive the data from reading
infile. The integer bufin is used to determine exactly how many
bytes have been read; when bufin is zero, the copy is complete.
The variable is also used to determine how many bytes to write out
tooutfile.

The last two statements of Program 7.1 introduce the close func-
tion. The argument to close is a file descriptor, and it signals the OS

151

152

File Operations

/* File copy program */

#include <stdio.h>

main (){
int infile, outfile, bufin;
char filename[20], buf[256];

/* get input filename and open */
printf ("Copy-from filename?");
scanf ("%s",filename) ;
infile = open(filename,0);
if(infile<0){

printf ("File open error...exit!\n");
exit (0);
}

/* get output filename and create */
printf ("Copy-to filename?");
scanf ("%s", filename) ;
outfile = creat(filename, 0600} ;
if(outfile<0){

printf("File create error..exit!\n");
exit(0);
}

/* read up to 256 characters, when bufin = 0,
stop--otherwise, write bufin bytes out */
while (bufin=read(infile, buf, 256))

write(outfile,buf,bufin);
close(infile);

close(outfile);

Program 7.1 Low-level file input/output.

to release the file descriptor. When a program terminates, this hap-
pens automatically, but use of close at the end of the program is good
form. There are limits to the number of file descriptors an OS will
make available to a program. When a program utilizes many files,
file descriptors can be freed up by closing the unused files.

Fortran does not use a low-level file access mechanism. Because
the Fortran open, read, and write functions are similar to the C

7.2 High-Level File Operations (Streams)

high-level file access functions, we will discuss Fortran file I/O in
Section 7.2.

High-Level File Operations (Streams)

High-level file operations are distinguished from low-level in that
the data transfer takes place with buffering and decoding that is not
present in the low-level functions. High-level file I/O functions make
use of what are called streams. A stream is just a path for data to take
so that it may move from one area of data storage to another. A stream
is identified by a file pointer as opposed to a file descriptor. To access
files using streams, a pointer to a stream must be declared as a file
pointer through the following:

FILE *filep;

The definition of the typedef FILE is found in the stdio.h header
file (do not be concerned about what a typedef is; for the curious it is
a way to rename a data type). We open a stream by using the fopen
function

filep = fopen('myfile.dat', mode);

where
e filep is afile pointer returned by the OS,
e myfile.dat is the file name, in quotes, or a string variable, and

e mode is a string that specifies an access mode.

The most common modes used are listed below:

mode = “"rw" — read/write access
mode = "r" — read only access
mode = "w" — write only access
mode = "a" — append data to file.

Unlike the open function, if the file does not exist, it will be cre-
ated. On error, fopen will return zero or NULL (defined in stdio.h).
One accesses data on an open stream in a variety of ways. The two
most common means are with fprintf and fscanf. These functions
are identical to their standard I/O cousins, printf and scanf, with the
exception that the first argument in each case is the stream to be

153

154

File Operations

#include <stdio.h>

#include <math.h>

/* program to write a table of square roots
of x from x=0 to 1.0 at .1 increments to

a file "xroots.tab" */

main(){
FILE *fx, *fopen();
float x = 0;

fx = fopen{('xroots.tab","w");

1f (fx==NULL){
printf("file open error...exit.\n");
exit(0);

while(x <= 1.0){
fprintf (fx, "$E\t\t%f\n", x, sqrt(x));
x += 0.1;
}
fclose(fx);
}

Program 7.2 Use of fopen, fprintf, and fclose.

read from or written to. The use of these functions is best illustrated
by example, because, if you are adept at using printf and scanf, the
transition to fprintf and fscanf is minor.

Program 7.2 shows a routine that opens a file “xroots.tab” for
writing using fopen. If the file does not exist, it is created; if it does
exist, it is written over. A loop is run to compute the table of square
roots. As mentioned, the first argument to fprintf is the file pointer,
in this case fx. If we were to print the contents of the “xroots.tab”
file after the program runs, it would yield the following:

0.000000 0.000000
0.100000 0.316228
0.200000 0.447214
0.300000 0.547723

7.2 High-Level File Operations (Streams)

a math program like Matlab™ or Mathematica™ for plotting.

06.400000 0.632456
0.500000 0.707107
0.600000 0.774597
0.700000 0.836660
0.800000 0.894427
0.900000 0.948683

Hence, the data is in ASCII text format. We “printed” to the
file using fprintf, just like printf “prints” to the console. This is very
convenient and allows us to output data that is readily available to
other programs. For example, we can output program data to a file
for loading to a spreadsheet program for further manipulation or to

Program 7.3 shows how the data in the “xroots.tab” file gener-
ated by Program 7.2 can be read using fscanf. Note that now the file
is opened for reading, and as each line is read it is immediately sent
to the console using a printf. You may want to try each of these pro-
grams with your compiler to verify the operation of fopen, fscanf, and

fprintf.

#include <stdio.h>

/* program to oufput a table of square roots

of x from x=0 to 1.0 at .1 increments read

from the file "xroots.tab" */

main(){

}

FILE *fx, *fopen();

float x = 0.1, rootx;

fx = fopen('xroots.tab","r");
if (£x==NULL){
printf("file open error...exit.\n");

exit (0);

while (fscanf (fx, "$f\t\t%f\n", &x, &rootx)>0)
printf ("$f\t\t%f\n",x, rootx) ;
fclose(fx);

Program 7.3 Use of fopen, fscanf and fclose.

155

156

File Operations

Fortran file operations involve the OPEN, READ, WRITE, and
CLOSE intrinsic functions. Fortran file I/O is either formatted or un-
formatted. If formatted I/O is used, a FORMAT statement is needed
to define the formatting of the data. We will discuss unformatted I/O
only. The Fortran OPEN statement has the following syntax:

OPEN(UNIT=3, FILE='myfile.dat',6 STATUS='0OLD')

You may use any (integer) unit number that you like; however,
most operating systems reserve unit number 5 for the standard
input (typically the console keyboard) and number 6 for the stan-
dard output (typically the console display). The FILE in the open
statement must either be a character string or the name of a file in
single quotes, as shown above. The STATUS specifies whether you
want to open an existing file, STATUS = ‘OLD’, or create a new one,
STATUS = ‘NEW'.

The Fortran READ function allows the reading of data from a file.
The Fortran READ statement has the following syntax:

READ(UNIT=3,*)X,Y,Z

Here the unit number must correspond to a file that has been
opened, and the asterisk (*) indicates that unformatted read will take
place. Because Fortran uses variable reference instead of value, no
special addressing considerations are needed. In the example above,
variables X, Y, and Z will be read. The compiler will take care of any
formatting on the basis of variable type.

The Fortran WRITE function allows the writing of data to a file.
The Fortran WRITE statement has the following syntax:

WRITE (UNIT=3,*)X,Y,Z

Once again, the unit number must correspond to a file that has
been opened, and the asterisk (*) indicates that unformatted write
will take place. In the example above, variables X, Y, and Z will be
written to the file specified in the OPEN statement for UNIT num-
ber 3. The compiler will take care of any formatting based on the
type of the variables. If X, Y, and Z are real, decimal points will be
outputted.

The Fortran CLOSE function is similar to the C fclose and close
functions and has the following syntax:

CLOSE(3)

Review Words

PROGRAM FILES
REALX, Y, Z

OPEN(UNIT=3,FILE="MYFILE.DAT’,STATUS="NEW")

X =3.1426
Y=1
Z =2.5E12

WRITEG,%X,Y,Z
CLOSE(3)

STOP
END

Program 7.4 Use of Fortran OPEN, WRITE, and CLOSE.

The number in parentheses is the UNIT number opened. Like C,
when it is called it frees up the UNIT number for reuse. Program 7.4
illustrates the use of the Fortran OPEN, WRITE, and CLOSE functions.
The output of this program (what is written to the file ' MYFILE.DAT’)
is

3.142600 1.000000 2.5000000E+12

The compiler has formatted the data automatically with decimal
points because they were of Fortran type REAL.

REVIEW WORDS

creat

close

fclose

file descriptor
file pointer
filename
fopen
fprintf
fscanf
open

read

157

File Operations

EXERCISES
1.

stream
write

Write a C program to process data from a weather monitoring
system. The weather monitor provides temperature, baromet-
ric pressure, wind speed, wind direction, and humidity infor-
mation. The data from the monitor can be accessed by a set of
system functions: temp, baro_p, wind_spd, wind_dir, and rh that re-
turn their respective values when called. The functions return
float values with units and ranges according to Table 7.1. The
program should access the data from the monitor; compute the
running averages of temperature, wind speed, and relative hu-
midity; determine whether the barometric pressure is rising, fall-
ing, or staying steady after three readings; compute the max-
imum and minimum temperature and humidity; and indicate
wind direction using the eight cardinal points of the compass. All
of the data should be displayed dynamically to the console at 5-
second intervals. If a data value is out of range, a message should
be outputted and the program halted. Simulate the weather mon-
itoring system by opening and reading from 5 files containing
data for 2 minutes of operation. These files should be named
TEMP.DAT, BARO_P.DAT, WIND_SPD.DAT, WIND_DIR.DAT, and
RH.DAT.

If you wrote a program to compute simple statistics (Exercise 5
from Chapter 6), modify the program to accept data from a file.

Table 7.1 Weather Monitor Functions.

Function Data Units Range

temp Temperature °F -50 - 150

baro_p Barometric Inches of 0—40
pressure Hg

wind_spd Wind speed mph 0—120

wind dir Wind Degrees 0 - 360
direction

th Relative % 0 —100
humidity

158

Exercises

The file can be a simple column of numbers that you can generate
using a text editor. Use fscanf to determine when the values read
from the file are exhausted.

3. Write a program to output values of a loop variable x, the sin (x)
and cos (x) to a file. Vary x from zero to 2z Use a spreadsheet
or graphics program to plot the data produced. You may have
to separate the columns of data with a comma or tab character
depending on what plot program you use.

159

160

Case Studies

n this final chapter we examine two programs that have a fair
degree of complexity and will serve to bring together many of
the concepts of the text. The first program is an adaptation of a
simpler program to compute either the height of the tide, given
a time of day, or the time that the tide will be at a given height. This
type of program finds use in many applications of ocean engineering
and is called a modeling program, for it models the behavior of a phys-
ical phenomenon. Modeling is related to simulation, in which case
the computer is used to simulate a process or device. The techniques

L]

of computer modeling and simulation are major aspects of engineer-
ing practice because they allow us to design and analyze systems in
the laboratory before making a high-value commitment to a physical
prototype. Modeling and simulation are also useful when working in
potentially dangerous and hazardous environments to evaluate risk
and develop protective appliances and procedures for personnel who
may be exposed to those environments.

The second program shows you how to use a console to plot func-
tions in time. This type of programming is called visualization and
entails the use of the computer to enhance the presentation of data
for analysis or design purposes. Visualization is used in all fields of
engineering practice primarily owing to the huge volume of data that
engineers must deal with on a day-to-day basis.

Tides

We first encountered the tides program in Section 5.4 during our dis-
cussion of program scope. The program consists of a set of functions
that perform different tasks, and we will now discuss each of them

8.1 Tides

in turn while we examine the program source. You may want to refer
to the program flow diagram shown in Figure 5.5 at this time. Recall
that the program consists of the following functions in addition to
the main:

more -- asks user to continue or terminate.
TimeOut -- computes when tide will be out.
TideTime -~ computes time at some height.
TideHeight -- computes height at some time.
getParams -- gets almanac data from the user.
TimeFloat -- converts hours and minutes to minutes.

The main tides program is listed as Program 8.1. It is somewhat
self-documenting. Function prototypes are listed for the four func-
tions that will be called by main: these are more, TimeOut, TideTime,
and TideHeight. An event loop formed by a while statement that is
always true prompts the user to decide whether to compute time or
height or to quit the program. A switch statement on the character
returned by getch processes the user request or defaults to an error
prompt. The more function, listed in Function 8.1, is called to deter-
mine whether the user wants to process another data set or to quit.
The question is posed, if the user does not want more processing then
exit, else process data again.

If the user wants to know what time the tide will be at a given
height, the function TimeOut is called with the function TideTime as
the argument. TideTime is listed as Function 8.2. It takes no argument
and queries the user for the desired tide height. It then calls the get-
Params function (listing Function 8.3) to get the necessary almanac
data from the user. This function inputs the time and height of high
and low water for the day from the user. These data are available in
almanacs, but more sophisticated tide computation programs incor-
porate a database of this information, and thus the user need not
enter the information. Upon return to TideTime, the time of the tide
at the desired height is computed from an extrapolation formula.
This time is in the form of hour.minute, a float value where the whole
part of the number is the hour and the fractional part the minutes. It
is this value that TideTime returns to TimeOut. The TimeOut function,
Function 8.4, converts the float-format time to hours and minutes
and displays the results to the user. The integer hour is assigned the
value of the floor of the float value time. The floor function is in the
math library and returns the integer truncation of the variable passed

161

162

Case Studies

/* Tides

Program to compute height of tides at some time

—-—-0or--

time when tide will be at some height. */

#include

#include

<math.h>

<stdio.h>

void main(void)

{
extern
extern
extern

extern

while(

unsigned char more(void)
void TimeOut (float Timeln);
float TideTime(void);

float TideHeight(void);

nA{

printf ("\nTide time, height or qguit (t/h/qg)?")
switch(getch()){

}

Program 8.1

case 't':
case 'T':
TimeOut (TideTime ()) ;

if(lmore())exit (0);

break;
case 'h':
case 'H':

printf ("\nThe tide height will be:
$f feet. \n", TideHeight());"
if (Imore())exit(0);
break;
case 'q':
case 'Q':
exit(0);
default:
printf ("\nPlease enter a 't', 'h' or

'ati\nt);

Tides main program.

8.1 Tides

/* Asks user whether further computations are desired,
returng false if no, true if yes */
unsigned char more(void)
{
for(;:){
printf ("Compute again(y/n)?");
switch(getch()){
case 'y':
case 'Y':
return(l);
case 'N':
case 'n':

return(0);

}

Function 8.1 Tides more function.

float TideTime (void){
float hl, h2, tl, t2, hx;

printf ("\nEnter the tide height that you want the
time for:");
scanf ("%f", &hx);
getParams (&hl, &h2, &tl, &t2);
return/(
£2 + (tl-t2)*(acos(l.0 - 2.0*((hx-h2)
/{(h1-h2)))/180.0)
)i
¥

Function 8.2 Tides TideTime function.

to it. The hour is then subtracted from time to yield the fractional
part, which is then multiplied by 60 to derive minute. The hour and
minute when the tide will be at the desired height is then output to
the console.

If the user wants the height of the tide at a particular time, then
main calls the TideHeight function, Function 8.5. Note that TideHeight
takes no arguments but is called as an argument of the printf in main

163

164

Case Studies

void getParams (float *H1l, flcocat *H2, float *T1, float
*72)4{
extern float TimeFloat(int hours, int minutes);

int hour, minute;

printf ("Enter the Height of High Water:");

scanf ("%f",Hl);

printf ("Enter the hour when High Water occurs:");
scanf ("%d", &hour);

printf ("Enter the minute when High Water occurs:");
scanf ("%d", &minute);

*T1 = TimeFloat (hour,minute);

printf ("Enter the Height of Low Water:");

scanf ("%£",H2);

printf ("Enter the hour when Low Water occurs:");
scanf ("%d", &hour);

printf ("Enter the minute when Low Water occurs:");
scanf ("%d", &minute) ;

*T2 = TimeFloat (hour,minute);

}

Function 8.3 Tides getParams function.

void TimeOut (float time){

int hour, minute;

hour = floor(time);

minute = 60* (time - hour);

printf('The time of the tide will be
%d:%d\n", hour,minute) ;

}

Function 8.4 Tides TimeOut function.

that outputs the return value of TideHeight, which returns the float
value of the computed tide height. TideHeight asks the user for the
desired time in the form of two integers, hour and minute. It then in-
vokes getParams to get the almanac data. TideHeight then returns the
computed tide height. Note that the time in hour:minute format is
converted to a float format, hour.minute, by the function TimeFloat,
Function 8.6. TimeFloat casts the hour as float and adds the ratio of
the minute to 60 to it.

8.1 Tides

float TideHeight (void){
int hour, minute;
float R, hl, h2, tl, t2, tx;

printf ("\nEnter the hour you want to know the
tide:");

scanf ("%d", &hour);

printf ("Enter the minute you want to know the
tide:"});

scanf ("%d", &minute);

getParams (&hl, &h2, &tl, &t2);

R = hl - h2;

return(((hl+h2)/2.0)-

((R/2.0)*cos(180.0* ((TimeFloat (hour,minute)-t2)/

(t1-t2)))))
}

Function 8.5 Tides TideHeight function.

float TimeFloat(int h, int m){
return((float)h + m/60.0);
}

Function 8.6 Tides TimeFloat function.

To test the program, tide data from the newspaper can be used.
The following data were published in the Orlando Sentinel on May 29,
1997:

Daytona Beach, Florida

Units are feet

Low Tide: Thu 1997-05-29 8:53 PM EDT 0.08
High Tide: Fri 1997-05-30 3:06 AM EDT 4.10

It might be useful to know at what time the tide will be at 2 feet
so we run the program and receive the following outputs, user input
in boldface:

Tide time, height or quit (t/h/qg)?t

Enter the tide height that you want the time for:2
Enter the Height of High Water:4.10

Enter the hour when High Water occurs:3

165

166

Case Studies

Enter the minute when High Water occurs:06
Enter the Height of Low Water:0.08

Enter the hour when Low Water occurs:20
Enter the minute when Low Water occurs:53
The time of the tide will be 20:43

Compute again(y/n)?y

Note that we converted the times to 24-hour format. We can
check the result by asking at what height the tide will be at 20:43:

Tide time, height or quit (t/h/g)?h

Enter the hour you want to know the tide:20
Enter the minute you want to know the tide:43
Enter the Height of High Water:4.10

Enter the hour when High Water occurs:3

Enter the minute when High Water occurs:06
Enter the Height of Low Water:0.08

Enter the hour when Low Water occurs:20

Enter the minute when Low Water occurs:53

The tide height will be:2.322977 feet.

Compute again(y/n)?n

There is a slight discrepancy, because of the inaccuracy of the
prediction model, but the calculation is certainly close enough for
small-craft purposes. It should be clear that the Tides program is far
from optimal. Many constructs were used to illustrate usage rather
than to program either compactly or efficiently. As an exercise, you
may want to rewrite the tides program to have fewer calls to functions
or possibly eliminate functions completely, such as more or TimeFloat.
An interesting project might be to rewrite the program to access a
database rather than query the user for almanac data. These databases
can be downloaded from government sites on the World Wide Web.
When we computed twice in the same run, the high- and low-tide
parameters had to be entered twice. A simple improvement would
be to ask the user if he or she wants to enter new tide data and
skip the call to getParams if the old data are to be reused. A final
modification would be to have the program output a plot of the tide
height versus time. For this, the second program that we discuss could
be useful.

8.2 Console Plot

Console Plot

Plotting involves the graphical display of data as opposed to a tabular
display. For example, the data listed in Table 8.1 are far less interest-
ing than the graphic plot shown in Figure 8.1. Tabular data output is
easy to produce with just a few lines of code. For example, the data
listed in Table 8.1 were produced by Program 8.2. The plot of Figure
8.1 was produced by a computer graphics program, and the program
is substantially more complex than that which generated the table.
Programming computer graphics is beyond the scope of this book;
in fact, entire books have been devoted to it. Nevertheless, the old
adage “a picture says a thousand words” holds true for graphic ver-
sus tabular data in many engineering applications. For engineers to
solve a large spectrum of problems, it is often useful to be able to
visualize the behavior of a variable over time or against some other
parameter.

We can now pose the question, Is there some way that we could
plot sines and cosines using the same output method (i.e., the con-
sole) that we use for tabular data? The answer to this question is yes,
we can. To explore this concept we need first to understand the layout

Table 8.1 Sine and
Cosine of x.

X Sin (x) Cos (x)
0.00 +0.00 +1.00
0.50 +0.48 +0.88
1.00 +0.84 +0.54
1.50 +1.00 +0.07

2.00 +0.91 —-0.42
2.50 +0.60 —0.80
3.00 +0.14 —0.99
3.50 —0.35 —0.94
4.00 -0.76 —0.65
4.50 -0.98 -0.21
5.00 —0.96 +0.28
5.50 -0.71 +0.71
6.00 -0.28 +0.96

167

168

Case Studies

T

Figure 8.1 Sin (x) and cos (x) graphics plot.

/ ***x**Gine and Cosine Table Generator

This program outputs a table of Sines and Cosines of x

as x varies from 0 to 27

******/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define P1 3.1416
void main(void)

{
float x;

printf (“x\t\t\tSin(x)\t\t\tCos(x)\n");

for(x=0.0; x<=2*PI; x += 0.5)
printf(“%4.2f\t\t%+4.2f\t\t%+4.2f\n" x,sin(x), cos(x));
}

Program 8.2 Sine and cosine table program.

8.2 Console Plot

Figure 8.2 Character cells on standard display (80 x 24).

of the standard ASCII display. The size of the display is typically 80
characters wide by 24 lines, and this will be the layout of our “virtual
graph paper” for the plotting. Because we can output continuously
to the display and it will scroll, we can consider the length of the plot
to be infinite. This layout is illustrated in Figure 8.2. We can visualize
the display as a window with a continuous sheet of graph paper that
scrolls behind it. What we want is to produce a graph of a sinusoid
like that shown in Figure 8.3. To do this, we can produce a vertical axis
by repeated output of a newline (\n), and we can place the plotted
value by spacing across each line proportional to the function value.
Choose a plot width of 40 spaces. We know that sines and cosines
vary from —1 to 1; therefore, when the function is —1 we don’t want
to space over at all. When the function is zero, we want to space over
20, and when the function is 1 we want to space over 40. Declare an
integer variable P that will be the number of spaces that we need to
move over so the following C statement will produce a value for P
that is proportional to the spaces needed for the sin function of x:

P = (20*sin(x))+20;

The plot shown in Figure 8.3 was produced with the following
expression:

P = (20*sin(w*T + theta))+20;

where three new variables are introduced; w for angular frequency;
T for time, and theta for phase. When plotting with characters on
the display it is useful to mark the time axis with the actual value

169

Case Studies

Figure 8.3 Sinusoid plotted on display.

>>1 00 6.28 .5
1.000000 0.000000 0.000000 6.280000 0.500000

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00

Figure 8.4 Sin (T + 0) plotted on display with time axis.

of time, and thus we produce a plot, as shown in Figure 8.4. This
figure was produced by Program 8.3, which is the prototype program
for the plot program we will develop here. This program has a very
primitive user interface. The user must know the sequence of data to
be entered, shown in boldface, and put spaces between the values.
Because we are prototyping, the simple interface will be fine while
we test ideas for the plotter.

170

8.2 Console Plot

/ *test program to output sine console plot */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void main(void)
{
float w,theta, Tstart, Tend,dt, T;
int fon, P;

printf(“>>");

scanf(“%f %f %f %f %f”,&w,&theta,&Tstart,&Tend,&dt);
printf(“%f %f %f %f %f\n\n",w,theta, Tstart, Tend,dt);

for(T=Tstart; T<Tend;T += dt){
printf(“%5.2f1",T);
P = (20*sin(w*T + theta))+20;
while(P-)printf(* ”);
printf(“*”);
printf(\n”);

3

Program 8.3 Sine console plot test program.

We can now summarize what the program does so far as follows:

1. The angular frequency, phase and start, end, and
increment value of time are entered.

2. Aloop takes the time variable T from Tstart to Tend in
steps of dt.

3. On each loop iteration, the time is outputted; then the
cursor is spaced by P spaces, where P represents the
value of the sine function.

Although the plot looks fairly good, we still have some work to do.
It would be useful to add an x-and y-axis to the plot to make it easier
to read. The y-axis is implemented by adding the following printf
before the loop:

printf(" t +--—-------—---——- 0---------—- + \n");

171

172

Case Studies

>1 00 6.3 .25
1.000000 0.000000 0.000000 6.300000 0.250000

€t
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
325
3.50 *
3.75 *

4.00 %

4.25 *

4.50 *

4.75 g

5.00 *

5.25 &

5.50 *

5.0 15 *

6.00 *
6.25

+
I
1
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
o
|
I
I
|
I
1
I
I
|
|
1
I
I
I
|
|
I
I
I
+

*

*
*
A T ik Tk T o T S S S S S

Figure 8.5 Sin (T + 0) plotted on display with axes.

The x-axis, or time axis, is somewhat trickier. We want the output
to look like Figure 8.5, with the axis running down through the cen-
ter of the plot. The questions are when to plot the axis (‘+’), when
to plot the function value (‘+"), and when to output a space to move
everything over. One solution is shown in Program 8.4. Here we es-
tablish a loop with the integer variable spc that keeps track of where
we are on the line as we space across. When spc is equivalent to P,
the value of our function in terms of spaces, we output a ‘«’, the plot
marker. When spc is equivalent to 20, the center of our plot line, we
output a ‘+’, the axis marker. Note the use of continue to make the
loop iterate after a symbol has been outputted. Otherwise, we output
a space to move the plot over. This scheme works regardless of which
order the plot value and axis value are in. It does waste time, however,
in that the output always continues to space over after both symbols
have been plotted. How might you make the routine more efficient?

All that is left to do is to make the interface a bit more friendly,
and this can easily be accomplished by having the program ask for
the plot parameters by name. Another option is to allow the user to

8.2 Console Plot

choose other functions for plotting. There are no exercises in this
chapter, but you should get Program 8.4 running with the necessary
user interface and the ability to plot either sine or cosine.

/ *test program to output sine console plot
with x and y axes */

#include <stdio.h>
#include <math.h>

void main(void)

{
float w,theta, Tstart, Tend,dt,T;
int fcn, P, spc;

printf(“>>");
scanf(“Y%f %of %f %f %f”, &w,&theta,&Tstart,&Tend,&dt);
printf(“%f %f %f %f %f\n\n”,w,theta, Tstart, Tend,dt);
printf“t+— - - — — — — — — — — o—-———————— +\n");
for(T=Tstart; T<Tend;T +=dt) {
/*Qutput the time value */
printf(“%5.2f1",T);
/*Compute the spacing value */
P = (20*sin(w*T + theta))+20;
/ *Loop for 40 spaces, the maximum width of plot */
for(spc=0; spc < 40; ++spc){
if(spc==P) { /* plot value */
printf(“*”);
continue;

else if(spc==20){ /* plot axis */
printf(“+");
continue;
}
printf(“”); /* space over */
}
printf(“\n”); /* go to next line */

}

Program 8.4 Completed prototype sine console plot test program.

173

Appendix A:
C Language Summary

The summary is alphabetic with reserved words or required symbols
in boldface. Definitions for items in <> are listed.

arithmetic operators

add + 3 +4 =17

subtract - 3 -4 = -1

multiply * 3% 4 =12

divide / 3 /74 =0.75

modulus % 3% 4 =3

|arrays

array._name [<size>] /* 1-D */
arrayname[<size>] [<size>] /* 2-D */
array.name[<size>] [<size>] [<size>] /* 3-D */
array_name[<size>]---[<size>] /* etc.*/

ascii character

A single byte-sized character, equivalent to ASCII binary code. See
Appendix C.

A& 41

[ascii string J

A set of ASCII characters.

"Hello”

assignment]

x=3;

174

Appendix A: C Language Summary

Can be preceded by an arithmetic or bitwise operator:

X += 1; S X = X + 1;

X <<= 3; S X = X << 3;
bitwise operators

and & 1 &0=20

or | 11 0=1

not - “1 =0

shift left <<
shift right >>

I break [

Unconditional exit from loop.

| case I

See switch.

\ cast |

Converts variable or result of expression to type.

(<type>) <variable or expression>
(int)7.0/3.0 & 2

character constant

'<ascii characters'

c = 'a'; & c = 0x61;

character string constant

'<ascii string>"

¢ = "This is a string.";

| comment |

/* this is a comment in C */

|<compound statement> |

All statements within the braces will be treated as a single statement.
{

<statement:

<statement:

175

Appendix A: C Language summary

[continue |

Causes loop to go to next iteration of control variable.

[decrement operator |

--X; & X = X - 1;

| default |

See switch.

[do-while loop ‘

Executes statement as long as the test <expression> evaluates true.

Do executes first then tests.

do <statement> while(<expressions>);

engineering (scientific) notation

3.0E9 < 3,000,000,000.0
3.0E+9 < 3,000,000,000.0
2.07B-4 <« 0.000207

Exponent must be integer.

{escape characters

\n - newline \t - tab
\f - formfeed \” - quote
\b - backspace \r - return \\ - backslash

| <expression>

Can be a number, variable, arithmetic or logical operator combina-
tion, or null. See <statement>.

L1416

3

X

X + Y
X && Yy
x

[N

176

Appendix A: C Language summary

for loop

A controlled loop with a start, stop, and increment definition.

for (<expression 1l>;<expression 2>;<expression 3>)

<statement or compound statement>

Note:

Expression 1 is evaluated at the start of the loop.

Expression 2 is evaluated to determine if the loop should continue
(true: continue, false: stop).

Expression 3 is evaluated at the end of each iteration through the
loop.

|function call

<labels> (<parameter valuess>);
examples:

get_some_value (value) ;

exit();

function definition

<types> <labels (<parameter lists>){<statementss}

example:

int get_some_value(float *value){

return(fscanf ("%$£",value));

[goto |

Unconditional transfer of execution to statement following <la-
bel>.

goto <labels>;

if

If <expressions> evaluates true, then statement or compound state-
ment is executed; otherwise, it is skipped.

if (<expressions>)<statement or compound statement:>

if-else

if (<expression>)<statement or compound statement 1 >
else <statement or compound statement 2 >

177

178

Appendix A: C Language summary

If c<expressions evaluates true, then <statement or compound
statement 1 > isexecuted; otherwise <statement or compound
statement 2 > is executed.

|increment operator |

++X; & X = X + 1;

|<label> 1

Any sequence of alphabetic and numeric characters, including the
underscore, that starts with a letter. The number of allowable chai-
acters depends on the compiler.

|logical operators

Logical operators cause an expression to be evaluated to a Boolean
true (1) or false (0) result. They are used in conditional and loop
expressions (if, for, switch, do, etc.).

AND
OR
NOT

&
|

-—p

<parameter list>

A sequence of <type> <variable> combinations separated by commas
that establish the parameter types to be passed to a function. The
‘double x, double exponent’ in the parentheses below constitute the
parameter list for the pow function.

double pow (double x, double exponent);

[<parameter values>

A sequence of variable names or constant values to be passed as the
parameters to a function. 'y ' and '2.3" are the parameter values for
the function call to 'pow' below:

X = pow(y,2.3);

In C, if a variable is passed as a parameter value, the function receives
the value of the variable.

<NULL statement>

The null statement consists of a single semicolon. No execution takes
place. Can be used to form infinite loops.

.
I

Appendix A: C Language Summary

relational operators

Used to establish logical relations between variables or constants. In
the examples, all of the statements formed using the operators are
true.

equivalence

not equal

less than < <
greater than >
less than or equal to <= <=

[S2 B2 N G N B v
v .
w U1 W oy WU,

greater than or equal to »>=

return

Statement used to return from a function call execution. If no return
statement is used, the function returns null.

return; /* return from function */
return(x); /* return value of x */

return (x<2); /* return logical result */

sizeof

C function that returns the size in bytes of a
variable.

sizeof («<variables>);

<size>

Integer variable or integer constant.

See arrays.

<statement>

A statement is an <expression> followed by a

semicolon.

switch

A switch allows multiple conditions to be evaluated against a single
expression. The <expressions is evaluated and compared against
the variable or contant in each case. If they match, the case state-
ment(s) is (are) executed. If a break statement is placed with the case,
execution begins at the first statement following the switch; other-
wise, the next case is evaluated. The default case is always executed
if execution did not break under previous cases.

179

180

Appendix A: C Language Summary

switch (<expressions){
case <variable or constant>:
<statement (s) >

break;

case <variable or constant>:
<statement (s) >
break;

default:

<statement:>

[<type>

Type declares the data type of the variable or expression. The size in
bytes of a type is dependent on the host machine architecture.

int integers
short int integers(smaller range)

unsigned int positive integers

long int integers(larger range)
float reals(rationals)
double reals (larger range)
char ASCII characters
void null type

typedef

Allows redefinition of a type for clarity in program style.

typedef <type> <labels;

<variable>

A variable is a data storage element defined by a label and of a specific
type. A variable must be declared at the beginning of the program or
externally.

<type> <label>;

[while loop

Executes <statement>as long as <expressions tests true. while
tests first and then executes if true.

while (<expressions)<statements>;

Appendix B: Fortran
Program Language
Summary

This summary is alphabetic with required symbols or words in
boldface. Definitions for items in <> are listed.

arithmetic operators

add + 3+ 4 =7
subtract - 3 -4 = -1
multiply * 3 x4 = 12
divide / 3/ 4 =0.75
exponentiation ** 2 %% 4 = 16

arithmetic IF

IF(<arithmetic expressions>)<ns,<z>,<pP>

If the result of the expression is negative, program execution
transfers to statement <n>; if zero, to statement <z> and to statement
<p> if positive.

|arrays |

DIMENSION array-name (<sizes)
DIMENSION array.name (<sgize>,<size>)

DIMENSION array-name (<size>,<size>,<size>)

1-D, 2-D, and 3-D arrays. Note that <size> may be C different integer
values or an integer variable.

ascii character

A single byte-sized character, equivalent to ASCII binary code. See
Appendix C.

181

Appendix B: Fortran Program Language Summary

|ascii string

A set of ASCII characters.

|assignment

x=3

CALL subroutine

Used to invoke a subroutine, for example,

CALL MYSUB(X,y)

character constant

'<ascli characters'

c = 'a’

character string constant

'<ascii string>

¢ = 'This is a string.’

column positions

1 -- Letter 'C' or '*' in column

indicates comment line.
1-5 -- statement number.

6 -- any character in this

column indicates continuation.

7-72 -- FORTRAN statement.

73-80 -- ignored by compiler; used to
number statements for

programmer reference or for

comments at end of line.

commernt

C this is a comment in Fortran

('C' in first column)

182

Appendix B: Fortran Program Language Summary

* this is also a comment in Fortran

('*" in first column)

[CONTINUE]

Causes loop to go to next iteration; used as terminator for a loop.

|DO loop 1

DO <statement> <index> = <starts>,<ends>,<increments>

Executes all statements up to <statement> from <index> equal to
<start> until <index> is greater than the <end> value. On each itera-
tion of the loop, the value of index is incremented by <increment>.
If no increment value is given, <increment> defaults to 1.

[END |

END of program.

|engineering (scientific) notation —|

3.0E9 3.0E+9 2.07E-4 Exponent must be integer.

| <expression>]

Can be a number, variable, arithmetic or logical operator combina-
tion, or null. Examples:

3.1416 x +y 1 x =y - z

[<ﬁeld list>

A list of field definitions used in a FORMAT statement. A field defi-
nition consists of an optional count (allows more than one variable
to share the same field definition), a format code, and a code format.
For example, a FORMAT statement with a list of field definitions is
as follows:

99 FORMAT (1X,F20.2,3I10)X,I,J,K

The list contains one X code, one F code, and three I codes. The F
and I codes correspond to the variables X, I, J, and K.

183

184

Appendix B: Fortran Program Language Summary

FORTRAN Format Codes

-- Dblank (space)

F -- real number

D -- double precision real
E -- scientific notation

I -- integer

L -- logical

X

H

-- alphanumeric character

For real variables, the format code is written as one of the following:
cFw.d ¢, Dw.d or cEw.d where c is the repeat count, w is the width of
the number in character positions, including the decimal point and
sign, and d is the number of characters after the decimal point. All
other codes are simply followed by the character width required.

IFORMAT statement

Used to define the size and type of data for I/O. Format statements
must be numbered.

<statement number>FORMAT (<field lists>) <variable lists>

|function call |

<name> (<parameter valuess>)

|[FUNCTION definition |

<type> FUNCTION <label>(<parameter list>)
<Statements:
RETURN

GOTO

Causes execution to transfer to <statement number>.

GOTO <statement numbers>

IF

IF (<logical expressions)<statements>

If expression evaluates true, then statement is executed.

Appendix B: Fortran Program Language Summary

IF-THEN-ELSE

IF(<logical expression:s)THEN
<statement (s) >
ELSE
<gtatement (s) >
ENDIF

If expression evaluates true, then statement(s) is(are) executed; other-
wise, the statement(s) following the else is(are) executed.

[<label>

Any sequence of the characters below starting with a letter. Number
of allowable characters is typically six.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890

[library functions |

See table at end of this appendix.

| logical operators]

AND .AND.
OR .OR.
NOT .NOT.
EQUIVALENT .EQV.

NOT EQUIVALENT .NEQV.

Truth Table for Logical Operators

A B .NOT.A A.AND.B A.OR.B A.EQV.B A.NEQV.B

4 48 = =
H = 4J 7
e I |
= m om o
1 A 3 m
=4 3 =™ 4
o A 39

<parameter list>

A sequence of <variable> combinations separated by commas that
establish the parameter types to be passed to a function. An example

185

Appendix B: Fortran Program Language Summary

is as follows:

CART_TO_POLAR (x,Vy,mag, angle)

<parameter values>

A sequence of variable names or constant values to be passed as the
parameters to a function. An example is as follows:

CART_TO_POLAR(2.3,4.5,mag, angle)

relational operators

equal to .EQ.
not equal .NE.
less than LT,
greater than .GT.
less than or equal to .LE.

greater than or equal to .GE.

RETURN

Return from function or subroutine.

RETURN

|<size> l

Integer variable or integer constant.

| <statement number> l

Integer value between 1 and 99999.

[sToP]

STOP execution.

|SUBROUTINE definition |

SUBROUTINE <label> (<parameter list>)
<statement(s) >
RETURN

|<type>

Type declares the data type of the variable or expression. The size in
bytes of a type is dependent on the host machine architecture.

186

Appendix B: Fortran Program Language Summary

INTEGER integers

REAL reals (rationals)

DOUBLE PRECISION reals(larger range)

CHARACTER ASCII characters

LOGICAL TRUE or FALSE
L<Variable>

<type> <labels>

The following functions are common to Fortran compilers:

function | operation performed

FLOAT convert

ABS real absolute value
ALOG natural log

ALOG10 base 10 (common) log
AMOD real modulus

ARCOS arc cosine

ARSIN arcsine

ATAN arctangent

CONJ complex conjugate
cos cosine

COSH hyperbolic cosine
EXP exponential, ex

FIX convert real->integer

IABS integer absolute valug
MOD integer modulus

SIN sine

SINH hyperbolic sine

SQRT square root

TAN tangent

TANH hyperbolic tangent

integer->real

187

Appendix C: ASCII Tables

Code in Hexadecimal - ASCII Character

00 NUL 01 SOH 02 STX 03 ETX 04 EOT 05 ENQ 06 ACK 07 BEL
08 BS 09 HT 0OA NL OB VT O0C NP 0D CR 0OE SO OF SI
10 DLE 11 DC1 12 DC2 13 DC3 14 DC4 15 NAK 16 SYN 17 ETB
18 CAN 19 EM 1A SUB 1B ESC 1C FS 1D GS 1E RS 1F US
20 sp 21 ! 22 . 23 # 24 $ 25 % 26 & 27 !
28 (29) 2A % 2B+ 2C , 2D - 2E . 2F /
30 0 31 1 32 2 33 3 34 4 35 5 36 6 37 7
38 8 39 9 3A : 3B H 3ac < 3D = 3E > 3F ?
40 @ 41 A 42 B 43 C 44 D 45 E 46 F 47 G
48 H 49 I aza J 4B K 4ac L 4D M 4E N 4F ¢}
50 P 51 Q@ 52 R 53 s 54 T 55 U 5 Vv 57 W
58 X 59 Y ©5A Z G5B [5C \ 5D] SE n 5F _
60 A 61 a 62 b 63 c 64 d 65 e 66 f 67 g
68 h 69 i 6 j 6B k 6C 1 6D m 6E n 6F o
70 P 71 q 72 r 73 s 74 t 75 u 76 v 77 w
78 x 79 y 7A =z 7B (¢ | MM } 7E ~ 7F DEL

188

Appendix C: ASCII Tables

Code in Decimal - ASCII Character
0 NUL 1 SOH 2 STX 3 ETX 4 EOT 5 ENQ 6 ACK 7 BEL
8 BS 9 WP 10 NL 11 VT 12 NP 13 CR 14 S0 15 SI
16 DLE 17 DC1 18 DC2 19 DC3 20 DC4 21 NAK 22 SYN 23 ETB
24 CAN 25 EM 26 SUB 27 ESC 28 FS 29 GS 30 RS 31 US
32 8P 33 ! 34 * 35 ¥ 36 § 37 % 38 & 39
40 (41) 42 * 43 4+ 44 , 45 — 46 . 47 [
48 0 49 1 50 2 51 3 52 4 53 5 54 6 55 7
6 8 57 9 58 : 59 ; 60 < 61 = 62 > 63 ?
64 @ 65 A 66 B 67 C 68 D 69 E 70 F 71 G
72 W 73 I 74 J 75 K 76 L 77 M 78 N 79 O
80 P 81 @ 82 R 83 S 84 T 8 U 8 V 87 W
88 x 89 Y 90 z 91 [92 \ 93 1 94 ~ 95 _
96 ' 97 a 98 b 99 ¢ 100 4 101 e 102 f 103 g
104 h 105 i 106 3 107 k 108 1 109 m 110 n 111 o
112 p 113 g 114 r 115 s 116 t 117 u 118 v 119 w
120 x 121 y 122 z 123 { 124 | 125 } 126 ~ 127 DEL
Code in Octal - ASCII Character
000 NUL 001 SOH 002 STX 003 ETX 004 EOT 005 ENQ 006 ACK 007 BEL
010 BS 011 HT 012 NL 013 VT 014 NP 015 CR 016 SO 017 SI
020 DLE 021 DC1 022 DC2 023 DC3 024 DC4 025 NAK 026 SYN 027 ETB
030 CAN 031 EM 032 SUB 033 ESC 034 FS 035 GS 036 RS 037 US
040 SP 041 ! 042 " 043 # 044 $ 045 % 046 & 047
050 (051) 052 * 053 + 054 , 055 — 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 ©
120 P 121 @ 122 R 123 s 124 T 125 U 126 V 127 W
130 X 131 Y 132 2z 133 [134 \ 135] 136 ~ 137 .
140 ° 141 a 142 b 143 ¢ 144 4 145 e 146 f 147 g
150 h 151 i 152 3 153 k 154 1 155 m 15 n 157 o
160 p 161 g 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 =z 173 { 174 | 175 } 176 ~ 177 DEL
Useful escape codes:
NUL -- null NL -- newline
BEL -- bell or beep VT -- vertical tab
BS -- backspace NP -- newpage
HT -- horizontal tab CR -- carriage return
ESC -- escape DEL -- delete

189

190

Appendix D:
C Preprocessor
Directives

The C Preprocessor is a filtering mechanism that is applied to a C
program source file prior to compilation. The preprocessor may be a
front end to the compiler or a separate program that is called by the
compiler. The purpose of the preprocessor is to allow the programmer
to control the compilation at the source level. The three primary uses
of the preprocessor are

e to allow inclusion of header or definitions files (so that
sources common to multiple programs can be easily
managed and reused),

e to allow definitions of special constants or macros to
minimize typing and simplify program structure, and

e to allow partitioning of the source and control which
portions are compiled.

Commands, or directives, to the preprocessor are prefixed with a
pound sign (#). For example, the most common of the preprocessor
directives is the include directive:

#include <stdlib.h>

Directives are terminated by a newline. If a directive requires more
than one line, then newlines must be escaped for each line except
the last. For example, the following define macro requires more than
one line:

backslashes to
/ escape newlines

#define quartic_on_x(x) \ l

pow(x,4) + al*pow(x,3) + a2*pow(x,2) \
+ ad*x + a4;
This appendix discusses the three most common commands to the
preprocessor: the include, the define, and the conditional. Boldface

Appendix D: C Preprocessor Directives

type is used to show the directive and its required parts, whereas
normal type is used for the user-specified portions.

#include

The include directive allows you to specify the name of a file
(stored by the operating system) for inclusion in your source code
prior to compilation. When the preprocessor encounters an include
directive, it searches for the filename specified. If the filename is lo-
cated, the preprocessor inserts the text of the file into the source at
the location of the directive. Remember that this takes place prior to
compilation. If the file is not located, the preprocessor halts (as does
compilation) with an error message.

The include directive has two primary forms:

#include <stdlib.h>

#include '"myheader.h"

The first form (< >) causes the preprocessor to search for the file-
name specified, in this case stdlib.h, in a set of user-specified directo-
ries and then in a standard set of system directories. This form should
be used when including system header files. Examples of these types
of files are stdio.h, conio.h, float.h, and so on.

The second form is used when you wish to include a header file of
your own that is specific to your program. The quotes (“ ") instruct
the preprocessor to search for the file in the current directory, the
directory containing the source being compiled. The only difference
between the two is determined by where the files are located. The rule
of thumb is to use the first form for system headers and the second
for user files. The include process is illustrated by the graphic below:

Original source "myprog.c" "myglobals.h”
#include "myglobals.h* _ L [|int a = 1;
int b = 2;
main{) int ¢ = 3;
{
int x; Y 1
x=a+bwc REPROCESSOR|
printf ("x=%d\n",x);
i
int a = 1;
int b - 2;
int ¢ = 3;

main ()
passed to compiler — |{ .
int x;
x=4a+hb
X

+
printf ("x=%d\n", x) ;

191

192

Appendix D: C Preprocessor Directives

A third form exists for the include directive that allows you to
compute the file argument as a macro. The explanation for how to
use this form is beyond the scope of this text.

#define

The define directive allows for user-specified definitions and mac-
ros. A definition is used when you want the preprocessor to replace
a label that you define with something else. The label is generally
uppercase to distinguish it from program variables, but this is not
required by the directive. A few examples follow:

f##define PI 3.1415927

This is a commonly used definition. Whenever the label PI ap-
pears in the source, the preprocessor will replace it with the
constant 3.1415927. In this example, PI is not a variable. A
usage such as this relieves you of repeatedly entering the con-
stant, makes the program easier to read, and allows you to
control the interpretation (fix precision and accuracy) of a con-
stant.

#idefine OK printf('OK so far...\n");

Use this when you want to avoid typing a lengthy expression
many times throughout the program. In this example, when-
ever OK appears in the program, the preprocessor replaces it
with the printf expression. This is useful when trying to debug
and track program execution dynamically.

Define is also used to create macros. A macro is a compact represen-
tation of a more complex expression. By this definition, the simple
define expressions above are also macros, but typically a macro con-
tains replacement variables. When the define label contains paren-
theses, a macro is specified. Here is an example of a macro:

#define CIRCUMFERENCE(r) 2.0*PI*r

replacement variable

The example assumes that PI has been defined already (see
above). If CIRCUMFERENCE (5.0) is encountered in the source, the

Appendix D: C Preprocessor Directives

preprocessor will replace it with 2.0%3.1415927*5. 0. You may also
use multiple variables:

#define SECTOR_AREA (r, theta) 0.5*r*r*theta

ty

replacement variables

Conditional Compilation

Conditional compilation directives allow you to control which
portions of the source are compiled. This is useful in many instances,
but the two most popular are when a program is to be “crippled”*
for distribution of a demonstration version and to allow for dynamic
debugging codes to be removed prior to final compilation or to re-
move portions of code during debugging. The directives discussed
here have the following syntax:

#ifdef <defined symbol>
program statements
#endif

or

#ifndef <defined symbol>
program statements
#endif

The first case asks whether or not the < defined symbol > has been
defined. If it has, then the program statements between the #ifdef
and #endif lines are compiled; otherwise, they are not passed on to
the compiler. The second case is the logical inverse and asks if the
symbol has not been defined.

In the example below, the printf statements will be included in the
source passed to the compiler because the symbol DEBUG is defined.
Each run of the program will output the value of x at those points
of execution allowing the variable to be tracked. When program ex-
ecution is satisfactory, the #define DEBUG can be removed for final
compilation, and the printf statements will be removed.

*A crippled program has program features disabled.

193

Appendix D: C Preprocessor Directives

#define DERUG

main () {

<program statements>

#ifdef DEBUG
printf("svalue of x is:%f\n",x);
#endif

<program statements>

#ifdef DEBUG
printf("svalue of x is:%f\n",x);
#endif

<program statements>

194

Appendix E:
Precedence Tables

C Precedence Rules

Operator Associativity
0O 1 ->. =
! ~ 4+ -- (type) * & sizeof &=
*l s =
+ - =
<< >> =
< <= < >= =
== = =
& =
- =
| =
&& =
H =
?: —
= 4= -= *= /= %= =

In Fortran, all expressions associate left-to-right (=) except exponen-
tiation, which evaluates right-to-left (<).

Fortran Precedence Rules

*/
.

.EQ. .NE. .GE. .LE. .GT. .LT.

.NOT. .AND. .OR. .EQV. NEQV.

1Unary.

195

Glossary

ADA® _ Highly structured, object-oriented language developed by
the Department of Defense and named after the first software pro-
grammer, Ada Lovelace.

address - binary word that determines the location of a cell of data
in memory.

algorithm - a detailed set of instructions on how to perform a cal-
culation.

analytical engine — Babbage’s second calculating machine. It was
designed to be programmable using punched cards.

application - executable program that performs a useful task.

arithmetic logic unit (ALU) - the part of a computer architecture
that performs arithmetic and logical operations on data.

arithmetic operator — operator that acts on variables or constants
numerically.

array - a collection of same-type variables with a distinct access
scheme based on indices for members in the collection.

ASCII - acronym for American Standard Code for Information Inter-
change and the 7-bit binary code used to represent symbols.

assembler - application that converts assembly language files into
object code.

assembly language — computer language that is unique to a pro-
cessor class and is constructed of mnemonic codes that describe
transfer of data between registers and other portions of a computer
architecture.

bells and whistles - capabilities added to a program or application
that go beyond the basic requirements of the task to improve the
user interface.

binary - base 2 numbering system. Numbering system with radix 2.

197

198

Glossary

bit — binary digit, the fundamental unit of information storage in a
computer.

bitwise operator — operator that acts on variables or constants as
Boolean values.

byte - a binary word that is 8 bits wide.

C - A high-level, problem-oriented language originally developed to
write operating systems but now used for any programming task
requiring speed, efficiency, and portability.

cascaded errors — errors caused as a result of prior error. Failure to
form or terminate a statement propetly is often a cause of cascaded
eITor.

cast — explicit means within C to perform forced type conversion,
for example,

x = (float)i + z;
casts variable i to float prior to addition with variable z.

cell - storage unit in a main memory system.

compile-time error — refers to errors that the compiler flags. Syntax,
type mismatch, and macro errors are examples of compile-time
eITors.

compiler - application that interprets high-level language code into
object code for linking and loading.

conditional — a statement, such as an if statement, that controls
execution based on a condition.

control unit - the part of a computer architecture that orchestrates
passage of data and the operations performed by a computer ar-
chitecture.

debug - remove the errors from a computer program.

decrement - to decrease the value of a variable, generally by 1.

development environment - specialized program that integrates an
editor, compiler, and run-time facility.

difference engine — Babbage’s first calculating machine. It was de-
signed to compute navigation tables using a method of finite dif-
ferences.

I-O - input-output.

dummy variables — variable names used in a function or subroutine
definition that are simply place holders and have no stored values.

edit-compile-run cycle - term given to the process of preparing an
application in a high-level language, the programming cycle.

editor - program used to enter source code into a computer or to
create ASCII document files.

Glossary

entry point - place in a program or function where execution starts.

explicit — not implied, requires direct statement or definition.

file — a set of binary data that a computer uses to store and manage
information.

flag variable — a variable used to signal a condition.

flowchart - graphical technique of diagramming a program.

Fortran - FORmula TRANslation. A high-level, problem-oriented lan-
guage designed for scientific and engineering programming.

function - a program within a program.

function prototype — a C declaration that defines the type of a func-
tion and the types of its pass variables.

global - term signifying that the scope of a variable or function is
available to any part of a program.

implicit — implied, not directly stated.

increment - to increase the value of a variable, generally by 1.

index — number, symbol, or expression used to indicate position in
a loop, array, or sequence.

infinite loop - a loop that has no loop control variable and thus no
predefined stopping point.

intrinsic function - functions that are built in to a particular lan-
guage; C has only one, sizeof().

label — name given to a variable or program element.

library function - collections of functions available to the program-
mer whose source code is not part of the program.

linker-loader - operating system application that combines object
code with libraries to create applications.

local - term signifying that the scope of a variable is restricted to the
defining function.

logical operator — operator that acts on variables logically (with val-
ues of true or false) as opposed to arithmetically.

loop - a program structure that allows a program to double back and
execute the same statements multiple times.

loop control variable - a variable that is tested to signal the end of
a loop; variable that controls the number of times a loop executes.

machine code - binary codes that are interpreted as instructions by
the hardware of a computer.

mass storage unit — large I-O unit used to store files, most often a
disk drive.

matrix — multidimensional array.

nibble/nybble - a binary word that is 4 bits wide.

199

200

Glossary

object code - assembled instructions. Files containing object files are
an intermediate step in the development of an application.

off-line — operation performed without the computer.

operating system - special application used to manage the resources
of a computer system.

operator — a functional rule that is indicated by a symbol or set of
symbols.

operator precedence — ordering rules that determine when an oper-
ator acts in an expression.

pass by reference — phrase denoting when the address of the pass
variables in a subroutine or function is passed (Fortran and Pascal
use this method).

pass by value — phrase denoting the value of the pass variables in a
subroutine or function are passed (C and ADA use this method).

program - a sequence of instructions describing how to perform a
task.

promotion - when a variable of one type is converted to that of a
higher type (e.g., float to double).

pseudocode - literally means “false code.” A simple, easily under-
stood, written description of a program. Not intended to be com-
piled.

radix - base of a numbering system.

register — the smallest unit of memory in a processor; used to hold
data for memory, ALU, or I/O operations.

run-time error - refers to errors that occur at run time or after an ap-
plication has been compiled successfully. Divide-by-zero is a com-
mon run-time error.

scope - the range of availability of a variable or function within a
program.

source code - a computer program in higher-level language form,
such as a C or Fortran program.

string — an array of characters.

syntax error - an error that violates a language structure or format
rule.

text only - file or data in ASCII printable code.

type - classification of variables, as in data type.

type conversion — implicit and explicit rules and procedures for con-
verting from one type to another.

variable - a defined and labeled data storage element in a program.

vector - a single-dimensional array.

Glossary

virtual machine hierarchy - a structure that partitions a computer
system into higher levels of abstraction from the hardware level.

von Neumann machine — computer architecture with program stor-
age in memory.

word - basic unit of memory or register size in a computer system
(expressed as a collection of bits).

201

Annotated Bibliography

A. Feuer, The C Puzzle Book, Prentice Hall, 1982.

Clever and well-presented collection of C programming tidbits and puzzles.
An excellent source of material for honing skills in C programming.

K. Jamsa, The C Library, McGraw-Hill, 1985.

Large collection of well-written and commented C code for string manipu-
lation, pointers, array manipulation, recursion, sorting, and file operations.

A. Kelley and I. Pohl, Turbo C: The Essentials of C Programming,
Addison-Wesley, 1988.

Good treatment of Borland Turbo C for the beginning programmer.

A. Kelley and 1. Pohl, C: by Dissection, Benjamin/Cummings, 1987.
Excellent tutorial text for the intermediate-level C programmer.

B. W. Kernighan and D. M. Ritchie, The C Programming Language (2nd
Ed.), Prentice Hall, 1988.

Recognized classic text as the original definition of the C programming lan-
guage.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Nu-
merical Recipes in C, Cambridge University Press, 1988.

Recognized classic compendium of scientific C functions and programs.
Diskette available with code.

R. Sedgewick, Algorithms in C, Addison-Wesley, 1990.

Comprehensive collection of complex algorithms implemented in C.

Fortran Programming

D. M. Etter, Structured FORTRAN 77 for Engineers and Scientists (4th

203

204

Annotated Bibliography

Ed.), Benjamin/Cummings, 1993.
Popular textbook for Fortran 77 engineering and scientific programming.

C. Lampton, FORTRAN for Beginners, Franklin Watts, 1984.
Good starter book for basic FORTRAN programming.

J. E. Kerrigan, From Fortran to C, Windcrest, 1991.

Written for FORTRAN programmers to learn C. A very good dual reference
and tool for advanced study of both languages.

Index

access to files. See file operations
ADA language, 3
addresses, 14-15; see also pointers
algorithms
coding of, 26-28
defined, 5
for problem development, 25-26
ALU (arithmetic logic unit), 6, 15-16
analytical engine, 2
ANSI (American National Standards Institute)
flowchart symbols, 32-34
application, 11
architecture, 6, 7
arithmetic logic unit (ALU), 6, 15-16
arithmetic operators, 50-55
arrays, 140-144
ASCII (American Standard Code for
Information Interchange)
characters, 48
overview, 30
tables, 188-189
assembler, 11
assembly language, 11
assignment, 34
assignment operators, 45, 57-58
associativity rules, 72
auto, 128
automatic variables, 127-129

Babbage, Charles, 2-3

Babbage difference engine, 2, 5
beep function, 111-112

binary numbers, 7-10

bit, 8

boldface use, 165, 170
Boole, Robert, 11
Boolean algebra, 11
Boolean logic, 55
Boolean result, 55, 57
break, 88-89, 94, 99, 100
bug, computer, 5

bytes, 8-9, 13

C language
arithmetic operators, 50-55
character variables, 49
codings, 26-28
constants, 49-50
data types, 46-47
development of, 12
file operations, 149-155
functions, 110-122
language summary, 174-180
logical and relational operators, 55-57
precedence rules, 195
program structure, 38-41, 60-62
reserved words, 43, 78
structures, 144-147
variable names, 44

C Preprocessor, 38, 190-194

case sensitive names, 44

case statement, 96-97

casting, 106-110

cells, 14

character variables, 48-49

char variable, 48, 51, 68

205

Index

close function, 151 do-while loop, 85, 89-90, 92-93
CLOSE function, 156-157 double variables, 48
code, 25 dummy variables, 119, 127

coding, 25-28
Colossus, 3, 5 edit-compile-run cycle, 28-32, 40
column restrictions, in Fortran, 39-40 editor, 29

comment, 38-39
compiler, 12
compiler directive, 38

else statement, 80-82
ENIAC (Electronic Numerical Integrator
and Computer), 3-4, 5

compile-time errors, 31 Enigma codes, 3

compound statement, 61 entry point, 110
computer bug, 5

computer history, 2-4

equivalence operator, 57
escape characters, 63-64
conditional decision structures, 96-99 evaluation of expression, 44, 57

if, 77-85 executable file, 31

loops, 85-96 expressions, 44

unconditional, 100 extern, 123, 126-127, 129
console plot (case study), 167-173 external variables, 123-126
constants, 49-50

continue statement, 88-89
CONTINUE statement, 95-96
control structures, 77-105
conditional, 96-99
if-then statements, 77-85
loops, 85-96
unconditional, 100
control unit, 6, 7
creat function, 151

factorial, 131

fclose function, 154-155

file, 30-31, 149

file descriptor, 150-151

filename, 30, 151

file operations, 149-159
high-level (stream), 153-157
low-level, 149-153

file pointer, 153-154

flag variable, 93, 94, 126

data scope, 122-130 float variables, 48
data types, 44-50 flowcharts, 32-36
debugger programs, 32 of control structures, 77-97
debugging, 5 for statistics problems, 25-27
decision structures. See control symbols, 33-34

structures folders, 30
default case, 97-99 fopen function, 154-155
development environment, 29-32 for loop, 85-88, 112
device unit number, 62 FORMAT statement, 62, 156
difference engine, 2, 5 formatted output, 62-71
digit, 8 Fortran
digital logic level, 10 arithmetic operators, 50-55
display layout, 169-172 character variables, 48-49
divide-by-zero, 52-54, 79 codings, 26-28
division operation, 52-55 column restrictions, 39-40
DO loop, 94-96 data types, 46

206

Index

development of, 12
file operations, 156-157
IF, 83-85
implicit types, 110
intrinsic functions, 122
logical and relational operators, 55-57
precedence rules, 195
program language summary, 181-187
program structure, 38-41, 60-62
reserved words, 43
fprintf function, 153-155
fscanf function, 153-155
FUNCTION definition, 118-119
function prototype, 120, 127
functions, 110-122

getch function, 68, 71, 98
global variables, 123-126
glossary, 197-201

goto statement, 100
GOTO statement, 100

high-level (stream) file operations, 153-157
history of computers, 2-4
Hopper, Grace, 6

icons, 30

if statement, 77-85

IF statement, 83-85

if-else statement, 80-82, 98

if-then statement, 77-85

implicit variables, 110

include directive, 38

index arrays, 140-144

indice, 140

infinite loop, 86, 94

input functions, 67-71

Intel Pentium, 13

intrinsic functions, 121-122

ints, 47-48, 111

ISO (International Organization for
Standardization), 32-34

ISO/ANSI flowchart symbols, 32-34

labels, 25-26
left-hand side, 57-58

library functions, 110, 120-122
linker, 11

loader, 11

local variables, 123-125

logical operators, 55-57

long int, 47

loop control variable, 85-86, 89
loops, 85-96

Lovelace, Ada, 3

low-level file operations, 149-153

machine architecture, 4-7

machine code, 11

main function, 38, 41, 60, 110, 117,
122-125, 129

mass storage unit, 30

math.h, 120

math library, 120-121, 139

mean, 22-24

megabytes, 9

memotry, 7

memory cell, 15

mnemonics, 13

modeling program (case study),
160-166

modulus operation, 53

newline, 63
nibble, 8

null character, 142
null statement, 61

object code, 11

off-line, 28

open function, 149-151

OPEN function, 156-157

op equal, 58

operating systems, 12, 30

operators, 50-60
arithmetic, 50-55
assignment, 57-58
defined, 44
logical, 55-57
relational, 55-57
unary, 59-60

output functions, 62-67

207

Index

output unit, 7
overflow, 51-52

parameter list, 111, 114
plotting (case study), 167-173
pointers, 136-140

to structures, 146

use summary, 140
postfix, 59
precedence rules, 53-54, 71-73, 195
precision, 66
preprocessor, 38, 190-194
printf function, 62-67, 68-70, 82-83
problem-oriented language level, 11
problem-solving steps, 20-29
processor instruction set, 11
program development, 20-29
program flow diagram, 129-130
programming, 20-41
programs, defined, 4, 5
program shell, 39
program structure, 38-41, 60-62
promotion of type, 54-55
pseudocodes, 25-27, 37
pseudorandom numbers, 120

radix, 7

RAM (random-access memory), 14

read function, 150

READ function, 67, 156

recursion, 131-132

register, 13

register-memory-ALU transfer system,
13-16

relational operators, 55-57

reserved words, 43, 78

return statement, 112-113

right-hand side, 57-58

rounding, 34-36, 37

runtime errors, 31

scanf function, 67-71, 118

scope, 122-130

short int, 47-48

SI (International System) prefixes, 9

208

sizeof function, 59-60

software libraries, 120

source code, 30

standard deviation, 22-24

standard i/o library, 120

standard library, 120

statements, 34, 60-62

static variable, 128-129

statistics for program development,
22-25

stdio.h, 120

stdlib.h, 120

streams, 153-157

string constant, 142

strings, 142-144

struct, 144

structure definition, 144-145

structure pointer reference, 146

structures, 144-147

structure variables, 145

SUBROUTINE definition, 118-119

subroutines, 118-119

switch statement, 96-99

syntax, 31

syntax errors, 31

tabular data, 167
termination condition, 132
text-only file. See ASCII

tides program, 130, 160-166
truncation, 53

Turing, Alan, 3

type conversion, 106-110
types, 44-50

unary operators, 59-60

unconditional control structure,
100

underflow, 51-52

unsigned char, 48

unsigned int, 47

user-defined functions, 110

variable names, 44-47
variables, 25-26

Index

variance, 22-24

virtual machine hierarchy, 10-13

visualization program (case study),
167-173

volumes, 30

von Neumann, John, 4, 8

von Neumann machine, 4-7, 10,
16

while loop, 85, 91-93
whitespace, 61-62

word, 8

word processor, 30

WRITE function, 62-63, 156-157

Z1 machine, 3
Zuse, Konrad, 3

209

	Frontmatter
	Contents
	Preface
	1 - Introduction
	2 - Computer Programming
	3 - Types, Operators, and Expressions
	4 - Control Flow
	5 - Type Conversion, Functions, and Scope
	6 - Pointers, Arrays, and Structures
	7 - File Operations
	8 - Case Studies
	Appendix A - C Language Summary
	Appendix B - Fortran Program Language Summary
	Appendix C - ASCII Tables
	Appendix D - C Preprocessor Directives
	Appendix E - Precedence Tables
	Glossary
	Annotated Bibliography
	Index

